Map projections and the Internet: Chapter 4
Kessler, Fritz; Battersby, Sarah E.; Finn, Michael P.; Clarke, Keith
2017-01-01
The field of map projections can be described as mathematical, static, and challenging. However, this description is evolving in concert with the development of the Internet. The Internet has enabled new outlets for software applications, learning, and interaction with and about map projections . This chapter examines specific ways in which the Internet has moved map projections from a relatively obscure paper-based setting to a more engaging and accessible online environment. After a brief overview of map projections, this chapter discusses four perspectives on how map projections have been integrated into the Internet. First, map projections and their role in web maps and mapping services is examined. Second, an overview of online atlases and the map projections chosen for their maps is presented. Third, new programming languages and code libraries that enable map projections to be included in mapping applications are reviewed. Fourth, the Internet has facilitated map projection education and research especially with the map reader’s comprehension and understanding of complex topics like map projection distortion is discussed.
Labeling Projections on Published Maps
Snyder, John P.
1987-01-01
To permit accurate scaling on a map, and to use the map as a source of accurate positions in the transfer of data, certain parameters - such as the standard parallels selected for a conic projection - must be stated on the map. This information is often missing on published maps. Three current major world atlases are evaluated with respect to map projection identification. The parameters essential for the projections used in these three atlases are discussed and listed. These parameters should be stated on any map based on the same projection.
Automating the selection of standard parallels for conic map projections
NASA Astrophysics Data System (ADS)
Šavriǒ, Bojan; Jenny, Bernhard
2016-05-01
Conic map projections are appropriate for mapping regions at medium and large scales with east-west extents at intermediate latitudes. Conic projections are appropriate for these cases because they show the mapped area with less distortion than other projections. In order to minimize the distortion of the mapped area, the two standard parallels of conic projections need to be selected carefully. Rules of thumb exist for placing the standard parallels based on the width-to-height ratio of the map. These rules of thumb are simple to apply, but do not result in maps with minimum distortion. There also exist more sophisticated methods that determine standard parallels such that distortion in the mapped area is minimized. These methods are computationally expensive and cannot be used for real-time web mapping and GIS applications where the projection is adjusted automatically to the displayed area. This article presents a polynomial model that quickly provides the standard parallels for the three most common conic map projections: the Albers equal-area, the Lambert conformal, and the equidistant conic projection. The model defines the standard parallels with polynomial expressions based on the spatial extent of the mapped area. The spatial extent is defined by the length of the mapped central meridian segment, the central latitude of the displayed area, and the width-to-height ratio of the map. The polynomial model was derived from 3825 maps-each with a different spatial extent and computationally determined standard parallels that minimize the mean scale distortion index. The resulting model is computationally simple and can be used for the automatic selection of the standard parallels of conic map projections in GIS software and web mapping applications.
The use of process mapping in healthcare quality improvement projects.
Antonacci, Grazia; Reed, Julie E; Lennox, Laura; Barlow, James
2018-05-01
Introduction Process mapping provides insight into systems and processes in which improvement interventions are introduced and is seen as useful in healthcare quality improvement projects. There is little empirical evidence on the use of process mapping in healthcare practice. This study advances understanding of the benefits and success factors of process mapping within quality improvement projects. Methods Eight quality improvement projects were purposively selected from different healthcare settings within the UK's National Health Service. Data were gathered from multiple data-sources, including interviews exploring participants' experience of using process mapping in their projects and perceptions of benefits and challenges related to its use. These were analysed using inductive analysis. Results Eight key benefits related to process mapping use were reported by participants (gathering a shared understanding of the reality; identifying improvement opportunities; engaging stakeholders in the project; defining project's objectives; monitoring project progress; learning; increased empathy; simplicity of the method) and five factors related to successful process mapping exercises (simple and appropriate visual representation, information gathered from multiple stakeholders, facilitator's experience and soft skills, basic training, iterative use of process mapping throughout the project). Conclusions Findings highlight benefits and versatility of process mapping and provide practical suggestions to improve its use in practice.
Computer-assisted map projection research
Snyder, John Parr
1985-01-01
Computers have opened up areas of map projection research which were previously too complicated to utilize, for example, using a least-squares fit to a very large number of points. One application has been in the efficient transfer of data between maps on different projections. While the transfer of moderate amounts of data is satisfactorily accomplished using the analytical map projection formulas, polynomials are more efficient for massive transfers. Suitable coefficients for the polynomials may be determined more easily for general cases using least squares instead of Taylor series. A second area of research is in the determination of a map projection fitting an unlabeled map, so that accurate data transfer can take place. The computer can test one projection after another, and include iteration where required. A third area is in the use of least squares to fit a map projection with optimum parameters to the region being mapped, so that distortion is minimized. This can be accomplished for standard conformal, equalarea, or other types of projections. Even less distortion can result if complex transformations of conformal projections are utilized. This bulletin describes several recent applications of these principles, as well as historical usage and background.
MAPPER: A personal computer map projection tool
NASA Technical Reports Server (NTRS)
Bailey, Steven A.
1993-01-01
MAPPER is a set of software tools designed to let users create and manipulate map projections on a personal computer (PC). The capability exists to generate five popular map projections. These include azimuthal, cylindrical, mercator, lambert, and sinusoidal projections. Data for projections are contained in five coordinate databases at various resolutions. MAPPER is managed by a system of pull-down windows. This interface allows the user to intuitively create, view and export maps to other platforms.
Brain-mapping projects using the common marmoset.
Okano, Hideyuki; Mitra, Partha
2015-04-01
Globally, there is an increasing interest in brain-mapping projects, including the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative project in the USA, the Human Brain Project (HBP) in Europe, and the Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS) project in Japan. These projects aim to map the structure and function of neuronal circuits to ultimately understand the vast complexity of the human brain. Brain/MINDS is focused on structural and functional mapping of the common marmoset (Callithrix jacchus) brain. This non-human primate has numerous advantages for brain mapping, including a well-developed frontal cortex and a compact brain size, as well as the availability of transgenic technologies. In the present review article, we discuss strategies for structural and functional mapping of the marmoset brain and the relation of the common marmoset to other animals models. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Erika S. Svendsen; Lindsay K. Campbell; Dana R. Fisher; James J.T. Connolly; Michelle L. Johnson; Nancy Falxa Sonti; Dexter H. Locke; Lynne M. Westphal; Cherie LeBlanc Fisher; Morgan Grove; Michele Romolini; Dale J. Blahna; Kathleen L. Wolf
2016-01-01
The Stewardship Mapping and Assessment Project (STEW-MAP) is designed to answer who, where, why and how environmental stewardship groups are caring for our urbanized landscapes. This report is intended to be a guide for those who wish to start STEW-MAP in their own city. It contains step-by-step directions for how to plan and implement a STEW-MAP project. STEW-MAP is...
NASA Technical Reports Server (NTRS)
Elliott, D. A.; Schwartz, A. A.
1977-01-01
The relationships between the coordinates of a point on the surface on an oblate spheroid and the coordinates of the projection of that point in several common map projections are discussed. Because several of the projections are conformal, the theory of conformally mapping an oblate spheroid to the plane is summarized. For each projection considered, the equations which map the spheroid to the plane and their inverses are given.
Custom map projections for regional groundwater models
Kuniansky, Eve L.
2017-01-01
For regional groundwater flow models (areas greater than 100,000 km2), improper choice of map projection parameters can result in model error for boundary conditions dependent on area (recharge or evapotranspiration simulated by application of a rate using cell area from model discretization) and length (rivers simulated with head-dependent flux boundary). Smaller model areas can use local map coordinates, such as State Plane (United States) or Universal Transverse Mercator (correct zone) without introducing large errors. Map projections vary in order to preserve one or more of the following properties: area, shape, distance (length), or direction. Numerous map projections are developed for different purposes as all four properties cannot be preserved simultaneously. Preservation of area and length are most critical for groundwater models. The Albers equal-area conic projection with custom standard parallels, selected by dividing the length north to south by 6 and selecting standard parallels 1/6th above or below the southern and northern extent, preserves both area and length for continental areas in mid latitudes oriented east-west. Custom map projection parameters can also minimize area and length error in non-ideal projections. Additionally, one must also use consistent vertical and horizontal datums for all geographic data. The generalized polygon for the Floridan aquifer system study area (306,247.59 km2) is used to provide quantitative examples of the effect of map projections on length and area with different projections and parameter choices. Use of improper map projection is one model construction problem easily avoided.
PenMap demonstration project, landslide mapping system
DOT National Transportation Integrated Search
2002-12-01
This report documents the findings of a technology transfer project to demonstrate the effectiveness of a portable field mapping system to landslide field reconnaissance work. The objective of this project was to expose the latest field data collecti...
Engineering With Nature Geographic Project Mapping Tool (EWN ProMap)
2015-07-01
EWN ProMap database provides numerous case studies for infrastructure projects such as breakwaters, river engineering dikes, and seawalls that have...the EWN Project Mapping Tool (EWN ProMap) is to assist users in their search for case study information that can be valuable for developing EWN ideas...Essential elements of EWN include: (1) using science and engineering to produce operational efficiencies supporting sustainable delivery of
NASA Astrophysics Data System (ADS)
Yan, Jin; Song, Xiao; Gong, Guanghong
2016-02-01
We describe a metric named averaged ratio between complementary profiles to represent the distortion of map projections, and the shape regularity of spherical cells derived from map projections or non-map-projection methods. The properties and statistical characteristics of our metric are investigated. Our metric (1) is a variable of numerical equivalence to both scale component and angular deformation component of Tissot indicatrix, and avoids the invalidation when using Tissot indicatrix and derived differential calculus for evaluating non-map-projection based tessellations where mathematical formulae do not exist (e.g., direct spherical subdivisions), (2) exhibits simplicity (neither differential nor integral calculus) and uniformity in the form of calculations, (3) requires low computational cost, while maintaining high correlation with the results of differential calculus, (4) is a quasi-invariant under rotations, and (5) reflects the distortions of map projections, distortion of spherical cells, and the associated distortions of texels. As an indicator of quantitative evaluation, we investigated typical spherical tessellation methods, some variants of tessellation methods, and map projections. The tessellation methods we evaluated are based on map projections or direct spherical subdivisions. The evaluation involves commonly used Platonic polyhedrons, Catalan polyhedrons, etc. Quantitative analyses based on our metric of shape regularity and an essential metric of area uniformity implied that (1) Uniform Spherical Grids and its variant show good qualities in both area uniformity and shape regularity, and (2) Crusta, Unicube map, and a variant of Unicube map exhibit fairly acceptable degrees of area uniformity and shape regularity.
Zhou, Zhengdong; Guan, Shaolin; Xin, Runchao; Li, Jianbo
2018-06-01
Contrast-enhanced subtracted breast computer tomography (CESBCT) images acquired using energy-resolved photon counting detector can be helpful to enhance the visibility of breast tumors. In such technology, one challenge is the limited number of photons in each energy bin, thereby possibly leading to high noise in separate images from each energy bin, the projection-based weighted image, and the subtracted image. In conventional low-dose CT imaging, iterative image reconstruction provides a superior signal-to-noise compared with the filtered back projection (FBP) algorithm. In this paper, maximum a posteriori expectation maximization (MAP-EM) based on projection-based weighting imaging for reconstruction of CESBCT images acquired using an energy-resolving photon counting detector is proposed, and its performance was investigated in terms of contrast-to-noise ratio (CNR). The simulation study shows that MAP-EM based on projection-based weighting imaging can improve the CNR in CESBCT images by 117.7%-121.2% compared with FBP based on projection-based weighting imaging method. When compared with the energy-integrating imaging that uses the MAP-EM algorithm, projection-based weighting imaging that uses the MAP-EM algorithm can improve the CNR of CESBCT images by 10.5%-13.3%. In conclusion, MAP-EM based on projection-based weighting imaging shows significant improvement the CNR of the CESBCT image compared with FBP based on projection-based weighting imaging, and MAP-EM based on projection-based weighting imaging outperforms MAP-EM based on energy-integrating imaging for CESBCT imaging.
Equidistant map projections of a triaxial ellipsoid with the use of reduced coordinates
NASA Astrophysics Data System (ADS)
Pędzich, Paweł
2017-12-01
The paper presents a new method of constructing equidistant map projections of a triaxial ellipsoid as a function of reduced coordinates. Equations for x and y coordinates are expressed with the use of the normal elliptic integral of the second kind and Jacobian elliptic functions. This solution allows to use common known and widely described in literature methods of solving such integrals and functions. The main advantage of this method is the fact that the calculations of x and y coordinates are practically based on a single algorithm that is required to solve the elliptic integral of the second kind. Equations are provided for three types of map projections: cylindrical, azimuthal and pseudocylindrical. These types of projections are often used in planetary cartography for presentation of entire and polar regions of extraterrestrial objects. The paper also contains equations for the calculation of the length of a meridian and a parallel of a triaxial ellipsoid in reduced coordinates. Moreover, graticules of three coordinates systems (planetographic, planetocentric and reduced) in developed map projections are presented. The basic properties of developed map projections are also described. The obtained map projections may be applied in planetary cartography in order to create maps of extraterrestrial objects.
Mapping of information and identification of construction waste at project life cycle
NASA Astrophysics Data System (ADS)
Wibowo, Mochamad Agung; Handayani, Naniek Utami; Nurdiana, Asri; Sholeh, Moh Nur; Pamungkas, Gita Silvia
2018-03-01
The development of construction project towards green construction is needed in order to improve the efficiency of construction projects. One that needs to be minimized is construction waste. Construction waste is waste generated from construction project activities, both solid waste and non solid waste. More specifically, the waste happens at every phase of the project life cycle. Project life cycle are the stage of idea, design, construction, and operation/maintenance. Each phase is managed by different stakeholders. Therefore it requires special handling from the involved stakeholders. The objective of the study is to map the information and identify the waste at each phase of the project life cycle. The purpose of mapping is to figure out the process of information and product flow and with its timeline. This mapping used Value Stream Mapping (VSM). Identification of waste was done by distributing questionnaire to respondents to know the waste according to owner, consultant planner, contractor, and supervisory consultant. The result of the study is the mapping of information flow and product flow at the phases of idea, design, construction, and operation/ maintenance.
World Family Map Project. Prototype Report
ERIC Educational Resources Information Center
Wilcox, W. Bradford; Lippman, Laura; Whitney, Camille
2009-01-01
In 2010, the "World Family Map Project" seeks to launch a research initiative that will track central indicators of family strength around the globe. The "World Family Map Project" (WFMP) would partner with Child Trends, a nonpartisan research organization in Washington, D.C., the Institute of Marriage and Family Canada, and…
3D mapping of breast surface using digital fringe projection
NASA Astrophysics Data System (ADS)
Vairavan, Rajendaran; Retnasamy, Vithyacharan; Mohamad Shahimin, Mukhzeer; Sauli, Zaliman; Leng, Lai Siang; Wan Norhaimi, Wan Mokhzani; Marimuthu, Rajeswaran; Abdullah, Othman; Kirtsaeng, Supap
2017-02-01
Optical sensing technique has inherited non-contact nature for generating 3D surface mapping where its application ranges from MEMS component characterization, corrosion analysis, and vibration analysis. In particular, the digital fringe projection is utilized for 3D mapping of objects through the illumination of structured light for medical application extending from oral dental measurements, lower back deformation analysis, monitoring of scoliosis and 3D face reconstruction for biometric identification. However, the usage of digital fringe projection for 3D mapping of human breast is very minimal. Thus, this paper addresses the application of digital fringe projection for 3D mapping of breast surface based on total non-contact nature. In this work, phase shift method is utilized to perform the 3D mapping. The phase shifted fringe pattern are displayed through a digital projector onto the breast surface, and the distorted fringe patterns are captured by a CCD camera. A phase map is produced, and phase unwrapping was executed to obtain the 3D surface mapping of the breast. The surface height profile from 3D fringe projection was compared with the surface height measured by a direct method using electronic digital vernier caliper. Preliminary results showed the feasibility of digital fringe projection in providing a 3D mapping of breast and its application could be further extended for breast carcinoma detection.
Hop, Kevin D.; Drake, Jim; Strassman, Andrew C.; Hoy, Erin E.; Jakusz, Joseph; Menard, Shannon; Dieck, Jennifer
2015-01-01
The Mississippi National River and Recreation Area (MISS) vegetation mapping project is an initiative of the National Park Service (NPS) Vegetation Inventory Program (VIP) to classify and map vegetation types of MISS. (Note: “MISS” is also referred to as “park” throughout this report.) The goals of the project are to adequately describe and map vegetation types of the park and to provide the NPS Natural Resource Inventory and Monitoring (I&M) Program, resource managers, and biological researchers with useful baseline vegetation information.The MISS vegetation mapping project was officially started in spring 2012, with a scoping meeting wherein partners discussed project objectives, goals, and methods. Major collaborators at this meeting included staff from the NPS MISS, the NPS Great Lakes Network (GLKN), NatureServe, and the USGS Upper Midwest Environmental Sciences Center. The Minnesota Department of Natural Resources (DNR) was also in attendance. Common to all NPS VIP projects, the three main components of the MISS vegetation mapping project are as follows: (1) vegetation classification, (2) vegetation mapping, and (3) map accuracy assessment (AA). In this report, each of these fundamental components is discussed in detail.With the completion of the MISS vegetation mapping project, all nine park units within the NPS GLKN have received vegetation classification and mapping products from the NPS and USGS vegetation programs. Voyageurs National Park and Isle Royale National Park were completed during 1996–2001 (as program pilot projects) and another six park units were completed during 2004–11, including the Apostle Islands National Lakeshore, Grand Portage National Monument, Indiana Dunes National Lakeshore, Pictured Rocks National Lakeshore, Saint Croix National Scenic Riverway, and Sleeping Bear Dunes National Lakeshore.
Colorized Map of Ceres Mercator Projection
2016-03-22
The map is a Mercator projection and has a resolution of 460 feet 140 meters per pixel. The images used to make this map were taken from Dawn high-altitude mapping orbit HAMO, at a distance of 915 miles 1,470 kilometers from Ceres.
Project of Near-Real-Time Generation of ShakeMaps and a New Hazard Map in Austria
NASA Astrophysics Data System (ADS)
Jia, Yan; Weginger, Stefan; Horn, Nikolaus; Hausmann, Helmut; Lenhardt, Wolfgang
2016-04-01
Target-orientated prevention and effective crisis management can reduce or avoid damage and save lives in case of a strong earthquake. To achieve this goal, a project for automatic generated ShakeMaps (maps of ground motion and shaking intensity) and updating the Austrian hazard map was started at ZAMG (Zentralanstalt für Meteorologie und Geodynamik) in 2015. The first goal of the project is set for a near-real-time generation of ShakeMaps following strong earthquakes in Austria to provide rapid, accurate and official information to support the governmental crisis management. Using newly developed methods and software by SHARE (Seismic Hazard Harmonization in Europe) and GEM (Global Earthquake Model), which allows a transnational analysis at European level, a new generation of Austrian hazard maps will be ultimately calculated. More information and a status of our project will be given by this presentation.
The logic of selecting an appropriate map projection in a Decision Support System (DSS)
Finn, Michael P.; Usery, E. Lynn; Woodard, Laura N.; Yamamoto, Kristina H.
2017-01-01
There are undeniable practical consequences to consider when choosing an appropriate map projection for a specific region. The surface of a globe covered by global, continental, and regional maps are so singular that each type distinctively affects the amount of distortion incurred during a projection transformation because of the an assortment of effects caused by distance, direction, scale , and area. A Decision Support System (DSS) for Map Projections of Small Scale Data was previously developed to help select an appropriate projection. This paper reports on a tutorial to accompany that DSS. The DSS poses questions interactively, allowing the user to decide on the parameters, which in turn determines the logic path to a solution. The objective of including a tutorial to accompany the DSS is achieved by visually representing the path of logic that is taken to a recommended map projection derived from the parameters the user selects. The tutorial informs the DSS user about the pedigree of the projection and provides a basic explanation of the specific projection design. This information is provided by informational pop-ups and other aids.
Understanding map projections: Chapter 15
Usery, E. Lynn; Kent, Alexander J.; Vujakovic, Peter
2018-01-01
It has probably never been more important in the history of cartography than now that people understand how maps work. With increasing globalization, for example, world maps provide a key format for the transmission of information, but are often poorly used. Examples of poor understanding and use of projections and the resultant maps are many; for instance, the use of rectangular world maps in the United Kingdom press to show Chinese and Korean missile ranges as circles, something which can only be achieved on equidistant projections and then only from one launch point (Vujakovic, 2014).
Global Land Survey Impervious Mapping Project Web Site
NASA Technical Reports Server (NTRS)
DeColstoun, Eric Brown; Phillips, Jacqueline
2014-01-01
The Global Land Survey Impervious Mapping Project (GLS-IMP) aims to produce the first global maps of impervious cover at the 30m spatial resolution of Landsat. The project uses Global Land Survey (GLS) Landsat data as its base but incorporates training data generated from very high resolution commercial satellite data and using a Hierarchical segmentation program called Hseg. The web site contains general project information, a high level description of the science, examples of input and output data, as well as links to other relevant projects.
Implications of Web Mercator and its Use in Online Mapping
Battersby, Sarah E.; Finn, Michael P.; Usery, E. Lynn; Yamamoto, Kristina H.
2014-01-01
Online interactive maps have become a popular means of communicating with spatial data. In most online mapping systems, Web Mercator has become the dominant projection. While the Mercator projection has a long history of discussion about its inappropriateness for general-purpose mapping, particularly at the global scale, and seems to have been virtually phased out for general-purpose global-scale print maps, it has seen a resurgence in popularity in Web Mercator form. This article theorizes on how Web Mercator came to be widely used for online maps and what this might mean in terms of data display, technical aspects of map generation and distribution, design, and cognition of spatial patterns. The authors emphasize details of where the projection excels and where it does not, as well as some of its advantages and disadvantages for cartographic communication, and conclude with some research directions that may help to develop better solutions to the problem of projections for general-purpose, multi-scale Web mapping.
Modeling Research Project Risks with Fuzzy Maps
ERIC Educational Resources Information Center
Bodea, Constanta Nicoleta; Dascalu, Mariana Iuliana
2009-01-01
The authors propose a risks evaluation model for research projects. The model is based on fuzzy inference. The knowledge base for fuzzy process is built with a causal and cognitive map of risks. The map was especially developed for research projects, taken into account their typical lifecycle. The model was applied to an e-testing research…
Seismic Line Location Map Hot Pot Project, Humboldt County, Nevada 2010
Lane, Michael
2010-01-01
Seismic Line Location Map Hot Pot Project, Humboldt County, Nevada 2010. ArcGIS map package containing topographic base map, Township and Range layer, Oski BLM and private leases at time of survey, and locations, with selected shot points, of the five seismic lines.
46. GENERAL MAP OF SANTA ANA NO. 3 PROJECT MAP ...
46. GENERAL MAP OF SANTA ANA NO. 3 PROJECT MAP OF ALL THREE POWER HOUSE SYSTEMS, EXHIBIT J, JAN. 25, 1956. SCE drawing no. 535041 (sheet no. 1; for filing with Federal Power Commission). - Santa Ana River Hydroelectric System, Redlands, San Bernardino County, CA
Steinwand, Daniel R.; Hutchinson, John A.; Snyder, J.P.
1995-01-01
In global change studies the effects of map projection properties on data quality are apparent, and the choice of projection is significant. To aid compilers of global and continental data sets, six equal-area projections were chosen: the interrupted Goode Homolosine, the interrupted Mollweide, the Wagner IV, and the Wagner VII for global maps; the Lambert Azimuthal Equal-Area for hemisphere maps; and the Oblated Equal-Area and the Lambert Azimuthal Equal-Area for continental maps. Distortions in small-scale maps caused by reprojection, and the additional distortions incurred when reprojecting raster images, were quantified and graphically depicted. For raster images, the errors caused by the usual resampling methods (pixel brightness level interpolation) were responsible for much of the additional error where the local resolution and scale change were the greatest.
Buchanan, Carrie C; Torstenson, Eric S; Bush, William S; Ritchie, Marylyn D
2012-01-01
Since publication of the human genome in 2003, geneticists have been interested in risk variant associations to resolve the etiology of traits and complex diseases. The International HapMap Consortium undertook an effort to catalog all common variation across the genome (variants with a minor allele frequency (MAF) of at least 5% in one or more ethnic groups). HapMap along with advances in genotyping technology led to genome-wide association studies which have identified common variants associated with many traits and diseases. In 2008 the 1000 Genomes Project aimed to sequence 2500 individuals and identify rare variants and 99% of variants with a MAF of <1%. To determine whether the 1000 Genomes Project includes all the variants in HapMap, we examined the overlap between single nucleotide polymorphisms (SNPs) genotyped in the two resources using merged phase II/III HapMap data and low coverage pilot data from 1000 Genomes. Comparison of the two data sets showed that approximately 72% of HapMap SNPs were also found in 1000 Genomes Project pilot data. After filtering out HapMap variants with a MAF of <5% (separately for each population), 99% of HapMap SNPs were found in 1000 Genomes data. Not all variants cataloged in HapMap are also cataloged in 1000 Genomes. This could affect decisions about which resource to use for SNP queries, rare variant validation, or imputation. Both the HapMap and 1000 Genomes Project databases are useful resources for human genetics, but it is important to understand the assumptions made and filtering strategies employed by these projects.
The evolving Alaska mapping program.
Brooks, P.D.; O'Brien, T. J.
1986-01-01
This paper describes the development of mapping in Alaska, the current status of the National Mapping Program, and future plans for expanding and improving the mapping coverage. Research projects with Landsat Multispectral Scanner and Return Vidicon imagery and real- and synthetic-aperture radar; image mapping programs; digital mapping; remote sensing projects; the Alaska National Interest Lands Conservation Act; and the Alaska High-Altitude Aerial Photography Program are also discussed.-from Authors
Projection-viewer for microscale aerial photography
Robert C. Aldrich; James von Mosch; Wallace Greentree
1972-01-01
A low-cost projection-viewer has been developed to enlarge portions of microscale aerial photographs. These pictures can be used for interpretation or mapping, or for comparison with existing photographs, maps, and overlays to monitor environmental changes. The projection-viewer can enlarge from 2.5 to 20 times, and can be calibrated so that maps may be drawn with a...
Chapter 8 - Mapping existing vegetation composition and structure for the LANDFIRE Prototype Project
Zhiliang Zhu; James Vogelmann; Donald Ohlen; Jay Kost; Xuexia Chen; Brian Tolk
2006-01-01
The Landscape Fire and Resource Management Planning Tools Prototype Project, or LANDFIRE Prototype Project, required the mapping of existing vegetation composition (cover type) and structural stages at a 30-m spatial resolution to provide baseline vegetation data for the development of wildland fuel maps and for comparison to simulated historical vegetation reference...
A program for handling map projections of small-scale geospatial raster data
Finn, Michael P.; Steinwand, Daniel R.; Trent, Jason R.; Buehler, Robert A.; Mattli, David M.; Yamamoto, Kristina H.
2012-01-01
Scientists routinely accomplish small-scale geospatial modeling using raster datasets of global extent. Such use often requires the projection of global raster datasets onto a map or the reprojection from a given map projection associated with a dataset. The distortion characteristics of these projection transformations can have significant effects on modeling results. Distortions associated with the reprojection of global data are generally greater than distortions associated with reprojections of larger-scale, localized areas. The accuracy of areas in projected raster datasets of global extent is dependent on spatial resolution. To address these problems of projection and the associated resampling that accompanies it, methods for framing the transformation space, direct point-to-point transformations rather than gridded transformation spaces, a solution to the wrap-around problem, and an approach to alternative resampling methods are presented. The implementations of these methods are provided in an open-source software package called MapImage (or mapIMG, for short), which is designed to function on a variety of computer architectures.
3D silicon breast surface mapping via structured light profilometry
NASA Astrophysics Data System (ADS)
Vairavan, R.; Ong, N. R.; Sauli, Z.; Kirtsaeng, S.; Sakuntasathien, S.; Shahimin, M. M.; Alcain, J. B.; Lai, S. L.; Paitong, P.; Retnasamy, V.
2017-09-01
Digital fringe projection technique is one of the promising optical methods for 3D surface imaging as it demonstrates non contact and non invasive characteristics. The potential of this technique matches the requirement for human body evaluation, as it is vital for disease diagnosis and for treatment option selection. Thus, the digital fringe projection has addressed this requirement with its wide clinical related application and studies. However, the application of this technique for 3D surface mapping of the breast is very minimal. Hence, in this work, the application of digital fringe projection for 3D breast surface mapping is reported. Phase shift fringe projection technique was utilized to perform the 3D breast surface mapping. Maiden results have confirmed the feasibility of using the digital fringe projection method for 3D surface mapping of the breast and it can be extended for breast cancer detection.
NASA Astrophysics Data System (ADS)
Xu, Jin; Li, Zheng; Li, Shuliang; Zhang, Yanyan
2015-07-01
There is still a lack of effective paradigms and tools for analysing and discovering the contents and relationships of project knowledge contexts in the field of project management. In this paper, a new framework for extracting and representing project knowledge contexts using topic models and dynamic knowledge maps under big data environments is proposed and developed. The conceptual paradigm, theoretical underpinning, extended topic model, and illustration examples of the ontology model for project knowledge maps are presented, with further research work envisaged.
2. Photographic copy of map. Gila River Project, General Map ...
2. Photographic copy of map. Gila River Project, General Map Showing Progress for the Fiscal Year 1927. (Source: U.S. Department of Interior. Office of Indian Affairs. Indian Irrigation Service. Annual Report, Fiscal Year 1927. Vol. I, Narrative and Photographs, District #4, RG 75, Entry 655, Box 29, National Archives, Washington, DC.) Photograph is an 8'x10' enlargement from a 4'x5' negative. - San Carlos Irrigation Project, Lands North & South of Gila River, Coolidge, Pinal County, AZ
Rankin, William
2017-06-01
The International Map of the World was a hugely ambitious scheme to create standardized maps of the entire world. It was first proposed in 1891 and remained a going concern until 1986. Over the course of the project's official life, nearly every country in the world took part, and map sheets were published showing all but a few areas of the planet. But the project ended quite unceremoniously, repudiated by cartographers and mapping institutions alike, and it is now remembered as a 'sad story' of network failure. How can we evaluate this kind of sprawling, multigenerational project? In order to move beyond practitioners' (and historians') habit of summarizing the entire endeavor using the blunt categories of success and failure, I propose a more temporally aware reading, one that both disaggregates the (persistent) project from the (always changing) network and sees project and network as invertible, with the possibility of zombie projects and negative networks that can remain robust even when disconnected from their original goals. I therefore see the abandonment of the International Map of the World as resulting from vigorous collaboration and new norms in cartography, not from lack of cooperation or other resources. New categories are required for analyzing science over the long durée.
Stanton, G B
2001-04-02
Axonal projections to the nucleus reticularis tegmenti pontis (RTP) were studied in 11 macaque monkeys by mapping axonal degeneration from lesions centered in the dentate and interpositus anterior (IA) nuclei and by mapping anterograde transport of tritiated amino acid precursors injected into the dentate nucleus. Projections from the dentate and IA nuclei overlap in central parts of the body of RTP, but the terminal field of dentate axons extends dorsomedial and rostral to the terminal field of IA axons, and IA terminal fields extend more ventrolaterally. A caudal to rostral topography of projections from each nucleus onto dorsal to ventral parts of RTP was seen. Projections from rostral parts of both nuclei terminate in a sublemniscal part of the nucleus. The topography of dentate and IA projections onto central to ventrolateral RTP appears to match somatotopic maps of these cerebellar nuclei with the somatotopic map of projections to RTP from primary motor cortex. Projections from caudal and ventral parts of the dentate nucleus appear to overlap oculomotor inputs to rostral, dorsal, and medial RTP from the frontal and supplementary eye fields, the superior colliculus, and the oculomotor region of the caudal fastigial nucleus. Projections to the paramedian part of RTP from vestibular area "y" were also found in two cases that correlated with projections to vertical oculomotor motoneurons. The maps of dentate and IA projections onto RTP correlate predictably with maps of dentate and IA projections to the ventrolateral thalamus and subnuclei of the red nucleus that were made from these same cases (Stanton [1980b] J. Comp. Neurol. 192:377-385). Copyright 2001 Wiley-Liss, Inc.
Old maps in the GIS and Internet environment
NASA Astrophysics Data System (ADS)
Křováková, K.; Brůna, V.; Pacina, J.
2009-04-01
Old maps are moreover used as data layers in GIS environment, both in raster or vector form. By comparing data from several time periods we can identify the main trends in landscape development and its spatial structure. The Laboratory of geoinformatics at Jan Evangelista Purkyně University, Czech republic is working on several projects concerned about analysis and visualization of old maps. On the poster are presented results of some of the projects solved at the laboratory. One of the most successful project is the web-application http://oldmaps.geolab.cz - where are online presented old maps from the region of Bohemia, Moravia and Silesia. On this server are accessible maps of the 1st, 2nd and partially 3rd military mapping, Müller's map of Bohemia and a part of survey operator of Stabile cadastre. On the poster are as well presented results from the Historical atlas of Czech towns and results from project solved for the National Park of Šumava in the area of Chlum.
Enhanced digital mapping project : final report
DOT National Transportation Integrated Search
2004-11-19
The Enhanced Digital Map Project (EDMap) was a three-year effort launched in April 2001 to develop a range of digital map database enhancements that enable or improve the performance of driver assistance systems currently under development or conside...
Refining Landsat classification results using digital terrain data
Miller, Wayne A.; Shasby, Mark
1982-01-01
Scientists at the U.S. Geological Survey's Earth Resources Observation systems (EROS) Data Center have recently completed two land-cover mapping projects in which digital terrain data were used to refine Landsat classification results. Digital ter rain data were incorporated into the Landsat classification process using two different procedures that required developing decision criteria either subjectively or quantitatively. The subjective procedure was used in a vegetation mapping project in Arizona, and the quantitative procedure was used in a forest-fuels mapping project in Montana. By incorporating digital terrain data into the Landsat classification process, more spatially accurate landcover maps were produced for both projects.
Mapping a Crisis, One Text Message at a Time
ERIC Educational Resources Information Center
Bauduy, Jennifer
2010-01-01
An interactive mapping project is revolutionizing the way crises are reported and managed, and is spotlighting the value of citizen journalism. The project, called Ushahidi, which means testimony in Swahili, uses crowdsourcing (gathering information from a large number of people) to map crisis information. This crisis mapping tool has since been…
Project Loon based augmentation for global ionospheric modeling over Southern Hemisphere
NASA Astrophysics Data System (ADS)
Wang, Cheng; Shi, Chuang; Zhang, Hongping
2017-04-01
Global ionospheric products of vertical total electron content (VTEC) derived from GNSS measurements may have low accuracy over oceans and southern latitudes where there are not rich observations. Project Loon provides a great opportunity to enhance the measurements over those areas. In this contribution, a simulation of Project Loon based augmentation for global ionospheric modeling is performed by using the international reference ionosphere (IRI) which could simulate VTEC measurements for the balloons. The performance of the enhanced method based on simulation of Project Loon is investigated by comparing with VTEC maps from Ionosphere Associate Analysis Centers (IAACs) as well as IGS final GIMs. The comparison indicates that there is a better consistency between the VTEC maps by the enhanced method and IGS final GIMs. Also, obvious improvements of RMS maps in GIMs for the middle latitudes and southern latitudes are enabled by the augmentation of Project Loon. Additionally, JASON data are used to validate the specific improvement of the VTEC maps. The results show that the performance of VTEC maps is improved slightly, especially in southern latitudes. It is possible that the VTEC maps could be improved significantly by using real GPS measurements from balloons of Project Loon in the near future.
Project Loon based augmentation for global ionospheric modeling over Southern Hemisphere.
Wang, Cheng; Shi, Chuang; Zhang, Hongping
2017-04-06
Global ionospheric products of vertical total electron content (VTEC) derived from GNSS measurements may have low accuracy over oceans and southern latitudes where there are not rich observations. Project Loon provides a great opportunity to enhance the measurements over those areas. In this contribution, a simulation of Project Loon based augmentation for global ionospheric modeling is performed by using the international reference ionosphere (IRI) which could simulate VTEC measurements for the balloons. The performance of the enhanced method based on simulation of Project Loon is investigated by comparing with VTEC maps from Ionosphere Associate Analysis Centers (IAACs) as well as IGS final GIMs. The comparison indicates that there is a better consistency between the VTEC maps by the enhanced method and IGS final GIMs. Also, obvious improvements of RMS maps in GIMs for the middle latitudes and southern latitudes are enabled by the augmentation of Project Loon. Additionally, JASON data are used to validate the specific improvement of the VTEC maps. The results show that the performance of VTEC maps is improved slightly, especially in southern latitudes. It is possible that the VTEC maps could be improved significantly by using real GPS measurements from balloons of Project Loon in the near future.
Project Loon based augmentation for global ionospheric modeling over Southern Hemisphere
Wang, Cheng; Shi, Chuang; Zhang, Hongping
2017-01-01
Global ionospheric products of vertical total electron content (VTEC) derived from GNSS measurements may have low accuracy over oceans and southern latitudes where there are not rich observations. Project Loon provides a great opportunity to enhance the measurements over those areas. In this contribution, a simulation of Project Loon based augmentation for global ionospheric modeling is performed by using the international reference ionosphere (IRI) which could simulate VTEC measurements for the balloons. The performance of the enhanced method based on simulation of Project Loon is investigated by comparing with VTEC maps from Ionosphere Associate Analysis Centers (IAACs) as well as IGS final GIMs. The comparison indicates that there is a better consistency between the VTEC maps by the enhanced method and IGS final GIMs. Also, obvious improvements of RMS maps in GIMs for the middle latitudes and southern latitudes are enabled by the augmentation of Project Loon. Additionally, JASON data are used to validate the specific improvement of the VTEC maps. The results show that the performance of VTEC maps is improved slightly, especially in southern latitudes. It is possible that the VTEC maps could be improved significantly by using real GPS measurements from balloons of Project Loon in the near future. PMID:28383058
Buchanan, Carrie C; Torstenson, Eric S; Bush, William S
2012-01-01
Background Since publication of the human genome in 2003, geneticists have been interested in risk variant associations to resolve the etiology of traits and complex diseases. The International HapMap Consortium undertook an effort to catalog all common variation across the genome (variants with a minor allele frequency (MAF) of at least 5% in one or more ethnic groups). HapMap along with advances in genotyping technology led to genome-wide association studies which have identified common variants associated with many traits and diseases. In 2008 the 1000 Genomes Project aimed to sequence 2500 individuals and identify rare variants and 99% of variants with a MAF of <1%. Methods To determine whether the 1000 Genomes Project includes all the variants in HapMap, we examined the overlap between single nucleotide polymorphisms (SNPs) genotyped in the two resources using merged phase II/III HapMap data and low coverage pilot data from 1000 Genomes. Results Comparison of the two data sets showed that approximately 72% of HapMap SNPs were also found in 1000 Genomes Project pilot data. After filtering out HapMap variants with a MAF of <5% (separately for each population), 99% of HapMap SNPs were found in 1000 Genomes data. Conclusions Not all variants cataloged in HapMap are also cataloged in 1000 Genomes. This could affect decisions about which resource to use for SNP queries, rare variant validation, or imputation. Both the HapMap and 1000 Genomes Project databases are useful resources for human genetics, but it is important to understand the assumptions made and filtering strategies employed by these projects. PMID:22319179
Reflections on the Gall-Peters Projection.
ERIC Educational Resources Information Center
Robinson, Arthur H.
1987-01-01
Explains the cartographic qualities of rectangular world maps and compares the merits of various projections such as the Mercator and the recently-created Gall-Peters. States that the Gall-Peters projection does not provide a reasonable base for a general world map; that no rectangular projection does. (JDH)
Optical mapping and its potential for large-scale sequencing projects.
Aston, C; Mishra, B; Schwartz, D C
1999-07-01
Physical mapping has been rediscovered as an important component of large-scale sequencing projects. Restriction maps provide landmark sequences at defined intervals, and high-resolution restriction maps can be assembled from ensembles of single molecules by optical means. Such optical maps can be constructed from both large-insert clones and genomic DNA, and are used as a scaffold for accurately aligning sequence contigs generated by shotgun sequencing.
ACHP | News | Four Federal Agencies Honored For Preserve America
project created by Asian & Pacific Islander Americans in Historic Preservation (APIAHiP). The project and some specifics of the project. What is the mapping project and what are the ultimate goals for it ? The East at Main Street: APIA Mapping Project gathers photographs, videos, memories, and other
The Southwest Regional Gap Analysis Project (SW ReGAP) improves upon previous GAP projects conducted in Arizona, Colorado, Nevada, New Mexico, and Utah to provide a
consistent, seamless vegetation map for this large and ecologically diverse geographic region. Nevada's compone...
Climate Ready Estuaries Partner Projects Map
CRE partners with the National Estuary Program to develop climate change projects in coastal U.S. areas, such as bays and harbors; to develop adaptation action plans, identify climate impacts and indicators, and more. This map shows project locations.
OBSERVING LYAPUNOV EXPONENTS OF INFINITE-DIMENSIONAL DYNAMICAL SYSTEMS
OTT, WILLIAM; RIVAS, MAURICIO A.; WEST, JAMES
2016-01-01
Can Lyapunov exponents of infinite-dimensional dynamical systems be observed by projecting the dynamics into ℝN using a ‘typical’ nonlinear projection map? We answer this question affirmatively by developing embedding theorems for compact invariant sets associated with C1 maps on Hilbert spaces. Examples of such discrete-time dynamical systems include time-T maps and Poincaré return maps generated by the solution semigroups of evolution partial differential equations. We make every effort to place hypotheses on the projected dynamics rather than on the underlying infinite-dimensional dynamical system. In so doing, we adopt an empirical approach and formulate checkable conditions under which a Lyapunov exponent computed from experimental data will be a Lyapunov exponent of the infinite-dimensional dynamical system under study (provided the nonlinear projection map producing the data is typical in the sense of prevalence). PMID:28066028
OBSERVING LYAPUNOV EXPONENTS OF INFINITE-DIMENSIONAL DYNAMICAL SYSTEMS.
Ott, William; Rivas, Mauricio A; West, James
2015-12-01
Can Lyapunov exponents of infinite-dimensional dynamical systems be observed by projecting the dynamics into ℝ N using a 'typical' nonlinear projection map? We answer this question affirmatively by developing embedding theorems for compact invariant sets associated with C 1 maps on Hilbert spaces. Examples of such discrete-time dynamical systems include time- T maps and Poincaré return maps generated by the solution semigroups of evolution partial differential equations. We make every effort to place hypotheses on the projected dynamics rather than on the underlying infinite-dimensional dynamical system. In so doing, we adopt an empirical approach and formulate checkable conditions under which a Lyapunov exponent computed from experimental data will be a Lyapunov exponent of the infinite-dimensional dynamical system under study (provided the nonlinear projection map producing the data is typical in the sense of prevalence).
,
1993-01-01
A map projection is used to portray all or part of the round Earth on a flat surface. This cannot be done without some distortion. Every projection has its own set of advantages and disadvantages. There is no "best" projection. The mapmaker must select the one best suited to the needs, reducing distortion of the most important features. Mapmakers and mathematicians have devised almost limitless ways to project the image of the globe onto paper. Scientists at the U. S. Geological Survey have designed projections for their specific needs—such as the Space Oblique Mercator, which allows mapping from satellites with little or no distortion. This document gives the key properties, characteristics, and preferred uses of many historically important projections and of those frequently used by mapmakers today.
NASA Astrophysics Data System (ADS)
Hanzalová, K.; Pavelka, K.
2013-07-01
The Czech Technical University in Prague in the cooperation with the University of Applied Sciences in Dresden (Germany) work on the Nasca Project. The cooperation started in 2004 and much work has been done since then. All work is connected with Nasca lines in southern Peru. The Nasca project started in 1995 and its main target is documentation and conservation of the Nasca lines. Most of the project results are presented as WebGIS application via Internet. In the face of the impending destruction of the soil drawings, it is possible to preserve this world cultural heritage for the posterity at least in a digital form. Creating of Nasca lines map is very useful. The map is in a digital form and it is also available as a paper map. The map contains planimetric component of the map, map lettering and altimetry. Thematic folder in this map is a vector layer of the geoglyphs in Nasca/Peru. Basis for planimetry are georeferenced satellite images, altimetry is created from digital elevation model. This map was created in ArcGis software.
View Submitted Projects | NOAA Gulf Spill Restoration
that have been submitted to the trustees for consideration. To view details of an individual project , click the View icon on the list below or click the project marker on the map. To highlight the location of a project from the list, click the Show on Map icon. All projects that have met the posting
Perspectives on the strategic uses of concept mapping to address public health challenges.
Anderson, Lynda A; Slonim, Amy
2017-02-01
We examine the adaptation of approaches used to plan and implement the steps of concept mapping to meet specialized needs and requirements in several public health projects. Seven published concept mapping projects are detailed to document how each of the phases were modified to meet the specific aims of each project. Concept mapping was found to be a useful tool to complement public health roles such as assessment, program development, and priority setting. The phases of concept mapping allow for a blending of diverse perspectives, which is critical to public health efforts. The adaptability of concept mapping permits the use of multiple modalities such as the addition of face-to-face brainstorming; use of qualitative methods, including structured interviews; and review and use of published literature and guidelines. Another positive aspect of concept mapping for public health practice is its ability to identify program elements, provide a visual map of generated ideas and their relationships to one another, and assist in identifying priorities. Our reflections on the adaptability should help inform another generation in designing concept mapping projects and related products that may benefit from unique adaptations and the rapidly expanding social media technology and platforms. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Skinner, J. A., Jr.; Gaddis, L. R.; Hagerty, J. J.
2010-01-01
The first systematic lunar geologic maps were completed at 1:1M scale for the lunar near side during the 1960s using telescopic and Lunar Orbiter (LO) photographs [1-3]. The program under which these maps were completed established precedents for map base, scale, projection, and boundaries in order to avoid widely discrepant products. A variety of geologic maps were subsequently produced for various purposes, including 1:5M scale global maps [4-9] and large scale maps of high scientific interest (including the Apollo landing sites) [10]. Since that time, lunar science has benefitted from an abundance of surface information, including high resolution images and diverse compositional data sets, which have yielded a host of topical planetary investigations. The existing suite of lunar geologic maps and topical studies provide exceptional context in which to unravel the geologic history of the Moon. However, there has been no systematic approach to lunar geologic mapping since the flight of post-Apollo scientific orbiters. Geologic maps provide a spatial and temporal framework wherein observations can be reliably benchmarked and compared. As such, a lack of a systematic mapping program means that modern (post- Apollo) data sets, their scientific ramifications, and the lunar scientists who investigate these data, are all marginalized in regard to geologic mapping. Marginalization weakens the overall understanding of the geologic evolution of the Moon and unnecessarily partitions lunar research. To bridge these deficiencies, we began a pilot geologic mapping project in 2005 as a means to assess the interest, relevance, and technical methods required for a renewed lunar geologic mapping program [11]. Herein, we provide a summary of the pilot geologic mapping project, which focused on the geologic materials and stratigraphic relationships within the Copernicus quadrangle (0-30degN, 0-45degW).
Scanning and georeferencing historical USGS quadrangles
Davis, Larry R.; Allord, G.J.
2011-01-01
The USGS Historical Quadrangle Scanning Project (HQSP) is scanning all scales and all editions of approximately 250,000 topographic maps published by the U.S. Geological Survey (USGS) since the inception of the topographic mapping program in 1884. This scanning will provide a comprehensive digital repository of USGS topographic maps, available to the public at no cost. This project serves the dual purpose of creating a master catalog and digital archive copies of the irreplaceable collection of topographic maps in the USGS Reston Map Library as well as making the maps available for viewing and downloading from the USGS Store and The National Map Viewer.
A framework for evaluating and utilizing medical terminology mappings.
Hussain, Sajjad; Sun, Hong; Sinaci, Anil; Erturkmen, Gokce Banu Laleci; Mead, Charles; Gray, Alasdair J G; McGuinness, Deborah L; Prud'Hommeaux, Eric; Daniel, Christel; Forsberg, Kerstin
2014-01-01
Use of medical terminologies and mappings across them are considered to be crucial pre-requisites for achieving interoperable eHealth applications. Built upon the outcomes of several research projects, we introduce a framework for evaluating and utilizing terminology mappings that offers a platform for i) performing various mappings strategies, ii) representing terminology mappings together with their provenance information, and iii) enabling terminology reasoning for inferring both new and erroneous mappings. We present the results of the introduced framework from SALUS project where we evaluated the quality of both existing and inferred terminology mappings among standard terminologies.
Lowry, J.; Ramsey, R.D.; Thomas, K.; Schrupp, D.; Sajwaj, T.; Kirby, J.; Waller, E.; Schrader, S.; Falzarano, S.; Langs, L.; Manis, G.; Wallace, C.; Schulz, K.; Comer, P.; Pohs, K.; Rieth, W.; Velasquez, C.; Wolk, B.; Kepner, W.; Boykin, K.; O'Brien, L.; Bradford, D.; Thompson, B.; Prior-Magee, J.
2007-01-01
Land-cover mapping efforts within the USGS Gap Analysis Program have traditionally been state-centered; each state having the responsibility of implementing a project design for the geographic area within their state boundaries. The Southwest Regional Gap Analysis Project (SWReGAP) was the first formal GAP project designed at a regional, multi-state scale. The project area comprises the southwestern states of Arizona, Colorado, Nevada, New Mexico, and Utah. The land-cover map/dataset was generated using regionally consistent geospatial data (Landsat ETM+ imagery (1999-2001) and DEM derivatives), similar field data collection protocols, a standardized land-cover legend, and a common modeling approach (decision tree classifier). Partitioning of mapping responsibilities amongst the five collaborating states was organized around ecoregion-based "mapping zones". Over the course of 21/2 field seasons approximately 93,000 reference samples were collected directly, or obtained from other contemporary projects, for the land-cover modeling effort. The final map was made public in 2004 and contains 125 land-cover classes. An internal validation of 85 of the classes, representing 91% of the land area was performed. Agreement between withheld samples and the validated dataset was 61% (KHAT = .60, n = 17,030). This paper presents an overview of the methodologies used to create the regional land-cover dataset and highlights issues associated with large-area mapping within a coordinated, multi-institutional management framework. ?? 2006 Elsevier Inc. All rights reserved.
Early Restoration Projects Atlas | NOAA Gulf Spill Restoration
trustees are implementing. To view details of an individual project, click the View icon on the list below or click the project marker on the map. For definitions of the project detail click here. To highlight the location of a project from the list, click the Show on Map icon. This atlas will be updated as
Corrosion map for metal pipes in coastal Louisiana : research project capsule.
DOT National Transportation Integrated Search
2016-03-01
The objective of this project is to create a guidance document with maps : that delineate zones where metal pipe is prone to increased corrosion due : to environmental conditions. Results from this project will provide a logical : rationale to suppor...
Fusion of Terrestrial and Airborne Laser Data for 3D modeling Applications
NASA Astrophysics Data System (ADS)
Mohammed, Hani Mahmoud
This thesis deals with the 3D modeling phase of the as-built large BIM projects. Among several means of BIM data capturing, such as photogrammetric or range tools, laser scanners have been one of the most efficient and practical tool for a long time. They can generate point clouds with high resolution for 3D models that meet nowadays' market demands. The current 3D modeling projects of as-built BIMs are mainly focused on using one type of laser scanner data, such as Airborne or Terrestrial. According to the literatures, no significant (few) efforts were made towards the fusion of heterogeneous laser scanner data despite its importance. The importance of the fusion of heterogeneous data arises from the fact that no single type of laser data can provide all the information about BIM, especially for large BIM projects that are existing on a large area, such as university buildings, or Heritage places. Terrestrial laser scanners are able to map facades of buildings and other terrestrial objects. However, they lack the ability to map roofs or higher parts in the BIM project. Airborne laser scanner on the other hand, can map roofs of the buildings efficiently and can map only small part of the facades. Short range laser scanners can map the interiors of the BIM projects, while long range scanners are used for mapping wide exterior areas in BIM projects. In this thesis the long range laser scanner data obtained in the Stop-and-Go mapping mode, the short range laser scanner data, obtained in a fully static mapping mode, and the airborne laser data are all fused together to bring a complete effective solution for a large BIM project. Working towards the 3D modeling of BIM projects, the thesis framework starts with the registration of the data, where a new fast automatic registration algorithm were developed. The next step is to recognize the different objects in the BIM project (classification), and obtain 3D models for the buildings. The last step is the development of an occlusion removal algorithm to efficiently retain parts of the buildings occluded by surrounding objects such as trees, vehicles, or street poles.
Brain/MINDS: brain-mapping project in Japan
Okano, Hideyuki; Miyawaki, Atsushi; Kasai, Kiyoto
2015-01-01
There is an emerging interest in brain-mapping projects in countries across the world, including the USA, Europe, Australia and China. In 2014, Japan started a brain-mapping project called Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS). Brain/MINDS aims to map the structure and function of neuronal circuits to ultimately understand the vast complexity of the human brain, and takes advantage of a unique non-human primate animal model, the common marmoset (Callithrix jacchus). In Brain/MINDS, the RIKEN Brain Science Institute acts as a central institute. The objectives of Brain/MINDS can be categorized into the following three major subject areas: (i) structure and functional mapping of a non-human primate brain (the marmoset brain); (ii) development of innovative neurotechnologies for brain mapping; and (iii) human brain mapping; and clinical research. Brain/MINDS researchers are highly motivated to identify the neuronal circuits responsible for the phenotype of neurological and psychiatric disorders, and to understand the development of these devastating disorders through the integration of these three subject areas. PMID:25823872
Dynamic Projection Mapping onto Deforming Non-Rigid Surface Using Deformable Dot Cluster Marker.
Narita, Gaku; Watanabe, Yoshihiro; Ishikawa, Masatoshi
2017-03-01
Dynamic projection mapping for moving objects has attracted much attention in recent years. However, conventional approaches have faced some issues, such as the target objects being limited to rigid objects, and the limited moving speed of the targets. In this paper, we focus on dynamic projection mapping onto rapidly deforming non-rigid surfaces with a speed sufficiently high that a human does not perceive any misalignment between the target object and the projected images. In order to achieve such projection mapping, we need a high-speed technique for tracking non-rigid surfaces, which is still a challenging problem in the field of computer vision. We propose the Deformable Dot Cluster Marker (DDCM), a novel fiducial marker for high-speed tracking of non-rigid surfaces using a high-frame-rate camera. The DDCM has three performance advantages. First, it can be detected even when it is strongly deformed. Second, it realizes robust tracking even in the presence of external and self occlusions. Third, it allows millisecond-order computational speed. Using DDCM and a high-speed projector, we realized dynamic projection mapping onto a deformed sheet of paper and a T-shirt with a speed sufficiently high that the projected images appeared to be printed on the objects.
Mapping International Cancer Activities – Global Cancer Project Map Launch
CGH’s Dr. Sudha Sivaram, Dr. Makeda Williams, and Ms. Kalina Duncan have partnered with Drs. Ami Bhatt and Franklin Huang at Global Oncology, Inc. (GO) to develop the Global Cancer Project Map - a web-based tool designed to facilitate cancer research and control activity planning.
Map Projections: Approaches and Themes
ERIC Educational Resources Information Center
Steward, H. J.
1970-01-01
Map projections take on new meaning with location systems needed for satellites, other planets and space. A classroom approach deals first with the relationship between the earth and the globe, then with transformations to flat maps. Problems of preserving geometric qualities: distance, angles, directions are dealt with in some detail as are…
Chapter 12 - Mapping wildland fuel across large regions for the LANDFIRE Prototype Project
Robert E. Keane; Tracey Frescino; Matthew C. Reeves; Jennifer L. Long
2006-01-01
The Landscape Fire and Resource Management Planning Tools Prototype Project, or LANDFIRE Prototype Project, required that the entire array of wildland fuel characteristics be mapped to provide fire and landscape managers with consistent baseline geo-spatial information to plan projects for hazardous fuel mitigation and to improve public and firefighter safety. Fuel...
Map showing geology, oil and gas fields, and geologic provinces of the Gulf of Mexico region
French, Christopher D.; Schenk, Christopher J.
2006-01-01
This map was created as part of a worldwide series of geologic maps for the U.S. Geological Survey's World Energy Project. These products are available on CD-ROM and the Internet. The goal of the project is to assess the undiscovered, technically recoverable oil and gas resources of the world. Two previously published digital geologic data sets (U.S. and Caribbean) were clipped to the map extent, while the dataset for Mexico was digitized for this project. Original attributes for all data layers were maintained, and in some cases, graphically merged with common symbology for presentation purposes. The world has been divided into geologic provinces that are used for allocation and prioritization of oil and gas assessments. For the World Energy Project, a subset of those provinces is shown on this map. Each province has a set of geologic characteristics that distinguish it from surrounding provinces. These characteristics may include dominant lithologies, the age of the strata, and/or structural type. The World Geographic Coordinate System of 1984 is used for data storage, and the data are presented in a Lambert Conformal Conic Projection on the OFR 97-470-L map product. Other details about the map compilation and data sources are provided in metadata documents in the data section on this CD-ROM. Several software packages were used to create this map including: Environmental Systems Research Institute, Inc. (ESRI) ArcGIS 8.3, ArcInfo software, Adobe Photoshop CS, Illustrator CS, and Acrobat 6.0.
An overview of concept mapping in Dutch mental health care.
Nabitz, Udo; van Randeraad-van der Zee, Carlijn; Kok, Ineke; van Bon-Martens, Marja; Serverens, Peter
2017-02-01
About 25 years ago, concept mapping was introduced in the Netherlands and applied in different fields. A collection of concept mapping projects conducted in the Netherlands was identified, in part in the archive of the Netherlands Institute of Mental Health and Addiction (Trimbos Institute). Some of the 90 identified projects are internationally published. The 90 concept mapping projects reflect the changes in mental health care and can be grouped into 5-year periods and into five typologies. The studies range from conceptualizing the problems of the homeless to the specification of quality indicators for treatment programs for patients with cystic fibrosis. The number of concept mapping projects has varied over time. Growth has been considerable in the last 5 years compared to the previous 5 years. Three case studies are described in detail with 12 characteristics and graphical representations. Concept mapping aligns well with the typical Dutch approach of the "Poldermodel." A broad introduction of concept mapping in European countries in cooperation with other countries, such as the United States and Canada, would strengthen the empirical basis for applying this approach in health care policy, quality, and clinical work. Copyright © 2016. Published by Elsevier Ltd.
Geologic Map of the Utukok River Quadrangle, Alaska
Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.
2006-01-01
This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically.
19. REGIONAL MAP, SALINAS RIVER PROJECT, CAMP SAN LUIS OBISPO, ...
19. REGIONAL MAP, SALINAS RIVER PROJECT, CAMP SAN LUIS OBISPO, IN CENTRAL PORTION OF SAN LUIS OBISPO, CALIFORNIA. Leeds Hill Barnard & Jewett - Consulting Engineers, February 1942. - Salinas River Project, Cuesta Tunnel, Southeast of U.S. 101, San Luis Obispo, San Luis Obispo County, CA
Code of Federal Regulations, 2010 CFR
2010-04-01
... applicable; (2) General map showing specific location and dimension of a structural project, or specific...-structural project; (5) Written report of the applicant's engineer showing the proposed plan of operation of a structural project; (6) Map of any lands to be acquired or occupied; (7) Estimate of the cost of...
78 FR 53712 - Surface Transportation Project Delivery Program Application Requirements
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-30
... the 21st Century Act (MAP-21), which converted the Surface Transportation Project Delivery Pilot... signed into law the Moving Ahead for Progress in the 21st Century Act (MAP-21), Public Law 112-141, 126... days from the date of MAP-21's enactment (October 1, 2012)--the regulations concerning the information...
Asphalt Artisans: Creating a Community Eco-Map on the Playground.
ERIC Educational Resources Information Center
Fieldhouse, Paul; Bunkowsky, Lisa
2002-01-01
Describes an "eco-count" project that led to the creation of a community map and educational game being painted on an elementary school playground. The multidisciplinary project involved students, teachers, parents, and other community members and the resulting map includes sections related to the local "green environment", "built environment",…
Incorporating Concept Mapping in Project-Based Learning: Lessons from Watershed Investigations
NASA Astrophysics Data System (ADS)
Rye, James; Landenberger, Rick; Warner, Timothy A.
2013-06-01
The concept map tool set forth by Novak and colleagues is underutilized in education. A meta-analysis has encouraged teachers to make extensive use of concept mapping, and researchers have advocated computer-based concept mapping applications that exploit hyperlink technology. Through an NSF sponsored geosciences education grant, middle and secondary science teachers participated in professional development to apply computer-based concept mapping in project-based learning (PBL) units that investigated local watersheds. Participants attended a summer institute, engaged in a summer through spring online learning academy, and presented PBL units at a subsequent fall science teachers' convention. The majority of 17 teachers who attended the summer institute had previously used the concept mapping strategy with students and rated it highly. Of the 12 teachers who continued beyond summer, applications of concept mapping ranged from collaborative planning of PBL projects to building students' vocabulary to students producing maps related to the PBL driving question. Barriers to the adoption and use of concept mapping included technology access at the schools, lack of time for teachers to advance their technology skills, lack of student motivation to choose to learn, and student difficulty with linking terms. In addition to mitigating the aforementioned barriers, projects targeting teachers' use of technology tools may enhance adoption by recruiting teachers as partners from schools as well as a small number that already are proficient in the targeted technology and emphasizing the utility of the concept map as a planning tool.
Bedmap2; Mapping, visualizing and communicating the Antarctic sub-glacial environment.
NASA Astrophysics Data System (ADS)
Fretwell, Peter; Pritchard, Hamish
2013-04-01
Bedmap2; Mapping, visualizing and communicating the Antarctic sub-glacial environment. The Bedmap2 project has been a large cooperative effort to compile, model, map and visualize the ice-rock interface beneath the Antarctic ice sheet. Here we present the final output of that project; the Bedmap2 printed map. The map is an A1, double sided print, showing 2d and 3d visualizations of the dataset. It includes scientific interpretations, cross sections and comparisons with other areas. Paper copies of the colour double sided map will be freely distributed at this session.
Chapter 7 - Mapping potential vegetation type for the LANDFIRE Prototype Project
Tracey S. Frescino; Matthew G. Rollins
2006-01-01
Mapped potential vegetation functioned as a key component in the Landscape Fire and Resource Management Planning Tools Prototype Project (LANDFIRE Prototype Project). Disturbance regimes, vegetation response and succession, and wildland fuel dynamics across landscapes are controlled by patterns of the environmental factors (biophysical settings) that entrain the...
36 CFR 801.7 - Information requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... project; (ii) A description of the proposed project including, as appropriate, photographs, maps, drawings... Criteria exist in the project area, or a brief statement explaining why the Criteria of Effect (See § 801.3... appropriate, photographs, maps, drawings and specifications; (iii) A copy of the National Register form or a...
Earth Resources Technology Satellite data collection project, ERTS - Bolivia. [thematic mapping
NASA Technical Reports Server (NTRS)
Brockmann, C. E.
1974-01-01
The Earth Resources Technology Satellite program of Bolivia has developed a multidisciplinary project to carry out investigations in cartography and to prepare various thematic maps. In cartography, investigations are being carried out with the ERTS-1 images and with existing maps, to determine their application to the preparation of new cartographic products on one hand and on the other to map those regions where the cartography is still deficient. The application of the MSS images to the geological mapping has given more than satisfactory results. Working with conventional photointerpretation, it has been possible to prepare regional geological maps, tectonic maps, studies relative to mining, geomorphological maps, studies relative to petroleum exploration, volcanological maps and maps of hydrologic basins. In agriculture, the ERTS images are used to study land classification and forest and soils mapping.
Middle Atmosphere Program. Handbook for MAP, volume 6
NASA Technical Reports Server (NTRS)
Sechrist, C. F., Jr. (Editor)
1982-01-01
A directory of scientists associated with the Middle Atmosphere Program (MAP) is presented. The MAP steering committee, the standing committees, MAP study groups, and MAP projects are mentioned along with the MAP secretariat and regional consultative group.
Vegetation classification and distribution mapping report Mesa Verde National Park
Thomas, Kathryn A.; McTeague, Monica L.; Ogden, Lindsay; Floyd, M. Lisa; Schulz, Keith; Friesen, Beverly A.; Fancher, Tammy; Waltermire, Robert G.; Cully, Anne
2009-01-01
The classification and distribution mapping of the vegetation of Mesa Verde National Park (MEVE) and surrounding environment was achieved through a multi-agency effort between 2004 and 2007. The National Park Service’s Southern Colorado Plateau Network facilitated the team that conducted the work, which comprised the U.S. Geological Survey’s Southwest Biological Science Center, Fort Collins Research Center, and Rocky Mountain Geographic Science Center; Northern Arizona University; Prescott College; and NatureServe. The project team described 47 plant communities for MEVE, 34 of which were described from quantitative classification based on f eld-relevé data collected in 1993 and 2004. The team derived 13 additional plant communities from field observations during the photointerpretation phase of the project. The National Vegetation Classification Standard served as a framework for classifying these plant communities to the alliance and association level. Eleven of the 47 plant communities were classified as “park specials;” that is, plant communities with insufficient data to describe them as new alliances or associations. The project team also developed a spatial vegetation map database representing MEVE, with three different map-class schemas: base, group, and management map classes. The base map classes represent the fi nest level of spatial detail. Initial polygons were developed using Definiens Professional (at the time of our use, this software was called eCognition), assisted by interpretation of 1:12,000 true-color digital orthophoto quarter quadrangles (DOQQs). These polygons (base map classes) were labeled using manual photo interpretation of the DOQQs and 1:12,000 true-color aerial photography. Field visits verified interpretation concepts. The vegetation map database includes 46 base map classes, which consist of associations, alliances, and park specials classified with quantitative analysis, additional associations and park specials noted during photointerpretation, and non-vegetated land cover, such as infrastructure, land use, and geological land cover. The base map classes consist of 5,007 polygons in the project area. A field-based accuracy assessment of the base map classes showed overall accuracy to be 43.5%. Seven map classes comprise 89.1% of the park vegetated land cover. The group map classes represent aggregations of the base map classes, approximating the group level of the National Vegetation Classification Standard, version 2 (Federal Geographic Data Committee 2007), and reflecting physiognomy and floristics. Terrestrial ecological systems, as described by NatureServe (Comer et al. 2003), were used as the fi rst approximation of the group level. The project team identified 14 group map classes for this project. The overall accuracy of the group map classes was determined using the same accuracy assessment data as for the base map classes. The overall accuracy of the group representation of vegetation was 80.3%. In consultation with park staff , the team developed management map classes, consisting of park-defined groupings of base map classes intended to represent a balance between maintaining required accuracy and providing a focus on vegetation of particular interest or import to park managers. The 23 management map classes had an overall accuracy of 73.3%. While the main products of this project are the vegetation classification and the vegetation map database, a number of ancillary digital geographic information system and database products were also produced that can be used independently or to augment the main products. These products include shapefiles of the locations of field-collected data and relational databases of field-collected data.
Northern Everglades, Florida, satellite image map
Thomas, Jean-Claude; Jones, John W.
2002-01-01
These satellite image maps are one product of the USGS Land Characteristics from Remote Sensing project, funded through the USGS Place-Based Studies Program with support from the Everglades National Park. The objective of this project is to develop and apply innovative remote sensing and geographic information system techniques to map the distribution of vegetation, vegetation characteristics, and related hydrologic variables through space and over time. The mapping and description of vegetation characteristics and their variations are necessary to accurately simulate surface hydrology and other surface processes in South Florida and to monitor land surface changes. As part of this research, data from many airborne and satellite imaging systems have been georeferenced and processed to facilitate data fusion and analysis. These image maps were created using image fusion techniques developed as part of this project.
ERIC Educational Resources Information Center
Stein, Laszlo; Pien, Diana
The document contains the final report of the HI-MAPS project, designed to develop a model program that would meet the medical, academic, and psychological needs of young hearing handicapped children, birth to 3 years, and their families in Chicago. An introductory section reviews project rationale, project philosophy, and overall project goals.…
3. Photographic copy of map. San Carlos Project, Arizona. Irrigation ...
3. Photographic copy of map. San Carlos Project, Arizona. Irrigation System. Department of the Interior. United States Indian Service. No date. Circa 1939. (Source: Henderson, Paul. U.S. Indian Irrigation Service. Supplemental Storage Reservoir, Gila River. November 10, 1939, RG 115, San Carlos Project, National Archives, Rocky Mountain Region, Denver, CO.) - San Carlos Irrigation Project, Lands North & South of Gila River, Coolidge, Pinal County, AZ
Geologic Map of the Point Lay Quadrangle, Alaska
Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.
2008-01-01
This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically. The paper version of this map is available for purchase from the USGS Store.
Geologic Map of the Ikpikpuk River Quadrangle, Alaska
Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.
2005-01-01
This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically. The paper version of this map is available for purchase from the USGS Store.
Geologic Map of the Lookout Ridge Quadrangle, Alaska
Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.
2006-01-01
This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically. The paper version of this map is available for purchase from the USGS Store.
Basic mapping principles for visualizing cancer data using Geographic Information Systems (GIS).
Brewer, Cynthia A
2006-02-01
Maps and other data graphics may play a role in generating ideas and hypotheses at the beginning of a project. They are useful as part of analyses for evaluating model results and then at the end of a project when researchers present their results and conclusions to varied audiences, such as their local research group, decision makers, or a concerned public. Cancer researchers are gaining skill with geographic information system (GIS) mapping as one of their many tools and are broadening the symbolization approaches they use for investigating and illustrating their data. A single map is one of many possible representations of the data, so making multiple maps is often part of a complete mapping effort. Symbol types, color choices, and data classing each affect the information revealed by a map and are best tailored to the specific characteristics of data. Related data can be examined in series with coordinated classing and can also be compared using multivariate symbols that build on the basic rules of symbol design. Informative legend wording and setting suitable map projections are also basic to skilled mapmaking.
We tested two methods for dataset generation and model construction, and three tree-classifier variants to identify the most parsimonious and thematically accurate mapping methodology for the SW ReGAP project. Competing methodologies were tested in the East Great Basin mapping un...
Mosaic of Digital Raster Soviet Topographic Maps of Afghanistan
Chirico, Peter G.; Warner, Michael B.
2005-01-01
EXPLANATION The data contained in this publication include scanned, geographically referenced digital raster graphics (DRGs) of Soviet 1:200,000 - scale topographic map quadrangles. The original Afghanistan topographic map series at 1:200,000 scale, for the entire country, was published by the Soviet military between 1985 and 1991(MTDGS, 85-91). Hard copies of these original paper maps were scanned using a large format scanner, reprojected into Geographic Coordinate System (GCS) coordinates, and then clipped to remove the map collars to create a seamless, topographic map base for the entire country. An index of all available topographic map sheets is displayed here: Index_Geo_DD.pdf. This publication also includes the originial topographic map quadrangles projected in Universal Transverse Mercator (UTM) projection. The country of Afghanistan spans three UTM Zones: Zone 41, Zone 42, and Zone 43. Maps are stored as GeoTIFFs in their respective UTM zone projection. Indexes of all available topographic map sheets in their respective UTM zone are displayed here: Index_UTM_Z41.pdf, Index_UTM_Z42.pdf, Index_UTM_Z43.pdf. An Adobe Acrobat PDF file of the U.S. Department of the Army's Technical Manual 30-548, is available (U.S. Army, 1958). This document has been translated into English for assistance in reading Soviet topographic map symbols.
Projection Mapping User Interface for Disabled People
Simutis, Rimvydas; Maskeliūnas, Rytis
2018-01-01
Difficulty in communicating is one of the key challenges for people suffering from severe motor and speech disabilities. Often such person can communicate and interact with the environment only using assistive technologies. This paper presents a multifunctional user interface designed to improve communication efficiency and person independence. The main component of this interface is a projection mapping technique used to highlight objects in the environment. Projection mapping makes it possible to create a natural augmented reality information presentation method. The user interface combines a depth sensor and a projector to create camera-projector system. We provide a detailed description of camera-projector system calibration procedure. The described system performs tabletop object detection and automatic projection mapping. Multiple user input modalities have been integrated into the multifunctional user interface. Such system can be adapted to the needs of people with various disabilities. PMID:29686827
Project Mapping to Build Capacity and Demonstrate Impact in the Earth Sciences
NASA Astrophysics Data System (ADS)
Hemmings, S. N.; Searby, N. D.; Murphy, K. J.; Mataya, C. J.; Crepps, G.; Clayton, A.; Stevens, C. L.
2017-12-01
Diverse organizations are increasingly using project mapping to communicate location-based information about their activities. NASA's Earth Science Division (ESD), through the Earth Science Data Systems and Applied Sciences' Capacity Building Program (CBP), has created a geographic information system of all ESD projects to support internal program management for the agency. The CBP's NASA DEVELOP program has built an interactive mapping tool to support capacity building for the program's varied constituents. This presentation will explore the types of programmatic opportunities provided by a geographic approach to management, communication, and strategic planning. We will also discuss the various external benefits that mapping supports and that build capacity in the Earth sciences. These include activities such as project matching (location-focused synergies), portfolio planning, inter- and intra-organizational collaboration, science diplomacy, and basic impact analysis.
Uav Photogrammetry: a Practical Solution for Challenging Mapping Projects
NASA Astrophysics Data System (ADS)
Saadatseresht, M.; Hashempour, A. H.; Hasanlou, M.
2015-12-01
We have observed huge attentions to application of unmanned aerial vehicle (UAV) in aerial mapping since a decade ago. Though, it has several advantages for handling time/cost/quality issues, there are a dozen of challenges in working with UAVs. In this paper, we; as the Robotic Photogrammetry Research Group (RPRG), will firstly review these challenges then show its advantages in three special practical projects. For each project, we will share our experiences through description of the UAV specifications, flight settings and processing steps. At the end, we will illustrate final result of each project and show how this technology could make unbelievable benefits to clients including 3D city realistic model in decimetre level, ultra high quality map production in several centimetre level, and accessing to a high risk and rough relief area for mapping aims.
Projection Mapping User Interface for Disabled People.
Gelšvartas, Julius; Simutis, Rimvydas; Maskeliūnas, Rytis
2018-01-01
Difficulty in communicating is one of the key challenges for people suffering from severe motor and speech disabilities. Often such person can communicate and interact with the environment only using assistive technologies. This paper presents a multifunctional user interface designed to improve communication efficiency and person independence. The main component of this interface is a projection mapping technique used to highlight objects in the environment. Projection mapping makes it possible to create a natural augmented reality information presentation method. The user interface combines a depth sensor and a projector to create camera-projector system. We provide a detailed description of camera-projector system calibration procedure. The described system performs tabletop object detection and automatic projection mapping. Multiple user input modalities have been integrated into the multifunctional user interface. Such system can be adapted to the needs of people with various disabilities.
A S[t]imulating Study of Map Projections: An Exploration Integrating Mathematics and Social Studies.
ERIC Educational Resources Information Center
Wilkins, Jesse L. M.; Hicks, David
2001-01-01
Presents a map-projection activity that combines mathematics and geography through investigating the proportion of land and water that covers the earth. Focuses on helping students become familiar with characteristics of different projections or representations of the world while estimating and graphing and encouraging them to investigate the…
St. Louis Area Earthquake Hazards Mapping Project
Williams, Robert A.; Steckel, Phyllis; Schweig, Eugene
2007-01-01
St. Louis has experienced minor earthquake damage at least 12 times in the past 200 years. Because of this history and its proximity to known active earthquake zones, the St. Louis Area Earthquake Hazards Mapping Project will produce digital maps that show variability of earthquake hazards in the St. Louis area. The maps will be available free via the internet. They can be customized by the user to show specific areas of interest, such as neighborhoods or transportation routes.
Gregory K. Dillon; Zachary A. Holden; Penny Morgan; Bob Keane
2009-01-01
The Fire Severity Mapping System project is geared toward providing fire managers across the western United States with critical information for dealing with and planning for the ecological effects of wildfire at multiple levels of thematic, spatial, and temporal detail. For this project, we are developing a comprehensive, west-wide map of the landscape potential for...
Making a georeferenced mosaic of historical map series using constrained polynomial fit
NASA Astrophysics Data System (ADS)
Molnár, G.
2009-04-01
Present day GIS software packages make it possible to handle several hundreds of rasterised map sheets. For proper usage of such datasets we usually have two requirements: First these map sheets should be georeferenced, secondly these georeferenced maps should fit properly together, without overlap and short. Both requirements can be fulfilled easily, if the geodetic background for the map series is accurate, and the projection of the map series is known. In this case the individual map sheets should be georeferenced in the projected coordinate system of the map series. This means every individual map sheets are georeferenced using overprinted coordinate grid or image corner projected coordinates as ground control points (GCPs). If after this georeferencing procedure the map sheets do not fit together (for example because of using different projection for every map sheet, as it is in the case of Third Military Survey) a common projection can be chosen, and all the georeferenced maps should be transformed to this common projection using a map-to-map transformation. If the geodetic background is not so strong, ie. there are distortions inside the map sheets, a polynomial (linear quadratic or cubic) polynomial fit can be used for georeferencing the map sheets. Finding identical surface objects (as GCPs) on the historical map and on a present day cartographic map, let us to determine a transformation between raw image coordinates (x,y) and the projected coordinates (Easting, Northing, E,N). This means, for all the map sheets, several GCPs should be found, (for linear, quadratic of cubic transformations at least 3, 5 or 10 respectively) and every map sheets should be transformed to a present day coordinate system individually using these GCPs. The disadvantage of this method is that, after the transformation, the individual transformed map sheets not necessarily fit together properly any more. To overcome this problem neither the reverse order of procedure helps: if we make the mosaic first (eg. graphically) and we try the polynomial fit of this mosaic afterwards, neither using this can we reduce the error of internal inaccuracy of the map-sheets. We can overcome this problem by calculating the transformation parameters of polynomial fit with constrains (Mikhail, 1976). The constrain is that the common edge of two neighboring map-sheets should be transformed identically, ie. the right edge of the left image and the left edge of the right image should fit together after the transformation. This condition should fulfill for all the internal (not only the vertical, but also for the horizontal) edges of the mosaic. Constrains are expressed as a relationship between parameters: The parameters of the polynomial transformation should fulfill not only the least squares adjustment criteria but also the constrain: the transformed coordinates should be identical on the image edges. (With the example mentioned above, for image points of the rightmost column of the left image the transformed coordinates should be the same a for the image points of the leftmost column of the right image, and these transformed coordinates can depend on the line number image coordinate of the raster point.) The normal equation system can be calculated with Lagrange-multipliers. The resulting set of parameters for all map-sheets should be applied on the transformation of the images. This parameter set can not been directly applied in GIS software for the transformation. The simplest solution applying this parameters is ‘simulating' GCPs for every image, and applying these simulated GCPs for the georeferencing of the individual map sheets. This method is applied on a set of map-sheets of the First military Survey of the Habsburg Empire with acceptable results. Reference: Mikhail, E. M.: Observations and Least Squares. IEP—A Dun-Donnelley Publisher, New York, 1976. 497 pp.
Global land cover mapping: a review and uncertainty analysis
Congalton, Russell G.; Gu, Jianyu; Yadav, Kamini; Thenkabail, Prasad S.; Ozdogan, Mutlu
2014-01-01
Given the advances in remotely sensed imagery and associated technologies, several global land cover maps have been produced in recent times including IGBP DISCover, UMD Land Cover, Global Land Cover 2000 and GlobCover 2009. However, the utility of these maps for specific applications has often been hampered due to considerable amounts of uncertainties and inconsistencies. A thorough review of these global land cover projects including evaluating the sources of error and uncertainty is prudent and enlightening. Therefore, this paper describes our work in which we compared, summarized and conducted an uncertainty analysis of the four global land cover mapping projects using an error budget approach. The results showed that the classification scheme and the validation methodology had the highest error contribution and implementation priority. A comparison of the classification schemes showed that there are many inconsistencies between the definitions of the map classes. This is especially true for the mixed type classes for which thresholds vary for the attributes/discriminators used in the classification process. Examination of these four global mapping projects provided quite a few important lessons for the future global mapping projects including the need for clear and uniform definitions of the classification scheme and an efficient, practical, and valid design of the accuracy assessment.
China as an Evolving Metro-Agro-Plex (China-MAP)
NASA Technical Reports Server (NTRS)
Chameides, William L.; Bergin, M.; Carmichael, G.; Dickinson, R.; Giorgi, F.; Kiang, C. S.; Levy, H., II; Kasibhatla, P.; Mearns, L.; Ramaswamy, V.
2002-01-01
The one-year NASA-funded project was implemented to complete the analyses and model-simulations undertaken under the auspices of the 3-year research effort supported by NASA as an Interdisciplinary Earth System Science Investigation (IDS) entitled: China As An Evolving Metro-Agro-Plex (China-MAP). The primary goal of China-MAP was to assess the effects of economic development and the regional environmental changes it engenders upon agriculture in China. The project was carried out as part of the Sino-U.S. Science and Technology Protocol in the Atmospheric Sciences, an official government-to-government agreement that establishes the parameters for joint research projects between the two nations in the atmospheric sciences. The NASA-funded portion of the project focused on the development and application of a regional coupled climate/chemical transport model for East Asia (i.e., RegChem-CM). The funds provided under the subject 1-year project were used to: (1) complete specific investigations undertaken by the China-MAP Science Team using the Reg-Chem-CM expended; and (2) document the results of these and other China-MAP investigations in the peer-reviewed literature. A summary of these specific investigations in provided.
Global Mapping Project - Applications and Development of Version 2 Dataset
NASA Astrophysics Data System (ADS)
Ubukawa, T.; Nakamura, T.; Otsuka, T.; Iimura, T.; Kishimoto, N.; Nakaminami, K.; Motojima, Y.; Suga, M.; Yatabe, Y.; Koarai, M.; Okatani, T.
2012-07-01
The Global Mapping Project aims to develop basic geospatial information of the whole land area of the globe, named Global Map, through the cooperation of National Mapping Organizations (NMOs) around the world. The Global Map data can be a base of global geospatial infrastructure and is composed of eight layers: Boundaries, Drainage, Transportation, Population Centers, Elevation, Land Use, Land Cover and Vegetation. The Global Map Version 1 was released in 2008, and the Version 2 will be released in 2013 as the data are to be updated every five years. In 2009, the International Steering Committee for Global Mapping (ISCGM) adopted new Specifications to develop the Global Map Version 2 with a change of its format so that it is compatible with the international standards, namely ISO 19136 and ISO 19115. With the support of the secretariat of ISCGM, the project participating countries are accelerating their data development toward the completion of the global coverage in 2013, while some countries have already released their Global Map version 2 datasets since 2010. Global Map data are available from the Internet free of charge for non-commercial purposes, which can be used to predict, assess, prepare for and cope with global issues by combining with other spatial data. There are a lot of Global Map applications in various fields, and further utilization of Global Map is expected. This paper summarises the activities toward the development of the Global Map Version 2 as well as some examples of the Global Map applications in various fields.
The modified polyconic projection for the IMW.
Snyder, J.P.
1982-01-01
The modified polyconic map projection designed by Lallemand and adopted for the International Map of the World between 1909 and 1962 has two meridians and two parallels which are true to scale. Constructed geometrically in the past, forward and inverse coordinate transformations may be calculated analytically in order to transfer data from existing quadrangles to other maps. The equations for these transformations are derived and used to calculate representative tables of coordinates and scale factors. Although the projection is neither equal-area nor conformal, scale does not vary more than 0.06% throughout the quadrangle.-Author
Global Boreal Forest Mapping with JERS-1: North America
NASA Technical Reports Server (NTRS)
Williams, Cynthia L.; McDonald, Kyle; Chapman, Bruce
2000-01-01
Collaborative effort is underway to map boreal forests worldwide using L-band, single polarization Synthetic Aperture Radar (SAR) imagery from the Japanese Earth Resources (JERS-1) satellite. Final products of the North American Boreal Forest Mapping Project will include two continental scale radar mosaics and supplementary multitemporal mosaics for Alaska, central Canada, and eastern Canada. For selected sites, we are also producing local scale (100 km x 100 km) and regional scale maps (1000 km x 1000 km). As with the nearly completed Amazon component of the Global Rain Forest Mapping project, SAR imagery, radar image mosaics and SAR-derived texture image products will be available to the scientific community on the World Wide Web. Image acquisition for this project has been completed and processing and image interpretation is underway at the Alaska SAR Facility.
South Florida Everglades: satellite image map
Jones, John W.; Thomas, Jean-Claude; Desmond, G.B.
2001-01-01
These satellite image maps are one product of the USGS Land Characteristics from Remote Sensing project, funded through the USGS Place-Based Studies Program (http://access.usgs.gov/) with support from the Everglades National Park (http://www.nps.gov/ever/). The objective of this project is to develop and apply innovative remote sensing and geographic information system techniques to map the distribution of vegetation, vegetation characteristics, and related hydrologic variables through space and over time. The mapping and description of vegetation characteristics and their variations are necessary to accurately simulate surface hydrology and other surface processes in South Florida and to monitor land surface changes. As part of this research, data from many airborne and satellite imaging systems have been georeferenced and processed to facilitate data fusion and analysis. These image maps were created using image fusion techniques developed as part of this project.
NASA Astrophysics Data System (ADS)
Wang, Guanxi; Tie, Yun; Qi, Lin
2017-07-01
In this paper, we propose a novel approach based on Depth Maps and compute Multi-Scale Histograms of Oriented Gradient (MSHOG) from sequences of depth maps to recognize actions. Each depth frame in a depth video sequence is projected onto three orthogonal Cartesian planes. Under each projection view, the absolute difference between two consecutive projected maps is accumulated through a depth video sequence to form a Depth Map, which is called Depth Motion Trail Images (DMTI). The MSHOG is then computed from the Depth Maps for the representation of an action. In addition, we apply L2-Regularized Collaborative Representation (L2-CRC) to classify actions. We evaluate the proposed approach on MSR Action3D dataset and MSRGesture3D dataset. Promising experimental result demonstrates the effectiveness of our proposed method.
The Use of Concept Maps in Creating a Short Video with Students
ERIC Educational Resources Information Center
Gocsál, Ákos; Tóth, Renáta
2016-01-01
This paper presents the results of an experimental project in which media students created a short video. The students in groups of 4 or 5 used concept maps for collected their ideas about organizing the project. The analysis of the concept maps revealed that two groups were product-oriented, one group was workflow-oriented, and two groups used…
15 maps merged in one data structure - GIS-based template for Dawn at Ceres
NASA Astrophysics Data System (ADS)
Naß, A.; Dawn Mapping Team
2017-09-01
Derive regional and global valid statements out of the map (quadrangles) is already a very time intensive task. However, another challenge is how individual mappers can generate one homogenous GIS-based project (w.r.t. geometrical and visual character) representing one geologically-consistent final map. Within this contribution a template will be presented which was generated for the process of the interpretative mapping project of Ceres to accomplish the requirement of unifying and merging individual quadrangle.
Map design and production issues for the Utah Gap Analysis Project
Hutchinson, John A.; Wittmann, J.H.
1997-01-01
The cartographic preparation and printing of four maps for the Utah GAP Project presented a wide range of challenges in cartographic design and production. In meeting these challenges, the map designers had to balance the purpose of the maps together with their legibility and utility against both the researchers' desire to show as much detail as possible and the technical limitations inherent in the printing process. This article describes seven design and production issues in order to illustrate the challenges of making maps from a merger of satellite data and GIS databases, and to point toward future investigation and development.
Jennifer L. Long; Melanie Miller; James P. Menakis; Robert E. Keane
2006-01-01
The Landscape Fire and Resource Management Planning Tools Prototype Project, or LANDFIRE Prototype Project, required a system for classifying vegetation composition, biophysical settings, and vegetation structure to facilitate the mapping of vegetation and wildland fuel characteristics and the simulation of vegetation dynamics using landscape modeling. We developed...
Area Fish and Game Ecology [Sahuarita High School Career Curriculum Project.
ERIC Educational Resources Information Center
Esser, Robert
This course entitled "Area Fish and Game Ecology" is one of a series of instructional guides prepared by teachers for the Sahuarita High School (Arizona) Career Curriculum Project. It consists of nine units of study, and 18 behavioral objectives relating to these units are stated. The topics covered include map projections, map symbols and…
4. Photographic copy of map. San Carlos Irrigation Project, Gila ...
4. Photographic copy of map. San Carlos Irrigation Project, Gila River Indian Reservation, Pinal County, Arizona. Department of the Interior. Office of Indian Affairs. 1940. (Source: SCIP Office, Coolidge, AZ) Photograph is an 8'x10' enlargement from a 4'x5' negative. - San Carlos Irrigation Project, Lands North & South of Gila River, Coolidge, Pinal County, AZ
Improvement of the cost-benefit analysis algorithm for high-rise construction projects
NASA Astrophysics Data System (ADS)
Gafurov, Andrey; Skotarenko, Oksana; Plotnikov, Vladimir
2018-03-01
The specific nature of high-rise investment projects entailing long-term construction, high risks, etc. implies a need to improve the standard algorithm of cost-benefit analysis. An improved algorithm is described in the article. For development of the improved algorithm of cost-benefit analysis for high-rise construction projects, the following methods were used: weighted average cost of capital, dynamic cost-benefit analysis of investment projects, risk mapping, scenario analysis, sensitivity analysis of critical ratios, etc. This comprehensive approach helped to adapt the original algorithm to feasibility objectives in high-rise construction. The authors put together the algorithm of cost-benefit analysis for high-rise construction projects on the basis of risk mapping and sensitivity analysis of critical ratios. The suggested project risk management algorithms greatly expand the standard algorithm of cost-benefit analysis in investment projects, namely: the "Project analysis scenario" flowchart, improving quality and reliability of forecasting reports in investment projects; the main stages of cash flow adjustment based on risk mapping for better cost-benefit project analysis provided the broad range of risks in high-rise construction; analysis of dynamic cost-benefit values considering project sensitivity to crucial variables, improving flexibility in implementation of high-rise projects.
NASA Astrophysics Data System (ADS)
Hradecky, P.; Baron, I.
2012-04-01
The Czech Geological Survey conducted projects of geological mapping and complex geohazard susceptibility zoning in Nicaragua in the years 1997-2009. For selected areas in vicinity of major cities and towns basic geological maps at a scalle 1:50,000, maps of geomorphic features (Geomorphic Inventory Maps), Morphostructural Maps of estimated fault zones, and derived Geohazard Susceptibility maps were done. These maps were prepared during field campaigns by direct field mapping, analysis of remote-sensing data, communicating the local authorities, interwieving the local inhabitants and with very close cooperation with the local partner of the projects - the Instituto Nicaragüense de Estudios Territoriales (INETER). The resulting maps and explanatory reports presented the dangerous natural processes that occurred in each respective area in the past and proposed preventive measures in detail. Zones evaluated as highly susceptible, e.g., to (i) mass movements, (ii) large inundations, (iii) torrential flooding, (iv) seismogenic liquefaction, etc., were presented in bold colours on the maps. Such maps and reports were presented to local authorities and inhabitants of respective cities during public breefings at the end of each mapping campaign. In such a way, areas of Pacific volcanic ridge (1997-2003), Jinotega (2004), Somoto (2005), Estelí (2006), Boaco and Santa Lucia (2007, 2008), Sebaco (2008) and Jalapa (2009) were elaborated. The maps then served to the INETER for implementation into the landuse plans, evacuation routes and other preventive measures to protect and save human lives and inftrastructure. This approach could serve as a muster for a simple, cost effective and relatively fast geohazards susceptibility evaluation of any area in any developing country. The projects also paid attention to capacity building of our Nicaraguan partners. These projects of the Czech Geological Survey were conducted as the international aid of the Czech Republic to Nicaragua, financed by the Ministry of the Czech Republic
High-Throughput Mapping of Single-Neuron Projections by Sequencing of Barcoded RNA.
Kebschull, Justus M; Garcia da Silva, Pedro; Reid, Ashlan P; Peikon, Ian D; Albeanu, Dinu F; Zador, Anthony M
2016-09-07
Neurons transmit information to distant brain regions via long-range axonal projections. In the mouse, area-to-area connections have only been systematically mapped using bulk labeling techniques, which obscure the diverse projections of intermingled single neurons. Here we describe MAPseq (Multiplexed Analysis of Projections by Sequencing), a technique that can map the projections of thousands or even millions of single neurons by labeling large sets of neurons with random RNA sequences ("barcodes"). Axons are filled with barcode mRNA, each putative projection area is dissected, and the barcode mRNA is extracted and sequenced. Applying MAPseq to the locus coeruleus (LC), we find that individual LC neurons have preferred cortical targets. By recasting neuroanatomy, which is traditionally viewed as a problem of microscopy, as a problem of sequencing, MAPseq harnesses advances in sequencing technology to permit high-throughput interrogation of brain circuits. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Nez, G. (Principal Investigator); Mutter, D.
1977-01-01
The author has identified the following significant results. The project mapped land use/cover classifications from LANDSAT computer compatible tape data and combined those results with other multisource data via computer mapping/compositing techniques to analyze various land use planning/natural resource management problems. Data were analyzed on 1:24,000 scale maps at 1.1 acre resolution. LANDSAT analysis software and linkages with other computer mapping software were developed. Significant results were also achieved in training, communication, and identification of needs for developing the LANDSAT/computer mapping technologies into operational tools for use by decision makers.
Study of USGS/NASA land use classification system. [computer analysis from LANDSAT data
NASA Technical Reports Server (NTRS)
Spann, G. W.
1975-01-01
The results of a computer mapping project using LANDSAT data and the USGS/NASA land use classification system are summarized. During the computer mapping portion of the project, accuracies of 67 percent to 79 percent were achieved using Level II of the classification system and a 4,000 acre test site centered on Douglasville, Georgia. Analysis of response to a questionaire circulated to actual and potential LANDSAT data users reveals several important findings: (1) there is a substantial desire for additional information related to LANDSAT capabilities; (2) a majority of the respondents feel computer mapping from LANDSAT data could aid present or future projects; and (3) the costs of computer mapping are substantially less than those of other methods.
ERIC Educational Resources Information Center
Wheeldon, Johannes
2011-01-01
Mind maps may provide a new means to gather unsolicited data through qualitative research designs. In this paper, I explore the utility of mind maps through a project designed to uncover the experiences of Latvians involved in a legal technical assistance project. Based on a sample of 19 respondents, the depth and detail of the responses between…
ERIC Educational Resources Information Center
Sato, Michèle; Silva, Regina; Jaber, Michelle
2014-01-01
This article summarizes a social mapping project conducted by the Environmental Education, Communication and Arts Research Group from the Federal University of Mato Grosso. The primary goals of the project were to map the vulnerable social groups of Mato Grosso, and identify the social and environmental conflicts that put them in situations of…
Graymer, R.W.
2000-01-01
Introduction This report contains a new geologic map at 1:50,000 scale, derived from a set of geologic map databases containing information at a resolution associated with 1:24,000 scale, and a new description of geologic map units and structural relationships in the mapped area. The map database represents the integration of previously published reports and new geologic mapping and field checking by the author (see Sources of Data index map on the map sheet or the Arc-Info coverage pi-so and the textfile pi-so.txt). The descriptive text (below) contains new ideas about the Hayward fault and other faults in the East Bay fault system, as well as new ideas about the geologic units and their relations. These new data are released in digital form in conjunction with the Federal Emergency Management Agency Project Impact in Oakland. The goal of Project Impact is to use geologic information in land-use and emergency services planning to reduce the losses occurring during earthquakes, landslides, and other hazardous geologic events. The USGS, California Division of Mines and Geology, FEMA, California Office of Emergency Services, and City of Oakland participated in the cooperative project. The geologic data in this report were provided in pre-release form to other Project Impact scientists, and served as one of the basic data layers for the analysis of hazard related to earthquake shaking, liquifaction, earthquake induced landsliding, and rainfall induced landsliding. The publication of these data provides an opportunity for regional planners, local, state, and federal agencies, teachers, consultants, and others outside Project Impact who are interested in geologic data to have the new data long before a traditional paper map could be published. Because the database contains information about both the bedrock and surficial deposits, it has practical applications in the study of groundwater and engineering of hillside materials, as well as the study of geologic hazards and the academic research on the geologic history and development of the region.
Map and database of Quaternary faults and folds in Colombia and its offshore regions
Paris, Gabriel; Machette, Michael N.; Dart, Richard L.; Haller, Kathleen M.
2000-01-01
As part of the International Lithosphere Program’s “World Map of Major Active Faults,” the U.S. Geological Survey (USGS) is assisting in the compilation of a series of digital maps of Quaternary faults and folds in Western Hemisphere countries. The maps show the locations, ages, and activity rates of major earthquake-related features such as faults and fault-related folds. They are accompanied by databases that describe these features and document current information on their activity in the Quaternary. Top date, the project has published fault and fold maps for Costa Rica (Montero and others, 1998), Panama (Cowan and others, 1998), Venezuela (Audemard and others, 2000), Bolovia/Chile (Lavenu, and others, 2000), and Argentina (Costa and others, 2000). The project is a key part of the Global Seismic Hazards Assessment Program (ILP Project II-0) for the International Decade for Natural Hazard Disaster Reduction.
The Mapping Project: Preliminary Results from the National Survey of Faculty. Revised.
ERIC Educational Resources Information Center
Drago, Robert; Varner, Amy
This document reports preliminary results from a national survey of college faculty performed as part of the Mapping Project. The project and the survey concern the ways faculty balance, or do not balance, commitments to work and family. The theoretical framework was based on the work of J. Williams (1991) and others who have argued that an…
Mapping Our City: Learning To Use Spatial Data in the Middle School Science Classroom.
ERIC Educational Resources Information Center
McWilliams, Harold; Rooney, Paul
Mapping Our City is a two-year project in which middle school teachers and students in Boston explore the uses of Geographic Information Systems (GIS) in project-based science, environmental education, and geography. The project is funded by the National Science Foundation and is being field tested in three Boston middle school science classrooms.…
ERIC Educational Resources Information Center
Petzold, Donald; Heppen, John
2005-01-01
Many student geography organizations or clubs associated with colleges and universities undertake community service projects each year to meet local needs and to gain recognition within the community. A uniquely geographical project of playground map painting provides a great community service and goes one step further by incorporating elements of…
Scan angle calculation and image compositing for the Mexico forest mapping project
Zhiliang Zhu
1994-01-01
Data from the Advanced Very High Resolution Radiometer (AVHRR) were used in a cooperative project, sponsored by the U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station, and the United Nations, Food and Agriculture Organization (FAO), to map Mexicos forest cover types.To provide satisfactory AVHRR data sets for the project, the sensor scan...
Geomorphic Mapping of Lava Flows on Mars, Earth, and Mercury
NASA Astrophysics Data System (ADS)
Golder, K. B.; Burr, D. M.
2018-06-01
To advance understanding of flood basalts, we have mapped lava flows on three planets, Mars, Earth, and Mercury, as part of three projects. The common purpose of each project is to investigate potential magma sources and/or emplacement conditions.
MISR Regional VBBE Map Projection
Atmospheric Science Data Center
2013-03-26
... Imagery: Overview | Products | Data Quality | Map Projection | File Format | View Data ... is needed if you are doing high precision work. The packages mentioned about (HDF-EOS library, GCTP, and IDL) all convert to and ...
MISR Regional UAE2 Map Projection
Atmospheric Science Data Center
2013-03-26
... Imagery: Overview | Products | Data Quality | Map Projection | File Format | View Data ... is needed if you are doing high precision work. The packages mentioned about (HDF-EOS library, GCTP, and IDL) all convert to and ...
Isostatic gravity map of Yukon Flats, east-central Alaska
Morin, Robert L.
2002-01-01
The gravity data used to make this map were collected between 1959 and 1984. The data were collected by automobile, aircraft, and watercraft. Most of the data were collected as part of a U.S. Geological Survey (USGS) regional gravity data collection project. Some of the data were collected as part of other USGS local projects. One data set was collected by the NGS (National Geodetic Survey). This map ranges from 65° to 68° N latitude and 141° to 152° W longitude. The names of the 12 1:250,000-scale U.S. Geological Survey quadrangle maps that make up this map are labeled on the map. The western edge of the map is 1 degree of longitude east of the edge of the three most western quadrangles.
Geologic Mapping of the Olympus Mons Volcano, Mars
NASA Technical Reports Server (NTRS)
Bleacher, J. E.; Williams, D. A.; Shean, D.; Greeley, R.
2012-01-01
We are in the third year of a three-year Mars Data Analysis Program project to map the morphology of the Olympus Mons volcano, Mars, using ArcGIS by ESRI. The final product of this project is to be a 1:1,000,000-scale geologic map. The scientific questions upon which this mapping project is based include understanding the volcanic development and modification by structural, aeolian, and possibly glacial processes. The project s scientific objectives are based upon preliminary mapping by Bleacher et al. [1] along a approx.80-km-wide north-south swath of the volcano corresponding to High Resolution Stereo Camera (HRSC) image h0037. The preliminary project, which covered approx.20% of the volcano s surface, resulted in several significant findings, including: 1) channel-fed lava flow surfaces are areally more abundant than tube-fed surfaces by a ratio of 5:1, 2) channel-fed flows consistently embay tube-fed flows, 3) lava fans appear to be linked to tube-fed flows, 4) no volcanic vents were identified within the map region, and 5) a Hummocky unit surrounds the summit and is likely a combination of non-channelized flows, dust, ash, and/or frozen volatiles. These results led to the suggestion that the volcano had experienced a transition from long-lived tube-forming eruptions to more sporadic and shorter-lived, channel-forming eruptions, as seen at Hawaiian volcanoes between the tholeiitic shield building phase (Kilauea to Mauna Loa) and alkalic capping phase (Hualalai and Mauna Kea).
Corrosion Map for Metal Pipes in Coastal Louisiana : Tech Summary
DOT National Transportation Integrated Search
2017-12-01
The objective of this project was to create a guidance document with maps that delineates zones where metal pipe is prone to increased corrosion due to environmental conditions. Results from this project will provide a logical rationale to support DO...
MISR Regional SAMUM Map Projection
Atmospheric Science Data Center
2017-03-29
... Regional Imagery: Overview | Products | Data Quality | Map Projection | File Format | View Data | ... is needed if you are doing high precision work. The packages mentioned about (HDF-EOS library, GCTP, and IDL) all convert to and ...
Lammerding-Koeppel, Maria; Giesler, Marianne; Gornostayeva, Maryna; Narciss, Elisabeth; Wosnik, Annette; Zipfel, Stephan; Griewatz, Jan; Fritze, Olaf
2017-01-01
Objective: After passing of the National Competency-based Learning Objectives Catalogue in Medicine (Nationaler Kompetenzbasierter Lernzielkatalog Medizin, [NKLM, retrieved on 22.03.2016]), the German medical faculties must take inventory and develop their curricula. NKLM contents are expected to be present, but not linked well or sensibly enough in locally grown curricula. Learning and examination formats must be reviewed for appropriateness and coverage of the competences. The necessary curricular transparency is best achieved by systematic curriculum mapping, combined with effective change management. Mapping a complex existing curriculum and convincing a faculty that this will have benefits is not easy. Headed by Tübingen, the faculties of Freiburg, Heidelberg, Mannheim and Tübingen take inventory by mapping their curricula in comparison to the NKLM, using the dedicated web-based MERLIN-database. This two-part article analyses and summarises how NKLM curriculum mapping could be successful in spite of resistance at the faculties. The target is conveying the widest possible overview of beneficial framework conditions, strategies and results. Part I of the article shows the beneficial resources and structures required for implementation of curriculum mapping at the faculties. Part II describes key factors relevant for motivating faculties and teachers during the mapping process. Method: The network project was systematically planned in advance according to steps of project and change management, regularly reflected on and adjusted together in workshops and semi-annual project meetings. From the beginning of the project, a grounded-theory approach was used to systematically collect detailed information on structures, measures and developments at the faculties using various sources and methods, to continually analyse them and to draw a final conclusion (sources: surveys among the project participants with questionnaires, semi-structured group interviews and discussions, guideline-supported individual interviews, informal surveys, evaluation of target agreements and protocols, openly discernible local, regional or over-regional structure-relevant events). Results: The following resources and structures support implementation of curriculum mapping at a faculty: Setting up a coordination agency (≥50% of a full position; support by student assistants), systematic project management, and development of organisation and communication structures with integration of the dean of study and teaching and pilot departments, as well as development of a user-friendly web-based mapping instrument. Acceptance of the mapping was increased particularly by visualisation of the results and early insight into indicative results relevant for the department. Conclusion: Successful NKLM curriculum mapping requires trained staff for coordination, resilient communication structures and a user-oriented mapping database. In alignment with literature, recommendations can be derived to support other faculties that want to map their curriculum. PMID:28293674
Lammerding-Koeppel, Maria; Giesler, Marianne; Gornostayeva, Maryna; Narciss, Elisabeth; Wosnik, Annette; Zipfel, Stephan; Griewatz, Jan; Fritze, Olaf
2017-01-01
Objective: After passing of the National Competency-based Learning Objectives Catalogue in Medicine (Nationaler Kompetenzbasierter Lernzielkatalog Medizin, [NKLM, retrieved on 22.03.2016]), the German medical faculties must take inventory and develop their curricula. NKLM contents are expected to be present, but not linked well or sensibly enough in locally grown curricula. Learning and examination formats must be reviewed for appropriateness and coverage of the competences. The necessary curricular transparency is best achieved by systematic curriculum mapping, combined with effective change management. Mapping a complex existing curriculum and convincing a faculty that this will have benefits is not easy. Headed by Tübingen, the faculties of Freiburg, Heidelberg, Mannheim and Tübingen take inventory by mapping their curricula in comparison to the NKLM, using the dedicated web-based MER LIN -database. This two-part article analyses and summarises how NKLM curriculum mapping could be successful in spite of resistance at the faculties. The target is conveying the widest possible overview of beneficial framework conditions, strategies and results. Part I of the article shows the beneficial resources and structures required for implementation of curriculum mapping at the faculties. Part II describes key factors relevant for motivating faculties and teachers during the mapping process. Method: The network project was systematically planned in advance according to steps of project and change management, regularly reflected on and adjusted together in workshops and semi-annual project meetings. From the beginning of the project, a grounded-theory approach was used to systematically collect detailed information on structures, measures and developments at the faculties using various sources and methods, to continually analyse them and to draw a final conclusion (sources: surveys among the project participants with questionnaires, semi-structured group interviews and discussions, guideline-supported individual interviews, informal surveys, evaluation of target agreements and protocols, openly discernible local, regional or over-regional structure-relevant events). Results: The following resources and structures support implementation of curriculum mapping at a faculty: Setting up a coordination agency (≥50% of a full position; support by student assistants), systematic project management, and development of organisation and communication structures with integration of the dean of study and teaching and pilot departments, as well as development of a user-friendly web-based mapping instrument. Acceptance of the mapping was increased particularly by visualisation of the results and early insight into indicative results relevant for the department. Conclusion: Successful NKLM curriculum mapping requires trained staff for coordination, resilient communication structures and a user-oriented mapping database. In alignment with literature, recommendations can be derived to support other faculties that want to map their curriculum.
Harmonisation of geological data to support geohazard mapping: the case of eENVplus project
NASA Astrophysics Data System (ADS)
Cipolloni, Carlo; Krivic, Matija; Novak, Matevž; Pantaloni, Marco; Šinigoj, Jasna
2014-05-01
In the eENVplus project, which aims is to unlock huge amounts of environmental datamanaged by the national and regional environmental agencies and other public and private organisations, we have developed a cross-border pilot on the geological data harmonisation through the integration and harmonisation of existing services. The pilot analyses the methodology and results of the OneGeology-Europe project, elaborated at the scale of 1:1M, to point out difficulties and unsolved problems highlighted during the project. This preliminary analysis is followed by a comparison of two geological maps provided by the neighbouring countries with the objective to compare and define the geometric and semantic anomalous contacts between geological polygons and lines in the maps. This phase will be followed by a detailed scale geological map analysis aimed to solve the anomalies identified in the previous phase. The two Geological Surveys involved into the pilot will discuss the problems highlighted during this phase. Subsequently the semantic description will be redefined and the geometry of the polygons in geological maps will be redrawn or adjusted according to a lithostratigraphic approach that takes in account the homogeneity of age, lithology, depositional environment and consolidation degree of geological units. The two Geological Surveys have decided to apply the harmonisation process on two different dataset: the first is represented by the Geological Map at the scale of 1:1,000,000, partially harmonised within the OneGeology-Europe project that will be re-aligned with GE INSPIRE data model to produce data and services compliant with INSPIRE target schema. The main target of Geological Surveys is to produce data and web services compliant with the wider international schema, where there are more options to provide data, with specific attributes that are important to obtain the geohazard map as in the case of this pilot project; therefore we have decided to apply GeoSciML 3.2 schema to the dataset that represents Geological Map at the scale of 1:100,000. Within the pilot will be realised two main geohazard examples with a semi-automatized procedure based on a specific tool component integrated in the client: a landslide susceptibility map and a potential flooding map. In this work we want to present the first results obtained with use case geo-processing procedure in the first test phase, where we have developed a dataset compliant with GE INSPIRE to perform the landslide and flooding susceptibility maps.
MISR Regional INTEX-B Map Projection
Atmospheric Science Data Center
2016-09-28
... Regional Imagery: Overview | Products | Data Quality | Map Projection | File Format | View Data | ... is needed if you are doing high precision work. The packages mentioned about (HDF-EOS library, GCTP, and IDL) all convert to and ...
MISR Regional GoMACCS Map Projection
Atmospheric Science Data Center
2017-03-29
... Regional Imagery: Overview | Products | Data Quality | Map Projection | File Format | View Data | ... is needed if you are doing high precision work. The packages mentioned about (HDF-EOS library, GCTP, and IDL) all convert to and ...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-04
... higher education or a consortium of institutions of higher education; (4) public or private non-profit... DEPARTMENT OF COMMERCE Economic Development Administration Proposed Information Collection; Comment Request; Award Amendment Requests and Project Service Maps AGENCY: Economic Development...
Wing, Rod A; Ammiraju, Jetty S S; Luo, Meizhong; Kim, Hyeran; Yu, Yeisoo; Kudrna, Dave; Goicoechea, Jose L; Wang, Wenming; Nelson, Will; Rao, Kiran; Brar, Darshan; Mackill, Dave J; Han, Bin; Soderlund, Cari; Stein, Lincoln; SanMiguel, Phillip; Jackson, Scott
2005-09-01
The wild species of the genus Oryza offer enormous potential to make a significant impact on agricultural productivity of the cultivated rice species Oryza sativa and Oryza glaberrima. To unlock the genetic potential of wild rice we have initiated a project entitled the 'Oryza Map Alignment Project' (OMAP) with the ultimate goal of constructing and aligning BAC/STC based physical maps of 11 wild and one cultivated rice species to the International Rice Genome Sequencing Project's finished reference genome--O. sativa ssp. japonica c. v. Nipponbare. The 11 wild rice species comprise nine different genome types and include six diploid genomes (AA, BB, CC, EE, FF and GG) and four tetrapliod genomes (BBCC, CCDD, HHKK and HHJJ) with broad geographical distribution and ecological adaptation. In this paper we describe our strategy to construct robust physical maps of all 12 rice species with an emphasis on the AA diploid O. nivara--thought to be the progenitor of modern cultivated rice.
NASA Astrophysics Data System (ADS)
Miller, J. D.; Hudak, G. J.; Peterson, D.
2011-12-01
Since 2007, the central program of the Precambrian Research Center (PRC) at the University of Minnesota Duluth has been a six-week geology field camp focused on the Precambrian geology of the Canadian Shield. This field camp has two main purposes. First and foremost is to teach students specialized field skills and field mapping techniques that can be utilized to map and interpret Precambrian shield terranes characterized by sparse outcrop and abundant glacial cover. In addition to teaching basic outcrop mapping technique , students are introduced to geophysical surveying (gravity, magnetics), glacial drift prospecting, and drill core logging techniques in several of our geological mapping exercises. These mapping methodologies are particularly applicable to minerals exploration in shield terranes. The second and equally important goal of the PRC field camp is to teach students modern map-making and map production skills. During the fifth and sixth weeks of field camp, students conduct "capstone" mapping projects. These projects encompass one week of detailed bedrock mapping in remote regions of northern Minnesota that have not been mapped in detail (e.g. scales greater than 1:24,000) and a second week of map-making and map generation utilizing geographic information systems (currently ArcGIS10), graphics software packages (Adobe Illustrator CS4), and various imaging software for geophysical and topographic data. Over the past five years, PRC students and faculty have collaboratively published 21 geologic maps through the Precambrian Research Center Map Series. These maps are currently being utilized in a variety of ways by industry, academia, and government for mineral exploration programs, development of undergraduate, graduate, and faculty research projects, and for planning, archeological studies, and public education programs in Minnesota's state parks. Acquisition of specialized Precambrian geological mapping skills and geologic map-making proficiencies has enabled our students to be highly sought after for employment and/or subsequent graduate studies.
Citygml Modelling for Singapore 3d National Mapping
NASA Astrophysics Data System (ADS)
Soon, K. H.; Khoo, V. H. S.
2017-10-01
Since 2014, the Land Survey Division of Singapore Land Authority (SLA) has spearheaded a Whole-of-Government (WOG) 3D mapping project to create and maintain a 3D national map for Singapore. The implementation of the project is divided into two phases. The first phase of the project, which was based on airborne data collection, has produced 3D models for Relief, Building, Vegetation and Waterbody. This part of the work was completed in 2016. To complement the first phase, the second phase used mobile imaging and scanning technique. This phase is targeted to be completed by the mid of 2017 and is creating 3D models for Transportation, CityFurniture, Bridge and Tunnel. The project has extensively adopted the Open Geospatial Consortium (OGC)'s CityGML standard. Out of 10 currently supported thematic modules in CityGML 2.0, the project has implemented 8. The paper describes the adoption of CityGML in the project, and discusses challenges, data validations and management of the models.
Structures data collection for The National Map using volunteered geographic information
Poore, Barbara S.; Wolf, Eric B.; Korris, Erin M.; Walter, Jennifer L.; Matthews, Greg D.
2012-01-01
The U.S. Geological Survey (USGS) has historically sponsored volunteered data collection projects to enhance its topographic paper and digital map products. This report describes one phase of an ongoing project to encourage volunteers to contribute data to The National Map using online editing tools. The USGS recruited students studying geographic information systems (GIS) at the University of Colorado Denver and the University of Denver in the spring of 2011 to add data on structures - manmade features such as schools, hospitals, and libraries - to four quadrangles covering metropolitan Denver. The USGS customized a version of the online Potlatch editor created by the OpenStreetMap project and populated it with 30 structure types drawn from the Geographic Names Information System (GNIS), a USGS database of geographic features. The students corrected the location and attributes of these points and added information on structures that were missing. There were two rounds of quality control. Student volunteers reviewed each point, and an in-house review of each point by the USGS followed. Nine-hundred and thirty-eight structure points were initially downloaded from the USGS database. Editing and quality control resulted in 1,214 structure points that were subsequently added to The National Map. A post-project analysis of the data shows that after student edit and peer review, 92 percent of the points contributed by volunteers met National Map Accuracy Standards for horizontal accuracy. Lessons from this project will be applied to later phases. These include: simplifying editing tasks and the user interfaces, stressing to volunteers the importance of adding structures that are missing, and emphasizing the importance of conforming to editorial guidelines for formatting names and addresses of structures. The next phase of the project will encompass the entire State of Colorado and will allow any citizen to contribute structures data. Volunteers will benefit from this project by engaging with their local geography and contributing to a national resource of topographic information that remains in the public domain for anyone to download.
Cognitive mapping in mental time travel and mental space navigation.
Gauthier, Baptiste; van Wassenhove, Virginie
2016-09-01
The ability to imagine ourselves in the past, in the future or in different spatial locations suggests that the brain can generate cognitive maps that are independent of the experiential self in the here and now. Using three experiments, we asked to which extent Mental Time Travel (MTT; imagining the self in time) and Mental Space Navigation (MSN; imagining the self in space) shared similar cognitive operations. For this, participants judged the ordinality of real historical events in time and in space with respect to different mental perspectives: for instance, participants mentally projected themselves in Paris in nine years, and judged whether an event occurred before or after, or, east or west, of where they mentally stood. In all three experiments, symbolic distance effects in time and space dimensions were quantified using Reaction Times (RT) and Error Rates (ER). When self-projected, participants were slower and were less accurate (absolute distance effects); participants were also faster and more accurate when the spatial and temporal distances were further away from their mental viewpoint (relative distance effects). These effects show that MTT and MSN require egocentric mapping and that self-projection requires map transformations. Additionally, participants' performance was affected when self-projection was made in one dimension but judgements in another, revealing a competition between temporal and spatial mapping (Experiment 2 & 3). Altogether, our findings suggest that MTT and MSN are separately mapped although they require comparable allo- to ego-centric map conversion. Copyright © 2016 Elsevier B.V. All rights reserved.
Mapping the Universe: Slices and Bubbles.
ERIC Educational Resources Information Center
Geller, Margaret J.
1990-01-01
Map making is described in the context of extraterrestrial areas. An analogy to terrestrial map making is used to provide some background. The status of projects designed to map extraterrestrial areas are discussed including problems unique to this science. (CW)
Fosness, Ryan L.
2014-01-01
This report presents the methods used to develop georeferenced portable document format maps and geospatial data that describe spawning locations and physical habitat characteristics (including egg mat locations, bathymetry, surficial sediment facies, and streamflow velocity) within the substrate enhancement pilot project study area. The results are presented as two maps illustrating the physical habitat characteristics along with proposed habitat enhancement areas, aerial imagery, and hydrography. The results of this study will assist researchers, policy makers, and management agencies in deciding the spatial location and extent of the substrate enhancement pilot project.
Coastal Hazards Maps: Actionable Information for Communities Facing Sea-Level Rise (Invited)
NASA Astrophysics Data System (ADS)
Gibeaut, J. C.; Barraza, E.
2010-12-01
Barrier islands along the U.S. Gulf coast remain under increasing pressure from development. This development and redevelopment is occurring despite recent hurricanes, ongoing erosion, and sea-level rise. To lessen the impacts of these hazards, local governments need information in a form that is useful for informing the public, making policy, and enforcing development rules. We recently completed the Galveston Island Geohazards Map for the city of Galveston, Texas and are currently developing maps for the Mustang and South Padre Island communities. The maps show areas that vary in their susceptibility to, and function for, mitigating the effects of geological processes, including sea-level rise, land subsidence, erosion and storm-surge flooding and washover. The current wetlands, beaches and dunes are mapped as having the highest geohazard potential both in terms of their exposure to hazardous conditions and their mitigating effects of those hazards for the rest of the island. These existing “critical environments” are generally protected under existing regulations. Importantly, however, the mapping recognizes that sea-level rise and shoreline retreat are changing the island; therefore, 60-year model projections of the effects of these changes are incorporated into the map. The areas that we project will become wetlands, beaches and dunes in the next 60 years are not protected. These areas are the most difficult to deal with from a policy point of view, yet we must address what happens there if real progress is to be made in how we live with sea-level rise. The geohazards maps draw on decades of geological knowledge of how barrier islands behave and put it in a form that is intuitive to the public and directly useful to planners. Some of the “messages” in the map include: leave salt marshes alone and give them room to migrate inland as sea level rises; set back and move development away from the shoreline to provide space for beaches and protective dunes to form; and steer away from particularly low and unprotected areas subject to flooding and washover. Probably most barrier island stakeholders have heard these messages before. The difference a map makes is that it is a tangible link from our knowledge to the issues on the ground. To increase the likelihood that the maps will be considered, we took some practical approaches. The projections for change incorporated into the maps do not include effects of increasing rates of sea-level rise as projected by global climate change studies. It would be a shame if our efforts to improve how we live along the shore were caught up in the ongoing debate of global warming and the mapping results neutralized. Instead, all we are asking is for people to look at what we have observed during the past 50 to 100 years, project that just 60 years into the future, add more people to the islands and then realize we need to start doing things differently. Furthermore, the projections are made for just 60 years because this is a timescale people often plan for in their personal lives, and because it is a period where our methods for projection are most reliable.
Geologic map of the Republic of Armenia
Maldonado, Florian; Castellanos, Esther S.
2000-01-01
This map is a product that resulted from a project by the U.S. Agency for International Development (Participating Agency Service Agreement No. CCN-0002-P-ID-3097-00) to conduct an evaluation of coal and other fossil fuels in the Republic of Armenia. The original map has been translated to English from Russian (Marlen Satian, Academy of Sciences, Armenian Institute of Geological Sciences, written commun., 1994), digitized, and slightly modified in some areas. The original format has been modified to follow the U.S. Geological Survey's format. The map projection is not known. Latitude and longitude tics are approximately located.
Page, William R.; Berry, Margaret E.; VanSistine, D. Paco; Snyders, Scott R.
2009-01-01
The purpose of this map is to provide an integrated, bi-national geologic map dataset for display and analyses on an Arc Internet Map Service (IMS) dedicated to environmental health studies in the United States-Mexico border region. The IMS web site was designed by the US-Mexico Border Environmental Health Initiative project and collaborators, and the IMS and project web site address is http://borderhealth.cr.usgs.gov/. The objective of the project is to acquire, evaluate, analyze, and provide earth, biologic, and human health resources data within a GIS framework (IMS) to further our understanding of possible linkages between the physical environment and public health issues. The geologic map dataset is just one of many datasets included in the web site; other datasets include biologic, hydrologic, geographic, and human health themes.
Mapping quantum-classical Liouville equation: projectors and trajectories.
Kelly, Aaron; van Zon, Ramses; Schofield, Jeremy; Kapral, Raymond
2012-02-28
The evolution of a mixed quantum-classical system is expressed in the mapping formalism where discrete quantum states are mapped onto oscillator states, resulting in a phase space description of the quantum degrees of freedom. By defining projection operators onto the mapping states corresponding to the physical quantum states, it is shown that the mapping quantum-classical Liouville operator commutes with the projection operator so that the dynamics is confined to the physical space. It is also shown that a trajectory-based solution of this equation can be constructed that requires the simulation of an ensemble of entangled trajectories. An approximation to this evolution equation which retains only the Poisson bracket contribution to the evolution operator does admit a solution in an ensemble of independent trajectories but it is shown that this operator does not commute with the projection operators and the dynamics may take the system outside the physical space. The dynamical instabilities, utility, and domain of validity of this approximate dynamics are discussed. The effects are illustrated by simulations on several quantum systems.
Maps showing geology, oil and gas fields and geological provinces of Africa
Persits, Feliks M.; Ahlbrandt, T.S.; Tuttle, Michele L.W.; Charpentier, R.R.; Brownfield, M.E.; Takahashi, Kenneth
1997-01-01
The CD-ROM was compiled according to the methodology developed by the U.S. Geological Survey's World Energy Project . The goal of the project was to assess the undiscovered, technically recoverable oil and gas resources of the world and report these results by the year 2000. A worldwide series of geologic maps, published on CD-ROMs, was released by the U.S. Geological Survey's World Energy Project during 1997 - 2000. Specific details of the data sources and map compilation are given in the metadata files on this CD-ROM. These maps were compiled using Environmental Systems Research Institute Inc. (ESRI) ARC/INFO software. Political boundaries and cartographic representations on this map are shown (with permission) from ESRI's ArcWorld 1:3M digital coverage: they have no political significance and are displayed as general reference only. Portions of this database covering the coastline and country boundaries contain proprietary property of ESRI. (Copyright 1992 and 1996, Environmental Systems Research Institute Inc. All rights reserved.)
Mapping Biomass for REDD in the Largest Forest of Central Africa: the Democratic Republic of Congo
NASA Astrophysics Data System (ADS)
Shapiro, Aurelie; Saatchi, Sassan
2014-05-01
With the support of the International Climate Initiative (ICI) of the Federal Ministry of the Environment, Conservation, and Nuclear Security, the implementation of the German Development Bank KfW, the World Wide Fund for Nature (WWF) Germany, the University of California Los Angeles (UCLA) and local DRC partners will produce a national scale biomass map for the entire forest coverage of the Democratic Republic of Congo (DRC) along with feasibility assessments of different forest protection measures within a framework of a REDD+ model project. The « Carbon Map and Model (CO2M&M) » project will produce a national forest biomass map for the DRC, which will enable quantitative assessments of carbon stocks and emissions in the largest forest of the Congo Basin. This effort will support the national REDD (Reducing Emissions from Deforestation and Degradation) program in DRC, which plays a major role in sustainable development and poverty alleviation. This map will be developed from field data, complemented by airborne LiDAR (Light Detection and Ranging) and aerial photos, systematically sampled throughout the forests of the DRC and up-scaled to satellite images to accurately estimate carbon content in all forested areas. The second component of the project is to develop specific approaches for model REDD projects in key landscapes. This project represents the largest LiDAR-derived mapping effort in Africa, under unprecedented logistical constraints, which will provide one of the poorest nations in the world with the richest airborne and satellites derived datasets for analyzing forest structure, biomass and biodiversity.
History of greenness mapping at the EROS data center
Van Beek, Carolyn; Vandersnick, Richard
1993-01-01
In 1987, the U.S. Geological Survey's EROS Data Center (EDC)installed a system to acquire, process, and distribute advanced very high resolution radiometer (AVHRR) satellite image data collected over North America. Using this system, the EDC began an experimental greenness mapping program as part of the U.S. Agency for the International Development Famine Early Warning System. The program used the greenness information derived from AVHRR data to identify potential outbreaks of locusts and grasshoppers in the Sahelian region of Africa. In 1988, the EDC began greenness mapping projects in Africa and the northern Great Plains of the United States. In 1989, the system was augmented to acquire AVHRR information for the rest of the world. As a result, the greenness mapping program was able to collect data for fire danger assessment, agricultural assessment, and land characterization. Illustrations of each of the mapping projects trace the chronology of the greenness mapping program at the EDC. Displays represent the initial activity in Africa and the transition of the north Great Plains project to the current conterminous U.S. project. The program's expansion to include Alaska, Eurasia, a prototype North America data set, and ultimately, an experimental global land 1-km product is also shown. The poster describes major technical advances in data processing, the development of derivative products, the magnitude of the data volume of each level, and major applications.
Publications - GPR 2014-4 | Alaska Division of Geological & Geophysical
Geologic Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey content DGGS GPR 2014-4 Publication Details Title: Farewell and Middle Styx survey areas: Project report , Inc., 2015, Farewell and Middle Styx survey areas: Project report, interpretation maps, EM anomalies
Arctic Research Mapping Application (ARMAP): 2D Maps and 3D Globes Support Arctic Science
NASA Astrophysics Data System (ADS)
Johnson, G.; Gaylord, A. G.; Brady, J. J.; Cody, R. P.; Aguilar, J. A.; Dover, M.; Garcia-Lavigne, D.; Manley, W.; Score, R.; Tweedie, C. E.
2007-12-01
The Arctic Research Mapping Application (ARMAP) is a suite of online services to provide support of Arctic science. These services include: a text based online search utility, 2D Internet Map Server (IMS); 3D globes and Open Geospatial Consortium (OGC) Web Map Services (WMS). With ARMAP's 2D maps and 3D globes, users can navigate to areas of interest, view a variety of map layers, and explore U.S. Federally funded research projects. Projects can be queried by location, year, funding program, discipline, and keyword. Links take you to specific information and other web sites associated with a particular research project. The Arctic Research Logistics Support Service (ARLSS) database is the foundation of ARMAP including US research funded by the National Science Foundation, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, and the United States Geological Survey. Avoiding a duplication of effort has been a primary objective of the ARMAP project which incorporates best practices (e.g. Spatial Data Infrastructure and OGC standard web services and metadata) and off the shelf technologies where appropriate. The ARMAP suite provides tools for users of various levels of technical ability to interact with the data by importing the web services directly into their own GIS applications and virtual globes; performing advanced GIS queries; simply printing maps from a set of predefined images in the map gallery; browsing the layers in an IMS; or by choosing to "fly to" sites using a 3D globe. With special emphasis on the International Polar Year (IPY), ARMAP has targeted science planners, scientists, educators, and the general public. In sum, ARMAP goes beyond a simple map display to enable analysis, synthesis, and coordination of Arctic research. ARMAP may be accessed via the gateway web site at http://www.armap.org.
Tectonic map of the Circum-Pacific region, Pacific basin sheet
Scheibner, E.; Moore, G.W.; Drummond, K.J.; Dalziel, Corvalan Q.J.; Moritani, T.; Teraoka, Y.; Sato, T.; Craddock, C.
2013-01-01
Circum-Pacific Map Project: The Circum-Pacific Map Project was a cooperative international effort designed to show the relationship of known energy and mineral resources to the major geologic features of the Pacific basin and surrounding continental areas. Available geologic, mineral, and energy-resource data are being complemented by new, project-developed data sets such as magnetic lineations, seafloor mineral deposits, and seafloor sediment. Earth scientists representing some 180 organizations from more than 40 Pacific-region countries are involved in this work. Six overlapping equal-area regional maps at a scale of 1:10,000,000 form the cartographic base for the project: the four Circum-Pacific Quadrants (Northwest, Southwest, Southeast, and Northeast), and the Antarctic and Arctic Sheets. There is also a Pacific Basin Sheet at a scale of 1:17,000,000. The Base Map Series and the Geographic Series (published from 1977 to 1990), the Plate-Tectonic Series (published in 1981 and 1982), the Geodynamic Series (published in 1984 and 1985), and the Geologic Series (published from 1984 to 1989) all include six map sheets. Other thematic map series in preparation include Mineral-Resources, Energy-Resources and Tectonic Maps. Altogether, more than 50 map sheets are planned. The maps were prepared cooperatively by the Circum-Pacific Council for Energy and Mineral Resources and the U.S. Geological Survey and are available from the Branch of Distribution, U. S. Geological Survey, Box 25286, Federal Center, Denver, Colorado 80225, U.S.A. The Circum-Pacific Map Project is organized under six panels of geoscientists representing national earth-science organizations, universities, and natural-resource companies. The six panels correspond to the basic map areas. Current panel chairmen are Tomoyuki Moritani (Northwest Quadrant), R. Wally Johnson (Southwest Quadrant), Ian W.D. Dalziel (Antarctic Region), vacant. (Southeast Quadrant), Kenneth J. Drummond (Northeast Quadrant), and George W. Moore (Arctic Region). Project coordination and final cartography was being carried out through the cooperation of the Office of the Chief Geologist of the U.S. Geological Survey, under the direction of General Chairman, George Gryc of Menlo Park, California. Project headquarters were located at 345 Middlefield Road, MS 952, Menlo Park, California 94025, U.S.A. The framework for the Circum-Pacific Map Project was developed in 1973 by a specially convened group of 12 North American geoscientists meeting in California. The project was officially launched at the First Circum-Pacific Conference on Energy and Mineral Resources, which met in Honolulu, Hawaii, in August 1974. Sponsors of the conference were the AAPG, Pacific Science Association (PSA), and the Coordinating Committee for Offshore Prospecting for Mineral Resources in Offshore Asian Areas (CCOP). The Circum-Pacific Map Project operates as an activity of the Circum-Pacific Council for Energy and Mineral Resources, a nonprofit organization that promotes cooperation among Circum-Pacific countries in the study of energy and mineral resources of the Pacific basin. Founded by Michel T. Halbouty in 1972, the Council also sponsors conferences, topical symposia, workshops and the Earth Science Series books. Tectonic Map Series: The tectonic maps distinguish areas of oceanic and continental crust. Symbols in red mark active plate boundaries, and colored patterns show tectonic units (volcanic or magmatic arcs, arc-trench gaps, and interarc basins) associated with active plate margins. Well-documented inactive plate boundaries are shown by symbols in black. The tectonic development of oceanic crust is shown by episodes of seafloor spreading. These correlate with the rift and drift sequences at passive continental margins and episodes of tectonic activity at active plate margins. The recognized episodes of seafloor spreading seem to reflect major changes in plate kinematics. Oceanic plateaus and other prominences of greater than normal oceanic crustal thickness such as hotspot traces are also shown. Colored areas on the continents show the ages of deformation and metamorphism of basement rocks and the emplacement of igneous rocks. Transitional tectonic (molassic) and reactivation basins are shown by a colored boundary, and if they are deformed, a colored horizontal line pattern indicates the age of deformation. Colored bands along basin boundaries indicate age of inception, and isopachs indicate thickness of platform strata on continental crust and cover on oceanic crust. Colored patterns at separated continental margins show the age of inception of rift and drift (breakup) sequences. Symbols mark folds and faults, and special symbols show volcanoes and other structural features. Affiliations are as of compilation of the data. This map was created in quadrants and then compiled together. They are the Northwest land, Northwest Marine (different compilers), Northeast, Southwest and Southeast, and parts in plate-boundary sections.
NASA Astrophysics Data System (ADS)
Gruber, D.; Skotnicki, S.; Gootee, B.
2016-12-01
The work of citizen scientists has become very important to researchers doing field work and internet-based projects but has not been widely utilized in digital mapping. The McDowell Mountains - located in Scottsdale, Arizona, at the edge of the basin-and-range province and protected as part of the McDowell Sonoran Preserve - are geologically complex. Until recently, no comprehensive geologic survey of the entire range had been done. Over the last 9 years geologist Steven Skotnicki spent 2000 hours mapping the complex geology of the range. His work, born of personal interest and partially supported by the McDowell Sonoran Conservancy, resulted in highly detailed hand-drawn survey maps. Dr. Skotnicki's work provides important new information and raises interesting research questions about the geology of this range. Citizen scientists of the McDowell Sonoran Conservancy Field Institute digitized Dr. Skotnicki's maps. A team of 10 volunteers, trained in ArcMap digitization techniques and led by volunteer project leader Daniel Gruber, performed the digitization work. Technical oversight of mapping using ArcMap, including provision of USGS-based mapping toolbars, was provided by Arizona Geological Survey (AZGS) research geologist Brian Gootee. The map digitization process identified and helped resolve a number of mapping questions. The citizen-scientist team spent 900 hours on training, digitization, quality checking, and project coordination with support and review by Skotnicki and Gootee. The resulting digital map has approximately 3000 polygons, 3000 points, and 86 map units with complete metadata and unit descriptions. The finished map is available online through AZGS and can be accessed in the field on mobile devices. User location is shown on the map and metadata can be viewed with a tap. The citizen scientist map digitization team has made this important geologic information available to the public and accessible to other researchers quickly and efficiently.
St. Louis Area Earthquake Hazards Mapping Project - December 2008-June 2009 Progress Report
Williams, R.A.; Bauer, R.A.; Boyd, O.S.; Chung, J.; Cramer, C.H.; Gaunt, D.A.; Hempen, G.L.; Hoffman, D.; McCallister, N.S.; Prewett, J.L.; Rogers, J.D.; Steckel, P.J.; Watkins, C.M.
2009-01-01
This report summarizes the mission, the project background, the participants, and the progress of the St. Louis Area Earthquake Hazards Mapping Project (SLAEHMP) for the period from December 2008 through June 2009. During this period, the SLAEHMP held five conference calls and two face-to-face meetings in St. Louis, participated in several earthquake awareness public meetings, held one outreach field trip for the business and government community, collected and compiled new borehole and digital elevation data from partners, and published a project summary.
NASA Astrophysics Data System (ADS)
Gomez-Gomez, Felipe; Capria, Maria Teresa; Palomba, Ernesto; Walter, Nicolas; Rettberg, Petra; Muller, Christian; Horneck, Gerda
AstRoMap (Astrobiology and Planetary Exploration Road Mapping) is a funded project formulated in the 5th Call of the European Commission FP7 framework. The main objectives of the AstRoMap are: 1. Identify the main astrobiology issues to be addressed by Europe in the next decades in relation with space exploration 2. Identify potential mission concepts that would allow addressing these issues 3. Identify the technology developments required to enable these missions 4. Provide a prioritized roadmap integrating science and technology activities as well as ground-based approach 5. Map scientific knowledge related to astrobiology in Europe To reach those objectives, AstRoMap is executed within the following steps: 1. Community consultation. In order to map the European astrobiology landscape and to provide a collaborative networking platform for this community, the AstRoMap project hosts a database of scientists (European and beyond) interested in astrobiology and planetary exploration (see: http://www.astromap.eu/database.html). It reflects the demography and the research and teaching activities of the astrobiology community, as well as their professional profiles and involvement in astrobiology projects. Considering future aspects of astrobiology in Europe, the need for more astrobiology-dedicated funding programmes at the EU level, especially for cross-disciplinary groups, was stressed. This might eventually lead to the creation of a European laboratory of Astrobiology, or even of a European Astrobiology Institute. 2. Workshops organisation. On the basis of the feedbacks from the community consultation, the potential participants and interesting topics are being identified to take part in the following workshops: 1-. Origin of organic compounds, steps to life; 2. Physico-chemical boundary conditions for habitability 3. Biosignatures as facilitating life detection 4. Origin of the Solar system 3. Astrobiology road-mapping. Based on the results and major conclusions elaborated during the workshops, an astrobiology roadmap will be constructed tailored to the European needs and competences. 4. Education and public outreach. Parallel to the workshop and consultation activities, AstRoMap will provide a comprehensive education and outreach programme and disseminate the progress of AstRoMap through its web site (http://www.astromap.eu).
Mark Finco; Brad Quayle; Yuan Zhang; Jennifer Lecker; Kevin A. Megown; C. Kenneth Brewer
2012-01-01
The Monitoring Trends in Burn Severity (MTBS) project is mapping the extent, size, and severity of all large fires greater than 1,000 acres in the west and 500 acres in the east over the conterminous United States (CONUS), Alaska, and Hawaii. In 2012 the project reached a milestone, completing the mapping for all fires between 1984 and 2010. The MTBS project produces...
Scoping of flood hazard mapping needs for Cumberland County, Maine
Dudley, Robert W.; Schalk, Charles W.
2006-01-01
This report was prepared by the U.S. Geological Survey (USGS) Maine Water Science Center as the deliverable for scoping of flood hazard mapping needs for Cumberland County, Maine, under Federal Emergency Management Agency (FEMA) Inter-Agency Agreement Number HSFE01-05-X-0018. This section of the report explains the objective of the task and the purpose of the report. The Federal Emergency Management Agency (FEMA) developed a plan in 1997 to modernize the FEMA flood mapping program. FEMA flood maps delineate flood hazard areas in support of the National Flood Insurance Program (NFIP). FEMA's plan outlined the steps necessary to update FEMA's flood maps for the nation to a seamless digital format and streamline FEMA's operations in raising public awareness of the importance of the maps and responding to requests to revise them. The modernization of flood maps involves conversion of existing information to digital format and integration of improved flood hazard data as needed. To determine flood mapping modernization needs, FEMA has established specific scoping activities to be done on a county-by-county basis for identifying and prioritizing requisite flood-mapping activities for map modernization. The U.S. Geological Survey (USGS), in cooperation with FEMA and the Maine State Planning Office Floodplain Management Program, began scoping work in 2005 for Cumberland County. Scoping activities included assembling existing data and map needs information for communities in Cumberland County, documentation of data, contacts, community meetings, and prioritized mapping needs in a final scoping report (this document), and updating the Mapping Needs Update Support System (MNUSS) Database or its successor with information gathered during the scoping process. The average age of the FEMA floodplain maps in Cumberland County, Maine is 21 years. Most of these studies were in the early to mid 1980s. However, in the ensuing 20-25 years, development has occurred in many of the watersheds, and the characteristics of the watersheds have changed with time. Therefore, many of the older studies may not depict current conditions nor accurately estimate risk in terms of flood heights. The following is the scope of work as defined in the FEMA/USGS Statement of Work: Task 1: Collect data from a variety of sources including community surveys, other Federal and State Agencies, National Flood Insurance Program (NFIP) State Coordinators, Community Assistance Visits (CAVs) and FEMA archives. Lists of mapping needs will be obtained from the MNUSS database, community surveys, and CAVs, if available. FEMA archives will be inventoried for effective FIRM panels, FIS reports, and other flood-hazard data or existing study data. Best available base map information, topographic data, flood-hazard data, and hydrologic and hydraulic data will be identified. Data from the Maine Floodplain Management Program database also will be utilized. Task 2: Contact communities in Cumberland County to notify them that FEMA and the State have selected them for a map update, and that a project scope will be developed with their input. Topics to be reviewed with the communities include (1) Purpose of the Flood Map Project (for example, the update needs that have prompted the map update); (2) The community's mapping needs; (3) The community's available mapping, hydrologic, hydraulic, and flooding information; (4) target schedule for completing the project; and (5) The community's engineering, planning, and geographic information system (GIS) capabilities. On the basis of the collected information from Task 1 and community contacts/meetings in Task 2, the USGS will develop a Draft Project Scope for the identified mapping needs of the communities in Cumberland County. The following items will be addressed in the Draft Project Scope: review of available information, determine if and how effective FIS data can be used in new project, and identify other data needed to
77 FR 15369 - Mobility Fund Phase I Auction GIS Data of Potentially Eligible Census Blocks
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-15
....fcc.gov/auctions/901/ , are the following: Downloadable shapefile Web mapping service MapBox map tiles... GIS software allows you to add this service as a layer to your session or project. 6. MapBox map tiles are cached map tiles of the data. With this open source software approach, these image tiles can be...
Fine-Scale Map of Encyclopedia of DNA Elements Regions in the Korean Population
Yoo, Yeon-Kyeong; Ke, Xiayi; Hong, Sungwoo; Jang, Hye-Yoon; Park, Kyunghee; Kim, Sook; Ahn, TaeJin; Lee, Yeun-Du; Song, Okryeol; Rho, Na-Young; Lee, Moon Sue; Lee, Yeon-Su; Kim, Jaeheup; Kim, Young J.; Yang, Jun-Mo; Song, Kyuyoung; Kimm, Kyuchan; Weir, Bruce; Cardon, Lon R.; Lee, Jong-Eun; Hwang, Jung-Joo
2006-01-01
The International HapMap Project aims to generate detailed human genome variation maps by densely genotyping single-nucleotide polymorphisms (SNPs) in CEPH, Chinese, Japanese, and Yoruba samples. This will undoubtedly become an important facility for genetic studies of diseases and complex traits in the four populations. To address how the genetic information contained in such variation maps is transferable to other populations, the Korean government, industries, and academics have launched the Korean HapMap project to genotype high-density Encyclopedia of DNA Elements (ENCODE) regions in 90 Korean individuals. Here we show that the LD pattern, block structure, haplotype diversity, and recombination rate are highly concordant between Korean and the two HapMap Asian samples, particularly Japanese. The availability of information from both Chinese and Japanese samples helps to predict more accurately the possible performance of HapMap markers in Korean disease-gene studies. Tagging SNPs selected from the two HapMap Asian maps, especially the Japanese map, were shown to be very effective for Korean samples. These results demonstrate that the HapMap variation maps are robust in related populations and will serve as an important resource for the studies of the Korean population in particular. PMID:16702437
How to compare the faces of the Earth? Walachia in mid-19th century and nowadays
NASA Astrophysics Data System (ADS)
Bartos-Elekes, Zsombor; Magyari-Sáska, Zsolt; Timár, Gábor; Imecs, Zoltán
2014-05-01
In 1864 a detailed map was made about Walachia, its title is Charta României Meridionale (Map of Southern Romania), it has 112 map sheets, it is often called after his draughtsman: Szathmári's map. The map has an outstanding position in the history of Romanian cartography, because it indicates a turning-point. Before the map, foreigners (Austrians and Russians) had made topographic maps about this vassal principality of the Ottoman Empire. The Austrian topographic survey (1855-1859) - which served as a basis for this map - was the last one and the most detailed of these surveys. The map was made between the personal-union (1859) and independence (1878) of the Danubian Principalities. This map was the first (to a certain extent) own map of the forming country. In consequence of this survey and map, the Romanian mapping institute was founded, which one - based on this survey and map - began the topographic mapping of the country. In the Romanian scientific literature imperfect and contradictory information has been published about this map. Only a dozen copies of the map were kept in few map collections; the researchers could have reached them with difficulties. During our research we processed the circumstances of the survey and mapmaking discovering its documentation in the archives of Vienna, as well as using the Romanian, Hungarian and German scientific literature. We found the copies in map collections from Vienna to Bucharest. We digitized all the map sheets from different collections. We calculated the parameters of the used geodetic datum and map projection. We published on the web, such we made the map reachable for everybody. The map can be viewed in different zoom levels; can be downloaded; settlements can be found using the place name index; areas can be exported in modern projection, so the conditions of that time could be compared with today's reality. Our poster presents on the one hand the survey and the map realized in mid-19th century and our digital methods, on the other hand presents the faces of the Earth in Walachia -comparing details of the geo-referenced map from 19th century with maps of nowadays. This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS - UEFISCDI, project number PN-II-RU-TE-2011-3-0125.
Lake water quality mapping from Landsat
NASA Technical Reports Server (NTRS)
Scherz, J. P.
1977-01-01
In the project described remote sensing was used to check the quality of lake waters. The lakes of three Landsat scenes were mapped with the Bendix MDAS multispectral analysis system. From the MDAS color coded maps, the lake with the worst algae problem was easily located. The lake was closely checked, and the presence of 100 cows in the springs which fed the lake could be identified as the pollution source. The laboratory and field work involved in the lake classification project is described.
NASA Astrophysics Data System (ADS)
Balzarini, R.; Dalmasso, A.; Murat, M.
2015-08-01
This article presents preliminary results from a research project in progress that brings together geographers, cognitive scientists, historians and computer scientists. The project investigates the evolution of a particular territorial model: ski trails maps. Ski resorts, tourist and sporting innovations for mountain economies since the 1930s, have needed cartographic representations corresponding to new practices of the space.Painter artists have been involved in producing ski maps with painting techniques and panoramic views, which are by far the most common type of map, because they allow the resorts to look impressive to potential visitors. These techniques have evolved throughout the mutations of the ski resorts. Paper ski maps no longer meet the needs of a large part of the customers; the question now arises of their adaptation to digital media. In a computerized process perspective, the early stage of the project aims to identify the artist-representations, based on conceptual and technical rules, which are handled by users-skiers to perform a task (location, wayfinding, decision-making) and can be transferred to a computer system. This article presents the experimental phase that analyzes artist and user mental representations that are at stake during the making and the reading of a paper ski map. It particularly focuses on how the invention of the artist influences map reading.
Mapping wetlands on beaver flowages with 35-mm photography
Kirby, R.E.
1976-01-01
Beaver flowages and associated wetlands on the Chippewa National Forest, north-central Minnesota, were photographed from the ground and from the open side window of a small high-wing monoplane. The 35-mm High Speed Ektachrome transparencies obtained were used to map the cover-type associations visible on the aerial photographs. Nearly vertical aerial photos were rectified by projecting the slides onto a base map consisting ofcontrol points located by plane-table survey. Maps were prepared by tracing the recognizable stands of vegetation in the rectified projection at the desired map scale. Final map scales ranging from 1:260 to 1:571 permitted identification and mapping of 26 cover-type associations on 10 study flowages in 1971. This cover-mapping technique was economical and substituted for detailed ground surveys. Comparative data from 10 flowages were collected serially throughout the entire open-water season. Although developed for analysis of waterfowl habitat, the technique has application to other areas of wildlife management and ecological investigation.
Gardner, James V.; Mayer, Larry A.
1998-01-01
The major objective of cruise A2-98 was to map portions of the southern California continental margin, including mapping in detail US Environmental Protection Agency (USEPA) ocean dumping sites. Mapping was accomplished using a high-resolution multibeam mapping system. The cruise was a jointly funded project between the USEPA and the US Geological Survey (USGS). The USEPA is specifically interested in a series of ocean dump sites off San Diego, Newport Beach, and Long Beach (see Fig. 1 in report) that require high-resolution base maps for site monitoring purposes. The USGS Coastal and Marine Geology Program has several on-going projects off southern California that lack high-precision base maps for a variety of ongoing geological studies. The cruise was conducted under a Cooperative Agreement between the USGS and the Ocean Mapping Group, University of New Brunswick, Canada.
Developing a mapping tool for tablets
NASA Astrophysics Data System (ADS)
Vaughan, Alan; Collins, Nathan; Krus, Mike
2014-05-01
Digital field mapping offers significant benefits when compared with traditional paper mapping techniques in that it provides closer integration with downstream geological modelling and analysis. It also provides the mapper with the ability to rapidly integrate new data with existing databases without the potential degradation caused by repeated manual transcription of numeric, graphical and meta-data. In order to achieve these benefits, a number of PC-based digital mapping tools are available which have been developed for specific communities, eg the BGS•SIGMA project, Midland Valley's FieldMove®, and a range of solutions based on ArcGIS® software, which can be combined with either traditional or digital orientation and data collection tools. However, with the now widespread availability of inexpensive tablets and smart phones, a user led demand for a fully integrated tablet mapping tool has arisen. This poster describes the development of a tablet-based mapping environment specifically designed for geologists. The challenge was to deliver a system that would feel sufficiently close to the flexibility of paper-based geological mapping while being implemented on a consumer communication and entertainment device. The first release of a tablet-based geological mapping system from this project is illustrated and will be shown as implemented on an iPad during the poster session. Midland Valley is pioneering tablet-based mapping and, along with its industrial and academic partners, will be using the application in field based projects throughout this year and will be integrating feedback in further developments of this technology.
Geospatial Data for Computerisation of Public Administration in the Czech Republic
NASA Astrophysics Data System (ADS)
Cada, V.; Mildorf, T.
2011-08-01
The main aim of the eGovernment programme in the Czech Republic is to enhance the efficiency of public administration. The Digital Map of Public Administration (DMVS) should be composed of digital orthophotographs of the Czech Republic, digital and digitised cadastral maps, digital purpose cadastral map (ÚKM) and a technical map of municipality, if available. The DMVS project is a part of computerisation of public administration in the Czech Republic. The project enhances the productivity of government administration and also simplifies the processes between citizens and public administration. The DMVS project, that should be compliant with the INSPIRE (Infrastructure for Spatial Information in the European Community) initiative, generates definite demand for geodata on the level of detail of land data model. The user needs that are clearly specified and required are not met due to inconsistencies in terminology, data management and level of detail.
Automatic map generalisation from research to production
NASA Astrophysics Data System (ADS)
Nyberg, Rose; Johansson, Mikael; Zhang, Yang
2018-05-01
The manual work of map generalisation is known to be a complex and time consuming task. With the development of technology and societies, the demands for more flexible map products with higher quality are growing. The Swedish mapping, cadastral and land registration authority Lantmäteriet has manual production lines for databases in five different scales, 1 : 10 000 (SE10), 1 : 50 000 (SE50), 1 : 100 000 (SE100), 1 : 250 000 (SE250) and 1 : 1 million (SE1M). To streamline this work, Lantmäteriet started a project to automatically generalise geographic information. Planned timespan for the project is 2015-2022. Below the project background together with the methods for the automatic generalisation are described. The paper is completed with a description of results and conclusions.
The Case Study as Research Heuristic: Lessons from the R&D Value Mapping Project.
ERIC Educational Resources Information Center
Bozeman, Barry; Klein, Hans K.
1999-01-01
Examines the role of prototype case studies as the foundation for later evaluation through two studies from the "R&D Value Mapping Project," a study that will involve more than 30 cases. Explores the usefulness of case studies in defining and assessing subsequent research efforts. (SLD)
Use of FIA plot data in the LANDFIRE project
Chris Toney; Matthew Rollins; Karen Short; Tracey Frescino; Ronald Tymcio; Birgit Peterson
2007-01-01
LANDFIRE is an interagency project that will generate consistent maps and data describing vegetation, fire, and fuel characteristics across the United States within a 5-year timeframe. Modeling and mapping in LANDFIRE depend extensively on a large database of georeferenced field measurements describing vegetation, site characteristics, and fuel. The LANDFIRE Reference...
ERIC Educational Resources Information Center
Snell, Robin Stanley; Chan, Maureen Yin Lee; Ma, Carol Hok Ka; Chan, Carman Ka Man
2015-01-01
We present a road map for providing course-embedded service-learning team projects as opportunities for undergraduates to practice as service leaders in Asia and beyond. Basic foundations are that projects address authentic problems or needs, partner organization representatives (PORs) indicate availability for ongoing consultation, students…
77 FR 42696 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-20
... construction awards, 30 requests for amendments to non-construction awards, 2 project service maps). Average Hours Per Response: 2 hours for an amendment to a construction award, 1 hour for an amendment to a non-construction award, 6 hours for a project service map. Burden Hours: 1,242. Needs and Uses: A recipient must...
Map and database of Quaternary faults in Venezuela and its offshore regions
Audemard, F.A.; Machette, M.N.; Cox, J.W.; Dart, R.L.; Haller, K.M.
2000-01-01
As part of the International Lithosphere Program’s “World Map of Major Active Faults,” the U.S. Geological Survey is assisting in the compilation of a series of digital maps of Quaternary faults and folds in Western Hemisphere countries. The maps show the locations, ages, and activity rates of major earthquake-related features such as faults and fault-related folds. They are accompanied by databases that describe these features and document current information on their activity in the Quaternary. The project is a key part of the Global Seismic Hazards Assessment Program (ILP Project II-0) for the International Decade for Natural Hazard Disaster Reduction.The project is sponsored by the International Lithosphere Program and funded by the USGS’s National Earthquake Hazards Reduction Program. The primary elements of the project are general supervision and interpretation of geologic/tectonic information, data compilation and entry for fault catalog, database design and management, and digitization and manipulation of data in †ARCINFO. For the compilation of data, we engaged experts in Quaternary faulting, neotectonics, paleoseismology, and seismology.
Singapore Genome Variation Project: a haplotype map of three Southeast Asian populations.
Teo, Yik-Ying; Sim, Xueling; Ong, Rick T H; Tan, Adrian K S; Chen, Jieming; Tantoso, Erwin; Small, Kerrin S; Ku, Chee-Seng; Lee, Edmund J D; Seielstad, Mark; Chia, Kee-Seng
2009-11-01
The Singapore Genome Variation Project (SGVP) provides a publicly available resource of 1.6 million single nucleotide polymorphisms (SNPs) genotyped in 268 individuals from the Chinese, Malay, and Indian population groups in Southeast Asia. This online database catalogs information and summaries on genotype and phased haplotype data, including allele frequencies, assessment of linkage disequilibrium (LD), and recombination rates in a format similar to the International HapMap Project. Here, we introduce this resource and describe the analysis of human genomic variation upon agglomerating data from the HapMap and the Human Genome Diversity Project, providing useful insights into the population structure of the three major population groups in Asia. In addition, this resource also surveyed across the genome for variation in regional patterns of LD between the HapMap and SGVP populations, and for signatures of positive natural selection using two well-established metrics: iHS and XP-EHH. The raw and processed genetic data, together with all population genetic summaries, are publicly available for download and browsing through a web browser modeled with the Generic Genome Browser.
Ranked centroid projection: a data visualization approach with self-organizing maps.
Yen, G G; Wu, Z
2008-02-01
The self-organizing map (SOM) is an efficient tool for visualizing high-dimensional data. In this paper, the clustering and visualization capabilities of the SOM, especially in the analysis of textual data, i.e., document collections, are reviewed and further developed. A novel clustering and visualization approach based on the SOM is proposed for the task of text mining. The proposed approach first transforms the document space into a multidimensional vector space by means of document encoding. Afterwards, a growing hierarchical SOM (GHSOM) is trained and used as a baseline structure to automatically produce maps with various levels of detail. Following the GHSOM training, the new projection method, namely the ranked centroid projection (RCP), is applied to project the input vectors to a hierarchy of 2-D output maps. The RCP is used as a data analysis tool as well as a direct interface to the data. In a set of simulations, the proposed approach is applied to an illustrative data set and two real-world scientific document collections to demonstrate its applicability.
Singapore Genome Variation Project: A haplotype map of three Southeast Asian populations
Teo, Yik-Ying; Sim, Xueling; Ong, Rick T.H.; Tan, Adrian K.S.; Chen, Jieming; Tantoso, Erwin; Small, Kerrin S.; Ku, Chee-Seng; Lee, Edmund J.D.; Seielstad, Mark; Chia, Kee-Seng
2009-01-01
The Singapore Genome Variation Project (SGVP) provides a publicly available resource of 1.6 million single nucleotide polymorphisms (SNPs) genotyped in 268 individuals from the Chinese, Malay, and Indian population groups in Southeast Asia. This online database catalogs information and summaries on genotype and phased haplotype data, including allele frequencies, assessment of linkage disequilibrium (LD), and recombination rates in a format similar to the International HapMap Project. Here, we introduce this resource and describe the analysis of human genomic variation upon agglomerating data from the HapMap and the Human Genome Diversity Project, providing useful insights into the population structure of the three major population groups in Asia. In addition, this resource also surveyed across the genome for variation in regional patterns of LD between the HapMap and SGVP populations, and for signatures of positive natural selection using two well-established metrics: iHS and XP-EHH. The raw and processed genetic data, together with all population genetic summaries, are publicly available for download and browsing through a web browser modeled with the Generic Genome Browser. PMID:19700652
Alabama-Mississippi Coastal Classification Maps - Perdido Pass to Cat Island
Morton, Robert A.; Peterson, Russell L.
2005-01-01
The primary purpose of the USGS National Assessment of Coastal Change Project is to provide accurate representations of pre-storm ground conditions for areas that are designated high-priority because they have dense populations or valuable resources that are at risk from storm waves. Another purpose of the project is to develop a geomorphic (land feature) coastal classification that, with only minor modification, can be applied to most coastal regions in the United States. A Coastal Classification Map describing local geomorphic features is the first step toward determining the hazard vulnerability of an area. The Coastal Classification Maps of the National Assessment of Coastal Change Project present ground conditions such as beach width, dune elevations, overwash potential, and density of development. In order to complete a hazard vulnerability assessment, that information must be integrated with other information, such as prior storm impacts and beach stability. The Coastal Classification Maps provide much of the basic information for such an assessment and represent a critical component of a storm-impact forecasting capability. The map above shows the areas covered by this web site. Click on any of the location names or outlines to view the Coastal Classification Map for that area.
Qummouh, Rana; Rose, Vanessa; Hall, Pat
2012-12-01
Safety is a health issue and a significant concern in disadvantaged communities. This paper describes an example of community-initiated action to address perceptions of fear and safety in a suburb in south-west Sydney which led to the development of a local, community-driven research project. As a first step in developing community capacity to take action on issues of safety, a joint resident-agency group implemented a community safety mapping project to identify the extent of safety issues in the community and their exact geographical location. Two aerial maps of the suburb, measuring one metre by two metres, were placed on display at different locations for four months. Residents used coloured stickers to identify specific issues and exact locations where crime and safety were a concern. Residents identified 294 specific safety issues in the suburb, 41.9% (n=123) associated with public infrastructure, such as poor lighting and pathways, and 31.9% (n=94) associated with drug-related issues such as drug activity and discarded syringes. Good health promotion practice reflects community need. In a very practical sense, this project responded to community calls for action by mapping resident knowledge on specific safety issues and exact locations and presenting these maps to local decision makers for further action.
Geologic map of the Boulder-Fort Collins-Greeley Area, Colorado
Colton, Roger B.
1978-01-01
This digital map shows the geographic extent of rock stratigraphic units (formations) as compiled by Colton in 1976 under the Front Range Urban Corridor Geology Program. Colton used his own geologic mapping and previously published geologic maps to compile one map having a single classification of geologic units. The resulting published color paper map (USGS Map I-855-G, Colton, 1978) was intended for land-use planning and to depict the regional geology. In 1997-1999, another USGS project designed to address urban growth issues was undertaken. This project, the USGS Front Range Infrastructure Resources Project, undertook to digitize Colton's map at 1:100,000 scale, making it useable in Geographical Information Systems (GIS). That product is described here. In general, the digitized map depicts in its western part Precambrian igneous and metamorphic rocks, Pennsylvanian and younger sedimentary rock units, major faults, and brecciated zones along an eastern strip (5-20 km wide) of the Front Range. The central and eastern parts of the map (Colorado Piedmont) show a mantle of Quaternary unconsolidated deposits and interspersed outcrops of sedimentary rock of Cretaceous or Tertiary age. A surficial mantle of unconsolidated deposits of Quaternary age is differentiated and depicted as eolium (wind-blown sand and silt), alluvium (river gravel, sand, and silt of variable composition), colluvium, and a few landslide deposits. At the mountain front, north-trending, Paleozoic and Mesozoic formations of sandstone, shale, and minor limestone dip mostly eastward and form folds, fault blocks, hogbacks and intervening valleys. Local dikes and sills of Tertiary rhyodacite and basalt intrude rocks near the range front, mostly in the Boulder area.
Williams, Preston T. J. A.; Kim, Sangsoo
2014-01-01
The red nucleus (RN) and rubrospinal tract (RST) are important for forelimb motor control. Although the RST is present postnatally in cats, nothing is known about when rubrospinal projections could support motor functions or the relation between the development of the motor functions of the rubrospinal system and the corticospinal system, the other major system for limb control. Our hypothesis is that the RN motor map is present earlier in development than the motor cortex (M1) map, to support early forelimb control. We investigated RN motor map maturation with microstimulation and RST cervical enlargement projections using anterograde tracers between postnatal week 3 (PW3) and PW16. Microstimulation and tracer injection sites were verified histologically to be located within the RN. Microstimulation at PW4 evoked contralateral wrist, elbow, and shoulder movements. The number of sites producing limb movement increased and response thresholds decreased progressively through PW16. From the outset, all forelimb joints were represented. At PW3, RST projections were present within the cervical intermediate zone, with a mature density of putative synapses. In contrast, beginning at PW5 there was delayed and age-dependent development of forelimb motor pool projections and putative rubromotoneuronal synapses. The RN has a more complete forelimb map early in development than previous studies showed for M1, supporting our hypothesis of preferential rubrospinal rather than corticospinal control for early movements. Remarkably, development of the motor pool, not intermediate zone, RST projections paralleled RN motor map development. The RST may be critical for establishing the rudiments of motor skills that subsequently become refined with further CST development. PMID:24647962
Pasqualetti, Massimo; Díaz, Carmen; Renaud, Jean-Sébastien; Rijli, Filippo M; Glover, Joel C
2007-09-05
As a step toward generating a fate map of identified neuron populations in the mammalian hindbrain, we assessed the contributions of individual rhombomeres to the vestibular nuclear complex, a major sensorimotor area that spans the entire rhombencephalon. Transgenic mice harboring either the lacZ or the enhanced green fluorescent protein reporter genes under the transcriptional control of rhombomere-specific Hoxa2 enhancer elements were used to visualize rhombomere-derived domains. We labeled functionally identifiable vestibular projection neuron groups retrogradely with conjugated dextran-amines at successive embryonic stages and obtained developmental fate maps through direct comparison with the rhombomere-derived domains in the same embryos. The fate maps show that each vestibular neuron group derives from a unique rostrocaudal domain that is relatively stable developmentally, suggesting that anteroposterior migration is not a major contributor to the rostrocaudal patterning of the vestibular system. Most of the groups are multisegmental in origin, and each rhombomere is fated to give rise to two or more vestibular projection neuron types, in a complex pattern that is not segmentally iterated. Comparison with studies in the chicken embryo shows that the rostrocaudal patterning of identified vestibular projection neuron groups is generally well conserved between avians and mammalians but that significant species-specific differences exist in the rostrocaudal limits of particular groups. This mammalian hindbrain fate map can be used as the basis for targeting genetic manipulation to specific subpopulations of vestibular projection neurons.
NASA Astrophysics Data System (ADS)
Kassin, A.; Cody, R. P.; Barba, M.; Gaylord, A. G.; Manley, W. F.; Score, R.; Escarzaga, S. M.; Tweedie, C. E.
2016-12-01
The Arctic Research Mapping Application (ARMAP; http://armap.org/) is a suite of online applications and data services that support Arctic science by providing project tracking information (who's doing what, when and where in the region) for United States Government funded projects. In collaboration with 17 research agencies, project locations are displayed in a visually enhanced web mapping application. Key information about each project is presented along with links to web pages that provide additional information, including links to data where possible. The latest ARMAP iteration has i) reworked the search user interface (UI) to enable multiple filters to be applied in user-driven queries and ii) implemented ArcGIS Javascript API 4.0 to allow for deployment of 3D maps directly into a users web-browser and enhanced customization of popups. Module additions include i) a dashboard UI powered by a back-end Apache SOLR engine to visualize data in intuitive and interactive charts; and ii) a printing module that allows users to customize maps and export these to different formats (pdf, ppt, gif and jpg). New reference layers and an updated ship tracks layer have also been added. These improvements have been made to improve discoverability, enhance logistics coordination, identify geographic gaps in research/observation effort, and foster enhanced collaboration among the research community. Additionally, ARMAP can be used to demonstrate past, present, and future research effort supported by the U.S. Government.
Interactive Web Interface to the Global Strain Rate Map Project
NASA Astrophysics Data System (ADS)
Meertens, C. M.; Estey, L.; Kreemer, C.; Holt, W.
2004-05-01
An interactive web interface allows users to explore the results of a global strain rate and velocity model and to compare them to other geophysical observations. The most recent model, an updated version of Kreemer et al., 2003, has 25 independent rigid plate-like regions separated by deformable boundaries covered by about 25,000 grid areas. A least-squares fit was made to 4900 geodetic velocities from 79 different geodetic studies. In addition, Quaternary fault slip rate data are used to infer geologic strain rate estimates (currently only for central Asia). Information about the style and direction of expected strain rate is inferred from the principal axes of the seismic strain rate field. The current model, as well as source data, references and an interactive map tool, are located at the International Lithosphere Program (ILP) "A Global Strain Rate Map (ILP II-8)" project website: http://www-world-strain-map.org. The purpose of the ILP GSRM project is to provide new information from this, and other investigations, that will contribute to a better understanding of continental dynamics and to the quantification of seismic hazards. A unique aspect of the GSRM interactive Java map tool is that the user can zoom in and make custom views of the model grid and results for any area of the globe selecting strain rate and style contour plots and principal axes, observed and model velocity fields in specified frames of reference, and geologic fault data. The results can be displayed with other data sets such Harvard CMT earthquake focal mechanisms, stress directions from the ILP World Stress Map Project, and topography. With the GSRM Java map tool, the user views custom maps generated by a Generic Mapping Tool (GMT) server. These interactive capabilities greatly extend what is possible to present in a published paper. A JavaScript version, using pre-constructed maps, as well as a related information site have also been created for broader education and outreach access. The GSRM map tool will be demonstrated and latest model GSRM 1.1 results, containing important new data for Asia, Iran, western Pacific, and Southern California, will be presented.
ERIC Educational Resources Information Center
Hulse, Grace
2012-01-01
In this article, the author describes how her fourth graders made ceramic heart maps. The impetus for this project came from reading "My Map Book" by Sara Fanelli. This book is a collection of quirky, hand-drawn and collaged maps that diagram a child's world. There are maps of her stomach, her day, her family, and her heart, among others. The…
ERIC Educational Resources Information Center
Levi, Peter
2010-01-01
Purpose: The purpose of this paper is to describe a project to digitise maps at the Royal Tropical Institute, or Koninklijk Instituut voor de Tropen (KIT), of The Netherlands. KIT has an extensive collection of maps and nautical charts of (sub-) tropical regions, including general maps and topographical map series, city maps, thematic maps and…
OneGeology-Europe: architecture, portal and web services to provide a European geological map
NASA Astrophysics Data System (ADS)
Tellez-Arenas, Agnès.; Serrano, Jean-Jacques; Tertre, François; Laxton, John
2010-05-01
OneGeology-Europe is a large ambitious project to make geological spatial data further known and accessible. The OneGeology-Europe project develops an integrated system of data to create and make accessible for the first time through the internet the geological map of the whole of Europe. The architecture implemented by the project is web services oriented, based on the OGC standards: the geological map is not a centralized database but is composed by several web services, each of them hosted by a European country involved in the project. Since geological data are elaborated differently from country to country, they are difficult to share. OneGeology-Europe, while providing more detailed and complete information, will foster even beyond the geological community an easier exchange of data within Europe and globally. This implies an important work regarding the harmonization of the data, both model and the content. OneGeology-Europe is characterised by the high technological capacity of the EU Member States, and has the final goal to achieve the harmonisation of European geological survey data according to common standards. As a direct consequence Europe will make a further step in terms of innovation and information dissemination, continuing to play a world leading role in the development of geosciences information. The scope of the common harmonized data model was defined primarily by the requirements of the geological map of Europe, but in addition users were consulted and the requirements of both INSPIRE and ‘high-resolution' geological maps were considered. The data model is based on GeoSciML, developed since 2006 by a group of Geological Surveys. The data providers involved in the project implemented a new component that allows the web services to deliver the geological map expressed into GeoSciML. In order to capture the information describing the geological units of the map of Europe the scope of the data model needs to include lithology; age; genesis and metamorphic character. For high resolution maps physical properties, bedding characteristics and weathering also need to be added. Furthermore, Geological data held by national geological surveys is generally described in national language of the country. The project has to deal with the multilingual issue, an important requirement of the INSPIRE directive. The project provides a list of harmonized vocabularies, a set of web services to deal with them, and a web site for helping the geoscientists while mapping the terms used into the national datasets into these vocabularies. The web services provided by each data provider, with the particular component that allows them to deliver the harmonised data model and to handle the multilingualism, are the first part of the architecture. The project also implements a web portal that provides several functionalities. Thanks to the common data model implemented by each web service delivering a part of the geological map, and using OGC SLD standards, the client offers the following option. A user can request for a sub-selection of the map, for instance searching on a particular attribute such as "age is quaternary", and display only the parts of the map according to the filter. Using the web services on the common vocabularies, the data displayed are translated. The project started September 2008 for two years, with 29 partners from 20 countries (20 partners are Geological Surveys). The budget is 3.25 M€, with a European Commission contribution of 2.6 M€. The paper will describe the technical solutions to implement OneGeology-Europe components: the profile of the common data model to exchange geological data, the web services to view and access geological data; and a geoportal to provide the user with a user-friendly way to discover, view and access geological data.
Digital Field Mapping with the British Geological Survey
NASA Astrophysics Data System (ADS)
Leslie, Graham; Smith, Nichola; Jordan, Colm
2014-05-01
The BGS•SIGMA project was initiated in 2001 in response to a major stakeholder review of onshore mapping within the British Geological Survey (BGS). That review proposed a significant change for BGS with the recommendation that digital methods should be implemented for field mapping and data compilation. The BGS•SIGMA project (System for Integrated Geoscience MApping) is an integrated workflow for geoscientific surveying and visualisation using digital methods for geological data visualisation, recording and interpretation, in both 2D and 3D. The project has defined and documented an underpinning framework of best practice for survey and information management, best practice that has then informed the design brief and specification for a toolkit to support this new methodology. The project has now delivered BGS•SIGMA2012. BGS•SIGMA2012 is a integrated toolkit which enables assembly and interrogation/visualisation of existing geological information; capture of, and integration with, new data and geological interpretations; and delivery of 3D digital products and services. From its early days as a system which used PocketGIS run on Husky Fex21 hardware, to the present day system which runs on ruggedized tablet PCs with integrated GPS units, the system has evolved into a complete digital mapping and compilation system. BGS•SIGMA2012 uses a highly customised version of ESRI's ArcGIS 10 and 10.1 with a fully relational Access 2007/2010 geodatabase. BGS•SIGMA2012 is the third external release of our award-winning digital field mapping toolkit. The first free external release of the award-winning digital field mapping toolkit was in 2009, with the third version (BGS-SIGMAmobile2012 v1.01) released on our website (http://www.bgs.ac.uk/research/sigma/home.html) in 2013. The BGS•SIGMAmobile toolkit formed the major part of the first two releases but this new version integrates the BGS•SIGMAdesktop functionality that BGS routinely uses to transform our field data into corporate standard geological models and derivative map outputs. BGS•SIGMA2012 is the default toolkit within BGS for bedrock and superficial geological mapping and other data acquisition projects across the UK, both onshore and offshore. It is used in mapping projects in Africa, the Middle East and the USA, and has been taken to Japan as part of the Tohoku tsunami damage assessment project. It is also successfully being used worldwide by other geological surveys e.g. Norway and Tanzania; by universities including Leicester, Keele and Kyoto, and by organisations such as Vale Mining in Brazil and the Montana Bureau of Mines and Geology. It is used globally, with over 2000 licenses downloaded worldwide to date and in use on all seven continents. Development of the system is still ongoing as a result of both user feedback and the changing face of technology. Investigations into the development of a BGS•SIGMA smartphone app are currently taking place alongside system developments such as a new and more streamlined data entry system.
NASA Astrophysics Data System (ADS)
Laurenceau, A.; Aboudarham, J.; Renié, C.
2015-04-01
Between 1928 and 2003, the Observatoire de Paris published solar activity maps and their corresponding data tables, first in the Annals of the Meudon Observatory, then in the Synoptic Maps of the Solar Chromosphere. These maps represent the main solar structures in a single view and spread out on a complete Carrington rotation as well as tables of associated data, containing various information on these structures such as positions, length, morphological characteristics, and behavior. Since 2003, these maps and data tables have not been released in print, as they are only published on the online BASS2000 database, the solar database maintained by LESIA (Laboratory for space studies and astrophysical instruments). In order to make the first 80 years of observations which were available only in paper accessible and usable, the LESIA and the Library of the Observatory have started a project to digitize the publications, enter the data with the assistance of a specialized company, and then migrate the files obtained in BASS2000 and in the Heliophysics Features Catalog created in the framework of the European project HELIO.
2009-01-01
Background Insertional mutagenesis is an effective method for functional genomic studies in various organisms. It can rapidly generate easily tractable mutations. A large-scale insertional mutagenesis with the piggyBac (PB) transposon is currently performed in mice at the Institute of Developmental Biology and Molecular Medicine (IDM), Fudan University in Shanghai, China. This project is carried out via collaborations among multiple groups overseeing interconnected experimental steps and generates a large volume of experimental data continuously. Therefore, the project calls for an efficient database system for recording, management, statistical analysis, and information exchange. Results This paper presents a database application called MP-PBmice (insertional mutation mapping system of PB Mutagenesis Information Center), which is developed to serve the on-going large-scale PB insertional mutagenesis project. A lightweight enterprise-level development framework Struts-Spring-Hibernate is used here to ensure constructive and flexible support to the application. The MP-PBmice database system has three major features: strict access-control, efficient workflow control, and good expandability. It supports the collaboration among different groups that enter data and exchange information on daily basis, and is capable of providing real time progress reports for the whole project. MP-PBmice can be easily adapted for other large-scale insertional mutation mapping projects and the source code of this software is freely available at http://www.idmshanghai.cn/PBmice. Conclusion MP-PBmice is a web-based application for large-scale insertional mutation mapping onto the mouse genome, implemented with the widely used framework Struts-Spring-Hibernate. This system is already in use by the on-going genome-wide PB insertional mutation mapping project at IDM, Fudan University. PMID:19958505
NASA Technical Reports Server (NTRS)
1994-01-01
After concluding an oil exploration agreement with the Republic of Yemen, Chevron International needed detailed geologic and topographic maps of the area. Chevron's remote sensing team used imagery from Landsat and SPOT, combining images into composite views. The project was successfully concluded and resulted in greatly improved base maps and unique topographic maps.
L-325 Sagebrush Habitat Mitigation Project: FY2009 Compensation Area Monitoring Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durham, Robin E.; Sackschewsky, Michael R.
2009-09-29
Annual monitoring in support of the Fluor Daniel Hanford Company (Fluor) Mitigation Action Plan (MAP) for Project L-325, Electrical Utility Upgrades was conducted in June 2009. MAP guidelines defined mitigation success for this project as 3000 established sagebrush transplants on a 4.5 ha mitigation site after five monitoring years. Annual monitoring results suggest that an estimated 2130 sagebrush transplants currently grow on the site. Additional activities in support of this project included gathering sagebrush seed and securing a local grower to produce between 2250 and 2500 10-in3 tublings for outplanting during the early winter months of FY2010. If the minimummore » number of seedlings grown for this planting meets quality specifications, and planting conditions are favorable, conservative survival estimates indicate the habitat mitigation goals outlined in the MAP will be met in FY2014.« less
Methods for landslide susceptibility modelling in Lower Austria
NASA Astrophysics Data System (ADS)
Bell, Rainer; Petschko, Helene; Glade, Thomas; Leopold, Philip; Heiss, Gerhard; Proske, Herwig; Granica, Klaus; Schweigl, Joachim; Pomaroli, Gilbert
2010-05-01
Landslide susceptibility modelling and implementation of the resulting maps is still a challenge for geoscientists, spatial and infrastructure planners. Particularly on a regional scale landslide processes and their dynamics are poorly understood. Furthermore, the availability of appropriate spatial data in high resolution is often a limiting factor for modelling high quality landslide susceptibility maps for large study areas. However, these maps form an important basis for preventive spatial planning measures. Thus, new methods have to be developed, especially focussing on the implementation of final maps into spatial planning processes. The main objective of the project "MoNOE" (Method development for landslide susceptibility modelling in Lower Austria) is to design a method for landslide susceptibility modelling for a large study area (about 10.200 km²) and to produce landslide susceptibility maps which are finally implemented in the spatial planning strategies of the Federal state of Lower Austria. The project focuses primarily on the landslide types fall and slide. To enable susceptibility modelling, landslide inventories for the respective landslide types must be compiled and relevant data has to be gathered, prepared and homogenized. Based on this data new methods must be developed to tackle the needs of the spatial planning strategies. Considerable efforts will also be spent on the validation of the resulting maps for each landslide type. A great challenge will be the combination of the susceptibility maps for slides and falls in just one single susceptibility map (which is requested by the government) and the definition of the final visualisation. Since numerous landslides have been favoured or even triggered by human impact, the human influence on landslides will also have to be investigated. Furthermore possibilities to integrate respective findings in regional susceptibility modelling will be explored. According to these objectives the project is structured in four work packages namely data preparation and homogenization (WP1), susceptibility modelling and validation (WP2), integrative susceptibility assessment (WP3) and human impact (WP4). The expected results are a landslide inventory map covering all endangered parts of the Federal state of Lower Austria, a land cover map of Lower Austria with high spatial resolution, processed spatial input data and an optimized integrative susceptibility map visualized at a scale of 1:25.000. The structure of the research project, research strategies as well as first results will be presented at the conference. The project is funded by the Federal state government of Lower Austria.
Color Map of Ceres Elliptical Projection
2016-03-22
This global map elliptical map from NASA Dawn spacecraft shows the surface of Ceres in enhanced color, encompassing infrared wavelengths beyond human visual range. Some areas near the poles are black where Dawn color imaging coverage is incomplete.
Translation from the collaborative OSM database to cartography
NASA Astrophysics Data System (ADS)
Hayat, Flora
2018-05-01
The OpenStreetMap (OSM) database includes original items very useful for geographical analysis and for creating thematic maps. Contributors record in the open database various themes regarding amenities, leisure, transports, buildings and boundaries. The Michelin mapping department develops map prototypes to test the feasibility of mapping based on OSM. To translate the OSM database structure into a database structure fitted with Michelin graphic guidelines a research project is in development. It aims at defining the right structure for the Michelin uses. The research project relies on the analysis of semantic and geometric heterogeneities in OSM data. In that order, Michelin implements methods to transform the input geographical database into a cartographic image dedicated for specific uses (routing and tourist maps). The paper focuses on the mapping tools available to produce a personalised spatial database. Based on processed data, paper and Web maps can be displayed. Two prototypes are described in this article: a vector tile web map and a mapping method to produce paper maps on a regional scale. The vector tile mapping method offers an easy navigation within the map and within graphic and thematic guide- lines. Paper maps can be partly automatically drawn. The drawing automation and data management are part of the mapping creation as well as the final hand-drawing phase. Both prototypes have been set up using the OSM technical ecosystem.
Hard Copy to Digital Transfer: 3D Models that Match 2D Maps
ERIC Educational Resources Information Center
Kellie, Andrew C.
2011-01-01
This research describes technical drawing techniques applied in a project involving digitizing of existing hard copy subsurface mapping for the preparation of three dimensional graphic and mathematical models. The intent of this research was to identify work flows that would support the project, ensure the accuracy of the digital data obtained,…
32 CFR 644.25 - Withdrawal of Public Domain for Defense Purposes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... public domain land, water, or land and water, or restrictions on use of areas in the Continental Shelf, aggregating an area of more than 5,000 acres for any one defense project, shall be by Act of Congress. Upon... (annual rental) basis. (6) Map(s) indicating the exterior boundaries of the project; excepted areas, if...
32 CFR 644.25 - Withdrawal of Public Domain for Defense Purposes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... public domain land, water, or land and water, or restrictions on use of areas in the Continental Shelf, aggregating an area of more than 5,000 acres for any one defense project, shall be by Act of Congress. Upon... (annual rental) basis. (6) Map(s) indicating the exterior boundaries of the project; excepted areas, if...
32 CFR 644.25 - Withdrawal of Public Domain for Defense Purposes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... public domain land, water, or land and water, or restrictions on use of areas in the Continental Shelf, aggregating an area of more than 5,000 acres for any one defense project, shall be by Act of Congress. Upon... (annual rental) basis. (6) Map(s) indicating the exterior boundaries of the project; excepted areas, if...
32 CFR 644.25 - Withdrawal of Public Domain for Defense Purposes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... public domain land, water, or land and water, or restrictions on use of areas in the Continental Shelf, aggregating an area of more than 5,000 acres for any one defense project, shall be by Act of Congress. Upon... (annual rental) basis. (6) Map(s) indicating the exterior boundaries of the project; excepted areas, if...
32 CFR 644.25 - Withdrawal of Public Domain for Defense Purposes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... public domain land, water, or land and water, or restrictions on use of areas in the Continental Shelf, aggregating an area of more than 5,000 acres for any one defense project, shall be by Act of Congress. Upon... (annual rental) basis. (6) Map(s) indicating the exterior boundaries of the project; excepted areas, if...
Research and Mapping for MCEECDYA Project: Student Academic Engagement. Report 2012
ERIC Educational Resources Information Center
Ure, Christine; Gray, Jan
2012-01-01
The purpose of the Research and Mapping for MCEECDYA Project: Student Academic Engagement was to examine the characteristics of schools with a low Index of Community Socio-Educational Advantage (ICSEA) from all jurisdictions that were identified to be making a difference to student academic and to identify the key drivers and characteristics of…
Staff - Jennifer E. Athey | Alaska Division of Geological & Geophysical
multiple data management projects from digital field data collection to data compilation projects to Surveys Digital Data Series 14, http://doi.org/10.14509/photodb. http://doi.org/10.14509/29735 Athey, J.E increasing communication about digital geologic field mapping, in Soller, D.R., ed. Digital Mapping
The Lunar Mapping and Modeling Project
NASA Technical Reports Server (NTRS)
Nall, M.; French, R.; Noble, S.; Muery, K.
2010-01-01
The Lunar Mapping and Modeling Project (LMMP) is managing a suite of lunar mapping and modeling tools and data products that support lunar exploration activities, including the planning, de-sign, development, test, and operations associated with crewed and/or robotic operations on the lunar surface. Although the project was initiated primarily to serve the needs of the Constellation program, it is equally suited for supporting landing site selection and planning for a variety of robotic missions, including NASA science and/or human precursor missions and commercial missions such as those planned by the Google Lunar X-Prize participants. In addition, LMMP should prove to be a convenient and useful tool for scientific analysis and for education and public out-reach (E/PO) activities.
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator)
1981-01-01
The use of LANDSAT multispectral scanner and return beam vidicon imagery for surveying the natural resources of the Brazilian Amazonas is described. Purposes of the Amazonas development project are summarized. The application of LANDSAT imagery to identification of vegetation coverage and soil use, identification of soil types, geomorphology, and geology and highway planning is discussed. An evaluation of the worth of LANDSAT imagery in mapping the region is presented. Maps generated by the project are included.
Landfill Gas Energy Project Data and Landfill Technical Data
This page provides data from the LMOP Database for U.S. landfills and LFG energy projects in Excel files, a map of project and candidate landfill counts by state, project profiles for a select group of projects, and information about Project Expo sites.
NASA Astrophysics Data System (ADS)
Bălteanu, Dan; Micu, Mihai; Malet, Jean-Philippe; Jurchescu, Marta; Sima, Mihaela; Kucsicsa, Gheorghe; Dumitrică, Cristina; Petrea, Dănuţ; Mărgărint, Ciprian; Bilaşco, Ştefan; Văcăreanu, Radu; Georgescu, Sever; Senzaconi, Francisc
2017-04-01
Landslide processes represent a very widespread geohazard in Romania, affecting mainly the hilly and plateau regions as well as the mountain sectors developed on flysch formations. Two main projects provided the framework for improving the existing national landslide susceptibility map (Bălteanu et al. 2010): the ELSUS (Pan-European and nation-wide landslide susceptibility assessment, EC-CERG) and the RO-RISK (Disaster Risk Evaluation at National Level, ESF-POCA) projects. The latter one, a flagship project aiming at strengthening risk prevention and management in Romania, focused on a national-level evaluation of the main risks in the country including landslides. The strategy for modeling landslide susceptibility was designed based on the experience gained from continental and national level assessments conducted in the frame of the International Programme on Landslides (IPL) project IPL-162, the European Landslides Expert Group - JRC and the ELSUS project. The newly proposed landslide susceptibility model used as input a reduced set of landslide conditioning factor maps available at scales of 1:100,000 - 1:200,000 and consisting of lithology, slope angle and land cover. The input data was further differentiated for specific natural environments, defined here as morpho-structural units in order to incorporate differences induced by elevation (vertical climatic zonation), morpho-structure as well as neotectonic features. In order to best discern the specific landslide conditioning elements, the analysis has been carried out for one single process category, namely slides. The existence of a landslide inventory covering the whole country's territory ( 30,000 records, Micu et al. 2014), although affected by incompleteness and lack of homogeneity, allowed for the application of a semi-quantitative, mixed statistical-heuristical approach having the advantage of combining the objectivity of statistics with expert-knowledge in calibrating class and factor weights. The maps obtained for the different units were subjected to evaluation and validation using both expert judgment and two additional landslide inventories with national coverage. Expert evaluations were provided for several parts of the country, where possible also using available regional zonations, and derived knowledge was subsequently used for map improvements. The external landslide datasets allowed for validation of the maps through prediction-rate curves (PRC). An improved national landslide susceptibility map of Romania (100 m resolution) resulted from merging the various unit maps and classifying them according to the PRC-thresholds. The final map reveals good performance for most areas. Finally, improvements compared to the previous version of the national map as well as model limitations and possible enhancement requirements are discussed. This study is part of the RO-RISK project (2016) coordinated by the Romanian General Inspectorate for Emergency Situations (IGSU) and supported by the European Social Fund through the Operational Programme for Administrative Capacity (POCA).
The Lunar Mapping and Modeling Project Update
NASA Technical Reports Server (NTRS)
Noble, S.; French, R.; Nall, M.; Muery, K.
2010-01-01
The Lunar Mapping and Modeling Project (LMMP) is managing the development of a suite of lunar mapping and modeling tools and data products that support lunar exploration activities, including the planning, design, development, test, and operations associated with crewed and/or robotic operations on the lunar surface. In addition, LMMP should prove to be a convenient and useful tool for scientific analysis and for education and public outreach (E/PO) activities. LMMP will utilize data predominately from the Lunar Reconnaissance Orbiter, but also historical and international lunar mission data (e.g. Lunar Prospector, Clementine, Apollo, Lunar Orbiter, Kaguya, and Chandrayaan-1) as available and appropriate. LMMP will provide such products as image mosaics, DEMs, hazard assessment maps, temperature maps, lighting maps and models, gravity models, and resource maps. We are working closely with the LRO team to prevent duplication of efforts and ensure the highest quality data products. A beta version of the LMMP software was released for limited distribution in December 2009, with the public release of version 1 expected in the Fall of 2010.
Metallogenic belt and mineral deposit maps of northeast Asia
Obolenskiy, Alexander A.; Rodionov, Sergey M.; Dejidmaa, Gunchin; Gerel, Ochir; Hwang, Duk-Hwan; Miller, Robert J.; Nokleberg, Warren J.; Ogasawara, Masatsugu; Smelov, Alexander P.; Yan, Hongquan; Seminskiy, Zhan V.
2013-01-01
This report contains explanatory material and summary tables for lode mineral deposits and placer districts (Map A, sheet 1) and metallogenic belts of Northeast Asia (Maps B, C, and D on sheets 2, 3, and 4, respectively). The map region includes eastern Siberia, southeastern Russia, Mongolia, northeast China, and Japan. A large group of geologists—members of the joint international project, Major Mineral Deposits, Metallogenesis, and Tectonics of Northeast Asia—prepared the maps, tables, and introductory text. This is a cooperative project with the Russian Academy of Sciences, Mongolian Academy of Sciences, Mongolian National University, Ulaanbaatar, Mongolian Technical University, Mineral Resources Authority of Mongolia, Geological Research Institute, Jilin University, China Geological Survey, Korea Institute of Geoscience and Mineral Resources, Geological Survey of Japan, and U.S. Geological Survey. This report is one of a series of reports on the mineral resources, geodynamics, and metallogenesis of Northeast Asia. Companion studies include (1) a detailed geodynamics map of Northeast Asia (Parfenov and others, 2003); (2) a compilation of major mineral deposit models (Rodionov and Nokleberg, 2000; Rodionov and others, 2000); (3) a series of metallogenic belt maps (Obolenskiy and others, 2004); (4) location map of lode mineral deposits and placer districts of Northeast Asia (Ariunbileg and others, 2003b); (5) descriptions of metallogenic belts (Rodionov and others, 2004); (6) a database on significant metalliferous and selected nonmetalliferous lode deposits and selected placer districts (Ariunbileg and others, 2003a); and (7) a series of summary project publications (Ariunbileg and 74 others, 2003b).
A perturbation method to the tent map based on Lyapunov exponent and its application
NASA Astrophysics Data System (ADS)
Cao, Lv-Chen; Luo, Yu-Ling; Qiu, Sen-Hui; Liu, Jun-Xiu
2015-10-01
Perturbation imposed on a chaos system is an effective way to maintain its chaotic features. A novel parameter perturbation method for the tent map based on the Lyapunov exponent is proposed in this paper. The pseudo-random sequence generated by the tent map is sent to another chaos function — the Chebyshev map for the post processing. If the output value of the Chebyshev map falls into a certain range, it will be sent back to replace the parameter of the tent map. As a result, the parameter of the tent map keeps changing dynamically. The statistical analysis and experimental results prove that the disturbed tent map has a highly random distribution and achieves good cryptographic properties of a pseudo-random sequence. As a result, it weakens the phenomenon of strong correlation caused by the finite precision and effectively compensates for the digital chaos system dynamics degradation. Project supported by the Guangxi Provincial Natural Science Foundation, China (Grant No. 2014GXNSFBA118271), the Research Project of Guangxi University, China (Grant No. ZD2014022), the Fund from Guangxi Provincial Key Laboratory of Multi-source Information Mining & Security, China (Grant No. MIMS14-04), the Fund from the Guangxi Provincial Key Laboratory of Wireless Wideband Communication & Signal Processing, China (Grant No. GXKL0614205), the Education Development Foundation and the Doctoral Research Foundation of Guangxi Normal University, the State Scholarship Fund of China Scholarship Council (Grant No. [2014]3012), and the Innovation Project of Guangxi Graduate Education, China (Grant No. YCSZ2015102).
National Park Service Vegetation Inventory Program, Cuyahoga Valley National Park, Ohio
Hop, Kevin D.; Drake, J.; Strassman, Andrew C.; Hoy, Erin E.; Menard, Shannon; Jakusz, J.W.; Dieck, J.J.
2013-01-01
The National Park Service (NPS) Vegetation Inventory Program (VIP) is an effort to classify, describe, and map existing vegetation of national park units for the NPS Natural Resource Inventory and Monitoring (I&M) Program. The NPS VIP is managed by the NPS Biological Resources Management Division and provides baseline vegetation information to the NPS Natural Resource I&M Program. The U.S. Geological Survey (USGS) Vegetation Characterization Program lends a cooperative role in the NPS VIP. The USGS Upper Midwest Environmental Sciences Center, NatureServe, and NPS Cuyahoga Valley National Park (CUVA) have completed vegetation classification and mapping of CUVA.Mappers, ecologists, and botanists collaborated to identify and describe vegetation types within the National Vegetation Classification Standard (NVCS) and to determine how best to map them by using aerial imagery. The team collected data from 221 vegetation plots within CUVA to develop detailed descriptions of vegetation types. Data from 50 verification sites were also collected to test both the key to vegetation types and the application of vegetation types to a sample set of map polygons. Furthermore, data from 647 accuracy assessment (AA) sites were collected (of which 643 were used to test accuracy of the vegetation map layer). These data sets led to the identification of 45 vegetation types at the association level in the NVCS at CUVA.A total of 44 map classes were developed to map the vegetation and general land cover of CUVA, including the following: 29 map classes represent natural/semi-natural vegetation types in the NVCS, 12 map classes represent cultural vegetation (agricultural and developed) in the NVCS, and 3 map classes represent non-vegetation features (open-water bodies). Features were interpreted from viewing color-infrared digital aerial imagery dated October 2010 (during peak leaf-phenology change of trees) via digital onscreen three-dimensional stereoscopic workflow systems in geographic information systems (GIS). The interpreted data were digitally and spatially referenced, thus making the spatial database layers usable in GIS. Polygon units were mapped to either a 0.5 ha or 0.25 ha minimum mapping unit, depending on vegetation type.A geodatabase containing various feature-class layers and tables shows the locations of vegetation types and general land cover (vegetation map), vegetation plot samples, verification sites, AA sites, project boundary extent, and aerial photographic centers. The feature-class layer and relate tables for the CUVA vegetation map provides 4,640 polygons of detailed attribute data covering 13,288.4 ha, with an average polygon size of 2.9 ha.Summary reports generated from the vegetation map layer show map classes representing natural/semi-natural types in the NVCS apply to 4,151 polygons (89.4% of polygons) and cover 11,225.0 ha (84.5%) of the map extent. Of these polygons, the map layer shows CUVA to be 74.4% forest (9,888.8 ha), 2.5% shrubland (329.7 ha), and 7.6% herbaceous vegetation cover (1,006.5 ha). Map classes representing cultural types in the NVCS apply to 435 polygons (9.4% of polygons) and cover 1,825.7 ha (13.7%) of the map extent. Map classes representing non-NVCS units (open water) apply to 54 polygons (1.2% of polygons) and cover 237.7 ha (1.8%) of the map extent.A thematic AA study was conducted of map classes representing natural/semi-natural types in the NVCS. Results present an overall accuracy of 80.7% (kappa index of 79.5%) based on data from 643 of the 647 AA sites. Most individual map-class themes exceed the NPS VIP standard of 80% with a 90% confidence interval.The CUVA vegetation mapping project delivers many geospatial and vegetation data products in hardcopy and/or digital formats. These products consist of an in-depth project report discussing methods and results, which include descriptions and a dichotomous key to vegetation types, map classification and map-class descriptions, and a contingency table showing AA results. The suite of products also includes a database of vegetation plots, verification sites, and AA sites; digital pictures of field sites; field data sheets; aerial photographic imagery; hardcopy and digital maps; and a geodatabase of vegetation types and land cover (map layer), fieldwork locations (vegetation plots, verification sites, and AA sites), aerial photographic index, project boundary, and metadata. All geospatial products are projected in Universal Transverse Mercator, Zone 17, by using the North American Datum of 1983. Information on the NPS VIP and completed park mapping projects are located on the Internet at
Marcil, Lucy; Afsana, Kaosar; Perry, Henry B
2016-02-01
The processes for implementing effective programs at scale in low-income countries have not been well-documented in the peer-reviewed literature. This article describes the initial steps taken by one such program--the BRAC Manoshi Project, which now reaches a population of 6.9 million. The project has achieved notable increases in facility births and reductions in maternal and neonatal mortality. The focus of the paper is on the initial steps--community engagement, social mapping, and census taking. Community engagement began with (1) engaging local leaders, (2) creating Maternal, Neonatal, and Child Health Committees for populations of approximately 10,000 people, (3) responding to advice from the community, (4) social mapping of the community, and (5) census taking. Social mapping involved community members working with BRAC staff to map all important physical features that affect how the community carries out its daily functions--such as alleys, lanes and roads, schools, mosques, markets, pharmacies, health facilities, latrine sites, and ponds. As the social mapping progressed, it became possible to conduct household censuses with maps identifying every household and listing family members by household. Again, this was a process of collaboration between BRAC staff and community members. Thus, social mapping and census taking were also instrumental for advancing community engagement. These three processes-community engagement, social mapping, and census taking--can be valuable strategies for strengthening health programs in urban slum settings of low-income countries.
Fifty year canon of solar eclipses: 1986-2035
NASA Technical Reports Server (NTRS)
Espenak, Fred
1986-01-01
A reference of moderately detailed eclipse predictions and maps for use by the professional astronomical community is provided. The general characteristics of every solar eclipse and a detailed set of cylindrical project world maps which show the umbral paths of every solar eclipse from 1901 to 2100 are presented. The geodetic path coordinates and local circumstance on the center line, and a series of orthographic projection maps which show the regions of visibility of both partial and central phases for every eclipse from 1986 through 2035 are also provided.
NASA Technical Reports Server (NTRS)
Spruce, Joe; Warner, Amanda; Terrie, Greg; Davis, Bruce
2001-01-01
GIS technology and ground reference data often play vital roles in assessing land cover maps derived from remotely sensed data. This poster illustrates these roles, using results from a study done in Northeast Yellowstone National Park. This area holds many forest, range, and wetland cover types of interest to park managers. Several recent studies have focused on this locale, including the NASA Earth Observations Commercial Applications Program (EOCAP) hyperspectral project performed by Yellowstone Ecosystems Studies (YES) on riparian and in-stream habitat mapping. This poster regards a spin-off to the EOCAP project in which YES and NASA's Earth Science Applications Directorate explored the potential for synergistic use of hyperspecral, synthetic aperture radar, and multiband thermal imagery in mapping land cover types. The project included development of a ground reference GIS for site-specific data needed to evaluate maps from remotely sensed imagery. Field survey data included reflectance of plant communities, native and exotic plant species, and forest health conditions. Researchers also collected GPS points, annotated aerial photographs, and took hand held photographs of reference sites. The use of ESRI, ERDAS, and ENVI software enabled reference data entry into a GIS for comparision to georeferenced imagery and thematic maps. The GIS-based ground reference data layers supported development and assessment of multiple maps from remotely sensed data sets acquired over the study area.
A simple method for serving Web hypermaps with dynamic database drill-down
Boulos, Maged N Kamel; Roudsari, Abdul V; Carson, Ewart R
2002-01-01
Background HealthCyberMap aims at mapping parts of health information cyberspace in novel ways to deliver a semantically superior user experience. This is achieved through "intelligent" categorisation and interactive hypermedia visualisation of health resources using metadata, clinical codes and GIS. HealthCyberMap is an ArcView 3.1 project. WebView, the Internet extension to ArcView, publishes HealthCyberMap ArcView Views as Web client-side imagemaps. The basic WebView set-up does not support any GIS database connection, and published Web maps become disconnected from the original project. A dedicated Internet map server would be the best way to serve HealthCyberMap database-driven interactive Web maps, but is an expensive and complex solution to acquire, run and maintain. This paper describes HealthCyberMap simple, low-cost method for "patching" WebView to serve hypermaps with dynamic database drill-down functionality on the Web. Results The proposed solution is currently used for publishing HealthCyberMap GIS-generated navigational information maps on the Web while maintaining their links with the underlying resource metadata base. Conclusion The authors believe their map serving approach as adopted in HealthCyberMap has been very successful, especially in cases when only map attribute data change without a corresponding effect on map appearance. It should be also possible to use the same solution to publish other interactive GIS-driven maps on the Web, e.g., maps of real world health problems. PMID:12437788
Precision Mapping of the California Connected Vehicle Testbed Corridor
DOT National Transportation Integrated Search
2015-11-01
In this project the University of California Riverside mapping sensor hardware was successfully mounted on an instrumented vehicle to map a segment of the California Connected Vehicle testbed corridor on State Route 82. After calibrating the sensor p...
NASA Astrophysics Data System (ADS)
Law, E.; JPL Luna Mapping; Modeling Project Team
2015-06-01
The Lunar Mapping and Modeling Project offers Lunar Mapping and Modeling Portal (http://lmmp.nasa.gov) and Vesta Trek Portal (http://vestatrek.jpl.nasa.gov) providing interactive visualization and analysis tools to enable users to access mapped Lunar and Vesta data products.
St. Louis Area Earthquake Hazards Mapping Project - A Progress Report-November 2008
Karadeniz, D.; Rogers, J.D.; Williams, R.A.; Cramer, C.H.; Bauer, R.A.; Hoffman, D.; Chung, J.; Hempen, G.L.; Steckel, P.H.; Boyd, O.L.; Watkins, C.M.; McCallister, N.S.; Schweig, E.
2009-01-01
St. Louis has experienced minor earthquake damage at least 12 times in the past 200 years. Because of this history and its proximity to known active earthquake zones, the St. Louis Area Earthquake Hazards Mapping Project (SLAEHMP) is producing digital maps that show variability of earthquake hazards, including liquefaction and ground shaking, in the St. Louis area. The maps will be available free via the internet. Although not site specific enough to indicate the hazard at a house-by-house resolution, they can be customized by the user to show specific areas of interest, such as neighborhoods or transportation routes. Earthquakes currently cannot be predicted, but scientists can estimate how strongly the ground is likely to shake as the result of an earthquake. Earthquake hazard maps provide one way of conveying such estimates. The U.S. Geological Survey (USGS), which produces earthquake hazard maps for the Nation, is working with local partners to develop detailed maps for urban areas vulnerable to strong ground shaking. These partners, which along with the USGS comprise the SLAEHMP, include the Missouri University of Science and Technology-Rolla (Missouri S&T), Missouri Department of Natural Resources (MDNR), Illinois State Geological Survey (ISGS), Saint Louis University, Missouri State Emergency Management Agency, and URS Corporation. Preliminary hazard maps covering a test portion of the 29-quadrangle St. Louis study area have been produced and are currently being evaluated by the SLAEHMP. A USGS Fact Sheet summarizing this project was produced and almost 1000 copies have been distributed at several public outreach meetings and field trips that have featured the SLAEHMP (Williams and others, 2007). In addition, a USGS website focusing on the SLAEHMP, which provides links to project results and relevant earthquake hazard information, can be found at: http://earthquake.usgs.gov/regional/ceus/urban_map/st_louis/index.php. This progress report summarizes the methodology and data used to generate these preliminary maps. For more details about many of the topics in this summary the reader is referred to the Karadeniz (2007) and Chung (2007) Ph.D. theses.
NASA Astrophysics Data System (ADS)
Dimitrova, L. L.; Haines, M.; Holt, W. E.; Schultz, R. A.; Richard, G.; Haines, A. J.
2006-12-01
Interactive maps of surface-breaking faults and stress models on Mars provide important tools to engage undergraduate students, educators, and scientists with current geological and geophysical research. We have developed a map based on the Google Maps API -- an Internet based tool combining DHTML and AJAX, -- which allows very large maps to be viewed over the World Wide Web. Typically, small portions of the maps are downloaded as needed, rather than the entire image at once. This set-up enables relatively fast access for users with low bandwidth. Furthermore, Google Maps provides an extensible interactive interface making it ideal for visualizing multiple data sets at the user's choice. The Google Maps API works primarily with data referenced to latitudes and longitudes, which is then mapped in Mercator projection only. We have developed utilities for general cylindrical coordinate systems by converting these coordinates into equivalent Mercator projection before including them on the map. The MARTIAN project is available at http://rock.geo.sunysb.edu/~holt/Mars/MARTIAN/. We begin with an introduction to the Martian surface using a topography model. Faults from several datasets are classified by type (extension vs. compression) and by time epoch. Deviatoric stresses due to gravitational potential energy differences, calculated from the topography and crustal thickness, can be overlain. Several quantitative measures for the fit of the stress field to the faults are also included. We provide introductory text and exercises spanning a range of topics: how are faults identified, what stress is and how it relates to faults, what gravitational potential energy is and how variations in it produce stress, how the models are created, and how these models can be evaluated and interpreted. The MARTIAN tool is used at Stony Brook University in GEO 310: Introduction to Geophysics, a class geared towards junior and senior geosciences majors. Although this project is in its early stages, high school and college teachers, as well as researchers have expressed interest in using and extending these tools for visualizing and interacting with data on Earth and other planetary bodies.
A new planetary mapping for future space missions
NASA Astrophysics Data System (ADS)
Karachevtseva, Irina; Kokhanov, Alexander; Rodionova, Janna; Zubarev, Anatoliy; Nadezhdina, Irina; Kreslavsky, Mikhail; Oberst, Jürgen
2015-04-01
The wide studies of Solar system, including different planetary bodies, were announced by new Russian space program. Their geodesy and cartography support provides by MIIGAiK Extraterrestrial Laboratory (http://mexlab.miigaik.ru/eng) in frames of the new project "Studies of Fundamental Geodetic Parameters and Topography of Planets and Satellites". The objects of study are satellites of the outer planets (satellites of Jupiter - Europa, Calisto and Ganymede; Saturnine satellite Enceladus), some planets (Mercury and Mars) and the satellites of the terrestrial planets - Phobos (Mars) and the Moon (Earth). The new research project, which started in 2014, will address the following important scientific and practical tasks: - Creating new three-dimensional geodetic control point networks of satellites of the outer planets using innovative photogrammetry techniques; - Determination of fundamental geodetic parameters and study size, shape, and spin parameters and to create the basic framework for research of their surfaces; - Studies of relief of planetary bodies and comparative analysis of general surface characteristics of the Moon, Mars, and Mercury, as well as studies of morphometric parameters of volcanic formations on the Moon and Mars; - Modeling of meteoritic bombardment of celestial bodies and the study of the dynamics of particle emissions caused by a meteorite impacts; - Development of geodatabase for studies of planetary bodies, including creation of object catalogues, (craters and volcanic forms, etc.), and thematic mapping using GIS technology. The significance of the project is defined both by necessity of obtaining fundamental characteristics of the Solar System bodies, and practical tasks in preparation for future Russian and international space missions to the Jupiter system (Laplace-P and JUICE), the Moon (Luna-Glob and Luna-Resource), Mars (Exo-Mars), Mercury (Bepi-Colombo), and possible mission to Phobos (project Boomerang). For cartographic support of future missions, we have created various maps as results of first year research: new base maps of Ganymede, including a hypsometric map and a global surface map; the base and thematic maps of Phobos which were updated using new image data sets from Mars Express; a newest map of topographic roughness of Mercury (for north polar area) [2] and a map of topographic roughness of the Moon using laser altimeter data processing obtained by MESSENGER (MLA) and LRO (LOLA) for their comparative analyses; a new global hypsometric map of the Moon. Published version of the maps will be presented at the conference, and all data products using for mapping will be available via MExLab Geoportal (http://cartsrv.mexlab.ru/geoportal/#body/). Acknowledgments. This work was carried out in MIIGAiK and supported by Russian Science Foundation, project #14-22-00197. References: [1] http://mexlab.miigaik.ru/eng/ [2] Kreslavsky et al., Geophys. Res.Lett., 41, doi:10.1002/2014GL062162 [3] http://cartsrv.mexlab.ru/geoportal/#body/
Emilie B. Henderson; Janet L. Ohmann; Matthew J. Gregory; Heather M. Roberts; Harold S.J. Zald
2014-01-01
Landscape management and conservation planning require maps of vegetation composition and structure over large regions. Species distribution models (SDMs) are often used for individual species, but projects mapping multiple species are rarer. We compare maps of plant community composition assembled by stacking results from many SDMs with multivariate maps constructed...
Incorporating Concept Mapping in Project-Based Learning: Lessons from Watershed Investigations
ERIC Educational Resources Information Center
Rye, James; Landenberger, Rick; Warner, Timothy A.
2013-01-01
The concept map tool set forth by Novak and colleagues is underutilized in education. A meta-analysis has encouraged teachers to make extensive use of concept mapping, and researchers have advocated computer-based concept mapping applications that exploit hyperlink technology. Through an NSF sponsored geosciences education grant, middle and…
Moelich, Erika Ilette; Muller, Magdalena; Joubert, Elizabeth; Næs, Tormod; Kidd, Martin
2017-09-01
Honeybush herbal tea is produced from the endemic South African Cyclopia species. Plant material subjected to a high-temperature oxidation step ("fermentation") forms the bulk of production. Production lags behind demand forcing tea merchants to use blends of available material to supply local and international markets. The distinct differences in the sensory profiles of the herbal tea produced from the different Cyclopia species require that special care is given to blending to ensure a consistent, high quality product. Although conventional descriptive sensory analysis (DSA) is highly effective in providing a detailed sensory profile of herbal tea infusions, industry requires a method that is more time- and cost-effective. Recent advances in sensory science have led to the development of rapid profiling methodologies. The question is whether projective mapping can successfully be used for the sensory characterisation of herbal tea infusions. Trained assessors performed global and partial projective mapping to determine the validity of this technique for the sensory characterisation of infusions of five Cyclopia species. Similar product configurations were obtained when comparing results of DSA and global and partial projective mapping. Comparison of replicate sessions showed RV coefficients >0.8. A similarity index, based on multifactor analysis, was calculated to determine assessor repeatability. Global projective mapping, demonstrated to be a valid method for providing a broad sensory characterisation of Cyclopia species, is thus suitable as a rapid quality control method of honeybush infusions. Its application by the honeybush industry could improve the consistency of the sensory profile of blended products. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kassin, A.; Cody, R. P.; Barba, M.; Escarzaga, S. M.; Score, R.; Dover, M.; Gaylord, A. G.; Manley, W. F.; Habermann, T.; Tweedie, C. E.
2015-12-01
The Arctic Research Mapping Application (ARMAP; http://armap.org/) is a suite of online applications and data services that support Arctic science by providing project tracking information (who's doing what, when and where in the region) for United States Government funded projects. In collaboration with 17 research agencies, project locations are displayed in a visually enhanced web mapping application. Key information about each project is presented along with links to web pages that provide additional information. The mapping application includes new reference data layers and an updated ship tracks layer. Visual enhancements are achieved by redeveloping the front-end from FLEX to HTML5 and JavaScript, which now provide access to mobile users utilizing tablets and cell phone devices. New tools have been added that allow users to navigate, select, draw, measure, print, use a time slider, and more. Other module additions include a back-end Apache SOLR search platform that provides users with the capability to perform advance searches throughout the ARMAP database. Furthermore, a new query builder interface has been developed in order to provide more intuitive controls to generate complex queries. These improvements have been made to increase awareness of projects funded by numerous entities in the Arctic, enhance coordination for logistics support, help identify geographic gaps in research efforts and potentially foster more collaboration amongst researchers working in the region. Additionally, ARMAP can be used to demonstrate past, present, and future research efforts supported by the U.S. Government.
Harmonic maps of S into a complex Grassmann manifold.
Chern, S S; Wolfson, J
1985-04-01
Let G(k, n) be the Grassmann manifold of all C(k) in C(n), the complex spaces of dimensions k and n, respectively, or, what is the same, the manifold of all projective spaces P(k-1) in P(n-1), so that G(1, n) is the complex projective space P(n-1) itself. We study harmonic maps of the two-dimensional sphere S(2) into G(k, n). The case k = 1 has been the subject of investigation by several authors [see, for example, Din, A. M. & Zakrzewski, W. J. (1980) Nucl. Phys. B 174, 397-406; Eells, J. & Wood, J. C. (1983) Adv. Math. 49, 217-263; and Wolfson, J. G. Trans. Am. Math. Soc., in press]. The harmonic maps S(2) --> G(2, 4) have been studied by Ramanathan [Ramanathan, J. (1984) J. Differ. Geom. 19, 207-219]. We shall describe all harmonic maps S(2) --> G(2, n). The method is based on several geometrical constructions, which lead from a given harmonic map to new harmonic maps, in which the image projective spaces are related by "fundamental collineations." The key result is the degeneracy of some fundamental collineations, which is a global consequence, following from the fact that the domain manifold is S(2). The method extends to G(k, n).
Curriculum Mapping in Academic Libraries
ERIC Educational Resources Information Center
Buchanan, Heidi; Webb, Katy Kavanagh; Houk, Amy Harris; Tingelstad, Catherine
2015-01-01
Librarians at four different academic institutions concurrently completed curriculum mapping projects using varying methods to analyze their information literacy instruction. Curriculum mapping is a process for systematically evaluating components of an instructional program for cohesiveness, proper sequencing, and goal achievement. There is a…
Map Projections and the Visual Detective: How to Tell if a Map Is Equal-Area, Conformal, or Neither
ERIC Educational Resources Information Center
Olson, Judy M.
2006-01-01
The ability to see whether a map is equal-area, conformal, or neither is useful for looking intelligently at large-area maps. For example, only if a map is equal-area can reliable judgments of relative size be made. If a map is equal-area, latitude-longitude cells are equal in size between a given pair of parallels, the cells between a given pair…
NASA Astrophysics Data System (ADS)
Manaud, Nicolas; Carter, John; Boix, Oriol
2016-10-01
The "Where On Mars?" project is essentially the evolution of an existing outreach product developed in collaboration between ESA and CartoDB; an interactive map visualisation of the ESA's ExoMars Rover candidate landing sites (whereonmars.co). Planetary imagery data and maps are increasingly produced by the scientific community, and shared typically as images, in scientific publications, presentations or public outreach websites. However, this media lacks of interactivity and contextual information available for further exploration, making it difficult for any audience to relate one location-based information to another. We believe that interactive web maps are a powerful way of telling stories, engaging with and educating people who, over the last decade, have become familiar with tools such as Google Maps. A few planetary web maps exist but they are either too complex for non-experts, or are closed-systems that do not allows anyone to publish and share content. The long-term vision for the project is to provide researchers, communicators, educators and a worldwide public with an open planetary mapping and social platform enabling them to create, share, communicate and consume research-based content. We aim for this platform to become the reference website everyone will go to learn about Mars and other planets in our Solar System; just like people head to Google Maps to find their bearings or any location-based information. The driver is clearly to create for people an emotional connection with Mars. The short-term objectives for the project are (1) to produce and curate an open repository of basemaps, geospatial data sets, map visualisations, and story maps; (2) to develop a beautifully crafted and engaging interactive map of Mars. Based on user-generated content, the underlying framework should (3) make it easy to create and share additional interactive maps telling specific stories.
NASA Astrophysics Data System (ADS)
Bontemps, S.; Defourny, P.; Van Bogaert, E.; Weber, J. L.; Arino, O.
2010-12-01
Regular and global land cover mapping contributes to evaluating the impact of human activities on the environment. Jointly supported by the European Space Agency and the European Environmental Agency, the GlobCorine project builds on the GlobCover findings and aims at making the full use of the MERIS time series for frequent land cover monitoring. The GlobCover automated classification approach has been tuned to the pan-European continent and adjusted towards a classification compatible with the Corine typology. The GlobCorine 2005 land cover map has been achieved, validated and made available to a broad- level stakeholder community from the ESA website. A first version of the GlobCorine 2009 map has also been produced, demonstrating the possibility for an operational production of frequent and updated global land cover maps.
Magnetic mapping of Spanish Canary archipelago [ZEEE project
NASA Astrophysics Data System (ADS)
Catalan, M.; Martin, J.; Marin, J. A.; Agudo, L. M.
2003-04-01
The Spanish Exclusive Economic Zone [ZEEE] Project constitutes the most intensive mapping to date of the sea floor off Spain's coast. This extensive geophysical survey is being undertaken by a Spanish government team. The first phase [1995-1997] concentrated its efforts in the Balearic sea. The geomagnetic data acquired for this area, has already being reduced and stored as a data base, and six scalar magnetic anomaly maps have been produced at a scale of 1:200.000, and another that cover the whole zone at a scale of 1:500.000. Since 1998, the Project has systematically surveyed the Canary archipelago, ending on October 2002. This group of islands, located off the West African Continental Margin, conform an intraplate volcanic archipelago which reflects a magmatic story that started probably at Tertiary. This Communication describes its main technical details, discusses the scalar magnetic map and presents a regional analysis of the Canary islands magnetic picture, trying to identify the different intra-crustal structures which generate the anomalies.
Lifting SU(2) spin networks to projected spin networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupuis, Maiete; Livine, Etera R.
2010-09-15
Projected spin network states are the canonical basis of quantum states of geometry for the recent EPRL-FK spinfoam models for quantum gravity introduced by Engle-Pereira-Rovelli-Livine and Freidel-Krasnov. They are functionals of both the Lorentz connection and the time-normal field. We analyze in detail the map from these projected spin networks to the standard SU(2) spin networks of loop quantum gravity. We show that this map is not one to one and that the corresponding ambiguity is parameterized by the Immirzi parameter. We conclude with a comparison of the scalar products between projected spin networks and SU(2) spin network states.
A decision support system for map projections of small scale data
Finn, Michael P.; Usery, E. Lynn; Posch, Stephan T.; Seong, Jeong Chang
2004-01-01
The use of commercial geographic information system software to process large raster datasets of terrain elevation, population, land cover, vegetation, soils, temperature, and rainfall requires both projection from spherical coordinates to plane coordinate systems and transformation from one plane system to another. Decision support systems deliver information resulting in knowledge that assists in policies, priorities, or processes. This paper presents an approach to handling the problems of raster dataset projection and transformation through the development of a Web-enabled decision support system to aid users of transformation processes with the selection of appropriate map projections based on data type, areal extent, location, and preservation properties.
Shapes on a plane: Evaluating the impact of projection distortion on spatial binning
Battersby, Sarah E.; Strebe, Daniel “daan”; Finn, Michael P.
2017-01-01
One method for working with large, dense sets of spatial point data is to aggregate the measure of the data into polygonal containers, such as political boundaries, or into regular spatial bins such as triangles, squares, or hexagons. When mapping these aggregations, the map projection must inevitably distort relationships. This distortion can impact the reader’s ability to compare count and density measures across the map. Spatial binning, particularly via hexagons, is becoming a popular technique for displaying aggregate measures of point data sets. Increasingly, we see questionable use of the technique without attendant discussion of its hazards. In this work, we discuss when and why spatial binning works and how mapmakers can better understand the limitations caused by distortion from projecting to the plane. We introduce equations for evaluating distortion’s impact on one common projection (Web Mercator) and discuss how the methods used generalize to other projections. While we focus on hexagonal binning, these same considerations affect spatial bins of any shape, and more generally, any analysis of geographic data performed in planar space.
A Geophysical Atlas for Interpretation of Satellite-derived Data
NASA Technical Reports Server (NTRS)
Lowman, P. D., Jr. (Editor); Frey, H. V. (Editor); Davis, W. M.; Greenberg, A. P.; Hutchinson, M. K.; Langel, R. A.; Lowrey, B. E.; Marsh, J. G.; Mead, G. D.; Okeefe, J. A.
1979-01-01
A compilation of maps of global geophysical and geological data plotted on a common scale and projection is presented. The maps include satellite gravity, magnetic, seismic, volcanic, tectonic activity, and mantle velocity anomaly data. The Bibliographic references for all maps are included.
Cartographic projection procedures for the UNIX environment; a user's manual
Evenden, Gerald I.
1990-01-01
A tutorial description of the general usage of the cartographic projection program proj (release 3) along with specic cartographic parameters and illustrations of the ap- proximately 70 cartographic projections supported by the program is presented. The program is designed as a standard Unix lter utility to be employed with other pro- grams in the generation of maps and charts and, in many cases, used in map digitizing applications. Tables and shell scripts are also provided for conversion of State Plane Coordinate Systems to and from geographic coordinates.
NASA Astrophysics Data System (ADS)
Ardalan, A.; Safari, A.; Grafarend, E.
2003-04-01
An operational algorithm for computing the ellipsoidal terrain correction based on application of closed form solution of the Newton integral in terms of Cartesian coordinates in the cylindrical equal area map projected surface of a reference ellipsoid has been developed. As the first step the mapping of the points on the surface of a reference ellipsoid onto the cylindrical equal area map projection of a cylinder tangent to a point on the surface of reference ellipsoid closely studied and the map projection formulas are computed. Ellipsoidal mass elements with various sizes on the surface of the reference ellipsoid is considered and the gravitational potential and the vector of gravitational intensity of these mass elements has been computed via the solution of Newton integral in terms of ellipsoidal coordinates. The geographical cross section areas of the selected ellipsoidal mass elements are transferred into cylindrical equal area map projection and based on the transformed area elements Cartesian mass elements with the same height as that of the ellipsoidal mass elements are constructed. Using the close form solution of the Newton integral in terms of Cartesian coordinates the potential of the Cartesian mass elements are computed and compared with the same results based on the application of the ellipsoidal Newton integral over the ellipsoidal mass elements. The results of the numerical computations show that difference between computed gravitational potential of the ellipsoidal mass elements and Cartesian mass element in the cylindrical equal area map projection is of the order of 1.6 × 10-8m^2/s^2 for a mass element with the cross section size of 10 km × 10 km and the height of 1000 m. For a 1 km × 1 km mass element with the same height, this difference is less than 1.5 × 10-4 m^2}/s^2. The results of the numerical computations indicate that a new method for computing the terrain correction based on the closed form solution of the Newton integral in terms of Cartesian coordinates and with accuracy of ellipsoidal terrain correction has been achieved! In this way one can enjoy the simplicity of the solution of the Newton integral in terms of Cartesian coordinates and at the same time the accuracy of the ellipsoidal terrain correction, which is needed for the modern theory of geoid computations.
... Sheets A Brief Guide to Genomics About NHGRI Research About the International HapMap Project Biological Pathways Chromosome Abnormalities Chromosomes Cloning Comparative Genomics DNA Microarray Technology DNA Sequencing Deoxyribonucleic Acid ( ...
Malaria Early Warning: The MalarSat project
NASA Astrophysics Data System (ADS)
Roca, M.; Escorihuela, M. J.; Martínez, D.; Torrent, M.; Aponte, J.; Nunez, F.; Garcia, J.
2009-04-01
Malaria is one of the major public health challenges undermining development in the world. The aim of MalarSat Project is to provide a malaria risks infection maps at global scale using Earth Observation data to support and prevent epidemic episodes. The proposed service for creating malaria risk maps would be critically useful to improve the efficiency in insecticide programs, vaccine campaigns and the logistics epidemic treatment. Different teams have already carried out studies in order to exploit the use of Earth Observation (EO) data with epidemiology purposes. In the case of malaria risk maps, it has been shown that meteorological data is not sufficient to fulfill this objective. In particular being able to map the malaria mosquito habitat would increase the accuracy of risk maps. The malaria mosquitoes mainly reproduce in new water puddles of very reduced dimensions (about 1 meter wide). There is no instrument that could detect such small patches of water unless there are many of them spread in an area of several hundreds of meters. MalarSat aims at using the radar altimeter data from the EnviSat, RA-2, to try and build indicators of mosquitoes existence. This presentation will show the scientific objectives and principles of the MalarSat project.
Sliding Window Generalized Kernel Affine Projection Algorithm Using Projection Mappings
NASA Astrophysics Data System (ADS)
Slavakis, Konstantinos; Theodoridis, Sergios
2008-12-01
Very recently, a solution to the kernel-based online classification problem has been given by the adaptive projected subgradient method (APSM). The developed algorithm can be considered as a generalization of a kernel affine projection algorithm (APA) and the kernel normalized least mean squares (NLMS). Furthermore, sparsification of the resulting kernel series expansion was achieved by imposing a closed ball (convex set) constraint on the norm of the classifiers. This paper presents another sparsification method for the APSM approach to the online classification task by generating a sequence of linear subspaces in a reproducing kernel Hilbert space (RKHS). To cope with the inherent memory limitations of online systems and to embed tracking capabilities to the design, an upper bound on the dimension of the linear subspaces is imposed. The underlying principle of the design is the notion of projection mappings. Classification is performed by metric projection mappings, sparsification is achieved by orthogonal projections, while the online system's memory requirements and tracking are attained by oblique projections. The resulting sparsification scheme shows strong similarities with the classical sliding window adaptive schemes. The proposed design is validated by the adaptive equalization problem of a nonlinear communication channel, and is compared with classical and recent stochastic gradient descent techniques, as well as with the APSM's solution where sparsification is performed by a closed ball constraint on the norm of the classifiers.
Scoping of flood hazard mapping needs for Kennebec County, Maine
Dudley, Robert W.; Schalk, Charles W.
2006-01-01
This report was prepared by the U.S. Geological Survey (USGS) Maine Water Science Center as the deliverable for scoping of flood hazard mapping needs for Kennebec County, Maine, under Federal Emergency Management Agency (FEMA) Inter-Agency Agreement Number HSFE01-05-X-0018. This section of the report explains the objective of the task and the purpose of the report. The Federal Emergency Management Agency (FEMA) developed a plan in 1997 to modernize the FEMA flood mapping program. FEMA flood maps delineate flood hazard areas in support of the National Flood Insurance Program (NFIP). FEMA's plan outlined the steps necessary to update FEMA's flood maps for the nation to a seamless digital format and streamline FEMA's operations in raising public awareness of the importance of the maps and responding to requests to revise them. The modernization of flood maps involves conversion of existing information to digital format and integration of improved flood hazard data as needed. To determine flood mapping modernization needs, FEMA has established specific scoping activities to be done on a county-by-county basis for identifying and prioritizing requisite flood-mapping activities for map modernization. The U.S. Geological Survey (USGS), in cooperation with FEMA and the Maine State Planning Office Floodplain Management Program, began scoping work in 2005 for Kennebec County. Scoping activities included assembling existing data and map needs information for communities in Kennebec County (efforts were made to not duplicate those of pre-scoping completed in March 2005), documentation of data, contacts, community meetings, and prioritized mapping needs in a final scoping report (this document), and updating the Mapping Needs Update Support System (MNUSS) Database or its successor with information gathered during the scoping process. The average age of the FEMA floodplain maps in Kennebec County, Maine is 16 years. Most of these studies were in the late 1970's to the mid 1980s. However, in the ensuing 20-30 years, development has occurred in many of the watersheds, and the characteristics of the watersheds have changed with time. Therefore, many of the older studies may not depict current conditions nor accurately estimate risk in terms of flood heights. The following is the scope of work as defined in the FEMA/USGS Statement of Work: Task 1: Collect data from a variety of sources including community surveys, other Federal and State Agencies, National Flood Insurance Program (NFIP) State Coordinators, Community Assistance Visits (CAVs) and FEMA archives. Lists of mapping needs will be obtained from the MNUSS database, community surveys, and CAVs, if available. FEMA archives will be inventoried for effective FIRM panels, FIS reports, and other flood-hazard data or existing study data. Best available base map information, topographic data, flood-hazard data, and hydrologic and hydraulic data will be identified. Data from the Maine Floodplain Management Program database also will be utilized. Task 2: Contact communities in Kennebec County to notify them that FEMA and the State have selected them for a map update, and that a project scope will be developed with their input. Topics to be reviewed with the communities include (1) Purpose of the Flood Map Project (for example, the update needs that have prompted the map update); (2) The community's mapping needs; (3) The community's available mapping, hydrologic, hydraulic, and flooding information; (4) target schedule for completing the project; and (5) The community's engineering, planning, and geographic information system (GIS) capabilities. On the basis of the collected information from Task 1 and community contacts/meetings in Task 2, the USGS will develop a Draft Project Scope for the identified mapping needs of the communities in Kennebec County. The following items will be addressed in the Draft Project Scope: review of available information, determine if and how e
Scoping of flood hazard mapping needs for Somerset County, Maine
Dudley, Robert W.; Schalk, Charles W.
2006-01-01
This report was prepared by the U.S. Geological Survey (USGS) Maine Water Science Center as the deliverable for scoping of flood hazard mapping needs for Somerset County, Maine, under Federal Emergency Management Agency (FEMA) Inter-Agency Agreement Number HSFE01-05-X-0018. This section of the report explains the objective of the task and the purpose of the report. The Federal Emergency Management Agency (FEMA) developed a plan in 1997 to modernize the FEMA flood mapping program. FEMA flood maps delineate flood hazard areas in support of the National Flood Insurance Program (NFIP). FEMA's plan outlined the steps necessary to update FEMA's flood maps for the nation to a seamless digital format and streamline FEMA's operations in raising public awareness of the importance of the maps and responding to requests to revise them. The modernization of flood maps involves conversion of existing information to digital format and integration of improved flood hazard data as needed. To determine flood mapping modernization needs, FEMA has established specific scoping activities to be done on a county-by-county basis for identifying and prioritizing requisite flood-mapping activities for map modernization. The U.S. Geological Survey (USGS), in cooperation with FEMA and the Maine State Planning Office Floodplain Management Program, began scoping work in 2005 for Somerset County. Scoping activities included assembling existing data and map needs information for communities in Somerset County (efforts were made to not duplicate those of pre-scoping completed in March 2005), documentation of data, contacts, community meetings, and prioritized mapping needs in a final scoping report (this document), and updating the Mapping Needs Update Support System (MNUSS) Database or its successor with information gathered during the scoping process. The average age of the FEMA floodplain maps in Somerset County, Maine is 18.1 years. Most of these studies were in the late 1970's to the mid 1980s. However, in the ensuing 20-30 years, development has occurred in many of the watersheds, and the characteristics of the watersheds have changed with time. Therefore, many of the older studies may not depict current conditions nor accurately estimate risk in terms of flood heights. The following is the scope of work as defined in the FEMA/USGS Statement of Work: Task 1: Collect data from a variety of sources including community surveys, other Federal and State Agencies, National Flood Insurance Program (NFIP) State Coordinators, Community Assistance Visits (CAVs) and FEMA archives. Lists of mapping needs will be obtained from the MNUSS database, community surveys, and CAVs, if available. FEMA archives will be inventoried for effective FIRM panels, FIS reports, and other flood-hazard data or existing study data. Best available base map information, topographic data, flood-hazard data, and hydrologic and hydraulic data will be identified. Data from the Maine Floodplain Management Program database also will be utilized. Task 2: Contact communities in Somerset County to notify them that FEMA and the State have selected them for a map update, and that a project scope will be developed with their input. Topics to be reviewed with the communities include (1) Purpose of the Flood Map Project (for example, the update needs that have prompted the map update); (2) The community's mapping needs; (3) The community's available mapping, hydrologic, hydraulic, and flooding information; (4) target schedule for completing the project; and (5) The community's engineering, planning, and geographic information system (GIS) capabilities. On the basis of the collected information from Task 1 and community contacts/meetings in Task 2, the USGS will develop a Draft Project Scope for the identified mapping needs of the communities in Somerset County. The following items will be addressed in the Draft Project Scope: review of available information, determine if and ho
Discrete Conformal Approximation of Complex Earthquake Maps
2005-08-01
Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 1. AGENCY USE ONLY...ing when my dreams were not yours. Thank you for teaching me that books are my friends (though I may have taken that a little too much to heart), and...61 4.2 Hyperbolic Projections ....... ...................... 63 4.3 Discrete Shearing Maps ............................. 64
Jim Faulds
2015-10-29
All datasets and products specific to the Steptoe Valley model area. Includes a packed ArcMap project (.mpk), individually zipped shapefiles, and a file geodatabase for the northern Steptoe Valley area; a GeoSoft Oasis montaj project containing GM-SYS 2D gravity profiles along the trace of our seismic reflection lines; a 3D model in EarthVision; spreadsheet of links to published maps; and spreadsheets of well data.
Data without Frontiers - the International Quaternary Map of Europe (IQUAME 2500)
NASA Astrophysics Data System (ADS)
Asch, Kristine
2017-04-01
The Federal German Geological Survey (Bundesanstalt für Geowissenschaften und Rohstoffe, BGR) is leading the review of the International Quaternary Map of Europe (IQUAME 2500) and its transformation into a geographical information system (GIS) under the umbrella of the CGMW and INQUA. It is a long-standing policy of BGR to lead international cooperation of European geological survey mapping projects. These particularly include projects under the umbrella of organisations including CGMW, UNESCO, INQUA, EGU and IUGS. The aim of IQUAME 2500 is to build a geological information system (GIS) of Europe's Quaternary geology where relevant information can be retrieved, combined and applied across international boundaries. Cross-border mapping poses specific challenges, in particular data harmonisation, for the presentation of regional geology. Overcoming these obstacles demands international cooperation with national geological survey organisations. Based on the previous BGR & UNESCO co-produced International Quaternary Map of Europe (at a 1 : 2,5 million scale; completed in 1995), revision was begun by BGR in 2011 to review the information available from an international group of experts from European geological survey organisations. This group is supported by an international academic Advisory Board. The work requires re-evaluation and digitization of the 14 paper sheets. For this purpose BGR developed a pragmatic procedure to classify, deliver and combine the reviewed Quaternary data in a harmonized and uniform manner. The project is applying the vocabularies and data model of the EC Directive INSPIRE Directive and is creating additional vocabularies and definitions for necessary features such as geomorphology (with the EMODnet project) and glaciogenic elements. An academic scientific advisory board is overseeing the process. Subjects of the map include: geological boundaries and classifications of Quaternary rocks, extension and boundaries of permafrost, last glacial maximum, genetic descriptions of the rocks, faults, key localities (geologically and palaeontologically significant sites, anthropological sites, impact craters, etc.) and more detailed off-shore geology (in cooperation with the EMODnet project). Ultimately, the IQUAME project will summarise the current status quo of European Quaternary geological research in a digitally available GIS synthesis and introduce practically applicable new vocabularies to describe the results and share those with the science community.
View Early Restoration Project Ideas | NOAA Gulf Spill Restoration
Archive Home View Early Restoration Project Ideas View Early Restoration Project Ideas share Posted on , these natural resource trustees have been accepting restoration project ideas from members of the public online. Use the map to see projects by location or view projects in a list. If you have project ideas
Land cover map for map zones 8 and 9 developed from SAGEMAP, GNN, and SWReGAP: a pilot for NWGAP
James S. Kagan; Janet L. Ohmann; Matthew Gregory; Claudine Tobalske
2008-01-01
As part of the Northwest Gap Analysis Project, land cover maps were generated for most of eastern Washington and eastern Oregon. The maps were derived from regional SAGEMAP and SWReGAP data sets using decision tree classifiers for nonforest areas, and Gradient Nearest Neighbor imputation modeling for forests and woodlands. The maps integrate data from regional...
Geologic Mapping of the Medusae Fossae Formation, Mars, and the Northern Lowland Plains, Venus
NASA Technical Reports Server (NTRS)
Zimbelman, J. R.
2010-01-01
This report summarizes the status of mapping projects supported by NASA grant NNX07AP42G, through the Planetary Geology and Geophysics (PGG) program. The PGG grant is focused on 1:2M-scale mapping of portions of the Medusae Fossae Formation (MFF) on Mars. Also described below is the current status of two Venus geologic maps, generated under an earlier PGG mapping grant.
Employing Geodatabases for Planetary Mapping Conduct - Requirements, Concepts and Solutions
NASA Technical Reports Server (NTRS)
vanGasselt, Stephan; Nass, A.
2010-01-01
Planetary geologic mapping has become complex in terms of merging and co-registering a variety of different datasets for analysis and mapping. But it has also become more convenient when it comes to conducting actual (geoscientific) mapping with the help of desktop Geographic Information Systems (GIS). The complexity and variety of data, however, are major issues that need to be taken care of in order to provide mappers with a consistent and easy-to-use mapping basis. Furthermore, a high degree of functionality and interoperability of various commercial and open-source GIS and remote sensing applications allow mappers to organize map data, map components and attribute data in a more sophisticated and intuitional way when compared to workflows 15 years ago. Integration of mapping results of different groups becomes an awkward task as each mapper follows his/her own style, especially if mapping conduct is not coordinated and organized programmatically. Problems of data homogenization start with various interpretations and implementations of planetary map projections and reference systems which form the core component of any mapping and analysis work. If the data basis is inconsistent, mapping results in terms of objects georeference become hard to integrate. Apart from data organization and referencing issues, which are important on the mapping as well as the data-processing side of every project, the organization of planetary geologic map units and attributes, as well as their representation within a common GIS environment, are key components that need to be taken care of in a consistent and persistent way.
Lewin, Simon; Hill, Sophie; Abdullahi, Leyla H; de Castro Freire, Sara Bensaude; Bosch-Capblanch, Xavier; Glenton, Claire; Hussey, Gregory D; Jones, Catherine M; Kaufman, Jessica; Lin, Vivian; Mahomed, Hassan; Rhoda, Linda; Robinson, Priscilla; Waggie, Zainab; Willis, Natalie; Wiysonge, Charles S
2011-12-02
Effective provider-parent communication can improve childhood vaccination uptake and strengthen immunisation services in low- and middle-income countries (LMICs). Building capacity to improve communication strategies has been neglected. Rigorous research exists but is not readily found or applicable to LMICs, making it difficult for policy makers to use it to inform vaccination policies and practice.The aim of this project is to build research knowledge and capacity to use evidence-based strategies for improving communication about childhood vaccinations with parents and communities in LMICs. This project is a mixed methods study with six sub-studies. In sub-study one, we will develop a systematic map of provider-parent communication interventions for childhood vaccinations by screening and extracting data from relevant literature. This map will inform sub-study two, in which we will develop a taxonomy of interventions to improve provider-parent communication around childhood vaccination. In sub-study three, the taxonomy will be populated with trial citations to create an evidence map, which will also identify how evidence is linked to communication barriers regarding vaccination. In the project's fourth sub-study, we will present the interventions map, taxonomy, and evidence map to international stakeholders to identify high-priority topics for systematic reviews of interventions to improve parent-provider communication for childhood vaccination. We will produce systematic reviews of the effects of high-priority interventions in the fifth sub-study. In the sixth and final sub-study of the project, evidence from the systematic reviews will be translated into accessible formats and messages for dissemination to LMICs. This project combines evidence mapping, conceptual and taxonomy development, priority setting, systematic reviews, and knowledge transfer. It will build and share concepts, terms, evidence, and resources to aid the development of communication strategies for effective vaccination programmes in LMICs.
Accurate nonlinear mapping between MNI volumetric and FreeSurfer surface coordinate systems.
Wu, Jianxiao; Ngo, Gia H; Greve, Douglas; Li, Jingwei; He, Tong; Fischl, Bruce; Eickhoff, Simon B; Yeo, B T Thomas
2018-05-16
The results of most neuroimaging studies are reported in volumetric (e.g., MNI152) or surface (e.g., fsaverage) coordinate systems. Accurate mappings between volumetric and surface coordinate systems can facilitate many applications, such as projecting fMRI group analyses from MNI152/Colin27 to fsaverage for visualization or projecting resting-state fMRI parcellations from fsaverage to MNI152/Colin27 for volumetric analysis of new data. However, there has been surprisingly little research on this topic. Here, we evaluated three approaches for mapping data between MNI152/Colin27 and fsaverage coordinate systems by simulating the above applications: projection of group-average data from MNI152/Colin27 to fsaverage and projection of fsaverage parcellations to MNI152/Colin27. Two of the approaches are currently widely used. A third approach (registration fusion) was previously proposed, but not widely adopted. Two implementations of the registration fusion (RF) approach were considered, with one implementation utilizing the Advanced Normalization Tools (ANTs). We found that RF-ANTs performed the best for mapping between fsaverage and MNI152/Colin27, even for new subjects registered to MNI152/Colin27 using a different software tool (FSL FNIRT). This suggests that RF-ANTs would be useful even for researchers not using ANTs. Finally, it is worth emphasizing that the most optimal approach for mapping data to a coordinate system (e.g., fsaverage) is to register individual subjects directly to the coordinate system, rather than via another coordinate system. Only in scenarios where the optimal approach is not possible (e.g., mapping previously published results from MNI152 to fsaverage), should the approaches evaluated in this manuscript be considered. In these scenarios, we recommend RF-ANTs (https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/registration/Wu2017_RegistrationFusion). © 2018 Wiley Periodicals, Inc.
The Dunhuang Chinese sky: A comprehensive study of the oldest known star atlas
NASA Astrophysics Data System (ADS)
Bonnet-Bidaud, Jean-Marc; Praderie, Françoise; Whitfield, Susan
2009-03-01
This paper presents an analysis of the star atlas included in the medieval Chinese manuscript Or.8210/S.3326 discovered in 1907 by the archaeologist Aurel Stein at the Silk Road town of Dunhuang and now housed in the British Library. Although partially studied by a few Chinese scholars, it has never been fully displayed and discussed in the Western world. This set of sky maps (12 hour-angle maps in quasi-cylindrical projection and a circumpolar map in azimuthal projection), displaying the full sky visible from the Northern Hemisphere, is up to now the oldest complete preserved star atlas known from any civilisation. It is also the earliest known pictorial representation of the quasi-totality of Chinese constellations. This paper describes the history of the physical object - a roll of thin paper drawn with ink. We analyse the stellar content of each map (1,339 stars, 257 asterisms) and the texts associated with the maps. We establish the precision with which the maps were drawn (1.5-4° for the brightest stars) and examine the type of projections used. We conclude that precise mathematical methods were used to produce the Atlas. We also discuss the dating of the manuscript and its possible author, and we confirm the date +649-684 (early Tang Dynasty) as most probable based on the available evidence. This is at variance with a prior estimate of around +940. Finally, we present a brief comparison with later sky maps, both from China and Europe.
NASA Astrophysics Data System (ADS)
Kim, Hannah; Hong, Helen
2014-03-01
We propose an automatic method for nipple detection on 3D automated breast ultrasound (3D ABUS) images using coronal slab-average-projection and cumulative probability map. First, to identify coronal images that appeared remarkable distinction between nipple-areola region and skin, skewness of each coronal image is measured and the negatively skewed images are selected. Then, coronal slab-average-projection image is reformatted from selected images. Second, to localize nipple-areola region, elliptical ROI covering nipple-areola region is detected using Hough ellipse transform in coronal slab-average-projection image. Finally, to separate the nipple from areola region, 3D Otsu's thresholding is applied to the elliptical ROI and cumulative probability map in the elliptical ROI is generated by assigning high probability to low intensity region. False detected small components are eliminated using morphological opening and the center point of detected nipple region is calculated. Experimental results show that our method provides 94.4% nipple detection rate.
Shirzaei, Manoochehr; Bürgmann, Roland
2018-01-01
The current global projections of future sea level rise are the basis for developing inundation hazard maps. However, contributions from spatially variable coastal subsidence have generally not been considered in these projections. We use synthetic aperture radar interferometric measurements and global navigation satellite system data to show subsidence rates of less than 2 mm/year along most of the coastal areas along San Francisco Bay. However, rates exceed 10 mm/year in some areas underlain by compacting artificial landfill and Holocene mud deposits. The maps estimating 100-year inundation hazards solely based on the projection of sea level rise from various emission scenarios underestimate the area at risk of flooding by 3.7 to 90.9%, compared with revised maps that account for the contribution of local land subsidence. Given ongoing land subsidence, we project that an area of 125 to 429 km2 will be vulnerable to inundation, as opposed to 51 to 413 km2 considering sea level rise alone. PMID:29536042
Correlation of physical and genetic maps of human chromosome 16
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutherland, G.R.
1991-01-01
This project aimed to divide chromosome 16 into approximately 50 intervals of {approximately}2Mb in size by constructing a series of mouse/human somatic cell hybrids each containing a rearranged chromosome 16. Using these hybrids, DNA probes would be regionally mapped by Southern blot or PCR analysis. Preference would be given to mapping probes which demonstrated polymorphisms for which the CEPH panel of families had been typed. This would allow a correlation of the physical and linkage maps of this chromosome. The aims have been substantially achieved. 49 somatic cell hybrids have been constructed which have allowed definition of 46, and potentiallymore » 57, different physical intervals on the chromosome. 164 loci have been fully mapped into these intervals. A correlation of the physical and genetic maps of the chromosome is in an advanced stage of preparation. The somatic cell hybrids constructed have been widely distributed to groups working on chromosome 16 and other genome projects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutherland, G.R.
1991-12-31
This project aimed to divide chromosome 16 into approximately 50 intervals of {approximately}2Mb in size by constructing a series of mouse/human somatic cell hybrids each containing a rearranged chromosome 16. Using these hybrids, DNA probes would be regionally mapped by Southern blot or PCR analysis. Preference would be given to mapping probes which demonstrated polymorphisms for which the CEPH panel of families had been typed. This would allow a correlation of the physical and linkage maps of this chromosome. The aims have been substantially achieved. 49 somatic cell hybrids have been constructed which have allowed definition of 46, and potentiallymore » 57, different physical intervals on the chromosome. 164 loci have been fully mapped into these intervals. A correlation of the physical and genetic maps of the chromosome is in an advanced stage of preparation. The somatic cell hybrids constructed have been widely distributed to groups working on chromosome 16 and other genome projects.« less
TumorMap: Exploring the Molecular Similarities of Cancer Samples in an Interactive Portal.
Newton, Yulia; Novak, Adam M; Swatloski, Teresa; McColl, Duncan C; Chopra, Sahil; Graim, Kiley; Weinstein, Alana S; Baertsch, Robert; Salama, Sofie R; Ellrott, Kyle; Chopra, Manu; Goldstein, Theodore C; Haussler, David; Morozova, Olena; Stuart, Joshua M
2017-11-01
Vast amounts of molecular data are being collected on tumor samples, which provide unique opportunities for discovering trends within and between cancer subtypes. Such cross-cancer analyses require computational methods that enable intuitive and interactive browsing of thousands of samples based on their molecular similarity. We created a portal called TumorMap to assist in exploration and statistical interrogation of high-dimensional complex "omics" data in an interactive and easily interpretable way. In the TumorMap, samples are arranged on a hexagonal grid based on their similarity to one another in the original genomic space and are rendered with Google's Map technology. While the important feature of this public portal is the ability for the users to build maps from their own data, we pre-built genomic maps from several previously published projects. We demonstrate the utility of this portal by presenting results obtained from The Cancer Genome Atlas project data. Cancer Res; 77(21); e111-4. ©2017 AACR . ©2017 American Association for Cancer Research.
TumorMap: Exploring the Molecular Similarities of Cancer Samples in an Interactive Portal
Newton, Yulia; Novak, Adam M.; Swatloski, Teresa; McColl, Duncan C.; Chopra, Sahil; Graim, Kiley; Weinstein, Alana S.; Baertsch, Robert; Salama, Sofie R.; Ellrott, Kyle; Chopra, Manu; Goldstein, Theodore C.; Haussler, David; Morozova, Olena; Stuart, Joshua M.
2017-01-01
Vast amounts of molecular data are being collected on tumor samples, which provide unique opportunities for discovering trends within and between cancer subtypes. Such cross-cancer analyses require computational methods that enable intuitive and interactive browsing of thousands of samples based on their molecular similarity. We created a portal called TumorMap to assist in exploration and statistical interrogation of high-dimensional complex “omics” data in an interactive and easily interpretable way. In the TumorMap, samples are arranged on a hexagonal grid based on their similarity to one another in the original genomic space and are rendered with Google’s Map technology. While the important feature of this public portal is the ability for the users to build maps from their own data, we pre-built genomic maps from several previously published projects. We demonstrate the utility of this portal by presenting results obtained from The Cancer Genome Atlas project data. PMID:29092953
DISPLAY OF PIXEL LOSS AND REPLICATION IN REPROJECTING RASTER DATA FROM THE SINUSOIDAL PROJECTION
Recent studies show the sinusoidal projection to be a superior planar projection for representing global raster datasets. This study uses the sinusoidal projection as a basis for evaluating pixel loss and replication in eight other planar map projections. The percent of pixels ...
Geologic Map and Map Database of Eastern Sonoma and Western Napa Counties, California
Graymer, R.W.; Brabb, E.E.; Jones, D.L.; Barnes, J.; Nicholson, R.S.; Stamski, R.E.
2007-01-01
Introduction This report contains a new 1:100,000-scale geologic map, derived from a set of geologic map databases (Arc-Info coverages) containing information at 1:62,500-scale resolution, and a new description of the geologic map units and structural relations in the map area. Prepared as part of the San Francisco Bay Region Mapping Project, the study area includes the north-central part of the San Francisco Bay region, and forms the final piece of the effort to generate new, digital geologic maps and map databases for an area which includes Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, Santa Clara, Santa Cruz, Solano, and Sonoma Counties. Geologic mapping in Lake County in the north-central part of the map extent was not within the scope of the Project. The map and map database integrates both previously published reports and new geologic mapping and field checking by the authors (see Sources of Data index map on the map sheet or the Arc-Info coverage eswn-so and the textfile eswn-so.txt). This report contains new ideas about the geologic structures in the map area, including the active San Andreas Fault system, as well as the geologic units and their relations. Together, the map (or map database) and the unit descriptions in this report describe the composition, distribution, and orientation of geologic materials and structures within the study area at regional scale. Regional geologic information is important for analysis of earthquake shaking, liquifaction susceptibility, landslide susceptibility, engineering materials properties, mineral resources and hazards, as well as groundwater resources and hazards. These data also assist in answering questions about the geologic history and development of the California Coast Ranges.
Geologic map of the Middletown quadrangle, Frederick, Shenandoah, and Warren Counties, Virginia
Orndorff, Randall C.; Epstein, Jack Burton; McDowell, Robert C.
1999-01-01
The Middletown 1:24,000-scale quadrangle is one of several quadrangles in Frederick County, Virginia mapped or being mapped by geologists from the U.S. Geological Survey in Reston, VA with funding from the National Cooperative Geologic Mapping Program. This map was originally published as a paper product in 1999. It has been converted to GIS-based digital form. This work is part of a project being lead by the U.S. Geological Survey Water Resources Discipline, Virginia District, to investigate the geologic framework and groundwater resources of Frederick County as well as other areas in the northern Shenandoah Valley of Virginia and West Virginia. For more information about the Project see: http://geology.er.usgs.gov/eespteam/Karst/index.html for Geologic Discipline efforts and http://va.water.usgs.gov/va134/index.htm for Water Resources Discipline efforts.
Topographic Ceres Map With Crater Names
2015-07-28
This color-coded map from NASA Dawn mission shows the highs and lows of topography on the surface of dwarf planet Ceres. It is labeled with names of features approved by the International Astronomical Union. Occator, the mysterious crater containing Ceres' mysterious bright spots, is named after the Roman agriculture deity of harrowing, a method of leveling soil. They retain their bright appearance in this map, although they are color-coded in the same green elevation of the crater floor in which they sit. The color scale extends about 5 miles (7.5 kilometers) below the surface in indigo to 5 miles (7.5 kilometers) above the surface in white. The topographic map was constructed from analyzing images from Dawn's framing camera taken from varying sun and viewing angles. The map was combined with an image mosaic of Ceres and projected as an simple cylindrical projection. http://photojournal.jpl.nasa.gov/catalog/PIA19606
NASA Astrophysics Data System (ADS)
Ibrahim, Alaa; Ahmed, Yasmin
2015-04-01
Fulfilling the broader impact of a research project in Earth and environmental sciences is an excellent opportunity for educational and outreach activities that connect scientists and society and enhance students and community engagement in STEM fields in general and in Earth, space, and environmental sciences in particular. Here we present the experience developed in this endeavor as part of our Partnerships for Enhanced Engagement in Research (PEER) project sponsored by USAID/NSF/NAS. The project introduced educational and outreach activities that included core curriculum course development for university students from all majors, community-based learning projects, citizen science and outreach programs to school students and community members. Through these activities, students worked with the project scientists on a variety of activities that ranged from citizen science and undergraduate research to run mass experiments that measure the quality of air, drinking water, and ultraviolet level in greater Cairo, Egypt, to community awareness campaigns through the production of short documentaries and communicating them with stakeholders and target groups, including schools and TV stations. The activities enhanced students learning and the public awareness on climate change and the underlying role of human activities. It also connected effectively the project scientists with college and university students a well as the wider segments of the society, which resulted in a host of benefits including better scientific literacy and appreciation to the role of scientists, promoting scientists as role models, sharing the values of science, and motivating future generations to puruse a career in science This work is part of the PEER research project 2-239 sponsored by USAID/NSF/NAS Project Link (at National Academies website): http://sites.nationalacademies.org/PGA/dsc/peerscience/PGA_084046.htm website: http://CleanAirEgypt.org Links to cited work: Core Curriculum Course: http://bit.ly/FutureLife Citizen Science Project: Quality of Air, Drinking Water, and U.V. Level in Greater Cairo: Map 1: http://bit.ly/AirWaterLightMap1 Map 2: http://bit.ly/AirWaterLightMap2 Short Documentaries Student Projects: https://vimeo.com/science2society/videos Project video: https://vimeo.com/100427525
NASA Astrophysics Data System (ADS)
Ibrahim, A. I.; Tutwiler, R.; Zakey, A.; Shokr, M. E.; Ahmed, Y.; Jereidini, D.; Eid, M.
2014-12-01
Fulfilling the broader impact of a research project in Earth and environmental sciences is an excellent opportunity for educational and outreach activities that connect scientists and society and enhance students and community engagement in STEM fields in general and in Earth, space, and environmental sciences in particular. Here we present the experience developed in this endeavor as part of our Partnerships for Enhanced Engagement in Research (PEER) project sponsored by USAID/NSF/NAS. The project introduced educational and outreach activities that included core curriculum course development for university students from all majors, community-based learning projects, citizen science and outreach programs to school students and community members. Through these activities, students worked with the project scientists on a variety of activities that ranged from citizen science and undergraduate research to run mass experiments that measure the quality of air, drinking water, and ultraviolet level in greater Cairo, Egypt, to community awareness campaigns through the production of short documentaries and communicating them with stakeholders and target groups, including schools and TV stations. The activities enhanced students learning and the public awareness on climate change and the underlying role of human activities. It also connected effectively the project scientists with college and university students a well as the wider segments of the society, which resulted in a host of benefits including better scientific literacy and appreciation to the role of scientists, promoting scientists as role models, sharing the values of science, and motivating future generations to puruse a career in science Note: This presentation is a PEER project sponsored by USAID/NSF/NAS Project Link (at National Academies website): http://sites.nationalacademies.org/PGA/dsc/peerscience/PGA_084046.htmwebsite: http://CleanAirEgypt.orgLinks to cited work: Core Curriculum Course: http://bit.ly/FutureLife Citizen Science Project: Quality of Air, Drinking Water, and U.V. Level in Greater Cairo: Map 1: http://bit.ly/AirWaterLightMap1 Map 2: http://bit.ly/AirWaterLightMap2 Short Documentaries Student Projects: https://vimeo.com/science2society/videos Project video: http://CleanAirEgypt.org
User's Guide for MapIMG 2: Map Image Re-projection Software Package
Finn, Michael P.; Trent, Jason R.; Buehler, Robert A.
2006-01-01
BACKGROUND Scientists routinely accomplish small-scale geospatial modeling in the raster domain, using high-resolution datasets for large parts of continents and low-resolution to high-resolution datasets for the entire globe. Direct implementation of point-to-point transformation with appropriate functions yields the variety of projections available in commercial software packages, but implementation with data other than points requires specific adaptation of the transformation equations or prior preparation of the data to allow the transformation to succeed. It seems that some of these packages use the U.S. Geological Survey's (USGS) General Cartographic Transformation Package (GCTP) or similar point transformations without adaptation to the specific characteristics of raster data (Usery and others, 2003a). Usery and others (2003b) compiled and tabulated the accuracy of categorical areas in projected raster datasets of global extent. Based on the shortcomings identified in these studies, geographers and applications programmers at the USGS expanded and evolved a USGS software package, MapIMG, for raster map projection transformation (Finn and Trent, 2004). Daniel R. Steinwand of Science Applications International Corporation, National Center for Earth Resources Observation and Science, originally developed MapIMG for the USGS, basing it on GCTP. Through previous and continuing efforts at the USGS' National Geospatial Technical Operations Center, this program has been transformed from an application based on command line input into a software package based on a graphical user interface for Windows, Linux, and other UNIX machines.
NASA Technical Reports Server (NTRS)
Vonzahn, U.
1989-01-01
The project Winter in Northern Europe (WINE) of the international Middle Atmosphere Program (MAP) comprised a multinational study of the structure, dynamics and composition of the middle atmosphere in winter at high latitudes. Coordinated field measurements were performed during the winter 1983 to 1984 by a large number of ground-based, air-borne, rocket-borne and satellite-borne instruments. Many of the individual experiments were performed in the European sector of the high latitude and polar atmosphere. Studies of the stratosphere, were, in addition, expanded to hemispheric scales by the use of data obtained from remotely sensing satellites. Beyond its direct scientific results, which are reviewed, MAP/WINE has stimulated quite a number of follow-on experiments and projects which address the aeronomy of the middle atmosphere at high and polar latitudes.
Analysis of a new phase and height algorithm in phase measurement profilometry
NASA Astrophysics Data System (ADS)
Bian, Xintian; Zuo, Fen; Cheng, Ju
2018-04-01
Traditional phase measurement profilometry adopts divergent illumination to obtain the height distribution of a measured object accurately. However, the mapping relation between reference plane coordinates and phase distribution must be calculated before measurement. Data are then stored in a computer in the form of a data sheet for standby applications. This study improved the distribution of projected fringes and deducted the phase-height mapping algorithm when the two pupils of the projection and imaging systems are of unequal heights and when the projection and imaging axes are on different planes. With the algorithm, calculating the mapping relation between reference plane coordinates and phase distribution prior to measurement is unnecessary. Thus, the measurement process is simplified, and the construction of an experimental system is made easy. Computer simulation and experimental results confirm the effectiveness of the method.
Middle Atmosphere Program. Handbook for MAP, Volume 17
NASA Technical Reports Server (NTRS)
Sechrist, C. F., Jr. (Editor)
1985-01-01
The Middle Atmosphere Program (MAP) handbook is divided into three parts. Part 1 consists of minutes of MAP steering committee meeting and MAP assembly. Part 2 consists of project and study group reports, such as: (1) Atmospheric Tides Middle Atmosphere Program (ATMAP), report of the Nov./Dec. 1981, and May 1982 observational campaigns; MAP/WINE experimenters meeting at Berlin, 1985; (3) MAP/WINE experimenters meeting at Loen, Norway, 1985; and (4) the penetration of ultraviolet solar radiation into the middle atmosphere. Part 3 consists of national reports.
USDA-ARS?s Scientific Manuscript database
Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne’s Disease (JD) in ruminants. Development of genetic tools and completion of the MAP genome sequencing project expanded opportunities for antigen discovery. In this study, we determined the seroreactivity of two proteins encoded for at th...
Vegetation map of the watersheds between Kawela and Kamalō Gulches, Island of Molokaʻi, Hawaiʻi
Jacobi, James D.; Ambagis, Stephen
2013-01-01
In this document we describe the methods and results of a project to produce a large-scale map of the dominant plant communities for an area of 5,118.5 hectares encompassing the Kawela and Kamalō watersheds on the island of Molokaʻi, Hawaiʻi, using digital image analysis of multi-spectral satellite imagery. Besides providing a base map of the area for land managers to use, this vegetation map serves as spatial background for the U.S. Geological Survey’s (USGS) Molokaʻi Ridge-to-Reef project, which is an interdisciplinary study of erosion and sediment transport within these watersheds. A total of 14 mapping units were identified for the Kawela-Kamalō project area. The most widespread units were the ʻŌhiʻa montane wet or mesic forest and No vegetation or very sparse grasses/shrubs communities, each present in more than 800 hectares, or 16 percent of the mapping area. Next largest were the Kiawe woodland with alien grass understory and ʻAʻaliʻi dry shrubland units, each of which covered more than 500 hectares, or more than 12 percent of the area; followed by the Mixed native mesic shrubland, ʻIlima and mixed grass dry shrubland, Mixed alien grass with ʻilima shrubs, and the Mixed alien forest with alien shrub/grass understory communities, which ranged in size from approximately 391 to 491 hectares, or 7.6 to 9.6 percent of the project site. The other six mapped units covered less than 170 hectares of the landscape. Six of the map units were dominated by native vegetation, covering a total of 2,535.2 hectares combined, or approximately 50 percent of the project area. The remaining map units were dominated by nonnative species and represent vegetation types that have resulted from invasion and establishment of plant species that had been either purposely or accidently introduced into Hawaiʻi since humans arrived in these islands more than 1,500 years ago. The preponderance of mapping units that are dominated by alien species of plants is a strong indication of how much anthropogenic disturbance has occurred in this area. The native-dominated ʻŌhiʻa forest and uluhe fern communities are probably most similar to the vegetation that was originally found in the upper part of the project area this area. Portions of the mixed mesic native shrub community still persist in the lowland mesic zone, but below that area, the vegetation is either dominated by alien species, or artificially opened by animal grazing and erosion, even in the few units that are still dominated by native species. The map produced for the Kawela to Kamalō watersheds can be used as a baseline for assessing the distribution and abundance of the various plant communities found across this landscape at the time of the imagery (2004). It can also be used to help understand the dynamics of the vegetation and other attributes of this watershed—such as erosion and surface transport of sediment, relative to current and future habitat conditions.
Implicit multiplane 3D camera calibration matrices for stereo image processing
NASA Astrophysics Data System (ADS)
McKee, James W.; Burgett, Sherrie J.
1997-12-01
By implicit camera calibration, we mean the process of calibrating cameras without explicitly computing their physical parameters. We introduce a new implicit model based on a generalized mapping between an image plane and multiple, parallel calibration planes (usually between four to seven planes). This paper presents a method of computing a relationship between a point on a three-dimensional (3D) object and its corresponding two-dimensional (2D) coordinate in a camera image. This relationship is expanded to form a mapping of points in 3D space to points in image (camera) space and visa versa that requires only matrix multiplication operations. This paper presents the rationale behind the selection of the forms of four matrices and the algorithms to calculate the parameters for the matrices. Two of the matrices are used to map 3D points in object space to 2D points on the CCD camera image plane. The other two matrices are used to map 2D points on the image plane to points on user defined planes in 3D object space. The mappings include compensation for lens distortion and measurement errors. The number of parameters used can be increased, in a straight forward fashion, to calculate and use as many parameters as needed to obtain a user desired accuracy. Previous methods of camera calibration use a fixed number of parameters which can limit the obtainable accuracy and most require the solution of nonlinear equations. The procedure presented can be used to calibrate a single camera to make 2D measurements or calibrate stereo cameras to make 3D measurements. Positional accuracy of better than 3 parts in 10,000 have been achieved. The algorithms in this paper were developed and are implemented in MATLABR (registered trademark of The Math Works, Inc.). We have developed a system to analyze the path of optical fiber during high speed payout (unwinding) of optical fiber off a bobbin. This requires recording and analyzing high speed (5 microsecond exposure time), synchronous, stereo images of the optical fiber during payout. A 3D equation for the fiber at an instant in time is calculated from the corresponding pair of stereo images as follows. In each image, about 20 points along the 2D projection of the fiber are located. Each of these 'fiber points' in one image is mapped to its projection line in 3D space. Each projection line is mapped into another line in the second image. The intersection of each mapped projection line and a curve fitted to the fiber points of the second image (fiber projection in second image) is calculated. Each intersection point is mapped back to the 3D space. A 3D fiber coordinate is formed from the intersection, in 3D space, of a mapped intersection point with its corresponding projection line. The 3D equation for the fiber is computed from this ordered list of 3D coordinates. This process requires a method of accurately mapping 2D (image space) to 3D (object space) and visa versa.3173
The mouse-human anatomy ontology mapping project.
Hayamizu, Terry F; de Coronado, Sherri; Fragoso, Gilberto; Sioutos, Nicholas; Kadin, James A; Ringwald, Martin
2012-01-01
The overall objective of the Mouse-Human Anatomy Project (MHAP) was to facilitate the mapping and harmonization of anatomical terms used for mouse and human models by Mouse Genome Informatics (MGI) and the National Cancer Institute (NCI). The anatomy resources designated for this study were the Adult Mouse Anatomy (MA) ontology and the set of anatomy concepts contained in the NCI Thesaurus (NCIt). Several methods and software tools were identified and evaluated, then used to conduct an in-depth comparative analysis of the anatomy ontologies. Matches between mouse and human anatomy terms were determined and validated, resulting in a highly curated set of mappings between the two ontologies that has been used by other resources. These mappings will enable linking of data from mouse and human. As the anatomy ontologies have been expanded and refined, the mappings have been updated accordingly. Insights are presented into the overall process of comparing and mapping between ontologies, which may prove useful for further comparative analyses and ontology mapping efforts, especially those involving anatomy ontologies. Finally, issues concerning further development of the ontologies, updates to the mapping files, and possible additional applications and significance were considered. DATABASE URL: http://obofoundry.org/cgi-bin/detail.cgi?id=ma2ncit.
The Documentation of Historic Maps of World Heritage Site City Suzhou
NASA Astrophysics Data System (ADS)
Guangwei, Z.
2013-07-01
Documentation and analysis of historic maps enhance understanding of temporal and spatial interactions between events and the evolution of physical canals upon which they occurred. And the challenge of this work lies on carefully sifting of information through the maps drawn with relative accuracy by traditional cartographical principles before the emergence of scientific survey. This research project focuses on sorting out the evolution of historic city Suzhou in a spatio-temporal view. The investigation was conducted through an in-depth analysis of historic maps. Re-projection of the geographical elements of the city to one single georeference, that is to say a standard map BASE, help acquiring an actual sense of the scale and facilitate the recognition of the city's evolution in clear details. It is an important contribution of this thesis in coordination of variously distorted geographical information contained in nineteen periods span from 1229 to 2013 into a single research resource. Through the work both quantitative and qualitative, a clear vision of the evolution and characteristics of the urban structure of ancient Suzhou is achieved. Meanwhile, in the process of projecting the historical geometrical information onto the topographic map, historical bibliographic and cartographic records is key to the data coordination and readjustment, this inspire as well on the cautious utilization of historical materials from ancient time in the recording, documentation work.
NASA Technical Reports Server (NTRS)
Tom, C.; Miller, L. D.; Christenson, J. W.
1978-01-01
A landscape model was constructed with 34 land-use, physiographic, socioeconomic, and transportation maps. A simple Markov land-use trend model was constructed from observed rates of change and nonchange from photointerpreted 1963 and 1970 airphotos. Seven multivariate land-use projection models predicting 1970 spatial land-use changes achieved accuracies from 42 to 57 percent. A final modeling strategy was designed, which combines both Markov trend and multivariate spatial projection processes. Landsat-1 image preprocessing included geometric rectification/resampling, spectral-band, and band/insolation ratioing operations. A new, systematic grid-sampled point training-set approach proved to be useful when tested on the four orginal MSS bands, ten image bands and ratios, and all 48 image and map variables (less land use). Ten variable accuracy was raised over 15 percentage points from 38.4 to 53.9 percent, with the use of the 31 ancillary variables. A land-use classification map was produced with an optimal ten-channel subset of four image bands and six ancillary map variables. Point-by-point verification of 331,776 points against a 1972/1973 U.S. Geological Survey (UGSG) land-use map prepared with airphotos and the same classification scheme showed average first-, second-, and third-order accuracies of 76.3, 58.4, and 33.0 percent, respectively.
Lunar Mapping and Modeling Project
NASA Technical Reports Server (NTRS)
Noble, Sarah K.; French, Raymond; Nall,Mark; Muery, Kimberly
2009-01-01
The Lunar Mapping and Modeling Project (LMMP) has been created to manage the development of a suite of lunar mapping and modeling products that support the Constellation Program (CxP) and other lunar exploration activities, including the planning, design, development, test and operations associated with lunar sortie missions, crewed and robotic operations on the surface, and the establishment of a lunar outpost. The project draws on expertise from several NASA and non-NASA organizations (MSFC, ARC, GSFC, JPL, CRREL and USGS). LMMP will utilize data predominately from the Lunar Reconnaissance Orbiter, but also historical and international lunar mission data (e.g. Apollo, Lunar Orbiter, Kaguya, Chandrayaan-1), as available and appropriate, to meet Constellation s data needs. LMMP will provide access to this data through a single, common, intuitive and easy to use NASA portal that transparently accesses appropriately sanctioned portions of the widely dispersed and distributed collections of lunar data, products and tools. LMMP will provide such products as DEMs, hazard assessment maps, lighting maps and models, gravity models, and resource maps. We are working closely with the LRO team to prevent duplication of efforts and ensure the highest quality data products. While Constellation is our primary customer, LMMP is striving to be as useful as possible to the lunar science community, the lunar education and public outreach (E/PO) community, and anyone else interested in accessing or utilizing lunar data.
NASA Astrophysics Data System (ADS)
Luther, J.; Meyer, V.; Kuhlicke, C.; Scheuer, S.; Unnerstall, H.
2012-04-01
The EU Floods Directive requires the establishment of flood risk maps for high risk areas in all EU Member States by 2013. However, if existing at all, the current practice of risk mapping still shows some deficits: Risk maps are often seen as an information tool rather than a communication tool. This means that e.g. important local knowledge is not incorporated and forms a contrast to the understanding of capacity building which calls for engaging individuals in the process of learning and adapting to change and for the establishment of a more interactive public administration that learns equally from its actions and from the feedback it receives. Furthermore, the contents of risk maps often do not match the requirements of the end users, so that risk maps are often designed and visualised in a way which cannot be easily understood by laypersons and/or which is not suitable for the respective needs of public authorities in risk and flood event management. The project RISK MAP aimed at improving flood risk maps as a means to foster public participation and raising flood risk awareness. For achieving this aim, RISK MAP (1) developed rules for appropriate stakeholder participation enabling the incorporation of local knowledge and preferences; (2) improved the content of risk maps by considering different risk criteria through the use of a deliberative multicriteria risk mapping tool; and (3) improved the visualisation of risk maps in order to produce user-friendly risk maps by applying the experimental graphic semiology (EGS) method that uses the eye tracking approach. The research was carried out in five European case studies where the status quo of risk mapping and the legal framework was analysed, several stakeholder interviews and workshops were conducted, the visual perception of risk maps was tested and - based on this empirical work - exemplary improved risk maps were produced. The presentation and paper will outline the main findings of the project which ended in September 2011, focussing on the participatory aspects in one of the German case studies (the Mulde River in Saxony). In short, different map users such as strategic planners, emergency managers or the (affected) public require different maps, with varying information density and complexity. The purpose of participation may therefore have a substantive rationale (i.e. improving the content, including local knowledge) or a more instrumental rationale (i.e. building trust, raising awareness, increasing legitimacy). The degree to which both rationales are accommodated depends on the project objectives and determines the participants and process type. In the Mulde case study, both the process of collaborating with each other and considering the (local) knowledge and different experiences as well as the results were highly appreciated. Hazard and risk maps are thus not an end-product that could be complemented e.g. by emergency management information on existing or planned defences, evacuation routes, assembly points, but they should be embedded into a participatory maintenance/updating framework. Map visualisation could be enhanced by using more common and/or self-explanatory symbols, text and a limited number of colour grades for hazard and risk information. Keywords: Flood mapping, hazard and risk maps, participation, risk communication, flood risk awareness, emergency management
NASA Astrophysics Data System (ADS)
Bethel, M.; Braud, D.; Lambeth, T.; Biber, P.; Wu, W.
2017-12-01
Coastal community leaders, government officials, and natural resource managers must be able to accurately assess and predict a given coastal landscape's sustainability and/or vulnerability as coastal habitat continues to undergo rapid and dramatic changes associated with natural and anthropogenic activities such as accelerated relative sea level rise (SLR). To help address this information need, a multi-disciplinary project team conducted Sea Grant sponsored research in Louisiana and Mississippi with traditional ecosystem users and natural resource managers to determine a method for producing localized vulnerability and sustainability maps for projected SLR and storm surge impacts, and determine how and whether the results of such an approach can provide more useful information to enhance hazard mitigation planning. The goals of the project are to develop and refine SLR visualization tools for local implementation in areas experiencing subsidence and erosion, and discover the different ways stakeholder groups evaluate risk and plan mitigation strategies associated with projected SLR and storm surge. Results from physical information derived from data and modeling of subsidence, erosion, engineered restoration and coastal protection features, historical land loss, and future land projections under SLR are integrated with complimentary traditional ecological knowledge (TEK) offered by the collaborating local ecosystem users for these assessments. The data analysis involves interviewing stakeholders, coding the interviews for themes, and then converting the themes into vulnerability and sustainability factors. Each factor is weighted according to emphasis by the TEK experts and number of experts who mention it to determine which factors are the highest priority. The priority factors are then mapped with emphasis on the perception of contributing to local community vulnerability or sustainability to SLR and storm surge. The maps are used by the collaborators to benefit local hazard mitigation and adaptation planning. The results to date in achieving the project objectives will be presented that include: analyses of scientific field data collected related to marsh vegetation biomass characteristics, analyses of TEK data collected, and mapping products developed.
Low Altitude AVIRIS Data for Mapping Landform Types on West Ship Island, Mississippi
NASA Technical Reports Server (NTRS)
Spruce, Joseph; Otvos, Ervin; Giardino, Marco
2002-01-01
This paper presents a viewgraph presentation on low altitude AVIRIS data for mapping landform types on West Ship Island, Mississippi. The topics of discussion include: 1) Project background; 2) Mapping methods; 3) Examples of results; 4) Apparent trends; and 5) Final remarks.
The National Map Pilot Projects
,
2002-01-01
The U.S. Geological Survey (USGS) is developing The National Map to be a seamless, continuously maintained, and nationally consistent set of online, public domain, geographic base information. The National Map will serve as a foundation for integrating, sharing, and using other government and private sector data easily and consistently.
A GIS based method for soil mapping in Sardinia, Italy: a geomatic approach.
Vacca, A; Loddo, S; Melis, M T; Funedda, A; Puddu, R; Verona, M; Fanni, S; Fantola, F; Madrau, S; Marrone, V A; Serra, G; Tore, C; Manca, D; Pasci, S; Puddu, M R; Schirru, P
2014-06-01
A new project was recently initiated for the realization of the "Land Unit and Soil Capability Map of Sardinia" at a scale of 1:50,000 to support land use planning. In this study, we outline the general structure of the project and the methods used in the activities that have been thus far conducted. A GIS approach was used. We used the soil-landscape paradigm for the prediction of soil classes and their spatial distribution or the prediction of soil properties based on landscape features. The work is divided into two main phases. In the first phase, the available digital data on land cover, geology and topography were processed and classified according to their influence on weathering processes and soil properties. The methods used in the interpretation are based on consolidated and generalized knowledge about the influence of geology, topography and land cover on soil properties. The existing soil data (areal and point data) were collected, reviewed, validated and standardized according to international and national guidelines. Point data considered to be usable were input into a specific database created for the project. Using expert interpretation, all digital data were merged to produce a first draft of the Land Unit Map. During the second phase, this map will be implemented with the existing soil data and verified in the field if also needed with new soil data collection, and the final Land Unit Map will be produced. The Land Unit and Soil Capability Map will be produced by classifying the land units using a reference matching table of land capability classes created for this project. Copyright © 2013 Elsevier Ltd. All rights reserved.
Geologic Mapping of the Medusae Fossae Formation on Mars and the Northern Lowland Plains of Venus
NASA Technical Reports Server (NTRS)
Zimbelman, J. R.
2009-01-01
This report summarizes the status of mapping projects supported by NASA grant NNX07AP42G, through the Planetary Geology and Geophysics (PGG) program. The PGG grant is focused on 1:2M-scale mapping of portions of the Medusae Fossae Formation (MFF) on Mars. Also described below is the current status of two Venus geo-logic maps, generated under an earlier PGG mapping grant.
Applying satellite technology to energy and mineral exploration
Carter, William D.; Rowan, Lawrence C.
1978-01-01
IGCP Project 143 ("Remote Sensing and Mineral Exploration"), is a worldwide research project designed to make satellite data an operational geological tool along with the geologic pick, hand lens, topographic map, aerial photo and geophysical instruments and data that comprise the exploration package. While remote sensing data will not replace field exploration and mapping, careful study of such data prior to field work should make the effort more efficient.
Transfer of Technology for Cadastral Mapping in Tajikistan Using High Resolution Satellite Data
NASA Astrophysics Data System (ADS)
Kaczynski, R.
2012-07-01
European Commission funded project entitled: "Support to the mapping and certification capacity of the Agency of Land Management, Geodesy and Cartography" in Tajikistan was run by FINNMAP FM-International and Human Dynamics from Nov. 2006 to June 2011. The Agency of Land Management, Geodesy and Cartography is the state agency responsible for development, implementation, monitoring and evaluation of state policies on land tenure and land management, including the on-going land reform and registration of land use rights. The specific objective was to support and strengthen the professional capacity of the "Fazo" Institute in the field of satellite geodesy, digital photogrammetry, advanced digital satellite image processing of high resolution satellite data and digital cartography. Lectures and on-the-job trainings for the personnel of "Fazo" and Agency in satellite geodesy, digital photogrammetry, cartography and the use of high resolution satellite data for cadastral mapping have been organized. Standards and Quality control system for all data and products have been elaborated and implemented in the production line. Technical expertise and trainings in geodesy, photogrammetry and satellite image processing to the World Bank project "Land Registration and Cadastre System for Sustainable Agriculture" has also been completed in Tajikistan. The new map projection was chosen and the new unclassified geodetic network has been established for all of the country in which all agricultural parcel boundaries are being mapped. IKONOS, QuickBird and WorldView1 panchromatic data have been used for orthophoto generation. Average accuracy of space triangulation of non-standard (long up to 90km) satellite images of QuickBird Pan and IKONOS Pan on ICPs: RMSEx = 0.5m and RMSEy = 0.5m have been achieved. Accuracy of digital orthophoto map is RMSExy = 1.0m. More then two and half thousands of digital orthophoto map sheets in the scale of 1:5000 with pixel size 0.5m have been produced so far by the "Fazo" Institute in Tajikistan on the basis of technology elaborated in the framework of this project. Digital cadastral maps are produced in "Fazo" and Cadastral Regional Centers in Tajikistan using ArcMap software. These digital orthophotomaps will also be used for digital mapping of water resources and other needs of the country.
Day, W.C.; Green, G.N.; Knepper, D.H.; Phillips, R.C.
1999-01-01
The digital geologic and geographic information system (GIS) data presented here were prepared to aid in Grand Mesa, Uncompahgre, Gunnison National Forest (GMUG) mineral resource assessment Project studies by the U.S. Geological Survey Mineral Resource Program. The goals of the GMUG Project is to provide mineral resource data and an assessment for undiscovered mineral resources in U.S. Forest Service (USFS) and Bureau of Land Management (BLM) lands in southwestern Colorado. The Project area covers a large region in southwestern Colorado that is bounded by latitudes 37o 45’ to 39o 30’ north and longitudes 106o to 109o west. The study area is covered by all or parts of six 1o x2o topographic and quadrangle geologic maps, which include geologic maps for the Leadville (Tweto and others, 1978), Montrose (Tweto and others, 1976), Durango (Steven and others, 1974), Grand Junction (Cashion, 1973), Moab (Williams, 1976), and Cortez (Haynes and others, 1972) quadrangles. These geologic maps were used inasmuch as a complete remapping and compilation effort for this study area was beyond the scope of the Project.
a Virtual Hub Brokering Approach for Integration of Historical and Modern Maps
NASA Astrophysics Data System (ADS)
Bruno, N.; Previtali, M.; Barazzetti, L.; Brumana, R.; Roncella, R.
2016-06-01
Geospatial data are today more and more widespread. Many different institutions, such as Geographical Institutes, Public Administrations, collaborative communities (e.g., OSM) and web companies, make available nowadays a large number of maps. Besides this cartography, projects of digitizing, georeferencing and web publication of historical maps have increasingly spread in the recent years. In spite of these variety and availability of data, information overload makes difficult their discovery and management: without knowing the specific repository where the data are stored, it is difficult to find the information required and problems of interconnection between different data sources and their restricted interoperability limit a wide utilization of available geo-data. This paper aims to describe some actions performed to assure interoperability between data, in particular spatial and geographic data, gathered from different data providers, with different features and referring to different historical periods. The article summarizes and exemplifies how, starting from projects of historical map digitizing and Historical GIS implementation, respectively for the Lombardy and for the city of Parma, the interoperability is possible in the framework of the ENERGIC OD project. The European project ENERGIC OD, thanks to a specific component - the virtual hub - based on a brokering framework, copes with the previous listed problems and allows the interoperability between different data sources.
An overview of the Hadoop/MapReduce/HBase framework and its current applications in bioinformatics
2010-01-01
Background Bioinformatics researchers are now confronted with analysis of ultra large-scale data sets, a problem that will only increase at an alarming rate in coming years. Recent developments in open source software, that is, the Hadoop project and associated software, provide a foundation for scaling to petabyte scale data warehouses on Linux clusters, providing fault-tolerant parallelized analysis on such data using a programming style named MapReduce. Description An overview is given of the current usage within the bioinformatics community of Hadoop, a top-level Apache Software Foundation project, and of associated open source software projects. The concepts behind Hadoop and the associated HBase project are defined, and current bioinformatics software that employ Hadoop is described. The focus is on next-generation sequencing, as the leading application area to date. Conclusions Hadoop and the MapReduce programming paradigm already have a substantial base in the bioinformatics community, especially in the field of next-generation sequencing analysis, and such use is increasing. This is due to the cost-effectiveness of Hadoop-based analysis on commodity Linux clusters, and in the cloud via data upload to cloud vendors who have implemented Hadoop/HBase; and due to the effectiveness and ease-of-use of the MapReduce method in parallelization of many data analysis algorithms. PMID:21210976
An overview of the Hadoop/MapReduce/HBase framework and its current applications in bioinformatics.
Taylor, Ronald C
2010-12-21
Bioinformatics researchers are now confronted with analysis of ultra large-scale data sets, a problem that will only increase at an alarming rate in coming years. Recent developments in open source software, that is, the Hadoop project and associated software, provide a foundation for scaling to petabyte scale data warehouses on Linux clusters, providing fault-tolerant parallelized analysis on such data using a programming style named MapReduce. An overview is given of the current usage within the bioinformatics community of Hadoop, a top-level Apache Software Foundation project, and of associated open source software projects. The concepts behind Hadoop and the associated HBase project are defined, and current bioinformatics software that employ Hadoop is described. The focus is on next-generation sequencing, as the leading application area to date. Hadoop and the MapReduce programming paradigm already have a substantial base in the bioinformatics community, especially in the field of next-generation sequencing analysis, and such use is increasing. This is due to the cost-effectiveness of Hadoop-based analysis on commodity Linux clusters, and in the cloud via data upload to cloud vendors who have implemented Hadoop/HBase; and due to the effectiveness and ease-of-use of the MapReduce method in parallelization of many data analysis algorithms.
Increasing the availability of national mapping products.
Roney, J.I.; Ogilvie, B.C.
1981-01-01
A discussion of the means employed by the US Geological Survey to facilitate map usage, covering aspects of project Map Accessibility Program including special rolled and folded map packaging, new market testing, parks and campgrounds program, expanded map dealer program, new booklet-type State sales index and catalog and new USGS map reference code. The USGS is seen as the producer of a tremendous nation-wide inventory of topographic and related map products available in unprecedented types, formats and scales, and as endeavouring to increase access to its products. The new USGS map reference code is appended. -J.C.Stone
Related Links & Resources Access and Applications Access Applications Example Applications Project Us -Privacy Policy -Site Map Search You are here: CIDR>Access and Applications> Project Initiation Project Initiation Once a project is approved for access to CIDR, we will contact you to begin
Biomedical Terminology Mapper for UML projects.
Thibault, Julien C; Frey, Lewis
2013-01-01
As the biomedical community collects and generates more and more data, the need to describe these datasets for exchange and interoperability becomes crucial. This paper presents a mapping algorithm that can help developers expose local implementations described with UML through standard terminologies. The input UML class or attribute name is first normalized and tokenized, then lookups in a UMLS-based dictionary are performed. For the evaluation of the algorithm 142 UML projects were extracted from caGrid and automatically mapped to National Cancer Institute (NCI) terminology concepts. Resulting mappings at the UML class and attribute levels were compared to the manually curated annotations provided in caGrid. Results are promising and show that this type of algorithm could speed-up the tedious process of mapping local implementations to standard biomedical terminologies.
Biomedical Terminology Mapper for UML projects
Thibault, Julien C.; Frey, Lewis
As the biomedical community collects and generates more and more data, the need to describe these datasets for exchange and interoperability becomes crucial. This paper presents a mapping algorithm that can help developers expose local implementations described with UML through standard terminologies. The input UML class or attribute name is first normalized and tokenized, then lookups in a UMLS-based dictionary are performed. For the evaluation of the algorithm 142 UML projects were extracted from caGrid and automatically mapped to National Cancer Institute (NCI) terminology concepts. Resulting mappings at the UML class and attribute levels were compared to the manually curated annotations provided in caGrid. Results are promising and show that this type of algorithm could speed-up the tedious process of mapping local implementations to standard biomedical terminologies. PMID:24303278
The World Karst Aquifer Mapping project: concept, mapping procedure and map of Europe
NASA Astrophysics Data System (ADS)
Chen, Zhao; Auler, Augusto S.; Bakalowicz, Michel; Drew, David; Griger, Franziska; Hartmann, Jens; Jiang, Guanghui; Moosdorf, Nils; Richts, Andrea; Stevanovic, Zoran; Veni, George; Goldscheider, Nico
2017-05-01
Karst aquifers contribute substantially to freshwater supplies in many regions of the world, but are vulnerable to contamination and difficult to manage because of their unique hydrogeological characteristics. Many karst systems are hydraulically connected over wide areas and require transboundary exploration, protection and management. In order to obtain a better global overview of karst aquifers, to create a basis for sustainable international water-resources management, and to increase the awareness in the public and among decision makers, the World Karst Aquifer Mapping (WOKAM) project was established. The goal is to create a world map and database of karst aquifers, as a further development of earlier maps. This paper presents the basic concepts and the detailed mapping procedure, using France as an example to illustrate the step-by-step workflow, which includes generalization, differentiation of continuous and discontinuous carbonate and evaporite rock areas, and the identification of non-exposed karst aquifers. The map also shows selected caves and karst springs, which are collected in an associated global database. The draft karst aquifer map of Europe shows that 21.6% of the European land surface is characterized by the presence of (continuous or discontinuous) carbonate rocks; about 13.8% of the land surface is carbonate rock outcrop.
Mapping urban geology of the city of Girona, Catalonia
NASA Astrophysics Data System (ADS)
Vilà, Miquel; Torrades, Pau; Pi, Roser; Monleon, Ona
2016-04-01
A detailed and systematic geological characterization of the urban area of Girona has been conducted under the project '1:5000 scale Urban geological map of Catalonia' of the Catalan Geological Survey (Institut Cartogràfic i Geològic de Catalunya). The results of this characterization are organized into: i) a geological information system that includes all the information acquired; ii) a stratigraphic model focused on identification, characterization and correlation of the geological materials and structures present in the area and; iii) a detailed geological map that represents a synthesis of all the collected information. The mapping project integrates in a GIS environment pre-existing cartographic documentation (geological and topographical), core data from compiled boreholes, descriptions of geological outcrops within the urban network and neighbouring areas, physico-chemical characterisation of representative samples of geological materials, detailed geological mapping of Quaternary sediments, subsurface bedrock and artificial deposits and, 3D modelling of the main geological surfaces. The stratigraphic model is structured in a system of geological units that from a chronostratigrafic point of view are structured in Palaeozoic, Paleogene, Neogene, Quaternary and Anthropocene. The description of the geological units is guided by a systematic procedure. It includes the main lithological and structural features of the units that constitute the geological substratum and represents the conceptual base of the 1:5000 urban geological map of the Girona metropolitan area, which is organized into 6 map sheets. These map sheets are composed by a principal map, geological cross sections and, several complementary maps, charts and tables. Regardless of the geological map units, the principal map also represents the main artificial deposits, features related to geohistorical processes, contours of outcrop areas, information obtained in stations, borehole data, and contour lines of the top of the pre-Quaternary basement surface. The most representative complementary maps are the quaternary map, the subsurface bedrock map and the isopach map of thickness of superficial deposits (Quaternary and anthropogenic). The map sheets also include charts and tables of relevant physic-chemical parameters of the geological materials, harmonized downhole lithological columns from selected boreholes, stratigraphic columns, and, photographs and figures illustrating the geology of the mapped area and how urbanization has changed the natural environment. The development of systematic urban geological mapping projects, such as the example of Girona's case, which provides valuable resources to address targeted studies related to urban planning, geoengineering works, soil pollution and other important environmental issues that society should deal with in the future.
Mapping Climate Change: Six U.S. Case Studies
ERIC Educational Resources Information Center
Holmberg, Marjorie O.
2010-01-01
This research focuses on the current role of mapping practices in communicating climate change in the United States. This includes maps used in monitoring climate change, projecting its potential impacts, and identifying potential adaptation strategies at particular scales. Since few, if any, studies have been done specifically on mapping…
AN EXPERIMENTAL ASSESSMENT OF MINIMUM MAPPING UNIT SIZE
Land-cover (LC) maps derived from remotely sensed data are often presented using a minimum mapping unit (MMU). The choice of a MMU that is appropriate for the projected use of a classification is important. The objective of this experiment was to determine the optimal MMU of a L...
Publications - STATEMAP Project | Alaska Division of Geological &
., 2008, Surficial-geologic map of the Salcha River-Pogo area, Big Delta Quadrangle, Alaska: Alaska , Engineering - geologic map, Alaska Highway corridor, Delta Junction to Dot Lake, Alaska: Alaska Division of geologic map of the Salcha River-Pogo area, Big Delta Quadrangle, Alaska: Alaska Division of Geological
How To Put Your Maps on the Internet.
ERIC Educational Resources Information Center
Allen, David Yehling
Many libraries are creating raster images of paper maps and making them available over the Internet. This presentation provides an overview of imaging technology for map librarians and administrators considering such projects. References in footnotes and the bibliography enable those interested to explore technical questions in depth. There are…
Middle Atmosphere Program: Handbook for MAP, volume 24
NASA Technical Reports Server (NTRS)
Edwards, Belva (Editor)
1987-01-01
This MAP handbook lists the MAP steering and standing committees. Also listed is the regional consultative group, the secretariat, study groups, projects, and national representatives. The major portion of the handbook is taken up with the listing of scientist members by country and the alphabetical index and addresses of scientists.
Assessing Geographic Knowledge with Sketch Maps.
ERIC Educational Resources Information Center
Wise, Naomi; Kon, Jane Heckley
1990-01-01
Maintains that comparison of students' sketch maps at the beginning and end of the year can provide information on how student's representations of the world changes. Describes a study from the California International Studies Project (CISP) that provides an easy method for sorting and summarizing sketch map data. Illustrates the method with…
Off-the-Wall Project Brings Aerial Mapping down to Earth
ERIC Educational Resources Information Center
Davidhazy, Andrew
2008-01-01
The technology of aerial photography, photogrametry, has widespread applications in mapping and aerial surveying. A multi-billion-dollar industry, aerial surveying and mapping is "big business" in both civilian and military sectors. While the industry has grown increasingly automated, employment opportunities still exist for people with a basic…
The Lunar Mapping and Modeling Project
NASA Technical Reports Server (NTRS)
Noble, Sarah; French, Raymond; Nall, Mark; Muery, Kimberly
2009-01-01
LMMP was initiated in 2007 to help in making the anticipated results of the LRO spacecraft useful and accessible to Constellation. The LMMP is managing and developing a suite of lunar mapping and modeling tools and products that support the Constellation Program (CxP) and other lunar exploration activities. In addition to the LRO Principal Investigators, relevant activities and expertise that had already been funded by NASA was identified at ARC, CRREL (Army Cold Regions Research & Engineering Laboratory), GSFC, JPL, & USGS. LMMP is a cost capped, design-to-cost project (Project budget was established prior to obtaining Constellation needs)
Identifying Populace Susceptible to Flooding Using ArcGIS and Remote Sensing Datasets
NASA Astrophysics Data System (ADS)
Fernandez, Sim Joseph; Milano, Alan
2016-07-01
Remote sensing technologies are growing vastly as with its various applications. The Department of Science and Technology (DOST), Republic of the Philippines, has made projects exploiting LiDAR datasets from remote sensing technologies. The Phil-LiDAR 1 project of DOST is a flood hazard mapping project. Among the project's objectives is the identification of building features which can be associated to the flood-exposed population. The extraction of building features from the LiDAR dataset is arduous as it requires manual identification of building features on an elevation map. The mapping of building footprints is made meticulous in order to compensate the accuracy between building floor area and building height both of which are crucial in flood decision making. A building identification method was developed to generate a LiDAR derivative which will serve as a guide in mapping building footprints. The method utilizes several tools of a Geographic Information System (GIS) software called ArcGIS which can operate on physical attributes of buildings such as roofing curvature, slope and blueprint area in order to obtain the LiDAR derivative from LiDAR dataset. The method also uses an intermediary process called building removal process wherein buildings and other features lying below the defined minimum building height - 2 meters in the case of Phil-LiDAR 1 project - are removed. The building identification method was developed in the hope to hasten the identification of building features especially when orthophotographs and/or satellite imageries are not made available.
NASA Astrophysics Data System (ADS)
Heinrichs, T. A.; Broderson, D.; Johnson, A.; Slife, M.
2014-12-01
This presentation describes the overall program goals and current status of broad scale, statewide orthoimagery and digital elevation model (DEM) projects currently underway in Alaska. As context, it will also describe the history and successes of previous statewide Alaska mapping efforts over the preceding 75 years. A new statewide orthomosaic imagery baselayer at 1:24,000 NMAS accuracy (12.2-meters CE90) is nearing completion. The entire state (1.56 million square kilometers) has been imaged with the SPOT 5 satellite, and a 2.5-meter spatial resolution, multi-spectral, nearly cloud-free, pan-sharpened orthoimage will be produced by mid-2015. A second major project is collection of an improved accuracy DEM statewide. Airborne interferometric synthetic aperture radar (IfSAR) data has been collected for about half of the state of Alaska and completion of the rest of the state is anticipated within a few years. A 5-meter post spacing, 20-foot contour interval accuracy equivalent (3-meter vertical LE90) DEM and radar backscatter intensity image is being delivered. Historic projects to be described include the 1950's USGS Alaska topographic mapping program, one of the largest and most pioneering, challenging, and successful ever undertaken in North America. These historic and current mapping programs have served as both a baselayer framework and as feedstock for science for virtually every geologic, geophysical, and terrestrial natural science project in the state.
Using Mobile App Development Tools to Build a GIS Application
NASA Astrophysics Data System (ADS)
Mital, A.; Catchen, M.; Mital, K.
2014-12-01
Our group designed and built working web, android, and IOS applications using different mapping libraries as bases on which to overlay fire data from NASA. The group originally planned to make app versions for Google Maps, Leaflet, and OpenLayers. However, because the Leaflet library did not properly load on Android, the group focused efforts on the other two mapping libraries. For Google Maps, the group first designed a UI for the web app and made a working version of the app. After updating the source of fire data to one which also provided historical fire data, the design had to be modified to include the extra data. After completing a working version of the web app, the group used webview in android, a built in resource which allowed porting the web app to android without rewriting the code for android. Upon completing this, the group found Apple IOS devices had a similar capability, and so decided to add an IOS app to the project using a function similar to webview. Alongside this effort, the group began implementing an OpenLayers fire map using a simpler UI. This web app was completed fairly quickly relative to Google Maps; however, it did not include functionality such as satellite imagery or searchable locations. The group finished the project with a working android version of the Google Maps based app supporting API levels 14-19 and an OpenLayers based app supporting API levels 8-19, as well as a Google Maps based IOS app supporting both old and new screen formats. This project was implemented by high school and college students under an SGT Inc. STEM internship program
Lee, Ho; Fahimian, Benjamin P; Xing, Lei
2017-03-21
This paper proposes a binary moving-blocker (BMB)-based technique for scatter correction in cone-beam computed tomography (CBCT). In concept, a beam blocker consisting of lead strips, mounted in front of the x-ray tube, moves rapidly in and out of the beam during a single gantry rotation. The projections are acquired in alternating phases of blocked and unblocked cone beams, where the blocked phase results in a stripe pattern in the width direction. To derive the scatter map from the blocked projections, 1D B-Spline interpolation/extrapolation is applied by using the detected information in the shaded regions. The scatter map of the unblocked projections is corrected by averaging two scatter maps that correspond to their adjacent blocked projections. The scatter-corrected projections are obtained by subtracting the corresponding scatter maps from the projection data and are utilized to generate the CBCT image by a compressed-sensing (CS)-based iterative reconstruction algorithm. Catphan504 and pelvis phantoms were used to evaluate the method's performance. The proposed BMB-based technique provided an effective method to enhance the image quality by suppressing scatter-induced artifacts, such as ring artifacts around the bowtie area. Compared to CBCT without a blocker, the spatial nonuniformity was reduced from 9.1% to 3.1%. The root-mean-square error of the CT numbers in the regions of interest (ROIs) was reduced from 30.2 HU to 3.8 HU. In addition to high resolution, comparable to that of the benchmark image, the CS-based reconstruction also led to a better contrast-to-noise ratio in seven ROIs. The proposed technique enables complete scatter-corrected CBCT imaging with width-truncated projections and allows reducing the acquisition time to approximately half. This work may have significant implications for image-guided or adaptive radiation therapy, where CBCT is often used.
NASA Astrophysics Data System (ADS)
Lee, Ho; Fahimian, Benjamin P.; Xing, Lei
2017-03-01
This paper proposes a binary moving-blocker (BMB)-based technique for scatter correction in cone-beam computed tomography (CBCT). In concept, a beam blocker consisting of lead strips, mounted in front of the x-ray tube, moves rapidly in and out of the beam during a single gantry rotation. The projections are acquired in alternating phases of blocked and unblocked cone beams, where the blocked phase results in a stripe pattern in the width direction. To derive the scatter map from the blocked projections, 1D B-Spline interpolation/extrapolation is applied by using the detected information in the shaded regions. The scatter map of the unblocked projections is corrected by averaging two scatter maps that correspond to their adjacent blocked projections. The scatter-corrected projections are obtained by subtracting the corresponding scatter maps from the projection data and are utilized to generate the CBCT image by a compressed-sensing (CS)-based iterative reconstruction algorithm. Catphan504 and pelvis phantoms were used to evaluate the method’s performance. The proposed BMB-based technique provided an effective method to enhance the image quality by suppressing scatter-induced artifacts, such as ring artifacts around the bowtie area. Compared to CBCT without a blocker, the spatial nonuniformity was reduced from 9.1% to 3.1%. The root-mean-square error of the CT numbers in the regions of interest (ROIs) was reduced from 30.2 HU to 3.8 HU. In addition to high resolution, comparable to that of the benchmark image, the CS-based reconstruction also led to a better contrast-to-noise ratio in seven ROIs. The proposed technique enables complete scatter-corrected CBCT imaging with width-truncated projections and allows reducing the acquisition time to approximately half. This work may have significant implications for image-guided or adaptive radiation therapy, where CBCT is often used.
NASA Astrophysics Data System (ADS)
Martinez, E.; Glassy, J. M.; Fowler, D. K.; Khayat, M.; Olding, S. W.
2014-12-01
The NASA Earth Science Data Systems Working Groups (ESDSWG) focuses on improving technologies and processes related to science discovery and preservation. One particular group, the Data Preservation Practices, is defining a set of guidelines to aid data providers in planning both what to submit for archival, and when to submit artifacts, so that the archival process can begin early in the project's life cycle. This has the benefit of leveraging knowledge within the project before staff roll off to other work. In this poster we describe various project archival use cases and identify possible archival life cycles that map closely to the pace and flow of work. To understand "archival life cycles", i.e., distinct project phases that produce archival artifacts such as instrument capabilities, calibration reports, and science data products, the workig group initially mapped the archival requirements defined in the Preservation Content Specification to the typical NASA project life cycle. As described in the poster, this work resulted in a well-defined archival life cycle, but only for some types of projects; it did not fit well for condensed project life cycles experienced within airborne and balloon campaigns. To understand the archival process for projects with compressed cycles, the working group gathered use cases from various communities. This poster will describe selected uses cases that provided insight into the unique flow of these projects, as well as proposing archival life cycles that map artifacts to projects with compressed timelines. Finally, the poster will conclude with some early recommendations for data providers, which will be captured in a formal Guidelines document - to be published in 2015.
Projector primary-based optimization for superimposed projection mappings
NASA Astrophysics Data System (ADS)
Ahmed, Bilal; Lee, Jong Hun; Lee, Yong Yi; Lee, Kwan H.
2018-01-01
Recently, many researchers have focused on fully overlapping projections for three-dimensional (3-D) projection mapping systems but reproducing a high-quality appearance using this technology still remains a challenge. On top of existing color compensation-based methods, much effort is still required to faithfully reproduce an appearance that is free from artifacts, colorimetric inconsistencies, and inappropriate illuminance over the 3-D projection surface. According to our observation, this is due to the fact that overlapping projections are treated as an additive-linear mixture of color. However, this is not the case according to our elaborated observations. We propose a method that enables us to use high-quality appearance data that are measured from original objects and regenerate the same appearance by projecting optimized images using multiple projectors, ensuring that the projection-rendered results look visually close to the real object. We prepare our target appearances by photographing original objects. Then, using calibrated projector-camera pairs, we compensate for missing geometric correspondences to make our method robust against noise. The heart of our method is a target appearance-driven adaptive sampling of the projection surface followed by a representation of overlapping projections in terms of the projector-primary response. This gives off projector-primary weights to facilitate blending and the system is applied with constraints. These samples are used to populate a light transport-based system. Then, the system is solved minimizing the error to get the projection images in a noise-free manner by utilizing intersample overlaps. We ensure that we make the best utilization of available hardware resources to recreate projection mapped appearances that look as close to the original object as possible. Our experimental results show compelling results in terms of visual similarity and colorimetric error.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deshmukh, Ranjit; Wu, Grace
The MapRE (Multi-criteria Analysis for Planning Renewable Energy) GIS (Geographic Information Systems) Tools are a set of ArcGIS tools to a) conduct site suitability analysis for wind and solar resources using inclusion and exclusion criteria, and create resource maps, b) create project opportunity areas and compute various attributes such as cost, distances to existing and planned infrastructure. and environmental impact factors; and c) calculate and update various attributes for already processed renewable energy zones. In addition, MapRE data sets are geospatial data of renewable energy project opportunity areas and zones with pre-calculated attributes for several countries. These tools and datamore » are available at mapre.lbl.gov.« less
Ferles, Christos; Beaufort, William-Scott; Ferle, Vanessa
2017-01-01
The present study devises mapping methodologies and projection techniques that visualize and demonstrate biological sequence data clustering results. The Sequence Data Density Display (SDDD) and Sequence Likelihood Projection (SLP) visualizations represent the input symbolical sequences in a lower-dimensional space in such a way that the clusters and relations of data elements are depicted graphically. Both operate in combination/synergy with the Self-Organizing Hidden Markov Model Map (SOHMMM). The resulting unified framework is in position to analyze automatically and directly raw sequence data. This analysis is carried out with little, or even complete absence of, prior information/domain knowledge.
The Lunar Mapping and Modeling Project
NASA Technical Reports Server (NTRS)
Noble, Sarah K.; French, R. A.; Nall, M. E.; Muery, K. G.
2009-01-01
The Lunar Mapping and Modeling Project (LMMP) has been created to manage the development of a suite of lunar mapping and modeling products that support the Constellation Program (CxP) and other lunar exploration activities, including the planning, design, development, test and operations associated with lunar sortie missions, crewed and robotic operations on the surface, and the establishment of a lunar outpost. The information provided through LMMP will assist CxP in: planning tasks in the areas of landing site evaluation and selection, design and placement of landers and other stationary assets, design of rovers and other mobile assets, developing terrain-relative navigation (TRN) capabilities, and assessment and planning of science traverses.
Drawing road networks with focus regions.
Haunert, Jan-Henrik; Sering, Leon
2011-12-01
Mobile users of maps typically need detailed information about their surroundings plus some context information about remote places. In order to avoid that the map partly gets too dense, cartographers have designed mapping functions that enlarge a user-defined focus region--such functions are sometimes called fish-eye projections. The extra map space occupied by the enlarged focus region is compensated by distorting other parts of the map. We argue that, in a map showing a network of roads relevant to the user, distortion should preferably take place in those areas where the network is sparse. Therefore, we do not apply a predefined mapping function. Instead, we consider the road network as a graph whose edges are the road segments. We compute a new spatial mapping with a graph-based optimization approach, minimizing the square sum of distortions at edges. Our optimization method is based on a convex quadratic program (CQP); CQPs can be solved in polynomial time. Important requirements on the output map are expressed as linear inequalities. In particular, we show how to forbid edge crossings. We have implemented our method in a prototype tool. For instances of different sizes, our method generated output maps that were far less distorted than those generated with a predefined fish-eye projection. Future work is needed to automate the selection of roads relevant to the user. Furthermore, we aim at fast heuristics for application in real-time systems. © 2011 IEEE
2012-01-01
Background Brassica oleracea encompass a family of vegetables and cabbage that are among the most widely cultivated crops. In 2009, the B. oleracea Genome Sequencing Project was launched using next generation sequencing technology. None of the available maps were detailed enough to anchor the sequence scaffolds for the Genome Sequencing Project. This report describes the development of a large number of SSR and SNP markers from the whole genome shotgun sequence data of B. oleracea, and the construction of a high-density genetic linkage map using a double haploid mapping population. Results The B. oleracea high-density genetic linkage map that was constructed includes 1,227 markers in nine linkage groups spanning a total of 1197.9 cM with an average of 0.98 cM between adjacent loci. There were 602 SSR markers and 625 SNP markers on the map. The chromosome with the highest number of markers (186) was C03, and the chromosome with smallest number of markers (99) was C09. Conclusions This first high-density map allowed the assembled scaffolds to be anchored to pseudochromosomes. The map also provides useful information for positional cloning, molecular breeding, and integration of information of genes and traits in B. oleracea. All the markers on the map will be transferable and could be used for the construction of other genetic maps. PMID:23033896
Geodatabase model for global geologic mapping: concept and implementation in planetary sciences
NASA Astrophysics Data System (ADS)
Nass, Andrea
2017-04-01
One aim of the NASA Dawn mission is to generate global geologic maps of the asteroid Vesta and the dwarf planet Ceres. To accomplish this, the Dawn Science Team followed the technical recommendations for cartographic basemap production. The geological mapping campaign of Vesta was completed and published, but mapping of the dwarf planet Ceres is still ongoing. The tiling schema for the geological mapping is the same for both planetary bodies and for Ceres it is divided into two parts: four overview quadrangles (Survey Orbit, 415 m/pixel) and 15 more detailed quadrangles (High Altitude Mapping HAMO, 140 m/pixel). The first global geologic map was based on survey images (415 m/pixel). The combine 4 Survey quadrangles completed by HAMO data served as basis for generating a more detailed view of the geologic history and also for defining the chronostratigraphy and time scale of the dwarf planet. The most detailed view can be expected within the 15 mapping quadrangles based on HAMO resolution and completed by the Low Altitude Mapping (LAMO) data with 35 m/pixel. For the interpretative mapping process of each quadrangle one responsible mapper was assigned. Unifying the geological mapping of each quadrangle and bringing this together to regional and global valid statements is already a very time intensive task. However, another challenge that has to be accomplished is to consider how the 15 individual mappers can generate one homogenous GIS-based project (w.r.t. geometrical and visual character) thus produce a geologically-consistent final map. Our approach this challenge was already discussed for mapping of Vesta. To accommodate the map requirements regarding rules for data storage and database management, the computer-based GIS environment used for the interpretative mapping process must be designed in a way that it can be adjusted to the unique features of the individual investigation areas. Within this contribution the template will be presented that uses standards for digitizing, visualization, data merging and synchronization in the processes of interpretative mapping project. Following the new technological innovations within GIS software and the individual requirements for mapping Ceres, a template was developed based on the symbology and framework. The template for (GIS-base) mapping presented here directly links the generically descriptive attributes of planetary objects to the predefined and standardized symbology in one data structure. Using this template the map results are more comparable and better controllable. Furthermore, merging and synchronization of the individual maps, map projects and sheets will be far more efficient. The template can be adapted to any other planetary body and or within future discovery missions (e.g., Lucy and Psyche which was selected to explore the early solar system by NASA) for generating reusable map results.
Radarsat Antarctic Mapping Project: Antarctic Imaging Campaign 2
NASA Technical Reports Server (NTRS)
2001-01-01
The Radarsat Antarctic Mapping Project is a collaboration between NASA and the Canadian Space Agency to map Antarctica using synthetic aperture radar (SAR). The first Antarctic Mapping Mission (AMM-1) was successfully completed in October 1997. Data from the acquisition phase of the 1997 campaign have been used to achieve the primary goal of producing the first, high-resolution SAR image map of Antarctica. The limited amount of data suitable for interferometric analysis have also been used to produce remarkably detailed maps of surface velocity for a few selected regions. Most importantly, the results from AMM-1 are now available to the general science community in the form of various resolution, radiometrically calibrated and geometrically accurate image mosaics. The second Antarctic imaging campaign occurred during the fall of 2000. Modified from AMM-1, the satellite remained in north looking mode during AMM-2 restricting coverage to regions north of about -80 degrees latitude. But AMM-2 utilized for the first time RADARSAT-1 fine beams providing an unprecedented opportunity to image many of Antarctica's fast glaciers whose extent was revealed through AMM-1 data. AMM-2 also captured extensive data suitable for interferometric analysis of the surface velocity field. This report summarizes the science goals, mission objectives, and project status through the acquisition phase and the start of the processing phase. The reports describes the efforts of team members including Alaska SAR Facility, Jet Propulsion Laboratory, Vexcel Corporation, Goddard Space Flight Center, Wallops Flight Facility, Ohio State University, Environmental Research Institute of Michigan, White Sands Facility, Canadian Space Agency Mission Planning and Operations Groups, and the Antarctic Mapping Planning Group.
NASA Astrophysics Data System (ADS)
Sufo Kankeu, R.
2017-12-01
A number of biomass/carbon maps have been recently produced using different approaches and despite their comparison there is still a gap. To fill this gap there is a need to provide accurate maps based on the field data on all types of land use and land cover. Based on the field data from plots established in three pilot projects around Virunga National park in Rwanda, Tri-national Sangha landscape in Cameroon and lac Télé-Lac Tumba landscape in DRC, this paper intend to analyse the relationship between land use change and biomass and present the variability through biomass/carbon maps. The above and belowground biomass was calculated from 95 nested plots of 20 meters radius. The value of biomass/carbon per plot were thus used to elaborate carbon maps of each study site. In the same the way the correlation between the land use and underground and above ground carbon stock were analysed using geographically weighted regression. These data have been joint with classified Spot 5 image and aggregated to come out will acceptable result. Results show that there is a strong relationship between land use in various project sites and the carbon stock related, the change of a forest cover directly impact on carbon stock/biomass.in the same way carbon map realized base on field data and IDW, Kriging or spline module show an idea on the carbon distribution but the maps are not accurate giving the distance between plots,
NASA Astrophysics Data System (ADS)
Thorne, James H.; Girvetz, Evan H.; McCoy, Michael C.
2009-05-01
This study presents a GIS-based database framework used to assess aggregate terrestrial habitat impacts from multiple highway construction projects in California, USA. Transportation planners need such impact assessment tools to effectively address additive biological mitigation obligations. Such assessments can reduce costly delays due to protracted environmental review. This project incorporated the best available statewide natural resource data into early project planning and preliminary environmental assessments for single and multiple highway construction projects, and provides an assessment of the 10-year state-wide mitigation obligations for the California Department of Transportation. Incorporation of these assessments will facilitate early and more strategic identification of mitigation opportunities, for single-project and regional mitigation efforts. The data architecture format uses eight spatial scales: six nested watersheds, counties, and transportation planning districts, which were intersected. This resulted in 8058 map planning units statewide, which were used to summarize all subsequent analyses. Range maps and georeferenced locations of federally and state-listed plants and animals and a 55-class landcover map were spatially intersected with the planning units and the buffered spatial footprint of 967 funded projects. Projected impacts were summarized and output to the database. Queries written in the database can sum expected impacts and provide summaries by individual construction project, or by watershed, county, transportation district or highway. The data architecture allows easy incorporation of new information and results in a tool usable without GIS by a wide variety of agency biologists and planners. The data architecture format would be useful for other types of regional planning.
Thorne, James H; Girvetz, Evan H; McCoy, Michael C
2009-05-01
This study presents a GIS-based database framework used to assess aggregate terrestrial habitat impacts from multiple highway construction projects in California, USA. Transportation planners need such impact assessment tools to effectively address additive biological mitigation obligations. Such assessments can reduce costly delays due to protracted environmental review. This project incorporated the best available statewide natural resource data into early project planning and preliminary environmental assessments for single and multiple highway construction projects, and provides an assessment of the 10-year state-wide mitigation obligations for the California Department of Transportation. Incorporation of these assessments will facilitate early and more strategic identification of mitigation opportunities, for single-project and regional mitigation efforts. The data architecture format uses eight spatial scales: six nested watersheds, counties, and transportation planning districts, which were intersected. This resulted in 8058 map planning units statewide, which were used to summarize all subsequent analyses. Range maps and georeferenced locations of federally and state-listed plants and animals and a 55-class landcover map were spatially intersected with the planning units and the buffered spatial footprint of 967 funded projects. Projected impacts were summarized and output to the database. Queries written in the database can sum expected impacts and provide summaries by individual construction project, or by watershed, county, transportation district or highway. The data architecture allows easy incorporation of new information and results in a tool usable without GIS by a wide variety of agency biologists and planners. The data architecture format would be useful for other types of regional planning.
Cai, Lile; Tay, Wei-Liang; Nguyen, Binh P; Chui, Chee-Kong; Ong, Sim-Heng
2013-01-01
Transfer functions play a key role in volume rendering of medical data, but transfer function manipulation is unintuitive and can be time-consuming; achieving an optimal visualization of patient anatomy or pathology is difficult. To overcome this problem, we present a system for automatic transfer function design based on visibility distribution and projective color mapping. Instead of assigning opacity directly based on voxel intensity and gradient magnitude, the opacity transfer function is automatically derived by matching the observed visibility distribution to a target visibility distribution. An automatic color assignment scheme based on projective mapping is proposed to assign colors that allow for the visual discrimination of different structures, while also reflecting the degree of similarity between them. When our method was tested on several medical volumetric datasets, the key structures within the volume were clearly visualized with minimal user intervention. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rogers, L. D.; Valderrama Graff, P.; Bandfield, J. L.; Christensen, P. R.; Klug, S. L.; Deva, B.; Capages, C.
2007-12-01
The Mars Public Mapping Project is a web-based education and public outreach tool developed by the Mars Space Flight Facility at Arizona State University. This tool allows the general public to identify and map geologic features on Mars, utilizing Thermal Emission Imaging System (THEMIS) visible images, allowing public participation in authentic scientific research. In addition, participants are able to rate each image (based on a 1 to 5 star scale) to help build a catalog of some of the more appealing and interesting martian surface features. Once participants have identified observable features in an image, they are able to view a map of the global distribution of the many geologic features they just identified. This automatic feedback, through a global distribution map, allows participants to see how their answers compare to the answers of other participants. Participants check boxes "yes, no, or not sure" for each feature that is listed on the Mars Public Mapping Project web page, including surface geologic features such as gullies, sand dunes, dust devil tracks, wind streaks, lava flows, several types of craters, and layers. Each type of feature has a quick and easily accessible description and example image. When a participant moves their mouse over each example thumbnail image, a window pops up with a picture and a description of the feature. This provides a form of "on the job training" for the participants that can vary with their background level. For users who are more comfortable with Mars geology, there is also an advanced feature identification section accessible by a drop down menu. This includes additional features that may be identified, such as streamlined islands, valley networks, chaotic terrain, yardangs, and dark slope streaks. The Mars Public Mapping Project achieves several goals: 1) It engages the public in a manner that encourages active participation in scientific research and learning about geologic features and processes. 2) It helps to build a mappable database that can be used by researchers (and the public in general) to quickly access image based data that contains particular feature types. 3) It builds a searchable database of images containing specific geologic features that the public deem to be visually appealing. Other education and public outreach programs at the Mars Space Flight Facility, such as the Rock Around the World and the Mars Student Imaging Project, have shown an increase in demand for programs that allow "kids of all ages" to participate in authentic scientific research. The Mars Public Mapping Project is a broadly accessible program that continues this theme by building a set of activities that is useful for both the public and scientists.
2013-07-08
This color-coded topography map from NASA Dawn mission shows the giant asteroid Vesta in an equirectangular projection at 32 pixels per degree, relative to an ellipsoid of 177 miles by 177 miles by 142 miles.
Human liver proteome project: plan, progress, and perspectives.
He, Fuchu
2005-12-01
The Human Liver Proteome Project is the first initiative of the human proteome project for human organs/tissues and aims at writing a modern Prometheus myth. Its global scientific objectives are to reveal the "solar system" of the human liver proteome, expression profiles, modification profiles, a protein linkage (protein-protein interaction) map, and a proteome localization map, and to define an ORFeome, physiome, and pathome. Since it was first proposed in April 2002, the Human Liver Proteome Project has attracted more than 100 laboratories from all over the world. In the ensuing 3 years, we set up a management infrastructure, identified reference laboratories, confirmed standard operating procedures, initiated international research collaborations, and finally achieved the first set of expression profile data.
Iovenitti, Joe
2014-01-02
The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodology calibration purposes because, in the public domain, it is a highly characterized geothermal system in the Basin and Range with a considerable amount of geoscience and most importantly, well data. The overall project area is 2500km2 with the Calibration Area (Dixie Valley Geothermal Wellfield) being about 170km2. The project was subdivided into five tasks (1) collect and assess the existing public domain geoscience data; (2) design and populate a GIS database; (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area at 0.5km intervals to identify EGS drilling targets at a scale of 5km x 5km; (4) collect new geophysical and geochemical data, and (5) repeat Task 3 for the enhanced (baseline + new ) data. Favorability maps were based on the integrated assessment of the three critical EGS exploration parameters of interest: rock type, temperature and stress. A complimentary trust map was generated to compliment the favorability maps to graphically illustrate the cumulative confidence in the data used in the favorability mapping. The Final Scientific Report (FSR) is submitted in two parts with Part I describing the results of project Tasks 1 through 3 and Part II covering the results of project Tasks 4 through 5 plus answering nine questions posed in the proposal for the overall project. FSR Part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region. FSR Part II presents (1) 278 new gravity stations; (2) enhanced gravity-magnetic modeling; (3) 42 new ambient seismic noise survey stations; (4) an integration of the new seismic noise data with a regional seismic network; (5) a new methodology and approach to interpret this data; (5) a novel method to predict rock type and temperature based on the newly interpreted data; (6) 70 new magnetotelluric (MT) stations; (7) an integrated interpretation of the enhanced MT data set; (8) the results of a 308 station soil CO2 gas survey; (9) new conductive thermal modeling in the project area; (10) new convective modeling in the Calibration Area; (11) pseudo-convective modeling in the Calibration Area; (12) enhanced data implications and qualitative geoscience correlations at three scales (a) Regional, (b) Project, and (c) Calibration Area; (13) quantitative geostatistical exploratory data analysis; and (14) responses to nine questions posed in the proposal for this investigation. Enhanced favorability/trust maps were not generated because there was not a sufficient amount of new, fully-vetted (see below) rock type, temperature, and stress data. The enhanced seismic data did generate a new method to infer rock type and temperature. However, in the opinion of the Principal Investigator for this project, this new methodology needs to be tested and evaluated at other sites in the Basin and Range before it is used to generate the referenced maps. As in the baseline conceptual model, the enhanced findings can be applied to both the hydrothermal system and EGS in the Dixie Valley region.
NASA Technical Reports Server (NTRS)
Tanaka, K. L.; Dohm, J. M.; Irwin, R.; Kolb, E. J.; Skinner, J. A., Jr.; Hare, T. M.
2010-01-01
We are in the fourth year of a fiveyear effort to map the global geology of Mars at 1:20M scale using mainly Mars Global Surveyor, Mars Express, and Mars Odyssey image and altimetry datasets. Previously, we reported on details of project management, mapping datasets (local and regional), initial and anticipated mapping approaches, and tactics of map unit delineation and description [1-2]. Last year, we described mapping and unit delineation results thus far, a new unit identified in the northern plains, and remaining steps to complete the map [3].
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.; Sader, Steve; Smoot, James
2012-01-01
This presentation discusses a collaborative project to develop, test, and demonstrate baldcypress forest mapping and monitoring products for aiding forest conservation and restoration in coastal Louisiana. Low lying coastal forests in the region are being negatively impacted by multiple factors, including subsidence, salt water intrusion, sea level rise, persistent flooding, hydrologic modification, annual insect-induced forest defoliation, timber harvesting, and conversion to urban land uses. Coastal baldcypress forests provide invaluable ecological services in terms of wildlife habitat, forest products, storm buffers, and water quality benefits. Before this project, current maps of baldcypress forest concentrations and change did not exist or were out of date. In response, this project was initiated to produce: 1) current maps showing the extent and location of baldcypress dominated forests; and 2) wetland forest change maps showing temporary and persistent disturbance and loss since the early 1970s. Project products are being developed collaboratively with multiple state and federal agencies. Products are being validated using available reference data from aerial, satellite, and field survey data. Results include Landsat TM- based classifications of baldcypress in terms of cover type and percent canopy cover. Landsat MSS data was employed to compute a circa 1972 classification of swamp and bottomland hardwood forest types. Landsat data for 1972-2010 was used to compute wetland forest change products. MODIS-based change products were applied to view and assess insect-induced swamp forest defoliation. MODIS, Landsat, and ASTER satellite data products were used to help assess hurricane and flood impacts to coastal wetland forests in the region.
Nasa's Planetary Geologic Mapping Program: Overview
NASA Astrophysics Data System (ADS)
Williams, D. A.
2016-06-01
NASA's Planetary Science Division supports the geologic mapping of planetary surfaces through a distinct organizational structure and a series of research and analysis (R&A) funding programs. Cartography and geologic mapping issues for NASA's planetary science programs are overseen by the Mapping and Planetary Spatial Infrastructure Team (MAPSIT), which is an assessment group for cartography similar to the Mars Exploration Program Assessment Group (MEPAG) for Mars exploration. MAPSIT's Steering Committee includes specialists in geological mapping, who make up the Geologic Mapping Subcommittee (GEMS). I am the GEMS Chair, and with a group of 3-4 community mappers we advise the U.S. Geological Survey Planetary Geologic Mapping Coordinator (Dr. James Skinner) and develop policy and procedures to aid the planetary geologic mapping community. GEMS meets twice a year, at the Annual Lunar and Planetary Science Conference in March, and at the Annual Planetary Mappers' Meeting in June (attendance is required by all NASA-funded geologic mappers). Funding programs under NASA's current R&A structure to propose geological mapping projects include Mars Data Analysis (Mars), Lunar Data Analysis (Moon), Discovery Data Analysis (Mercury, Vesta, Ceres), Cassini Data Analysis (Saturn moons), Solar System Workings (Venus or Jupiter moons), and the Planetary Data Archiving, Restoration, and Tools (PDART) program. Current NASA policy requires all funded geologic mapping projects to be done digitally using Geographic Information Systems (GIS) software. In this presentation we will discuss details on how geologic mapping is done consistent with current NASA policy and USGS guidelines.
Complex Mapping of Aerofoils--A Different Perspective
ERIC Educational Resources Information Center
Matthews, Miccal T.
2012-01-01
In this article an application of conformal mapping to aerofoil theory is studied from a geometric and calculus point of view. The problem is suitable for undergraduate teaching in terms of a project or extended piece of work, and brings together the concepts of geometric mapping, parametric equations, complex numbers and calculus. The Joukowski…
A genetic map and germplasm diversity estimation of Mangifera indica (mango) with SNPs
USDA-ARS?s Scientific Manuscript database
Mango (Mangifera indica) is often referred to as the “King of Fruits”. As the first steps in developing a mango genomics project, we genotyped 582 individuals comprising six mapping populations with 1054 SNP markers. The resulting consensus map had 20 linkage groups defined by 726 SNP markers with...
Charting Our Path with a Web Literacy Map
ERIC Educational Resources Information Center
Dalton, Bridget
2015-01-01
Being a literacy teacher today means being a teacher of Web literacies. This article features the "Web Literacy Map", an open source tool from Mozilla's Webmaker project. The map focuses on Exploring (Navigating the Web); Building (creating for the Web), and Connecting (Participating on the Web). Readers are invited to use resources,…
Regionalization: A Story Map Lesson on Regions
ERIC Educational Resources Information Center
Edmondson, Deborah
2018-01-01
This lesson introduces the concept of regionalization and types of regions. After a brief introductory activity, students explore a story map to learn the material. The teacher can project the story map on a screen for all students to follow or students may work individually on computers. Working individually will allow students to set their own…
ERIC Educational Resources Information Center
Beatty, Ian D.
There is a growing consensus among educational researchers that traditional problem-based assessments are not effective tools for diagnosing a student's knowledge state and for guiding pedagogical intervention, and that new tools grounded in the results of cognitive science research are needed. The ConMap ("Conceptual Mapping") project, described…
Migrant Action Program. Annual Report, 1972.
ERIC Educational Resources Information Center
Migrant Action Program, Mason City, IA.
The philosophy behind and the operations of the Iowa Migrant Action Program (MAP) are discussed in this 1972 annual report. In developing its programs, MAP emphasizes self-determination as a key factor in redirecting the migrant to a life style different from the one he has known. MAP's various projects are intended to economically upgrade the…
Appropriating Invention through Concept Maps in Writing for Multimedia and the Web
ERIC Educational Resources Information Center
Bacabac, Florence Elizabeth
2015-01-01
As an alternative approach to web preproduction, I propose the use of concept maps for invention of website projects in business and professional writing courses. This mapping device approximates our students' initial site plans since rough ideas are formed based on a substantial exploratory technique. Incorporated in various disciplines, the…
Ontology Research and Development. Part 2 - A Review of Ontology Mapping and Evolving.
ERIC Educational Resources Information Center
Ding, Ying; Foo, Schubert
2002-01-01
Reviews ontology research and development, specifically ontology mapping and evolving. Highlights include an overview of ontology mapping projects; maintaining existing ontologies and extending them as appropriate when new information or knowledge is acquired; and ontology's role and the future of the World Wide Web, or Semantic Web. (Contains 55…
Drawing the Line with Google Earth: The Place of Digital Mapping outside of Geography
ERIC Educational Resources Information Center
Mercier, O. Ripeka; Rata, Arama
2017-01-01
The "Te Kawa a Maui Atlas" project explores how mapping activities support undergraduate student engagement and learning in Maori studies. This article describes two specific assignments, which used online mapping allowing students to engage with the work of their peers. By analysing student evaluations of these activities, we identify…
Measuring Social Capital Change Using Ripple Mapping
ERIC Educational Resources Information Center
Baker, Barbara; Johannes, Elaine M.
2013-01-01
This article provides a detailed description of how to implement a ripple mapping activity to assess youth program effects on community capital and concludes with examples from Maine and Kansas. The maps lead to group reflection on project outcomes and further research and evaluation questions for group members. The results from five Maine…
Using Digital Mapping Programs to Augment Student Learning in Social Studies
ERIC Educational Resources Information Center
Chandler, Thomas; An, Heejung
2007-01-01
Thomas Chandler and Heejung An describe how digital mapping technology can be incorporated into community-based K-12 social studies projects. According to Chandler and An, digital mapping can add value to the social studies curriculum by enabling students to better understand the interdependence between the lives of individuals and their…
NASA Astrophysics Data System (ADS)
Bajo, J. V.; Martinez-Hackert, B.; Polio, C.; Gutierrez, E.
2015-12-01
Santa Ana (Ilamatepec) Volcano is an active composite volcano located in the Apaneca Volcanic Field located in western part of El Salvador, Central America. The volcano is surrounded by rural communities in its proximal areas and the second (Santa Ana, 13 km) and fourth (Sonsosante, 15 km) largest cities of the country. On October 1st, 2005, the volcano erupted after months of increased activity. Following the eruption, volcanic mitigation projects were conducted in the region, but the communities had little or no input on them. This project consisted in the creation of lahar volcanic hazard map for the Canton Buanos Aires on the northern part of the volcano by incorporating the community's knowledge from prior events to model parameters and results. The work with the community consisted in several meetings where the community members recounted past events. They were asked to map the outcomes of those events using either a topographic map of the area, a Google Earth image, or a blank paper poster size. These maps have been used to identify hazard and vulnerable areas, and for model validation. These maps were presented to the communities and they accepted their results and the maps.
NASA Astrophysics Data System (ADS)
Rosenfield, Philip
2013-01-01
Graduate students in the astronomy department at the University of Washington began the Pre-Major in Astronomy Program (Pre-MAP) after recognizing that underrepresented students in STEM fields are not well retained after their transition from high school. Pre-MAP is a research and mentoring program that begins with a keystone seminar. First year students enroll in the Pre-MAP seminar to learn astronomical research techniques that they apply to research projects conducted in small groups. Students also receive one-on-one mentoring and peer support for the duration of the academic year and beyond. They are incorporated early into the department by attending Astronomy Department events and Pre-MAP field trips. Successful Pre-MAP students have declared astronomy and physics majors, expanded their research projects beyond the fall quarter, presented posters at the UW Undergraduate Research Symposium, and received research fellowships and summer internships. In this talk, we will discuss how we identified the issues that Pre-MAP was designed to address, what we've learned after six years of Pre-MAP, and share statistical results from a long-term quantitative comparison evaluation.
NASA Technical Reports Server (NTRS)
Skinner, J. A., Jr.; Tanaka, K. L.; Hare, T. M.
2009-01-01
The southern Utopia highland-lowland boundary (HLB) extends >1500 km westward from Hyblaeus Dorsa to the topographic saddle that separates Isidis and Utopia Planitiae. It contains bench-like platforms that contain depressions, pitted cones (some organized into arcuate chains and thumb-print terrain), isolated domes, buried circular depressions, ring fractures, polygonal fractures, and other locally- to regionally-dispersed landforms [1-2]. The objective of this map project is to clarify the geologic evolution of the southern Utopia Planitia HLB by identifying the geologic, structural, and stratigraphic relationships of surface materials in MTMs 10237, 15237, 20237, 10242, 15242, 20242, 10247, 15247, and 20247. The project was originally awarded in April, 2007 and is in its final year of support. Mapping is on-schedule and formal map submission will occur by December, 2009, with finalization anticipated by April, 2010. Herein, we (1) review specifics regarding mapping data and methods, (2) present nomenclature requests that we feel will assist with unit descriptions, (3) describe Year 2 mapping and science accomplishments, and (4) outline Year 3 technical and managerial approaches for finalizing the geologic map.
Landsat Maps in Student Teaching.
ERIC Educational Resources Information Center
Kirman, Joseph M.; Goldberg, Jack
1978-01-01
Describes the use of Landsat maps in a study to determine the feasibility of supervising student teachers with group telephone conferencing. Project value was determined by cooperating teacher evaluations, student-teacher comments, and pupil achievement. (MA)
2001-01-17
These maps are global false-color topographic views of Mars at different orientations from NASA Mars Orbiter Laser Altimeter MOLA. The maps are orthographic projections that contain over 200,000,000 points and about 5,000,000 altimetric crossovers.
7 CFR 1940.309 - Responsibilities of the prospective applicant.
Code of Federal Regulations, 2014 CFR
2014-01-01
... project elements and the proposed site(s) to include location maps, topographic maps, and photographs when... agency under Public Law 103-354 of a Soil Conservation Service (SCS) environmental assessment or...
Oregon Magnetic and Gravity Maps and Data: A Web Site for Distribution of Data
Roberts, Carter W.; Kucks, Robert P.; Hill, Patricia L.
2008-01-01
This web site gives the results of a USGS project to acquire the best available, public-domain, aeromagnetic and gravity data in the United States and merge these data into uniform, composite grids for each State. The results for the State of Oregon are presented here on this site. Files of aeromagnetic and gravity grids and images are available for these States for downloading. In Oregon, 49 magnetic surveys have been knit together to form a single digital grid and map. Also, a complete Bouguer gravity anomaly grid and map was generated from 40,665 gravity station measurements in and adjacent to Oregon. In addition, a map shows the location of the aeromagnetic surveys, color-coded to the survey flight-line spacing. This project was supported by the Mineral Resource Program of the USGS.
Hop, Kevin D.; Strassman, Andrew C.; Nordman, Carl; Pyne, Milo; White, Rickie; Jakusz, Joseph; Hoy, Erin E.; Dieck, Jennifer
2016-01-01
The National Park Service (NPS) Vegetation Mapping Inventory (VMI) Program is an effort to classify, describe, and map existing vegetation of national park units for the NPS Natural Resource Inventory and Monitoring (I&M) Program. The NPS VMI Program is managed by the NPS I&M Division and provides baseline vegetation information to the NPS Natural Resource I&M Program. The U.S. Geological Survey Upper Midwest Environmental Sciences Center, NatureServe, NPS Gulf Coast Network, and NPS Natchez Trace Parkway (NATR; also referred to as Parkway) have completed vegetation classification and mapping of NATR for the NPS VMI Program.Mappers, ecologists, and botanists collaborated to affirm vegetation types within the U.S. National Vegetation Classification (USNVC) of NATR and to determine how best to map them by using aerial imagery. Analyses of data from 589 vegetation plots had been used to describe an initial 99 USNVC associations in the Parkway; this classification work was completed prior to beginning this NATR vegetation mapping project. Data were collected during this project from another eight quick plots to support new vegetation types not previously identified at the Parkway. Data from 120 verification sites were collected to test the field key to vegetation associations and the application of vegetation associations to a sample set of map polygons. Furthermore, data from 900 accuracy assessment (AA) sites were collected (of which 894 were used to test accuracy of the vegetation map layer). The collective of all these datasets resulted in affirming 122 USNVC associations at NATR.To map the vegetation and open water of NATR, 63 map classes were developed. including the following: 54 map classes represent natural (including ruderal) vegetation types in the USNVC, 5 map classes represent cultural (agricultural and developed) vegetation types in the USNVC, 3 map classes represent nonvegetation open-water bodies (non-USNVC), and 1 map class represents landscapes that had received tornado damage a few months prior to the time of aerial imagery collection. Features were interpreted from viewing 4-band digital aerial imagery by means of digital onscreen three-dimensional stereoscopic workflow systems in geographic information systems. (The aerial imagery was collected during mid-October 2011 for the northern reach of the Parkway and mid-November 2011 for the southern reach of the Parkway to capture peak leaf-phenology of trees.) The interpreted data were digitally and spatially referenced, thus making the spatial-database layers usable in geographic information systems. Polygon units were mapped to either a 0.5 hectare (ha) or 0.25 ha minimum mapping unit, depending on vegetation type or scenario.A geodatabase containing various feature-class layers and tables present the locations of USNVC vegetation types (vegetation map), vegetation plot samples, verification sites, AA sites, project boundary extent, and aerial image centers. The feature-class layer and related tables for the vegetation map provide 13,529 polygons of detailed attribute data covering 21,655.5 ha, with an average polygon size of 1.6 ha; the vegetation map coincides closely with the administrative boundary for NATR.Summary reports generated from the vegetation map layer of the map classes representing USNVC natural (including ruderal) vegetation types apply to 12,648 polygons (93.5% of polygons) and cover 18,542.7 ha (85.6%) of the map extent for NATR. The map layer indicates the Parkway to be 70.5% forest and woodland (15,258.7 ha), 0.3% shrubland (63.0 ha), and 14.9% herbaceous cover (3,221.0 ha). Map classes representing USNVC cultural types apply to 678 polygons (5.0% of polygons) and cover 2,413.9 ha (11.1%) of the map extent.
Hickerson, E.L.; Schmahl, G.P.; Weaver, D.C.; Gardner, J.V.
2003-01-01
The Flower Garden Banks National Marine Sanctuary (FGBNMS) and the USGS Pacific Seafloor Mapping Project mapped about 2000 km2 of the northwestern Gulf of Mexico continental shelf during June 2002, using a Kongsberg Simrad EM1000 multibeam echosounder. Mapping focused on select topographic highs thave hae been idetnnfied as biological features warranting protection from oil and gas activities by the Minerals Management Service (MMS). The base maps will be used for all future ROV and submersible missions.
A Tangible Approach to Concept Mapping
NASA Astrophysics Data System (ADS)
Tanenbaum, Karen; Antle, Alissa N.
2009-05-01
The Tangible Concept Mapping project investigates using a tangible user interface to engage learners in concept map creation. This paper describes a prototype implementation of the system, presents some preliminary analysis of its ease of use and effectiveness, and discusses how elements of tangible interaction support concept mapping by helping users organize and structure their knowledge about a domain. The role of physical engagement and embodiment in supporting the mental activity of creating the concept map is explored as one of the benefits of a tangible approach to learning.
Passive mapping and intermittent exploration for mobile robots
NASA Technical Reports Server (NTRS)
Engleson, Sean P.
1994-01-01
An adaptive state space architecture is combined with diktiometric representation to provide the framework for designing a robot mapping system with flexible navigation planning tasks. This involves indexing waypoints described as expectations, geometric indexing, and perceptual indexing. Matching and updating the robot's projected position and sensory inputs with indexing waypoints involves matchers, dynamic priorities, transients, and waypoint restructuring. The robot's map learning can be opganized around the principles of passive mapping.
NASA Astrophysics Data System (ADS)
Leonov, Y.; Petrov, O. V.; Dong, S.; Morozov, A.; Shokalsky, S.; Pospelov, I.; Erinchek, Y.; Milshteyn, E.
2011-12-01
This project is launched by geological surveys of Russia, China, Mongolia, Kazakhstan and the Republic of Korea with participation of National Academies of Sciences under the aegis of the Commission for the Geological Map of the World since 2004. The project goal is the compilation and subsequent monitoring of the set of digital geological maps for the large part of the Asian continent (20 million km2). Each country finances its own part of the project while all the issues concerning methods and technologies are discussed collectively during annual meetings and joint filed excursions. At the 33d IGC, were shown 4 digital maps of the Atlas at 1: 2,5M - geological, tectonic, metallogenic and energy resources. Geological and energy resources maps were compiled and published by the Chinese part while tectonic and metallogenic maps by Russian side (VSEGEI, Saint-Petersburg). The geological map was also used as the base for the compilation of the other maps of the Atlas. On the tectonic map colours indicate several stages of the continental crust consolidation within fold belts, their tectonic reworking and rifting. The map also shows rock complexes-indicators of geodynamic settings. In the platform areas, the colour reflects the time of beginning of the sedimentary cover formation while its shades reflect the thickness of the sediments. The metallogenic map of the Atlas depicts 1380 objects of metallogenic zoning (from super-provinces to ore clusters) and is accompanied with a database (more than 5000 ore deposits). The map of energy resources with the database contains information on the of coal- and oil-and-gas-bearing basins and main coal and hydrocarbon deposits. In 2009 the study area was extended to the North, East and South in order to embrace bigger territory with ore-bearing Mesozoic-Cenozoic volcanic belts of the Asian continent's Pacific margin. According to nearest plans, discussed with the head of Rosnedra Dr. Anatoliy Ledovskikh and the director of the geological survey of China Dr. Wang Min, in two last years we are going to put into practice the following directions: 1. Study of deep processes and metallogeny of the northern passive and eastern active continental margins of Asia with using of new isotopic data along geotransects and the reprocessing of 3-component seismic data and 3D modeling of the region deep structure. 2. Correlation of the tectonic evolution of the Tibetan Plateau and Baikal rift system in Cenozoic, which is of great importance for understanding the geodynamic evolution of the Central Asia and seismic predictions. 3. Comparison of Siberian and Emeishan major volcanic provinces, accompanied with unique ore deposits. Last VSEGEI isotopic studies revealed the significant role of assimilation of metasedimentary upper crust rocks by mantle magma in the formation of unique Norilsk copper-nickel deposits. The results of the next stage of joint studies under the project will be presented at the 34th IGC, at which a scientific symposium "Geological and Metallogenic Responses to Deep Processes in Eastern Asia and Continental Margins" is to be held.
The Fulton School Recycling Project.
ERIC Educational Resources Information Center
Lindsay, Jean
1994-01-01
Outlines a school recycling project that started as a newspaper collection for library funds and evolved into a community service. Discusses problems that were overcome, strategies for implementation of the project, and related cross-curricular studies and activities. Contains two curriculum mind maps. (LZ)
TRANSVERSE MERCATOR MAP PROJECTION OF THE SPHEROID USING TRANSFORMATION OF THE ELLIPTIC INTEGRAL
NASA Technical Reports Server (NTRS)
Wallis, D. E.
1994-01-01
This program produces the Gauss-Kruger (constant meridional scale) Transverse Mercator Projection which is used to construct the U.S. Army's Universal Transverse Mercator (UTM) Grid System. The method is capable of mapping the entire northern hemisphere of the earth (and, by symmetry of the projection, the entire earth) accurately with respect to a single principal meridian, and is therefore mathematically insensitive to proximity either to the pole or the equator, or to the departure of the meridian from the central meridian. This program could be useful to any map-making agency. The program overcomes the limitations of the "series" method (Thomas, 1952) presently used to compute the UTM Grid, specifically its complicated derivation, non-convergence near the pole, lack of rigorous error analysis, and difficulty of obtaining increased accuracy. The method is based on the principle that the parametric colatitude of a point is the amplitude of the Elliptic Integral of the 2nd Kind, and this (irreducible) integral is the desired projection. Thus, a specification of the colatitude leads, most directly (and with strongest motivation) to a formulation in terms of amplitude. The most difficult problem to be solved was setting up the method so that the Elliptic Integral of the 2nd Kind could be used elsewhere than on the principal meridian. The point to be mapped is specified in conventional geographic coordinates (geodetic latitude and longitudinal departure from the principal meridian). Using the colatitude (complement of latitude) and the longitude (departure), the initial step is to map the point to the North Polar Stereographic Projection. The closed-form, analytic function that coincides with the North Polar Stereographic Projection of the spheroid along the principal meridian is put into a Newton-Raphson iteration that solves for the tangent of one half the parametric colatitude, generalized to the complex plane. Because the parametric colatitude is the amplitude of the (irreducible) Incomplete Elliptic Integral of the 2nd Kind, the value for the tangent of one half the amplitude of the Elliptic Integral of the 2nd Kind is now known. The elliptic integral may now be computed by any desired method, and the result will be the Gauss-Kruger Transverse Mercator Projection. This result is a consequence of the fact that these steps produce a computation of real distance along the image (in the plane) of the principal meridian, and an analytic continuation of the distance at points that don't lie on the principal meridian. The elliptic-integral method used by this program is one of the "transformations of the elliptic integral" (similar to Landen's Transformation), appearing in standard handbooks of mathematical functions. Only elementary transcendental functions are utilized. The program output is the conventional (as used by the mapping agencies) cartesian coordinates, in meters, of the Transverse Mercator projection. The origin is at the intersection of the principal meridian and the equator. This FORTRAN77 program was developed on an IBM PC series computer equipped with an Intel Math Coprocessor. Double precision complex arithmetic and transcendental functions are needed to support a projection accuracy of 1 mm. Because such functions are not usually part of the FORTRAN library, the needed functions have been explicitly programmed and included in the source code. The program was developed in 1989. TRANSVERSE MERCATOR MAP PROJECTION OF THE SPHEROID USING TRANSFORMATIONS OF THE ELLIPTIC INTEGRAL is a copyrighted work with all copyright vested in NASA.
NASA Astrophysics Data System (ADS)
Rus, I.; Balint, C.; Craciunescu, V.; Constantinescu, S.; Ovejanu, I.; Bartos-Elekes, Zs.
2009-04-01
Before the 1918 Union, the Romanian territories were subject of several dominations, for which reason the cartographic data base for each Romanian province was different from an area to another. Starting from the second half of the 19th century, Valachia, Moldavia and Dobrogea (Dacia Pontica or Scitia Minor) field mapping was made, implicitly cartographic representations, different as structure. The projection systems used, the chosen geoid, the nomenclature and the distribution of the map pages were not uniform. For an example, the Bessel ellipsoid and the Cassini cross cylindrical projection were used especially to the eastern side of the Zimnicea central meridian (23 degree east from Paris), while to its western side the Bonne conic equivalent projection was used, as defined on the Clarke ellipsoid (Năstase, 1975, pages 86-87). In the other Romanian provinces, such as Transylvania, Romanian Banat, Bessarabia (Moldavia Republic) and Southern Bucovina, the major part of the cartographic products (surface contour maps) were made as polyhedral projections. During the World War I, when artillery was a redoubtable weapon a necessary idea was born to articulate an unitary cartographic projection concerning the entire Romanian territory, which should respond to the principle of conformity. Between 1916-1917, pursuant to the above argumented measure, a new datum/location surface, a new projection system and a new nomenclature were introduced. The Lambert projection system was used as modified by the French land surveyor, the mathematician and officer Andre Louis Cholensky. He was born in 1875 in Mont Guyon and passed away on the battle field in Northern France in the month of August 1918. During September 1916 up to February 1918, following the Franco-Romanian military convention, he was a Commander of the Geographic Department of the Romanian Army (Brezinsky-Gross-Cholensky, 1996). The calculations for passing from the various projections (as previously mentioned), into the Lambert-Cholensky projection, were made by the Romanian officers. The basic map, called „Plan Director de Tragere" was drafted under 1:20000 scale in 2118 drawings, covering all the Romanian territory. Under graphical aspect, such drawings had a 75 cm length (the equivalent of 15 km of land), respectively 50 cm (the equivalent of 12 km of land). Usually, at the upper part of the map, frequently to the left side, less frequently to the right side, the drawings nomenclature appeared, made following the principle: the first two letter meant the columns number and the last two characters represented the lines number. So, the drawing whose south-west corner had the Cartesian co-ordinate of 10 km, 20 km would have received the codification 1020. The manual georeference of the entire map sheets database is a meticulous and time consuming process. To overcome this disadvantages and to increase the rectification precision an automated procedure was created. The whole process of raster sheets georeference is done by a specially developed tool which relay on radon transform to extract, even in degraded and noisy conditions of original rasters, all the straight lines and form a graticule network. Then, by knowing the sheets spatial positions out of its labeling schema, all intersection points in the graticule are labeled with correct coordinates, so by this way sheets are rapidly batch georeferenced in the most accurate fashion.
NASA Astrophysics Data System (ADS)
Nass, A.
2017-12-01
Since the late 1950s a huge number of planetary missions started to explore our solar system. The data resulting from this robotic exploration and remote sensing varies in data type, resolution and target. After data preprocessing, and referencing, the released data are available for the community on different portals and archiving systems, e.g. PDS or PSA. One major usage for these data is mapping, i.e. the extraction and filtering of information by combining and visualizing different kind of base data. Mapping itself is conducted either for mission planning (e.g. identification of landing site) or fundamental research (e.g. reconstruction of surface). The mapping results for mission planning are directly managed within the mission teams. The derived data for fundamental research - also describable as maps, diagrams, or analysis results - are mainly project-based and exclusively available in scientific papers. Within the last year, first steps have been taken to ensure a sustainable use of these derived data by finding an archiving system comparable to the data portals, i.e. reusable, well-documented, and sustainable. For the implementation three tasks are essential. Two tasks have been treated in the past 1. Comparability and interoperability has been made possible by standardized recommendations for visual, textual, and structural description of mapping data. 2. Interoperability between users, information- and graphic systems is possible by templates and guidelines for digital GIS-based mapping. These two steps are adapted e.g. within recent mapping projects for the Dawn mission. The third task hasn`t been implemented thus far: Establishing an easily detectable and accessible platform that holds already acquired information and published mapping results for future investigations or mapping projects. An archive like this would support the scientific community significantly by a constant rise of knowledge and understanding based on recent discussions within Information Science and Management, and Data Warehousing. This contribution describes the necessary map archive components that have to be considered for an efficient establishment and user-oriented accessibility. It will be described how already existing developments could be used, and which components will have to be developed yet.
An ocean gazetteer for education and research
NASA Astrophysics Data System (ADS)
Delaney, R.; Staudigel, D.; Staudigel, H.
2003-04-01
Global travel, economy, and news coverage often challenge the student's and teacher's knowledge of the geography of the seas. The International Hydrographic Organization (IHO) has published a description of all the major seas making up earth's oceans, but there is currently no electronic tool that identifies them on a digital map. During an internship at Scripps Institution of Oceanography, we transferred the printed visual description of the seas from IHO publication 23 into a digital format. This digital map was turned into a (Flash) web application that allows a user to identify any of the IHO seas on a world map, simply by moving the computer cursor over it. In our presentation, we will describe the path taken to produce this web application and the learning process involved in this path during our internship at Scripps. The main steps in this process included the digitization of the official IHO maps, the transfer of this information onto a modern digital map by Smith and Sandwell. Adjustments were necessary due to the fact that many of the landmasses were placed incorrectly on a lat/long grid, off by as much as 100km. Boundaries between seas were often misrepresented by the IHO as straight lines on a Mercator projection. Once the digitization of the seas was completed we used the 2d animation environment Flash and we produced an interactive map environment that allows any teacher or student of ocean geography to identify an ocean by name and location. Aside from learning about the geography of the oceans, we were introduced to the use of digitizers, we learned to make maps using Generic Mapping Tools (GMT) and digital global bathymetry data sets, and we learned about map projections. We studied Flash to produce an interactive map of the oceans that displays bathymetry and topography, highlighting any particular sea the cursor moves across. The name of the selected sea in our Flash application appears in a textbox on the bottom of the map. The result of this project can be found at http://earthref.org/PACER/beta/IH023seas.
High-Resolution Land Use and Land Cover Mapping
,
1999-01-01
As the Nation?s population grows, quantifying, monitoring, and managing land use becomes increasingly important. The U.S. Geological Survey (USGS) has a long heritage of leadership and innovation in land use and land cover (LULC) mapping that has been the model both nationally and internationally for over 20 years. At present, the USGS is producing high-resolution LULC data for several watershed and urban areas within the United States. This high-resolution LULC mapping is part of an ongoing USGS Land Cover Characterization Program (LCCP). The four components of the LCCP are global (1:2,000,000-scale), national (1:100,000-scale), urban (1:24,000-scale), and special projects (various scales and time periods). Within the urban and special project components, the USGS Rocky Mountain Mapping Center (RMMC) is collecting historical as well as contemporary high-resolution LULC data. RMMC?s high-resolution LULC mapping builds on the heritage and success of previous USGS LULC programs and provides LULC information to meet user requirements.
NASA Technical Reports Server (NTRS)
Saunders, R. S.; Spear, A. J.; Allin, P. C.; Austin, R. S.; Berman, A. L.; Chandlee, R. C.; Clark, J.; Decharon, A. V.; De Jong, E. M.; Griffith, D. G.
1992-01-01
Magellan started mapping the planet Venus on September 15, 1990, and after one cycle (one Venus day or 243 earth days) had mapped 84 percent of the planet's surface. This returned an image data volume greater than all past planetary missions combined. Spacecraft problems were experienced in flight. Changes in operational procedures and reprogramming of onboard computers minimized the amount of mapping data lost. Magellan data processing is the largest planetary image-processing challenge to date. Compilation of global maps of tectonic and volcanic features, as well as impact craters and related phenomena and surface processes related to wind, weathering, and mass wasting, has begun. The Magellan project is now in an extended mission phase, with plans for additional cycles out to 1995. The Magellan project will fill in mapping gaps, obtain a global gravity data set between mid-September 1992 and May 1993, acquire images at different view angles, and look for changes on the surface from one cycle to another caused by surface activity such as volcanism, faulting, or wind activity.
Data-driven cluster reinforcement and visualization in sparsely-matched self-organizing maps.
Manukyan, Narine; Eppstein, Margaret J; Rizzo, Donna M
2012-05-01
A self-organizing map (SOM) is a self-organized projection of high-dimensional data onto a typically 2-dimensional (2-D) feature map, wherein vector similarity is implicitly translated into topological closeness in the 2-D projection. However, when there are more neurons than input patterns, it can be challenging to interpret the results, due to diffuse cluster boundaries and limitations of current methods for displaying interneuron distances. In this brief, we introduce a new cluster reinforcement (CR) phase for sparsely-matched SOMs. The CR phase amplifies within-cluster similarity in an unsupervised, data-driven manner. Discontinuities in the resulting map correspond to between-cluster distances and are stored in a boundary (B) matrix. We describe a new hierarchical visualization of cluster boundaries displayed directly on feature maps, which requires no further clustering beyond what was implicitly accomplished during self-organization in SOM training. We use a synthetic benchmark problem and previously published microbial community profile data to demonstrate the benefits of the proposed methods.
Gardner, James V.; Hughes-Clarke, John E.
1998-01-01
The major objective of cruise A1-98 was to map portions of the insular slopes of Oahu, Kauai, Maui, Molokai, and Hawaii and to survey in detail US Environmental Protection Agency (USEPA) ocean dumping sites using a Simrad EM300 high-resolution multibeam mapping system. The cruise was a jointly funded project between the US Army Corps of Engineers (USCOE), USEPA, and the US Geological Survey (USGS). The USACOE and EPA are interested in these areas because of a series of ocean dump sites off Oahu, Kauai, Maui, and Hawaii (Fig. 1) that require high-resolution base maps for site monitoring purposes. The USGS Coastal and Marine Geology Program has several on-going projects off Oahu and Maui that lack high-precision base maps for a variety of ongoing geological studies. The cruise was conducted under a Cooperative Agreement between the USGS and the Ocean Mapping Group, University of New Brunswick, Canada.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, Lloyd A.; Paresol, Bernard
This report of the geostatistical analysis results of the fire fuels response variables, custom reaction intensity and total dead fuels is but a part of an SRS 2010 vegetation inventory project. For detailed description of project, theory and background including sample design, methods, and results please refer to USDA Forest Service Savannah River Site internal report “SRS 2010 Vegetation Inventory GeoStatistical Mapping Report”, (Edwards & Parresol 2013).
2012-09-01
under the auspices of federal and state research programs or in conjunction with Corps of Engineers project planning efforts. In the process , a...in the field effort and assembled and processed the original project GIS data. Malcolm Williamson (Center for Advanced Spatial Technologies...further improve drainage. ERDC/EL TR-12-28 5 3 Using the PNV map as a model for restoration The PNV mapping process was conceived as a way to
Using a Web-based GIS to Teach Problem-based Science in High School and College
NASA Astrophysics Data System (ADS)
Metzger, E.; Lenkeit Meezan, , K. A.; Schmidt, C.; Taketa, R.; Carter, J.; Iverson, R.
2008-12-01
Foothill College has partnered with San Jose State University to bring GIS web mapping technology to the high school and college classroom. The project consists of two parts. In the first part, Foothill and San Jose State University have teamed up to offer classes on building and maintaining Web based Geographic Information Systems (GIS). Web-based GIS such as Google Maps, MapQuest and Yahoo Maps have become ubiquitous, and the skills to build and maintain these systems are in high demand from many employers. In the second part of the project, high school students will be able to learn about Web GIS as a real world tool used by scientists. The students in the Foothill College/San Jose State class will build their Web GIS using scientific data related to the San Francisco/San Joaquin Delta region, with a focus on watersheds, biodiversity and earthquake hazards. This project includes high school level curriculum development that will tie in to No Child Left Behind and National Curriculum Standards in both Science and Geography, and provide workshops for both pre-and in- service teachers in the use of Web GIS-driven course material in the high school classroom. The project will bring the work of professional scientists into any high school classroom with an internet connection; while simultaneously providing workforce training in high demand technology based jobs.
Understanding earthquake hazards in urban areas - Evansville Area Earthquake Hazards Mapping Project
Boyd, Oliver S.
2012-01-01
The region surrounding Evansville, Indiana, has experienced minor damage from earthquakes several times in the past 200 years. Because of this history and the proximity of Evansville to the Wabash Valley and New Madrid seismic zones, there is concern among nearby communities about hazards from earthquakes. Earthquakes currently cannot be predicted, but scientists can estimate how strongly the ground is likely to shake as a result of an earthquake and are able to design structures to withstand this estimated ground shaking. Earthquake-hazard maps provide one way of conveying such information and can help the region of Evansville prepare for future earthquakes and reduce earthquake-caused loss of life and financial and structural loss. The Evansville Area Earthquake Hazards Mapping Project (EAEHMP) has produced three types of hazard maps for the Evansville area: (1) probabilistic seismic-hazard maps show the ground motion that is expected to be exceeded with a given probability within a given period of time; (2) scenario ground-shaking maps show the expected shaking from two specific scenario earthquakes; (3) liquefaction-potential maps show how likely the strong ground shaking from the scenario earthquakes is to produce liquefaction. These maps complement the U.S. Geological Survey's National Seismic Hazard Maps but are more detailed regionally and take into account surficial geology, soil thickness, and soil stiffness; these elements greatly affect ground shaking.
GIS integration of the 1:75,000 Romanian topographic map series from the World War I
NASA Astrophysics Data System (ADS)
Timár, G.; Mugnier, C. J.
2009-04-01
During the WWI, the Kingdom of Romania developed a 1:75,000 topographic map series, covering not only the actual territory of the country (the former Danube Principalities and Dobrogea) but also Bessarabia (now the Republic of Moldova), which was under Russian rule. The map sheets were issued between 1914 and 1917. The whole map consists of two zones; Columns A-F are the western zone, while Columns G-Q are belonging to the eastern one. To integrate the scanned map sheets to a geographic information system (GIS), the parameters of the map projection and the geodetic datum should be defined as well as the sheet labelling system. The sheets have no grid lines indicated; most of them have latitude and longitude lines but some of them have no coordinate descriptions. The sheets, however, can be rectified using their four corners as virtual control points, and using the following grid and datum parameters: Eastern zone: • Projection type: Bonne. • Projection center: latitude=46d 30m; longitude=27d 20m 13.35s (from Greenwich). • Base ellipsoid: Bessel 1841 • Datum parameters (from local to WGS84): dX=+875 m; dY=-119 m; dZ=+313 m. • Sheet size: 40*40 kilometers, projection center is the NW corner of the 779 (Column L; Row VII) sheet. Western zone: • Projection type: Bonne. • Projection center: latitude=45d; longitude=26d 6m 41.18s (from Greenwich); • Base ellipsoid: Bessel 1841 • Datum parameters (from local to WGS84): dX=+793 m; dY=+364 m; dZ=+173 m. • Sheet size: 0.6*0.4 grad (new degrees), except Column F, which is wider to east to fill the territory to the zone boundary. In Columns E and F geographic coordinates are indicated in new degrees, with the prime meridian of Bucharest. Apart from the system of columns and rows, each sheet has its own label of three or four digit. The last two digit correspond to the column number (69 for Column A going up to 84 for Column Q) while the first digit(s) refer directly to row number (1-15). During the rectification process, the coordinates of the corners (the control points) should be defined in the respective Bonne zone projected coordinates. It can be done by simple additions in the eastern zone but it needs conversion from geographic to projected coordinates in the western one. The general accuracy of this geo-referencing method is up to 200 meters - this error is the same in the 1:75,000 series of the Habsburg Empire made from the 1880s.
Preconditioned Alternating Projection Algorithms for Maximum a Posteriori ECT Reconstruction
Krol, Andrzej; Li, Si; Shen, Lixin; Xu, Yuesheng
2012-01-01
We propose a preconditioned alternating projection algorithm (PAPA) for solving the maximum a posteriori (MAP) emission computed tomography (ECT) reconstruction problem. Specifically, we formulate the reconstruction problem as a constrained convex optimization problem with the total variation (TV) regularization. We then characterize the solution of the constrained convex optimization problem and show that it satisfies a system of fixed-point equations defined in terms of two proximity operators raised from the convex functions that define the TV-norm and the constrain involved in the problem. The characterization (of the solution) via the proximity operators that define two projection operators naturally leads to an alternating projection algorithm for finding the solution. For efficient numerical computation, we introduce to the alternating projection algorithm a preconditioning matrix (the EM-preconditioner) for the dense system matrix involved in the optimization problem. We prove theoretically convergence of the preconditioned alternating projection algorithm. In numerical experiments, performance of our algorithms, with an appropriately selected preconditioning matrix, is compared with performance of the conventional MAP expectation-maximization (MAP-EM) algorithm with TV regularizer (EM-TV) and that of the recently developed nested EM-TV algorithm for ECT reconstruction. Based on the numerical experiments performed in this work, we observe that the alternating projection algorithm with the EM-preconditioner outperforms significantly the EM-TV in all aspects including the convergence speed, the noise in the reconstructed images and the image quality. It also outperforms the nested EM-TV in the convergence speed while providing comparable image quality. PMID:23271835
The 1:3M geologic map of Mercury: progress and updates
NASA Astrophysics Data System (ADS)
Galluzzi, Valentina; Guzzetta, Laura; Mancinelli, Paolo; Giacomini, Lorenza; Malliband, Christopher C.; Mosca, Alessandro; Wright, Jack; Ferranti, Luigi; Massironi, Matteo; Pauselli, Cristina; Rothery, David A.; Palumbo, Pasquale
2017-04-01
After the end of Mariner 10 mission a 1:5M geologic map of seven of the fifteen quadrangles of Mercury [Spudis and Guest, 1988] was produced. The NASA MESSENGER mission filled the gap by imaging 100% of the planet with a global average resolution of 200 m/pixel and this led to the production of a global 1:15M geologic map of the planet [Prockter et al., 2016]. Despite the quality gap between Mariner 10 and MESSENGER images, no global geological mapping project with a scale larger than 1:5M has been proposed so far. Here we present the status of an ongoing project for the geologic mapping of Mercury at an average output scale of 1:3M based on the available MESSENGER data. This project will lead to a fuller grasp of the planet's stratigraphy and surface history. Completing such a product for Mercury is an important goal in preparation for the forthcoming ESA/JAXA BepiColombo mission to aid selection of scientific targets and to provide context for interpretation of new data. At the time of this writing, H02 Victoria [Galluzzi et al., 2016], H03 Shakespeare [Guzzetta et al., 2016] and H04 Raditladi [Mancinelli et al., 2016] have been completed and H05 Hokusai [Rothery et al., 2017], H06 Kuiper [Giacomini et al., 2017], H07 Beethoven and H10 Derain [Malliband et al., 2017] are being mapped. The produced geologic maps were merged using the ESRI ArcGIS software adjusting discontinuous contacts along the quadrangle boundaries. Contact discrepancies were reviewed and discussed among the mappers of adjoining quadrangles in order to match the geological interpretation and provide a unique consistent stratigraphy. At the current stage, more than 20% of Mercury has now a complete 1:3M map and more than 40% of the planet will be covered soon by the maps that are being prepared. This research was supported by the Italian Space Agency (ASI) within the SIMBIOSYS project (ASI-INAF agreement no. I/022/10/0). References Galluzzi V. et al. (2016). Geology of the Victoria Quadrangle (H02), Mercury. J. Maps, 12, 226-238. Giacomini L. et al. (2017). Geological mapping of the Kuiper quadrangle (H06) of Mercury. EGU General Assembly 2017, Abs. #14574. Guzzetta L. et al. (2016). Geologic map of the Shakespeare Quadrangle (H03) of Mercury. 88th Congress of the Italian Geological Society, 7-9 Sep 2016, Naples. Malliband C.C. et al. (2017). Preliminary results of 1:3million geological mapping of the Mercury quadrangle H-10 (Derain). XLVIII LPSC Abs., #1476. Mancinelli P. et al. (2016). Geology of the Raditladi Quadrangle, Mercury (H04). J. Maps, 12, 190-202. Prockter L. M. et al. (2016). The First Global Geological Map of Mercury. XLVII LPSC., Abs. #1245. Rothery D. A. et al. (2017). Geological mapping of the Hokusai (H05) quadrangle of Mercury. XLVIII LPSC, Abs. #1406. Spudis P. D. and Guest J. E. (1988). Stratigraphy and geologic history of Mercury. In: Vilas F., Chapman, C. R. and Matthews M. S. Eds., Mercury, 118-164. The University of Arizona Press, Tucson.
Geologic Map Database of Texas
Stoeser, Douglas B.; Shock, Nancy; Green, Gregory N.; Dumonceaux, Gayle M.; Heran, William D.
2005-01-01
The purpose of this report is to release a digital geologic map database for the State of Texas. This database was compiled for the U.S. Geological Survey (USGS) Minerals Program, National Surveys and Analysis Project, whose goal is a nationwide assemblage of geologic, geochemical, geophysical, and other data. This release makes the geologic data from the Geologic Map of Texas available in digital format. Original clear film positives provided by the Texas Bureau of Economic Geology were photographically enlarged onto Mylar film. These films were scanned, georeferenced, digitized, and attributed by Geologic Data Systems (GDS), Inc., Denver, Colorado. Project oversight and quality control was the responsibility of the U.S. Geological Survey. ESRI ArcInfo coverages, AMLs, and shapefiles are provided.
Sampling probability distributions of lesions in mammograms
NASA Astrophysics Data System (ADS)
Looney, P.; Warren, L. M.; Dance, D. R.; Young, K. C.
2015-03-01
One approach to image perception studies in mammography using virtual clinical trials involves the insertion of simulated lesions into normal mammograms. To facilitate this, a method has been developed that allows for sampling of lesion positions across the cranio-caudal and medio-lateral radiographic projections in accordance with measured distributions of real lesion locations. 6825 mammograms from our mammography image database were segmented to find the breast outline. The outlines were averaged and smoothed to produce an average outline for each laterality and radiographic projection. Lesions in 3304 mammograms with malignant findings were mapped on to a standardised breast image corresponding to the average breast outline using piecewise affine transforms. A four dimensional probability distribution function was found from the lesion locations in the cranio-caudal and medio-lateral radiographic projections for calcification and noncalcification lesions. Lesion locations sampled from this probability distribution function were mapped on to individual mammograms using a piecewise affine transform which transforms the average outline to the outline of the breast in the mammogram. The four dimensional probability distribution function was validated by comparing it to the two dimensional distributions found by considering each radiographic projection and laterality independently. The correlation of the location of the lesions sampled from the four dimensional probability distribution function across radiographic projections was shown to match the correlation of the locations of the original mapped lesion locations. The current system has been implemented as a web-service on a server using the Python Django framework. The server performs the sampling, performs the mapping and returns the results in a javascript object notation format.
A calibration method immune to the projector errors in fringe projection profilometry
NASA Astrophysics Data System (ADS)
Zhang, Ruihua; Guo, Hongwei
2017-08-01
In fringe projection technique, system calibration is a tedious task to establish the mapping relationship between the object depths and the fringe phases. Especially, it is not easy to accurately determine the parameters of the projector in this system, which may induce errors in the measurement results. To solve this problem, this paper proposes a new calibration by using the cross-ratio invariance in the system geometry for determining the phase-to-depth relations. In it, we analyze the epipolar eometry of the fringe projection system. On each epipolar plane, the depth variation along an incident ray induces the pixel movement along the epipolar line on the image plane of the camera. These depth variations and pixel movements can be connected by use of the projective transformations, under which condition the cross-ratio for each of them keeps invariant. Based on this fact, we suggest measuring the depth map by use of this cross-ratio invariance. Firstly, we shift the reference board in its perpendicular direction to three positions with known depths, and measure their phase maps as the reference phase maps; and secondly, when measuring an object, we calculate the object depth at each pixel by equating the cross-ratio of the depths to that of the corresponding pixels having the same phase on the image plane of the camera. This method is immune to the errors sourced from the projector, including the distortions both in the geometric shapes and in the intensity profiles of the projected fringe patterns.The experimental results demonstrate the proposed method to be feasible and valid.
Statewide GIS mapping of recurring congestion corridors : final report.
DOT National Transportation Integrated Search
2009-07-01
Recurring congestion occurs when travel demand reaches or exceeds the available roadway : capacity. This project developed an interactive geographic information system (GIS) map of the : recurring congestion corridors (labeled herein as hotspots) in ...
NASA Astrophysics Data System (ADS)
Dietrich, Peter; Werban, Ulrike; Sauer, Uta
2010-05-01
High-resolution soil property maps are one major prerequisite for the specific protection of soil functions and restoration of degraded soils as well as sustainable land use, water and environmental management. To generate such maps the combination of digital soil mapping approaches and remote as well as proximal soil sensing techniques is most promising. However, a feasible and reliable combination of these technologies for the investigation of large areas (e.g. catchments and landscapes) and the assessment of soil degradation threats is missing. Furthermore, there is insufficient dissemination of knowledge on digital soil mapping and proximal soil sensing in the scientific community, to relevant authorities as well as prospective users. As one consequence there is inadequate standardization of techniques. At the poster we present the EU collaborative project iSOIL within the 7th framework program of the European Commission. iSOIL focuses on improving fast and reliable mapping methods of soil properties, soil functions and soil degradation risks. This requires the improvement and integration of advanced soil sampling approaches, geophysical and spectroscopic measuring techniques, as well as pedometric and pedophysical approaches. The focus of the iSOIL project is to develop new and to improve existing strategies and innovative methods for generating accurate, high resolution soil property maps. At the same time the developments will reduce costs compared to traditional soil mapping. ISOIL tackles the challenges by the integration of three major components: (i)high resolution, non-destructive geophysical (e.g. Electromagnetic Induction EMI; Ground Penetrating Radar, GPR; magnetics, seismics) and spectroscopic (e.g., Near Surface Infrared, NIR) methods, (ii)Concepts of Digital Soil Mapping (DSM) and pedometrics as well as (iii)optimized soil sampling with respect to profound soil scientific and (geo)statistical strategies. A special focus of iSOIL lies on the sustainable dissemination of technologies and concepts developed in the projects through workshops for stakeholders and the publication of a handbook "Methods and Technologies for Mapping of Soil Properties, Function and Threat Risks". Besides, the CEN Workshop offers a new mechanism and approach to standardization. During the project we decided that the topic of the CEN Workshop should focus on a voluntary standardization of electromagnetic induction measurement to ensure that results can be evaluated and processed under uniform circumstances and can be comparable. At the poster we will also present the idea and the objectives of our CEN Workshop "Best Practice Approach for electromagnetic induction measurements of the near surface"and invite every interested person to participate.
Middle Atmosphere Program. Handbook for MAP, volume 11
NASA Technical Reports Server (NTRS)
Sechrist, C. F., Jr. (Editor)
1984-01-01
An overview is presented of the research activities and objectives of the middle atmosphere program (MAP). Status reports are presented of projects underway in the area of middle atmosphere climatology and atmospheric chemistry condensed minutes of MAP steering committee meetings are contained in this volume. Research recommendations for increased U.S. participation in the middle atmosphere program are given.
Mapping Civic Engagement: A Case Study of Service-Learning in Appalachia
ERIC Educational Resources Information Center
Mann, Jessica; Casebeer, Daniel
2016-01-01
This study uses social cartography to map student perceptions of a co-curricular service-learning project in an impoverished rural community. As a complement to narrative discourse, mapping provides an opportunity to visualize not only the spatial nature of the educational experience but also, in this case, the benefits of civic engagement. The…
Burn severity mapping using simulation modeling and satellite imagery
Eva C. Karau; Robert E. Keane
2010-01-01
Although burn severity maps derived from satellite imagery provide a landscape view of fire impacts, fire effects simulation models can provide spatial fire severity estimates and add a biotic context in which to interpret severity. In this project, we evaluated two methods of mapping burn severity in the context of rapid post-fire assessment for four wildfires in...
An Adult Education Study of Participatory Community Mapping for Indigenous Knowledge Production
ERIC Educational Resources Information Center
Campbell, Craig A., Jr.
2010-01-01
This dissertation explores the notion of participatory community mapping (PCM) for Indigenous knowledge production. Three major questions were posed in the study. First, how can PCM foster Indigenous knowledge production and documentation? Second, how can PCM be used to include local voice and input in mapping projects, and third, how can adult…
Integrating Vegetation Classification, Mapping, and Strategic Inventory for Forest Management
C. K. Brewer; R. Bush; D. Berglund; J. A. Barber; S. R. Brown
2006-01-01
Many of the analyses needed to address multiple resource issues are focused on vegetation pattern and process relationships and most rely on the data models produced from vegetation classification, mapping, and/or inventory. The Northern Region Vegetation Mapping Project (R1-VMP) data models are based on these three integrally related, yet separate processes. This...
Mapping Martinique's forests and other natural lands for land planning and development
Remi Teissier du Cros; Claude Vidal
2009-01-01
The Regional Council of Martinique has chosen the French national forest inventory to realize Martinique's forest and other natural lands map. The project is divided into the three following steps: (1) nomenclature proposal and study area delineation; (2) mapping of the vegetation based on 2005 airborne orthophotographs, Geographic Information System-based slope...
Mapping severe fire potential across the contiguous United States
Brett H. Davis
2016-01-01
The Fire Severity Mapping System (FIRESEV) project is an effort to provide critical information and tools to fire managers that enhance their ability to assess potential ecological effects of wildland fire. A major component of FIRESEV is the development of a Severe Fire Potential Map (SFPM), a geographic dataset covering the contiguous United States (CONUS) that...
Integrating a Digital Concept Mapping into a PPT Slide Writing Project
ERIC Educational Resources Information Center
Yen, Ai Chun; Yang, Pei Yi
2013-01-01
Carried out during a semester-long EFL (English as a foreign language) drama class, this research aimed to scrutinize the effects of digital concept mapping via LMS on English majors' (N = 38) PowerPoint (PPT) slide writing skills in Taiwan. Students were instructed to follow the concept mapping agenda via university learning management system…
43 CFR 3931.60 - Maps of underground and surface mine workings and in situ surface operations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... workings and in situ surface operations. 3931.60 Section 3931.60 Public Lands: Interior Regulations....60 Maps of underground and surface mine workings and in situ surface operations. Maps of underground... reference to sea level. When required by the BLM, include vertical projections and cross sections in plan...
Land cover change map comparisons using open source web mapping technologies
Erik Lindblom; Ian Housman; Tony Guay; Mark Finco; Kevin Megown
2015-01-01
The USDA Forest Service is evaluating the status of current landscape change maps and assessing gaps in their information content. These activities have been occurring under the auspices of the Landscape Change Monitoring System (LCMS) project, which is a joint effort between USFS Research, USFS Remote Sensing Applications Center (RSAC), USGS Earth Resources...
ERIC Educational Resources Information Center
Ordonez-Jasis, Rosario; Jasis, Pablo
2011-01-01
In this article the authors explore a language and literacy community mapping project carried out by public school teachers in southern California. They chronicle the knowledge produced by teachers about the depth and diversity of language and literacy resources present in the neighborhoods surrounding their various urban school sites. (Contains 6…
Digital mapping in extreme and remote environments
NASA Astrophysics Data System (ADS)
Andersson, Joel; Bauer, Tobias; Sarlus, Zimer; Zainy, Maher; Brethes, Anais
2017-04-01
During the last few years, Luleå University of Technology has performed a series of research projects in remote areas with extreme climatic conditions using digital mapping technologies. The majority of past and ongoing research projects focus on the arctic regions of the Fennoscandian Shield and Greenland but also on the Zagros fold-and-thrust belt in northern Iraq. Currently, we use the Midland Valley application FieldMove on iPad mini devices with ruggedized casings. As all projects have a strong focus on geological field work, harsh climatic conditions are a challenge not only for the geologists but also for the digital mapping hardware. In the arctic regions especially cold temperatures affect battery lifetime and performance of the screens. But also high temperatures are restricting digital mapping. From experience, a typical temperature range where digital mapping, using iPad tablets, is possible lies between -20 and +40 degrees. Furthermore, the remote character of field areas complicates access but also availability of electricity. By a combination of robust solar chargers and ruggedized batteries we are able to work entirely autarkical. Additionally, we are currently installing a drone system that allows us to map outcrops normally inaccessible because of safety reasons or time deficiency. The produced data will subsequently be taken into our Virtual Reality studio for interpretation and processing. There we will be able to work also with high resolution DEM data from Lidar scanning allowing us to interpret structural features such as post-glacial faults in areas that are otherwise only accessible by helicopter. By combining digital field mapping with drone technique and a Virtual Reality studio we are able to work in hardly accessible areas, improve safety during field work and increase efficiency substantially.
2013-06-01
08-1-0358 TITLE: Multiadaptive Plan (MAP) IMRT to Accommodate Independent Movement of the Prostate and Pelvic Lymph Nodes PRINCIPAL...AND SUBTITLE Multi-Adaptive Plan (MAP) IMRT to Accommodate Independent 5a. CONTRACT NUMBER W81XWH-08-1-0358 Movement of the Prostate and...multi-adaptive plan (MAP) IMRT to accommodate independent movement of the two targeted tumor volumes. In this project, we evaluated two adaptive
Creation of a Web Map and Mobile Application Based on a Printed Book
NASA Astrophysics Data System (ADS)
Holubec, V.; Valášková, T.; Halounová, L.
2016-06-01
The project describes a process of conversion of printed books into a web map and mobile application. The goal of the project is to make spatial data in the book accessible to wide public using GIS especially on web in order to spread the information about this topic. Moreover, as a result of the analysis and of the new perspectives gained from the data context, historians will be able to find new connections. The books that serve as sources of the project (two books with the scope of about 1400 pages featuring hundreds of locations where each location is associated with more events of different types) refer to places with many addresses in Prague and some villages in the Czech Republic which are related to events that took place during the World War II. The paper describes the steps of conversion, the design of the data model in Esri geodatabase and examples of outputs. The historical data are connected to actual addresses and thanks to such a combination of historical and actual locations, the project will help to discover a part of the history of the Czech Republic and it will show new context in data via GIS capabilities. This project is a continuation of a project which recorded a march of death on a map. This is a unique project created in cooperation with Academia Publishing. The outputs of the project will serve as a core resource for a multimedia history portal. The author of the book is currently writing sequels from the post-war period and at least two other books are envisioned, so the future of the project is ensured.
Atom probe trajectory mapping using experimental tip shape measurements.
Haley, D; Petersen, T; Ringer, S P; Smith, G D W
2011-11-01
Atom probe tomography is an accurate analytical and imaging technique which can reconstruct the complex structure and composition of a specimen in three dimensions. Despite providing locally high spatial resolution, atom probe tomography suffers from global distortions due to a complex projection function between the specimen and detector which is different for each experiment and can change during a single run. To aid characterization of this projection function, this work demonstrates a method for the reverse projection of ions from an arbitrary projection surface in 3D space back to an atom probe tomography specimen surface. Experimental data from transmission electron microscopy tilt tomography are combined with point cloud surface reconstruction algorithms and finite element modelling to generate a mapping back to the original tip surface in a physically and experimentally motivated manner. As a case study, aluminium tips are imaged using transmission electron microscopy before and after atom probe tomography, and the specimen profiles used as input in surface reconstruction methods. This reconstruction method is a general procedure that can be used to generate mappings between a selected surface and a known tip shape using numerical solutions to the electrostatic equation, with quantitative solutions to the projection problem readily achievable in tens of minutes on a contemporary workstation. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.
Long-term development of the Czech landscape studied on the basis of old topographic maps
NASA Astrophysics Data System (ADS)
Skokanová, H.; Havlíček, M.
2009-04-01
The paper deals with long-term land use changes in the Czech Republic with the help of old topographic maps. Departments of Landscape Ecology and GIS Applications from the Silva Tarouca Research Institute for Landscape and Ornamental Gardening, v.v.i. study these changes mainly in the research project MSM 6293359101 Research into sources and indicators of biodiversity in cultural landscape in the context of its fragmentation dynamics, the subpart Quantitative analysis of the dynamics of the Czech landscape development. In this paper, the authors concentrate mainly on map sources, which were acquired for the purpose of the project and also introduce partial results. Maps, which are the sources for the analyses, are following: maps from 2nd Austrian military survey in the scale 1:28 800 (created for the territory of the Czech Republic in the period 1836-1852), maps from 3rd Austrian military survey in the scale 1:25 000 (created for the Czech Republic in the period 1876-1880), Czechoslovak military topographic maps in the scale 1:25 000 from 1950s and 1990s, and Czech topographic base maps in the scale 1:10 000 from 2002-2006. It is necessary to complete maps of the 2nd and 3rd Austrian military survey thanks to their incompleteness, mainly along state borders. Also maps from 1nd Austrian military survey in the scale 1:28 800 (created for the Czech Republic in the period 1764-1783) are available; however, their usage for the accurate analyses in the GIS environment is restricted by their poor cartographic accuracy. Apart of the above mentioned maps, there has been progress in collecting maps from the interwar and war period (revised maps of the 3rd Austrian military survey maps, maps of the provisional military survey from 1923-1933, maps of definitive military survey from 1934-1938 and maps from survey of Moravian part of the Protectorate of Bohemia and Moravia, so called Messtischblätter from 1939-1945). Maps from five periods are manually vectorised in the GIS environment. When vectorizing maps, nine land use categories are distinguished according to the methodology created at the author's workplace. Only areas larger than 0.8 ha are vectorized with regard to the output scale of the project (1:200 000), which includes the whole territory of the republic. The so far vectorized areas are shown in the overview maps. The main analyses lay in overlaying vectorized maps and in calculation of the number of land use changes for the whole researched period. These then show stable areas, i.e. areas where no change in land use occurred, and dynamic areas with one or more changes. Also types of the land use changes both among individual maps and for the whole period can be detected.
NASA Astrophysics Data System (ADS)
Clinton, J.
2017-12-01
Much of Hawaii's history is recorded in archeological sites. Researchers and cultural practitioners have been studying and reconstructing significant archeological sites for generations. Climate change, and more specifically, sea level rise may threaten these sites. Our research records current sea levels and then projects possible consequences to these cultural monuments due to sea level rise. In this mixed methods study, research scientists, cultural practitioners, and secondary students use plane-table mapping techniques to create maps of coastlines and historic sites. Students compare historical records to these maps, analyze current sea level rise trends, and calculate future sea levels. They also gather data through interviews with community experts and kupuna (elders). If climate change continues at projected rates, some historic sites will be in danger of negative impact due to sea level rise. Knowing projected sea levels at specific sites allows for preventative action and contributes to raised awareness of the impacts of climate change to the Hawaiian Islands. Students will share results with the community and governmental agencies in hopes of inspiring action to minimize climate change. It will take collaboration between scientists and cultural communities to inspire future action on climate change.
NASA Astrophysics Data System (ADS)
Thorsnes, T.; Bjarnadóttir, L. R.
2017-12-01
Emerging platforms and tools like autonomous underwater vehicles and synthetic aperture sonars provide interesting opportunities for making seabed mapping more efficient and precise. Sediment grain-size maps are an important product in their own right and a key input for habitat and biotope maps. National and regional mapping programmes are tasked with mapping large areas, and survey efficiency, data quality, and resulting map confidence are important considerations when selecting the mapping strategy. Since 2005, c. 175,000 square kilometres of the Norwegian continental shelf and continental slope has been mapped with respect to sediments, habitats and biodiversity, and pollution under the MAREANO programme (www.mareano.no). At present the sediment mapping is based on a combination of ship-borne multibeam bathymetry and backscatter, visual documentation using a towed video platform, and grab sampling. We have now tested a new approach, using an Autonomous Underwater Vehicle (AUV) as the survey platform for the collection of acoustic data (Synthetic Aperture Sonar (SAS), EM2040 bathymetry and backscatter) and visual data (still images using a TFish colour photo system). This pilot project was conducted together the Norwegian Hydrographic Service, the Institute of Marine Research (biology observations) and the Norwegian Defence Research Establishment (operation of ship and AUV). The test site reported here is the Vesterdjupet area, offshore Lofoten, northern Norway. The water depth is between 170 and 300 metres, with sediments ranging from gravel, cobbles and boulders to sandy mud. A cold-water coral reef, associated with bioclastic sediments was also present in the study area. The presentation will give an overview of the main findings and experiences gained from this pilot project with a focus on geological mapping and will also discuss the relevance of AUV-based mapping to large-area mapping programmes like MAREANO.
Topographic map of the Parana Valles region of Mars MTM 500k -25/337E OMKT
,
2003-01-01
This map, compiled photogrammetrically from Viking Orbiter stereo image pairs, is part of a series of topographic maps of areas of special scientific interest on Mars. MTM 500k –25/347E OMKT: Abbreviation for Mars Transverse Mercator; 1:500,000 series; center of sheet latitude 25° S., longitude 347.5° E. in planetocentric coordinate system (this corresponds to –25/012; latitude 25° S., longitude 12.5° W. in planetographic coordinate system); orthophotomosaic (OM) with color coded (K) topographic contours and nomenclature (T) [Greeley and Batson, 1990]. The figure of Mars used for the computation of the map projection is an oblate spheroid (flattening of 1/176.875) with an equatorial radius of 3396.0 km and a polar radius of 3376.8 km (Kirk and others, 2000). The datum (the 0-km contour line) for elevations is defined as the equipotential surface (gravitational plus rotational) whose average value at the equator is equal to the mean radius as determined by Mars Orbiter Laser Altimeter (Smith and others, 2001). The image base for this map employs Viking Orbiter images from orbit 651. An orthophotomosaic was created on the digital photogrammetric workstation using the DTM compiled from stereo models. Integrated Software for Imagers and Spectrometers (ISIS) (Torson and Becker, 1997) provided the software to project the orthophotomosaic into the Transverse Mercator Projection.
Topographic Map of the Northwest Loire Valles Region of Mars MTM 500k -15/337E OMKT
,
2003-01-01
This map, compiled photogrammetrically from Viking Orbiter stereo image pairs, is part of a series of topographic maps of areas of special scientific interest on Mars. MTM 500k –15/337E OMKT: Abbreviation for Mars Transverse Mercator; 1:500,000 series; center of sheet latitude 15° S., longitude 337.5° E. in planetocentric coordinate system (this corresponds to –15/022; latitude 15° S., longitude 22.5° W. in planetographic coordinate system); orthophotomosaic (OM) with color coded (K) topographic contours and nomenclature (T) [Greeley and Batson, 1990]. The figure of Mars used for the computation of the map projection is an oblate spheroid (flattening of 1/176.875) with an equatorial radius of 3396.0 km and a polar radius of 3376.8 km (Kirk and others, 2000). The datum (the 0–km contour line) for elevations is defined as the equipotential surface (gravitational plus rotational) whose average value at the equator is equal to the mean radius as determined by Mars Orbiter Laser Altimeter (Smith and others, 2001). The image base for this map employs Viking Orbiter images from orbit 651. An orthophotomosaic was created on the digital photogrammetric workstation using the DTM compiled from stereo models. Integrated Software for Imagers and Spectrometers (ISIS) (Torson and Becker, 1997) provided the software to project the orthophotomosaic into the Transverse Mercator Projection.
Coastal resource and sensitivity mapping of Vietnam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odin, L.M.
1997-08-01
This paper describes a project to establish a relationship between environmental sensitivity (primarily to oil pollution) and response planning and prevention priorities for Vietnamese coastal regions. An inventory of coastal environmental sensitivity and the creation of index mapping was performed. Satellite and geographical information system data were integrated and used for database creation. The database was used to create a coastal resource map, coastal sensitivity map, and a field inventory base map. The final coastal environment sensitivity classification showed that almost 40 percent of the 7448 km of mapped shoreline has a high to medium high sensitivity to oil pollution.
interPopula: a Python API to access the HapMap Project dataset
2010-01-01
Background The HapMap project is a publicly available catalogue of common genetic variants that occur in humans, currently including several million SNPs across 1115 individuals spanning 11 different populations. This important database does not provide any programmatic access to the dataset, furthermore no standard relational database interface is provided. Results interPopula is a Python API to access the HapMap dataset. interPopula provides integration facilities with both the Python ecology of software (e.g. Biopython and matplotlib) and other relevant human population datasets (e.g. Ensembl gene annotation and UCSC Known Genes). A set of guidelines and code examples to address possible inconsistencies across heterogeneous data sources is also provided. Conclusions interPopula is a straightforward and flexible Python API that facilitates the construction of scripts and applications that require access to the HapMap dataset. PMID:21210977
Illinois, Indiana, and Ohio Magnetic and Gravity Maps and Data: A Website for Distribution of Data
Daniels, David L.; Kucks, Robert P.; Hill, Patricia L.
2008-01-01
This web site gives the results of a USGS project to acquire the best available, public-domain, aeromagnetic and gravity data in the United States and merge these data into uniform, composite grids for each state. The results for the three states, Illinois, Indiana, and Ohio are presented here in one site. Files of aeromagnetic and gravity grids and images are available for these states for downloading. In Illinois, Indiana, and Ohio, 19 magnetic surveys have been knit together to form a single digital grid and map. And, a complete Bouguer gravity anomaly grid and map was generated from 128,227 gravity station measurements in and adjacent to Illinois, Indiana, and Ohio. In addition, a map shows the location of the aeromagnetic surveys, color-coded to the survey flight-line spacing. This project was supported by the Mineral Resource Program of the USGS.
Bartels, Daniela; Kespohl, Sebastian; Albaum, Stefan; Drüke, Tanja; Goesmann, Alexander; Herold, Julia; Kaiser, Olaf; Pühler, Alfred; Pfeiffer, Friedhelm; Raddatz, Günter; Stoye, Jens; Meyer, Folker; Schuster, Stephan C
2005-04-01
We provide the graphical tool BACCardI for the construction of virtual clone maps from standard assembler output files or BLAST based sequence comparisons. This new tool has been applied to numerous genome projects to solve various problems including (a) validation of whole genome shotgun assemblies, (b) support for contig ordering in the finishing phase of a genome project, and (c) intergenome comparison between related strains when only one of the strains has been sequenced and a large insert library is available for the other. The BACCardI software can seamlessly interact with various sequence assembly packages. Genomic assemblies generated from sequence information need to be validated by independent methods such as physical maps. The time-consuming task of building physical maps can be circumvented by virtual clone maps derived from read pair information of large insert libraries.
Zietz, Isidore; Henderson, Roland G.
1949-01-01
The eight attached maps were constructed from data taken on Project Volcano in the summer of 1947. The project was sponsored by the Office of Naval Research and conducted by the U.S. Geological Survey in cooperation with the Naval Ordnance Laboratory. Field work was done by Fred Keller, Jr., and J. L. Meuschke, Geophysicists of the U.S. Geological Survey, and by L. R. Alldredge, Physicist of the Naval Ordnance Laboratory. The instrument used was a modified AN/ASQ-3A flux-gate type total field magnetometer mounted in the tailcone of a PBY-5A aircraft. It is hoped that observation of the magnetic fields over volcanic areas over a period of years, may lead to prognostication of volcanic activity. These maps represent the results of the first of such surveys.
Implementation of landslide susceptibility maps in Lower Austria as part of risk governance
NASA Astrophysics Data System (ADS)
Bell, Rainer; Petschko, Helene; Bauer, Christian; Glade, Thomas; Granica, Klaus; Heiss, Gerhard; Leopold, Philip; Pomaroli, Gilbert; Proske, Herwig; Schweigl, Joachim
2013-04-01
Landslides frequently cause damage to agricultural land and infrastructure in Lower Austria - a province of Austria. Also settlements and people are threatened by landslides. To reduce landslide risks and to prevent the establishment of new settlements in highly landslide prone areas, the project "MoNOE" (Method development for landslide susceptibility modeling in Lower Austria) was set up by the provincial government. The main aim of the project is the development of methods to model rock fall and slide susceptibility for an area of approx. 15,900 km2 and to implement the resulting susceptibility maps into the spatial planning strategies of the state. Right from the beginning of the project a close cooperation between the involved scientists and the stakeholders from the Geological Survey of Lower Austria and the Department of Spatial Planning and Regional Policy of Lower Austria was established to ensure that method development and final susceptibility maps meet exactly the needs and demands of the stakeholders. This posed huge challenges, together with its realization in the large study area and a (heterogeneous) complex geological situation,. Limitations were given by restricted data availability (e.g. for geology or landslide inventories) in such a large study area. Rock fall susceptibility was modeled by a combined approach of determining rock fall release areas by empirical slope thresholds (dependent on geology) followed by empirical run-out modeling. Slide susceptibility was modeled based on the statistical approaches of weights of evidence (WofE) and generalized additive models (GAM) by two different research groups. Huge efforts were spent on the validation of all susceptibility models. In a later stage of the project we found that the best scientific maps are not necessarily the best maps to be implemented in spatial planning strategies. Thus, in close cooperation with the stakeholders, decisions had to be taken to find the best resolution of the maps, the number of susceptibility classes, their colour and naming, as well as on the instructions for actions referring to each susceptibility class respectively. All susceptibility maps showed very good validation results. Both, the WofE and the GAM slide susceptibility map showed high median AUROC values of 0.9 and the geomorphological plausibility proved to be very good in both cases. Due to these results it was concluded the stakeholders should take the decision which of the two slide susceptibility maps should be used. This decision was performed as a blind test providing resulting maps and their respective performance measures but coded with a color so that the stakeholders did not know which maps were produced by whom and with which method. This presentation is thus focusing on a detailed description of all these aspects and it is discussed how this participative approach led to a high acceptance of the final landslide susceptibility maps by the stakeholders. Consequently these maps are going to be implemented in the spatial planning strategies soon.
1993-10-01
Disposal Act (SWDA)/Resource Conservation and Recovery Act (RCRA). Jacobs Englnwfng Gmo Inc FINAL PROJECT WORK PLAN Washington Operatvo 8~ Fs 2-551I Date...shaded map of contaminated areas defined by chemical data, more than one map may be consructed f special and grapk cons *tft ame encountered. Results...that a Siophysical c ao p Pro rma down the axis or Beah PointS using geophysic teehnozoglosts that are •vi subsurface hyd&rosAdgraphic cmal beneath
Re-Emerging Malaria Vectors in Rural Sahel (nouna, Burkina Faso): the Paluclim Project
NASA Astrophysics Data System (ADS)
Vignolles, Cécile; Sauerborn, Rainer; Dambach, Peter; Viel, Christian; Soubeyroux, Jean-Michel; Sié, Ali; Rogier, Christophe; Tourre, Yves M.
2016-06-01
The Paluclim project applied the tele-epidemiology approach, linking climate, environment and public health (CNES, 2008), to rural malaria in Nouna (Burkina Faso). It was to analyze the climate impact on vectorial risks, and its consequences on entomological risks forecast. The objectives were to: 1) produce entomological risks maps in the Nouna region, 2) produce dynamic maps on larvae sites and their productivity, 3) study the climate impact on malaria risks, and 4) evaluate the feasibility of strategic larviciding approach.
Validation of Innovative Exploration Technologies for Newberry Volcano: Drill Site Location Map 2010
Jaffe, Todd
2012-01-01
Newberry seeks to explore "blind" (no surface evidence) convective hydrothermal systems associated with a young silicic pluton on the flanks of Newberry Volcano. This project will employ a combination of innovative and conventional techniques to identify the location of subsurface geothermal fluids associated with the hot pluton. Newberry project drill site location map 2010. Once the exploration mythology is validated, it can be applied throughout the Cascade Range and elsewhere to locate and develop “blind” geothermal resources.
Data Validation for Earth Probe-Total Ozone Mapping Spectrometer
NASA Technical Reports Server (NTRS)
Stanford, John L.
1995-01-01
This presentation represents the final report for the NASA grant project. The goal of this project was to provide scientific analysis to aid in validation fo data sets used in detection of long term global trends of total ozone. Ozone data from the Earth Probe Total Ozone Mapping Spectrometer instrument was compared for validation purposes with features in previous TOMS data. Atmospheric dynamic concepts were used in the analysis. The publications sponsored by the grant are listed along with abstracts.
Assess, Map and Predict the Integrity, Resilience, and ...
This project will provide knowledge and adaptive management techniques to both maintain healthy waters and to improve degraded systems. It will provide scientific support for the National Aquatic Resource Surveys. Results will provide a basis for informed decision making and tools applicable to EPA program office and regional needs at national regional, and local scales. The research products, tools, models, and maps produced will be an excellent means to communicate management options with stakeholders. To share information about SSWR research projects
Manual of downburst identification for Project NIMROD. [atmospheric circulation
NASA Technical Reports Server (NTRS)
Fujita, T. T.
1978-01-01
Aerial photography, Doppler radar, and satellite infrared imagery are used in the two year National Intensive Meteorological Research on Downburst (NIMROD) project to provide large area mapping of strong downdrafts that induce an outward burst of damaging winds over or near the earth. Topics discussed include scales of thunderstorm outflow; aerial photographs of downburst damage; microbursts and aviation hazards; radar echo characteristics; infrared imagery from GOES/SMS; and downburts-tornado relationships. Color maps of downbursts and tornadoes are included.
Billingsley, George H.; Wellmeyer, Jessica L.
2003-01-01
The geologic map of the Mount Trumbull 30' x 60' quadrangle is a cooperative product of the U.S. Geological Survey, the National Park Service, and the Bureau of Land Management that provides geologic map coverage and regional geologic information for visitor services and resource management of Grand Canyon National Park, Lake Mead Recreational Area, and Grand Canyon Parashant National Monument, Arizona. This map is a compilation of previous and new geologic mapping that encompasses the Mount Trumbull 30' x 60' quadrangle of Arizona. This digital database, a compilation of previous and new geologic mapping, contains geologic data used to produce the 100,000-scale Geologic Map of the Mount Trumbull 30' x 60' Quadrangle, Mohave and Coconino Counties, Northwestern Arizona. The geologic features that were mapped as part of this project include: geologic contacts and faults, bedrock and surficial geologic units, structural data, fold axes, karst features, mines, and volcanic features. This map was produced using 1:24,000-scale 1976 infrared aerial photographs followed by extensive field checking. Volcanic rocks were mapped as separate units when identified on aerial photographs as mappable and distinctly separate units associated with one or more pyroclastic cones and flows. Many of the Quaternary alluvial deposits that have similar lithology but different geomorphic characteristics were mapped almost entirely by photogeologic methods. Stratigraphic position and amount of erosional degradation were used to determine relative ages of alluvial deposits having similar lithologies. Each map unit and structure was investigated in detail in the field to ensure accuracy of description. Punch-registered mylar sheets were scanned at the Flagstaff Field Center using an Optronics 5040 raster scanner at a resolution of 50 microns (508 dpi). The scans were output in .rle format, converted to .rlc, and then converted to ARC/INFO grids. A tic file was created in geographic coordinates and projected into the base map projection (Polyconic) using a central meridian of -113.500. The tic file was used to transform the grid into Universal Transverse Mercator projection. The linework was vectorized using gridline. Scanned lines were edited interactively in ArcEdit. Polygons were attributed in ArcEdit and all artifacts and scanning errors visible at 1:100,000 were removed. Point data were digitized onscreen. Due to the discovery of digital and geologic errors on the original files, the ARC/INFO coverages were converted to a personal geodatabase and corrected in ArcMap. The feature classes which define the geologic units, lines and polygons, are topologically related and maintained in the geodatabase by a set of validation rules. The internal database structure and feature attributes were then modified to match other geologic map databases being created for the Grand Canyon region. Faults were edited with the downthrown block, if known, on the 'right side' of the line. The 'right' and 'left' sides of a line are determined from 'starting' at the line's 'from node' and moving to the line's end or 'to node'.
MISR Level 1 Near Real Time Products
Atmospheric Science Data Center
2016-10-31
Level 1 Near Real Time The MISR Near Real Time Level 1 data products ... km MISR swath and projected onto a Space-Oblique Mercator (SOM) map grid. The Ellipsoid-projected and Terrain-projected top-of-atmosphere (TOA) radiance products provide measurements respectively resampled onto the ...
Spatial Thinking and Visualisation of Real-World Concepts using GeoMapApp
NASA Astrophysics Data System (ADS)
Goodwillie, A. M.
2015-12-01
Commonly, geoscience data is presented to students in the lab and classroom in the form of data tables, maps and graphs. Successful data interpretation requires learners to become proficient with spatial thinking skills, allowing them to gain insight and understanding of the underlying real-world 3-D processes and concepts. Yet, educators at both the school and university level often witness students having difficulty in performing that translation. As a result, tools and resources that help to bridge that spatial capability gap can have useful application in the educational realm. A free, map-based data discovery and visualisation tool developed with NSF funding at Lamont-Doherty Earth Observatory caters to students and teachers alike by providing a variety of data display and manipulation techniques that enhance geospatial awareness. Called GeoMapApp (http://www.geomapapp.org), the tool provides access to hundreds of built-in authentic geoscience data sets. Examples include earthquake and volcano data, geological maps, lithospheric plate boundary information, geochemical, oceanographic, and environmental data. Barriers to entry are lowered through easy installation, seamless integration of research-grade data sets, intuitive menus, and project-saving continuity. The default base map is a cutting-edge elevation model covering the oceans and land. Dynamic contouring, artificial illumination, 3-D visualisations, data point manipulations, cross-sectional profiles, and other display techniques help students grasp the content and geospatial context of data. Data sets can also be layered for easier comparison. Students may import their own data sets in Excel, ASCII, shapefile, and gridded format, and they can gain a sense of ownership by being able to tailor their data explorations and save their own projects. GeoMapApp is adaptable to a range of learning environments from lab sessions, group projects, and homework assignments to in-class pop-ups. A new Save Session function allows educators to preserve a pre-loaded state of GeoMapApp. When shared with a class, the saved file allows every student to open GeoMapApp at exactly the same starting point from which to begin their data explorations. A wide range of enquiry-driven education modules for GeoMapApp is already available at SERC.
Disseminating Landslide Hazard Information for California Local Government
NASA Astrophysics Data System (ADS)
Wills, C. J.
2010-12-01
Since 1969, the California Geological Survey has produced numerous maps showing landslide features and delineating potential slope-stability problem areas. These maps have been provided to local governments to encourage consideration of landslide hazards in planning and development decisions. Maps produced from 1986 through 1995 under the Landslide Hazard Mapping Act were advisory only, and their use by local government was never consistent. By contrast, maps of Zones of Required Investigation for seismically induced landslides produced under the Seismic Hazard Zoning Act since 1997 come with detailed guidelines and legal requirements. A legislative act that required landslide hazards be mapped and hazard maps disseminated to local government proved ineffective in landslide hazard mitigation. A later act with requirements that the hazard zone maps be used by local government proved more effective. Planning scenarios have proven to be an effective way of transmitting scientific information about natural hazards to emergency response professionals. Numerous earthquake planning scenarios have been prepared and used as the basis for emergency response exercises. An advantage of scenarios that include loss estimates is that the effects can be put in units of measure that everyone understands, principally deaths and dollars. HAZUS software available from FEMA allows calculation of losses for earthquake scenarios, but similar methods for landslides have not been developed. As part of the USGS Multi-Hazard Demonstration Project, we have estimated the landslide losses for a major west-coast winter storm scenario by developing a system based loosely on HAZUS. Data on landslide damage in past storms has been sparse and inconsistent, but a few data sets are available. The most detailed and complete available data on landslide damage was gathered by the City of Los Angeles following the 1978 storms. We extrapolate from that data to the entire state by first generalizing a landslide susceptibility map to give a single value of susceptibility for each census tract. We then calculated the loss ratio, the cost of landslide damage from the 1978 storms divided by the value of light wood frame structures in the census tract. The comparison suggests three general categories of damage: tracts with low landslide susceptibility have no landslide damage: tracts with moderate susceptibility have loss ratios of about 0.016%: and tracts with high susceptibility have loss ratios of 0.096%. Using these values, the susceptibility map becomes a landslide loss ratio map for the average storm intensity and landslide vulnerability of Los Angeles in 1978. Generalization to other storm intensities uses differences in storm intensity and landslide damage data from the 1982 storm in the Bay Area. In Santa Cruz County, that storm had a recurrence interval of over 100 years, and over 3 times the damage as our projection from the 1978 data. In Sonoma County, that storm had a recurrence interval of only 10 years and damage that was only 2% of our projection. If a relationship between storm intensity and the projections from the 1978 Los Angeles data can be developed, we may be able to estimate landslide losses for any projected storm intensity.
NASA Astrophysics Data System (ADS)
Benkert, B.; Perrin, A.; Calmels, F.
2015-12-01
Together with its partners, the Northern Climate ExChange (NCE, part of the Yukon Research Centre at Yukon College) has been mapping permafrost-related hazard risk in northern communities since 2010. By integrating geoscience and climate project data, we have developed a series of community-scale hazard risk maps. The maps depict hazard risk in stoplight colours for easy interpretation, and support community-based, future-focused adaptation planning. Communities, First Nations, consultants and local regulatory agencies have used the hazard risk maps to site small-scale infrastructure projects, guide land planning processes, and assess suitability of land development applications. However, we know that assessing risk is only one step in integrating the implications of permafrost degradation in societal responses to environmental change. To build on our permafrost hazard risk maps, we are integrating economic principles and traditional land use elements. To assess economic implications of adaptation to permafrost change, we are working with geotechnical engineers to identify adaptation options (e.g., modified building techniques, permafrost thaw mitigation approaches) that suit the risks captured by our existing hazard risk maps. We layer this with an economic analysis of the costs associated with identified adaptation options, providing end-users with a more comprehensive basis upon which to make decisions related to infrastructure. NCE researchers have also integrated traditional land use activities in assessments of permafrost thaw risk, in a project led by Jean Marie River First Nation in the Northwest Territories. Here, the implications of permafrost degradation on food security and land use priorities were assessed by layering key game and gathering areas on permafrost thaw vulnerability maps. Results indicated that close to one quarter of big and small game habitats, and close to twenty percent of key furbearer and gathering areas within the First Nation's traditional territory, are situated on highly thaw sensitive permafrost. These projects demonstrate how physical and socio-economic factors can be integrated in assessments of permafrost vulnerability to thaw, thus providing tangible, useable results that reflect community priorities and support local decision making.
NASA Astrophysics Data System (ADS)
Reynard, E.; Laigre, L.; Baud, D.
2012-04-01
The Swiss Rhone River was systematically embanked during the period 1864-1893. The Swiss Rhone River valley is a glacial valley filled by glaciolacustrine, fluvioglacial and fluvial sediments. Torrential tributaries contribute to a large extent to the sedimentation in the valley and have built large alluvial fans in the main valley. The period before the river damming corresponds to the Little Ice Age, and it is supposed that the torrential behaviour of the river and its tributaries was very active during that period. In parallel to a large hydraulic project (Third Rhone River Correction), aiming at enlarging the river for security and environmental reasons, this project aims at reconstructing the palaeogeomorphology of the river floodplain before and also during the 30-year long embankment project developed during the last decades of the 19th century. The objective is to better know the geomorphological behaviour of the river, and also to localize palaolandforms (meanders, braided patterns, sandstone dunes, wetlands, etc.), present in the floodplain in the first part of the 19th century and that have now totally disappeared. The project is carried out in close collaboration with the Cantonal Archives of Valais and with a group of historians working on the relations between the river and the communities. It should contribute to a better knowledge of the Swiss Rhone River history (Reynard et al., 2009). Both published official maps (Dufour maps, Siegfried maps) and unpublished maps and plans are systematically collected, digitized, and organised in a database managed by a Geographical Information System. Other data are collected (place names, geomorphological, hydrological and hydraulic data, information about land-use and vegetation, paintings and photographs, etc.) and localised. A high-resolution digital terrain model and areal photographs are also used and allow us to map palaeolandforms (meanders, filled oxbow lakes, former channels, etc.). In a second step maps of the palaeogeomorphology of the river floodplain are produced and analysed in collaboration with the historian colleagues. Reference Reynard E., Evéquoz-Dayen M., Dubuis P. (eds) (2009). Le Rhône : dynamique, histoire et société. Sion, Cahiers de Vallesia 21, 238 p.
1980-10-01
16 7.2 Remedial Measures 17 APPENDIX A - MAPS Plate A-1 Vicinity Topography Plate A-2 Location Map Plate A-3 Seismic Map APPENDIX B - PHOTOGRAPHS...reservoir surface area, and elvton-storage data were developed from the USGS Cape Girardeau, Missouri 7-1/2 minute topographic quadrangle map . The...project file. CA -18- APPENDIX A MAPS II ./ \\v 14,.. MITE LSRIES ILUOOtS HC Scal in eetVICIITYTOPOGRAPHY Contur Itoral -10’MO 30533
NASA Astrophysics Data System (ADS)
Gao, Z.; Song, Y.; Li, C.; Zeng, F.; Wang, F.
2017-08-01
Rapid acquisition and processing method of large scale topographic map data, which relies on the Unmanned Aerial Vehicle (UAV) low-altitude aerial photogrammetry system, is studied in this paper, elaborating the main work flow. Key technologies of UAV photograph mapping is also studied, developing a rapid mapping system based on electronic plate mapping system, thus changing the traditional mapping mode and greatly improving the efficiency of the mapping. Production test and achievement precision evaluation of Digital Orth photo Map (DOM), Digital Line Graphic (DLG) and other digital production were carried out combined with the city basic topographic map update project, which provides a new techniques for large scale rapid surveying and has obvious technical advantage and good application prospect.
The scientific foundation of the LANDFIRE Prototype Project [Chapter 3
Robert E. Keane; Matthew Rollins
2006-01-01
The Landscape Fire and Resource Management Planning Tools Prototype Project, or LANDFIRE Prototype Project, originated from a recent mapping project that developed a set of coarse-scale spatial data layers for wildland fire management describing fire hazard and ecological status for the conterminous United States (Hardy and others 2001; Schmidt and others 2002; www. fs...
The IQ Quantitative Trait Loci Project: A Critique.
ERIC Educational Resources Information Center
King, David
1998-01-01
Describes the IQ Quantitative Trait Loci (QTL) project, an attempt to identify genes underlying IQ score variations using maps from the Human Genome Project. The essay argues against funding the IQ QTL project because it will end the debates about the genetic basis of intelligence and may lead directly to eugenic programs of genetic testing. (SLD)
Battery Energy Storage Market: Commercial Scale, Lithium-ion Projects in the U.S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaren, Joyce; Gagnon, Pieter; Anderson, Kate
2016-10-01
This slide deck presents current market data on the commercial scale li-ion battery storage projects in the U.S. It includes existing project locations, cost data and project cost breakdown, a map of demand charges across the U.S. and information about how the ITC and MACRS apply to energy storage projects that are paired with solar PV technology.
Geologic map of Big Bend National Park, Texas
Turner, Kenzie J.; Berry, Margaret E.; Page, William R.; Lehman, Thomas M.; Bohannon, Robert G.; Scott, Robert B.; Miggins, Daniel P.; Budahn, James R.; Cooper, Roger W.; Drenth, Benjamin J.; Anderson, Eric D.; Williams, Van S.
2011-01-01
The purpose of this map is to provide the National Park Service and the public with an updated digital geologic map of Big Bend National Park (BBNP). The geologic map report of Maxwell and others (1967) provides a fully comprehensive account of the important volcanic, structural, geomorphological, and paleontological features that define BBNP. However, the map is on a geographically distorted planimetric base and lacks topography, which has caused difficulty in conducting GIS-based data analyses and georeferencing the many geologic features investigated and depicted on the map. In addition, the map is outdated, excluding significant data from numerous studies that have been carried out since its publication more than 40 years ago. This report includes a modern digital geologic map that can be utilized with standard GIS applications to aid BBNP researchers in geologic data analysis, natural resource and ecosystem management, monitoring, assessment, inventory activities, and educational and recreational uses. The digital map incorporates new data, many revisions, and greater detail than the original map. Although some geologic issues remain unresolved for BBNP, the updated map serves as a foundation for addressing those issues. Funding for the Big Bend National Park geologic map was provided by the United States Geological Survey (USGS) National Cooperative Geologic Mapping Program and the National Park Service. The Big Bend mapping project was administered by staff in the USGS Geology and Environmental Change Science Center, Denver, Colo. Members of the USGS Mineral and Environmental Resources Science Center completed investigations in parallel with the geologic mapping project. Results of these investigations addressed some significant current issues in BBNP and the U.S.-Mexico border region, including contaminants and human health, ecosystems, and water resources. Funding for the high-resolution aeromagnetic survey in BBNP, and associated data analyses and interpretation, was from the USGS Crustal Geophysics and Geochemistry Science Center. Mapping contributed from university professors and students was mostly funded by independent sources, including academic institutions, private industry, and other agencies.
Valentine, Page C.; Cochrane, Guy R.; Scanlon, Kathryn M.
2003-01-01
The National Marine Sanctuary System requires seabed and habitat maps to serve as a basis for managing sanctuary resources and for conducting research. NOAA, the agency that manages the sanctuaries, and the USGS have conducted mapping projects in three sanctuaries (Stellwagen Bank NMS, Flower Garden Banks NMS, and Channel Islands NMS) with an emphasis on collaboration of geologists and biologists from the two agencies and from academic institutions. Mapping of seabed habitats is a developing field that requires the integration of geologic and biologic studies and the use of swath imaging techniques such as multibeam and sidescan sonar. Major products of swath mapping are shaded-relief topographic imagery which shows seabed features in great detail, and backscatter imagery which provides an indication of the types of materials that constitute the seabed. Sea floor images provide an excellent basis for conducting the groundtruthing studies (using video, photo, and sampling techniques) that are required to collect the data necessary for making meaningful interpretative maps of the seabed. The compilation of interpretive maps showing seabed environments and habitats also requires the development of a sea floor classification system that will be a basis for comparing, managing, and researching characteristic areas of the seabed. Seabed maps of the sanctuaries are proving useful for management and research decisions that address commercial and recreational fishing, habitat disturbance, engineering projects, tourism, and cultural resources.
The ecoregions of Oregon have been identified, mapped, and described and provide a geographic structure for environmental resources research, assessment, monitoring, and management. This project is part of a larger effort by the U.S. EPA to create a national, hierarchical ecoregi...
The ecoregions of Wyoming have been identified, mapped, and described and provide a geographic structure for environmental resources research, assessment, monitoring, and management. This project is part of a larger effort by the U.S. EPA to create a national, hierarchical ecore...
NASA Astrophysics Data System (ADS)
Timár, Gábor; Baranya, Sándor; Rüther, Nils; Kvarteig, Sidsel; Galambos, Csilla; Biszak, Előd; Nagy, Diána
2017-04-01
The 1:50,000 and 1:100,000 scale historical sheets of the Norwegian topographic 'Rektangelkart' map series were georeferenced, in order to obtain the original hydrography of the Gaula River, at a ca 50 kilometer long section between Støren and the estuary to the Gulosen Bay. The 1:50,000 scale sheets are the earliest systematic topographic works of the area, surveyed in 1866-9, while the smaller scale sheets were surveyed forty years later, in 1906-8. Both series represent a river status before the extensive control works. Thus, together with the modern, present-day cartographic and GIS products, these two 'snapshots' from 100 and 150 years ago show not only the original, uncontrolled status of the river but also some elements of the natural changes of the course/thalweg. To make the georeference, instead of using terrain points, the geodetic parameters of the Norwegian 'Rektangelkart' series were defined in GIS environment. The Cassini map projection was defined with a projection center in the fortress of Kongsvinger, Eastern Norway, some 350 kilometers from the study area. Knowing the sheet labeling system and the terrain position of the sheets in this Cassini projection, only their four corner points were defined in all sheets. The accuracy of the horizontal control of georeferenced was less than half map millimeter (25/50 meters). The sheets show an interesting meander cutoff process between Ler and Kvål. In 1869, the meander curve is still active and fully operating. A cutoff channel is clearly mapped in 1906, together with the old one. Nowadays, almost no map signs show the old channel course, however in the field, it is still traceable. Another interesting map element shows the complete bar structure in the channel. These gravel bars showed a different pattern in the old maps, as there were more gravel sediments in the time before the building of upspring reservoirs. Gravel bars are important in some environmental processes, eg. as salmon habitats, This database shows their original status, providing an important input for environmental engineering. The research was carried out in the frame of EEA/156/M4-0002 project.
What Will Science Gain From Mapping the World Ocean Floor?
NASA Astrophysics Data System (ADS)
Jakobsson, M.
2017-12-01
It is difficult to estimate how much of the World Ocean floor topography (bathymetry) that has been mapped. Estimates range from a few to more than ten percent of the World Ocean area. The most recent version of the bathymetric grid compiled by the General Bathymetric Chart of the Oceans (GEBCO) has bathymetric control points in 18% of the 30 x 30 arc second large grid cells. The depth values for the rest of the cells are obtained through interpolation guided by satellite altimetry in deep water. With this statistic at hand, it seems tenable to suggest that there are many scientific discoveries to be made from a complete high-resolution mapping of the World Ocean floor. In this presentation, some of our recent scientific discoveries based on modern multibeam bathymetric mapping will be highlighted and discussed. For example, how multibeam mapping provided evidence for a km-thick ice shelf covering the entire Arctic Ocean during peak glacial conditions, a hypothesis proposed nearly half a century ago, and how groundwater escape features are visible in high-resolution bathymetry in the Baltic Sea, with potential implications for the freshwater budget and distribution of nutrients and pollutants. Presented examples will be placed in the context of mapping resolution, systematic surveys versus mapping along transits, and scientific hypothesis driven mapping versus ocean exploration. The newly announced Nippon Foundation - GEBCO Seabed 2030 project has the vision to map 100% of the World Ocean floor mapped by 2030. Are there specific scientific areas where we can expect new discoveries from all mapping data collected through the Seabed 2030 project? Are there outstanding hypothesis that can be tested from a fully mapped World Ocean floor?
30 CFR 75.372 - Mine ventilation map.
Code of Federal Regulations, 2011 CFR
2011-07-01
...-date map of the mine drawn to a scale of not less than 100 nor more than 500 feet to the inch. A... in the same coalbed within 1,000 feet of existing or projected workings. These workings may be shown... does not exceed 2,000 feet to the inch and is specified on the map. (4) The locations of all known mine...
Using a Metro Map Metaphor for Organizing Web-Based Learning Resources.
ERIC Educational Resources Information Center
Bang, Tove; Gronbaek, Kaj; Hansen, Per Steen
This paper briefly describes the WebNize system and how it applies a Metro Map metaphor for organizing guided tours in Web based resources. Then, experiences in using the Metro Map based tours in a Knowledge Sharing project at the library at Aarhus School of Business (ASB) in Denmark, are discussed. The Library has been involved in establishing a…
Stacy A. Drury; Jason M. Herynk
2011-01-01
The National Tree-List Layer (NTLL) project used LANDFIRE map products to produce the first national tree-list map layer that represents tree populations at stand and regional levels. The NTLL was produced in a short time frame to address the needs of Fire and Aviation Management for a map layer that could be used as input for simulating fire-caused tree mortality...
NASA Technical Reports Server (NTRS)
Bowley, C. J.; Barnes, J. C.; Rango, A.
1981-01-01
The purpose of the handbook is to update the various snowcover interpretation techniques, document the snow mapping techniques used in the various ASVT study areas, and describe the ways snowcover data have been applied to runoff prediction. Through documentation in handbook form, the methodology developed in the Snow Mapping ASVT can be applied to other areas.
Nicholson, Suzanne W.; Dicken, Connie L.; Horton, John D.; Foose, Michael P.; Mueller, Julia A.L.; Hon, Rudi
2006-01-01
The rapid growth in the use of Geographic Information Systems (GIS) has highlighted the need for regional and national scale digital geologic maps that have standardized information about geologic age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. Although two digital geologic maps (Schruben and others, 1994; Reed and Bush, 2004) of the United States currently exist, their scales (1:2,500,000 and 1:5,000,000) are too general for many regional applications. Most states have digital geologic maps at scales of about 1:500,000, but the databases are not comparably structured and, thus, it is difficult to use the digital database for more than one state at a time. This report describes the result for a seven state region of an effort by the U.S. Geological Survey to produce a series of integrated and standardized state geologic map databases that cover the entire United States. In 1997, the United States Geological Survey's Mineral Resources Program initiated the National Surveys and Analysis (NSA) Project to develop national digital databases. One primary activity of this project was to compile a national digital geologic map database, utilizing state geologic maps, to support studies in the range of 1:250,000- to 1:1,000,000-scale. To accomplish this, state databases were prepared using a common standard for the database structure, fields, attribution, and data dictionaries. For Alaska and Hawaii new state maps are being prepared and the preliminary work for Alaska is being released as a series of 1:250,000 scale quadrangle reports. This document provides background information and documentation for the integrated geologic map databases of this report. This report is one of a series of such reports releasing preliminary standardized geologic map databases for the United States. The data products of the project consist of two main parts, the spatial databases and a set of supplemental tables relating to geologic map units. The datasets serve as a data resource to generate a variety of stratigraphic, age, and lithologic maps. This documentation is divided into four main sections: (1) description of the set of data files provided in this report, (2) specifications of the spatial databases, (3) specifications of the supplemental tables, and (4) an appendix containing the data dictionaries used to populate some fields of the spatial database and supplemental tables.
High-Resolution Underwater Mapping Using Side-Scan Sonar
2016-01-01
The goal of this study is to generate high-resolution sea floor maps using a Side-Scan Sonar(SSS). This is achieved by explicitly taking into account the SSS operation as follows. First, the raw sensor data is corrected by means of a physics-based SSS model. Second, the data is projected to the sea-floor. The errors involved in this projection are thoroughfully analysed. Third, a probabilistic SSS model is defined and used to estimate the probability of each sea-floor region to be observed. This probabilistic information is then used to weight the contribution of each SSS measurement to the map. Because of these models, arbitrary map resolutions can be achieved, even beyond the sensor resolution. Finally, a geometric map building method is presented and combined with the probabilistic approach. The resulting map is composed of two layers. The echo intensity layer holds the most likely echo intensities at each point in the sea-floor. The probabilistic layer contains information about how confident can the user or the higher control layers be about the echo intensity layer data. Experimental results have been conducted in a large subsea region. PMID:26821379
Development of regional liquefaction-induced deformation hazard maps
Rosinski, A.; Knudsen, K.-L.; Wu, J.; Seed, R.B.; Real, C.R.; ,
2004-01-01
This paper describes part of a project to assess the feasibility of producing regional (1:24,000-scale) liquefaction hazard maps that are based-on potential liquefaction-induced deformation. The study area is the central Santa Clara Valley, at the south end of San Francisco Bay in Central California. The information collected and used includes: a) detailed Quaternary geological mapping, b) over 650 geotechnical borings, c) probabilistic earthquake shaking information, and d) ground-water levels. Predictions of strain can be made using either empirical formulations or numerical simulations. In this project lateral spread displacements are estimated and new empirical relations to estimate future volumetric and shear strain are used. Geotechnical boring data to are used to: (a) develop isopach maps showing the thickness of sediment thatis likely to liquefy and deform under earthquake shaking; and (b) assess the variability in engineering properties within and between geologic map units. Preliminary results reveal that late Holocene deposits are likely to experience the greatest liquefaction-induced strains, while Holocene and late Pleistocene deposits are likely to experience significantly less horizontal and vertical strain in future earthquakes. Development of maps based on these analyses is feasible.
NASA Astrophysics Data System (ADS)
Strickland, Melissa Anne
In collaboration with the South Carolina Department of Natural Resources ACE Basin National Estuarine Research Reserve (ACE Basin NERR), the tidal freshwater ecosystems along the South Edisto River in the ACE Basin are being accurately mapped and classified using a LIDAR-Remote Sensing Fusion technique that integrates LAS LIDAR data into texture images and then merges the elevation textures and multispectral imagery for very high resolution mapping. This project discusses the development and refinement of an ArcGIS Toolbox capable of automating protocols and procedures for marsh delineation and microhabitat identification. The result is a high resolution habitat and land use map used for the identification of threatened habitat. Tidal freshwater wetlands are also a critical habitat for colonial wading birds and an accurate assessment of community diversity and acreage of this habitat type in the ACE Basin will support SCDNR's conservation and protection efforts. The maps developed by this study will be used to better monitor the freshwater/saltwater interface and establish a baseline for an ACE NERR monitoring program to track the rates and extent of alterations due to projected environmental stressors. Preliminary ground-truthing in the field will provide information about the accuracy of the mapping tool.
Alternative Fuels Data Center: Project Assistance
emerging transportation technologies. For examples of successful projects, explore alternative transportation case studies. Find My Local Coalition ZIP Code or City and State Search Map of the United States stakeholders network to learn from one another's experiences and identify potential project partners. Technical
Multiple site receptor modeling with a minimal spanning tree combined with a Kohonen neural network
NASA Astrophysics Data System (ADS)
Hopke, Philip K.
1999-12-01
A combination of two pattern recognition methods has been developed that allows the generation of geographical emission maps form multivariate environmental data. In such a projection into a visually interpretable subspace by a Kohonen Self-Organizing Feature Map, the topology of the higher dimensional variables space can be preserved, but parts of the information about the correct neighborhood among the sample vectors will be lost. This can partly be compensated for by an additional projection of Prim's Minimal Spanning Tree into the trained neural network. This new environmental receptor modeling technique has been adapted for multiple sampling sites. The behavior of the method has been studied using simulated data. Subsequently, the method has been applied to mapping data sets from the Southern California Air Quality Study. The projection of a 17 chemical variables measured at up to 8 sampling sites provided a 2D, visually interpretable, geometrically reasonable arrangement of air pollution source sin the South Coast Air Basin.
New gravity map of the western Galicia margin: The Spanish exclusive economic zone project
NASA Astrophysics Data System (ADS)
Carbó, A.; Muñoz, A.; Druet, M.; Llanes, P.; Álvarez, J.
2004-12-01
Since 1995, the most intensive mapping of the seafloor off the Spanish coast has been carried out in the framework of the Spanish Exclusive Economic Zone Project (ZEEE). The main objectives of this project are to obtain improved multibeam bathymetric cartography of the areas off Spanish coastlines, and to perform a geophysical survey, well-suited with a 10-knot navigation velocity (some techniques requires lower navigation velocity). The geophysical survey includes gravity, geomagnetism, and low-penetration seismic techniques in order to infer the geological structure of the seafloor. Other oceanographic variables such as current, surface salinity, and temperature profiles, can be recorded without compromising this systematic survey effort.
Antarctic Meteorite Location Map Series
NASA Technical Reports Server (NTRS)
Schutt, John (Editor); Fessler, Brian (Editor); Cassidy, William (Editor)
1989-01-01
Antarctica has been a prolific source of meteorites since meteorite concentrations were discovered in 1969. The Antarctic Search For Meteorites (ANSMET) project has been active over much of the Trans-Antarctic Mountain Range. The first ANSMET expedition (a joint U.S.-Japanese effort) discovered what turned out to be a significant concentration of meteorites at the Allan Hills in Victoria Land. Later reconnaissance in this region resulted in the discovery of meteorite concentrations on icefields to the west of the Allan Hills, at Reckling Moraine, and Elephant Moraine. Antarctic meteorite location maps (reduced versions) of the Allan Hills main, near western, middle western, and far western icefields and the Elephant Moraine icefield are presented. Other Antarctic meteorite location maps for the specimens found by the ANSMET project are being prepared.
Three approaches to the classification of inland wetlands. [Dismal Swamp, Tennessee, and Florida
NASA Technical Reports Server (NTRS)
Gammon, P. T.; Malone, D.; Brooks, P. D.; Carter, V.
1977-01-01
In the Dismal Swamp project, seasonal, color-infrared aerial photographs and LANDSAT digital data were interpreted for a detailed analysis of the vegetative communities in a large, highly altered wetland. In Western Tennessee, seasonal high altitude color-infrared aerial photographs provided the hydrologic and vegetative information needed to map inland wetlands, using a classification system developed for the Tennessee Valley Region. In Florida, color-infrared aerial photographs were analyzed to produce wetland maps using three existing classification systems to evaluate the information content and mappability of each system. The methods used in each of the three projects can be extended or modified for use in the mapping of inland wetlands in other parts of the United States.
Straight talk with...Miyoung Chun. Interview by Virginia Hughes.
Chun, Miyoung
2013-04-01
It was a single tweet. In February, after US President Barack Obama made a subtle nod to a new neuroscience project in his annual State of the Union address, Francis Collins, director of the country's National Institutes of Health (NIH), posted on the @NIHDirector Twitter feed: "Obama mentions the #NIH Brain Activity Map in #SOTU." Instantly, scientists were buzzing with rumors that the Brain Activity Map could be the next moon shot, with a budget and timeline similar to the Human Genome Project. The brain map began as a brief white paper and has grown into a large--and still largely undefined--collaboration of several government agencies, nonprofit foundations and private companies. As the stakeholders describe in a commentary published last month (339, 1284-1285, 2013), the goal of the initiative is to understand how thousands of neurons work in concert to control behavior and trigger disease. Miyoung Chun, vice president for science programs at The Kavli Foundation in Oxnard, California, has been developing the project since the beginning and is the self-described "glue" between its many diverse stakeholders. Chun spoke with Virginia Hughes about the evolution of the project and what it might mean for biomedicine.
Crookes, D J; Blignaut, J N; de Wit, M P; Esler, K J; Le Maitre, D C; Milton, S J; Mitchell, S A; Cloete, J; de Abreu, P; Fourie nee Vlok, H; Gull, K; Marx, D; Mugido, W; Ndhlovu, T; Nowell, M; Pauw, M; Rebelo, A
2013-05-15
Can markets assist by providing support for ecological restoration, and if so, under what conditions? The first step in addressing this question is to develop a consistent methodology for economic evaluation of ecological restoration projects. A risk analysis process was followed in which a system dynamics model was constructed for eight diverse case study sites where ecological restoration is currently being pursued. Restoration costs vary across each of these sites, as do the benefits associated with restored ecosystem functioning. The system dynamics model simulates the ecological, hydrological and economic benefits of ecological restoration and informs a portfolio mapping exercise where payoffs are matched against the likelihood of success of a project, as well as a number of other factors (such as project costs and risk measures). This is the first known application that couples ecological restoration with system dynamics and portfolio mapping. The results suggest an approach that is able to move beyond traditional indicators of project success, since the effect of discounting is virtually eliminated. We conclude that systems dynamic modelling with portfolio mapping can guide decisions on when markets for restoration activities may be feasible. Copyright © 2013 Elsevier Ltd. All rights reserved.
Computer-composite mapping for geologists
van Driel, J.N.
1980-01-01
A computer program for overlaying maps has been tested and evaluated as a means for producing geologic derivative maps. Four maps of the Sugar House Quadrangle, Utah, were combined, using the Multi-Scale Data Analysis and Mapping Program, in a single composite map that shows the relative stability of the land surface during earthquakes. Computer-composite mapping can provide geologists with a powerful analytical tool and a flexible graphic display technique. Digitized map units can be shown singly, grouped with different units from the same map, or combined with units from other source maps to produce composite maps. The mapping program permits the user to assign various values to the map units and to specify symbology for the final map. Because of its flexible storage, easy manipulation, and capabilities of graphic output, the composite-mapping technique can readily be applied to mapping projects in sedimentary and crystalline terranes, as well as to maps showing mineral resource potential. ?? 1980 Springer-Verlag New York Inc.
NASA Astrophysics Data System (ADS)
Carraro, Francesco
"Mars @ ASDC" is a project born with the goal of using the new web technologies to assist researches involved in the study of Mars. This project employs Mars map and javascript APIs provided by Google to visualize data acquired by space missions on the planet. So far, visualization of tracks acquired by MARSIS and regions observed by VIRTIS-Rosetta has been implemented. The main reason for the creation of this kind of tool is the difficulty in handling hundreds or thousands of acquisitions, like the ones from MARSIS, and the consequent difficulty in finding observations related to a particular region. This led to the development of a tool which allows to search for acquisitions either by defining the region of interest through a set of geometrical parameters or by manually selecting the region on the map through a few mouse clicks The system allows the visualization of tracks (acquired by MARSIS) or regions (acquired by VIRTIS-Rosetta) which intersect the user defined region. MARSIS tracks can be visualized both in Mercator and polar projections while the regions observed by VIRTIS can presently be visualized only in Mercator projection. The Mercator projection is the standard map provided by Google. The polar projections are provided by NASA and have been developed to be used in combination with APIs provided by Google The whole project has been developed following the "open source" philosophy: the client-side code which handles the functioning of the web page is written in javascript; the server-side code which executes the searches for tracks or regions is written in PHP and the DB which undergoes the system is MySQL.
NASA Astrophysics Data System (ADS)
Wood, J. H.; Natali, S.; Schade, J. D.; Fiske, G. J.; Linder, C.; Ramos, E.; Weber, L. R.; Kuhn, M. A.
2014-12-01
The Polaris Project is a unique undergraduate education, research, and outreach initiative that examines global climate change in the Siberian Arctic. The program focuses on permafrost and carbon processes in the boreal and tundra ecosystems of the Kolyma Watershed, the largest watershed underlain by continuous permafrost. Each summer, a diverse group of undergraduate students and faculty mentors spends one month living on the Kolyma River, developing independent projects that engage the students directly in the biogeosciences through authentic scientific research experiences in remote field sites. In all cases the student projects contribute to the overall goal of the Polaris Project to investigate the transport and transformations of carbon and nutrients as they move among terrestrial and aquatic ecosystems and the atmosphere. Through the use of online interactive ArcGIS maps the students share their experiences and learning, while posing questions in a format that can be used to engage K-12 learners in the classroom. By embedding information; including databases, photographs and video, informational text, and geospatial data; into user-friendly maps the Polaris Project students will "tell the story" of studying climate change in the Siberian tundra in a way that allows the users to explore climate science through inquiry and web-map based investigation. Through performance expectation topics including Weather and Climate, Interactions, Earth's Systems, and Human impacts, this investigation uses consideration of the vast amounts of ancient organic matter locked up in permafrost in the region, and concerns about the fate of this ancient organic carbon as temperatures warm and permafrost thaws, to make K-12 climate change connections with the Next Generation Science Standards (NGSS).
The promise of new ideas and new technology for improving teaching and learning.
Novak, Joseph D
2003-01-01
There have been enormous advances in our understanding of human learning in the past three decades. There have also been important advances in our understanding of the nature of knowledge and new knowledge creation. These advances, when combined with the explosive development of the Internet and other technologies, permit advances in educational practices at least as important as the invention of the printing press in 1460. We have built on the cognitive learning theory of David Ausubel and various sources of new ideas on epistemology. Our research program has focused on understanding meaningful learning and on developing better methods to achieve such learning and to assess progress in meaningful learning. The concept map tool developed in our program has proved to be highly effective both in promoting meaningful learning and in assessing learning outcomes. Concept mapping strategies are also proving powerful for eliciting, capturing, and archiving knowledge of experts and organizations. New technology for creating concept maps developed at the University of West Florida permits easier and better concept map construction, thus facilitating learning, knowledge capture, and local or distance creation and sharing of structured knowledge, especially when utilized with the Internet. A huge gap exists between what we now know to improve learning and use of knowledge and the practices currently in place in most schools and corporations. There are promising projects in progress that may help to achieve accelerated advances. These include projects in schools at all educational levels, including projects in Colombia, Costa Rica, Italy, Spain, and the United States, and collaborative projects with corporate organizations and distance learning projects. Results to date have been encouraging and suggest that we may be moving from the lag phase of educational innovation to a phase of exponential growth.
The Promise of New Ideas and New Technology for Improving Teaching and Learning
Novak, Joseph D.
2003-01-01
There have been enormous advances in our understanding of human learning in the past three decades. There have also been important advances in our understanding of the nature of knowledge and new knowledge creation. These advances, when combined with the explosive development of the Internet and other technologies, permit advances in educational practices at least as important as the invention of the printing press in 1460. We have built on the cognitive learning theory of David Ausubel and various sources of new ideas on epistemology. Our research program has focused on understanding meaningful learning and on developing better methods to achieve such learning and to assess progress in meaningful learning. The concept map tool developed in our program has proved to be highly effective both in promoting meaningful learning and in assessing learning outcomes. Concept mapping strategies are also proving powerful for eliciting, capturing, and archiving knowledge of experts and organizations. New technology for creating concept maps developed at the University of West Florida permits easier and better concept map construction, thus facilitating learning, knowledge capture, and local or distance creation and sharing of structured knowledge, especially when utilized with the Internet. A huge gap exists between what we now know to improve learning and use of knowledge and the practices currently in place in most schools and corporations. There are promising projects in progress that may help to achieve accelerated advances. These include projects in schools at all educational levels, including projects in Colombia, Costa Rica, Italy, Spain, and the United States, and collaborative projects with corporate organizations and distance learning projects. Results to date have been encouraging and suggest that we may be moving from the lag phase of educational innovation to a phase of exponential growth. PMID:12888848
Development of a Coordinate Transformation method for direct georeferencing in map projection frames
NASA Astrophysics Data System (ADS)
Zhao, Haitao; Zhang, Bing; Wu, Changshan; Zuo, Zhengli; Chen, Zhengchao
2013-03-01
This paper develops a novel Coordinate Transformation method (CT-method), with which the orientation angles (roll, pitch, heading) of the local tangent frame of the GPS/INS system are transformed into those (omega, phi, kappa) of the map projection frame for direct georeferencing (DG). Especially, the orientation angles in the map projection frame were derived from a sequence of coordinate transformations. The effectiveness of orientation angles transformation was verified through comparing with DG results obtained from conventional methods (Legat method and POSPac method) using empirical data. Moreover, the CT-method was also validated with simulated data. One advantage of the proposed method is that the orientation angles can be acquired simultaneously while calculating position elements of exterior orientation (EO) parameters and auxiliary points coordinates by coordinate transformation. These three methods were demonstrated and compared using empirical data. Empirical results show that the CT-method is both as sound and effective as Legat method. Compared with POSPac method, the CT-method is more suitable for calculating EO parameters for DG in map projection frames. DG accuracy of the CT-method and Legat method are at the same level. DG results of all these three methods have systematic errors in height due to inconsistent length projection distortion in the vertical and horizontal components, and these errors can be significantly reduced using the EO height correction technique in Legat's approach. Similar to the results obtained with empirical data, the effectiveness of the CT-method was also proved with simulated data. POSPac method: The method is presented by Applanix POSPac software technical note (Hutton and Savina, 1997). It is implemented in the POSEO module of POSPac software.
NASA Astrophysics Data System (ADS)
Pungkul, S.; Suraswasdi, C.; Phonekeo, V.
2014-02-01
The Great Mekong Subregion (GMS) contains one of the world's largest tropical forests and plays a vital role in sustainable development and provides a range of economic, social and environmental benefits, including essential ecosystem services such as climate change mitigation and adaptation. However, the forest in this Subregion is experiencing deforestation rates at high level due to human activities. The reduction of the forest area has negative influence to the environmental and natural resources issues, particularly, more severe disasters have occurred due to global warming and the release of the greenhouse gases. Therefore, in order to conduct forest management in the Subregion efficiently, the Forest Cover and Carbon Mapping in Greater Mekong Subregion and Malaysia project was initialized by the Asia-Pacific Network for Sustainable Forest Management and Rehabilitation (APFNet) with the collaboration of various research institutions including Institute of Forest Resource Information Technique (IFRIT), Chinese Academy of Forestry (CAF) and the countries in Sub region and Malaysia comprises of Cambodia, the People's Republic of China (Yunnan province and Guangxi province), Lao People's Democratic Republic, Malaysia, Myanmar, Thailand, and Viet Nam. The main target of the project is to apply the intensive use of recent satellite remote sensing technology, establishing regional forest cover maps, documenting forest change processes and estimating carbon storage in the GMS and Malaysia. In this paper, the authors present the implementation of the project in Thailand and demonstrate the result of forest cover mapping in the whole country in 2005 and 2010. The result of the project will contribute towards developing efficient tools to support decision makers to clearly understand the dynamic change of the forest cover which could benefit sustainable forest resource management in Thailand and the whole Subregion.
Projected climate impacts for the amphibians of the western hemisphere
Lawler, Joshua J.; Shafer, Sarah L.; Bancroft, Betsy A.; Blaustein, Andrew R.
2010-01-01
Given their physiological requirements, limited dispersal abilities, and hydrologically sensitive habitats, amphibians are likely to be highly sensitive to future climatic changes. We used three approaches to map areas in the western hemisphere where amphibians are particularly likely to be affected by climate change. First, we used bioclimatic models to project potential climate-driven shifts in the distribution of 413 amphibian species based on 20 climate simulations for 2071–2100. We summarized these projections to produce estimates of species turnover. Second, we mapped the distribution of 1099 species with restricted geographic ranges. Finally, using the 20 future climate-change simulations, we mapped areas that were consistently projected to receive less seasonal precipitation in the coming century and thus were likely to have altered microclimates and local hydrologies. Species turnover was projected to be highest in the Andes Mountains and parts of Central America and Mexico, where, on average, turnover rates exceeded 60% under the lower of two emissions scenarios. Many of the restricted-range species not included in our range-shift analyses were concentrated in parts of the Andes and Central America and in Brazil's Atlantic Forest. Much of Central America, southwestern North America, and parts of South America were consistently projected to experience decreased precipitation by the end of the century. Combining the results of the three analyses highlighted several areas in which amphibians are likely to be significantly affected by climate change for multiple reasons. Portions of southern Central America were simultaneously projected to experience high species turnover, have many additional restricted-range species, and were consistently projected to receive less precipitation. Together, our three analyses form one potential assessment of the geographic vulnerability of amphibians to climate change and as such provide broad-scale guidance for directing conservation efforts.
Projected climate impacts for the amphibians of the Western hemisphere.
Lawler, Joshua J; Shafer, Sarah L; Bancroft, Betsy A; Blaustein, Andrew R
2010-02-01
Given their physiological requirements, limited dispersal abilities, and hydrologically sensitive habitats, amphibians are likely to be highly sensitive to future climatic changes. We used three approaches to map areas in the western hemisphere where amphibians are particularly likely to be affected by climate change. First, we used bioclimatic models to project potential climate-driven shifts in the distribution of 413 amphibian species based on 20 climate simulations for 2071-2100. We summarized these projections to produce estimates of species turnover. Second, we mapped the distribution of 1099 species with restricted geographic ranges. Finally, using the 20 future climate-change simulations, we mapped areas that were consistently projected to receive less seasonal precipitation in the coming century and thus were likely to have altered microclimates and local hydrologies. Species turnover was projected to be highest in the Andes Mountains and parts of Central America and Mexico, where, on average, turnover rates exceeded 60% under the lower of two emissions scenarios. Many of the restricted-range species not included in our range-shift analyses were concentrated in parts of the Andes and Central America and in Brazil's Atlantic Forest. Much of Central America, southwestern North America, and parts of South America were consistently projected to experience decreased precipitation by the end of the century. Combining the results of the three analyses highlighted several areas in which amphibians are likely to be significantly affected by climate change for multiple reasons. Portions of southern Central America were simultaneously projected to experience high species turnover, have many additional restricted-range species, and were consistently projected to receive less precipitation. Together, our three analyses form one potential assessment of the geographic vulnerability of amphibians to climate change and as such provide broad-scale guidance for directing conservation efforts.
The Immunological Genome Project: networks of gene expression in immune cells.
Heng, Tracy S P; Painter, Michio W
2008-10-01
The Immunological Genome Project combines immunology and computational biology laboratories in an effort to establish a complete 'road map' of gene-expression and regulatory networks in all immune cells.
18 CFR 806.11 - Preliminary consultations.
Code of Federal Regulations, 2010 CFR
2010-04-01
... proposed project, a map showing its location and, to the extent available, data concerning dimensions of... consultation is optional for the project sponsor (except with respect to aquifer test plans, see § 806.12 but...
An overview of the Hadoop/MapReduce/HBase framework and its current applications in bioinformatics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Ronald C.
Bioinformatics researchers are increasingly confronted with analysis of ultra large-scale data sets, a problem that will only increase at an alarming rate in coming years. Recent developments in open source software, that is, the Hadoop project and associated software, provide a foundation for scaling to petabyte scale data warehouses on Linux clusters, providing fault-tolerant parallelized analysis on such data using a programming style named MapReduce. An overview is given of the current usage within the bioinformatics community of Hadoop, a top-level Apache Software Foundation project, and of associated open source software projects. The concepts behind Hadoop and the associated HBasemore » project are defined, and current bioinformatics software that employ Hadoop is described. The focus is on next-generation sequencing, as the leading application area to date.« less
Preconditioned alternating projection algorithms for maximum a posteriori ECT reconstruction
NASA Astrophysics Data System (ADS)
Krol, Andrzej; Li, Si; Shen, Lixin; Xu, Yuesheng
2012-11-01
We propose a preconditioned alternating projection algorithm (PAPA) for solving the maximum a posteriori (MAP) emission computed tomography (ECT) reconstruction problem. Specifically, we formulate the reconstruction problem as a constrained convex optimization problem with the total variation (TV) regularization. We then characterize the solution of the constrained convex optimization problem and show that it satisfies a system of fixed-point equations defined in terms of two proximity operators raised from the convex functions that define the TV-norm and the constraint involved in the problem. The characterization (of the solution) via the proximity operators that define two projection operators naturally leads to an alternating projection algorithm for finding the solution. For efficient numerical computation, we introduce to the alternating projection algorithm a preconditioning matrix (the EM-preconditioner) for the dense system matrix involved in the optimization problem. We prove theoretically convergence of the PAPA. In numerical experiments, performance of our algorithms, with an appropriately selected preconditioning matrix, is compared with performance of the conventional MAP expectation-maximization (MAP-EM) algorithm with TV regularizer (EM-TV) and that of the recently developed nested EM-TV algorithm for ECT reconstruction. Based on the numerical experiments performed in this work, we observe that the alternating projection algorithm with the EM-preconditioner outperforms significantly the EM-TV in all aspects including the convergence speed, the noise in the reconstructed images and the image quality. It also outperforms the nested EM-TV in the convergence speed while providing comparable image quality.
User's Guide for the MapImage Reprojection Software Package, Version 1.01
Finn, Michael P.; Trent, Jason R.
2004-01-01
Scientists routinely accomplish small-scale geospatial modeling in the raster domain, using high-resolution datasets (such as 30-m data) for large parts of continents and low-resolution to high-resolution datasets for the entire globe. Recently, Usery and others (2003a) expanded on the previously limited empirical work with real geographic data by compiling and tabulating the accuracy of categorical areas in projected raster datasets of global extent. Geographers and applications programmers at the U.S. Geological Survey's (USGS) Mid-Continent Mapping Center (MCMC) undertook an effort to expand and evolve an internal USGS software package, MapImage, or mapimg, for raster map projection transformation (Usery and others, 2003a). Daniel R. Steinwand of Science Applications International Corporation, Earth Resources Observation Systems Data Center in Sioux Falls, S. Dak., originally developed mapimg for the USGS, basing it on the USGS's General Cartographic Transformation Package (GCTP). It operated as a command line program on the Unix operating system. Through efforts at MCMC, and in coordination with Mr. Steinwand, this program has been transformed from an application based on a command line into a software package based on a graphic user interface for Windows, Linux, and Unix machines. Usery and others (2003b) pointed out that many commercial software packages do not use exact projection equations and that even when exact projection equations are used, the software often results in error and sometimes does not complete the transformation for specific projections, at specific resampling resolutions, and for specific singularities. Direct implementation of point-to-point transformation with appropriate functions yields the variety of projections available in these software packages, but implementation with data other than points requires specific adaptation of the equations or prior preparation of the data to allow the transformation to succeed. Additional constraints apply to global raster data. It appears that some packages use the USGS's GCTP or similar point transformations without adaptation to the specific characteristics of raster data (Usery and others, 2003b). It is most common for programs to compute transformations of raster data in an inverse fashion. Such mapping can result in an erroneous position and replicate data or create pixels not in the original space. As Usery and others (2003a) indicated, mapimg performs a corresponding forward transformation to ensure the same location results from both methods. The primary benefit of this function is to mask cells outside the domain. MapImage 1.01 is now on the Web. You can download the User's Guide, source, and binaries from the following site: http://mcmcweb.er.usgs.gov/carto_research/projection/acc_proj_data.html
NASA Astrophysics Data System (ADS)
Law, E.; Bui, B.; Chang, G.; Goodale, C. E.; Kim, R.; Malhotra, S.; Ramirez, P.; Rodriguez, L.; Sadaqathulla, S.; Nall, M.; Muery, K.
2012-12-01
The Lunar Mapping and Modeling Portal (LMMP), is a multi-center project led by NASA's Marshall Space Flight Center. The LMMP is a web-based Portal and a suite of interactive visualization and analysis tools to enable lunar scientists, engineers, and mission planners to access mapped lunar data products from past and current lunar missions, e.g., Lunar Reconnaissance Orbiter, Apollo, Lunar Orbiter, Lunar Prospector, and Clementine. The Portal allows users to search, view and download a vast number of the most recent lunar digital products including image mosaics, digital elevation models, and in situ lunar resource maps such as iron and hydrogen abundance. The Portal also provides a number of visualization and analysis tools that perform lighting analysis and local hazard assessments, such as, slope, surface roughness and crater/boulder distribution. In this talk, we will give a brief overview of the project. After that, we will highlight various key features and Lunar data products. We will further demonstrate image viewing and layering of lunar map images via our web portal as well as mobile devices.
Seabird aggregative patterns: a new tool for offshore wind energy risk assessment.
Christel, Isadora; Certain, Grégoire; Cama, Albert; Vieites, David R; Ferrer, Xavier
2013-01-15
The emerging development of offshore wind energy has raised public concern over its impact on seabird communities. There is a need for an adequate methodology to determine its potential impacts on seabirds. Environmental Impact Assessments (EIAs) are mostly relying on a succession of plain density maps without integrated interpretation of seabird spatio-temporal variability. Using Taylor's power law coupled with mixed effect models, the spatio-temporal variability of species' distributions can be synthesized in a measure of the aggregation levels of individuals over time and space. Applying the method to a seabird aerial survey in the Ebro Delta, NW Mediterranean Sea, we were able to make an explicit distinction between transitional and feeding areas to define and map the potential impacts of an offshore wind farm project. We use the Ebro Delta study case to discuss the advantages of potential impacts maps over density maps, as well as to illustrate how these potential impact maps can be applied to inform on concern levels, optimal EIA design and monitoring in the assessment of local offshore wind energy projects. Copyright © 2012 Elsevier Ltd. All rights reserved.
The need for an assembly pilot project
USDA-ARS?s Scientific Manuscript database
Progress has been rapid since the June 2008 start of the cacao genome sequencing project with the completion of the physical map and the accumulation of approximately 10x coverage of the genome with Titanium 454 sequence data of Matina1-6, the highly homozygous Amelonado tree chosen for the project....
76 FR 16618 - Western Pacific Fishery Management Council; Public Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-24
... Programs and Research Projects A. Coral Reef Fisheries B. Crustacean Fisheries C. Precious Coral Fisheries... Offshore Aquaculture 7. Coral Reef Funded Projects A. Kona Crab Stock Assessment B. Black Coral Mapping C. Deepwater Chorusing Phenomenon D. Report on Tournament Sampling E. Upcoming Coral Reef Projects Schedule and...
Chapter 4 - The LANDFIRE Prototype Project reference database
John F. Caratti
2006-01-01
This chapter describes the data compilation process for the Landscape Fire and Resource Management Planning Tools Prototype Project (LANDFIRE Prototype Project) reference database (LFRDB) and explains the reference data applications for LANDFIRE Prototype maps and models. The reference database formed the foundation for all LANDFIRE tasks. All products generated by the...
77 FR 68705 - Community Connect Broadband Grant Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-16
... concise project summary and map can be used to inform USDA Rural Development State Directors of pending... and can also be used to fund operations of the project. This change gives applicants new flexibility... able to demonstrate that they have sufficient resources to construct, manage and sustain the project...
Training and Practice in Geographic Skills: An Aerial Photo Interpretation Course Project.
ERIC Educational Resources Information Center
Rumney, Thomas
1982-01-01
Describes a college level geography project which focused on land use identification from aerial photographs, land use mapping, and the identification and analysis of land use changes in the field. The project was intended to help students apply geographic skills to real world problems. (AM)
Internationalization Revisited
ERIC Educational Resources Information Center
Peterson, Patti McGill; Helms, Robin Matross
2013-01-01
For the last decade, the American Council on Education (ACE) has charted higher education's progress towards internationalization through its Mapping Internationalization on US Campuses project. Using surveys of US institutions conducted in 2001, 2006, and 2011, the Mapping study examines strategic planning, the curriculum, faculty policies and…
NASA Astrophysics Data System (ADS)
Ardalan, A. A.; Safari, A.
2004-09-01
An operational algorithm for computation of terrain correction (or local gravity field modeling) based on application of closed-form solution of the Newton integral in terms of Cartesian coordinates in multi-cylindrical equal-area map projection of the reference ellipsoid is presented. Multi-cylindrical equal-area map projection of the reference ellipsoid has been derived and is described in detail for the first time. Ellipsoidal mass elements with various sizes on the surface of the reference ellipsoid are selected and the gravitational potential and vector of gravitational intensity (i.e. gravitational acceleration) of the mass elements are computed via numerical solution of the Newton integral in terms of geodetic coordinates {λ,ϕ,h}. Four base- edge points of the ellipsoidal mass elements are transformed into a multi-cylindrical equal-area map projection surface to build Cartesian mass elements by associating the height of the corresponding ellipsoidal mass elements to the transformed area elements. Using the closed-form solution of the Newton integral in terms of Cartesian coordinates, the gravitational potential and vector of gravitational intensity of the transformed Cartesian mass elements are computed and compared with those of the numerical solution of the Newton integral for the ellipsoidal mass elements in terms of geodetic coordinates. Numerical tests indicate that the difference between the two computations, i.e. numerical solution of the Newton integral for ellipsoidal mass elements in terms of geodetic coordinates and closed-form solution of the Newton integral in terms of Cartesian coordinates, in a multi-cylindrical equal-area map projection, is less than 1.6×10-8 m2/s2 for a mass element with a cross section area of 10×10 m and a height of 10,000 m. For a mass element with a cross section area of 1×1 km and a height of 10,000 m the difference is less than 1.5×10-4m2/s2. Since 1.5× 10-4 m2/s2 is equivalent to 1.5×10-5m in the vertical direction, it can be concluded that a method for terrain correction (or local gravity field modeling) based on closed-form solution of the Newton integral in terms of Cartesian coordinates of a multi-cylindrical equal-area map projection of the reference ellipsoid has been developed which has the accuracy of terrain correction (or local gravity field modeling) based on the Newton integral in terms of ellipsoidal coordinates.
Magrit: a new thematic cartography tool
NASA Astrophysics Data System (ADS)
Viry, Matthieu; Giraud, Timothée; Lambert, Nicolas
2018-05-01
The article provides an overview of the features of the Magrit web application: a free online thematic mapping tool, presenting a strong pedagogical dimension and making possible to mobilize all the elements necessary for the realization of a thematic map. In this tool, several simple modes of representation are proposed such as proportional maps or choropleth maps. Other, more complex modes are also available such as smoothed maps and cartograms. Each map can be finalized thanks to layout and customization features (projection, scale, orientation, toponyms, etc.) and exported in vector format. Magrit is therefore a complete, light and versatile tool particularly adapted to cartography teaching at the university.
Non-integrability vs. integrability in pentagram maps
NASA Astrophysics Data System (ADS)
Khesin, Boris; Soloviev, Fedor
2015-01-01
We revisit recent results on integrable cases for higher-dimensional generalizations of the 2D pentagram map: short-diagonal, dented, deep-dented, and corrugated versions, and define a universal class of pentagram maps, which are proved to possess projective duality. We show that in many cases the pentagram map cannot be included into integrable flows as a time-one map, and discuss how the corresponding notion of discrete integrability can be extended to include jumps between invariant tori. We also present a numerical evidence that certain generalizations of the integrable 2D pentagram map are non-integrable and present a conjecture for a necessary condition of their discrete integrability.
NASA Technical Reports Server (NTRS)
Zimbelman, J. R.
2008-01-01
This report summarizes the status of a mapping project supported by NASA grant NNX07AP42G, funding for which became available on July 18, focusing on the mapping of the Medusae Fossae Formation (MFF) on Mars. The report also briefly discusses the status of maps of Venus and Ascraeus Mons, begun under previous NASA grants but which are still in progress.
Composite annotations: requirements for mapping multiscale data and models to biomedical ontologies
Cook, Daniel L.; Mejino, Jose L. V.; Neal, Maxwell L.; Gennari, John H.
2009-01-01
Current methods for annotating biomedical data resources rely on simple mappings between data elements and the contents of a variety of biomedical ontologies and controlled vocabularies. Here we point out that such simple mappings are inadequate for large-scale multiscale, multidomain integrative “virtual human” projects. For such integrative challenges, we describe a “composite annotation” schema that is simple yet sufficiently extensible for mapping the biomedical content of a variety of data sources and biosimulation models to available biomedical ontologies. PMID:19964601
The Information Is In the Maps: Representations & Algorithms for Mapping among Geometric Data
2015-09-30
space of all maps is a huge space and an important part of the project has addressed the problem of finding compact representations and encodings...understanding the relationships among its parts, or its connections to other data sets that may share the same or similar structure. Towards this end, we have...for the much smaller spaces of interesting maps within a specific application. The machinery developed here has proven of use across a broad spectrum
Adding It Up: A Guide for Mapping Public Resources for Children, Youth and Families
ERIC Educational Resources Information Center
Flynn-Khan, Margaret; Ferber, Thaddeus; Gaines, Elizabeth; Pittman, Karen
2006-01-01
This guide is a joint effort from the Forum for Youth Investment and the Finance Project designed to help decision makers and community leaders both learn the importance of a good children youth and families (CYF) resource map and lay out the process of creating or improving a CYF resource map of their own. The handbook has been designed to…
ERIC Educational Resources Information Center
Wang, Hsiu-Ying; Huang, Iwen; Hwang, Gwo-Jen
2016-01-01
Concept mapping has been widely used in various fields to facilitate students' organization of knowledge. Previous studies have, however, pointed out that it is difficult for students to construct concept maps from the abundant searched data without appropriate scaffolding. Thus, researchers have suggested that students could produce high quality…
Crowdsourcing Physical Network Topology Mapping With Net.Tagger
2016-03-01
backend server infrastructure . This in- cludes a full security audit, better web services handling, and integration with the OSM stack and dataset to...a novel approach to network infrastructure mapping that combines smartphone apps with crowdsourced collection to gather data for offline aggregation...and analysis. The project aims to build a map of physical network infrastructure such as fiber-optic cables, facilities, and access points. The
Map Interpretation and Terrain Analysis Course (MITAC) for Infantrymen: Illustrated Lectures
1982-01-01
Factors Influencing Map Design . . . . . ..... ............ 4 Interpretation of Terrain Relief and Other Topographic Features...Institute (ARI) sponsored a project to design and develop a map interpretation and terrain analysis course (MITAC) to improve the ability of Army...helicopter pilots to navigate accurately when flying at nap-of-the-earth (NOE) altitudes (McGrath, 1975; McGrath & Foster, 1975). MITAC was designed to
Cronin, Matthew John; Wharton, Samuel; Al-Radaideh, Ali; Constantinescu, Cris; Evangelou, Nikos; Bowtell, Richard; Gowland, Penny Anne
2016-06-01
The aim of this study was to compare the use of high-resolution phase and QSM images acquired at ultra-high field in the investigation of multiple sclerosis (MS) lesions with peripheral rings, and to discuss their usefulness for drawing inferences about underlying tissue composition. Thirty-nine Subjects were scanned at 7 T, using 3D T 2*-weighted and T 1-weighted sequences. Phase images were then unwrapped and filtered, and quantitative susceptibility maps were generated using a thresholded k-space division method. Lesions were compared visually and using a 1D profiling algorithm. Lesions displaying peripheral rings in the phase images were identified in 10 of the 39 subjects. Dipolar projections were apparent in the phase images outside of the extent of several of these lesions; however, QSM images showed peripheral rings without such projections. These projections appeared ring-like in a small number of phase images where no ring was observed in QSM. 1D profiles of six well-isolated example lesions showed that QSM contrast corresponds more closely to the magnitude images than phase contrast. Phase images contain dipolar projections, which confounds their use in the investigation of tissue composition in MS lesions. Quantitative susceptibility maps correct these projections, providing insight into the composition of MS lesions showing peripheral rings.
Offshore Energy Mapping for Northeast Atlantic and Mediterranean: MARINA PLATFORM project
NASA Astrophysics Data System (ADS)
Kallos, G.; Galanis, G.; Spyrou, C.; Kalogeri, C.; Adam, A.; Athanasiadis, P.
2012-04-01
Deep offshore ocean energy mapping requires detailed modeling of the wind, wave, tidal and ocean circulation estimations. It requires also detailed mapping of the associated extremes. An important issue in such work is the co-generation of energy (generation of wind, wave, tides, currents) in order to design platforms on an efficient way. For example wind and wave fields exhibit significant phase differences and therefore the produced energy from both sources together requires special analysis. The other two sources namely tides and currents have different temporal scales from the previous two. Another important issue is related to the estimation of the environmental frequencies in order to avoid structural problems. These are issues studied at the framework of the FP7 project MARINA PLATFORM. The main objective of the project is to develop deep water structures that can exploit the energy from wind, wave, tidal and ocean current energy sources. In particular, a primary goal will be the establishment of a set of equitable and transparent criteria for the evaluation of multi-purpose platforms for marine renewable energy. Using these criteria, a novel system set of design and optimisation tools will be produced addressing new platform design, component engineering, risk assessment, spatial planning, platform-related grid connection concepts, all focussed on system integration and reducing costs. The University of Athens group is in charge for estimation and mapping of wind, wave, tidal and ocean current resources, estimate available energy potential, map extreme event characteristics and provide any additional environmental parameter required.
Region 9 Tribal Grant Program - Project Officer and Tribal Contact Information Map Service
This compilation of geospatial data is for the purpose of managing and communicating information about current EPA project officers, tribal contacts, and tribal grants, both internally and with external stakeholders.
MITSI project : final local evaluation report
DOT National Transportation Integrated Search
2003-01-01
The mission statement for the MITSI project was facilitating National Standards Compliance migration for NaviGAtor, conducting National Architecture mapping for MARTA and E911, and evaluating CORBA as a methodology for exchanging data. This involved ...
NASA Astrophysics Data System (ADS)
Doroszkiewicz, Joanna; Romanowicz, Renata
2016-04-01
Uncertainty in the results of the hydraulic model is not only associated with the limitations of that model and the shortcomings of data. An important factor that has a major impact on the uncertainty of the flood risk assessment in a changing climate conditions is associated with the uncertainty of future climate scenarios (IPCC WG I, 2013). Future climate projections provided by global climate models are used to generate future runoff required as an input to hydraulic models applied in the derivation of flood risk maps. Biala Tarnowska catchment, situated in southern Poland is used as a case study. Future discharges at the input to a hydraulic model are obtained using the HBV model and climate projections obtained from the EUROCORDEX project. The study describes a cascade of uncertainty related to different stages of the process of derivation of flood risk maps under changing climate conditions. In this context it takes into account the uncertainty of future climate projections, an uncertainty of flow routing model, the propagation of that uncertainty through the hydraulic model, and finally, the uncertainty related to the derivation of flood risk maps. One of the aims of this study is an assessment of a relative impact of different sources of uncertainty on the uncertainty of flood risk maps. Due to the complexity of the process, an assessment of total uncertainty of maps of inundation probability might be very computer time consuming. As a way forward we present an application of a hydraulic model simulator based on a nonlinear transfer function model for the chosen locations along the river reach. The transfer function model parameters are estimated based on the simulations of the hydraulic model at each of the model cross-section. The study shows that the application of the simulator substantially reduces the computer requirements related to the derivation of flood risk maps under future climatic conditions. Acknowledgements: This work was supported by the project CHIHE (Climate Change Impact on Hydrological Extremes), carried out in the Institute of Geophysics Polish Academy of Sciences, funded by Norway Grants (contract No. Pol-Nor/196243/80/2013). The hydro-meteorological observations were provided by the Institute of Meteorology and Water Management (IMGW), Poland.
MAP OF ECOREGIONS OF NEBRASKA AND KANSAS
The ecoregions of Kansas and Nebraska have been identified, mapped, and described and provide a geographic structure for environmental resources research, assessment, monitoring, and management. This project is part of a larger effort by the U.S. EPA to create a national, hierar...
Completed Projects Publications Contact Information NIH Contacts CIDR Contacts ___________________ -Contact Us -Privacy Policy -Site Map Search You are here: CIDR>Contact Information> CIDR Contacts CIDR 1812 Ashland Ave Suite 200 Baltimore, MD 21205 Contact Us | Privacy Policy | Site Map | Get Adobe
MAP OF ECOREGIONS OF THE MISSISSIPPI ALLUVIAL PLAIN
The ecoregions of The Mississippi Alluvial Plain (73) have been identified, mapped, and described and provide a geographic structure for environmental resources research, assessment, monitoring, and management. This project is part of a larger effort by the U.S. EPA to create a ...
Microwave Sky image from the WMAP Mission
NASA Technical Reports Server (NTRS)
2005-01-01
A detailed full-sky map of the oldest light in the universe. It is a 'baby picture' of the universe. Colors indicate 'warmer' (red) and 'cooler' (blue) spots. The oval shape is a projection to display the whole sky; similar to the way the globe of the earth can be projected as an oval. The microwave light captured in this picture is from 379,000 years after the Big Bang, over 13 billion years ago. For more information, see http://map.gsfc.nasa.gov/m_mm/mr_whatsthat.html
2000 Multibeam Sonar Survey of Crater Lake, Oregon - Data, GIS, Images, and Movies
Gardner, James V.; Dartnell, Peter
2001-01-01
In the summer of 2000, the U.S. Geological Survey, Pacific Seafloor Mapping Project in cooperation with the National Park Service, and the Center for Coastal and Ocean Mapping, University of New Hampshire used a state-of-the-art multibeam sonar system to collect high-resolution bathymetry and calibrated, co-registered acoustic backscatter to support both biological and geological research in the Crater Lake area. This interactive CD-ROM contains the multibeam bathymetry and acoustic backscatter data, along with an ESRI ArcExplorer project (and software), images, and movies.
The National Map: Benefits at what cost?
Halsing, D.L.; Theissen, K.M.; Bernknopf, R.L.
2004-01-01
The U.S. Geological Survey has conducted a cost-benefit analysis of The National Map, and determined that, during its 30-year projected lifespan, the project will likely bring a net present value of benefits to society of $2.05 billion. Such a survey enhances the United States' ability to access, integrate, and apply geospatial data at global, national, and local scales. This paper gives an overview on the underlying economic model for evaluating program benefits and presents the primary findings as well as a sensitivity analysis assessing the robustness of the results.
Towards developing Kentucky's landscape change maps
Zourarakis, D.P.; Lambert, S.C.; Palmer, M.
2003-01-01
The Kentucky Landscape Snapshot Project, a NASA-funded project, was established to provide a first baseline land cover/land use map for Kentucky. Through this endeavor, change detection will be institutionalized, thus aiding in decision-making at the local, state, and federal planning levels. 2002 Landsat 7 imaginery was classified following and Anderson Level III scheme, providing an enhancement over the 1992 USGS National Land Cover Data Set. Also as part of the deliverables, imperviousness and canopy closure layers were produced with the aid of IKONOS high resolution, multispectral imagery.
Interagency Report: Astrogeology 58, television cartography
Batson, Raymond M.
1973-01-01
The purpose of this paper is to illustrate the processing of digital television pictures into base maps. In this context, a base map is defined as a pictorial representation of planetary surface morphology accurately reproduced on standard map projections. Topographic contour lines, albedo or geologic overprints may be super imposed on these base maps. The compilation of geodetic map controls, the techniques of mosaic compilation, computer processing and airbrush enhancement, and the compilation of con tour lines are discussed elsewhere by the originators of these techniques. A bibliography of applicable literature is included for readers interested in more detailed discussions.
Mapping the World - a New Approach for Volunteered Geographic Information in the Cloud
NASA Astrophysics Data System (ADS)
Moeller, M. S.; Furhmann, S.
2015-05-01
The OSM project provides a geodata basis for the entire world under the CC-SA licence agreement. But some parts of the world are mapped more densely compared to other regions. However, many less developed countries show a lack of valid geo-information. Africa for example is a sparsely mapped continent. During a huge Ebola outbreak in 2014 the lack of data became apparent. Help organization like the American Red Cross and the Humanitarian Openstreetmap Team organized mappings campaign to fill the gaps with valid OSM geodata. This paper gives a short introduction into this mapping activity.
2015-09-24
This cylindrical projection map of Pluto, in enhanced, extended color, is the most detailed color map of Pluto ever made by NASA New Horizons. It uses recently returned color imagery from the New Horizons Ralph camera, which is draped onto a base map of images from the NASA's spacecraft's Long Range Reconnaissance Imager (LORRI). The map can be zoomed in to reveal exquisite detail with high scientific value. Color variations have been enhanced to bring out subtle differences. Colors used in this map are the blue, red, and near-infrared filter channels of the Ralph instrument. http://photojournal.jpl.nasa.gov/catalog/PIA19956
Multi-Scale Mapping of Vegetation Biomass
NASA Astrophysics Data System (ADS)
Hudak, A. T.; Fekety, P.; Falkowski, M. J.; Kennedy, R. E.; Crookston, N.; Smith, A. M.; Mahoney, P.; Glenn, N. F.; Dong, J.; Kane, V. R.; Woodall, C. W.
2016-12-01
Vegetation biomass mapping at multiple scales is important for carbon inventory and monitoring, reporting, and verification (MRV). Project-level lidar collections allow biomass estimation with high confidence where associated with field plot measurements. Predictive models developed from such datasets are customarily used to generate landscape-scale biomass maps. We tested the feasibility of predicting biomass in landscapes surveyed with lidar but without field plots, by withholding plot datasets from a reduced model applied to the landscapes, and found support for a generalized model in the northern Idaho ecoregion. We are also upscaling a generalized model to all forested lands in Idaho. Our regional modeling approach is to sample the 30-m biomass predictions from the landscape-scale maps and use them to train a regional biomass model, using Landsat time series, topographic derivatives, and climate variables as predictors. Our regional map validation approach is to aggregate the regional, annual biomass predictions to the county level and compare them to annual county-level biomass summarized independently from systematic, field-based, annual inventories conducted by the US Forest Inventory and Analysis (FIA) Program nationally. A national-scale forest cover map generated independently from 2010 PALSAR data at 25-m resolution is being used to mask non-forest pixels from the aggregations. Effects of climate change on future regional biomass stores are also being explored, using biomass estimates projected from stand-level inventory data collected in the National Forests and comparing them to FIA plot data collected independently on public and private lands, projected under the same climate change scenarios, with disturbance trends extracted from the Landsat time series. Our ultimate goal is to demonstrate, focusing on the ecologically diverse Northwest region of the USA, a carbon monitoring system (CMS) that is accurate, objective, repeatable, and transparent.
sCMOS detector for imaging VNIR spectrometry
NASA Astrophysics Data System (ADS)
Eckardt, Andreas; Reulke, Ralf; Schwarzer, Horst; Venus, Holger; Neumann, Christian
2013-09-01
The facility Optical Information Systems (OS) at the Robotics and Mechatronics Center of the German Aerospace Center (DLR) has more than 30 years of experience with high-resolution imaging technology. This paper shows the scientific results of the institute of leading edge instruments and focal plane designs for EnMAP VIS/NIR spectrograph. EnMAP (Environmental Mapping and Analysis Program) is one of the selected proposals for the national German Space Program. The EnMAP project includes the technological design of the hyper spectral space borne instrument and the algorithms development of the classification. The EnMAP project is a joint response of German Earth observation research institutions, value-added resellers and the German space industry like Kayser-Threde GmbH (KT) and others to the increasing demand on information about the status of our environment. The Geo Forschungs Zentrum (GFZ) Potsdam is the Principal Investigator of EnMAP. DLR OS and KT were driving the technology of new detectors and the FPA design for this project, new manufacturing accuracy and on-chip processing capability in order to keep pace with the ambitious scientific and user requirements. In combination with the engineering research, the current generations of space borne sensor systems are focusing on VIS/NIR high spectral resolution to meet the requirements on earth and planetary observation systems. The combination of large swath and high spectral resolution with intelligent synchronization control, fast-readout ADC chains and new focal-plane concepts open the door to new remote-sensing and smart deep space instruments. The paper gives an overview over the detector verification program at DLR on FPA level, new control possibilities for sCMOS detectors in global shutter mode and key parameters like PRNU, DSNU, MTF, SNR, Linearity, Spectral Response, Quantum Efficiency, Flatness and Radiation Tolerance will be discussed in detail.
Primary mapping and stratigraphic data and field methods for the Snowmastodon Project
Lucking, Carol; Johnson, Kirk R.; Pigati, Jeffery S.; Miller, Ian
2012-01-01
During the Snowmastodon Project, many different people collected data for a wide array of purposes under a variety of conditions. Early in the process and in an attempt to provide project-wide consistency, Kirk Johnson appointed Carol Lucking as the project’s data manager both in the field and the lab. She was responsible for using GIS to create maps on an ongoing basis throughout the project. Jeff Pigati agreed to measure stratigraphic sections and coordinate the collection of various nonvertebrate samples to make sure that all resulting data could be plotted on common diagrams. Kirk Johnson was onsite for the entire project and measured the basin margin stratigraphy on a daily basis as it was destroyed by the digging teams. In the fall of 2010, we treated the upper part of the site (which included discrete excavations for the mammoth, deer, and bison skeletons) as an archaeological excavation and the lower part of the site (which contained isolated mastodon, ground sloth, and bison bones) as a construction salvage site.
VizieR Online Data Catalog: Wisconsin soft X-ray diffuse background all-sky Survey (McCammon+ 1983)
NASA Astrophysics Data System (ADS)
McCammon, D.; Burrows, D. N.; Sanders, W. T.; Kraushaar, W. L.
1997-10-01
The catalog contains all-sky survey of the soft X-ray diffuse background and the count-rate data from which the maps were made for the ten flights included in the survey. It contains 40 files in the machine-readable version and includes documentation and utility subroutines. The data files contain different band maps (B, C, M, M1, M2, I, J, 2-6 keV) in a 0 degree-centered Aitoff projection, in a 180-degree-centered Aitoff projection, in a north polar projection, and in a south polar projection. Lookup tables in the form of FITS images are provided for conversion between pixel coordinates and Galactic coordinates for the various projections. The bands are: B = 130-188eV C = 160-284eV M1 = 440-930eV M2 = 600-1100eV I = 770-1500eV J = 1100-2200eV 2-6keV = 1800-6300eV (51 data files).
Maps showing geology, oil and gas fields, and geological provinces of South America
Schenk, C. J.; Viger, R.J.; Anderson, C.P.
1999-01-01
This digitally compiled map includes geology, geologic provinces, and oil and gas fields of South America. The map is part of a worldwide series on CD-ROM by World Energy Project released of the U.S. Geological Survey . The goal of the project is to assess the undiscovered, technically recoverable oil and gas resources of the world and report these results by the year 2000. For data management purposes the world is divided into eight energy regions corresponding approximately to the economic regions of the world as defined by the U.S. Department of State. South America (Region 6) includes Argentina, Bolivia, Brazil, Chile, Columbia, Ecuador, Falkland Islands, French Guiana, Guyuna, Netherlands, Netherlands Antilles, Paraguay, Peru, Suriname, Trinidad and Tobago, Uruguay, and Venezuela.
Facilitating participatory multilevel decision-making by using interactive mental maps.
Pfeiffer, Constanze; Glaser, Stephanie; Vencatesan, Jayshree; Schliermann-Kraus, Elke; Drescher, Axel; Glaser, Rüdiger
2008-11-01
Participation of citizens in political, economic or social decisions is increasingly recognized as a precondition to foster sustainable development processes. Since spatial information is often important during planning and decision making, participatory mapping gains in popularity. However, little attention has been paid to the fact that information must be presented in a useful way to reach city planners and policy makers. Above all, the importance of visualisation tools to support collaboration, analytical reasoning, problem solving and decision-making in analysing and planning processes has been underestimated. In this paper, we describe how an interactive mental map tool has been developed in a highly interdisciplinary disaster management project in Chennai, India. We moved from a hand drawn mental maps approach to an interactive mental map tool. This was achieved by merging socio-economic and geospatial data on infrastructure, local perceptions, coping and adaptation strategies with remote sensing data and modern technology of map making. This newly developed interactive mapping tool allowed for insights into different locally-constructed realities and facilitated the communication of results to the wider public and respective policy makers. It proved to be useful in visualising information and promoting participatory decision-making processes. We argue that the tool bears potential also for health research projects. The interactive mental map can be used to spatially and temporally assess key health themes such as availability of, and accessibility to, existing health care services, breeding sites of disease vectors, collection and storage of water, waste disposal, location of public toilets or defecation sites.
Mars Global Geologic Mapping: Amazonian Results
NASA Technical Reports Server (NTRS)
Tanaka, K. L.; Dohm, J. M.; Irwin, R.; Kolb, E. J.; Skinner, J. A., Jr.; Hare, T. M.
2008-01-01
We are in the second year of a five-year effort to map the geology of Mars using mainly Mars Global Surveyor, Mars Express, and Mars Odyssey imaging and altimetry datasets. Previously, we have reported on details of project management, mapping datasets (local and regional), initial and anticipated mapping approaches, and tactics of map unit delineation and description [1-2]. For example, we have seen how the multiple types and huge quantity of image data as well as more accurate and detailed altimetry data now available allow for broader and deeper geologic perspectives, based largely on improved landform perception, characterization, and analysis. Here, we describe early mapping results, which include updating of previous northern plains mapping [3], including delineation of mainly Amazonian units and regional fault mapping, as well as other advances.
NASA Technical Reports Server (NTRS)
Feng, Wanda; Evans, Cynthia; Gruener, John; Eppler, Dean
2014-01-01
Geologic mapping involves interpreting relationships between identifiable units and landforms to understand the formative history of a region. Traditional field techniques are used to accomplish this on Earth. Mapping proves more challenging for other planets, which are studied primarily by orbital remote sensing and, less frequently, by robotic and human surface exploration. Systematic comparative assessments of geologic maps created by traditional mapping versus photogeology together with data from planned traverses are limited. The objective of this project is to produce a geologic map from data collected on the Desert Research and Technology Studies (RATS) 2010 analog mission using Apollo-style traverses in conjunction with remote sensing data. This map is compared with a geologic map produced using standard field techniques.
Lithology and aggregate quality attributes for the digital geologic map of Colorado
Knepper, Daniel H.; Green, Gregory N.; Langer, William H.
1999-01-01
This geologic map was prepared as a part of a study of digital methods and techniques as applied to complex geologic maps. The geologic map was digitized from the original scribe sheets used to prepare the published Geologic Map of Colorado (Tweto 1979). Consequently the digital version is at 1:500,000 scale using the Lambert Conformal Conic map projection parameters of the state base map. Stable base contact prints of the scribe sheets were scanned on a Tektronix 4991 digital scanner. The scanner automatically converts the scanned image to an ASCII vector format. These vectors were transferred to a VAX minicomputer, where they were then loaded into ARC/INFO. Each vector and polygon was given attributes derived from the original 1979 geologic map.
Topographic Map of the West Candor Chasma Region of Mars, MTM 500k -05/282E OMKT
,
2004-01-01
This map, compiled photogrammetrically from Viking Orbiter stereo image pairs, is part of a series of topographic maps of areas of special scientific interest on Mars. The figure of Mars used for the computation of the map projection is an oblate spheroid (flattening of 1/176.875) with an equatorial radius of 3396.0 km and a polar radius of 3376.8 km. The datum (the 0-km contour line) for elevations is defined as the equipotential surface (gravitational plus rotational) whose average value at the equator is equal to the mean radius as determined by Mars Orbiter Laser Altimeter. The projection is part of a Mars Transverse Mercator (MTM) system with 20? wide zones. For the area covered by this map sheet the central meridian is at 290? E. (70? W.). The scale factor at the central meridian of the zone containing this quadrangle is 0.9960 relative to a nominal scale of 1:500,000. Longitude increases to the east and latitude is planetocentric as allowed by IAU/IAG standards and in accordance with current NASA and USGS standards. A secondary grid (printed in red) has been added to the map as a reference to the west longitude/planetographic latitude system that is also allowed by IAU/IAG standards and has been used for previous Mars maps.
Topographic Map of the Ophir and Central Candor Chasmata Region of Mars MTM 500k -05/287E OMKT
,
2004-01-01
This map, compiled photogrammetrically from Viking Orbiter stereo image pairs, is part of a series of topographic maps of areas of special scientific interest on Mars. The figure of Mars used for the computation of the map projection is an oblate spheroid (flattening of 1/176.875) with an equatorial radius of 3396.0 km and a polar radius of 3376.8 km. The datum (the 0-km contour line) for elevations is defined as the equipotential surface (gravitational plus rotational) whose average value at the equator is equal to the mean radius as determined by Mars Orbiter Laser Altimeter. The projection is part of a Mars Transverse Mercator (MTM) system with 20? wide zones. For the area covered by this map sheet the central meridian is at 290? E. (70? W.). The scale factor at the central meridian of the zone containing this quadrangle is 0.9960 relative to a nominal scale of 1:500,000. Longitude increases to the east and latitude is planetocentric as allowed by IAU/IAG standards and in accordance with current NASA and USGS standards. A secondary grid (printed in red) has been added to the map as a reference to the west longitude/planetographic latitude system that is also allowed by IAU/IAG standards and has been used for previous Mars maps.
Topographic map of the Tithonium Chasma Region of Mars, MTM 500k -05/277E OMKT
,
2004-01-01
This map, compiled photogrammetrically from Viking Orbiter stereo image pairs, is part of a series of topographic maps of areas of special scientific interest on Mars. The figure of Mars used for the computation of the map projection is an oblate spheroid (flattening of 1/176.875) with an equatorial radius of 3396.0 km and a polar radius of 3376.8 km. The datum (the 0-km contour line) for elevations is defined as the equipotential surface (gravitational plus rotational) whose average value at the equator is equal to the mean radius as determined by Mars Orbiter Laser Altimeter. The projection is part of a Mars Transverse Mercator (MTM) system with 20? wide zones. For the area covered by this map sheet the central meridian is at 270? E. (70? W.). The scale factor at the central meridian of the zone containing this quadrangle is 0.9960 relative to a nominal scale of 1:500,000. Longitude increases to the east and latitude is planetocentric as allowed by IAU/IAG standards and in accordance with current NASA and USGS standards. A secondary grid (printed in red) has been added to the map as a reference to the west longitude/planetographic latitude system that is also allowed by IAU/IAG standards and has been used for previous Mars maps.
NASA Astrophysics Data System (ADS)
Deng, Shuang; Xiang, Wenting; Tian, Yangge
2009-10-01
Map coloring is a hard task even to the experienced map experts. In the GIS project, usually need to color map according to the customer, which make the work more complex. With the development of GIS, more and more programmers join the project team, which lack the training of cartology, their coloring map are harder to meet the requirements of customer. From the experience, customers with similar background usually have similar tastes for coloring map. So, we developed a GIS color scheme decision-making system which can select color schemes of similar customers from case base for customers to select and adjust. The system is a BS/CS mixed system, the client side use JSP and make it possible for the system developers to go on remote calling of the colors scheme cases in the database server and communicate with customers. Different with general case-based reasoning, even the customers are very similar, their selection may have difference, it is hard to provide a "best" option. So, we select the Simulated Annealing Algorithm (SAA) to arrange the emergence order of different color schemes. Customers can also dynamically adjust certain features colors based on existing case. The result shows that the system can facilitate the communication between the designers and the customers and improve the quality and efficiency of coloring map.
Mars synthetic topographic mapping
Wu, S.S.C.
1978-01-01
Topographic contour maps of Mars are compiled by the synthesis of data acquired from various scientific experiments of the Mariner 9 mission, including S-band radio-occulation, the ultraviolet spectrometer (UVS), the infrared radiometer (IRR), the infrared interferometer spectrometer (IRIS) and television imagery, as well as Earth-based radar information collected at Goldstone, Haystack, and Arecibo Observatories. The entire planet is mapped at scales of 1:25,000,000 and 1:25,000,000 using Mercator, Lambert, and polar stereographic map projections. For the computation of map projections, a biaxial spheroid figure is adopted. The semimajor and semiminor axes are 3393.4 and 3375.7 km, respectively, with a polar flattening of 0.0052. For the computation of elevations, a topographic datum is defined by a gravity field described in terms of spherical harmonics of fourth order and fourth degree combined with a 6.1-mbar occulation pressure surface. This areoid can be approximated by a triaxial ellipsoid with semimajor axes of A = 3394.6 km and B = 3393.3 km and a semiminor axis of C = 3376.3 km. The semimajor axis A intersects the Martian surface at longitude 105??W. The dynamic flattening of Mars is 0.00525. The contour intercal of the maps is 1 km. For some prominent features where overlapping pictures from Mariner 9 are available, local contour maps at relatively larger scales were also compiled by photogrammetric methods on stereo plotters. ?? 1978.
Open Source Projects in Software Engineering Education: A Mapping Study
ERIC Educational Resources Information Center
Nascimento, Debora M. C.; Almeida Bittencourt, Roberto; Chavez, Christina
2015-01-01
Context: It is common practice in academia to have students work with "toy" projects in software engineering (SE) courses. One way to make such courses more realistic and reduce the gap between academic courses and industry needs is getting students involved in open source projects (OSP) with faculty supervision. Objective: This study…
Migration is one of the most poorly understood components of a bird’s life cycle. For that reason, migratory stopover habitats are often not part of conservation planning and may be overlooked when planning new development projects. This project highlights and addresses an overl...
Spatial fuel data products of the LANDFIRE Project
Matt Reeves; Kevin C. Ryan; Matthew G. Rollins; Thomas G. Thompson
2009-01-01
The Landscape Fire and Resource Management Planning Tools (LANDFIRE) Project is mapping wildland fuels, vegetation, and fire regime characteristics across the United States. The LANDFIRE project is unique because of its national scope, creating an integrated product suite at 30-m spatial resolution and complete spatial coverage of all lands within the 50...