Sample records for mapper tm sensor

  1. LANDSAT-4 Science Characterization Early Results. Volume 3, Part 2: Thematic Mapper (TM)

    NASA Technical Reports Server (NTRS)

    Barker, J. L. (Editor)

    1985-01-01

    The calibration of the LANDSAT 4 thematic mapper is discussed as well as the atmospheric, radiometric, and geometric accuracy and correction of data obtained with this sensor. Methods are given for assessing TM band to band registration.

  2. A prospectus for Thematic Mapper research in the Earth sciences

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Earth science applications of Thematic Mapper (TM) imagery are discussed. Prospective research themes are defined in a general sense in relation to the technical measurement capabilities of the TM and the various types of Earth information that can potentially be derived from multispectral TM imagery. An overview of the system developed to acquire and reduce TM data is presented. The technical capabilities of this system are presented in detail. The orbital performance of the TM sensor is described, based upon the analysis of LANDSAT 4 and 5 TM data collected to date.

  3. Landsat and Thermal Infrared Imaging

    NASA Technical Reports Server (NTRS)

    Arvidson, Terry; Barsi, Julia; Jhabvala, Murzy; Reuter, Dennis

    2012-01-01

    The purpose of this chapter is to describe the collection of thermal images by Landsat sensors already on orbit and to introduce the new thermal sensor to be launched in 2013. The chapter describes the thematic mapper (TM) and enhanced thematic mapper plus (ETM+) sensors, the calibration of their thermal bands, and the design and prelaunch calibration of the new thermal infrared sensor (TIRS).

  4. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors

    USGS Publications Warehouse

    Chander, G.; Markham, B.L.; Helder, D.L.

    2009-01-01

    This paper provides a summary of the current equations and rescaling factors for converting calibrated Digital Numbers (DNs) to absolute units of at-sensor spectral radiance, Top-Of-Atmosphere (TOA) reflectance, and at-sensor brightness temperature. It tabulates the necessary constants for the Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Advanced Land Imager (ALI) sensors. These conversions provide a basis for standardized comparison of data in a single scene or between images acquired on different dates or by different sensors. This paper forms a needed guide for Landsat data users who now have access to the entire Landsat archive at no cost.

  5. Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors

    NASA Technical Reports Server (NTRS)

    Chander, Gyanesh; Markham, Brian L.; Helder, Dennis L.

    2009-01-01

    This paper provides a summary of the current equations and rescaling factors for converting calibrated Digital Numbers (DNs) to absolute units of at-sensor spectral radiance, Top-Of- Atmosphere (TOA) reflectance, and at-sensor brightness temperature. It tabulates the necessary constants for the Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Advanced Land Imager (ALI) sensors. These conversions provide a basis for standardized comparison of data in a single scene or between images acquired on different dates or by different sensors. This paper forms a needed guide for Landsat data users who now have access to the entire Landsat archive at no cost.

  6. Improvement in absolute calibration accuracy of Landsat-5 TM with Landsat-7 ETM+ data

    USGS Publications Warehouse

    Chander, G.; Markham, B.L.; Micijevic, E.; Teillet, P.M.; Helder, D.L.; ,

    2005-01-01

    The ability to detect and quantify changes in the Earth's environment depends on satellites sensors that can provide calibrated, consistent measurements of Earth's surface features through time. A critical step in this process is to put image data from subsequent generations of sensors onto a common radiometric scale. To evaluate Landsat-5 (L5) Thematic Mapper's (TM) utility in this role, image pairs from the L5 TM and Landsat-7 (L7) Enhanced Thematic Mapper Plus (ETM+) sensors were compared. This approach involves comparison of surface observations based on image statistics from large common areas observed eight days apart by the two sensors. The results indicate a significant improvement in the consistency of L5 TM data with respect to L7 ETM+ data, achieved using a revised Look-Up-Table (LUT) procedure as opposed to the historical Internal Calibrator (IC) procedure previously used in the L5 TM product generation system. The average percent difference in reflectance estimates obtained from the L5 TM agree with those from the L7 ETM+ in the Visible and Near Infrared (VNIR) bands to within four percent and in the Short Wave Infrared (SWIR) bands to within six percent.

  7. Methods for destriping Landsat Thematic Mapper images - A feasibility study for an online destriping process in the Thematic Mapper Image Processing System (TIPS)

    NASA Technical Reports Server (NTRS)

    Poros, D. J.; Peterson, C. J.

    1985-01-01

    Methods for destriping TM images and results of the application of these methods to selected TM scenes with sensor and scan striping, which was not removed by the radiometric correction during the TM Archive Generation Phase in TIPS, are presented. These methods correct only for gain and offset differences between detectors over many image lines and do not consider within-line effects. The feasibility of implementing a destriping process online in TIPS is also described.

  8. LANDSAT-D Investigations Workshop

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The objectives and methods used to determine the performance of the LANDSAT-D thematic mapper radiometric and geometric sensors are depicted in graphs and charts. Other aspects illustrated include ground and flight segment TM geometric processing and early access TM processing.

  9. LANDSAT-4 Science Investigations Summary, Including December 1983 Workshop Results, Volume 1

    NASA Technical Reports Server (NTRS)

    Barker, J. L. (Editor)

    1984-01-01

    A general overview of the LANDSAT 4 system with emphasis on the Thematic Mapper (TM) is presented. A variety of topics on the design, calibration, capabilities, and image processing techniques of the TM sensor are discussed in detail. The comparison of TM data with other MSS data is also investigated.

  10. Landsat sensor performance: history and current status

    USGS Publications Warehouse

    Markham, B.L.; Storey, James C.; Williams, Darrel L.; Irons, J.R.

    2004-01-01

    The current Thematic Mapper (TM) class of Landsat sensors began with Landsat-4, which was launched in 1982. This series continued with the nearly identical sensor on Landsat-5, launched in 1984. The final sensor in the series was the Landsat-7 Enhanced Thematic Mapper Plus (ETM+), which was carried into orbit in 1999. Varying degrees of effort have been devoted to the characterization of these instruments and data over the past 22 years. Extensive short-lived efforts early in the history, very limited efforts in the middle years, and now a systematic program for continuing characterization of all three systems are apparent. Currently, both the Landsat-5 TM and the Landsat-7 ETM+ are operational and providing data. Despite 20+ years of operation, the TM on Landsat-5 is fully functional, although downlinks for the data are limited. Landsat-7 ETM+ experienced a failure of its Scan Line Corrector mechanism in May 2003. Although there are gaps in the data coverage, the data remain of equivalent quality to prefailure data. Data products have been developed to fill these gaps using other ETM+ scenes.

  11. A preliminary comparison of Landsat Thematic Mapper and SPOT-1 HRV multispectral data for estimating coniferous forest volume

    NASA Technical Reports Server (NTRS)

    Ripple, William J.; Wang, S.; Isaacson, Dennis L.; Paine, D. P.

    1995-01-01

    Digital Landsat Thematic Mapper (TM) and Satellite Probatoire d'Observation de la Terre (SPOT) High Resolution Visible (HRV) images of coniferous forest canopies were compared in their relationship to forest wood volume using correlation and regression analyses. Significant inverse relationships were found between softwood volume and the spectral bands from both sensors (P less than 0.01). The highest correlations were between the log of softwood volume and the near-infrared bands (HRV band 3, r = -0.89; TM band 4, r = -0.83).

  12. Cross-comparison of the IRS-P6 AWiFS sensor with the L5 TM, L7 ETM+, & Terra MODIS sensors

    USGS Publications Warehouse

    Chander, G.; Xiong, X.; Angal, A.; Choi, T.; Malla, R.

    2009-01-01

    As scientists and decision makers increasingly rely on multiple Earth-observing satellites to address urgent global issues, it is imperative that they can rely on the accuracy of Earth-observing data products. This paper focuses on the crosscomparison of the Indian Remote Sensing (IRS-P6) Advanced Wide Field Sensor (AWiFS) with the Landsat 5 (L5) Thematic Mapper (TM), Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+), and Terra Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. The cross-comparison was performed using image statistics based on large common areas observed by the sensors within 30 minutes. Because of the limited availability of simultaneous observations between the AWiFS and the Landsat and MODIS sensors, only a few images were analyzed. These initial results are presented. Regression curves and coefficients of determination for the top-of-atmosphere (TOA) trends from these sensors were generated to quantify the uncertainty in these relationships and to provide an assessment of the calibration differences between these sensors. ?? 2009 SPIE.

  13. Thematic Mapper Data Quality and Performance Assessment in Renewable Resources/agriculture/remote Sensing

    NASA Technical Reports Server (NTRS)

    Bizzell, R. M.; Prior, H. L.

    1985-01-01

    Analysis of the early thematic mapper (TM) data indicate the TM sensor and associated ground processing are performing equal to the high expectations and within advertised specifications. The overall TM system with improved resolution, together with additional and more optimumly placed spectral bands shows much promise for benefits in future analysis activities. By selecting man-made features of known dimensions (e.g., highways, airfields, buildings, and isolated water bodies), an assessment was made of the TM performance relative to the specified 30-meter (98-foot) resolution. The increase of spatial resolution of TM (30 m) over MSS (80 M) appears to be significant not only in resolving spectrally distinct classes that were previously undefinable but also in distinguishing within-field variability. An Important result of the early TM evaluation and pre-TM analyses was the development of an integrated system to receive LANDSAT-4 TM (as well as MSS) data and analyze the data via various approaches.

  14. An analysis of Landsat Thematic Mapper P-Product internal geometry and conformity to earth surface geometry

    NASA Technical Reports Server (NTRS)

    Bryant, N. A.; Zobrist, A. L.; Walker, R. E.; Gokhman, B.

    1985-01-01

    Performance requirements regarding geometric accuracy have been defined in terms of end product goals, but until recently no precise details have been given concerning the conditions under which that accuracy is to be achieved. In order to achieve higher spatial and spectral resolutions, the Thematic Mapper (TM) sensor was designed to image in both forward and reverse mirror sweeps in two separate focal planes. Both hardware and software have been augmented and changed during the course of the Landsat TM developments to achieve improved geometric accuracy. An investigation has been conducted to determine if the TM meets the National Map Accuracy Standards for geometric accuracy at larger scales. It was found that TM imagery, in terms of geometry, has come close to, and in some cases exceeded, its stringent specifications.

  15. Absolute calibration accuracy of L4 TM and L5 TM sensor image pairs

    USGS Publications Warehouse

    Chander, G.; Micijevic, E.

    2006-01-01

    The Landsat suite of satellites has collected the longest continuous archive of multispectral data of any land-observing space program. From the Landsat program's inception in 1972 to the present, the Earth science user community has benefited from a historical record of remotely sensed data. However, little attention has been paid to ensuring that the data are calibrated and comparable from mission to mission, Launched in 1982 and 1984 respectively, the Landsat 4 (L4) and Landsat 5 (L5) Thematic Mappers (TM) are the backbone of an extensive archive of moderate resolution Earth imagery. To evaluate the "current" absolute accuracy of these two sensors, image pairs from the L5 TM and L4 TM sensors were compared. The approach involves comparing image statistics derived from large common areas observed eight days apart by the two sensors. The average percent differences in reflectance estimates obtained from the L4 TM agree with those from the L5 TM to within 15 percent. Additional work to characterize the absolute differences between the two sensors over the entire mission is in progress.

  16. Analysis of multispectral scanner (MSS) and Thematic Mapper (TM) performance (pre-launch and post-launch)

    NASA Technical Reports Server (NTRS)

    Barker, J. L.

    1983-01-01

    Tables and graphs show the results of the spectral, radiometric, and geometric characterization of LANDSAT 4 sensors associated with imagery and of the imagery associated with sensors and processing. Specifications for the various parameters are compared with the photoflight and flight values.

  17. Consistency of L4 TM absolute calibration with respect to the L5 TM sensor based on near-simultaneous image acquisition

    NASA Astrophysics Data System (ADS)

    Chander, Gyanesh; Helder, Dennis L.; Malla, Rimy; Micijevic, Esad; Mettler, Cory J.

    2007-09-01

    The Landsat archive provides more than 35 years of uninterrupted multispectral remotely sensed data of Earth observations. Since 1972, Landsat missions have carried different types of sensors, from the Return Beam Vidicon (RBV) camera to the Enhanced Thematic Mapper Plus (ETM+). However, the Thematic Mapper (TM) sensors on Landsat 4 (L4) and Landsat 5 (L5), launched in 1982 and 1984 respectively, are the backbone of an extensive archive. Effective April 2, 2007, the radiometric calibration of L5 TM data processed and distributed by the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) was updated to use an improved lifetime gain model, based on the instrument's detector response to pseudo-invariant desert site data and cross-calibration with the L7 ETM+. However, no modifications were ever made to the radiometric calibration procedure of the Landsat 4 (L4) TM data. The L4 TM radiometric calibration procedure has continued to use the Internal Calibrator (IC) based calibration algorithms and the post calibration dynamic ranges, as previously defined. To evaluate the "current" absolute accuracy of these two sensors, image pairs from the L5 TM and L4 TM sensors were compared. The number of coincident image pairs in the USGS EROS archive is limited, so the scene selection for the cross-calibration studies proved to be a challenge. Additionally, because of the lack of near-simultaneous images available over well-characterized and traditionally used calibration sites, alternate sites that have high reflectance, large dynamic range, high spatial uniformity, high sun elevation, and minimal cloud cover were investigated. The alternate sites were identified in Yuma, Iraq, Egypt, Libya, and Algeria. The cross-calibration approach involved comparing image statistics derived from large common areas observed eight days apart by the two sensors. This paper summarizes the average percent differences in reflectance estimates obtained between the two sensors. The work presented in this paper is a first step in understanding the current performance of L4 TM absolute calibration and potentially serves as a platform to revise and improve the radiometric calibration procedures implemented for the processing of L4 TM data.

  18. Consistency of L4 TM absolute calibration with respect to the L5 TM sensor based on near-simultaneous image acquisition

    USGS Publications Warehouse

    Chander, G.; Helder, D.L.; Malla, R.; Micijevic, E.; Mettler, C.J.

    2007-01-01

    The Landsat archive provides more than 35 years of uninterrupted multispectral remotely sensed data of Earth observations. Since 1972, Landsat missions have carried different types of sensors, from the Return Beam Vidicon (RBV) camera to the Enhanced Thematic Mapper Plus (ETM+). However, the Thematic Mapper (TM) sensors on Landsat 4 (L4) and Landsat 5 (L5), launched in 1982 and 1984 respectively, are the backbone of an extensive archive. Effective April 2, 2007, the radiometric calibration of L5 TM data processed and distributed by the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) was updated to use an improved lifetime gain model, based on the instrument's detector response to pseudo-invariant desert site data and cross-calibration with the L7 ETM+. However, no modifications were ever made to the radiometric calibration procedure of the Landsat 4 (L4) TM data. The L4 TM radiometric calibration procedure has continued to use the Internal Calibrator (IC) based calibration algorithms and the post calibration dynamic ranges, as previously defined. To evaluate the "current" absolute accuracy of these two sensors, image pairs from the L5 TM and L4 TM sensors were compared. The number of coincident image pairs in the USGS EROS archive is limited, so the scene selection for the cross-calibration studies proved to be a challenge. Additionally, because of the lack of near-simultaneous images available over well-characterized and traditionally used calibration sites, alternate sites that have high reflectance, large dynamic range, high spatial uniformity, high sun elevation, and minimal cloud cover were investigated. The alternate sites were identified in Yuma, Iraq, Egypt, Libya, and Algeria. The cross-calibration approach involved comparing image statistics derived from large common areas observed eight days apart by the two sensors. This paper summarizes the average percent differences in reflectance estimates obtained between the two sensors. The work presented in this paper is a first step in understanding the current performance of L4 TM absolute calibration and potentially serves as a platform to revise and improve the radiometric calibration procedures implemented for the processing of L4 TM data.

  19. An Analysis of the High Frequency Vibrations in Early Thematic Mapper Scenes

    NASA Technical Reports Server (NTRS)

    Kogut, J.; Larduinat, E.

    1984-01-01

    The potential effects of high frequency vibrations on the final Thematic Mapper (TM) image are evaluated for 26 scenes. The angular displacements of the TM detectors from their nominal pointing directions as measured by the TM Angular Displacement Sensor (ADS) and the spacecraft Dry Rotor Inertial Reference Unit (DRIRU) give data on the along scan and cross scan high frequency vibrations present in each scan of a scene. These measurements are to find the maximum overlap and underlap between successive scans, and to analyze the spectrum of the high frequency vibrations acting on the detectors. The Fourier spectrum of the along scan and cross scan vibrations for each scene also evaluated. The spectra of the scenes examined indicate that the high frequency vibrations arise primarily from the motion of the TM and MSS mirrors, and that their amplitudes are well within expected ranges.

  20. LANDSAT-4/5 image data quality analysis

    NASA Technical Reports Server (NTRS)

    Malaret, E.; Bartolucci, L. A.; Lozano, D. F.; Anuta, P. E.; Mcgillem, C. D.

    1984-01-01

    A LANDSAT Thematic Mapper (TM) quality evaluation study was conducted to identify geometric and radiometric sensor errors in the post-launch environment. The study began with the launch of LANDSAT-4. Several error conditions were found, including band-to-band misregistration and detector-to detector radiometric calibration errors. Similar analysis was made for the LANDSAT-5 Thematic Mapper and compared with results for LANDSAT-4. Remaining band-to-band misregistration was found to be within tolerances and detector-to-detector calibration errors were not severe. More coherent noise signals were observed in TM-5 than in TM-4, although the amplitude was generally less. The scan direction differences observed in TM-4 were still evident in TM-5. The largest effect was in Band 4 where nearly a one digital count difference was observed. Resolution estimation was carried out using roads in TM-5 for the primary focal plane bands rather than field edges as in TM-4. Estimates using roads gave better resolution. Thermal IR band calibration studies were conducted and new nonlinear calibration procedures were defined for TM-5. The overall conclusion is that there are no first order errors in TM-5 and any remaining problems are second or third order.

  1. Analysis and correction of Landsat 4 and 5 Thematic Mapper Sensor Data

    NASA Technical Reports Server (NTRS)

    Bernstein, R.; Hanson, W. A.

    1985-01-01

    Procedures for the correction and registration and registration of Landsat TM image data are examined. The registration of Landsat-4 TM images of San Francisco to Landsat-5 TM images of the San Francisco using the interactive geometric correction program and the cross-correlation technique is described. The geometric correction program and cross-correlation results are presented. The corrections of the TM data to a map reference and to a cartographic database are discussed; geometric and cartographic analyses are applied to the registration results.

  2. Processing and analysis of commercial satellite image data of the nuclear accident near Chernobyl, U.S.S.R.

    USGS Publications Warehouse

    Sadowski, Franklin G.; Covington, Steven J.

    1987-01-01

    Advanced digital processing techniques were applied to Landsat-5 Thematic Mapper (TM) data and SPOT highresolution visible (HRV) panchromatic data to maximize the utility of images of a nuclear powerplant emergency at Chernobyl in the Soviet Ukraine. The images demonstrate the unique interpretive capabilities provided by the numerous spectral bands of the Thematic Mapper and the high spatial resolution of the SPOT HRV sensor.

  3. A preliminary comparison of Landsat Thematic Mapper and SPOT-1 HRV multispectral data for estimating coniferous forest volume

    NASA Technical Reports Server (NTRS)

    Ripple, W. J.; Wang, S.; Isaacson, D. L.; Paine, D. P.

    1991-01-01

    Digital Landsat Thematic Mapper (TM) and SPOT high-resolution visible (HRV) images of coniferous forest canopies were compared in their relationship to forest wood volume using correlation and regression analyses. Significant inverse relationships were found between softwood volume and the spectral bands from both sensors (P less than 0.01). The highest correlations were between the log of softwood volume and the near-infrared bands.

  4. Thematic Mapper: Design through flight evaluation

    NASA Technical Reports Server (NTRS)

    1984-01-01

    LANDSAT 4 and 5, launched in 1982 and 1984, not only carried the Thematic Mapper, but were redesigned to handle the increased data rates associated with it, and to communicate that data to Earth via geosynchronous orbiting Tracking and Data Relay Satellites (TDRS). The TM development program is summarized. A brief historical perspective is presented of the evolution of design requirements and hardware development. The basic performance parameters that serve as sensor design guidelines are presented.

  5. In-Situ Transfer Standard and Coincident-View Intercomparisons for Sensor Cross-Calibration

    NASA Technical Reports Server (NTRS)

    Thome, Kurt; McCorkel, Joel; Czapla-Myers, Jeff

    2013-01-01

    There exist numerous methods for accomplishing on-orbit calibration. Methods include the reflectance-based approach relying on measurements of surface and atmospheric properties at the time of a sensor overpass as well as invariant scene approaches relying on knowledge of the temporal characteristics of the site. The current work examines typical cross-calibration methods and discusses the expected uncertainties of the methods. Data from the Advanced Land Imager (ALI), Advanced Spaceborne Thermal Emission and Reflection and Radiometer (ASTER), Enhanced Thematic Mapper Plus (ETM+), Moderate Resolution Imaging Spectroradiometer (MODIS), and Thematic Mapper (TM) are used to demonstrate the limits of relative sensor-to-sensor calibration as applied to current sensors while Landsat-5 TM and Landsat-7 ETM+ are used to evaluate the limits of in situ site characterizations for SI-traceable cross calibration. The current work examines the difficulties in trending of results from cross-calibration approaches taking into account sampling issues, site-to-site variability, and accuracy of the method. Special attention is given to the differences caused in the cross-comparison of sensors in radiance space as opposed to reflectance space. The results show that cross calibrations with absolute uncertainties lesser than 1.5 percent (1 sigma) are currently achievable even for sensors without coincident views.

  6. LANDSAT D instrument module study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Spacecraft instrument module configurations which support an earth resource data gathering mission using a thematic mapper sensor were examined. The differences in size of these two experiments necessitated the development of two different spacecraft configurations. Following the selection of the best-suited configurations, a validation phase of design, analysis and modelling was conducted to verify feasibility. The chosen designs were then used to formulate definition for a systems weight, a cost range for fabrication and interface requirements for the thematic mapper (TM).

  7. Comparison of outgassing models for the landsat thematic mapper sensors

    USGS Publications Warehouse

    Micijevic, E.; Chander, G.

    2007-01-01

    The Thematic Mapper (TM) is a multi-spectral electro-optical sensor featured onboard both the Landsat 4 (L4) and Landsat 5 (L5) satellites. TM sensors have seven spectral bands with center wavelengths of approximately 0.49, 0.56, 0.66, 0.83, 1.65, 11.5 and 2.21 ??m, respectively. The visible near-infrared (VNIR) bands are located on the primary focal plane (PFP), and two short-wave infrared (SWIR) bands and the thermal infrared (TIR) band are located on the cold focal plane (CFP). The CFP bands are maintained at cryogenic temperatures of about 91 K, to reduce thermal noise effects. Due to the cold temperature, an ice film accumulates on the CFP dewar window, which introduces oscillations in SWIR and an exponential decay in TIR band responses. This process is usually monitored and characterized by the detector responses to the internal calibrator (IC) lamps and the blackbody. The ice contamination on the dewar window is an effect of the sensor outgassing in a vacuum of the space environment. Outgassing models have been developed, which are based on the thin-film optical interference phenomenon. They provide the coefficients for correction for outgassing effects for the entire mission's lifetime. While the L4 TM ceased imaging in August 1993, the L5 TM continues to operate even after more than 23 years in orbit. The process of outgassing in L5 TM is still occurring, though at a much lower rate than during early years of mission. Although the L4 and L5 TM sensors are essentially identical, they exhibit slightly different responses to the outgassing effects. The work presented in the paper summarizes the results of modeling outgassing effects in each of the sensors and provides a detailed analysis of differences among the estimated modeling parameters. For both sensors, water ice was confirmed as a reasonable candidate for contaminant material, the contaminant growth rate was found to be gradually decreasing with the time since launch, and the indications exist that some film may remain after the CFP warm-up procedures, which are periodically initiated to remove accumulated contamination. The observed difference between the models could be contributed to differences in the operational history for the sensors, the content and amount of contaminant impurities, the sensor spectral filter responses, and the internal calibrator systems.

  8. Fire effects in the northern Chihuahuan Desert derived from Landsat-5 Thematic Mapper spectral indices

    NASA Astrophysics Data System (ADS)

    White, Joseph D.; Swint, Pamela

    2014-01-01

    Fire effects on desert ecosystems may be long-lasting based on ecological impact of fire in these environments which potentially is detected from multispectral sensors. To assess this, we analyzed changes in spectral characteristics from 1986 to 2010 of pixels associated with the location of fires that occurred between 1986 and 1999 in Big Bend National Park, USA, located in the northern Chihuahuan Desert. Using Landsat-5 Thematic Mapper (TM) data, we derived spectral indices including the simple ratio (SR), normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), and normalized burn ratio (NBR) from 1989, 1999, and 2010 from the TM data and compared changes in spectral index values for sites with and without observed fire. We found that the NDVI and SAVI had significantly different values over the time for burned sites of different fire sizes. When differences of the spectral indices were calculated from each time period, time since fire was correlated with the SR and NBR indices. These results showed that large fires potentially had a persistent and long-term change in vegetation cover and soil characteristics which were detected by the extraordinary long-data collection period of the Landsat-5 TM sensor.

  9. The earth's surface studied from space; Proceedings of Workshop II of the COSPAR 25th Plenary Meeting, Graz, Austria, June 25-July 7, 1984

    NASA Technical Reports Server (NTRS)

    Ungar, S. G. (Editor)

    1985-01-01

    Consideration is given to: Landsat image data quality studies; a preliminary evaluation of Landsat-4 Thematic Mapper (TM) data for mineral exploration; and the early evaluation of TM data for mapping forest, agricultural and soil resources. Among other topics discussed are: shortwave infrared detection of vegetation; SPOT image quality and post-launch assessment; an evaluation of SPOT HRV simulation data for Corps of Engineers applications; and the application potential of SPOT imagery for topographic mapping. Consideration is also given to: verification studies of MOS-1 sensors; multiple sensor geocoded data; and the utility of proposed sensors for coastal engineering studies.

  10. Evaluation of corn/soybeans separability using Thematic Mapper and Thematic Mapper Simulator data

    NASA Technical Reports Server (NTRS)

    Pitts, D. E.; Badhwar, G. D.; Thompson, D. R.; Henderson, K. E.; Shen, S. S.; Sorensen, C. T.; Carnes, J. G.

    1984-01-01

    Multitemporal Thematic Mapper, Thematic Mapper Simulator, and detailed ground truth data were collected for a 9- by 11-km sample segment in Webster County, IA, in the summer of 1982. Three dates were acquired each with Thematic Mapper Simulator (June 7, June 23, and July 31) and Thematic Mapper (August 2, September 3, and October 21). The Thematic Mapper Simulator data were converted to equivalent TM count values using TM and TMS calibration data and model based estimates of atmospheric effects. The July 31, TMS image was compared to the August 2, TM image to verify the conversion process. A quantitative measure of proportion estimation variance (Fisher information) was used to evaluate the corn/soybeans separability for each TM band as a function of time during the growing season. The additional bands in the middle infrared allowed corn and soybeans to be separated much earlier than was possible with the visible and near-infrared bands alone. Using the TM and TMS data, temporal profiles of the TM principal components were developed. The greenness and brightness exhibited behavior similar to MSS greenness and brightness for corn and soybeans.

  11. Landsat 4 Thematic Mapper calibration update

    USGS Publications Warehouse

    Helder, Dennis L.; Malla, Rimy; Mettler, Cory J.; Markham, Brian L.; Micijevic, Esad

    2012-01-01

    The Landsat 4 Thematic Mapper (TM) collected imagery of the Earth's surface from 1982 to 1993. Although largely overshadowed by Landsat 5 which was launched in 1984, Landsat 4 TM imagery extends the TM-based record of the Earth back to 1982 and also substantially supplements the image archive collected by Landsat 5. To provide a consistent calibration record for the TM instruments, Landsat 4 TM was cross-calibrated to Landsat 5 using nearly simultaneous overpass imagery of pseudo-invariant calibration sites (PICS) in the time period of 1988-1990. To determine if the radiometric gain of Landsat 4 had changed over its lifetime, time series from two PICS locations (a Saharan site known as Libya 4 and a site in southwest North America, commonly referred to as the Sonoran Desert site) were developed. The results indicated that Landsat 4 had been very stable over its lifetime, with no discernible degradation in sensor performance in all reflective bands except band 1. In contrast, band 1 exhibited a 12% decay in responsivity over the lifetime of the instrument. Results from this paper have been implemented at USGS EROS, which enables users of Landsat TM data sets to obtain consistently calibrated data from Landsat 4 and 5 TM as well as Landsat 7 ETM+ instruments.

  12. Characterizing the scientific potential of satellite sensors. [San Francisco, California

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Analytical and programming support is to be provided to characterize the potential of the LANDSAT thematic mapper (TM) digital imagery for scientific investigations in the Earth sciences and in terrestrial physics. In addition, technical support to define lower atmospheric and terrestrial surface experiments for the space station and technical support to the Research Optical Sensor (ROS) study scientist for advanced studies in remote sensing are to be provided. Eleven radiometric calibration and correction programs are described. Coherent noise and bright target saturation correction are discussed along with image processing on the LAS/VAX and Hp-300/IDIMS. An image of San Francisco, California from TM band 2 is presented.

  13. Study of spectral/radiometric characteristics of the Thematic Mapper for land use applications

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Metzler, M. D. (Principal Investigator)

    1985-01-01

    Progress during ERIM's tenth quarter of effort under the LANDSAT-4 and 5 Image Data Quality Assessment program for the Thematic Mapper is described. Coincident LANDSAT-4 and 5 fully corrected (CCT-PT) TM data are analyzed in more detail and revised band-by-band relationships between the two sensors derived. An analysis technique employing the matching of cumulative distributions is developed and used and is believed to offer advantages over the histogram matching procedure currently used to produce LANDSAT data. Multiplicative factors ranging from 0.987 to 1.145 and offsets ranging from -2.7 to -6.2 video quantum levels are required to cause LANDSAT-5 data to match LANDSAT-4 data values. Evidence of low level clipping is found in TM Bands 5 and 7 of LANDSAT-5 but not LANDSAT-4. Analysis of the information content of LANDSAT TM and MSS data is continued. Components of information loss are identified and quantified and the effects of coarsened quantization are explored.

  14. Complementarity of ResourceSat-1 AWiFS and Landsat TM/ETM+ sensors

    USGS Publications Warehouse

    Goward, S.N.; Chander, G.; Pagnutti, M.; Marx, A.; Ryan, R.; Thomas, N.; Tetrault, R.

    2012-01-01

    Considerable interest has been given to forming an international collaboration to develop a virtual moderate spatial resolution land observation constellation through aggregation of data sets from comparable national observatories such as the US Landsat, the Indian ResourceSat and related systems. This study explores the complementarity of India's ResourceSat-1 Advanced Wide Field Sensor (AWiFS) with the Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+). The analysis focuses on the comparative radiometry, geometry, and spectral properties of the two sensors. Two applied assessments of these data are also explored to examine the strengths and limitations of these alternate sources of moderate resolution land imagery with specific application domains. There are significant technical differences in these imaging systems including spectral band response, pixel dimensions, swath width, and radiometric resolution which produce differences in observation data sets. None of these differences was found to strongly limit comparable analyses in agricultural and forestry applications. Overall, we found that the AWiFS and Landsat TM/ETM+ imagery are comparable and in some ways complementary, particularly with respect to temporal repeat frequency. We have found that there are limits to our understanding of the AWiFS performance, for example, multi-camera design and stability of radiometric calibration over time, that leave some uncertainty that has been better addressed for Landsat through the Image Assessment System and related cross-sensor calibration studies. Such work still needs to be undertaken for AWiFS and similar observatories that may play roles in the Global Earth Observation System of Systems Land Surface Imaging Constellation.

  15. Spectral characterization of the LANDSAT thematic mapper sensors

    NASA Technical Reports Server (NTRS)

    Markham, B. L.; Barker, J. L.

    1983-01-01

    Data collected on the spectral characteristics of the LANDSAT-4 and LANDSAT-4 backup thematic mapper instruments, the protoflight (TM/PF) and flight (TM/F) models, respectively, are presented and analyzed. Tests were conducted on the instruments and their components to determine compliance with two sets of spectral specifications: band-by-band spectral coverage and channel-by-channel within-band spectral matching. Spectral coverage specifications were placed on: (1) band edges--points at 50% of peak response, (2) band edge slopes--steepness of rise and fall-off of response, (3) spectral flatness--evenness of response between edges, and (4) spurious system response--ratio of out-of-band response to in-band response. Compliance with the spectral coverage specifications was determined by analysis of spectral measurements on the individual components contributing to the overall spectral response: filters, detectors, and optical surfaces.

  16. Spectroradiometric calibration of the Thematic Mapper and Multispectral Scanner system

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Palmer, J. M. (Principal Investigator)

    1984-01-01

    The reduction of the data measured on July 8, 1984 at White Sands, New Mexico is summarized. The radiance incident at the entrance pupil of the LANDSAT 5 sensors have been computed for bands 1 to 4. When these are compared to the digital counts of the TM image, the ground based calibration for this sensor will be given. The image was received from Goddard SFC and is presently being analyzed.

  17. Operational calibration and validation of landsat data continuity mission (LDCM) sensors using the image assessment system (IAS)

    USGS Publications Warehouse

    Micijevic, Esad; Morfitt, Ron

    2010-01-01

    Systematic characterization and calibration of the Landsat sensors and the assessment of image data quality are performed using the Image Assessment System (IAS). The IAS was first introduced as an element of the Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) ground segment and recently extended to Landsat 4 (L4) and 5 (L5) Thematic Mappers (TM) and Multispectral Sensors (MSS) on-board the Landsat 1-5 satellites. In preparation for the Landsat Data Continuity Mission (LDCM), the IAS was developed for the Earth Observer 1 (EO-1) Advanced Land Imager (ALI) with a capability to assess pushbroom sensors. This paper describes the LDCM version of the IAS and how it relates to unique calibration and validation attributes of its on-board imaging sensors. The LDCM IAS system will have to handle a significantly larger number of detectors and the associated database than the previous IAS versions. An additional challenge is that the LDCM IAS must handle data from two sensors, as the LDCM products will combine the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) spectral bands.

  18. Surface reflectance retrieval from satellite and aircraft sensors: Results of sensor and algorithm comparisons during FIFE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markham, B.L.; Halthore, R.N.; Goetz, S.J.

    1992-11-30

    This work is part of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), an international land-surface-atmosphere experiment aimed at improving the way climate models represent energy, water, heat, and carbon exchanges, and improving the utilization of satellite based remote sensing to monitor such parameters. This paper reports on comparison of measurement systems which were deployed to measure surface reflectance factors, from aircraft or satellites. These instruments look over the general range of 0.4 to 2.5[mu]m. Instruments studied include Landsat 5 thematic mapper (TM), the SPOT 1 high-resolution visible sensor (HRV) 1, the NS001 thematic mapper simulator,more » and the modular multispectral radiometers (MMRs). The study looked at the radiometric consistency of the different instruments, and the adequacy of the atmospheric correction routines applied to data analysis.« less

  19. Landsat-5 TM reflective-band absolute radiometric calibration

    USGS Publications Warehouse

    Chander, G.; Helder, D.L.; Markham, B.L.; Dewald, J.D.; Kaita, E.; Thome, K.J.; Micijevic, E.; Ruggles, T.A.

    2004-01-01

    The Landsat-5 Thematic Mapper (TM) sensor provides the longest running continuous dataset of moderate spatial resolution remote sensing imagery, dating back to its launch in March 1984. Historically, the radiometric calibration procedure for this imagery used the instrument's response to the Internal Calibrator (IC) on a scene-by-scene basis to determine the gain and offset of each detector. Due to observed degradations in the IC, a new procedure was implemented for U.S.-processed data in May 2003. This new calibration procedure is based on a lifetime radiometric calibration model for the instrument's reflective bands (1-5 and 7) and is derived, in part, from the IC response without the related degradation effects and is tied to the cross calibration with the Landsat-7 Enhanced Thematic Mapper Plus. Reflective-band absolute radiometric accuracy of the instrument tends to be on the order of 7% to 10%, based on a variety of calibration methods.

  20. Preliminary Geologic/spectral Analysis of LANDSAT-4 Thematic Mapper Data, Wind River/bighorn Basin Area, Wyoming

    NASA Technical Reports Server (NTRS)

    Lang, H. R.; Conel, J. E.; Paylor, E. D.

    1984-01-01

    A LIDQA evaluation for geologic applications of a LANDSAT TM scene covering the Wind River/Bighorn Basin area, Wyoming, is examined. This involves a quantitative assessment of data quality including spatial and spectral characteristics. Analysis is concentrated on the 6 visible, near infrared, and short wavelength infrared bands. Preliminary analysis demonstrates that: (1) principal component images derived from the correlation matrix provide the most useful geologic information. To extract surface spectral reflectance, the TM radiance data must be calibrated. Scatterplots demonstrate that TM data can be calibrated and sensor response is essentially linear. Low instrumental offset and gain settings result in spectral data that do not utilize the full dynamic range of the TM system.

  1. LANDSAT-D data format control book. Volume 6: (Products)

    NASA Technical Reports Server (NTRS)

    Kabat, F.

    1981-01-01

    Four basic product types are generated from the raw thematic mapper (TM) and multispectral scanner (MSS) payload data by the NASA GSFC LANDSAT 4 data management system: (1) unprocessed data (raw sensor data); (2) partially processed data, which consists of radiometrically corrected sensor data with geometric correction information appended; (3) fully processed data, which consists of radiometrically and geometrically corrected sensor data; and (4) inventory data which consists of summary information about product types 2 and 3. High density digital recorder formatting and the radiometric correction process are described. Geometric correction information is included.

  2. Historical Landsat data comparisons: illustrations of land surface change

    USGS Publications Warehouse

    Cross, Matthew D.

    1990-01-01

    This booklet provides an overview of the Landsat program and shows the application of the data to monitor changes occurring on the surface of the Earth. To show changes that have taken place within the last 20 years or less, image pairs were constructed from the Landsat multispectral scanner (MSS) and thematic mapper (TM) sensors. Landsat MSS data provide a historical global record of the land surface from the early 1970's to present. Landsat TM data provide land surface information from the early 1980's to present.

  3. Intra-annual NDVI validation of the Landsat 5 TM radiometric calibration

    USGS Publications Warehouse

    Chander, G.; Groeneveld, D.P.

    2009-01-01

    Multispectral data from the Landsat 5 (L5) Thematic Mapper (TM) sensor provide the backbone of the extensive archive of moderate‐resolution Earth imagery. Even after more than 24 years of service, the L5 TM is still operational. Given the longevity of the satellite, the detectors have aged and the sensor's radiometric characteristics have changed since launch. The calibration procedures and parameters in the National Land Archive Production System (NLAPS) have also changed with time. Revised radiometric calibrations in 2003 and 2007 have improved the radiometric accuracy of recently processed data. This letter uses the Normalized Difference Vegetation Index (NDVI) as a metric to evaluate the radiometric calibration. The calibration change has improved absolute calibration accuracy, consistency over time, and consistency with Landsat 7 (L7) Enhanced Thematic radiometry and will provide the basis for continued long‐term studies of the Earth's land surfaces.

  4. Evaluation and comparison of the IRS-P6 and the landsat sensors

    USGS Publications Warehouse

    Chander, G.; Coan, M.J.; Scaramuzza, P.L.

    2008-01-01

    The Indian Remote Sensing Satellite (IRS-P6), also called ResourceSat-1, was launched in a polar sun-synchronous orbit on October 17, 2003. It carries three sensors: the highresolution Linear Imaging Self-Scanner (LISS-IV), the mediumresolution Linear Imaging Self-Scanner (LISS-III), and the Advanced Wide-Field Sensor (AWiFS). These three sensors provide images of different resolutions and coverage. To understand the absolute radiometric calibration accuracy of IRS-P6 AWiFS and LISS-III sensors, image pairs from these sensors were compared to images from the Landsat-5 Thematic Mapper (TM) and Landsat-7 Enhanced TM Plus (ETM+) sensors. The approach involves calibration of surface observations based on image statistics from areas observed nearly simultaneously by the two sensors. This paper also evaluated the viability of data from these nextgeneration imagers for use in creating three National Land Cover Dataset (NLCD) products: land cover, percent tree canopy, and percent impervious surface. Individual products were consistent with previous studies but had slightly lower overall accuracies as compared to data from the Landsat sensors.

  5. A non-parametric, supervised classification of vegetation types on the Kaibab National Forest using decision trees

    Treesearch

    Suzanne M. Joy; R. M. Reich; Richard T. Reynolds

    2003-01-01

    Traditional land classification techniques for large areas that use Landsat Thematic Mapper (TM) imagery are typically limited to the fixed spatial resolution of the sensors (30m). However, the study of some ecological processes requires land cover classifications at finer spatial resolutions. We model forest vegetation types on the Kaibab National Forest (KNF) in...

  6. Landsat-4 thematic mapper and thematic mapper simulator data for a porphyry copper deposit

    NASA Technical Reports Server (NTRS)

    Abrams, M. J.

    1984-01-01

    Aircraft thematic mapper (TM) data were analyzed to evaluate the potential utility of the Landsat-4 thematic mapper for geologic mapping and detection of hydrothermal alteration zones in the Silver Bell porphyry copper deposit in southern Arizona. The data allow a comparison between aircraft TV simulator data and the Landsat-4 TM satellite data which possess similar spectral bands. A color rationcomposite of 30-m pixels was resampled, in order to clearly define a number of hydroxyl bearing minerals, (kaolinite, sericite, white mica), pyrite and iron oxide/hydroxide minerals. The iron oxide minerals have diagnostic absorption bands in the 0.45 and 0.85 micron regions of the spectrum, and the hydrous minerals are characterized by an absorption in the 2.2 micron region. The position of the spectral bands allow the TM to identify regions of hydrothermal alteration without resorting to a data processing algorithm. The comparison of the aircraft and Landsat-4 TM data showed considerable agreement, and confirmed the utility of TM data for identifying hydrothermal alteration zones. Samples of some color TM images are provided.

  7. The effect of spatial, spectral and radiometric factors on classification accuracy using thematic mapper data

    NASA Technical Reports Server (NTRS)

    Wrigley, R. C.; Acevedo, W.; Alexander, D.; Buis, J.; Card, D.

    1984-01-01

    An experiment of a factorial design was conducted to test the effects on classification accuracy of land cover types due to the improved spatial, spectral and radiometric characteristics of the Thematic Mapper (TM) in comparison to the Multispectral Scanner (MSS). High altitude aircraft scanner data from the Airborne Thematic Mapper instrument was acquired over central California in August, 1983 and used to simulate Thematic Mapper data as well as all combinations of the three characteristics for eight data sets in all. Results for the training sites (field center pixels) showed better classification accuracies for MSS spatial resolution, TM spectral bands and TM radiometry in order of importance.

  8. Landsat 4 results and their implications for agricultural surveys

    NASA Technical Reports Server (NTRS)

    Erickson, J. D.; Bizzell, R. M.; Pitts, D. E.; Thompson, D. R.

    1983-01-01

    Progress on defining the minimum Landsat-4 data characteristics needed for agricultural information in the U.S. and assessing the value-added capability of current technology to extract that level of information is reported. Emphasis is laid on the thematic mapper (TM) data and the ground processing facilities. TM data from all 7 bands for a rural Arkansas scene were examined in terms of radiometric, spatial, and geometric fidelity characteristics. Another scene sensed over Iowa was analyzed using three two-channel data sets. Although the TM data were an improvement over MSS data, no value differential was perceived. However, the development of further analysis techniques is still necessary to determine the actual worth of the improved sensor capabilities available with the TM, which actually has an MSS within itself.

  9. Characterizing the scientific potential of satellite sensors. [San Francisco, California

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Eleven thematic mapper (TM) radiometric calibration programs were tested and evaluated in support of the task to characterize the potential of LANDSAT TM digital imagery for scientific investigations in the Earth sciences and terrestrial physics. Three software errors related to integer overflow, divide by zero, and nonexist file group were found and solved. Raw, calibrated, and corrected image groups that were created and stored on the Barker2 disk are enumerated. Black and white pixel print files were created for various subscenes of a San Francisco scene (ID 40392-18152). The development of linear regression software is discussed. The output of the software and its function are described. Future work in TM radiometric calibration, image processing, and software development is outlined.

  10. Registering Thematic Mapper imagery to digital elevation models

    NASA Technical Reports Server (NTRS)

    Frew, J.

    1984-01-01

    The problems encountered when attempting to register Landsat Thematic Mapper (TM) data to U.S. geological survey digital elevation models (DEMs) are examined. It is shown that TM and DEM data are not available in the same map projection, necessitating geometric transformation of one of the data type, that the TM data are not accurately located in their nominal projection, and that TM data have higher resolution than most DEM data, but oversampling the DEM data to TM resolution introduces systematic noise. Further work needed in this area is discussed.

  11. Thematic Mapper Protoflight Model Line Spread Function

    NASA Technical Reports Server (NTRS)

    Schueler, C.

    1984-01-01

    The Thematic Mapper (TM) Protoflight Model Spatial Line Spread Function (LSF) was not measured before launch. Therefore, methodology are developed to characterize LSF with protoflight model optics and electronics measurements that were made before launch. Direct prelaunch LSF measurements that were made from the flight model TM verified the protoflight TM LSF simulation. Results for two selected protoflight TM channels are presented here. It is shown that LSF data for the other ninety-four channels could be generated in the same fashion.

  12. Evaluation of Thematic Mapper data for mapping forest, agricultural and soil resources

    NASA Technical Reports Server (NTRS)

    Degloria, S.; Benson, A.; Dummer, K.; Fakhoury, E.

    1985-01-01

    Color composite TM film products which include TM5, TM4, and a visible band (TM1, TM2, or TM3) are superior to composites which exclude TM4 for discriminating most forest and agricultural cover types and estimating area proportions for inventory and sampling purposes. Clustering a subset of TM data results in a spectral class map which groups diverse forest cover types into spectrally and ecologically similar areas suitable for use as a stratification base in traditional forest inventory practices. Analysis of simulated Thematic Mapper data indicate that the location and number of TM spectral bands are suitable for detecting differences in major soil properties and characterizing soil spectral curve form and magnitude.

  13. Thematic mapper data analysis

    NASA Technical Reports Server (NTRS)

    Settle, M.; Chavez, P.; Kieffer, H. H.; Everett, J. R.; Kahle, A. B.; Kitcho, C. A.; Milton, N. M.; Mouat, D. A.

    1983-01-01

    The geological applications of remote sensing technology are discussed, with emphasis given to the analysis of data from the Thematic Mapper (TM) instrument onboard the Landsat 4 satellite. The flight history and design characteristics of the Landsat 4/TM are reviewed, and some difficulties endountered in the interpretation of raw TM data are discussed, including: the volume of data; residual noise; detector-to-detector striping; and spatial misregistration between measurements. Preliminary results of several geological, lithological, geobotanical mapping experiments are presented as examples of the geological applications of the TM, and some areas for improving the guality of TM imagery are identified.

  14. Utilizing remote sensing of thematic mapper data to improve our understanding of estuarine processes and their influence on the productivity of estuarine-dependent fisheries

    NASA Technical Reports Server (NTRS)

    Browder, Joan A.; May, L. Nelson, Jr.; Rosenthal, Alan; Baumann, Robert H.; Gosselink, James G.

    1987-01-01

    A stochastic spatial computer model addressing coastal resource problems in Lousiana is being refined and validated using thematic mapper (TM) imagery. The TM images of brackish marsh sites were processed and data were tabulated on spatial parameters from TM images of the salt marsh sites. The Fisheries Image Processing Systems (FIPS) was used to analyze the TM scene. Activities were concentrated on improving the structure of the model and developing a structure and methodology for calibrating the model with spatial-pattern data from the TM imagery.

  15. Surface reflectance retrieval from satellite and aircraft sensors - Results of sensors and algorithm comparisons during FIFE

    NASA Technical Reports Server (NTRS)

    Markham, B. L.; Halthore, R. N.; Goetz, S. J.

    1992-01-01

    Visible to shortwave infrared radiometric data collected by a number of remote sensing instruments on aircraft and satellite platforms were compared over common areas in the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) site on August 4, 1989, to assess their radiometric consistency and the adequacy of atmospheric correction algorithms. The instruments in the study included the Landsat 5 Thematic Mapper (TM), the SPOT 1 high-resolution visible (HRV) 1 sensor, the NS001 Thematic Mapper simulator, and the modular multispectral radiometers (MMRs). Atmospheric correction routines analyzed were an algorithm developed for FIFE, LOWTRAN 7, and 5S. A comparison between corresponding bands of the SPOT 1 HRV 1 and the Landsat 5 TM sensors indicated that the two instruments were radiometrically consistent to within about 5 percent. Retrieved surface reflectance factors using the FIFE algorithm over one site under clear atmospheric conditions indicated a capability to determine near-nadir surface reflectance factors to within about 0.01 at a reflectance of 0.06 in the visible (0.4-0.7 microns) and about 0.30 in the near infrared (0.7-1.2 microns) for all but the NS001 sensor. All three atmospheric correction procedures produced absolute reflectances to within 0.005 in the visible and near infrared. In the shortwave infrared (1.2-2.5 microns) region the three algorithms differed in the retrieved surface reflectances primarily owing to differences in predicted gaseous absorption. Although uncertainties in the measured surface reflectance in the shortwave infrared precluded definitive results, the 5S code appeared to predict gaseous transmission marginally more accurately than LOWTRAN 7.

  16. Information content of data from the LANDSAT-4 Thematic Mapper (TM) and multispectral scanner (MSS)

    NASA Technical Reports Server (NTRS)

    Price, J. C.

    1983-01-01

    The progress of an investigation to quantify the increased information content of thematic mapper (TM) data as compared to that from the LANDSAT 4 multispectral scanner (MSS) is reported. Two night infrared images were examined and compared with Heat Capacity Mapping Mission data.

  17. Classifying coastal resources by integrating optical and radar imagery and color infrared photography

    USGS Publications Warehouse

    Ramsey, Elijah W.; Nelson, Gene A.; Sapkota, Sijan

    1998-01-01

    A progressive classification of a marsh and forest system using Landsat Thematic Mapper (TM), color infrared (CIR) photograph, and ERS-1 synthetic aperture radar (SAR) data improved classification accuracy when compared to classification using solely TM reflective band data. The classification resulted in a detailed identification of differences within a nearly monotypic black needlerush marsh. Accuracy percentages of these classes were surprisingly high given the complexities of classification. The detailed classification resulted in a more accurate portrayal of the marsh transgressive sequence than was obtainable with TM data alone. Individual sensor contribution to the improved classification was compared to that using only the six reflective TM bands. Individually, the green reflective CIR and SAR data identified broad categories of water, marsh, and forest. In combination with TM, SAR and the green CIR band each improved overall accuracy by about 3% and 15% respectively. The SAR data improved the TM classification accuracy mostly in the marsh classes. The green CIR data also improved the marsh classification accuracy and accuracies in some water classes. The final combination of all sensor data improved almost all class accuracies from 2% to 70% with an overall improvement of about 20% over TM data alone. Not only was the identification of vegetation types improved, but the spatial detail of the classification approached 10 m in some areas.

  18. MTF Analysis of LANDSAT-4 Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Schowengerdt, R.

    1984-01-01

    A research program to measure the LANDSAT 4 Thematic Mapper (TM) modulation transfer function (MTF) is described. Measurement of a satellite sensor's MTF requires the use of a calibrated ground target, i.e., the spatial radiance distribution of the target must be known to a resolution at least four to five times greater than that of the system under test. A small reflective mirror or a dark light linear pattern such as line or edge, and relatively high resolution underflight imagery are used to calibrate the target. A technique that utilizes an analytical model for the scene spatial frequency power spectrum will be investigated as an alternative to calibration of the scene. The test sites and analysis techniques are also described.

  19. Image restoration techniques as applied to Landsat MSS and TM data

    USGS Publications Warehouse

    Meyer, David

    1987-01-01

    Two factors are primarily responsible for the loss of image sharpness in processing digital Landsat images. The first factor is inherent in the data because the sensor's optics and electronics, along with other sensor elements, blur and smear the data. Digital image restoration can be used to reduce this degradation. The second factor, which further degrades by blurring or aliasing, is the resampling performed during geometric correction. An image restoration procedure, when used in place of typical resampled techniques, reduces sensor degradation without introducing the artifacts associated with resampling. The EROS Data Center (EDC) has implemented the restoration proceed for Landsat multispectral scanner (MSS) and thematic mapper (TM) data. This capability, developed at the University of Arizona by Dr. Robert Schowengerdt and Lynette Wood, combines restoration and resampling in a single step to produce geometrically corrected MSS and TM imagery. As with resampling, restoration demands a tradeoff be made between aliasing, which occurs when attempting to extract maximum sharpness from an image, and blurring, which reduces the aliasing problem but sacrifices image sharpness. The restoration procedure used at EDC minimizes these artifacts by being adaptive, tailoring the tradeoff to be optimal for individual images.

  20. Forest/non-forest stratification in Georgia with Landsat Thematic Mapper data

    Treesearch

    William H. Cooke

    2000-01-01

    Geographically accurate Forest Inventory and Analysis (FIA) data may be useful for training, classification, and accuracy assessment of Landsat Thematic Mapper (TM) data. Minimum expectation for maps derived from Landsat data is accurate discrimination of several land cover classes. Landsat TM costs have decreased dramatically, but acquiring cloud-free scenes at...

  1. Automated mapping of mineral groups and green vegetation from Landsat Thematic Mapper imagery with an example from the San Juan Mountains, Colorado

    USGS Publications Warehouse

    Rockwell, Barnaby W.

    2013-01-01

    Multispectral satellite data acquired by the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) and Landsat 7 Enhanced Thematic Mapper Plus (TM) sensors are being used to populate an online Geographic Information System (GIS) of the spatial occurrence of mineral groups and green vegetation across the western conterminous United States and Alaska. These geospatial data are supporting U.S. Geological Survey national-scale mineral deposit database development and other mineral resource and geoenvironmental research as a means of characterizing mineral exposures related to mined and unmined hydrothermally altered rocks and mine waste. This report introduces a new methodology for the automated analysis of Landsat TM data that has been applied to more than 180 scenes covering the western United States. A map of mineral groups and green vegetation produced using this new methodology that covers the western San Juan Mountains, Colorado, and the Four Corners Region is presented. The map is provided as a layered GeoPDF and in GIS-ready digital format. TM data analysis results from other well-studied and mineralogically characterized areas with strong hydrothermal alteration and (or) supergene weathering of near-surface sulfide minerals are also shown and compared with results derived from ASTER data analysis.

  2. Radiometric analysis of the longwave infrared channel of the Thematic Mapper on LANDSAT 4 and 5

    NASA Technical Reports Server (NTRS)

    Schott, John R.; Volchok, William J.; Biegel, Joseph D.

    1986-01-01

    The first objective was to evaluate the postlaunch radiometric calibration of the LANDSAT Thematic Mapper (TM) band 6 data. The second objective was to determine to what extent surface temperatures could be computed from the TM and 6 data using atmospheric propagation models. To accomplish this, ground truth data were compared to a single TM-4 band 6 data set. This comparison indicated satisfactory agreement over a narrow temperature range. The atmospheric propagation model (modified LOWTRAN 5A) was used to predict surface temperature values based on the radiance at the spacecraft. The aircraft data were calibrated using a multi-altitude profile calibration technique which had been extensively tested in previous studies. This aircraft calibration permitted measurement of surface temperatures based on the radiance reaching the aircraft. When these temperature values are evaluated, an error in the satellite's ability to predict surface temperatures can be estimated. This study indicated that by carefully accounting for various sensor calibration and atmospheric propagation effects, and expected error (1 standard deviation) in surface temperature would be 0.9 K. This assumes no error in surface emissivity and no sampling error due to target location. These results indicate that the satellite calibration is within nominal limits to within this study's ability to measure error.

  3. BOREAS Level-3p Landsat TM Imagery: Geocoded and Scaled At-sensor Radiance

    NASA Technical Reports Server (NTRS)

    Nickeson, Jaime; Knapp, David; Newcomer, Jeffrey A.; Hall, Forrest G. (Editor); Cihlar, Josef

    2000-01-01

    For BOReal Ecosystem-Atmosphere Study (BOREAS), the level-3p Landsat Thematic Mapper (TM) data were used to supplement the level-3s Landsat TM products. Along with the other remotely sensed images, the Landsat TM images were collected in order to provide spatially extensive information over the primary study areas. This information includes radiant energy, detailed land cover, and biophysical parameter maps such as Fraction of Photosynthetically Active Radiation (FPAR) and Leaf Area Index (LAI). Although very similar to the level-3s Landsat TM products, the level-3p images were processed with ground control information, which improved the accuracy of the geographic coordinates provided. Geographically, the level-3p images cover the BOREAS Northern Study Area (NSA) and Southern Study Area (SSA). Temporally, the four images cover the period of 20-Aug-1988 to 07-Jun-1994. Except for the 07-Jun-1994 image, which contains seven bands, the other three contain only three bands.

  4. Thematic Mapper Analysis of Blue Oak (Quercus douglasii) in Central California

    Treesearch

    Paul A. Lefebvre Jr.; Frank W. Davis; Mark Borchert

    1991-01-01

    Digital Thematic Mapper (TM) satellite data from September 1986 and December 1985 were analyzed to determine seasonal reflectance properties of blue oak rangeland in the La Panza mountains of San Luis Obispo County. Linear regression analysis was conducted to examine relationships between TM reflectance and oak canopy cover, basal area, and site topographic variables....

  5. Evaluation of atmospheric particulate concentrations derived from analysis of ratio Thematic Mapper data

    NASA Technical Reports Server (NTRS)

    Carnahan, W. H.; Mausel, P. W.; Zhou, G. P.

    1984-01-01

    An approach for atmospheric particulate concentration evaluation above urban areas using ratio Thematic Mapper (TM) data is discussed. October 25, 1982 TM data over Chicago, IL are analyzed using TM band ratios of 1/2, 1/3, 1/4, 1/5, and 1/6 and particulate concentration estimates derived from TM ratios are tested over low reflective turbid water sites and highly reflective concrete highways. From analysis of the data it is evident that for water, the pattern of increasing particulate concentration is associated with decreasing ratio values in all band combinations used. Over concrete features, the TM band 1/4 ratio values follow the predicted pattern, while the TM band 1/6 has ratios which are reversed from anticipated values.

  6. Landsat-7 Enhanced Thematic Mapper plus radiometric calibration

    USGS Publications Warehouse

    Markham, B.L.; Boncyk, Wayne C.; Helder, D.L.; Barker, J.L.

    1997-01-01

    Landsat-7 is currently being built and tested for launch in 1998. The Enhanced Thematic Mapper Plus (ETM+) sensor for Landsat-7, a derivative of the highly successful Thematic Mapper (TM) sensors on Landsats 4 and 5, and the Landsat-7 ground system are being built to provide enhanced radiometric calibration performance. In addition, regular vicarious calibration campaigns are being planned to provide additional information for calibration of the ETM+ instrument. The primary upgrades to the instrument include the addition of two solar calibrators: the full aperture solar calibrator, a deployable diffuser, and the partial aperture solar calibrator, a passive device that allows the ETM+ to image the sun. The ground processing incorporates for the first time an off-line facility, the Image Assessment System (IAS), to perform calibration, evaluation and analysis. Within the IAS, processing capabilities include radiometric artifact characterization and correction, radiometric calibration from the multiple calibrator sources, inclusion of results from vicarious calibration and statistical trending of calibration data to improve calibration estimation. The Landsat Product Generation System, the portion of the ground system responsible for producing calibrated products, will incorporate the radiometric artifact correction algorithms and will use the calibration information generated by the IAS. This calibration information will also be supplied to ground processing systems throughout the world.

  7. The EO-1 hyperion and advanced land imager sensors for use in tundra classification studies within the Upper Kuparuk River Basin, Alaska

    NASA Astrophysics Data System (ADS)

    Hall-Brown, Mary

    The heterogeneity of Arctic vegetation can make land cover classification vey difficult when using medium to small resolution imagery (Schneider et al., 2009; Muller et al., 1999). Using high radiometric and spatial resolution imagery, such as the SPOT 5 and IKONOS satellites, have helped arctic land cover classification accuracies rise into the 80 and 90 percentiles (Allard, 2003; Stine et al., 2010; Muller et al., 1999). However, those increases usually come at a high price. High resolution imagery is very expensive and can often add tens of thousands of dollars onto the cost of the research. The EO-1 satellite launched in 2002 carries two sensors that have high specral and/or high spatial resolutions and can be an acceptable compromise between the resolution versus cost issues. The Hyperion is a hyperspectral sensor with the capability of collecting 242 spectral bands of information. The Advanced Land Imager (ALI) is an advanced multispectral sensor whose spatial resolution can be sharpened to 10 meters. This dissertation compares the accuracies of arctic land cover classifications produced by the Hyperion and ALI sensors to the classification accuracies produced by the Systeme Pour l' Observation de le Terre (SPOT), the Landsat Thematic Mapper (TM) and the Landsat Enhanced Thematic Mapper Plus (ETM+) sensors. Hyperion and ALI images from August 2004 were collected over the Upper Kuparuk River Basin, Alaska. Image processing included the stepwise discriminant analysis of pixels that were positively classified from coinciding ground control points, geometric and radiometric correction, and principle component analysis. Finally, stratified random sampling was used to perform accuracy assessments on satellite derived land cover classifications. Accuracy was estimated from an error matrix (confusion matrix) that provided the overall, producer's and user's accuracies. This research found that while the Hyperion sensor produced classfication accuracies that were equivalent to the TM and ETM+ sensor (approximately 78%), the Hyperion could not obtain the accuracy of the SPOT 5 HRV sensor. However, the land cover classifications derived from the ALI sensor exceeded most classification accuracies derived from the TM and ETM+ senors and were even comparable to most SPOT 5 HRV classifications (87%). With the deactivation of the Landsat series satellites, the monitoring of remote locations such as in the Arctic on an uninterupted basis thoughout the world is in jeopardy. The utilization of the Hyperion and ALI sensors are a way to keep that endeavor operational. By keeping the ALI sensor active at all times, uninterupted observation of the entire Earth can be accomplished. Keeping the Hyperion sensor as a "tasked" sensor can provide scientists with additional imagery and options for their studies without overburdening storage issues.

  8. Processing and analysis of commercial satellite image data of the nuclear accident near Chernobyl, U. S. S. R

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadowski, F.G.; Covington, S.J.

    1987-01-01

    Advanced digital processing techniques were applied to Landsat-5 Thematic Mapper (TM) data and SPOT high-resolution visible (HRV) panchromatic data to maximize the utility of images of a nuclear power plant emergency at Chernobyl in the Soviet Ukraine. The results of the data processing and analysis illustrate the spectral and spatial capabilities of the two sensor systems and provide information about the severity and duration of the events occurring at the power plant site.

  9. Preliminary Evaluation of the Radiometric Calibration of LANDSAT-4 Thematic Mapper Data by the Canada Centre for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Murphy, J.; Park, W.; Fitzgerald, A.

    1985-01-01

    The radiometric characteristics of the LANDSAT-4 TM sensor are being studied with a view to developing absolute and relative radiometric calibration procedures. Preliminary results from several different approaches to the relative correction of all detectors within each band are reported. Topics covered include: the radiometric correction method; absolute calibration; the relative radiometric calibration algorithm; relative gain and offset calibration; relative gain and offset observations; and residual radiometric stripping.

  10. Spectral signature of alpine snow cover from the Landsat Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Dozier, Jeff

    1989-01-01

    In rugged terrain, snow in the shadows can appear darker than soil or vegetation in the sunlight, making it difficult to interpret satellite data images of rugged terrains. This paper discusses methods for using Thematic Mapper (TM) and SPOT data for automatic analyses of alpine snow cover. Typical spectral signatures of the Landsat TM are analyzed for a range of snow types, atmospheric profiles, and topographic illumination conditions. A number of TM images of Sierra Nevada are analyzed to distinguish several classes of snow from other surface covers.

  11. 1985 ACSM-ASPRS Fall Convention, Indianapolis, IN, September 8-13, 1985, Technical Papers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-01-01

    Papers are presented on Landsat image data quality analysis, primary data acquisition, cartography, geodesy, land surveying, and the applications of satellite remote sensing data. Topics discussed include optical scanning and interactive color graphics; the determination of astrolatitudes and astrolongitudes using x, y, z-coordinates on the celestial sphere; raster-based contour plotting from digital elevation models using minicomputers or microcomputers; the operational techniques of the GPS when utilized as a survey instrument; public land surveying and high technology; the use of multitemporal Landsat MSS data for studying forest cover types; interpretation of satellite and aircraft L-band synthetic aperture radar imagery; geological analysismore » of Landsat MSS data; and an interactive real time digital image processing system. Consideration is given to a large format reconnaissance camera; creating an optimized color balance for TM and MSS imagery; band combination selection for visual interpretation of thematic mapper data for resource management; the effect of spatial filtering on scene noise and boundary detail in thematic mapper imagery; the evaluation of the geometric quality of thematic mapper photographic data; and the analysis and correction of Landsat 4 and 5 thematic mapper sensor data.« less

  12. Cross-sensor comparisons between Landsat 5 TM and IRS-P6 AWiFS and disturbance detection using integrated Landsat and AWiFS time-series images

    USGS Publications Warehouse

    Chen, Xuexia; Vogelmann, James E.; Chander, Gyanesh; Ji, Lei; Tolk, Brian; Huang, Chengquan; Rollins, Matthew

    2013-01-01

    Routine acquisition of Landsat 5 Thematic Mapper (TM) data was discontinued recently and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) has an ongoing problem with the scan line corrector (SLC), thereby creating spatial gaps when covering images obtained during the process. Since temporal and spatial discontinuities of Landsat data are now imminent, it is therefore important to investigate other potential satellite data that can be used to replace Landsat data. We thus cross-compared two near-simultaneous images obtained from Landsat 5 TM and the Indian Remote Sensing (IRS)-P6 Advanced Wide Field Sensor (AWiFS), both captured on 29 May 2007 over Los Angeles, CA. TM and AWiFS reflectances were compared for the green, red, near-infrared (NIR), and shortwave infrared (SWIR) bands, as well as the normalized difference vegetation index (NDVI) based on manually selected polygons in homogeneous areas. All R2 values of linear regressions were found to be higher than 0.99. The temporally invariant cluster (TIC) method was used to calculate the NDVI correlation between the TM and AWiFS images. The NDVI regression line derived from selected polygons passed through several invariant cluster centres of the TIC density maps and demonstrated that both the scene-dependent polygon regression method and TIC method can generate accurate radiometric normalization. A scene-independent normalization method was also used to normalize the AWiFS data. Image agreement assessment demonstrated that the scene-dependent normalization using homogeneous polygons provided slightly higher accuracy values than those obtained by the scene-independent method. Finally, the non-normalized and relatively normalized ‘Landsat-like’ AWiFS 2007 images were integrated into 1984 to 2010 Landsat time-series stacks (LTSS) for disturbance detection using the Vegetation Change Tracker (VCT) model. Both scene-dependent and scene-independent normalized AWiFS data sets could generate disturbance maps similar to what were generated using the LTSS data set, and their kappa coefficients were higher than 0.97. These results indicate that AWiFS can be used instead of Landsat data to detect multitemporal disturbance in the event of Landsat data discontinuity.

  13. Results of 17 Independent Geopositional Accuracy Assessments of Earth Satellite Corporation's GeoCover Landsat Thematic Mapper Imagery. Geopositional Accuracy Validation of Orthorectified Landsat TM Imagery: Northeast Asia

    NASA Technical Reports Server (NTRS)

    Smith, Charles M.

    2003-01-01

    This report provides results of an independent assessment of the geopositional accuracy of the Earth Satellite (EarthSat) Corporation's GeoCover, Orthorectified Landsat Thematic Mapper (TM) imagery over Northeast Asia. This imagery was purchased through NASA's Earth Science Enterprise (ESE) Scientific Data Purchase (SDP) program.

  14. Application of digital analysis of MSS data to agro-environmental studies

    NASA Technical Reports Server (NTRS)

    Lewis, R. A.; Goward, S. N. (Principal Investigator)

    1981-01-01

    Progress in the application of digital analysis of multispectral scanner data to agro-environmental studies is described. Simulation of LANDSAT D thematic mapper (TM) observations from aircraft multispectral scanner data and field spectrometer data collected over a corn-soybean agricultural region in Webster County, Iowa during the 1979 growing season in support of the NASA/AgRISTARS program is described. The simulations were analyzed to evaluate the potential utility of the TM (1.55-1.75 micron) mid-infrared observations in corn-soybean discrimination. Current LANDSAT data was analyzed to study snow cover in northern New England and wetlands in Nebraska and Vermont. The application of satellite remote sensor data in additional environmental research areas is described.

  15. Spectroradiometric calibration of the Thematic Mapper and Multispectral Scanner system. [White Sands, New Mexico

    NASA Technical Reports Server (NTRS)

    Palmer, J. M. (Principal Investigator); Slater, P. N.

    1984-01-01

    The newly built Caste spectropolarimeters gave satisfactory performance during tests in the solar radiometer and helicopter modes. A bandwidth normalization technique based on analysis of the moments of the spectral responsivity curves was used to analyze the spectral bands of the MSS and TM subsystems of LANDSAT 4 and 5 satellites. Results include the effective wavelength, the bandpass, the wavelength limits, and the normalized responsivity for each spectral channel. Temperature coefficients for TM PF channel 6 were also derived. The moments normalization method used yields sensor parameters whose derivation is independent of source characteristics (i.e., incident solar spectral irradiance, atmospheric transmittance, or ground reflectance). The errors expected using these parameters are lower than those expected using other normalization methods.

  16. Mapping thermal maturity in the Chainman shale, near Eureka, Nevada, with Landsat Thematic Mapper images

    USGS Publications Warehouse

    Rowan, L.C.; Pawlewicz, M.J.; Jones, O.D.

    1992-01-01

    The purpose of this study was to determine if there is a correlation between measurements of organic matter (OM) maturity and laboratory measurements of visible and near-infrared spectral reflectance, and if Landsat Thematic Mapper (TM) images could be used to map maturity. The maturity of Mississippian Chainman Shale samples collected in east-central Nevada and west-central Utah was determined by using vitrinite reflectance and Rock-Eval pyrolysis. TM 4/TM 5 values correspond well to vitrinite reflectance and hydrogen index variations, and therefore this ratio was used to evaluate a TM image of the Eureka, Nevada, area for mapping thermal maturity differences in the Chainman Shale. -from Authors

  17. Regional analysis of tertiary volcanic Calderas (western U.S.) using Landsat Thematic Mapper imagery

    NASA Technical Reports Server (NTRS)

    Spatz, David M.; Taranik, James V.

    1989-01-01

    The Landsat Thematic Mapper (TM) imagery of the Basin and Range province of southern Nevada was analyzed to identify and map volcanic rock assemblages at three Tertiary calderas. It was found that the longer-wavelength visible and the NIR TM Bands 3, 5, and 7 provide more effective lithologic discrimination than the shorter-wavelength bands, due partly to deeper penetration of the longer-wavelength bands, resulting in more lithologically driven radiances. Shorter-wavelength TM Bands 1 and 2 are affected more by surficial weathering products including desert varnish which may or may not provide an indirect link to lithologic identity. Guidelines for lithologic analysis of volcanic terrains using Landsat TM imagery are outlined.

  18. Modeling energy flow and nutrient cycling in natural semiarid grassland ecosystems with the aid of thematic mapper data

    NASA Technical Reports Server (NTRS)

    Lewis, James K.

    1987-01-01

    Energy flow and nutrient cycling were modeled as affected by herbivory on selected intensive sites along gradients of precipitation and soils, validating the model output by monitoring selected parameters with data derived from the Thematic Mapper (TM). Herbivore production was modeled along the gradient of soils and herbivory, and validated with data derived from TM in a spatial data base.

  19. An Initial Analysis of LANDSAT-4 Thematic Mapper Data for the Discrimination of Agricultural, Forested Wetland, and Urban Land Covers

    NASA Technical Reports Server (NTRS)

    Quattrochi, D. A.

    1984-01-01

    An initial analysis of LANDSAT 4 Thematic Mapper (TM) data for the discrimination of agricultural, forested wetland, and urban land covers is conducted using a scene of data collected over Arkansas and Tennessee. A classification of agricultural lands derived from multitemporal LANDSAT Multispectral Scanner (MSS) data is compared with a classification of TM data for the same area. Results from this comparative analysis show that the multitemporal MSS classification produced an overall accuracy of 80.91% while the TM classification yields an overall classification accuracy of 97.06% correct.

  20. Preliminary evaluation of the landsat-4 thematic mapper data for mineral exploration

    USGS Publications Warehouse

    Podwysocki, M.H.; Power, M.S.; Jones, O.D.

    1985-01-01

    Landsat-4 Thematic Mapper (TM) data recorded over an arid terrain were analyzed to determine the applicability of using of TM data for identifying and mapping hydrothermally altered, potentially mineralized rocks. Clays, micas, and other minerals bearing the OH anion in specific crystal lattice positions have absorption bands in the 2.2-??m region (TM channel 7, TM7) and commonly lack features in the 1.6-??m region (TM5). Channel ratios TM5/TM7, TM5/TM4, and TM3/TM1 were combined into a color-ratio-composite (CRC) image and used to distinguish hydrothermally altered rocks, unaltered rocks, and vegetation. These distinctions are made possible by using the TM5 and TM7, channels which are not available in the Landsat multispectral scanner (MSS). Digital masking was used to eliminate ambiguities due to water and shadows. However, some ambiguities in identification resulted between altered volcanic rocks and unaltered sedimentary deposits that contained clays, carbonates, and gypsum, and between altered volcanic rocks and volcanic tuffs diagenetically altered to zeolites. However, compared to MSS data, TM data should greatly improve the ability to map hydrothermally altered rocks in arid terrains. ?? 1985.

  1. LANDSAT-4 MSS and Thematic Mapper data quality and information content analysis

    NASA Technical Reports Server (NTRS)

    Anuta, P.; Bartolucci, L.; Dean, E.; Lozano, F.; Malaret, E.; Mcgillem, C. D.; Valdes, J.; Valenzuela, C.

    1984-01-01

    LANDSAT-4 thematic mapper (TM) and multispectral scanner (MSS) data were analyzed to obtain information on data quality and information content. Geometric evaluations were performed to test band-to-band registration accuracy. Thematic mapper overall system resolution was evaluated using scene objects which demonstrated sharp high contrast edge responses. Radiometric evaluation included detector relative calibration, effects of resampling, and coherent noise effects. Information content evaluation was carried out using clustering, principal components, transformed divergence separability measure, and supervised classifiers on test data. A detailed spectral class analysis (multispectral classification) was carried out to compare the information content of the MSS and TM for a large number of scene classes. A temperature-mapping experiment was carried out for a cooling pond to test the quality of thermal-band calibration. Overall TM data quality is very good. The MSS data are noisier than previous LANDSAT results.

  2. The use of the Sonoran Desert as a pseudo-invariant site for optical sensor cross-calibration and long-term stability monitoring

    USGS Publications Warehouse

    Angal, A.; Chander, Gyanesh; Choi, Taeyoung; Wu, Aisheng; Xiong, Xiaoxiong

    2010-01-01

    The Sonoran Desert is a large, flat, pseudo-invariant site near the United States-Mexico border. It is one of the largest and hottest deserts in North America, with an area of 311,000 square km. This site is particularly suitable for calibration purposes because of its high spatial and spectral uniformity and reasonable temporal stability. This study uses measurements from four different sensors, Terra Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+), Aqua MODIS, and Landsat 5 (L5) Thematic Mapper (TM), to assess the suitability of this site for long-term stability monitoring and to evaluate the “radiometric calibration differences” between spectrally matching bands of all four sensors. In general, the drift in the top-of-atmosphere (TOA) reflectance of each sensor over a span of nine years is within the specified calibration uncertainties. Monthly precipitation measurements of the Sonoran Desert region were obtained from the Global Historical Climatology Network (GHCN), and their effects on the retrieved TOA reflectances were evaluated. To account for the combined uncertainties in the TOA reflectance due to the surface and atmospheric Bi-directional Reflectance Distribution Function (BRDF), a semi-empirical BRDF model has been adopted to monitor and reduce the impact of illumination geometry differences on the retrieved TOA reflectances. To evaluate calibration differences between the MODIS and Landsat sensors, correction for spectral response differences using a hyperspectral sensor is also demonstrated.

  3. INPE LANDSAT-D thematic mapper computer compatible tape format specification

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Desouza, R. C. M.

    1982-01-01

    The format of the computer compatible tapes (CCT) which contain Thematic Mapper (TM) imagery data acquired from the LANDSAT D and D Prime satellites by the INSTITUTO DE PERSQUISAS ESPACIALS (CNPq-INPE/BRAZIL) is defined.

  4. Comparison of Huanjing and Landsat satellite remote sensing of the spatial heterogeneity of Qinghai-Tibet alpine grassland

    NASA Astrophysics Data System (ADS)

    Wang, Junbang; Sun, Wenyi

    2014-11-01

    Remote sensing is widely applied in the study of terrestrial primary production and the global carbon cycle. The researches on the spatial heterogeneity in images with different sensors and resolutions would improve the application of remote sensing. In this study two sites on alpine meadow grassland in Qinghai, China, which have distinct fractal vegetation cover, were used to test and analyze differences between Normalized Difference Vegetation Index (NDVI) and enhanced vegetation index (EVI) derived from the Huanjing (HJ) and Landsat Thematic Mapper (TM) sensors. The results showed that: 1) NDVI estimated from HJ were smaller than the corresponding values from TM at the two sites whereas EVI were almost the same for the two sensors. 2) The overall variance represented by HJ data was consistently about half of that of Landsat TM although their nominal pixel size is approximately 30m for both sensors. The overall variance from EVI is greater than that from NDVI. The difference of the range between the two sensors is about 6 pixels at 30m resolution. The difference of the range in which there is not more corrective between two vegetation indices is about 1 pixel. 3) The sill decreased when pixel size increased from 30m to 1km, and then decreased very quickly when pixel size is changed to 250m from 30m or 90m but slowly when changed from 250m to 500m. HJ can capture this spatial heterogeneity to some extent and this study provides foundations for the use of the sensor for validation of net primary productivity estimates obtained from ecosystem process models.

  5. Comparative point-spread function calculations for the MOMS-1, Thematic Mapper and SPOT-HRV instruments

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V.; Nickeson, J. E.; Bodechtel, J.; Zilger, J.

    1988-01-01

    Point-spread functions (PSF) comparisons were made between the Modular Optoelectronic Multispectral Scanner (MOMS-01), the LANDSAT Thematic Mapper (TM) and the SPOT-HRV instruments, principally near Lake Nakuru, Kenya. The results, expressed in terms of the width of the point spread functions at the 50 percent power points as determined from the in-scene analysis show that the TM has a PSF equal to or narrower than the MOMS-01 instrument (50 to 55 for the TM versus 50 to 68 for the MOMS). The SPOT estimates of the PSF range from 36 to 40. When the MOMS results are adjusted for differences in edge scanning as compared to the TM and SPOT, they are nearer 40 in the 575 to 625 nm band.

  6. An initial analysis of LANDSAT 4 Thematic Mapper data for the classification of agricultural, forested wetland, and urban land covers

    NASA Technical Reports Server (NTRS)

    Quattrochi, D. A.; Anderson, J. E.; Brannon, D. P.; Hill, C. L.

    1982-01-01

    An initial analysis of LANDSAT 4 thematic mapper (TM) data for the delineation and classification of agricultural, forested wetland, and urban land covers was conducted. A study area in Poinsett County, Arkansas was used to evaluate a classification of agricultural lands derived from multitemporal LANDSAT multispectral scanner (MSS) data in comparison with a classification of TM data for the same area. Data over Reelfoot Lake in northwestern Tennessee were utilized to evaluate the TM for delineating forested wetland species. A classification of the study area was assessed for accuracy in discriminating five forested wetland categories. Finally, the TM data were used to identify urban features within a small city. A computer generated classification of Union City, Tennessee was analyzed for accuracy in delineating urban land covers. An evaluation of digitally enhanced TM data using principal components analysis to facilitate photointerpretation of urban features was also performed.

  7. An Analysis of the High Frequency Vibrations in Early Thematic Mapper Scenes

    NASA Technical Reports Server (NTRS)

    Kogut, J.; Larduinat, E.

    1985-01-01

    The motion of the mirrors in the thematic mapper (TM) and multispectral scanner (MSS) instruments, and the motion of other devices, such as the TDRSS antenna drive, and solar array drives onboard LANDSAT-4 cause vibrations to propagate through the spacecraft. These vibrations as well as nonlinearities in the scanning motion of the TM mirror can cause the TM detectors to point away from their nominal positions. Two computer programs, JITTER and SCDFT, were developed as part of the LANDSAT-D Assessment System (LAS), Products and Procedures Analysis (PAPA) program to evaluate the potential effect of high frequency vibrations on the final TM image. The maximum overlap and underlap which were observed for early TM scenes are well within specifications for the ground processing system. The cross scan and scan high frequency vibrations are also within the specifications cited for the flight system.

  8. Anaysis of the quality of image data required by the LANDSAT-4 Thematic Mapper and Multispectral Scanner. [agricultural and forest cover types in California

    NASA Technical Reports Server (NTRS)

    Colwell, R. N. (Principal Investigator)

    1984-01-01

    The spatial, geometric, and radiometric qualities of LANDSAT 4 thematic mapper (TM) and multispectral scanner (MSS) data were evaluated by interpreting, through visual and computer means, film and digital products for selected agricultural and forest cover types in California. Multispectral analyses employing Bayesian maximum likelihood, discrete relaxation, and unsupervised clustering algorithms were used to compare the usefulness of TM and MSS data for discriminating individual cover types. Some of the significant results are as follows: (1) for maximizing the interpretability of agricultural and forest resources, TM color composites should contain spectral bands in the visible, near-reflectance infrared, and middle-reflectance infrared regions, namely TM 4 and TM % and must contain TM 4 in all cases even at the expense of excluding TM 5; (2) using enlarged TM film products, planimetric accuracy of mapped poins was within 91 meters (RMSE east) and 117 meters (RMSE north); (3) using TM digital products, planimetric accuracy of mapped points was within 12.0 meters (RMSE east) and 13.7 meters (RMSE north); and (4) applying a contextual classification algorithm to TM data provided classification accuracies competitive with Bayesian maximum likelihood.

  9. Evaluation of spatial, radiometric and spectral thematic mapper performance for coastal studies

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator)

    1983-01-01

    An area along the southeastern shore of the Chesapeake Bay was subsetted from TM imagery. The subsetted image was then enhanced and classified using an ERDAS 400 system. Results obtained were compared with a chart showing the distribution of both Zolsters marina and Rupplia martime in the Vaucluse Shores and which supports a large community of SAV. Radiative transfer models describing the irradiance reflectance of a water column containing SAV are being refined. Radiative transfer theory was used to model upwelling radiance for an orbiting sensor viewing an estuarine environment. Upwelling radiance was calculated for a clear maritime atmosphere, an optically shallow estuary of either clear or turbid water, and one of three bottom types: vegetation, sand, or mud using TM bands 1, 2, and 3 and MSS bands 4 and 5. A spectral quality index was defined similar to the equation for apparent contrast and used to evaluate the relative effectiveness of TM and MSS bands in detecting submerged vegetation.

  10. Evaluation of spatial, radiometric and spectral thematic mapper performance for coastal studies

    NASA Technical Reports Server (NTRS)

    Klemas, V.

    1983-01-01

    Radiative transfer theory was used to model upwelling radiance for an orbiting sensor viewing an estuarine environment. Radiance was calculated in Tm bands 3,4, and 5 and MSS bands 4 and 5 for an optically shallow estuary of either clear or turbid water, and of three bottom types: vegetation, sand, or mud. A portion of a TM image of Chesapeake Bay was enhanced to obtain a quick look at what submerged features could be detected. The enhancements were compared with low altitude color aerial photography. The TM bands 1,2, and 3 were found to contain water and submerged features information. Band 1 contained a significant amount of noise and low contrast. Band 2 appeared to contain the most amount of bottom information. Band 3, while having the least amount of noise and best constrast, contained a lesser amount of bottom information because of increase water absorption. Several water signatures were identified which correlated with submerged vegetation shown in the aerial photography.

  11. Intelligent image processing for vegetation classification using multispectral LANDSAT data

    NASA Astrophysics Data System (ADS)

    Santos, Stewart R.; Flores, Jorge L.; Garcia-Torales, G.

    2015-09-01

    We propose an intelligent computational technique for analysis of vegetation imaging, which are acquired with multispectral scanner (MSS) sensor. This work focuses on intelligent and adaptive artificial neural network (ANN) methodologies that allow segmentation and classification of spectral remote sensing (RS) signatures, in order to obtain a high resolution map, in which we can delimit the wooded areas and quantify the amount of combustible materials present into these areas. This could provide important information to prevent fires and deforestation of wooded areas. The spectral RS input data, acquired by the MSS sensor, are considered in a random propagation remotely sensed scene with unknown statistics for each Thematic Mapper (TM) band. Performing high-resolution reconstruction and adding these spectral values with neighbor pixels information from each TM band, we can include contextual information into an ANN. The biggest challenge in conventional classifiers is how to reduce the number of components in the feature vector, while preserving the major information contained in the data, especially when the dimensionality of the feature space is high. Preliminary results show that the Adaptive Modified Neural Network method is a promising and effective spectral method for segmentation and classification in RS images acquired with MSS sensor.

  12. Leaf water stress detection utilizing thematic mapper bands 3, 4 and 5 in soybean plants

    NASA Technical Reports Server (NTRS)

    Holben, B. N.; Schutt, J. B.; Mcmurtrey, J., III

    1983-01-01

    The total and diffuse radiance responses of Thematic Mapper bands 3 (0.63-0.69 microns), 4 (0.76-0.90 microns), and 5 (1.55-1.75 microns) to water stress in a soybean canopy are compared. Polarization measurements were used to separate the total from the diffuse reflectance; the reflectances were compared statistically at a variety of look angles at 15 min intervals from about 09.00 until 14.00 hrs EST. The results suggest that remotely sensed data collected in the photographic infrared region (TM4) are sensitive to leaf water stress in a 100 percent canopy cover of soybeans, and that TM3 is less sensitive than TM4 for detection of reversible foliar water stress. The mean values of TM5 reflectance data show similar trends to TM4. The primary implication of this study is that remote sensing of water stress in green plant canopies is possible in TM4 from ground-based observations primarily through the indirect link of leaf geometry.

  13. Landsat thematic mapper (TM) soil variability analysis over Webster County, Iowa

    NASA Technical Reports Server (NTRS)

    Thompson, D. R.; Henderson, K. E.; Pitts, D. E.

    1984-01-01

    Thematic mapper simulator (TMS) data acquired June 7, June 23, and July 31, 1982, and Landsat thematic mapper (TM) data acquired August 2, September 3, and October 21, 1982, over Webster County, Iowa, were examined for within-field soil effects on corn and soybean spectral signatures. It was found that patterns displayed on various computer-generated map products were in close agreement with the detailed soil survey of the area. The difference in spectral values appears to be due to a combination of subtle soil properties and crop growth patterns resulting from the different soil properties. Bands 4 (0.76-.90 micron), 5 (1.55-1.75 micron), and 7 (2.08-2.35 micron) were found to be responding to the within-field soil variability even with increasing ground cover. While these results are preliminary, they do indicate that the soil influence on the vegetation is being detected by TM and should provide improved information relating to crop and soil properties.

  14. Detecting air pollution stress in southern California vegetation using Landsat Thematic Mapper band data

    NASA Technical Reports Server (NTRS)

    Westman, Walter E.; Price, Curtis V.

    1988-01-01

    Landsat Thematic Mapper (TM) and aircraft-borne Thematic Mapper simulator (TMS) data were collected over two areas of natural vegetation in southern California exposed to gradients of pollutant dose, particularly in photochemical oxidants: the coastal sage scrub of the Santa Monica Mountains in the Los Angeles basin, and the yellow pine forests in the southern Sierra Nevada. In both situations, natural variations in canopy closure, with subsequent exposure of understory elements (e.g.,rock or soil, chaparral, grasses, and herbs), were sufficient to cause changes in spectral variation that could obscure differences due to visible foliar injury symptoms observed in the field. TM or TMS data are therefore more likely to be successful in distinguishing pollution injury from background variation when homogeneous communities with closed canopies are subjected to more severe pollution-induced structural and/or compositional change. The present study helps to define the threshold level of vegetative injury detectable by TM data.

  15. Characterizing user requirements for future land observing satellites

    NASA Technical Reports Server (NTRS)

    Barker, J. L.; Cressy, P. J.; Schnetzler, C. C.; Salomonson, V. V.

    1981-01-01

    The objective procedure was developed for identifying probable sensor and mission characteristics for an operational satellite land observing system. Requirements were systematically compiled, quantified and scored by type of use, from surveys of federal, state, local and private communities. Incremental percent increases in expected value of data were estimated for critical system improvements. Comparisons with costs permitted selection of a probable sensor system, from a set of 11 options, with the following characteristics: 30 meter spatial resolution in 5 bands and 15 meters in 1 band, spectral bands nominally at Thematic Mapper (TM) bands 1 through 6 positions, and 2 day data turn around for receipt of imagery. Improvements are suggested for both the form of questions and the procedures for analysis of future surveys in order to provide a more quantitatively precise definition of sensor and mission requirements.

  16. Thematic mapper studies of central Andean volcanoes

    NASA Technical Reports Server (NTRS)

    Francis, Peter W.

    1987-01-01

    A series of false color composite images covering the volcanic cordillera was written. Each image is 45 km (1536 x 1536 pixels) and was constructed using bands 7, 4, and 2 of the Thematic Mapper (TM) data. Approximately 100 images were prepared to date. A set of LANDSAT Multispectral Scanner (MSS) images was used in conjunction with the TM hardcopy to compile a computer data base of all volcanic structure in the Central Andean province. Over 500 individual structures were identified. About 75 major volcanoes were identified as active, or potentially active. A pilot study was begun combining Shuttle Imaging Radar (SIR) data with TM for a test area in north Chile and Bolivia.

  17. BOREAS Level-3s Landsat TM Imagery Scaled At-sensor Radiance in LGSOWG Format

    NASA Technical Reports Server (NTRS)

    Nickeson, Jaime; Knapp, David; Newcomer, Jeffrey A.; Cihlar, Josef; Hall, Forrest G. (Editor)

    2000-01-01

    For BOReal Ecosystem-Atmosphere Study (BOREAS),the level-3s Landsat Thematic Mapper (TM) data, along with the other remotely sensed images,were collected in order to provide spatially extensive information over the primary study areas. This information includes radiant energy,detailed land cover, and biophysical parameter maps such as Fraction of Photosynthetically Active Radiation (FPAR) and Leaf area Index (LAI). CCRS collected and supplied the level-3s images to BOREAS for use in the remote sensing research activities. Geographically,the bulk of the level-3s images cover the BOREAS Northern Study Area (NSA) and Southern Study Area (SSA) with a few images covering the area between the NSA and SSA. Temporally,the images cover the period of 22-Jun-1984 to 30-Jul-1996. The images are available in binary,image-format files.

  18. Radiometric calibration of the Landsat MSS sensor series

    USGS Publications Warehouse

    Helder, Dennis L.; Karki, Sadhana; Bhatt, Rajendra; Micijevik, Esad; Aaron, David; Jasinski, Benjamin

    2012-01-01

    Multispectral remote sensing of the Earth using Landsat sensors was ushered on July 23, 1972, with the launch of Landsat-1. Following that success, four more Landsat satellites were launched, and each of these carried the Multispectral Scanner System (MSS). These five sensors provided the only consistent multispectral space-based imagery of the Earth's surface from 1972 to 1982. This work focuses on developing both a consistent and absolute radiometric calibration of this sensor system. Cross-calibration of the MSS was performed through the use of pseudoinvariant calibration sites (PICSs). Since these sites have been shown to be stable for long periods of time, changes in MSS observations of these sites were attributed to changes in the sensors themselves. In addition, simultaneous data collections were available for some MSS sensor pairs, and these were also used for cross-calibration. Results indicated substantial differences existed between instruments, up to 16%, and these were reduced to 5% or less across all MSS sensors and bands. Lastly, this paper takes the calibration through the final step and places the MSS sensors on an absolute radiometric scale. The methodology used to achieve this was based on simultaneous data collections by the Landsat-5 MSS and Thematic Mapper (TM) instruments. Through analysis of image data from a PICS location and through compensating for the spectral differences between the two instruments, the Landsat-5 MSS sensor was placed on an absolute radiometric scale based on the Landsat-5 TM sensor. Uncertainties associated with this calibration are considered to be less than 5%.

  19. Analysis of conifer forest regeneration using Landsat Thematic Mapper data

    NASA Technical Reports Server (NTRS)

    Fiorella, Maria; Ripple, William J.

    1995-01-01

    Landsat Thematic Mapper (TM) data were used to evaluate young conifer stands in the western Cascade Mountains of Oregon. Regression and correlation analyses were used to describe the relationships between TM band values and age of young Douglas-fir stands (2 to 35 years old). Spectral data from well regenerated Douglas-fir stands were compared to those of poorly regenerated conifer stands. TM bands 1, 2, 3, 5, 6, and 7 were inversely correlated with the age (r greater than or equal to -0.80) of well regenerated Douglas-fir stands. Overall, the 'structural index' (TM 4/5 ratio) had the highest correlation to age of Douglas-fir stands (r = 0.96). Poorly regenerated stands were spectrally distinct from well regenerated Douglas-fir stands after the stands reached an age of approximately 15 years.

  20. Radiometric characterization of Landsat Collection 1 products

    USGS Publications Warehouse

    Micijevic, Esad; Haque, Md. Obaidul; Mishra, Nischal

    2017-01-01

    Landsat data in the U.S. Geological Survey (USGS) archive are being reprocessed to generate a tiered collection of consistently geolocated and radiometrically calibrated products that are suitable for time series analyses. With the implementation of the collection management, no major updates will be made to calibration of the Landsat sensors within a collection. Only calibration parameters needed to maintain the established calibration trends without an effect on derived environmental records will be regularly updated, while all other changes will be deferred to a new collection. This first collection, Collection 1, incorporates various radiometric calibration updates to all Landsat sensors including absolute and relative gains for Landsat 8 Operational Land Imager (OLI), stray light correction for Landsat 8 Thermal Infrared Sensor (TIRS), absolute gains for Landsat 4 and 5 Thematic Mappers (TM), recalibration of Landsat 1-5 Multispectral Scanners (MSS) to ensure radiometric consistency among different formats of archived MSS data, and a transfer of Landsat 8 OLI reflectance based calibration to all previous Landsat sensors. While all OLI/TIRS, ETM+ and majority of TM data have already been reprocessed to Collection 1, a completion of MSS and remaining TM data reprocessing is expected by the end of this year. It is important to note that, although still available for download from the USGS web pages, the products generated using the Pre-Collection processing do not benefit from the latest radiometric calibration updates. In this paper, we are assessing radiometry of solar reflective bands in Landsat Collection 1 products through analysis of trends in on-board calibrator and pseudo invariant site (PICS) responses.

  1. Radiometric characterization of Landsat Collection 1 products

    NASA Astrophysics Data System (ADS)

    Micijevic, Esad; Haque, Md. Obaidul; Mishra, Nischal

    2017-09-01

    Landsat data in the U.S. Geological Survey (USGS) archive are being reprocessed to generate a tiered collection of consistently geolocated and radiometrically calibrated products that are suitable for time series analyses. With the implementation of the collection management, no major updates will be made to calibration of the Landsat sensors within a collection. Only calibration parameters needed to maintain the established calibration trends without an effect on derived environmental records will be regularly updated, while all other changes will be deferred to a new collection. This first collection, Collection 1, incorporates various radiometric calibration updates to all Landsat sensors including absolute and relative gains for Landsat 8 Operational Land Imager (OLI), stray light correction for Landsat 8 Thermal Infrared Sensor (TIRS), absolute gains for Landsat 4 and 5 Thematic Mappers (TM), recalibration of Landsat 1-5 Multispectral Scanners (MSS) to ensure radiometric consistency among different formats of archived MSS data, and a transfer of Landsat 8 OLI reflectance based calibration to all previous Landsat sensors. While all OLI/TIRS, ETM+ and majority of TM data have already been reprocessed to Collection 1, a completion of MSS and remaining TM data reprocessing is expected by the end of this year. It is important to note that, although still available for download from the USGS web pages, the products generated using the Pre-Collection processing do not benefit from the latest radiometric calibration updates. In this paper, we are assessing radiometry of solar reflective bands in Landsat Collection 1 products through analysis of trends in on-board calibrator and pseudo invariant site (PICS) responses.

  2. Spectroradiometric calibration of the Thematic Mapper and multispectral scanner system

    NASA Technical Reports Server (NTRS)

    Palmer, J. (Principal Investigator); Slater, P.

    1984-01-01

    Results of an analysis that relates TM saturation level to ground reflectance, calendar date, latitude, and atmospheric conditions are reported. The determination of the spectral reflectance at the entrance pupil of the LANDSAT 4 pupil of the thematic mapper is described.

  3. Effects of Landsat 5 Thematic Mapper and Landsat 7 Enhanced Thematic Mapper plus radiometric and geometric calibrations and corrections on landscape characterization

    USGS Publications Warehouse

    Vogelmann, James E.; Helder, Dennis; Morfitt, Ron; Choate, Michael J.; Merchant, James W.; Bulley, Henry

    2001-01-01

    The Thematic Mapper (TM) instruments onboard Landsats 4 and 5 provide high-quality imagery appropriate for many different applications, including land cover mapping, landscape ecology, and change detection. Precise calibration was considered to be critical to the success of the Landsat 7 mission and, thus, issues of calibration were given high priority during the development of the Enhanced Thematic Mapper Plus (ETM+). Data sets from the Landsat 5 TM are not routinely corrected for a number of radiometric and geometric artifacts, including memory effect, gain/bias, and interfocal plane misalignment. In the current investigation, the effects of correcting vs. not correcting these factors were investigated for several applications. Gain/bias calibrations were found to have a greater impact on most applications than did memory effect calibrations. Correcting interfocal plane offsets was found to have a moderate effect on applications. On June 2, 1999, Landsats 5 and 7 data were acquired nearly simultaneously over a study site in the Niobrara, NE area. Field radiometer data acquired at that site were used to facilitate crosscalibrations of Landsats 5 and 7 data. Current findings and results from previous investigations indicate that the internal calibrator of Landsat 5 TM tracked instrument gain well until 1988. After this, the internal calibrator diverged from the data derived from vicarious calibrations. Results from this study also indicate very good agreement between prelaunch measurements and vicarious calibration data for all Landsat 7 reflective bands except Band 4. Values are within about 3.5% of each other, except for Band 4, which differs by 10%. Coefficient of variation (CV) values derived from selected targets in the imagery were also analyzed. The Niobrara Landsat 7 imagery was found to have lower CV values than Landsat 5 data, implying that lower levels of noise characterize Landsat 7 data than current Landsat 5 data. It was also found that following radiometric normalization, the Normalized Difference Vegetation Index (NDVI) imagery and classification products of Landsats 5 and 7 were very similar. This implies that data from the two sensors can be used to measure and monitor the same landscape phenomena and that Landsats 5 and 7 data can be used interchangeably with proper caution. In addition, it was found that difference imagery produced using Landsat 7 ETM+ data are of excellent quality.

  4. A proposed periodic national inventory of land use land cover change

    Treesearch

    Hans T. Schreuder; Paul W. Snook; Raymond L. Czaplewski; Glenn P. Catts

    1986-01-01

    Three alternatives using digital thematic mapper (TM), analog TM, and a combination of either digital or analog TM data with low altitude photography are discussed for level I and level II land use/land cover classes for a proposed national inventory. Digital TM data should prove satisfactory for estimating acreage in level I classes, although estimates of precision...

  5. Evaluation and interpretation of Thematic Mapper ratios in equations for estimating corn growth parameters

    NASA Technical Reports Server (NTRS)

    Dardner, B. R.; Blad, B. L.; Thompson, D. R.; Henderson, K. E.

    1985-01-01

    Reflectance and agronomic Thematic Mapper (TM) data were analyzed to determine possible data transformations for evaluating several plant parameters of corn. Three transformation forms were used: the ratio of two TM bands, logarithms of two-band ratios, and normalized differences of two bands. Normalized differences and logarithms of two-band ratios responsed similarly in the equations for estimating the plant growth parameters evaluated in this study. Two-term equations were required to obtain the maximum predictability of percent ground cover, canopy moisture content, and total wet phytomass. Standard error of estimate values were 15-26 percent lower for two-term estimates of these parameters than for one-term estimates. The terms log(TM4/TM2) and (TM4/TM5) produced the maximum predictability for leaf area and dry green leaf weight, respectively. The middle infrared bands TM5 and TM7 are essential for maximizing predictability for all measured plant parameters except leaf area index. The estimating models were evaluated over bare soil to discriminate between equations which are statistically similar. Qualitative interpretations of the resulting prediction equations are consistent with general agronomic and remote sensing theory.

  6. An evaluation of simulated Thematic Mapper data and Landsat MSS data for discriminating suburban and regional land use and land cover

    NASA Technical Reports Server (NTRS)

    Toll, D. L.

    1984-01-01

    An airborne multispectral scanner, operating in the same spectral channels as the Landsat Thematic Mapper (TM), was used in a region east of Denver, CO, for a simulation test performed in the framework of using TM to discriminate the level I and level II classes. It is noted that at the 30-m spatial resolution of the Thematic Mapper Simulator (TMS) the overall discrimination for such classes as commercial/industrial land, rangeland, irrigated sod, irrigated alfalfa, and irrigated pasture was superior to that of the Landsat Multispectral Scanner, primarily due to four added spectral bands. For residential and other spectrally heterogeneous classes, however, the higher resolution of TMS resulted in increased variability within the class and a larger spectral overlap.

  7. Thematic mapper data quality and performance assessment in renewable resource/agricultural remote sensing

    NASA Technical Reports Server (NTRS)

    Erickson, J. D.; Macdonald, R. B. (Principal Investigator)

    1982-01-01

    A "quick look" investigation of the initial LANDSAT-4, thematic mapper (TM) scene received from Goddard Space Flight Center was performed to gain early insight into the characteristics of TM data. The initial scene, containing only the first four bands of the seven bands recorded by the TM, was acquired over the Detroit, Michigan, area on July 20, 1982. It yielded abundant information for scientific investigation. A wide variety of studies were conducted to assess all aspects of TM data. They ranged from manual analyses of image products to detect obvious optical, electronic, or mechanical defects to detailed machine analyses of the digital data content for evaluation of spectral separability of vegetative/nonvegetative classes. These studies were applied to several segments extracted from the full scene. No attempt was made to perform end-to-end statistical evaluations. However, the output of these studies do identify a degree of positive performance from the TM and its potential for advancing state-of-the-art crop inventory and condition assessment technology.

  8. Neuro-classification of multi-type Landsat Thematic Mapper data

    NASA Technical Reports Server (NTRS)

    Zhuang, Xin; Engel, Bernard A.; Fernandez, R. N.; Johannsen, Chris J.

    1991-01-01

    Neural networks have been successful in image classification and have shown potential for classifying remotely sensed data. This paper presents classifications of multitype Landsat Thematic Mapper (TM) data using neural networks. The Landsat TM Image for March 23, 1987 with accompanying ground observation data for a study area In Miami County, Indiana, U.S.A. was utilized to assess recognition of crop residues. Principal components and spectral ratio transformations were performed on the TM data. In addition, a layer of the geographic information system (GIS) for the study site was incorporated to generate GIS-enhanced TM data. This paper discusses (1) the performance of neuro-classification on each type of data, (2) how neural networks recognized each type of data as a new image and (3) comparisons of the results for each type of data obtained using neural networks, maximum likelihood, and minimum distance classifiers.

  9. The use of thematic mapper data for land cover discrimination: Preliminary results from the UK SATMaP programme

    NASA Technical Reports Server (NTRS)

    Jackson, M. J.; Baker, J. R.; Townshend, J. R. G.; Gayler, J. E.; Hardy, J. R.

    1983-01-01

    The principal objectives of the UK SATMaP program are to determine thematic mapper (TM) performance with particular reference to spatial resolution properties and geometric characteristics of the data. So far, analysis is restricted to images from the U.S. and concentrates on spectra and radiometric properties. The results indicate that the data are inherently three dimensional compared with the two dimensional character of MSS data. Preliminary classification results indicate the importance of the near infrared band (TM 4), at least one middle infrared band (TM 5 or TM 6) and at least one of the visible bands (preferably either TM 3 or TM 1). The thermal infrared also appears to have discriminatory ability despite its coarser spatial resolution. For band 4 the forward and reverse scans show somewhat different spectral responses in one scene but this effect is absent in the other analyzed. From examination of the histograms it would appear that the full 8-bit quantization is not being effectively utilized for all the bands.

  10. LAND COVER MAPPING IN AN AGRICULTURAL SETTING USING MULTISEASONAL THEMATIC MAPPER DATA

    EPA Science Inventory

    A multiseasonal Landsat Thematic Mapper (TM) data set consisting of five image dates from a single year was used to characterize agricultural and related land cover in the Willamette River Basin (WRB) of western Oregon. Image registration was accomplished using an automated grou...

  11. Radiometric calibration updates to the Landsat collection

    USGS Publications Warehouse

    Micijevic, Esad; Haque, Md. Obaidul; Mishra, Nischal

    2016-01-01

    The Landsat Project is planning to implement a new collection management strategy for Landsat products generated at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center. The goal of the initiative is to identify a collection of consistently geolocated and radiometrically calibrated images across the entire Landsat archive that is readily suitable for time-series analyses. In order to perform an accurate land change analysis, the data from all Landsat sensors must be on the same radiometric scale. Landsat 7 Enhanced Thematic Mapper Plus (ETM+) is calibrated to a radiance standard and all previous sensors are cross-calibrated to its radiometric scale. Landsat 8 Operational Land Imager (OLI) is calibrated to both radiance and reflectance standards independently. The Landsat 8 OLI reflectance calibration is considered to be most accurate. To improve radiometric calibration accuracy of historical data, Landsat 1-7 sensors also need to be cross-calibrated to the OLI reflectance scale. Results of that effort, as well as other calibration updates including the absolute and relative radiometric calibration and saturated pixel replacement for Landsat 8 OLI and absolute calibration for Landsat 4 and 5 Thematic Mappers (TM), will be implemented into Landsat products during the archive reprocessing campaign planned within the new collection management strategy. This paper reports on the planned radiometric calibration updates to the solar reflective bands of the new Landsat collection.

  12. A definitive calibration record for the Landsat-5 thematic mapper anchored to the Landsat-7 radiometric scale

    USGS Publications Warehouse

    Teillet, P.M.; Helder, D.L.; Ruggles, T.A.; Landry, R.; Ahern, F.J.; Higgs, N.J.; Barsi, J.; Chander, G.; Markham, B.L.; Barker, J.L.; Thome, K.J.; Schott, J.R.; Palluconi, Frank Don

    2004-01-01

    A coordinated effort on the part of several agencies has led to the specification of a definitive radiometric calibration record for the Landsat-5 thematic mapper (TM) for its lifetime since launch in 1984. The time-dependent calibration record for Landsat-5 TM has been placed on the same radiometric scale as the Landsat-7 enhanced thematic mapper plus (ETM+). It has been implemented in the National Landsat Archive Production Systems (NLAPS) in use in North America. This paper documents the results of this collaborative effort and the specifications for the related calibration processing algorithms. The specifications include (i) anchoring of the Landsat-5 TM calibration record to the Landsat-7 ETM+ absolute radiometric calibration, (ii) new time-dependent calibration processing equations and procedures applicable to raw Landsat-5 TM data, and (iii) algorithms for recalibration computations applicable to some of the existing processed datasets in the North American context. The cross-calibration between Landsat-5 TM and Landsat-7 ETM+ was achieved using image pairs from the tandem-orbit configuration period that was programmed early in the Laridsat-7 mission. The time-dependent calibration for Landsat-5 TM is based on a detailed trend analysis of data from the on-board internal calibrator. The new lifetime radiometric calibration record for Landsat-5 will overcome problems with earlier product generation owing to inadequate maintenance and documentation of the calibration over time and will facilitate the quantitative examination of a continuous, near-global dataset at 30-m scale that spans almost two decades.

  13. Spectroradiometric calibration of the thematic mapper and multispectral scanner system

    NASA Technical Reports Server (NTRS)

    Palmer, J. M.; Slater, P. N.

    1983-01-01

    The results of an analysis that relates thematic mapper (TM) saturation level to ground reflectance, calendar date, latitude, and atmospheric condition is provided. A revised version of the preprint included with the last quarterly report is also provided for publication in the IEEE Transactions on Geoscience and Remote Sensing.

  14. A comparison between the first four thematic mapper reflective bands and other satellite sensor systems for vegetational monitoring

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.

    1978-01-01

    The first four Landsat-D thematic mapper sensors were evaluated and compared to the RBV and MSS sensors from Landsats-1, 2, and 3, Colvocoresses' proposed 'operational Landsat' three band system, and the French SPOT three band system using simulation/integration techniques and in situ collected spectral reflectance data. Sensors were evaluated by their ability to discriminate vegetation biomass, chlorophyll concentration, and leaf water content. The thematic mapper and SPOT bands were superior in a spectral resolution context to the other three sensor systems for vegetational applications. Significant improvements are expected for vegetational analyses from Landsat-D thematic mapper and SPOT imagery over MSS and RBV imagery.

  15. Landsat Thematic Mapper monitoring of turbid inland water quality

    NASA Technical Reports Server (NTRS)

    Lathrop, Richard G., Jr.

    1992-01-01

    This study reports on an investigation of water quality calibration algorithms under turbid inland water conditions using Landsat Thematic Mapper (TM) multispectral digital data. TM data and water quality observations (total suspended solids and Secchi disk depth) were obtained near-simultaneously and related using linear regression techniques. The relationships between reflectance and water quality for Green Bay and Lake Michigan were compared with results for Yellowstone and Jackson Lakes, Wyoming. Results show similarities in the water quality-reflectance relationships, however, the algorithms derived for Green Bay - Lake Michigan cannot be extrapolated to Yellowstone and Jackson Lake conditions.

  16. Radiometric calibration of Landsat Thematic Mapper multispectral images

    USGS Publications Warehouse

    Chavez, P.S.

    1989-01-01

    A main problem encountered in radiometric calibration of satellite image data is correcting for atmospheric effects. Without this correction, an image digital number (DN) cannot be converted to a surface reflectance value. In this paper the accuracy of a calibration procedure, which includes a correction for atmospheric scattering, is tested. Two simple methods, a stand-alone and an in situ sky radiance measurement technique, were used to derive the HAZE DN values for each of the six reflectance Thematic Mapper (TM) bands. The DNs of two Landsat TM images of Phoenix, Arizona were converted to surface reflectances. -from Author

  17. Comparison of existing digital image analysis systems for the analysis of Thematic Mapper data

    NASA Technical Reports Server (NTRS)

    Likens, W. C.; Wrigley, R. C.

    1984-01-01

    Most existing image analysis systems were designed with the Landsat Multi-Spectral Scanner in mind, leaving open the question of whether or not these systems could adequately process Thematic Mapper data. In this report, both hardware and software systems have been evaluated for compatibility with TM data. Lack of spectral analysis capability was not found to be a problem, though techniques for spatial filtering and texture varied. Computer processing speed and data storage of currently existing mini-computer based systems may be less than adequate. Upgrading to more powerful hardware may be required for many TM applications.

  18. Landsat D Thematic Mapper image dimensionality reduction and geometric correction accuracy

    NASA Technical Reports Server (NTRS)

    Ford, G. E.

    1986-01-01

    To characterize and quantify the performance of the Landsat thematic mapper (TM), techniques for dimensionality reduction by linear transformation have been studied and evaluated and the accuracy of the correction of geometric errors in TM images analyzed. Theoretical evaluations and comparisons for existing methods for the design of linear transformation for dimensionality reduction are presented. These methods include the discrete Karhunen Loeve (KL) expansion, Multiple Discriminant Analysis (MDA), Thematic Mapper (TM)-Tasseled Cap Linear Transformation and Singular Value Decomposition (SVD). A unified approach to these design problems is presented in which each method involves optimizing an objective function with respect to the linear transformation matrix. From these studies, four modified methods are proposed. They are referred to as the Space Variant Linear Transformation, the KL Transform-MDA hybrid method, and the First and Second Version of the Weighted MDA method. The modifications involve the assignment of weights to classes to achieve improvements in the class conditional probability of error for classes with high weights. Experimental evaluations of the existing and proposed methods have been performed using the six reflective bands of the TM data. It is shown that in terms of probability of classification error and the percentage of the cumulative eigenvalues, the six reflective bands of the TM data require only a three dimensional feature space. It is shown experimentally as well that for the proposed methods, the classes with high weights have improvements in class conditional probability of error estimates as expected.

  19. Contribution of LANDSAT-4 thematic mapper data to geologic exploration

    NASA Technical Reports Server (NTRS)

    Everett, J. R.; Dykstra, J. D.; Sheffield, C. A.

    1983-01-01

    The increased number of carefully selected narrow spectral bands and the increased spatial resolution of thematic mapper data over previously available satellite data contribute greatly to geologic exploration, both by providing spectral information that permits lithologic differentiation and recognition of alteration and spatial information that reveals structure. As vegetation and soil cover increase, the value of spectral components of TM data decreases relative to the value of the spatial component of the data. However, even in vegetated areas, the greater spectral breadth and discrimination of TM data permits improved recognition and mapping of spatial elements of the terrain. As our understanding of the spectral manifestations of the responses of soils and vegetation to unusual chemical environments increases, the value of spectral components of TM data to exploration will greatly improve in covered areas.

  20. Detection of soil erosion within pinyon-juniper woodlands using Thematic Mapper (TM) data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, K.P.

    1993-09-01

    Multispectral measurements collected by Landsat Thematic Mapper (TM) were correlated with field measurements, direct soil loss estimates, and Universal Soil Loss Equation (USLE) estimates to determine the sensitivity of TM data to varying degrees of soil erosion in pinyon-juniper woodland in central Utah. TM data were also evaluated as a predictor of the USLE Crop Management C factor for pinyon-juniper woodlands. Correlation analysis showed that TM Band 4 (near infrared) accounted for 78% of the variability in percent trees (r=[minus] 0.88). In multiple regression, percent trees, total soil loss, and percent total nonliving cover together accounted for nearly 70% ofmore » the variability in TM Bands 2, 3, 4, and 5. TM spectral data were consistently better predictors of soil erosion factors than any combination of field factors. TM data were more sensitive to vegetation variations than the USLE C factor. USLE estimates showed low annual rates of erosion which varied little among the study sites. A number of hypotheses have been advanced to explain the apparent accelerated rate of pinyon-juniper spread in the western United States. These include removal of natural plant competition by livestock overgrazing, reduction of wildfires, climatic change, and reinvasion of sites cleared of trees by 19th century settlers.« less

  1. Seasonal LAI in slash pine estimated with LANDSAT TM

    NASA Technical Reports Server (NTRS)

    Curran, Paul J.; Dungan, Jennifer L.; Gholz, Henry L.

    1990-01-01

    The leaf area index (LAI, total area of leaves per unit area of ground) of most forest canopies varies throughout the year, yet for logistical reasons it is difficult to estimate anything more detailed than a seasonal maximum LAI. To determine if remotely sensed data can be used to estimate LAI seasonally, field measurements of LAI were compared to normalized difference vegetation index (NDVI) values derived using LANDSAT Thematic Mapper (TM) data, for 16 fertilized and control slash pine plots on 3 dates. Linear relationships existed between NDVI and LAI with R(sup 2) values of 0.35, 0.75, and 0.86 for February 1988, September 1988, and March, 1989, respectively. This is the first reported study in which NDVI is related to forest LAI recorded during the month of sensor overpass. Predictive relationships based on data from eight of the plots were used to estimate the LAI of the other eight plots with a root-mean-square error of 0.74 LAI, which is 15.6 percent of the mean LAI. This demonstrates the potential use of LANDSAT TM data for studying seasonal dynamics in forest canopies.

  2. Landsat multispectral sharpening using a sensor system model and panchromatic image

    USGS Publications Warehouse

    Lemeshewsky, G.P.; ,

    2003-01-01

    The thematic mapper (TM) sensor aboard Landsats 4, 5 and enhanced TM plus (ETM+) on Landsat 7 collect imagery at 30-m sample distance in six spectral bands. New with ETM+ is a 15-m panchromatic (P) band. With image sharpening techniques, this higher resolution P data, or as an alternative, the 10-m (or 5-m) P data of the SPOT satellite, can increase the spatial resolution of the multispectral (MS) data. Sharpening requires that the lower resolution MS image be coregistered and resampled to the P data before high spatial frequency information is transferred to the MS data. For visual interpretation and machine classification tasks, it is important that the sharpened data preserve the spectral characteristics of the original low resolution data. A technique was developed for sharpening (in this case, 3:1 spatial resolution enhancement) visible spectral band data, based on a model of the sensor system point spread function (PSF) in order to maintain spectral fidelity. It combines high-pass (HP) filter sharpening methods with iterative image restoration to reduce degradations caused by sensor-system-induced blurring and resembling. Also there is a spectral fidelity requirement: sharpened MS when filtered by the modeled degradations should reproduce the low resolution source MS. Quantitative evaluation of sharpening performance was made by using simulated low resolution data generated from digital color-IR aerial photography. In comparison to the HP-filter-based sharpening method, results for the technique in this paper with simulated data show improved spectral fidelity. Preliminary results with TM 30-m visible band data sharpened with simulated 10-m panchromatic data are promising but require further study.

  3. Intercomparison of 30+ years of AVHRR and Landsat-5 TM Surface Reflectance using Multiple Pseudo-Invariant Calibration Sites

    NASA Astrophysics Data System (ADS)

    Santamaría-Artigas, A. E.; Franch, B.; Vermote, E.; Roger, J. C.; Justice, C. O.

    2017-12-01

    The 30+ years daily surface reflectance long term data record (LTDR) from the Advanced Very High Resolution Radiometer (AVHRR) is a valuable source of information for long-term studies of the Earth surface. This LTDR was generated by combining observations from multiple AVHRR sensors aboard different NOAA satellites starting from the early 1980s, and due to the lack of on-board calibration its quality should be evaluated. Previous studies have used observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) over pseudo-invariant calibration sites (PICS) as a calibrated reference to assess the performance of AVHRR products. However, this limits the evaluation to the period after MODIS launch. In this work, the AVHRR surface reflectance LTDR was evaluated against Landsat-5 Thematic Mapper (TM) data using observations from 4 well known pseudo-invariant calibration sites (i.e. Sonoran, Saharan, Sudan1, and Libya4) over an extended time period (1984-2011). For the intercomparison, AVHRR and TM observations of each site were extracted and averaged over a 20 km x 20 km area and aggregated to monthly mean values. In order to account for the spectral differences between sensors, Hyperion hyperspectral data from the Sonoran and Libya4 sites were convolved with sensor-specific relative spectral responses, and used to compute spectral band adjustment factors (SBAFs). Results of the intercomparison are reported in terms of the root mean square difference (RMSD) and determination coefficient (r2). In general, there is good agreement between the surface reflectance products from both sensors. The overall RMSD and r2 for all the sites and AVHRR/TM combinations were 0.03 and 0.85 for the red band, and 0.04 and 0.81 for the near-infrared band. These results show the strong performance of the AVHRR surface reflectance LTDR through all of the considered period. Thus, remarking its usefulness and value for long term Earth studies. Figure 1 shows the red (filled markers) and near-infrared (empty markers) surface reflectance from AVHRR and TM for the complete evaluation period over the Saharan (diamond), Libya4 (square), Sudan1 (triangle), and Sonoran (circle) PICS.

  4. An evaluation of the first four LANDSAT-D thematic mapper reflective sensors for monitoring vegetation: A comparison with other satellite sensor systems

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.

    1978-01-01

    The first four LANDSAT-D thematic mapper sensors were evaluated and compared to: the return beam vidicon (RBV) and multispectral scanners (MSS) sensors from LANDSATS 1, 2, and 3; Colvocoresses' proposed 'operational LANDSAT' three band system; and the French SPOT three band system using simulation/intergration techniques and in situ collected spectral reflectance data. Sensors were evaluated by their ability to discriminate vegetation biomass, chlorophyll concentration, and leaf water content. The thematic mapper and SPOT bands were found to be superior in a spectral resolution context to the other three sensor systems for vegetational applications. Significant improvements are expected for most vegetational analyses from LANDSAT-D thematic mapper and SPOT imagery over MSS and RBV imagery.

  5. Information content of data from the LANDSAT 4 Thematic Mapper (TM) and multispectral scanner (MSS)

    NASA Technical Reports Server (NTRS)

    Price, J. C.

    1983-01-01

    Simultaneous data acquisition by the LANDSAT 4 thematic mapper and the multispectral scanner permits the comparison of the two types of image data with respect to engineering performance and data applications. Progress in the evaluation of information content of matching scenes in agricultural areas is briefly reported.

  6. Tectonic evaluation of the Nubian shield of Northeastern Sudan using thematic mapper imagery

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Bechtel is nearing completion of a one-year program that uses digitally enhanced LANDSAT Thematic Mapper (TM) data to compile the first comprehensive regional tectonic map of the Proterozoic Nubian Shield exposed in the northern Red Sea Hills of northeastern Sudan. The status of significant objectives of this study are given. Pertinent published and unpublished geologic literature and maps of the northern Red Sea Hills to establish the geologic framework of the region were reviewed. Thematic mapper imagery for optimal base-map enhancements was processed. Photo mosaics of enhanced images to serve as base maps for compilation of geologic information were completed. Interpretation of TM imagery to define and delineate structural and lithogologic provinces was completed. Geologic information (petrologic, and radiometric data) was compiled from the literature review onto base-map overlays. Evaluation of the tectonic evolution of the Nubian Shield based on the image interpretation and the compiled tectonic maps is continuing.

  7. Detection of soil erosion within pinyon-juniper woodlands using Thematic Mapper (TM) data

    NASA Technical Reports Server (NTRS)

    Price, Kevin P.

    1993-01-01

    Multispectral measurements collected by Landsat Thematic Mapper (TM) were correlated with field measurements, direct soil loss estimates, and Universal Soil Loss Equation (USLE) estimates to determine the sensitivity of TM data to varying degrees of soil erosion in pinyon-juniper woodland in central Utah. TM data were also evaluated as a predictor of the USLE Crop Management C factor for pinyon-juniper woodlands. TM spectral data were consistently better predictors of soil erosion factors than any combination of field factors. TM data were more sensitive to vegetation variations than the USLE C factor. USLE estimates showed low annual rates of erosion which varied little among the study sites. Direct measurements of rate of soil loss using the SEDIMENT (Soil Erosion DIrect measureMENT) technique, indicated high and varying rates of soil loss among the sites since tree establishment. Erosion estimates from the USLE and SEDIMENT methods suggest that erosion rates have been severe in the past, but because significant amounts of soil have already been eroded, and the surface is now armored by rock debris, present erosion rates are lower. Indicators of accelerated erosion were still present on all sites, however, suggesting that the USLE underestimated erosion within the study area.

  8. Thematic mapper research in the earth sciences: Small scale patches of suspended matter and phytoplankton in the Elbe River Estuary, German Bight and Tidal Flats

    NASA Technical Reports Server (NTRS)

    Grassl, H.; Doerffer, R.; Fischer, J.; Brockmann, C.; Stoessel, M.

    1987-01-01

    A Thematic Mapper (TM) field experiment was followed by a data analysis to determine TM capabilities for analysis of suspended matter and phytoplankton. Factor analysis showed that suspended matter concentration, atmospheric scattering, and sea surface temperature can be retrieved as independent factors which determine the variation in the TM data over water areas. Spectral channels in the near infrared open the possibility of determining the Angstrom exponent better than for the coastal zone color scanner. The suspended matter distribution may then be calculated by the absolute radiance of channel 2 or 3 or the ratio of both. There is no indication of whether separation of chlorophyll is possible. The distribution of suspended matter and sea surface temperature can be observed with the expected fine structure. A good correlation between water depth and suspended matter distribution as found from ship data can now be analyzed for an entire area by the synoptic view of the TM scenes.

  9. Assessing forest damage in high-elevation coniferous forests in Vermont and New Hampshire using Thematic Mapper data

    NASA Technical Reports Server (NTRS)

    Vogelmann, James E.; Rock, Barrett N.

    1988-01-01

    This study evaluates the potential of measuring/mapping forest damage in spruce-fir forests in the Green Mountains of Vermont and White Mountains of New Hampshire using Landsat Thematic Mapper (TM) data. The TM 1.65/0.83-micron (TM5/4) and 2.22/0.83-micron (TM7/4) band ratios were found to correlate well with ground-based measurements of forest damage (a measure of percentage foliar loss) at 11 spruce-fir stands located on Camels Hump, a mountain in northern Vermont. Images using 0.56 and 1.65-micron bands with 1.65/0.83-micron band ratios indicated locations of heavy conifer forest damage. Both 1.65/0.83 and 2.22/0.83-micron band ratios were used to quantify levels of conifer forest damage among individual mountains throughout many of the Green and White Mountains. Damage was found to be consistently higher for the Green than the White Mountains.

  10. Classification of corn and soybeans using multitemporal Thematic Mapper data

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.

    1984-01-01

    The multitemporal classification approach based on the greenness profile derived from Landsat Multispectral Scanner (MSS) spectral bands has proved successful in effectively separating and identifying corn, soybean, and other ground cover classes. Features derived from these profiles have been shown to carry virtually all the information contained in the original data and, in addition, have been shown to be stable over a large geographic area of the United States. The objective of this investigation was to determine if the same features derived from multitemporal Thematic Mapper (TM) data would also prove effective in separating these two crop types, and, in fact, if algorithms developed for MSS could be directly applied to TM. It is shown that this is indeed the case. In addition, because of greater spatial and spectral resolution, the accuracy of TM classifications is better than in MSS.

  11. Remote sensing of landscape-level coastal environmental indicators.

    PubMed

    Klemas, V V

    2001-01-01

    Advances in technology and decreases in cost are making remote sensing (RS) and geographic information systems (GIS) practical and attractive for use in coastal resource management. They are also allowing researchers and managers to take a broader view of ecological patterns and processes. Landscape-level environmental indicators that can be detected by Landsat Thematic Mapper (TM) and other remote sensors are available to provide quantitative estimates of coastal and estuarine habitat conditions and trends. Such indicators include watershed land cover, riparian buffers, shoreline and wetland changes, among others. With the launch of Landsat 7, the cost of TM imagery has dropped by nearly a factor of 10, decreasing the cost of monitoring large coastal areas and estuaries. New satellites, carrying sensors with much finer spatial (1-5 m) and spectral (200 narrow bands) resolutions are being launched, providing a capability to more accurately detect changes in coastal habitat and wetland health. Advances in the application of GIS help incorporate ancillary data layers to improve the accuracy of satellite land-cover classification. When these techniques for generating, organizing, storing, and analyzing spatial information are combined with mathematical models, coastal planners and managers have a means for assessing the impacts of alternative management practices.

  12. EVALUATION OF LOW-SUN ILLUMINATED LANDSAT-4 THEMATIC MAPPER DATA FOR MAPPING HYDROTHERMALLY ALTERED ROCKS IN SOUTHERN NEVADA.

    USGS Publications Warehouse

    Podwysocki, Melvin H.; Power, Marty S.; Salisbury, Jack; Jones, O.D.

    1984-01-01

    Landsat-4 Thematic Mapper (TM) data of southern Nevada collected under conditions of low-angle solar illumination were digitally processed to identify hydroxyl-bearing minerals commonly associated with hydrothermal alteration in volcanic terrains. Digital masking procedures were used to exclude shadow areas and vegetation and thus to produce a CRC image suitable for testing the new TM bands as a means to map hydrothermally altered rocks. Field examination of a masked CRC image revealed that several different types of altered rocks displayed hues associated with spectral characteristics common to hydroxyl-bearing minerals. Several types of unaltered rocks also displayed similar hues.

  13. Using classified Landsat Thematic Mapper data for stratification in a statewide forest inventory

    Treesearch

    Mark H. Hansen; Daniel G. Wendt

    2000-01-01

    The 1998 Indiana/Illinois forest inventory (USDA Forest Service, Forest Inventory and Analysis (FIA)) used Landsat Thematic Mapper (TM) data for stratification. Classified images made by the National Gap Analysis Program (GAP) stratified FIA plots into four classes (nonforest, nonforest/ forest, forest/nonforest, and forest) based on a two pixel forest edge buffer zone...

  14. Using Classified Landsat Thematic Mapper Data for Stratification in a Statewide Forest Inventory

    Treesearch

    Mark H. Hansen; Daniel G. Wendt

    2000-01-01

    The 1998 Indiana/Illinois forest inventory (USDA Forest Service, Forest Inventory and Analysis (FIA)) used Landsat Thematic Mapper (TM} data for stratification. Classified images made by the National Gap Analysis Program (GAP) stratified FIA plots into four classes (nonforest, nonforest/forest, forest/nonforest, and forest) based on a two pixel forest edge buffer zone...

  15. Discrimination of lithologic units using geobotanical and LANDSAT TM spectral data

    NASA Technical Reports Server (NTRS)

    Birnie, R. W.; Defeo, N. J.

    1986-01-01

    Thematic Mapper (TM) spectral data were correlated with lithologic units, geobotanical forest associations, and geomorphic site parameters in the Ridge and Valley Province of Pennsylvania. Both the TM and forest association data can be divided into four groups based on their lithology (sandstone or shale) and geomorphic aspect (north or south facing). In this clastic sedimentary terrane, geobotanical associations are useful indicators of lithology and these different geobotanical associations are detectable in LANDSAT TM data.

  16. Investigations of vegetation and soils information contained in LANDSAT Thematic Mapper and Multispectral Scanner data

    NASA Technical Reports Server (NTRS)

    Crist, E. P.; Laurin, R.; Colwell, J. E.; Kauth, R. J.

    1984-01-01

    An extension of the TM tasseled cap transformation to reflectance factor data is presented, and the basic concepts underlying the tasseled cap transformations are described. The ratio of TM bands 5 and 7, and TM tasseled cap wetness, are both shown to offer promise of direct detection of available soil moisture. Some effects of organic matter and other soil characteristics or constituents on TM tasseled cap spectral response are also considered.

  17. APPLICATION OF MULTI-DATE LANDSAT 5 TIM IMAGERY FOR WETLAND IDENTIFICATION

    EPA Science Inventory

    Multi-temporal Landsat 5 Thematic Mapper (TM) imagery was evaluated for the identification and monitoring of potential jurisdictional wetlands located in the states of Maryland and Delaware. A wetland map prepared from single-date TM imagery was compared to a hybrid map develope...

  18. A technique for extrapolating and validating forest cover across large regions. Calibrating AVHRR data with TM data

    Treesearch

    L.R. Iverson; E.A. Cook; R.L. Graham

    1989-01-01

    An approach to extending high-resolution forest cover information across large regions is presented and validated. Landsat Thematic Mapper (TM) data were classified into forest and nonforest for a portion of Jackson County, Illinois. The classified TM image was then used to determine the relationship between forest cover and the spectral signature of Advanced Very High...

  19. Integration of remote sensing and geographic information systems for Great Lakes water quality monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lathrop, R.G. Jr.

    1988-01-01

    The utility of three operational satellite remote sensing systems, namely, the Landsat Thematic Mapper (TM), the SPOT High Resolution Visible (HRV) sensors and the NOAA Advanced Very High Resolution Radiometer (AVHRR), were evaluated as a means of estimating water quality and surface temperature. Empirical calibration through linear regression techniques was used to relate near-simultaneously acquired satellite radiance/reflectance data and water quality observations obtained in Green Bay and the nearshore waters of Lake Michigan. Four dates of TM and one date each of SPOT and AVHRR imagery/surface reference data were acquired and analyzed. Highly significant relationships were identified between the TMmore » and SPOT data and secchi disk depth, nephelometric turbidity, chlorophyll a, total suspended solids (TSS), absorbance, and surface temperature (TM only). The AVHRR data were not analyzed independently but were used for comparison with the TM data. Calibrated water quality image maps were input to a PC-based raster GIS package, EPPL7. Pattern interpretation and spatial analysis techniques were used to document the circulation dynamics and model mixing processes in Green Bay. A GIS facilitates the retrieval, query and spatial analysis of mapped information and provides the framework for an integrated operational monitoring system for the Great Lakes.« less

  20. Preliminary spectral and geologic analysis of Landsat-4 Thematic Mapper data, Wind River Basin area, Wyoming

    NASA Technical Reports Server (NTRS)

    Conel, J. E.; Lang, H. R.; Paylor, E. D.; Alley, R. E.

    1985-01-01

    A Landsat-4 Thematic Mapper (TM) image of the Wind River Basin area in Wyoming is currently under analysis for stratigraphic and structural mapping and for assessment of spectral and spatial characteristics using visible, near infrared, and short wavelength infrared bands. To estimate the equivalent Lambertian surface reflectance, TM radiance data were calibrated to remove atmospheric and instrumental effects. Reflectance measurements for homogeneous natural and cultural targets were acquired about one year after data acquisition. Calibration data obtained during the analysis were used to calculate new gains and offsets to improve scanner response for earth science applications. It is shown that the principal component images calculated from the TM data were the result of linear transformations of ground reflectance. In images prepared from this transform, the separation of spectral classes was independent of systematic atmospheric and instrumental factors. Several examples of the processed images are provided.

  1. Evaluation of Thematic Mapper Performance as Applied to Hydrocarbon Exploration. [Ontario, Canada; Cement, Oklahoma; and Death Valley, California

    NASA Technical Reports Server (NTRS)

    Everett, J. R.; Sheffield, C.; Dykstra, J.

    1985-01-01

    The role data from the first three LANDSAT satellites have in geologic exploration and their current level of acceptance is reviewed and the advantages of LANDSAT 4 TM data over MSS data are discussed. Specially enhanced Thematic Mapper imager can make a very significant contribution to the oil and gas and mineral exploration industries. The TM's increased spatial resolution enables the production of larger scale imagery, which greatly increases the amount of geomorphic and structural information interpretable. TM's greater spectral resolution, combined with the smaller, more homogeneous pixels, should enable a far greater confidence in mapping lithologies and detecting geobotanical anomalies from space. The results from its applications to hydrocarbon and mineral exploration promise to bring the majority of the geologic exploration community into that final stage of acceptance and routine application of the satellite data.

  2. Using Landsat Thematic Mapper and SPOT Satellite Imagery to inventory wetland plants of the Coeur d'Alene Floodplain

    Treesearch

    F. M. Roberts; P. E. Gessler

    2000-01-01

    Landsat Thematic Mapper (TM) and SPOT Satellite Imagery were used to map wetland plant species in thc Coeur d'Alene floodplain in northern Idaho. This paper discusses the methodology used to create a wetland plant species map for the floodplain. Species mapped included common cattail (Typha latifolia); water horse-tail (Equisetum...

  3. A technique for the reduction of banding in Landsat Thematic Mapper Images

    USGS Publications Warehouse

    Helder, Dennis L.; Quirk, Bruce K.; Hood, Joy J.

    1992-01-01

    The radiometric difference between forward and reverse scans in Landsat thematic mapper (TM) images, referred to as "banding," can create problems when enhancing the image for interpretation or when performing quantitative studies. Recent research has led to the development of a method that reduces the banding in Landsat TM data sets. It involves passing a one-dimensional spatial kernel over the data set. This kernel is developed from the statistics of the banding pattern and is based on the Wiener filter. It has been implemented on both a DOS-based microcomputer and several UNIX-based computer systems. The algorithm has successfully reduced the banding in several test data sets.

  4. Using the Landsat Thematic Mapper to detect and monitor active volcanoes - An example from Lascar volcano, northern Chile

    NASA Technical Reports Server (NTRS)

    Francis, P. W.; Rothery, D. A.

    1987-01-01

    The Landsat Thematic Mapper (TM) offers a means of detecting and monitoring thermal features of active volcanoes. Using the TM, a prominent thermal anomaly has been discovered on Lascar volcano, northern Chile. Data from two short-wavelength infrared channels of the TM show that material within a 300-m-diameter pit crater was at a temperature of at least 380 C on two dates in 1985. The thermal anomaly closely resembles in size and radiant temperature the anomaly over the active lava lake at Erta'ale in Ethiopia. An eruption took place at Lascar on Sept. 16, 1986. TM data acquired on Oct. 27, 1986, revealed significant changes within the crater area. Lascar is in a much more active state than any other volcano in the central Andes, and for this reason it merits further careful monitoring. Studies show that the TM is capable of confidently identifying thermal anomalies less than 100 m in size, at temperatures of above 150 C, and thus it offers a valuable means of monitoring the conditions of active or potentially active volcanoes, particularly those in remote regions.

  5. Image analysis by integration of disparate information

    NASA Technical Reports Server (NTRS)

    Lemoigne, Jacqueline

    1993-01-01

    Image analysis often starts with some preliminary segmentation which provides a representation of the scene needed for further interpretation. Segmentation can be performed in several ways, which are categorized as pixel based, edge-based, and region-based. Each of these approaches are affected differently by various factors, and the final result may be improved by integrating several or all of these methods, thus taking advantage of their complementary nature. In this paper, we propose an approach that integrates pixel-based and edge-based results by utilizing an iterative relaxation technique. This approach has been implemented on a massively parallel computer and tested on some remotely sensed imagery from the Landsat-Thematic Mapper (TM) sensor.

  6. Upper Klamath Basin Landsat Image for September 30, 2004: Path 44 Row 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  7. Upper Klamath Basin Landsat Image for July 18, 2006: Path 44 Row 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  8. Upper Klamath Basin Landsat Image for October 29, 2006: Path 45 Rows 30 and 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  9. Upper Klamath Basin Landsat Image for June 23, 2006: Path 45 Rows 30 and 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  10. Upper Klamath Basin Landsat Image for August 29, 2004: Path 44 Row 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  11. Upper Klamath Basin Landsat Image for September 21, 2004: Path 45 Rows 30 and 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  12. Upper Klamath Basin Landsat Image for July 25, 2006: Path 45 Rows 30 and 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  13. Upper Klamath Basin Landsat Image for July 28, 2004: Path 44 Row 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  14. Upper Klamath Basin Landsat Image for October 22, 2006: Path 44 Row 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  15. Upper Klamath Basin Landsat Image for November 8, 2004: Path 45 Rows 30 and 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  16. Upper Klamath Basin Landsat Image for September 27, 2006: Path 45 Rows 30 and 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  17. Upper Klamath Basin Landsat Image for August 19, 2006: Path 44 Row 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  18. Upper Klamath Basin Landsat Image for August 19, 2006: Path 44 Row 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  19. Upper Klamath Basin Landsat Image for October 16, 2004: Path 44 Row 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  20. Upper Klamath Basin Landsat Image for August 4, 2004: Path 45 Rows 30 and 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  1. Upper Klamath Basin Landsat Image for September 20, 2006: Path 44 Row 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  2. Upper Klamath Basin Landsat Image for October 7, 2004: Path 45 Rows 30 and 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  3. Upper Klamath Basin Landsat Image for July 9, 2006: Path 45 Rows 30 and 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  4. Upper Klamath Basin Landsat Image for May 6, 2006: Path 45 Rows 30 and 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  5. The importance and attainment of accurate absolute radiometric calibration

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1984-01-01

    The importance of accurate absolute radiometric calibration is discussed by reference to the needs of those wishing to validate or use models describing the interaction of electromagnetic radiation with the atmosphere and earth surface features. The in-flight calibration methods used for the Landsat Thematic Mapper (TM) and the Systeme Probatoire d'Observation de la Terre, Haute Resolution visible (SPOT/HRV) systems are described and their limitations discussed. The questionable stability of in-flight absolute calibration methods suggests the use of a radiative transfer program to predict the apparent radiance, at the entrance pupil of the sensor, of a ground site of measured reflectance imaged through a well characterized atmosphere. The uncertainties of such a method are discussed.

  6. Upper Klamath Basin Landsat Image for June 26, 2004: Path 44 Row 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  7. Upper Klamath Basin Landsat Image for April 29, 2006: Path 44 Row 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  8. Upper Klamath Basin Landsat Image for July 12, 2004: Path 44 Row 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  9. Upper Klamath Basin Landsat Image for July 2, 2006: Path 44 Row 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  10. Upper Klamath Basin Landsat Image for April 30, 2004: Path 45 Rows 30 and 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  11. Upper Klamath Basin Landsat Image for May 25, 2004: Path 44 Row 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  12. Upper Klamath Basin Landsat Image for June 1, 2004: Path 45 Rows 30 and 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  13. Upper Klamath Basin Landsat Image for June 17, 2004: Path 45 Rows 30 and 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  14. Upper Klamath Basin Landsat Image for June 16, 2006: Path 44 Row 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  15. Upper Klamath Basin Landsat Image for April 7, 2004: Path 44 Row 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  16. LANDSAT-D Thematic Mapper image dimensionality reduction and geometric correction accuracy. [Walnut Creek Watershed, Texas

    NASA Technical Reports Server (NTRS)

    Ford, G. E. (Principal Investigator)

    1984-01-01

    Principal components transformations was applied to a Walnut Creek, Texas subscene to reduce the dimensionality of the multispectral sensor data. This transformation was also applied to a LANDSAT 3 MSS subscene of the same area acquired in a different season and year. Results of both procedures are tabulated and allow for comparisons between TM and MSS data. The TM correlation matrix shows that visible bands 1 to 3 exhibit a high degree of correlation in the range 0.92 to 0.96. Correlation for bands 5 to 7 is 0.93. Band 4 is not highly correlated with any other band, with corrections in the range 0.13 to 0.52. The thermal band (6) is not highly correlated with other bands in the range 0.13 to 0.46. The MSS correlation matrix shows that bands 4 and 5 are highly correlated (0.96) as are bands 6 and 7 with a correlation of 0.92.

  17. Response of Thematic Mapper bands to plant water stress

    NASA Technical Reports Server (NTRS)

    Cibula, W. G.; Zetka, E. F.; Rickman, D. L.

    1992-01-01

    Changes in leaf reflectance as water content decreases have been hypothesized to occur in the 1.55-1.75 and 2.08-2.35 micron wavelength regions. To evaluate this hypothesis, studies were conducted on ryegrass (Lolium multiflorum Lam.) and oats (Avena sativa L.), which were grown in a controlled, outdoor situation. Both fully-watered control beds and water-stressed beds were periodically examined with a spectroradiometer calibrated against a reflectance reference of polytetrafluoroethylene. The observed changes correspond to those predicted by stochastic leaf models employed by other investigators (leaf reflection increases in the 1.55-1.75 micron region as leaf water content decreases). Although the percentage changes in TM bands 1-3 are nearly as great as those found in TM bands 5 and 7, the absolute values of reflectance change are much lower. It is believed that these patterns are probably characteristic of a broad range of vegetation types. In terms of phenomena detection, these patterns should be considered in any practical remote sensing sensor scenario.

  18. Characterization of the LANDSAT sensors' spatial responses

    NASA Technical Reports Server (NTRS)

    Markham, B. L.

    1984-01-01

    The characteristics of the thematic mapper (TM) and multispectral scanner (MSS) sensors on LANDSATs 4 and 5 affecting their spatial responses are described, and functions defining the response of the system to an arbitrary input spatial pattern are derived, i.e., transfer functions (TF) and line spread functions (LSF). These design LSF's and TF's were modified based on prelaunch component and system measurements to provide improved estimates. Prelaunch estimates of LSF/FT's are compared to in-orbit estimates. For the MSS instruments, only limited prelaunch scan direction square-wave response (SWR) data were available. Design estimates were modified by convolving in Gaussian blur till the derived LSF/TF's produced SWR's comparable to the measurements. The two MSS instruments were comparable at their temperatures of best focus; separate calculations were performed for bands 1 and 3, band 2 and band 4. The pre-sample nadir effective instantaneous field's of view (EIFOV's) based on the .5 modulation transfer function (MTF) criteria vary from 70 to 75 meters in the track direction and 79 to 82 meters in the scan direction. For the TM instruments more extensive prelaunch measurements were available. Bands 1 to 4, 5 and 7, and 6 were handled separately as were the two instruments. Derived MTF's indicate nadir pre-sample EIFOV's of 32 to 33 meter track (bands 1 to 5, 7) and 36 meter scan (bands 1 to 5, 7) and 1245 meter track (band 6) and 141 meter scan (band 6) for both TM's.

  19. Local search for optimal global map generation using mid-decadal landsat images

    USGS Publications Warehouse

    Khatib, L.; Gasch, J.; Morris, Robert; Covington, S.

    2007-01-01

    NASA and the US Geological Survey (USGS) are seeking to generate a map of the entire globe using Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) sensor data from the "mid-decadal" period of 2004 through 2006. The global map is comprised of thousands of scene locations and, for each location, tens of different images of varying quality to chose from. Furthermore, it is desirable for images of adjacent scenes be close together in time of acquisition, to avoid obvious discontinuities due to seasonal changes. These characteristics make it desirable to formulate an automated solution to the problem of generating the complete map. This paper formulates a Global Map Generator problem as a Constraint Optimization Problem (GMG-COP) and describes an approach to solving it using local search. Preliminary results of running the algorithm on image data sets are summarized. The results suggest a significant improvement in map quality using constraint-based solutions. Copyright ?? 2007, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

  20. Towards decadal soil salinity mapping using Landsat time series data

    NASA Astrophysics Data System (ADS)

    Fan, Xingwang; Weng, Yongling; Tao, Jinmei

    2016-10-01

    Salinization is one of the major soil problems around the world. However, decadal variation in soil salinization has not yet been extensively reported. This study exploited thirty years (1985-2015) of Landsat sensor data, including Landsat-4/5 TM (Thematic Mapper), Landsat-7 ETM+ (Enhanced Thematic Mapper Plus) and Landsat-8 OLI (Operational Land Imager), for monitoring soil salinity of the Yellow River Delta, China. The data were initially corrected for atmospheric effects, and then matched the spectral bands of EO-1 (Earth Observing One) ALI (Advanced Land Imager). Subsequently, soil salinity maps were derived with a previously developed PLSR (Partial Least Square Regression) model. On intra-annual scale, the retrievals showed that soil salinity increased in February, stabilized in March, and decreased in April. On inter-annual scale, soil salinity decreased within 1985-2000 (-0.74 g kg-1/10a, p < 0.001), and increased within 2000-2015 (0.79 g kg-1/10a, p < 0.001). Our study presents a new perspective for use of multiple Landsat data in soil salinity retrieval, and further the understanding of soil salinization development over the Yellow River Delta.

  1. Outgassing models for Landsat-4 thematic mapper short wave infrared bands

    USGS Publications Warehouse

    Micijevic, E.; Helder, D.L.; ,

    2005-01-01

    Detector responses to the Internal Calibrator (IC) pulses in the Landsat-4 Thematic Mapper (TM) have been observed to follow an oscillatory behavior. This phenomenon is present only in the Short Wave Infrared (SWIR) bands and has been observed throughout the lifetime of the instrument, which was launched in July 1982 and imaged the Earth's surface until late 1993. These periodic changes in amplitude, which can be as large as 7.5 percent, are known as outgassing effects and are believed to be due to optical interference caused by a gradual buildup of an ice-like material on the window of the cryogenically cooled dewar containing the SWIR detectors. Similar outgassing effects in the Landsat-5 TM have been characterized using an optical thin-film model that relates detector behavior to the ice film growth rate, which was found to gradually decrease with time. A similar approach, which takes into consideration the different operational history of the instrument, has been applied in this study to three closely sampled data sets acquired throughout the lifetime of the Landsat-4 TM. Although Landsat-4 and Landsat-5 Thematic Mappers are essentially identical instruments, data generated from analyses of outgassing effects indicate subtle, but important, differences between the two. The estimated lifetime model could improve radiometric accuracy by as much as five percent.

  2. Downscaling of Aircraft-, Landsat-, and MODIS-based Land Surface Temperature Images with Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Ha, W.; Gowda, P. H.; Oommen, T.; Howell, T. A.; Hernandez, J. E.

    2010-12-01

    High spatial resolution Land Surface Temperature (LST) images are required to estimate evapotranspiration (ET) at a field scale for irrigation scheduling purposes. Satellite sensors such as Landsat 5 Thematic Mapper (TM) and Moderate Resolution Imaging Spectroradiometer (MODIS) can offer images at several spectral bandwidths including visible, near-infrared (NIR), shortwave-infrared, and thermal-infrared (TIR). The TIR images usually have coarser spatial resolutions than those from non-thermal infrared bands. Due to this technical constraint of the satellite sensors on these platforms, image downscaling has been proposed in the field of ET remote sensing. This paper explores the potential of the Support Vector Machines (SVM) to perform downscaling of LST images derived from aircraft (4 m spatial resolution), TM (120 m), and MODIS (1000 m) using normalized difference vegetation index images derived from simultaneously acquired high resolution visible and NIR data (1 m for aircraft, 30 m for TM, and 250 m for MODIS). The SVM is a new generation machine learning algorithm that has found a wide application in the field of pattern recognition and time series analysis. The SVM would be ideally suited for downscaling problems due to its generalization ability in capturing non-linear regression relationship between the predictand and the multiple predictors. Remote sensing data acquired over the Texas High Plains during the 2008 summer growing season will be used in this study. Accuracy assessment of the downscaled 1, 30, and 250 m LST images will be made by comparing them with LST data measured with infrared thermometers at a small spatial scale, upscaled 30 m aircraft-based LST images, and upscaled 250 m TM-based LST images, respectively.

  3. An overview of the thematic mapper geometric correction system

    NASA Technical Reports Server (NTRS)

    Beyer, E. P.

    1983-01-01

    Geometric accuracy specifications for LANDSAT 4 are reviewed and the processing concepts which form the basis of NASA's thematic mapper geometric correction system are summarized for both the flight and ground segments. The flight segment includes the thematic mapper instrument, attitude measurement devices, attitude control, and ephemeris processing. For geometric correction the ground segment uses mirror scan correction data, payload correction data, and control point information to determine where TM detector samples fall on output map projection systems. Then the raw imagery is reformatted and resampled to produce image samples on a selected output projection grid system.

  4. Evaluation of spatial, radiometric and spectral Thematic Mapper performance for coastal studies

    NASA Technical Reports Server (NTRS)

    Klemas, V.; Ackleson, S. G.; Hardisky, M. A.

    1985-01-01

    On 31 March 1983, the University of Delaware's Center for Remote Sensing initiated a study to evaluate the spatial, radiometric and spectral performance of the LANDSAT Thematic Mapper for coastal and estuarine studies. The investigation was supported by Contract NAS5-27580 from the NASA Goddard Space Flight Center. The research was divided into three major subprojects: (1) a comparison of LANDSAT TM to MSS imagery for detecting submerged aquatic vegetation in Chesapeake Bay; (2) remote sensing of submerged aquatic vegetation - a radiative transfer approach; and (3) remote sensing of coastal wetland biomass using Thematic Mapper wavebands.

  5. Utilizing remote sensing of Thematic Mapper data to improve our understanding of estuarine processes and their influence on the productivity of estuarine-dependent fisheries

    NASA Technical Reports Server (NTRS)

    Browder, J. A.; May, L. N., Jr.; Rosenthal, A.; Baumann, R. H.; Gosselink, J. G.

    1986-01-01

    LANDSAT thematic mapper (TM) data are being used to refine and validate a stochastic spatial computer model to be applied to coastal resource management problems in Louisiana. Two major aspects of the research are: (1) the measurement of area of land (or emergent vegetation) and water and the length of the interface between land and water in TM imagery of selected coastal wetlands (sample marshes); and (2) the comparison of spatial patterns of land and water in the sample marshes of the imagery to that in marshes simulated by a computer model. In addition to activities in these two areas, the potential use of a published autocorrelation statistic is analyzed.

  6. Comparing Forest/Nonforest Classifications of Landsat TM Imagery for Stratifying FIA Estimates of Forest Land Area

    Treesearch

    Mark D. Nelson; Ronald E. McRoberts; Greg C. Liknes; Geoffrey R. Holden

    2005-01-01

    Landsat Thematic Mapper (TM) satellite imagery and Forest Inventory and Analysis (FIA) plot data were used to construct forest/nonforest maps of Mapping Zone 41, National Land Cover Dataset 2000 (NLCD 2000). Stratification approaches resulting from Maximum Likelihood, Fuzzy Convolution, Logistic Regression, and k-Nearest Neighbors classification/prediction methods were...

  7. Landsat TM Classifications For SAFIS Using FIA Field Plots

    Treesearch

    William H. Cooke; Andrew J. Hartsell

    2001-01-01

    Wall-to-wall Landsat Thematic Mapper (TM) classification efforts in Georgia require field validation. We developed a new crown modeling procedure based on Forest Health Monitoring (FHM) data to test Forest Inventory and Analysis (FIA) data. These models simulate the proportion of tree crowns that reflect light on a FIA subplot basis. We averaged subplot crown...

  8. Spectroradiometric calibration of the thematic mapper and multispectral scanner system

    NASA Technical Reports Server (NTRS)

    Slater, P. N. (Principal Investigator); Palmer, J. M.

    1983-01-01

    The results obtained for the absolute calibration of TM bands 2, 3, and 4 are presented. The results are based on TM image data collected simultaneously with ground and atmospheric data at White Sands, New Mexico. Also discussed are the results of a moments analysis to determine the equivalent bandpasses, effective central wavelengths and normalized responses of the TM and MSS spectral bands; the calibration of the BaSO, plate used at White Sands; and future plans.

  9. Multispectral multisensor image fusion using wavelet transforms

    USGS Publications Warehouse

    Lemeshewsky, George P.

    1999-01-01

    Fusion techniques can be applied to multispectral and higher spatial resolution panchromatic images to create a composite image that is easier to interpret than the individual images. Wavelet transform-based multisensor, multiresolution fusion (a type of band sharpening) was applied to Landsat thematic mapper (TM) multispectral and coregistered higher resolution SPOT panchromatic images. The objective was to obtain increased spatial resolution, false color composite products to support the interpretation of land cover types wherein the spectral characteristics of the imagery are preserved to provide the spectral clues needed for interpretation. Since the fusion process should not introduce artifacts, a shift invariant implementation of the discrete wavelet transform (SIDWT) was used. These results were compared with those using the shift variant, discrete wavelet transform (DWT). Overall, the process includes a hue, saturation, and value color space transform to minimize color changes, and a reported point-wise maximum selection rule to combine transform coefficients. The performance of fusion based on the SIDWT and DWT was evaluated with a simulated TM 30-m spatial resolution test image and a higher resolution reference. Simulated imagery was made by blurring higher resolution color-infrared photography with the TM sensors' point spread function. The SIDWT based technique produced imagery with fewer artifacts and lower error between fused images and the full resolution reference. Image examples with TM and SPOT 10-m panchromatic illustrate the reduction in artifacts due to the SIDWT based fusion.

  10. Assessment of spectral, misregistration, and spatial uncertainties inherent in the cross-calibration study

    USGS Publications Warehouse

    Chander, G.; Helder, D.L.; Aaron, David; Mishra, N.; Shrestha, A.K.

    2013-01-01

    Cross-calibration of satellite sensors permits the quantitative comparison of measurements obtained from different Earth Observing (EO) systems. Cross-calibration studies usually use simultaneous or near-simultaneous observations from several spaceborne sensors to develop band-by-band relationships through regression analysis. The investigation described in this paper focuses on evaluation of the uncertainties inherent in the cross-calibration process, including contributions due to different spectral responses, spectral resolution, spectral filter shift, geometric misregistrations, and spatial resolutions. The hyperspectral data from the Environmental Satellite SCanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY and the EO-1 Hyperion, along with the relative spectral responses (RSRs) from the Landsat 7 Enhanced Thematic Mapper (TM) Plus and the Terra Moderate Resolution Imaging Spectroradiometer sensors, were used for the spectral uncertainty study. The data from Landsat 5 TM over five representative land cover types (desert, rangeland, grassland, deciduous forest, and coniferous forest) were used for the geometric misregistrations and spatial-resolution study. The spectral resolution uncertainty was found to be within 0.25%, spectral filter shift within 2.5%, geometric misregistrations within 0.35%, and spatial-resolution effects within 0.1% for the Libya 4 site. The one-sigma uncertainties presented in this paper are uncorrelated, and therefore, the uncertainties can be summed orthogonally. Furthermore, an overall total uncertainty was developed. In general, the results suggested that the spectral uncertainty is more dominant compared to other uncertainties presented in this paper. Therefore, the effect of the sensor RSR differences needs to be quantified and compensated to avoid large uncertainties in cross-calibration results.

  11. Performance evaluation and geologic utility of LANDSAT-4 thematic mapper data

    NASA Technical Reports Server (NTRS)

    Paylor, E. D.; Abrams, M. J.; Conel, J. E.; Kahle, A. B.; Lang, H. R.

    1985-01-01

    The overall objective of the project was to evaluate LANDSAT-4 Thematic Mapper (TM) data in the context of geologic applications. This involved a quantitative assessment of the data quality including the spatial and spectral characteristics realized by the instrument. Three test sites were selected for the study: (1) Silver Bell, Arizona; (2) Death Valley, California; and (3) Wind River/Bighorn Basin area, Wyoming. Conclusions include: (1) Artificial and natural targets can be used to atmospherically calibrate TM data and investigate scanner radiometry, atmospheric parameters, and construction of atmospheric Modulation Transfer Functions (MTF's), (2) No significant radiometric degradation occurs in TM data as a result of SCROUNGE processing; however, the data exhibit narrow digital number (DN) distributiosn suggesting that the configuration of the instrument is not optimal for each science applications, (30 Increased spatial resolution, 1:24,000 enlargement capability, and good geometric fidelity of TM data allow accurate photogeologic/geomorphic mapping, including relative age dating of alluvial fans, measurement of structural and bedding attitudes, and construction of such things as structural cross sections and stratigraphic columns. (4) TM bands 5 and 7 are particularly useful for geologic applications because they span a region of the spectrum not previously sampled by multispectral scanner data and are important for characterizing clay and carbonate materials.

  12. Registratiom of TM data to digital elevation models

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Several problems arise when attempting to register LANDSAT thematic mapper data to U.S. B Geological Survey digital elevation models (DEMs). The TM data are currently available only in a rotated variant of the Space Oblique Mercator (SOM) map projection. Geometric transforms are thus; required to access TM data in the geodetic coordinates used by the DEMs. Due to positional errors in the TM data, these transforms require some sort of external control. The spatial resolution of TM data exceeds that of the most commonly DEM data. Oversampling DEM data to TM resolution introduces systematic noise. Common terrain processing algorithms (e.g., close computation) compound this problem by acting as high-pass filters.

  13. Selection of a seventh spectral band for the LANDSAT-D thematic mapper

    NASA Technical Reports Server (NTRS)

    Holmes, Q. A. (Principal Investigator); Nuesch, D. R.

    1978-01-01

    The author has identified the following significant results. Each of the candidate bands were examined in terms of the feasibility of gathering high quality imagery from space while taking into account solar illumination, atmospheric attenuation, and the signal/noise ratio achievable within the TM sensor constraints. For the 2.2 micron region and the thermal IR region, inband signal values were calculated from representative spectral reflectance/emittance curves and a linear discriminant analysis was employed to predict classification accuracies. Based upon the substantial improvement (from 78 t0 92%) in discriminating zones of hydrothermally altered rocks from unaltered zones, over a broad range of observation conditions, a 2.08-2.35 micron spectral band having a ground resolution of 30 meters was recommended.

  14. Lithologic mapping using Landsat thematic mapper data

    USGS Publications Warehouse

    Podwysocki, M.H.; Salisbury, J.W.; Jones, O.D.; Mimms, D.L.

    1983-01-01

    The Landsat-4 Thematic Mapper (TM), with its new near infrared bands centered at 1.65 μm and 2.20 μm and spatial resolution of 30 m has been used to distinguish rocks containing minerals having ferric-iron absorption bands in the visible and near-infrared and Al-O- and CO3 absorption bands in the 2.1-2.4 μm regions. On the basis of characteristic absorption bands, digitally processed TM data were used to differentiate vegetated from non-vegetated areas, limonitic from nonlimonitic rocks, rocks containing minerals having absorption bands in the near-infrared region from rocks lacking infrared absorption bands. Specific minerals were detected in both the humid eastern and semi-arid western United States. The absorption bands in the near-infrared region were used to detect kaolinite in open-pit exposures of a kaolin mining district near Macon, Georgia; calcium carbonate in the back sands along the east coast of Floridia; and kaolinite, alunite, jarosite, sericite and gypsum in natural exposures near Boulder City, Nevada. These results show that the additional spectral bands in the near-infrared region and increased spatial resolution of the Thematic Mapper provide a valuable tool for distinguishing several significant geologic materials not distinguishable from space using previous imaging systems. They also show that TM data can be successfully used in a variety of geologic environments.

  15. Overview of the Landsat-7 Mission

    NASA Technical Reports Server (NTRS)

    Williams, Darrel; Irons, James; Goward, Samuel N.; Masek, Jefery

    1999-01-01

    Landsat-7 is scheduled for launch on April 15 from the Western Test Range at Vandenberg Air Force Base, Calif., on a Delta-H expendable launch vehicle. The Landsat 7 satellite consists of a spacecraft bus being provided by Lockheed Martin Missiles and Space (Valley Forge, Pa.) and the Enhanced Thematic Mapper Plus instrument built by Raytheon (formerly Hughes) Santa Barbara Remote Sensing (Santa Barbara, Calif.). The instrument on board Landsat 7 is the Enhanced Thematic Mapper Plus (ETM+). ETM+ improves upon the previous Thematic Mapper (TM) instruments on Landsat's 4 and 5 (Fig. la and lb). It includes the previous 7 spectral bands measuring reflected solar radiation and emitted thermal emissions but, in addition, includes a new 15 in panchromatic (visible-near infrared) band. The spatial resolution of the thermal infrared band has also been improved to 60 m. Both the radiometric precision and accuracy of the sensor are also improved from the previous TM sensors. After being launched into a sun-synchronous polar orbit, the satellite will use on-board propulsion to adjust its orbit to a circular altitude of 438 miles (705 kilometers) crossing the equator at approximately 10 a.m. on its southward track. This orbit will place Landsat 7 along the same ground track as previous Landsat satellites. The orbit will be maintained with periodic adjustments for the life of the mission. A three-axis attitude control subsystem will stabilize the satellite and keep the instrument pointed toward the Earth to within 0.05 degrees. Later this year, plans call for the NASA Earth Observation System (EOS) Terra (AM-1) observatory and the experimental EO-1 mission to closely follow Landsat-7's orbit to support synergistic research and applications from this new suite of terrestrial sensor systems. Landsat is the United States' oldest land-surface observation satellite system, with satellites continuously operating since 1972. Although the program has scored numerous successes in scientific and resource-management applications, Landsat has had a tumultuous history of management and funding changes over its nearly 27-year history. Landsat-7 marks a new direction in the program to reduce the cost of data and increase systematic global coverage for use in global change research as well as commercial and regional applications. With the passage of the Land Remote Sensing Policy Act in 1992, oversight of the Landsat program began to shift from the commercial sector to the federal government. NASA integrated Landsat-7 into its EOS science program in 1994. Landsat-7 is managed and operated jointly by NASA and U.S. Geological Survey (USGS). As a result, the costs of acquiring observations from

  16. Relating thematic mapper bands TM3, TM4, and TM5 to agronomic variables for corn, cotton, sugarbeet, soybean, sorghum, sunflower and tobacco

    NASA Technical Reports Server (NTRS)

    Fan, C. J. (Principal Investigator)

    1982-01-01

    Red, photographic infrared, near infrared spectral data of corn, cotton, soybeans, sugar beets, sorghum, sunflowers and tobacco were collected throughout the entire growing season by using a three band handheld radiometer. Different radiance patterns were found among these crops based on their morphology, green biomass duration and leaf size. Results show near infrared radiance is a good indicator of water content in plant tissue under small scale experimental conditions.

  17. Regional forest cover estimation via remote sensing: the calibration center concept

    Treesearch

    Louis R. Iverson; Elizabeth A. Cook; Robin L. Graham; Robin L. Graham

    1994-01-01

    A method for combining Landsat Thematic Mapper (TM), Advanced Very High Resolution Radiometer (AVHRR) imagery, and other biogeographic data to estimate forest cover over large regions is applied and evaluated at two locations. In this method, TM data are used to classify a small area (calibration center) into forest/nonforest; the resulting forest cover map is then...

  18. Thematic mapper study of Alaskan ophiolites

    NASA Technical Reports Server (NTRS)

    Bird, J. M.

    1986-01-01

    The combinations of Thematic Mapper (TM) bands that best distinguish basalts of the Brooks Range ophiolites were determined. Geochemical analyses, including major, trace, and rare earth elements (REE), are being done in order to study the significance of TM spectral variations that were observed within some of the sampled rock units. An image of the topography of the western Brooks Range and Colville Basin was constructed. Elevation data for the rest of Northern Alaska are being acquired to expand the area covered by the topography image. Two balanced cross sections (one along the eastern margin, the other along the western margin of the Brooks Range) are being constructed, using the techniques of fault-bend and fault-propagation folding. These are being used to obtain regional shortening estimates for the Brooks Range in an attempt to constrain tectonic models for the evolution of Northern Alaska. The TM data are being used to confirm reconnaissance maps and to obtain structural data where no maps exist. Along with the TM data, digital topography, seismic reflection profiles, and magnetic and gravity surveys are examined to better understand the evolution of the Colville Basin, north of the Brooks Range.

  19. Data compression experiments with LANDSAT thematic mapper and Nimbus-7 coastal zone color scanner data

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; Ramapriyan, H. K.

    1989-01-01

    A case study is presented where an image segmentation based compression technique is applied to LANDSAT Thematic Mapper (TM) and Nimbus-7 Coastal Zone Color Scanner (CZCS) data. The compression technique, called Spatially Constrained Clustering (SCC), can be regarded as an adaptive vector quantization approach. The SCC can be applied to either single or multiple spectral bands of image data. The segmented image resulting from SCC is encoded in small rectangular blocks, with the codebook varying from block to block. Lossless compression potential (LDP) of sample TM and CZCS images are evaluated. For the TM test image, the LCP is 2.79. For the CZCS test image the LCP is 1.89, even though when only a cloud-free section of the image is considered the LCP increases to 3.48. Examples of compressed images are shown at several compression ratios ranging from 4 to 15. In the case of TM data, the compressed data are classified using the Bayes' classifier. The results show an improvement in the similarity between the classification results and ground truth when compressed data are used, thus showing that compression is, in fact, a useful first step in the analysis.

  20. Application of Thematic Mapper data to corn and soybean development stage estimation

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Henderson, K. E.

    1985-01-01

    A model, utilizing direct relationship between remotely sensed spectral data and the development stage of both corn and soybeans has been proposed and published previously (Badhwar and Henderson, 1981; and Henderson and Badhwar, 1984). This model was developed using data acquired by instruments mounted on trucks over field plots of corn and soybeans as well as satellite data from Landsat. In all cases, the data was analyzed in the spectral bands equivalent to the four bands of Landsat multispectral scanner (MSS). In this study the same model has been applied to corn and soybeans using Landsat-4 Thematic Mapper (TM) data combined with simulated TM data to provide a multitemporal data set in TM band intervals. All data (five total acquisitions) were acquired over a test site in Webster County, Iowa from June to October 1982. The use of TM data for determining development state is as accurate as with Landsat MSS and field plot data in MSS bands. The maximum deviation of 0.6 development stage for corn and 0.8 development stage for soybeans is well within the uncertainty with which a field can be estimated with procedures used by observers on the ground in 1982.

  1. Landsat image data quality studies

    NASA Technical Reports Server (NTRS)

    Schueler, C. F.; Salomonson, V. V.

    1985-01-01

    Preliminary results of the Landsat-4 Image Data Quality Analysis (LIDQA) program to characterize the data obtained using the Thematic Mapper (TM) instrument on board the Landsat-4 and Landsat-5 satellites are reported. TM design specifications were compared to the obtained data with respect to four criteria, including spatial resolution; geometric fidelity; information content; and image relativity to Multispectral Scanner (MSS) data. The overall performance of the TM was rated excellent despite minor instabilities and radiometric anomalies in the data. Spatial performance of the TM exceeded design specifications in terms of both image sharpness and geometric accuracy, and the image utility of the TM data was at least twice as high as MSS data. The separability of alfalfa and sugar beet fields in a TM image is demonstrated.

  2. Star sensor/mapper with a self deployable, high-attenuation light shade for SAS-B

    NASA Technical Reports Server (NTRS)

    Schenkel, F. W.; Finkel, A.

    1972-01-01

    A star sensor/mapper to determine positional data for the small astronomy satellites was tested to detect stars of plus 4 visual magnitude. It utilizes two information channels with memory so that it can be used with a low-data-rate telemetry system. One channel yields star amplitude information; the other yields the time of star occurrence as the star passes across an N-slit reticle/photomultiplier detector system. Some of the features of the star sensor/mapper are its low weight of 6.5 pounds, low power consumption of 0.4 watt, bandwidth switching to match the satellite spin rate, optical equalization of sensitivity over the 5-by-10 deg field of view, and self-deployable sunshade. The attitude determination accuracy is 3 arc minutes. This is determined by such parameters as the reticle configuration, optical train, and telemetry readout. The optical and electronic design of the star sensor/mapper, its expansion capabilities, and its features are discussed.

  3. Changes in vegetation spectra with deterioration of leaves under two methods of preservation

    NASA Technical Reports Server (NTRS)

    Labovitz, M. L.; Masuoka, E. J.; Feldmann, S. G.

    1981-01-01

    An experiment to measure changes in leaf spectra under different methods of preservation over time was conducted. The spectral measurements were made by a three band hand held radiometer which simulated three Thematic Mapper (TM) bands: TM3, TM4, and TM5. Daily spectral measurements of white oak leaves under three preservation treatments were made. The spectral readings over three treatments (fresh, bottled, and bagged vegetation) were indistinguishable in bands TM3 and TM5 for up to 4 days after collection. After that time bagged and bottled samples showed significant increases in reflected energy caused by loss of chlorophyll from and dehydration of the vegetation. No significant variation in the reflectance values from TM4 over preservation type for the experimental period was observed.

  4. An analysis of Landsat-4 Thematic Mapper geometric properties

    NASA Technical Reports Server (NTRS)

    Walker, R. E.; Zobrist, A. L.; Bryant, N. A.; Gohkman, B.; Friedman, S. Z.; Logan, T. L.

    1984-01-01

    Landsat-4 Thematic Mapper data of Washington, DC, Harrisburg, PA, and Salton Sea, CA were analyzed to determine geometric integrity and conformity of the data to known earth surface geometry. Several tests were performed. Intraband correlation and interband registration were investigated. No problems were observed in the intraband analysis, and aside from indications of slight misregistration between bands of the primary versus bands of the secondary focal planes, interband registration was well within the specified tolerances. A substantial number of ground control points were found and used to check the images' conformity to the Space Oblique Mercator (SOM) projection of their respective areas. The means of the residual offsets, which included nonprocessing related measurement errors, were close to the one pixel level in the two scenes examined. The Harrisburg scene residual mean was 28.38 m (0.95 pixels) with a standard deviation of 19.82 m (0.66 pixels), while the mean and standard deviation for the Salton Sea scene were 40.46 (1.35 pixels) and 30.57 m (1.02 pixels), respectively. Overall, the data were judged to be a high geometric quality with errors close to those targeted by the TM sensor design specifications.

  5. A revised surface resistance parameterisation for estimating latent heat flux from remotely sensed data

    NASA Astrophysics Data System (ADS)

    Song, Yi; Wang, Jiemin; Yang, Kun; Ma, Mingguo; Li, Xin; Zhang, Zhihui; Wang, Xufeng

    2012-07-01

    Estimating evapotranspiration (ET) is required for many environmental studies. Remote sensing provides the ability to spatially map latent heat flux. Many studies have developed approaches to derive spatially distributed surface energy fluxes from various satellite sensors with the help of field observations. In this study, remote-sensing-based λE mapping was conducted using a Landsat Thematic Mapper (TM) image and an Enhanced Thematic Mapper Plus (ETM+) image. The remotely sensed data and field observations employed in this study were obtained from Watershed Allied Telemetry Experimental Research (WATER). A biophysics-based surface resistance model was revised to account for water stress and temperature constraints. The precision of the results was validated using 'ground truth' data obtained by eddy covariance (EC) system. Scale effects play an important role, especially for parameter optimisation and validation of the latent heat flux (λE). After considering the footprint of EC, the λE derived from the remote sensing data was comparable to the EC measured value during the satellite's passage. The results showed that the revised surface resistance parameterisation scheme was useful for estimating the latent heat flux over cropland in arid regions.

  6. Development of landsat-5 thematic mapper internal calibrator gain and offset table

    USGS Publications Warehouse

    Barsi, J.A.; Chander, G.; Micijevic, E.; Markham, B.L.; Haque, Md. O.

    2008-01-01

    The National Landsat Archive Production System (NLAPS) has been the primary processing system for Landsat data since U.S. Geological Survey (USGS) Earth Resources Observation and Science Center (EROS) started archiving Landsat data. NLAPS converts raw satellite data into radiometrically and geometrically calibrated products. NLAPS has historically used the Internal Calibrator (IC) to calibrate the reflective bands of the Landsat-5 Thematic Mapper (TM), even though the lamps in the IC were less stable than the TM detectors, as evidenced by vicarious calibration results. In 2003, a major effort was made to model the actual TM gain change and to update NLAPS to use this model rather than the unstable IC data for radiometric calibration. The model coefficients were revised in 2007 to reflect greater understanding of the changes in the TM responsivity. While the calibration updates are important to users with recently processed data, the processing system no longer calculates the original IC gain or offset. For specific applications, it is useful to have a record of the gain and offset actually applied to the older data. Thus, the NLAPS calibration database was used to generate estimated daily values for the radiometric gain and offset that might have been applied to TM data. This paper discusses the need for and generation of the NLAPSIC gain and offset tables. A companion paper covers the application of and errors associated with using these tables.

  7. BOREAS RSS-7 Landsat TM LAI IMages of the SSA and NSA

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Chen, Jing; Cihlar, Josef

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Remote Sensing Science (BOREAS RSS-7) team used Landsat Thematic Mapper (TM) images processed at CCRS to produce images of Leaf Area Index (LAI) for the BOREAS study areas. Two images acquired on 06-Jun and 09-Aug-1991 were used for the SSA, and one image acquired on 09-Jun-1994 was used for the NSA. The LAI images are based on ground measurements and Landsat TM Reduced Simple Ratio (RSR) images. The data are stored in binary image-format files.

  8. LANDSAT-4 TM image data quality analysis for energy-related applications

    NASA Technical Reports Server (NTRS)

    Wukelic, G. E.; Foote, H. P.

    1983-01-01

    LANDSAT-4 Thematic Mapper (TM) data performance and utility characteristics from an energy research and technology perspective is evaluated. The program focuses on evaluating applicational implications of using such data, in combination with other digital data, for current and future energy research and technology activities. Prime interest is in using TM data for siting, developing and operating federal energy facilities. Secondary interests involve the use of such data for resource exploration, environmental monitoring and basic scientific initiatives such as in support of the Continental Scientific Drilling Program.

  9. A multi-characteristic based algorithm for classifying vegetation in a plateau area: Qinghai Lake watershed, northwestern China

    NASA Astrophysics Data System (ADS)

    Ma, Weiwei; Gong, Cailan; Hu, Yong; Li, Long; Meng, Peng

    2015-10-01

    Remote sensing technology has been broadly recognized for its convenience and efficiency in mapping vegetation, particularly in high-altitude and inaccessible areas where there are lack of in-situ observations. In this study, Landsat Thematic Mapper (TM) images and Chinese environmental mitigation satellite CCD sensor (HJ-1 CCD) images, both of which are at 30m spatial resolution were employed for identifying and monitoring of vegetation types in a area of Western China——Qinghai Lake Watershed(QHLW). A decision classification tree (DCT) algorithm using multi-characteristic including seasonal TM/HJ-1 CCD time series data combined with digital elevation models (DEMs) dataset, and a supervised maximum likelihood classification (MLC) algorithm with single-data TM image were applied vegetation classification. Accuracy of the two algorithms was assessed using field observation data. Based on produced vegetation classification maps, it was found that the DCT using multi-season data and geomorphologic parameters was superior to the MLC algorithm using single-data image, improving the overall accuracy by 11.86% at second class level and significantly reducing the "salt and pepper" noise. The DCT algorithm applied to TM /HJ-1 CCD time series data geomorphologic parameters appeared as a valuable and reliable tool for monitoring vegetation at first class level (5 vegetation classes) and second class level(8 vegetation subclasses). The DCT algorithm using multi-characteristic might provide a theoretical basis and general approach to automatic extraction of vegetation types from remote sensing imagery over plateau areas.

  10. Twenty-Five Years of Landsat Thermal Band Calibration

    NASA Technical Reports Server (NTRS)

    Barsi, Julia A.; Markham, Brian L.; Schoff, John R.; Hook, Simon J.; Raqueno, Nina G.

    2010-01-01

    Landsat-7 Enhanced Thematic Mapper+ (ETM+), launched in April 1999, and Landsat-5 Thematic Mapper (TM), launched in 1984, both have a single thermal band. Both instruments thermal band calibrations have been updated previously: ETM+ in 2001 for a pre-launch calibration error and TM in 2007 for data acquired since the current era of vicarious calibration has been in place (1999). Vicarious calibration teams at Rochester Institute of Technology (RIT) and NASA/Jet Propulsion Laboratory (JPL) have been working to validate the instrument calibration since 1999. Recent developments in their techniques and sites have expanded the temperature and temporal range of the validation. The new data indicate that the calibration of both instruments had errors: the ETM+ calibration contained a gain error of 5.8% since launch; the TM calibration contained a gain error of 5% and an additional offset error between 1997 and 1999. Both instruments required adjustments in their thermal calibration coefficients in order to correct for the errors. The new coefficients were calculated and added to the Landsat operational processing system in early 2010. With the corrections, both instruments are calibrated to within +/-0.7K.

  11. Extracting spectral contrast in Landsat Thematic Mapper image data using selective principal component analysis

    USGS Publications Warehouse

    Chavez, P.S.; Kwarteng, A.Y.

    1989-01-01

    A challenge encountered with Landsat Thematic Mapper (TM) data, which includes data from size reflective spectral bands, is displaying as much information as possible in a three-image set for color compositing or digital analysis. Principal component analysis (PCA) applied to the six TM bands simultaneously is often used to address this problem. However, two problems that can be encountered using the PCA method are that information of interest might be mathematically mapped to one of the unused components and that a color composite can be difficult to interpret. "Selective' PCA can be used to minimize both of these problems. The spectral contrast among several spectral regions was mapped for a northern Arizona site using Landsat TM data. Field investigations determined that most of the spectral contrast seen in this area was due to one of the following: the amount of iron and hematite in the soils and rocks, vegetation differences, standing and running water, or the presence of gypsum, which has a higher moisture retention capability than do the surrounding soils and rocks. -from Authors

  12. Revised landsat-5 thematic mapper radiometric calibration

    USGS Publications Warehouse

    Chander, G.; Markham, B.L.; Barsi, J.A.

    2007-01-01

    Effective April 2, 2007, the radiometric calibration of Landsat-5 (L5) Thematic Mapper (TM) data that are processed and distributed by the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) will be updated. The lifetime gain model that was implemented on May 5, 2003, for the reflective bands (1-5, 7) will be replaced by a new lifetime radiometric-calibration curve that is derived from the instrument's response to pseudoinvariant desert sites and from cross calibration with the Landsat-7 (L7) Enhanced TM Plus (ETM+). Although this calibration update applies to all archived and future L5 TM data, the principal improvements in the calibration are for the data acquired during the first eight years of the mission (1984-1991), where the changes in the instrument-gain values are as much as 15%. The radiometric scaling coefficients for bands 1 and 2 for approximately the first eight years of the mission have also been changed. Users will need to apply these new coefficients to convert the calibrated data product digital numbers to radiance. The scaling coefficients for the other bands have not changed.

  13. Temporal relationships between spectral response and agronomic variables of a corn canopy

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Markham, B. L.; Tucker, C. J.; Mcmurtrey, J. E., III

    1981-01-01

    Attention is given to an experiment in which spectral radiance data collected in three spectral regions are related to corn canopy variables. The study extends the work of Tucker et al. (1979) in that more detailed measurements of corn canopy variables were made using quantitative techniques. Wet and dry green leaf biomass is considered along with the green leaf area index, chlorotic leaf biomass, chlorotic leaf area, and leaf water content. In addition, spectral data were collected with a hand-held radiometer having Landsat-D Thematic Mapper (TM) bands TM3 (0.63-0.69 micrometers), TM4 (0.76-0.90 micrometers), and TM5 (1.55-1.75 micrometers). TM3, TM4, and TM5 seem to be well situated spectrally for making remotely sensed measurements related to chlorophyll concentration, leaf density, and leaf water content.

  14. Stratifying FIA Ground Plots Using A 3-Year Old MRLC Forest Cover Map and Current TM Derived Variables Selected By "Decision Tree" Classification

    Treesearch

    Michael Hoppus; Stan Arner; Andrew Lister

    2001-01-01

    A reduction in variance for estimates of forest area and volume in the state of Connecticut was accomplished by stratifying FIA ground plots using raw, transformed and classified Landsat Thematic Mapper (TM) imagery. A US Geological Survey (USGS) Multi-Resolution Landscape Characterization (MRLC) vegetation cover map for Connecticut was used to produce a forest/non-...

  15. Quality Control Methodologies for Advanced EMI Sensor Data Acquisition and Anomaly Classification - Former Southwestern Proving Ground, Arkansas

    DTIC Science & Technology

    2015-07-01

    concentrations. A total of 11.23 acres of dynamic surveys were conducted using MetalMapper advanced electromagnetic induction (EMI) sensor. A total of...centimeter DGM digital geophysical mapping DSB Defense Science Board EE/CA Engineering Evaluation/Cost Analysis EMI electromagnetic induction...performed a live site demonstration project using the Geometrics MetalMapper advanced electromagnetic induction (EMI) sensor at the former

  16. Regional land cover characterization using Landsat thematic mapper data and ancillary data sources

    USGS Publications Warehouse

    Vogelmann, James E.; Sohl, Terry L.; Campbell, P.V.; Shaw, D.M.; ,

    1998-01-01

    As part of the activities of the Multi-Resolution Land Characteristics (MRLC) Interagency Consortium, an intermediate-scale land cover data set is being generated for the conterminous United States. This effort is being conducted on a region-by-region basis using U.S. Standard Federal Regions. To date, land cover data sets have been generated for Federal Regions 3 (Pennsylvania, West Virginia, Virginia, Maryland, and Delaware) and 2 (New York and New Jersey). Classification work is currently under way in Federal Region 4 (the southeastern United States), and land cover mapping activities have been started in Federal Regions 5 (the Great Lakes region) and 1 (New England). It is anticipated that a land cover data set for the conterminous United States will be completed by the end of 1999. A standard land cover classification legend is used, which is analogous to and compatible with other classification schemes. The primary MRLC regional classification scheme contains 23 land cover classes.The primary source of data for the project is the Landsat thematic mapper (TM) sensor. For each region, TM scenes representing both leaf-on and leaf-off conditions are acquired, preprocessed, and georeferenced to MRLC specifications. Mosaicked data are clustered using unsupervised classification, and individual clusters are labeled using aerial photographs. Individual clusters that represent more than one land cover unit are split using spatial modeling with multiple ancillary spatial data layers (most notably, digital elevation model, population, land use and land cover, and wetlands information). This approach yields regional land cover information suitable for a wide array of applications, including landscape metric analyses, land management, land cover change studies, and nutrient and pesticide runoff modeling.

  17. Thematic mapper research in the Earth sciences: Tectonic evaluation of the Nubian Shield of northeastern Sudan/southeastern Egypt using thematic mapper imagery

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The tectonic evaluation of the Nubian Shield using the Thematic Mapper (TM) imagery is progressing well and shows great promise. The TM tapes for the six LANDSAT 5 scenes covering the northern portion of the Red Sea hills were received, and preliminary maps and interpretations were made for most of the area. It is apparent that faulting and shearing associated with the major suture zones such as the Sol Hamed are clearly visible and that considerable detail can be seen. An entire quadrant of scene 173,45 was examined in detail using all seven bands, and every band combination was evaluated to best display the geology. A comparison was done with color ratio combinations and color combinations of the eigen vector bands to verify if band combinations of 7-red, 4-green, and 2-blue were indeed superior. There is no single optimum enhancement which provides the greatest detail for every image and no single combination of spectral bands for all cases, although bands 7, 4, and 2 do provide the best overall display. The color combination of the eigen vector bands proved useful in distinguishing fine detailed features.

  18. Response of some Thematic Mapper band ratios to variation in soil water content

    NASA Technical Reports Server (NTRS)

    Musick, H. Brad; Pelletier, Ramona E.

    1986-01-01

    Bidirectional reflectance to nadir in the reflective TM bands and the 1.15-1.3-micron band was measured in the laboratory as moisture content was varied in ten soils. Stronger absorption by water in TM5 and TM7 was expected to cause ratios of other bands to TM5 and TM7 to increase with water content, but in most cases these ratios were constant or decreased at low to intermediate water content and increased only at high moisture levels. Because these ratios were found to decrease as illumination elevation angle decreased, it was suggested that increased roughness resulting from the methods of moistening and mixing the soil may have tended to counteract the expected ratio increases.

  19. Thematic mapper: detailed radiometric and geometric characteristics

    USGS Publications Warehouse

    Kieffer, Hugh

    1983-01-01

    Those radiometric characteristics of the Landsat 4 Thematic Mapper (TM) that can be established without absolute calibration of spectral data have been examined. Subscenes of radiometric all raw data (B-data) were examined on an individual detector basis: areas of uniform radiance were used to characterize subtle radiometric differences and noise problems. A variety of anomalies have been discovered with magnitude of a few digital levels or less: the only problem not addressable by ground processing is irregular width of the digital levels. Essentially all of this non-ideal performance is incorporated in the fully processed (P-type) images, but disguised by the geometric resampling procedure. The overall performance of the Thematic Mapper is a great improvement over previous Landsat scanners. The effective resolution in radiance is degraded by about a factor of two by irregular width of the digital levels. Several detectors have a change of gain with a period of several scans, the largest effect is about 4%. These detectors appear to switch between two response levels during scan direction reversal; there is no apparent periodicity to these changes. This can cause small apparent difference between forward and reverse scans for portions of an image. The high-frequency noise level of each detector was characterized by the standard deviation of the first derivative in the sample direction across a flat field. Coherent sinusoidal noise patterns were determined using one-dimensional Fourier transforms. A "stitching" pattern in Band 1 has a period of 13.8 samples with a peak-to-peak amplitude ranging from 1 to 5 DN. Noise with a period of 3.24 samples is pronounced for most detectors in band 1, to a lesser extent in bands 2, 3, and 4, and below background noise levels in bands 5, 6, and 7. The geometric fidelity of the GSFC film writer used for Thematic Mapper (TM) images was assessed by measurement with accuracy bette than three micrometers of a test grid. A set of 55 control points with known UTM coordinates was measured on a digital display of part of band 5 of the TM image of the Washington, D.C. area and fitted to the control points. The standard error of the fit of the TM image to the control is 37 meters, or 1.3 pixels, with no consistent distortion. These test indicate that the geometric fidelity of TM images is likely to be higher than the ability of film recorders to reproduce the images.

  20. Spectral characteristics and the extent of paleosols of the Palouse formation

    NASA Technical Reports Server (NTRS)

    Frazier, B. E.; Busacca, A.; Cheng, Y.; Wherry, D.; Hart, J.; Gill, S.

    1986-01-01

    Spectral relationships were investigated for several bare soil fields which were in summer fallow rotation on the date of the imagery. Printouts of each band were examined and compared to aerial photography. Bands with dissimilar reflectance patterns for known areas were then combined using ratio techniques which were proven useful in other studies (Williams, 1983). Selected ratios were Thematic Mapper (TM) 1/TM4, TM3/TM4, and TM5/TM4. Cluster analyses and Baysian and Fastclass classifier images were produced using the three ratio images. Plots of cluster analysis outputs revealed distinct groupings of reflectance data representing green crops, ripened crops, soil and green plants, and bare soil. Bare soil was represented by a line of clusters on plots of the ratios TM5/TM4 and TM3/TM4. The soil line was investigated further to determine factors involved in the distributin of clusters alone the line. The clusters representing the bare soil line were also studied by plotting the Tm5/TM4, TM1/TM4 dimension. A total of 76 soil samples were gathered and analyzed for organic carbon.

  1. Forest cover of North America in the 1970s mapped using Landsat MSS data

    NASA Astrophysics Data System (ADS)

    Feng, M.; Sexton, J. O.; Channan, S.; Townshend, J. R.

    2015-12-01

    The distribution and changes in Earth's forests impact hydrological, biogeochemical, and energy fluxes, as well as ecosystems' capacity to support biodiversity and human economies. Long-term records of forest cover are needed across a broad range of investigation, including climate and carbon-cycle modeling, hydrological studies, habitat analyzes, biological conservation, and land-use planning. Satellite-based observations enable mapping and monitoring of forests at ecologically and economically relevant resolutions and continental or even global extents. Following early forest-mapping efforts using coarser resolution remote sensing data such as the Advanced Very High Resolution Radiometer (AVHRR) and MODerate-resolution Imaging Spectroradiometer (MODIS), forests have been mapped regionally at < 100-m resolution using Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+). These "Landsat-class" sensors offer precise calibration, but they provide observations only over the past three decades—a relatively short period for delineating the long-term changes of forests. Starting in 1971, the Multispectral Scanner (MSS) was the first generation of sensors aboard the Landsat satellites. MSS thus provides a unique resource to extend observations by at least a decade longer in history than records based on Landsat TM and ETM+. Leveraging more recent Landsat-based forest-cover products developed by the Global Land Cover Facility (GLCF) as reference, we developed an automated approach to detect forests using MSS data by leveraging the multispectral and phenological characteristics of forests observed in MSS time-series. The forest-cover map is produced with layers representing the year of observation, detection of forest-cover change relative to 1990, and the uncertainty of forest-cover and -change layers. The approach has been implemented with open-source libraries to facilitate processing large volumes of Landsat MSS images on high-performance computing machines. As the first result of our global mapping effort, we present the forest cover for North America. More than 25,000 Landsat MSS scenes were processed to provide a 120-meter resolution forest cover for North America, which will be made publicly available on the GLCF website (http://www.landcover.org).

  2. Using Landsat Thematic Mapper (TM) sensor to detect change in land surface temperature in relation to land use change in Yazd, Iran

    NASA Astrophysics Data System (ADS)

    Zareie, Sajad; Khosravi, Hassan; Nasiri, Abouzar; Dastorani, Mostafa

    2016-11-01

    Land surface temperature (LST) is one of the key parameters in the physics of land surface processes from local to global scales, and it is one of the indicators of environmental quality. Evaluation of the surface temperature distribution and its relation to existing land use types are very important to the investigation of the urban microclimate. In arid and semi-arid regions, understanding the role of land use changes in the formation of urban heat islands is necessary for urban planning to control or reduce surface temperature. The internal factors and environmental conditions of Yazd city have important roles in the formation of special thermal conditions in Iran. In this paper, we used the temperature-emissivity separation (TES) algorithm for LST retrieving from the TIRS (Thermal Infrared Sensor) data of the Landsat Thematic Mapper (TM). The root mean square error (RMSE) and coefficient of determination (R2) were used for validation of retrieved LST values. The RMSE of 0.9 and 0.87 °C and R2 of 0.98 and 0.99 were obtained for the 1998 and 2009 images, respectively. Land use types for the city of Yazd were identified and relationships between land use types, land surface temperature and normalized difference vegetation index (NDVI) were analyzed. The Kappa coefficient and overall accuracy were calculated for accuracy assessment of land use classification. The Kappa coefficient values are 0.96 and 0.95 and the overall accuracy values are 0.97 and 0.95 for the 1998 and 2009 classified images, respectively. The results showed an increase of 1.45 °C in the average surface temperature. The results of this study showed that optical and thermal remote sensing methodologies can be used to research urban environmental parameters. Finally, it was found that special thermal conditions in Yazd were formed by land use changes. Increasing the area of asphalt roads, residential, commercial and industrial land use types and decreasing the area of the parks, green spaces and fallow lands in Yazd caused a rise in surface temperature during the 11-year period.

  3. Mapping surface energy balance components by combining landsat thematic mapper and ground-based meteorological data

    USGS Publications Warehouse

    Moran, M.S.; Jackson, R. D.; Raymond, L.H.; Gay, L.W.; Slater, P.N.

    1989-01-01

    Surface energy balance components were evaluated by combining satellite-based spectral data with on-site measurements of solar irradiance, air temperature, wind speed, and vapor pressure. Maps of latent heat flux density (??E) and net radiant flux density (Rn) were produced using Landsat Thematic Mapper (TM) data for three dates: 23 July 1985, 5 April 1986, and 24 June 1986. On each date, a Bowen-ratio apparatus, located in a vegetated field, was used to measure ??E and Rn at a point within the field. Estimates of ??E and Rn were also obtained using radiometers aboard an aircraft flown at 150 m above ground level. The TM-based estimates differed from the Bowen-ratio and aircraft-based estimates by less than 12 % over mature fields of cotton, wheat, and alfalfa, where ??E and Rn ranged from 400 to 700 Wm-2. ?? 1989.

  4. Spectroradiometric calibration of the Thematic Mapper and Multispectral Scanner system

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Palmer, J. M. (Principal Investigator)

    1984-01-01

    Radiometric measurements were taken on the morning of the LANDSAT 5 Thematic Mapper overpass. The sky was cloud free and the sites were dry. Barnes multiband radiometer data were collected for a 4 x 4 pixel area and two fractional pixel areas of slightly higher and lower reflectances than the larger area. Helicopter color photography was obtained of all the ground areas. This photography will allow a detailed reflectance map of the 4 x 4 pixel are to be made and registered to the TM imagery to an accuracy of better than half a pixel. Spectropolarimeter data were also collected of the 4 x 4 pixel area from the helicopter. In addition, ground based solar radiometer data were collected to provide spectral extinction optical thickness valves. The radiative transfer theory used in the development of the Herman code which was used in predicting the TM entrance pupil spectral radiances from the ground based measurements is described.

  5. Landsat 4 and 5 status and results from Thematic Mapper data analyses

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V.

    1984-01-01

    Landsat-1, 2, and 3 have functioned successfully well beyond their design lifetimes of one year and provided a very sizable collection of data. On July 16, 1982 with the successful launch of Landsat-4, a second generation of Landsat satellites was introduced. Landsat-4 continues to make available the observational services which had been provided by the Multispectral Scanner (MSS) on Landsats 1-3. In addition, the new satellite is provided with an improved observational capability which is based on a utilization of the Thematic Mapper (TM). The system status (March 1984) of Landsat-4 is considered along with an evaluation of the MSS, and a description of the design and performance of the TM. Attention is also given to the satellite Landsat-5, which was launched successfully on March 1, 1984, taking into account design modifications leading to improved performance and some scenes provided by the new spacecraft.

  6. Analyzing Landsat time-series data across adjacent path/rows and across multiple cycles of FIA: Lessons learned in southern Missouri

    Treesearch

    Mark Nelson; Sean Healey; W. Keith Moser; Mark Hansen; Warren Cohen; Mark Hatfield; Nancy Thomas; Jeff Masek

    2009-01-01

    The North American Forest Dynamics (NAFD) Program is assessing disturbance and regrowth in the forests of the continent. These forest dynamics are interpreted from per-pixel estimates of forest biomass, which are produced for a time series of Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced TM Plus images. Image data are combined with sample plot data from the...

  7. L5 TM radiometric recalibration procedure using the internal calibration trends from the NLAPS trending database

    USGS Publications Warehouse

    Chander, G.; Haque, Md. O.; Micijevic, E.; Barsi, J.A.

    2008-01-01

    From the Landsat program's inception in 1972 to the present, the earth science user community has benefited from a historical record of remotely sensed data. The multispectral data from the Landsat 5 (L5) Thematic Mapper (TM) sensor provide the backbone for this extensive archive. Historically, the radiometric calibration procedure for this imagery used the instrument's response to the Internal Calibrator (IC) on a scene-by-scene basis to determine the gain and offset for each detector. The IC system degraded with time causing radiometric calibration errors up to 20 percent. In May 2003 the National Landsat Archive Production System (NLAPS) was updated to use a gain model rather than the scene acquisition specific IC gains to calibrate TM data processed in the United States. Further modification of the gain model was performed in 2007. L5 TM data that were processed using IC prior to the calibration update do not benefit from the recent calibration revisions. A procedure has been developed to give users the ability to recalibrate their existing Level-1 products. The best recalibration results are obtained if the work order report that was originally included in the standard data product delivery is available. However, many users may not have the original work order report. In such cases, the IC gain look-up table that was generated using the radiometric gain trends recorded in the NLAPS database can be used for recalibration. This paper discusses the procedure to recalibrate L5 TM data when the work order report originally used in processing is not available. A companion paper discusses the generation of the NLAPS IC gain and bias look-up tables required to perform the recalibration.

  8. The Use of Thematic Mapper Data for Land Cover Discrimination: Preliminary Results from the UK Satmap Programme

    NASA Technical Reports Server (NTRS)

    Jackson, M. J.; Baker, J. R.; Townshend, J. R. G.; Gayler, J. E.; Hardy, J. R.

    1984-01-01

    In assessing the accuracy of classification techniques for Thematic Mapper data the consistency of the detector-to-detector response is critical. Preliminary studies were undertaken, therefore, to assess the significance of this factor for the TM. The overall structure of the band relationships can be examined by principal component analysis. In order to examine the utility of the Thematic Mapper data more carefully, six different land cover classes approximately Anderson level 1 were selected. These included an area of water from the sediment-laden Mississippi, woodland, agricultural land and urban land. A plume class was also selected which includes the plume of smoke emanating from the power station and drifting over the Mississippi river.

  9. Landsat-4 MSS and Thematic Mapper data quality and information content analysis

    NASA Technical Reports Server (NTRS)

    Anuta, P. E.; Bartolucci, L. A.; Dean, M. E.; Lozano, D. F.; Malaret, E.; Mcgillem, C. D.; Valdes, J. A.; Valenzuela, C. R.

    1984-01-01

    Landsat-4 Thematic Mapper and Multispectral Scanner data were analyzed to obtain information on data quality and information content. Geometric evaluations were performed to test band-to-band registration accuracy. Thematic Mapper overall system resolution was evaluated using scene objects which demonstrated sharp high contrast edge responses. Radiometric evaluation included detector relative calibration, effects of resampling, and coherent noise effects. Information content evaluation was carried out using clustering, principal components, transformed divergence separability measure, and numerous supervised classifiers on data from Iowa and Illinois. A detailed spectral class analysis (multispectral classification) was carried out on data from the Des Moines, IA area to compare the information content of the MSS and TM for a large number of scene classes.

  10. Intercomparison of Satellite-Derived Snow-Cover Maps

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Tait, Andrew B.; Foster, James L.; Chang, Alfred T. C.; Allen, Milan

    1999-01-01

    In anticipation of the launch of the Earth Observing System (EOS) Terra, and the PM-1 spacecraft in 1999 and 2000, respectively, efforts are ongoing to determine errors of satellite-derived snow-cover maps. EOS Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer-E (AMSR-E) snow-cover products will be produced. For this study we compare snow maps covering the same study area acquired from different sensors using different snow- mapping algorithms. Four locations are studied: 1) southern Saskatchewan; 2) a part of New England (New Hampshire, Vermont and Massachusetts) and eastern New York; 3) central Idaho and western Montana; and 4) parts of North and South Dakota. Snow maps were produced using a prototype MODIS snow-mapping algorithm used on Landsat Thematic Mapper (TM) scenes of each study area at 30-m and when the TM data were degraded to 1 -km resolution. National Operational Hydrologic Remote Sensing Center (NOHRSC) 1 -km resolution snow maps were also used, as were snow maps derived from 1/2 deg. x 1/2 deg. resolution Special Sensor Microwave Imager (SSM/1) data. A land-cover map derived from the International Geosphere-Biosphere Program (IGBP) land-cover map of North America was also registered to the scenes. The TM, NOHRSC and SSM/I snow maps, and land-cover maps were compared digitally. In most cases, TM-derived maps show less snow cover than the NOHRSC and SSM/I maps because areas of incomplete snow cover in forests (e.g., tree canopies, branches and trunks) are seen in the TM data, but not in the coarser-resolution maps. The snow maps generally agree with respect to the spatial variability of the snow cover. The 30-m resolution TM data provide the most accurate snow maps, and are thus used as the baseline for comparison with the other maps. Comparisons show that the percent change in amount of snow cover relative to the 3 0-m resolution TM maps is lowest using the TM I -km resolution maps, ranging from 0 to 40%. The highest percent change (less than 100%) is found in the New England study area, probably due to the presence of patchy snow cover. A scene with patchy snow cover is more difficult to map accurately than is a scene with a well-defined snowline such as is found on the North and South Dakota scene where the percent change ranged from 0 to 40%. There are also some important differences in the amount of snow mapped using the two different SSM/I algorithms because they utilize different channels.

  11. Vegetation mapping and stress detection in the Santa Monica Mountains, California

    NASA Technical Reports Server (NTRS)

    Price, Curtis V.; Westman, Walter E.

    1987-01-01

    Thematic Mapper (TM) simulator data have been used to map coastal sage scrub in the mountains near Los Angeles by means of supervised classification. Changes in TM band radiances and band ratios are examined along an east-west gradient in ozone pollution loads. While the changes noted are interpretable in terms of ozone- and temperature-induced premature leaf drop, and consequent exposure of a dry, grassy understory, TM band and band ratio reflectances are influenced by a variety of independent factors which require that pollution stress interpretations be conducted in the context of the greatest possible ecological system comprehension.

  12. MR 201104: Evaluation of Discrimination Technologies and Classification Results and MR 201157: Demonstration of MetalMapper Static Data Acquisition and Data Analysis

    DTIC Science & Technology

    2016-09-23

    Acquisition and Data Analysis). EMI sensors, MetalMapper, man-portable Time-domain Electromagnetic Multi-sensor Towed Array Detection System (TEMTADS...California Department of Toxic Substances Control EM61 EM61-MK2 EMI electromagnetic induction ESTCP Environmental Security Technology Certification...SOP Standard Operating Procedure v TEMTADS Time-domain Electromagnetic Multi-sensor Towed Array Detection System man-portable 2x2 TOI target(s

  13. Analysis of the quality of image data acquired by the LANDSAT-4 Thematic Mapper (TM) of the Black Hills area, South Dakota

    NASA Technical Reports Server (NTRS)

    Colwell, R. N. (Principal Investigator)

    1983-01-01

    The structure, format, and quality of the LANDSAT-4 TM and MSS photographic and digital products for one scene covering the Black Hills area of South Dakota were assessed and the extent to which major resource categories can be detected and identified on various photographic products generated from a subset of TM spectral bands and from all bands of the MSS was determined. The overall spectral, spatial, and radiometric quality of the TM data was found to be excellent. Agricultural fields of variable shape, size, and orientation were detected with relative ease. The addition of the short-wave infrared band (TM5) has significantly improved the ability to detect and identify crop types on single date imagery.

  14. Three-dimensional displays for natural hazards analysis, using classified Landsat Thematic Mapper digital data and large-scale digital elevation models

    NASA Technical Reports Server (NTRS)

    Butler, David R.; Walsh, Stephen J.; Brown, Daniel G.

    1991-01-01

    Methods are described for using Landsat Thematic Mapper digital data and digital elevation models for the display of natural hazard sites in a mountainous region of northwestern Montana, USA. Hazard zones can be easily identified on the three-dimensional images. Proximity of facilities such as highways and building locations to hazard sites can also be easily displayed. A temporal sequence of Landsat TM (or similar) satellite data sets could also be used to display landscape changes associated with dynamic natural hazard processes.

  15. Thematic mapper studies band correlation analysis

    NASA Technical Reports Server (NTRS)

    Ungar, S. G.; Kiang, R.

    1976-01-01

    Spectral data representative of thematic mapper candidate bands 1 and 3 to 7 were obtained by selecting appropriate combinations of bands from the JSC 24 channel multispectral scanner. Of all the bands assigned, only candidate bands 4 (.74 mu to .80 mu) and 5 (.80 mu to .91 mu) showed consistently high intercorrelation from region to region and time to time. This extremely high correlation persisted when looking at the composite data set in a multitemporal, multilocation domain. The GISS investigations lend positive confirmation to the hypothesis, that TM bands 4 and 5 are redundant.

  16. Landsat-4 and Landsat-5 thematic mapper band 6 historical performance and calibration

    USGS Publications Warehouse

    Barsi, J.A.; Chander, G.; Markham, B.L.; Higgs, N.; ,

    2005-01-01

    Launched in 1982 and 1984 respectively, the Landsat-4 and -5 Thematic Mappers (TM) are the backbone of an extensive archive of moderate resolution Earth imagery. However, these sensors and their data products were not subjected to the type of intensive monitoring that has been part of the Landsat-7 system since its launch in 1999. With Landsat-4's 11 year and Landsat-5's 20+ year data record, there is a need to understand the historical behavior of the instruments in order to verify the scientific integrity of the archive and processed products. Performance indicators of the Landsat-4 and -5 thermal bands have recently been extracted from a processing system database allowing for a more complete study of thermal band characteristics and calibration than was previously possible. The database records responses to the internal calibration system, instrument temperatures and applied gains and offsets for each band for every scene processed through the National Landsat Archive Production System (NLAPS). Analysis of this database has allowed for greater understanding of the calibration and improvement in the processing system. This paper will cover the trends in the Landsat-4 and -5 thermal bands, the effect of the changes seen in the trends, and how these trends affect the use of the thermal data.

  17. Assessment of landscape change associated with tropical cyclone phenomena in Baja California Sur, Mexico, using satellite remote sensing

    NASA Astrophysics Data System (ADS)

    Martinez-Gutierrez, Genaro

    Baja California Sur (Mexico), as well as mainland Mexico, is affected by tropical cyclone storms, which originate in the eastern north Pacific. Historical records show that Baja has been damaged by intense summer storms. An arid to semiarid climate characterizes the study area, where precipitation mainly occurs during the summer and winter seasons. Natural and anthropogenic changes have impacted the landscape of southern Baja. The present research documents the effects of tropical storms over the southern region of Baja California for a period of approximately twenty-six years. The goal of the research is to demonstrate how remote sensing can be used to detect the important effects of tropical storms including: (a) evaluation of change detection algorithms, and (b) delineating changes to the landscape including coastal modification, fluvial erosion and deposition, vegetation change, river avulsion using change detection algorithms. Digital image processing methods with temporal Landsat satellite remotely sensed data from the North America Landscape Characterization archive (NALC), Thematic Mapper (TM), and Enhanced Thematic Mapper (ETM) images were used to document the landscape change. Two image processing methods were tested including Image differencing (ID), and Principal Component Analysis (PCA). Landscape changes identified with the NALC archive and TM images showed that the major changes included a rapid change of land use in the towns of San Jose del Cabo and Cabo San Lucas between 1973 and 1986. The features detected using the algorithms included flood deposits within the channels of active streams, erosion banks, and new channels caused by channel avulsion. Despite the 19 year period covered by the NALC data and approximately 10 year intervals between acquisition dates, there were changed features that could be identified in the images. The TM images showed that flooding from Hurricane Isis (1998) produced new large deposits within the stream channels. This research has shown that remote sensing based change detection can delineate the effects of flooding on the landscape at scales down to the nominal resolution of the sensor. These findings indicate that many other applications for change detection are both viable and important. These include disaster response, flood hazard planning, geomorphic studies, water supply management in deserts.

  18. Lightning Mapper Sensor Lens Assembly S.O. 5459: Project Management Plan

    NASA Technical Reports Server (NTRS)

    Zeidler, Janet

    1999-01-01

    Kaiser Electro-Optics, Inc. (KEO) has developed this Project Management Plan for the Lightning Mapper Sensor (LMS) program. KEO has integrated a team of experts in a structured program management organization to meet the needs of the LMS program. The project plan discusses KEO's approach to critical program elements including Program Management, Quality Assurance, Configuration Management, and Schedule.

  19. Stability of landsat-4 thematic mapper outgassing models

    USGS Publications Warehouse

    Micijevic, E.; Chander, G.

    2006-01-01

    Oscillations in radiometric gains of the short wave infrared (SWIR) bands in Landsat-4 (L4) and Landsat-5 (L5) Thematic Mappers (TMs) are observed through an analysis of detector responses to the Internal Calibrator (IC) pulses. The oscillations are believed to be caused by an interference effect due to a contaminant film buildup on the window of the cryogenically cooled dewar that houses these detectors. This process of contamination, referred to as outgassing effects, has been well characterized using an optical thin-film model that relates detector responses to the accumulated film thickness and its growth rate. The current models for L4 TM are based on average detector responses to the second brightest IC lamp and have been derived from three data sets acquired during different times throughout the instrument's lifetime. Unlike in L5 TM outgassing characterization, it was found that the L4 TM responses to all three IC lamps can be used to provide accurate characterization and correction for outgassing effects. The analysis of single detector responses revealed an up to five percent difference in the estimated oscillating periods and also indicated a gradual variation of contaminant growth rate over the focal plane.

  20. Mapping surface energy balance components by combining Landsat Thematic Mapper and ground-based meteorological data

    NASA Technical Reports Server (NTRS)

    Moran, M. Susan; Jackson, Ray D.; Raymond, Lee H.; Gay, Lloyd W.; Slater, Philip N.

    1989-01-01

    Surface energy balance components were evaluated by combining satellite-based spectral data with on-site measurements of solar irradiance, air temperature, wind speed, and vapor pressure. Maps of latent heat flux density and net radiant flux density were produced using Landsat TM data for three dates. The TM-based estimates differed from Bowen-ratio and aircraft-based estimates by less than 12 percent over mature fields of cotton, wheat, and alfalfa.

  1. Variability in spectral signatures of terrestrial volcanic rocks and implications for volcanology on Mars

    NASA Technical Reports Server (NTRS)

    Francis, P. W.

    1987-01-01

    The LANDSAT Thematic Mapper (TM) studies of 2.2 my old ignimbrites in a test area around the Cerro Galan Caldera, N. W. Argentina, show that the ignimbrites exhibit a remarkable range of spectral characteristics dependent both on intrinsic and extrinsic properties resulting from aeolian weathering processes. Spectral profiles of the ignimbrite in four contrasted environments were constructed using 6 TM bands. The textural and structural characteristics of ignimbrites on Mars were evaluated.

  2. Effect of leaf variables on visible, near-infrared and mid-infrared reflectance of excised leaves

    NASA Technical Reports Server (NTRS)

    Bell, R.; Labovitz, M. L.; Ludwig, R. W.

    1983-01-01

    Effects of an imposed (excised) leaf orientation, differing species and differing venation patterns on reflectance measurements in the LANDSAT-4 thematic mapper (TM) channels TM3 (0.63 to 0.69 microns), TM4 (0.76 to 0.90 microns), and TM5 (1.55 to 1.75 microns) were investigated. Orientation of leaves (random vs. systematic placement) was found to affect measurements in the TM4 channel, but not the TM3 and TM5 measurements. Venation caused no significant changes for any band. Azimuth of incident radiation was not a significant main effect, but in conjunction with changes in orientation, angle did have a significant effect on reflectance values in TM3, TM4 and TM5. Specific differences were highly significant (P f or = 0.006) in all but one borderline (P F or = 0.0222) case for TM5. For spectral examination of excised leaves, the sampling arrangement of the leaves should as closely approximate in situ positioning as possible (with respect to remote sensing instrumentation). This dictates a random rather than aligned arrangement.

  3. Historical Landsat data comparisons: illustrations of the Earth's changing surface

    USGS Publications Warehouse

    ,

    1995-01-01

    The U.S. Geological Survey's (USGS) EROS Data Center (EDC) has managed the Landsat data archive for more than two decades. This archive provides a rich collection of information about the Earth's land surface. Major changes to the surface of the planet can be detected, measured, and analyzed using Landsat data. The effects of desertification, deforestation, pollution, cataclysmic volcanic activity, and other natural and anthropogenic events can be examined using data acquired from the Landsat series of Earth-observing satellites. The information obtainable from the historical and current Landsat data play a key role in studying surface changes through time. This document provides an overview of the Landsat program and illustrates the application of the data to monitor changes occurring on the surface of the Earth. To reveal changes that have taken place within the past 20 years, pairs and triplicates of images were constructed from the Landsat multispectral scanner (MSS) and thematic mapper (TM) sensors. Landsat MSS data provide a historical record of the Earth's land surface from the early 1970's to the early 1990's. Landsat TM data provide land surface information from the early 1980's to the present.

  4. Detection of soil erosion with Thematic Mapper (TM) satellite data within Pinyon-Juniper woodlands

    NASA Technical Reports Server (NTRS)

    Price, Kevin Paul

    1987-01-01

    Pinyon-Juniper woodlands dominate approximately 24.3 million hectares (60 million acres) in the western United States. The overall objective was to test the sensitivity of the LANDSAT Thematic Mapper (TM) spectral data for detecting varying degrees of soil erosion within the Pinyon-Juniper woodlands. A second objective was to assess the potential of the spectral data for assigning the Universal Soil Loss Equation (USLE) crop management (C) factor values to varying cover types within the woodland. Thematic Mapper digital data for June 2, 1984 on channels 2, 3, 4, and 5 were used. Digital data analysis was performed using the ELAS software package. Best results were achieved using CLUS, an unsupervised clustering algorithm. Fifteen of the 40 Pinyon-Juniper signatures were identified as being relatively pure Pinyon-Juniper woodland. Final analysis resulted in the grouping of the 15 signatures into three major groups. Ten study sites were selected from each of the three groups and located on the ground. At each site the following field measurements were taken: percent tree canopy and percent understory cover, soil texture, total soil loss, and soil erosion rate estimates. A technique for measuring soil erosion within Pinyon-Juniper woodlands was developed. A theoretical model of site degradation after Pinyon-Juniper invasion is presented.

  5. Status of the Landsat thematic mapper and multispectral scanner archive conversion system

    USGS Publications Warehouse

    Werner, Darla J.

    1993-01-01

    The U.S. Geological Survey's EROS Data Center (EDC) manages the National Satellite Land Remote Sensing Data Archive. This archive includes Landsat thematic mapper (TM) multispectral scanner (MSS) data acquired since 1972. The Landsat archive is an important resource to global change research. To ensure long-term availability of Landsat data from the archive, the EDC specified requirements for a Thematic Mapper and Multispectral Scanner Archive Conversion System (TMACS) that would preserve the data by transcribing it to a more durable medium. In addition to media conversion, hardware and software was installed at EDC in July 1992. In December 1992, the EDC began converting Landsat MSS data from high-density, open reel instrumentation tapes to digital cassette tapes. Almost 320,000 MSS images acquired since 1979 and more than 200,000 TM images acquired since 1982 will be converted to the new medium during the next 3 years. During the media conversion process, several high-density tapes have exhibited severe binder degradation. Even though these tapes have been stored in environmentally controlled conditions, hydrolysis has occurred, resulting in "sticky oxide shed". Using a thermostatically controlled oven built at EDC, tape "baking" has been 100 percent successful and actually improves the quality of some images.

  6. Understanding and utilization of Thematic Mapper and other remotely sensed data for vegetation monitoring

    NASA Technical Reports Server (NTRS)

    Crist, E. P.; Cicone, R. C.; Metzler, M. D.; Parris, T. M.; Rice, D. P.; Sampson, R. E.

    1983-01-01

    The TM Tasseled Cap transformation, which provides both a 50% reduction in data volume with little or no loss of important information and spectral features with direct physical association, is presented and discussed. Using both simulated and actual TM data, some important characteristics of vegetation and soils in this feature space are described, as are the effects of solar elevation angle and atmospheric haze. A preliminary spectral haze diagnostic feature, based on only simulated data, is also examined. The characteristics of the TM thermal band are discussed, as is a demonstration of the use of TM data in energy balance studies. Some characteristics of AVHRR data are described, as are the sensitivities to scene content of several LANDSAT-MSS preprocessing techniques.

  7. Landsat Thematic Mapper studies of land cover spatial variability related to hydrology

    NASA Technical Reports Server (NTRS)

    Wharton, S.; Ormsby, J.; Salomonson, V.; Mulligan, P.

    1984-01-01

    Past accomplishments involving remote sensing based land-cover analysis for hydrologic applications are reviewed. Ongoing research in exploiting the increased spatial, radiometric, and spectral capabilities afforded by the TM on Landsats 4 and 5 is considered. Specific studies to compare MSS and TM for urbanizing watersheds, wetlands, and floodplain mapping situations show that only a modest improvement in classification accuracy is achieved via statistical per pixel multispectral classifiers. The limitations of current approaches to multispectral classification are illustrated. The objectives, background, and progress in the development of an alternative analysis approach for defining inputs to urban hydrologic models using TM are discussed.

  8. Mapping permafrost in the boreal forest with Thematic Mapper satellite data

    NASA Technical Reports Server (NTRS)

    Morrissey, L. A.; Strong, L. L.; Card, D. H.

    1986-01-01

    A geographic data base incorporating Landsat TM data was used to develop and evaluate logistic discriminant functions for predicting the distribution of permafrost in a boreal forest watershed. The data base included both satellite-derived information and ancillary map data. Five permafrost classifications were developed from a stratified random sample of the data base and evaluated by comparison with a photo-interpreted permafrost map using contingency table analysis and soil temperatures recorded at sites within the watershed. A classification using a TM thermal band and a TM-derived vegetation map as independent variables yielded the highest mapping accuracy for all permafrost categories.

  9. A procedure for radiometric recalibration of Landsat 5 TM reflective-band data

    USGS Publications Warehouse

    Chander, G.; Haque, M.O.; Micijevic, E.; Barsi, J.A.

    2010-01-01

    From the Landsat program's inception in 1972 to the present, the Earth science user community has been benefiting from a historical record of remotely sensed data. The multispectral data from the Landsat 5 (L5) Thematic Mapper (TM) sensor provide the backbone for this extensive archive. Historically, the radiometric calibration procedure for the L5 TM imagery used the detectors' response to the internal calibrator (IC) on a scene-by-scene basis to determine the gain and offset for each detector. The IC system degraded with time, causing radiometric calibration errors up to 20%. In May 2003, the L5 TM data processed and distributed by the U.S. Geological Survey (USGS) Earth Resources Observation and Science Center through the National Landsat Archive Production System (NLAPS) were updated to use a lifetime lookup-table (LUT) gain model to radiometrically calibrate TM data instead of using scene-specific IC gains. Further modification of the gain model was performed in 2007. The L5 TM data processed using IC prior to the calibration update do not benefit from the recent calibration revisions. A procedure has been developed to give users the ability to recalibrate their existing level-1 products. The best recalibration results are obtained if the work-order report that was included in the original standard data product delivery is available. However, if users do not have the original work-order report, the IC trends can be used for recalibration. The IC trends were generated using the radiometric gain trends recorded in the NLAPS database. This paper provides the details of the recalibration procedure for the following: 1) data processed using IC where users have the work-order file; 2) data processed using IC where users do not have the work-order file; 3) data processed using prelaunch calibration parameters; and 4) data processed using the previous version of the LUT (e.g., LUT03) that was released before April 2, 2007.

  10. LANDSAT-D investigations in snow hydrology

    NASA Technical Reports Server (NTRS)

    Dozier, J. (Principal Investigator)

    1984-01-01

    Thematic mapper radiometric characteristics, snow/cloud reflectance, and atmospheric correction are discussed with application to determining the spectral albedo of snow. The geometric characterics of TM and digital elevation data are examined. The geometric transformations and resampling required to coregister these data are discussed.

  11. Analysis of the quality of image data acquired by the LANDSAT-4 thematic mapper and multispectral scanners

    NASA Technical Reports Server (NTRS)

    Colwell, R. N. (Principal Investigator)

    1983-01-01

    The three types of LANDSAT 4 film products generally accessible to the user community were analyzed and attempts were made to acquire a data set consisting of a variety of TM and MSS image products for the Sacramento and San Francisco Bay Area test sites. On request, the EDC developed an interim TM analytical film by using a leaser beam recorder to produce black and white masters from which natural and false color composites were created.

  12. Analysis of the quality of image data acquired by the LANDSAT-4 Thematic Mapper and Multispectral Scanners

    NASA Technical Reports Server (NTRS)

    Colwell, R. N. (Principal Investigator)

    1984-01-01

    The geometric quality of TM film and digital products is evaluated by making selective photomeasurements and by measuring the coordinates of known features on both the TM products and map products. These paired observations are related using a standard linear least squares regression approach. Using regression equations and coefficients developed from 225 (TM film product) and 20 (TM digital product) control points, map coordinates of test points are predicted. The residual error vectors and analysis of variance (ANOVA) were performed on the east and north residual using nine image segments (blocks) as treatments. Based on the root mean square error of the 223 (TM film product) and 22 (TM digital product) test points, users of TM data expect the planimetric accuracy of mapped points to be within 91 meters and within 117 meters for the film products, and to be within 12 meters and within 14 meters for the digital products.

  13. Impacts of river-bed aggradation and lahar activity downstream of Santiaguito Volcano, Guatemala: a Landsat Thematic Mapper perspective

    NASA Astrophysics Data System (ADS)

    Flynn, L. P.; Harris, A. J.; Davies, M. A.; Vallence, J. W.; Rose, W. I.

    2002-12-01

    Lava extrusion at Santiaguito volcano, Guatemala and rainfall runoff cause lahars and river-bed aggradation downstream of the volcano. We present a method that uses vegetation indices extracted from Landsat Thematic Mapper (TM) data to identify zones of impact. The method differentiates vegetation-free and vegetated pixels, constrains areas affected by aggradation, and generates catchment-wide aggradation maps. Application of the technique to 22 TM images acquired between 1987 and 2000 helped us to measure, map and track temporal and spatial variations in the area of lahar impact and river aggradation. To verify our TM-based analyses we carried out 3 field campaigns between 2000 and 2002, during which we focused on a segment of aggraded river beds ~8 km from Santiaguito. We then used our TM and field-based studies to document and validate changes at this location, as follows: (1) Time varying effects of aggradation. The main river to head at Santiaguito is R¡o Nima II. The TM analysis indicated development of a new channel cutting across farm land on the western edge of R¡o Nima II between 1996 and 2000. Field checking showed that development of an aggraded, convex, bed profile caused channels to flow westward away from the aggraded river-channel system. (2) Emplacement of lava flows. The TM time series indicated that a new lava flow extended into the upper reaches of the Rio Nima I during 1996 and triggered aggradation. Field checking confirmed that a new supply of volcaniclastic material had extended aggradation into this previously unaffected drainage. (3) River capture. Capture of R¡o Nima I by R¡o Samal has increased aggradation of along new sections of R¡o Samal , an effect evident in our TM mapping. Field checking showed that, although R¡o Samala does not head at Santiaguito, the new supply of material from R¡o Nima I triggered rapid aggradation of R¡o Samal after 1996.

  14. Evaluation of spatial, radiometric and spectral Thematic Mapper performance for coastal studies

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator)

    1984-01-01

    The effect different wetland plant canopies have upon observed reflectance in Thematic Mapper bands is studied. The three major vegetation canopy types (broadleaf, gramineous and leafless) produce unique spectral responses for a similar quantity of live biomass. The spectral biomass estimate of a broadleaf canopy is most similar to the harvest biomass estimate when a broadleaf canopy radiance model is used. All major wetland vegetation species can be identified through TM imagery. Simple regression models are developed equating the vegetation index and the infrared index with biomass. The spectral radiance index largely agreed with harvest biomass estimates.

  15. THEMATIC ACCURACY OF MRLC LAND COVER FOR THE EASTERN UNITED STATES

    EPA Science Inventory



    One objective of the MultiResolution Land Characteristics (MRLC) consortium is to map general land-cover categories for the conterminous United States using Landsat Thematic Mapper (TM) data. Land-cover mapping and classification accuracy assessment are complete for the e...

  16. LANDSAT-D accelerated payload correction subsystem output computer compatible tape format

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The NASA GSFC LANDSAT-D Ground Segment (GS) is developing an Accelerated Payload Correction Subsystem (APCS) to provide Thematic Mapper (TM) image correction data to be used outside the GS. This correction data is computed from a subset of the TM Payload Correction Data (PCD), which is downlinked from the spacecraft in a 32 Kbps data stream, and mirror scan correction data (MSCD), which is extracted from the wideband video data. This correction data is generated in the GS Thematic Mapper Mission Management Facility (MMF-T), and is recorded on a 9-track 1600 bit per inch computer compatible tape (CCT). This CCT is known as a APCS Output CCT (AOT). The AOT follows standardized corrections with respect to data formats, record construction and record identification. Applicable documents are delineated; common conventions which are used in further defining the structure, format and content of the AOT are defined; and the structure and content of the AOT are described.

  17. A Preliminary Analysis of LANDSAT-4 Thematic Mapper Radiometric Performance

    NASA Technical Reports Server (NTRS)

    Justice, C.; Fusco, L.; Mehl, W.

    1984-01-01

    Analysis was performed to characterize the radiometry of three Thematic Mapper (TM) digital products of a scene of Arkansas. The three digital products examined were the NASA raw (BT) product, the radiometrically corrected (AT) product and the radiometrically and geometrically corrected (PT) product. The frequency distribution of the digital data; the statistical correlation between the bands; and the variability between the detectors within a band were examined on a series of image subsets from the full scene. The results are presented from one 1024 x 1024 pixel subset of Realfoot Lake, Tennessee which displayed a representative range of ground conditions and cover types occurring within the full frame image. Bands 1, 2 and 5 of the sample area are presented. The subsets were extracted from the three digital data products to cover the same geographic area. This analysis provides the first step towards a full appraisal of the TM radiometry being performed as part of the ESA/CEC contribution to the NASA/LIDQA program.

  18. Tectonics and volcanism in central Mexico - A Landsat Thematic Mapper perspective

    NASA Technical Reports Server (NTRS)

    Johnson, C. A.; Harrison, C. G. A.

    1989-01-01

    Digitally enhanced Landsat Thematic Mapper (TM) images were used to map neotectonic deformation in central Mexico. This region has been studied for decades using a variety of geological and geophysical techniques, but synoptic mapping of neotectonic activity and major fault zones there, and an evaluation of their regional relationship to the character and location of volcanism were not previously possible until the application of synoptic, high resolution satellite imagery. Interpretation of the TM images shows that the tectonic deformation is closely linked in time and space to the dominantly calc-alkaline volcanics of the Mexican Volcanic Belt (MVB). The eruptive style and distribution of the volcanics is clearly related to the deformation resulting from relative motions of three large crustal blocks south of the MVB. Therefore, zones of weakness within the crust of central Mexico, which may be inherited from earlier episodes of deformation, are a principal factor controlling the oblique orientation of the MVB relative to the Acapulco Trench.

  19. Sensing, Spectra and Scaling: What's in Store for Land Observations

    NASA Technical Reports Server (NTRS)

    Goetz, Alexander F. H.

    2001-01-01

    Bill Pecora's 1960's vision of the future, using spacecraft-based sensors for mapping the environment and exploring for resources, is being implemented today. New technology has produced better sensors in space such as the Landsat Thematic Mapper (TM) and SPOT, and creative researchers are continuing to find new applications. However, with existing sensors, and those intended for launch in this century, the potential for extracting information from the land surface is far from being exploited. The most recent technology development is imaging spectrometry, the acquisition of images in hundreds of contiguous spectral bands, such that for any pixel a complete reflectance spectrum can be acquired. Experience with Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has shown that, with proper attention paid to absolute calibration, it is possible to acquire apparent surface reflectance to 5% accuracy without any ground-based measurement. The data reduction incorporates in educated guess of the aerosol scattering, development of a precipitable water vapor map from the data and mapping of cirrus clouds in the 1.38 micrometer band. This is not possible with TM. The pixel size in images of the earth plays and important role in the type and quality of information that can be derived. Less understood is the coupling between spatial and spectral resolution in a sensor. Recent work has shown that in processing the data to derive the relative abundance of materials in a pixel, also known is unmixing, the pixel size is an important parameter. A variance in the relative abundance of materials among the pixels is necessary to be able to derive the endmembers or pure material constituent spectra. In most cases, the 1 km pixel size for the Earth Observing System Moderate Resolution Imaging Spectroradiometer (MODIS) instrument is too large to meet the variance criterion. A pointable high spatial and spectral resolution imaging spectrometer in orbit will be necessary to make the major next step in our understanding of the solid earth surface and its changing face.

  20. LANDSAT 4 investigations of Thematic Mapper and multispectral scanner applications. [Death Valley, California; Silver Bell Copper Mine, Arizona, and Dulles Airport near Washington, D.C.

    NASA Technical Reports Server (NTRS)

    Lauer, D. T. (Principal Investigator)

    1984-01-01

    The optimum index factor package was used to choose TM band for color compositing. Processing techniques were also used on TM data over several sites to: (1) reduce the amount of data that needs to be processed and analyzed by using statistical methods or by combining full-resolution products with spatially compressed products; (2) digitally process small subareas to improve the visual appearance of large-scale products or to merge different-resolution image data; and (3) evaluate and compare the information content of the different three-band combinations that can be made using the TM data. Results indicate that for some applications the added spectral information over MSS is even more important than the TM's increased spatial resolution.

  1. TM digital image products for applications. [computer compatible tapes

    NASA Technical Reports Server (NTRS)

    Barker, J. L.; Gunther, F. J.; Abrams, R. B.; Ball, D.

    1984-01-01

    The image characteristics of digital data generated by LANDSAT 4 thematic mapper (TM) are discussed. Digital data from the TM resides in tape files at various stages of image processing. Within each image data file, the image lines are blocked by a factor of either 5 for a computer compatible tape CCT-BT, or 4 for a CCT-AT and CCT-PT; in each format, the image file has a different format. Nominal geometric corrections which provide proper geodetic relationships between different parts of the image are available only for the CCT-PT. It is concluded that detector 3 of band 5 on the TM does not respond; this channel of data needs replacement. The empty bin phenomenon in CCT-AT images results from integer truncations of mixed-mode arithmetric operations.

  2. Analysis of data acquired by Shuttle Imaging Radar SIR-A and Landsat Thematic Mapper over Baldwin County, Alabama

    NASA Technical Reports Server (NTRS)

    Wu, S.-T.

    1985-01-01

    Seasonally compatible data collected by SIR-A and by Landsat 4 TM over the lower coastal plain in Alabama were coregistered, forming a SIR-A/TM multichannel data set with 30 m x 30 m pixel size. Spectral signature plots and histogram analysis of the data were used to observe data characteristics. Radar returns from pine forest classes correlated highly with the tree ages, suggesting the potential utility of microwave remote sensing for forest biomass estimation. As compared with the TM-only data set, the use of SIR-A/TM data set improved classification accuracy of the seven land cover types studied. In addition, the SIR-A/TM classified data support previous finding by Engheta and Elachi (1982) that microwave data appear to be correlated with differing bottomland hardwood forest vegetation as associated with varying water regimens (i.e., wet versus dry).

  3. LANDSAT D to test thematic mapper, inaugurate operational system

    NASA Technical Reports Server (NTRS)

    1982-01-01

    NASA will launch the Landsat D spacecraft on July 9, 1982 aboard a new, up-rated Delta 3920 expendable launch vehicle. LANDSAT D will incorporate two highly sophisticated sensors; the flight proven multispectral scanner; and a new instrument expected to advance considerably the remote sensing capabilities of Earth resources satellites. The new sensor, the thematic mapper, provides data in seven spectral (light) bands with greatly improved spectral, spatial and radiometric resolution.

  4. Land cover mapping with emphasis to burnt area delineation using co-orbital ALI and Landsat TM imagery

    NASA Astrophysics Data System (ADS)

    Petropoulos, George P.; Kontoes, Charalambos C.; Keramitsoglou, Iphigenia

    2012-08-01

    In this study, the potential of EO-1 Advanced Land Imager (ALI) radiometer for land cover and especially burnt area mapping from a single image analysis is investigated. Co-orbital imagery from the Landsat Thematic Mapper (TM) was also utilised for comparison purposes. Both images were acquired shortly after the suppression of a fire occurred during the summer of 2009 North-East of Athens, the capital of Greece. The Maximum Likelihood (ML), Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs) classifiers were parameterised and subsequently applied to the acquired satellite datasets. Evaluation of the land use/cover mapping accuracy was based on the error matrix statistics. Also, the McNemar test was used to evaluate the statistical significance of the differences between the approaches tested. Derived burnt area estimates were validated against the operationally deployed Services and Applications For Emergency Response (SAFER) Burnt Scar Mapping service. All classifiers applied to either ALI or TM imagery proved flexible enough to map land cover and also to extract the burnt area from other land surface types. The highest total classification accuracy and burnt area detection capability was returned from the application of SVMs to ALI data. This was due to the SVMs ability to identify an optimal separating hyperplane for best classes' separation that was able to better utilise ALI's advanced technological characteristics in comparison to those of TM sensor. This study is to our knowledge the first of its kind, effectively demonstrating the benefits of the combined application of SVMs to ALI data further implying that ALI technology may prove highly valuable in mapping burnt areas and land use/cover if it is incorporated into the development of Landsat 8 mission, planned to be launched in the coming years.

  5. BOREAS RSS-8 Snow Maps Derived from Landsat TM Imagery

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy; Chang, Alfred T. C.; Foster, James L.; Chien, Janeet Y. L.; Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Remote Sensing Science (RSS)-8 team utilized Landsat Thematic Mapper (TM) images to perform mapping of snow extent over the Southern Study Area (SSA). This data set consists of two Landsat TM images that were used to determine the snow-covered pixels over the BOREAS SSA on 18 Jan 1993 and on 06 Feb 1994. The data are stored in binary image format files. The RSS-08 snow map data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  6. The Influence of Land Use on the Grassland Fire Occurrence in the Northeastern Inner Mongolia Autonomous Region, China.

    PubMed

    Li, Yiping; Zhao, Jianjun; Guo, Xiaoyi; Zhang, Zhengxiang; Tan, Gang; Yang, Jihong

    2017-02-23

    Grassland, as one of the most important ecosystems on Earth, experiences fires that affect the local ecology, economy and society. Notably, grassland fires occur frequently each year in northeastern China. Fire occurrence is a complex problem with multiple causes, such as natural factors, human activities and land use. This paper investigates the disruptive effects of grassland fire in the northeastern Inner Mongolia Autonomous Region of China. In this study, we relied on thermal anomaly detection from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to identify fire occurrences, and land use data were acquired by Landsat Thematic Mapper/Enhanced Thematic Mapper (TM/ETM). We discussed the relationship between land use and the spatial distribution of grassland fires. The results showed that the impact of land use on grassland fires was significant. Spatially, approximately 80% of grassland fires were clustered within 10 km of cultivated land, and grassland fires generally occurred in areas of intense human activity. The correlation between the spatial distribution of grassland fires and the land use degree in 2000, 2005 and 2010 was high, with R² values of 0.686, 0.716, 0.633, respectively ( p < 0.01). These results highlight the importance of the relationship between land use and grassland fire occurrence in the northeastern Inner Mongolia Autonomous Region. This study provides significance for local fire management and prevention.

  7. The Influence of Land Use on the Grassland Fire Occurrence in the Northeastern Inner Mongolia Autonomous Region, China

    PubMed Central

    Li, Yiping; Zhao, Jianjun; Guo, Xiaoyi; Zhang, Zhengxiang; Tan, Gang; Yang, Jihong

    2017-01-01

    Grassland, as one of the most important ecosystems on Earth, experiences fires that affect the local ecology, economy and society. Notably, grassland fires occur frequently each year in northeastern China. Fire occurrence is a complex problem with multiple causes, such as natural factors, human activities and land use. This paper investigates the disruptive effects of grassland fire in the northeastern Inner Mongolia Autonomous Region of China. In this study, we relied on thermal anomaly detection from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to identify fire occurrences, and land use data were acquired by Landsat Thematic Mapper/Enhanced Thematic Mapper (TM/ETM). We discussed the relationship between land use and the spatial distribution of grassland fires. The results showed that the impact of land use on grassland fires was significant. Spatially, approximately 80% of grassland fires were clustered within 10 km of cultivated land, and grassland fires generally occurred in areas of intense human activity. The correlation between the spatial distribution of grassland fires and the land use degree in 2000, 2005 and 2010 was high, with R2 values of 0.686, 0.716, 0.633, respectively (p < 0.01). These results highlight the importance of the relationship between land use and grassland fire occurrence in the northeastern Inner Mongolia Autonomous Region. This study provides significance for local fire management and prevention. PMID:28241476

  8. An Initial Analysis of LANDSAT-4 Thematic Mapper Data for the Discrimination of Agricultural, Forested Wetlands, and Urban Land Cover. [Poinsett County, Arkansas; and Reelfoot Lake and Union City, Tennessee

    NASA Technical Reports Server (NTRS)

    Quattrochi, D. A.

    1985-01-01

    The capabilities of TM data for discriminating land covers within three particular cultural and ecological realms was assessed. The agricultural investigation in Poinsett County, Arkansas illustrates that TM data can successfully be used to discriminate a variety of crop cover types within the study area. The single-date TM classification produced results that were significantly better than those developed from multitemporal MSS data. For the Reelfoot Lake area of Tennessee TM data, processed using unsupervised signature development techniques, produced a detailed classification of forested wetlands with excellent accuracy. Even in a small city of approximately 15,000 people (Union City, Tennessee). TM data can successfully be used to spectrally distinguish specific urban classes. Furthermore, the principal components analysis evaluation of the data shows that through photointerpretation, it is possible to distinguish individual buildings and roof responses with the TM.

  9. Integration of Landsat TM and SPOT HRG Images for Vegetation Change Detection in the Brazilian Amazon

    PubMed Central

    Lu, Dengsheng; Batistella, Mateus; Moran, Emilio

    2009-01-01

    Traditional change detection approaches have been proven to be difficult in detecting vegetation changes in the moist tropical regions with multitemporal images. This paper explores the integration of Landsat Thematic Mapper (TM) and SPOT High Resolution Geometric (HRG) instrument data for vegetation change detection in the Brazilian Amazon. A principal component analysis was used to integrate TM and HRG panchromatic data. Vegetation change/non-change was detected with the image differencing approach based on the TM and HRG fused image and the corresponding TM image. A rule-based approach was used to classify the TM and HRG multispectral images into thematic maps with three coarse land-cover classes: forest, non-forest vegetation, and non-vegetation lands. A hybrid approach combining image differencing and post-classification comparison was used to detect vegetation change trajectories. This research indicates promising vegetation change techniques, especially for vegetation gain and loss, even if very limited reference data are available. PMID:19789721

  10. Characterization of intra-annual reflectance properties of land cover classes in southeastern South Dakota using Landsat TM and ETM+ data

    USGS Publications Warehouse

    Vogelmann, James E.; DeFelice, Thomas P.

    2003-01-01

    Landsat-7 and Landsat-5 have orbits that are offset from each other by 8 days. During the time that the sensors on both satellites are operational, there is an opportunity for conducting analyses that incorporate multiple intra-annual high spatial resolution data sets for characterizing the Earth's land surface. In the current study, nine Landsat thematic mapper (TM) and enhanced thematic mapper plus (ETM+) data sets, covering the same path and row on different dates, were acquired during a 1-year time interval for a region in southeastern South Dakota and analyzed. Scenes were normalized using pseudoinvariant objects, and digital data from a series of test sites were extracted from the imagery and converted to surface reflectance. Sunphotometer data acquired on site were used to atmospherically correct the data. Ground observations that were made throughout the growing season by a large group of volunteers were used to help interpret spectroradiometric patterns and trends. Normalized images were found to be very effective in portraying the seasonal patterns of reflectance change that occurred throughout the region. Many of the radiometric patterns related to plant growth and development, but some also related to different background properties. The different kinds of land cover in the region were spectrally and radiometrically characterized and were found to have different seasonal patterns of reflectance. The degree to which the land cover classes could be separated spectrally and radiometrically, however, depended on the time of year during which the data sets were acquired, and no single data set appeared to be adequate for separating all types of land cover. This has practical implications for classification studies because known patterns of seasonal reflectance properties for the different types of land cover within a region will facilitate selection of the most appropriate data sets for producing land cover classifications.

  11. INFLUENCE OF REMOTE SENSING IMAGERY SOURCE ON QUANTIFICATION OF RIPARIAN LAND COVER/LAND USE

    EPA Science Inventory

    This paper compares approaches to quantifying land cover/land use (LCLU) in riparian corridors of 23 watersheds in Oregon's Willamette Valley using aerial photography (AP) and Thematic Mapper (TM) imagery. For each imagery source, we quantified LCLU adjacent to stream networks ac...

  12. Analysis of the quality of image data acquired by the LANDSAT-4 thematic mapper and multispectral scanners

    NASA Technical Reports Server (NTRS)

    Colwell, R. N. (Principal Investigator)

    1983-01-01

    The geometric quality of the TM and MSS film products were evaluated by making selective photo measurements such as scale, linear and area determinations; and by measuring the coordinates of known features on both the film products and map products and then relating these paired observations using a standard linear least squares regression approach. Quantitative interpretation tests are described which evaluate the quality and utility of the TM film products and various band combinations for detecting and identifying important forest and agricultural features.

  13. Design study LANDSAT follow-on mission unique communications system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Spacecraft subsystem design, performance evaluation, and system tradeoffs are presented for the LANDSAT follow-on mission (LF/O) spacecraft to TDRSS link for the transmission of thematic mapper (TM) and multispectral scanner (MSS) data and for the LF/O spacecraft to STDN and other direct users link for the transmission of TM data. Included are requirements definition, link analysis, subsystem and hardware tradeoffs, conceptual selection, hardware definition, and identification of required new technology. Cost estimates of the recommended communication system including both recurring and non recurring costs are discussed.

  14. OMPS SDR Calibration and Validation

    NASA Astrophysics Data System (ADS)

    Sen, B.; Done, J.; Buss, R.; Jaross, G. R.; Kelly, T. J.

    2009-12-01

    The Ozone Mapper and Profiler Suite (OMPS) is scheduled to be launched on the NPOESS Preparatory Project (NPP) platform in early 2011. The OMPS will continue monitoring ozone from space, using three instruments, namely the Total Column Mapper (heritage: TOMS), the Nadir Profiler (heritage: SBUV) and the Limb Profiler (heritage: SOLSE/LORE). The Total Column Mapper (TC) sensor images the Earth through a slit, nadir-cell horizontally spaced at 49.5 km cross-track with an along-track reporting interval of 50 km. The total field of view (FOV) cross-track is 110 degree to provide daily global coverage. The TC sensor, a grating spectrometer, provides 0.45 nm spectral sampling across the wavelength range of 300-380 nm. The calibration stability, which is essential to enable long-term ozone monitoring, is maintained by periodic observations of the Sun, using a diffuser to redirect the solar irradiance into the sensor. We describe the plans to calibrate the TC sensor and validate the radiance data (TC Sensor Data Record or TC SDR) after launch. We discuss the measurements planned during the Intensive Cal/Val (ICV) phase of NPP mission, the data analysis methodology and results from the analysis of OMPS calibration measurements.

  15. Combining lake and watershed characteristics with Landsat TM data for remote estimation of regional lake clarity

    USGS Publications Warehouse

    McCullough, Ian M.; Loftin, Cyndy; Sader, Steven A.

    2012-01-01

    Water clarity is a reliable indicator of lake productivity and an ideal metric of regional water quality. Clarity is an indicator of other water quality variables including chlorophyll-a, total phosphorus and trophic status; however, unlike these metrics, clarity can be accurately and efficiently estimated remotely on a regional scale. Remote sensing is useful in regions containing a large number of lakes that are cost prohibitive to monitor regularly using traditional field methods. Field-assessed lakes generally are easily accessible and may represent a spatially irregular, non-random sample of a region. We developed a remote monitoring program for Maine lakes >8 ha (1511 lakes) to supplement existing field monitoring programs. We combined Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) brightness values for TM bands 1 (blue) and 3 (red) to estimate water clarity (secchi disk depth) during 1990–2010. Although similar procedures have been applied to Minnesota and Wisconsin lakes, neither state incorporates physical lake variables or watershed characteristics that potentially affect clarity into their models. Average lake depth consistently improved model fitness, and the proportion of wetland area in lake watersheds also explained variability in clarity in some cases. Nine regression models predicted water clarity (R2 = 0.69–0.90) during 1990–2010, with separate models for eastern (TM path 11; four models) and western Maine (TM path 12; five models that captured differences in topography and landscape disturbance. Average absolute difference between model-estimated and observed secchi depth ranged 0.65–1.03 m. Eutrophic and mesotrophic lakes consistently were estimated more accurately than oligotrophic lakes. Our results show that TM bands 1 and 3 can be used to estimate regional lake water clarity outside the Great Lakes Region and that the accuracy of estimates is improved with additional model variables that reflect physical lake characteristics and watershed conditions.

  16. Demonstration of angular anisotropy in the output of Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Duggin, M. J. (Principal Investigator); Lindsay, J.; Piwinski, D. J.; Schoch, L. B.

    1984-01-01

    There is a dependence of TM output (proportional to scene radiance in a manner which will be discussed) upon season, upon cover type and upon view angle. The existence of a significant systematic variation across uniform scenes in p-type (radiometrically and geometrically pre-processed) data is demonstrated. Present pre-processing does remove the effects and the problem must be addressed because the effects are large. While this is in no way attributable to any shortcomings in the thematic mapper, it is an effect which is sufficiently important to warrant more study, with a view to developing suitable pre-processing correction algorithms.

  17. Mapping the Oman Ophiolite using TM data

    NASA Technical Reports Server (NTRS)

    Abrams, Michael

    1987-01-01

    Ophiolite terrains, considered to be the onland occurrences of oceanic crust, host a number of types of mineral deposits: volcanogenic massive sulfides, podiform chromite, and asbestos. Thematic Mapper data for the Semail Ophiolite in Oman were used to separate and map ultramafic lithologies hosting these deposits, including identification of the components of the extrusive volcanic sequence, mapping of serpentinization due to various tectonic processes, and direct identification of gossans. Thematic Mapper data were found to be extremely effective for mapping in this terrain due to the excellent spatial resolution and the presence of spectral bands which allow separation of the pertinent mineralogically caused spectral features associated with the rock types of interest.

  18. LANDSAT-D data format control book. Volume 6, appendix A: Partially processed thematic mapper High Density Tape (HDT-AT)

    NASA Technical Reports Server (NTRS)

    Jai, A.

    1982-01-01

    One of the outputs of the data management system being developed to provide a variety of standard image products from the thematic mapper and the multispectral band scanners on LANDSAT 4, is the partially processed TM data (radiometric corrections applied and geometric correction matrices for two projections appended) which is recorded on a 28-track high density tape. Specifications are presented for the format of the recorded data as well as for the time code and the major and minor frames of the tape. Major frame types, formats, and field definitions are included.

  19. Surface reflectance factor retrieval from Thematic Mapper data

    NASA Technical Reports Server (NTRS)

    Holm, Ronald G.; Jackson, Ray D.; Yuan, Benfan; Moran, M. Susan; Slater, Philip N.

    1989-01-01

    Based on the absolute radiometric calibration of the TM and the use of a radiative transfer program for atmospheric correction, ground reflectances were retrieved for several fields of crops and bare soil in TM bands 1-4 for six TM scenes acquired over a 12-month period. These reflectances were compared to those measured using ground-based and low-altitude, aircraft-mounted radiometers. When, for four TM acquisitions, the comparison was made between areas that had been carefully selected for their high uniformity, the reflectance factors agreed to + or - 0.01 over the reflectance range 0.02-0.55. When the comparison was made for two of the above acquisitions and two others on different dates, for larger areas not carefully selected to be of uniform reflectance, the reflectance factors agreed to + or - 0.02 (1 sigma RMS), over same reflectance range.

  20. Spectral reflectance of surface soils - A statistical analysis

    NASA Technical Reports Server (NTRS)

    Crouse, K. R.; Henninger, D. L.; Thompson, D. R.

    1983-01-01

    The relationship of the physical and chemical properties of soils to their spectral reflectance as measured at six wavebands of Thematic Mapper (TM) aboard NASA's Landsat-4 satellite was examined. The results of performing regressions of over 20 soil properties on the six TM bands indicated that organic matter, water, clay, cation exchange capacity, and calcium were the properties most readily predicted from TM data. The middle infrared bands, bands 5 and 7, were the best bands for predicting soil properties, and the near infrared band, band 4, was nearly as good. Clustering 234 soil samples on the TM bands and characterizing the clusters on the basis of soil properties revealed several clear relationships between properties and reflectance. Discriminant analysis found organic matter, fine sand, base saturation, sand, extractable acidity, and water to be significant in discriminating among clusters.

  1. Analysis of forest disturbance using TM and AVHRR data

    NASA Technical Reports Server (NTRS)

    Spanner, Michael A.; Hlavka, Christine A.; Pierce, Lars L.

    1989-01-01

    A methodology that will be used to determine the proportions of undisturbed, successional vegetation and recently disturbed land cover within coniferous forests using remotely sensed data from the advanced very high resolution radiometer (AVHRR) is presented. The method uses thematic mapper (TM) data to determine the proportions of the three stages of forest disturbance and regrowth for each AVHRR pixel in the sample areas, and is then applied to interpret all AVHRR imagery. Preliminary results indicate that there are predictable relationships between TM spectral response and the disturbance classes. Analysis of ellipse plots from a TM classification of the disturbed forested landscape indicates that the forest classes are separable in the red (0.63-0.69 micron) and near-infrared (0.76-0.90 micron) bands, providing evidence that the proportion of disturbance classes may be determined from AVHRR data.

  2. MetalMapper Demonstration at the Former Camp Beale, CA

    DTIC Science & Technology

    2012-03-01

    2012 2 . REPORT TYPE 3. DATES COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE MetalMapper Demonstration at the Former Camp Beale, CA 5a...SUMMARY REPORT MetalMapper Demonstration at the Former Camp Beale, CA March 2012 Herb Nelson Anne Andrews SERDP & ESTCP...advanced electromagnetic sensor was demonstrated at the former Camp Beale, CA in 2011. Camp Beale was also the site of the first demonstrations of

  3. Live Site Demonstrations: Former Camp Beale Demonstration of MetalMapper Static Data Acquisition and Data Analysis

    DTIC Science & Technology

    2012-05-01

    tilted metamorphic rock . Typically, the surface layer of the soil is a brown gravelly silt with sand, about 4 inches thick. The subsoil is yellowish red...site setup, the placement of 200 seed items for use in measuring the capabilities of the advanced EMI sensors tested, the subsequent collection of...advanced sensors. The second team was responsible for the cued survey of 1,491 of the 2,143 targets using the MetalMapper, one of the advanced

  4. A Landsat-based model for retrieving total suspended solids concentration of estuaries and coasts in China

    NASA Astrophysics Data System (ADS)

    Wang, Chongyang; Chen, Shuisen; Li, Dan; Wang, Danni; Liu, Wei; Yang, Ji

    2017-11-01

    Retrieving total suspended solids (TSS) concentration accurately is essential for sustainable management of estuaries and coasts, which plays a key role in the interaction between hydrosphere, pedosphere and atmosphere. Although many TSS retrieval models have been published, the general inversion method that is applicable to different field conditions is still under research. In order to obtain a TSS remote sensing model that is suitable for estimating TSS concentrations with wide range in estuaries and coasts by Landsat imagery, after reviewing a number of Landsat-based TSS retrieval models and improving a comparatively better one among them, this study developed a quadratic model using the ratio of logarithmic transformation of red band and near-infrared band and logarithmic transformation of TSS concentration (QRLTSS) based on 119 in situ samples collected in 2006-2013 from five regions of China. It was found that the QRLTSS model works well and shows a satisfactory performance. The QRLTSS model based on Landsat TM (Thematic Mapper), ETM+ (Enhanced Thematic Mapper Plus) and OLI (Operational Land Imager) sensors explained about 72 % of the TSS concentration variation (TSS: 4.3-577.2 mg L-1, N = 84, P value < 0.001) and had an acceptable validation accuracy (TSS: 4.5-474 mg L-1, root mean squared error (RMSE) ≤ 25 mg L-1, N = 35). In addition, a threshold method of red-band reflectance (OLI: 0.032, ETM+ and TM: 0.031) was proposed to solve the two-valued issue of the QRLTSS model and to retrieve TSS concentration from Landsat imagery. After a 6S model-based atmospheric correction of Landsat OLI and ETM+ imagery, the TSS concentrations of three regions (Moyangjiang River estuary, Pearl River estuary and Hanjiang River estuary) in Guangdong Province in China were mapped by the QRLTSS model. The results indicated that TSS concentrations in the three estuaries showed large variation ranging from 0.295 to 370.4 mg L-1. Meanwhile we found that TSS concentrations retrieved from Landsat imagery showed good validation accuracies with the synchronous water samples (TSS: 7-160 mg L-1, RMSE: 11.06 mg L-1, N = 22). The further validation from EO-1 Hyperion imagery also showed good performance (in situ synchronous measurement of TSS: 106-220.7 mg L-1, RMSE: 26.66 mg L-1, N = 13) of the QRLTSS model for the area of high TSS concentrations in the Lingding Bay of the Pearl River estuary. Evidently, the QRLTSS model is potentially applied to simulate high-dynamic TSS concentrations of other estuaries and coasts by Landsat imagery, improving the understanding of the spatial and temporal variation of TSS concentrations on regional and global scales. Furthermore, the QRLTSS model can be optimized to establish a regional or unified TSS retrieval model of estuaries and coasts in the world for different satellite sensors with medium- and high-resolution similar to Landsat TM, ETM+ and OLI sensors or with similar red bands and near-infrared bands, such as ALI, HJ-1 A and B, LISS, CBERS, ASTER, ALOS, RapidEye, Kanopus-V, and GF.

  5. Detection of pear thrips damage using satellite imagery data

    Treesearch

    James E. Vogelmann; Barrett N. Rock

    1991-01-01

    This study evaluates the potential of measuring, mapping and monitoring sugar maple damage caused by pear thrips in southern Vermont and northwestern Massachusetts using satellite imagery data. Landsat Thematic Mapper (TM) data were obtained during a major thrips infestation in June 1988, and were compared with satellite data acquired during June 1984 (before pear...

  6. Evaluation of C-band SAR data from SAREX 1992: Tapajos study site

    NASA Technical Reports Server (NTRS)

    Shimabukuro, Yosio Edemir; Filho, Pedro Hernandez; Lee, David Chung Liang; Ahern, F. J.; Paivadossantosfilho, Celio; Rolodealmeida, Rionaldo

    1993-01-01

    As part of the SAREX'92 (South American Radar Experiment), the Tapajos study site, located in Para State, Brazil was imaged by the Canada Center for Remote Sensing (CCRS) Convair 580 SAR system using a C-band frequency in HH and VV polarization and 3 different imaging modes (nadir, narrow, and wide swath). A preliminary analysis of this dataset is presented. The wide swath C-band HH polarized image was enlarged to 1:100,000 in a photographic form for manual interpretation. This was compared with a vegetation map produced primarily from Landsat Thematic Mapper (TM) data and with single-band and color composite images derived from a decomposition analysis of TM data. The Synthetic Aperture Radar (SAR) image shows well the topography and drainage network defining the different geomorphological units, and canopy texture differences which appear to be related to the size and maturity of the forest canopy. Areas of recent clearing of the primary forest can also be identified on the SAR image. The SAR system appears to be a source of information for monitoring tropical forest which is complementary to the Landsat Thematic Mapper.

  7. Variation of River Islands around a Large City along the Yangtze River from Satellite Remote Sensing Images

    PubMed Central

    Shi, Haiyun; Gao, Chao; Dong, Changming; Xia, Changshui; Xu, Guanglai

    2017-01-01

    River islands are sandbars formed by scouring and silting. Their evolution is affected by several factors, among which are runoff and sediment discharge. The spatial-temporal evolution of seven river islands in the Nanjing Section of the Yangtze River of China was examined using TM (Thematic Mapper) and ETM (Enhanced Thematic Mapper)+ images from 1985 to 2015 at five year intervals. The following approaches were applied in this study: the threshold value method, binarization model, image registration, image cropping, convolution and cluster analysis. Annual runoff and sediment discharge data as measured at the Datong hydrological station upstream of Nanjing section were also used to determine the roles and impacts of various factors. The results indicated that: (1) TM/ETM+ images met the criteria of information extraction of river islands; (2) generally, the total area of these islands in this section and their changing rate decreased over time; (3) sediment and river discharge were the most significant factors in island evolution. They directly affect river islands through silting or erosion. Additionally, anthropocentric influences could play increasingly important roles. PMID:28953218

  8. Application of Landsat Thematic Mapper data for coastal thermal plume analysis at Diablo Canyon

    NASA Technical Reports Server (NTRS)

    Gibbons, D. E.; Wukelic, G. E.; Leighton, J. P.; Doyle, M. J.

    1989-01-01

    The possibility of using Landsat Thematic Mapper (TM) thermal data to derive absolute temperature distributions in coastal waters that receive cooling effluent from a power plant is demonstrated. Landsat TM band 6 (thermal) data acquired on June 18, 1986, for the Diablo Canyon power plant in California were compared to ground truth temperatures measured at the same time. Higher-resolution band 5 (reflectance) data were used to locate power plant discharge and intake positions and identify locations of thermal pixels containing only water, no land. Local radiosonde measurements, used in LOWTRAN 6 adjustments for atmospheric effects, produced corrected ocean surface radiances that, when converted to temperatures, gave values within approximately 0.6 C of ground truth. A contour plot was produced that compared power plant plume temperatures with those of the ocean and coastal environment. It is concluded that Landsat can provide good estimates of absolute temperatures of the coastal power plant thermal plume. Moreover, quantitative information on ambient ocean surface temperature conditions (e.g., upwelling) may enhance interpretation of numerical model prediction.

  9. The National Vegetation Classification Standard applied to the remote sensing classification of two semiarid environments

    USGS Publications Warehouse

    Ramsey, Elijah W.; Nelson, G.A.; Echols, D.; Sapkota, S.K.

    2002-01-01

    The National Vegetation Classification Standard (NVCS) was implemented at two US National Park Service (NPS) sites in Texas, the Padre Island National Seashore (PINS) and the Lake Meredith National Recreation Area (LM-NRA), to provide information for NPS oil and gas management plans. Because NVCS landcover classifications did not exist for these two areas prior to this study, we created landcover classes, through intensive ground and aerial reconnaissance, that characterized the general landscape features and at the same time complied with NVCS guidelines. The created landcover classes were useful for the resource management and were conducive to classification with optical remote sensing systems, such as the Landsat Thematic Mapper (TM). In the LMNRA, topographic elevation data were added to the TM data to reduce confusion between cliff, high plains, and forest classes. Classification accuracies (kappa statistics) of 89.9% (0.89) and 88.2% (0.87) in PINS and LMNRA, respectively, verified that the two NPS landholdings were adequately mapped with TM data. Improved sensor systems with higher spectral and spatial resolutions will ultimately refine the broad classes defined in this classification; however, the landcover classifications created in this study have already provided valuable information for the management of both NPS lands. Habitat information provided by the classifications has aided in the placement of inventory and monitoring plots, has assisted oil and gas operators by providing information on sensitive habitats, and has allowed park managers to better use resources when fighting wildland fires and in protecting visitors and the infrastructure of NPS lands.

  10. The National Vegetation Classification Standard applied to the remote sensing classification of two semiarid environments.

    PubMed

    Ramsey, Elijah W; Nelson, Gene A; Echols, Darrell; Sapkota, Sijan K

    2002-05-01

    The National Vegetation Classification Standard (NVCS) was implemented at two US National Park Service (NPS) sites in Texas, the Padre Island National Seashore (PINS) and the Lake Meredith National Recreation Area (LMNRA), to provide information for NPS oil and gas management plans. Because NVCS landcover classifications did not exist for these two areas prior to this study, we created landcover classes, through intensive ground and aerial reconnaissance, that characterized the general landscape features and at the same time complied with NVCS guidelines. The created landcover classes were useful for the resource management and were conducive to classification with optical remote sensing systems, such as the Landsat Thematic Mapper (TM). In the LMNRA, topographic elevation data were added to the TM data to reduce confusion between cliff, high plains, and forest classes. Classification accuracies (kappa statistics) of 89.9% (0.89) and 88.2% (0.87) in PINS and LMNRA, respectively, verified that the two NPS landholdings were adequately mapped with TM data. Improved sensor systems with higher spectral and spatial resolutions will ultimately refine the broad classes defined in this classification; however, the landcover classifications created in this study have already provided valuable information for the management of both NPS lands. Habitat information provided by the classifications has aided in the placement of inventory and monitoring plots, has assisted oil and gas operators by providing information on sensitive habitats, and has allowed park managers to better use resources when fighting wildland fires and in protecting visitors and the infrastructure of NPS lands.

  11. Landsat-D TM application to porphyry copper exploration

    NASA Technical Reports Server (NTRS)

    Abrams, M.; Brown, D.; Sadowski, R.; Lepley, L.

    1982-01-01

    For a number of years Landsat data have been used to locate areas of iron oxide occurrences which might be associated with hydrothermal alteration zones. However, the usefulness of the Landsat data was restricted because of certain limitations of the spectral information provided by Landsat. A new generation multispectral scanner will, therefore, be carried by the fourth Landsat, which is to be launched in July, 1982. This instrument, called the Thematic Mapper (TM), will have seven channels and provide data with 30 m spatial resolution. Two of the spectral channels (1.6 micron and 2.2 micron) should allow detection of hydrous minerals. Possible applications of Landsat-D TM data for copper exploration were studied on the basis of a comparison of Landsat data with simulated TM data acquired using an aircraft scanner instrument. Three porphyr copper deposits in Arizona were selected for the study. It is concluded that the new Landsat-D TM scanner will provide Exploration geologists with a new improved tool for surveying mineral resources on a global basis.

  12. Comparison of the information content of data from the LANDSAT 4 Thematic Mapper and the multispectral scanner

    NASA Technical Reports Server (NTRS)

    Price, J. C.

    1984-01-01

    Evaluation of information contained in data from the visible and near-IR channels of LANDSAT 4 TM and MSS for five agricultural scenes shows that the TM provides a significant advance in information gathering capability as expressed in terms of bits per pixel or bits per unit area. The six reflective channels of the TM acquire 18 bits of information per pixel out of a possible 48 bits, while the four MSS channels acquire 10 bits of information per pixel out of a possible 28 bits. Thus the TM and MSS are equally efficient in gathering information (18/48 to approximately 10/28), contrary to the expected tendency toward lower efficiency as spatial resolution is improved and spectral channels are added to an observing system. The TM thermal IR data appear to be of interest mainly for mapping water bodies, which do not change temperature during the day, for assessing surface moisture, and for monitoring thermal features associated with human activity.

  13. Interpreting forest and grassland biome productivity utilizing nested scales of image resolution and biogeographical analysis

    NASA Technical Reports Server (NTRS)

    Iverson, L. R.; Olson, J. S.; Risser, P. G.; Treworgy, C.; Frank, T.; Cook, E.; Ke, Y.

    1986-01-01

    Data acquisition, initial site characterization, image and geographic information methods available, and brief evaluations of first-year for NASA's Thematic Mapper (TM) working group are presented. The TM and other spectral data are examined in order to relate local, intensive ecosystem research findings to estimates of carbon cycling rates over wide geographic regions. The effort is to span environments ranging from dry to moist climates and from good to poor site quality using the TM capability, with and without the inclusion of geographic information system (GIS) data, and thus to interpret the local spatial pattern of factors conditioning biomass or productivity. Twenty-eight TM data sets were acquired, archived, and evaluated. The ERDAS image processing and GIS system were installed on the microcomputer (PC-AT) and its capabilities are being investigated. The TM coverage of seven study areas were exported via ELAS software on the Prime to the ERDAS system. Statistical analysis procedures to be used on the spectral data are being identified.

  14. Detection of soil erosion within pinyon-juniper woodlands using Thematic Mapper (TM) satellite data

    NASA Technical Reports Server (NTRS)

    Price, Kevin P.; Ridd, Merrill K.

    1991-01-01

    The sensitivity of Landsat TM data for detecting soil erosion within pinyon-juniper woodlands, and the potential of the spectral data for assigning the universal soil loss equation (USLE) crop managemnent (C) factor to varying cover types within the woodlands are assessed. Results show greatly accelerated rates of soil erosion on pinyon-juniper sites. Percent cover by pinyon-juniper, total soil-loss, and total nonliving ground cover accounted for nearly 70 percent of the variability in TM channels 2, 3, 4, and 5. TM spectral data were consistently better predictors of soil erosion than the biotic and abiotic field variables. Satellite data were more sensitive to vegetation variation than the USLE C factor, and USLE was found to be a poor predictor of soil loss on pinyon-juniper sites. A new string-to-ground soil erosion prediction technique is introduced.

  15. Assessment of Thematic Mapper band-to-band registration by the block correlation method

    NASA Technical Reports Server (NTRS)

    Card, D. H.; Wrigley, R. C.; Mertz, F. C.; Hall, J. R.

    1983-01-01

    Rectangular blocks of pixels from one band image were statistically correlated against blocks centered on identical pixels from a second band image. The block pairs were shifted in pixel increments both vertically and horizontally with respect to each other and the correlation coefficient to the maximum correlation was taken as the best estimate of registration error for each block pair. For the band combinations of the Arkansas scene studied, the misregistration of TM spectral bands within the noncooled focal plane lie well within the 0.2 pixel target specification. Misregistration between the middle IR bands is well within this specification also. The thermal IR band has an apparent misregistration with TM band 7 of approximately 3 pixels in each direction. The TM band 3 has a misregistration of approximately 0.2 pixel in the across-scan direction and 0.5 pixel in the along-scan direction, with both TM bands 5 and 7.

  16. Discrimination of lithologic units of the basis of botanical associations and Landsat TM spectral data in the Ridge and Valley province, Pennsylvania

    NASA Technical Reports Server (NTRS)

    Price, C. V.; Birnie, R. W.; Logan, T. L.; Rock, B. N.; Parrish, J.

    1986-01-01

    Data collected on November 2, 1982 by the Landsat 4 Thematic Mapper (TM) over 72 forested sites in the Ridge and Valley province in Pennsylvania were compared with corresponding botanical and site variable field data. The analysis revealed that both the TM and the botanical data sets can be divided into four groups based on lithology and aspect. Lithology, which is clearly the dominant controlling factor in both sets of data, determines elevation and slope. The aspect (essentially north- and south-facing slope) determines the intensity of solar illumination which affects both the moisture available to the vegetation and the intensity of reflected radiance. Each of the four lithologic/aspect units support unique forest associations, clearly separable both on the basis of ground-based 1/10-acre forest association surveys and on the basis of their TM spectral signatures.

  17. Assessment of Thematic Mapper Band-to-band Registration by the Block Correlation Method

    NASA Technical Reports Server (NTRS)

    Card, D. H.; Wrigley, R. C.; Mertz, F. C.; Hall, J. R.

    1985-01-01

    Rectangular blocks of pixels from one band image were statistically correlated against blocks centered on identical pixels from a second band image. The block pairs were shifted in pixel increments both vertically and horizontally with respect to each other and the correlation coefficient to the maximum correlation was taken as the best estimate of registration error for each block pair. For the band combinations of the Arkansas scene studied, the misregistration of TM spectral bands within the noncooled focal plane lie well within the 0.2 pixel target specification. Misregistration between the middle IR bands is well within this specification also. The thermal IR band has an apparent misregistration with TM band 7 of approximately 3 pixels in each direction. The TM band 3 has a misregistration of approximately 0.2 pixel in the across-scan direction and 0.5 pixel in the along-scan direction, with both TM bands 5 and 7.

  18. LANDSAT TM image data quality analysis for energy-related applications

    NASA Technical Reports Server (NTRS)

    Wukelic, G. E.; Foote, H. P.; Petrie, G. M.; Barnard, J. C.; Eliason, J. R.

    1985-01-01

    This project represents a no-cost agreement between National Aeronautic Space Administration Goddard Space Flight Center (NASA GSFC) and the Pacific Northwest Laboratory (PNL). PNL is a Department of Energy (DOE) national laboratory operted by Battelle Memorial Institute at its Pacific Northwest Laboratories in Richland, Washington. The objective of this investigation is to evaluate LANDSAT's thematic mapper (TM) data quality and utility characteristics from an energy research and technological perspective. Of main interest is the extent to which repetitive TM data might support DOE efforts relating to siting, developing, and monitoring energy-related facilities, and to basic geoscientific research. The investigation utilizes existing staff and facility capabilities, and ongoing programmatic activities at PNL and other DOE national laboratories to cooperatively assess the potential usefulness of the improved experimental TM data. The investigation involves: (1) both LANDSAT 4 and 5 TM data, (2) qualitative and quantitative use consideration, and 3) NASA P (corrected) and A (uncorrected) CCT analysis for a variety of sites of DOE interest. Initial results were presented at the LANDSAT Investigator's Workshops and at specialized LANDSAT TM sessions at various conferences.

  19. Change Detection Analysis in Urban and Suburban Areas Using Landsat Thematic Mapper data: Case of Huntsville, Alabama

    NASA Technical Reports Server (NTRS)

    Kuan, Dana; Fahsi, A.; Steinfeld S.; Coleman, T.

    1998-01-01

    Two Landsat Thematic Mapper (TM) images, from July 1984 and July 1992, were used to identify land use/cover changes in the urban and suburban fringe of the city of Huntsville, Alabama. Image difference was the technique used to quantify the change between the two dates. The eight-year period showed a 16% change, mainly from agricultural lands to urban areas generated by the settlement of industrial, commercial, and residential areas. Visual analysis of the change map (i.e., difference image) supported this phenomenon by showing that most changes were occurring in the vicinity of the major roads and highways across the city.

  20. OMPS TC EDR Algorithm: Improvement and Verification

    NASA Astrophysics Data System (ADS)

    Novicki, M.; Sen, B.; Hao, X.; Qu, J. J.

    2009-12-01

    The Ozone Mapper and Profiler Suite (OMPS) is scheduled to be launched on the NPOESS Preparatory Project (NPP) platform in early 2011. The OMPS will continue monitoring ozone from space, using three instruments, namely the Total Column Mapper (heritage: TOMS), the Nadir Profiler (heritage: SBUV) and the Limb Profiler (heritage: SOLSE/LORE). The Total Column Mapper (TC) sensor images the Earth through a slit, nadir-cell horizontally spaced at 49.5 km cross-track with an along-track reporting interval of 50 km. The total field of view (FOV) cross track is 110 degrees to provide daily global coverage. The TC sensor, a grating spectrometer, provides 0.45 nm spectral sampling across the wavelength range of 300-380 nm. The calibration stability, which is essential to enable long-term ozone monitoring, is maintained by periodic observations of the Sun, using a diffuser to redirect the solar irradiance into the sensor. We describe the data analysis method being presently implemented to retrieve the total column ozone Earth Data Record (EDR) from the radiance data measured by the TC sensor. We discuss the software changes, the test data used to verify the functional performance and the test results.

  1. The Integrated Radiation Mapper Assistant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlton, R.E.; Tripp, L.R.

    1995-03-01

    The Integrated Radiation Mapper Assistant (IRMA) system combines state-of-the-art radiation sensors and microprocessor based analysis techniques to perform radiation surveys. Control of the survey function is from a control station located outside the radiation thus reducing time spent in radiation areas performing radiation surveys. The system consists of a directional radiation sensor, a laser range finder, two area radiation sensors, and a video camera mounted on a pan and tilt platform. THis sensor package is deployable on a remotely operated vehicle. The outputs of the system are radiation intensity maps identifying both radiation source intensities and radiation levels throughout themore » room being surveyed. After completion of the survey, the data can be removed from the control station computer for further analysis or archiving.« less

  2. Evaluating MODIS snow products for modelling snowmelt runoff: case study of the Rio Grande headwaters

    USDA-ARS?s Scientific Manuscript database

    Snow-covered area (SCA) is a key variable in the Snowmelt-Runoff Model (SRM). Landsat Thematic Mapper (TM) or Operational Land Imager (OLI) provide remotely sensed data at an appropriate spatial resolution for mapping SCA in small headwater basins, but the temporal resolution of the data is low and ...

  3. Forest mapping of Central America and Mexico with AVHRR data

    Treesearch

    Keith B. Lannom

    2001-01-01

    Concerns over changes in global forest resource distributions have prompted a number of studies to examine and map forest areas at continental scales with various types of satillite data. The work described here details the use of Advanced Very High Resolution Radiometer (AVHRR) data in concert with Landsat Thematic Mapper (TM) and Systeme Probatoire d'...

  4. Use of Thematic Mapper for water quality assessment

    NASA Technical Reports Server (NTRS)

    Horn, E. M.; Morrissey, L. A.

    1984-01-01

    The evaluation of simulated TM data obtained on an ER-2 aircraft at twenty-five predesignated sample sites for mapping water quality factors such as conductivity, pH, suspended solids, turbidity, temperature, and depth, is discussed. Using a multiple regression for the seven TM bands, an equation is developed for the suspended solids. TM bands 1, 2, 3, 4, and 6 are used with logarithm conductivity in a multiple regression. The assessment of regression equations for a high coefficient of determination (R-squared) and statistical significance is considered. Confidence intervals about the mean regression point are calculated in order to assess the robustness of the regressions used for mapping conductivity, turbidity, and suspended solids, and by regressing random subsamples of sites and comparing the resultant range of R-squared, cross validation is conducted.

  5. Landsat TM memory effect characterization and correction

    USGS Publications Warehouse

    Helder, D.; Boncyk, W.; Morfitt, R.

    1997-01-01

    Before radiometric calibration of Landsat Thematic Mapper (TM) data can be done accurately, it is necessary to minimize the effects of artifacts present in the data that originate in the instrument's signal processing path. These artifacts have been observed in downlinked image data since shortly after launch of Landsat 4 and 5. However, no comprehensive work has been done to characterize all the artifacts and develop methods for their correction. In this paper, the most problematic artifact is discussed: memory effect (ME). Characterization of this artifact is presented, including the parameters necessary for its correction. In addition, a correction algorithm is described that removes the artifact from TM imagery. It will be shown that this artifact causes significant radiometry errors, but the effect can be removed in a straightforward manner.

  6. BOREAS Level-3s SPOT Imagery: Scaled At-sensor Radiance in LGSOWG Format

    NASA Technical Reports Server (NTRS)

    Strub, Richard; Nickeson, Jaime; Newcomer, Jeffrey A.; Hall, Forrest G. (Editor); Cihlar, Josef

    2000-01-01

    For BOReal Ecosystem-Atmosphere Study (BOREAS), the level-3s Satellite Pour l'Observation de la Terre (SPOT) data, along with the other remotely sensed images, were collected in order to provide spatially extensive information over the primary study areas. This information includes radiant energy, detailed land cover, and biophysical parameter maps such as Fraction of Photosynthetically Active Radiation (FPAR) and Leaf Area Index (LAI). The SPOT images acquired for the BOREAS project were selected primarily to fill temporal gaps in the Landsat Thematic Mapper (TM) image data collection. CCRS collected and supplied the level-3s images to BOREAS Information System (BORIS) for use in the remote sensing research activities. Spatially, the level-3s images cover 60- by 60-km portions of the BOREAS Northern Study Area (NSA) and Southern Study Area (SSA). Temporally, the images cover the period of 17-Apr-1994 to 30-Aug-1996. The images are available in binary image format files. Due to copyright issues, the SPOT images may not be publicly available.

  7. Extending airborne electromagnetic surveys for regional active layer and permafrost mapping with remote sensing and ancillary data, Yukon Flats ecoregion, central Alaska

    USGS Publications Warehouse

    Pastick, Neal J.; Jorgenson, M. Torre; Wylie, Bruce K.; Minsley, Burke J.; Ji, Lei; Walvoord, Michelle Ann; Smith, Bruce D.; Abraham, Jared D.; Rose, Joshua R.

    2013-01-01

    Machine-learning regression tree models were used to extrapolate airborne electromagnetic resistivity data collected along flight lines in the Yukon Flats Ecoregion, central Alaska, for regional mapping of permafrost. This method of extrapolation (r = 0.86) used subsurface resistivity, Landsat Thematic Mapper (TM) at-sensor reflectance, thermal, TM-derived spectral indices, digital elevation models and other relevant spatial data to estimate near-surface (0–2.6-m depth) resistivity at 30-m resolution. A piecewise regression model (r = 0.82) and a presence/absence decision tree classification (accuracy of 87%) were used to estimate active-layer thickness (ALT) (< 101 cm) and the probability of near-surface (up to 123-cm depth) permafrost occurrence from field data, modelled near-surface (0–2.6 m) resistivity, and other relevant remote sensing and map data. At site scale, the predicted ALTs were similar to those previously observed for different vegetation types. At the landscape scale, the predicted ALTs tended to be thinner on higher-elevation loess deposits than on low-lying alluvial and sand sheet deposits of the Yukon Flats. The ALT and permafrost maps provide a baseline for future permafrost monitoring, serve as inputs for modelling hydrological and carbon cycles at local to regional scales, and offer insight into the ALT response to fire and thaw processes.

  8. Multispectral scanner data applications evaluation. Volume 2: Sensor system study. [thematic mapper for earth resources application

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The optimization of a thematic mapper for earth resources application is discussed in terms of cost versus performance. Performance tradeoffs and the cost impact are analyzed. The instrument design and radiometric performance are also described. The feasibility of a radiative cooler design for a scanning spectral radiometer is evaluated along with the charge coupled multiplex operation. Criteria for balancing the cost and complexity of data acquisition instruments against the requirements of the user, and a pushbroom scanner version of the thematic mapper are presented.

  9. Simulation of Thematic Mapper performance as a function of sensor scanning parameters

    NASA Technical Reports Server (NTRS)

    Johnson, R. H.; Shah, N. J.; Schmidt, N. F.

    1975-01-01

    The investigation and results of the Thematic Mapper Instrument Performance Study are described. The Thematic Mapper is the advanced multispectral scanner initially planned for the Earth Observation Satellite and now planned for LANDSAT D. The use of existing digital airborne scanner data obtained with the Modular Multispectral Scanner (M2S) at Bendix provided an opportunity to simulate the effects of variation of design parameters of the Thematic Mapper. Analysis and processing of this data on the Bendix Multispectral Data Analysis System were used to empirically determine categorization performance on data generated with variations of the sampling period and scan overlap parameters of the Thematic Mapper. The Bendix M2S data, with a 2.5 milliradian instantaneous field of view and a spatial resolution (pixel size) of 10-m from 13,000 ft altitude, allowed a direct simulation of Thematic Mapper data with a 30-m resolution. The flight data chosen were obtained on 30 June 1973 over agricultural test sites in Indiana.

  10. Assessment of wetland productive capacity from a remote-sensing-based model - A NASA/NMFS joint research project

    NASA Technical Reports Server (NTRS)

    Butera, M. K.; Frick, A. L.; Browder, J.

    1983-01-01

    NASA and the U.S. National Marine Fisheries Service have undertaken the development of Landsat Thematic Mapper (TM) technology for the evaluation of the usefulness of wetlands to estuarine fish and shellfish production. Toward this end, a remote sensing-based Productive Capacity model has been developed which characterizes the biological and hydrographic features of a Gulf Coast Marsh to predict detrital export. Regression analyses of TM simulator data for wetland plant production estimation are noted to more accurately estimate the percent of total vegetative cover than biomass, indicating that a nonlinear relationship may be involved.

  11. Implications of information from LANDSAT-4 for private industry

    NASA Technical Reports Server (NTRS)

    Everett, J. R.; Dykstra, J. D. (Principal Investigator)

    1983-01-01

    The broader spectral coverage and higher resolution of LANDSAT-4 Thematic Mapper (TM) data open the door for identification from space of spectral phenomena associated with mineralization and microseepage of hydrocarbon. Digitally enhanced image products generated from TM data allow the mapping of many major and minor structural features that mark or influence emplacement of mineralization and accumulation of hydrocarbons. These improvements in capabilities over multispectral scanner data should accelerate the acceptance and integration of satellite data as a routinely used exploration tool that allows rapid examination of large areas in considerable detail. Imagery of Southern Ontario, Canada as well as of Cement, Oklahoma and Death Valley, California is discussed.

  12. Analysis of the quality of image data acquired by the LANDSAT-4 thematic mapper and multispectral scanners. [Central Valley, California

    NASA Technical Reports Server (NTRS)

    Colwell, R. N. (Principal Investigator)

    1983-01-01

    Image products and numeric data were extracted from both TM and MSS data in an effort to evaluate the quality of these data for interpreting major agricultural resources and conditions in California's Central Valley. The utility of TM data appears excellent for meeting most of the inventory objectives of the agricultural resource specialist. These data should be extremely valuable for crop type and area proportion estimation, for updating agricultural land use survey maps at 1:24,000-scale and smaller, for field boundary definition, and for determining the size and location of individual farmsteads.

  13. Evaluation of radiometric and geometric characteristics of LANDSAT-D imaging system

    NASA Technical Reports Server (NTRS)

    Bender, L. U.; Podwysocki, M. H.; Rowan, L.; Salisbury, J. (Principal Investigator)

    1983-01-01

    Problems, accomplishments, and significant results associated with the evaluation of the LANDSAT-D thematic mapper system are outlined. The higher resolution (over MSS) causes the TM data to approach more closely the quality of high altitude photographs. Thus far, it appears that the data can be used for map inspection and in certain instances for limited map revision. Image maps can be made at a scale of 1:100,000 and perhaps up to 1:62,500. It was also shown that TM data can help locate rocks containing minerals with high hydroxol content, such as clays, gypsum, alunite, and sericite.

  14. Fiber-optic thermometry using thermal radiation from Tm end doped SiO{sub 2} fiber sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morita, Kentaro; Katsumata, Toru; Komuro, Shuji

    2014-04-15

    Fiber-optic thermometry based on temperature dependence of thermal radiation from Tm{sup 3+} ions was studied using Tm end doped SiO{sub 2} fiber sensor. Visible light radiation peaks due to f-f transition of Tm{sup 3+} ion were clearly observed at λ = 690 and 790 nm from Tm end doped SiO{sub 2} fibers sensor at the temperature above 600 °C. Thermal radiation peaks are assigned with f-f transition of Tm{sup 3+} ion, {sup 1}D{sub 2}-{sup 3}H{sub 6}, and {sup 1}G{sub 4}-{sup 3}H{sub 6}. Peak intensity of thermal radiation from Tm{sup 3+} ion increases with temperature. Intensity ratio of thermal radiation peaks atmore » λ = 690 nm against that at λ = 790 nm, I{sub 790/690}, is suitable for the temperature measurement above 750 °C. Two-dimensional temperature distribution in a flame is successfully evaluated by Tm end doped SiO{sub 2} fiber sensor.« less

  15. Lightning mapper sensor design study

    NASA Technical Reports Server (NTRS)

    Eaton, L. R.; Poon, C. W.; Shelton, J. C.; Laverty, N. P.; Cook, R. D.

    1983-01-01

    World-wide continuous measurement of lightning location, intensity, and time during both day and night is to be provided by the Lightning Mapper (LITMAP) instrument. A technology assessment to determine if the LITMAP requirements can be met using existing sensor and electronic technologies is presented. The baseline concept discussed in this report is a compromise among a number of opposing requirements (e.g., ground resolution versus array size; large field of view versus narrow bandpass filter). The concept provides coverage for more than 80 percent of the lightning events as based on recent above-cloud NASA/U2 lightning measurements.

  16. Candidate configuration trade study, Stellar-inertial Measurement Systems (SIMS) for an Earth Observation Satellite (EOS)

    NASA Technical Reports Server (NTRS)

    Ogletree, G.; Coccoli, J.; Mckern, R.; Smith, M.; White, R.

    1972-01-01

    The results of analytical and simulation studies of the stellar-inertial measurement system (SIMS) for an earth observation satellite are presented. Subsystem design analyses and sensor design trades are reported. Three candidate systems are considered: (1) structure-mounted gyros with structure-mounted star mapper, (2) structure-mounted gyros with gimbaled star tracker, and (3) gimbaled gyros with structure-mounted star mapper. The purpose of the study is to facilitate the decisions pertaining to gimbaled versus structure-mounted gyros and star sensors, and combinations of systems suitable for the EOS satellite.

  17. Completion of the 2011 National Land Cover Database for the Conterminous United States – Representing a Decade of Land Cover Change Information

    EPA Science Inventory

    The National Land Cover Database (NLCD) provides nationwide data on land cover and land cover change at the native 30-m spatial resolution of the Landsat Thematic Mapper (TM). The database is designed to provide five-year cyclical updating of United States land cover and associat...

  18. Evaluation of novel thermally enhanced spectral indices for mapping fire perimeters and comparisons with fire atlas data

    Treesearch

    Z.A Holden; P. Morgan; A.M.S. Smith; M Rollins; P.E. Gessler

    2005-01-01

    We evaluated the potential of two novel thermally enhanced Landsat Thematic Mapper (TM)-derived spectral indices for discriminating burned areas and for producing fire perimeter data (as a potential surrogate to digital fire atlas data) within two wildland fires (1985 and 1993) in ponderosa pine (Pinus ponderosa) forests of the Gila Wilderness, New...

  19. Remote sensing research for agricultural applications

    NASA Technical Reports Server (NTRS)

    Colwell, R. N. (Principal Investigator)

    1983-01-01

    The thematic mapper simulator (TMS) flown by the U-2/ER-2 aircraft is being used as a surrogate for LANDSAT-4TM data. Progress is reported on spectral data acquisition including TMS, color infrared high altitude aerial photography, and LANDSAT 3 MSS and ground data collection to support classification and testing. A test site in San Joaquin County was selected for analysis.

  20. Feature level fusion for enhanced geological mapping of ophiolile complex using ASTER and Landsat TM data

    NASA Astrophysics Data System (ADS)

    Pournamdari, M.; Hashim, M.

    2014-02-01

    Chromite ore deposit occurrence is related to ophiolite complexes as a part of the oceanic crust and provides a good opportunity for lithological mapping using remote sensing data. The main contribution of this paper is a novel approaches to discriminate different rock units associated with ophiolite complex using the Feature Level Fusion technique on ASTER and Landsat TM satellite data at regional scale. In addition this study has applied spectral transform approaches, consisting of Spectral Angle Mapper (SAM) to distinguish the concentration of high-potential areas of chromite and also for determining the boundary between different rock units. Results indicated both approaches show superior outputs compared to other methods and can produce a geological map for ophiolite complex rock units in the arid and the semi-arid region. The novel technique including feature level fusion and Spectral Angle Mapper (SAM) discriminated ophiolitic rock units and produced detailed geological maps of the study area. As a case study, Sikhoran ophiolite complex located in SE, Iran has been selected for image processing techniques. In conclusion, a suitable approach for lithological mapping of ophiolite complexes is demonstrated, this technique contributes meaningfully towards economic geology in terms of identifying new prospects.

  1. Satellite Remote Sensing For Aluminum And Nickel Laterites

    NASA Astrophysics Data System (ADS)

    Henderson, Frederick B.; Penfield, Glen T.; Grubbs, Donald K.

    1984-08-01

    The new LANDSAT-4,-5/Thematic Mapper (TM) land observational satellite remote sensing systems are providing dramatically new and important short wave infrared (SWIR) data, which combined with Landsat's Multi-Spectral Scanner (MSS) visible (VIS), very near infrared (VNIR), and thermal infrared (TI) data greatly improves regional geological mapping on a global scale. The TM will significantly improve clay, iron oxide, aluminum, and nickel laterite mapping capabilities over large areas of the world. It will also improve the ability to discriminate vegetation stress and species distribution associated with lateritic environments. Nickel laterites on Gag Island, Indonesia are defined by MSS imagery. Satellite imagery of the Cape Bougainville and the Darling Range, Australia bauxite deposits show the potential use of MSS data for exploration and mining applications. Examples of satellite syn-thetic aperture radar (SAR) for Jamaica document the use of this method for bauxite exploration. Thematic Mapper data will be combined with the French SPOT satellite's high spatial resolution and stereoscopic digital data, and U.S., Japanese, European, and Canadian Synthetic Aperture Radar (SAR) data to assist with logistics, mine development, and environ-mental concerns associated with aluminum and nickel lateritic deposits worldwide.

  2. Estimating net solar radiation using Landsat Thematic Mapper and digital elevation data

    NASA Technical Reports Server (NTRS)

    Dubayah, R.

    1992-01-01

    A radiative transfer algorithm is combined with digital elevation and satellite reflectance data to model spatial variability in net solar radiation at fine spatial resolution. The method is applied to the tall-grass prairie of the 16 x 16 sq km FIFE site (First ISLSCP Field Experiment) of the International Satellite Land Surface Climatology Project. Spectral reflectances as measured by the Landsat Thematic Mapper (TM) are corrected for atmospheric and topographic effects using field measurements and accurate 30-m digital elevation data in a detailed model of atmosphere-surface interaction. The spectral reflectances are then integrated to produce estimates of surface albedo in the range 0.3-3.0 microns. This map of albedo is used in an atmospheric and topographic radiative transfer model to produce a map of net solar radiation. A map of apparent net solar radiation is also derived using only the TM reflectance data, uncorrected for topography, and the average field-measured downwelling solar irradiance. Comparison with field measurements at 10 sites on the prairie shows that the topographically derived radiation map accurately captures the spatial variability in net solar radiation, but the apparent map does not.

  3. Determining the area of influence of depression cone in the vicinity of lignite mine by means of triangle method and LANDSAT TM/ETM+ satellite images.

    PubMed

    Zawadzki, Jarosław; Przeździecki, Karol; Miatkowski, Zygmunt

    2016-01-15

    Problems with lowering of water table are common all over the world. Intensive pumping of water from aquifers for consumption, irrigation, industrial or mining purposes often causes groundwater depletion and results in the formation of cone of depression. This can severely decrease water pressure, even over vast areas, and can create severe problems such as degradation of agriculture or natural environment sometimes depriving people and animals of water supply. In this paper, the authors present a method for determining the area of influence of a groundwater depression cone resulting from prolonged drainage, by means of satellite images in optical, near infrared and thermal infrared bands from TM sensor (Thematic Mapper) and ETM+ sensor (Enhanced Thematic Mapper +) placed on Landsat 5 and Landsat 7 satellites. The research area was Szczercowska Valley (Pol. Kotlina Szczercowska), Central Poland, located within a range of influence of a groundwater drainage system of the lignite coal mine in Belchatow. It is the biggest lignite coal mine in Poland and one of the largest in Europe exerting an enormous impact on the environment. The main method of satellite data analysis for determining soil moisture, was the so-called triangle method. This method, based on TVDI (Temperature Vegetation Dryness Index) was supported by additional spatial analysis including ordinary kriging used in order to combine fragmentary information obtained from areas covered by meadows. The results obtained are encouraging and confirm the usefulness of the triangle method not only for soil moisture determination but also for assessment of the temporal and spatial changes in the area influenced by the groundwater depression cone. The range of impact of the groundwater depression cone determined by means of above-described remote sensing analysis shows good agreement with that determined by ground measurements. The developed satellite method is much faster and cheaper than in-situ measurements, and allows for systematic monitoring of the vast area in the vicinity of Belchatow lignite mine. Besides, this method could be useful as a helper in in-situ measurement allowing a significant reduction of the number of in-situ measurements by performing them only within problematic areas. Hence, the triangle method can be used as an effective supplement to field measurements. Although the research area is located in Poland, in the vicinity of lignite mine, the method of observation of depression cones provided in this study is universal and effective, and therefore could also be useful to an international audience. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Determining successional stage of temperate coniferous forests with Landsat satellite data

    NASA Technical Reports Server (NTRS)

    Fiorella, Maria; Ripple, William J.

    1995-01-01

    Thematic Mapper (TM) digital imagery was used to map forest successional stages and to evaluate spectral differences between old-growth and mature forests in the central Cascade Range of Oregon. Relative sun incidence values were incorporated into the successional stage classification to compensate for topographic induced variation. Relative sun incidence improved the classification accuracy of young successional stages, but did not improve the classification accuracy of older, closed canopy forest classes or overall accuracy. TM bands 1, 2, and 4; the normalized difference vegetation index (NDVI); and TM 4/3, 4/5, and 4/7 band ratio values for old-growth forests were found to be significantly lower than the values of mature forests (P less than or equal to 0.010). Wetness and the TM 4/5 and 4/7 band ratios all had low correlations to relative sun incidence (r(exp 2) less than or equal to 0.16). The TM 4/5 band ratio was named the 'structural index' (SI) because of its ability to distinguish between mature and old-growth forests and its simplicity.

  5. A comparison of LANDSAT TM to MSS imagery for detecting submerged aquatic vegetation in lower Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Ackleson, S. G.; Klemas, V.

    1985-01-01

    LANDSAT Thematic Mapper (TM) and Multispectral Scanner (MSS) imagery generated simultaneously over Guinea Marsh, Virginia, are assessed in the ability to detect submerged aquatic, bottom-adhering plant canopies (SAV). An unsupervised clustering algorithm is applied to both image types and the resulting classifications compared to SAV distributions derived from color aerial photography. Class confidence and accuracy are first computed for all water areas and then only shallow areas where water depth is less than 6 feet. In both the TM and MSS imagery, masking water areas deeper than 6 ft. resulted in greater classification accuracy at confidence levels greater than 50%. Both systems perform poorly in detecting SAV with crown cover densities less than 70%. On the basis of the spectral resolution, radiometric sensitivity, and location of visible bands, TM imagery does not offer a significant advantage over MSS data for detecting SAV in Lower Chesapeake Bay. However, because the TM imagery represents a higher spatial resolution, smaller SAV canopies may be detected than is possible with MSS data.

  6. Use of Landsat Thematic Mapper images in regional correlation of syntectonic strata, Colorado river extensional corridor, California and Arizona

    NASA Technical Reports Server (NTRS)

    Beratan, K. K.; Blom, R. G.; Crippen, R. E.; Nielson, J. E.

    1990-01-01

    Enhanced Landsat TM images were used in conjunction with field work to investigate the regional correlation of Miocene rocks in the Colorado River extensional corridor of California and Arizona. Based on field investigations, four sequences of sedimentary and volcanic strata could be recognized in the Mohave Mountains (Arizona) and the eastern Whipple Mountains (California), which display significantly different relative volumes and organization of lithologies. The four sequences were also found to have distinctive appearances on the TM image. The recognition criteria derived from field mapping and image interpretation in the Mohave Mountains and Whipple Mountains were applied to an adjacent area in which stratigraphic affinities were less well known. The results of subsequent field work confirmed the stratigraphic and structural relations suggested by the Tm image analysis.

  7. Analysis of multiple incidence angle SIR-B data for determining forest stand characteristics

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M.; Lozano-Garcia, D. F.; Gillespie, D. D.; Mueller, P. W.; Ruzek, M. J.

    1986-01-01

    For the first time in the U.S. space program, digital synthetic aperture radar (SR) data were obtained from different incidence angles during Space Shuttle Mission 41-G. Shuttle Imaging Radar-B (SIR-B) data were obtained at incidence angles of 58 deg., 45 deg., and 28 deg., on October 9, 10, and 11, 1984, respectively, for a predominantly forested study area in northern Florida. Cloud-free LANDSAT Thematic Mapper (T.M.) data were obtained over the same area on October 12. The SIR-B data were processed and then digitally registered to the LANDSAT T.M. data by scientists at the Jet Propulsion Laboratory. This is the only known digitally registered SIR-B and T.M. data set for which the data were obtained nearly simultaneously. The data analysis of this information is discussed.

  8. Determining successional stage of temperate coniferous forests with Landsat satellite data

    NASA Technical Reports Server (NTRS)

    Fiorella, Maria; Ripple, William J.

    1993-01-01

    Thematic Mapper (TM) digital imagery was used to map forest successional stages and to evaluate spectral differences between old-growth and mature forests in the central Cascade Range of Oregon. Relative sun incidence values were incorporated into the successional stage classification to compensate for topographic induced variation. Relative sun incidence improved the classification accuracy of young successional stages, but did not improve the classification accuracy of older, closed canopy forest classes or overall accuracy. TM bands 1, 2, and 4; the normalized difference vegetation index; and TM 4/3, 4/5, and 4/7 band ratio values for o|d-growth forests were found to be significantly lower than the values of mature forests. The Tasseled Cap features of brightness, greenness, and wetness also had significantly lower old-growth values as compared to mature forest values .

  9. Procedures for using signals from one sensor as substitutes for signals of another

    NASA Technical Reports Server (NTRS)

    Suits, G.; Malila, W.; Weller, T.

    1988-01-01

    Long-term monitoring of surface conditions may require a transfer from using data from one satellite sensor to data from a different sensor having different spectral characteristics. Two general procedures for spectral signal substitution are described in this paper, a principal-components procedure and a complete multivariate regression procedure. They are evaluated through a simulation study of five satellite sensors (MSS, TM, AVHRR, CZCS, and HRV). For illustration, they are compared to another recently described procedure for relating AVHRR and MSS signals. The multivariate regression procedure is shown to be best. TM can accurately emulate the other sensors, but they, on the other hand, have difficulty in accurately emulating its shortwave infrared bands (TM5 and TM7).

  10. Analysis and Evaluation of the LANDSAT-4 MSS and TM Sensors and Ground Data Processing Systems: Early Results

    NASA Technical Reports Server (NTRS)

    Bernstein, R.; Lotspiech, J. B.

    1985-01-01

    The MSS and TM sensor performances were evaluated by studying both the sensors and the characteristics of the data. Information content analysis, image statistics, band-to-band registration, the presence of failed or failing detectors, and sensor resolution are discussed. The TM data were explored from the point of view of adequacy of the ground processing and improvements that could be made to compensate for sensor problems and deficiencies. Radiometric correction processing, compensation for a failed detector, and geometric correction processing are also considered.

  11. Alaska: Glaciers of Kenai Fjords National Park and Katmai National Park and Preserve

    NASA Technical Reports Server (NTRS)

    Giffens, Bruce A.; Hall, Dorothy K.; Chien, Janet Y. L.

    2014-01-01

    There are hundreds of glaciers in Kenai Fjords National Park (KEFJ) and Katmai National Park and Preserve (KATM) covering over 2,276 sq km of park land (ca. 2000). There are two primary glacierized areas in KEFJ (the Harding Icefield and the Grewingk-Yalik Glacier Complex) and three primary glacierized areas in KATM (the Mt. Douglas area, the Kukak Volcano to Mt. Katmai area, and the Mt. Martin area). Most glaciers in these parks terminate on land, though a few terminate in lakes. Only KEFJ has tidewater glaciers, which terminate in the ocean. Glacier mapping and analysis of the change in glacier extent has been accomplished on a decadal scale using satellite imagery, primarily Landsat data from the 1970s, 1980s, and from2000. Landsat Multispectral Scanner (MSS),Thematic Mapper (TM), and Enhanced Thematic Mapper Plus (ETM) imagery was used to map glacier extent on a park-wide basis. Classification of glacier ice using image-processing software, along with extensive manual editing, was employed to create Geographic Information System (GIS)outlines of the glacier extent for each park. Many glaciers that originate in KEFJ but terminate outside the park boundaries were also mapped. Results of the analysis show that there has been a reduction in the amount of glacier ice cover in the two parks over the study period. Our measurements show a reduction of approximately 21 sq km, or 1.5(from 1986 to 2000), and 76 sq km, or 7.7 (from19861987 to 2000), in KEFJ and KATM, respectively. This work represents the first comprehensive study of glaciers of KATM. Issues that complicate the mapping of glacier extent include debris cover(moraine and volcanic ash), shadows, clouds, fresh snow, lingering snow from the previous season, and differences in spatial resolution between the MSS,TM, or ETM sensors. Similar glacier mapping efforts in western Canada estimate mapping errors of 34. Measurements were also collected from a suite of glaciers in KEFJ and KATM detailing terminus positions and rates of recession using datasets including 15 min USGS quadrangle maps(19501951), Landsat imagery (19861987, 2000,2006), and 2005 IKONOS imagery (KEFJ only).

  12. Alaska: Glaciers of Kenai Fjords National Park and Katmai and Lake Clark National Parks and Preserve

    NASA Technical Reports Server (NTRS)

    Giffen, bruce A.; Hall, Dorothy K.; Chien, Janet Y. L.

    2011-01-01

    There are hundreds of glaciers in Kenai Fjords National Park (KEFJ) and Katmai National Park and Preserve (KATM) covering over 2276 sq km of park land (circa 2000). There are two primary glacierized areas in KEFJ -- the Harding Icefield and the Grewingk-Yalik Glacier Complex, and three primary glacierized areas in KATM - the Mt. Douglas area, the Kukak Volcano to Mt. Katmai area and the Mt. Martin area. Most glaciers in these parks terminate on land, though a few terminate in lakes. Only KEFJ has tidewater glaciers, which terminate in the ocean. Glacier mapping and analysis of the change in glacier extent has been accomplished on a decadal scale using satellite imagery, primarily Landsat data from the 1970s, 1980s, and from 2000. Landsat Multispectral Scanner (MSS), Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) imagery was used to map glacier extent on a park-wide basis. Classification of glacier ice using image processing software, along with extensive manual editing, was employed to create Geographic Information System (GIS) outlines of the glacier extent for each park. Many glaciers that originate in KEFJ but terminate outside the park boundaries were also mapped. Results of the analysis show that there has been a reduction in the amount of glacier ice cover in the two parks over the study period. Our measurements show a reduction of approximately 21 sq km, or -1.5% (from 1986 to 2000), and 76 sq km, or -7.7% (from 1986/87 to 2000), in KEFJ and KATM, respectively. This work represents the first comprehensive study of glaciers of KATM. Issues that complicate the mapping of glacier extent include: debris-cover (moraine and volcanic ash), shadows, clouds, fresh snow, lingering snow from the previous season, and differences in spatial resolution between the MSS and TM or ETM+ sensors. Similar glacier mapping efforts in western Canada estimate mapping errors of 3-4%. Measurements were also collected from a suite of glaciers in KEFJ and KATM detailing terminus positions and rates of recession using datasets including the 15-minute USGS quadrangle maps (1950/1951), Landsat imagery (1986/1987, 2000, 2006) and 2005 Ikonos imagery (KEFJ only).

  13. The plume of the Yukon River in relation to the oceanography of the Bering Sea

    NASA Technical Reports Server (NTRS)

    Dean, Kenneson G.; Mcroy, C. Peter; Ahlnas, Kristina; Springer, Alan

    1989-01-01

    The ecosystem of the northern Bering-Sea shelf was studied using data from the NOAA Very High Resolution Radiometer and AVHRR and the Landsat MSS and Thematic Mapper (TM) in conjunction with shipboard measurements. Emphasis was placed on the influence of the Yukon River on this inner shelf environment and on the evaluation of the utility of the new Landsat TM data for oceanography. It was found that the patterns of water mass distribution obtained from satellite images agreed reasonably well with the areal patterns of temperature, salinity, and phytoplankton distributions. The AVHRR, MSS, and TM data show that the Yukon-River discharge is warmer and more turbid than the surrounding coastal water that originates to the south; thus, the Yukon water contributes to the higher temperatures and lower transmissivity of the coastal water. The high resolution of the TM thermal IR band made it possible to observe complex patterns and structures in the surface water that could not be resolved on previous data sets.

  14. Landsat TM image maps of the Shirase and Siple Coast ice streams, West Antarctica

    USGS Publications Warehouse

    Ferrigno, Jane G.; Mullins, Jerry L.; Stapleton, Jo Anne; Bindschadler, Robert; Scambos, Ted A.; Bellisime, Lynda B.; Bowell, Jo-Ann; Acosta, Alex V.

    1994-01-01

    Fifteen 1: 250000 and one 1: 1000 000 scale Landsat Thematic Mapper (TM) image mosaic maps are currently being produced of the West Antarctic ice streams on the Shirase and Siple Coasts. Landsat TM images were acquired between 1984 and 1990 in an area bounded approximately by 78°-82.5°S and 120°- 160° W. Landsat TM bands 2, 3 and 4 were combined to produce a single band, thereby maximizing data content and improving the signal-to-noise ratio. The summed single band was processed with a combination of high- and low-pass filters to remove longitudinal striping and normalize solar elevation-angle effects. The images were mosaicked and transformed to a Lambert conformal conic projection using a cubic-convolution algorithm. The projection transformation was controled with ten weighted geodetic ground-control points and internal image-to-image pass points with annotation of major glaciological features. The image maps are being published in two formats: conventional printed map sheets and on a CD-ROM.

  15. Study of LANDSAT-D thematic mapper performance as applied to hydrocarbon exploration

    NASA Technical Reports Server (NTRS)

    Everett, J. R. (Principal Investigator)

    1983-01-01

    Two fully processed test tapes were enhanced and evaluated at scales up to 1:10,000, using both hardcopy output and interactive screen display. A large scale, the Detroit, Michigan scene shows evidence of an along line data slip every sixteenth line in TM channel 2. Very large scale products generated in false color using channels 1,3, and 4 should be very acceptable for interpretation at scales up to 1:50,000 and useful for change mapping probably up to scale 1:24,000. Striping visible in water bodies for both natural and color products indicates that the detector calibration is probably performing below preflight specification. For a set of 512 x 512 windows within the NE Arkansas scene, the variance-covariance matrices were computed and principal component analyses performed. Initial analysis suggests that the shortwave infrared TM 5 and 6 channels are a highly significant data source. The thermal channel (TM 7) shows negative correlation with TM 1 and 4.

  16. Analysis of the quality of image data acquired by the LANDSAT-4 thematic mapper and multispectral scanners. [Plumas County, California

    NASA Technical Reports Server (NTRS)

    Colwell, R. N. (Principal Investigator)

    1984-01-01

    A seven step procedure developed for evaluating the geometric properties of MSS and TM film produces is being implemented. Some 476 control points were selected of which 238 are being tested and edited for digitization and scaling errors. Tables show statistics established for assessing the spectral characteristics and variability, as well as the spatial resolution and radiometric sensitivity of TM data for a forest environment in an effort to determine the extent to which major forest cover type can be detected and identified on TM digital and image products. Results thus far show that the high quality obtained are more than sufficient for meeting most of the inventory objectives of the renewable resource specialist. The TM data should be extremely valuable for: (1) estimating forest cover types; (2) updating land use survey maps; and (3) determining the size and shape and location of individual forest clearings and water resources.

  17. Generic Sensor Modeling Using Pulse Method

    NASA Technical Reports Server (NTRS)

    Helder, Dennis L.; Choi, Taeyoung

    2005-01-01

    Recent development of high spatial resolution satellites such as IKONOS, Quickbird and Orbview enable observation of the Earth's surface with sub-meter resolution. Compared to the 30 meter resolution of Landsat 5 TM, the amount of information in the output image was dramatically increased. In this era of high spatial resolution, the estimation of spatial quality of images is gaining attention. Historically, the Modulation Transfer Function (MTF) concept has been used to estimate an imaging system's spatial quality. Sometimes classified by target shapes, various methods were developed in laboratory environment utilizing sinusoidal inputs, periodic bar patterns and narrow slits. On-orbit sensor MTF estimation was performed on 30-meter GSD Landsat4 Thematic Mapper (TM) data from the bridge pulse target as a pulse input . Because of a high resolution sensor s small Ground Sampling Distance (GSD), reasonably sized man-made edge, pulse, and impulse targets can be deployed on a uniform grassy area with accurate control of ground targets using tarps and convex mirrors. All the previous work cited calculated MTF without testing the MTF estimator's performance. In previous report, a numerical generic sensor model had been developed to simulate and improve the performance of on-orbit MTF estimating techniques. Results from the previous sensor modeling report that have been incorporated into standard MTF estimation work include Fermi edge detection and the newly developed 4th order modified Savitzky-Golay (MSG) interpolation technique. Noise sensitivity had been studied by performing simulations on known noise sources and a sensor model. Extensive investigation was done to characterize multi-resolution ground noise. Finally, angle simulation was tested by using synthetic pulse targets with angles from 2 to 15 degrees, several brightness levels, and different noise levels from both ground targets and imaging system. As a continuing research activity using the developed sensor model, this report was dedicated to MTF estimation via pulse input method characterization using the Fermi edge detection and 4th order MSG interpolation method. The relationship between pulse width and MTF value at Nyquist was studied including error detection and correction schemes. Pulse target angle sensitivity was studied by using synthetic targets angled from 2 to 12 degrees. In this report, from the ground and system noise simulation, a minimum SNR value was suggested for a stable MTF value at Nyquist for the pulse method. Target width error detection and adjustment technique based on a smooth transition of MTF profile is presented, which is specifically applicable only to the pulse method with 3 pixel wide targets.

  18. Landsat thematic mapper attitude data processing

    NASA Technical Reports Server (NTRS)

    Sehn, G. J.; Miller, S. F.

    1984-01-01

    The Landsat 4 and 5 satellites carry a new, high resolution, seven band thematic mapper imaging instrument. The spacecraft also carry two types of attitude sensors: a gyroscopic internal reference unit (IRU) which senses angular rate from dc to about 2 Hz, and an AC-coupled angular displacement sensor (ADS) measuring angular deviation above 2 Hz. A description of the derivation of the crossover network used to combine and equalize the IRU and ADS data is made. Also described are the digital data processing algorithms which produce the time history of the satellites' attitude motion including the finite impulse response (FIR) implementation of G and F filters; the resampling (interpolation/decimation) and synchronization of the IRU and ADS data; and the axis rotations required as a result of the on-board sensor locations on three orthogonal axes.

  19. Analysis of LANDSAT-4 TM Data for Lithologic and Image Mapping Purpose

    NASA Technical Reports Server (NTRS)

    Podwysocki, M. H.; Salisbury, J. W.; Bender, L. V.; Jones, O. D.; Mimms, D. L.

    1984-01-01

    Lithologic mapping techniques using the near infrared bands of the Thematic Mapper onboard the LANDSAT 4 satellite are investigated. These methods are coupled with digital masking to test the capability of mapping geologic materials. Data are examined under medium to low Sun angle illumination conditions to determine the detection limits of materials with absorption features. Several detection anomalies are observed and explained.

  20. Urban forest cover of the Chicago region and its relation to household density and income

    Treesearch

    Louis R. Iverson; Elizabeth A. Cook; Elizabeth A. Cook

    2000-01-01

    Urban forests and herbaceous open space play a vital role in the environmental and aesthetic ?health? of cities, yet they are rarely identified in land-use inventories of urban areas. To provide information on urban forests and other vegetative land cover in Illinois cities, Landsat Thematic Mapper (TM) data from June 27, 1988, were classified for the Chicago...

  1. Remote sensing of spring phenology in northeastern forests: A comparison of methods, field metrics and sources of uncertainty

    Treesearch

    Katharine White; Jennifer Pontius; Paul Schaberg

    2014-01-01

    Current remote sensing studies of phenology have been limited to coarse spatial or temporal resolution and often lack a direct link to field measurements. To address this gap, we compared remote sensing methodologies using Landsat Thematic Mapper (TM) imagery to extensive field measurements in a mixed northern hardwood forest. Five vegetation indices, five mathematical...

  2. LANDSAT 4 band 6 data evaluation

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The objectives of this investigation are to evaluate and monitor the radiometric integrity of the LANDSAT-D Thematic Mapper (TM) thermal infrared channel (Band 6) data to develop improved radiometric preprocessing calibration techniques for removal of atmospheric effects. Efforts this period have concentrated on underflight data collection. Two successful flights were made on September 18 and October 6. The radiosonde data for these flights have been obtained.

  3. A long-term perspective on deforestation rates in the Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Velasco Gomez, M. D.; Beuchle, R.; Shimabukuro, Y.; Grecchi, R.; Simonetti, D.; Eva, H. D.; Achard, F.

    2015-04-01

    Monitoring tropical forest cover is central to biodiversity preservation, terrestrial carbon stocks, essential ecosystem and climate functions, and ultimately, sustainable economic development. The Amazon forest is the Earth's largest rainforest, and despite intensive studies on current deforestation rates, relatively little is known as to how these compare to historic (pre 1985) deforestation rates. We quantified land cover change between 1975 and 2014 in the so-called Arc of Deforestation of the Brazilian Amazon, covering the southern stretch of the Amazon forest and part of the Cerrado biome. We applied a consistent method that made use of data from Landsat sensors: Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+) and Operational Land Imager (OLI). We acquired suitable images from the US Geological Survey (USGS) for five epochs: 1975, 1990, 2000, 2010, and 2014. We then performed land cover analysis for each epoch using a systematic sample of 156 sites, each one covering 10 km x 10 km, located at the confluence point of integer degree latitudes and longitudes. An object-based classification of the images was performed with five land cover classes: tree cover, tree cover mosaic, other wooded land, other land cover, and water. The automatic classification results were corrected by visual interpretation, and, when available, by comparison with higher resolution imagery. Our results show a decrease of forest cover of 24.2% in the last 40 years in the Brazilian Arc of Deforestation, with an average yearly net forest cover change rate of -0.71% for the 39 years considered.

  4. Image-based terrain modeling with thematic mapper applied to resolving the limit of Holocene Lake expansion in the Great Salt Lake Desert, Utah, part 1

    NASA Technical Reports Server (NTRS)

    Merola, John A.

    1989-01-01

    The LANDSAT Thematic Mapper (TM) scanner records reflected solar energy from the earth's surface in six wavelength regions, or bands, and one band that records emitted energy in the thermal region, giving a total of seven bands. Useful research was extracted about terrain morphometry from remote sensing measurements and this information is used in an image-based terrain model for selected coastal geomorphic features in the Great Salt Lake Desert (GSLD). Technical developments include the incorporation of Aerial Profiling of Terrain System (APTS) data in satellite image analysis, and the production and use of 3-D surface plots of TM reflectance data. Also included in the technical developments is the analysis of the ground control point spatial distribution and its affects on geometric correction, and the terrain mapping procedure; using satellite data in a way that eliminates the need to degrade the data by resampling. The most common approach for terrain mapping with multispectral scanner data includes the techniques of pattern recognition and image classification, as opposed to direct measurement of radiance for identification of terrain features. The research approach in this investigation was based on an understanding of the characteristics of reflected light resulting from the variations in moisture and geometry related to terrain as described by the physical laws of radiative transfer. The image-based terrain model provides quantitative information about the terrain morphometry based on the physical relationship between TM data, the physical character of the GSLD, and the APTS measurements.

  5. Updated radiometric calibration for the Landsat-5 thematic mapper reflective bands

    USGS Publications Warehouse

    Helder, D.L.; Markham, B.L.; Thome, K.J.; Barsi, J.A.; Chander, G.; Malla, R.

    2008-01-01

    The Landsat-5 Thematic Mapper (TM) has been the workhorse of the Landsat system. Launched in 1984, it continues collecting data through the time frame of this paper. Thus, it provides an invaluable link to the past history of the land features of the Earth's surface, and it becomes imperative to provide an accurate radiometric calibration of the reflective bands to the user community. Previous calibration has been based on information obtained from prelaunch, the onboard calibrator, vicarious calibration attempts, and cross-calibration with Landsat-7. Currently, additional data sources are available to improve this calibration. Specifically, improvements in vicarious calibration methods and development of the use of pseudoinvariant sites for trending provide two additional independent calibration sources. The use of these additional estimates has resulted in a consistent calibration approach that ties together all of the available calibration data sources. Results from this analysis indicate a simple exponential, or a constant model may be used for all bands throughout the lifetime of Landsat-5 TM. Where previously time constants for the exponential models were approximately one year, the updated model has significantly longer time constants in bands 1-3. In contrast, bands 4, 5, and 7 are shown to be best modeled by a constant. The models proposed in this paper indicate calibration knowledge of 5% or better early in life, decreasing to nearly 2% later in life. These models have been implemented at the U.S. Geological Survey Earth Resources Observation and Science (EROS) and are the default calibration used for all Landsat TM data now distributed through EROS. ?? 2008 IEEE.

  6. An analysis of new techniqes for radiometric correction of LANDSAT-4 Thematic Mapper images. [Terrebonne Bay, Louisiana and Grand Bahamas scenes

    NASA Technical Reports Server (NTRS)

    Kogut, J.; Larduinat, E.; Fitzgerald, M.

    1983-01-01

    The utility of methods for generating TM RLUTS which can improve the quality of the resultant images was investigated. The TM-CCT-ADDS tape was changed to account for a different collection window for the calibration data. Several scenes of Terrebonne Bay, Louisiana and the Grand Bahamas were analyzed to evaluate the radiometric corrections operationally applied to the image data and to investigate several techniques for reducing striping in the images. Printer plots for the TM shutter data were produced and detector statistics were compiled and plotted. These statistics included various combinations of the average shutter counts for each scan before and after DC restore for forward and reverse scans. Results show that striping is caused by the detectors becoming saturated when they view a bright cloud and depress the DC restore level.

  7. Study of LANDSAT-D thematic mapper performance as applied to hydrocarbon exploration. [Southern Ontario, Lawton, Oklahoma; Owl Creek, Wyoming; Washington, D.C.; and Death Valley California

    NASA Technical Reports Server (NTRS)

    Everett, J. R. (Principal Investigator)

    1983-01-01

    Improved delineation of known oil and gas fields in southern Ontario and a spectacularly high amount of structural information on the Owl Creek, Wyoming scene were obtained from analysis of TM data. The use of hue, saturation, and value image processing techniques on a Death Valley, California scene permitted direct comparison of TM processed imagery with existing 1:250,000 scale geological maps of the area and revealed small outcrops of Tertiary volcanic material overlying Paleozoic sections. Analysis of TM data over Lawton, Oklahoma suggests that the reducing chemical environment associated with hydrocarbon seepage change ferric iron to soluble ferrous iron, allowing it to be leached. Results of the band selection algorithm show a suprising consistency, with the 1,4,5 combination selected as optimal in most cases.

  8. Determination of surface reflectance and estimates of atmospheric optical depth and single scattering albedo from Landsat Thematic Mapper data

    NASA Technical Reports Server (NTRS)

    Conel, James E.

    1990-01-01

    Groound-reflectance data on selected targets for calbiration of a Landsat TM image of Wind River Basin, Wyoming, acquired November 21, 1982 were examined. Field-derived calibration relationships together with Landsat radiometric calibration data are used to convert scanner DN values to spectral radiance for the TM bands and (together with a simplified homogeneous atmospheric model) to obtain estimates of single-scattering albedo and optical depth consistent with the derived path radiance and transmission properties of the atmosphere. These estimates are used to study the problems of evaluation of the magnitude of adjacency effects for reference targets, the assumption of isotropic properties, and the aggregate magnitude of multiple reflections between sky and ground. The radiance calibration equations are also used together with preflight measured signal/noise properties of the TM-4 system to estimate the noise-equivalent reflectance recoverable in practice from the system.

  9. Relative radiometric calibration of LANDSAT TM reflective bands

    NASA Technical Reports Server (NTRS)

    Barker, J. L.

    1984-01-01

    A common scientific methodology and terminology is outlined for characterizing the radiometry of both TM sensors. The magnitude of the most significant sources of radiometric variability are discussed and methods are recommended for achieving the exceptional potential inherent in the radiometric precision and accuracy of the TM sensors.

  10. Analysis methods for Thematic Mapper data of urban regions

    NASA Technical Reports Server (NTRS)

    Wang, S. C.

    1984-01-01

    Studies have indicated the difficulty in deriving a detailed land-use/land-cover classification for heterogeneous metropolitan areas with Landsat MSS and TM data. The major methodological issues of digital analysis which possibly have effected the results of classification are examined. In response to these methodological issues, a multichannel hierarchical clustering algorithm has been developed and tested for a more complete analysis of the data for urban areas.

  11. Finding international Landsat data online

    USGS Publications Warehouse

    ,

    1997-01-01

    The Global Land Information System (GLIS) lists Landsat multispectral scanner (MSS) and thematic mapper (TM) data available from the participating international ground stations shown below. These databases of the Landsat Ground Station Operations Working Group (LGSOWG) can be searched, but not ordered, using GLIS. To order Landsat scenes identified on the GLIS data search, contact the international ground station where those scenes are available, indicated by the second character of the Entity ID.

  12. Detection of land-use and land cover changes in Franklin, Gulf, and Liberty Counties, Florida, with multitemporal landsat thematic mapper images

    Treesearch

    Shufen Pan; Guiying Li

    2007-01-01

    Florida Panhandle region has been experiencing rapid land transformation in the recent decades. To quantify land use and land-cover (LULC) changes and other landscape changes in this area, three counties including Franklin, Liberty and Gulf were taken as a case study and an unsupervised classification approach implemented to Landsat TM images acquired from 1985 to 2005...

  13. Comparative assessment of LANDSAT-D MSS and TM data quality for mapping applications in the Southeast

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Rectifications of multispectral scanner and thematic mapper data sets for full and subscene areas, analyses of planimetric errors, assessments of the number and distribution of ground control points required to minimize errors, and factors contributing to error residual are examined. Other investigations include the generation of three dimensional terrain models and the effects of spatial resolution on digital classification accuracies.

  14. Mineral resources prospecting by synthetic application of TM/ETM+, Quickbird and Hyperion data in the Hatu area, West Junggar, Xinjiang, China

    PubMed Central

    Liu, Lei; Zhou, Jun; Jiang, Dong; Zhuang, Dafang; Mansaray, Lamin R.; Hu, Zhijun; Ji, Zhengbao

    2016-01-01

    The Hatu area, West Junggar, Xinjiang, China, is situated at a potential gold-copper mineralization zone in association with quartz veins and small granitic intrusions. In order to identify the alteration zones and mineralization occurrences in this area, the Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+), Quickbird, Hyperion data and laboratory measured spectra were combined in identifying structures, alteration zones, quartz veins and small intrusions. The hue-saturation-intensity (HSI) color model transformation was applied to transform principal component analysis (PCA) combinations from R (Red), G (Green) and B (Blue) to HSI space to enhance faults. To wipe out the interference of the noise, a method, integrating Crosta technique and anomaly-overlaying selection, was proposed and implemented. Both Jet Propulsion Laboratory Spectral Library spectra and laboratory-measured spectra, combining with matched filtering method, were used to process Hyperion data. In addition, high-resolution Quickbird data were used for unraveling the quartz veins and small intrusions along the alteration zones. The Baobei fault and a SW-NE-oriented alteration zone were identified for the first time. This study eventually led to the discovery of four weak gold-copper mineralized locations through ground inspection and brought new geological knowledge of the region’s metallogeny. PMID:26911195

  15. Thermal control design of the Lightning Mapper Sensor narrow-band spectral filter

    NASA Technical Reports Server (NTRS)

    Flannery, Martin R.; Potter, John; Raab, Jeff R.; Manlief, Scott K.

    1992-01-01

    The performance of the Lightning Mapper Sensor is dependent on the temperature shifts of its narrowband spectral filter. To perform over a 10 degree FOV with an 0.8 nm bandwidth, the filter must be 15 cm in diameter and mounted externally to the telescope optics. The filter thermal control required a filter design optimized for minimum bandpass shift with temperature, a thermal analysis of substrate materials for maximum temperature uniformity, and a thermal radiation analysis to determine the parameter sensitivity of the radiation shield for the filter, the filter thermal recovery time after occultation, and heater power to maintain filter performance in the earth-staring geosynchronous environment.

  16. Investigating the Use of Deep Convective Clouds (DCCT) to Monitor On-orbit Performance of the Geostationary Lightning Mapper (GLM) using Lightning Imaging Sensor (LIS) Measurements

    NASA Technical Reports Server (NTRS)

    Buechler, Dennis E.; Christian, Hugh J.; Koshak, William J.; Goodman, Steven J.

    2013-01-01

    There is a need to monitor the on-orbit performance of the Geostationary Lightning Mapper (GLM) on the Geostationary Operational Environmental Satellite R (GOES-R) for changes in instrument calibration that will affect GLM's lightning detection efficiency. GLM has no onboard calibration so GLM background radiance observations (available every 2.5 min) of Deep Convective Clouds (DCCs) are investigated as invariant targets to monitor GLM performance. Observations from the Lightning Imaging Sensor (LIS) and the Visible and Infrared Scanner (VIRS) onboard the Tropical Rainfall Measuring Mission (TRMM) satellite are used as proxy datasets for GLM and ABI 11 m measurements.

  17. Analytic Perturbation Method for Estimating Ground Flash Fraction from Satellite Lightning Observations

    NASA Technical Reports Server (NTRS)

    Koshak, William; Solakiewicz, Richard

    2013-01-01

    An analytic perturbation method is introduced for estimating the lightning ground flash fraction in a set of N lightning flashes observed by a satellite lightning mapper. The value of N is large, typically in the thousands, and the observations consist of the maximum optical group area produced by each flash. The method is tested using simulated observations that are based on Optical Transient Detector (OTD) and Lightning Imaging Sensor (LIS) data. National Lightning Detection NetworkTM (NLDN) data is used to determine the flash-type (ground or cloud) of the satellite-observed flashes, and provides the ground flash fraction truth for the simulation runs. It is found that the mean ground flash fraction retrieval errors are below 0.04 across the full range 0-1 under certain simulation conditions. In general, it is demonstrated that the retrieval errors depend on many factors (i.e., the number, N, of satellite observations, the magnitude of random and systematic measurement errors, and the number of samples used to form certain climate distributions employed in the model).

  18. Remote sensing of soils in the eastern Palouse region with Landsat Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Frazier, B. E.; Cheng, Yaan

    1989-01-01

    Soils of the Palouse region of eastern Washington State were investigated using Landsat Thematic Mapper (TM) band ratios to discriminate areas where erosion has caused paleosols to be exposed. Ratioed data were clustered and plotted to show soil lines which could be subdivided into various levels of organic matter and iron oxides. Successfully classified scenes of a summer fallow (bare soil) field were obtained with band ratios 1/4, 3/4, and 5/4 to map organic carbon and 3/4, 5/4, and 5/3 for the iron/carbon ratio indicator of erosion. Regression models were made with 5/4 data and organic carbon and 5/3 data and the iron/carbon ratio. Based on this analysis, 21 percent of the test field soils are exposed or nearly exposed paleosols.

  19. Estimating forest productivity with Thematic Mapper and biogeographical data

    NASA Technical Reports Server (NTRS)

    Cook, Elizabeth A.; Iverson, Louis R.; Graham, Robin L.

    1989-01-01

    Spectral data from the Landsat Thematic Mapper (TM) on three forest exosystems (the southern Illinois, the Great Smoky Mountains regions in Tennessee and North Carolina, and the central Adirondack Mountains in New York) were used in conjunction with ground-collected measures of forest productivity and such information as the area's slope, aspect, elevation, and soil and vegetation types, to develop models of regional forest productivity. It is shown that the models developed may be used to estimate the productivity of a region with a high degree of confidence, but that the reliability of single-pixel estimates is poor. The characteristics of a given ecosystem determine which spectral values are most closely related to forest productivity. Thus, mid-IR, NIR, and visible bands are most significant in Illinois and New York, while the thermal band is relatively more important in the Smokies.

  20. Earth Observatory Satellite system definition study. Report no. 2: Instrument constraints and interface specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The instruments to be flown on the Earth Observatory Satellite (EOS) system are defined. The instruments will be used to support the Land Resources Management (LRM) mission of the EOS. Program planning information and suggested acquisition activities for obtaining the instruments are presented. The subjects considered are as follows: (1) the performance and interface of the Thematic Mapper (TM) and the High Resolution Pointing Imager (HRPI), (2) procedure for interfacing the TM and HRPI with the EOS satellite, (3) a space vehicle integration plan suggesting the steps and sequence of events required to carry out the interface activities, and (4) suggested agreements between the contractors for providing timely and equitable solution of problems at minimum cost.

  1. LANDSAT-4 Thematic Mapper Modulation Transfer Function (MTF) evaluation

    NASA Technical Reports Server (NTRS)

    Schowengerdt, R. (Principal Investigator)

    1985-01-01

    The Modulation Transfer Function (MTF) for thematic mapping (TM) bands 3, 4, 5 and 7 is reliably estimated with the San Mateo Bridge target in the 12/31/82 scene. These results are to be compared with those from the 8/12/83 scene. Bands 1, 2 and 6 are to be analyzed with a different target possessing greater contrast. This may be possible with the underflight data comparison currently underway. The registration of this data to the TM image of 8/12/83 for a region arround the Stockton sewage pond east of San Francisco has begun. This particular approach has the advantage that the full two-dimensional MFT will be measured instead of the MFT in only one azimuth as reported.

  2. Long-Term Autonomous Measurement of Ocean Dissipation with EPS-MAPPER

    DTIC Science & Technology

    2002-09-30

    profiler merges two well-established instruments, EPSONDE (Oakey, 1988) and Seahorse (Hamilton et al, 1999). The EPSONDE ocean- microstructure technology...will be repackaged with modernized electronics and data logging memory and used as the payload for the Seahorse  moored profiler. APPROACH The...mounting to decouple the SeaHorse motions from the profiler. SeaHorseTM uses wave energy to move the profiler down a mooring wire to a docked

  3. Estimating post-fire organic soil depth in the Alaskan boreal forest using the Normalized Burn Ratio

    Treesearch

    D. Verbyla; R. Lord

    2008-01-01

    As part of a long-term moose browse/fire severity study, we used the Normalized Burn Ratio (NBR) with historic Landsat Thematic Mapper (TM) imagery to estimate fire severity from a 1983 wildfire in interior Alaska. Fire severity was estimated in the field by measuring the depth of the organic soil at 57 sites during the summer of 2006. Sites were selected for field...

  4. Reconstructing Forty Years of Landsat Observations

    NASA Astrophysics Data System (ADS)

    Meyer, D. J.; Dwyer, J. L.; Steinwand, D.

    2013-12-01

    In July 1972, NASA launched the Earth Resource Technology Satellite (ERTS), the first of what was to be the series of Earth-observing satellites we now know as the Landsat system. This system, originally conceived in the 1960's within the US Department of the Interior and US Geological Survey (USGS), has continued with little interruption for over 40 years, creating the longest record of satellite-based global land observations. The current USGS archive of Landsat images exceeds 4 million scenes, and the recently launched Landsat 8 platform will extend that archive to nearly 50 years of observations. Clearly, these observations are critical to the study of Earth system processes, and the interaction between these processes and human activities. However, the seven successful Landsat missions represent more of an ad hoc program than a long-term record of consistent observations, due largely to changing Federal policies and challenges finding an operational home for the program. Technologically, these systems evolved from the original Multispectral Scanning System (MSS) through the Thematic Mapper and Enhanced Thematic Mapper Plus (ETM+) systems, to the current Observational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) systems. Landsat data were collected globally by a network of international cooperators having diverse data management policies. Much of the oldest data were stored on archaic media that could not be retrieved using modern media readers. Collecting these data from various sensors and sources, and reconstructing them into coherent Earth observation records, posed numerous challenges. We present here a brief overview of work done to overcome these challenges and create a consistent, long-term Landsat observation record. Much of the current archive was 'repatriated' from international cooperators and often required the reconstruction of (sometimes absent) metadata for geo-location and radiometric calibration. The older MSS data, some of which had been successfully retrieved from outdated wide band video media, required similar metadata reconstruction. TM data from Landsats 4 and 5 relied on questionable on-board lamp data for calibration, thus the calibration history for these missions was reconstructed to account for sensor degradation over time. To improve continuity between platforms, Landsat 7 and 8 missions employed 'under-flight' maneuvers to reduce inter-calibration error. Data from the various sensors, platforms and sources were integrated into a common metadata standard, with quality assurance information, to ensure understandability of the data for long-term preservation. Because of these efforts, the current Landsat archive can now support the creation of the long-term climate data records and essential climate variables required to monitor changes on the Earth's surface quantitatively over decades of observations.

  5. Monitoring forest dynamics with multi-scale and time series imagery.

    PubMed

    Huang, Chunbo; Zhou, Zhixiang; Wang, Di; Dian, Yuanyong

    2016-05-01

    To learn the forest dynamics and evaluate the ecosystem services of forest effectively, a timely acquisition of spatial and quantitative information of forestland is very necessary. Here, a new method was proposed for mapping forest cover changes by combining multi-scale satellite remote-sensing imagery with time series data. Using time series Normalized Difference Vegetation Index products derived from the Moderate Resolution Imaging Spectroradiometer images (MODIS-NDVI) and Landsat Thematic Mapper/Enhanced Thematic Mapper Plus (TM/ETM+) images as data source, a hierarchy stepwise analysis from coarse scale to fine scale was developed for detecting the forest change area. At the coarse scale, MODIS-NDVI data with 1-km resolution were used to detect the changes in land cover types and a land cover change map was constructed using NDVI values at vegetation growing seasons. At the fine scale, based on the results at the coarse scale, Landsat TM/ETM+ data with 30-m resolution were used to precisely detect the forest change location and forest change trend by analyzing time series forest vegetation indices (IFZ). The method was tested using the data for Hubei Province, China. The MODIS-NDVI data from 2001 to 2012 were used to detect the land cover changes, and the overall accuracy was 94.02 % at the coarse scale. At the fine scale, the available TM/ETM+ images at vegetation growing seasons between 2001 and 2012 were used to locate and verify forest changes in the Three Gorges Reservoir Area, and the overall accuracy was 94.53 %. The accuracy of the two layer hierarchical monitoring results indicated that the multi-scale monitoring method is feasible and reliable.

  6. Mapping contact metamorphic aureoles in Extremadura, Spain, using Landsat thematic mapper images

    USGS Publications Warehouse

    Rowan, L.C.; Anton-Pacheco, C.; Brickey, D.W.; Kingston, M.J.; Payas, A.

    1987-01-01

    In the Extremadura region of western Spain, Ag, Pb, Zn, and Sn deposits occur in the pieces of late Hercynian granitic plutons and near the pluton contacts in late Proterozoic slate and metagraywacke that have been regionally metamorphosed to the green schist facies. The plutons generally are well exposed and have distinctive geomorphological expression and vegetation; poor exposures of the metasedimentary host rocks and extensive cultivation, however, make delineation of the contact aureoles difficult. Landsat Thematic Mapper (TM) images have been used to distinguish soil developed on the contact metamorphic rocks from soil formed on the stratigraphically equivalent slate-metagraywacke sequence. The mineral constituents of these soils are similar, except that muscovite is more common in the contact metamorphic soil; carbonaceous material is common in both soils. Contact metamorphic soil have lower reflectance, especially in the 1.6-micrometers wavelength region (TM 5), and weaker Al-OH, Mg-OH, and Fe3+ absorption features than do spectra of the slate-metagraywacke soil. The low-reflectance and subdued absorption features exhibited by the contact metamorphic soil spectra are attributed to the high absorption coefficient f the carbonaceous material caused by heating during emplacement of the granitic plutons. These spectral differences are evident in a TM 4/3, 4/5, 3/1 color-composite image. Initially, this image was used to outline the contact aureoles, but digital classification of the TM data was necessary for generating internally consistent maps of the distribution of the exposed contact metamorphic soil. In an August 1984, TM scene of the Caceras area, the plowed, vegetation-free fields were identified by their low TM 4/3 values. Then, ranges of TM 4/5 and 3/1 values were determine for selected plower fields within and outside the contact aureoles; TM 5 produced results similar to TM 4/5. Field evaluation, supported by X-ray diffraction and petrographic studies, confirmed the presence of more extensive aureoles than shown in published geologic maps; few misclassified areas were noted. Additional plowed fields consisting of exposed contact metamorphic soil were mapped digitally in an August 1985 TM scene. Subsequently, this approach was used to map two 1-km-wide linear zones of contact metamorphosed rock and oil in the San Nicolas-Sn-W Mine area, which is located approximated 125 km southeast of the Caceras study area. Exposures of granite in the San Nicolas area are limited to a few unaltered granitic dikes in the mine and a small exposure of unaltered pegmatite-bearing granite in a quarry about 1.5 km west of the mine. The present of coarsely crystalline biotite and beryl in the granite in the quarry and of contact metamorphosed slate up to 2.5 km from the nearest granite exposure suggest that only the apical part of a pluton is exposed in the quarry and that a larger, shallowly buried body is probably present. These results indicate that potential application of TM image analysis to mineral exploration in lithologically similar areas that are cultivated in spite of poor rock exposures.

  7. The urban heat island in Rio de Janeiro, Brazil, in the last 30 years using remote sensing data

    NASA Astrophysics Data System (ADS)

    Peres, Leonardo de Faria; Lucena, Andrews José de; Rotunno Filho, Otto Corrêa; França, José Ricardo de Almeida

    2018-02-01

    The aim of this work is to study urban heat island (UHI) in Metropolitan Area of Rio de Janeiro (MARJ) based on the analysis of land-surface temperature (LST) and land-use patterns retrieved from Landsat-5/Thematic Mapper (TM), Landsat-7/Enhanced Thematic Mapper Plus (ETM+) and Landsat-8/Operational Land Imager (OLI) and Thermal Infrared Sensors (TIRS) data covering a 32-year period between 1984 and 2015. LST temporal evolution is assessed by comparing the average LST composites for 1984-1999 and 2000-2015 where the parametric Student t-test was conducted at 5% significance level to map the pixels where LST for the more recent period is statistically significantly greater than the previous one. The non-parametric Mann-Whitney-Wilcoxon rank sum test has also confirmed at the same 5% significance level that the more recent period (2000-2015) has higher LST values. UHI intensity between ;urban; and ;rural/urban low density; (;vegetation;) areas for 1984-1999 and 2000-2015 was established and confirmed by both parametric and non-parametric tests at 1% significance level as 3.3 °C (5.1 °C) and 4.4 °C (7.1 °C), respectively. LST has statistically significantly (p-value < 0.01) increased over time in two of three land cover classes (;urban; and ;urban low density;), respectively by 1.9 °C and 0.9 °C, except in ;vegetation; class. A spatial analysis was also performed to identify the urban pixels within MARJ where UHI is more intense by subtracting the LST of these pixels from the LST mean value of ;vegetation; land-use class.

  8. Land Surface Temperature in Łódź Obtained from Landsat 5TM

    NASA Astrophysics Data System (ADS)

    Jędruszkiewicz, Joanna; Zieliński, Mariusz

    2012-01-01

    The main aim of this paper is to present the spatial differentiation of Land Surface Temperature LST in Łódź based on Landsat 5 Thematic Mapper (L5TM) images. Analysis was performed for all L5TM images from 2011, with clear sky over Łódź. Land surface temperature (LST) play an important role in determination of weather conditions in boundary layer of atmosphere, especially connected with convection. Environmental satellites from Landsat series delivers the high resolution images of Earth's surface and according to the estimations made on the ground of it are precise. LST depends widely on surface emissivity. In this paper the emissivity was estimated from MODIS sensor as well as NDVI index, then both method were compared. The processed images allowed to determine the warmest and the coldest areas in the administrative boundaries of Łódź. The highest LST values has been found in industrial areas and the in the heart of the city. However, there are some places lying in city outskirts, where the LST values are as high, for instance Lodz Airport. On the contrary the lowest LST values occur mostly in terrains covered with vegetation i.e. forests or city parks. Głównym celem tego opracowania było oszacowanie temperatury powierzchni Ziemi w Łodzi, na podstawie obrazów satelitarnych pochodzących z satelity Landsat 5 Thematic Mapper (L5TM). Analizę wykonane dla obrazów wszystkich dostępnych obrazów z 2011 roku, na których zachmurzenie nie wystąpiło nad obszarem Łodzi. Temperatura powierzchni Ziemi odgrywa istotną rolę w kształtowaniu warunków pogodowych w warstwie granicznej, szczególnie związanych z konwekcją. Satelity środowiskowe z serii Landsat dostarczają obrazów w dużej rozdzielczości, dzięki czemu pozwalają na stosunkowo dokładne oszacowanie tego parametru. Wielkość temperatury w dużym stopniu zależy od emisyjności danej powierzchni. W niniejszym opracowaniu porównano temperaturę powierzchniową obliczoną dla emisyjności wyznaczonej z danych spektrometru MODIS, umieszczonego na satelicie Terra, jak również dla emisyjności oszacowanej przy wykorzystaniu wskaźnika NDVI obliczonego z danych L5TM. Opracowane obrazy satelitarne pozwoliły na wyznaczenie obszarów w Łodzi, cechujących się najwyższymi i najniższymi wartościami temperatury powierzchniowej. Najwyższe wartości LST na obszarze Łodzi występują w obszarach przemysłowych, jak również w najbardziej centralnej części miasta. Niekiedy jednakże obszary o podwyższonych wartościach LST spotykane są na przedmieściach, czego przykładem może łódzki port lotniczy. Z drugiej strony najniższe wartości LST występują w obszarach, na których występuje roślinność, przy czym dotyczy to głównie obszarów leśnych oraz parków śródmiejskich.

  9. Surficial geology of the Safsaf region, south-central Egypt, derived from remote-sensing and field data

    USGS Publications Warehouse

    Davis, P.A.; Breed, C.S.; McCauley, J.F.; Schaber, G.G.

    1993-01-01

    We used a decorrelation-stretched image of Landsat Thematic Mapper (TM) Bands 1, 4, and 7 and field data to map and describe the main surficial units in the hyperarid Safsaf region in south-central Egypt. We show that the near-infrared bands on Landsat TM, which are sensitive to very subtle changes in mineralogy common to arid regions, significantly improve the geologist's capability to discriminate geologic units in desert regions. These data also provide the spatial and spectral information necessary to determine the migration patterns and provenance of eolian materials. The Safsaf area was the focus of our post flight field studies using Shuttle Imaging Radar (SIR) data following the discovery of buried paleochannels in North Africa. Most of the channels discernible on SIR images are not expressed in TM data, but traces of a few channels are present in both the SIR and the TM data within the Wadi Safsaf area. Here we present a detailed digital examination of the SIR and the TM-band reflectance and reflectance-ratio data at three locations of the more obvious surface expressions of the buried channels. Our results indicate that the TM expressions of the channels are not purely topographic but are more compositional in nature. Two possibilities may account for the TM expressions of the buried channels: 1) concentrations of windblown, iron-rich materials that accumulated along subtle curvilinear topograpohic traps, or 2) curvilinear exposures of an iron-rich underlying unit of the flat sand sheet. ?? 1993.

  10. Detecting Uniform Areas for Vicarious Calibration using Landsat TM Imagery: A Study using the Arabian and Saharan Deserts

    NASA Technical Reports Server (NTRS)

    Hilbert, Kent; Pagnutti, Mary; Ryan, Robert; Zanoni, Vicki

    2002-01-01

    This paper discusses a method for detecting spatially uniform sites need for radiometric characterization of remote sensing satellites. Such information is critical for scientific research applications of imagery having moderate to high resolutions (<30-m ground sampling distance (GSD)). Previously published literature indicated that areas with the African Saharan and Arabian deserts contained extremely uniform sites with respect to spatial characteristics. We developed an algorithm for detecting site uniformity and applied it to orthorectified Landsat Thematic Mapper (TM) imagery over eight uniform regions of interest. The algorithm's results were assessed using both medium-resolution (30-m GSD) Landsat 7 ETM+ and fine-resolution (<5-m GSD) IKONOS multispectral data collected over sites in Libya and Mali. Fine-resolution imagery over a Libyan site exhibited less than 1 percent nonuniformity. The research shows that Landsat TM products appear highly useful for detecting potential calibration sites for system characterization. In particular, the approach detected spatially uniform regions that frequently occur at multiple scales of observation.

  11. Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic

    USGS Publications Warehouse

    Chavez, P.S.; Sides, S.C.; Anderson, J.A.

    1991-01-01

    The merging of multisensor image data is becoming a widely used procedure because of the complementary nature of various data sets. Ideally, the method used to merge data sets with high-spatial and high-spectral resolution should not distort the spectral characteristics of the high-spectral resolution data. This paper compares the results of three different methods used to merge the information contents of the Landsat Thematic Mapper (TM) and Satellite Pour l'Observation de la Terre (SPOT) panchromatic data. The comparison is based on spectral characteristics and is made using statistical, visual, and graphical analyses of the results. The three methods used to merge the information contents of the Landsat TM and SPOT panchromatic data were the Hue-Intensity-Saturation (HIS), Principal Component Analysis (PCA), and High-Pass Filter (HPF) procedures. The HIS method distorted the spectral characteristics of the data the most. The HPF method distorted the spectral characteristics the least; the distortions were minimal and difficult to detect. -Authors

  12. Mountain building processes in the Central Andes

    NASA Technical Reports Server (NTRS)

    Bloom, A. L.; Isacks, B. L.

    1986-01-01

    False color composite images of the Thematic Mapper (TM) bands 5, 4, and 2 were examined to make visual interpretations of geological features. The use of the roam mode of image display with the International Imaging Systems (IIS) System 600 image processing package running on the IIS Model 75 was very useful. Several areas in which good comparisons with ground data existed, were examined in detail. Parallel to the visual approach, image processing methods are being developed which allow the complete use of the seven TM bands. The data was organized into easily accessible files and a visual cataloging of the quads (quarter TM scenes) with preliminary registration with the best available charts for the region. The catalog has proved to be a valuable tool for the rapid scanning of quads for a specific investigation. Integration of the data into a complete approach to the problems of uplift, deformation, and magnetism in relation to the Nazca-South American plate interaction is at an initial stage.

  13. Environmental processes and spectral reflectance characteristics associated with soil erosion in desert fringe regions

    NASA Technical Reports Server (NTRS)

    Jacobberger, P. A.

    1986-01-01

    Two Thematic Mapper (TM) scenes were acquired. A scene was acquired for the Bahariya, Egypt field area, and one was acquired covering the Okavango Delta site. Investigations at the northwest Botswana study sites have concentrated upon a system of large linear (alab) dunes possessing an average wavelength of 2 kilometers and an east-west orientation. These dunes exist to the north and west of the Okavango Swamp, the pseudodeltaic end-sink of the internal Okavango-Cubango-Cuito drainage network. One archival scene and two TM acquisitions are on order, but at present no TM data were acquired for the Tombouctou/Azaouad Dunes, Mali. The three areas taken together comprise an environmental series ranging from hyperarid to semi-arid, with desertization processes operational or incipient in each. The long range goal is to predict normal seasonal variations, so that aperiodic spectral changes resulting from soil erosion, vegetation damage, and associated surface processes would be distinguishable as departures from the norm.

  14. Mountain building processes in the Central Andes

    NASA Astrophysics Data System (ADS)

    Bloom, A. L.; Isacks, B. L.

    False color composite images of the Thematic Mapper (TM) bands 5, 4, and 2 were examined to make visual interpretations of geological features. The use of the roam mode of image display with the International Imaging Systems (IIS) System 600 image processing package running on the IIS Model 75 was very useful. Several areas in which good comparisons with ground data existed, were examined in detail. Parallel to the visual approach, image processing methods are being developed which allow the complete use of the seven TM bands. The data was organized into easily accessible files and a visual cataloging of the quads (quarter TM scenes) with preliminary registration with the best available charts for the region. The catalog has proved to be a valuable tool for the rapid scanning of quads for a specific investigation. Integration of the data into a complete approach to the problems of uplift, deformation, and magnetism in relation to the Nazca-South American plate interaction is at an initial stage.

  15. Deforestation in Sumatra

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Indonesia is rapidly losing its lowland forests to logging, much of it illegal. At present, logging is claiming the forests at a rate of nearly two million hectares (slightly less than 5 million acres: roughly the same area as the state of Massachusetts) each year. At this rate, the island of Sumatra will have no more lowland forests by 2005, a fate already befallen the island of Sulawesi. Indonesia's lowland forests are home to a wide variety of wildlife and are considered among the richest ecosystems in the world. Among the unique life forms in these forests are the Orangutan and the Sumatra Tiger. Sixteen percent of the entire world's bird species, eleven percent of its plants, and ten percent of all mammals on Earth call these forests home. Many are found nowhere else. In the two Landsat scenes shown above, the pattern of deforestation can be clearly discerned. Deep green in these images shows lush vegetation in the forest cover. In both scenes, deep and pale red shows areas where there is little or no vegetation, often bare ground from where forest has been completely stripped. The latter Landsat scene from 2001 not only shows extensive clear cut areas, but also new logging roads built into the remaining forest to facilitate future cutting. This lowland forest region is located on Indonesia's largest island, Sumatra, roughly 100 km southwest of the provincial capital of Jambi. The first image was acquired by Landsat 5's Thematic Mapper (TM) sensor on June 22, 1992, the second by Landsat 7's Enhanced Thematic Mapper plus (ETM+) sensor on January 14, 2001. Both are false-color composite images made using shortwave infrared, infrared, and green wavelengths. The area shown above is roughly 30 km x 22 km (19 miles x 14 miles). The large versions of these images show the same general area covering 60 km x 60 km. Images provided by the Tropical Rain Forest Information Center (TRFIC) through the Basic Science and Remote Sensing Initiative (BSRSI) based at Michigan State University, and the Landsat 7 Project Science Office at NASA Goddard Space Flight Center

  16. Thematic Mapper Data Quality and Performance Assessment in Renewable Resources/agriculture Remote Sensing

    NASA Technical Reports Server (NTRS)

    Bizzell, R. M.; Prior, H. L.

    1984-01-01

    It is believed that the increased spatial resolution will provide solutions to proportion estimation error due to mixed pixels, and the increased spectral resolution will provide for the identification of important agricultural features such as crop stage, and condition. The results of analyses conducted relative to these hypothesis from sample segments extracted from the 4-band Detroit scene and the 7-band Mississippi County, Arkansas engineering test scene are described. Several studies were conducted to evaluate the geometric and radiometric performance of the TM to determine data viability for the more pertinent investigations of TM utility. In most cases this requirement was more than sufficiently satisfied. This allowed the opportunity to take advantage of detailed ground observations for several of the sample segments to assess class separability and detection of other important features with TM. The results presented regarding these TM characteristics show that not only is the increased definition of the within scene variance captured by the increased spatial and spectral resolution, but that the mid-IR bands (5 and 7) are necessary for optimum crop type classification. Both qualitative and quantitative results are presented that describe the improvements gained with the TM both relative to the MSS and on its own merit.

  17. Miniature fiber Bragg grating sensor interrogator (FBG-Transceiver) system

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Kempen, Cornelia; Lopatin, Craig

    2007-04-01

    This paper describes recent progress conducted towards the development of a miniature fiber Bragg grating sensor interrogator (FBG-Transceiver TM) system based on multi-channel integrated optic sensor (InOSense TM) microchip technology. The hybrid InOSense TM microchip technology enables the integration of all of the functionalities, both passive and active, of conventional bench top FBG sensor interrogator systems, packaged in a miniaturized, low power operation, 2-cm x 5-cm package suitable for the long-term structural health monitoring in applications where size, weight, and power are critical for operation. The FBG-Transceiver system uses active optoelectronic components monolithically integrated to the InOSense TM microchip, a microprocessor controlled signal processing electronics board capable of processing the FBG sensors signals related to stress-strain and temperature as well as vibration and acoustics. The FBG-Transceiver TM system represents a new, reliable, highly robust technology that can be used to accurately monitor the status of an array of distributed fiber optic Bragg grating sensors installed in critical infrastructures. Its miniature package, low power operation, and state-of-the-art data communications architecture, all at a very affordable price makes it a very attractive solution for a large number of SHM/NDI applications in aerospace, naval and maritime industry, civil structures like bridges, buildings and dams, the oil and chemical industry, and for homeland security applications. The miniature, cost-efficient FBG-Transceiver TM system is poised to revolutionize the field of structural health monitoring and nondestructive inspection market. The sponsor of this program is NAVAIR under a DOD SBIR contract.

  18. Land cover change detection using a GIS-guided, feature-based classification of Landsat thematic mapper data. [Geographic Information System

    NASA Technical Reports Server (NTRS)

    Enslin, William R.; Ton, Jezching; Jain, Anil

    1987-01-01

    Landsat TM data were combined with land cover and planimetric data layers contained in the State of Michigan's geographic information system (GIS) to identify changes in forestlands, specifically new oil/gas wells. A GIS-guided feature-based classification method was developed. The regions extracted by the best image band/operator combination were studied using a set of rules based on the characteristics of the GIS oil/gas pads.

  19. Analysis of Thematic Mapper data for studying the suspended matter distribution in the coastal area of the German Bight (North Sea)

    NASA Technical Reports Server (NTRS)

    Doerffer, R.; Fischer, J.; Stoessel, M.; Brockmann, C.; Grassl, H.

    1989-01-01

    Thematic Mapper data were analyzed with respect to its capability for mapping the complex structure and dynamics of suspended matter distribution in the coastal area of the German Bight (North Sea). Three independent pieces of information were found by factor analysis of all seven TM channels: suspended matter concentration, atmospheric scattering, and sea surface temperature. For the required atmospheric correction, the signal-to-noise ratios of Channels 5 and 7 have to be improved by averaging over 25 x 25 pixels, which also makes it possible to monitor the aerosol optical depth and aerosol type over cloud-free water surfaces. Near-surface suspended matter concentrations may be detected with an accuracy of factor less than 2 by using an algorithm derived from radiative transfer model calculation. The patchiness of suspended matter and its relation to underwater topography was analyzed with autocorrelation and cross-correlation.

  20. Opening the Landsat Archive

    USGS Publications Warehouse

    ,

    2008-01-01

    The USGS Landsat archive holds an unequaled 36-year record of the Earth's surface that is invaluable to climate change studies, forest and resource management activities, and emergency response operations. An aggressive effort is taking place to provide all Landsat imagery [scenes currently held in the USGS Earth Resources Observation and Science (EROS) Center archive, as well as newly acquired scenes daily] free of charge to users with electronic access via the Web by the end of December 2008. The entire Landsat 7 Enhanced Thematic Mapper Plus (ETM+) archive acquired since 1999 and any newly acquired Landsat 7 ETM+ images that have less than 40 percent cloud cover are currently available for download. When this endeavor is complete all Landsat 1-5 data will also be available for download. This includes Landsat 1-5 Multispectral Scanner (MSS) scenes, as well as Landsat 4 and 5 Thematic Mapper (TM) scenes.

  1. Improved outgassing models for the Landsat-5 thematic mapper

    USGS Publications Warehouse

    Micijevic, E.; Chander, G.; Hayes, R.W.

    2007-01-01

    The Landsat-5 (L5) Thematic Mapper (TM) detectors of the short wave infrared (SWIR) bands 5 and 7 are maintained on cryogenic temperatures to minimize thermal noise and allow adequate detection of scene energy. Over the instrument's lifetime, gain oscillations are observed in these bands that are caused by an ice-like contaminant that gradually builds up on the window of a dewar that houses these bands' detectors. This process of icing, an effect of material outgassing in space, is detected and characterized through observations of Internal Calibrator (IC) data. Analyses of IC data indicated three to five percent uncertainty in absolute gain estimates due to this icing phenomenon. The thin-film interference lifetime models implemented in the image product generation systems at the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) successfully remove up to 80 percent of the icing effects for the image acquisition period from the satellite's launch in 1984 until 2001; however, their correction ability was found to be much lower for the time thereafter. This study concentrates on improving the estimates of the contaminant film growth rate and the associated change in the period of gain oscillations. The goal is to provide model parameters with the potential to correct 70 to 80 percent of gain uncertainties caused by outgassing effects in L5 TM bands 5 and 7 over the instrument's entire lifetime. ?? 2007 IEEE.

  2. Improved outgassing models for the Landsat-5 thematic mapper

    USGS Publications Warehouse

    Micijevic, E.; Chander, G.; Hayes, R.W.

    2008-01-01

    The Landsat-5 (L5) Thematic Mapper (TM) detectors of the short wave infrared (SWIR) bands 5 and 7 are maintained on cryogenic temperatures to minimize thermal noise and allow adequate detection of scene energy. Over the instrument's lifetime, gain oscillations are observed in these bands that are caused by an ice-like contaminant that gradually builds up on the window of a dewar that houses these bands' detectors. This process of icing, an effect of material outgassing in space, is detected and characterized through observations of Internal Calibrator (IC) data. Analyses of IC data indicated three to five percent uncertainty in absolute gain estimates due to this icing phenomenon. The thin-film interference lifetime models implemented in the image product generation systems at the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) successfully remove up to 80 percent of the icing effects for the image acquisition period from the satellite's launch in 1984 until 2001; however, their correction ability was found to be much lower for the time thereafter. This study concentrates on improving the estimates of the contaminant film growth rate and the associated change in the period of gain oscillations. The goal is to provide model parameters with the potential to correct 70 to 80 percent of gain uncertainties caused by outgassing effects in L5 TM bands 5 and 7 over the instrument's entire lifetime. ?? 2007 IEEE.

  3. The GSFC Mark-2 three band hand-held radiometer. [thematic mapper for ground truth data collection

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Jones, W. H.; Kley, W. A.; Sundstrom, G. J.

    1980-01-01

    A self-contained, portable, hand-radiometer designed for field usage was constructed and tested. The device, consisting of a hand-held probe containing three sensors and a strap supported electronic module, weighs 4 1/2 kilograms. It is powered by flashlight and transistor radio batteries, utilizes two silicon and one lead sulfide detectors, has three liquid crystal displays, sample and hold radiometric sampling, and its spectral configuration corresponds to LANDSAT-D's thematic mapper bands. The device was designed to support thematic mapper ground-truth data collection efforts and to facilitate 'in situ' ground-based remote sensing studies of natural materials. Prototype instruments were extensively tested under laboratory and field conditions with excellent results.

  4. Spectral characterization of the LANDSAT Thematic Mapper sensors

    NASA Technical Reports Server (NTRS)

    Markham, B. L.; Barker, J. L.

    1984-01-01

    The spectral coverage characteristics of the two thematic mapper instruments were determined by analyses of spectral measurements of the optics, filters, and detectors. The following results are presented: (1) band 2 and 3 flatness was slightly below specification, and band 7 flatness was below specification; (2) band 5 upper-band edge was higher than specifications; (3) band 2 band edges were shifted upward about 9 nm relative to nominal; and (4) band 4, 5, and 7 lower band edges were 16 to 18 nm higher then nominal.

  5. Compiling and editing agricultural strata boundaries with remotely sensed imagery and map attribute data using graphics workstations

    NASA Technical Reports Server (NTRS)

    Cheng, Thomas D.; Angelici, Gary L.; Slye, Robert E.; Ma, Matt

    1991-01-01

    The USDA presently uses labor-intensive photographic interpretation procedures to delineate large geographical areas into manageable size sampling units for the estimation of domestic crop and livestock production. Computer software to automate the boundary delineation procedure, called the computer-assisted stratification and sampling (CASS) system, was developed using a Hewlett Packard color-graphics workstation. The CASS procedures display Thematic Mapper (TM) satellite digital imagery on a graphics display workstation as the backdrop for the onscreen delineation of sampling units. USGS Digital Line Graph (DLG) data for roads and waterways are displayed over the TM imagery to aid in identifying potential sample unit boundaries. Initial analysis conducted with three Missouri counties indicated that CASS was six times faster than the manual techniques in delineating sampling units.

  6. Limitations and potential of satellite imagery to monitor environmental response to coastal flooding

    USGS Publications Warehouse

    Ramsey, Elijah W.; Werle, Dirk; Suzuoki, Yukihiro; Rangoonwala, Amina; Lu, Zhong

    2012-01-01

    Storm-surge flooding and marsh response throughout the coastal wetlands of Louisiana were mapped using several types of remote sensing data collected before and after Hurricanes Gustav and Ike in 2008. These included synthetic aperture radar (SAR) data obtained from the (1) C-band advance SAR (ASAR) aboard the Environmental Satellite, (2) phased-array type L-band SAR (PALSAR) aboard the Advanced Land Observing Satellite, and (3) optical data obtained from Thematic Mapper (TM) sensor aboard the Land Satellite (Landsat). In estuarine marshes, L-band SAR and C-band ASAR provided accurate flood extent information when depths averaged at least 80 cm, but only L-band SAR provided consistent subcanopy detection when depths averaged 50 cm or less. Low performance of inundation mapping based on C-band ASAR was attributed to an apparent inundation detection limit (>30 cm deep) in tall Spartina alterniflora marshes, a possible canopy collapse of shoreline fresh marsh exposed to repeated storm-surge inundations, wind-roughened water surfaces where water levels reached marsh canopy heights, and relatively high backscatter in the near-range portion of the SAR imagery. A TM-based vegetation index of live biomass indicated that the severity of marsh dieback was linked to differences in dominant species. The severest impacts were not necessarily caused by longer inundation but rather could be caused by repeated exposure of the palustrine marsh to elevated salinity floodwaters. Differential impacts occurred in estuarine marshes. The more brackish marshes on average suffered higher impacts than the more saline marshes, particularly the nearshore coastal marshes occupied by S. alterniflora.

  7. LANDSAT-4 Scientific Characterization: Early Results Symposium

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Radiometric calibration, geometric accuracy, spatial and spectral resolution, and image quality are examined for the thematic mapper and the multispectral band scanner on LANDSAT 4. Sensor performance is evaluated.

  8. Landsat-5 bumper-mode geometric correction

    USGS Publications Warehouse

    Storey, James C.; Choate, Michael J.

    2004-01-01

    The Landsat-5 Thematic Mapper (TM) scan mirror was switched from its primary operating mode to a backup mode in early 2002 in order to overcome internal synchronization problems arising from long-term wear of the scan mirror mechanism. The backup bumper mode of operation removes the constraints on scan start and stop angles enforced in the primary scan angle monitor operating mode, requiring additional geometric calibration effort to monitor the active scan angles. It also eliminates scan timing telemetry used to correct the TM scan geometry. These differences require changes to the geometric correction algorithms used to process TM data. A mathematical model of the scan mirror's behavior when operating in bumper mode was developed. This model includes a set of key timing parameters that characterize the time-varying behavior of the scan mirror bumpers. To simplify the implementation of the bumper-mode model, the bumper timing parameters were recast in terms of the calibration and telemetry data items used to process normal TM imagery. The resulting geometric performance, evaluated over 18 months of bumper-mode operations, though slightly reduced from that achievable in the primary operating mode, is still within the Landsat specifications when the data are processed with the most up-to-date calibration parameters.

  9. Preliminary Evaluation of TM for Soils Information

    NASA Technical Reports Server (NTRS)

    Thompson, D. R.; Henderson, K. E.; Houston, A. G.; Pitts, D. E.

    1984-01-01

    Thematic mapper data acquired over Mississippi County, Arkansas, were examined for utility in separating soil associations within generally level alluvium deposited by the Mississippi River. The 0.76 to 0.90 micron (Band 4) and the 1.55 to 1.75 micron (Band 5) were found to separate the different soil associations fairly well when compared to the USDA-SCS general soil map. The thermal channel also appeared to provide information at this level. A detailed soil survey was available at the field level along with ground observations of crop type, plant height, percent cover and growth stage. Soils within the fields ranged from uniform to soils that occur as patches of sand that stand out strongly against the intermingled areas of dark soil. Examination of the digital values of individual TM bands at the field level indicates that the influence of the soil is greater in TM than it was in MSS bands. The TM appears to provide greater detail of within field variability caused by soils than MSS and thus should provide improved information relating to crop and soil properties. However, this soil influence may cause crop identification classification procedures to have to account for the soil in their algorithms.

  10. Soil types and forest canopy structures in southern Missouri: A first look with AIS data

    NASA Technical Reports Server (NTRS)

    Green, G. M.; Arvidson, R. E.

    1986-01-01

    Spectral reflectance properties of deciduous oak-hickory forests covering the eastern half of the Rolla Quadrangle were examined using Thematic Mapper (TM) data acquired in August and December, 1982 and Airborne Imaging Spectrometer (AIS) data acquired in August, 1985. For the TM data distinctly high relative reflectance values (greater than 0.3) in the near infrared (Band 4, 0.73 to 0.94 micrometers) correspond to regions characterized by xeric (dry) forests that overlie soils with low water retention capacities. These soils are derived primarily from rhyolites. More mesic forests characterized by lower TM band 4 relative reflectances are associated with soils of higher retention capacities derived predominately from non-cherty carbonates. The major factors affecting canopy reflectance appear to be the leaf area index (LAI) and leaf optical properties. The Suits canopy reflectance model predicts the relative reflectance values for the xeric canopies. The mesic canopy reflectance is less well matched and incorporation of canopy shadowing caused by the irregular nature of the mesic canopy may be necessary. Preliminary examination of high spectral resolution AIS data acquired in August of 1985 reveals no more information than found in the broad band TM data.

  11. Detecting chlorophyll, Secchi disk depth and surface temperature in a sub-alpine lake using Landsat imagery.

    PubMed

    Giardino, C; Pepe, M; Brivio, P A; Ghezzi, P; Zilioli, E

    2001-03-14

    Some bio-physical parameters, such as chlorophyll a concentration, Secchi disk depth and water surface temperature were mapped in the sub-alpine Lake Iseo (Italy) using Landsat Thematic Mapper (TM) data acquired on the 7 March 1997. In order to adequately investigate the water-leaving radiance, TM data were atmospherically corrected using a partially image-based method, and the atmospheric transmittance was measured in synchrony with the satellite passage. An empirical approach of relating atmospherically corrected TM spectral reflectance values to in situ measurements, collected during the satellite data acquisition, was used. The models developed were used to map the chlorophyll concentration and Secchi disk depth throughout the lake. Both models gave high determination coefficients (R2 = 0.99 for chlorophyll and R2 = 0.85 for the Secchi disk) and the spatial distribution of chlorophyll concentration and Secchi disk depth was mapped with contour intervals of 1 mg/m3 and 1 m, respectively. A scene-independent procedure was used to derive the surface temperature of the lake from the TM data with a root mean square error of 0.3 degrees C.

  12. Land-cover classification in a moist tropical region of Brazil with Landsat TM imagery.

    PubMed

    Li, Guiying; Lu, Dengsheng; Moran, Emilio; Hetrick, Scott

    2011-01-01

    This research aims to improve land-cover classification accuracy in a moist tropical region in Brazil by examining the use of different remote sensing-derived variables and classification algorithms. Different scenarios based on Landsat Thematic Mapper (TM) spectral data and derived vegetation indices and textural images, and different classification algorithms - maximum likelihood classification (MLC), artificial neural network (ANN), classification tree analysis (CTA), and object-based classification (OBC), were explored. The results indicated that a combination of vegetation indices as extra bands into Landsat TM multispectral bands did not improve the overall classification performance, but the combination of textural images was valuable for improving vegetation classification accuracy. In particular, the combination of both vegetation indices and textural images into TM multispectral bands improved overall classification accuracy by 5.6% and kappa coefficient by 6.25%. Comparison of the different classification algorithms indicated that CTA and ANN have poor classification performance in this research, but OBC improved primary forest and pasture classification accuracies. This research indicates that use of textural images or use of OBC are especially valuable for improving the vegetation classes such as upland and liana forest classes having complex stand structures and having relatively large patch sizes.

  13. Land-cover classification in a moist tropical region of Brazil with Landsat TM imagery

    PubMed Central

    LI, GUIYING; LU, DENGSHENG; MORAN, EMILIO; HETRICK, SCOTT

    2011-01-01

    This research aims to improve land-cover classification accuracy in a moist tropical region in Brazil by examining the use of different remote sensing-derived variables and classification algorithms. Different scenarios based on Landsat Thematic Mapper (TM) spectral data and derived vegetation indices and textural images, and different classification algorithms – maximum likelihood classification (MLC), artificial neural network (ANN), classification tree analysis (CTA), and object-based classification (OBC), were explored. The results indicated that a combination of vegetation indices as extra bands into Landsat TM multispectral bands did not improve the overall classification performance, but the combination of textural images was valuable for improving vegetation classification accuracy. In particular, the combination of both vegetation indices and textural images into TM multispectral bands improved overall classification accuracy by 5.6% and kappa coefficient by 6.25%. Comparison of the different classification algorithms indicated that CTA and ANN have poor classification performance in this research, but OBC improved primary forest and pasture classification accuracies. This research indicates that use of textural images or use of OBC are especially valuable for improving the vegetation classes such as upland and liana forest classes having complex stand structures and having relatively large patch sizes. PMID:22368311

  14. Spatial characterization of acid rain stress in Canadian Shield lakes

    NASA Technical Reports Server (NTRS)

    Tanis, Fred J.

    1986-01-01

    A major concern of the acid rain problem is the cumulative ecosystem damage to lakes and forests. The number of lakes affected in northeastern United States and on the Canadian Shield is thought to be enormous. Seasonal changes in lake transparency are examined relative to annual acidic load. The relationship between variations in lake acidification and ecophysical units is being examined. Finally, the utility of Thematic Mapper (TM) based observations is being used to measure seasonal changes in the optical transparency in acid lakes.

  15. Glacial lake monitoring in the Karakoram Range using historical Landsat Thematic Mapper archive (1982 - 2014)

    NASA Astrophysics Data System (ADS)

    Chan, J. Y. H.; Kelly, R. E. J.; Evans, S. G.

    2014-12-01

    Glacierized regions are one of the most dynamic land surface environments on the planet (Evans and Delaney, In Press). They are susceptible to various types of natural hazards such as landslides, glacier avalanches, and glacial lake outburst floods (GLOF). GLOF events are increasingly common and present catastrophic flood hazards, the causes of which are sensitive to climate change in complex high mountain topography (IPCC, 2013). Inundation and debris flows from GLOF events have repeatedly caused significant infrastructure damages and loss of human lives in the high mountain regions of the world (Huggel et al, 2002). The research is designed to develop methods for the consistent detection of glacier lakes formation during the Landsat Thematic Mapper (TM) era (1982 - present), to quantify the frequency of glacier lake development and estimate lake volume using Landsat imagery and digital elevation model (DEM) data. Landsat TM scenes are used to identify glacier lakes in the Shimshal and Shaksgam valley, particularly the development of Lake Virjeab in year 2000 and Kyagar Lake in 1998. A simple thresholding technique using Landsat TM infrared bands, along with object-based segmentation approaches are used to isolate lake extent. Lake volume is extracted by intersecting the lake extent with the DEM surface. Based on previous studies and DEM characterization in the region, Shuttle Radar Topography Mission (SRTM) DEM is preferred over Advanced Spaceborne Thermal Emission and Reflection (ASTER) GDEM due to higher accuracy. Calculated errors in SRTM height estimates are 5.81 m compared with 8.34 m for ASTER. SRTM data are preferred because the DEM measurements were made over short duration making the DEM internally consistent. Lake volume derived from the Landsat TM imagery and DEM are incorporated into a simple GLOF model identified by Clague and Matthews (1973) to estimate the potential peak discharge (Qmax) of a GLOF event. We compare the simple Qmax estimates with those from a more complex model of lake outflow time-varying discharge using the approach developed by Ng et al. (2007).

  16. LANDSAT-D investigations in snow hydrology

    NASA Technical Reports Server (NTRS)

    Dozier, J. (Principal Investigator)

    1982-01-01

    Snow reflectance in all 6 TM reflective bands, i.e., 1, 2, 3, 4, 5, and 7 was simulated using a delta-Eddington model. Snow reflectance in bands 4, 5, and 7 appear sensitive to grain size. It appears that the TM filters resemble a ""square-wave'' closely enough that a square-wave can be assumed in calculations. Integrated band reflectance over the actual response functions was calculated using sensor data supplied by Santa Barbara Research Center. Differences between integrating over the actual response functions and the equivalent square wave were negligible. Tables are given which show (1) sensor saturation radiance as a percentage of the solar constant, integrated through the band response function; (2) comparisons of integrations through the sensor response function with integrations over the equivalent square wave; and (3) calculations of integrated reflectance for snow over all reflective TM bands, and water and ice clouds with thickness of 1 mm water equivalent over TM bands 5 and 7. These calculations look encouraging for snow/cloud discrimination with TM bands 5 and 7.

  17. The use of multi-temporal Landsat Normalized Difference Vegetation Index (NDVI) data for mapping fuels in Yosemite National Park, USA

    USGS Publications Warehouse

    Van Wagtendonk, Jan W.; Root, Ralph R.

    2003-01-01

    The objective of this study was to test the applicability of using Normalized Difference Vegetation Index (NDVI) values derived from a temporal sequence of six Landsat Thematic Mapper (TM) scenes to map fuel models for Yosemite National Park, USA. An unsupervised classification algorithm was used to define 30 unique spectral-temporal classes of NDVI values. A combination of graphical, statistical and visual techniques was used to characterize the 30 classes and identify those that responded similarly and could be combined into fuel models. The final classification of fuel models included six different types: short annual and perennial grasses, tall perennial grasses, medium brush and evergreen hardwoods, short-needled conifers with no heavy fuels, long-needled conifers and deciduous hardwoods, and short-needled conifers with a component of heavy fuels. The NDVI, when analysed over a season of phenologically distinct periods along with ancillary data, can elicit information necessary to distinguish fuel model types. Fuels information derived from remote sensors has proven to be useful for initial classification of fuels and has been applied to fire management situations on the ground.

  18. Landsat 7 thermal-IR image sharpening using an artificial neural network and sensor model

    USGS Publications Warehouse

    Lemeshewsky, G.P.; Schowengerdt, R.A.; ,

    2001-01-01

    The enhanced thematic mapper (plus) (ETM+) instrument on Landsat 7 shares the same basic design as the TM sensors on Landsats 4 and 5, with some significant improvements. In common are six multispectral bands with a 30-m ground-projected instantaneous field of view (GIFOV). However, the thermaL-IR (TIR) band now has a 60-m GIFOV, instead of 120-m. Also, a 15-m panchromatic band has been added. The artificial neural network (NN) image sharpening method described here uses data from the higher spatial resolution ETM+ bands to enhance (sharpen) the spatial resolution of the TIR imagery. It is based on an assumed correlation over multiple scales of resolution, between image edge contrast patterns in the TIR band and several other spectral bands. A multilayer, feedforward NN is trained to approximate TIR data at 60m, given degraded (from 30-m to 60-m) spatial resolution input from spectral bands 7, 5, and 2. After training, the NN output for full-resolution input generates an approximation of a TIR image at 30-m resolution. Two methods are used to degrade the spatial resolution of the imagery used for NN training, and the corresponding sharpening results are compared. One degradation method uses a published sensor transfer function (TF) for Landsat 5 to simulate sensor coarser resolution imagery from higher resolution imagery. For comparison, the second degradation method is simply Gaussian low pass filtering and subsampling, wherein the Gaussian filter approximates the full width at half maximum amplitude characteristics of the TF-based spatial filter. Two fixed-size NNs (that is, number of weights and processing elements) were trained separately with the degraded resolution data, and the sharpening results compared. The comparison evaluates the relative influence of the degradation technique employed and whether or not it is desirable to incorporate a sensor TF model. Preliminary results indicate some improvements for the sensor model-based technique. Further evaluation using a higher resolution reference image and strict application of sensor model to data is recommended.

  19. Analysis of nonlinear internal waves observed by Landsat thematic mapper

    NASA Astrophysics Data System (ADS)

    Artale, V.; Levi, D.; Marullo, S.; Santoleri, R.

    1990-09-01

    In this work we test the compatibility between the theoretical parameters of a nonlinear wave model and the quantitative information that one can deduce from satellite-derived data. The theoretical parameters are obtained by applying an inverse problem to the solution of the Cauchy problem for the Korteweg-de Vries equation. Our results are applied to the case of internal wave patterns elaborated from two different satellite sensors at the south of Messina (the thematic mapper) and at the north of Messina (the synthetic aperture radar).

  20. Radiometric properties of the NS001 Thematic Mapper Simulator aircraft multispectral scanner

    NASA Technical Reports Server (NTRS)

    Markham, Brian L.; Ahmad, Suraiya P.

    1990-01-01

    Laboratory tests of the NS001 TM are described emphasizing absolute calibration to determine the radiometry of the simulator's reflective channels. In-flight calibration of the data is accomplished with the NS001 internal integrating-sphere source because instabilities in the source can limit the absolute calibration. The data from 1987-89 indicate uncertainties of up to 25 percent with an apparent average uncertainty of about 15 percent. Also identified are dark current drift and sensitivity changes along the scan line, random noise, and nonlinearity which contribute errors of 1-2 percent. Uncertainties similar to hysteresis are also noted especially in the 2.08-2.35-micron range which can reduce sensitivity and cause errors. The NS001 TM Simulator demonstrates a polarization sensitivity that can generate errors of up to about 10 percent depending on the wavelength.

  1. Tamm-plasmon and surface-plasmon hybrid-mode based refractometry in photonic bandgap structures.

    PubMed

    Das, Ritwick; Srivastava, Triranjita; Jha, Rajan

    2014-02-15

    The transverse magnetic (TM) polarized hybrid modes formed as a consequence of coupling between Tamm plasmon polariton (TM-TPP) mode and surface plasmon polariton (SPP) mode exhibit interesting dispersive features for realizing a highly sensitive and accurate surface plasmon resonance (SPR) sensor. We found that the TM-TPP modes, formed at the interface of distributed Bragg reflector and metal, are strongly dispersive as compared to SPP modes at optical frequencies. This causes an appreciably narrow interaction bandwidth between TM-TPP and SPP modes, which leads to highly accurate sensing. In addition, appropriate tailoring of dispersion characteristics of TM-TPP as well as SPP modes could ensure high sensitivity of a novel SPR platform. By suitably designing the Au/TiO₂/SiO₂-based geometry, we propose a TM-TPP/SPP hybrid-mode sensor and achieve a sensitivity ≥900  nm/RIU with high detection accuracy (≥30  μm⁻¹) for analyte refractive indices varying between 1.330 and 1.345 in 600-700 nm wavelength range. The possibility to achieve desired dispersive behavior in any spectral band makes the sensing configuration an extremely attractive candidate to design sensors depending on the availability of optical sources.

  2. New structural and stratigraphic insights for northwestern Pakistan from field and Landsat Thematic Mapper data

    USGS Publications Warehouse

    Robinson, J.; Beck, R.; Gnos, E.; Vincent, R.K.

    2000-01-01

    The remote Waziristan region of northwestern Pakistan includes outcrops of the India-Asia suture zone. The excellent exposure of the Waziristan ophiolite and associated sedimentary lithosomes and their inaccessibility made the use of Landsat Thematic Mapper (TM) data desirable in this study. Landsat TM data were used to create a spectral ratio image of bands 3/4, 5/4, and 7/5, displayed as red, green, and blue, respectively, and a principal component analysis image of bands 4, 5, and 7 (RGB). These images were interpreted in the context of available geologic maps, limited field work, and biostratigraphic, lithostratigraphic, and radiometric data. They were used to create a coherent geologic map of Waziristan and cross section of the area that document five tectonic units in the region and provide a new and more detailed tectonic history for the region. The lowest unit is comprised of Indian shelf sediments that were thrust under the Waziristan ophiolite. The ophiolite has been tectonically shuffled and consists of two separate tectonic units. The top thrust sheet is a nappe comprised of distal Triassic to Lower Cretaceous Neotethyan sediments that were underthrust during the Late Cretaceous by the ophiolite riding on Indian shelf strata. The uppermost unit contains unconformable Tertiary and younger strata. The thrust sheets show that the Waziristan ophiolite was obducted during Late Cretaceous time and imply that the Paleocene and Eocene deformation represents collision of India with the Kabul block and/or Asia.

  3. Influence of the Yukon River on the Bering Sea

    NASA Technical Reports Server (NTRS)

    Dean, K.; Mcroy, C. P.

    1986-01-01

    The relationships between the discharge of the Yukon River to the currents and biological productivity in the northern Bering Sea were studied. Specific objectives were: to develop thermal, sediment, and chlorophyll surface maps using Thematic Mapper (TM) data of the discharge of the Yukon River and the Alaskan Coastal Current during the ice free season; to develop a historical model of the distribution of the Yukon River discharge and the Alaskan Coastal Current using LANDSAT Multispectral band scanner (MSS) and NOAA satellite imagery; and to use high resolution TM data to define the surface dynamics of the front between the Alaskan Coastal Current and the Bering Shelf/Anadyr Current. LANDSAT MSS, TM, and Advanced Very High Resolution Radiometer (AVHRR) data were recorded during the 1985 ice free period. The data coincided with shipboard measurements acquired by Inner Shelf Transfer and Recycling (ISTAR) project scientists. An integrated model of the distribution of turbid water discharged from the Yukon River was compiled. A similar model is also being compiled for the Alaskan Coastal and Bering Shelf/Anadyr water masses based on their thermal expressions seen on AVHRR imagery.

  4. Landsat-4/5 Band 6 relative radiometry

    USGS Publications Warehouse

    Chander, Gyanesh; Helder, D.L.; Boncyk, Wayne C.

    2002-01-01

    Relative radiometric responses for the thematic mapper (TM) band 6 data from Landsat-4 and Landsat-5 were analyzed, and an algorithm has been developed that significantly reduces the striping in Band 6 images due to detector mismatch. The TM internal calibration system as originally designed includes a DC restore circuit, which acts as a feedback system designed to keep detector bias at a constant value. There is a strong indication that the DC restore circuitry implemented in Band 6 does not function as it had been designed to. It operates as designed only during a portion of the calibration interval and not at all during acquisition of scene data. This renders the data acquired during the calibration shutter interval period virtually useless for correction of the individual responses of the four detectors in Band 6. It was observed and statistically quantified that the relative response of each of the detectors to the band average is stable over the dynamic range and throughout the lifetime of the instrument. This allows an alternate approach to relative radiometric correction of TM Band 6 images

  5. Dark and background response stability for the Landsat 8 Thermal Infrared Sensor

    USGS Publications Warehouse

    Vanderwerff, Kelly; Montanaro, Matthew

    2012-01-01

    The Thermal Infrared Sensor (TIRS) is a pushbroom sensor that will be a part of the Landsat Data Continuity Mission (LDCM), which is a joint mission between NASA and the USGS. The TIRS instrument will continue to collect the thermal infrared data that are currently being collected by the Thematic Mapper and the Enhanced Thematic Mapper Plus on Landsats 5 and 7, respectively. One of the key requirements of the new sensor is that the dark and background response be stable to ensure proper data continuity from the legacy Landsat instruments. Pre launch testing of the instrument has recently been completed at the NASA Goddard Space Flight Center (GSFC), which included calibration collects that mimic those that will be performed on orbit. These collects include images of a cold plate meant to simulate the deep space calibration source as viewed by the instrument in flight. The data from these collects give insight into the stability of the instrument’s dark and background response, as well as factors that may cause these responses to vary. This paper quantifies the measured background and dark response of TIRS as well as its stability.

  6. The Deep Space Gateway Lightning Mapper (DLM) - Monitoring Global Change and Thunderstorm Processes Through Observations of Earth's High-Latitude Lightning from Cis-Lunar Orbit

    NASA Technical Reports Server (NTRS)

    Lang, Timothy; Blakeslee, R. J.; Cecil, D. J.; Christian, H. J.; Gatlin, P. N.; Goodman, S. J.; Koshak, W. J.; Petersen, W. A.; Quick, M.; Schultz, C. J.; hide

    2018-01-01

    Function: Monitor global change and thunderstorm processes through observations of Earth's high-latitude lightning. This instrument will combine long-lived sampling of individual thunderstorms with long-term observations of lightning at high latitudes: How is global change affecting thunderstorm patterns; How do high-latitude thunderstorms differ from low-latitude? Why is the Gateway the optimal facility for this instrument / research: Expected DSG (Deep Space Gateway) orbits will provide nearly continuous viewing of the Earth's high latitudes (50 degrees latitude and poleward); These regions are not well covered by existing lightning mappers (e.g., Lightning Imaging Sensor / LIS, or Geostationary Lightning Mapper / GLM); Polar, Molniya, Tundra, etc. Earth orbits have significant drawbacks related to continuous coverage and/or stable FOVs (Fields of View).

  7. Mapping the invasive species, Chinese tallow, with EO1 satellite Hyperion hyperspectral image data and relating tallow occurrences to a classified Landsat Thematic Mapper land cover map

    USGS Publications Warehouse

    Ramsey, Elijah W.; Rangoonwala, A.; Nelson, G.; Ehrlich, R.

    2005-01-01

    Our objective was to provide a realistic and accurate representation of the spatial distribution of Chinese tallow (Triadica sebifera) in the Earth Observing 1 (EO1) Hyperion hyperspectral image coverage by using methods designed and tested in previous studies. We transformed, corrected, and normalized Hyperion reflectance image data into composition images with a subpixel extraction model. Composition images were related to green vegetation, senescent foliage and senescing cypress-tupelo forest, senescing Chinese tallow with red leaves ('red tallow'), and a composition image that only corresponded slightly to yellowing vegetation. These statistical and visual comparisons confirmed a successful portrayal of landscape features at the time of the Hyperion image collection. These landscape features were amalgamated in the Landsat Thematic Mapper (TM) pixel, thereby preventing the detection of Chinese tallow occurrences in the Landsat TM classification. With the occurrence in percentage of red tallow (as a surrogate for Chinese tallow) per pixel mapped, we were able to link dominant land covers generated with Landsat TM image data to Chinese tallow occurrences as a first step toward determining the sensitivity and susceptibility of various land covers to tallow establishment. Results suggested that the highest occurrences and widest distribution of red tallow were (1) apparent in disturbed or more open canopy woody wetland deciduous forests (including cypress-tupelo forests), upland woody land evergreen forests (dominantly pines and seedling plantations), and upland woody land deciduous and mixed forests; (2) scattered throughout the fallow fields or located along fence rows separating active and non-active cultivated and grazing fields, (3) found along levees lining the ubiquitous canals within the marsh and on the cheniers near the coastline; and (4) present within the coastal marsh located on the numerous topographic highs. ?? 2005 US Government.

  8. Global Visualization (GloVis) Viewer

    USGS Publications Warehouse

    ,

    2005-01-01

    GloVis (http://glovis.usgs.gov) is a browse image-based search and order tool that can be used to quickly review the land remote sensing data inventories held at the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS). GloVis was funded by the AmericaView project to reduce the difficulty of identifying and acquiring data for user-defined study areas. Updated daily with the most recent satellite acquisitions, GloVis displays data in a mosaic, allowing users to select any area of interest worldwide and immediately view all available browse images for the following Landsat data sets: Multispectral Scanner (MSS), Multi-Resolution Land Characteristics (MRLC), Orthorectified, Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and ETM+ Scan Line Corrector-off (SLC-off). Other data sets include Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Moderate Resolution Imaging Spectroradiometer (MODIS), Aqua MODIS, and the Earth Observing-1 (EO-1) Advanced Land Imager (ALI) and Hyperion data.

  9. Establishing water body areal extent trends in interior Alaska from multi-temporal Landsat data

    USGS Publications Warehouse

    Rover, Jennifer R.; Ji, Lei; Wylie, Bruce K.; Tieszen, Larry L.

    2012-01-01

    An accurate approach is needed for monitoring, quantifying and understanding surface water variability due to climate change. Separating inter- and intra-annual variances from longer-term shifts in surface water extents due to contemporary climate warming requires repeat measurements spanning a several-decade period. Here, we show that trends developed from multi-date measurements of the extents of more than 15,000 water bodies in central Alaska using Landsat Multispectral Scanner (MSS), Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data (1979–2009) were highly influenced by the quantity and timing of the data. Over the 30-year period from 1979 to 2009, the study area had a net decrease (p < 0.05) in the extents of 3.4% of water bodies whereas 86% of water bodies exhibited no significant change. The Landsat-derived dataset provides an opportunity for additional research assessing the drivers of lake and wetland change in this region.

  10. Assessment of Thematic Mapper Band-to-band Registration by the Block Correlation Method

    NASA Technical Reports Server (NTRS)

    Card, D. H.; Wrigley, R. C.; Mertz, F. C.; Hall, J. R.

    1984-01-01

    The design of the Thematic Mapper (TM) multispectral radiometer makes it susceptible to band-to-band misregistration. To estimate band-to-band misregistration a block correlation method is employed. This method is chosen over other possible techniques (band differencing and flickering) because quantitative results are produced. The method correlates rectangular blocks of pixels from one band against blocks centered on identical pixels from a second band. The block pairs are shifted in pixel increments both vertically and horizontally with respect to each other and the correlation coefficient for each shift position is computed. The displacement corresponding to the maximum correlation is taken as the best estimate of registration error for each block pair. Subpixel shifts are estimated by a bi-quadratic interpolation of the correlation values surrounding the maximum correlation. To obtain statistical summaries for each band combination post processing of the block correlation results performed. The method results in estimates of registration error that are consistent with expectations.

  11. Correlation between high-resolution remote-sensing imagery and detailed field mapping in Cordilleran Miogeocline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, S.C.; Taranik, J.V.

    1986-05-01

    Selected areas were mapped at a scale of 1:6000 in the southern hot Creek Range (south-central Nevada), which is underlain by Paleozoic autochthonous limestone, shale, and sandstone, Paleozoic allochthonous chert and siltstone, and Tertiary rhyolitic to dactitic ash flow tuff. The mapping was compared with computer-processed Airborne Imaging Spectrometer (AIS) data and Landsat Thematic Mapper (TM) imagery. The AIS imagery of the Hot Creek Range was acquired in 1984 by a NASA C-130 aircraft; it has a spatial resolution of 12 m, and swath width of 380 m. The sensor was developed by the Jet Propulsion Laboratory and is themore » first in a series of NASA imaging spectrometers. The AIS collects 128 spectral bands, having a bandwidth of approximately 9 nm, in the short-wave infrared between 1.2 and 2.4 ..mu..m. This part of the spectrum contains important narrow spectral absorption features for the carbonate ion, hydroxyl ion, and water of hydration. Using computer-processed AIS imagery, therefore, the authors can separate calcite from dolomite, and kaolinite from illite and montmorillonite as well as differentiate geologic units containing these minerals. On the AIS imagery, the Upper Mississippian Tripon Pass Limestone shows a distinctive calcite absorption feature at 2.34 ..mu..m; this feature is not as pronounced in Cambrian and Ordovician limestones. The dolomitized Nevada Formation exhibits the dolomite absorption feature at 2.32 ..mu..m. Clay mineral absorption features near 2.2 ..mu..m can be distinguished in altered volcanics. Mineralogic identification was confirmed with field and laboratory spectroradiometer measurements, thin-section examination, and x-ray analysis. AIS results and field mapping were also compared to computer-processed Landsat TM imagery, the highest spectral and spatial resolution worldwide data set currently available.« less

  12. Optical Sensors Based on Single on Arm Thin Film Waveguide Interferometer

    NASA Technical Reports Server (NTRS)

    Sarkisov, S. S.; Diggs, D.; Curley, M.; Adamovsky, Grigory (Technical Monitor)

    2000-01-01

    Single-arm dual-mode optical waveguide interferometer utilizes interference between two modes of different order. Sensing effect results from the change in propagation conditions of the modes caused by the environment. The waveguide is made as an open asymmetric structure containing a dye-doped polymer film onto a quartz substrate. It is more sensitive to the change of environment than its conventional polarimetric analog using orthogonal modes (TE and TM) of the same order. The sensor still preserves the option of operating in polarimetric regime using a variety of mode combinations such as TE(sub 0)/TM(sub 0) (conventional) TE(sub 0)/TM(sub 1), TE(sub 1)/TM(sub 0), or TE(sub 1)/TM(sub 1) but can also work in nonpolarimetric regime using combinations TE(sub 0)/TE(sub 1) or TM(sub 0)/TM(sub 1). Utilization of different mode combinations simultaneously makes the device more versatile. Application of the sensor to gas sensing is based on doping polymer film with an organic indicator dye targeting a particular gaseous reagent. Change of the optical absorption spectrum of the dye caused by the gaseous pollutant results in change of the reactive index of the dye-doped polymer film that can be detected by the sensor. As indicator dyes we utilize Bromocresol Purple doped into polymer poly(methyl) methacrylate that is sensitive to small concentrations of ammonia. The indicator dye demonstrated an irreversible increase in optical absorption near the peak at 350 nm being exposed to 5% ammonia in pure nitrogen at 600 Torr. The dye also showed reversible growth of the absorption peak near 600 nm after exposure to a vapor of standard medical ammonia spirit (65% alcohol). We have built a breadboard prototype of the sensor with He-Ne laser as a light source and with a single mode fiber input and a multimode fiber output. The prototype showed a sensitivity to temperature change of the order of 2 C per 2pi phase shift. The sensitivity of the sensor to the presence of dTy ammonia is not less than 300 ppm per 2pi phase shift. The proposed sensor can be used as a robust stand-alone instrument for continuous environment pollution monitoring.

  13. Atmospheric modeling related to Thematic Mapper scan geometry. [atmospheric effects on satellite-borne photography of LANDSAT D

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Gleason, J. M.; Cicone, R. C.

    1976-01-01

    A simulation study was carried out to characterize atmospheric effects in LANDSAT-D Thematic Mapper data. In particular, the objective was to determine if any differences would result from using a linear vs. a conical scanning geometry. Insight also was gained about the overall effect of the atmosphere on Thematic Mapper signals, together with the effects of time of day. An added analysis was made of the geometric potential for direct specular reflections (sun glint). The ERIM multispectral system simulation model was used to compute inband Thematic Mapper radiances, taking into account sensor, atmospheric, and surface characteristics. Separate analyses were carried out for the thermal band and seven bands defined in the reflective spectral region. Reflective-region radiances were computed for 40 deg N, 0 deg, and 40 deg S latitudes; June, Mar., and Dec. days; and 9:30 and 11:00 AM solar times for both linear and conical scan modes. Also, accurate simulations of solar and viewing geometries throughout Thematic Mapper orbits were made. It is shown that the atmosphere plays an important role in determining Thematic Mapper radiances, with atmospheric path radiance being the major component of total radiances for short wavelengths and decreasing in importance as wavelength increases. Path radiance is shown to depend heavily on the direct radiation scattering angle and on haze content. Scan-angle-dependent variations were shown to be substantial, especially for the short-wavelength bands.

  14. Yttrium orthoaluminate nanoperovskite doped with Tm3+ ions as upconversion optical temperature sensor in the near-infrared region.

    PubMed

    Hernández-Rodriguez, M A; Lozano-Gorrín, A D; Lavín, V; Rodríguez-Mendoza, U R; Martín, I R

    2017-10-30

    The thermal sensing capability of the Tm 3+ -doped yttrium orthoaluminate nanoperovskite in the infrared range, synthetized by a sol-gel method, was studied. The temperature dependence of the infrared upconverted emission bands located at around 705 nm ( 3 F 2,3 → 3 H 6 ) and 800 nm ( 3 H 4 → 3 H 6 ) of YAP: Tm 3+ nanoperovskite under excitation at 1210 nm was analyzed from RT up to 425 K. Calibration of the optical sensor has been made using the fluorescence intensity ratio technique, showing a high sensitivity in the near-infrared compared to other trivalent rare-earth based optical sensors working in the same range. In addition, a second calibration procedure of the YAP: Tm 3+ optical sensor was performed by using the FIR technique on the emission band associated to the 3 H 4 → 3 H 6 transition in the physiological temperature range (293-333 K), showing a very high relative sensitivity compared with other rare-earth based optical temperature sensors working in the physiological range. Moreover, the main advantage compared with other optical sensors is that the excitation source and the upconverted emissions do not overlap, since they lie in different biological windows, thus allowing its potential use as an optical temperature probe in the near-infrared range for biological applications.

  15. Discrimination of natural and cultivated vegetation using Thematic Mapper spectral data

    NASA Technical Reports Server (NTRS)

    Degloria, Stephen D.; Bernstein, Ralph; Dizenzo, Silvano

    1986-01-01

    The availability of high quality spectral data from the current suite of earth observation satellite systems offers significant improvements in the ability to survey and monitor food and fiber production on both a local and global basis. Current research results indicate that Landsat TM data when used in either digital or analog formats achieve higher land-cover classification accuracies than MSS data using either comparable or improved spectral bands and spatial resolution. A review of these quantitative results is presented for both natural and cultivated vegetation.

  16. Application of TIMS data in stratigraphic analysis

    NASA Technical Reports Server (NTRS)

    Lang, H. R.

    1986-01-01

    An in-progress study demonstrates the utility of Thermal Infrared Multispectral Scanner (TIMS) data for unraveling the stratigraphic sequence of a western interior, North American foreland basin. The TIMS data can be used to determine the stratigraphic distribution of minerals that are diagnostic of specific depositional distribution. The thematic mapper (TM) and TIMS data were acquired in the Wind River/Bighorn area of central Wyoming in November 1982, and July 1983, respectively. Combined image processing, photogeologic, and spectral analysis methods were used to: map strata; construct stratigraphic columns; correlate data; and identify mineralogical facies.

  17. Detection and mapping of volcanic rock assemblages and associated hydrothermal alteration with Thermal Infrared Multiband Scanner (TIMS) data Comstock Lode Mining District, Virginia City, Nevada

    NASA Technical Reports Server (NTRS)

    Taranik, James V.; Hutsinpiller, Amy; Borengasser, Marcus

    1986-01-01

    Thermal Infrared Multispectral Scanner (TIMS) data were acquired over the Virginia City area on September 12, 1984. The data were acquired at approximately 1130 hours local time (1723 IRIG). The TIMS data were analyzed using both photointerpretation and digital processing techniques. Karhuen-Loeve transformations were utilized to display variations in radiant spectral emittance. The TIMS image data were compared with color infrared metric camera photography, LANDSAT Thematic Mapper (TM) data, and key areas were photographed in the field.

  18. Evaluation of LANDSAT-4 TM and MSS ground geometry performance without ground control

    NASA Technical Reports Server (NTRS)

    Bryant, N. A.; Zobrist, A.

    1983-01-01

    LANDSAT thematic mapper P-data of Washington, D.C., Harrisburg, PA, and Salton Sea, CA were analyzed to determine magnitudes and causes of error in the geometric conformity of the data to known earth-surface geometry. Several tests of data geometry were performed. Intra-band and inter-band correlation and registration were investigated, exclusive of map-based ground truth. Specifically, the magnitudes and statistical trends of pixel offsets between a single band's mirror scans (due to processing procedures) were computed, and the inter-band integrity of registration was analyzed.

  19. Near perfect light trapping in 2D metal nanotrench gratings and its application for sensing (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Guo, Junpeng; Guo, Hong; Li, Zhitong

    2016-09-01

    In this work, a 2D metallic nano-trench array was fabricated on gold metal surface by using an e-beam lithography patterning and etching process. Optical reflectance from the device was measured at oblique angles of incidence for TE and TM polarization. Near perfect light trapping was observed at different wavelengths for TE and TM polarization at oblique angle of incidence. As angle of incidence increases, light trapping wavelength has a red-shift for TM polarization and blue shift for TE polarization. The fabricated nano-trench device was also investigated for chemical sensor application. It was found that by varying the angle of incidence, the sensitivity changes with opposite trends for TE and TM polarization. Sensor sensitivity increases for TM polarization and decreases for TE polarization with increase of the oblique incident angle.

  20. MUPUS --- a Suite of Small Instruments for the ROSETTA Surface Science Package to Measure the Thermal and Mechanical Properties of a Comet Nucleus

    NASA Astrophysics Data System (ADS)

    Spohn, T.; MUPUS Team

    1996-09-01

    The Surface Science Package, which will be deployed in course of the ROSETTA mission on the surface of the target comet, offers the unprecedented opportunity to study the physical properties and dominating processes of a comet nucleus in situ. While most SSP experiments focuse on composition and chemistry, the MUPUS instrument package is aimed to study the energy balance of the nucleus/coma interface and the evolution of key thermal and mechanical parameters. Unlike planetary evolution, cometary evolution is influenced by the energy input at the surface. The near surface layers are accessible with some effort and may thus be directly studied. A penetrator equipped with temperature sensors and heaters (MUPUS--PEN) aims to measure the vertical temperature distribution (PEN--TP) and the thermal conductivity (PEN--THC) in the first tens of centimeters of the nucleus as they evolve with time. A combined evaluation of the PEN--TP and PEN--THC data will allow to understand vertical surface heat flow into or from the comet nucleus and the energy balance of the comet. The surface temperature will be measured with an infrared thermal mapper (MUPUS TM). Both thermal sensors will provide a ground truth for IR data from the orbiter. The PEN--M sensor will measure mechanical properties like hardness and grain size during penetration. A compton backscatter densitometer (CBD) will be used to measure the density. Additional temperature sensors and penetrometers in the SSP's anchor(s) will supplement the data and expand the volume probed. The results will help to understand the onset of activity, gas and dust emission, which will be measured by the orbiter. Understanding the dominating processes and their time scales allows to determine the present state of the surface material ("Is the matter found close to the surface pristine?") as well as extrapolation both into the past and the future.

  1. ESTCP Munitions Response Live Site Demonstrations, Former Southwestern Proving Ground, Arkansas Demonstration Report

    DTIC Science & Technology

    2015-07-01

    electromagnetic induction (EMI) sensor. A total of 2,116 targets were selected from the dynamic data for cued investigation, and 1,398 targets were...geophysical mapping DSB Defense Science Board EE/CA Engineering Evaluation/Cost Analysis EMI electromagnetic induction ESTCP Environmental Security...performed a live site demonstration project using the Geometrics MetalMapper advanced electromagnetic induction (EMI) sensor at the former Southwestern

  2. Nature and origin of mineral coatings on volcanic rocks of the Black Mountain, Stonewall Mountain and Kane Springs Wash volcanic centers, southern Nevada

    NASA Technical Reports Server (NTRS)

    Taranik, J. V.; Noble, D. C.; Hsu, L. C.; Hutsinpiller, A.; Spatz, D.

    1986-01-01

    Surface coatings on volcanic rock assemblages that occur at select tertiary volcanic centers in southern Nevada were investigated using LANDSAT 5 Thematic Mapper imagery. Three project sites comprise the subject of this study: the Kane Springs Wash, Black Mountain, and Stonewall Mountain volcanic centers. LANDSAT 5 TM work scenes selected for each area are outlined along with local area geology. The nature and composition of surface coatings on the rock types within the subproject areas are determined, along with the origin of the coatings and their genetic link to host rocks, geologic interpretations are related to remote sensing units discriminated on TM imagery. Image processing was done using an ESL VAX/IDIMS image processing system, field sampling, and observation. Aerial photographs were acquired to facilitate location on the ground and to aid stratigraphic differentiation.

  3. Simple models for complex natural surfaces - A strategy for the hyperspectral era of remote sensing

    NASA Technical Reports Server (NTRS)

    Adams, John B.; Smith, Milton O.; Gillespie, Alan R.

    1989-01-01

    A two-step strategy for analyzing multispectral images is described. In the first step, the analyst decomposes the signal from each pixel (as expressed by the radiance or reflectance values in each channel) into components that are contributed by spectrally distinct materials on the ground, and those that are due to atmospheric effects, instrumental effects, and other factors, such as illumination. In the second step, the isolated signals from the materials on the ground are selectively edited, and recombined to form various unit maps that are interpretable within the framework of field units. The approach has been tested on multispectral images of a variety of natural land surfaces ranging from hyperarid deserts to tropical rain forests. Data were analyzed from Landsat MSS (multispectral scanner) and TM (Thematic Mapper), the airborne NS001 TM simulator, Viking Lander and Orbiter, AIS, and AVRIS (Airborne Visible and Infrared Imaging Spectrometer).

  4. Mojave remote sensing field experiment

    NASA Technical Reports Server (NTRS)

    Arvidson, Raymond E.; Petroy, S. B.; Plaut, J. J.; Shepard, Michael K.; Evans, D.; Farr, T.; Greeley, Ronald; Gaddis, L.; Lancaster, N.

    1991-01-01

    The Mojave Remote Sensing Field Experiment (MFE), conducted in June 1988, involved acquisition of Thermal Infrared Multispectral Scanner (TIMS); C, L, and P-band polarimetric radar (AIRSAR) data; and simultaneous field observations at the Pisgah and Cima volcanic fields, and Lavic and Silver Lake Playas, Mojave Desert, California. A LANDSAT Thematic Mapper (TM) scene is also included in the MFE archive. TM-based reflectance and TIMS-based emissivity surface spectra were extracted for selected surfaces. Radiative transfer procedures were used to model the atmosphere and surface simultaneously, with the constraint that the spectra must be consistent with field-based spectral observations. AIRSAR data were calibrated to backscatter cross sections using corner reflectors deployed at target sites. Analyses of MFE data focus on extraction of reflectance, emissivity, and cross section for lava flows of various ages and degradation states. Results have relevance for the evolution of volcanic plains on Venus and Mars.

  5. On-board multispectral classification study

    NASA Technical Reports Server (NTRS)

    Ewalt, D.

    1979-01-01

    The factors relating to onboard multispectral classification were investigated. The functions implemented in ground-based processing systems for current Earth observation sensors were reviewed. The Multispectral Scanner, Thematic Mapper, Return Beam Vidicon, and Heat Capacity Mapper were studied. The concept of classification was reviewed and extended from the ground-based image processing functions to an onboard system capable of multispectral classification. Eight different onboard configurations, each with varying amounts of ground-spacecraft interaction, were evaluated. Each configuration was evaluated in terms of turnaround time, onboard processing and storage requirements, geometric and classification accuracy, onboard complexity, and ancillary data required from the ground.

  6. Cropland measurement using Thematic Mapper data and radiometric model

    NASA Technical Reports Server (NTRS)

    Lyon, John G.; Khuwaiter, I. H. S.

    1989-01-01

    To halt erosion and desertification, it is necessary to quantify resources that are affected. Necessary information includes inventory of croplands and desert areas as they change over time. Several studies indicate the value of remote sensor data as input to inventories. In this study, the radiometric modeling of spectral characteristics of soil and vegetation provides the theoretical basis for the remote sensing approach. Use of Landsat Thematic Mapper images allows measurement of croplands in Saudi Arabia, demonstrating the capability of the approach. The inventory techniques and remote sensing approach presented are potentially useful in developing countries.

  7. Interim report on Landsat national archive activities

    NASA Technical Reports Server (NTRS)

    Boyd, John E.

    1993-01-01

    The Department of the Interior (DOI) has the responsibility to preserve and to distribute most Landsat Thematic Mapper (TM) and Multispectral Scanner (MSS) data that have been acquired by the five Landsat satellites operational since July 1972. Data that are still covered by exclusive marketing rights, which were granted by the U.S. Government to the commercial Landsat operator, cannot be distributed by the DOI. As the designated national archive for Landsat data, the U.S. Geological Survey's EROS Data Center (EDC) has initiated two new programs to protect and make available any of the 625,000 MSS scenes currently archived and the 200,000 TM scenes to be archived at EDC by 1995. A specially configured system has begun converting Landsat MSS data from obsolete high density tapes (HDT's) to more dense digital cassette tapes. After transcription, continuous satellite swaths are (1) divided into standard scenes defined by a world reference system, (2) geographically located by latitude and longitude, and (3) assessed for overall quality. Digital browse images are created by subsampling the full-resolution swaths. Conversion of the TM HDT's will begin in the fourth quarter of 1992 and will be conducted concurrently with MSS conversion. Although the TM archive is three times larger than the entire MSS archive, conversion of data from both sensor systems and consolidation of the entire Landsat archive at EDC will be completed by the end of 1994. Some MSS HDT's have deteriorated, primarily as a result of hydrolysis of the pigment binder. Based on a small sample of the 11 terabytes of post-1978 MSS data and the 41 terabytes of TM data to be converted, it appears that to date, less than 2 percent of the data have been lost. The data loss occurs within small portions of some scenes; few scenes are lost entirely. Approximately 10,000 pre-1979 MSS HDT's have deteriorated to such an extent, as a result of hydrolysis, that the data cannot be recovered without special treatment of the tapes. An independent consulting division of a major tape manufacturer has analyzed affected tapes and is confident that restorative procedures can be applied to the HDT's to permit one pass to reproduce the data on another recording media. A system to distribute minimally processed Landsat data will be procured in 1992 and will be operational by mid-1994. Any TM or MSS data in the national archive that are not restricted by exclusive marketing rights will be reproduced directly from the archive media onto user specified computer-compatible media. TM data will be produced either at a raw level (radiometrically and geometrically uncorrected) or at an intermediate level (radiometrically corrected and geometrically indexed). MSS data will be produced to an intermediate level or to a fully corrected level (radiometrically corrected and geometrically transformed to an Oblique Mercator projection). The system will be capable of providing ordered scenes within 48 hours of receipt of order.

  8. Integration of an Emerging Highly Sensitive Optical CO2 Sensor for Ocean Monitoring on an Existing Data Acquisition System SeaKeeper 1000(TM)

    DTIC Science & Technology

    2011-09-30

    be deployed in geat numbers to autonomously monitor the overall patterns of CO2 emissions and ocean acidification . OBJECTIVES  Meet the...Integration of an Emerging Highly Sensitive Optical CO2 Sensor for Ocean Monitoring on an Existing Data Acquisition System SeaKeeper 1000TM Annual...challenging requirements for ocean pCO2 monitoring using an innovative sensor design based on high sensitivity fluorescence detection.  Assemble the system

  9. Silver nanoparticles-based colorimetric array for the detection of Thiophanate-methyl

    NASA Astrophysics Data System (ADS)

    Zheng, Mingda; Wang, Yingying; Wang, Chenge; Wei, Wei; Ma, Shuang; Sun, Xiaohan; He, Jiang

    2018-06-01

    A simple and selective colorimetric sensor based on citrate capped silver nanoparticles (Cit-AgNPs) is proposed for the detection of Thiophanate-methyl (TM) with high sensitivity and selectivity. The method based on the color change of Cit-AgNPs from yellow to cherry red with the addition of TM to Cit-AgNPs that caused a red-shift on the surface plasmon resonance (SPR) band from 394 nm to 525 nm due to the hydrogen-bonding and substitution. The density functional theory (DFT) method was also calculated the interactions between the TM and citrate ions. Under the optimized conditions, a linear relationship between the absorption ratio (A525nm/A394nm) and TM concentration was found in the range of 2-100 μM with correlation coefficient (R2) of 0.988. The detection limit of TM was 0.12 μM by UV-vis spectrometer. Moreover, the applicability of colorimetric sensor is successfully verified by the detection of TM in environmental samples with good recoveries.

  10. Regional forest land cover characterisation using medium spatial resolution satellite data

    USGS Publications Warehouse

    Huang, Chengquan; Homer, Collin G.; Yang, Limin; Wulder, Michael A.; Franklin, Steven E.

    2003-01-01

    Increasing demands on forest resources require comprehensive, consistent and up-to-date information on those resources at spatial scales appropriate for management decision-making and for scientific analysis. While such information can be derived using coarse spatial resolution satellite data (e.g. Tucker et al. 1984; Zhu and Evans 1994; Cihlar et al. 1996; Cihlar et al., Chapter 12), many regional applications require more spatial and thematic details than can be derived by using coarse resolution imagery. High spatial resolution satellite data such as IKONOS and Quick Bird images (Aplin et al. 1997), though usable for deriving detailed forest information (Culvenor, Chapter 9), are currently not feasible for wall-to-wall regional applications because of extremely high data cost, huge data volume, and lack of contiguous coverage over large areas. Forest studies over large areas have often been accomplished using data acquired by intermediate spatial resolution sensor systems, including the Multi-Spectral Scanner (MSS), Thematic Mapper (TM) and the Enhanced Thematic Mapper Plus (ETM+) of Landsat, the High Resolution Visible (HRV) of the Systeme Pour l'Observation de la Terre (SPOT), and the Linear Image Self-Scanner (LISS) of the Indian Remote Sensing satellite. These sensor systems are more appropriate for regional applications because they can routinely produce spatially contiguous data over large areas at relatively low cost, and can be used to derive a host of forest attributes (e.g. Cohen et al. 1995; Kimes et al. 1999; Cohen et al. 2001; Huang et al. 2001; Sugumaran 2001). Of the above intermediate spatial resolution satellites, Landsat is perhaps the most widely used in various types of land remote sensing applications, in part because it has provided more extensive spatial and temporal coverage of the globe than any other intermediate resolution satellite. Spatially contiguous Landsat data have been developed for many regions of the globe (e.g. Lunetta and Sturdevant 1993; Fuller et al. 1994b; Skole et al. 1997), and a circa 1990 Landsat image data set covering the entire land area of the globe has also been developed recently (Jones and Smith 2001). An acquisition strategy aimed at acquiring at least one cloud free image per year for the entire land area of the globe has been initiated for Landsat-7 (Arvidson et al. 2001). This will probably ensure the continued dominance of Landsat in the near future.

  11. A new approach for the estimation of phytoplankton cell counts associated with algal blooms.

    PubMed

    Nazeer, Majid; Wong, Man Sing; Nichol, Janet Elizabeth

    2017-07-15

    This study proposes a method for estimating phytoplankton cell counts associated with an algal bloom, using satellite images coincident with in situ and meteorological parameters. Satellite images from Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), Operational Land Imager (OLI) and HJ-1 A/B Charge Couple Device (CCD) sensors were integrated with the meteorological observations to provide an estimate of phytoplankton cell counts. All images were atmospherically corrected using the Second Simulation of the Satellite Signal in the Solar Spectrum (6S) atmospheric correction method with a possible error of 1.2%, 2.6%, 1.4% and 2.3% for blue (450-520nm), green (520-600nm), red (630-690nm) and near infrared (NIR 760-900nm) wavelengths, respectively. Results showed that the developed Artificial Neural Network (ANN) model yields a correlation coefficient (R) of 0.95 with the in situ validation data with Sum of Squared Error (SSE) of 0.34cell/ml, Mean Relative Error (MRE) of 0.154cells/ml and a bias of -504.87. The integration of the meteorological parameters with remote sensing observations provided a promising estimation of the algal scum as compared to previous studies. The applicability of the ANN model was tested over Hong Kong as well as over Lake Kasumigaura, Japan and Lake Okeechobee, Florida USA, where algal blooms were also reported. Further, a 40-year (1975-2014) red tide occurrence map was developed and revealed that the eastern and southern waters of Hong Kong are more vulnerable to red tides. Over the 40 years, 66% of red tide incidents were associated with the Dinoflagellates group, while the remainder were associated with the Diatom group (14%) and several other minor groups (20%). The developed technology can be applied to other similar environments in an efficient and cost-saving manner. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Garden City, Kansas

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Center pivot irrigation systems create red circles of healthy vegetation in this image of croplands near Garden City, Kansas. This image was acquired by Landsat 7's Enhanced Thematic Mapper plus (ETM+) sensor on September 25, 2000. This is a false-color composite image made using near infrared, red, and green wavelengths. The image has also been sharpened using the sensor's panchromatic band. Image provided by the USGS EROS Data Center Satellite Systems Branch

  13. The preservation of LANDSAT data by the National Land Remote Sensing Archive

    NASA Technical Reports Server (NTRS)

    Boyd, John E.

    1992-01-01

    Digital data, acquired by the National Landsat Remote Sensing Program, document nearly two decades of global agricultural, environmental, and sociological change. The data were widely applied and continue to be essential to a variety of geologic, hydrologic, agronomic, and strategic programs and studies by governmental, academic, and commercial researchers. Landsat data were acquired by five observatories that use primarily two digital sensor systems. The Multispectral Scanner (MSS) was onboard all five Landsats, which have orbited over 19 years; the higher resolution Thematic Mapper (TM) sensor acquired data for the last 9 years on Landsats 4 and 5 only. The National Land Remote Sensing Archive preserves the 800,000 scenes, which total more than 60 terabytes of data, on master tapes that are steadily deteriorating. Data are stored at two terabytes of data, on master tapes that are steadily deteriorating. Data are stored at two locations (Sioux Falls, South Dakota and Landover, Maryland), in three archive formats. The U.S. Geological Survey's EROS Data Center has initiated a project to consolidate and convert, over the next 4 years, two of the archive formats from antiquated instrumentation tape to rotary-recorded cassette magnetic tape. The third archive format, consisting of 300,000 scenes of MSS data acquired from 1972 through 1978, will not be converted because of budgetary constraints. This data preservation project augments EDC's experience in data archiving and information management, expertise that is critical to EDC's role as a Distributed Active Archive Center for the Earth Observing System, a new and much larger national earth science program.

  14. Mapping wildfire burn severity in the Arctic Tundra from downsampled MODIS data

    USGS Publications Warehouse

    Kolden, Crystal A.; Rogan, John

    2013-01-01

    Wildfires are historically infrequent in the arctic tundra, but are projected to increase with climate warming. Fire effects on tundra ecosystems are poorly understood and difficult to quantify in a remote region where a short growing season severely limits ground data collection. Remote sensing has been widely utilized to characterize wildfire regimes, but primarily from the Landsat sensor, which has limited data acquisition in the Arctic. Here, coarse-resolution remotely sensed data are assessed as a means to quantify wildfire burn severity of the 2007 Anaktuvuk River Fire in Alaska, the largest tundra wildfire ever recorded on Alaska's North Slope. Data from Landsat Thematic Mapper (TM) and downsampled Moderate-resolution Imaging Spectroradiometer (MODIS) were processed to spectral indices and correlated to observed metrics of surface, subsurface, and comprehensive burn severity. Spectral indices were strongly correlated to surface severity (maximum R2 = 0.88) and slightly less strongly correlated to substrate severity. Downsampled MODIS data showed a decrease in severity one year post-fire, corroborating rapid vegetation regeneration observed on the burned site. These results indicate that widely-used spectral indices and downsampled coarse-resolution data provide a reasonable supplement to often-limited ground data collection for analysis and long-term monitoring of wildfire effects in arctic ecosystems.

  15. Influence of the Yukon River on the Bering Sea

    NASA Technical Reports Server (NTRS)

    Dean, Kenneson G.; Mcroy, C. Peter

    1988-01-01

    Physical and biological oceanography of the northern Bering Sea including the influence of the Yukon River were studied. Satellite data acquired by the Advanced Very High Resolution Radiometer (AVHRR), the LANDSAT Multispectral Scanner (MSS) and the Thematic Mapper (TM) sensor were used to detect sea surface temperatures and suspended sediments. Shipboard measurements of temperature, salinity and nutrients were acquired through the Inner Shelf Transfer and Recycling (ISHTAR) project and were compared to digitally enhanced and historical satellite images. The satellite data reveal north-flowing, warm water along the Alaskan coast that is highly turbid with complex patterns of surface circulation near the Yukon River delta. To the west near the Soviet Union, cold water, derived from an upwelling, mixes with shelf water and also flows north. The cold and warm water coincide with the Anadyr, Bering Shelf and Alaskan coastal water masses. Generally, warm Alaskan coastal water forms near the coast and extends offshore as the summer progresses. Turbid water discharged by the Yukon River progresses in the same fashion but extends northward across the entrance to Norton Sound, attaining its maximum surface extent in October. The Anadyr water flows northward and around St. Lawrence Island, but its extent is highly variable and depends upon mesoscale pressure fields in the Arctic Ocean and the Bering Sea.

  16. Comparison of Landsat Thematic Mapper and Geophysical and Environmental Research Imaging Spectrometer data for the Cuprite mining district, Esmeralda, and Nye counties, Nevada

    NASA Technical Reports Server (NTRS)

    Kierein-Young, Kathryn S.; Kruse, Fred A.

    1989-01-01

    Landsat TM images and Geophysical and Environmental Research Imaging Spectrometer (GERIS) data were analyzed for the Cuprite mining district and compared to available geologic and alteration maps of the area. The TM data, with 30 m resolution and 6 broadbands, allowed discrimination of general mineral groups. Clay minerals, playa deposits, and unaltered rocks were mapped as discrete spectral units using the TM data, but specific minerals were not determined, and definition of the individual alteration zones was not possible. The GERIS, with 15 m spatial resolution and 63 spectral bands, permitted construction of complete spectra and identification of specific minerals. Detailed spectra extracted from the images provided the ability to identify the minerals alunite, kaolinite, hematite, and buddingtonite by their spectral characteristics. The GERIS data show a roughly concentrically zoned hydrothermal system. The mineralogy mapped with the aircraft system conforms to previous field and multispectral image mapping. However, identification of individual minerals and spatial display of the dominant mineralogy add information that can be used to help determine the morphology and genetic origin of the hydrothermal system.

  17. A Comparative Study of Landsat TM and SPOT HRG Images for Vegetation Classification in the Brazilian Amazon.

    PubMed

    Lu, Dengsheng; Batistella, Mateus; de Miranda, Evaristo E; Moran, Emilio

    2008-01-01

    Complex forest structure and abundant tree species in the moist tropical regions often cause difficulties in classifying vegetation classes with remotely sensed data. This paper explores improvement in vegetation classification accuracies through a comparative study of different image combinations based on the integration of Landsat Thematic Mapper (TM) and SPOT High Resolution Geometric (HRG) instrument data, as well as the combination of spectral signatures and textures. A maximum likelihood classifier was used to classify the different image combinations into thematic maps. This research indicated that data fusion based on HRG multispectral and panchromatic data slightly improved vegetation classification accuracies: a 3.1 to 4.6 percent increase in the kappa coefficient compared with the classification results based on original HRG or TM multispectral images. A combination of HRG spectral signatures and two textural images improved the kappa coefficient by 6.3 percent compared with pure HRG multispectral images. The textural images based on entropy or second-moment texture measures with a window size of 9 pixels × 9 pixels played an important role in improving vegetation classification accuracy. Overall, optical remote-sensing data are still insufficient for accurate vegetation classifications in the Amazon basin.

  18. Determining crop residue type and class using satellite acquired data. M.S. Thesis Progress Report, Jun. 1990

    NASA Technical Reports Server (NTRS)

    Zhuang, Xin

    1990-01-01

    LANDSAT Thematic Mapper (TM) data for March 23, 1987 with accompanying ground truth data for the study area in Miami County, IN were used to determine crop residue type and class. Principle components and spectral ratioing transformations were applied to the LANDSAT TM data. One graphic information system (GIS) layer of land ownership was added to each original image as the eighth band of data in an attempt to improve classification. Maximum likelihood, minimum distance, and neural networks were used to classify the original, transformed, and GIS-enhanced remotely sensed data. Crop residues could be separated from one another and from bare soil and other biomass. Two types of crop residue and four classes were identified from each LANDSAT TM image. The maximum likelihood classifier performed the best classification for each original image without need of any transformation. The neural network classifier was able to improve the classification by incorporating a GIS-layer of land ownership as an eighth band of data. The maximum likelihood classifier was unable to consider this eighth band of data and thus, its results could not be improved by its consideration.

  19. A Comparative Study of Landsat TM and SPOT HRG Images for Vegetation Classification in the Brazilian Amazon

    PubMed Central

    Lu, Dengsheng; Batistella, Mateus; de Miranda, Evaristo E.; Moran, Emilio

    2009-01-01

    Complex forest structure and abundant tree species in the moist tropical regions often cause difficulties in classifying vegetation classes with remotely sensed data. This paper explores improvement in vegetation classification accuracies through a comparative study of different image combinations based on the integration of Landsat Thematic Mapper (TM) and SPOT High Resolution Geometric (HRG) instrument data, as well as the combination of spectral signatures and textures. A maximum likelihood classifier was used to classify the different image combinations into thematic maps. This research indicated that data fusion based on HRG multispectral and panchromatic data slightly improved vegetation classification accuracies: a 3.1 to 4.6 percent increase in the kappa coefficient compared with the classification results based on original HRG or TM multispectral images. A combination of HRG spectral signatures and two textural images improved the kappa coefficient by 6.3 percent compared with pure HRG multispectral images. The textural images based on entropy or second-moment texture measures with a window size of 9 pixels × 9 pixels played an important role in improving vegetation classification accuracy. Overall, optical remote-sensing data are still insufficient for accurate vegetation classifications in the Amazon basin. PMID:19789716

  20. Light from the Waves

    NASA Technical Reports Server (NTRS)

    2002-01-01

    For many years limnologists have been looking for an alternative to the Secchi disk. In the mid to late 1970s, Lillesand (then at Minnesota) along with colleagues in Wisconsin began to toy with the idea of using remote sensing satellites to observe lake quality from space. They reasoned that if water quality information could be extracted from images taken by orbiting satellites, the number of lakes monitored could be greatly expanded. For several years, the scientists experimented with data from early Landsat missions, but the data provided only very rough estimates of water quality. 'We were able to get accurate measurements of water clarity only after Landsat Thematic Mapper (TM) data became available,' says Lillesand. Since 1972 the Landsat program has launched a series of Earth observation satellites into orbit, collecting image data of our planet's surface. The sensors on the first three satellites in the series, launched in the 1970s, had a coarse spatial resolution (80 meters), and only four spectral bands. Later versions of Landsat have carried improved sensors-the Thematic Mapper instrument on Landsats 4 and 5, and the Enhanced Thematic Mapper Plus on the most recent of the series, Landsat 7, launched in 1999. The Thematic Mapper and the Enhanced Thematic Mapper instruments acquire images in seven different wavelengths of radiation reflected or emitted from the surface of the Earth. The wavelengths are in the visible, reflective infrared and thermal infrared parts of the spectrum. With a spatial resolution of 30 meters, the images are well suited for mapping and monitoring large features such as lakes. 'It was the higher resolution and the addition of the blue band on the Thematic Mapper that gave us clearer results,' says Lillesand. The researchers found that when the amount of blue light reflecting off of the lake was high and the red light was low, the lake generally had high water quality. 'It's common sense. When you look at a clear lake from a distance it appears blue,' says Lillesand. Lakes loaded with algae and sediments, on the other hand, reflect less blue light and more red light. He further explains that the scientists first acquired Landsat Thematic Mapper data of the lakes with known Secchi depths. They then analyzed the satellite data to see if they could arrive at an image that displayed lake clarity as accurately as the Secchi disk measurements. In the end, Lillesand and his colleagues were able to retrieve water clarity maps and measurements from the satellite imagery that were as accurate as Secchi disk measurements. For roughly ten years, this knowledge was put to little use. Then, in the late 1990s, researchers at the University of Minnesota launched a pilot project to measure the water quality of the lakes around the Minneapolis/St. Paul metropolitan area. With a single Landsat TM image, they obtained coverage of all the lakes in the seven-county region. They put the images of the lakes through an analysis similar to that developed a decade earlier and classified lake water quality measurements for over 500 lakes. They tested the Landsat water quality readings against Secchi measurements of sample lakes, and the two sets of data matched up very closely. 'With the Landsat images we ended up getting water quality measurements of 10 times as many lakes as we would have with the Secchi disk data,' says Brezonik. The Minnesota team then dusted off archived Landsat images dating back to the early 1970s and ran them through the same procedure. They found that most of the lakes around the seven-county metro area have not changed in quality over the past 25 years, with somewhat more (7 percent) increasing than decreasing (3 percent) in quality. The results proved so successful that a team of scientists led by Brezonik and Marvin Bauer, director of the University of Minnesota Remote Sensing and Geospatial Analysis Laboratory, expanded the survey to the entire state. The statewide project was funded in part by NASA's Upper Midwest Regional Earth Science Applications Center (RESAC), which was established to monitor and analyze the natural resources in the Upper Great Lakes region. For the statewide water quality map, the researchers assembled the best of two year's worth of cloud-free Landsat images taken of Minnesota. 'We were able to get water clarity readings on 100 percent of the lakes larger than 20 acres using the satellite data,' Brezonik says. Of the 12,700 bodies of water classified as lakes in Minnesota, roughly 10,000 are larger than 20 acres. Once again, the readings matched up with the Secchi disk records. 'When we put the map together, we did see a very strong north-south pattern in Minnesota,' says Brezonik. In the northeast Minnesota the lakes are very clear and the water quality is high. Moving south and southwest, the water clarity and quality diminishes. He believes there are two major reasons for this pattern. The first is that most of the farms and the people in Minnesota are in the southern half of the state. Nutrient-rich run-off from farms and urban developments has caused algae to grow. In the northeast, dense forests where fewer people live surround the lakes. He says the second reason is that the lakes in the south are generally shallower than those in the north. Deeper lakes generally absorb excess sediment and nutrients better. Though the team has not yet finished analyzing archived data from the past, Brezonik believes that the lakes have probably maintained the same level of quality over the past 15 years.

  1. LANDSAT D data processing facility study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Mission planning of the LANDSAT D is discussed which will present several major advances in the spacecraft, sensor (Thematic Mapper), ground systems and overall system design. The system provides for two data links-direct satellite to ground, and via the Tracking and Data Relay Satellite.

  2. Tropical forest biomass and successional age class relationships to a vegetation index derived from Landsat TM data

    NASA Technical Reports Server (NTRS)

    Sader, Steven A.; Waide, Robert B.; Lawrence, William T.; Joyce, Armond T.

    1989-01-01

    Forest stand structure and biomass data were collected using conventional forest inventory techniques in tropical, subtropical, and warm temperate forest biomes. The feasibility of detecting tropical forest successional age class and total biomass differences using Landsat-Thematic mapper (TM) data, was evaluated. The Normalized Difference Vegetation Index (NDVI) calculated from Landsat-TM data were not significantly correlated with forest regeneration age classes in the mountain terrain of the Luquillo Experimental Forest, Puerto Rico. The low sun angle and shadows cast on steep north and west facing slopes reduced spectral reflectance values recorded by TM orbital altitude. The NDVI, calculated from low altitude aircraft scanner data, was significatly correlated with forest age classes. However, analysis of variance suggested that NDVI differences were not detectable for successional forests older than approximately 15-20 years. Also, biomass differences in young successional tropical forest were not detectable using the NDVI. The vegetation index does not appear to be a good predictor of stand structure variables (e.g., height, diameter of main stem) or total biomass in uneven age, mixed broadleaf forest. Good correlation between the vegetation index and low biomass in even age pine plantations were achieved for a warm temperate study site. The implications of the study for the use of NDVI for forest structure and biomass estimation are discussed.

  3. Net radiation estimated by remote sensing in Cerrado areas in the Upper Paraguay River Basin

    NASA Astrophysics Data System (ADS)

    Fausto, Marcos Alves; Machado, Nadja Gomes; de Souza Nogueira, José; Biudes, Marcelo Sacardi

    2014-01-01

    The Cerrado is a heterogeneous landscape which is shrinking due to deforestation, giving rise to managed ecosystems. The land cover changes alter net radiation (Rn), which determines the quantity of available energy to the energy balance partition. The objectives of this study were (1) to determine the spatial pattern of the vegetation indices, albedo, and land surface temperature (LST) and (2) to evaluate the Rn estimated by Landsat 5 Thematic Mapper (TM) images over Cerrado areas in the Upper Paraguay River Basin. We estimated the vegetation indices, albedo, LST, and Rn of five selected vegetation types. The values estimated by Landsat 5 TM images had seasonal variations with higher values of the vegetation indices and lower values of the albedo and the LST during the wet season. The riparian and Cerrado strictu sensu had higher values of vegetation indices and lower albedo and LST than grasslands. The Rn estimated by Landsat 5 TM images was highly correlated with the measured Rn. The Rn had a seasonal pattern, following the solar radiation, with higher values during the wet season and varied spatially with higher values in the riparian forest and Cerrado strictu sensu and lower in the grasslands. This study showed the applicability of the Landsat 5 TM images to estimate Rn, which can help to understand the heterogeneity in the study area.

  4. Using the Sonoran and Libyan Desert test sites to monitor the temporal stability of reflective solar bands for Landsat 7 enhanced thematic mapper plus and Terra moderate resolution imaging spectroradiometer sensors

    USGS Publications Warehouse

    Angal, Amit; Xiong, Xiaoxiong; Choi, Tae-young; Chander, Gyanesh; Wu, Aisheng

    2010-01-01

    Remote sensing imagery is effective for monitoring environmental and climatic changes because of the extent of the global coverage and long time scale of the observations. Radiometric calibration of remote sensing sensors is essential for quantitative & qualitative science and applications. Pseudo-invariant ground targets have been extensively used to monitor the long-term radiometric calibration stability of remote sensing sensors. This paper focuses on the use of the Sonoran Desert site to monitor the radiometric stability of the Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) and Terra Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. The results are compared with the widely used Libya 4 Desert site in an attempt to evaluate the suitability of the Sonoran Desert site for sensor inter-comparison and calibration stability monitoring. Since the overpass times of ETM+ and MODIS differ by about 30 minutes, the impacts due to different view geometries or test site Bi-directional Reflectance Distribution Function (BRDF) are also presented. In general, the long-term drifts in the visible bands are relatively large compared to the drift in the near-infrared bands of both sensors. The lifetime Top-of-Atmosphere (TOA) reflectance trends from both sensors over 10 years are extremely stable, changing by no more than 0.1% per year (except ETM+ Band 1 and MODIS Band 3) over the two sites used for the study. The use of a semi-empirical BRDF model can reduce the impacts due to view geometries, thus enabling a better estimate of sensor temporal drifts.

  5. Normalization of satellite imagery

    NASA Technical Reports Server (NTRS)

    Kim, Hongsuk H.; Elman, Gregory C.

    1990-01-01

    Sets of Thematic Mapper (TM) imagery taken over the Washington, DC metropolitan area during the months of November, March and May were converted into a form of ground reflectance imagery. This conversion was accomplished by adjusting the incident sunlight and view angles and by applying a pixel-by-pixel correction for atmospheric effects. Seasonal color changes of the area can be better observed when such normalization is applied to space imagery taken in time series. In normalized imagery, the grey scale depicts variations in surface reflectance and tonal signature of multi-band color imagery can be directly interpreted for quantitative information of the target.

  6. Investigation of LANDSAT D Thematic Mapper geometric performance: Line to line and band to band registration. [Toulouse, France and Mississippi, U.S.A.

    NASA Technical Reports Server (NTRS)

    Begni, G.; BOISSIN; Desachy, M. J.; PERBOS

    1984-01-01

    The geometric accuray of LANDSAT TM raw data of Toulouse (France) raw data of Mississippi, and preprocessed data of Mississippi was examined using a CDC computer. Analog images were restituted on the VIZIR SEP device. The methods used for line to line and band to band registration are based on automatic correlation techniques and are widely used in automated image to image registration at CNES. Causes of intraband and interband misregistration are identified and statistics are given for both line to line and band to band misregistration.

  7. Regional aeolian dynamics and sand mixing in the Gran Desierto - Evidence from Landsat Thematic Mapper images

    NASA Technical Reports Server (NTRS)

    Blount, Grady; Greeley, Ronald; Christensen, Phillip R.; Smith, Milton O.; Adams, John B.

    1990-01-01

    Mesoscale mapping of spatial variations in sand composition of the Gran Desierto (Sonora, Mexico) was carried out on multispectral Landsat TM images of this region, making it possible to examine the dynamic development of sand sheets and dunes. Compositions determined from remote imagery were found to agree well with samples from selected areas. The sand populations delineated were used to describe the sediment source areas, transport paths, and deposition sites. The image analysis revealed important compositional variations aver large areas that were not readily apparent in the field data.

  8. LANDSAT-4 band 6 data evaluation

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The radiometric integrity of the LANDSAT-D thematic mapper (TM) thermal infrared channel (band 6) data was evaluated to develop improved radiometric preprocessing calibration techniques for removal of atmospheric effects. Primary data analysis was spent in evaluating the line to line and detector to detector variation in the thermal infrared data. The data studied was in the core area of Lake Ontario where very stable temperatures were expected. The detectors and the scan direction were taken as separate parameters and an analysis of variance was conducted. The data indicate that significant variability exists both between detectors and between scan directions.

  9. Biochemical processes in sagebrush ecosystems: Interactions with terrain

    NASA Technical Reports Server (NTRS)

    Matson, P. (Principal Investigator); Reiners, W.; Strong, L.

    1985-01-01

    The objectives of a biogeochemical study of sagebrush ecosystems in Wyoming and their interactions with terrain are as follows: to describe the vegetational pattern on the landscape and elucidate controlling variables, to measure the soil properties and chemical cycling properties associated with the vegetation units, to associate soil properties with vegetation properties as measured on the ground, to develop remote sensing capabilities for vegetation and surface characteristics of the sagebrush landscape, to develop a system of sensing snow cover and indexing seasonal soil to moisture; and to develop relationships between temporal Thematic Mapper (TM) data and vegetation phenological state.

  10. Investigation of several aspects of LANDSAT-4 data quality. [Sacramento, San Francisco, and NE Arkansas

    NASA Technical Reports Server (NTRS)

    Wrigley, R. C. (Principal Investigator)

    1984-01-01

    The Thematic Mapper scene of Sacramento, CA acquired during the TDRSS test was received in TIPS format. Quadrants for both scenes were tested for band-to-band registration using reimplemented block correlation techniques. Summary statistics for band-to-band registrations of TM band combinations for Quadrant 4 of the NE Arkansas scene in TIPS format are tabulated as well as those for Quadrant 1 of the Sacramento scene. The system MTF analysis for the San Francisco scene is completed. The thermal band did not have sufficient contrast for the targets used and was not analyzed.

  11. Location of the β4 transmembrane helices in the BK potassium channel

    PubMed Central

    Wu, Roland S.; Chudasama, Neelesh; Zakharov, Sergey I.; Doshi, Darshan; Motoike, Howard; Liu, Guoxia; Yao, Yongneng; Niu, Xiaowei; Deng, Shi-Xian; Landry, Donald W.; Karlin, Arthur; Marx, Steven O.

    2009-01-01

    Large-conductance, voltage- and Ca2+-gated potassium (BK) channels control excitability in a number of cell types. BK channels are composed of α subunits, which contain the voltage-sensor domains and the Ca2+- sensor domains, and form the pore, and often one of four types of β subunits, which modulate the channel in a cell-specific manner. β4 is expressed in neurons throughout the brain. Deletion of β4 in mice causes temporal lobe epilepsy. Compared to channels composed of α alone, channels composed of α and β4 activate and deactivate more slowly. We inferred the locations of the two β4 transmembrane (TM) helices, TM1 and TM2, relative to the seven αTM helices, S0-S6, from the extent of disulfide bond formation between cysteines substituted in the extracellular flanks of these TM helices. We found that β4 TM2 is close to α S0 and that β4 TM1 is close to both α S1 and S2. At least at their extracellular ends, TM1 and TM2 are not close to S3 through S6. In six of eight of the most highly crosslinked cysteine pairs, four crosslinks from TM2 to S0 and one each from TM1 to S1 and S2 had small effects on the V50 and on the rates of activation and deactivation. That disulfide crosslinking caused only small functional perturbations is consistent with the proximity of the extracellular ends of TM2 to S0 and of TM1 to S1 and to S2, in both the open and closed states. PMID:19571123

  12. Determination of Classification Accuracy for Land Use/cover Types Using Landsat-Tm Spot-Mss and Multipolarized and Multi-Channel Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Dondurur, Mehmet

    The primary objective of this study was to determine the degree to which modern SAR systems can be used to obtain information about the Earth's vegetative resources. Information obtainable from microwave synthetic aperture radar (SAR) data was compared with that obtainable from LANDSAT-TM and SPOT data. Three hypotheses were tested: (a) Classification of land cover/use from SAR data can be accomplished on a pixel-by-pixel basis with the same overall accuracy as from LANDSAT-TM and SPOT data. (b) Classification accuracy for individual land cover/use classes will differ between sensors. (c) Combining information derived from optical and SAR data into an integrated monitoring system will improve overall and individual land cover/use class accuracies. The study was conducted with three data sets for the Sleeping Bear Dunes test site in the northwestern part of Michigan's lower peninsula, including an October 1982 LANDSAT-TM scene, a June 1989 SPOT scene and C-, L- and P-Band radar data from the Jet Propulsion Laboratory AIRSAR. Reference data were derived from the Michigan Resource Information System (MIRIS) and available color infrared aerial photos. Classification and rectification of data sets were done using ERDAS Image Processing Programs. Classification algorithms included Maximum Likelihood, Mahalanobis Distance, Minimum Spectral Distance, ISODATA, Parallelepiped, and Sequential Cluster Analysis. Classified images were rectified as necessary so that all were at the same scale and oriented north-up. Results were analyzed with contingency tables and percent correctly classified (PCC) and Cohen's Kappa (CK) as accuracy indices using CSLANT and ImagePro programs developed for this study. Accuracy analyses were based upon a 1.4 by 6.5 km area with its long axis east-west. Reference data for this subscene total 55,770 15 by 15 m pixels with sixteen cover types, including seven level III forest classes, three level III urban classes, two level II range classes, two water classes, one wetland class and one agriculture class. An initial analysis was made without correcting the 1978 MIRIS reference data to the different dates of the TM, SPOT and SAR data sets. In this analysis, highest overall classification accuracy (PCC) was 87% with the TM data set, with both SPOT and C-Band SAR at 85%, a difference statistically significant at the 0.05 level. When the reference data were corrected for land cover change between 1978 and 1991, classification accuracy with the C-Band SAR data increased to 87%. Classification accuracy differed from sensor to sensor for individual land cover classes, Combining sensors into hypothetical multi-sensor systems resulted in higher accuracies than for any single sensor. Combining LANDSAT -TM and C-Band SAR yielded an overall classification accuracy (PCC) of 92%. The results of this study indicate that C-Band SAR data provide an acceptable substitute for LANDSAT-TM or SPOT data when land cover information is desired of areas where cloud cover obscures the terrain. Even better results can be obtained by integrating TM and C-Band SAR data into a multi-sensor system.

  13. Airborne Oceanographic Lidar (AOL) (Global Carbon Cycle)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This bimonthly contractor progress report covers the operation, maintenance and data management of the Airborne Oceanographic Lidar and the Airborne Topographic Mapper. Monthly activities included: mission planning, sensor operation and calibration, data processing, data analysis, network development and maintenance and instrument maintenance engineering and fabrication.

  14. Systematic and random variations in digital Thematic Mapper data

    NASA Technical Reports Server (NTRS)

    Duggin, M. J. (Principal Investigator); Sakhavat, H.

    1985-01-01

    Radiance recorded by any remote sensing instrument will contain noise which will consist of both systematic and random variations. Systematic variations may be due to sun-target-sensor geometry, atmospheric conditions, and the interaction of the spectral characteristics of the sensor with those of upwelling radiance. Random variations in the data may be caused by variations in the nature and in the heterogeneity of the ground cover, by variations in atmospheric transmission, and by the interaction of these variations with the sensing device. It is important to be aware of the extent of random and systematic errors in recorded radiance data across ostensibly uniform ground areas in order to assess the impact on quantative image analysis procedures for both the single date and the multidate cases. It is the intention here to examine the systematic and the random variations in digital radiance data recorded in each band by the thematic mapper over crop areas which are ostensibly uniform and which are free from visible cloud.

  15. Thematic mapper study of Alaskan ophiolites

    NASA Technical Reports Server (NTRS)

    Bird, John M.

    1988-01-01

    The two principle objectives of the project Thematic Mapper Study of Alaskan Ophiolites were to further develop techniques for producing geologic maps, and to study the tectonics of the ophiolite terrains of the Brooks Range and Ruby Geanticline of northern Alaska. Ophiolites, sections of oceanic lithosphere emplaced along island arcs and continental margins, are important to the understanding of mountain belt evolution. Ophiolites also provide an opportunity to study the structural, lithologic, and geochemical characteristics of ocean lithosphere, yielding a better understanding of the processes forming lithosphere. The first part of the report is a description of the methods and results of the TM mapping and gravity modeling. The second part includes papers being prepared for publication. These papers are the following: (1) an analysis of basalt spectral variations; (2) a study of basalt geochemical variations; (3) an examination of the cooling history of the ophiolites using radiometric data; (4) an analysis of shortening produced by thrusting during the Brooks Range orogeny; and (5) a study of an ophiolite using digital aeromagnetic and topographic data. Additional papers are in preparation.

  16. Utilizing remote sensing of thematic mapper data to improve our understanding of estuarine processes and their influence on the productivity of estuarine-dependent fisheries

    NASA Technical Reports Server (NTRS)

    Browder, Joan A.; May, L. Nelson, Jr.; Rosenthal, Alan; Baumann, Robert H.; Gosselink, James G.

    1988-01-01

    The continuing disintegration of the coastal marshes of Louisiana is one of the major environmental problems of the nation. The problem of marsh loss in Louisiana is relevant to fishery management because Louisiana leads the nation in landings of fishery products, and most of the landed species are dependent upon estuaries and their associated tidal marshes. In evaluating the potential effect of marshland loss on fisheries, the first two critical factors to consider are: whether land-water interface in actual disintegrating marshes is currently increasing or decreasing, and the magnitude of the change. In the present study, LANDSAT Thematic Mapper (TM) data covering specific marshes in coastal Louisiana were used to test conclusions from the Browder et al (1984) model with regard to the stage in disintegration at which maximum interface occurs; to further explore the relationship between maximum interface and the pattern of distribution of land and water suggested by the model; and to determine the direction and degree of change in land-water interface in relation to land loss in actual marshes.

  17. Data on spatiotemporal urban sprawl of Dire Dawa City, Eastern Ethiopia.

    PubMed

    Taffa, Chaltu; Mekonen, Teferi; Mulugeta, Messay; Tesfaye, Bechaye

    2017-06-01

    The data presented in this paper shows the spatiotemporal expansion of Dire Dawa City (eastern Ethiopia) and the ensuing land use land cover changes in its peri-urban areas between 1985 and 2015. The data were generated from satellite images of Thematic Mapper (TM), Enhanced Thematic Mapper-Plus (ETM+) and OLI (Operational Land Image) with path/raw value of 166/053 by using Arc GIS 10.1 software. The precision of the images was verified by geolocation data collected from ground control points by using Geographic Positioning System (GPS) receiver. Four LULC classes (built up area, vegetation, barren land and farmland) with their respective spatiotemporal dimensions were clearly identified in the analysis. Built up area had shown an overall annual increment of 15.8% (82 ha per year) from 517 ha in 1985 to 2976 ha in 2015. Expansion took place in all directions but it was more pronounced along the main road towards other nearby towns, recently established business/service areas and the Industrial Park. Barren land, farmland and vegetation areas showed speedy decline over the years.

  18. Feasibility of sea ice typing with synthetic aperture radar (SAR): Merging of Landsat thematic mapper and ERS 1 SAR satellite imagery

    NASA Technical Reports Server (NTRS)

    Steffen, Konrad; Heinrichs, John

    1994-01-01

    Earth Remote-Sensing Satellite (ERS) 1 synthetic aperture radar (SAR) and Landsat thematic mapper (TM) images were acquired for the same area in the Beaufort Sea, April 16 and 18, 1992. The two image pairs were colocated to the same grid (25-m resolution), and a supervised ice type classification was performed on the TM images in order to classify ice free, nilas, gray ice, gray-white ice, thin first-year ice, medium and thick first-year ice, and old ice. Comparison of the collocated SAR pixels showed that ice-free areas can only be classified under calm wind conditions (less than 3 m/s) and for surface winds greater than 10 m/s based on the backscattering coefficient alone. This is true for pack ice regions during the cold months of the year where ice-free areas are spatially limited and where the capillary waves that cause SAR backscatter are dampened by entrained ice crystals. For nilas, two distinct backscatter classes were found at -17 dB and at -10 dB. The higher backscattering coefficient is attributed to the presence of frost flowers on light nilas. Gray and gray-white ice have a backscatter signature similar to first-year ice and therefore cannot be distinguished by SAR alone. First-year and old ice can be clearly separated based on their backscattering coefficient. The performance of the Geophysical Processor System ice classifier was tested against the Landsat derived ice products. It was found that smooth first-year ice and rough first-year ice were not significantly different in the backscatter domain. Ice concentration estimates based on ERS 1 C band SAR showed an error range of 5 to 8% for high ice concentration regions, mainly due to misclassified ice-free and smooth first-year ice areas. This error is expected to increase for areas of lower ice concentration. The combination of C band SAR and TM channels 2, 4, and 6 resulted in ice typing performance with an estimated accuracy of 90% for all seven ice classes.

  19. A 60 Meter Delay Stabilized Microwave Fiber Optic Link for 5.3 GHz Reference Signal Distribution on the Shuttle Radar Topography Mapper

    NASA Technical Reports Server (NTRS)

    Lutes, G.; Tu, M.; McWatters, D.

    1999-01-01

    The Photonic Systems for Antenna Applications Symposium (PSAA) is the primary conference devoted exclusively to the exchange of information on the technology and application of photonics in antenna, phased array, and sensor systems.

  20. Sierra Madre Oriental in Coahuila, Mexico

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This desolate landscape is part of the Sierra Madre Oriental mountain range, on the border between the Coahuila and Nuevo Leon provinces of Mexico. This image was acquired by Landsat 7's Enhanced Thematic Mapper plus (ETM+) sensor on November 28, 1999. This is a false-color composite image made using shortwave infrared, infrared, and green wavelengths. The image has also been sharpened using the sensor's panchromatic band. Image provided by the USGS EROS Data Center Satellite Systems Branch

  1. BIA interpretation techniques for vegetation mapping using thematic mapper false color composites (interim report for San Carlos Reservation)

    USGS Publications Warehouse

    Bonner, W.J.; English, T.C.; Haas, R.H.; Feagan, T.R.; McKinley, R.A.

    1987-01-01

    The Bureau of Indian Affairs (BIA) is responsible for the natural resource management of approximately 52 million acres of Trust lands in the contiguous United States. The lands are distributed in a "patchwork" fashion throughout the country. Management responsibilities on these areas include: minerals, range, timber, fish and wildlife, agricultural, cultural, and archaeological resources. In an age of decreasing natural resources and increasing natural resource values, effective multiple resource management is critical. BIA has adopted a "systems approach" to natural resource management which utilizes Geographic Information System (GIS) technology. The GIS encompasses a continuum of spatial and relational data elements, and included functional capabilities such as: data collection, data entry, data base development, data analysis, data base management, display, and report generalization. In support of database development activities, BIA and BLM/TGS conducted a cooperative effort to investigate the potential of 1:100,000 scale Thematic Mapper (TM) False Color Composites (FCCs) for providing vegetation information suitable for input to the GIS and to later be incorporated as a generalized Bureau wide land cover map. Land cover information is critical as the majority of reservations currently have no land cover information in either map or digital form. This poster outlines an approach which includes the manual interpretation of land cover using TM FCCs, the digitizing of interpreted polygons, and the editing of digital data, used upon ground truthing exercises. An efficient and cost-effective methodology for generating large area land cover information is illustrated for the Mineral Strip area on the San Carlos Indian Reservation in Arizona. Techniques which capitalize on the knowledge of the local natural resources professionals, while minimizing machine processing requirements, are suggested.

  2. Bulk processing of the Landsat MSS/TM/ETM+ archive of the European Space Agency: an insight into the level 1 MSS processing

    NASA Astrophysics Data System (ADS)

    Saunier, Sébastien; Northrop, Amy; Lavender, Samantha; Galli, Luca; Ferrara, Riccardo; Mica, Stefano; Biasutti, Roberto; Goryl, Philippe; Gascon, Ferran; Meloni, Marco

    2017-10-01

    Whilst recent years have witnessed the development and exploitation of operational Earth Observation (EO) satellite constellation data, the valorisation of historical archives has been a challenge. The European Space Agency (ESA) Landsat Multi Spectral Scanner (MSS) products cover Greenland, Iceland, Continental Europe and North Africa represent an archive of over 600,000 processed Level 1 (L1) scenes that will accompany around 1 million ESA Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) products already available. ESA began acquiring MSS data in 1975 and it is well known that this dataset can be degraded due to missing data and a loss in accuracy. For these reasons, the content of the product format has been reviewed and the ESA Landsat processing baseline significantly updated to ensure products are fit for user purposes. This paper presents the new MSS product format including the updated metadata parameters for error traceability, and the specification of the Quality Assurance Band (BQA) engineered to allow the best pixel selection and also the application of image restoration techniques. This paper also discusses major improvements applied to the radiometric and geometric processing. For the benefits of the community, ESA is now able to maximize the number of L1 MSS products that can potentially be generated from the raw Level 0 (L0) data and ensure the highest possible data quality is reached. Also, by improving product format, processing and adding a pixel based quality band, the MSS archive becomes interoperable with recently reprocessed Landsat data and that from live missions by way of assuring product quality on a pixel basis.

  3. Monitoring the coastline change of Hatiya Island in Bangladesh using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Ghosh, Manoj Kumer; Kumar, Lalit; Roy, Chandan

    2015-03-01

    A large percentage of the world's population is concentrated along the coastal zones. These environmentally sensitive areas are under intense pressure from natural processes such as erosion, accretion and natural disasters as well as anthropogenic processes such as urban growth, resource development and pollution. These threats have made the coastal zone a priority for coastline monitoring programs and sustainable coastal management. This research utilizes integrated techniques of remote sensing and geographic information system (GIS) to monitor coastline changes from 1989 to 2010 at Hatiya Island, Bangladesh. In this study, satellite images from Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM) were used to quantify the spatio-temporal changes that took place in the coastal zone of Hatiya Island during the specified period. The modified normalized difference water index (MNDWI) algorithm was applied to TM (1989 and 2010) and ETM (2000) images to discriminate the land-water interface and the on-screen digitizing approach was used over the MNDWI images of 1989, 2000 and 2010 for coastline extraction. Afterwards, the extent of changes in the coastline was estimated through overlaying the digitized maps of Hatiya Island of all three years. Coastline positions were highlighted to infer the erosion/accretion sectors along the coast, and the coastline changes were calculated. The results showed that erosion was severe in the northern and western parts of the island, whereas the southern and eastern parts of the island gained land through sedimentation. Over the study period (1989-2010), this offshore island witnessed the erosion of 6476 hectares. In contrast it experienced an accretion of 9916 hectares. These erosion and accretion processes played an active role in the changes of coastline during the study period.

  4. Image and in situ data integration to derive sawgrass density for surface flow modelling in the Everglades, Florida, USA

    USGS Publications Warehouse

    Jones, J.W.

    2000-01-01

    The US Geological Survey is building models of the Florida Everglades to be used in managing south Florida surface water flows for habitat restoration and maintenance. Because of the low gradients in the Everglades, vegetation structural characteristics are very important and greatly influence surface water flow and distribution. Vegetation density is being evaluated as an index of surface resistance to flow. Digital multispectral videography (DMSV) has been captured over several sites just before field collection of vegetation data. Linear regression has been used to establish a relationship between normalized difference vegetation index (NDVI) values computed from the DMSV and field-collected biomass and density estimates. Spatial analysis applied to the DMSV data indicates that thematic mapper (TM) resolution is at the limit required to capture land surface heterogeneity. The TM data collected close to the time of the DMSV will be used to derive a regional sawgrass density map.

  5. Image and in situ data integration to derive sawgrass density for surface flow modelling in the Everglades, Florida, USA

    USGS Publications Warehouse

    Jones, J.W.

    2001-01-01

    The US Geological Survey is building models of the Florida Everglades to be used in managing south Florida surface water flows for habitat restoration and maintenance. Because of the low gradients in the Everglades, vegetation structural characteristics are very important and greatly influence surface water flow and distribution. Vegetation density is being evaluated as an index of surface resistance to flow. Digital multispectral videography (DMSV) has been captured over several sites just before field collection of vegetation data. Linear regression has been used to establish a relationship between normalized difference vegetation index (NDVI) values computed from the DMSV and field-collected biomass and density estimates. Spatial analysis applied to the DMSV data indicates that thematic mapper (TM) resolution is at the limit required to capture land surface heterogeneity. The TM data collected close to the time of the DMSV will be used to derive a regional sawgrass density map.

  6. A Preliminary Analysis of LANDSAT-4 Thematic Mapper Radiometric Performance

    NASA Technical Reports Server (NTRS)

    Justice, C.; Fusco, L.; Mehl, W.

    1985-01-01

    The NASA raw (BT) product, the radiometrically corrected (AT) product, and the radiometrically and geometrically corrected (PT) product of a TM scene were analyzed examine the frequency distribution of the digital data; the statistical correlation between the bands; and the variability between the detectors within a band. The analyses were performed on a series of image subsets from the full scence. Results are presented from one 1024 c 1024 pixel subset of Realfoot Lake, Tennessee which displayed a representative range of ground conditions and cover types occurring within the full frame image. From this cursory examination of one of the first seven channel TM data sets, it would appear that the radiometric performance of the system is most satisfactory and largely meets pre-launch specifications. Problems were noted with Band 5 Detector 3 and Band 2 Detector 4. Differences were observed between forward and reverse scan detector responses both for the BT and AT products. No systematic variations were observed between odd and even detectors.

  7. Discrimination and supervised classification of volcanic flows of the Puna-Altiplano, Central Andes Mountains using Landsat TM data

    NASA Technical Reports Server (NTRS)

    Mcbride, J. H.; Fielding, E. J.; Isacks, B. L.

    1987-01-01

    Landsat Thematic Mapper (TM) images of portions of the Central Andean Puna-Altiplano volcanic belt have been tested for the feasibility of discriminating individual volcanic flows using supervised classifications. This technique distinguishes volcanic rock classes as well as individual phases (i.e., relative age groups) within each class. The spectral signature of a volcanic rock class appears to depend on original texture and composition and on the degree of erosion, weathering, and chemical alteration. Basalts and basaltic andesite stand out as a clearly distinguishable class. The age dependent degree of weathering of these generally dark volcanic rocks can be correlated with reflectance: older rocks have a higher reflectance. On the basis of this relationship, basaltaic lava flows can be separated into several subclasses. These individual subclasses would correspond to mappable geologic units on the ground at a reconnaissance scale. The supervised classification maps are therefore useful for establishing a general stratigraphic framework for later detailed surface mapping of volcanic sequences.

  8. Plastic Muscles TM as lightweight, low voltage actuators and sensors

    NASA Astrophysics Data System (ADS)

    Bennett, Matthew; Leo, Donald; Duncan, Andrew

    2008-03-01

    Using proprietary technology, Discover Technologies has developed ionomeric polymer transducers that are capable of long-term operation in air. These "Plastic Muscle TM" transducers are useful as soft distributed actuators and sensors and have a wide range of applications in the aerospace, robotics, automotive, electronics, and biomedical industries. Discover Technologies is developing novel fabrication methods that allow the Plastic Muscles TM to be manufactured on a commercial scale. The Plastic Muscle TM transducers are capable of generating more than 0.5% bending strain at a peak strain rate of over 0.1 %/s with a 3 V input. Because the Plastic Muscles TM use an ionic liquid as a replacement solvent for water, they are able to operate in air for long periods of time. Also, the Plastic Muscles TM do not exhibit the characteristic "back relaxation" phenomenon that is common in water-swollen devices. The elastic modulus of the Plastic Muscle TM transducers is estimated to be 200 MPa and the maximum generated stress is estimated to be 1 MPa. Based on these values, the maximum blocked force at the tip of a 6 mm wide, 35 mm long actuator is estimated to be 19 mN. Modeling of the step response with an exponential series reveals nonlinearity in the transducers' behavior.

  9. BOREAS Level-3b Landsat TM Imagery: At-sensor Radiances in BSQ Format

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime; Knapp, David; Newcomer, Jeffrey A.; Cihlar, Josef

    2000-01-01

    For BOREAS, the level-3b Landsat TM data, along with the other remotely sensed images, were collected in order to provide spatially extensive information over the primary study areas. This information includes radiant energy, detailed land cover, and biophysical parameter maps such as FPAR and LAI. Although very similar in content to the level-3a Landsat TM products, the level-3b images were created to provide users with a directly usable at-sensor radiance image. Geographically, the level-3b images cover the BOREAS NSA and SSA. Temporally, the images cover the period of 22-Jun-1984 to 09-Jul-1996. The images are available in binary, image format files.

  10. [Estimating Biomass Burned Areas from Multispectral Dataset Detected by Multiple-Satellite].

    PubMed

    Yu, Chao; Chen, Liang-fu; Li, Shen-shen; Tao, Jin-hua; Su, Lin

    2015-03-01

    Biomass burning makes up an important part of both trace gases and particulate matter emissions, which can efficiently degrade air quality and reduce visibility, destabilize the global climate system at regional to global scales. Burned area is one of the primary parameters necessary to estimate emissions, and considered to be the largest source of error in the emission inventory. Satellite-based fire observations can offer a reliable source of fire occurrence data on regional and global scales, a variety of sensors have been used to detect and map fires in two general approaches: burn scar mapping and active fire detection. However, both of the two approaches have limitations. In this article, we explore the relationship between hotspot data and burned area for the Southeastern United States, where a significant amount of biomass burnings from both prescribed and wild fire took place. MODIS (Moderate resolution imaging spectrometer) data, which has high temporal-resolution, can be used to monitor ground biomass. burning in time and provided hot spot data in this study. However, pixel size of MODIS hot spot can't stand for the real ground burned area. Through analysis of the variation of vegetation band reflectance between pre- and post-burn, we extracted the burned area from Landsat-5 TM (Thematic Mapper) images by using the differential normalized burn ratio (dNBR) which is based on TM band4 (0.84 μm) and TM band 7(2.22 μm) data. We combined MODIS fire hot spot data and Landsat-5 TM burned scars data to build the burned area estimation model, results showed that the linear correlation coefficient is 0.63 and the relationships vary as a function of vegetation cover. Based on the National Land Cover Database (NLCD), we built burned area estimation model over different vegetation cover, and got effective burned area per fire pixel, values for forest, grassland, shrub, cropland and wetland are 0.69, 1.27, 0.86, 0.72 and 0.94 km2 respectively. We validated the burned area estimates by using the ground survey data from National interagency Fire Center (NIFC), our results are more close to the ground survey data than burned area from Global Fire Emissions Database (GFED) and MODIS burned area product (MCD45), which omitted many small prescribed fires. We concluded that our model can provide more accurate burned area parameters for developing fire emission inventory, and be better for estimating emissions from biomass burning.

  11. Performance evaluation and geologic utility of LANDSAT 4 TM and MSS scanners

    NASA Technical Reports Server (NTRS)

    Paley, H. N.

    1983-01-01

    Experiments using artificial targets (polyethylene sheets) to help calibrate and evaluate atmospheric effects as well as the radiometric precision and spatial characteristics of the NS-001 and TM sensor systems were attempted and show the technical feasibility of using plastic targets for such studies, although weather precluded successful TM data acquisition. Tapes for six LANDSAT 4 TM scenes were acquired and data processing began. Computer enhanced TM simulator and LANDSAT 4 TM data were compared for a porphyry copper deposit in Southern Arizona. Preliminary analyses performed on two TM scenes acquired in the CCT-PT format, show the TM data appear to contain a marked increase in geologically useful information; however, a number of instrumental processing artifacts may well limit the ability of the geologist to fully extract this information.

  12. Fusion of Terra-MODIS and Landsat TM data for geothermal sites investigation in Jiangsu Province, China

    NASA Astrophysics Data System (ADS)

    Chen, Shengbo

    2006-01-01

    Geothermal resources are generally confined to areas of the Earth's crust where heat flow higher than in surrounding areas heats the water contained in permeable rocks (reservoirs) at depth. It is becoming one of attractive solutions for clean and sustainable energy future for the world. The geothermal fields commonly occurs at the boundaries of plates, and only occasionally in the middle of a plate. The study area, Jiangsu Province, as an example, located in the east of China, is a potential area of geothermal energy. In this study, Landsat thematic Mapper (TM) data were georeferenced to position spatially the geothermal energy in the study area. Multi-spectral infrared data of Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra platform were georeferenced to Landsat TM images. Based on the Wien Displacement Law, these infrared data indicate the surface emitted radiance under the same atmospheric condition, and stand for surface bright temperature respectively. Thus, different surface bright temperature data from Terra-MODIS band 20 or band 31 (R), together with Landsat TM band 4 (G) and band 3 (B) separately, were made up false color composite images (RGB) to generate the distribution maps of surface bright temperatures. Combing with geologic environment and geophysical anomalies, the potential area of geothermal energy with different geo-temperature were mapped respectively. Specially, one geothermal spot in Qinhu Lake Scenery Area in Taizhou city was validated by drilling, and its groundwater temperature is up to some 51°.

  13. Forty-Year Calibrated Record of Earth-Surface Reflected Radiance from Landsat: A Review

    NASA Technical Reports Server (NTRS)

    Markham, Brian; Helder, Dennis

    2011-01-01

    Sensors on Landsat satellites have been collecting images of the Earth's surface for nearly 40 years. These images have been invaluable for characterizing and detecting changes in the land cover and land use of the world. Although initially conceived as primarily picture generating sensors, even the early sensors were radiometrically calibrated and spectrally characterized prior to launch and incorporated some capabilities to monitor their radiometric calibration once on orbit. Recently, as the focus of studies has shifted to monitoring Earth surface parameters over significant periods of time, serious attention has been focused toward bringing the data from all these sensors onto a common radiometric scale over this 40-year period. This effort started with the most recent systems and then was extended back in time. Landsat-7 ETM+, the best-characterized sensor of the series prior to launch and once on orbit, and the most stable system to date, was chosen to serve as the reference. The Landsat-7 project was the first of the series to build an image assessment system into its ground system, allowing systematic characterization of its sensors and data. Second, the Landsat-5 TM (still operating at the time of the Landsat-7 launch and continues to operate) calibration history was reconstructed based on its internal calibrator, vicarious calibrations, pseudo-invariant sites and a tie to Landsat-7 ETM+ at the time of the commissioning of Landsat-7. This process was performed in two iterations: the earlier one relied primarily on the TM internal calibrator. When this was found to have some deficiencies, a revised calibration was based more on pseudo-invariant sites, though the internal calibrator was still used to establish the short-term variations in response due to icing build up on the cold focal plane. As time progressed, a capability to monitor the Landsat-5 TM was added to the image assessment system. The Landsat-4 TM, which operated from 1982-1992, was the third system to which the radiometric scale was extended. The limited and broken use of the Landsat-4 TM made this analysis more difficult. Eight-day separated image pairs from Landsat-5 combined with analysis of pseudo invariant sites established this history. The fourth and most challenging effort was making the Landsat-1 to -5 MSS sensors' data internally radiometrically consistent. This effort was particularly complicated by the age of the MSS data, varying formats and processing levels in the archive, limited datasets, and limited documentation available. Ultimately, pseudo-invariant sites were identified in North America and used for this effort. Note that most of the Landsat-MSS archived data had already been calibrated using the MSS internal calibrators, so this processing was imbedded in the result. The final effort was developing an absolute scale for Landsat MSS similar to what was already established for the "TM" sensors. This was accomplished by using simultaneous data from Landsat-5 MSS and Landsat-5 TM, accounting for spectral differences between the sensors using EO-1 Hyperion data. The recalibrated history of the Landsat data and implications to users are discussed. The key result from this work is a consistently calibrated Landsat data archive that spans nearly 40 years with total uncertainties on the order of 10% or less for most sensors and bands.

  14. Monitoring change in the Bering Glacier region, Alaska: Using Landsat TM and ERS-1 imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payne, J.F.; Coffeen, M.; Macleod, R.D.

    1997-06-01

    The Bering Glacier is the largest (5,180 km{sup 2}) and longest (191 km) glacier in continental North America. This glacier is one of about 200 temperate glaciers in the Alaska/Canada region that are known to surge. Surges at the Bering Glacier typically occur on a 20-30 year cycle. The objective of this project was to extract information regarding the position of the terminus of the glacier from historic aerial photography, early 20{sup th} century ground photography, Landsat Thematic Mapper (TM) satellite data, and European Space Agency, Synthetic Aperture RADAR (ERS-1 SAR) data and integrate it into a single digital databasemore » that would lend itself to change detection analysis. ERS-1 SAR data was acquired from six dates between 1992-95 and was terrain corrected and co-registered A single Landsat TM image from June 1991 was used as the base image for classifying land cover types. Historic locations of the glacier terminus were generated using traditional photo interpretation techniques from aerial and ground photography. The result of this platform combination, along with the historical data, is providing land managers with the unique opportunity to generate complete assessments of glacial movement this century and determine land cover changes which may impact wildlife and recreational opportunities.« less

  15. Lithologic discrimination of volcanic and sedimentary rocks by spectral examination of Landsat TM data from the Puma, Central Andes Mountains

    NASA Technical Reports Server (NTRS)

    Fielding, E. J.

    1986-01-01

    The Central Andes are widely used as a modern example of noncollisional mountain-building processes. The Puna is a high plateau in the Chilean and Argentine Central Andes extending southward from the altiplano of Bolivia and Peru. Young tectonic and volcanic features are well exposed on the surface of the arid Puna, making them prime targets for the application of high-resolution space imagery such as Shuttle Imaging Radar B and Landsat Thematic Mapper (TM). Two TM scene quadrants from this area are analyzed using interactive color image processing, examination, and automated classification algorithms. The large volumes of these high-resolution datasets require significantly different techniques than have been used previously for the interpretation of Landsat MSS data. Preliminary results include the determination of the radiance spectra of several volcanic and sedimentary rock units and the use of the spectra for automated classification. Structural interpretations have revealed several previously unknown folds in late Tertiary strata, and key zones have been targeted to be investigated in the field. The synoptic view of space imagery is already filling a critical gap between low-resolution geophysical data and traditional geologic field mapping in the reconnaissance study of poorly mapped mountain frontiers such as the Puna.

  16. Spatiotemporal monitoring of soil salinization in irrigated Tadla Plain (Morocco) using satellite spectral indices

    NASA Astrophysics Data System (ADS)

    El Harti, Abderrazak; Lhissou, Rachid; Chokmani, Karem; Ouzemou, Jamal-eddine; Hassouna, Mohamed; Bachaoui, El Mostafa; El Ghmari, Abderrahmene

    2016-08-01

    Soil salinization is major environmental issue in irrigated agricultural production. Conventional methods for salinization monitoring are time and money consuming and limited by the high spatiotemporal variability of this phenomenon. This work aims to propose a spatiotemporal monitoring method of soil salinization in the Tadla plain in central Morocco using spectral indices derived from Thematic Mapper (TM) and Operational Land Imager (OLI) data. Six Landsat TM/OLI satellite images acquired during 13 years period (2000-2013) coupled with in-situ electrical conductivity (EC) measurements were used to develop the proposed method. After radiometric and atmospheric correction of TM/OLI images, a new soil salinity index (OLI-SI) is proposed for soil EC estimation. Validation shows that this index allowed a satisfactory EC estimation in the Tadla irrigated perimeter with coefficient of determination R2 varying from 0.55 to 0.77 and a Root Mean Square Error (RMSE) ranging between 1.02 dS/m and 2.35 dS/m. The times-series of salinity maps produced over the Tadla plain using the proposed method show that salinity is decreasing in intensity and progressively increasing in spatial extent, over the 2000-2013 period. This trend resulted in a decrease in agricultural activities in the southwestern part of the perimeter, located in the hydraulic downstream.

  17. Irrigated lands: Monitoring by remote sensing

    NASA Technical Reports Server (NTRS)

    Epiphanio, J. C. N.; Vitorelli, I.

    1983-01-01

    The use of remote sensing for irrigated areas, especially in the region of Guaira, Brazil (state of Sao Paulo), is examined. Major principles of utilizing LANDSAT data for the detection and mapping of irrigated lands are discussed. In addition, initial results obtained by computer processing of digital data, use of MSS (Multispectral Scanner System)/LANDSAT products, and the availability of new remote sensing products are highlighted. Future activities include the launching of the TM (Thematic Mapper)/LANDSAT 4 with 30 meters of resolution and SPOT (Systeme Probatorie d'Observation de la Terre) with 10 to 20 meters of resolution, to be operational in 1984 and 1986 respectively.

  18. Processed Thematic Mapper Satellite Imagery for Selected Areas within the U.S.-Mexico Borderlands

    USGS Publications Warehouse

    Dohrenwend, John C.; Gray, Floyd; Miller, Robert J.

    2000-01-01

    The study is summarized in the Adobe Acrobat Portable Document Format (PDF) file OF00-309.PDF. This publication also contain satellite full-scene images of selected areas along the U.S.-Mexico border. These images are presented as high-resolution images in jpeg format (IMAGES). The folder LOCATIONS in contains TIFF images showing exact positions of easily-identified reference locations for each of the Landsat TM scenes located at least partly within the U.S. A reference location table (BDRLOCS.DOC in MS Word format) lists the latitude and longitude of each reference location with a nominal precision of 0.001 minute of arc

  19. Higher resolution satellite remote sensing and the impact on image mapping

    USGS Publications Warehouse

    Watkins, Allen H.; Thormodsgard, June M.

    1987-01-01

    Recent advances in spatial, spectral, and temporal resolution of civil land remote sensing satellite data are presenting new opportunities for image mapping applications. The U.S. Geological Survey's experimental satellite image mapping program is evolving toward larger scale image map products with increased information content as a result of improved image processing techniques and increased resolution. Thematic mapper data are being used to produce experimental image maps at 1:100,000 scale that meet established U.S. and European map accuracy standards. Availability of high quality, cloud-free, 30-meter ground resolution multispectral data from the Landsat thematic mapper sensor, along with 10-meter ground resolution panchromatic and 20-meter ground resolution multispectral data from the recently launched French SPOT satellite, present new cartographic and image processing challenges.The need to fully exploit these higher resolution data increases the complexity of processing the images into large-scale image maps. The removal of radiometric artifacts and noise prior to geometric correction can be accomplished by using a variety of image processing filters and transforms. Sensor modeling and image restoration techniques allow maximum retention of spatial and radiometric information. An optimum combination of spectral information and spatial resolution can be obtained by merging different sensor types. These processing techniques are discussed and examples are presented.

  20. Radiometric cross calibration of Landsat 8 Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+)

    USGS Publications Warehouse

    Mishra, Nischal; Haque, Md. Obaidul; Leigh, Larry; Aaron, David; Helder, Dennis; Markham, Brian L

    2014-01-01

    This study evaluates the radiometric consistency between Landsat-8 Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) using cross calibration techniques. Two approaches are used, one based on cross calibration between the two sensors using simultaneous image pairs, acquired during an underfly event on 29–30 March 2013. The other approach is based on using time series of image statistics acquired by these two sensors over the Libya 4 pseudo invariant calibration site (PICS) (+28.55°N, +23.39°E). Analyses from these approaches show that the reflectance calibration of OLI is generally within ±3% of the ETM+ radiance calibration for all the reflective bands from visible to short wave infrared regions when the ChKur solar spectrum is used to convert the ETM+ radiance to reflectance. Similar results are obtained comparing the OLI radiance calibration directly with the ETM+ radiance calibration and the results in these two different physical units (radiance and reflectance) agree to within ±2% for all the analogous bands. These results will also be useful to tie all the Landsat heritage sensors from Landsat 1 MultiSpectral Scanner (MSS) through Landsat-8 OLI to a consistent radiometric scale.

  1. Secondary Forest Age and Tropical Forest Biomass Estimation Using TM

    NASA Technical Reports Server (NTRS)

    Nelson, R. F.; Kimes, D. S.; Salas, W. A.; Routhier, M.

    1999-01-01

    The age of secondary forests in the Amazon will become more critical with respect to the estimation of biomass and carbon budgets as tropical forest conversion continues. Multitemporal Thematic Mapper data were used to develop land cover histories for a 33,000 Square kM area near Ariquemes, Rondonia over a 7 year period from 1989-1995. The age of the secondary forest, a surrogate for the amount of biomass (or carbon) stored above-ground, was found to be unimportant in terms of biomass budget error rates in a forested TM scene which had undergone a 20% conversion to nonforest/agricultural cover types. In such a situation, the 80% of the scene still covered by primary forest accounted for over 98% of the scene biomass. The difference between secondary forest biomass estimates developed with and without age information were inconsequential relative to the estimate of biomass for the entire scene. However, in futuristic scenarios where all of the primary forest has been converted to agriculture and secondary forest (55% and 42% respectively), the ability to age secondary forest becomes critical. Depending on biomass accumulation rate assumptions, scene biomass budget errors on the order of -10% to +30% are likely if the age of the secondary forests are not taken into account. Single-date TM imagery cannot be used to accurately age secondary forests into single-year classes. A neural network utilizing TM band 2 and three TM spectral-texture measures (bands 3 and 5) predicted secondary forest age over a range of 0-7 years with an RMSE of 1.59 years and an R(Squared) (sub actual vs predicted) = 0.37. A proposal is made, based on a literature review, to use satellite imagery to identify general secondary forest age groups which, within group, exhibit relatively constant biomass accumulation rates.

  2. Bi-scale analysis of multitemporal land cover fractions for wetland vegetation mapping

    NASA Astrophysics Data System (ADS)

    Michishita, Ryo; Jiang, Zhiben; Gong, Peng; Xu, Bing

    2012-08-01

    Land cover fractions (LCFs) derived through spectral mixture analysis are useful in understanding sub-pixel information. However, few studies have been conducted on the analysis of time-series LCFs. Although multi-scale comparisons of spectral index, hard classification, and land surface temperature images have received attention, rarely have these approaches been applied to LCFs. This study compared the LCFs derived through Multiple Endmember Spectral Mixture Analysis (MESMA) using the time-series Landsat Thematic Mapper (TM) and Terra Moderate Resolution Imaging Spectroradiometer (MODIS) data acquired in the Poyang Lake area, China between 2004 and 2005. Specifically, we aimed to: (1) propose an approach for optimal endmember (EM) selection in time-series MESMA; (2) understand the trends in time-series LCFs derived from the TM and MODIS data; and (3) examine the trends in the correlation between the bi-scale LCFs derived from the time-series TM and MODIS data. Our results indicated: (1) the EM spectra chosen according to the proposed hierarchical three-step approach (overall, seasonal, and individual) accurately modeled the both the TM and MODIS images; (2) green vegetation (GV) and NPV/soil/impervious surface (N/S/I) classes followed sine curve trends in the overall area, while the two water classes displayed the water level change pattern in the areas primarily covered with wetland vegetation; and (3) GV, N/S/I, and bright water classes indicated a moderately high agreement between the TM and MODIS LCFs in the whole area (adjusted R2 ⩾ 0.6). However, low levels of correlations were found in the areas primarily dominated by wetland vegetation for all land cover classes.

  3. Mass balance investigation of alpine glaciers through LANDSAT TM data

    NASA Technical Reports Server (NTRS)

    Bayr, Klaus J.

    1989-01-01

    An analysis of LANDSAT Thematic Mapper (TM) data of the Pasterze Glacier and the Kleines Fleisskees in the Austrian Alps was undertaken and compared with meteorological data of nearby weather stations. Alpine or valley glaciers can be used to study regional and worldwide climate changes. Alpine glaciers respond relatively fast to a warming or cooling trend in temperature through an advance or a retreat of the terminus. In addition, the mass balance of the glacier is being affected. Last year two TM scenes of the Pasterze Glacier of Aug. 1984 and Aug. 1986 were used to study the difference in reflectance. This year, in addition to the scenes from last year, one MSS scene of Aug. 1976 and a TM scene from 1988 were examined for both the Pasterze Glacier and the Kleines Fleisskees. During the overpass of the LANDSAT on 6 Aug. 1988 ground truthing on the Pasterze Glacier was undertaken. The results indicate that there was considerable more reflectance in 1976 and 1984 than in 1986 and 1988. The climatological data of the weather stations Sonnblick and Rudolfshuette were examined and compared with the results found through the LANDSAT data. There were relations between the meteorological and LANDSAT data: the average temperature over the last 100 years showed an increase of .4 C, the snowfall was declining during the same time period but the overall precipitation did not reveal any significant change over the same period. With the use of an interactive image analysis computer, the LANDSAT scenes were studied. The terminus of the Pasterze Glacier retreated 348 m and the terminus of the Kleines Fleisskees 121 m since 1965. This approach using LANDSAT MSS and TM digital data in conjunction with meteorological data can be effectively used to monitor regional and worldwide climate changes.

  4. Satellite inventory of Minnesota forest resources

    NASA Technical Reports Server (NTRS)

    Bauer, Marvin E.; Burk, Thomas E.; Ek, Alan R.; Coppin, Pol R.; Lime, Stephen D.; Walsh, Terese A.; Walters, David K.; Befort, William; Heinzen, David F.

    1993-01-01

    The methods and results of using Landsat Thematic Mapper (TM) data to classify and estimate the acreage of forest covertypes in northeastern Minnesota are described. Portions of six TM scenes covering five counties with a total area of 14,679 square miles were classified into six forest and five nonforest classes. The approach involved the integration of cluster sampling, image processing, and estimation. Using cluster sampling, 343 plots, each 88 acres in size, were photo interpreted and field mapped as a source of reference data for classifier training and calibration of the TM data classifications. Classification accuracies of up to 75 percent were achieved; most misclassification was between similar or related classes. An inverse method of calibration, based on the error rates obtained from the classifications of the cluster plots, was used to adjust the classification class proportions for classification errors. The resulting area estimates for total forest land in the five-county area were within 3 percent of the estimate made independently by the USDA Forest Service. Area estimates for conifer and hardwood forest types were within 0.8 and 6.0 percent respectively, of the Forest Service estimates. A trial of a second method of estimating the same classes as the Forest Service resulted in standard errors of 0.002 to 0.015. A study of the use of multidate TM data for change detection showed that forest canopy depletion, canopy increment, and no change could be identified with greater than 90 percent accuracy. The project results have been the basis for the Minnesota Department of Natural Resources and the Forest Service to define and begin to implement an annual system of forest inventory which utilizes Landsat TM data to detect changes in forest cover.

  5. Standoff detection of bioaerosols over wide area using a newly developed sensor combining a cloud mapper and a spectrometric LIF lidar

    NASA Astrophysics Data System (ADS)

    Buteau, Sylvie; Simard, Jean-Robert; Roy, Gilles; Lahaie, Pierre; Nadeau, Denis; Mathieu, Pierre

    2013-10-01

    A standoff sensor called BioSense was developed to demonstrate the capacity to map, track and classify bioaerosol clouds from a distant range and over wide area. The concept of the system is based on a two steps dynamic surveillance: 1) cloud detection using an infrared (IR) scanning cloud mapper and 2) cloud classification based on a staring ultraviolet (UV) Laser Induced Fluorescence (LIF) interrogation. The system can be operated either in an automatic surveillance mode or using manual intervention. The automatic surveillance operation includes several steps: mission planning, sensor deployment, background monitoring, surveillance, cloud detection, classification and finally alarm generation based on the classification result. One of the main challenges is the classification step which relies on a spectrally resolved UV LIF signature library. The construction of this library relies currently on in-chamber releases of various materials that are simultaneously characterized with the standoff sensor and referenced with point sensors such as Aerodynamic Particle Sizer® (APS). The system was tested at three different locations in order to evaluate its capacity to operate in diverse types of surroundings and various environmental conditions. The system showed generally good performances even though the troubleshooting of the system was not completed before initiating the Test and Evaluation (T&E) process. The standoff system performances appeared to be highly dependent on the type of challenges, on the climatic conditions and on the period of day. The real-time results combined with the experience acquired during the 2012 T & E allowed to identify future ameliorations and investigation avenues.

  6. Landscape determinants and remote sensing of anopheline mosquito larval habitats in the western Kenya highlands.

    PubMed

    Mushinzimana, Emmanuel; Munga, Stephen; Minakawa, Noboru; Li, Li; Feng, Chen-Chieng; Bian, Ling; Kitron, Uriel; Schmidt, Cindy; Beck, Louisa; Zhou, Guofa; Githeko, Andrew K; Yan, Guiyun

    2006-02-16

    In the past two decades the east African highlands have experienced several major malaria epidemics. Currently there is a renewed interest in exploring the possibility of anopheline larval control through environmental management or larvicide as an additional means of reducing malaria transmission in Africa. This study examined the landscape determinants of anopheline mosquito larval habitats and usefulness of remote sensing in identifying these habitats in western Kenya highlands. Panchromatic aerial photos, Ikonos and Landsat Thematic Mapper 7 satellite images were acquired for a study area in Kakamega, western Kenya. Supervised classification of land-use and land-cover and visual identification of aquatic habitats were conducted. Ground survey of all aquatic habitats was conducted in the dry and rainy seasons in 2003. All habitats positive for anopheline larvae were identified. The retrieved data from the remote sensors were compared to the ground results on aquatic habitats and land-use. The probability of finding aquatic habitats and habitats with Anopheles larvae were modelled based on the digital elevation model and land-use types. The misclassification rate of land-cover types was 10.8% based on Ikonos imagery, 22.6% for panchromatic aerial photos and 39.2% for Landsat TM 7 imagery. The Ikonos image identified 40.6% of aquatic habitats, aerial photos identified 10.6%, and Landsate TM 7 image identified 0%. Computer models based on topographic features and land-cover information obtained from the Ikonos image yielded a misclassification rate of 20.3-22.7% for aquatic habitats, and 18.1-25.1% for anopheline-positive larval habitats. One-metre spatial resolution Ikonos images combined with computer modelling based on topographic land-cover features are useful tools for identification of anopheline larval habitats, and they can be used to assist to malaria vector control in western Kenya highlands.

  7. Cross-calibration of the Landsat-7 ETM+ and Landsat-5 TM with the ResourceSat-1 (IRS-P6) AWiFS and LISS-III sensors

    USGS Publications Warehouse

    Chander, G.; Scaramuzza, P.L.

    2006-01-01

    Increasingly, data from multiple sensors are used to gain a more complete understanding of land surface processes at a variety of scales. The Landsat suite of satellites has collected the longest continuous archive of multispectral data. The ResourceSat-1 Satellite (also called as IRS-P6) was launched into the polar sunsynchronous orbit on Oct 17, 2003. It carries three remote sensing sensors: the High Resolution Linear Imaging Self-Scanner (LISS-IV), Medium Resolution Linear Imaging Self-Scanner (LISS-III), and the Advanced Wide Field Sensor (AWiFS). These three sensors are used together to provide images with different resolution and coverage. To understand the absolute radiometric calibration accuracy of IRS-P6 AWiFS and LISS-III sensors, image pairs from these sensors were compared to the Landsat-5 TM and Landsat-7 ETM+ sensors. The approach involved the calibration of nearly simultaneous surface observations based on image statistics from areas observed simultaneously by the two sensors.

  8. Evolving land cover classification algorithms for multispectral and multitemporal imagery

    NASA Astrophysics Data System (ADS)

    Brumby, Steven P.; Theiler, James P.; Bloch, Jeffrey J.; Harvey, Neal R.; Perkins, Simon J.; Szymanski, John J.; Young, Aaron C.

    2002-01-01

    The Cerro Grande/Los Alamos forest fire devastated over 43,000 acres (17,500 ha) of forested land, and destroyed over 200 structures in the town of Los Alamos and the adjoining Los Alamos National Laboratory. The need to measure the continuing impact of the fire on the local environment has led to the application of a number of remote sensing technologies. During and after the fire, remote-sensing data was acquired from a variety of aircraft- and satellite-based sensors, including Landsat 7 Enhanced Thematic Mapper (ETM+). We now report on the application of a machine learning technique to the automated classification of land cover using multi-spectral and multi-temporal imagery. We apply a hybrid genetic programming/supervised classification technique to evolve automatic feature extraction algorithms. We use a software package we have developed at Los Alamos National Laboratory, called GENIE, to carry out this evolution. We use multispectral imagery from the Landsat 7 ETM+ instrument from before, during, and after the wildfire. Using an existing land cover classification based on a 1992 Landsat 5 TM scene for our training data, we evolve algorithms that distinguish a range of land cover categories, and an algorithm to mask out clouds and cloud shadows. We report preliminary results of combining individual classification results using a K-means clustering approach. The details of our evolved classification are compared to the manually produced land-cover classification.

  9. MetalMapper: A Multi-Sensor TEM System for UXO Detection and Classification

    DTIC Science & Technology

    2011-04-01

    fluxgate magnetometer that provides reference heading to magnetic north. DeploymentCThe MM can be deployed either as a man-powered cart or as a...is a live site. Preliminary investigations included a magnetometer transect survey and an EMI survey over a larger area to assist in selecting a

  10. ESTCP Pilot Program. Classification Approaches in Munitions Response, San Luis Obispo, California

    DTIC Science & Technology

    2010-05-01

    geology. Electromagnetic induction sensors detect ferrous and nonferrous metallic objects and can be effective in geology that challenges...34  5.3  Metal Mapper...correspond to munitions, but rather to other harmless metallic objects or geology: field experience indicates that often in excess of 90% of objects

  11. Estimation of lunar surface maturity and ferrous oxide from Moon Mineralogy Mapper (M3) data through data interpolation techniques

    NASA Astrophysics Data System (ADS)

    Ajith Kumar, P.; Kumar, Shashi

    2016-04-01

    Surface maturity estimation of the lunar regolith revealed selenological process behind the formation of lunar surface, which might be provided vital information regarding the geological evolution of earth, because lunar surface is being considered as 8-9 times older than as that of the earth. Spectral reflectances data from Moon mineralogy mapper (M3), the hyperspectral sensor of chandrayan-1 coupled with the standard weight percentages of FeO from lunar returned samples of Apollo and Luna landing sites, through data interpolation techniques to generate the weight percentage FeO map of the target lunar locations. With the interpolated data mineral maps were prepared and the results are analyzed.

  12. Remote detection of canopy water stress in coniferous forests using the NS001 Thematic Mapper Simulator and the thermal infrared multispectral scanner

    NASA Technical Reports Server (NTRS)

    Pierce, Lars L.; Running, Steven W.; Riggs, George A.

    1990-01-01

    Water stress was induced in two coniferous forest stands in West Germany by severing tree sapwood. Leaf water potential, Psi(L), measurements indicated that maximum, naturally occurring levels of water stress developed in the stressed plots while control plots exhibited natural diurnal trends. Images of each site were obtained with the Thematic Mapper Simulator (NS001) and the Thermal Infrared Multispectral Scanner (TIMS) 12 to 15 days after stress induction. NS001 bands 2 to 6, NS001 indices combining bands 4 and 6, and NS001 and TIMS thermal bands showed significant radiance differences between stressed and control plots when large differences in Psi(L) and relative water content (RWC) existed during the morning overflights at Munich. However, the NS001 and TIMS sensors could not detect the slightly smaller differences in Psi(L) and RWC during the Munich afternoon and Frankfurt overflights. The results suggest that routine detection of canopy water stress under operational conditions is difficult utilizing current sensor technology.

  13. The GOES-R GeoStationary Lightning Mapper (GLM)

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas

    2011-01-01

    The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved capability for the Advanced Baseline Imager (ABI). The Geostationary Lighting Mapper (GLM) will map total lightning activity (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. In parallel with the instrument development (a prototype and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms (environmental data records), cal/val performance monitoring tools, and new applications using GLM alone, in combination with the ABI, merged with ground-based sensors, and decision aids augmented by numerical weather prediction model forecasts. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. An international field campaign planned for 2011-2012 will produce concurrent observations from a VHF lightning mapping array, Meteosat multi-band imagery, Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) overpasses, and related ground and in-situ lightning and meteorological measurements in the vicinity of Sao Paulo. These data will provide a new comprehensive proxy data set for algorithm and application development.

  14. A preliminary evaluation of LANDSAT-4 thematic mapper data for their geometric and radiometric accuracies

    NASA Technical Reports Server (NTRS)

    Podwysocki, M. H.; Bender, L. U.; Falcone, N.; Jones, O. D.

    1983-01-01

    Some LANDSAT thematic mapper data collected over the eastern United States were analyzed for their whole scene geometric accuracy, band to band registration and radiometric accuracy. Band ratio images were created for a part of one scene in order to assess the capability of mapping geologic units with contrasting spectral properties. Systematic errors were found in the geometric accuracy of whole scenes, part of which were attributable to the film writing device used to record the images to film. Band to band registration showed that bands 1 through 4 were registered to within one pixel. Likewise, bands 5 and 7 also were registered to within one pixel. However, bands 5 and 7 were misregistered with bands 1 through 4 by 1 to 2 pixels. Band 6 was misregistered by 4 pixels to bands 1 through 4. Radiometric analysis indicated two kinds of banding, a modulo-16 stripping and an alternate light dark group of 16 scanlines. A color ratio composite image consisting of TM band ratios 3/4, 5/2, and 5/7 showed limonitic clay rich soils, limonitic clay poor soils, and nonlimonitic materials as distinctly different colors on the image.

  15. Visualizing Airborne and Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Bierwirth, Victoria A.

    2011-01-01

    Remote sensing is a process able to provide information about Earth to better understand Earth's processes and assist in monitoring Earth's resources. The Cloud Absorption Radiometer (CAR) is one remote sensing instrument dedicated to the cause of collecting data on anthropogenic influences on Earth as well as assisting scientists in understanding land-surface and atmospheric interactions. Landsat is a satellite program dedicated to collecting repetitive coverage of the continental Earth surfaces in seven regions of the electromagnetic spectrum. Combining these two aircraft and satellite remote sensing instruments will provide a detailed and comprehensive data collection able to provide influential information and improve predictions of changes in the future. This project acquired, interpreted, and created composite images from satellite data acquired from Landsat 4-5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper plus (ETM+). Landsat images were processed for areas covered by CAR during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCT AS), Cloud and Land Surface Interaction Campaign (CLASIC), Intercontinental Chemical Transport Experiment-Phase B (INTEXB), and Southern African Regional Science Initiative (SAFARI) 2000 missions. The acquisition of Landsat data will provide supplemental information to assist in visualizing and interpreting airborne and satellite imagery.

  16. Spectroradiometric calibration of the Thematic Mapper and Multispectral Scanner system

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Palmer, J. M. (Principal Investigator)

    1985-01-01

    The results of analyses of Thematic Mapper (TM) images acquired on July 8 and October 28, 1984, and of a check of the calibration of the 1.22-m integrating sphere at Santa Barbara Research Center (SBRC) are described. The results obtained from the in-flight calibration attempts disagree with the pre-flight calibrations for bands 2 and 4. Considerable effort was expended in an attempt to explain the disagreement. The difficult point to explain is that the difference between the radiances predicted by the radiative transfer code (the code radiances) and the radiances predicted by the preflight calibration (the pre-flight radiances) fluctuate with spectral band. Because the spectral quantities measured at White Sands show little change with spectral band, these fluctuations are not anticipated. Analyses of other targets at White Sands such as clouds, cloud shadows, and water surfaces tend to support the pre-flight and internal calibrator calibrations. The source of the disagreement has not been identified. It could be due to: (1) a computational error in the data reduction; (2) an incorrect assumption in the input to the radiative transfer code; or (3) incorrect operation of the field equipment.

  17. Results of land cover change detection analysis in and around Cordillera Azul National Park, Peru

    USGS Publications Warehouse

    Sleeter, Benjamin M.; Halsing, David L.

    2005-01-01

    The first product of the Optimizing Design and Management of Protected Areas for Conservation Project is a land cover change detection analysis based on Landsat thematic mapper (TM) and enhanced thematic mapper plus (ETM+) imagery collected at intervals between 1989 and 2002. The goal of this analysis was to quantify and analyze patterns of forest clearing, land conversion, and other disturbances in and around the Cordillera Azul National Park in Peru. After removing clouds and cloud shadows from the imagery using a series of automatic and manual processes, a Tasseled Cap Transformation was used to detect pixels of high reflectance, which were classified as bare ground and areas of likely forest clearing. Results showed a slow but steady increase in cleared ground prior to 1999 and a rapid and increasing conversion rate after that time. The highest concentrations of clearings have spread upward from the western border of the study area on the Huallaga River. To date, most disturbances have taken place in the buffer zone around the park, not within it, but the data show dense clearings occurring closer to the park border each year.

  18. Radiometrie recalibration procedure for landsat-5 thematic mapper data

    USGS Publications Warehouse

    Chander, G.; Micijevic, E.; Hayes, R.W.; Barsi, J.A.

    2008-01-01

    The Landsat-5 (L5) satellite was launched on March 01, 1984, with a design life of three years. Incredibly, the L5 Thematic Mapper (TM) has collected data for 23 years. Over this time, the detectors have aged, and its radiometric characteristics have changed since launch. The calibration procedures and parameters have also changed with time. Revised radiometric calibrations have improved the radiometric accuracy of recently processed data; however, users with data that were processed prior to the calibration update do not benefit from the revisions. A procedure has been developed to give users the ability to recalibrate their existing Level 1 (L1) products without having to purchase reprocessed data from the U.S. Geological Survey (USGS). The accuracy of the recalibration is dependent on the knowledge of the prior calibration applied to the data. The ""Work Order" file, included with standard National Land Archive Production System (NLAFS) data products, gives parameters that define the applied calibration. These are the Internal Calibrator (IC) calibration parameters or the default prelaunch calibration, if there were problems with the IC calibration. This paper details the recalibration procedure for data processed using IC, in which users have the Work Order file. ?? 2001 IEEE.

  19. Land cover change detection of Hatiya Island, Bangladesh, using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Kumar, Lalit; Ghosh, Manoj Kumer

    2012-01-01

    Land cover change is a significant issue for environmental managers for sustainable management. Remote sensing techniques have been shown to have a high probability of recognizing land cover patterns and change detection due to periodic coverage, data integrity, and provision of data in a broad range of the electromagnetic spectrum. We evaluate the applicability of remote sensing techniques for land cover pattern recognition, as well as land cover change detection of the Hatiya Island, Bangladesh, and quantify land cover changes from 1977 to 1999. A supervised classification approach was used to classify Landsat Enhanced Thematic Mapper (ETM), Thematic Mapper (TM), and Multispectral Scanner (MSS) images into eight major land cover categories. We detected major land cover changes over the 22-year study period. During this period, marshy land, mud, mud with small grass, and bare soil had decreased by 85%, 46%, 44%, and 24%, respectively, while agricultural land, medium forest, forest, and settlement had positive changes of 26%, 45%, 363%, and 59%, respectively. The primary drivers of such landscape change were erosion and accretion processes, human pressure, and the reforestation and land reclamation programs of the Bangladesh Government.

  20. Optical temperature sensing of NaYbF4: Tm3+@SiO2 core-shell micro-particles induced by infrared excitation.

    PubMed

    Wang, Xiangfu; Zheng, Jin; Xuan, Yan; Yan, Xiaohong

    2013-09-09

    NaYbF(4):Tm3+@SiO(2) core-shell micro-particles were synthesized by a hydrothermal method and subsequent ultrasonic coating process. Optical temperature sensing has been observed in NaYbF4: Tm(3+)@SiO(2)core-shell micro-particles with a 980 nm infrared laser as excitation source.The fluorescence intensity ratios, optical temperature sensitivity, and temperature dependent population re-distribution ability from the thermally coupled (1)D(2)/(1)G(4) and (3)F(2) /(3)H(4) levels of the Tm(3+) ion have been analyzed as a function of temperature in the range of 100~700 K in order to check its availability as a optical temperature sensor. A better behavior as a lowtemperature sensor has been obtained with a minimum sensitivity of 5.4 × 10(-4) K(-1) at 430 K. It exhibits temperature induced population re-distribution from (1)D(2) /(1)G(4) thermally coupled levels at higher temperature range.

Top