Sample records for mapping active faults

  1. An update of Quaternary faults of central and eastern Oregon

    USGS Publications Warehouse

    Weldon, Ray J.; Fletcher, D.K.; Weldon, E.M.; Scharer, K.M.; McCrory, P.A.

    2002-01-01

    This is the online version of a CD-ROM publication. We have updated the eastern portion of our previous active fault map of Oregon (Pezzopane, Nakata, and Weldon, 1992) as a contribution to the larger USGS effort to produce digital maps of active faults in the Pacific Northwest region. The 1992 fault map has seen wide distribution and has been reproduced in essentially all subsequent compilations of active faults of Oregon. The new map provides a substantial update of known active or suspected active faults east of the Cascades. Improvements in the new map include (1) many newly recognized active faults, (2) a linked ArcInfo map and reference database, (3) more precise locations for previously recognized faults on shaded relief quadrangles generated from USGS 30-m digital elevations models (DEM), (4) more uniform coverage resulting in more consistent grouping of the ages of active faults, and (5) a new category of 'possibly' active faults that share characteristics with known active faults, but have not been studied adequately to assess their activity. The distribution of active faults has not changed substantially from the original Pezzopane, Nakata and Weldon map. Most faults occur in the south-central Basin and Range tectonic province that is located in the backarc portion of the Cascadia subduction margin. These faults occur in zones consisting of numerous short faults with similar rates, ages, and styles of movement. Many active faults strongly correlate with the most active volcanic centers of Oregon, including Newberry Craters and Crater Lake.

  2. Active, capable, and potentially active faults - a paleoseismic perspective

    USGS Publications Warehouse

    Machette, M.N.

    2000-01-01

    Maps of faults (geologically defined source zones) may portray seismic hazards in a wide range of completeness depending on which types of faults are shown. Three fault terms - active, capable, and potential - are used in a variety of ways for different reasons or applications. Nevertheless, to be useful for seismic-hazards analysis, fault maps should encompass a time interval that includes several earthquake cycles. For example, if the common recurrence in an area is 20,000-50,000 years, then maps should include faults that are 50,000-100,000 years old (two to five typical earthquake cycles), thus allowing for temporal variability in slip rate and recurrence intervals. Conversely, in more active areas such as plate boundaries, maps showing faults that are <10,000 years old should include those with at least 2 to as many as 20 paleoearthquakes. For the International Lithosphere Programs' Task Group II-2 Project on Major Active Faults of the World our maps and database will show five age categories and four slip rate categories that allow one to select differing time spans and activity rates for seismic-hazard analysis depending on tectonic regime. The maps are accompanied by a database that describes evidence for Quaternary faulting, geomorphic expression, and paleoseismic parameters (slip rate, recurrence interval and time of most recent surface faulting). These maps and databases provide an inventory of faults that would be defined as active, capable, and potentially active for seismic-hazard assessments.

  3. Database and Map of Quaternary Faults and Folds in Peru and its Offshore Region

    USGS Publications Warehouse

    Machare, Jose; Fenton, Clark H.; Machette, Michael N.; Lavenu, Alain; Costa, Carlos; Dart, Richard L.

    2003-01-01

    This publication consists of a main map of Quaternary faults and fiolds of Peru, a table of Quaternary fault data, a region inset map showing relative plate motion, and a second inset map of an enlarged area of interest in southern Peru. These maps and data compilation show evidence for activity of Quaternary faults and folds in Peru and its offshore regions of the Pacific Ocean. The maps show the locations, ages, and activity rates of major earthquake-related features such as faults and fault-related folds. These data are accompanied by text databases that describe these features and document current information on their activity in the Quaternary.

  4. Preliminary atlas of active shallow tectonic deformation in the Puget Lowland, Washington

    USGS Publications Warehouse

    Barnett, Elizabeth A.; Haugerud, Ralph A.; Sherrod, Brian L.; Weaver, Craig S.; Pratt, Thomas L.; Blakely, Richard J.

    2010-01-01

    This atlas presents an up-to-date map compilation of the geological and geophysical observations that underpin interpretations of active, surface-deforming faults in the Puget Lowland, Washington. Shallow lowland faults are mapped where observations of deformation from paleoseismic, seismic-reflection, and potential-field investigations converge. Together, results from these studies strengthen the identification and characterization of regional faults and show that as many as a dozen shallow faults have been active during the Holocene. The suite of maps presented in our atlas identifies sites that have evidence of deformation attributed to these shallow faults. For example, the paleoseismic-investigations map shows where coseismic surface rupture and deformation produced geomorphic scarps and deformed shorelines. Other maps compile results of seismic-reflection and potential-field studies that demonstrate evidence of deformation along suspected fault structures in the subsurface. Summary maps show the fault traces derived from, and draped over, the datasets presented in the preceding maps. Overall, the atlas provides map users with a visual overview of the observations and interpretations that support the existence of active, shallow faults beneath the densely populated Puget Lowland.

  5. Map showing recently active breaks along the San Andreas Fault between Pt. Delgada and Bolinas Bay, California

    USGS Publications Warehouse

    Brown, Robert D.; Wolfe, Edward W.

    1970-01-01

    This strip map is one of a series of maps showing recently active fault breaks along the San Andreas and other active faults in California. It is designed to inform persons who are concerned with land use near the fault of the location of those fault breaks that have moved recently. The lines on the map are lines of rupture and creep that can be identified by field evidence and that clearly affect the present surface of the land. Map users should keep in mind that these lines are intended primarily as guides to help locate the fault; the mapped lines are not necessarily shown with the precision demanded by some engineering or land utilization needs.

  6. Recently active traces of the Bartlett Springs Fault, California: a digital database

    USGS Publications Warehouse

    Lienkaemper, James J.

    2010-01-01

    The purpose of this map is to show the location of and evidence for recent movement on active fault traces within the Bartlett Springs Fault Zone, California. The location and recency of the mapped traces is primarily based on geomorphic expression of the fault as interpreted from large-scale aerial photography. In a few places, evidence of fault creep and offset Holocene strata in trenches and natural exposures have confirmed the activity of some of these traces. This publication is formatted both as a digital database for use within a geographic information system (GIS) and for broader public access as map images that may be browsed on-line or download a summary map. The report text describes the types of scientific observations used to make the map, gives references pertaining to the fault and the evidence of faulting, and provides guidance for use of and limitations of the map.

  7. Map and database of Quaternary faults and folds in Colombia and its offshore regions

    USGS Publications Warehouse

    Paris, Gabriel; Machette, Michael N.; Dart, Richard L.; Haller, Kathleen M.

    2000-01-01

    As part of the International Lithosphere Program’s “World Map of Major Active Faults,” the U.S. Geological Survey (USGS) is assisting in the compilation of a series of digital maps of Quaternary faults and folds in Western Hemisphere countries. The maps show the locations, ages, and activity rates of major earthquake-related features such as faults and fault-related folds. They are accompanied by databases that describe these features and document current information on their activity in the Quaternary. Top date, the project has published fault and fold maps for Costa Rica (Montero and others, 1998), Panama (Cowan and others, 1998), Venezuela (Audemard and others, 2000), Bolovia/Chile (Lavenu, and others, 2000), and Argentina (Costa and others, 2000). The project is a key part of the Global Seismic Hazards Assessment Program (ILP Project II-0) for the International Decade for Natural Hazard Disaster Reduction.

  8. Recently Active Traces of the Berryessa Fault, California: A Digital Database

    USGS Publications Warehouse

    Lienkaemper, James J.

    2012-01-01

    The purpose of this map is to show the location of and evidence for recent movement on active fault traces within the Berryessa section and parts of adjacent sections of the Green Valley Fault Zone, California. The location and recency of the mapped traces is primarily based on geomorphic expression of the fault as interpreted from large-scale 2010 aerial photography and from 2007 and 2011 0.5 and 1.0 meter bare-earth LiDAR imagery (that is, high-resolution topographic data). In a few places, evidence of fault creep and offset Holocene strata in trenches and natural exposures have confirmed the activity of some of these traces. This publication is formatted both as a digital database for use within a geographic information system (GIS) and for broader public access as map images that may be browsed on-line or download a summary map. The report text describes the types of scientific observations used to make the map, gives references pertaining to the fault and the evidence of faulting, and provides guidance for use of and limitations of the map.

  9. Evaluation of LiDAR Imagery as a Tool for Mapping the Northern San Andreas Fault in Heavily Forested Areas of Mendocino and Sonoma Counties, California

    NASA Astrophysics Data System (ADS)

    Prentice, C. S.; Koehler, R. D.; Baldwin, J. N.; Harding, D. J.

    2004-12-01

    We are mapping in detail active traces of the San Andreas Fault in Mendocino and Sonoma Counties in northern California, using recently acquired airborne LiDAR (also known as ALSM) data. The LiDAR data set provides a powerful new tool for mapping geomorphic features related to the San Andreas Fault because it can be used to produce high-resolution images of the ground surfaces beneath the forest canopy along the 70-km-long section of the fault zone encompassed by the data. Our effort represents the first use of LiDAR data to map active fault traces in a densely vegetated region along the San Andreas Fault. We are using shaded relief images generated from bare-earth DEMs to conduct detailed mapping of fault-related geomorphic features (e.g. scarps, offset streams, linear valleys, shutter ridges, and sag ponds) between Fort Ross and Point Arena. Initially, we map fault traces digitally, on-screen, based only on the geomorphology interpreted from LiDAR images. We then conduct field reconnaissance using the initial computer-based maps in order to verify and further refine our mapping. We found that field reconnaissance is of utmost importance in producing an accurate and detailed map of fault traces. Many lineaments identified as faults from the on-screen images were determined in the field to be old logging roads or other features unrelated to faulting. Also, in areas where the resolution of LiDAR data is poor, field reconnaissance, coupled with topographic maps and aerial photographs, permits a more accurate location of fault-related geomorphic features. LiDAR images are extremely valuable as a base for field mapping in this heavily forested area, and the use of LiDAR is far superior to traditional mapping techniques relying only on aerial photography and 7.5 minute USGS quadrangle topographic maps. Comparison with earlier mapping of the northern San Andreas fault (Brown and Wolfe, 1972) shows that in some areas the LiDAR data allow a correction of the fault trace location of up to several hundred meters. To date we have field checked approximately 24 km of the 70-km-long section of the fault for which LiDAR data is available. The remaining 46 km will be field checked in 2005. The result will be a much more accurate map of the active traces of the northern San Andreas Fault, which will be of great use for future fault studies.

  10. Three-dimensional geologic map of the Hayward fault, northern California: Correlation of rock unites with variations in seismicity, creep rate, and fault dip

    USGS Publications Warehouse

    Graymer, R.W.; Ponce, D.A.; Jachens, R.C.; Simpson, R.W.; Phelps, G.A.; Wentworth, C.M.

    2005-01-01

    In order to better understand mechanisms of active faults, we studied relationships between fault behavior and rock units along the Hayward fault using a three-dimensional geologic map. The three-dimensional map-constructed from hypocenters, potential field data, and surface map data-provided a geologic map of each fault surface, showing rock units on either side of the fault truncated by the fault. The two fault-surface maps were superimposed to create a rock-rock juxtaposition map. The three maps were compared with seismicity, including aseismic patches, surface creep, and fault dip along the fault, by using visuallization software to explore three-dimensional relationships. Fault behavior appears to be correlated to the fault-surface maps, but not to the rock-rock juxtaposition map, suggesting that properties of individual wall-rock units, including rock strength, play an important role in fault behavior. Although preliminary, these results suggest that any attempt to understand the detailed distribution of earthquakes or creep along a fault should include consideration of the rock types that abut the fault surface, including the incorporation of observations of physical properties of the rock bodies that intersect the fault at depth. ?? 2005 Geological Society of America.

  11. Insurance Applications of Active Fault Maps Showing Epistemic Uncertainty

    NASA Astrophysics Data System (ADS)

    Woo, G.

    2005-12-01

    Insurance loss modeling for earthquakes utilizes available maps of active faulting produced by geoscientists. All such maps are subject to uncertainty, arising from lack of knowledge of fault geometry and rupture history. Field work to undertake geological fault investigations drains human and monetary resources, and this inevitably limits the resolution of fault parameters. Some areas are more accessible than others; some may be of greater social or economic importance than others; some areas may be investigated more rapidly or diligently than others; or funding restrictions may have curtailed the extent of the fault mapping program. In contrast with the aleatory uncertainty associated with the inherent variability in the dynamics of earthquake fault rupture, uncertainty associated with lack of knowledge of fault geometry and rupture history is epistemic. The extent of this epistemic uncertainty may vary substantially from one regional or national fault map to another. However aware the local cartographer may be, this uncertainty is generally not conveyed in detail to the international map user. For example, an area may be left blank for a variety of reasons, ranging from lack of sufficient investigation of a fault to lack of convincing evidence of activity. Epistemic uncertainty in fault parameters is of concern in any probabilistic assessment of seismic hazard, not least in insurance earthquake risk applications. A logic-tree framework is appropriate for incorporating epistemic uncertainty. Some insurance contracts cover specific high-value properties or transport infrastructure, and therefore are extremely sensitive to the geometry of active faulting. Alternative Risk Transfer (ART) to the capital markets may also be considered. In order for such insurance or ART contracts to be properly priced, uncertainty should be taken into account. Accordingly, an estimate is needed for the likelihood of surface rupture capable of causing severe damage. Especially where a high deductible is in force, this requires estimation of the epistemic uncertainty on fault geometry and activity. Transport infrastructure insurance is of practical interest in seismic countries. On the North Anatolian Fault in Turkey, there is uncertainty over an unbroken segment between the eastern end of the Dazce Fault and Bolu. This may have ruptured during the 1944 earthquake. Existing hazard maps may simply use a question mark to flag uncertainty. However, a far more informative type of hazard map might express spatial variations in the confidence level associated with a fault map. Through such visual guidance, an insurance risk analyst would be better placed to price earthquake cover, allowing for epistemic uncertainty.

  12. The hazard education model in the high school science-club activities above active huge fault

    NASA Astrophysics Data System (ADS)

    Nakamura, R.

    2017-12-01

    Along the west coast of pacific ocean, includes Japan, there are huge numerous volcanoes and earthquakes. The biggest cause is their location on the border of plates. The pressure among the plates cause strains and cracks. By the island arc lines, strains make long and enormous faults. More than huge 150 faults are reported (the head quarters for earthquake research promotion, Japan, 2017). Below my working school, it is laying one of the biggest faults Nagamachi-Rifu line which is also laying under 1 million population city Sendai. Before 2011 Tohoku earthquake, one of the hugest earthquake was predicted because of the fault activities. Investigating the fault activity with our school student who live in the closest area is one of the most important hazard education. Therefore, now we are constructing the science club activity with make attention for (1) seeking fault line(s) with topographic land maps and on foot search (2) investigate boling core sample soils that was brought in our school founded. (1) Estimate of displacement of the faults on foot observation In order to seek the unknown fault line in Rifu area, at first it was needed to estimate on the maps(1:25,000 Scale Topographic Maps and Active Faults in Urban Area of Map(Sendai), Geographical Survey Institute of Japan). After that estimation, walked over the region with club students to observe slopes which was occurred by the faults activation and recorded on the maps. By observant slope gaps, there has a possibilities to have 3 or 4 fault lines that are located parallel to the known activate faults. (2) Investigate of the boling core samples above the fault. We investigated 6 columnar-shaped boling core samples which were excavated when the school has been built. The maximum depth of the samples are over 20m, some are new filled sands over original ash tephra and pumice from old volcanoes located west direction. In the club activities, we described column diagram of sediments and discussed the sediment circumstances by the sediments grain observation, however, it was impossible to describe the sediments origin of exact volcano(es).

  13. Digital release of the Alaska Quaternary fault and fold database

    NASA Astrophysics Data System (ADS)

    Koehler, R. D.; Farrell, R.; Burns, P.; Combellick, R. A.; Weakland, J. R.

    2011-12-01

    The Alaska Division of Geological & Geophysical Surveys (DGGS) has designed a Quaternary fault and fold database for Alaska in conformance with standards defined by the U.S. Geological Survey for the National Quaternary fault and fold database. Alaska is the most seismically active region of the United States, however little information exists on the location, style of deformation, and slip rates of Quaternary faults. Thus, to provide an accurate, user-friendly, reference-based fault inventory to the public, we are producing a digital GIS shapefile of Quaternary fault traces and compiling summary information on each fault. Here, we present relevant information pertaining to the digital GIS shape file and online access and availability of the Alaska database. This database will be useful for engineering geologic studies, geologic, geodetic, and seismic research, and policy planning. The data will also contribute to the fault source database being constructed by the Global Earthquake Model (GEM), Faulted Earth project, which is developing tools to better assess earthquake risk. We derived the initial list of Quaternary active structures from The Neotectonic Map of Alaska (Plafker et al., 1994) and supplemented it with more recent data where available. Due to the limited level of knowledge on Quaternary faults in Alaska, pre-Quaternary fault traces from the Plafker map are shown as a layer in our digital database so users may view a more accurate distribution of mapped faults and to suggest the possibility that some older traces may be active yet un-studied. The database will be updated as new information is developed. We selected each fault by reviewing the literature and georegistered the faults from 1:250,000-scale paper maps contained in 1970's vintage and earlier bedrock maps. However, paper map scales range from 1:20,000 to 1:500,000. Fault parameters in our GIS fault attribute tables include fault name, age, slip rate, slip sense, dip direction, fault line type (i.e., well constrained, moderately constrained, or inferred), and mapped scale. Each fault is assigned a three-integer CODE, based upon age, slip rate, and how well the fault is located. This CODE dictates the line-type for the GIS files. To host the database, we are developing an interactive web-map application with ArcGIS for Server and the ArcGIS API for JavaScript from Environmental Systems Research Institute, Inc. (Esri). The web-map application will present the database through a visible scale range with each fault displayed at the resolution of the original map. Application functionality includes: search by name or location, identification of fault by manual selection, and choice of base map. Base map options include topographic, satellite imagery, and digital elevation maps available from ArcGIS on-line. We anticipate that the database will be publically accessible from a portal embedded on the DGGS website by the end of 2011.

  14. Digital Database of Recently Active Traces of the Hayward Fault, California

    USGS Publications Warehouse

    Lienkaemper, James J.

    2006-01-01

    The purpose of this map is to show the location of and evidence for recent movement on active fault traces within the Hayward Fault Zone, California. The mapped traces represent the integration of the following three different types of data: (1) geomorphic expression, (2) creep (aseismic fault slip),and (3) trench exposures. This publication is a major revision of an earlier map (Lienkaemper, 1992), which both brings up to date the evidence for faulting and makes it available formatted both as a digital database for use within a geographic information system (GIS) and for broader public access interactively using widely available viewing software. The pamphlet describes in detail the types of scientific observations used to make the map, gives references pertaining to the fault and the evidence of faulting, and provides guidance for use of and limitations of the map. [Last revised Nov. 2008, a minor update for 2007 LiDAR and recent trench investigations; see version history below.

  15. Map and database of Quaternary faults in Venezuela and its offshore regions

    USGS Publications Warehouse

    Audemard, F.A.; Machette, M.N.; Cox, J.W.; Dart, R.L.; Haller, K.M.

    2000-01-01

    As part of the International Lithosphere Program’s “World Map of Major Active Faults,” the U.S. Geological Survey is assisting in the compilation of a series of digital maps of Quaternary faults and folds in Western Hemisphere countries. The maps show the locations, ages, and activity rates of major earthquake-related features such as faults and fault-related folds. They are accompanied by databases that describe these features and document current information on their activity in the Quaternary. The project is a key part of the Global Seismic Hazards Assessment Program (ILP Project II-0) for the International Decade for Natural Hazard Disaster Reduction.The project is sponsored by the International Lithosphere Program and funded by the USGS’s National Earthquake Hazards Reduction Program. The primary elements of the project are general supervision and interpretation of geologic/tectonic information, data compilation and entry for fault catalog, database design and management, and digitization and manipulation of data in †ARCINFO. For the compilation of data, we engaged experts in Quaternary faulting, neotectonics, paleoseismology, and seismology.

  16. Identifying buried segments of active faults in the northern Rio Grande Rift using aeromagnetic, LiDAR,and gravity data, south-central Colorado, USA

    USGS Publications Warehouse

    Grauch, V.J.S.; Ruleman, Chester A.

    2013-01-01

    Combined interpretation of aeromagnetic and LiDAR data builds on the strength of the aeromagnetic method to locate normal faults with significant offset under cover and the strength of LiDAR interpretation to identify the age and sense of motion of faults. Each data set helps resolve ambiguities in interpreting the other. In addition, gravity data can be used to infer the sense of motion for totally buried faults inferred solely from aeromagnetic data. Combined interpretation to identify active faults at the northern end of the San Luis Basin of the northern Rio Grande rift has confirmed general aspects of previous geologic mapping but has also provided significant improvements. The interpretation revises and extends mapped fault traces, confirms tectonic versus fluvial origins of steep stream banks, and gains additional information on the nature of active and potentially active partially and totally buried faults. Detailed morphology of surfaces mapped from the LiDAR data helps constrain ages of the faults that displace the deposits. The aeromagnetic data provide additional information about their extents in between discontinuous scarps and suggest that several totally buried, potentially active faults are present on both sides of the valley.

  17. The West Beverly Hills Lineament and Beverly Hills High School: Ethical Issues in Geo-Hazard Communication

    NASA Astrophysics Data System (ADS)

    Gath, Eldon; Gonzalez, Tania; Roe, Joe; Buchiarelli, Philip; Kenny, Miles

    2014-05-01

    Results of geotechnical studies for the Westside Subway were disclosed in a public hearing on Oct. 19, 2011, showing new "active faults" of the Santa Monica fault and the West Beverly Hills Lineament (WBHL), identified as a northern extension of the Newport-Inglewood fault. Presentations made spoke of the danger posed by these faults, the possibility of killing people, and how it was good news that these faults had been discovered now instead of later. The presentations were live and are now memorialized as YouTube videos, (http://www.youtube.com/watch?v=Omx2BTIpzAk and others). No faults had been physically exposed or observed by the study; the faults were all interpreted from cone penetrometer probes, supplemented by core borings and geophysical transects. Several of the WBHL faults traversed buildings of the Beverly Hills High School (BHHS), triggering the school district to geologically map and characterize these faults for future planning efforts, and to quantify risk to the students in the 1920's high school building. 5 exploratory trenches were excavated within the high school property, 12 cone penetrometers were pushed, and 26-cored borings were drilled. Geologic logging of the trenches and borings and interpretation of the CPT data failed to confirm the presence of the mapped WBHL faults, instead showing an unfaulted, 3° NE dipping sequence of mid-Pleistocene alluvial fan deposits conformably overlying an ~1 Ma marine sand. Using 14C, OSL, and soil pedology for stratigraphic dating, the BHHS site was cleared from fault rupture hazards and the WBHL was shown to be an erosional margin of Benedict Canyon, partially buttressed by 40-200 ka alluvial deposits from Benedict Wash. The consequence of the Westside Subway's active fault maps has been the unexpected expenditure of millions of dollars for emergency fault investigations at BHHS and several other private properties within a densely developed urban highrise environment. None of these studies have found any active faults where they had been interpreted, mapped, and published by the subway's consultants. Litigation is underway by the affected parties to recoup their geological expenditures and recover costs for lost business revenues. Even had the active fault map been correct, its public release was poorly managed. That the released active fault map has now been found to be badly in error poses more significant ethical issues about hazard communication and likely legal consequences.

  18. Active Fault Near-Source Zones Within and Bordering the State of California for the 1997 Uniform Building Code

    USGS Publications Warehouse

    Petersen, M.D.; Toppozada, Tousson R.; Cao, T.; Cramer, C.H.; Reichle, M.S.; Bryant, W.A.

    2000-01-01

    The fault sources in the Project 97 probabilistic seismic hazard maps for the state of California were used to construct maps for defining near-source seismic coefficients, Na and Nv, incorporated in the 1997 Uniform Building Code (ICBO 1997). The near-source factors are based on the distance from a known active fault that is classified as either Type A or Type B. To determine the near-source factor, four pieces of geologic information are required: (1) recognizing a fault and determining whether or not the fault has been active during the Holocene, (2) identifying the location of the fault at or beneath the ground surface, (3) estimating the slip rate of the fault, and (4) estimating the maximum earthquake magnitude for each fault segment. This paper describes the information used to produce the fault classifications and distances.

  19. Map and Database of Probable and Possible Quaternary Faults in Afghanistan

    USGS Publications Warehouse

    Ruleman, C.A.; Crone, A.J.; Machette, M.N.; Haller, K.M.; Rukstales, K.S.

    2007-01-01

    The U.S. Geological Survey (USGS) with support from the U.S. Agency for International Development (USAID) mission in Afghanistan, has prepared a digital map showing the distribution of probable and suspected Quaternary faults in Afghanistan. This map is a key component of a broader effort to assess and map the country's seismic hazards. Our analyses of remote-sensing imagery reveal a complex array of tectonic features that we interpret to be probable and possible active faults within the country and in the surrounding border region. In our compilation, we have mapped previously recognized active faults in greater detail, and have categorized individual features based on their geomorphic expression. We assigned mapped features to eight newly defined domains, each of which contains features that appear to have similar styles of deformation. The styles of deformation associated with each domain provide insight into the kinematics of the modern tectonism, and define a tectonic framework that helps constrain deformational models of the Alpine-Himalayan orogenic belt. The modern fault movements, deformation, and earthquakes in Afghanistan are driven by the collision between the northward-moving Indian subcontinent and Eurasia. The patterns of probable and possible Quaternary faults generally show that much of the modern tectonic activity is related to transfer of plate-boundary deformation across the country. The left-lateral, strike-slip Chaman fault in southeastern Afghanistan probably has the highest slip rate of any fault in the country; to the north, this slip is distributed onto several fault systems. At the southern margin of the Kabul block, the style of faulting changes from mainly strike-slip motion associated with the boundary between the Indian and Eurasian plates, to transpressional and transtensional faulting. North and northeast of the Kabul block, we recognized a complex pattern of potentially active strike-slip, thrust, and normal faults that form a conjugate shear system in a transpressional region of the Trans-Himalayan orogenic belt. The general patterns and orientations of faults and the styles of deformation that we interpret from the imagery are consistent with the styles of faulting determined from focal mechanisms of historical earthquakes. Northwest-trending strike-slip fault zones are cut and displaced by younger, southeast-verging thrust faults; these relations define the interaction between northwest-southeast-oriented contraction and northwest-directed extrusion in the western Himalaya, Pamir, and Hindu Kush regions. Transpression extends into north-central Afghanistan where north-verging contraction along the east-west-trending Alburz-Marmul fault system interacts with northwest-trending strike-slip faults. Pressure ridges related to thrust faulting and extensional basins bounded by normal faults are located at major stepovers in these northwest-trending strike-slip systems. In contrast, young faulting in central and western Afghanistan indicates that the deformation is dominated by extension where strike-slip fault zones transition into regions of normal faults. In addition to these initial observations, our digital map and database provide a foundation that can be expanded, complemented, and modified as future investigations provide more detailed information about the location, characteristics, and history of movement on Quaternary faults in Afghanistan.

  20. Eastern Denali Fault surface trace map, eastern Alaska and Yukon, Canada

    USGS Publications Warehouse

    Bender, Adrian M.; Haeussler, Peter J.

    2017-05-04

    We map the 385-kilometer (km) long surface trace of the right-lateral, strike-slip Denali Fault between the Totschunda-Denali Fault intersection in Alaska, United States and the village of Haines Junction, Yukon, Canada. In Alaska, digital elevation models based on light detection and ranging and interferometric synthetic aperture radar data enabled our fault mapping at scales of 1:2,000 and 1:10,000, respectively. Lacking such resources in Yukon, we developed new structure-from-motion digital photogrammetry products from legacy aerial photos to map the fault surface trace at a scale of 1:10,000 east of the international border. The section of the fault that we map, referred to as the Eastern Denali Fault, did not rupture during the 2002 Denali Fault earthquake (moment magnitude 7.9). Seismologic, geodetic, and geomorphic evidence, along with a paleoseismic record of past ground-rupturing earthquakes, demonstrate Holocene and contemporary activity on the fault, however. This map of the Eastern Denali Fault surface trace complements other data sets by providing an openly accessible digital interpretation of the location, length, and continuity of the fault’s surface trace based on the accompanying digital topography dataset. Additionally, the digitized fault trace may provide geometric constraints useful for modeling earthquake scenarios and related seismic hazard.

  1. Marine and land active-source seismic investigation of geothermal potential, tectonic structure, and earthquake hazards in Pyramid Lake, Nevada

    NASA Astrophysics Data System (ADS)

    Eisses, A.; Kell, A. M.; Kent, G.; Driscoll, N. W.; Karlin, R. E.; Baskin, R. L.; Louie, J. N.; Smith, K. D.; Pullammanappallil, S.

    2011-12-01

    Preliminary slip rates measured across the East Pyramid Lake fault, or the Lake Range fault, help provide new estimates of extension across the Pyramid Lake basin. Multiple stratigraphic horizons spanning 48 ka were tracked throughout the lake, with layer offsets measured across all significant faults in the basin. A chronstratigraphic framework acquired from four sediment cores allows slip rates of the Lake Range and other faults to be calculated accurately. This region of the northern Walker Lake, strategically placed between the right-lateral strike-slip faults of Honey and Eagle Lakes to the north, and the normal fault bounded basins to the southwest (e.g., Tahoe, Carson), is critical in understanding the underlying structural complexity that is not only necessary for geothermal exploration, but also earthquake hazard assessment due to the proximity of the Reno-Sparks metropolitan area. In addition, our seismic CHIRP imaging with submeter resolution allows the construction of the first fault map of Pyramid Lake. The Lake Range fault can be obviously traced west of Anahoe Island extending north along the east end of the lake in numerous CHIRP lines. Initial drafts of the fault map reveal active transtension through a series of numerous, small, northwest striking, oblique-slip faults in the north end of the lake. A previously field mapped northwest striking fault near Sutcliff can be extended into the west end of Pyramid Lake. This fault map, along with the calculated slip rate of the Lake Range, and potentially multiple other faults, gives a clearer picture into understanding the geothermal potential, tectonic regime and earthquake hazards in the Pyramid Lake basin and the northern Walker Lane. These new results have also been merged with seismicity maps, along with focal mechanisms for the larger events to begin to extend our fault map in depth.

  2. Magma-tectonic Interaction at Laguna del Maule, Chile

    NASA Astrophysics Data System (ADS)

    Keranen, K. M.; Peterson, D. E.; Miller, C. A.; Garibaldi, N.; Tikoff, B.; Williams-Jones, G.

    2016-12-01

    The Laguna del Maule Volcanic Field (LdM), Chile, the largest concentration of rhyolite <20 kyr globally, exhibits crustal deformation at rates higher than any non-erupting volcano. The interaction of large magmatic systems with faulting is poorly understood, however, the Chaitén rhyolitic system demonstrated that faults can serve as magma pathways during an eruption. We present a complex fault system at LdM in close proximity to the magma reservoir. In March 2016, 18 CHIRP seismic reflection lines were acquired at LdM to identify faults and analyze potential spatial and temporal impacts of the fault system on volcanic activity. We mapped three key horizons on each line, bounding sediment packages between Holocene onset, 870 ybp, and the present date. Faults were mapped on each line and offset was calculated across key horizons. Our results indicate a system of normal-component faults in the northern lake sector, striking subparallel to the mapped Troncoso Fault SW of the lake. These faults correlate to prominent magnetic lineations mapped by boat magnetic data acquired February 2016 which are interpreted as dykes intruding along faults. We also imaged a vertical fault, interpreted as a strike-slip fault, and a series of normal faults in the SW lake sector near the center of magmatic inflation. Isochron and fault offset maps illuminate areas of growth strata and indicate migration and increase of fault activity from south to north through time. We identify a domal structure in the SW lake sector, coincident with an area of low magnetization, in the region of maximum deformation from InSAR results. The dome experienced 10 ms TWT ( 10 meters) of uplift throughout the past 16 kybp, which we interpret as magmatic inflation in a shallow magma reservoir. This inflation is isolated to a 1.5 km diameter region in the hanging wall of the primary normal fault system, indicating possible fault-facilitated inflation.

  3. Active faulting on the Wallula fault zone within the Olympic-Wallowa lineament, Washington State, USA

    USGS Publications Warehouse

    Sherrod, Brian; Blakely, Richard J.; Lasher, John P.; Lamb, Andrew P.; Mahan, Shannon; Foit, Franklin F.; Barnett, Elizabeth

    2016-01-01

    The Wallula fault zone is an integral feature of the Olympic-Wallowa lineament, an ∼500-km-long topographic lineament oblique to the Cascadia plate boundary, extending from Vancouver Island, British Columbia, to Walla Walla, Washington. The structure and past earthquake activity of the Wallula fault zone are important because of nearby infrastructure, and also because the fault zone defines part of the Olympic-Wallowa lineament in south-central Washington and suggests that the Olympic-Wallowa lineament may have a structural origin. We used aeromagnetic and ground magnetic data to locate the trace of the Wallula fault zone in the subsurface and map a quarry exposure of the Wallula fault zone near Finley, Washington, to investigate past earthquakes along the fault. We mapped three main packages of rocks and unconsolidated sediments in an ∼10-m-high quarry exposure. Our mapping suggests at least three late Pleistocene earthquakes with surface rupture, and an episode of liquefaction in the Holocene along the Wallula fault zone. Faint striae on the master fault surface are subhorizontal and suggest reverse dextral oblique motion for these earthquakes, consistent with dextral offset on the Wallula fault zone inferred from offset aeromagnetic anomalies associated with ca. 8.5 Ma basalt dikes. Magnetic surveys show that the Wallula fault actually lies 350 m to the southwest of the trace shown on published maps, passes directly through deformed late Pleistocene or younger deposits exposed at Finley quarry, and extends uninterrupted over 120 km.

  4. Preliminary Studies of the Structural Characteristics of the Lubao Fault using 2D High Resolution Shallow Seismic Reflection Profile

    NASA Astrophysics Data System (ADS)

    Bonus, A. A. B.; Lagmay, A. M. A.; Rodolfo, K. S.

    2016-12-01

    The Lubao fault, located in the province of Pampanga, Philippines, is part of the Bataan Volcanic Arc Complex (BVAC). Active faults within and around the BVAC include the East Zambales and Iba faults; according to the official active faults map of the Philippine Institute of Volcanology and Seismology (PHIVOLCS) there are no other existing active faults in the area. The Lubao Fault distinctly separates wetlands to the northeast and dry alluvial plains to the northwest of Manila Bay. Long term subsidence and high sedimentation rates were observed in the fault and over the past 1.5 thousand years, the northeastern block has dropped 3.5 meters. Along the southwest flank of Mount Natib, tectonic structures were identified using surface mapping and remote sensing. The Persistent Scattering Interferometric Synthetic Aperture Radar (PSInSAR) data results of Eco et al. in 2015 shows uplifts and subsidence in the BVAC area delineating the Lubao Fault. A 480-meter seismic reflection line was laid down perpendicular to the fault with a recording system consisting of 48 channels of Geometrics geophones spaced 10 meters apart. Acquired data were processed using the standard seismic reflection processing sequence by Yilmaz 2001. This preliminary study produced a high resolution subsurface profile of the Lubao fault in the village of San Rafael, Lubao where it is well manifested. The velocity model integrated by stratigraphic data of drilled core shows subsurface lithology. The depth converted profile reveals clear structures and dipping segments which indicates a history of movement along the Lubao fault. Discontinuity of reflectors, either offsets or breaks, are considered structures along the subsurface of the study area. Additional structural mapping and seismic lines along the projected fault are planned in the future to further detail the characteristics of the Lubao Fault. The surface observations made by other researchers coupled with the subsurface seismic profile mapping of this study hopes to clearly delineate and characterize the Lubao Fault.

  5. Active faults in Africa: a review

    NASA Astrophysics Data System (ADS)

    Skobelev, S. F.; Hanon, M.; Klerkx, J.; Govorova, N. N.; Lukina, N. V.; Kazmin, V. G.

    2004-03-01

    The active fault database and Map of active faults in Africa, in scale of 1:5,000,000, were compiled according to the ILP Project II-2 "World Map of Major Active Faults". The data were collected in the Royal Museum of Central Africa, Tervuren, Belgium, and in the Geological Institute, Moscow, where the final edition was carried out. Active faults of Africa form three groups. The first group is represented by thrusts and reverse faults associated with compressed folds in the northwest Africa. They belong to the western part of the Alpine-Central Asian collision belt. The faults disturb only the Earth's crust and some of them do not penetrate deeper than the sedimentary cover. The second group comprises the faults of the Great African rift system. The faults form the known Western and Eastern branches, which are rifts with abnormal mantle below. The deep-seated mantle "hot" anomaly probably relates to the eastern volcanic branch. In the north, it joins with the Aden-Red Sea rift zone. Active faults in Egypt, Libya and Tunis may represent a link between the East African rift system and Pantellerian rift zone in the Mediterranean. The third group included rare faults in the west of Equatorial Africa. The data were scarce, so that most of the faults of this group were identified solely by interpretation of space imageries and seismicity. Some longer faults of the group may continue the transverse faults of the Atlantic and thus can penetrate into the mantle. This seems evident for the Cameron fault line.

  6. Detecting Taiwan's Shanchiao Active Fault Using AMT and Gravity Methods

    NASA Astrophysics Data System (ADS)

    Liu, H.-C.; Yang, C.-H.

    2009-04-01

    Taiwan's Shanchiao normal fault runs in a northeast-southwest direction and is located on the western edge of the Taipei Basin in northern Taiwan. The overburden of the fault is late Quaternary sediment with a thickness of approximately a few tenth of a meter to several hundred meters. No detailed studies of the western side of the Shanchiao fault are available. As Taiwan is located on the Neotectonic Belt in the western Pacific, detecting active faults near the Taipei metropolitan area will provide necessary information for further disaster prevention. It is the responsibility of geologists and geophysicists in Taiwan to perform this task. Examination of the resistivity and density contrasts of subsurface layers permits a mapping of the Shanchiao fault and the deformed Tertiary strata of the Taipei Basin. The audio-frequency magnetotelluric (AMT) method and gravity method were chosen for this study. Significant resistivity and gravity anomalies were observed in the suspected fault zone. The interpretation reveals a good correlation between the features of the Shanchiao fault and resistivity and density distribution at depth. In this observation, AMT and gravity methods provides a viable means for mapping the Shanchiao fault position and studying its features associated with the subsidence of the western side of the Taipei Basin. This study indicates the AMT and gravity methods' considerable potential for accurately mapping an active fault.

  7. Latest Rate, Extent, and Temporal Evolution of Growth Faulting over Greater Houston Region Revealed by Multi- Band InSAR Time-Series Analysis

    NASA Astrophysics Data System (ADS)

    Qu, F.; Lu, Z.; Kim, J. W.

    2017-12-01

    Growth faults are common and continue to evolve throughout the unconsolidated sediments of Greater Houston (GH) region in Texas. Presence of faults can induce localized surface displacements, aggravate localized subsidence, and discontinue the integrity of ground water flow. Property damages due to fault creep have become more evident during the past few years over the GH area, portraying the necessity of further study of these faults. Interferometric synthetic aperture radar (InSAR) has been proven to be effective in mapping creep along and/or across faults. However, extracting a short wavelength, as well as small amplitude of the creep signal (about 10-20 mm/year) from long time span interferograms is extremely difficult, especially in agricultural or vegetated areas. This paper aims to map and monitor the latest rate, extent, and temporal evolution of faulting at a highest spatial density over GH region using an improved Multi-temporal InSAR (MTI) technique. The method, with maximized usable signal and correlation, has the ability to identify and monitor the active faults to provide an accurate and elaborate image of the faults. In this study, two neighboring ALOS tracks and Sentinel-1A datasets are used. Many zones of steep phase gradients and/or discontinuities have been recognized from the long term velocity maps by both ALOS (2007-2011) and Sentinei-1A (2015-2017) imagery. Not only those previously known faults position but also the new fault traces that have not been mapped by other techniques are imaged by our MTI technique. Fault damage and visible cracking of ground were evident at most locations through our field survey. The discovery of new fault activation, or faults moved from earlier locations is a part of the Big Barn Fault and Conroe fault system, trending from southwest to northeast between Hockley and Conroe. The location of area of subsidence over GH is also shrinking and migrating toward the northeast (Montgomery County) after 2000. The continuous mining of ground water from the Jasper aquifer formed a new water-level decline cones over Montgomery County, exactly reflects the intensity of new fault activity. The discovery of new fault activation, or faults moved from earlier locations appear to be related to excessive water exploitation from Montgomery County aquifers.

  8. A review of recently active faults in Taiwan

    USGS Publications Warehouse

    Bonilla, Manuel G.

    1975-01-01

    Six faults associated with five large earthquakes produced surface displacements ranging from 1 to 3 m in the period 1906 through 1951. Four of the ruptures occurred in the western coastal plain and foothills, and two occurred in the Longitudinal Valley of eastern Taiwan. Maps are included showing the locations and dimensions of the displacements. The published geological literature probably would not lead one to infer the existence of a fault along most of the 1906 rupture, except for descriptions of the rupture itself. Over most of its length the 1935 rupture on the Chihhu fault is parallel to but more than 0.5 km from nearby faults shown on geologic maps published in 1969 and 1971; only about 1.5 km of its 15 km length coincides with a mapped fault. The coastal plain part of the Tuntzuchio fault which ruptured in 1935 is apparently not revealed by landforms, and only suggested by other data. Part of the 1946 Hsinhua faulting coincides with a fault identified in the subsurface by seismic work but surface indications of the fault are obscure. The 1951 Meilun faulting occurred along a conspicuous pre-1951 scarp and the 1951 Yuli faulting occurred near or in line with pre-1951 scarps. More than 40 faults which, according to the published literature, have had Pleistocene or later movement are shown on a small-scale map. Most of these faults are in the densely-populated western part of Taiwan. The map and text calls attention to faults that may be active and therefore may be significant in planning important structures. Equivocal evidence suggestive of fault creep was found on the Yuli fault and the Hsinhua fault. Fault creep was not found at several places examined along the 1906 fault trace. Tectonic uplift has occurred in Taiwan in the last 10,000 years and application of eustatic sea level curves to published radiocarbon dates shows that the minimum rate of uplift is considerably different in different parts of the island. Incomplete data indicate that the rate is high near Hualien, where an uplift of at least 0.6 m and probably more than 1 m occurred in the 1951 earthquake, and near and south of the 1946 faulting. Sudden uplifts can have serious consequences for installations near the shore. Investigation of this process, study of recently active faults, and continuing study of seismicity are necessary parts of a practical earthquake-hazard reduction program.

  9. Map and Data for Quaternary Faults and Fault Systems on the Island of Hawai`i

    USGS Publications Warehouse

    Cannon, Eric C.; Burgmann, Roland; Crone, Anthony J.; Machette, Michael N.; Dart, Richard L.

    2007-01-01

    Introduction This report and digitally prepared, GIS-based map is one of a series of similar products covering individual states or regions of United States that show the locations, ages, and activity rates of major earthquake-related features such as faults and fault-related folds. It is part of a continuing the effort to compile a comprehensive Quaternary fault and fold map and database for the United States, which is supported by the U.S. Geological Survey's (USGS) Earthquake Hazards Program. Guidelines for the compilation of the Quaternary fault and fold maps for the United States were published by Haller and others (1993) at the onset of this project. This compilation of Quaternary surface faulting and folding in Hawai`i is one of several similar state and regional compilations that were planned for the United States. Reports published to date include West Texas (Collins and others, 1996), New Mexico (Machette and others, 1998), Arizona (Pearthree, 1998), Colorado (Widmann and others, 1998), Montana (Stickney and others, 2000), Idaho (Haller and others, 2005), and Washington (Lidke and others, 2003). Reports for other states such as California and Alaska are still in preparation. The primary intention of this compilation is to aid in seismic-hazard evaluations. The report contains detailed information on the location and style of faulting, the time of most recent movement, and assigns each feature to a slip-rate category (as a proxy for fault activity). It also contains the name and affiliation of the compiler, date of compilation, geographic and other paleoseismologic parameters, as well as an extensive set of references for each feature. The map (plate 1) shows faults, volcanic rift zones, and lineaments that show evidence of Quaternary surface movement related to faulting, including data on the time of most recent movement, sense of movement, slip rate, and continuity of surface expression. This compilation is presented as a digitally prepared map product and catalog of data, both in Adobe Acrobat PDF format. The senior authors (Eric C. Cannon and Roland Burgmann) compiled the fault data as part of ongoing studies of active faulting on the Island of Hawai`i. The USGS is responsible for organizing and integrating the State or regional products under their National Seismic Hazard Mapping project, including the coordination and oversight of contributions from individuals and groups (Michael N. Machette and Anthony J. Crone), database design and management (Kathleen M. Haller), and digitization and analysis of map data (Richard L. Dart). After being released an Open-File Report, the data in this report will be available online at http://earthquake.usgs.gov/regional/qfaults/, the USGS Quaternary Fault and Fold Database of the United States.

  10. 15 years of zooming in and zooming out: Developing a new single scale national active fault database of New Zealand

    NASA Astrophysics Data System (ADS)

    Ries, William; Langridge, Robert; Villamor, Pilar; Litchfield, Nicola; Van Dissen, Russ; Townsend, Dougal; Lee, Julie; Heron, David; Lukovic, Biljana

    2014-05-01

    In New Zealand, we are currently reconciling multiple digital coverages of mapped active faults into a national coverage at a single scale (1:250,000). This seems at first glance to be a relatively simple task. However, methods used to capture data, the scale of capture, and the initial purpose of the fault mapping, has produced datasets that have very different characteristics. The New Zealand digital active fault database (AFDB) was initially developed as a way of managing active fault locations and fault-related features within a computer-based spatial framework. The data contained within the AFDB comes from a wide range of studies, from plate tectonic (1:500,000) to cadastral (1:2,000) scale. The database was designed to allow capture of field observations and remotely sourced data without a loss in data resolution. This approach has worked well as a method for compiling a centralised database for fault information but not for providing a complete national coverage at a single scale. During the last 15 years other complementary projects have used and also contributed data to the AFDB, most notably the QMAP project (a national series of geological maps completed over 19 years that include coverage of active and inactive faults at 1:250,000). AFDB linework and attributes was incorporated into this series but simplification of linework and attributes has occurred to maintain map clarity at 1:250,000 scale. Also, during this period on-going mapping of active faults has improved upon these data. Other projects of note that have used data from the AFDB include the National Seismic Hazard Model of New Zealand and the Global Earthquake Model (GEM). The main goal of the current project has been to provide the best digital spatial representation of a fault trace at 1:250,000 scale and combine this with the most up to date attributes. In some areas this has required a simplification of very fine detailed data and in some cases new mapping to provide a complete coverage. Where datasets have conflicting line work and/or attributes, data was reviewed through consultation with authors or review of published research to ensure the most to date representation was maintained. The current project aims to provide a coverage that will be consistent between the AFDB and QMAP digital and provide a free download of these data on the AFDB website (http://data.gns.cri.nz/af/).

  11. The Active Fault Parameters for Time-Dependent Earthquake Hazard Assessment in Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Cheng, C.; Lin, P.; Shao, K.; Wu, Y.; Shih, C.

    2011-12-01

    Taiwan is located at the boundary between the Philippine Sea Plate and the Eurasian Plate, with a convergence rate of ~ 80 mm/yr in a ~N118E direction. The plate motion is so active that earthquake is very frequent. In the Taiwan area, disaster-inducing earthquakes often result from active faults. For this reason, it's an important subject to understand the activity and hazard of active faults. The active faults in Taiwan are mainly located in the Western Foothills and the Eastern longitudinal valley. Active fault distribution map published by the Central Geological Survey (CGS) in 2010 shows that there are 31 active faults in the island of Taiwan and some of which are related to earthquake. Many researchers have investigated these active faults and continuously update new data and results, but few people have integrated them for time-dependent earthquake hazard assessment. In this study, we want to gather previous researches and field work results and then integrate these data as an active fault parameters table for time-dependent earthquake hazard assessment. We are going to gather the seismic profiles or earthquake relocation of a fault and then combine the fault trace on land to establish the 3D fault geometry model in GIS system. We collect the researches of fault source scaling in Taiwan and estimate the maximum magnitude from fault length or fault area. We use the characteristic earthquake model to evaluate the active fault earthquake recurrence interval. In the other parameters, we will collect previous studies or historical references and complete our parameter table of active faults in Taiwan. The WG08 have done the time-dependent earthquake hazard assessment of active faults in California. They established the fault models, deformation models, earthquake rate models, and probability models and then compute the probability of faults in California. Following these steps, we have the preliminary evaluated probability of earthquake-related hazards in certain faults in Taiwan. By accomplishing active fault parameters table in Taiwan, we would apply it in time-dependent earthquake hazard assessment. The result can also give engineers a reference for design. Furthermore, it can be applied in the seismic hazard map to mitigate disasters.

  12. Faults in parts of north-central and western Houston metropolitan area, Texas

    USGS Publications Warehouse

    Verbeek, Earl R.; Ratzlaff, Karl W.; Clanton, Uel S.

    1979-01-01

    Hundreds of residential, commercial, and industrial structures in the Houston metropolitan area have sustained moderate to severe damage owing to their locations on or near active faults. Paved roads have been offset by faults at hundreds of locations, butted pipelines have been distorted by fault movements, and fault-induced gradient changes in drainage lines have raised concern among flood control engineers. Over 150 faults, many of them moving at rates of 0.5 to 2 cm/yr, have been mapped in the Houston area; the number of faults probably far exceeds this figure.This report includes a map of eight faults, in north-central and western Houston, at a scale useful for land-use planning. Seven of the faults, are known, to be active and have caused considerable damage to structures built on or near them. If the eighth fault is active, it may be of concern to new developments on the west side of Houston. A ninth feature shown on the map is regarded only as a possible fault, as an origin by faulting has not been firmly established.Seismic and drill-hold data for some 40 faults, studied in detail by various investigators have verified connections between scarps at the land surface and growth faults in the shallow subsurface. Some scarps, then, are known to be the surface manifestations of faults that have geologically long histories of movement. The degree to which natural geologic processes contribute to current fault movement, however, is unclear, for some of man’s activities may play a role in faulting as well.Evidence that current rates of fault movement far exceed average prehistoric rates and that most offset of the land surface in the Houston area has occurred only within the last 50 years indirectly suggest that fluid withdrawal may be accelerating or reinitiating movement on pre-existing faults. This conclusion, however, is based only on a coincidence in time between increased fault activity and increased rates of withdrawal of water, oil, and gas from subsurface sediments; no cause-and-effect relationship has been demonstrated. An alternative hypothesis is that natural fault movements are characterized by short—term episodicity and that Houston is experiencing the effects of a brief period of accelerated natural fault movement. Available data from monitored faults are insufficient to weigh the relative importance of natural vs. induced fault movements.

  13. Influence of the Saros Fault on the Periodicity of Earthquake Activity (Gelibolu Peninsula, NW Turkey)

    NASA Astrophysics Data System (ADS)

    İpek Gültekin, Derya; Karakoç, Okan; Şahin, Murat; Elitez, İrem; Yaltırak, Cenk

    2017-04-01

    Active faults are vital in terms of settlement and socio-economic aspects of a region. For this reason, it is important to determine the characteristics and impact areas of active faults correctly. The Marmara region is a tectonically active region located in the northwestern Anatolia. The northern part of the North Anatolian Fault, which was named the Saros Fault, passes through the westernmost part of this region. The Saros Fault is a 52 km-long and NE-SW-trending right-lateral strike-slip fault. In this study, the seismicity of the Gelibolu Peninsula has been examined in the light of historical records. When considering the historical records, 545, 986, 1354 and 1756 earthquakes led to damage on the settlements close to the Saros Fault. The dates of historical earthquakes were calculated by integration of previously published empirical formulas, year difference between events and velocity of GPS vectors. The acceleration map (PGA MAPS) of the region has been produced by taking into account these earthquake magnitudes, fault geometry and geology of the region, and consequently, it was seen that these maps overlap quite well with the damage records of historical earthquakes. Considering the periodicity of the Saros Fault, which majorly controls the seismicity in the region, it is aimed to find an answer to the question "how does a recent earthquake affect the region?" by the help of historical earthquake records and PGA modelling. In conclusion, our data showed that PGA values are dominant in the northern side of the Gelibolu Peninsula and this region may be affected by a magnitude 7.3 earthquake.

  14. Fault Scarp Detection Beneath Dense Vegetation Cover: Airborne Lidar Mapping of the Seattle Fault Zone, Bainbridge Island, Washington State

    NASA Technical Reports Server (NTRS)

    Harding, David J.; Berghoff, Gregory S.

    2000-01-01

    The emergence of a commercial airborne laser mapping industry is paying major dividends in an assessment of earthquake hazards in the Puget Lowland of Washington State. Geophysical observations and historical seismicity indicate the presence of active upper-crustal faults in the Puget Lowland, placing the major population centers of Seattle and Tacoma at significant risk. However, until recently the surface trace of these faults had never been identified, neither on the ground nor from remote sensing, due to cover by the dense vegetation of the Pacific Northwest temperate rainforests and extremely thick Pleistocene glacial deposits. A pilot lidar mapping project of Bainbridge Island in the Puget Sound, contracted by the Kitsap Public Utility District (KPUD) and conducted by Airborne Laser Mapping in late 1996, spectacularly revealed geomorphic features associated with fault strands within the Seattle fault zone. The features include a previously unrecognized fault scarp, an uplifted marine wave-cut platform, and tilted sedimentary strata. The United States Geologic Survey (USGS) is now conducting trenching studies across the fault scarp to establish ages, displacements, and recurrence intervals of recent earthquakes on this active fault. The success of this pilot study has inspired the formation of a consortium of federal and local organizations to extend this work to a 2350 square kilometer (580,000 acre) region of the Puget Lowland, covering nearly the entire extent (approx. 85 km) of the Seattle fault. The consortium includes NASA, the USGS, and four local groups consisting of KPUD, Kitsap County, the City of Seattle, and the Puget Sound Regional Council (PSRC). The consortium has selected Terrapoint, a commercial lidar mapping vendor, to acquire the data.

  15. Map and data for Quaternary faults and folds in New Mexico

    USGS Publications Warehouse

    Machette, M.N.; Personius, S.F.; Kelson, K.I.; Haller, K.M.; Dart, R.L.

    1998-01-01

    The "World Map of Major Active Faults" Task Group is compiling a series of digital maps for the United States and other countries in the Western Hemisphere that show the locations, ages, and activity rates of major earthquake-related features such as faults and fault-related folds; the companion database includes published information on these seismogenic features. The Western Hemisphere effort is sponsored by International Lithosphere Program (ILP) Task Group H-2, whereas the effort to compile a new map and database for the United States is funded by the Earthquake Reduction Program (ERP) through the U.S. Geological Survey. The maps and accompanying databases represent a key contribution to the new Global Seismic Hazards Assessment Program (ILP Task Group II-O) for the International Decade for Natural Disaster Reduction. This compilation, which describes evidence for surface faulting and folding in New Mexico, is the third of many similar State and regional compilations that are planned for the U.S. The compilation for West Texas is available as U.S. Geological Survey Open-File Report 96-002 (Collins and others, 1996 #993) and the compilation for Montana will be released as a Montana Bureau of Mines product (Haller and others, in press #1750).

  16. Active fault mapping in Karonga-Malawi after the December 19, 2009 Ms 6.2 seismic event

    NASA Astrophysics Data System (ADS)

    Macheyeki, A. S.; Mdala, H.; Chapola, L. S.; Manhiça, V. J.; Chisambi, J.; Feitio, P.; Ayele, A.; Barongo, J.; Ferdinand, R. W.; Ogubazghi, G.; Goitom, B.; Hlatywayo, J. D.; Kianji, G. K.; Marobhe, I.; Mulowezi, A.; Mutamina, D.; Mwano, J. M.; Shumba, B.; Tumwikirize, I.

    2015-02-01

    The East African Rift System (EARS) has natural hazards - earthquakes, volcanic eruptions, and landslides along the faulted margins, and in response to ground shaking. Strong damaging earthquakes have been occurring in the region along the EARS throughout historical time, example being the 7.4 (Ms) of December 1910. The most recent damaging earthquake is the Karonga earthquake in Malawi, which occurred on 19th December, 2009 with a magnitude of 6.2 (Ms). The earthquake claimed four lives and destroyed over 5000 houses. In its effort to improve seismic hazard assessment in the region, Eastern and Southern Africa Seismological Working Group (ESARSWG) under the sponsorship of the International Program on Physical Sciences (IPPS) carried out a study on active fault mapping in the region. The fieldwork employed geological and geophysical techniques. The geophysical techniques employed are ground magnetic, seismic refraction and resistivity surveys but are reported elsewhere. This article gives findings from geological techniques. The geological techniques aimed primarily at mapping of active faults in the area in order to delineate presence or absence of fault segments. Results show that the Karonga fault (the Karonga fault here referred to as the fault that ruptured to the surface following the 6th-19th December 2009 earthquake events in the Karonga area) is about 9 km long and dominated by dip slip faulting with dextral and insignificant sinistral components and it is made up of 3-4 segments of length 2-3 km. The segments are characterized by both left and right steps. Although field mapping show only 9 km of surface rupture, maximum vertical offset of about 43 cm imply that the surface rupture was in little excess of 14 km that corresponds with Mw = 6.4. We recommend the use or integration of multidisciplinary techniques in order to better understand the fault history, mechanism and other behavior of the fault/s for better urban planning in the area.

  17. Geomorphic Proxies to Test Strain Accommodation in Southwestern Puerto Rico from Digital Elevation Models

    NASA Astrophysics Data System (ADS)

    Barrios Galindez, I. M.; Xue, L.; Laó-Dávila, D. A.

    2017-12-01

    The Puerto Rico and the Virgin Island microplate is located in at the northeastern corner of the Caribbean plate boundary with North America is placed within an oblique subduction zone in which strain patterns remain unresolved. Seismic hazard is a major concern in the region as seen from the seismic history of the Caribbean-North America plate boundary zone. Most of the tectonic models of the microplate show the accommodation of strain occurring offshore, despite evidence from seismic activity, trench studies, and geodetic studies suggesting the existence of strain accomodation in southwest Puerto Rico. These studies also suggest active faulting specially in the western part of the island, but limited work has been done regarding their mechanism. Therefore, this work aims to define and map these active faults in western Puerto Rico by integrating data from analysis of fluvial terrains, and detailed mapping using digital elevation model (DEM) extracted from Shuttle Radar Topography Mission (SRTM) and LIDAR data. The goal is to (1) identify structural features such as surface lineaments and fault scarps for the Cerro Goden fault, South Lajas fault, and other active faults in the western of Puerto Rico, (2) correlate these information with the distribution pattern and values of the geomorphic proxies, including Chi integral (χ), normalized steepness (ksn) and Asymmetric factor (AF). Our preliminary results from geomorphic proxies and Lidar data provide some insight of the displacement and stage of activities of these faults (e.g. Boqueron-Punta Malva Fault and Cerro Goden fault). Also, the anomaly of the geomorphic proxies generally correlate with the locations of the landslides in the southwestern Puerto Rico. The geomorphic model of this work include new information of active faulting fundamental to produce better seismic hazards maps. Additionally, active tectonics studies are vital to issue and adjust construction buildings codes and zonification codes.

  18. Improved alignment of the Hengchun Fault (southern Taiwan) based on fieldwork, structure-from-motion, shallow drilling, and levelling data

    NASA Astrophysics Data System (ADS)

    Giletycz, Slawomir Jack; Chang, Chung-Pai; Lin, Andrew Tien-Shun; Ching, Kuo-En; Shyu, J. Bruce H.

    2017-11-01

    The fault systems of Taiwan have been repeatedly studied over many decades. Still, new surveys consistently bring fresh insights into their mechanisms, activity and geological characteristics. The neotectonic map of Taiwan is under constant development. Although the most active areas manifest at the on-land boundary of the Philippine Sea Plate and Eurasia (a suture zone known as the Longitudinal Valley), and at the southwestern area of the Western Foothills, the fault systems affect the entire island. The Hengchun Peninsula represents the most recently emerged part of the Taiwan orogen. This narrow 20-25 km peninsula appears relatively aseismic. However, at the western flank the peninsula manifests tectonic activity along the Hengchun Fault. In this study, we surveyed the tectonic characteristics of the Hengchun Fault. Based on fieldwork, four years of monitoring fault displacement in conjunction with levelling data, core analysis, UAV surveys and mapping, we have re-evaluated the fault mechanisms as well as the geological formations of the hanging and footwall. We surveyed features that allowed us to modify the existing model of the fault in two ways: 1) correcting the location of the fault line in the southern area of the peninsula by moving it westwards about 800 m; 2) defining the lithostratigraphy of the hanging and footwall of the fault. A bathymetric map of the southern area of the Hengchun Peninsula obtained from the Atomic Energy Council that extends the fault trace offshore to the south distinctively matches our proposed fault line. These insights, coupled with crust-scale tomographic data from across the Manila accretionary system, form the basis of our opinion that the Hengchun Fault may play a major role in the tectonic evolution of the southern part of the Taiwan orogen.

  19. Slip Rates of Main Active Fault Zones Through Turkey Inferred From GPS Observations

    NASA Astrophysics Data System (ADS)

    Ozener, H.; Aktug, B.; Dogru, A.; Tasci, L.; Acar, M.; Emre, O.; Yilmaz, O.; Turgut, B.; Halicioglu, K.; Sabuncu, A.; Bal, O.; Eraslan, A.

    2015-12-01

    Active Fault Map of Turkey was revised and published by General Directorate of Mineral Research and Exploration in 2012. This map reveals that there are about 500 faults can generate earthquakes.In order to understand the earthquake potential of these faults, it is needed to determine the slip rates. Although many regional and local studies were performed in the past, the slip rates of the active faults in Turkey have not been determined. In this study, the block modelling, which is the most common method to produce slip rates, will be done. GPS velocities required for block modeling is being compiled from the published studies and the raw data provided then velocity field is combined. To form a homogeneous velocity field, different stochastic models will be used and the optimal velocity field will be achieved. In literature, GPS site velocities, which are computed for different purposes and published, are combined globally and this combined velocity field are used in the analysis of strain accumulation. It is also aimed to develop optimal stochastic models to combine the velocity data. Real time, survey mode and published GPS observations is being combined in this study. We also perform new GPS observations. Furthermore, micro blocks and main fault zones from Active Fault Map Turkey will be determined and homogeneous velocity field will be used to infer slip rates of these active faults. Here, we present the result of first year of the study. This study is being supported by THE SCIENTIFIC AND TECHNOLOGICAL RESEARCH COUNCIL OF TURKEY (TUBITAK)-CAYDAG with grant no. 113Y430.

  20. Can diligent and extensive mapping of faults provide reliable estimates of the expected maximum earthquakes at these faults? No. (Invited)

    NASA Astrophysics Data System (ADS)

    Bird, P.

    2010-12-01

    The hope expressed in the title question above can be contradicted in 5 ways, listed below. To summarize, an earthquake rupture can be larger than anticipated either because the fault system has not been fully mapped, or because the rupture is not limited to the pre-existing fault network. 1. Geologic mapping of faults is always incomplete due to four limitations: (a) Map-scale limitation: Faults below a certain (scale-dependent) apparent offset are omitted; (b) Field-time limitation: The most obvious fault(s) get(s) the most attention; (c) Outcrop limitation: You can't map what you can't see; and (d) Lithologic-contrast limitation: Intra-formation faults can be tough to map, so they are often assumed to be minor and omitted. If mapping is incomplete, fault traces may be longer and/or better-connected than we realize. 2. Fault trace “lengths” are unreliable guides to maximum magnitude. Fault networks have multiply-branching, quasi-fractal shapes, so fault “length” may be meaningless. Naming conventions for main strands are unclear, and rarely reviewed. Gaps due to Quaternary alluvial cover may not reflect deeper seismogenic structure. Mapped kinks and other “segment boundary asperities” may be only shallow structures. Also, some recent earthquakes have jumped and linked “separate” faults (Landers, California 1992; Denali, Alaska, 2002) [Wesnousky, 2006; Black, 2008]. 3. Distributed faulting (“eventually occurring everywhere”) is predicted by several simple theories: (a) Viscoelastic stress redistribution in plate/microplate interiors concentrates deviatoric stress upward until they fail by faulting; (b) Unstable triple-junctions (e.g., between 3 strike-slip faults) in 2-D plate theory require new faults to form; and (c) Faults which appear to end (on a geologic map) imply distributed permanent deformation. This means that all fault networks evolve and that even a perfect fault map would be incomplete for future ruptures. 4. A recent attempt [Bird, 2009, JGR] to model neotectonics of the active fault network in the western United States found that only 2/3 of Pacific-North America relative motion in California occurs by slip on faults included in seismic hazard models by the 2007 Working Group on California Earthquake Probabilities [2008; USGS OFR 2007-1437]. (Whether the missing distributed permanent deformation is seismogenic has not yet been determined.) 5. Even outside of broad orogens, dangerous intraplate faulting is evident in catalogs: (a) About 3% of shallow earthquakes in the Global CMT catalog are Intraplate [Bird et al., 2010, SRL]; (b) Intraplate earthquakes have higher stress-drops by about a factor-of-two [Kanamori & Anderson, 1975, BSSA; Allmann & Shearer, 2009, JGR]; (c) The corner magnitude of intraplate earthquakes is >7.6, and unconstrained from above, on the moment magnitude scale [Bird & Kagan, 2004, BSSA]. For some intraplate earthquakes, the causitive fault is mapped only (if at all) by its aftershocks.

  1. Spatial distribution of soil radon as a tool to recognize active faulting on an active volcano: the example of Mt. Etna (Italy).

    PubMed

    Neri, Marco; Giammanco, Salvatore; Ferrera, Elisabetta; Patanè, Giuseppe; Zanon, Vittorio

    2011-09-01

    This study concerns measurements of radon and thoron emissions from soil carried out in 2004 on the eastern flank of Mt. Etna, in a zone characterized by the presence of numerous seismogenic and aseismic faults. The statistical treatment of the geochemical data allowed recognizing anomaly thresholds for both parameters and producing distribution maps that highlighted a significant spatial correlation between soil gas anomalies and tectonic lineaments. The seismic activity occurring in and around the study area during 2004 was analyzed, producing maps of hypocentral depth and released seismic energy. Both radon and thoron anomalies were located in areas affected by relatively deep (5-10 km depth) seismic activity, while less evident correlation was found between soil gas anomalies and the released seismic energy. This study confirms that mapping the distribution of radon and thoron in soil gas can reveal hidden faults buried by recent soil cover or faults that are not clearly visible at the surface. The correlation between soil gas data and earthquakes depth and intensity can give some hints on the source of gas and/or on fault dynamics. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Identification of active fault using analysis of derivatives with vertical second based on gravity anomaly data (Case study: Seulimeum fault in Sumatera fault system)

    NASA Astrophysics Data System (ADS)

    Hududillah, Teuku Hafid; Simanjuntak, Andrean V. H.; Husni, Muhammad

    2017-07-01

    Gravity is a non-destructive geophysical technique that has numerous application in engineering and environmental field like locating a fault zone. The purpose of this study is to spot the Seulimeum fault system in Iejue, Aceh Besar (Indonesia) by using a gravity technique and correlate the result with geologic map and conjointly to grasp a trend pattern of fault system. An estimation of subsurface geological structure of Seulimeum fault has been done by using gravity field anomaly data. Gravity anomaly data which used in this study is from Topex that is processed up to Free Air Correction. The step in the Next data processing is applying Bouger correction and Terrin Correction to obtain complete Bouger anomaly that is topographically dependent. Subsurface modeling is done using the Gav2DC for windows software. The result showed a low residual gravity value at a north half compared to south a part of study space that indicated a pattern of fault zone. Gravity residual was successfully correlate with the geologic map that show the existence of the Seulimeum fault in this study space. The study of earthquake records can be used for differentiating the active and non active fault elements, this gives an indication that the delineated fault elements are active.

  3. Connecting the Yakima fold and thrust belt to active faults in the Puget Lowland, Washington

    USGS Publications Warehouse

    Blakely, R.J.; Sherrod, B.L.; Weaver, C.S.; Wells, R.E.; Rohay, A.C.; Barnett, E.A.; Knepprath, N.E.

    2011-01-01

    High-resolution aeromagnetic surveys of the Cascade Range and Yakima fold and thrust belt (YFTB), Washington, provide insights on tectonic connections between forearc and back-arc regions of the Cascadia convergent margin. Magnetic surveys were measured at a nominal altitude of 250 m above terrain and along flight lines spaced 400 m apart. Upper crustal rocks in this region have diverse magnetic properties, ranging from highly magnetic rocks of the Miocene Columbia River Basalt Group to weakly magnetic sedimentary rocks of various ages. These distinctive magnetic properties permit mapping of important faults and folds from exposures to covered areas. Magnetic lineaments correspond with mapped Quaternary faults and with scarps identified in lidar (light detection and ranging) topographic data and aerial photography. A two-dimensional model of the northwest striking Umtanum Ridge fault zone, based on magnetic and gravity data and constrained by geologic mapping and three deep wells, suggests that thrust faults extend through the Tertiary section and into underlying pre-Tertiary basement. Excavation of two trenches across a prominent scarp at the base of Umtanum Ridge uncovered evidence for bending moment faulting possibly caused by a blind thrust. Using aeromagnetic, gravity, and paleoseismic evidence, we postulate possible tectonic connections between the YFTB in eastern Washington and active faults of the Puget Lowland. We suggest that faults and folds of Umtanum Ridge extend northwestward through the Cascade Range and merge with the Southern Whidbey Island and Seattle faults near Snoqualmie Pass 35 km east of Seattle. Recent earthquakes (MW ≤ 5.3) suggest that this confluence of faults may be seismically active today.

  4. Effect of Fault Parameter Uncertainties on PSHA explored by Monte Carlo Simulations: A case study for southern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Akinci, A.; Pace, B.

    2017-12-01

    In this study, we discuss the seismic hazard variability of peak ground acceleration (PGA) at 475 years return period in the Southern Apennines of Italy. The uncertainty and parametric sensitivity are presented to quantify the impact of the several fault parameters on ground motion predictions for 10% exceedance in 50-year hazard. A time-independent PSHA model is constructed based on the long-term recurrence behavior of seismogenic faults adopting the characteristic earthquake model for those sources capable of rupturing the entire fault segment with a single maximum magnitude. The fault-based source model uses the dimensions and slip rates of mapped fault to develop magnitude-frequency estimates for characteristic earthquakes. Variability of the selected fault parameter is given with a truncated normal random variable distribution presented by standard deviation about a mean value. A Monte Carlo approach, based on the random balanced sampling by logic tree, is used in order to capture the uncertainty in seismic hazard calculations. For generating both uncertainty and sensitivity maps, we perform 200 simulations for each of the fault parameters. The results are synthesized both in frequency-magnitude distribution of modeled faults as well as the different maps: the overall uncertainty maps provide a confidence interval for the PGA values and the parameter uncertainty maps determine the sensitivity of hazard assessment to variability of every logic tree branch. These branches of logic tree, analyzed through the Monte Carlo approach, are maximum magnitudes, fault length, fault width, fault dip and slip rates. The overall variability of these parameters is determined by varying them simultaneously in the hazard calculations while the sensitivity of each parameter to overall variability is determined varying each of the fault parameters while fixing others. However, in this study we do not investigate the sensitivity of mean hazard results to the consideration of different GMPEs. Distribution of possible seismic hazard results is illustrated by 95% confidence factor map, which indicates the dispersion about mean value, and coefficient of variation map, which shows percent variability. The results of our study clearly illustrate the influence of active fault parameters to probabilistic seismic hazard maps.

  5. Geologic strip map along the Hines Creek Fault showing evidence for Cenozoic displacement in the western Mount Hayes and northeastern Healy quadrangles, eastern Alaska Range, Alaska

    USGS Publications Warehouse

    Nokleberg, Warren J.; Aleinikoff, John N.; Bundtzen, Thomas K.; Hanshaw, Maiana N.

    2013-01-01

    Geologic mapping of the Hines Creek Fault and the adjacent Trident Glacier and McGinnis Glacier Faults to the north in the eastern Alaska Range, Alaska, reveals that these faults were active during the Cenozoic. Previously, the Hines Creek Fault, which is considered to be part of the strike-slip Denali Fault system (Ridgway and others, 2002; Nokleberg and Richter, 2007), was interpreted to have been welded shut during the intrusion of the Upper Cretaceous Buchanan Creek pluton (Wahrhaftig and others, 1975; Gilbert, 1977; Sherwood and Craddock, 1979; Csejtey and others, 1992). Our geologic mapping along the west- to west-northwest-striking Hines Creek Fault in the northeastern Healy quadrangle and central to northwestern Mount Hayes quadrangle reveals that (1) the Buchanan Creek pluton is truncated by the Hines Creek Fault and (2) a tectonic collage of fault-bounded slices of various granitic plutons, metagabbro, metabasalt, and sedimentary rock of the Pingston terrane occurs south of the Hines Creek Fault.

  6. Geologic and Geophysical Framework of the Santa Rosa 7.5' Quadrangle, Sonoma County, California

    USGS Publications Warehouse

    McLaughlin, R.J.; Langenheim, V.E.; Sarna-Wojcicki, A. M.; Fleck, R.J.; McPhee, D.K.; Roberts, C.W.; McCabe, C.A.; Wan, Elmira

    2008-01-01

    The geologic and geophysical maps of Santa Rosa 7.5? quadrangle and accompanying structure sections portray the sedimentary and volcanic stratigraphy and crustal structure of the Santa Rosa 7.5? quadrangle and provide a context for interpreting the evolution of volcanism and active faulting in this region. The quadrangle is located in the California Coast Ranges north of San Francisco Bay and is traversed by the active Rodgers Creek, Healdsburg and Maacama Fault Zones. The geologic and geophysical data presented in this report, are substantial improvements over previous geologic and geophysical maps of the Santa Rosa area, allowing us to address important geologic issues. First, the geologic mapping is integrated with gravity and magnetic data, allowing us to depict the thicknesses of Cenozoic deposits, the depth and configuration of the Mesozoic basement surface, and the geometry of fault structures beneath this region to depths of several kilometers. This information has important implications for constraining the geometries of major active faults and for understanding and predicting the distribution and intensity of damage from ground shaking during earthquakes. Secondly, the geologic map and the accompanying description of the area describe in detail the distribution, geometry and complexity of faulting associated with the Rodgers Creek, Healdsburg and Bennett Valley Fault Zones and associated faults in the Santa Rosa quadrangle. The timing of fault movements is constrained by new 40Ar/39Ar ages and tephrochronologic correlations. These new data provide a better understanding of the stratigraphy of the extensive sedimentary and volcanic cover in the area and, in particular, clarify the formational affinities of Pliocene and Pleistocene nonmarine sedimentary units in the map area. Thirdly, the geophysics, particularly gravity data, indicate the locations of thick sections of sedimentary and volcanic fill within ground water basins of the Santa Rosa plain and Rincon, Bennett, and northwestern Sonoma Valleys, providing geohydrologists a more realistic framework for groundwater flow models.

  7. Geodesy- and geology-based slip-rate models for the Western United States (excluding California) national seismic hazard maps

    USGS Publications Warehouse

    Petersen, Mark D.; Zeng, Yuehua; Haller, Kathleen M.; McCaffrey, Robert; Hammond, William C.; Bird, Peter; Moschetti, Morgan; Shen, Zhengkang; Bormann, Jayne; Thatcher, Wayne

    2014-01-01

    The 2014 National Seismic Hazard Maps for the conterminous United States incorporate additional uncertainty in fault slip-rate parameter that controls the earthquake-activity rates than was applied in previous versions of the hazard maps. This additional uncertainty is accounted for by new geodesy- and geology-based slip-rate models for the Western United States. Models that were considered include an updated geologic model based on expert opinion and four combined inversion models informed by both geologic and geodetic input. The two block models considered indicate significantly higher slip rates than the expert opinion and the two fault-based combined inversion models. For the hazard maps, we apply 20 percent weight with equal weighting for the two fault-based models. Off-fault geodetic-based models were not considered in this version of the maps. Resulting changes to the hazard maps are generally less than 0.05 g (acceleration of gravity). Future research will improve the maps and interpret differences between the new models.

  8. Recent tectonic stress field, active faults and geothermal fields (hot-water type) in China

    NASA Astrophysics Data System (ADS)

    Wan, Tianfeng

    1984-10-01

    It is quite probable that geothermal fields of the hot-water type in China do not develop in the absence of recently active faults. Such active faults are all controlled by tectonic stress fields. Using the data of earthquake fault-plane solutions, active faults, and surface thermal manifestations, a map showing the recent tectonic stress field, and the location of active faults and geothermal fields in China is presented. Data collected from 89 investigated prospects with geothermal manifestations indicate that the locations of geothermal fields are controlled by active faults and the recent tectonic stress field. About 68% of the prospects are controlled by tensional or tensional-shear faults. The angle between these faults and the direction of maximum compressive stress is less than 45°, and both tend to be parallel. About 15% of the prospects are controlled by conjugate faults. Another 14% are controlled by compressive-shear faults where the angle between these faults and the direction maximum compressive stress is greater than 45°.

  9. Neotectonics and geomorphic evolution of the northwestern arm of the Yellowstone Tectonic Parabola: Controls on intra-cratonic extensional regimes, southwest Montana

    USGS Publications Warehouse

    Ruleman, Chester A.; Larsen, Mort; Stickney, Michael C.

    2014-01-01

    The catastrophic Hebgen Lake earthquake of 18 August 1959 (MW 7.3) led many geoscientists to develop new methods to better understand active tectonics in extensional tectonic regimes that address seismic hazards. The Madison Range fault system and adjacent Hebgen Lake–Red Canyon fault system provide an intermountain active tectonic analog for regional analyses of extensional crustal deformation. The Madison Range fault system comprises fault zones (~100 km in length) that have multiple salients and embayments marked by preexisting structures exposed in the footwall. Quaternary tectonic activity rates differ along the length of the fault system, with less displacement to the north. Within the Hebgen Lake basin, the 1959 earthquake is the latest slip event in the Hebgen Lake–Red Canyon fault system and southern Madison Range fault system. Geomorphic and paleoseismic investigations indicate previous faulting events on both fault systems. Surficial geologic mapping and historic seismicity support a coseismic structural linkage between the Madison Range and Hebgen Lake–Red Canyon fault systems. On this trip, we will look at Quaternary surface ruptures that characterize prehistoric earthquake magnitudes. The one-day field trip begins and ends in Bozeman, and includes an overview of the active tectonics within the Madison Valley and Hebgen Lake basin, southwestern Montana. We will also review geologic evidence, which includes new geologic maps and geomorphic analyses that demonstrate preexisting structural controls on surface rupture patterns along the Madison Range and Hebgen Lake–Red Canyon fault systems.

  10. Automatic fault tracing of active faults in the Sutlej valley (NW-Himalayas, India)

    NASA Astrophysics Data System (ADS)

    Janda, C.; Faber, R.; Hager, C.; Grasemann, B.

    2003-04-01

    In the Sutlej Valley the Lesser Himalayan Crystalline Sequence (LHCS) is actively extruding between the Munsiari Thrust (MT) at the base, and the Karcham Normal Fault (KNF) at the top. The clear evidences for ongoing deformation are brittle faults in Holocene lake deposits, hot springs activity near the faults and dramatically younger cooling ages within the LHCS (Vannay and Grasemann, 2001). Because these brittle fault zones obviously influence the morphology in the field we developed a new method for automatically tracing the intersections of planar fault geometries with digital elevation models (Faber, 2002). Traditional mapping techniques use structure contours (i.e. lines or curves connecting points of equal elevation on a geological structure) in order to construct intersections of geological structures with topographic maps. However, even if the geological structure is approximated by a plane and therefore structure contours are equally spaced lines, this technique is rather time consuming and inaccurate, because errors are cumulative. Drawing structure contours by hand makes it also impossible to slightly change the azimuth and dip direction of the favoured plane without redrawing everything from the beginning on. However, small variations of the fault position which are easily possible by either inaccuracies of measurement in the field or small local variations in the trend and/or dip of the fault planes can have big effects on the intersection with topography. The developed method allows to interactively view intersections in a 2D and 3D mode. Unlimited numbers of planes can be moved separately in 3 dimensions (translation and rotation) and intersections with the topography probably following morphological features can be mapped. Besides the increase of efficiency this method underlines the shortcoming of classical lineament extraction ignoring the dip of planar structures. Using this method, areas of active faulting influencing the morphology, can be mapped near the MT and the KNF suggesting that the most active zones are restricted to the Sutlej Valley. Faber R., 2002: WinGeol - Software for Analyzing and Visualization of Geological data, Department of Geological Sciences, University of Vienna. Vannay, J.-C., Grasemann, B., 2001. Himalayan inverted metamorphism and syn-convergence extension as a consequence of a general shear extrusion. Geol. Mag. 138 (3), 253-276.

  11. Kinematics at the intersection of the Garlock and Death Valley fault zones, California: Integration of TM data and field studies

    NASA Technical Reports Server (NTRS)

    Abrams, Michael; Verosub, Ken; Finnerty, Tony; Brady, Roland

    1987-01-01

    The Garlock and Death Valley fault zones in SE California are two active strike-slip faults coming together on the east side of the Avawatz Mtns. The kinematics of this intersection, and the possible continuation of either fault zone, are being investigated using a combination of field mapping, and processing and interpretation of remotely sensed image data. Regional and local relationships are derivable from Thematic Mapper data (30 m resolution), including discrimination and relative age dating of alluvial fans, bedrock mapping, and fault mapping. Aircraft data provide higher spatial resolution over more limited areas. Hypotheses being considered are: (1) the Garlock fault extends east of the intersection; (2) the Garlock fault terminates at the intersection and the Death Valley fault continues southeastward; and (3) the Garlock fault has been offset right laterally by the Death Valley fault which continues to the southeast. Preliminary work indicates that the first hypothesis is invalid. From kinematic considerations, image analysis, and field work the third hypothesis is favored. The projected continuation of the Death Valley zone defines the boundary between the Mojave crustal block and the Basin and Range block.

  12. Landslide susceptibility mapping for a part of North Anatolian Fault Zone (Northeast Turkey) using logistic regression model

    NASA Astrophysics Data System (ADS)

    Demir, Gökhan; aytekin, mustafa; banu ikizler, sabriye; angın, zekai

    2013-04-01

    The North Anatolian Fault is know as one of the most active and destructive fault zone which produced many earthquakes with high magnitudes. Along this fault zone, the morphology and the lithological features are prone to landsliding. However, many earthquake induced landslides were recorded by several studies along this fault zone, and these landslides caused both injuiries and live losts. Therefore, a detailed landslide susceptibility assessment for this area is indispancable. In this context, a landslide susceptibility assessment for the 1445 km2 area in the Kelkit River valley a part of North Anatolian Fault zone (Eastern Black Sea region of Turkey) was intended with this study, and the results of this study are summarized here. For this purpose, geographical information system (GIS) and a bivariate statistical model were used. Initially, Landslide inventory maps are prepared by using landslide data determined by field surveys and landslide data taken from General Directorate of Mineral Research and Exploration. The landslide conditioning factors are considered to be lithology, slope gradient, slope aspect, topographical elevation, distance to streams, distance to roads and distance to faults, drainage density and fault density. ArcGIS package was used to manipulate and analyze all the collected data Logistic regression method was applied to create a landslide susceptibility map. Landslide susceptibility maps were divided into five susceptibility regions such as very low, low, moderate, high and very high. The result of the analysis was verified using the inventoried landslide locations and compared with the produced probability model. For this purpose, Area Under Curvature (AUC) approach was applied, and a AUC value was obtained. Based on this AUC value, the obtained landslide susceptibility map was concluded as satisfactory. Keywords: North Anatolian Fault Zone, Landslide susceptibility map, Geographical Information Systems, Logistic Regression Analysis.

  13. Seismogenic faulting in the Meruoca granite, NE Brazil, consistent with a local weak fracture zone.

    PubMed

    Moura, Ana Catarina A; De Oliveira, Paulo H S; Ferreira, Joaquim M; Bezerra, Francisco H R; Fuck, Reinhardt A; Do Nascimento, Aderson F

    2014-12-01

    A sequence of earthquakes occurred in 2008 in the Meruoca granitic pluton, located in the northwestern part of the Borborema Province, NE Brazil. A seismological study defined the seismic activity occurring along the seismically-defined Riacho Fundo fault, a 081° striking, 8 km deep structure. The objective of this study was to analyze the correlation between this seismic activity and geological structures in the Meruoca granite. We carried out geological mapping in the epicentral area, analyzed the mineralogy of fault rocks, and compared the seismically-defined Riacho Fundo fault with geological data. We concluded that the seismically-defined fault coincides with ∼E-W-striking faults observed at outcrop scale and a swarm of Mesozoic basalt dikes. We propose that seismicity reactivated brittle structures in the Meruoca granite. Our study highlights the importance of geological mapping and mineralogical analysis in order to establish the relationships between geological structures and seismicity at a given area.

  14. Seismogenic faulting in the Meruoca granite, NE Brazil, consistent with a local weak fracture zone.

    PubMed

    Moura, Ana Catarina A; Oliveira, Paulo H S DE; Ferreira, Joaquim M; Bezerra, Francisco H R; Fuck, Reinhardt A; Nascimento, Aderson F DO

    2014-10-24

    A sequence of earthquakes occurred in 2008 in the Meruoca granitic pluton, located in the northwestern part of the Borborema Province, NE Brazil. A seismological study defined the seismic activity occurring along the seismically-defined Riacho Fundo fault, a 081° striking, 8 km deep structure. The objective of this study was to analyze the correlation between this seismic activity and geological structures in the Meruoca granite. We carried out geological mapping in the epicentral area, analyzed the mineralogy of fault rocks, and compared the seismically-defined Riacho Fundo fault with geological data. We concluded that the seismically-defined fault coincides with ∼E-W-striking faults observed at outcrop scale and a swarm of Mesozoic basalt dikes. We propose that seismicity reactivated brittle structures in the Meruoca granite. Our study highlights the importance of geological mapping and mineralogical analysis in order to establish the relationships between geological structures and seismicity at a given area.

  15. Late Quaternary faulting in the Cabo San Lucas-La Paz Region, Baja California

    NASA Astrophysics Data System (ADS)

    Busch, M.; Arrowsmith, J. R.; Umhoefer, P. J.; Gutiérrez, G. M.; Toke, N.; Brothers, D.; Dimaggio, E.; Maloney, S.; Zielke, O.; Buchanan, B.

    2006-12-01

    While Baja California drifts, active deformation on and just offshore indicates that spreading is not completely localized to the rift axis in the Gulf of California. Using on and offshore data, we characterize normal faulting- related deformation in the Cabo San Lucas-La Paz area. We mapped sections of the north trending faults in a 150 km long left-stepping fault array. Starting in the south, the San Jose del Cabo fault (east dipping) bounds the ~2 km high Sierra La Laguna. It is >70 km long with well defined 1-10 meter fault scarps cutting the youngest late Quaternary geomorphic surfaces. Our preliminary mapping along the north central section exhibits extensive late Quaternary terraces with riser heights of tens of meters above Holocene terraces. The San Jose del Cabo fault trace becomes diffuse and terminates in the area of Los Barriles. Moving northward, the fault system steps to the west, apparently transferring slip to the faults of San Juan de Los Planes and Saltito, which then step left again across the La Paz basin to the NNW trending Carrizal Fault. It has an on shore length of > 60 km. We produced a 25 km detailed strip map along the northern segment. It is embayed by convex east arcs several km long and 100 m deep. In the south, few-m-high scarps cut a pediment of thin Quaternary cover over tertiary volcanic rocks. The escarpment along the fault is hundreds of meters high and scarps 1-10 m high where it goes offshore in the north. Near Bonfil, a quarry cut exposes the fault zone. It comprises a 5-10 m wide bedrock shear zone with sheared tertiary volcanic units. On the footwall, the lower silty and sandy units have moderately well developed pedogenic carbonate, whereas the upper coarse gravel does not. These late Quaternary units appear to be faulted by one to three earthquakes. Finally, we mapped the Saltito fault zone NNE of La Paz. It is a NW trending structure with well developed 5- 10 meter high bedrock scarps defining its NW 5 km and slightly concave east with a 500 m left. Along all the fault zones studied, offset geomorphic surfaces indicate late Pleistocene to Holocene offset. These surfaces can be exploited to determine slip rates and produce a regional chronosequence to test for synchroneity of climatically modulated variations in sediment supply and transport capacity. In addition, a shallow marine geophysics and coring extends our mapping and provides important age control and improved stratigraphic assessment of fault activity.

  16. Historical Earthquake Scenarios and Effects on the Ancient City of İstanbul (A.D. 478 - 1999)

    NASA Astrophysics Data System (ADS)

    Şahin, Murat; Elitez, İrem; Özmen, Aybars; Yaltırak, Cenk

    2016-04-01

    Active fault mapping is one of the most important subject in the active tectonic studies. The consistency of the active fault maps with the reality is curial for the settlements and socio-economic conditions. The Marmara region is one of the precious area where the longest duration settlement and civilization are observed along a fault system. The Marmara Sea and its surrounding area are unique on the earth which has the remarkable history of 1500 years in non-instrumental period. Because, İstanbul was the capital city of both Byzantium and Ottoman Empire and the historical records of İstanbul are reliable for this environment such as A.D. 1509 earthquake known as 'little apocalypse'. Although the active faults of the Marmara Sea have studied and mapped by many researchers, there are only three different main fault model suggested for the Marmara Sea. These are single fault model (Le Pichon et al., 2001), pull-apart model (Armijo et al., 2005) and horsetail model (Yaltırak, 2002; 2015). Yaltırak (2015) grouped the 38 destructive historical earthquakes according to their felt area for these three fault models in the Marmara region. In this study we have modelled the Modified Mercalli Intensities (MMI) of historical buildings and cross checked with damages on the related structure in order to investigate the consistency of fault pattern with historical earthquakes. In this study three-stage evaluation has been made. In the first stage, three models that differ from each other were prepared on a database in commercial ArcGIS software. Mw values were calculated for each segment according to their lengths, seismogenic depths and 18 mm/yr accumulation by using the equation of Kanamori (1977). In the second stage, the 1:25000-scale geological map of the ancient city of İstanbul was revised according to Vs30 data of the İstanbul Metropolitan Municipality. The exact location of the historical constructions in the İstanbul have been plotted by using non-commercial high-resolution satellite images and archaeological maps. The third stage is the calculation of g-acceleration by using attenuation relation of Boore et al. (1993 and 1997). In order to calculate the MMI values for this study, we used the PGA-MMI equation of Bilal and Askan (2010). The MMI data sets produced in ArcGIS 10.2 utilized to generate the images by using the Generic Mapping Tool (GMT). In conclusion, one of the fault patterns (Le Pichon et al., 2001) has major contradictions with historical earthquake records and the other (Armijo et al., 2005) has incompatibilities with records as much as the first one. The remarkable correlation between the active faults and the damages of historical earthquakes on the constructions in ancient city of İstanbul is observed in the third model (Yaltırak, 2002; 2015).

  17. High Resolution Magnetic surveys across the Emeelt and Hustaï faults near Ulaanbaatar, Mongolia

    NASA Astrophysics Data System (ADS)

    Fleury, S.; Munschy, M.; Schlupp, A.; Ferry, M.; Munkhuu, U.

    2012-04-01

    During the 20th century, Mongolia was one of the most seismic active intra-continental areas in the world. Some recent observations raise strong concern on still unidentified structures around Ulaanbaatar (1.5 M inhabitants). Near the city, instrumental seismicity shows continuous activity with five M 4+ events since 1974 and a M 5.4. Since 2005, the number of earthquake in the shallow crust (above 10-20 km) has significantly increased on the Emeelt fault area, west of Ulaanbaatar. A multi-disciplinary study - including GPR profiling, magnetic mapping, DGPS microtopography, morphotectonic observations and paleoseismic trenching - was carried out in the fault areas to assess their seismogenic potential. We present preliminary results of high resolution magnetic surveys using three axis fluxgate magnetic sensors. In Emeelt and Hustaï area, about 4 km2 were prospected with survey line spacing of 5 m to investigate the subsurface characteristic of the active faults. The main faults are clearly detected as well as secondary branches that affect buried paleo-channels. The combined approach of morphotectonic observations and magnetic measurements was used to select the location of paleoseismic trenches. The fluxgate equipment, being an easy, non-invasive and high-resolution way of mapping was used inside trenches to map exposures. Micro magnetic surveys were conducted on the walls of the trenches along 30 m, with a vertical extent of 2 m and a spacing of 0.1 m between each line. These measurements are used to define different units of sediments with a very high level of detail particularly where the stratigraphic interfaces are poorly visible. Magnetic mapping reveals a fault zone in recent units that consists of intense deformational patterns. Simultaneous use of horizontal and vertical maps may yield a 3D interpretation of the distribution of sedimentary layers. Faulted units related to recent depositional process attest for the ongoing activity of the Emeelt and Hustaï faults. This novel approach brings supplementary physical measurements to classic trench observations as well as access to physical properties not observable with the naked eye. It proves to be a useful complement to photologs and field observations. Finally, our multidisciplinary approach helps assess seismic hazard for the nearby capital of Mongolia, Ulaanbaatar.

  18. The northwest trending north Boquerón Bay-Punta Montalva Fault Zone; A through going active fault system in southwestern Puerto Rico

    USGS Publications Warehouse

    Roig‐Silva, Coral Marie; Asencio, Eugenio; Joyce, James

    2013-01-01

    The North Boquerón Bay–Punta Montalva fault zone has been mapped crossing the Lajas Valley in southwest Puerto Rico. Identification of the fault was based upon detailed analysis of geophysical data, satellite images, and field mapping. The fault zone consists of a series of Cretaceous bedrock faults that reactivated and deformed Miocene limestone and Quaternary alluvial fan sediments. The fault zone is seismically active (local magnitude greater than 5.0) with numerous locally felt earthquakes. Focal mechanism solutions suggest strain partitioning with predominantly east–west left-lateral displacements with small normal faults striking mostly toward the northeast. Northeast-trending fractures and normal faults can be found in intermittent streams that cut through the Quaternary alluvial fan deposits along the southern margin of the Lajas Valley, an east–west-trending 30-km-long fault-controlled depression. Areas of preferred erosion within the alluvial fan trend toward the west-northwest parallel to the onland projection of the North Boquerón Bay fault. The North Boquerón Bay fault aligns with the Punta Montalva fault southeast of the Lajas Valley. Both faults show strong southward tilting of Miocene strata. On the western end, the Northern Boquerón Bay fault is covered with flat-lying Holocene sediments, whereas at the southern end the Punta Montalva fault shows left-lateral displacement of stream drainage on the order of a few hundred meters.

  19. Imaging the concealed section of the Whakatane fault below Whakatane city, New Zealand, with a shear wave land streamer system

    NASA Astrophysics Data System (ADS)

    Polom, Ulrich; Mueller, Christof; Krawczyk, CharLotte M.

    2016-04-01

    The Mw 7.1 Darfield Earthquake in September 2010 ruptured the surface along the Greendale Fault that was not known prior to the earthquake. The subsequent Mw 6.3 Christchurch earthquake in February 2011 demonstrated that concealed active faults have a significant risk potential for urban infrastructure and human life in New Zealand if they are located beneath or close to such areas. Mapping exposures and analysis of active faults incorporated into the National Seismic Hazard Model (NSHM) suggests that several thousands of these active structures are yet to be identified and have the potential to generate moderate to large magnitude earthquakes (i.e. magnitudes >5). Geological mapping suggests that active faults pass beneath, or within many urban areas in New Zealand, including Auckland, Blenheim, Christchurch, Hastings/Napier, Nelson, Rotorua, Taupo, Wellington, and Whakatane. Since no established methodology for routinely locating and assessing the earthquake hazard posed by concealed active faults is available, the principal objective of the presented study was to evaluate the usefulness of high-resolution shear wave seismic reflection profiling using a land streamer to locate buried faults in urban areas of New Zealand. During the survey carried out in the city of Whakatane in February 2015, the method was first tested over a well known surface outcrop of the Edgecumbe Fault 30 km south-west of Whakatane city. This allowed further to investigate the principle shear wave propagation characteristics in the unknown sediments, consisting mainly of effusive rock material of the Taupo volcanic zone mixed with marine transgression units. Subsequently the survey was continued within Whakatane city using night operation time slots to reduce the urban noise. In total, 11 profiles of 5.7 km length in high data quality were acquired, which clearly show concealed rupture structures of obviously different age in the shallow sediments down to 100 m depth. Subject to depth verification by drillings normal fault displacements of up to 15 m are visible in depths of 20-40 m, deeper rupture structures show displacements of up to 20 m. Furthermore, indications of strike-slip fault activities are visible. The concealed rupture structures found are not aligned along former estimated fault lineaments or main surface structures like the Whakatane river bed. Correlations exist with small topographic variations detected by LIDAR imaging and surface signatures on a historic map of 1867.

  20. Earthquake geology of Kashmir Basin and its implications for future large earthquakes

    NASA Astrophysics Data System (ADS)

    Shah, A. A.

    2013-09-01

    Two major traces of active thrust faults were identified in the Kashmir Basin (KB) using satellite images and by mapping active geomorphic features. The ~N130°E strike of the mapped thrust faults is consistent with the regional ~NE-SW convergence along the Indian-Eurasian collision zone. The ~NE dipping thrust faults have uplifted the young alluvial fan surfaces at the SW side of the KB. This created a major tectono-geomorphic boundary along the entire strike length of the KB that is characterised by (1) a low relief with sediment-filled sluggish streams to the SE and (2) an uplifted region, with actively flowing streams to the SW. The overall tectono-geomorphic expression suggests that recent activity along these faults has tilted the entire Kashmir valley towards NE. Further, the Mw 7.6 earthquake, which struck Northern Pakistan and Kashmir on 8 October 2005, also suggests a similar strike and NE dipping fault plane, which could indicate that the KB fault is continuous over a distance of ~210 km and connects on the west with the Balakot Bagh fault. However, the geomorphic and the structural evidences of such a structure are not very apparent on the north-west, which thus suggest that it is not a contiguous structure with the Balakot Bagh fault. Therefore, it is more likely that the KB fault is an independent thrust, a possible ramp on the Main Himalayan Thrust, which has uplifting the SW portion of the KB and drowning everything to the NE (e.g. Madden et al. 2011). Furthermore, it seems very likely that the KB fault could be a right stepping segment of the Balakot Bagh fault, similar to Riasi Thrust, as proposed by Thakur et al. (2010). The earthquake magnitude is measured by estimating the fault rupture parameters (e.g. Wells and Coppersmith in Bull Seismol Soc Am 84:974-1002, 1994). Therefore, the total strike length of the mapped KB fault is ~120 km and by assuming a dip of 29° (Avouac et al. in Earth Planet Sci Lett 249:514-528, 2006) and a down-dip limit of 20 km, a Mw of 7.6 is possible on this fault.

  1. The 2016-2017 central Italy coseismic surface ruptures and their meaning with respect to foreseen active fault systems segmentation

    NASA Astrophysics Data System (ADS)

    De Martini, P. M.; Pucci, S.; Villani, F.; Civico, R.; Del Rio, L.; Cinti, F. R.; Pantosti, D.

    2017-12-01

    In 2016-2017 a series of moderate to large normal faulting earthquakes struck central Italy producing severe damage in many towns including Amatrice, Norcia and Visso and resulting in 299 casualties and >20,000 homeless. The complex seismic sequence depicts a multiple activation of the Mt. Vettore-Mt. Bove (VBFS) and the Laga Mts. fault systems, which were considered in literature as independent segments characterizing a recent seismic gap in the region comprised between two modern seismic sequences: the 1997-1998 Colfiorito and the 2009 L'Aquila. We mapped in detail the coseismic surface ruptures following three mainshocks (Mw 6.0 on 24th August, Mw 5.9 and Mw 6.5 on 26th and 30th October, 2016, respectively). Primary surface ruptures were observed and recorded for a total length of 5.2 km, ≅10 km and ≅25 km, respectively, along closely-spaced, parallel or subparallel, overlapping or step-like synthetic and antithetic fault splays of the activated fault systems, in some cases rupturing repeatedly the same location. Some coseismic ruptures were mapped also along the Norcia Fault System, paralleling the VBFS about 10 km westward. We recorded geometric and kinematic characteristics of the normal faulting ruptures with an unprecedented detail thanks to almost 11,000 oblique photographs taken from helicopter flights soon after the mainshocks, verified and integrated with field data (more than 7000 measurements). We analyze the along-strike coseismic slip and slip vectors distribution to be observed in the context of the geomorphic expression of the disrupted slopes and their depositional and erosive processes. Moreover, we constructed 1:10.000 scale geologic cross-sections based on updated maps, and we reconstructed the net offset distribution of the activated fault system to be compared with the morphologic throws and to test a cause-effect relationship between faulting and first-order landforms. We provide a reconstruction of the 2016 coseismic rupture pattern as representative of the VBFS behavior, a discussion on the fault system boundaries persistence, and on the significance of the repeated surface faulting at same location.

  2. Characterizing the Iron Wash fault: A fault line scarp in Utah

    NASA Astrophysics Data System (ADS)

    Kozaci, O.; Ostenaa, D.; Goodman, J.; Zellman, M.; Hoeft, J.; Sowers, J. M.; Retson, T.

    2015-12-01

    The Iron Wash fault (IWF) is an approximately 30 mile-long, NW-SE trending structure, oriented perpendicular to the San Rafael Monocline near Green River in Utah. IWF exhibits well-expressed geomorphic features such as a linear escarpment with consistently north side down displacement. The fault coincides with an abrupt change in San Rafael Monocline dip angle along its eastern margin. The IWF is exposed in incised drainages where Jurassic Navajo sandstone (oldest) and Lower Carmel Formation (old), are juxtaposed against Jurassic Entrada sandstone (younger) and Quaternary alluvium (youngest). To assess the recency of activity of the IWF we performed detailed geomorphic mapping and a paleoseismic trenching investigation. A benched trench was excavated across a Quaternary fluvial terrace remnant across the mapped trace of the IWF. The uppermost gravel units and overlying colluvium are exposed in the trench across the projection of the fault. In addition, we mapped the basal contact of the Quaternary gravel deposit in relation to the adjacent fault exposures in detail to show the geometry of the basal contact near and across the fault. We find no evidence of vertical displacement of these Quaternary gravels. A preliminary U-series date of calcite cementing unfaulted fluvial gravels and OSL dating of a sand lens within the unfaulted fluvial gravels yielded approximately 304,000 years and 78,000 years, respectively. These preliminary results of independent dating methods constrains the timing of last activity of the IWF to greater than 78,000 years before present suggesting that IWF not an active structure. Its distinct geomorphic expression is most likely the result of differential erosion, forming a fault-line scarp.

  3. Active faults and deformation of the Catania margin (Eastern Sicily): preliminary results from the CRACK marine geophysical survey (Aug./Sep. 2016 R/V Tethys2)

    NASA Astrophysics Data System (ADS)

    Gutscher, M. A.; Dellong, D.; Graindorge, D.; Le Roy, P., Sr.; Dominguez, S.; Barreca, G.; Cunarro, D.; Petersen, F.; Urlaub, M.; Krastel, S.; Gross, F.; Kopp, H.

    2016-12-01

    The marine geophysical survey entitled CRACK (Catania margin, Relief, ACtive faults and historical earthquaKes) aims to investigate active faults offshore eastern Sicily. Several faults have been mapped onshore on the SE flank of Mt. Etna and recently a major strike-slip fault system was mapped in the deeper offshore area. The purpose of this study is to perform shallow water bathymetric mapping and a high-resolution sparker seismic survey in the shelf zone between the deep offshore and the onshore areas, a zone less well studied. Aside from the two fault systems mentioned above, there is also the Malta escarpment, the onshore (but buried) blind-thrust of the Gela Nappe and the lateral ramp thrust of the Calabrian accretionary wedge. Somehow all these structures connect offshore Catania, though exactly how is still unknown. The study will take place between 18 Aug. and 4 Sept. 2016 using the 25m long coastal research vessel Tethys2 and will consist of three 5-day legs. The first leg (zone 2) will be purely sparker seismics and legs 2 and 3 will be combined seismics and bathymetry along the shallow submarine SE flank of Mt. Etna (zone 1) and shallow continental shelf SE of Catania (zone 3). Some time during the first leg will also be devoted to submarine geodesy. Five submarine geodetic stations were deployed along the dextral strike-slip "North Alfeo - Etna" fault by the German GEOMAR Helmholtz Centre for Ocean Research Kiel in April 2016 (R/V Poseidon). The long-term monitoring campaign should help indicate in the future if this fault is slowly creeping or not currently moving. The first five months of data will be downloaded during the CRACK cruise.

  4. Active tectonics of the onshore Hengchun Fault using UAS DSM combined with ALOS PS-InSAR time series (Southern Taiwan)

    NASA Astrophysics Data System (ADS)

    Deffontaines, Benoit; Chang, Kuo-Jen; Champenois, Johann; Lin, Kuan-Chuan; Lee, Chyi-Tyi; Chen, Rou-Fei; Hu, Jyr-Ching; Magalhaes, Samuel

    2018-03-01

    Characterizing active faults and quantifying their activity are major concerns in Taiwan, especially following the major Chichi earthquake on 21 September 1999. Among the targets that still remain poorly understood in terms of active tectonics are the Hengchun and Kenting faults (Southern Taiwan). From a geodynamic point of view, the faults affect the outcropping top of the Manila accretionary prism of the Manila subduction zone that runs from Luzon (northern Philippines) to Taiwan. In order to better locate and quantify the location and quantify the activity of the Hengchun Fault, we start from existing geological maps, which we update thanks to the use of two products derived from unmanned aircraft system acquisitions: (1) a very high precision (< 50 cm) and resolution (< 10 cm) digital surface model (DSM) and (2) a georeferenced aerial photograph mosaic of the studied area. Moreover, the superimposition of the resulting structural sketch map with new Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) results obtained from PALSAR ALOS images, validated by Global Positioning System (GPS) and leveling data, allows the characterization and quantification of the surface displacements during the monitoring period (2007-2011). We confirm herein the geometry, characterization and quantification of the active Hengchun Fault deformation, which acts as an active left-lateral transpressive fault. As the Hengchun ridge was the location of one of the last major earthquakes in Taiwan (26 December 2006, depth: 44 km, ML = 7.0), Hengchun Peninsula active tectonics must be better constrained in order if possible to prevent major destructions in the near future.

  5. Using Earthquake Analysis to Expand the Oklahoma Fault Database

    NASA Astrophysics Data System (ADS)

    Chang, J. C.; Evans, S. C.; Walter, J. I.

    2017-12-01

    The Oklahoma Geological Survey (OGS) is compiling a comprehensive Oklahoma Fault Database (OFD), which includes faults mapped in OGS publications, university thesis maps, and industry-contributed shapefiles. The OFD includes nearly 20,000 fault segments, but the work is far from complete. The OGS plans on incorporating other sources of data into the OFD, such as new faults from earthquake sequence analyses, geologic field mapping, active-source seismic surveys, and potential fields modeling. A comparison of Oklahoma seismicity and the OFD reveals that earthquakes in the state appear to nucleate on mostly unmapped or unknown faults. Here, we present faults derived from earthquake sequence analyses. From 2015 to present, there has been a five-fold increase in realtime seismic stations in Oklahoma, which has greatly expanded and densified the state's seismic network. The current seismic network not only improves our threshold for locating weaker earthquakes, but also allows us to better constrain focal plane solutions (FPS) from first motion analyses. Using nodal planes from the FPS, HypoDD relocation, and historic seismic data, we can elucidate these previously unmapped seismogenic faults. As the OFD is a primary resource for various scientific investigations, the inclusion of seismogenic faults improves further derivative studies, particularly with respect to seismic hazards. Our primal focus is on four areas of interest, which have had M5+ earthquakes in recent Oklahoma history: Pawnee (M5.8), Prague (M5.7), Fairview (M5.1), and Cushing (M5.0). Subsequent areas of interest will include seismically active data-rich areas, such as the central and northcentral parts of the state.

  6. Revision of the geological context of the Port-au-Prince metropolitan area, Haiti: implications for slope failures and seismic hazard assessment

    NASA Astrophysics Data System (ADS)

    Terrier, M.; Bialkowski, A.; Nachbaur, A.; Prépetit, C.; Joseph, Y. F.

    2014-09-01

    Following the earthquake of 12 January 2010 in the Port-au-Prince area, the Haitian government, in close cooperation with BRGM, the French geological Survey, decided to undertake a seismic microzonation study of the metropolitan area of the capital in order to take more fully into account the seismic risk in the urbanization and planning of the city under reconstruction. As the first step of the microzonation project, a geological study has been carried out. Deposits of Miocene and Pliocene formations in a marine environment have been identified. These deposits are affected by the Enriquillo-Plantain Garden N80° E fault system and N110° E faults. Tectonic observations and morphological analysis indicate Quaternary activity of several faults mapped in the area of Port-au-Prince. These faults have a N110° trend and show a reverse-sinistral strike-slip motion. Moreover, on the basis of these geological results and of new topographical data, a hazard assessment of ground movements has been made. Along with the map of active faults, the hazard map of ground movements is an integral component of the seismic microzonation study.

  7. Toward Building a New Seismic Hazard Model for Mainland China

    NASA Astrophysics Data System (ADS)

    Rong, Y.; Xu, X.; Chen, G.; Cheng, J.; Magistrale, H.; Shen, Z.

    2015-12-01

    At present, the only publicly available seismic hazard model for mainland China was generated by Global Seismic Hazard Assessment Program in 1999. We are building a new seismic hazard model by integrating historical earthquake catalogs, geological faults, geodetic GPS data, and geology maps. To build the model, we construct an Mw-based homogeneous historical earthquake catalog spanning from 780 B.C. to present, create fault models from active fault data using the methodology recommended by Global Earthquake Model (GEM), and derive a strain rate map based on the most complete GPS measurements and a new strain derivation algorithm. We divide China and the surrounding regions into about 20 large seismic source zones based on seismotectonics. For each zone, we use the tapered Gutenberg-Richter (TGR) relationship to model the seismicity rates. We estimate the TGR a- and b-values from the historical earthquake data, and constrain corner magnitude using the seismic moment rate derived from the strain rate. From the TGR distributions, 10,000 to 100,000 years of synthetic earthquakes are simulated. Then, we distribute small and medium earthquakes according to locations and magnitudes of historical earthquakes. Some large earthquakes are distributed on active faults based on characteristics of the faults, including slip rate, fault length and width, and paleoseismic data, and the rest to the background based on the distributions of historical earthquakes and strain rate. We evaluate available ground motion prediction equations (GMPE) by comparison to observed ground motions. To apply appropriate GMPEs, we divide the region into active and stable tectonics. The seismic hazard will be calculated using the OpenQuake software developed by GEM. To account for site amplifications, we construct a site condition map based on geology maps. The resulting new seismic hazard map can be used for seismic risk analysis and management, and business and land-use planning.

  8. Mapping fault-controlled volatile migration in equatorial layered deposits on Mars

    NASA Astrophysics Data System (ADS)

    Okubo, C. H.

    2006-12-01

    Research in terrestrial settings shows that clastic sedimentary deposits are productive host rocks for underground volatile reservoirs because of their high porosity and permeability. Within such reservoirs, faults play an important role in controlling pathways for volatile migration, because faults act as either barriers or conduits. Therefore faults are important volatile concentrators, which means that evidence of geochemical, hydrologic and biologic processes are commonly concentrated at these locations. Accordingly, faulted sedimentary deposits on Mars are plausible areas to search for evidence of past volatile activity and associated processes. Indeed, evidence for volatile migration through layered sedimentary deposits on Mars has been documented in detail by the Opportunity rover in Meridiani Planum. Thus evidence for past volatile- driven processes that could have occurred within the protective depths of these deposits may now exposed at the surface and more likely found around faults. Owing to the extensive distribution of layered deposits on Mars, a major challenge in looking for and investigating evidence of past volatile processes in these deposits is identifying and prioritizing study areas. Toward this end, this presentation details initial results of a multiyear project to develop quantitative maps of latent pathways for fault-controlled volatile migration through the layered sedimentary deposits on Mars. Available MOC and THEMIS imagery are used to map fault traces within equatorial layered deposits, with an emphasis on proposed regions for MSL landing sites. These fault maps define regions of interest for stereo imaging by HiRISE and identify areas to search for existing MOC stereo coverage. Stereo coverage of identified areas of interest allows for the construction of digital elevation models and ultimately extraction of fault plane and displacement vector orientations. These fault and displacement data will be fed through numerical modeling techniques that are developed for exploring terrestrial geologic reservoirs. This will yield maps of latent pathways for volatile migration through the faulted layered deposits and provide insight into the geologic history of volatiles on Mars.

  9. Deciphering Stress State of Seismogenic Faults in Oklahoma and Kansas Based on High-resolution Stress Maps

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Chen, X.; Haffener, J.; Trugman, D. T.; Carpenter, B.; Reches, Z.

    2017-12-01

    Induced seismicity in Oklahoma and Kansas delineates clear fault trends. It is assumed that fluid injection reactivates faults which are optimally oriented relative to the regional tectonic stress field. We utilized recently improved earthquake locations and more complete focal mechanism catalogs to quantitatively analyze the stress state of seismogenic faults with high-resolution stress maps. The steps of analysis are: (1) Mapping the faults by clustering seismicity using a nearest-neighbor approach, manually picking the fault in each cluster and calculating the fault geometry using principal component analysis. (2) Running a stress inversion with 0.2° grid spacing to produce an in-situ stress map. (3) The fault stress state is determined from fault geometry and a 3D Mohr circle. The parameter `understress' is calculated to quantify the criticalness of these faults. If it approaches 0, the fault is critically stressed; while understress=1 means there is no shear stress on the fault. Our results indicate that most of the active faults have a planar shape (planarity>0.8), and dip steeply (dip>70°). The fault trends are distributed mainly in conjugate set ranges of [50°,70°] and [100°,120°]. More importantly, these conjugate trends are consistent with mapped basement fractures in southern Oklahoma, suggesting similar basement features from regional tectonics. The fault length data shows a loglinear relationship with the maximum earthquake magnitude with an expected maximum magnitude range from 3.2 to 4.4 for most seismogenic faults. Based on 3D local Mohr circle, we find that 61% of the faults have low understress (<0.2); while several faults with high understress (>0.5) are located within highest-rate injection zones and therefore are likely to be influenced by high pore pressure. The faults that hosted the largest earthquakes, M5.7 Prague and M5.8 Pawnee are critically stressed (understress < 0.08), whereas the fault of M5 Fairview earthquake is only moderately stressed (understress > 0.2). These differences may help in understanding earthquake sequences, for example, the predominantly aftershock-type sequence for Prague and Pawnee earthquakes, compared to predominantly swarm-type behavior for Fairview earthquake. These results provide ways to quantitatively evaluate local earthquake hazard.

  10. Faults and structure in the Pierre Shale, central south Dakota

    USGS Publications Warehouse

    Nichols, Thomas C.; Collins, Donley S.; Jones-Cecil, Meridee; Swolfs, Henri S.

    1994-01-01

    Numerous faults observed at the surface and (or) determined by geometric and geophysical methods to be present as much as several hundred meters below the surface (near-surface faults) have been mapped in a 2,000-km2 area west of Pierre, S. Dakota. Many of these faults surround an east-west-trending structural high that has been mapped on the lower part of the Virgin Creek Member of the Pierre Shale. Generally, the geometry and displacement of many of the faults precludes slumping from surficial erosion as a mechanism to explain the faults. Seismic-reflection data indicate that several of the faults directly overlie faults in Precambrian basement that have cumulative vertical displacements of as much as 340 m. The structural high is interpreted to have been uplifted by displacements along faults that cut Upper Cretaceous sedimentary rocks. Recent low-level seismicity and fluvial-geomorphic studies of stream patterns, gradients, and orders suggest that rejuvenation of drainages may be taking place as a result of rebound or other tectonic activity. The studies indicate that repeated uplift and subsidence may have been the cause of extensive faulting mapped in the Pierre Shale since its deposition in Cretaceous time. Surficial fault displacements that cause damage to engineered structures are thought to be the result of construction-induced rebound in the Pierre Shale, although tectonic uplift cannot be ruled out as a cause.

  11. Earthquakes and faults in the San Francisco Bay area (1970-2003)

    USGS Publications Warehouse

    Sleeter, Benjamin M.; Calzia, James P.; Walter, Stephen R.; Wong, Florence L.; Saucedo, George J.

    2004-01-01

    The map depicts both active and inactive faults and earthquakes magnitude 1.5 to 7.0 in the greater San Francisco Bay area. Twenty-two earthquakes magnitude 5.0 and greater are indicated on the map and listed chronologically in an accompanying table. The data are compiled from records from 1970-2003. The bathymetry was generated from a digital version of NOAA maps and hydrogeographic data for San Francisco Bay. Elevation data are from the USGS National Elevation Database. Landsat satellite image is from seven Landsat 7 Enhanced Thematic Mapper Plus scenes. Fault data are reproduced with permission from the California Geological Survey. The earthquake data are from the Northern California Earthquake Catalog.

  12. Towards a Fault-based SHA in the Southern Upper Rhine Graben

    NASA Astrophysics Data System (ADS)

    Baize, Stéphane; Reicherter, Klaus; Thomas, Jessica; Chartier, Thomas; Cushing, Edward Marc

    2016-04-01

    A brief overview at a seismic map of the Upper Rhine Graben area (say between Strasbourg and Basel) reveals that the region is seismically active. The area has been hit recently by shallow and moderate quakes but, historically, strong quakes damaged and devastated populated zones. Several authors previously suggested, through preliminary geomorphological and geophysical studies, that active faults could be traced along the eastern margin of the graben. Thus, fault-based PSHA (probabilistic seismic hazard assessment) studies should be developed. Nevertheless, most of the input data in fault-based PSHA models are highly uncertain, based upon sparse or hypothetical data. Geophysical and geological data document the presence of post-Tertiary westward dipping faults in the area. However, our first investigations suggest that the available surface fault map do not provide a reliable document of Quaternary fault traces. Slip rate values that can be currently used in fault-PSHA models are based on regional stratigraphic data, but these include neither detailed datings nor clear base surface contours. Several hints on fault activity do exist and we have now relevant tools and techniques to figure out the activity of the faults of concern. Our preliminary analyses suggest that the LiDAR topography can adequately image the fault segments and, thanks to detailed geomorphological analysis, these data allow tracking cumulative fault offsets. Because the fault models can therefore be considered highly uncertain, our coming project for the next 3 years is to acquire and analyze these accurate topographical data, to trace the active faults and to determine slip rates through relevant features dating. Eventually, we plan to find a key site to perform a paleoseismological trench because this approach has been proved to be worth in the Graben, both to the North (Wörms and Strasbourg) and to the South (Basel). This would be done in order to definitely prove whether the faults ruptured the ground surface during the Quaternary, and in order to determine key fault parameters such as magnitude and age of large events.

  13. Evolving geometrical heterogeneities of fault trace data

    NASA Astrophysics Data System (ADS)

    Wechsler, Neta; Ben-Zion, Yehuda; Christofferson, Shari

    2010-08-01

    We perform a systematic comparative analysis of geometrical fault zone heterogeneities using derived measures from digitized fault maps that are not very sensitive to mapping resolution. We employ the digital GIS map of California faults (version 2.0) and analyse the surface traces of active strike-slip fault zones with evidence of Quaternary and historic movements. Each fault zone is broken into segments that are defined as a continuous length of fault bounded by changes of angle larger than 1°. Measurements of the orientations and lengths of fault zone segments are used to calculate the mean direction and misalignment of each fault zone from the local plate motion direction, and to define several quantities that represent the fault zone disorder. These include circular standard deviation and circular standard error of segments, orientation of long and short segments with respect to the mean direction, and normal separation distances of fault segments. We examine the correlations between various calculated parameters of fault zone disorder and the following three potential controlling variables: cumulative slip, slip rate and fault zone misalignment from the plate motion direction. The analysis indicates that the circular standard deviation and circular standard error of segments decrease overall with increasing cumulative slip and increasing slip rate of the fault zones. The results imply that the circular standard deviation and error, quantifying the range or dispersion in the data, provide effective measures of the fault zone disorder, and that the cumulative slip and slip rate (or more generally slip rate normalized by healing rate) represent the fault zone maturity. The fault zone misalignment from plate motion direction does not seem to play a major role in controlling the fault trace heterogeneities. The frequency-size statistics of fault segment lengths can be fitted well by an exponential function over the entire range of observations.

  14. Shallow Vs Structure Accross Hayward Fault Zone Inferred from Multichannel Analysis of Surface Waves (MASW)

    NASA Astrophysics Data System (ADS)

    Chan, J. H.; Richardson, I. S.; Strayer, L. M.; Catchings, R.; McEvilly, A.; Goldman, M.; Criley, C.; Sickler, R. R.

    2017-12-01

    The Hayward Fault Zone (HFZ) includes the Hayward fault (HF), as well as several named and unnamed subparallel, subsidiary faults to the east, among them the Quaternary-active Chabot Fault (CF), the Miller Creek Fault (MCF), and a heretofore unnamed fault, the Redwood Thrust Fault (RTF). With an ≥M6.0 recurrence interval of 130 y for the HF and the last major earthquake in 1868, the HFZ is a major seismic hazard in the San Francisco Bay Area, exacerbated by the many unknown and potentially active secondary faults of the HFZ. In 2016, researchers from California State University, East Bay, working in concert with the United States Geological Survey conducted the East Bay Seismic Investigation (EBSI). We deployed 296 RefTek RT125 (Texan) seismographs along a 15-km-long linear seismic profile across the HF, extending from the bay in San Leandro to the hills in Castro Valley. Two-channel seismographs were deployed at 100 m intervals to record P- and S-waves, and additional single-channel seismographs were deployed at 20 m intervals where the seismic line crossed mapped faults. The active-source survey consisted of 16 buried explosive shots located at approximately 1-km intervals along the seismic line. We used the Multichannel Analysis of Surfaces Waves (MASW) method to develop 2-D shear-wave velocity models across the CF, MCF, and RTF. Preliminary MASW analysis show areas of anomalously low S-wave velocities , indicating zones of reduced shear modulus, coincident with these three mapped faults; additional velocity anomalies coincide with unmapped faults within the HFZ. Such compliant zones likely correspond to heavily fractured rock surrounding the faults, where the shear modulus is expected to be low compared to the undeformed host rock.

  15. Implications of river morphology response to Dien Bien Phu fault in NW Vietnam

    NASA Astrophysics Data System (ADS)

    Lai, K.; Chen, Y.; Lam, D.

    2007-12-01

    In northern Vietnam, most rivers are flowing southeastward sub- or parallel to the valley of Red River and characterized by long but narrow catchments. The Dien Bien Phu fault is associated with the most seismically active zone in Vietnam and situated in the potential eastern boundary of the rotating southeastern Tibetan block. It cuts the Da River, the largest tributary of Red River in northwest Vietnam and has distorted the drainage basin resulting in complex river patterns. To assess the river morphology response to active Dien Bien Phu fault, we use 1/50,000 topographic data and ASTER images to map the precise river courses and digital elevation model data of SRTM to retrieve and analyze the river profiles. From the mapping results, the N-S striking fault results in three conspicuous north-trending river valleys coincided with the different fault segments to facilitate the measurement and reconstruction of the offsets along the fault. Further combining the longitudinal profile analysis we obtain ca. 10 km offsets by deflected river as the largest left-lateral displacement recorded along the active fault. The restored results show the downstream paleochannel of the Da River had been abandoned and becomes two small tributaries in opposite flow directions at present due to differential crustal uplift. Also the present crisscross valley at the junction of the Da River and the fault is resulted from the capture by another river which has been also deflected by the neotectonics. Based on our observations on river response, the Dien Bien Phu fault is a sinistral dominant fault with an uplift occurring in its eastern block. Furthermore the active Dien Bien Phu fault does not cut through the Red River northward indicating the western block of the fault can not be regarded as a single rigid block. There should be possible to find NW-SE trending faults paralleling to Red River to accommodate the deformation of the western block of the fault.

  16. Implications of river morphology response to Dien Bien Phu fault in NW Vietnam

    NASA Astrophysics Data System (ADS)

    Lai, K.; Chen, Y.; Lam, D.

    2004-12-01

    In northern Vietnam, most rivers are flowing southeastward sub- or parallel to the valley of Red River and characterized by long but narrow catchments. The Dien Bien Phu fault is associated with the most seismically active zone in Vietnam and situated in the potential eastern boundary of the rotating southeastern Tibetan block. It cuts the Da River, the largest tributary of Red River in northwest Vietnam and has distorted the drainage basin resulting in complex river patterns. To assess the river morphology response to active Dien Bien Phu fault, we use 1/50,000 topographic data and ASTER images to map the precise river courses and digital elevation model data of SRTM to retrieve and analyze the river profiles. From the mapping results, the N-S striking fault results in three conspicuous north-trending river valleys coincided with the different fault segments to facilitate the measurement and reconstruction of the offsets along the fault. Further combining the longitudinal profile analysis we obtain ca. 10 km offsets by deflected river as the largest left-lateral displacement recorded along the active fault. The restored results show the downstream paleochannel of the Da River had been abandoned and becomes two small tributaries in opposite flow directions at present due to differential crustal uplift. Also the present crisscross valley at the junction of the Da River and the fault is resulted from the capture by another river which has been also deflected by the neotectonics. Based on our observations on river response, the Dien Bien Phu fault is a sinistral dominant fault with an uplift occurring in its eastern block. Furthermore the active Dien Bien Phu fault does not cut through the Red River northward indicating the western block of the fault can not be regarded as a single rigid block. There should be possible to find NW-SE trending faults paralleling to Red River to accommodate the deformation of the western block of the fault.

  17. A 13 km Long Paleoseismological Trench in Western Germany

    NASA Astrophysics Data System (ADS)

    Grützner, C. H.; Reicherter, K.; Winandy, J.

    2012-04-01

    The expansion of an open pit lignite mine in this area makes it necessary to translocate one of Germany's most frequented, E-W trending highways for a length of 13 km during the next months and years. By this occasion, one of the largest faults of the Lower Rhine Embayment (LRE), the Rurrand Fault, was already cut in 2010. We applied geological mapping and surface-near geophysical techniques for investigating this possible candidate for the 1756 Düren earthquake (M>6; and considered as the strongest historical earthquake in Germany), and found clear hints for recent active faulting. The LRE in western Germany is one of the seismically most active areas in Central Europe. Earthquakes stronger than M6 have been documented by paleoseismological and archeoseismological investigations and written sources. Instrumental seismicity reached ML5.9 (Mw5.4; April 13th, 1992) in this densely populated area with alone nearby Cologne having more than one million inhabitants. Active faults trend NW-SE in a horst-graben system, parallel to the rivers Rhine and Rur. Recent studies reported that active faults in the study area are characterized by recurrence periods in the order of tens of ka. Those faults in western Germany are often not visible in the field due to relatively high erosion rates and therefore, the seismic hazard might be underestimated. The ongoing highway construction works will cut more (active) faults. We expect at least eight already mapped faults to be cut by the earth works, some of which capable of causing damaging earthquakes judging from their mere length. The construction work is a unique opportunity for paleoseismological investigations at already known, but yet unstudied faults. We hope to gather additional data for an improvement of seismic hazard estimations in Western Germany.

  18. Relationships between sliding behavior and internal geometry of laboratory fault zones and some creeping and locked strike-slip faults of California

    USGS Publications Warehouse

    Moore, Diane E.; Byerlee, J.

    1992-01-01

    Moore, D.E. and Byerlee, J., 1992. Relationships between sliding behavior and internal geometry of laboratory fault zones and some creeping and locked strike-slip faults of California. In: T. Mikumo, K. Aki, M. Ohnaka, L.J. Ruff and P.K.P. Spudich (Editors), Earthquake Source Physics and Earthquake Precursors. Tectonophysics, 211: 305-316. In order to relate fault geometries to sliding behavior, maps of recently active breaks within the Hayward fault of central California, which is characterized by fault creep, have been examined and compared to maps of the San Andreas fault. The patterns of recent breaks of the Hayward fault are consistent with those found within the creeping section of the San Andreas, and they appear to have plausible physical explanations in the findings of laboratory experiments. The distinguishing geometric features of the examined locked and creeping faults are: (1) P-type second-order traces predominate over R(Riedel)-type traces in creeping sections; and (2) R-type second-order traces make smaller angles to the local fault strike in creeping sections than they do in locked sections. Two different maps of the Hayward fault gave similar results, supporting the inference that the patterns identified are basic characteristics of the fault rather than artifacts of a particular mapping procedure. P shears predominate over R shears under laboratory conditions that allow dilation within the fault zone. In our own experiments, P-shear development was favored by the generation of excess pore-fluid pressures. We propose that creep in California faults also is the result of fluid overpressures that are maintained in a low-permeability gouge zone and that significantly lower effective stresses, thus helping to stabilize slip and producing high values of the ratio P/R. Small R-trace angles may also be an indicator of low effective stresses, but the evidence for this is not conclusive because other factors can also affect the size of the angles. ?? 1992.

  19. Structure of the Melajo clay near Arima, Trinidad and strike-slip motion in the El Pilar fault zone

    NASA Technical Reports Server (NTRS)

    Robertson, P.; Burke, K.; Wadge, G.

    1985-01-01

    No consensus has yet emerged on the sense, timing and amount of motion in the El Pilar fault zone. As a contribution to the study of this problem, a critical area within the zone in North Central Trinidad has been mapped. On the basis of the mapping, it is concluded that the El Pilar zone has been active in right-lateral strike-slip motion during the Pleistocene. Recognition of structural styles akin to those of the mapped area leads to the suggestion that the El Pilar zone is part of a 300 km wide plate boundary zone extending from the Orinoco delta northward to Grenada. Lateral motion of the Caribbean plate with respect to South America has been suggested to amount to 1900 km in the last 38 Ma. Part of this displacement since the Miocene can be readily accommodated within the broad zone identified here. No one fault system need account for more than a fraction of the total motion and all faults need not be active simultaneously.

  20. The study of active tectonic based on hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Cui, J.; Zhang, S.; Zhang, J.; Shen, X.; Ding, R.; Xu, S.

    2017-12-01

    As of the latest technical methods, hyperspectral remote sensing technology has been widely used in each brach of the geosciences. However, it is still a blank for using the hyperspectral remote sensing to study the active structrure. Hyperspectral remote sensing, with high spectral resolution, continuous spectrum, continuous spatial data, low cost, etc, has great potentialities in the areas of stratum division and fault identification. Blind fault identification in plains and invisible fault discrimination in loess strata are the two hot problems in the current active fault research. Thus, the study of active fault based on the hyperspectral technology has great theoretical significance and practical value. Magnetic susceptibility (MS) records could reflect the rhythm alteration of the formation. Previous study shown that MS has correlation with spectral feature. In this study, the Emaokou section, located to the northwest of the town of Huairen, in Shanxi Province, has been chosen for invisible fault study. We collected data from the Emaokou section, including spectral data, hyperspectral image, MS data. MS models based on spectral features were established and applied to the UHD185 image for MS mapping. The results shown that MS map corresponded well to the loess sequences. It can recognize the stratum which can not identity by naked eyes. Invisible fault has been found in this section, which is useful for paleoearthquake analysis. The faults act as the conduit for migration of terrestrial gases, the fault zones, especially the structurally weak zones such as inrtersections or bends of fault, may has different material composition. We take Xiadian fault for study. Several samples cross-fault were collected and these samples were measured by ASD Field Spec 3 spectrometer. Spectral classification method has been used for spectral analysis, we found that the spectrum of the fault zone have four special spectral region(550-580nm, 600-700nm, 700-800nm and 800-900nm), which different with the spectrum of the none-fault zone. It could help us welly located the fault zone. The located result correspond well to the physical prospecting method result. The above study shown that Hypersepctral remote sensing technology provide a new method for active study.

  1. Soil-Gas Radon Anomaly Map of an Unknown Fault Zone Area, Chiang Mai, Northern Thailand

    NASA Astrophysics Data System (ADS)

    Udphuay, S.; Kaweewong, C.; Imurai, W.; Pondthai, P.

    2015-12-01

    Soil-gas radon concentration anomaly map was constructed to help detect an unknown subsurface fault location in San Sai District, Chiang Mai Province, Northern Thailand where a 5.1-magnitude earthquake took place in December 2006. It was suspected that this earthquake may have been associated with an unrecognized active fault in the area. In this study, soil-gas samples were collected from eighty-four measuring stations covering an area of approximately 50 km2. Radon in soil-gas samples was quantified using Scintrex Radon Detector, RDA-200. The samplings were conducted twice: during December 2014-January 2015 and March 2015-April 2015. The soil-gas radon map obtained from this study reveals linear NNW-SSE trend of high concentration. This anomaly corresponds to the direction of the prospective fault system interpreted from satellite images. The findings from this study support the existence of this unknown fault system. However a more detailed investigation should be conducted in order to confirm its geometry, orientation and lateral extent.

  2. Active Transtensional Tectonics Due to Differentially Rotating Upper Crustal Blocks East of the Eastern Himalayan syntaxis, Yunnan Province, China.

    NASA Astrophysics Data System (ADS)

    Studnikigizbert, C.; Eich, L.; King, R.; Burchfiel, B. C.; Chen, Z.; Chen, L.

    2004-12-01

    Seismological (Holt et. al. 1996), geodetic (King et. al. 1996, Chen et. al. 2000) and geological (Wang et. al. 1995, Wang and Burchfiel 2002) studies have shown that upper crustal material north and east of the eastern Himalayan syntaxis rotates clockwise about the syntaxis, with the Xianshuihe fault accommodating most of this motion. Within the zone of rotating material, however, deformation is not completely homogenous, and numerous differentially rotating small crustal fragments are recognised. We combine seismic (CSB and Harvard CMT catalogues), geodetic (CSB and MIT-Chengdu networks), remote sensing, compilation of existing regional maps and our own detailed field mapping to characterise the active tectonics of a clockwise rotating crustal block between Zhongdian and Dali. The northeastern boundary is well-defined by the northwest striking left-lateral Zhongdian and Daju faults. The eastern boundary, on the other hand, is made up of a 80 km wide zone characterised by north-south trending extensional basins linked by NNE trending left-lateral faults. Geological mapping suggests that strain is accommodated by three major transtensional fault systems: the Jianchuan-Lijiang, Heqing and Chenghai fault systems. Geodetic data indicates that this zone accommodates 10 +/- 1.4 mm/year of E-W extension, but strain may be (presently) preferentially partitioned along the easternmost (Chenghai) fault. Not all geodetic velocities are consistent with geological observations. In particular, rotation and concomitant transtension are somehow transferred across the Red River-Tongdian faults to Nan Tinghe fault with no apparent accommodating structures. Rotation and extension is surmised to be related to the northward propagation of the syntaxis.

  3. Reply to comments by Ahmad et al. on: Shah, A. A., 2013. Earthquake geology of Kashmir Basin and its implications for future large earthquakes International Journal of Earth Sciences DOI:10.1007/s00531-013-0874-8 and on Shah, A. A., 2015. Kashmir Basin Fault and its tectonic significance in NW Himalaya, Jammu and Kashmir, India, International Journal of Earth Sciences DOI:10.1007/s00531-015-1183-1

    NASA Astrophysics Data System (ADS)

    Shah, A. A.

    2016-03-01

    Shah (Int J Earth Sci 102:1957-1966, 2013) mapped major unknown faults and fault segments in Kashmir basin using geomorphological techniques. The major trace of out-of-sequence thrust fault was named as Kashmir basin fault (KBF) because it runs through the middle of Kashmir basin, and the active movement on it has backtilted and uplifted most of the basin. Ahmad et al. (Int J Earth Sci, 2015) have disputed the existence of KBF and maintained that faults identified by Shah (Int J Earth Sci 102:1957-1966, 2013) were already mapped as inferred faults by earlier workers. The early works, however, show a major normal fault, or a minor out-of-sequence reverse fault, and none have shown a major thrust fault.

  4. Geology, tephrochronology, radiometric ages, and cross sections of the Mark West Springs 7.5' quadrangle, Sonoma and Napa counties, California

    USGS Publications Warehouse

    McLaughlin, R.J.; Sarna-Wojicki, A. M.; Fleck, R.J.; Wright, W.H.; Levin, V.R.G.; Valin, Z.C.

    2004-01-01

    The purpose of this geologic map is to provide a context within which to interpret the Neogene evolution of the active strike-slip fault system traversing the Mark West Springs 7.5' quadrangle and adjacent areas. Based on this geologic framework, the timing and total amounts of displacement and the Neogene rates of slip for faults of the right-stepover area between the Healdsburg and Maacama Faults are addressed.The Mark West Springs quadrangle is located in the northern California Coast Ranges north of San Francisco Bay. It is underlain by Mesozoic rocks of the Franciscan Complex, the Coast Range ophiolite, and the Great Valley sequence, considered here to be the pre-Tertiary basement of the northern Coast Ranges. These rocks are overlain by a complexly interstratified and mildly to moderately deformed sequence of Pleistocene to late Miocene marine and nonmarine sedimentary and largely subaerial volcanic rocks. These rocks and unconformably overlying, less-deformed Holocene and Pleistocene strata are cut by the active right-lateral Healdsburg and Maacama Fault Zones.Mapping of the Mark West Springs quadrangle began in 1996 and was completed in October 2002. Most of the mapping presented here is original, although a few other sources of existing geologic mapping were also utilized. Funding for the project was provided by the National Cooperative Geologic Mapping and Earthquake Hazards Reduction programs of the U.S. Geological Survey, in cooperation with geologic hazards mapping investigations of the California Geological Survey.

  5. Active faults system and related potential seismic events near Ulaanbaatar, capital of Mongolia.

    NASA Astrophysics Data System (ADS)

    Schlupp, Antoine; Ferry, Matthieu; Munkhuu, Ulziibat; Sodnomsambuu, Demberel; Al-Ashkar, Abeer

    2013-04-01

    The region of Ulaanbaatar lies several hundred kilometers from large known active faults that produced magnitude 6 to 8+ earthquakes during the last century. Beside the Hustai fault, which displays a clear morphological expression, no active fault was previously described less than 100 km from the city. In addition, no large historical (i.e. more recent than the 16th c.) earthquakes are known in this region. However, since 2005 a very dense seismic activity has developed over the Emeelt Township area, a mere 10 km from Ulaanbaatar. The activity is characterized by numerous low magnitude events (M<2.8), which are distributed linearly along several tens of kilometers where no active fault has been identified. This raises several questions: Is this seismicity associated to a -yet- unknown active fault? If so, are there other unknown active faults near Ulaanbaatar? Hence, we deployed a multi-disciplinary approach including morpho-tectonic, near-surface geophysical and paleoseismological investigations. We describe four large active faults west and south of Ulaanbaatar, three of them are newly discovered (Emeelt, Sharai, Avdar), one was previously known (Hustai) but without precise study on its seismic potential. The Emeelt seismicity can be mapped over 35 km along N150 and corresponds in the field to a smoothed, but clear, active fault morphology that can be mapped along a 10-km-long section. The fault dips at ~30° NE (GPR and surface morphology observations) and uplifts the eastern block. The age of the last surface rupture observed in trenches is about 10 ka (preliminary OSL dating). Considering a rupture length of 35 km, a full segment rupture would be comparable to the 1967 Mogod earthquake with a magnitude as large as Mw 7. It has to be considered today as a possible scenario for the seismic risk of Ulaanbaatar. The 90-km-long Hustai Range Fault System, oriented WSW-ENE and located about 10 km west of Ulaanbaatar, displays continuous microseismicity with five light to moderate (M 4 - 5.4) earthquakes over the last 40 years. The last surface-rupturing earthquake occurred about 1000 years ago (OSL dating). Alluvial fans affected by the fault suggest the rate of deformation (left lateral with normal component) along the main segment ranges from 0.3 to 0.4 mm/year for the last 120 000 years. Hence, the average recurrence interval for a full-segment M 7-7.5 is likely in the order of 10 ky. However, if the Hustai fault also releases strain during partial ruptures along its strongly segmented trace, a Mw 6.5 event may be expected anytime. However, only the main central fault segment has been investigated in terms of paleoseismicity. The Sharai and Avdar faults, oriented NNE-SSW, were mapped along ~50-km-long sections. Each of these faults was the site of earthquakes of magnitude 6 and more in the past as suggested by morphology and trench observations. Full-segment-ruptures could produce events as large as M 7.2. The precise relationship and interactions between these faults as well as associated earthquakes have to be clarified by collecting more data. They are the key of the seismic hazard and risk of Ulaanbaatar.

  6. Seismic Hazard Assessment of the Sheki-Ismayilli Region, Azerbaijan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayyubova, Leyla J.

    2006-03-23

    Seismic hazard assessment is an important factor in disaster management of Azerbaijan Republic. The Shaki-Ismayilli region is one of the earthquake-prone areas in Azerbaijan. According to the seismic zoning map, the region is located in intensity IX zone. Large earthquakes in the region take place along the active faults. The seismic activity of the Shaki-Ismayilli region is studied using macroseismic and instrumental data, which cover the period between 1250 and 2003. Several principal parameters of earthquakes are analyzed: maximal magnitude, energetic class, intensity, depth of earthquake hypocenter, and occurrence. The geological structures prone to large earthquakes are determined, and themore » dependence of magnitude on the fault length is shown. The large earthquakes take place mainly along the active faults. A map of earthquake intensity has been developed for the region, and the potential seismic activity of the Shaki-Ismayilli region has been estimated.« less

  7. Active tectonic extension across the Alto Tiberina normal fault system from GPS data modeling and InSAR velocity maps: new perspectives within TABOO Near Fault Observatory

    NASA Astrophysics Data System (ADS)

    Vadacca, Luigi; Anderlini, Letizia; Casarotti, Emanuele; Serpelloni, Enrico; Chiaraluce, Lauro; Polcari, Marco; Albano, Matteo; Stramondo, Salvatore

    2014-05-01

    The Alto Tiberina fault (ATF) is a low-angle (east-dipping at 15°) normal fault (LANF) 70 km long placed in the Umbria-Marche Apennines (central Italy), characterized by SW-NE oriented extension occurring at rates of 2-3 mm/yr. These rates were measured by continuous GPS stations belonging to several networks, which are denser in the study area thanks to additional sites recently installed in the framework of the INGV national RING network and of the ATF observatory. In this area historical and instrumental earthquakes mainly occur on west-dipping high-angle normal faults. Within this context the ATF has accumulated 2 km of displacement over the past 2 Ma, but at the same time the deformation processes active along this misoriented fault, as well as its mechanical behavior, are still unknown. We tackle this issue by solving for interseismic deformation models obtained by two different methods. At first, through the 2D and 3D finite element modeling, we define the effects of locking depth, synthetic and antithetic fault activity and lithology on the velocity gradient measured along the ATF system. Subsequently through a block modeling approach, we model the GPS velocities by considering the major fault systems as bounds of rotating blocks, while estimating the corresponding geodetic fault slip-rates and maps of heterogeneous fault coupling. Thanks to the latest imaging of the ATF deep structure obtained from seismic profiles, we improve the proposed models by modeling the fault as a complex rough surface to understand where the stress accumulations are located and the interseismic coupling changes. The preliminary results obtained show firstly that the observed extension is mainly accommodated by interseismic deformation on both the ATF and antithetic faults, highlighting the important role of this LANF inside an active tectonic contest. Secondarily, using the ATF surface "topography", we find an interesting correlation between microseismicty and creeping portions of the ATF. Future perspectives within this study is to validate these models using velocity maps and temporal series provided by Differential Interferometric SAR (DInSAR) technique applied to a datasets of ERS 1-2 and ENVISAT SAR images. These data cover a time interval spanning from 1992 to 2010 and have been acquired along both ascending and descending orbit. In addition we will deploy a network of SAR passive Corner Reflectors (CRs) in the proximity of GPS monuments in order to calibrate the results of processing a set of COSMO-SkyMed SAR data and derive velocity maps. Thus the availability of high-resolution data will contribute to understand the mechanics of the LANFs and to evaluate the seismic potential associated to these geologic structures.

  8. Hydrostructural maps of the Death Valley regional flow system, Nevada and California

    USGS Publications Warehouse

    Potter, C.J.; Sweetkind, D.S.; Dickerson, R.P.; Killgore, M.L.

    2002-01-01

    The locations of principal faults and structural zones that may influence ground-water flow were compiled in support of a three-dimensional ground-water model for the Death Valley regional flow system (DVRFS), which covers 80,000 square km in southwestern Nevada and southeastern California. Faults include Neogene extensional and strike-slip faults and pre-Tertiary thrust faults. Emphasis was given to characteristics of faults and deformed zones that may have a high potential for influencing hydraulic conductivity. These include: (1) faulting that results in the juxtaposition of stratigraphic units with contrasting hydrologic properties, which may cause ground-water discharge and other perturbations in the flow system; (2) special physical characteristics of the fault zones, such as brecciation and fracturing, that may cause specific parts of the zone to act either as conduits or as barriers to fluid flow; (3) the presence of a variety of lithologies whose physical and deformational characteristics may serve to impede or enhance flow in fault zones; (4) orientation of a fault with respect to the present-day stress field, possibly influencing hydraulic conductivity along the fault zone; and (5) faults that have been active in late Pleistocene or Holocene time and areas of contemporary seismicity, which may be associated with enhanced permeabilities. The faults shown on maps A and B are largely from Workman and others (in press), and fit one or more of the following criteria: (1) faults that are more than 10 km in map length; (2) faults with more than 500 m of displacement; and (3) faults in sets that define a significant structural fabric that characterizes a particular domain of the DVRFS. The following fault types are shown: Neogene normal, Neogene strike-slip, Neogene low-angle normal, pre-Tertiary thrust, and structural boundaries of Miocene calderas. We have highlighted faults that have late Pleistocene to Holocene displacement (Piety, 1996). Areas of thick Neogene basin-fill deposits (thicknesses 1-2 km, 2-3 km, and >3 km) are shown on map A, based on gravity anomalies and depth-to-basement modeling by Blakely and others (1999). We have interpreted the positions of faults in the subsurface, generally following the interpretations of Blakely and others (1999). Where geophysical constraints are not present, the faults beneath late Tertiary and Quaternary cover have been extended based on geologic reasoning. Nearly all of these concealed faults are shown with continuous solid lines on maps A and B, in order to provide continuous structures for incorporation into the hydrogeologic framework model (HFM). Map A also shows the potentiometric surface, regional springs (25-35 degrees Celsius, D'Agnese and others, 1997), and cold springs (Turner and others, 1996).

  9. Fault Identification by Unsupervised Learning Algorithm

    NASA Astrophysics Data System (ADS)

    Nandan, S.; Mannu, U.

    2012-12-01

    Contemporary fault identification techniques predominantly rely on the surface expression of the fault. This biased observation is inadequate to yield detailed fault structures in areas with surface cover like cities deserts vegetation etc and the changes in fault patterns with depth. Furthermore it is difficult to estimate faults structure which do not generate any surface rupture. Many disastrous events have been attributed to these blind faults. Faults and earthquakes are very closely related as earthquakes occur on faults and faults grow by accumulation of coseismic rupture. For a better seismic risk evaluation it is imperative to recognize and map these faults. We implement a novel approach to identify seismically active fault planes from three dimensional hypocenter distribution by making use of unsupervised learning algorithms. We employ K-means clustering algorithm and Expectation Maximization (EM) algorithm modified to identify planar structures in spatial distribution of hypocenter after filtering out isolated events. We examine difference in the faults reconstructed by deterministic assignment in K- means and probabilistic assignment in EM algorithm. The method is conceptually identical to methodologies developed by Ouillion et al (2008, 2010) and has been extensively tested on synthetic data. We determined the sensitivity of the methodology to uncertainties in hypocenter location, density of clustering and cross cutting fault structures. The method has been applied to datasets from two contrasting regions. While Kumaon Himalaya is a convergent plate boundary, Koyna-Warna lies in middle of the Indian Plate but has a history of triggered seismicity. The reconstructed faults were validated by examining the fault orientation of mapped faults and the focal mechanism of these events determined through waveform inversion. The reconstructed faults could be used to solve the fault plane ambiguity in focal mechanism determination and constrain the fault orientations for finite source inversions. The faults produced by the method exhibited good correlation with the fault planes obtained by focal mechanism solutions and previously mapped faults.

  10. Geometry and kinematics of adhesive wear in brittle strike-slip fault zones

    NASA Astrophysics Data System (ADS)

    Swanson, Mark T.

    2005-05-01

    Detailed outcrop surface mapping in Late Paleozoic cataclastic strike-slip faults of coastal Maine shows that asymmetric sidewall ripouts, 0.1-200 m in length, are a significant component of many mapped faults and an important wall rock deformation mechanism during faulting. The geometry of these structures ranges from simple lenses to elongate slabs cut out of the sidewalls of strike-slip faults by a lateral jump of the active zone of slip during adhesion along a section of the main fault. The new irregular trace of the active fault after this jump creates an indenting asperity that is forced to plow through the adjoining wall rock during continued adhesion or be cut off by renewed motion along the main section of the fault. Ripout translation during adhesion sets up the structural asymmetry with trailing extensional and leading contractional ends to the ripout block. The inactive section of the main fault trace at the trailing end can develop a 'sag' or 'half-graben' type geometry due to block movement along the scallop-shaped connecting ramp to the flanking ripout fault. Leading contractional ramps can develop 'thrust' type imbrication and forces the 'humpback' geometry to the ripout slab due to distortion of the inactive main fault surface by ripout translation. Similar asymmetric ripout geometries are recognized in many other major crustal scale strike-slip fault zones worldwide. Ripout structures in the 5-500 km length range can be found on the Atacama fault system of northern Chile, the Qujiang and Xiaojiang fault zones in western China, the Yalakom-Hozameen fault zone in British Columbia and the San Andreas fault system in southern California. For active crustal-scale faults the surface expression of ripout translation includes a coupled system of extensional trailing ramps as normal oblique-slip faults with pull-apart basin sedimentation and contractional leading ramps as oblique thrust or high angle reverse faults with associated uplift and erosion. The sidewall ripout model, as a mechanism for adhesive wear during fault zone deformation, can be useful in studies of fault zone geometry, kinematics and evolution from outcrop- to crustal-scales.

  11. SeaMARC II mapping of transform faults in the Cayman Trough, Caribbean Sea

    USGS Publications Warehouse

    Rosencrantz, Eric; Mann, Paul

    1992-01-01

    SeaMARC II maps of the southern wall of the Cayman Trough between Honduras and Jamaica show zones of continuous, well-defined fault lineaments adjacent and parallel to the wall, both to the east and west of the Cayman spreading axis. These lineaments mark the present, active traces of transform faults which intersect the southern end of the spreading axis at a triple junction. The Swan Islands transform fault to the west is dominated by two major lineaments that overlap with right-stepping sense across a large push-up ridge beneath the Swan Islands. The fault zone to the east of the axis, named the Walton fault, is more complex, containing multiple fault strands and a large pull-apart structure. The Walton fault links the spreading axis to Jamaican and Hispaniolan strike-slip faults, and it defines the southern boundary of a microplate composed of the eastern Cayman Trough and western Hispaniola. The presence of this microplate raises questions about the veracity of Caribbean plate velocities based primarily on Cayman Trough opening rates.

  12. Geologic maps of the eastern Alaska Range, Alaska (1:63,360 scale)

    USGS Publications Warehouse

    Nokleberg, Warren J.; Aleinikoff, John N.; Bond, Gerard C.; Ferrians, Oscar J.; Herzon, Paige L.; Lange, Ian M.; Miyaoka, Ronny T.; Richter, Donald H.; Schwab, Carl E.; Silva, Steven R.; Smith, Thomas E.; Zehner, Richard E.

    2015-01-01

    This report provides a description of map units for a suite of 44 inch-to-mile (1:63,360-scale) geologic quadrangle maps of the eastern Alaska Range. This report also contains a geologic and tectonic summary and a comprehensive list of references pertaining to geologic mapping and specialized studies of the region. In addition to the geologic maps of the eastern Alaska Range, this package includes a list of map units and an explanation of map symbols and abbreviations. The geologic maps display detailed surficial and bedrock geology, structural and stratigraphic data, portrayal of the active Denali fault that bisects the core of the east–west-trending range, and portrayal of other young faults along the north and south flanks of the range.

  13. Remote sensing revealed drainage anomalies and related tectonics of South India

    NASA Astrophysics Data System (ADS)

    Ramasamy, SM.; Kumanan, C. J.; Selvakumar, R.; Saravanavel, J.

    2011-03-01

    Drainages have characteristic pattern and life histories with youthful stage in hilly areas, mature stage in plains and old stage in the coastal zones. The deviations from their normal life histories, especially aberrations in their flow pattern in the form of various drainage anomalies have been inferred to be the indications of dominantly the Eustatic and Isostatic changes. This, especially after the advent of Earth Observing Satellites, has attracted the geoscientists from all over the world, for studying such drainage anomalies. In this connection, a study has been undertaken in parts of South India falling south of 14° south latitude to comprehensively map some drainage anomalies like deflected drainages, eyed drainages and compressed meanders and to evolve the tectonic scenario therefrom. The mapping of such mega drainage anomalies and the related lineaments/faults from the satellite digital data and the integration of such lineaments/faults with the overall lineament map of South India showed that the study area is marked by active N-S block faults and NE-SW sinistral and NW-SE dextral strike slip faults. Such an architecture of active tectonic grains indicates that the northerly directed compressive force which has originally drifted the Indian plate towards northerly is still active and deforming the Indian plate.

  14. Active tectonics of the Devils Mountain Fault and related structures, northern Puget Lowland and eastern Strait of Juan de Fuca region, Pacific Northwest

    USGS Publications Warehouse

    Johnson, Samuel Y.; Dadisman, Shawn V.; Mosher, David C.; Blakely, Richard J.; Childs, Jonathan R.

    2001-01-01

    Information from marine high-resolution and conventional seismic-reflection surveys, aeromagnetic mapping, coastal exposures of Pleistocene strata, and lithologic logs of water wells is used to assess the active tectonics of the northern Puget Lowland and eastern Strait of Juan de Fuca region of the Pacific Northwest. These data indicate that the Devils Mountain Fault and the newly recognized Strawberry Point and Utsalady Point faults are active structures and represent potential earthquake sources.

  15. Can we follow the neotectonic activity of the Hluboká-fault by reconstructing the evolution of the Vltava river course? - Mapping of fluvial terraces around the Budejovice-basin using historic maps

    NASA Astrophysics Data System (ADS)

    Homolova, Dana; Lomax, Johanna; Prachar, Ivan; Spacek, Petr; Zamolyi, Andras; Decker, Kurt

    2010-05-01

    The Budějovice Basin in the Bohemian Massif (Czech Republic) is a fault-bounded sedimentary basin with a multiple subsidence history overlying Variscan crystalline basement. Permian, Cretaceous and Miocene sediments record repeated reactivations of faults at or close to the basin margin, which may have continued into the Quaternary. The latter is indicated by geomorphological features such as linear topographic scarps, which characterize part of the faults within and at the border of the Budějovice Basin. In a current study we assess possible Quaternary displacements along the faults delimiting the basin using geomorphological data, analyses of river planform patterns and correlations of Quaternary terraces of the Vltava River, which crosses the basin and its boundary faults. The regionally most important tectonic feature - the Hluboká fault -forms the northeastern margin of the Budějovice basin. The fault crosses the course of the river Vltava, a fact that guided our research to take a more precise look at the character and distribution of fluvial sediments in this area. Our main focus is on dating of terrace bodies around the Hluboká fault. According to the scheme used in most European regions, influences by the Pleistocene glacial cycles, the Vltava river terraces were assigned by most scientists to the 4(5) main alpine glacial periods. This dating is not straightforward as terraces are not connected to moraine bodies like in the Alps. The terraces were basically correlated by their altitude above the river and by their lithology (clastic content and grain size composition), but mostly without any numerical age determination. Our studies include several field and laboratory methods, supported by computer analyses of various types of spatial data. Data sources include: (i) modern topographic maps, (ii) geological maps, (iii) georeferenced historic map sheets of the Austrian Second Military Survey (provided by the Geoinformatics Laboratory of the University J. E. Purkyně, 2005). The georeferenced map sheets of the Second Military Survey provide a very exact base map (Timár et al., 2006) for investigating the location of possible terrace bases. Since the georeferencing accuracy is < 10 m, data from these map sheets can be integrated into the geomorphologic studies providing information about the geomorphologic situation in the study area of the years 1836-1842, i.e., with less anthropogenic impact on geomorphological features than today. These data sources are combined with data from boreholes and thus help us identifying potential terrace bodies and choosing appropriate investigation sites. In the field, morphological, sedimentological and pedological methods are used to obtain relevant data about the sediment stratigraphy. Several laboratory analyses were carried out to gain information on the age of the terraces. We use OSL-dating in combination with the analysis of heavy minerals and clay minerals, as well as grain size analysis. After gathering information about the absolute ages of the terrace bodies upstream and downstream the Hluboká fault, we may be able to declare if the building of terrace staircases was influenced by tectonic activity of the fault or not. Timár, G., Molnár, G., Székely, B., Biszak, S., Varga, J., Jankó, A. (2006): Digitized maps of the Habsburg Empire - The map sheets of the second military survey and their georeferenced version. Arcanum, Budapest, 59 p. ISBN 963-7374-33-7

  16. Chip level modeling of LSI devices

    NASA Technical Reports Server (NTRS)

    Armstrong, J. R.

    1984-01-01

    The advent of Very Large Scale Integration (VLSI) technology has rendered the gate level model impractical for many simulation activities critical to the design automation process. As an alternative, an approach to the modeling of VLSI devices at the chip level is described, including the specification of modeling language constructs important to the modeling process. A model structure is presented in which models of the LSI devices are constructed as single entities. The modeling structure is two layered. The functional layer in this structure is used to model the input/output response of the LSI chip. A second layer, the fault mapping layer, is added, if fault simulations are required, in order to map the effects of hardware faults onto the functional layer. Modeling examples for each layer are presented. Fault modeling at the chip level is described. Approaches to realistic functional fault selection and defining fault coverage for functional faults are given. Application of the modeling techniques to single chip and bit slice microprocessors is discussed.

  17. Assessment of seismic hazards along the northern Gulf of Aqaba

    NASA Astrophysics Data System (ADS)

    Abueladas, Abdel-Rahman Aqel

    Aqaba and Elat are very important port and recreation cities for the Hashemite Kingdom of Jordan and Israel, respectively. The two cities are the most susceptible to damage from a destructive future earthquake because they are located over the tectonically active Dead Sea transform fault (DST) that is the source of most of the major historical earthquakes in the region. The largest twentieth century earthquake on the DST, the magnitude Mw 7.2 Nuweiba earthquake of November 22, 1995, caused damage to structures in both cities. The integration of geological, geophysical, and earthquake engineering studies will help to assess the seismic hazards by determining the location and slip potential of active faults and by mapping areas of high liquefaction susceptibility. Ground Penetrating Radar (GPR) as a high resolution shallow geophysical tool was used to map the shallow active faults in Aqaba, Taba Sabkha area, and Elat. The GPR data revealed the onshore continuation of the Evrona, West Aqaba, Aqaba fault zones, and several transverse faults. The integration of offshore and onshore data confirm the extension of these faults along both sides of the Gulf of Aqaba. A 3D model of GPR data at one site in Aqaba indicates that the NW-trending transverse faults right laterally offset older than NE-trending faults. The most hazardous fault is the Evrona fault which extends north to the Tabs Sabkha. A geographic information system (GIS) database of the seismic hazard was created in order to facilitate the analyzing, manipulation, and updating of the input parameters. Liquefaction potential maps were created for the region based on analysis of borehole data. The liquefaction map shows high and moderate liquefaction susceptibility zones along the northern coast of the Gulf of Aqaba. In Aqaba several hotels are located within a high and moderate liquefaction zones. The Yacht Club, Aqaba, Ayla archaeological site, and a part of commercial area are also situated in a risk area. A part of residential site of the Saraya Development and the southern part of Ayla Oasis Development project area are located within a high susceptibility zone In Elat, the seaport and most hotels are located within a high susceptibility zone. Fortunately most residence areas, schools, and hospitals in both cities are located within zones not susceptible to liquefaction. A setback, or no build zone, is delineated around active faults to allow a suitable level of conservatism or factor of safety, residential, hotels, commercial buildings, schools, and other facilities are located inside this buffer in Aqaba area. These data will help planners, engineer instructions within the rapidly developing the northern Gulf of Aqaba.

  18. Geologic Map of The Volcanoes Quadrangle, Bernalillo and Sandoval Counties, New Mexico

    USGS Publications Warehouse

    Thompson, Ren A.; Shroba, Ralph R.; Menges, Christopher M.; Schmidt, Dwight L.; Personius, Stephen F.; Brandt, Theodore R.

    2009-01-01

    This geologic map, in support of the U.S. Geological Survey Middle Rio Grande Basin Geologic Mapping Project, shows the spatial distribution of surficial deposits, lava flows, and related sediments of the Albuquerque volcanoes, upper Santa Fe Group sediments, faults, and fault-related structural features. These deposits are on, along, and beneath the Llano de Albuquerque (West Mesa) west of Albuquerque, New Mexico. Some of these deposits are in the western part of Petroglyph National Monument. Artificial fill deposits are mapped chiefly beneath and near the City of Albuquerque Soil Amendment Facility and the Double Eagle II Airport. Alluvial deposits were mapped in and along stream channels, beneath terrace surfaces, and on the Llano de Albuquerque and its adjacent hill slopes. Deposits composed of alluvium and colluvium are also mapped on hill slopes. Wedge-shaped deposits composed chiefly of sandy sheetwash deposits, eolian sand, and intercalated calcic soils have formed on the downthrown-sides of faults. Deposits of active and inactive eolian sand and sandy sheetwash deposits mantle the Llano de Albuquerque. Lava flows and related sediments of the Albuquerque volcanoes were mapped near the southeast corner of the map area. They include eleven young lava flow units and, where discernable, associated vent and near-vent pyroclastic deposits associated with cinder cones. Upper Santa Fe Group sediments are chiefly fluvial in origin, and are well exposed near the western boundary of the map area. From youngest to oldest they include a gravel unit, pebbly sand unit, tan sand and mud unit, tan sand unit, tan sand and clay unit, and silty sand unit. Undivided upper Santa Fe Group sediments are mapped in the eastern part of the map area. Faults were identified on the basis of surface expression determined from field mapping and interpretation of aeromagnetic data where concealed beneath surficial deposits. Fault-related structural features are exposed and were mapped near the western boundary of the map area.

  19. Borjomi-Kazbegi Fault: Does it Exist?

    NASA Astrophysics Data System (ADS)

    Martin, R. J.; O, Connor, T.; Adamia, S.; Szymanski, E.; Krasovec, M.

    2012-12-01

    The Caucasus region has long been considered to be an example of indenture tectonics. The proposed Borjomi-Kazbegi sinistral fault is considered the western boundary of the actively indenting wedge. However, an improved seismic network density has led to recent unpublished observations noting a lack of seismicity on the proposed Borjomi-Kazbegi fault. These new observations call into question the existence of the fault, and with it, the tectonic model of the region. To clarify this anomaly, geologic and geophysical field research was carried out on the proposed Borjomi-Kazbegi fault during the summers of 2005 and 2006. Since the Borjomi-Kazbegi fault is also proposed to be a major crustal structure, a multi-disciplinary approach was utilized for this investigation. Precise GPS instrumentation was used to map multiple local geologic marker beds across the proposed line of the fault, and gravimetric and magnetic surveys were used to map deeper structures. The results showed no evidence of a strike slip fault. Localized marker beds, which included lithologic contacts, structural folds, quaternary lava deposits and several sills, continue uninterrupted across the proposed fault zone. Data from the gravimetric and magnetic surveys also show no discontinuity across the proposed fault line. In addition, the newly collected geophysical data agrees with the results of gravity and magnetic surveys carried out during the Soviet period. The Soviet data has more extensive areal coverage, and also shows no evidence of a major strike slip fault in the region. Currently, the field observations support a model that suggests active shortening in the Borjomi region is accommodated predominantly by thrust faulting.

  20. Utility of aeromagnetic studies for mapping of potentially active faults in two forearc basins: Puget Sound, Washington, and Cook Inlet, Alaska

    USGS Publications Warehouse

    Saltus, R.W.; Blakely, R.J.; Haeussler, Peter J.; Wells, R.E.

    2005-01-01

    High-resolution aeromagnetic surveys over forearc basins can detect faults and folds in weakly magnetized sediments, thus providing geologic constraints on tectonic evolution and improved understanding of seismic hazards in convergent-margin settings. Puget Sound, Washington, and Cook Inlet, Alaska, provide two case histories. In each lowland region, shallow-source magnetic anomalies are related to active folds and/or faults. Mapping these structures is critical for understanding seismic hazards that face the urban regions of Seattle, Washington, and Anchorage, Alaska. Similarities in aeromagnetic anomaly patterns and magnetic stratigraphy between the two regions suggest that we can expect the aeromagnetic method to yield useful structural information that may contribute to earth-hazard and energy resource investigations in other forearc basins.

  1. Fault Imaging with High-Resolution Seismic Reflection for Earthquake Hazard and Geothermal Resource Assessment in Reno, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frary, Roxanna

    2012-05-05

    The Truckee Meadows basin is situated adjacent to the Sierra Nevada microplate, on the western boundary of the Walker Lane. Being in the transition zone between a range-front normal fault on the west and northwest-striking right-lateral strike slip faults to the east, there is no absence of faulting in this basin. The Reno- Sparks metropolitan area is located in this basin, and with a signi cant population living here, it is important to know where these faults are. High-resolution seismic reflection surveys are used for the imaging of these faults along the Truckee River, across which only one fault wasmore » previously mapped, and in southern Reno near and along Manzanita Lane, where a swarm of short faults has been mapped. The reflection profiles constrain the geometries of these faults, and suggest additional faults not seen before. Used in conjunction with depth to bedrock calculations and gravity measurements, the seismic reflection surveys provide de nitive locations of faults, as well as their orientations. O sets on these faults indicate how active they are, and this in turn has implications for seismic hazard in the area. In addition to seismic hazard, the faults imaged here tell us something about the conduits for geothermal fluid resources in Reno.« less

  2. Geomorphology and Kinematics of the Nobi-Ise Active Fault Zone, Central Japan: Implications for the kinematic growth of tectonic landforms within an active thrust belt

    NASA Astrophysics Data System (ADS)

    Ishiyama, T.; Mueller, K. J.; Togo, M.; Takemura, K.; Okada, A.

    2002-12-01

    We present structural models constrained by tectonic geomorphology, surface geologic mapping and high-resolution seismic reflection profiles to define the kinematic evolution and geometry of active fault-related folds along the Nobi-Ise active fault zone (NAFZ). The NAFZ is an active intraplate fault system in central Japan, and consists of a 110-km-long array of active, east-verging reverse faults. We focus on the northern half of the NAFZ, where we use the kinematic evolution of active fault-related folds to constrain rates of slip on underlying blind thrusts and the rate of contraction across the belt since early Quaternary time. Fluvial terraces folded across the east-dipping forelimb, and west-dipping backlimb of the frontal Kuwana anticline suggest that it grows above a stacked sequence of thin-skinned wedge thrusts. Numerous secondary, bedding-parallel thrusts also deform the terraces and are interpreted to form by flexural slip folding that acts to consume slip on the primary blind thrusts across synclinal axial surfaces. Late Holocene fold scarps formed in the floodplain of the Ibi River east of Kuwana anticline coincide with the projected surface trace of the east-vergent wedge thrust tip and indicate the structure has accommodated coseismic (?) kink-band migration of a fault-bend fold during a historic blind thrust earthquake in 1586. A topographic cross-section based on a detailed photogrammetric map suggests 111 m of uplift of ca. 50-80 ka fluvial terraces deposited across the forelimb. For a 35° thrust, this yields the minimum slip rate of 2.7-4.8 mm/yr on the deepest wedge thrust beneath Kuwana anticline. Kinematic analysis for the much larger thrust defined to the west (the Fumotomura fault) suggests that folding of fluvial terraces occurred by trishear fault-propagation folding above a more steeply-dipping (54°), basement-involved blind thrust that propagated upward from the base of the seismogenic crust (about 12 km). Pleistocene growth strata defined by tephra (ca. 1.6 Ma) suggest the Fumotomura fault slips at a rate of 0.7-0.9 mm/yr.

  3. Determining the Positions of Seismically Active Faults in Platform Regions Based on the Integrated Profile Observations

    NASA Astrophysics Data System (ADS)

    Levshenko, V. T.; Grigoryan, A. G.

    2018-03-01

    By the examples of the Roslavl'skii, Grafskii, and Platava-Varvarinskii faults, the possibility is demonstrated of mapping the geological objects by the measurement algorithm that includes successively measuring the spectra of microseisms at the points of the measurement network by movable instruments and statistical accumulation of the ratios of the power spectra of the amplitudes. Based on this technique, the positions of these seismically active faults are determined by the integrated profile observations of the parameters of microseismic and radon fields. The refined positions of the faults can be used in estimating the seismic impacts on the critical objects in the vicinity of these faults.

  4. Evaluation of potential surface rupture and review of current seismic hazards program at the Los Alamos National Laboratory. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-12-09

    This report summarizes the authors review and evaluation of the existing seismic hazards program at Los Alamos National Laboratory (LANL). The report recommends that the original program be augmented with a probabilistic analysis of seismic hazards involving assignment of weighted probabilities of occurrence to all potential sources. This approach yields a more realistic evaluation of the likelihood of large earthquake occurrence particularly in regions where seismic sources may have recurrent intervals of several thousand years or more. The report reviews the locations and geomorphic expressions of identified fault lines along with the known displacements of these faults and last knowmore » occurrence of seismic activity. Faults are mapped and categorized into by their potential for actual movement. Based on geologic site characterization, recommendations are made for increased seismic monitoring; age-dating studies of faults and geomorphic features; increased use of remote sensing and aerial photography for surface mapping of faults; the development of a landslide susceptibility map; and to develop seismic design standards for all existing and proposed facilities at LANL.« less

  5. A test of the hypothesis that impact-induced fractures are preferred sites for later tectonic activity

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.; Duxbury, Elizabeth D.

    1987-01-01

    Impact cratering has been an important process in the solar system. The cratering event is generally accompanied by faulting in adjacent terrain. Impact-induced faults are nearly ubiquitous over large areas on the terrestrial planets. The suggestion is made that these fault systems, particularly those associated with the largest impact features are preferred sites for later deformation in response to lithospheric stresses generated by other processes. The evidence is a perceived clustering of orientations of tectonic features either radial or concentric to the crater or basin in question. An opportunity exists to test this suggestion more directly on Earth. The terrestrial continents contain more than 100 known or probable impact craters, with associated geological structures mapped to varying levels of detail. Prime facie evidence for reactivation of crater-induced faults would be the occurrence of earthquakes on these faults in response to the intraplate stress field. Either an alignment of epicenters with mapped fault traces or fault plane solutions indicating slip on a plane approximately coincident with that inferred for a crater-induced fault would be sufficient to demonstrate such an association.

  6. Fault Specific Seismic Hazard Maps as Input to Loss Reserves Calculation for Attica Buildings

    NASA Astrophysics Data System (ADS)

    Deligiannakis, Georgios; Papanikolaou, Ioannis; Zimbidis, Alexandros; Roberts, Gerald

    2014-05-01

    Greece is prone to various natural disasters, such as wildfires, floods, landslides and earthquakes, due to the special environmental and geological conditions dominating in tectonic plate boundaries. Seismic is the predominant risk, in terms of damages and casualties in the Greek territory. The historical record of earthquakes in Greece has been published from various researchers, providing useful data in seismic hazard assessment of Greece. However, the completeness of the historical record in Greece, despite being one of the longest worldwide, reaches only 500 years for M ≥ 7.3 and less than 200 years for M ≥ 6.5. Considering that active faults in the area have recurrence intervals of a few hundred to several thousands of years, it is clear that many active faults have not been activated during the completeness period covered by the historical records. New Seismic Hazard Assessment methodologies tend to follow fault specific approaches where seismic sources are geologically constrained active faults, in order to address problems related to the historical records incompleteness, obtain higher spatial resolution and calculate realistic source locality distances, since seismic sources are very accurately located. Fault specific approaches provide quantitative assessments as they measure fault slip rates from geological data, providing a more reliable estimate of seismic hazard. We used a fault specific seismic hazard assessment approach for the region of Attica. The method of seismic hazard mapping from geological fault throw-rate data combined three major factors: Empirical data which combine fault rupture lengths, earthquake magnitudes and coseismic slip relationships. The radiuses of VI, VII, VIII and IX isoseismals on the Modified Mercalli (MM) intensity scale. Attenuation - amplification functions for seismic shaking on bedrock compared to basin filling sediments. We explicitly modeled 22 active faults that could affect the region of Attica, including Athens, using detailed data derived from published papers, neotectonic maps and fieldwork observations. Moreover, we incorporated background seismicity models from the historic record and also the subduction zone earthquakes distribution, for the integration of strong deep earthquakes that could also affect Attica region. We created 4 high spatial resolution seismic hazard maps for the region of Attica, one for each of the intensities VII - X (MM). These maps offer a locality specific shaking recurrence record, which represents the long-term shaking record in a more complete way, since they incorporate several seismic cycles of the active faults that could affect Attica. Each one of these high resolution seismic hazard maps displays both the spatial distribution and the recurrence, over a specific time period, of the relevant intensity. Time - independent probabilities were extracted based on these average recurrence intervals, using the stationary Poisson model P = 1 -e-Λt. The 'Λ' value was provided by the intensities recurrence, as displayed in the seismic hazard maps. However, the insurance contracts usually lack of detailed spatial information and they refer to Postal Codes level, akin to CRESTA zones. To this end, a time-independent probability of shaking at intensities VII - X was calculated for every Postal Code, for a given time period, using the Poisson model. The reserves calculation on buildings portfolio combines the probability of events of specific intensities within the Postal Codes, with the buildings characteristics, such as the building construction type and the insured value. We propose a standard approach for the reserves calculation K(t) for a specific time period: K (t) = x2 ·[x1 ·y1 ·P1(t) + x1 ·y2 ·P2(t) + x1 ·y3 ·P3(t) + x1 ·y4 ·P4(t)] x1 which is a function of the probabilities of occurrence for the seismic intensities VII - X (P1(t) -P4(t)) for the same period, the value of the building x1, the insured value x2 and the characteristics of the building, such as the construction type, age, height and use of property (y1 - y4). Furthermore a stochastic approach is also adopted in order to obtain the relevant reserve value K(t) for the specific time period. This calculation considers a set of simulations from the Poisson random variable and then taking the respective expectations.

  7. Segmentation of the Cascadia Forearc in Southwestern Washington—Evidence from New Potential-Field Data

    NASA Astrophysics Data System (ADS)

    Blakely, R. J.; Wells, R. E.; Sherrod, B. L.; Brocher, T. M.

    2016-12-01

    Newly acquired potential-field data, geologic mapping, and recorded seismicity indicate that the Cascadia subduction zone is segmented in southwestern Washington by a left-stepping, possibly active crustal structure spanning nearly the entire onshore portion of the forearc. The east-striking, southward verging Doty thrust fault is an important part of this trans-forearc structure. As mapped, the eastern end of the 50-km-long Doty fault connects with the northwestern termination of ongoing seismicity on the north-northwest-striking Mt. St. Helens seismic zone (MSHSZ), suggesting that the Doty fault and MSHSZ may be kinematically linked. Westward, the mapped Doty fault terminates at and may link to mapped faults striking northwestward to 35 km north of Grays Harbor, a total northwest distance of 85 km. A newly acquired aeromagnetic survey over the Doty fault and MSHSZ, and existing gravity data, emphasize Crescent Formation and other Eocene volcanic rocks in the hanging wall of the Doty fault with up to 4 km of vertical throw. Most MSHSZ epicenters fall within a broad (5- to 10-km wide) magnetic low extending 50 km north-northwestward from Mt. St Helens. The magnetic low skirts around the western margin of the Miocene-age Spirit Lake pluton, but otherwise is not obviously associated with topography or mapped geology. We suggest that dextral slip on the MSHSZ is distributed across a broad, northwest-striking area that includes the magnetic low and is transferred to compressional slip on the Doty fault. The Doty fault demarcates a clear north-to-south decrease in the density of episodic tremor, suggesting that the thrust fault may intersect or modulate over-pressured fluids generated above the slab (Wells et al., in review). The Doty fault, MSHSZ, and neighboring structures are consistent with a dextral shear couple (Wells and Coe, 1985) and consequent clockwise crustal rotation extending across the entire landward portion of the Cascadia forearc, from the Pacific Coast to the Cascadia arc and from Grays Harbor to the Portland basin in northwestern Oregon.

  8. Geology Report: Area 3 Radioactive Waste Management Site DOE/Nevada Test Site, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Management

    2006-07-01

    Surficial geologic studies near the Area 3 Radioactive Waste Management Site (RWMS) were conducted as part of a site characterization program. Studies included evaluation of the potential for future volcanism and Area 3 fault activity that could impact waste disposal operations at the Area 3 RWMS. Future volcanic activity could lead to disruption of the Area 3 RWMS. Local and regional studies of volcanic risk indicate that major changes in regional volcanic activity within the next 1,000 years are not likely. Mapped basalts of Paiute Ridge, Nye Canyon, and nearby Scarp Canyon are Miocene in age. There is a lackmore » of evidence for post-Miocene volcanism in the subsurface of Yucca Flat, and the hazard of basaltic volcanism at the Area 3 RWMS, within the 1,000-year regulatory period, is very low and not a forseeable future event. Studies included a literature review and data analysis to evaluate unclassified published and unpublished information regarding the Area 3 and East Branch Area 3 faults mapped in Area 3 and southern Area 7. Two trenches were excavated along the Area 3 fault to search for evidence of near-surface movement prior to nuclear testing. Allostratigraphic units and fractures were mapped in Trenches ST02 and ST03. The Area 3 fault is a plane of weakness that has undergone strain resulting from stress imposed by natural events and underground nuclear testing. No major vertical displacement on the Area 3 fault since the Early Holocene, and probably since the Middle Pleistocene, can be demonstrated. The lack of major displacement within this time frame and minimal vertical extent of minor fractures suggest that waste disposal operations at the Area 3 RWMS will not be impacted substantially by the Area 3 fault, within the regulatory compliance period. A geomorphic surface map of Yucca Flat utilizes the recent geomorphology and soil characterization work done in adjacent northern Frenchman Flat. The approach taken was to adopt the map unit boundaries (line work) of Swadley and Hoover (1990) and re-label these with map unit designations like those in northern Frenchman Flat (Huckins-Gang et al, 1995a,b,c; Snyder et al, 1995a,b,c,d).« less

  9. Characterization of the Hosgri Fault Zone and adjacent structures in the offshore Santa Maria Basin, south-central California: Chapter CC of Evolution of sedimentary basins/onshore oil and gas investigations - Santa Maria province

    USGS Publications Warehouse

    Willingham, C. Richard; Rietman, Jan D.; Heck, Ronald G.; Lettis, William R.

    2013-01-01

    The Hosgri Fault Zone trends subparallel to the south-central California coast for 110 km from north of Point Estero to south of Purisima Point and forms the eastern margin of the present offshore Santa Maria Basin. Knowledge of the attributes of the Hosgri Fault Zone is important for petroleum development, seismic engineering, and environmental planning in the region. Because it lies offshore along its entire reach, our characterizations of the Hosgri Fault Zone and adjacent structures are primarily based on the analysis of over 10,000 km of common-depth-point marine seismic reflection data collected from a 5,000-km2 area of the central and eastern parts of the offshore Santa Maria Basin. We describe and illustrate the along-strike and downdip geometry of the Hosgri Fault Zone over its entire length and provide examples of interpreted seismic reflection records and a map of the structural trends of the fault zone and adjacent structures in the eastern offshore Santa Maria Basin. The seismic data are integrated with offshore well and seafloor geologic data to describe the age and seismic appearance of offshore geologic units and marker horizons. We develop a basin-wide seismic velocity model for depth conversions and map three major unconformities along the eastern offshore Santa Maria Basin. Accompanying plates include maps that are also presented as figures in the report. Appendix A provides microfossil data from selected wells and appendix B includes uninterpreted copies of the annotated seismic record sections illustrated in the chapter. Features of the Hosgri Fault Zone documented in this investigation are suggestive of both lateral and reverse slip. Characteristics indicative of lateral slip include (1) the linear to curvilinear character of the mapped trace of the fault zone, (2) changes in structural trend along and across the fault zone that diminish in magnitude toward the ends of the fault zone, (3) localized compressional and extensional structures characteristic of constraining and releasing bends and stepovers, (4) changes in the sense and magnitude of vertical separation along strike within the fault zone, and (5) changes in downdip geometry between the major traces and segments of the fault zone. Characteristics indicative of reverse slip include (1) reverse fault geometries that occur across major strands of the fault zone and (2) fault-bend folds and localized thrust faults that occur along the northern and southern reaches of the fault. Analyses of high-resolution, subbottom profiler and side-scan sonar records indicate localized Holocene activity along most of the extent of the fault zone. Collectively, these features are the basis of our characterization of the Hosgri Fault Zone as an active, 110-km-long, convergent right-oblique slip (transpressional) fault with identified northern and southern terminations. This interpretation is consistent with recently published analyses of onshore geologic data, regional tectonic kinematic models, and instrumental seismicity.

  10. Paleogeodesy of the Southern Santa Cruz Mountains Frontal Thrusts, Silicon Valley, CA

    NASA Astrophysics Data System (ADS)

    Aron, F.; Johnstone, S. A.; Mavrommatis, A. P.; Sare, R.; Hilley, G. E.

    2015-12-01

    We present a method to infer long-term fault slip rate distributions using topography by coupling a three-dimensional elastic boundary element model with a geomorphic incision rule. In particular, we used a 10-m-resolution digital elevation model (DEM) to calculate channel steepness (ksn) throughout the actively deforming southern Santa Cruz Mountains in Central California. We then used these values with a power-law incision rule and the Poly3D code to estimate slip rates over seismogenic, kilometer-scale thrust faults accommodating differential uplift of the relief throughout geologic time. Implicit in such an analysis is the assumption that the topographic surface remains unchanged over time as rock is uplifted by slip on the underlying structures. The fault geometries within the area are defined based on surface mapping, as well as active and passive geophysical imaging. Fault elements are assumed to be traction-free in shear (i.e., frictionless), while opening along them is prohibited. The free parameters in the inversion include the components of the remote strain-rate tensor (ɛij) and the bedrock resistance to channel incision (K), which is allowed to vary according to the mapped distribution of geologic units exposed at the surface. The nonlinear components of the geomorphic model required the use of a Markov chain Monte Carlo method, which simulated the posterior density of the components of the remote strain-rate tensor and values of K for the different mapped geologic units. Interestingly, posterior probability distributions of ɛij and K fall well within the broad range of reported values, suggesting that the joint use of elastic boundary element and geomorphic models may have utility in estimating long-term fault slip-rate distributions. Given an adequate DEM, geologic mapping, and fault models, the proposed paleogeodetic method could be applied to other crustal faults with geological and morphological expressions of long-term uplift.

  11. Geologic Map of the Eastern Three-Quarters of the Cuyama 30' x 60' Quadrangle, California

    USGS Publications Warehouse

    Kellogg, Karl S.; Minor, Scott A.; Cossette, Pamela M.

    2008-01-01

    The map area encompasses a large part of the western Transverse Ranges and southern Coast Ranges of southern California. The San Andreas fault (SAF) cuts the northern part of the map. The area south of the SAF, about 80 percent of the map area, encompasses several distinct tectonic blocks bounded by major thrust or reverse faults, including the Santa Ynez fault, Big Pine fault (and structurally continuous Pine Mountain fault), Tule Creek fault, Nacimiento fault, Ozena fault, Munson Creek fault, Morales fault, and Frazier Mountain Thrust System. Movement on these faults is as old as Miocene and some faults may still be active. In addition, the Paleocene Sawmill Mountain Thrust south of the SAF and the Pastoria Thrust north of the SAF place Cretaceous and older crystalline rocks above Pelona Schist (south of the SAF) and Rand Schist (north of the SAF). South of the SAF, each tectonic block contains a unique stratigraphy, reflecting either large-scale movement on bounding faults or different depositional environments within each block. On Mount Pinos and Frazier Mountain, intrusive and metamorphic rocks as old as Mesoproterozoic, but including voluminous Cretaceous granitoid rocks, underlie or are thrust above non-marine sedimentary rocks as old as Miocene. Elsewhere, marine and non-marine sedimentary rocks are as old as Cretaceous, dominated by thick sequences of both Eocene and Cretaceous marine shales and sandstones. Middle Miocene to early Oligocene volcanic rocks crop out in the Caliente Hills (part of Caliente Formation) and south of Mount Pinos (part of the Plush Ranch Formation). Fault-bounded windows of Jurassic Franciscan Complex ophiolitic rocks are evident in the southwest corner of the area. North of the SAF, marine and non-marine sedimentary rocks as old as Eocene and Miocene volcanic rocks overlie a crystalline basement complex. Basement rocks include Cretaceous intrusive rocks that range from monzogranite to diorite, and Jurassic to late Paleozoic intrusive and metamorphic rocks. The Jurassic to late Paleozoic intrusive rocks include diorite, gabbro, and ultramafic rocks, and the metasedimentary rocks include marble, quartzite, schist, and gneiss.

  12. Coastal Marine Terraces Define Late Quaternary Fault Activity and Deformation Within Northern East Bay Hills, San Francisco Bay Region

    NASA Astrophysics Data System (ADS)

    Kelson, K. I.

    2004-12-01

    Detailed mapping of uplifted marine platforms bordering the Carquinez Strait between Benicia and Pinole, California, provides data on the pattern and rate of late Quaternary deformation across the northern East Bay Hills. Field mapping, interpretation of early 20th-century topographic data, analysis of aerial photography, and compilation of onshore borehole data show the presence of remnants of three platforms, with back-edge elevations of about 4 m, 12 m, and 18 m. Based on U-series dates (Helley et al., 1993) and comparison of platform elevations to published sea-level curves, the 12-m-high and 18-m-high platforms correlate with substage 5e (ca. 120 ka) and stage 9 (ca. 330 ka) sea-level high stands, respectively. West of the Southhampton fault, longitudinal profiles of platform back-edges suggest that the East Bay Hills between Pinole and Vallejo have undergone block uplift at a rate of 0.05 +/- 0.01 m/ka without substantial tilting or warping. With uncertainty of <3 m, the 120 ka and 330 ka platforms are at the same elevations across the NW-striking Franklin fault. This west-vergent reverse fault previously was interpreted to have had late Pleistocene activity and to accommodate crustal shortening in the East Bay Hills. Our data indicate an absence of vertical displacement across the Franklin fault within at least the past 120ka and perhaps 330ka. In contrast, the stage 5e and 9 have up-on-the-east vertical displacement and gentle westward tilting across the N-striking Southhampton fault, with a late Pleistocene vertical slip rate of >0.02 m/ka. The northerly strike and prominent geomorphic expression of this potentially active fault differs from the Franklin fault. Our mapping of the Southhampton fault suggests that it accommodates dextral shear in the East Bay Hills, and is one of several left-stepping, en echelon N-striking faults (collectively, the "Contra Costa shear zone", CCSZ) in the East Bay Hills. Faults within this zone coincide with geomorphic features suggestive of late Quaternary dextral strike slip and appear to truncate or displace NW-striking reverse faults (e.g., Franklin fault) that do not displace the late Quaternary marine platform sequence. These data support an interpretation that the CCSZ accommodates regional dextral shear, and possibly represents the northern extension of the Calaveras fault. Overall, the marine terraces provide excellent strain gauges from which to evaluate the pattern and rate of late Quaternary deformation throughout the northern East Bay Hills.

  13. The Devils Mountain Fault zone: An active Cascadia upper plate zone of deformation, Pacific Northwest of North America

    NASA Astrophysics Data System (ADS)

    Barrie, J. Vaughn; Greene, H. Gary

    2018-02-01

    The Devils Mountain Fault Zone (DMFZ) extends east to west from Washington State to just south of Victoria, British Columbia, in the northern Strait of Juan de Fuca of Canada and the USA. Recently collected geophysical data were used to map this fault zone in detail, which show the main fault trace, and associated primary and secondary (conjugate) strands, and extensive northeast-southwest oriented folding that occurs within a 6 km wide deformation zone. The fault zone has been active in the Holocene as seen in the offset and disrupted upper Quaternary strata, seafloor displacement, and deformation within sediment cores taken close to the seafloor expression of the faults. Data suggest that the present DMFZ and the re-activated Leech River Fault may be part of the same fault system. Based on the length and previously estimated slip rates of the fault zone in Washington State, the DMFZ appears to have the potential of producing a strong earthquake, perhaps as large as magnitude 7.5 or greater, within 2 km of the city of Victoria.

  14. Constraining fault activity by investigating tectonically-deformed Quaternary palaeoshorelines using a synchronous correlation method: the Capo D'Orlando Fault as a case study (NE Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Meschis, Marco; Roberts, Gerald P.; Robertson, Jennifer

    2016-04-01

    Long-term curstal extension rates, accommodated by active normal faults, can be constrained by investigating Late Quaternary vertical movements. Sequences of marine terraces tectonically deformed by active faults mark the interaction between tectonic activity, sea-level changes and active faulting throughout the Quaternary (e.g. Armijo et al., 1996, Giunta et al, 2011, Roberts et al., 2013). Crustal deformation can be calculated over multiple seismic cycles by mapping Quaternary tectonically-deformed palaeoshorelines, both in the hangingwall and footwall of active normal faults (Roberts et al., 2013). Here we use a synchronous correlation method between palaeoshorelines elevations and the ages of sea-level highstands (see Roberts et al., 2013 for further details) which takes advantage of the facts that (i) sea-level highstands are not evenly-spaced in time, yet must correlate with palaeoshorelines that are commonly not evenly-spaced in elevation, and (ii) that older terraces may be destroyed and/or overprinted by younger highstands, so that the next higher or lower paleoshoreline does not necessarily correlate with the next older or younger sea-level highstand. We investigated a flight of Late Quaternary marine terraces deformed by normal faulting as a result of the Capo D'Orlando Fault in NE Sicily (e.g. Giunta et al., 2011). This fault lies within the Calabrian Arc which has experienced damaging seismic events such as the 1908 Messina Straits earthquake ~ Mw 7. Our mapping and previous mapping (Giunta et al. (2011) demonstrate that the elevations of marine terraces inner edges change along the strike the NE - SW oriented normal fault. This confirms active deformation on the Capo D'Orlando Fault, strongly suggesting that it should be added into the Database of Individual Seismogenic Sources (DISS, Basili et al., 2008). Giunta et al. (2011) suggested that uplift rates and hence faults lip-rates vary through time for this examples. We update the ages assigned to each palaeoshoreline from the initial work by Giunta et al., (2011) using synchronous correlation. This alternative approach suggests that uplift rates were constant through the Late Quaternary, suggesting that the fault slip-rate governing seismic hazard has also been constant. Reference Armijo, R., Meyer, B. G. C. P., King, G. C. P., Rigo, A., & Papanastassiou, D. (1996). Quaternary evolution of the Corinth Rift and its implications for the Late Cenozoic evolution of the Aegean. Geophysical Journal International, 126(1): 11 - 53. Basili R., Valensise, G., Vannoli, P., Burrato, P., Fracassi, U., Mariano, S., Tiberti, M.M., Boschi. E. (2008). The Database of Individual Seismogenic Sources (DISS), version 3: summarizing 20 years of research on Italy's earthquake geology, Tectonophysics, doi:10.1016/j.tecto.2007.04.014. Giunta, G., Gueli, A.M., Monaco, C., Orioli, S., Ristuccia, G.M., Stella, G., Troja, S.O. (2011). Middle-Late Pleistocene marine terraces and fault activity in the Sant'Agata di Militello coastal area (north-eastern Sicily). Journal of Geodynamics. 55, 32 - 40. Roberts, G. P., Meschis, M., Houghton, S., Underwood, C., & Briant, R. M. (2013). The implications of revised Quaternary palaeoshoreline chronologies for the rates of active extension and uplift in the upper plate of subduction zones.Quaternary Science Reviews, 78: 169 - 187.

  15. Gently dipping normal faults identified with Space Shuttle radar topography data in central Sulawesi, Indonesia, and some implications for fault mechanics

    USGS Publications Warehouse

    Spencer, J.E.

    2011-01-01

    Space-shuttle radar topography data from central Sulawesi, Indonesia, reveal two corrugated, domal landforms, covering hundreds to thousands of square kilometers, that are bounded to the north by an abrupt transition to typical hilly to mountainous topography. These domal landforms are readily interpreted as metamorphic core complexes, an interpretation consistent with a single previous field study, and the abrupt northward transition in topographic style is interpreted as marking the trace of two extensional detachment faults that are active or were recently active. Fault dip, as determined by the slope of exhumed fault footwalls, ranges from 4?? to 18??. Application of critical-taper theory to fault dip and hanging-wall surface slope, and to similar data from several other active or recently active core complexes, suggests a theoretical limit of three degrees for detachment-fault dip. This result appears to conflict with the dearth of seismological evidence for slip on faults dipping less than ~. 30??. The convex-upward form of the gently dipping fault footwalls, however, allows for greater fault dip at depths of earthquake initiation and dominant energy release. Thus, there may be no conflict between seismological and mapping studies for this class of faults. ?? 2011 Elsevier B.V.

  16. Landslides and megathrust splay faults captured by the late Holocene sediment record of eastern Prince William Sound, Alaska

    USGS Publications Warehouse

    Finn, S.P.; Liberty, Lee M.; Haeussler, Peter J.; Pratt, Thomas L.

    2015-01-01

    We present new marine seismic‐reflection profiles and bathymetric maps to characterize Holocene depositional patterns, submarine landslides, and active faults beneath eastern and central Prince William Sound (PWS), Alaska, which is the eastern rupture patch of the 1964 Mw 9.2 earthquake. We show evidence that submarine landslides, many of which are likely earthquake triggered, repeatedly released along the southern margin of Orca Bay in eastern PWS. We document motion on reverse faults during the 1964 Great Alaska earthquake and estimate late Holocene slip rates for these growth faults, which splay from the subduction zone megathrust. Regional bathymetric lineations help define the faults that extend 40–70 km in length, some of which show slip rates as great as 3.75  mm/yr. We infer that faults mapped below eastern PWS connect to faults mapped beneath central PWS and possibly onto the Alaska mainland via an en echelon style of faulting. Moderate (Mw>4) upper‐plate earthquakes since 1964 give rise to the possibility that these faults may rupture independently to potentially generate Mw 7–8 earthquakes, and that these earthquakes could damage local infrastructure from ground shaking. Submarine landslides, regardless of the source of initiation, could generate local tsunamis to produce large run‐ups along nearby shorelines. In a more general sense, the PWS area shows that faults that splay from the underlying plate boundary present proximal, perhaps independent seismic sources within the accretionary prism, creating a broad zone of potential surface rupture that can extend inland 150 km or more from subduction zone trenches.

  17. Toward uniform probabilistic seismic hazard assessments for Southeast Asia

    NASA Astrophysics Data System (ADS)

    Chan, C. H.; Wang, Y.; Shi, X.; Ornthammarath, T.; Warnitchai, P.; Kosuwan, S.; Thant, M.; Nguyen, P. H.; Nguyen, L. M.; Solidum, R., Jr.; Irsyam, M.; Hidayati, S.; Sieh, K.

    2017-12-01

    Although most Southeast Asian countries have seismic hazard maps, various methodologies and quality result in appreciable mismatches at national boundaries. We aim to conduct a uniform assessment across the region by through standardized earthquake and fault databases, ground-shaking scenarios, and regional hazard maps. Our earthquake database contains earthquake parameters obtained from global and national seismic networks, harmonized by removal of duplicate events and the use of moment magnitude. Our active-fault database includes fault parameters from previous studies and from the databases implemented for national seismic hazard maps. Another crucial input for seismic hazard assessment is proper evaluation of ground-shaking attenuation. Since few ground-motion prediction equations (GMPEs) have used local observations from this region, we evaluated attenuation by comparison of instrumental observations and felt intensities for recent earthquakes with predicted ground shaking from published GMPEs. We then utilize the best-fitting GMPEs and site conditions into our seismic hazard assessments. Based on the database and proper GMPEs, we have constructed regional probabilistic seismic hazard maps. The assessment shows highest seismic hazard levels near those faults with high slip rates, including the Sagaing Fault in central Myanmar, the Sumatran Fault in Sumatra, the Palu-Koro, Matano and Lawanopo Faults in Sulawesi, and the Philippine Fault across several islands of the Philippines. In addition, our assessment demonstrates the important fact that regions with low earthquake probability may well have a higher aggregate probability of future earthquakes, since they encompass much larger areas than the areas of high probability. The significant irony then is that in areas of low to moderate probability, where building codes are usually to provide less seismic resilience, seismic risk is likely to be greater. Infrastructural damage in East Malaysia during the 2015 Sabah earthquake offers a case in point.

  18. Comparison of different digital elevation models and satellite imagery for lineament analysis: Implications for identification and spatial arrangement of fault zones in crystalline basement rocks of the southern Black Forest (Germany)

    NASA Astrophysics Data System (ADS)

    Meixner, J.; Grimmer, J. C.; Becker, A.; Schill, E.; Kohl, T.

    2018-03-01

    GIS-based remote sensing techniques and lineament mapping provide additional information on the spatial arrangement of faults and fractures in large areas with variable outcrop conditions. Due to inherent censoring and truncation bias mapping of lineaments is still a challenging task. In this study we show how statistical evaluations help to improve the reliability of lineament mappings by comparing two digital elevation models (ASTER, LIDAR) and satellite imagery data sets in the seismically active southern Black Forest. A statistical assessment of the orientation, average length, and the total length of mapped lineaments reveals an impact of the different resolutions of the data sets that allow to define maximum (censoring bias) and minimum (truncation bias) observable lineament length for each data set. The increase of the spatial resolution of the digital elevation model from 30 m × 30 m to 5 m × 5 m results in a decrease of total lineament length by about 40% whereby the average lineament lengths decrease by about 60%. Lineament length distributions of both data sets follow a power law distribution as documented elsewhere for fault and fracture systems. Predominant NE-, N-, NNW-, and NW-directions of the lineaments are observed in all data sets and correlate with well-known, mappable large-scale structures in the southern Black Forest. Therefore, mapped lineaments can be correlated with faults and hence display geological significance. Lineament density in the granite-dominated areas is apparently higher than in the gneiss-dominated areas. Application of a slip- and dilation tendency analysis on the fault pattern reveals largest reactivation potentials for WNW-ESE and N-S striking faults as strike-slip faults whereas normal faulting may occur along NW-striking faults within the ambient stress field. Remote sensing techniques in combination with highly resolved digital elevation models and a slip- and dilation tendency analysis thus can be used to quickly get first order results of the spatial arrangement of critically stressed faults in crystalline basement rocks.

  19. Evaluating earthquake hazards in the Los Angeles region; an earth-science perspective

    USGS Publications Warehouse

    Ziony, Joseph I.

    1985-01-01

    Potentially destructive earthquakes are inevitable in the Los Angeles region of California, but hazards prediction can provide a basis for reducing damage and loss. This volume identifies the principal geologically controlled earthquake hazards of the region (surface faulting, strong shaking, ground failure, and tsunamis), summarizes methods for characterizing their extent and severity, and suggests opportunities for their reduction. Two systems of active faults generate earthquakes in the Los Angeles region: northwest-trending, chiefly horizontal-slip faults, such as the San Andreas, and west-trending, chiefly vertical-slip faults, such as those of the Transverse Ranges. Faults in these two systems have produced more than 40 damaging earthquakes since 1800. Ninety-five faults have slipped in late Quaternary time (approximately the past 750,000 yr) and are judged capable of generating future moderate to large earthquakes and displacing the ground surface. Average rates of late Quaternary slip or separation along these faults provide an index of their relative activity. The San Andreas and San Jacinto faults have slip rates measured in tens of millimeters per year, but most other faults have rates of about 1 mm/yr or less. Intermediate rates of as much as 6 mm/yr characterize a belt of Transverse Ranges faults that extends from near Santa Barbara to near San Bernardino. The dimensions of late Quaternary faults provide a basis for estimating the maximum sizes of likely future earthquakes in the Los Angeles region: moment magnitude .(M) 8 for the San Andreas, M 7 for the other northwest-trending elements of that fault system, and M 7.5 for the Transverse Ranges faults. Geologic and seismologic evidence along these faults, however, suggests that, for planning and designing noncritical facilities, appropriate sizes would be M 8 for the San Andreas, M 7 for the San Jacinto, M 6.5 for other northwest-trending faults, and M 6.5 to 7 for the Transverse Ranges faults. The geologic and seismologic record indicates that parts of the San Andreas and San Jacinto faults have generated major earthquakes having recurrence intervals of several tens to a few hundred years. In contrast, the geologic evidence at points along other active faults suggests recurrence intervals measured in many hundreds to several thousands of years. The distribution and character of late Quaternary surface faulting permit estimation of the likely location, style, and amount of future surface displacements. An extensive body of geologic and geotechnical information is used to evaluate areal differences in future levels of shaking. Bedrock and alluvial deposits are differentiated according to the physical properties that control shaking response; maps of these properties are prepared by analyzing existing geologic and soils maps, the geomorphology of surficial units, and. geotechnical data obtained from boreholes. The shear-wave velocities of near-surface geologic units must be estimated for some methods of evaluating shaking potential. Regional-scale maps of highly generalized shearwave velocity groups, based on the age and texture of exposed geologic units and on a simple two-dimensional model of Quaternary sediment distribution, provide a first approximation of the areal variability in shaking response. More accurate depictions of near-surface shear-wave velocity useful for predicting ground-motion parameters take into account the thickness of the Quaternary deposits, vertical variations in sediment .type, and the correlation of shear-wave velocity with standard penetration resistance of different sediments. A map of the upper Santa Ana River basin showing shear-wave velocities to depths equal to one-quarter wavelength of a 1-s shear wave demonstrates the three-dimensional mapping procedure. Four methods for predicting the distribution and strength of shaking from future earthquakes are presented. These techniques use different measures of strong-motion

  20. First Map of Residential Indoor Radon Measurements in Azerbaijan.

    PubMed

    Hoffmann, M; Aliyev, C S; Feyzullayev, A A; Baghirli, R J; Veliyeva, F F; Pampuri, L; Valsangiacomo, C; Tollefsen, T; Cinelli, G

    2017-06-15

    This article describes results of the first measurements of indoor radon concentrations in Azerbaijan, including description of the methodology and the mathematical and statistical processing of the results obtained. Measured radon concentrations varied considerably: from almost radon-free houses to around 1100 Bq m-3. However, only ~7% of the total number of measurements exceeded the maximum permissible concentrations. Based on these data, maps of the distribution of volumetric activity and elevated indoor radon concentrations in Azerbaijan were created. These maps reflect a mosaic character of distribution of radon and enhanced values that are confined to seismically active areas at the intersection of an active West Caspian fault with sub-latitudinal faults along the Great and Lesser Caucasus and the Talysh mountains. Spatial correlation of radon and temperature behavior is also described. The data gathered on residential indoor radon have been integrated into the European Indoor Radon Map. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Sequence stratigraphy, structural style, and age of deformation of the Malaita accretionary prism (Solomon arc-Ontong Java Plateau convergent zone)

    NASA Astrophysics Data System (ADS)

    Phinney, Eric J.; Mann, Paul; Coffin, Millard F.; Shipley, Thomas H.

    2004-10-01

    Possibilities for the fate of oceanic plateaus at subduction zones range from complete subduction of the plateau beneath the arc to complete plateau-arc accretion and resulting collisional orogenesis. Deep penetration, multi-channel seismic reflection (MCS) data from the northern flank of the Solomon Islands reveal the sequence stratigraphy, structural style, and age of deformation of an accretionary prism formed during late Neogene (5-0 Ma) convergence between the ˜33-km-thick crust of the Ontong Java oceanic plateau and the ˜15-km-thick Solomon island arc. Correlation of MCS data with the satellite-derived, free-air gravity field defines the tectonic boundaries and internal structure of the 800-km-long, 140-km-wide accretionary prism. We name this prism the "Malaita accretionary prism" or "MAP" after Malaita, the largest and best-studied island exposure of the accretionary prism in the Solomon Islands. MCS data, gravity data, and stratigraphic correlations to islands and ODP sites on the Ontong Java Plateau (OJP) reveal that the offshore MAP is composed of folded and thrust faulted sedimentary rocks and upper crystalline crust offscraped from the Solomon the subducting Ontong Java Plateau (Pacific plate) and transferred to the Solomon arc. With the exception of an upper, sequence of Quaternary? island-derived terrigenous sediments, the deformed stratigraphy of the MAP is identical to that of the incoming Ontong Java Plateau in the North Solomon trench. We divide the MAP into four distinct, folded and thrust fault-bounded structural domains interpreted to have formed by diachronous, southeast-to-northwest, and highly oblique entry of the Ontong Java Plateau into a former trench now marked by the Kia-Kaipito-Korigole (KKK) left-lateral strike-slip fault zone along the suture between the Solomon arc and the MAP. The structural style within each of the four structural domains consists of a parallel series of three to four fault propagation folds formed by the seaward propagation of thrust faults roughly parallel to sub-horizontal layering in the upper crystalline part of the OJP. Thrust fault offsets, spacing between thrusts, and the amplitude of related fault propagation folds progressively decrease to the west in the youngest zone of active MAP accretion (Choiseul structural domain). Surficial faulting and folding in the most recently deformed, northwestern domain show active accretion of greater than 1 km of sedimentary rock and 6 km, or about 20%, of the upper crystalline part of the OJP. The eastern MAP (Malaita and Ulawa domains) underwent an earlier, similar style of partial plateau accretion. A pre-late Pliocene age of accretion (˜3.4 Ma) is constrained by an onshore and offshore major angular unconformity separating Pliocene reefal limestone and conglomerate from folded and faulted pelagic limestone of Cretaceous to Miocene age. The lower 80% of the Ontong Java Plateau crust beneath the MAP thrust decollement appears unfaulted and unfolded and is continuous with a southwestward-dipping subducted slab of presumably denser plateau material beneath most of the MAP, and is traceable to depths >200 km in the mantle beneath the Solomon Islands.

  2. Quantitative Assessment of Potentially Active Faults in Oklahoma Utilizing Detailed Information on In Situ Stress Orientation and Relative Magnitude

    NASA Astrophysics Data System (ADS)

    Walsh, R.; Zoback, M. D.

    2015-12-01

    Over the past six years, the earthquake rate in the central and eastern U.S. has increased markedly, and is related to fluid injection. Nowhere has seismicity increased more than in Oklahoma, where large volumes of saline pore water are co-produced with oil and gas, then injected into deeper sedimentary formations. These deeper formations appear to be in hydraulic communication with potentially active faults in crystalline basement, where nearly all the earthquakes are occurring. Although the majority of the recent earthquakes have posed little danger to the public, the possibility of triggering damaging earthquakes on potentially active basement faults cannot be discounted. To understand probability of slip on a given fault, we invert for stresses from the hundreds of M4+ events in Oklahoma for which moment tensors have been made. We then resolve these stresses, while incorporating uncertainties, on the faults from the preliminary Oklahoma fault map. The result is a probabilistic understanding of which faults are most likely active and best avoided.

  3. Tearing the terroir: Details and implications of surface rupture and deformation from the 24 August 2014 M6.0 South Napa earthquake, California

    USGS Publications Warehouse

    DeLong, Stephen B.; Donnellan, Andrea; Ponti, Daniel J.; Rubin, Ron S.; Lienkaemper, James J.; Prentice, Carol S.; Dawson, Timothy E.; Seitz, Gordon G.; Schwartz, David P.; Hudnut, Kenneth W.; Rosa, Carla M.; Pickering, Alexandra J; Parker, Jay W.

    2016-01-01

    The Mw 6.0 South Napa earthquake of 24 August 2014 caused slip on several active fault strands within the West Napa Fault Zone (WNFZ). Field mapping identified 12.5 km of surface rupture. These field observations, near-field geodesy and space geodesy, together provide evidence for more than ~30 km of surface deformation with a relatively complex distribution across a number of subparallel lineaments. Along a ~7 km section north of the epicenter, the surface rupture is confined to a single trace that cuts alluvial deposits, reoccupying a low-slope scarp. The rupture continued northward onto at least four other traces through subparallel ridges and valleys. Postseismic slip exceeded coseismic slip along much of the southern part of the main rupture trace with total slip 1 year postevent approaching 0.5 m at locations where only a few centimeters were measured the day of the earthquake. Analysis of airborne interferometric synthetic aperture radar data provides slip distributions along fault traces, indicates connectivity and extent of secondary traces, and confirms that postseismic slip only occurred on the main trace of the fault, perhaps indicating secondary structures ruptured as coseismic triggered slip. Previous mapping identified the WNFZ as a zone of distributed faulting, and this was generally borne out by the complex 2014 rupture pattern. Implications for hazard analysis in similar settings include the need to consider the possibility of complex surface rupture in areas of complex topography, especially where multiple potentially Quaternary-active fault strands can be mapped.

  4. A global tectonic activity map with orbital photographic supplement

    NASA Technical Reports Server (NTRS)

    Lowman, P. D., Jr.

    1981-01-01

    A three part map showing equatorial and polar regions was compiled showing tectonic and volcanic activity of the past one million years, including the present. Features shown include actively spreading ridges, spreading rates, major active faults, subduction zones, well defined plates, and volcanic areas active within the past one million years. Activity within this period was inferred from seismicity (instrumental and historic), physiography, and published literature. The tectonic activity map was used for planning global geodetic programs of satellite laser ranging and very long base line interferometry and for geologic education.

  5. A study of the Herald-Phillipstown fault in the Wabash Valley using drillhole and 3-D seismic reflection data

    NASA Astrophysics Data System (ADS)

    Kroenke, Samantha E.

    In June 2009, a 2.2 square mile 3-D high resolution seismic reflection survey was shot in southeastern Illinois in the Phillipstown Consolidated oilfield. A well was drilled in the 3-D survey area to tie the seismic to the geological data with a synthetic seismogram from the sonic log. The objectives of the 3-D seismic survey were three-fold: (1) To image and interpret faulting of the Herald-Phillipstown Fault using drillhole-based geological and seismic cross-sections and structural contour maps created from the drillhole data and seismic reflection data, (2) To test the effectiveness of imaging the faults by selected seismic attributes, and (3) To compare spectral decomposition amplitude maps with an isochron map and an isopach map of a selected geologic interval (VTG interval). Drillhole and seismic reflection data show that various formation offsets increase near the main Herald-Phillipstown fault, and that the fault and its large offset subsidiary faults penetrate the Precambrian crystalline basement. A broad, northeast-trending 10,000 feet wide graben is consistently observed in the drillhole data. Both shallow and deep formations in the geological cross-sections reveal small horst and graben features within the broad graben created possibly in response to fault reactivations. The HPF faults have been interpreted as originally Precambrian age high-angle, normal faults reactivated with various amounts and types of offset. Evidence for strike-slip movement is also clear on several faults. Changes in the seismic attribute values in the selected interval and along various time slices throughout the whole dataset correlate with the Herald-Phillipstown faults. Overall, seismic attributes could provide a means of mapping large offset faults in areas with limited or absent drillhole data. Results of the spectral decomposition suggest that if the interval velocity is known for a particular formation or interval, high-resolution 3-D seismic reflection surveys could utilize these amplitudes as an alternative seismic interpretation method for estimating formation thicknesses. A VTG isopach map was compared with an isochron map and a spectral decomposition amplitude map. The results reveal that the isochron map strongly correlates with the isopach map as well as the spectral decomposition map. It was also found that thicker areas in the isopach correlated with higher amplitude values in the spectral decomposition amplitude map. Offsets along the faults appear sharper in these amplitudes and isochron maps than in the isopach map, possibly as a result of increased spatial sampling.

  6. Geology and structure of the North Boqueron Bay-Punta Montalva Fault System

    NASA Astrophysics Data System (ADS)

    Roig Silva, Coral Marie

    The North Boqueron Bay-Punta Montalva Fault Zone is an active fault system that cuts across the Lajas Valley in southwestern Puerto Rico. The fault zone has been recognized and mapped based upon detailed analysis of geophysical data, satellite images and field mapping. The fault zone consists of a series of Cretaceous bedrock faults that reactivated and deformed Miocene limestone and Quaternary alluvial fan sediments. The fault zone is seismically active (ML < 5.0) with numerous locally felt earthquakes. Focal mechanism solutions and structural field data suggest strain partitioning with predominantly east-west left-lateral displacements with small normal faults oriented mostly toward the northeast. Evidence for recent displacement consists of fractures and small normal faults oriented mostly northeast found in intermittent streams that cut through the Quaternary alluvial fan deposits along the southern margin of the Lajas Valley, Areas of preferred erosion, within the alluvial fan, trend toward the west-northwest parallel to the on-land projection of the North Boqueron Bay Fault. Beyond the faulted alluvial fan and southeast of the Lajas Valley, the Northern Boqueron Bay Fault joins with the Punta Montalva Fault. The Punta Montalva Fault is defined by a strong topographic WNW lineament along which stream channels are displaced left laterally 200 meters and Miocene strata are steeply tilted to the south. Along the western end of the fault zone in northern Boqueron Bay, the older strata are only tilted 3° south and are covered by flat lying Holocene sediments. Focal mechanisms solutions along the western end suggest NW-SE shortening, which is inconsistent with left lateral strain partitioning along the fault zone. The limited deformation of older strata and inconsistent strain partitioning may be explained by a westerly propagation of the fault system from the southwest end. The limited geomorphic structural expression along the North Boqueron Bay Fault segment could also be because most of the displacement along the fault zone is older than the Holocene and that the rate of displacement is low, such that the development of fault escarpments and deformation all along the fault zone has yet to occur.

  7. Holocene and latest Pleistocene oblique dextral faulting on the southern Inyo Mountains fault, Owens Lake basin, California

    USGS Publications Warehouse

    Bacon, S.N.; Jayko, A.S.; McGeehin, J.P.

    2005-01-01

    The Inyo Mountains fault (IMF) is a more or less continuous range-front fault system, with discontinuous late Quaternary activity, at the western base of the Inyo Mountains in Owens Valley, California. The southern section of the IMF trends ???N20??-40?? W for at least 12 km at the base of and within the range front near Keeler in Owens Lake basin. The southern IMF cuts across a relict early Pliocene alluvial fan complex, which has formed shutter ridges and northeast-facing scarps, and which has dextrally offset, well-developed drainages indicating long-term activity. Numerous fault scarps along the mapped trace are northeast-facing, mountain-side down, and developed in both bedrock and younger alluvium, indicating latest Quaternary activity. Latest Quaternary multiple- and single-event scarps that cut alluvium range in height from 0.5 to 3.0 m. The penultimate event on the southern IMF is bracketed between 13,310 and 10,590 cal years B.P., based on radiocarbon dates from faulted alluvium and fissure-fill stratigraphy exposed in a natural wash cut. Evidence of the most recent event is found at many sites along the mapped fault, and, in particular, is seen in an ???0.5-m northeast-facing scarp and several right-stepping en echelon ???0.5-m-deep depressions that pond fine sediment on a younger than 13,310 cal years B.P. alluvial fan. A channel that crosses transverse to this scarp is dextrally offset 2.3 ?? 0.8 m, providing a poorly constrained oblique slip rate of 0.1-0. 3 m/ k.y. The identified tectonic geomorphology and sense of displacement demonstrate that the southern IMF accommodates predominately dextral slip and should be integrated into kinematic fault models of strain distribution in Owens Valley.

  8. Pre-Earthquake Paleoseismic Trenching in 2014 Along a Mapped Trace of the West Napa Fault

    NASA Astrophysics Data System (ADS)

    Rubin, R. S.; Dawson, T. E.; Mareschal, M.

    2014-12-01

    Paleoseismic trenching in July 2014 across a previously mapped trace of the West Napa fault in eastern Alston Park (EAP) was undertaken with NEHRP funding as part of an effort to better characterize activity of the fault for regional seismic hazard assessments, and as part of an Alquist-Priolo Earthquake Fault Zoning (APEFZ) evaluation. The trench was excavated across a prominent escarpment that had been interpreted by others to represent evidence of Holocene fault activity, based on faults logged in an ~1-m-deep natural drainage exposure. Our trench was located ~3 m south of the drainage exposure and encompassed the interpreted fault zone, and beyond. The trench exposed the same surficial units as the natural exposure, as well as additional Pleistocene and older stratigraphy at depth. Escarpment parallel channeling was evident within deposits along the base of the slope. Faulting was not encountered, and is precluded by unbroken depositional contacts. Our preferred interpretation is that the escarpment in EAP is a result of fluvial and differential erosion, which is consistent with existence of channels along the base of the escarpment and a lack of faulting. The location of surface rupture of the South Napa Earthquake (SNE) of 8/24/14 occurred on fault strands south and west of this study and crosses Alston Park approximately 800 m west of our trench site, at its nearest point. Pre- and post-earthquake UAVSAR from NASA's JPL been useful in identifying major and minor ruptures of the SNE. Based on the imagery, a subtle lineament has been interpreted upslope from the trench. However, field observations along this feature yielded no visible surface deformation and the origin of this lineament is uncertain. The fault rupture pattern expressed by the SNE, as reflected by detailed field mapping and UAVSAR imagery, provides a unique opportunity to better understand the complex nature of the West Napa fault. Our study illustrates the value of subsurface investigations as part of fault characterization in order to accurately assess geomorphic features that may, or may not, be formed by tectonic processes. Selection of additional trench locations will be aided by soon-to-be-released post-earthquake LiDAR imagery and existing UAVSAR imagery, with the ultimate goal of preparing an accurate APEFZ in this area.

  9. Probabilistic Seismic Hazard Maps for Ecuador

    NASA Astrophysics Data System (ADS)

    Mariniere, J.; Beauval, C.; Yepes, H. A.; Laurence, A.; Nocquet, J. M.; Alvarado, A. P.; Baize, S.; Aguilar, J.; Singaucho, J. C.; Jomard, H.

    2017-12-01

    A probabilistic seismic hazard study is led for Ecuador, a country facing a high seismic hazard, both from megathrust subduction earthquakes and shallow crustal moderate to large earthquakes. Building on the knowledge produced in the last years in historical seismicity, earthquake catalogs, active tectonics, geodynamics, and geodesy, several alternative earthquake recurrence models are developed. An area source model is first proposed, based on the seismogenic crustal and inslab sources defined in Yepes et al. (2016). A slightly different segmentation is proposed for the subduction interface, with respect to Yepes et al. (2016). Three earthquake catalogs are used to account for the numerous uncertainties in the modeling of frequency-magnitude distributions. The hazard maps obtained highlight several source zones enclosing fault systems that exhibit low seismic activity, not representative of the geological and/or geodetical slip rates. Consequently, a fault model is derived, including faults with an earthquake recurrence model inferred from geological and/or geodetical slip rate estimates. The geodetical slip rates on the set of simplified faults are estimated from a GPS horizontal velocity field (Nocquet et al. 2014). Assumptions on the aseismic component of the deformation are required. Combining these alternative earthquake models in a logic tree, and using a set of selected ground-motion prediction equations adapted to Ecuador's different tectonic contexts, a mean hazard map is obtained. Hazard maps corresponding to the percentiles 16 and 84% are also derived, highlighting the zones where uncertainties on the hazard are highest.

  10. Structural Data for the Columbus Salt Marsh Geothermal Area - GIS Data

    DOE Data Explorer

    Faulds, James E.

    2011-12-31

    Shapefiles and spreadsheets of structural data, including attitudes of faults and strata and slip orientations of faults. - Detailed geologic mapping of ~30 km2 was completed in the vicinity of the Columbus Marsh geothermal field to obtain critical structural data that would elucidate the structural controls of this field. - Documenting E‐ to ENE‐striking left lateral faults and N‐ to NNE‐striking normal faults. - Some faults cut Quaternary basalts. - This field appears to occupy a displacement transfer zone near the eastern end of a system of left‐lateral faults. ENE‐striking sinistral faults diffuse into a system of N‐ to NNE‐striking normal faults within the displacement transfer zone. - Columbus Marsh therefore corresponds to an area of enhanced extension and contains a nexus of fault intersections, both conducive for geothermal activity.

  11. Active Structures as Deduced from Geomorphic Features: A case in Hsinchu Area, northwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Shyu, J.; Ota, Y.; Chen, W.; Hu, J.; Tsai, B.; Wang, Y.

    2002-12-01

    Hsinchu area is located in the northwestern Taiwan, the fold-and thrust belt created by arc-continent collision between Eurasian and Philippine. Since the collision event is still ongoing, the island is tectonically active and full of active faults. According to the historical records, some of the faults are seismically acting. In Hsinchuarea two active faults, the Hsinchu and Hsincheng, have been previously mapped. To evaluate the recent activities, we studied the related geomorphic features by using newly developed Digital Elevation Model (DEM), the aerial photos and field investigation. Geologically, both of the faults are coupled with a hanging wall anticline. The anticlines are recently active due to the deformation of the geomorphic surfaces. The Hsinchu fault system shows complicate corresponding scarps, distributed sub-parallel to the fault trace previously suggested by projection of subsurface geology. This is probably caused by its strike-slip component tearing the surrounding area along the main trace. The scarps associated with the Hsincheng fault system are rather simple and unique. It offsets a flight of terraces all the way down to recent flood plain, indicating its long lasting activity. One to two kilometers to east of main trace a back-thrust is found, showing coupled vertical surface offsets with the main fault. The striking discovery in this study is that the surface deformation is only distributed in the southern bank of Touchien river, also suddenly decreasing when crossing another tear fault system, which is originated from Hsincheng fault in the west and extending southeastward parallel to the Touchien river. The strike-slip fault system mentioned above not only bisects the Hsinchu fault, but also divides the Hsincheng fault into segments. The supporting evidence found in this study includes pressure ridges and depressions. As a whole, the study area is tectonically dominated by three active fault systems and two actively growing anticlines. The interactions between active structural systems formed the complicate geomorphic features presented in this paper.

  12. Complex Paleotopography and Faulting near the Elsinore Fault, Coyote Mountains, southern California

    NASA Astrophysics Data System (ADS)

    Brenneman, M. J.; Bykerk-Kauffman, A.

    2012-12-01

    The Coyote Mountains of southern California are bounded on the southwest by the Elsinore Fault, an active dextral fault within the San Andreas Fault zone. According to Axen and Fletcher (1998) and Dorsey and others (2011), rocks exposed in these mountains comprise a portion of the hanging wall of the east-vergent Salton Detachment Fault, which was active from the late Miocene-early Pliocene to Ca. 1.1-1.3 Ma. Detachment faulting was accompanied by subsidence, resulting in deposition of a thick sequence of marine and nonmarine sedimentary rocks. Regional detachment faulting and subsidence ceased with the inception of the Elsinore Fault, which has induced uplift of the Coyote Mountains. Detailed geologic mapping in the central Coyote Mountains supports the above interpretation and adds some intriguing details. New discoveries include a buttress unconformity at the base of the Miocene/Pliocene section that locally cuts across strata at an angle so high that it could be misinterpreted as a fault. We thus conclude that the syn-extension strata were deposited on a surface with very rugged topography. We also discovered that locally-derived nonmarine gravel deposits exposed near the crest of the range, previously interpreted as part of the Miocene Split Mountain Group by Winker and Kidwell (1996), unconformably overlie units of the marine Miocene/Pliocene Imperial Group and must therefore be Pliocene or younger. The presence of such young gravel deposits on the crest of the range provides evidence for its rapid uplift. Additional new discoveries flesh out details of the structural history of the range. We mapped just two normal faults, both of which were relatively minor, thus supporting Axen and Fletcher's assertion that the hanging wall block of the Salton Detachment Fault had not undergone significant internal deformation during extension. We found abundant complex synthetic and antithetic strike-slip faults throughout the area, some of which offset Quaternary alluvial deposits. We interpret these faults as Riedel shears of the Elsinore Fault that distribute dextral strain over an area at least 2 km wide. Finally, our mapping of the Elsinore Fault itself reveals two releasing bends that are superimposed on the overall transpressive regime in the area. Axen, G.J. and Fletcher, J.M., 1998, Hall Volume, GSA, p. 365-392. Dorsey, R.J., Housen, B.A., Janecke, S.U., Fanning, C. M., Spears, A.L.F., 2011, GSA Bulletin, v. 123, p. 771-793. Winker, C.D. and Kidwell, S.M., 1996, Field Conference Guide, Pacific Section AAPG/SEPM, Book 80, p. 295-336.

  13. Structural development of the onshore Otway passive margin (Australia): the interaction of rotating syn-sedimentary faults

    NASA Astrophysics Data System (ADS)

    Tanner, David C.; Ziesch, Jennifer; Krawczyk, Charlotte M.

    2017-04-01

    Within the context of long-term CO2 storage integrity, we interpreted the faults within the 2.2 km thick, syn-rift, Late Cretaceous to Recent sediments below the CO2CRC Otway Project site in Australia using a detailed interpretation of a 3-D reflection seismic cube (32.3 km×14.35 km × 4100 ms TWT). All the faults in the onshore Otway passive margin basin in this area were active to varying degrees during sedimentation, between ca. 120 and 50 Ma, before they died out. From analysis of fault juxtaposition and fault tip-line propagation maps, as well as analysis of individual stratigraphic thickness maps, we determine the direction and incremental amount of syn-sedimentary movement on each fault. Thickening of the hanging-walls of the faults occurred, as is typical for syn-sedimentary faults. However, we also determine that substantial local footwall thinning took place. Although the syn-sedimentary behaviour of the faults was constantly maintained until 50 Ma, there were two main phases of footwall thinning, separated by a quiescent phase. We postulate that these phases of footwall thinning represent rotation of the fault blocks that correlate with prograding sediment pulses within the passive margin. The rotation of the fault blocks occurred simultaneously, i.e., they could only rotate if they interacted.

  14. High Resolution Seismic Imaging of the Trench Canyon Fault Zone, Mono Lake, Northeastern California

    NASA Astrophysics Data System (ADS)

    Novick, M. W.; Jayko, A. S.; Roeske, S.; McClain, J. S.; Hart, P. E.; Boyle, M.

    2009-12-01

    High resolution seismic imaging of Mono Lake, located in northeastern California, has revealed an approximately northwest striking fault in the area to the west of aerially exposed Negit Volcano. This fault, henceforth referred to as the Trench Canyon Fault (TCF), has also been mapped onshore along a correlating strike as far north as Cedar Hill Volcano, located to the northeast of the lake on the California/Nevada border. Onshore, the TCF was mapped for approximately 10 kilometers using air photos, DEM images, and standard geologic pace and compass mapping techniques. The TCF post- dates the last glacial maximum, evidenced by the cutting of wave cut benches along Cedar Hill Volcano. Relict, non-historic shorelines, left by the steady evaporation of Mono Lake beginning approximately 13k, are also repeatedly cut by the fault. Additional evidence of fault presence includes sag ponds, pressure ridges, tectonically fractured rocks, and normal fault scarps found along strike. Offshore, DEM images show a northeast striking structure to the northwest of Negit Volcano, which is co-linear with the onshore TCF. High resolution seismic imaging of the structure, using an applied acoustic/SIG mini-sparker system, reveals steeply dipping Holocene sediments, as well as volcanic deposits from active vents which have erupted in the last 1000 years, offset by the fault. Detailed structural analysis of the previously unstudied Trench Canyon Fault (TFC) and faults in the Cedar Hill region of northern California, along with seismic studies of sediments beneath Mono Lake not only allow for a better comprehension of this minor fault system, but provide greater understanding of the larger and more complex Walker Lane Shear Zone. Fault analyses, combined and correlated with those from CHV, give a better understanding of how slip is transferred into the complicated Mina defection to the east, from the dextral and normal faults along the Sierra Nevada Range front.

  15. Oregon Cascades Play Fairway Analysis: Faults and Heat Flow maps

    DOE Data Explorer

    Adam Brandt

    2015-11-15

    This submission includes a fault map of the Oregon Cascades and backarc, a probability map of heat flow, and a fault density probability layer. More extensive metadata can be found within each zip file.

  16. Reexaming Owens Valley: Partitioning of Discrete and Distributed Transtension, Structural Controls on Magmatism, and Seismic Potential within an Active Rift Zone, Eastern California.

    NASA Astrophysics Data System (ADS)

    Levy, D. A.; Haproff, P. J.; Yin, A.

    2016-12-01

    Crustal-scale transtensional deformation is common in intracontinental extensional settings. However, along-strike variations in the geometry, kinematics, and linkages between rift-related faults, along with controls on local magmatic plumbing, remain inadequately examined. In this study, we conducted geologic mapping of active structures within central and northern Owens Valley of eastern California. C. Owens Valley features right-slip oblique deformation accommodated by three discrete north-south-trending faults: (1) the right-slip Owens Valley fault (OVF) and rift-bounding (2) Sierra Nevada Frontal fault (SNFF) and (3) the White-Inyo Mountains fault (WIMF). The OVF also serves as a lithospheric-scale, vertical conduit for asthenospheric-derived magma to migrate upwards and erupt at Big Pine Volcanic Field. Right-slip shear within C. Owens Valley is transferred to the SNFF of N. Owens Valley via the Poverty Hills restraining bend. In contrast to C. Owens Valley, the northern segment is dominated by distributed E-W to NE-SW-oriented extension, evidenced by normal fault scarps throughout Volcanic Tablelands and basin floor. Furthermore, the White Mountain fault which bounds N. Owens Valley to the east consists of a master west-dipping detachment fault that thinned the lithosphere, allowing for asthenospheric upwelling into the crust beneath the western rift shoulder. Subvertical, right-slip faults of the SNFF provide a conduit for magma to erupt on the surface throughout the Long Valley Caldera, Mono-Inyo Craters, and Mono Basin region. Our mapping demonstrates complex strain partitioning of discrete and distributed deformation within an alternating pure and simple shear, transtensional rift zone. Lastly, we present previously unknown relationships in Owens Valley between lithospheric-scale fault systems, seismic potential, and rift magmatism.

  17. Generalized surficial geologic map of the Fort Irwin area, San Bernadino: Chapter B in Geology and geophysics applied to groundwater hydrology at Fort Irwin, California

    USGS Publications Warehouse

    Miller, David M.; Menges, Christopher M.; Lidke, David J.; Buesch, David C.

    2014-01-01

    The geology and landscape of the Fort Irwin area, typical of many parts of the Mojave Desert, consist of rugged mountains separated by broad alluviated valleys that form the main coarse-resolution features of the geologic map. Crystalline and sedimentary rocks, Mesozoic and older in age, form most of the mountains with lesser accumulations of Miocene sedimentary and volcanic rocks. In detail, the area exhibits a fairly complex distribution of surficial deposits resulting from diverse rock sources and geomorphology that has been driven by topographic changes caused by recent and active faulting. Depositional environments span those typical of the Mojave Desert: alluvial fans on broad piedmonts, major intermittent streams along valley floors, eolian sand dunes and sheets, and playas in closed valleys that lack through-going washes. Erosional environments include rocky mountains, smooth gently sloping pediments, and badlands in readily eroded sediment. All parts of the landscape, from regional distribution of mountains, valleys, and faults to details of degree of soil development in surface materials, are portrayed by the surficial geologic map. Many of these attributes govern infiltration and recharge, and the surface distribution of permeable rock units such as Miocene sedimentary and volcanic rocks provides a basis for evaluating potential groundwater storage. Quaternary faults are widespread in the Fort Irwin area and include sinistral, east-striking faults that characterize the central swath of the area and the contrasting dextral, northwest-striking faults that border the east and west margins. Bedrock distribution and thickness of valley-fill deposits are controlled by modern and past faulting, and faults on the map help to identify targets for groundwater exploration.

  18. Gravity field over the Sea of Galilee: Evidence for a composite basin along a transform fault

    USGS Publications Warehouse

    Ben-Avraham, Z.; ten Brink, Uri S.; Bell, R.; Reznikov, M.

    1996-01-01

    The Sea of Galilee (Lake Kinneret) is located at the northern portion of the Kinneret-Bet Shean basin, in the northern Dead Sea transform. Three hundred kilometers of continuous marine gravity data were collected in the lake and integrated with land gravity data to a distance of more than 20 km around the lake. Analyses of the gravity data resulted in a free-air anomaly map, a variable density Bouguer anomaly map, and a horizontal first derivative map of the Bouguer anomaly. These maps, together with gravity models of profiles across the lake and the area south of it, were used to infer the geometry of the basins in this region and the main faults of the transform system. The Sea of Galilee can be divided into two units. The southern half is a pull-apart that extends to the Kinarot Valley, south of the lake, whereas the northern half was formed by rotational opening and transverse normal faults. The deepest part of the basinal area is located well south of the deepest bathymetric depression. This implies that the northeastern part of the lake, where the bathymetry is the deepest, is a young feature that is actively subsiding now. The pull-apart basin is almost symmetrical in the southern part of the lake and in the Kinarot Valley south of the lake. This suggests that the basin here is bounded by strike-slip faults on both sides. The eastern boundary fault extends to the northern part of the lake, while the western fault does not cross the northern part. The main factor controlling the structural complexity of this area is the interaction of the Dead Sea transform with a subperpendicular fault system and rotated blocks.

  19. A New Seismic Hazard Model for Mainland China

    NASA Astrophysics Data System (ADS)

    Rong, Y.; Xu, X.; Chen, G.; Cheng, J.; Magistrale, H.; Shen, Z. K.

    2017-12-01

    We are developing a new seismic hazard model for Mainland China by integrating historical earthquake catalogs, geological faults, geodetic GPS data, and geology maps. To build the model, we construct an Mw-based homogeneous historical earthquake catalog spanning from 780 B.C. to present, create fault models from active fault data, and derive a strain rate model based on the most complete GPS measurements and a new strain derivation algorithm. We divide China and the surrounding regions into about 20 large seismic source zones. For each zone, a tapered Gutenberg-Richter (TGR) magnitude-frequency distribution is used to model the seismic activity rates. The a- and b-values of the TGR distribution are calculated using observed earthquake data, while the corner magnitude is constrained independently using the seismic moment rate inferred from the geodetically-based strain rate model. Small and medium sized earthquakes are distributed within the source zones following the location and magnitude patterns of historical earthquakes. Some of the larger earthquakes are distributed onto active faults, based on their geological characteristics such as slip rate, fault length, down-dip width, and various paleoseismic data. The remaining larger earthquakes are then placed into the background. A new set of magnitude-rupture scaling relationships is developed based on earthquake data from China and vicinity. We evaluate and select appropriate ground motion prediction equations by comparing them with observed ground motion data and performing residual analysis. To implement the modeling workflow, we develop a tool that builds upon the functionalities of GEM's Hazard Modeler's Toolkit. The GEM OpenQuake software is used to calculate seismic hazard at various ground motion periods and various return periods. To account for site amplification, we construct a site condition map based on geology. The resulting new seismic hazard maps can be used for seismic risk analysis and management.

  20. Geologic map of the Sunshine 7.5' quadrangle, Taos County, New Mexico

    USGS Publications Warehouse

    Thompson, Ren A.; Turner, Kenzie J.; Shroba, Ralph R.; Cosca, Michael A.; Ruleman, Chester A.; Lee, John P.; Brandt, Theodore R.

    2014-01-01

    Pliocene and younger basin deposition was accommodated along predominantly north-trending fault-bounded grabens and is preserved as poorly exposed fault scarps that cut lava flows of Ute Mountain volcano, north of the map area. The Servilleta Basalt and younger surficial deposits record largely down-to-east basinward displacement. Faults are identified with varying confidence levels in the map area. Recognizing and mapping faults developed near the surface in relatively young, brittle volcanic rocks is difficult because: (1) they tend to form fractured zones tens of meters wide rather than discrete fault planes, (2) the relative youth of the deposits has resulted in only modest displacements on most faults, and (3) some of the faults may have significant strike-slip components that do not result in large vertical offsets that are readily apparent in offset of sub-horizontal contacts. Those faults characterized as “certain” either have distinct offset of map units or had slip planes that were directly observed in the field. Lineaments defined from magnetic anomalies form an additional constraint on potential fault locations.

  1. Seismic activity and faulting associated with a large underground nuclear explosion

    USGS Publications Warehouse

    Hamilton, R.M.; McKeown, F.A.; Healy, J.H.

    1969-01-01

    The 1.1-megaton nuclear test Benham caused movement on previously mapped faults and was followed by a sequence of small earthquakes. These effects were confined to a zone extending not more than 13 kilometers from ground zero; they are apparently related to the release of natural tectonic strain.

  2. Intra-caldera active fault: An example from the Mw 7.0 2016 Kumamoto, Japan, earthquake

    NASA Astrophysics Data System (ADS)

    Toda, S.; Murakami, T.; Takahashi, N.

    2017-12-01

    A NE-trending 30-km-long surface rupture with up to 2.4 m dextral slip emerged during the Mw=7.0 16 April 2016 Kumamoto earthquake along the previously mapped Futagawa and northern Hinagu fault systems. The 5-km-long portion of the northeast rupture end, which was previously unidentified, crossed somma and extended to the 20-km-diameter Aso Caldera, one of the major active volcanoes, central Kyushu. We here explore geologic exposures of interplays of active faulting and active volcanism, and then argue the Futagawa fault system has been influenced by the ring fault system associated with the caldera forming gigantic eruptions since 270 ka, last of which occurred 90 ka ejecting a huge amount of ignimbrite. To understand the interplays, together with the mapping of the 2016 rupture, we employed an UAV to capture numerous photos of the exposures along the canyon and developed 3D orthochromatic topographic model using PhotoScan. One-hundred-meter-deep Kurokawa River canyon by the Aso Caldera rim exposes two lava flow units of 50 ka vertically offset by 10 m by the Futatawa fault system. Reconstructions of the collapsed bridges across the Kurokawa River also reveal cross sections of a 30-meter-high tectonic bulge and 10-m-scale negative flower structure deformed by the frequent fault movements. We speculate two fault developing models across the Aso Caldera. One is that the NE edge of the Futagawa fault system was cut and reset by the caldera forming ring fault, which indicates the 3-km-long rupture extent within the Aso Caldera would be a product of the fault growth since the last Aso-4 eruption of 90 ka. It enables us to estimate the 33 mm/yr of the fault propagation speed. An alternative model is that subsurface rupture of the Kumamoto earthquake extended further to the NE rim, the other side of the caldera edge, which is partially supported by the geodetic and seismic inversions. With respect to the model, the clear surface rupture of the 2016 Kumamoto earthquake was invisible due to the lava and fallout layers younger than 4ka that probably experienced only one or two events and do not have the pre-existing weak and sharp fault plane yet.

  3. Geology and neotectonism in the epicentral area of the 2011 M5.8 Mineral, Virginia, earthquake

    USGS Publications Warehouse

    Burton, William C.; Spears, David B.; Harrison, Richard W.; Evans, Nicholas H.; Schindler, J. Stephen; Counts, Ronald C.

    2015-01-01

    arc (Ordovician Chopawamsic Formation) to Laurentia, intrusion of a granodiorite pluton (Ordovician Ellisville pluton), and formation of a post-Chopawamsic successor basin (Ordovician Quantico Formation), all accompanied by early Paleozoic regional deformation and metamorphism. Local transpressional faulting and retrograde metamorphism occurred in the late Paleozoic, followed by diabase dike intrusion and possible local normal faulting in the early Mesozoic. The overall goal of the bedrock mapping is to determine what existing geologic structures might have been reactivated during the 2011 seismic event, and surfi cial deposits along the South Anna River are being mapped in order to determine possible neotectonic uplift. In addition to bedrock and surfi cial studies, we have excavated trenches in an area that contains two late Paleozoic faults and represents the updip projection of the causative fault for the 2011 quake. The trenches reveal faulting that has offset surfi cial deposits dated as Quaternary in age, as well as numerous other brittle structures that suggest a geologically recent history of neotectonic activity.

  4. Preliminary Earthquake Hazard Map of Afghanistan

    USGS Publications Warehouse

    Boyd, Oliver S.; Mueller, Charles S.; Rukstales, Kenneth S.

    2007-01-01

    Introduction Earthquakes represent a serious threat to the people and institutions of Afghanistan. As part of a United States Agency for International Development (USAID) effort to assess the resource potential and seismic hazards of Afghanistan, the Seismic Hazard Mapping group of the United States Geological Survey (USGS) has prepared a series of probabilistic seismic hazard maps that help quantify the expected frequency and strength of ground shaking nationwide. To construct the maps, we do a complete hazard analysis for each of ~35,000 sites in the study area. We use a probabilistic methodology that accounts for all potential seismic sources and their rates of earthquake activity, and we incorporate modeling uncertainty by using logic trees for source and ground-motion parameters. See the Appendix for an explanation of probabilistic seismic hazard analysis and discussion of seismic risk. Afghanistan occupies a southward-projecting, relatively stable promontory of the Eurasian tectonic plate (Ambraseys and Bilham, 2003; Wheeler and others, 2005). Active plate boundaries, however, surround Afghanistan on the west, south, and east. To the west, the Arabian plate moves northward relative to Eurasia at about 3 cm/yr. The active plate boundary trends northwestward through the Zagros region of southwestern Iran. Deformation is accommodated throughout the territory of Iran; major structures include several north-south-trending, right-lateral strike-slip fault systems in the east and, farther to the north, a series of east-west-trending reverse- and strike-slip faults. This deformation apparently does not cross the border into relatively stable western Afghanistan. In the east, the Indian plate moves northward relative to Eurasia at a rate of about 4 cm/yr. A broad, transpressional plate-boundary zone extends into eastern Afghanistan, trending southwestward from the Hindu Kush in northeast Afghanistan, through Kabul, and along the Afghanistan-Pakistan border. Deformation here is expressed as a belt of major, north-northeast-trending, left-lateral strike-slip faults and abundant seismicity. The seismicity intensifies farther to the northeast and includes a prominent zone of deep earthquakes associated with northward subduction of the Indian plate beneath Eurasia that extends beneath the Hindu Kush and Pamirs Mountains. Production of the seismic hazard maps is challenging because the geological and seismological data required to produce a seismic hazard model are limited. The data that are available for this project include historical seismicity and poorly constrained slip rates on only a few of the many active faults in the country. Much of the hazard is derived from a new catalog of historical earthquakes: from 1964 to the present, with magnitude equal to or greater than about 4.5, and with depth between 0 and 250 kilometers. We also include four specific faults in the model: the Chaman fault with an assigned slip rate of 10 mm/yr, the Central Badakhshan fault with an assigned slip rate of 12 mm/yr, the Darvaz fault with an assigned slip rate of 7 mm/yr, and the Hari Rud fault with an assigned slip rate of 2 mm/yr. For these faults and for shallow seismicity less than 50 km deep, we incorporate published ground-motion estimates from tectonically active regions of western North America, Europe, and the Middle East. Ground-motion estimates for deeper seismicity are derived from data in subduction environments. We apply estimates derived for tectonic regions where subduction is the main tectonic process for intermediate-depth seismicity between 50- and 250-km depth. Within the framework of these limitations, we have developed a preliminary probabilistic seismic-hazard assessment of Afghanistan, the type of analysis that underpins the seismic components of modern building codes in the United States. The assessment includes maps of estimated peak ground-acceleration (PGA), 0.2-second spectral acceleration (SA), and 1.0-secon

  5. Surface faults in the gulf coastal plain between Victoria and Beaumont, Texas

    USGS Publications Warehouse

    Verbeek, Earl R.

    1979-01-01

    Displacement of the land surface by faulting is widespread in the Houston-Galveston region, an area which has undergone moderate to severe land subsidence associated with fluid withdrawal (principally water, and to a lesser extent, oil and gas). A causative link between subsidence and fluid extraction has been convincingly reported in the published literature. However, the degree to which fluid withdrawal affects fault movement in the Texas Gulf Coast, and the mechanism(s) by which this occurs are as yet unclear. Faults that offset the ground surface are not confined to the large (>6000-km2) subsidence “bowl” centered on Houston, but rather are common and characteristic features of Gulf Coast geology. Current observations and conclusions concerning surface faults mapped in a 35,000-km2 area between Victoria and Beaumont, Texas (which area includes the Houston subsidence bowl) may be summarized as follows: (1) Hundreds of faults cutting the Pleistocene and Holocene sediments exposed in the coastal plain have been mapped. Many faults lie well outside the Houston-Galveston region; of these, more than 10% are active, as shown by such features as displaced, fractured, and patched road surfaces, structural failure of buildings astride faults, and deformed railroad tracks. (2) Complex patterns of surface faults are common above salt domes. Both radial patterns (for example, in High Island, Blue Ridge, Clam Lake, and Clinton domes) and crestal grabens (for example, in the South Houston and Friendswood-Webster domes) have been recognized. Elongate grabens connecting several known and suspected salt domes, such as the fault zone connecting Mykawa, Friendswood-Webster, and Clear Lake domes, suggest fault development above rising salt ridges. (3) Surface faults associated with salt domes tend to be short (<5 km in length), numerous, curved in map view, and of diverse trend. Intersecting faults are common. In contrast, surface faults in areas unaffected by salt diapirism are frequently mappable for appreciable distances (>10 km), occur singly or in simple grabens, have gently sinuous traces, and tend to lie roughly parallel to the ENE-NE “coastwise” trend common to regional growth faults identified in subsurface Tertiary sediments. (4) Evidence to support the thesis that surface scarps are the shallow expression of faults extending downward into the Tertiary section is mostly indirect, but nonetheless reasonably convincing. Certainly the patterns of crestal grabens and radiating faults mapped on the surface above salt domes are more than happenstance; analogous fault patterns have been documented around these structures at depth. Similarly, some of the long surface faults not associated with salt domes seem to have subsurface counterparts among known regional growth faults documented through well logs and seismic data. Correlations between surface scarps and faults offsetting subsurface data are not conclusive because of the large vertical distances (1900- 3800 m) involved in making the most of the inferred connections. Nevertheless, the large number of successful correlations - in trend, movement sense, and position - suggests that many surface scarps represent merely the most recent displacements on faults formed during the Tertiary. (5) Upstream-facing fault scarps in this region of low relief can be significant impediments to streams. Locally, both abandoned, mud-filled Pleistocene distributary channels and, more commonly, Holocene drainage lines still occupied by perennial streams reflect the influence of faulting on their development. Some bend sharply near faults and have tended to flow along or pond against the base of scarps; others meander within topographically expressed grabens. Such evidence for Quaternary displacement of the ground surface is widespread in the Texas Gulf coast. In the general, however, streams in areas now offset by faulting show no disruption of their courses where they cross fault scarps. Such scarps are probably very young, and where they can be demonstrated to partly or wholly predate fluid withdrawal, very recent natural fault activity is indicated. (6) Early aerial photographs (1930) of the entire region and topographic maps (1915-16 surveys) of Harris County (Houston and vicinity) show that many faults had already displaced the land surface at a time when appreciable pressure declines in subjacent strata were localized to relatively few areas of large-scale pumping. Prehistoric faulting of the land surface, as noted above, appears to have affected much of the Texas Gulf Coast. (7) A relation between groundwater extraction and current motion on active faults is suspected because of the increased incidence of ground failure in the Houston-Galveston subsidence bowl. This argument is weakened somewhat by recognition of numerous surface faults, some of them active today, far beyond the periphery of the strongly subsiding area. Moreover, tilt beam records from two monitored faults in northwest Houston and accounts of fault damage from local residents demonstrate a complex, episodic nature of fault creep which can only partially be correlated with groundwater production. Nevertheless, although specific mechanisms are in doubt, the extraction of groundwater from shallow (<800-m) sands is probably a major factor in contributing to current displacement of the ground surface in the Houston-Galveston region. Within this large area, the number of faults recognizable from aerial photographs has increased at least tenfold between 1930 and 1970. Elsewhere in the Texas Gulf Coast only a moderate increase has been noted, some of which is possibly attributable to oil and gas production. Surface fault density in the Houston-Galveston region is far greater than in any other area of the Texas Gulf Coast investigated to date. A plausible explanation for these differences is that large overdrafts of groundwater over an extended period of time in the Houston-Galveston region have stimulated fault activity there. Throughout the Texas Gulf Coast, however, a natural contribution to fault motion remains a distinct possibility.

  6. Geologic map of the Vail East quadrangle, Eagle County, Colorado

    USGS Publications Warehouse

    Kellogg, Karl S.; Bryant, Bruce; Redsteer, Margaret H.

    2003-01-01

    New 1:24,000-scale geologic mapping along the Interstate-70 urban corridor in western Colorado, in support of the State/USGS Cooperative Geologic Mapping Project, is contributing to a more complete understanding of the stratigraphy, structure, tectonic evolution, and hazard potential of this rapidly developing region. The 1:24,000-scale Vail East quadrangle straddles the Gore fault system, the western structural boundary of the Gore Range. The Gore fault system is a contractional structure that has been recurrently active since at least the early Paleozoic and marks the approximate eastern boundary of the Central Colorado trough, a thick late Paleozoic depocenter into which thousands of meters of clastic sediment were deposited from several uplifts, including the ancestral Front Range. The Gore fault was active during both the late Paleozoic and Upper Cretaceous-lower Tertiary (Laramide) deformations. In addition, numerous north-northwest faults that cut the crystalline rocks of the Gore Range were active during at least 5 periods, the last of which was related to Neogene uplift of the Gore Range and formation of the northern Rio Grande rift. Early Proterozoic crystalline rocks underlie the high Gore Range, north and east of the Gore fault system. These rocks consist predominantly of migmatitic biotite gneiss intruded by mostly granitic rocks of the 1.667-1.750 Ma Cross Creek batholith, part of the 1,667-1,750 Ma Routt Plutonic Suite (Tweto, 1987). Southwest of the Gore fault, a mostly gently south-dipping sequence of Pennsylvanian Mimturn Formation, as thick as 1,900 m, and the Permian and Pennsylvanian Maroon Formation (only the basal several hundred meters are exposed in the quadrangle)were shed from the ancestral Front Range and overlie a thin sequence of Devonian and Cambrian rocks. The Minturn Formation is a sequence of interlayered pink, maroon, and gray conglomerate, sandstone, shale, and marine limestone. The Maroon Formation is mostly reddish conglomerate and sandstone. Glacial till of both the middle Pleistocene Bull Lake and late Pleistocene Pinedale glaciations are well exposed along parts of the Gore Creek valley and its tributaries, although human development has profoundly altered the outcrop patterns along the Gore Creek valley bottom. Landslides, some of which are currently active, are also mapped.

  7. Quaternary marine terraces as indicators of neotectonic activity of the Ierapetra normal fault SE Crete (Greece)

    NASA Astrophysics Data System (ADS)

    Gaki-Papanastassiou, K.; Karymbalis, E.; Papanastassiou, D.; Maroukian, H.

    2009-03-01

    Along the southern coast of the island of Crete, a series of east-west oriented Late Pleistocene marine terraces exist, demonstrating the significant coastal uplift of this area. Five uplifted terraces were mapped in detail and correlated with Middle-Late Pleistocene sea-level stands following the global sea-level fluctuations. These terraces are deformed by the vertical movements of the NNE-SSW trending and dipping west Ierapetra normal fault. The elevation of the inner edges of the terraces was estimated at several sites by using aerial photographs and detailed topographic maps and diagrams, supported by extensive field observations. In this way detailed geomorphological maps were constructed utilizing GIS technology. All these allowed us to obtain rates of 0.3 mm/yr for the regional component of uplift and 0.1 mm/yr for the vertical slip movements of the Ierapetra fault. Based on the obtained rates and the existence of coastal archaeological Roman ruins it is concluded that Ierapetra fault should have been reactivated sometime after the Roman period.

  8. Marine Geophysical Characterization of the Chain Fracture Zone in the Equatorial Atlantic

    NASA Astrophysics Data System (ADS)

    Harmon, N.; Rychert, C.; Agius, M. R.; Tharimena, S.; Kendall, J. M.

    2017-12-01

    The Chain Fracture zone is part of a larger system of fracture zones along the Mid Atlantic Ridge that is thought to be one of the original zones of weakness during the break up of Pangea. It is over 300 km long and produces earthquakes as large as Mw 6.9 on segments of the active fault zone. Here we present the results of two marine geophysical mapping campaigns over the active part of the Chain Fracture zone as part of the PI-LAB (Passive Imaging of the Lithosphere-Asthenosphere Boundary) experiment. We collected swath bathymetry, backscatter imagery, gravity and total field magnetic anomaly. We mapped the fault scarps within the transform fault system using the 50 m resolution swath and backscatter imagery. In addition, a 30-40 mGal residual Mantle Bouguer Anomaly determined from gravity analysis suggests the crust is by up to 1.4-2.0 km beneath the Chain relative to the adjacent ridge segments. However, in the eastern 75 km of the active transform we find evidence for thicker crust. The active fault system cuts through the region of thicker crust and there is a cluster of MW > 6 earthquakes in this region. There is a cluster of similar sized earthquakes on the western end where thinner crust is inferred. This suggests that variations in melt production and crustal thickness at the mid ocean ridge systems may have only a minor effect on the seismicity and longevity of the transform fault system.

  9. Preliminary Monitoring of Soil gas Radon in Potentially Active Faults, San Sai District, Chiang Mai Province, Thailand

    NASA Astrophysics Data System (ADS)

    Pondthai, P.; Udphuay, S.

    2013-05-01

    The magnitude of 5.1 Mw earthquake occurred in San Sai District, Chiang Mai Province, Thailand in December 2006 was considered an uncommon event due to the fact that there was no statistical record of such significant earthquake in the area. Therefore the earthquake might have been associated with a potentially active fault zone within the area. The objective of this study is to measure soil gas radon across this unknown fault zone within the Chiang Mai Basin, northern Thailand. Two profiles traversing the expected fault zone of soil gas radon measurements have been monitored, using TASTRAK solid state track nuclear detectors (SSNTDs). Radon signals from three periods of measurement show a distinctive consistent spatial distribution pattern. Anomalous radon areas along the profiles are connected to fault locations previously interpreted from other geophysical survey results. The increased radon signal changes from the radon background level with the signal-to-background ratio above 3 are considered anomalous. Such pattern of radon anomaly supports the existence of the faults. The radon measurement, therefore is a powerful technique in mapping active fault zone.

  10. Geostatistical analysis of the power-law exponents of the size distribution of earthquakes, Quaternary faults and monogenetic volcanoes in the Central Trans-Mexican Volcanic Belt

    NASA Astrophysics Data System (ADS)

    Mendoza-Ponce, A.; Perez Lopez, R.; Guardiola-Albert, C.; Garduño-Monroy, V. H.; Figueroa-Soto, Á.

    2017-12-01

    The Trans Mexican Volcanic Belt (TMVB) is related to the convergence between the Cocos and Rivera plates beneath the North American plate by the Middle America Trench (MAT). Moreover, there is also intraplate faulting within the TMVB, which is responsible of important earthquakes like the Acambay in 1912 (Mw 7.0) and Maravatío in 1979 (Mb 5.3). In this tectonic scheme, monogenetic volcanoes, active faulting and earthquakes configure a complex tectonic frame where different spatial anisotropy featured this activity. This complexity can be characterized by the power-law of the frequency-size distribution of the monogenetic volcanoes, the faults and the earthquakes. This power-law is determined by the b-value of the Gutenberg-Richter law in case of the earthquakes. The novelty of this work is the application of geostatistics techniques (variograms) for the analysis of spatial distribution of the b-values obtained from the size distribution of the basal diameter for monogenetic volcanoes in the Michoacán-Guanajuato Volcanic Field (bmv), surface area for faults in the Morelia-Acambay fault system (bf) and the seismicity in the Central TMVB (beq). Therefore, the anisotropy in each case was compared and a geometric tectonic model was proposed. The evaluation of the spatial distribution of the b-value maps gives us a general interpretation of the tectonic stress field and the seismic hazard in the zone. Hence, the beq-value map for the seismic catalog shows anomalously low and high values, reveling two different processes, one related to a typical tectonic rupture (low b-values) and the other one related to hydraulic fracturing (high b-values). The resulting bmv-map for the diameter basal cones indicates us the locations of the ages of the monogenetic volcanoes, giving important information about the volcanic hazard. High bmv-values are correlated with the presence of young cinder cones and an increasing probability of a new volcano. For the Morelia-Acambay fault system, the bf-map shows the strongest locations along the system where tectonic stress accumulates.

  11. LiDAR-Assisted identification of an active fault near Truckee, California

    USGS Publications Warehouse

    Hunter, L.E.; Howle, J.F.; Rose, R.S.; Bawden, G.W.

    2011-01-01

    We use high-resolution (1.5-2.4 points/m2) bare-earth airborne Light Detection and Ranging (LiDAR) imagery to identify, map, constrain, and visualize fault-related geomorphology in densely vegetated terrain surrounding Martis Creek Dam near Truckee, California. Bare-earth LiDAR imagery reveals a previously unrecognized and apparently youthful right-lateral strike-slip fault that exhibits laterally continuous tectonic geomorphic features over a 35-km-long zone. If these interpretations are correct, the fault, herein named the Polaris fault, may represent a significant seismic hazard to the greater Truckee-Lake Tahoe and Reno-Carson City regions. Three-dimensional modeling of an offset late Quaternary terrace riser indicates a minimum tectonic slip rate of 0.4 ?? 0.1 mm/yr.Mapped fault patterns are fairly typical of regional patterns elsewhere in the northern Walker Lane and are in strong coherence with moderate magnitude historical seismicity of the immediate area, as well as the current regional stress regime. Based on a range of surface-rupture lengths and depths to the base of the seismogenic zone, we estimate a maximum earthquake magnitude (M) for the Polaris fault to be between 6.4 and 6.9.

  12. A shifting rift—Geophysical insights into the evolution of Rio Grande rift margins and the Embudo transfer zone near Taos, New Mexico

    USGS Publications Warehouse

    Grauch, V.J.S.; Bauer, Paul W.; Drenth, Benjamin J.; Kelson, Keith I.

    2017-01-01

    We present a detailed example of how a subbasin develops adjacent to a transfer zone in the Rio Grande rift. The Embudo transfer zone in the Rio Grande rift is considered one of the classic examples and has been used as the inspiration for several theoretical models. Despite this attention, the history of its development into a major rift structure is poorly known along its northern extent near Taos, New Mexico. Geologic evidence for all but its young rift history is concealed under Quaternary cover. We focus on understanding the pre-Quaternary evidence that is in the subsurface by integrating diverse pieces of geologic and geophysical information. As a result, we present a substantively new understanding of the tectonic configuration and evolution of the northern extent of the Embudo fault and its adjacent subbasin.We integrate geophysical, borehole, and geologic information to interpret the subsurface configuration of the rift margins formed by the Embudo and Sangre de Cristo faults and the geometry of the subbasin within the Taos embayment. Key features interpreted include (1) an imperfect D-shaped subbasin that slopes to the east and southeast, with the deepest point ∼2 km below the valley floor located northwest of Taos at ∼36° 26′N latitude and 105° 37′W longitude; (2) a concealed Embudo fault system that extends as much as 7 km wider than is mapped at the surface, wherein fault strands disrupt or truncate flows of Pliocene Servilleta Basalt and step down into the subbasin with a minimum of 1.8 km of vertical displacement; and (3) a similar, wider than expected (5–7 km) zone of stepped, west-down normal faults associated with the Sangre de Cristo range front fault.From the geophysical interpretations and subsurface models, we infer relations between faulting and flows of Pliocene Servilleta Basalt and older, buried basaltic rocks that, combined with geologic mapping, suggest a revised rift history involving shifts in the locus of fault activity as the Taos subbasin developed. We speculate that faults related to north-striking grabens at the end of Laramide time formed the first west-down master faults. The Embudo fault may have initiated in early Miocene southwest of the Taos region. Normal-oblique slip on these early fault strands likely transitioned in space and time to dominantly left-lateral slip as the Embudo fault propagated to the northeast. During and shortly after eruption of Servilleta Basalt, proto-Embudo fault strands were active along and parallel to the modern, NE-aligned Rio Pueblo de Taos, ∼4–7 km basinward of the modern, mapped Embudo fault zone. Faults along the northeastern subbasin margin had northwest strikes for most of the period of subbasin formation and were located ∼5–7 km basinward of the modern Sangre de Cristo fault. The locus of fault activity shifted to more northerly striking faults within 2 km of the modern range front sometime after Servilleta volcanism had ceased. The northerly faults may have linked with the northeasterly proto-Embudo faults at this time, concurrent with the development of N-striking Los Cordovas normal faults within the interior of the subbasin. By middle Pleistocene(?) time, the Los Cordovas faults had become inactive, and the linked Embudo–Sangre de Cristo fault system migrated to the south, to the modern range front.

  13. Geologic map of the Paintbrush Canyon Area, Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickerson, R.P.; Drake, R.M. II

    This geologic map is produced to support site characterization studies of Yucca Mountain, Nevada, site of a potential nuclear waste storage facility. The area encompassed by this map lies between Yucca Wash and Fortymile Canyon, northeast of Yucca Mountain. It is on the southern flank of the Timber Mountain caldera complex within the southwest Nevada volcanic field. Miocene tuffs and lavas of the Calico Hills Formation, the Paintbrush Group, and the Timber Mountain Group crop out in the area of this map. The source vents of the tuff cones and lava domes commonly are located beneath the thickest deposits ofmore » pyroclastic ejecta and lava flows. The rocks within the mapped area have been deformed by north- and northwest-striking, dominantly west-dipping normal faults and a few east-dipping normal faults. Faults commonly are characterized by well developed fault scarps, thick breccia zones, and hanging-wall grabens. Latest movement as preserved by slickensides on west-dipping fault scarps is oblique down towards the southwest. Two of these faults, the Paintbrush Canyon fault and the Bow Ridge fault, are major block-bounding faults here and to the south at Yucca Mountain. Offset of stratigraphic units across faults indicates that faulting occurred throughout the time these volcanic units were deposited.« less

  14. Seismotectonics investigations in the internal Cottian Alps (Italian Western Alps)

    NASA Astrophysics Data System (ADS)

    Perrone, Gianluigi; Eva, Elena; Solarino, Stefano; Cadoppi, Paola; Balestro, Gianni; Fioraso, Gianfranco; Tallone, Sergio

    2010-05-01

    The inner Cottian Alps represent an area of a low- to moderate- magnitude seismicity (Eva et al., 1990) even though some historical earthquakes reached VIII degree of the Mercalli's scale. Although the frame of seismicity is quite well known, the relation between faults and earthquake sources is still under debate. The low deformation rates and the occurrence of several glacial-interglacial cycles during the Pleistocene partly masked the geomorphological evidences of the recent tectonic activity. Recent studies based on field mapping and structural analysis (Balestro et al., 2009; Perrone et al., 2009) allowed characterizing the size and extension of the regional-scale faults dissecting this area of the Western Alps. Here, we combine the results of these novel studies and updated seismological data with the aim to investigate the relations between mapped faults and seismic activity. In the analyzed area both continental crust and oceanic tectonic units, belonging to the Penninic Domain of the Western Alps, crop out. The main brittle tectonic feature of this area is represented by the Lis-Trana Deformation Zone (LTZ), an N-S striking, steep structure that extends for about 35 km from the Lower Lanzo valleys to the Lower Sangone Valley. The occurrence of steep faults displacing the metamorphic basement, showed in seismic sections carried out for oil exploration (Bertotti & Mosca, 2009), suggests that the LTZ may be prolonged Southward beneath the Plio-Quaternary deposits of the Po Plain. West of the LTZ some other minor E-W and N-S faults are also present. Zircon and apatite fission-track data indicate that the activity of these faults started since the Oligocene. Two main faulting stages characterize the post-metamorphic structural evolution of this area: the earlier (faulting stage A; Oligocene?-Early Miocene?) is associated to right-lateral movements along the LTZ and sinistral movements along E-W faults; the subsequent faulting stage (faulting stage B; post-Early Miocene) is related to transtensive/extensional movements along the LTZ and the development of minor sub-parallel N-S faults. This kinematic evolution fits in a model of dextral-transtension at regional scale. The more recent activity of the LTZ may have caused the development of Pleistocene lacustrine basin, several hundred metres thick, in the Lower Chisone and Pellice valleys, which did not hosted glacial tongues. Along the LTZ, however, Pleistocene deposits showing evidence of brittle deformation were also found. With the aim to better understand the relation between the current seismic activity and faults, an analysis was carried out by selecting the best located earthquakes (location error less than 3 km) recorded by the seismic network of the North Western Italy (RSNI). This selection is made necessary by the relatively small size of the structures under investigations in order to avoid fake attributions. In addition to get qualitative information about the seismogenic source, the focal mechanisms of four earthquakes occurring along the mapped faults were calculated sorting out the best locatable events among those occurred in the area. The good geometric and kinematic agreement between structural and seismological data indicates a possible dependence of the seismicity of the inner Cottian Alps with the current tectonic activity of the LTZ and its associated minor structures. Balestro G. et al. (2009) Ital. J. Geosci., 128(2), 331-339. Bertotti G., Mosca P. (2009) Tectonophysics, 475, 117-127. Eva C. et al. (1990) Atti del Convegno Gruppo Nazionale Difesa dai terremoti, Ed. Ambiente, Pisa, 1, 25-34. Perrone G. et al. (2009) Ital. J. Geosci., 128(2), 541-549.

  15. Surface Rupture Map of the 2002 M7.9 Denali Fault Earthquake, Alaska: Digital Data

    USGS Publications Warehouse

    Haeussler, Peter J.

    2009-01-01

    The November 3, 2002, Mw7.9 Denali Fault earthquake produced about 340 km of surface rupture along the Susitna Glacier Thrust Fault and the right-lateral, strike-slip Denali and Totschunda Faults. Digital photogrammetric methods were primarily used to create a 1:500-scale, three-dimensional surface rupture map, and 1:6,000-scale aerial photographs were used for three-dimensional digitization in ESRI's ArcMap GIS software, using Leica's StereoAnalyst plug in. Points were digitized 4.3 m apart, on average, for the entire surface rupture. Earthquake-induced landslides, sackungen, and unruptured Holocene fault scarps on the eastern Denali Fault were also digitized where they lay within the limits of air photo coverage. This digital three-dimensional fault-trace map is superior to traditional maps in terms of relative and absolute accuracy, completeness, and detail and is used as a basis for three-dimensional visualization. Field work complements the air photo observations in locations of dense vegetation, on bedrock, or in areas where the surface trace is weakly developed. Seventeen km of the fault trace, which broke through glacier ice, were not digitized in detail due to time constraints, and air photos missed another 10 km of fault rupture through the upper Black Rapids Glacier, so that was not mapped in detail either.

  16. The Surface faulting produced by the 30 October 2016 Mw 6.5 Central Italy earthquake: the Open EMERGEO Working Group experience

    NASA Astrophysics Data System (ADS)

    Pantosti, Daniela

    2017-04-01

    The October 30, 2016 (06:40 UTC) Mw 6.5 earthquake occurred about 28 km NW of Amatrice village as the result of upper crust normal faulting on a nearly 30 km-long, NW-SE oriented, SW dipping fault system in the Central Apennines. This earthquake is the strongest Italian seismic event since the 1980 Mw 6.9 Irpinia earthquake. The Mw 6.5 event was the largest shock of a seismic sequence, which began on August 24 with a Mw 6.0 earthquake and also included a Mw 5.9 earthquake on October 26, about 9 and 35 km NW of Amatrice village, respectively. Field surveys of coseismic geological effects at the surface started within hours of the mainshock and were carried out by several national and international teams of earth scientists (about 120 people) from different research institutions and universities coordinated by the EMERGEO Working Group of the Istituto Nazionale di Geofisica e Vulcanologia. This collaborative effort was focused on the detailed recognition and mapping of: 1) the total extent of the October 30 coseismic surface ruptures, 2) their geometric and kinematic characteristics, 3) the coseismic displacement distribution along the activated fault system, including subsidiary and antithetic ruptures. The huge amount of collected data (more than 8000 observation points of several types of coseismic effects at the surface) were stored, managed and shared using a specifically designed spreadsheet to populate a georeferenced database. More comprehensive mapping of the details and extent of surface rupture was facilitated by Structure-from-Motion photogrammetry surveys by means of several helicopter flights. An almost continuous alignment of ruptures about 30 km long, N150/160 striking, mainly SW side down was observed along the already known active Mt. Vettore - Mt. Bove fault system. The mapped ruptures occasionally overlapped those of the August 24 Mw 6.0 and October 26 Mw 5.9 shocks. The coincidence between the observed surface ruptures and the trace of active normal faults mapped in the available geological literature is noteworthy. The field data collected suggest a complex coseismic surface faulting pattern along closely-spaced, parallel or subparallel, overlapping or step-like synthetic and antithetic fault splays. The cumulative surface faulting length has been estimated in about 40 km. The maximum vertical offset is significant, locally exceeding 2 meters along the Mt. Vettore Fault, measured both along bedrock fault planes and free-faces affecting unconsolidated deposits. This enormous collaborative experience has a twofold relevance, on the one side allowed to document in high detail the earthquake ruptures before Winter would destroy them, on the other represent the first large European experience for coseismic effects survey that we should use a leading case to establish a coseismic effects European team to get ready to respond to future seismic crises at the European level.

  17. Magnetic character of a large continental transform: an aeromagnetic survey of the Dead Sea Fault

    USGS Publications Warehouse

    ten Brink, Uri S.; Rybakov, Michael; Al-Zoubi, Abdallah S.; Rotstein, Yair

    2007-01-01

    New high-resolution airborne magnetic (HRAM) data along a 120-km-long section of the Dead Sea Transform in southern Jordan and Israel shed light on the shallow structure of the fault zone and on the kinematics of the plate boundary. Despite infrequent seismic activity and only intermittent surface exposure, the fault is delineated clearly on a map of the first vertical derivative of the magnetic intensity, indicating that the source of the magnetic anomaly is shallow. The fault is manifested by a 10–20 nT negative anomaly in areas where the fault cuts through magnetic basement and by a

  18. Orogen-scale uplift in the central Italian Apennines drives episodic behaviour of earthquake faults

    PubMed Central

    Cowie, P. A.; Phillips, R. J.; Roberts, G. P.; McCaffrey, K.; Zijerveld, L. J. J.; Gregory, L. C.; Faure Walker, J.; Wedmore, L. N. J.; Dunai, T. J.; Binnie, S. A.; Freeman, S. P. H. T.; Wilcken, K.; Shanks, R. P.; Huismans, R. S.; Papanikolaou, I.; Michetti, A. M.; Wilkinson, M.

    2017-01-01

    Many areas of the Earth’s crust deform by distributed extensional faulting and complex fault interactions are often observed. Geodetic data generally indicate a simpler picture of continuum deformation over decades but relating this behaviour to earthquake occurrence over centuries, given numerous potentially active faults, remains a global problem in hazard assessment. We address this challenge for an array of seismogenic faults in the central Italian Apennines, where crustal extension and devastating earthquakes occur in response to regional surface uplift. We constrain fault slip-rates since ~18 ka using variations in cosmogenic 36Cl measured on bedrock scarps, mapped using LiDAR and ground penetrating radar, and compare these rates to those inferred from geodesy. The 36Cl data reveal that individual faults typically accumulate meters of displacement relatively rapidly over several thousand years, separated by similar length time intervals when slip-rates are much lower, and activity shifts between faults across strike. Our rates agree with continuum deformation rates when averaged over long spatial or temporal scales (104 yr; 102 km) but over shorter timescales most of the deformation may be accommodated by <30% of the across-strike fault array. We attribute the shifts in activity to temporal variations in the mechanical work of faulting. PMID:28322311

  19. Orogen-scale uplift in the central Italian Apennines drives episodic behaviour of earthquake faults.

    PubMed

    Cowie, P A; Phillips, R J; Roberts, G P; McCaffrey, K; Zijerveld, L J J; Gregory, L C; Faure Walker, J; Wedmore, L N J; Dunai, T J; Binnie, S A; Freeman, S P H T; Wilcken, K; Shanks, R P; Huismans, R S; Papanikolaou, I; Michetti, A M; Wilkinson, M

    2017-03-21

    Many areas of the Earth's crust deform by distributed extensional faulting and complex fault interactions are often observed. Geodetic data generally indicate a simpler picture of continuum deformation over decades but relating this behaviour to earthquake occurrence over centuries, given numerous potentially active faults, remains a global problem in hazard assessment. We address this challenge for an array of seismogenic faults in the central Italian Apennines, where crustal extension and devastating earthquakes occur in response to regional surface uplift. We constrain fault slip-rates since ~18 ka using variations in cosmogenic 36 Cl measured on bedrock scarps, mapped using LiDAR and ground penetrating radar, and compare these rates to those inferred from geodesy. The 36 Cl data reveal that individual faults typically accumulate meters of displacement relatively rapidly over several thousand years, separated by similar length time intervals when slip-rates are much lower, and activity shifts between faults across strike. Our rates agree with continuum deformation rates when averaged over long spatial or temporal scales (10 4  yr; 10 2  km) but over shorter timescales most of the deformation may be accommodated by <30% of the across-strike fault array. We attribute the shifts in activity to temporal variations in the mechanical work of faulting.

  20. Tectonic geomorphology and paleoseismology of strike-slip faults in Jamaica: Implications for distribution of strain and seismic hazard along the southern edge of the Gonave microplate

    NASA Astrophysics Data System (ADS)

    Koehler, R. D.; Mann, P.; Brown, L. A.

    2009-12-01

    The east-west, left lateral strike-slip fault system forming the southern edge of the Gonave microplate crosses the110-km-long and 70-km-wide island of Jamaica. GPS measurements in the northeastern Caribbean are supportive of the microplate interpretation and indicate that ~ half of the Caribbean-North America left-lateral plate motion (8-14 mm/yr) is carried by the Plantain Garden (PGFZ) and associated faults in Jamaica. We performed Neotectonic mapping of the Plantain Garden fault along the southern rangefront of the Blue Mountains and conducted a paleoseismic study of the fault at Morant River. Between Holland Bay and Morant River, the fault is characterized by a steep, faceted, linear mountain front, prominent linear valleys and depressions, shutter ridges, and springs. At the eastern end of the island, the PGFZ is characterized by a left-stepping fault geometry that includes a major, active hot spring. The river cut exposure at Morant River exposes a 1.5-m-wide, sub-vertical fault zone juxtaposing sheared alluvium and faulted Cretaceous basement rocks. This section is overlain by an, unfaulted 3-m-thick fluvial terrace inset into a late Pleistocene terrace that is culturally modified. Upward fault terminations indicate the occurrence of three paleoearthquakes that occurred prior to deposition of the flat lying inset terrace around 341-628 cal yr BP. At this time, our radiocarbon results suggest that we can rule out the PGFZ as the source of the 1907 Kingston earthquake 102 years ago, as well as, the 1692 event that destroyed Port Royal 317 years ago and produced a major landslide at Yallahs. Pending OSL ages will constrain the age of the penultimate and most recent ruptures. Gently to steeply dipping rocks as young as Pliocene exposed in roadcuts within the low coastal hills south of and parallel to the Plantain Garden fault may indicate active folding and blind thrust faulting. These structures are poorly characterized and may accommodate an unknown amount of oblique strain. Reconnaissance mapping was also performed along the South Coast fault in south-central Jamaica north of Portland Ridge, and along the Crawle River-Rio Minho fault near Frankfield in the Central Inlier. The absence of fault scarps or other tectonic geomorphic features across fluvial terraces of the Milk and Minho Rivers indicate that the South Coast fault has not been active in Holocene time. Left laterally offset streams, linear valleys, and saddles support active faulting along the east-west Crawle River-Rio Minho fault that is roughly collinear with the western extension of the Plantain Garden fault.

  1. Late Quaternary Faulting along the San Juan de los Planes Fault Zone, Baja California Sur, Mexico

    NASA Astrophysics Data System (ADS)

    Busch, M. M.; Coyan, J. A.; Arrowsmith, J.; Maloney, S. J.; Gutierrez, G.; Umhoefer, P. J.

    2007-12-01

    As a result of continued distributed deformation in the Gulf Extensional Province along an oblique-divergent plate margin, active normal faulting is well manifest in southeastern Baja California. By characterizing normal-fault related deformation along the San Juan de los Planes fault zone (SJPFZ) southwest of La Paz, Baja California Sur we contribute to understanding the patterns and rates of faulting along the southwest gulf-margin fault system. The geometry, history, and rate of faulting provide constraints on the relative significance of gulf-margin deformation as compared to axial system deformation. The SJPFZ is a major north-trending structure in the southern Baja margin along which we focused our field efforts. These investigations included: a detailed strip map of the active fault zone, including delineation of active scarp traces and geomorphic surfaces on the hanging wall and footwall; fault scarp profiles; analysis of bedrock structures to better understand how the pattern and rate of strain varied during the development of this fault zone; and a gravity survey across the San Juan de los Planes basin to determine basin geometry and fault behavior. The map covers a N-S swath from the Gulf of California in the north to San Antonio in the south, an area ~45km long and ~1-4km wide. Bedrock along the SJPFZ varies from Cretaceous Las Cruces Granite in the north to Cretaceous Buena Mujer Tonalite in the south and is scarred by shear zones and brittle faults. The active scarp-forming fault juxtaposes bedrock in the footwall against Late Quaternary sandstone-conglomerate. This ~20m wide zone is highly fractured bedrock infused with carbonate. The northern ~12km of the SJPFZ, trending 200°, preserves discontinuous scarps 1-2km long and 1-3m high in Quaternary units. The scarps are separated by stretches of bedrock embayed by hundreds of meters-wide tongues of Quaternary sandstone-conglomerate, implying low Quaternary slip rate. Further south, ~2 km north of the Los Planes highway, the fault steps to the right 2km with no overlap. The fault is inactive until ~3km south of the Los Planes highway where scarp heights in the Quaternary sediments rise to ~3-11m for ~11km with an average trend of 160°, implying increasing slip rate. The fault then steps left 2km with no overlap, trending 145°. Scarp heights range from 3-6m in the step. The southernmost 9km of the fault zone, trending 200°, is marked by discontinuous scarps and embayed bedrock, reflecting diminished fault activity. The footwall landscape in this area is characterized by a broad, gently-sloping, low-relief pediment surface with thin Quaternary cover, disrupted by inselberg-like hills. The young scarp-forming fault appears to have reactivated older faults to rupture this pediment, reflecting the episodic nature of slip along this fault zone. Preliminary OSL ages of the youngest faulted deposit imply a Late Pleistocene-Holocene slip rate of 0.1-1mm/yr. The SJPFZ is thus characterized by reactivation of pre-existing faults to rupture a pre-existing low relief erosional landscape. Whereas the entire region might have experienced the quiescent period that allowed for development of the low- relief, stable surface along the SJPFZ, we speculate that while the SJPFZ was dormant, other faults within the gulf-margin system were actively accommodating strain.

  2. Seismicity and recent faulting in eastern California and western and central Nevada: A preliminary report

    NASA Technical Reports Server (NTRS)

    Abdel-Gawad, M. (Principal Investigator); Silverstein, J.; Tubbesing, L.

    1973-01-01

    The author has identified the following significant results. ERTS-1 imagery covering the eastern California-Nevada seismic belt were utilized to study the fault pattern in relation to the distribution of earthquake epicenters and Quaternary volcanic rocks. Many suspected faults not previously mapped were identified. These include several suspected shear zones in Nevada, faults showing evidence of recent breakage, and major lineaments. Highly seismic areas are generally characterized by Holocene faulting and Quaternary volcanic activity. However, several major fault segments showing evidence of recent breakage are associated with little or no seismicity. The tectonic pattern strongly suggests that the eastern California-Nevada seismic belt coincides with a major crustal rift associated with zones of lateral shear. New data on potentially active fault zones have direct practical applications in national and local earthquake hazard reduction programs. Positive contacts have been made with Kern and Ventura Counties to make results of this investigation available for application to their earthquake hazards definition projects.

  3. Preliminary Investigation and Surficial Mapping of the Faults North and South of Blacktail Butte, Teton County, Wyoming

    NASA Astrophysics Data System (ADS)

    Wittke, S.

    2016-12-01

    The Wyoming State Geological Survey has focused on surficial mapping and examination of the location and offset of faults north and south of Blacktail Butte in eastern Jackson Hole, Wyoming. The fault strands south of Blacktail Butte are classified as Late Quaternary, the faults north of the butte are considered Class B structures by the USGS. Little to no detailed studies, including paleoseismic investigations or fault scarp morphology, have been conducted on these fault strands. The acquisition of LiDAR for the Grand Teton National Park and recent aerial photographs provided data necessary for revised mapping and geomorphic interpretation of fault-related features north and south of Blacktail Butte. New fault traces and geomorphic features were identified in the LiDAR data which had not been previously mapped. Mapped fault traces are intermittent, forming a 1.5 km-long graben that extends south from Blacktail Butte and crosses a loess-mantle late-Pleistocene terrace generated from the Pinedale glaciation. Other lineaments were identified that continued for another 0.5 km to the south. With very little vertical offset across the system and comparatively short fault strands, the faults may represent secondary features related to movement on another unidentified fault within the basin. The secondary faults north of Blacktail Butte were mapped based on geomorphic features and through LiDAR-based spatial analysis. The fault scarps are relatively short and are present on alluvial fan and/or terrace deposits related to the Pinedale glaciation or on undated Holocene deposits. The scarps have little net vertical offset, suggesting they could also be secondary features related to movement from another unidentified fault within the basin. Improved understanding of these fault strands is significant because of the vicinity to populated areas within Jackson Hole and the possible relevance to the Teton Fault system. To our knowledge, these fault strands have not been proposed as antithetic to the Teton fault. The faults are located on the eastern edge of the valley, approximately 8-16 km from the Teton fault, and based on their orientation and sense of slip, the Teton fault may be the unidentified fault within the basin. Detailed paleoseismic surveys, including fault trenching, may shed light on the question in the future.

  4. Map of normal faults and extensional folds in the Tendoy Mountains and Beaverhead Range, Southwest Montana and eastern Idaho

    USGS Publications Warehouse

    Janecke, S.U.; Blankenau, J.J.; VanDenburg, C.J.; VanGosen, B.S.

    2001-01-01

    Compilation of a 1:100,000-scale map of normal faults and extensional folds in southwest Montana and adjacent Idaho reveals a complex history of normal faulting that spanned at least the last 50 m.y. and involved six or more generations of normal faults. The map is based on both published and unpublished mapping and shows normal faults and extensional folds between the valley of the Red Rock River of southwest Montana and the Lemhi and Birch Creek valleys of eastern Idaho between latitudes 45°05' N. and 44°15' N. in the Tendoy and Beaverhead Mountains. Some of the unpublished mapping has been compiled in Lonn and others (2000). Many traces of the normal faults parallel the generally northwest to north-northwest structural grain of the preexisting Sevier fold and thrust belt and dip west-southwest, but northeastand east-striking normal faults are also prominent. Northeaststriking normal faults are subparallel to the traces of southeast-directed thrusts that shortened the foreland during the Laramide orogeny. It is unlikely that the northeast-striking normal faults reactivated fabrics in the underlying Precambrian basement, as has been documented elsewhere in southwestern Montana (Schmidt and others, 1984), because exposures of basement rocks in the map area exhibit north-northwest- to northwest-striking deformational fabrics (Lowell, 1965; M’Gonigle, 1993, 1994; M’Gonigle and Hait, 1997; M’Gonigle and others, 1991). The largest normal faults in the area are southwest-dipping normal faults that locally reactivate thrust faults (fig. 1). Normal faulting began before middle Eocene Challis volcanism and continues today. The extension direction flipped by about 90° four times.

  5. Identification of Geostructures of continental crust, particularly as they relate to mineral-resource evaluation

    NASA Technical Reports Server (NTRS)

    Gryc, G. (Principal Investigator); Lathram, E. H.

    1973-01-01

    The author has identified the following significant results. Analysis of lineated lakes in the Umiat, Alaska area and comparison with known geology, gravity, and magnetic data in the the area suggest concealed structures exist at depth, possibly at or near basement, which may represent targets for petroleum exploration. Compilation of reconnaissance geologic data on 1:250,000 scale enlargements of ERTS-1 images near Corwin reveal structural and stratigraphic anomalies that suggest the Cretaceous sequence is less thick than supposed and is repeated in a series of plates superimposed by flat thrust faults. The structural style differs from that in coeval strata to the northeast, across the northwest-trending linear zone separating differing tectonic styles in older strata noted earlier. The regional extension of a fault known locally in the McCarthy area has been recognized; this fault appears to form the boundary of a significant terrane of mid-Paleozoic metamorphic rocks. ERTS-1 images are being used operationally, at 1:1,000,000 scale in the compilation of regional geologic maps, and at 1:250,000 scale in field mapping in the Brooks Range, in the study of faults in seismically active southern Alaska, in field-checking interpretations previously made from ERTS-1 imagery, and orthophoto base maps for geologic maps.

  6. Earthquake epicenters and fault intersections in central and southern California

    NASA Technical Reports Server (NTRS)

    Abdel-Gawad, M. (Principal Investigator); Silverstein, J.

    1972-01-01

    The author has identifed the following significant results. ERTS-1 imagery provided evidence for the existence of short transverse fault segments lodged between faults of the San Andreas system in the Coast Ranges, California. They indicate that an early episode of transverse shear has affected the Coast Ranges prior to the establishment of the present San Andreas fault. The fault has been offset by transverse faults of the Transverse Ranges. It appears feasible to identify from ERTS-1 imagery geomorphic criteria of recent fault movements. Plots of historic earthquakes in the Coast Ranges and western Transverse Ranges show clusters in areas where structures are complicated by interaction of tow active fault systems. A fault lineament apparently not previously mapped was identified in the Uinta Mountains, Utah. Part of the lineament show evidence of recent faulting which corresponds to a moderate earthquake cluster.

  7. Seismic Hazard Legislation in California: Challenges and Changes

    NASA Astrophysics Data System (ADS)

    Testa, S. M.

    2015-12-01

    Seismic hazards in California are legislatively controlled by three specific Acts: the Field Act of 1933; the Alquist-Priolo Earthquake Fault Zoning Act (AP) of 1975; and the Seismic Hazards Mapping Act (SHMA) of 1980. The Field Act recognized the need for earthquake resistant construction for California schools and banned unreinforced masonry buildings, and imposed structural design under seismic conditions. The AP requires the California Geological Survey (CGS) to delineate "active fault zones" for general planning and mitigation by various state and local agencies. Under the AP, surface and near-surface faults are presumed active (about 11,000 years before present) unless proven otherwise; and can only be mitigated by avoidance (setback zones). The SHMA requires that earthquake-induced landslides, liquefaction zones, high ground accelerations, tsunamis and seiches similarly be demarcated on CGS-issued maps. Experience over the past ~45 years and related technological advances now show that more than ~95 percent of seismically induced damage and loss of life stems from high ground accelerations, from related ground deformation and from catastrophic structural failure, often far beyond State-mapped AP zones. The SHMA therefore enables the engineering community to mitigate natural hazards from a holistic standpoint that considers protection of public health, safety and welfare. In conformance with the SHMA, structural design and related planning and building codes focus on acceptable risk for natural hazards with a typical recurrence of ~100 yrs to a few thousand years. This contrasts with the current AP "total avoidance" for surface-fault rupture that may have occurred within the last 11,000 years. Accordingly, avoidance may be reasonable for well expressed surface faults in high-density urban areas or where relative fault activity is uncertain. However, in the interest of overall public, health and safety, and for consistency with the SHMA and current professional standards-of-practice, we now propose changes to the AP and related regulations, including consideration for permitting construction near or across surface or near-surface faults that are geologically reasonably well characterized and amenable to structural mitigation.

  8. Quaternary Geology and Surface Faulting Hazard: Active and Capable Faults in Central Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Falcucci, E.; Gori, S.

    2015-12-01

    The 2009 L'Aquila earthquake (Mw 6.1), in central Italy, raised the issue of surface faulting hazard in Italy, since large urban areas were affected by surface displacement along the causative structure, the Paganica fault. Since then, guidelines for microzonation were drew up that take into consideration the problem of surface faulting in Italy, and laying the bases for future regulations about related hazard, similarly to other countries (e.g. USA). More specific guidelines on the management of areas affected by active and capable faults (i.e. able to produce surface faulting) are going to be released by National Department of Civil Protection; these would define zonation of areas affected by active and capable faults, with prescriptions for land use planning. As such, the guidelines arise the problem of the time interval and general operational criteria to asses fault capability for the Italian territory. As for the chronology, the review of the international literature and regulatory allowed Galadini et al. (2012) to propose different time intervals depending on the ongoing tectonic regime - compressive or extensional - which encompass the Quaternary. As for the operational criteria, the detailed analysis of the large amount of works dealing with active faulting in Italy shows that investigations exclusively based on surface morphological features (e.g. fault planes exposition) or on indirect investigations (geophysical data), are not sufficient or even unreliable to define the presence of an active and capable fault; instead, more accurate geological information on the Quaternary space-time evolution of the areas affected by such tectonic structures is needed. A test area for which active and capable faults can be first mapped based on such a classical but still effective methodological approach can be the central Apennines. Reference Galadini F., Falcucci E., Galli P., Giaccio B., Gori S., Messina P., Moro M., Saroli M., Scardia G., Sposato A. (2012). Time intervals to assess active and capable faults for engineering practices in Italy. Eng. Geol., 139/140, 50-65.

  9. Bedrock geologic map of the northern Alaska Peninsula area, southwestern Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Blodgett, Robert B.; Blome, Charles D.; Mohadjer, Solmaz; Preller, Cindi C.; Klimasauskas, Edward P.; Gamble, Bruce M.; Coonrad, Warren L.

    2017-03-03

    The northern Alaska Peninsula is a region of transition from the classic magmatic arc geology of the Alaska Peninsula to a Proterozoic and early Paleozoic carbonate platform and then to the poorly understood, tectonically complex sedimentary basins of southwestern Alaska. Physiographically, the region ranges from the high glaciated mountains of the Alaska-Aleutian Range to the coastal lowlands of Cook Inlet on the east and Bristol Bay on the southwest. The lower Ahklun Mountains and finger lakes on the west side of the map area show strong effects from glaciation. Structurally, a number of major faults cut the map area. Most important of these are the Bruin Bay Fault that parallels the coast of Cook Inlet, the Lake Clark Fault that cuts diagonally northeast to southwest across the eastern part of the map area, and the presently active Holitna Fault to the northwest that cuts surficial deposits.Distinctive rock packages assigned to three provinces are overlain by younger sedimentary rocks and intruded by widely dispersed latest Cretaceous and (or) early Tertiary granitic rocks. Much of the east half of the map area lies in the Alaska-Aleutian Range province; the Jurassic to Tertiary Alaska-Aleutian Range batholith and derivative Jurassic sedimentary rocks form the core of this province, which is intruded and overlain by the Aleutian magmatic arc. The Lime Hills province, the carbonate platform, occurs in the north-central part of the map area. The Paleozoic and Mesozoic Ahklun Mountains province in the western part of the map area includes abundant chert, argillite, and graywacke and lesser limestone, basalt, and tectonic mélange. The Kuskokwim Group, an Upper Cretaceous turbidite sequence, is extensively exposed and bounds all three provinces in the west-central part of the map area.

  10. Geologic Map of the Summit Region of Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Neal, Christina A.; Lockwood, John P.

    2003-01-01

    This report consists of a large map sheet and a pamphlet. The map shows the geology, some photographs, description of map units, and correlation of map units. The pamphlet gives the full text about the geologic map. The area covered by this map includes parts of four U.S. Geological Survey 7.5' topographic quadrangles (Kilauea Crater, Volcano, Ka`u Desert, and Makaopuhi). It encompasses the summit, upper rift zones, and Koa`e Fault System of Kilauea Volcano and a part of the adjacent, southeast flank of Mauna Loa Volcano. The map is dominated by products of eruptions from Kilauea Volcano, the southernmost of the five volcanoes on the Island of Hawai`i and one of the world's most active volcanoes. At its summit (1,243 m) is Kilauea Crater, a 3 km-by-5 km collapse caldera that formed, possibly over several centuries, between about 200 and 500 years ago. Radiating away from the summit caldera are two linear zones of intrusion and eruption, the east and the southwest rift zones. Repeated subaerial eruptions from the summit and rift zones have built a gently sloping, elongate shield volcano covering approximately 1,500 km2. Much of the volcano lies under water; the east rift zone extends 110 km from the summit to a depth of more than 5,000 m below sea level; whereas the southwest rift zone has a more limited submarine continuation. South of the summit caldera, mostly north-facing normal faults and open fractures of the Koa`e Fault System extend between the two rift zones. The Koa`e Fault System is interpreted as a tear-away structure that accommodates southward movement of Kilauea's flank in response to distension of the volcano perpendicular to the rift zones.

  11. Geomorphic features of surface ruptures associated with the 2016 Kumamoto earthquake in and around the downtown of Kumamoto City, and implications on triggered slip along active faults

    NASA Astrophysics Data System (ADS)

    Goto, Hideaki; Tsutsumi, Hiroyuki; Toda, Shinji; Kumahara, Yasuhiro

    2017-02-01

    The 30-km-long surface ruptures associated with the M w 7.0 ( M j 7.3) earthquake at 01:25 JST on April 16 in Kumamoto Prefecture appeared along the previously mapped 100-km-long active fault called the Futagawa-Hinagu fault zone (FHFZ). The surface ruptures appeared to have extended further west out of the main FHFZ into the Kumamoto Plain. Although InSAR analysis by Geospatial Information Authority of Japan (GSI) indicated coseismic surface deformation in and around the downtown of Kumamoto City, the surface ruptures have not been clearly mapped in the central part of the Kumamoto Plain, and whether there are other active faults other than the Futagawa fault in the Kumamoto Plain remained unclear. We produced topographical stereo images (anaglyph) from 5-m-mesh digital elevation model of GSI, which was generated from light detection and ranging data. We interpreted them and identified that several SW-sloping river terraces formed after the deposition of the pyroclastic flow deposits related to the latest large eruption of the Aso caldera (86.8-87.3 ka) are cut and deformed by several NW-trending flexure scarps down to the southwest. These 5.4-km-long scarps that cut across downtown Kumamoto were identified for the first time, and we name them as the Suizenji fault zone. Surface deformation such as continuous cracks, tilts, and monoclinal folding associated with the main shock of the 2016 Kumamoto earthquake was observed in the field along the fault zone. The amount of vertical deformation ( 0.1 m) along this fault associated with the 2016 Kumamoto earthquake was quite small compared to the empirically calculated coseismic slip (0.5 m) based on the fault length. We thus suggest that the slip on this fault zone was triggered by the Kumamoto earthquake, but the fault zone has potential to generate an earthquake with larger slip that poses a high seismic risk in downtown Kumamoto area.[Figure not available: see fulltext.

  12. The Gabbs Valley, Nevada, geothermal prospect: Exploring for a potential blind geothermal resource

    NASA Astrophysics Data System (ADS)

    Payne, J.; Bell, J. W.; Calvin, W. M.

    2012-12-01

    The Gabbs Valley prospect in west-central Nevada is a potential blind geothermal resource system. Possible structural controls on this system were investigated using high-resolution LiDAR, low sun-angle aerial (LSA) photography, exploratory fault trenching and a shallow temperature survey. Active Holocene faults have previously been identified at 37 geothermal systems with indication of temperatures greater than 100° C in the western Nevada region. Active fault controls in Gabbs Valley include both Holocene and historical structures. Two historical earthquakes occurring in 1932 and 1954 have overlapping surface rupture patterns in Gabbs Valley. Three active fault systems identified through LSA and LiDAR mapping have characteristics of Basin and Range normal faulting and Walker Lane oblique dextral faulting. The East Monte Cristo Mountains fault zone is an 8.5 km long continuous NNE striking, discrete fault with roughly 0.5 m right-normal historic motion and 3 m vertical Quaternary separation. The Phillips Wash fault zone is an 8.2 km long distributed fault system striking NE to N, with Quaternary fault scarps of 1-3 m vertical separation and a 500 m wide graben adjacent to the Cobble Cuesta anticline. This fault displays ponded drainages, an offset terrace riser and right stepping en echelon fault patterns suggestive of left lateral offset, and fault trenching exposed non-matching stratigraphy typical of a significant component of lateral offset. The unnamed faults of Gabbs Valley are a 10.6 km long system of normal faults striking NNE and Quaternary scarps are up to 4 m high. These normal faults largely do not have historic surface rupture, but a small segment of 1932 rupture has been identified. A shallow (2 m deep) temperature survey of 80 points covering roughly 65 square kilometers was completed. Data were collected over approximately 2 months, and continual base station temperature measurements were used to seasonally correct temperature measurements. A 2.5 km long temperature anomaly greater than 3° C above background temperatures forms west-northwest trending zone between terminations of the Phillips Wash fault zone and unnamed faults of Gabbs Valley to the south. Rupture segments of two young active faults bracket the temperature anomaly. The temperature anomaly may be due to several possible causes. 1. Increases in stress near the rupture segments or tip-lines of these faults, or where multiple fault splays exist, can increase fault permeability. The un-ruptured segments of these faults may be controlling the location of the Gabbs Valley thermal anomaly between ruptured segments of the 1932 Cedar Mountain and 1954 Fairview Peak earthquakes. 2. Numerous unnamed normal faults may interact and the hanging wall of these faults is hosting the thermal anomaly. The size and extent of the anomaly may be due to its proximity to a flat playa and not the direct location of the shallow heat anomaly. 3. The linear northwest nature of the thermal anomaly may reflect a hydrologic barrier in the subsurface controlling where heated fluids rise. A concealed NW- striking fault is possible, but has not been identified in previous studies or in the LiDAR or LSA fault mapping.

  13. High-resolution mapping of two large-scale transpressional fault zones in the California Continental Borderland: Santa Cruz-Catalina Ridge and Ferrelo faults

    NASA Astrophysics Data System (ADS)

    Legg, Mark R.; Kohler, Monica D.; Shintaku, Natsumi; Weeraratne, Dayanthie S.

    2015-05-01

    New mapping of two active transpressional fault zones in the California Continental Borderland, the Santa Cruz-Catalina Ridge fault and the Ferrelo fault, was carried out to characterize their geometries, using over 4500 line-km of new multibeam bathymetry data collected in 2010 combined with existing data. Faults identified from seafloor morphology were verified in the subsurface using existing seismic reflection data including single-channel and multichannel seismic profiles compiled over the past three decades. The two fault systems are parallel and are capable of large lateral offsets and reverse slip during earthquakes. The geometry of the fault systems shows evidence of multiple segments that could experience throughgoing rupture over distances exceeding 100 km. Published earthquake hypocenters from regional seismicity studies further define the lateral and depth extent of the historic fault ruptures. Historical and recent focal mechanisms obtained from first-motion and moment tensor studies confirm regional strain partitioning dominated by right slip on major throughgoing faults with reverse-oblique mechanisms on adjacent structures. Transpression on west and northwest trending structures persists as far as 270 km south of the Transverse Ranges; extension persists in the southern Borderland. A logjam model describes the tectonic evolution of crustal blocks bounded by strike-slip and reverse faults which are restrained from northwest displacement by the Transverse Ranges and the southern San Andreas fault big bend. Because of their potential for dip-slip rupture, the faults may also be capable of generating local tsunamis that would impact Southern California coastlines, including populated regions in the Channel Islands.

  14. The seismogenic Gole Larghe Fault Zone (Italian Southern Alps): quantitative 3D characterization of the fault/fracture network, mapping of evidences of fluid-rock interaction, and modelling of the hydraulic structure through the seismic cycle

    NASA Astrophysics Data System (ADS)

    Bistacchi, A.; Mittempergher, S.; Di Toro, G.; Smith, S. A. F.; Garofalo, P. S.

    2016-12-01

    The Gole Larghe Fault Zone (GLFZ) was exhumed from 8 km depth, where it was characterized by seismic activity (pseudotachylytes) and hydrous fluid flow (alteration halos and precipitation of hydrothermal minerals in veins and cataclasites). Thanks to glacier-polished outcrops exposing the 400 m-thick fault zone over a continuous area > 1.5 km2, the fault zone architecture has been quantitatively described with an unprecedented detail, providing a rich dataset to generate 3D Discrete Fracture Network (DFN) models and simulate the fault zone hydraulic properties. The fault and fracture network has been characterized combining > 2 km of scanlines and semi-automatic mapping of faults and fractures on several photogrammetric 3D Digital Outcrop Models (3D DOMs). This allowed obtaining robust probability density functions for parameters of fault and fracture sets: orientation, fracture intensity and density, spacing, persistency, length, thickness/aperture, termination. The spatial distribution of fractures (random, clustered, anticlustered…) has been characterized with geostatistics. Evidences of fluid/rock interaction (alteration halos, hydrothermal veins, etc.) have been mapped on the same outcrops, revealing sectors of the fault zone strongly impacted, vs. completely unaffected, by fluid/rock interaction, separated by convolute infiltration fronts. Field and microstructural evidence revealed that higher permeability was obtained in the syn- to early post-seismic period, when fractures were (re)opened by off-fault deformation. We have developed a parametric hydraulic model of the GLFZ and calibrated it, varying the fraction of faults/fractures that were open in the post-seismic, with the goal of obtaining realistic fluid flow and permeability values, and a flow pattern consistent with the observed alteration/mineralization pattern. The fraction of open fractures is very close to the percolation threshold of the DFN, and the permeability tensor is strongly anisotropic, resulting in a marked channelling of fluid flow in the inner part of the fault zone. Amongst possible seismological applications of our study, we will discuss the possibility to evaluate the coseismic fracture intensity due to off-fault damage, a fundamental mechanical parameter in the energy balance of earthquakes.

  15. Evaluation of the Location and Recency of Faulting Near Prospective Surface Facilities in Midway Valley, Nye County, Nevada

    USGS Publications Warehouse

    Swan, F.H.; Wesling, J.R.; Angell, M.M.; Thomas, A.P.; Whitney, J.W.; Gibson, J.D.

    2001-01-01

    Evaluation of surface faulting that may pose a hazard to prospective surface facilities is an important element of the tectonic studies for the potential Yucca Mountain high-level radioactive waste repository in southwestern Nevada. For this purpose, a program of detailed geologic mapping and trenching was done to obtain surface and near-surface geologic data that are essential for determining the location and recency of faults at a prospective surface-facilities site located east of Exile Hill in Midway Valley, near the eastern base of Yucca Mountain. The dominant tectonic features in the Midway Valley area are the north- to northeast-trending, west-dipping normal faults that bound the Midway Valley structural block-the Bow Ridge fault on the west side of Exile Hill and the Paint-brush Canyon fault on the east side of the valley. Trenching of Quaternary sediments has exposed evidence of displacements, which demonstrate that these block-bounding faults repeatedly ruptured the surface during the middle to late Quaternary. Geologic mapping, subsurface borehole and geophysical data, and the results of trenching activities indicate the presence of north- to northeast-trending faults and northwest-trending faults in Tertiary volcanic rocks beneath alluvial and colluvial sediments near the prospective surface-facilities site. North to northeast-trending faults include the Exile Hill fault along the eastern base of Exile Hill and faults to the east beneath the surficial deposits of Midway Valley. These faults have no geomorphic expression, but two north- to northeast-trending zones of fractures exposed in excavated profiles of middle to late Pleistocene deposits at the prospective surface-facilities site appear to be associated with these faults. Northwest-trending faults include the West Portal and East Portal faults, but no disruption of Quaternary deposits by these faults is evident. The western zone of fractures is associated with the Exile Hill fault. The eastern zone of fractures is within Quaternary alluvial sediments, but no bedrock was encountered in trenches and soil pits in this part of the prospective surface facilities site; thus, the direct association of this zone with one or more bedrock faults is uncertain. No displacement of lithologic contacts and soil horizons could be detected in the fractured Quaternary deposits. The results of these investigations imply the absence of any appreciable late Quaternary faulting activity at the prospective surface-facilities site.

  16. Learning and diagnosing faults using neural networks

    NASA Technical Reports Server (NTRS)

    Whitehead, Bruce A.; Kiech, Earl L.; Ali, Moonis

    1990-01-01

    Neural networks have been employed for learning fault behavior from rocket engine simulator parameters and for diagnosing faults on the basis of the learned behavior. Two problems in applying neural networks to learning and diagnosing faults are (1) the complexity of the sensor data to fault mapping to be modeled by the neural network, which implies difficult and lengthy training procedures; and (2) the lack of sufficient training data to adequately represent the very large number of different types of faults which might occur. Methods are derived and tested in an architecture which addresses these two problems. First, the sensor data to fault mapping is decomposed into three simpler mappings which perform sensor data compression, hypothesis generation, and sensor fusion. Efficient training is performed for each mapping separately. Secondly, the neural network which performs sensor fusion is structured to detect new unknown faults for which training examples were not presented during training. These methods were tested on a task of fault diagnosis by employing rocket engine simulator data. Results indicate that the decomposed neural network architecture can be trained efficiently, can identify faults for which it has been trained, and can detect the occurrence of faults for which it has not been trained.

  17. Fault zone structure from topography: signatures of en echelon fault slip at Mustang Ridge on the San Andreas Fault, Monterey County, California

    USGS Publications Warehouse

    DeLong, Stephen B.; Hilley, George E.; Rymer, Michael J.; Prentice, Carol

    2010-01-01

    We used high-resolution topography to quantify the spatial distribution of scarps, linear valleys, topographic sinks, and oversteepened stream channels formed along an extensional step over on the San Andreas Fault (SAF) at Mustang Ridge, California. This location provides detail of both creeping fault landform development and complex fault zone kinematics. Here, the SAF creeps 10–14 mm/yr slower than at locations ∼20 km along the fault in either direction. This spatial change in creep rate is coincident with a series of en echelon oblique-normal faults that strike obliquely to the SAF and may accommodate the missing deformation. This study presents a suite of analyses that are helpful for proper mapping of faults in locations where high-resolution topographic data are available. Furthermore, our analyses indicate that two large subsidiary faults near the center of the step over zone appear to carry significant distributed deformation based on their large apparent vertical offsets, the presence of associated sag ponds and fluvial knickpoints, and the observation that they are rotating a segment of the main SAF. Several subsidiary faults in the southeastern portion of Mustang Ridge are likely less active; they have few associated sag ponds and have older scarp morphologic ages and subdued channel knickpoints. Several faults in the northwestern part of Mustang Ridge, though relatively small, are likely also actively accommodating active fault slip based on their young morphologic ages and the presence of associated sag ponds.

  18. Shallow subsurface structure of the Wasatch fault, Provo segment, Utah, from integrated compressional and shear-wave seismic reflection profiles with implications for fault structure and development

    USGS Publications Warehouse

    McBride, J.H.; Stephenson, W.J.; Williams, R.A.; Odum, J.K.; Worley, D.M.; South, J.V.; Brinkerhoff, A.R.; Keach, R.W.; Okojie-Ayoro, A. O.

    2010-01-01

    Integrated vibroseis compressional and experimental hammer-source, shear-wave, seismic reflection profiles across the Provo segment of the Wasatch fault zone in Utah reveal near-surface and shallow bedrock structures caused by geologically recent deformation. Combining information from the seismic surveys, geologic mapping, terrain analysis, and previous seismic first-arrival modeling provides a well-constrained cross section of the upper ~500 m of the subsurface. Faults are mapped from the surface, through shallow, poorly consolidated deltaic sediments, and cutting through a rigid bedrock surface. The new seismic data are used to test hypotheses on changing fault orientation with depth, the number of subsidiary faults within the fault zone and the width of the fault zone, and the utility of integrating separate elastic methods to provide information on a complex structural zone. Although previous surface mapping has indicated only a few faults, the seismic section shows a wider and more complex deformation zone with both synthetic and antithetic normal faults. Our study demonstrates the usefulness of a combined shallow and deeper penetrating geophysical survey, integrated with detailed geologic mapping to constrain subsurface fault structure. Due to the complexity of the fault zone, accurate seismic velocity information is essential and was obtained from a first-break tomography model. The new constraints on fault geometry can be used to refine estimates of vertical versus lateral tectonic movements and to improve seismic hazard assessment along the Wasatch fault through an urban area. We suggest that earthquake-hazard assessments made without seismic reflection imaging may be biased by the previous mapping of too few faults. ?? 2010 Geological Society of America.

  19. Geologic map of the Yucca Mountain region, Nye County, Nevada

    USGS Publications Warehouse

    Potter, Christopher J.; Dickerson, Robert P.; Sweetkind, Donald S.; Drake II, Ronald M.; Taylor, Emily M.; Fridrich, Christopher J.; San Juan, Carma A.; Day, Warren C.

    2002-01-01

    Yucca Mountain, Nye County, Nev., has been identified as a potential site for underground storage of high-level radioactive waste. This geologic map compilation, including all of Yucca Mountain and Crater Flat, most of the Calico Hills, western Jackass Flats, Little Skull Mountain, the Striped Hills, the Skeleton Hills, and the northeastern Amargosa Desert, portrays the geologic framework for a saturated-zone hydrologic flow model of the Yucca Mountain site. Key geologic features shown on the geologic map and accompanying cross sections include: (1) exposures of Proterozoic through Devonian strata inferred to have been deformed by regional thrust faulting and folding, in the Skeleton Hills, Striped Hills, and Amargosa Desert near Big Dune; (2) folded and thrust-faulted Devonian and Mississippian strata, unconformably overlain by Miocene tuffs and lavas and cut by complex Neogene fault patterns, in the Calico Hills; (3) the Claim Canyon caldera, a segment of which is exposed north of Yucca Mountain and Crater Flat; (4) thick densely welded to nonwelded ash-flow sheets of the Miocene southwest Nevada volcanic field exposed in normal-fault-bounded blocks at Yucca Mountain; (5) upper Tertiary and Quaternary basaltic cinder cones and lava flows in Crater Flat and at southernmost Yucca Mountain; and (6) broad basins covered by Quaternary and upper Tertiary surficial deposits in Jackass Flats, Crater Flat, and the northeastern Amargosa Desert, beneath which Neogene normal and strike-slip faults are inferred to be present on the basis of geophysical data and geologic map patterns. A regional thrust belt of late Paleozoic or Mesozoic age affected all pre-Tertiary rocks in the region; main thrust faults, not exposed in the map area, are interpreted to underlie the map area in an arcuate pattern, striking north, northeast, and east. The predominant vergence of thrust faults exposed elsewhere in the region, including the Belted Range and Specter Range thrusts, was to the east, southeast, and south. The vertical to overturned strata of the Striped Hills are hypothesized to result from successive stacking of three south-vergent thrust ramps, the lowest of which is the Specter Range thrust. The CP thrust is interpreted as a north-vergent backthrust that may have been roughly contemporaneous with the Belted Range and Specter Range thrusts. The southwest Nevada volcanic field consists predominantly of a series of silicic tuffs and lava flows ranging in age from 15 to 8 Ma. The map area is in the southwestern quadrant of the southwest Nevada volcanic field, just south of the Timber Mountain caldera complex. The Claim Canyon caldera, exposed in the northern part of the map area, contains thick deposits of the 12.7-Ma Tiva Canyon Tuff, along with widespread megabreccia deposits of similar age, and subordinate thick exposures of other 12.8- to 12.7-Ma Paintbrush Group rocks. An irregular, blocky fault array, which affects parts of the caldera and much of the nearby area, includes several large-displacement, steeply dipping faults that strike radially to the caldera and bound south-dipping blocks of volcanic rock. South and southeast of the Claim Canyon caldera, in the area that includes Yucca Mountain, the Neogene fault pattern is dominated by closely spaced, north-northwest- to north-northeast-striking normal faults that lie within a north-trending graben. This 20- to 25-km-wide graben includes Crater Flat, Yucca Mountain, and Fortymile Wash, and is bounded on the east by the 'gravity fault' and on the west by the Bare Mountain fault. Both of these faults separate Proterozoic and Paleozoic sedimentary rocks in their footwalls from Miocene volcanic rocks in their hanging walls. Stratigraphic and structural relations at Yucca Mountain demonstrate that block-bounding faults were active before and during eruption of the 12.8- to 12.7-Ma Paintbrush Group, and significant motion on these faults continued unt

  20. Quantifying Coseismic Normal Fault Rupture at the Seafloor: The 2004 Les Saintes Earthquake Along the Roseau Fault (French Antilles)

    NASA Astrophysics Data System (ADS)

    Olive, J. A. L.; Escartin, J.; Leclerc, F.; Garcia, R.; Gracias, N.; Odemar Science Party, T.

    2016-12-01

    While >70% of Earth's seismicity is submarine, almost all observations of earthquake-related ruptures and surface deformation are restricted to subaerial environments. Such observations are critical for understanding fault behavior and associated hazards (including tsunamis), but are not routinely conducted at the seafloor due to obvious constraints. During the 2013 ODEMAR cruise we used autonomous and remotely operated vehicles to map the Roseau normal Fault (Lesser Antilles), source of the 2004 Mw6.3 earthquake and associated tsunami (<3.5m run-up). These vehicles acquired acoustic (multibeam bathymetry) and optical data (video and electronic images) spanning from regional (>1 km) to outcrop (<1 m) scales. These high-resolution submarine observations, analogous to those routinely conducted subaerially, rely on advanced image and video processing techniques, such as mosaicking and structure-from-motion (SFM). We identify sub-vertical fault slip planes along the Roseau scarp, displaying coseismic deformation structures undoubtedly due to the 2004 event. First, video mosaicking allows us to identify the freshly exposed fault plane at the base of one of these scarps. A maximum vertical coseismic displacement of 0.9 m can be measured from the video-derived terrain models and the texture-mapped imagery, which have better resolution than any available acoustic systems (<10 cm). Second, seafloor photomosaics allow us to identify and map both additional sub-vertical fault scarps, and cracks and fissures at their base, recording hangingwall damage from the same event. These observations provide critical parameters to understand the seismic cycle and long-term seismic behavior of this submarine fault. Our work demonstrates the feasibility of extensive, high-resolution underwater surveys using underwater vehicles and novel imaging techniques, thereby opening new possibilities to study recent seafloor changes associated with tectonic, volcanic, or hydrothermal activity.

  1. 3-D GPR data analysis for high-resolution imaging of shallow subsurface faults: the Mt Vettore case study (Central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Ercoli, Maurizio; Pauselli, Cristina; Frigeri, Alessandro; Forte, Emanuele; Federico, Costanzo

    2014-07-01

    The activation of Late Quaternary faults in the Central Apennines (Italy) could generate earthquakes with magnitude of about 6.5, and the Monte Vettore fault system probably belongs to the same category of seismogenetic faults. Such structure has been defined `silent', because of its geological and geomorphological evidences of past activation, but the absence of historical records in the seismic catalogues to be associated with its activation. The `Piano di Castelluccio' intramountain basin, resulting from the Quaternary activity of normal faults, is characterized by a secondary fault strand highlighted by a NW-SE fault scarp: it has been already studied through palaeoseismological trenches, which highlighted evidences of Quaternary shallow faulting due to strong earthquakes, and through a 2-D ground penetrating radar (GPR) survey, showing the first geophysical signature of faulting for this site. Within the same place, a 3-D GPR volume over a 20 × 20 m area has been collected. The collection of radar echoes in three dimensions allows to map both the vertical and lateral continuity of shallow geometries of the fault zone (Fz), imaging features with high resolution, ranging from few metres to centimetres and therefore imaging also local variations at the microscale. Several geophysical markers of faulting, already highlighted on this site, have been taken as reference to plan the 3-D survey. In this paper, we provide the first 3-D subsurface imaging of an active shallow fault belonging to the Umbria-Marche Apennine highlighting the subsurface fault geometry and the stratigraphic sequence up to a depth of about 5 m. From our data, geophysical faulting signatures are clearly visible in three dimensions: diffraction hyperbolas, truncations of layers, local attenuated zones and varying dip of the layers have been detected within the Fz. The interpretation of the 3-D data set provided qualitative and quantitative geological information in addition to the fault location, like its geometry, boundaries and an estimation of the fault throw.

  2. The active structure of the Dead Sea depression

    NASA Astrophysics Data System (ADS)

    Shamir, G.

    2003-04-01

    The ~220km long gravitational and structural Dead Sea Depression (DSD), situated along the southern section of the Dead Sea Transform (DST), is centered by the Dead Sea basin sensu strictu (DSB), which has been described since the 1960?s as a pull-apart basin over a presumed left-hand fault step. However, several observations, or their lack thereof, question this scheme, e.g. (i) It is not supported by recent seismological and geomorphic data; (ii) It does not explain the fault pattern and mixed sinistral and dextral offset along the DSB western boundary; (iii) It does not simply explain the presence of intense deformation outside the presumed fault step zone; (iv) It is inconsistent with the orientation of seismically active faults within the Dead Sea and Jericho Valley; (v); It is apparently inconsistent with the symmetrical structure of the DSD; (vi) The length of the DSB exceeds the total offset along the Dead Sea Transform, while its subsidence is about the age of the DST. Integration of newly acquired and analyzed data (high resolution and petroleum seismic reflection data, earthquake relocation and fault plane solutions) with previously published data (structural mapping, fracture orientation distribution, Bouguer anomaly maps, sinkhole distribution, geomorphic lineaments) now shows that the active upper crustal manifestation of the DSD is a broad shear zone dominated by internal fault systems oriented NNE and NNW. These fault systems are identified by earthquake activity, seismic reflection observations, alignment of recent sinkholes, and distribution of Bouguer anomaly gradients. Motion on the NNE system is normal-dextral, suggesting that counterclockwise rotation may have taken place within the shear zone. The overall sinistral motion between the Arabian and Israel-Sinai plates along the DSD is thus accommodated by distributed shear across the N-S extending DSD. The three-dimensionality of this motion at the DSD may be related to the rate of convergence between the two plates.

  3. Contradicting Estimates of Location, Geometry, and Rupture History of Highly Active Faults in Central Japan

    NASA Astrophysics Data System (ADS)

    Okumura, K.

    2011-12-01

    Accurate location and geometry of seismic sources are critical to estimate strong ground motion. Complete and precise rupture history is also critical to estimate the probability of the future events. In order to better forecast future earthquakes and to reduce seismic hazards, we should consider over all options and choose the most likely parameter. Multiple options for logic trees are acceptable only after thorough examination of contradicting estimates and should not be a result from easy compromise or epoche. In the process of preparation and revisions of Japanese probabilistic and deterministic earthquake hazard maps by Headquarters for Earthquake Research Promotion since 1996, many decisions were made to select plausible parameters, but many contradicting estimates have been left without thorough examinations. There are several highly-active faults in central Japan such as Itoigawa-Shizuoka Tectonic Line active fault system (ISTL), West Nagano Basin fault system (WNBF), Inadani fault system (INFS), and Atera fault system (ATFS). The highest slip rate and the shortest recurrence interval are respectively ~1 cm/yr and 500 to 800 years, and estimated maximum magnitude is 7.5 to 8.5. Those faults are very hazardous because almost entire population and industries are located above the fault within tectonic depressions. As to the fault location, most uncertainties arises from interpretation of geomorphic features. Geomorphological interpretation without geological and structural insight often leads to wrong mapping. Though non-existent longer fault may be a safer estimate, incorrectness harm reliability of the forecast. Also this does not greatly affect strong motion estimates, but misleading to surface displacement issues. Fault geometry, on the other hand, is very important to estimate intensity distribution. For the middle portion of the ISTL, fast-moving left-lateral strike-slip up to 1 cm/yr is obvious. Recent seismicity possibly induced by 2011 Tohoku earthquake show pure strike-slip. However, thrusts are modeled from seismic profiles and gravity anomalies. Therefore, two contradicting models are presented for strong motion estimates. There should be a unique solution of the geometry, which will be discussed. As to the rupture history, there is plenty of paleoseismological evidence that supports segmentation of those faults above. However, in most fault zones, the largest and sometimes possibly less frequent earthquakes are modeled. Segmentation and modeling of coming earthquakes should be more carefully examined without leaving them in contradictions.

  4. Interseismic Strain Accumulation of the Gazikoy-Saros segment (Ganos fault) of the North Anatolian Fault Zone

    NASA Astrophysics Data System (ADS)

    Havazli, E.; Wdowinski, S.; Amelung, F.

    2017-12-01

    The North Anatolian Fault Zone (NAFZ) is one of the most active continental transform faults in the world. A westward migrating earthquake sequence has started in 1939 in Erzincan and the last two events of this sequence occurred in 1999 in Izmit and Duzce manifesting the importance of NAFZ on the seismic hazard potential of the region. NAFZ exhibits slip rates ranging from 14-30 mm/yr along its 1500 km length with a right lateral strike slip characteristic. In the East of the Marmara Sea, the NAFZ splits into two branches. The Gazikoy-Saros segment (Ganos Fault) is the westernmost and onshore segment of the northern branch. The ENE-WSW oriented Ganos Fault is seismically active. It produced a Ms 7.2 earthquake in 1912, which was followed by several large aftershocks, including Ms 6.3 and Ms 6.9 events. Since 1912, the Ganos Fault did not produce any significant earthquakes (> M 5), in contrast to its adjacent segments, which produced 20 M>5 earthquakes, including a M 6.7 event, offshore in Gulf of Saros. Interseismic strain accumulation along the Ganos Fault was assessed from sparse GPS measurements along a single transect located perpendicular to the fault zone, suggesting strain accumulation rate of 20-25 mm/yr. Insofar, InSAR studies, based on C-band data, didn't produce conclusive results due to low coherence over the fault zone area, which is highly vegetated. In this study, we present a detailed interseismic velocity map of the Ganos Fault zone derived from L-band InSAR observations. We use 21 ALOS PALSAR scenes acquired over a 5-year period, from 2007 to 2011. We processed the ALOS data using the PySAR software, which is the University of Miami version of the Small Baseline (SB) method. The L-band observations enabled us to overcome the coherence issue in the study area. Our initial results indicate a maximum velocity of 15 mm/yr across the fault zone. The high spatial resolution of the InSAR-based interseismic velocity map will enable us to better to resolve locking depth variations and structural complexities along the seismically active Ganos Fault segment of the NAFZ.

  5. Model uncertainties of the 2002 update of California seismic hazard maps

    USGS Publications Warehouse

    Cao, T.; Petersen, M.D.; Frankel, A.D.

    2005-01-01

    In this article we present and explore the source and ground-motion model uncertainty and parametric sensitivity for the 2002 update of the California probabilistic seismic hazard maps. Our approach is to implement a Monte Carlo simulation that allows for independent sampling from fault to fault in each simulation. The source-distance dependent characteristics of the uncertainty maps of seismic hazard are explained by the fundamental uncertainty patterns from four basic test cases, in which the uncertainties from one-fault and two-fault systems are studied in detail. The California coefficient of variation (COV, ratio of the standard deviation to the mean) map for peak ground acceleration (10% of exceedance in 50 years) shows lower values (0.1-0.15) along the San Andreas fault system and other class A faults than along class B faults (0.2-0.3). High COV values (0.4-0.6) are found around the Garlock, Anacapa-Dume, and Palos Verdes faults in southern California and around the Maacama fault and Cascadia subduction zone in northern California.

  6. Insights into the relationship between surface and subsurface activity from mechanical modeling of the 1992 Landers M7.3 earthquake

    NASA Astrophysics Data System (ADS)

    Madden, E. H.; Pollard, D. D.

    2009-12-01

    Multi-fault, strike-slip earthquakes have proved difficult to incorporate into seismic hazard analyses due to the difficulty of determining the probability of these ruptures, despite collection of extensive data associated with such events. Modeling the mechanical behavior of these complex ruptures contributes to a better understanding of their occurrence by elucidating the relationship between surface and subsurface earthquake activity along transform faults. This insight is especially important for hazard mitigation, as multi-fault systems can produce earthquakes larger than those associated with any one fault involved. We present a linear elastic, quasi-static model of the southern portion of the 28 June 1992 Landers earthquake built in the boundary element software program Poly3D. This event did not rupture the extent of any one previously mapped fault, but trended 80km N and NW across segments of five sub-parallel, N-S and NW-SE striking faults. At M7.3, the earthquake was larger than the potential earthquakes associated with the individual faults that ruptured. The model extends from the Johnson Valley Fault, across the Landers-Kickapoo Fault, to the Homestead Valley Fault, using data associated with a six-week time period following the mainshock. It honors the complex surface deformation associated with this earthquake, which was well exposed in the desert environment and mapped extensively in the field and from aerial photos in the days immediately following the earthquake. Thus, the model incorporates the non-linearity and segmentation of the main rupture traces, the irregularity of fault slip distributions, and the associated secondary structures such as strike-slip splays and thrust faults. Interferometric Synthetic Aperture Radar (InSAR) images of the Landers event provided the first satellite images of ground deformation caused by a single seismic event and provide constraints on off-fault surface displacement in this six-week period. Insight is gained by comparing the density, magnitudes and focal plane orientations of relocated aftershocks for this time frame with the magnitude and orientation of planes of maximum Coulomb shear stress around the fault planes at depth.

  7. Structure of pseudotachylyte vein systems as a key to co-seismic rupture dynamics: the case of Gavilgarh-Tan Shear Zone, central India

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, A.; Bhattacharjee, D.; Mukherjee, S.

    2014-04-01

    The secondary fractures associated with a major pseudotachylyte-bearing fault vein in the sheared aplitic granitoid of the Proterozoic Gavilgarh-Tan Shear Zone in central India are mapped at the outcrop scale. The fracture maps help to identify at least three different types of co-seismic ruptures, e.g., X-X', T1 and T2, which characterize sinistral-sense shearing of rocks, confined between two sinistral strike-slip faults slipping at seismic rate. From the asymmetric distribution of tensile fractures around the sinistral-sense fault vein, the direction of seismic rupture propagation is predicted to have occurred from west-southwest to east-northeast, during an ancient (Ordovician?) earthquake. Calculations of approximate co-seismic displacement on the faults and seismic moment ( M 0) of the earthquake are attempted, following the methods proposed by earlier workers. These estimates broadly agree to the findings from other studied fault zones (e.g., Gole Larghe Fault zone, Italian Alps). This study supports the proposition by some researchers that important seismological information can be extracted from tectonic pseudotachylytes of all ages, provided they are not reworked by subsequent tectonic activity.

  8. A critical review of seismotectonic setting of the Campanian Plain (Southern Italy) in GIS environment.

    NASA Astrophysics Data System (ADS)

    Gaudiosi, Germana; Alessio, Giuliana; Luiso, Paola; Nappi, Rosa; Ricciolino, Patrizia

    2010-05-01

    The Plio-Pleistocene Campanian Plain is a structural depression of the Southern Italy located between the eastern side of the Tyrrhenian Sea and the Southern Apennine chain. It is surrounded to the North, East and South by the Mesozoic carbonate massifs of the Apennine chain and, to the West, by the Tyrrhenian Sea. The graben origin is similar to other peri-Tyrrhenian regions and is related to a stretching and thinning of the continental crust by the counterclockwise rotation of the Italian peninsula and the contemporaneous opening of the Tyrrhenian sea. The consequent subsidence of the Campanian carbonate platform took place along the Tyrrhenian coast during the Plio-Pleistocene with a maximum vertical extent of 5 km. The plain is filled by volcanic and clastic, continental and marine deposits. Voluminous volcanic activity of Roccamonfina, Campi Flegrei, Ischia, Procida and Vesuvio occurred in the Plain during the Quaternary. In the middle of the plain lies the city of Naples, bordered by the two active volcanoes of Campi Flegrei and Vesuvio. It is a very densely inhabited area that is exposed to high potential volcanic risk. The stress field acting in the Campanian area is poorly known. Structural observations on the Pleistocene faults suggest normal to sinistral movements for the NW- SE-trending faults and normal to dextral for the NE-SW-trending structures. These movements are consistent with those of the structures affecting the inner margin of the Southern Apennines. The Campanian Plain is characterized by seismicity of energy lower than the seismic activity of the Southern Apennine chain. The earthquakes mainly occur along the margin of the plain, in the volcanic areas and a minor seismicity spreads out inside the Plain. The aim of this paper is an attempt to identify active, outcropping and buried fault systems of the Campanian plain through the correlation between seismicity and tectonic structures. Seismic, geologic and geomorphologic data have been analysed in GIS environment. In particular, the seismological data used in this study are relative both to the historical and recent seismic activity, collected by the following Catalogues: CPTI04 Catalogue of Parametric Italian Earthquakes, 2004 (217 b.C to 2002); CSI Catalogue of Instrumental Italian Earthquakes (1981-2002); CNT Seismic Bulletin of Istituto Nazionale di Geofisica e Vulcanologia (2003-2008); Data Base of Seismic Laboratory of Osservatorio Vesuviano (Istituto Nazionale di Geofisica e Vulcanologia) (2000-2009); SisCam Catalogue (Seismotectonic Information System of the Campanian Region) (1980-2000). Seismic data were homogenized in an only one Catalogue. The seismicity of Campi Flegrei and Vesuvio volcanoes have not been studied. The Geological Dataset consists of a merge of all outcropping and buried faults extracted from the available geological and structural maps: Geological map of Italy 1:100.000; Geological map of Southern Italy 1:250.000; Neotectonic Map of Italy 1:500.000; Structural Map of Italy 1:500.000. Two main NW-SE and NE-SW active fault systems have been identified from the joined analysis of seismic epicentres and faults. Moreover, tectonic structure without correlated seismic activity and a spread seismicity, apparently not linked with already known structures (buried faults?), have been identified.

  9. Delineation of fault zones using imaging radar

    NASA Technical Reports Server (NTRS)

    Toksoz, M. N.; Gulen, L.; Prange, M.; Matarese, J.; Pettengill, G. H.; Ford, P. G.

    1986-01-01

    The assessment of earthquake hazards and mineral and oil potential of a given region requires a detailed knowledge of geological structure, including the configuration of faults. Delineation of faults is traditionally based on three types of data: (1) seismicity data, which shows the location and magnitude of earthquake activity; (2) field mapping, which in remote areas is typically incomplete and of insufficient accuracy; and (3) remote sensing, including LANDSAT images and high altitude photography. Recently, high resolution radar images of tectonically active regions have been obtained by SEASAT and Shuttle Imaging Radar (SIR-A and SIR-B) systems. These radar images are sensitive to terrain slope variations and emphasize the topographic signatures of fault zones. Techniques were developed for using the radar data in conjunction with the traditional types of data to delineate major faults in well-known test sites, and to extend interpretation techniques to remote areas.

  10. Late Pleistocene - Holocene ruptures of the Lima Reservoir fault, SW Montana

    NASA Astrophysics Data System (ADS)

    Anastasio, David J.; Majerowicz, Christina N.; Pazzaglia, Frank J.; Regalla, Christine A.

    2010-12-01

    Active tectonics within the northern Basin and Range province provide a natural laboratory for the study of normal fault growth, linkage, and interaction. Here, we present new geologic mapping and morphologic fault-scarp modeling within the Centennial Valley, Montana to characterize Pleistocene - Holocene ruptures of the young and active Lima Reservoir fault. Geologic relationships and rupture ages indicate Middle Pleistocene activity on the Henry Gulch (>50 ka and 23-10 ka), Trail Creek (>43 ka and ˜13 ka), and reservoir (˜23 ka) segments. Offset Quaternary deposits also record Holocene rupture of the reservoir segment (˜8 ka), but unfaulted modern streams show that no segments of the Lima Reservoir fault have experienced a large earthquake in at least several millennia. The clustered pattern of rupture ages on the Lima Reservoir fault segments suggests a seismogenic linkage though segment length and spacing make a physical connection at depth unlikely. Trail Creek and reservoir segment slip rates were non-steady and appear to be increasing. The fault helps accommodate differential horizontal surface velocity measured by GPS geodesy across the boundary between the northern Basin and Range province and the Snake River Plain.

  11. Structure of the la VELA Offshore Basin, Western Venezuela: AN Obliquely-Opening Rift Basin Within the South America-Caribbean Strike-Slip Plate Boundary

    NASA Astrophysics Data System (ADS)

    Blanco, J. M.; Mann, P.

    2015-12-01

    Bathymetric, gravity and magnetic maps show that the east-west trend of the Cretaceous Great Arc of the Caribbean in the Leeward Antilles islands is transected by an en echelon series of obliquely-sheared rift basins that show right-lateral offsets ranging from 20 to 40 km. The basins are 75-100 km in length and 20-30 km in width and are composed of sub-parallel, oblique slip normal faults that define deep, bathymetric channels that bound the larger islands of the Leeward Antilles including Aruba, Curacao and Bonaire. A single basin of similar orientation and structure, the Urumaco basin, is present to the southwest in the Gulf of Venezuela. We mapped structures and sedimentation in the La Vela rift basin using a 3D seismic data volume recorded down to 6 seconds TWT. The basin can be mapped from the Falcon coast where it is correlative with the right-lateral Adicora fault mapped onshore, and its submarine extension. To the southeast of the 3D survey area, previous workers have mapped a 70-km-wide zone of northeast-striking, oblique, right-lateral faults, some with apparent right-lateral offsets of the coastline. On seismic data, the faults vary in dip from 45 to 60 degrees and exhibit maximum vertical offsets of 600 m. The La Vela and other obliquely-opening rifts accommodate right-lateral shear with linkages to intervening, east-west-striking right-lateral faults like the Adicora. The zone of oblique rifts is restricted to the trend of the Great Arc of the Caribbean and may reflect the susceptiblity of this granitic basement to active shearing. The age of onset for the basins known from previous studies on the Leeward Antilles is early Miocene. As most of these faults occur offshore their potential to generate damaging earthquakes in the densely populated Leeward Antilles is not known.

  12. Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Publications Search Statewide Maps New Releases Sales Interactive Maps Databases Sections Geologic hazards to buildings, roads, bridges, and other installations and structures (AS 41.08.020). Headlines New release! Active faults and seismic hazards in Alaska - MP 160 New release! The Alaska Volcano Observatory

  13. Space-time evolution of a growth fold (Betic Cordillera, Spain). Evidences from 3D geometrical modelling

    NASA Astrophysics Data System (ADS)

    Martin-Rojas, Ivan; Alfaro, Pedro; Estévez, Antonio

    2014-05-01

    We present a study that encompasses several software tools (iGIS©, ArcGIS©, Autocad©, etc.) and data (geological mapping, high resolution digital topographic data, high resolution aerial photographs, etc.) to create a detailed 3D geometric model of an active fault propagation growth fold. This 3D model clearly shows structural features of the analysed fold, as well as growth relationships and sedimentary patterns. The results obtained permit us to discuss the kinematics and structural evolution of the fold and the fault in time and space. The study fault propagation fold is the Crevillente syncline. This fold represents the northern limit of the Bajo Segura Basin, an intermontane basin in the Eastern Betic Cordillera (SE Spain) developed from upper Miocene on. 3D features of the Crevillente syncline, including growth pattern, indicate that limb rotation and, consequently, fault activity was higher during Messinian than during Tortonian; consequently, fault activity was also higher. From Pliocene on our data point that limb rotation and fault activity steadies or probably decreases. This in time evolution of the Crevillente syncline is not the same all along the structure; actually the 3D geometric model indicates that observed lateral heterogeneity is related to along strike variation of fault displacement.

  14. Structural analysis and thermal remote sensing of the Los Humeros Volcanic Complex: Implications for volcano structure and geothermal exploration

    NASA Astrophysics Data System (ADS)

    Norini, G.; Groppelli, G.; Sulpizio, R.; Carrasco-Núñez, G.; Dávila-Harris, P.; Pellicioli, C.; Zucca, F.; De Franco, R.

    2015-08-01

    The Los Humeros Volcanic Complex (LHVC) is an important geothermal target in the Trans-Mexican Volcanic Belt. Understanding the structure of the LHVC and its influence on the occurrence of thermal anomalies and hydrothermal fluids is important to get insights into the interplay between the volcano-tectonic setting and the characteristics of the geothermal resources in the area. In this study, we present a structural analysis of the LHVC, focused on Quaternary tectonic and volcano-tectonic features, including the areal distribution of monogenetic volcanic centers. Morphostructural analysis and structural field mapping revealed the geometry, kinematics and dynamics of the structural features in the study area. Also, thermal infrared remote sensing analysis has been applied to the LHVC for the first time, to map the main endogenous thermal anomalies. These data are integrated with newly proposed Unconformity Bounded Stratigraphic Units, to evaluate the implications for the structural behavior of the caldera complex and geothermal field. The LHVC is characterized by a multistage formation, with at least two major episodes of caldera collapse: Los Humeros Caldera (460 ka) and Los Potreros Caldera (100 ka). The study suggests that the geometry of the first collapse recalls a trap-door structure and impinges on a thick volcanic succession (10.5-1.55 Ma), now hosting the geothermal reservoir. The main ring-faults of the two calderas are buried and sealed by the widespread post-calderas volcanic products, and for this reason they probably do not have enough permeability to be the main conveyers of the hydrothermal fluid circulation. An active, previously unrecognized fault system of volcano-tectonic origin has been identified inside the Los Potreros Caldera. This fault system is the main geothermal target, probably originated by active resurgence of the caldera floor. The active fault system defines three distinct structural sectors in the caldera floor, where the occurrence of hydrothermal fluids is controlled by fault-induced secondary permeability. The resurgence of the caldera floor could be induced by an inferred magmatic intrusion, representing the heat source of the geothermal system and feeding the simultaneous monogenetic volcanic activity around the deforming area. The operation of the geothermal field and the plans for further exploration should focus on, both, the active resurgence fault system and the new endogenous thermal anomalies mapped outside the known boundaries of the geothermal field.

  15. Seismicity preliminary results in a geothermal and volcano activity area: study case Liquiñe-Ofqui fault system in Southern Andes, Chile

    NASA Astrophysics Data System (ADS)

    Estay, N. P.; Yáñez Morroni, G.; Crempien, J. G. F.; Roquer, T.

    2017-12-01

    Fluid transport through the crust takes place in domains with high permeability. For this reason, fault damage zones are a main feature where fluids may circulate unimpeded, since they have much larger permeability than normal country rocks. With the location of earthquakes, it is possible to infer fault geometry and stress field of the crust, therefore we can determine potential places where fluid circualtion is taking place. With that purpose, we installed a seismic network in an active volcanic-geothermal system, the Liquiñe-Ofqui Fault System (LOFS), located in Puyuhuapi, Southern Andes (44°-45°S). This allowed to link epicentral seismicity, focal mechanisms and surface expression of fluid circulation (hot-springs and volcanos). The LOFS is composed by two NS-striking dextral master faults, and several secondary NE-striking dextral and normal faults. Surface manifestation of fluid circulation in Puyuhuapi area are: 1) six hot-springs, most of them spatially associated with different mapped faults; 2) seven minor eruptive centers aligned over a 10-km-along one of the master NS-striking fault, and; 3) the Melimouyu strato-volcano without any spatial relationship with mapped faults. The network consists of 6 short period seismometers (S31f-2.0a sensor of IESE, with natural frequency of 2Hz), that were installed between July 2016 and August 2017; also 4 permanent broad-band seismometers (Guralp 6TD/ CD 24 sensor) which belong to the Volcano Observatory of Southern Andes (OVDAS). Preliminary results show a correlation between seismicity and surface manifestation of fluid circulation. Seismicity has a heterogeneous distribution: most of the earthquake are concentrated is the master NS-striking fault with fluid circulation manifestations; however along the segments without surface manifestation of fluids do not have seismicity. These results suggest that fluid circulation mostly occur in areas with high seismicity, and thus, the increment in fluid pressure enhances fracturing and earthquake production.

  16. Earthquake Model of the Middle East (EMME) Project: Active Fault Database for the Middle East Region

    NASA Astrophysics Data System (ADS)

    Gülen, L.; Wp2 Team

    2010-12-01

    The Earthquake Model of the Middle East (EMME) Project is a regional project of the umbrella GEM (Global Earthquake Model) project (http://www.emme-gem.org/). EMME project region includes Turkey, Georgia, Armenia, Azerbaijan, Syria, Lebanon, Jordan, Iran, Pakistan, and Afghanistan. Both EMME and SHARE projects overlap and Turkey becomes a bridge connecting the two projects. The Middle East region is tectonically and seismically very active part of the Alpine-Himalayan orogenic belt. Many major earthquakes have occurred in this region over the years causing casualties in the millions. The EMME project will use PSHA approach and the existing source models will be revised or modified by the incorporation of newly acquired data. More importantly the most distinguishing aspect of the EMME project from the previous ones will be its dynamic character. This very important characteristic is accomplished by the design of a flexible and scalable database that will permit continuous update, refinement, and analysis. A digital active fault map of the Middle East region is under construction in ArcGIS format. We are developing a database of fault parameters for active faults that are capable of generating earthquakes above a threshold magnitude of Mw≥5.5. Similar to the WGCEP-2007 and UCERF-2 projects, the EMME project database includes information on the geometry and rates of movement of faults in a “Fault Section Database”. The “Fault Section” concept has a physical significance, in that if one or more fault parameters change, a new fault section is defined along a fault zone. So far over 3,000 Fault Sections have been defined and parameterized for the Middle East region. A separate “Paleo-Sites Database” includes information on the timing and amounts of fault displacement for major fault zones. A digital reference library that includes the pdf files of the relevant papers, reports is also being prepared. Another task of the WP-2 of the EMME project is to prepare a strain and slip rate map of the Middle East region by basically compiling already published data. The third task is to calculate b-values, Mmax and determine the activity rates. New data and evidences will be interpreted to revise or modify the existing source models. A logic tree approach will be utilized for the areas where there is no consensus to encompass different interpretations. Finally seismic source zones in the Middle East region will be delineated using all available data. EMME Project WP2 Team: Levent Gülen, Murat Utkucu, M. Dinçer Köksal, Hilal Domaç, Yigit Ince, Mine Demircioglu, Shota Adamia, Nino Sandradze, Aleksandre Gvencadze, Arkadi Karakhanyan, Mher Avanesyan, Tahir Mammadli, Gurban Yetirmishli, Arif Axundov, Khaled Hessami, M. Asif Khan, M. Sayab.

  17. Spatial and temporal patterns of fault creep across an active salt system, Canyonlands National Park, Utah

    NASA Astrophysics Data System (ADS)

    Kravitz, K.; Mueller, K. J.; Furuya, M.; Tiampo, K. F.

    2017-12-01

    First order conditions that control creeping behavior on faults include the strength of faulted materials, fault maturity and stress changes associated with seismic cycles. We present mapping of surface strain from differential interferometric synthetic aperture radar (DInSAR) of actively creeping faults in Eastern Utah that form by reactivation of older joints and faults. A nine-year record of displacement across the region using descending ERS scenes from 1992-2001 suggests maximum slip rates of 1 mm/yr. Time series analysis shows near steady rates across the region consistent with the proposed ultra-weak nature of these faults as suggested by their dilating nature, based on observations of sinkholes, pit chains and recently opened fissures along their lengths. Slip rates along the faults in the main part of the array are systematically faster with closer proximity to the Colorado River Canyon, consistent with mechanical modeling of the boundary conditions that control the overall salt system. Deeply incised side tributaries coincide with and control the edges of the region with higher strain rates. Comparison of D:L scaling at decadal scales in fault bounded grabens (as defined by InSAR) with previous measurements of total slip (D) to length (L) is interpreted to suggest that faults reached nearly their current lengths relatively quickly (i.e. displaying low displacement to length scaling). We argue this may then have been followed by along strike slip distributions where the centers of the grabens slip more rapidly than their endpoints, resulting in a higher D:L ratio over time. InSAR mapping also points to an increase in creep rates in overlap zones where two faults became hard-linked at breached relay ramps. Additionally, we see evidence for soft-linkage, where displacement profiles along a graben coincide with obvious fault segments. While an endmember case (ultra-weak faults sliding above a plastic substrate), structures in this region highlight mechanical behavior driven by rheological conditions that promote steady state slip in a complex array of extensional faults. Besides defining how creep varies along strike on individual faults, our work also hints at how strain rates may vary within the context of ongoing strain and fault linkage in a complex fault array.

  18. Structural setting and kinematics of Nubian fault system, SE Western Desert, Egypt: An example of multi-reactivated intraplate strike-slip faults

    NASA Astrophysics Data System (ADS)

    Sakran, Shawky; Said, Said Mohamed

    2018-02-01

    Detailed surface geological mapping and subsurface seismic interpretation have been integrated to unravel the structural style and kinematic history of the Nubian Fault System (NFS). The NFS consists of several E-W Principal Deformation Zones (PDZs) (e.g. Kalabsha fault). Each PDZ is defined by spectacular E-W, WNW and ENE dextral strike-slip faults, NNE sinistral strike-slip faults, NE to ENE folds, and NNW normal faults. Each fault zone has typical self-similar strike-slip architecture comprising multi-scale fault segments. Several multi-scale uplifts and basins were developed at the step-over zones between parallel strike-slip fault segments as a result of local extension or contraction. The NNE faults consist of right-stepping sinistral strike-slip fault segments (e.g. Sin El Kiddab fault). The NNE sinistral faults extend for long distances ranging from 30 to 100 kms and cut one or two E-W PDZs. Two nearly perpendicular strike-slip tectonic regimes are recognized in the NFS; an inactive E-W Late Cretaceous - Early Cenozoic dextral transpression and an active NNE sinistral shear.

  19. Fault zone identification in the eastern part of the Persian Gulf based on combined seismic attributes

    NASA Astrophysics Data System (ADS)

    Mirkamali, M. S.; Keshavarz FK, N.; Bakhtiari, M. R.

    2013-02-01

    Faults, as main pathways for fluids, play a critical role in creating regions of high porosity and permeability, in cutting cap rock and in the migration of hydrocarbons into the reservoir. Therefore, accurate identification of fault zones is very important in maximizing production from petroleum traps. Image processing and modern visualization techniques are provided for better mapping of objects of interest. In this study, the application of fault mapping in the identification of fault zones within the Mishan and Aghajari formations above the Guri base unconformity surface in the eastern part of Persian Gulf is investigated. Seismic single- and multi-trace attribute analyses are employed separately to determine faults in a vertical section, but different kinds of geological objects cannot be identified using individual attributes only. A mapping model is utilized to improve the identification of the faults, giving more accurate results. This method is based on combinations of all individual relevant attributes using a neural network system to create combined attributes, which gives an optimal view of the object of interest. Firstly, a set of relevant attributes were separately calculated on the vertical section. Then, at interpreted positions, some example training locations were manually selected in each fault and non-fault class by an interpreter. A neural network was trained on combinations of the attributes extracted at the example training locations to generate an optimized fault cube. Finally, the results of the fault and nonfault probability cube were estimated, which the neural network applied to the entire data set. The fault probability cube was obtained with higher mapping accuracy and greater contrast, and with fewer disturbances in comparison with individual attributes. The computed results of this study can support better understanding of the data, providing fault zone mapping with reliable results.

  20. Active Faults and Seismic Sources of the Middle East Region: Earthquake Model of the Middle East (EMME) Project

    NASA Astrophysics Data System (ADS)

    Gulen, L.; EMME WP2 Team*

    2011-12-01

    The Earthquake Model of the Middle East (EMME) Project is a regional project of the GEM (Global Earthquake Model) project (http://www.emme-gem.org/). The EMME project covers Turkey, Georgia, Armenia, Azerbaijan, Syria, Lebanon, Jordan, Iran, Pakistan, and Afghanistan. Both EMME and SHARE projects overlap and Turkey becomes a bridge connecting the two projects. The Middle East region is tectonically and seismically very active part of the Alpine-Himalayan orogenic belt. Many major earthquakes have occurred in this region over the years causing casualties in the millions. The EMME project consists of three main modules: hazard, risk, and socio-economic modules. The EMME project uses PSHA approach for earthquake hazard and the existing source models have been revised or modified by the incorporation of newly acquired data. The most distinguishing aspect of the EMME project from the previous ones is its dynamic character. This very important characteristic is accomplished by the design of a flexible and scalable database that permits continuous update, refinement, and analysis. An up-to-date earthquake catalog of the Middle East region has been prepared and declustered by the WP1 team. EMME WP2 team has prepared a digital active fault map of the Middle East region in ArcGIS format. We have constructed a database of fault parameters for active faults that are capable of generating earthquakes above a threshold magnitude of Mw≥5.5. The EMME project database includes information on the geometry and rates of movement of faults in a "Fault Section Database", which contains 36 entries for each fault section. The "Fault Section" concept has a physical significance, in that if one or more fault parameters change, a new fault section is defined along a fault zone. So far 6,991 Fault Sections have been defined and 83,402 km of faults are fully parameterized in the Middle East region. A separate "Paleo-Sites Database" includes information on the timing and amounts of fault displacement for major fault zones. A digital reference library, that includes the pdf files of relevant papers, reports and maps, is also prepared. A logic tree approach is utilized to encompass different interpretations for the areas where there is no consensus. Finally seismic source zones in the Middle East region have been delineated using all available data. *EMME Project WP2 Team: Levent Gülen, Murat Utkucu, M. Dinçer Köksal, Hilal Yalçin, Yigit Ince, Mine Demircioglu, Shota Adamia, Nino Sadradze, Aleksandre Gvencadze, Arkadi Karakhanyan, Mher Avanesyan, Tahir Mammadli, Gurban Yetirmishli, Arif Axundov, Khaled Hessami, M. Asif Khan, M. Sayab.

  1. New Airborne LiDAR Survey of the Hayward Fault, Northern California

    NASA Astrophysics Data System (ADS)

    Brocher, T. M.; Prentice, C. S.; Phillips, D. A.; Bevis, M.; Shrestha, R. L.

    2007-12-01

    We present a digital elevation model (DEM) constructed from newly acquired high-resolution LIght Detection and Ranging (LIDAR) data along the Hayward Fault in Northern California. The data were acquired by the National Center for Airborne Laser Mapping (NCALM) in the spring of 2007 in conjunction with a larger regional airborne LIDAR survey of the major crustal faults in northern California coordinated by UNAVCO and funded by the National Science Foundation as part of GeoEarthScope. A consortium composed of the U. S. Geological Survey, Pacific Gas & Electric Company, the San Francisco Public Utilities Commission, and the City of Berkeley separately funded the LIDAR acquisition along the Hayward Fault. Airborne LIDAR data were collected within a 106-km long by 1-km wide swath encompassing the Hayward Fault that extended from San Pablo Bay on the north to the southern end of its restraining stepover with the Calaveras Fault on the south. The Hayward Fault is among the most urbanized faults in the nation. With its most recent major rupture in 1868, it is well within the time window for its next large earthquake, making it an excellent candidate for a "before the earthquake" DEM image. After the next large Hayward Fault event, this DEM can be compared to a post-earthquake LIDAR DEM to provide a means for a detailed analysis of fault slip. In order to minimize location errors, temporary GPS ground control stations were deployed by Ohio State University, UNAVCO, and student volunteers from local universities to augment the available continuous GPS arrays operated in the study area by the Bay Area Regional Deformation (BARD) Network and the Plate Boundary Observatory (PBO). The vegetation cover varies along the fault zone: most of the vegetation is non-native species. Photographs from the 1860s show very little tall vegetation along the fault zone. A number of interesting geomorphic features are associated with the Hayward Fault, even in urbanized areas. Sag ponds and push up ridges can easily be followed along the fault zone, as well as more subtle features. Landslides along the western flanks of the East Bay Hills were also imaged. We expect that these new LIDAR images will allow us to detect subtle geomorphic features associated with active faulting that may reveal previously undetected active strands or better delineate active strands in areas of pervasive landsliding (as well as better mapping of the landslides themselves). We also anticipate that they will aid in land use planning and identification of new paleoseismic sites. The LIDAR data are freely available at www.earthscope.org.

  2. Location, structure, and seismicity of the Seattle fault zone, Washington: Evidence from aeromagnetic anomalies, geologic mapping, and seismic-reflection data

    USGS Publications Warehouse

    Blakely, R.J.; Wells, R.E.; Weaver, C.S.; Johnson, S.Y.

    2002-01-01

    A high-resolution aeromagnetic survey of the Puget Lowland shows details of the Seattle fault zone, an active but largely concealed east-trending zone of reverse faulting at the southern margin of the Seattle basin. Three elongate, east-trending magnetic anomalies are associated with north-dipping Tertiary strata exposed in the hanging wall; the magnetic anomalies indicate where these strata continue beneath glacial deposits. The northernmost anomaly, a narrow, elongate magnetic high, precisely correlates with magnetic Miocene volcanic conglomerate. The middle anomaly, a broad magnetic low, correlates with thick, nonmagnetic Eocene and Oligocene marine and fluvial strata. The southern anomaly, a broad, complex magnetic high, correlates with Eocene volcanic and sedimentary rocks. This tripartite package of anomalies is especially clear over Bainbridge Island west of Seattle and over the region east of Lake Washington. Although attenuated in the intervening region, the pattern can be correlated with the mapped strike of beds following a northwest-striking anticline beneath Seattle. The aeromagnetic and geologic data define three main strands of the Seattle fault zone identified in marine seismic-reflection profiles to be subparallel to mapped bedrock trends over a distance of >50 km. The locus of faulting coincides with a diffuse zone of shallow crustal seismicity and the region of uplift produced by the M 7 Seattle earthquake of A.D. 900-930.

  3. Identification and interpretation of tectonic features from ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Abdel-Gawad, M. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Many criteria of active or recent fault movements are observable in the imagery. It was observed that where earthquake epicenter clusters occur, evidence of recent fault movements is generally observed. The opposite was not necessarily true as there are areas where evidence of recent faulting is observed, often along major known faults which are peculiarly devoid of significant seismicity. A tentative conclusion is that the seismicity pattern alone can often be a misleading criteria for potential earthquake hazards. The feasibility of recognizing geomorphic criteria of recent fault movement from ERTS-1 imagery suggests that ERTS imagery should be used to map potentially active faults and utilize this data to develop better criteria for the identification of areas prone to future earthquakes. An apparent correlation was observed between the distribution of mercury deposits in the California Coast Range Province and transverse fault zones trending west-northwest oblique to the trend of the San Andreas system. The significance of this correlation and the full extent of its implication on mercury exploration is under study.

  4. Geologic map of the southern White Ledge Peak and Matilija quadrangles, Santa Barbara and Ventura Counties, California

    USGS Publications Warehouse

    Minor, Scott A.; Brandt, Theodore R.

    2015-01-01

    A principal aim of the new mapping and associated fault-kinematic measurements is to document and constrain the nature of transpressional strain transfer between various regional, potentially seismogenic faults. In the accompanying pamphlet, surficial and bedrock map units are described in detail as well as a summary of the structural and fault-kinematic framework of the map area. New biostratigraphic and biochronologic data based on microfossil identifications are presented in expanded unit descriptions of the marine Neogene Monterey and Sisquoc Formations. Site-specific fault kinematic observations are embedded in the digital map database. This compilation provides a uniform geologic digital geodatabase and map plot files that can be used for visualization, analysis, and interpretation of the area’s geology, geologic hazards, and natural resources.

  5. Structural controls on a geothermal system in the Tarutung Basin, north central Sumatra

    NASA Astrophysics Data System (ADS)

    Nukman, Mochamad; Moeck, Inga

    2013-09-01

    The Sumatra Fault System provides a unique geologic setting to evaluate the influence of structural controls on geothermal activity. Whereas most of the geothermal systems in Indonesia are controlled by volcanic activity, geothermal systems at the Sumatra Fault System might be controlled by faults and fractures. Exploration strategies for these geothermal systems need to be verified because the typical pattern of heat source and alteration clays are missing so that conventional exploration with magnetotelluric surveys might not provide sufficient data to delineate favorable settings for drilling. We present field geological, structural and geomorphological evidence combined with mapping of geothermal manifestations to allow constraints between fault dynamics and geothermal activity in the Tarutung Basin in north central Sumatra. Our results indicate that the fault pattern in the Tarutung Basin is generated by a compressional stress direction acting at a high angle to the right-lateral Sumatra Fault System. NW-SE striking normal faults possibly related to negative flower structures and NNW-SSE to NNE-SSW oriented dilative Riedel shears are preferential fluid pathways whereas ENE-WSW striking faults act as barriers in this system. The dominant of geothermal manifestations at the eastern part of the basin indicates local extension due to clockwise block rotation in the Sumatra Fault System. Our results support the effort to integrate detailed field geological surveys to refined exploration strategies even in tropical areas where outcrops are limited.

  6. Seismic hazard maps for Haiti

    USGS Publications Warehouse

    Frankel, Arthur; Harmsen, Stephen; Mueller, Charles; Calais, Eric; Haase, Jennifer

    2011-01-01

    We have produced probabilistic seismic hazard maps of Haiti for peak ground acceleration and response spectral accelerations that include the hazard from the major crustal faults, subduction zones, and background earthquakes. The hazard from the Enriquillo-Plantain Garden, Septentrional, and Matheux-Neiba fault zones was estimated using fault slip rates determined from GPS measurements. The hazard from the subduction zones along the northern and southeastern coasts of Hispaniola was calculated from slip rates derived from GPS data and the overall plate motion. Hazard maps were made for a firm-rock site condition and for a grid of shallow shear-wave velocities estimated from topographic slope. The maps show substantial hazard throughout Haiti, with the highest hazard in Haiti along the Enriquillo-Plantain Garden and Septentrional fault zones. The Matheux-Neiba Fault exhibits high hazard in the maps for 2% probability of exceedance in 50 years, although its slip rate is poorly constrained.

  7. Microstructural investigations on carbonate fault core rocks in active extensional fault zones from the central Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Cortinovis, Silvia; Balsamo, Fabrizio; Storti, Fabrizio

    2017-04-01

    The study of the microstructural and petrophysical evolution of cataclasites and gouges has a fundamental impact on both hydraulic and frictional properties of fault zones. In the last decades, growing attention has been payed to the characterization of carbonate fault core rocks due to the nucleation and propagation of coseismic ruptures in carbonate successions (e.g., Umbria-Marche 1997, L'Aquila 2009, Amatrice 2016 earthquakes in Central Apennines, Italy). Among several physical parameters, grain size and shape in fault core rocks are expected to control the way of sliding along the slip surfaces in active fault zones, thus influencing the propagation of coseismic ruptures during earthquakes. Nevertheless, the role of grain size and shape distribution evolution in controlling the weakening or strengthening behavior in seismogenic fault zones is still not fully understood also because a comprehensive database from natural fault cores is still missing. In this contribution, we present a preliminary study of seismogenic extensional fault zones in Central Apennines by combining detailed filed mapping with grain size and microstructural analysis of fault core rocks. Field mapping was aimed to describe the structural architecture of fault systems and the along-strike fault rock distribution and fracturing variations. In the laboratory we used a Malvern Mastersizer 3000 granulometer to obtain a precise grain size characterization of loose fault rocks combined with sieving for coarser size classes. In addition, we employed image analysis on thin sections to quantify the grain shape and size in cemented fault core rocks. The studied fault zones consist of an up to 5-10 m-thick fault core where most of slip is accommodated, surrounded by a tens-of-meters wide fractured damage zone. Fault core rocks consist of (1) loose to partially cemented breccias characterized by different grain size (from several cm up to mm) and variable grain shape (from very angular to sub-rounded), and (2) very fine-grained gouges (< 1 mm) localized along major and minor mirror-like slip surfaces. Damage zones mostly consist of fractured rocks and, locally, pulverized rocks. Collectively, field observations and laboratory analyses indicate that within the fault cores of the studied fault zones, grain size progressively decreases approaching the master slip surfaces. Furthermore, grain shape changes from very angular to sub-rounded clasts moving toward the master slip surfaces. These features suggest that the progressive evolution of grain size and shape distributions within fault cores may have determined the development of strain localization by the softening and cushioning effects of smaller particles in loose fault rocks.

  8. New Perspectives on Active Tectonics: Observing Fault Motion, Mapping Earthquake Strain Fields, and Visualizing Seismic Events in Multiple Dimensions Using Satellite Imagery and Geophysical Data Base

    NASA Technical Reports Server (NTRS)

    Crippen, R.; Blom, R.

    1994-01-01

    By rapidly alternating displays of SPOT satellite images acquired on 27 July 1991 and 25 July 1992 we are able to see spatial details of terrain movements along fault breaks associated with the 28 June 1992 Landers, California earthquake that are virtually undetectable by any other means.

  9. Structural Mapping Along the Central San Andreas Fault-zone Using Airborne Electromagnetics

    NASA Astrophysics Data System (ADS)

    Zamudio, K. D.; Bedrosian, P.; Ball, L. B.

    2017-12-01

    Investigations of active fault zones typically focus on either surface expressions or the associated seismogenic zones. However, the largely aseismic upper kilometer can hold significant insight into fault-zone architecture, strain partitioning, and fault-zone permeability. Geophysical imaging of the first kilometer provides a link between surface fault mapping and seismically-defined fault zones and is particularly important in geologically complex regions with limited surface exposure. Additionally, near surface imaging can provide insight into the impact of faulting on the hydrogeology of the critical zone. Airborne electromagnetic (AEM) methods offer a unique opportunity to collect a spatially-large, detailed dataset in a matter of days, and are used to constrain subsurface resistivity to depths of 500 meters or more. We present initial results from an AEM survey flown over a 60 kilometer long segment of the central San Andreas Fault (SAF). The survey is centered near Parkfield, California, the site of the SAFOD drillhole, which marks the transition between a creeping fault segment to the north and a locked zone to the south. Cross sections with a depth of investigation up to approximately 500 meters highlight the complex Tertiary and Mesozoic geology that is dismembered by the SAF system. Numerous fault-parallel structures are imaged across a more than 10 kilometer wide zone centered on the surface trace. Many of these features can be related to faults and folds within Plio-Miocene sedimentary rocks found on both sides of the fault. Northeast of the fault, rocks of the Mesozoic Franciscan and Great Valley complexes are extremely heterogeneous, with highly resistive volcanic rocks within a more conductive background. The upper 300 meters of a prominent fault-zone conductor, previously imaged to 1-3 kilometers depth by magnetotellurics, is restricted to a 20 kilometer long segment of the fault, but is up to 4 kilometers wide in places. Elevated fault-zone conductivity may be related to damage within the fault zone, Miocene marine shales, or some combination of the two.

  10. Lembang fault plane identification using electrical resistivity method for disaster mitigation

    NASA Astrophysics Data System (ADS)

    Maulinadya, S.; Ramadhan, M. Lutfi; N. Wening, F.; Pinehas, D.; Widodo

    2017-07-01

    Lembang Fault is an active fault lies from West to East located 10 kilometers in north of Bandung. It is a normal fault that its foot wall raises 40-450 meters above the ground. Its location that is not so far from Bandung, which is densely populated and frequently visited by tourists, makes Lembang Fault a threat if it becomes suddenly active. Its movement can cause earthquakes that can result in fatalities. Therefore, act of mitigation is necessary, such as educating people about Lembang Fault and its potential to cause disaster. The objective of this study is to find Lembang Fault plane below the surface with geo electrical mapping method and vertical elect rical sounding method around Ciwarega and The Peak, Lembang (west side of Lembang Fault). Both of these methods are using electricity current to measure rock resistivity. Currents are injected to the ground and potential differences are measured. According to Ohm's Law, resistivity can be calculated so that resistivity distribution can be obtained. In this study, high resistivity contrast is obtained; it is about 1400-5000 Ohm.m. This resistivity contrast can be caused by lateral lithology difference resulted by fault existence. This proves that there is actually a fault in Lembang that potentially cause disasters like earthquakes.

  11. Preliminary deformation model for National Seismic Hazard map of Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meilano, Irwan; Gunawan, Endra; Sarsito, Dina

    Preliminary deformation model for the Indonesia’s National Seismic Hazard (NSH) map is constructed as the block rotation and strain accumulation function at the elastic half-space. Deformation due to rigid body motion is estimated by rotating six tectonic blocks in Indonesia. The interseismic deformation due to subduction is estimated by assuming coupling on subduction interface while deformation at active fault is calculated by assuming each of the fault‘s segment slips beneath a locking depth or in combination with creeping in a shallower part. This research shows that rigid body motion dominates the deformation pattern with magnitude more than 15 mm/year, except inmore » the narrow area near subduction zones and active faults where significant deformation reach to 25 mm/year.« less

  12. SOM neural network fault diagnosis method of polymerization kettle equipment optimized by improved PSO algorithm.

    PubMed

    Wang, Jie-sheng; Li, Shu-xia; Gao, Jie

    2014-01-01

    For meeting the real-time fault diagnosis and the optimization monitoring requirements of the polymerization kettle in the polyvinyl chloride resin (PVC) production process, a fault diagnosis strategy based on the self-organizing map (SOM) neural network is proposed. Firstly, a mapping between the polymerization process data and the fault pattern is established by analyzing the production technology of polymerization kettle equipment. The particle swarm optimization (PSO) algorithm with a new dynamical adjustment method of inertial weights is adopted to optimize the structural parameters of SOM neural network. The fault pattern classification of the polymerization kettle equipment is to realize the nonlinear mapping from symptom set to fault set according to the given symptom set. Finally, the simulation experiments of fault diagnosis are conducted by combining with the industrial on-site historical data of the polymerization kettle and the simulation results show that the proposed PSO-SOM fault diagnosis strategy is effective.

  13. The South Fork detachment fault, Park County, Wyoming: discussion and reply ( USA).

    USGS Publications Warehouse

    Pierce, W.G.

    1986-01-01

    Blackstone (1985) published an interpretation of South form detachment fault and related features. His interpretation of the area between Castle and Hardpan transverse faults is identical to mine of 1941. Subsequent detailed mapping has shown that the structure between the transverse faults is more complicated than originally envisioned and resurrected by Blackstone. The present paper describes and discusses geologic features that are the basis for my interpretations; also discussed are differences between my interpretations and those of Blackstone. Most data are shown on the geologic map of the Wapiti Quadrangle (Pierce and Nelson, 1969). Blackstone's 'allochthonous' masses are part of the South Form fault. Occurrences of Sundance Formation, which he interpreted as the upper plate of his 'North Fork fault', are related to Heart Mountain fault. Volcaniclastic rocks south of Jim Mountain mapped as Aycross Formation by Torres and Gingerich may be Cathedral Cliffs Formation, emplaced by movement of the Heart Mountain fault. - Author

  14. Reinterpretation of the stratigraphy and structure of the Rancho Las Norias area, central Sonora, Mexico

    USGS Publications Warehouse

    Page, W.R.; Harris, A.G.; Poole, F.G.; Repetski, J.E.

    2003-01-01

    New geologic mapping and fossil data in the vicinity of Rancho Las Norias, 30 km east of Hermosillo, Sonora, Mexico, show that rocks previously mapped as Precambrian instead are Paleozoic. Previous geologic maps of the Rancho Las Norias area show northeast-directed, southwest-dipping reverse or thrust faults deforming both Precambrian and Paleozoic rocks. The revised stratigraphy requires reinterpretation of some of these faults as high-angle normal or oblique-slip faults and the elimination of other faults. We agree with earlier geologic map interpretations that compressional structures have affected the Paleozoic rocks in the area, but our mapping suggests that the direction of compression is from southeast to northwest. Published by Elsevier Ltd.

  15. Three-dimensional splay fault geometry and implications for tsunami generation.

    PubMed

    Moore, G F; Bangs, N L; Taira, A; Kuramoto, S; Pangborn, E; Tobin, H J

    2007-11-16

    Megasplay faults, very long thrust faults that rise from the subduction plate boundary megathrust and intersect the sea floor at the landward edge of the accretionary prism, are thought to play a role in tsunami genesis. We imaged a megasplay thrust system along the Nankai Trough in three dimensions, which allowed us to map the splay fault geometry and its lateral continuity. The megasplay is continuous from the main plate interface fault upwards to the sea floor, where it cuts older thrust slices of the frontal accretionary prism. The thrust geometry and evidence of large-scale slumping of surficial sediments show that the fault is active and that the activity has evolved toward the landward direction with time, contrary to the usual seaward progression of accretionary thrusts. The megasplay fault has progressively steepened, substantially increasing the potential for vertical uplift of the sea floor with slip. We conclude that slip on the megasplay fault most likely contributed to generating devastating historic tsunamis, such as the 1944 moment magnitude 8.1 Tonankai event, and it is this geometry that makes this margin and others like it particularly prone to tsunami genesis.

  16. Geologic Map of the Goleta Quadrangle, Santa Barbara County, California

    USGS Publications Warehouse

    Minor, Scott A.; Kellogg, Karl S.; Stanley, Richard G.; Brandt, Theodore R.

    2007-01-01

    This map depicts the distribution of bedrock units and surficial deposits and associated deformation underlying those parts of the Santa Barbara coastal plain and adjacent southern flank of the Santa Ynez Mountains within the Goleta 7 ?? quadrangle at a compilation scale of 1:24,000 (one inch on the map = 2,000 feet on the ground) and with a horizontal positional accuracy of at least 20 m. The Goleta map overlaps an earlier preliminary geologic map of the central part of the coastal plain (Minor and others, 2002) that provided coverage within the coastal, central parts of the Goleta and contiguous Santa Barbara quadrangles. In addition to new mapping in the northern part of the Goleta quadrangle, geologic mapping in other parts of the map area has been revised from the preliminary map compilation based on new structural interpretations supplemented by new biostratigraphic data. All surficial and bedrock map units are described in detail in the accompanying map pamphlet. Abundant biostratigraphic and biochronologic data based on microfossil identifications are presented in expanded unit descriptions of the marine Neogene Monterey and Sisquoc Formations. Site-specific fault-kinematic observations (including slip-sense determinations) are embedded in the digital map database. The Goleta quadrangle is located in the western Transverse Ranges physiographic province along an east-west-trending segment of the southern California coastline about 100 km (62 mi) northwest of Los Angeles. The Santa Barbara coastal plain surface, which spans the central part of the quadrangle, includes several mesas and hills that are geomorphic expressions of underlying, potentially active folds and partly buried oblique and reverse faults of the Santa Barbara fold and fault belt (SBFFB). Strong earthquakes have occurred offshore within 10 km of the Santa Barbara coastal plain in 1925 (6.3 magnitude), 1941 (5.5 magnitude) and 1978 (5.1 magnitude). These and numerous smaller seismic events located beneath and offshore of the coastal plain, likely occurred on reverse-oblique-slip faults that are similar to, or continuous with, Quaternary reverse faults crossing the coastal plain. Thus, faults of the SBFFB pose a significant earthquake hazard to the approximately 200,000 people living within the major coastal population centers of Santa Barbara and Goleta. In addition, numerous Quaternary landslide deposits along the steep southern flank of the Santa Ynez Mountains indicate the potential for continued slope failures and mass movements in developed areas. Folded, faulted, and fractured sedimentary rocks in the subsurface of the coastal plain and adjacent Santa Barbara Channel are sources and form reservoirs for economic deposits of oil and gas, some of which are currently being extracted offshore. Shallow, localized sedimentary aquifers underlying the coastal plain provide limited amounts of water for the urban areas, but the quality of some of this groundwater is compromised by coastal salt-water contamination. The present map compilation provides a set of uniform geologic digital coverages that can be used for analysis and interpretation of these and other geologic hazards and resources in the Goleta region.

  17. Three-Dimensional Geologic Map of the Hayward Fault Zone, San Francisco Bay Region, California

    USGS Publications Warehouse

    Phelps, G.A.; Graymer, R.W.; Jachens, R.C.; Ponce, D.A.; Simpson, R.W.; Wentworth, C.M.

    2008-01-01

    A three-dimensional (3D) geologic map of the Hayward Fault zone was created by integrating the results from geologic mapping, potential field geophysics, and seismology investigations. The map volume is 100 km long, 20 km wide, and extends to a depth of 12 km below sea level. The map volume is oriented northwest and is approximately bisected by the Hayward Fault. The complex geologic structure of the region makes it difficult to trace many geologic units into the subsurface. Therefore, the map units are generalized from 1:24,000-scale geologic maps. Descriptions of geologic units and structures are offered, along with a discussion of the methods used to map them and incorporate them into the 3D geologic map. The map spatial database and associated viewing software are provided. Elements of the map, such as individual fault surfaces, are also provided in a non-proprietary format so that the user can access the map via open-source software. The sheet accompanying this manuscript shows views taken from the 3D geologic map for the user to access. The 3D geologic map is designed as a multi-purpose resource for further geologic investigations and process modeling.

  18. www.fallasdechile.cl, the First Online Repository for Neotectonic Faults in the Chilean Andes

    NASA Astrophysics Data System (ADS)

    Aron, F.; Salas, V.; Bugueño, C. J.; Hernández, C.; Leiva, L.; Santibanez, I.; Cembrano, J. M.

    2016-12-01

    We introduce the site www.fallasdechile.cl, created and maintained by undergraduate students and researchers at the Catholic University of Chile. Though the web page seeks to inform and educate the general public about potentially seismogenic faults of the country, layers of increasing content complexity allow students, researchers and educators to consult the site as a scientific tool as well. This is the first comprehensive, open access database on Chilean geologic faults; we envision that it may grow organically with contributions from peer scientists, resembling the SCEC community fault model for southern California. Our website aims at filling a gap between science and society providing users the opportunity to get involved by self-driven learning through interactive education modules. The main page highlights recent developments and open questions in Chilean earthquake science. Front pages show first level information of general concepts in earthquake topics such as tectonic settings, definition of geologic faults, and space-time constraints of faults. Users can navigate interactive modules to explore, with real data, different earthquake scenarios and compute values of seismic moment and magnitude. A second level covers Chilean/Andean faults classified according to their geographic location containing at least one of the following parameters: mapped trace, 3D geometry, sense of slip, recurrence times and date of last event. Fault traces are displayed on an interactive map using a Google Maps API. The material is compiled and curated in an effort to present, up to our knowledge, accurate and up to date information. If interested, the user can navigate to a third layer containing more advanced technical details including primary sources of the data, a brief structural description, published scientific articles, and links to other online content complementing our site. Also, geographically referenced fault traces with attributes (kml, shapefiles) and fault 3D surfaces (contours, tsurf files) will be available to download. Given its potential for becoming a referential database for active faults in Chile, this project evidences that undergrads can go beyond the classroom, be of service to the scientific community, and make contributions with broader impacts.

  19. Palinspastic reconstruction of structure maps: an automated finite element approach with heterogeneous strain

    NASA Astrophysics Data System (ADS)

    Dunbar, John A.; Cook, Richard W.

    2003-07-01

    Existing methods for the palinspastic reconstruction of structure maps do not adequately account for heterogeneous rock strain and hence cannot accurately treat features such as fault terminations and non-cylindrical folds. We propose a new finite element formulation of the map reconstruction problem that treats such features explicitly. In this approach, a model of the map surface, with internal openings that honor the topology of the fault-gap network, is constructed of triangular finite elements. Both model building and reconstruction algorithms are guided by rules relating fault-gap topology to the kinematics of fault motion and are fully automated. We represent the total strain as the sum of a prescribed component of locally homogeneous simple shear and a minimum amount of heterogeneous residual strain. The region within which a particular orientation of simple shear is treated as homogenous can be as small as an individual element or as large as the entire map. For residual strain calculations, we treat the map surface as a hyperelastic membrane. A globally optimum reconstruction is found that unfolds the map while faithfully honoring assigned strain mechanisms, closes fault gaps without overlap or gap and imparts the least possible residual strain in the restored surface. The amount and distribution of the residual strain serves as a diagnostic tool for identifying mapping errors. The method can be used to reconstruct maps offset by any number of faults that terminate, branch and offset each other in arbitrarily complex ways.

  20. Reconnaissance engineering geology of the Haines area, Alaska, with emphasis on evaluation of earthquake and other geologic hazards

    USGS Publications Warehouse

    Lemke, Richard Walter; Yehle, Lynn A.

    1972-01-01

    The Alaska earthquake of March 27, 1964, brought into sharp focus the need for engineering geologic studies in urban areas. Study of the Haines area constitutes an integral part of an overall program to evaluate earthquake and other geologic hazards in most of the larger Alaska coastal communities. The evaluations of geologic hazards that follow, although based only upon reconnaissance studies and, therefore, subject to revision, will provide broad guidelines useful in city and land-use planning. It is hoped that the knowledge gained will result in new facilities being built in the best possible geologic environments and being designed so as to minimize future loss of life and property damage. Haines, which is in the northern part of southeastern Alaska approximately 75 miles northwest of Juneau, had a population, of about 700 people in 1970. It is built at the northern end of the Chilkat Peninsula and lies within the Coast Mountains of the Pacific Mountain system. The climate is predominantly marine and is characterized by mild winters and cool summers. The mapped area described in this report comprises about 17 square miles of land; deep fiords constitute most of the remaining mapped area that is evaluated in this study. The Haines area was covered by glacier ice at least once and probably several times during the Pleistocene Epoch. The presence of emergent marine deposits, several hundred feet above sea level, demonstrates that the land has been uplifted relative to sea level since the last major deglaciation of the region about 10,000 years ago. The rate of relative uplift of the land at Haines during the past 39 years is 2.26 cm per year. Most or all of this uplift appears to be due to rebound as a result of deglaciation. Both bedrock and surficial deposits are present in the area. Metamorphic and igneous rocks constitute the exposed bedrock. The metamorphic rocks consist of metabasalt of Mesozoic age and pyroxenite of probable early middle Cretaceous age. The igneous rocks consist of diorite and quartz diorite (tonalite) of Cretaceous age. Sedimentary rocks of Tertiary age may be present in the mapped area but are not exposed. The surficial deposits of Quaternary age,-have been divided into the following map units on the basis of time Of deposition, mode of origin, and grain size: (1) undifferentiated drift deposits, (2) outwash and Ice-contact deposits; (3) elevated fine-grained marine deposits, (4) elevated shore and delta deposits, (5) alluvial fan deposits, (6) colluvial deposits, (7) modern beach deposits, (8) Chilkat River flood-plain and delta deposits, and (9) manmade fill. Offshore deposits are described but are not mapped. Southeastern Alaska lies within the tectonically active belt that rims the northern Pacific Basin and has been active since at least early Paleozoic time. The outcrop pattern is the result of late Mesozoic and Tertiary deformational, metamorphic, and intrusive events. Large-scale faulting has been common. The two most prominent inferred fault systems in southeastern Alaska and surrounding regions are: (1) The Denali fault system and (2) the Fairweather-Queen Charlotte Islands fault system. In the general area of Haines, rocks of Mesozoic age northeast of Chilkat River have a simple monoclinal structure. Paleozoic-Mesozoic rocks southwest of Chilkat River are gently to rather complexly folded. Several major and numerous minor faults probably transect the general area of Haines but their exact location and character can only be inferred because their traces are coincident to the long axes of fiords and river valleys, where they are concealed by water or by valley-floor deposits. Inferred faults in or near the Haines mapped area are: (1) Chilkat River fault, (2) Chilkoot fault, (3) Takhin fault, and (4) faults in the saddle area at Haines. Southeastern Alaska lies in one of the two most seismically active zones in Alaska, a State where 6 percent of the world's shallow earthqua

  1. Investigation of late Pleistocene and Holocene activity in the San Gregorio fault zone on the continental slope north of Monterey Canyon, offshore central California

    USGS Publications Warehouse

    Maier, Katherine L.; Paull, Charles K.; Brothers, Daniel; Caress, David W.; McGann, Mary; Lundsten, Eve M.; Anderson, Krystle; Gwiazda, Roberto

    2017-01-01

    We provide an extensive high‐resolution geophysical, sediment core, and radiocarbon dataset to address late Pleistocene and Holocene fault activity of the San Gregorio fault zone (SGFZ), offshore central California. The SGFZ occurs primarily offshore in the San Andreas fault system and has been accommodating dextral strike‐slip motion between the Pacific and North American plates since the mid‐Miocene. Our study focuses on the SGFZ where it has been mapped through the continental slope north of Monterey Canyon. From 2009 to 2015, the Monterey Bay Aquarium Research Institute collected high‐resolution multibeam bathymetry and chirp sub‐bottom profiles using an autonomous underwater vehicle (AUV). Targeted samples were collected using a remotely operated vehicle (ROV) to provide radiocarbon age constraints. We integrate the high‐resolution geophysical data with radiocarbon dates to reveal Pleistocene seismic horizons vertically offset less than 5 m on nearly vertical faults. These faults are buried by continuous reflections deposited after ∼17.5  ka and likely following erosion during the last sea‐level lowstand ∼21  ka, bracketing the age of faulting to ∼32–21  ka. Clearly faulted horizons are only detected in a small area where mass wasting exhumed older strata to within ∼25  m of the seafloor. The lack of clearly faulted Holocene deposits and possible highly distributed faulting in the study area are consistent with previous interpretations that late Pleistocene and Holocene activity along the SGFZ may decrease to the south. This study illustrates the complexity of the SGFZ, offshore central California, and demonstrates the utility of very high‐resolution data from combined AUV (geophysical)–ROV (seabed sampling) surveys in offshore studies of fault activity.

  2. Geologic map of the Ute Mountain 7.5' quadrangle, Taos County, New Mexico, and Conejos and Costilla Counties, Colorado

    USGS Publications Warehouse

    Thompson, Ren A.; Turner, Kenzie J.; Shroba, Ralph R.; Cosca, Michael A.; Ruleman, Chester A.; Lee, John P.; Brandt, Theodore R.

    2014-01-01

    The Ute Mountain 7.5' quadrangle is located in the south-central part of the San Luis Basin of northern New Mexico, in the Rio Grande del Norte National Monument, and contains deposits that record volcanic, tectonic, and associated alluvial and colluvial processes over the past four million years. Ute Mountain has the distinction of being one of the largest intermediate composition eruptive centers of the Taos Plateau, a largely volcanic tableland occupying the southern portion of the San Luis Basin. Ute Mountain rises to an elevation in excess of 3,000 m, nearly 700 m above the basaltic plateau at its base, and is characterized by three distinct phases of Pliocene eruptive activity recorded in the stratigraphy exposed on the flanks of the mountain and in the Rio Grande gorge. Unconformably overlain by largely flat-lying lava flows of Servilleta Basalt, the area surrounding Ute Mountain records a westward thickening of basin-fill volcanic deposits interstratified in the subsurface with Pliocene basin-fill sedimentary deposits derived from older Tertiary and Precambrian sources to the east. Superimposed on this volcanic stratigraphy are alluvial and colluvial deposits derived from the flanks of Ute Mountain and more distally-derived alluvium from the uplifted Sangre de Cristo Mountains to the east, that record a complex temporal and stratigraphic succession of Quaternary basin deposition and erosion. Pliocene and younger basin deposition was accommodated along predominantly north-trending fault-bounded grabens. These poorly exposed fault scarps cutting lava flows of Ute Mountain volcano. The Servilleta Basalt and younger surficial deposits record largely down-to-east basinward displacement. Faults are identified with varying confidence levels in the map area. Recognizing and mapping faults developed near the surface in young, brittle volcanic rocks is difficult because: (1) they tend to form fractured zones tens of meters wide rather than discrete fault planes, (2) the relative youth of the deposits has resulted in only modest displacements on most faults, and (3) some of the faults may have significant strike-slip components that do not result in large vertical offsets that are readily apparent in offset of sub-horizontal contacts. Those faults characterized as “certain” either have distinct offset of map units or had slip planes that were directly observed in the field. Lineaments defined from magnetic anomalies form an additional constraint on potential fault locations and are indicated as such on the map sheet.

  3. Along-strike variations of geometry and kinematics on the border fault of Nanpu sag, Bohai Bay Basin

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Ren, J.; Liu, X.; Sun, Z.; Su, M.

    2010-12-01

    Nanpu sag is located in the north-eastern portion of the Huanghua depression, covering an area of approximately 1900km2, and comprises one of the most important petroliferous basins of the Bohai Bay Basin. The Nanpu sag is bordered by two master faults with long-term activity: the Xi’nanzhuang (XNZ) and Bogezhuang (BGZ) fault. By analysis of horizontal slices, gravity anomaly map and seismic reflection sections, we found there is no cutting relationship, and thus considered the XNZ and BGZ fault as a same one. However it showed striking differences between the XNZ and BGZ segment in fault occurrence, fault throw and residual formation thickness and so on. The BGZ fault was NW trending fault with a steep inclination. Taken section across the northern region in Nanpu sag for example, its controlling depocenter is located in eastern subsag (Fig.1); the XNZ fault was a NE fault and displayed a Shovel-shaped to plate-like geometry, with its controlling depocenter located in western subsag. We qualitify the fault throw, showing that the XNZ fault strongly acted during the sedimentary period of Es3-Es2, while the BGZ fault presented weak activity, and especially during Es31 submember-Es2 member, the XNZ fault acted so strongly that the hanging wall of BGZ fault was tilt-lifted and suffered erosion (Fig.1), which created Es1 uncomformity; The BGZ fault acted strongly during the sedimentary period of Es1-Ed, which led the hanging wall of XNZ fault to be tilt-lifted. Controlled by such segmented activity of the whole border fault, which we suggested a "seesaw" model for its evolution, the northern part in the Nanpu sag experienced an alternative variation between a deposition center and an erosion region after tilt-lifting. Combination of the sediment stacking patterns, we further classified the history of "seesaw" activities into four stages: 1) Early double-break stage (Es35-Es31), both of the XNZ and BGZ fault acted; 2) Middle the XNZ segment throw and the BGZ tilting (Es2); 3) Late the XNZ segment tilting and BGZ throw (Es1-Ed3); 4) End weak double-break stage (Ed2-Present), the whole fault acted weakly and were superposed by neotectonic movement. Fig.1 Seesaw activity of the whole border fault

  4. Structural Features of the Western Taiwan Foreland Basin in the Eastern Taiwan Strait since Late Miocene

    NASA Astrophysics Data System (ADS)

    WANG, J. H.; Liu, C. S.; Chang, J. H.; Yang, E. Y.

    2017-12-01

    The western Taiwan Foreland Basin lies on the eastern part of Taiwan Strait. The structures in this region are dominated by crustal stretch and a series of flexural normal faults have been developed since Late Miocene owing to the flexural of Eurasia Plate. Through deciphering multi-channel seismic data and drilling data, these flexural features are observed in the offshore Changhua coastal area. The flexure normal faults are important features to realize structural activity in the western Taiwan Foreland Basin. Yang et al. (2016) mention that the reactivated normal faults are found north of the Zhushuixi estuary. It should be a significant issue to decipher whether these faults are still active. In this study, we have analyzed all the available seismic reflections profiles in the central part of the Taiwan Strait, and have observed many pre-Pliocene normal faults that are mainly distributed in the middle of the Taiwan Strait to Changyun Rise, and we tentatively suggest that the formation of these faults may be associated with the formation of the foreland basal unconformity. Furthermore, we will map the distribution of these normal faults and examine whether the reactivated normal faults have extended to south of the Zhushuixi estuary. Finally, we discuss the relation between the reactivated normal faults in the Taiwan Strait and those faults onshore. Key words: Multichannel seismic reflection profile, Taiwan Strait, Foreland basin, normal fault.

  5. Geologic Map of the Santa Barbara Coastal Plain Area, Santa Barbara County, California

    USGS Publications Warehouse

    Minor, Scott A.; Kellogg, Karl S.; Stanley, Richard G.; Gurrola, Larry D.; Keller, Edward A.; Brandt, Theodore R.

    2009-01-01

    This report presents a newly revised and expanded digital geologic map of the Santa Barbara coastal plain area at a compilation scale of 1:24,000 (one inch on the map to 2,000 feet on the ground)1 and with a horizontal positional accuracy of at least 20 m. The map depicts the distribution of bedrock units and surficial deposits and associated deformation underlying and adjacent to the coastal plain within the contiguous Dos Pueblos Canyon, Goleta, Santa Barbara, and Carpinteria 7.5' quadrangles. The new map supersedes an earlier preliminary geologic map of the central part of the coastal plain (Minor and others, 2002; revised 2006) that provided coastal coverage only within the Goleta and Santa Barbara quadrangles. In addition to new mapping to the west and east, geologic mapping in parts of the central map area has been significantly revised from the preliminary map compilation - especially north of downtown Santa Barbara in the Mission Ridge area - based on new structural interpretations supplemented by new biostratigraphic data. All surficial and bedrock map units, including several new units recognized in the areas of expanded mapping, are described in detail in the accompanying pamphlet. Abundant new biostratigraphic and biochronologic data based on microfossil identifications are presented in expanded unit descriptions of the marine Neogene Monterey and Sisquoc Formations. Site-specific fault kinematic observations embedded in the digital map database are more complete owing to the addition of slip-sense determinations. Finally, the pamphlet accompanying the present report includes an expanded and refined summary of stratigraphic and structural observations and interpretations that are based on the composite geologic data contained in the new map compilation. The Santa Barbara coastal plain is located in the western Transverse Ranges physiographic province along an east-west-trending segment of the southern California coastline about 100 km (62 mi) northwest of Los Angeles. The coastal plain surface includes several mesas and hills that are geomorphic expressions of potentially active folds and partly buried oblique and reverse faults of the Santa Barbara fold and fault belt (SBFFB) that transects the coastal plain. Strong earthquakes have occurred offshore within 10 km of the Santa Barbara coastal plain in 1925 (6.3 magnitude), 1941 (5.5 magnitude), and 1978 (5.1 magnitude). These and numerous smaller seismic events located beneath and offshore of the coastal plain, likely occurred on reverse-oblique-slip faults that are similar to, or continuous with, Quaternary reverse faults crossing the coastal plain. Thus, faults of the SBFFB pose a significant earthquake hazard to the approximately 200,000 people living within the major coastal population centers of Santa Barbara, Goleta, and Carpinteria. In addition, numerous Quaternary landslide deposits along the steep southern flank of the Santa Ynez Mountains indicate the potential for continued slope failures and mass movements in developed areas. Folded, faulted, and fractured sedimentary rocks in the subsurface of the coastal plain and adjacent Santa Barbara Channel are sources and form reservoirs for economic deposits of oil and gas, some of which are currently being extracted offshore. Shallow, localized sedimentary aquifers underlying the coastal plain provide limited amounts of water for the urban areas, but the quality of some of this groundwater is compromised by coastal salt-water contamination. The present map compilation provides a set of uniform geologic digital coverages that can be used for analysis and interpretation of these and other geologic hazards and resources in the coastal plain region.

  6. Integration of high-resolution seismic and aeromagnetic data for earthquake hazards evaluations: An example from the Willamette Valley, Oregon

    USGS Publications Warehouse

    Liberty, L.M.; Trehu, A.M.; Blakely, R.J.; Dougherty, M.E.

    1999-01-01

    Aeromagnetic and high-resolution seismic reflection data were integrated to place constraints on the history of seismic activity and to determine the continuity of the possibly active, yet largely concealed Mount Angel fault in the Willamette Valley, Oregon. Recent seismic activity possibly related to the 20-km-long fault includes a swarm of small earthquakes near Woodburn in 1990 and the magnitude 5.6 Scotts Mills earthquake in 1993. Newly acquired aeromagnetic data show several large northwest-trending anomalies, including one associated with the Mount Angel fault. The magnetic signature indicates that the fault may actually extend 70 km across the Willamette Valley to join the Newberg and Gales Creek faults in the Oregon Coast Range. We collected 24-fold high-resolution seismic reflection data along two transects near Woodburn, Oregon, to image the offset of the Miocene-age Columbia River Basalts (CRB) and overlying sediments at and northwest of the known mapped extent of the Mount Angel fault. The seismic data show a 100-200-m offset in the CRB reflector at depths from 300 to 700 m. Folded or offset sediments appear above the CRB with decreasing amplitude to depths as shallow as were imaged (approximately 40 m). Modeling experiments based on the magnetic data indicate, however, that the anomaly associated with the Mount Angel fault is not caused solely by an offset of the CRB and overlying sediments. Underlying magnetic sources, which we presume to be volcanic rocks of the Siletz terrane, must have vertical offsets of at least 500 m to fit the observed data. We conclude that the Mount Angel fault appears to have been active since Eocene age and that the Gales Creek, Newberg, and Mount Angel faults should be considered a single potentially active fault system. This fault, as well as other parallel northwest-trending faults in the Willamette Valley, should be considered as risks for future potentially damaging earthquakes.

  7. The 2015 M w 6.0 Mt. Kinabalu earthquake: an infrequent fault rupture within the Crocker fault system of East Malaysia

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Wei, Shengji; Wang, Xin; Lindsey, Eric O.; Tongkul, Felix; Tapponnier, Paul; Bradley, Kyle; Chan, Chung-Han; Hill, Emma M.; Sieh, Kerry

    2017-12-01

    The M w 6.0 Mt. Kinabalu earthquake of 2015 was a complete (and deadly) surprise, because it occurred well away from the nearest plate boundary in a region of very low historical seismicity. Our seismological, space geodetic, geomorphological, and field investigations show that the earthquake resulted from rupture of a northwest-dipping normal fault that did not reach the surface. Its unilateral rupture was almost directly beneath 4000-m-high Mt. Kinabalu and triggered widespread slope failures on steep mountainous slopes, which included rockfalls that killed 18 hikers. Our seismological and morphotectonic analyses suggest that the rupture occurred on a normal fault that splays upwards off of the previously identified normal Marakau fault. Our mapping of tectonic landforms reveals that these faults are part of a 200-km-long system of normal faults that traverse the eastern side of the Crocker Range, parallel to Sabah's northwestern coastline. Although the tectonic reason for this active normal fault system remains unclear, the lengths of the longest fault segments suggest that they are capable of generating magnitude 7 earthquakes. Such large earthquakes must occur very rarely, though, given the hitherto undetectable geodetic rates of active tectonic deformation across the region.

  8. Geomorphology, kinematic history, and earthquake behavior of the active Kuwana wedge thrust anticline, central Japan

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Mueller, Karl; Togo, Masami; Okada, Atsumasa; Takemura, Keiji

    2004-12-01

    We combine surface mapping of fault and fold scarps that deform late Quaternary alluvial strata with interpretation of a high-resolution seismic reflection profile to develop a kinematic model and determine fault slip rates for an active blind wedge thrust system that underlies Kuwana anticline in central Japan. Surface fold scarps on Kuwana anticline are closely correlated with narrow fold limbs and angular hinges on the seismic profile that suggest at least ˜1.3 km of fault slip completely consumed by folding in the upper 4 km of the crust. The close coincidence and kinematic link between folded terraces and the underlying thrust geometry indicate that Kuwana anticline has accommodated slip at an average rate of 2.2 ± 0.5 mm/yr on a 27°, west dipping thrust fault since early-middle Pleistocene time. In contrast to classical fault bend folds the fault slip budget in the stacked wedge thrusts also indicates that (1) the fault tip propagated upward at a low rate relative to the accrual of fault slip and (2) fault slip is partly absorbed by numerous bedding plane flexural-slip faults above the tips of wedge thrusts. An historic earthquake that occurred on the Kuwana blind thrust system possibly in A.D. 1586 is shown to have produced coseismic surface deformation above the doubly vergent wedge tip. Structural analyses of Kuwana anticline coupled with tectonic geomorphology at 103-105 years timescales illustrate the significance of active folds as indicators of slip on underlying blind thrust faults and thus their otherwise inaccessible seismic hazards.

  9. Evaluation of feasibility of mapping seismically active faults in Alaska

    NASA Technical Reports Server (NTRS)

    Gedney, L. D. (Principal Investigator); Vanwormer, J. D.

    1973-01-01

    The author has identified the following significant results. ERTS-1 imagery is proving to be exceptionally useful in delineating structural features in Alaska which have never been recognized on the ground. Previously unmapped features such as seismically active faults and major structural lineaments are especially evident. Among the more significant results of this investigation is the discovery of an active strand of the Denali fault. The new fault has a history of scattered activity and was the scene of a magnitude 4.8 earthquake on October 1, 1972. Of greater significance is the disclosure of a large scale conjugate fracture system north of the Alaska Range. This fracture system appears to result from compressive stress radiating outward from around Mt. McKinley. One member of the system was the scene of a magnitude 6.5 earthquake in 1968. The potential value of ERTS-1 imagery to land use planning is reflected in the fact that this earthquake occurred within 10 km of the site which was proposed for the Rampart Dam, and the fault on which it occurred passes very near the proposed site for the bridge and oil pipeline crossing of the Yukon River.

  10. Tectonic lineaments in the cenozoic volcanics of southern Guatemala: Evidence for a broad continental plate boundary zone

    NASA Technical Reports Server (NTRS)

    Baltuck, M.; Dixon, T. H.

    1984-01-01

    The northern Caribbean plate boundary has been undergoing left lateral strike slip motion since middle Tertiary time. The western part of the boundary occurs in a complex tectonic zone in the continental crust of Guatemala and southernmost Mexico, along the Chixoy-Polochic, Motogua and possibly Jocotan-Chamelecon faults. Prominent lineaments visible in radar imagery in the Neogene volcanic belt of southern Guatemala and western El Salvador were mapped and interpreted to suggest southwest extensions of this already broad plate boundary zone. Because these extensions can be traced beneath Quaternary volcanic cover, it is thought that this newly mapped fault zone is active and is accommodating some of the strain related to motion between the North American and Caribbean plates. Onshore exposures of the Motoqua-Polochic fault systems are characterized by abundant, tectonically emplaced ultramafic rocks. A similar mode of emplacement for these off shore ultramafics, is suggested.

  11. Scenario earthquake hazards for the Long Valley Caldera-Mono Lake area, east-central California (ver. 2.0, January 2018)

    USGS Publications Warehouse

    Chen, Rui; Branum, David M.; Wills, Chris J.; Hill, David P.

    2014-06-30

    As part of the U.S. Geological Survey’s (USGS) multi-hazards project in the Long Valley Caldera-Mono Lake area, the California Geological Survey (CGS) developed several earthquake scenarios and evaluated potential seismic hazards, including ground shaking, surface fault rupture, liquefaction, and landslide hazards associated with these earthquake scenarios. The results of these analyses can be useful in estimating the extent of potential damage and economic losses because of potential earthquakes and also for preparing emergency response plans.The Long Valley Caldera-Mono Lake area has numerous active faults. Five of these faults or fault zones are considered capable of producing magnitude ≥6.7 earthquakes according to the Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2) developed by the 2007 Working Group on California Earthquake Probabilities (WGCEP) and the USGS National Seismic Hazard Mapping Program. These five faults are the Fish Slough, Hartley Springs, Hilton Creek, Mono Lake, and Round Valley Faults. CGS developed earthquake scenarios for these five faults in the study area and for the White Mountains Fault Zone to the east of the study area.In this report, an earthquake scenario is intended to depict the potential consequences of significant earthquakes. A scenario earthquake is not necessarily the largest or most damaging earthquake possible on a recognized fault. Rather it is both large enough and likely enough that emergency planners should consider it in regional emergency response plans. In particular, the ground motion predicted for a given scenario earthquake does not represent a full probabilistic hazard assessment, and thus it does not provide the basis for hazard zoning and earthquake-resistant building design.Earthquake scenarios presented here are based on fault geometry and activity data developed by the WGCEP, and are consistent with the 2008 Update of the United States National Seismic Hazard Maps (NSHM). Alternatives to the NSHM scenario were developed for the Hilton Creek and Hartley Springs Faults to account for different opinions in how far these two faults extend into Long Valley Caldera. For each scenario, ground motions were calculated using the current standard practice: the deterministic seismic hazard analysis program developed by Art Frankel of USGS and three Next Generation Ground Motion Attenuation (NGA) models. Ground motion calculations incorporated the potential amplification of seismic shaking by near-surface soils defined by a map of the average shear wave velocity in the uppermost 30 m (VS30) developed by CGS.In addition to ground shaking and shaking-related ground failure such as liquefaction and earthquake induced landslides, earthquakes cause surface rupture displacement, which can lead to severe damage of buildings and lifelines. For each earthquake scenario, potential surface fault displacements are estimated using deterministic and probabilistic approaches. Liquefaction occurs when saturated sediments lose their strength because of ground shaking. Zones of potential liquefaction are mapped by incorporating areas where loose sandy sediments, shallow groundwater, and strong earthquake shaking coincide in the earthquake scenario. The process for defining zones of potential landslide and rockfall incorporates rock strength, surface slope, and existing landslides, with ground motions caused by the scenario earthquake.Each scenario is illustrated with maps of seismic shaking potential and fault displacement, liquefaction, and landslide potential. Seismic shaking is depicted by the distribution of shaking intensity, peak ground acceleration, and 1.0-second spectral acceleration. One-second spectral acceleration correlates well with structural damage to surface facilities. Acceleration greater than 0.2 g is often associated with strong ground shaking and may cause moderate to heavy damage. The extent of strong shaking is influenced by subsurface fault dip and near surface materials. Strong shaking is more widespread in the hanging wall regions of a normal fault. Larger ground motions also occur where young alluvial sediments amplify the shaking. Both of these effects can lead to strong shaking that extends farther from the fault on the valley side than on the hill side.The effect of fault rupture displacements may be localized along the surface trace of the mapped earthquake fault if fault geometry is simple and the fault traces are accurately located. However, surface displacement hazards can spread over a few hundred meters to a few kilometers if the earthquake fault has numerous splays or branches, such as the Hilton Creek Fault. Faulting displacements are estimated to be about 1 meter along normal faults in the study area and close to 2 meters along the White Mountains Fault Zone.All scenarios show the possibility of widespread ground failure. Liquefaction damage would likely occur in the areas of higher ground shaking near the faults where there are sandy/silty sediments and the depth to groundwater is 6.1 meters (20 feet) or less. Generally, this means damage is most common near lakes and streams in the areas of strongest shaking. Landslide potential exists throughout the study region. All steep slopes (>30 degrees) present a potential hazard at any level of shaking. Lesser slopes may have landslides within the areas of the higher ground shaking. The landslide hazard zones also are likely sources for snow avalanches during winter months and for large boulders that can be shaken loose and roll hundreds of feet down hill, which happened during the 1980 Mammoth Lakes earthquakes.Whereas methodologies used in estimating ground shaking, liquefaction, and landslides are well developed and have been applied in published hazard maps; methodologies used in estimating surface fault displacement are still being developed. Therefore, this report provides a more in-depth and detailed discussion of methodologies used for deterministic and probabilistic fault displacement hazard analyses for this project.

  12. Gravity study through the Tualatin Mountains, Oregon: Understanding crustal structure and earthquake hazards in the Portland urban area

    USGS Publications Warehouse

    Blakely, R.J.; Beeson, M.H.; Cruikshank, K.; Wells, R.E.; Johnson, Aaron H.; Walsh, K.

    2004-01-01

    A high-resolution gravity survey through the Tualatin Mountains (Portland Nills) west of downtown Portland exhibits evidence of faults previously identified from surface geologic and aeromagnetic mapping. The gravity survey was conducted in 1996 along the 4.5-km length of a twin-bore tunnel, then under construction and now providing light-rail service between downtown Portland and communities west of the Portland Hills. Gravitational attraction gradually increases from west to east inside the tunnel, which reflects the tunnel's location between low-density sedimentary deposits of the Tualatin basin to the west and high-density, mostly concealed Eocene basalt to the east. Superimposed on this gradient are several steplike anomalies that we interpret as evidence for faulted contacts between rocks of contrasting density. The largest of these anomalies occurs beneath Sylvan Creek, where a fault had previously been mapped inside the tunnel. Another occurs 1200 m from the west portal, at the approximate intersection of the tunnel with an aeromagnetic anomaly associated with the Sylvan fault (formerly called the Oatfield fault). Lithologic cross sections based on these gravity data show that the steplike anomalies are consistent with steeply dipping reverse faults, although strike-slip displacements also may be important. Three gravity lows correspond with topographic lows directly overhead and may reflect zones of shearing. Several moderate earthquakes (M ??? 3.5) occurred near the present-day location of the tunnel in 1991, suggesting that some of these faults or other faults in the Portland Hills fault zone are seismically active.

  13. Database for the geologic map of the Bend 30- x 60-minute quadrangle, central Oregon

    USGS Publications Warehouse

    Koch, Richard D.; Ramsey, David W.; Sherrod, David R.; Taylor, Edward M.; Ferns, Mark L.; Scott, William E.; Conrey, Richard M.; Smith, Gary A.

    2010-01-01

    The Bend 30- x 60-minute quadrangle has been the locus of volcanism, faulting, and sedimentation for the past 35 million years. It encompasses parts of the Cascade Range and Blue Mountain geomorphic provinces, stretching from snowclad Quaternary stratovolcanoes on the west to bare rocky hills and sparsely forested juniper plains on the east. The Deschutes River and its large tributaries, the Metolius and Crooked Rivers, drain the area. Topographic relief ranges from 3,157 m (10,358 ft) at the top of South Sister to 590 m (1,940 ft) at the floor of the Deschutes and Crooked Rivers where they exit the area at the north-central edge of the map area. The map encompasses a part of rapidly growing Deschutes County. The city of Bend, which has over 70,000 people living in its urban growth boundary, lies at the south-central edge of the map. Redmond, Sisters, and a few smaller villages lie scattered along the major transportation routes of U.S. Highways 97 and 20. This geologic map depicts the geologic setting as a basis for structural and stratigraphic analysis of the Deschutes basin, a major hydrologic discharge area on the east flank of the Cascade Range. The map also provides a framework for studying potentially active faults of the Sisters fault zone, which trends northwest across the map area from Bend to beyond Sisters. This digital release contains all of the information used to produce the geologic map published as U.S. Geological Survey Geologic Investigations Series I-2683 (Sherrod and others, 2004). The main component of this digital release is a geologic map database prepared using ArcInfo GIS. This release also contains files to view or print the geologic map and accompanying descriptive pamphlet from I-2683.

  14. The Sparta Fault, Southern Greece: From segmentation and tectonic geomorphology to seismic hazard mapping and time dependent probabilities

    NASA Astrophysics Data System (ADS)

    Papanikolaοu, Ioannis D.; Roberts, Gerald P.; Deligiannakis, Georgios; Sakellariou, Athina; Vassilakis, Emmanuel

    2013-06-01

    The Sparta Fault system is a major structure approximately 64 km long that bounds the eastern flank of the Taygetos Mountain front (2407 m) and shapes the present-day Sparta basin. It was activated in 464 B.C., devastating the city of Sparta. This fault is examined and described in terms of its geometry, segmentation, drainage pattern and post-glacial throw, emphasising how these parameters vary along strike. Qualitative analysis of long profile catchments shows a significant difference in longitudinal convexity between the central and both the south and north parts of the fault system, leading to the conclusion of varying uplift rate along strike. Catchments are sensitive in differential uplift as it is observed by the calculated differences of the steepness index ksn between the outer (ksn < 83) and central parts (121 < ksn < 138) of the Sparta Fault along strike the fault system. Based on fault throw-rates and the bedrock geology a seismic hazard map has been constructed that extracts a locality specific long-term earthquake recurrence record. Based on this map the town of Sparta would experience a destructive event similar to that in 464 B.C. approximately every 1792 ± 458 years. Since no other major earthquake M ~ 7.0 has been generated by this system since 464 B.C., a future event could be imminent. As a result, not only time-independent but also time-dependent probabilities, which incorporate the concept of the seismic cycle, have been calculated for the town of Sparta, showing a considerably higher time-dependent probability of 3.0 ± 1.5% over the next 30 years compared to the time-independent probability of 1.66%. Half of the hanging wall area of the Sparta Fault can experience intensities ≥ IX, but belongs to the lowest category of seismic risk of the national seismic building code. On view of these relatively high calculated probabilities, a reassessment of the building code might be necessary.

  15. The Sparta Fault, Southern Greece: From Segmentation and Tectonic Geomorphology to Seismic Hazard Mapping and Time Dependent Probabilities

    NASA Astrophysics Data System (ADS)

    Papanikolaou, Ioannis; Roberts, Gerald; Deligiannakis, Georgios; Sakellariou, Athina; Vassilakis, Emmanuel

    2013-04-01

    The Sparta Fault system is a major structure approximately 64 km long that bounds the eastern flank of the Taygetos Mountain front (2.407 m) and shapes the present-day Sparta basin. It was activated in 464 B.C., devastating the city of Sparta. This fault is examined and described in terms of its geometry, segmentation, drainage pattern and postglacial throw, emphasizing how these parameters vary along strike. Qualitative analysis of long profile catchments shows a significant difference in longitudinal convexity between the central and both the south and north parts of the fault system, leading to the conclusion of varying uplift rate along strike. Catchments are sensitive in differential uplift as it is observed by the calculated differences of the steepness index ksn between the outer (ksn<83) and central parts (121

  16. Paleoseismology and tectonic geomorphology of the Pallatanga fault (Central Ecuador), a major structure of the South-American crust

    NASA Astrophysics Data System (ADS)

    Baize, Stéphane; Audin, Laurence; Winter, Thierry; Alvarado, Alexandra; Pilatasig Moreno, Luis; Taipe, Mercedes; Reyes, Pedro; Kauffmann, Paul; Yepes, Hugo

    2015-05-01

    The Pallatanga fault (PF) is a prominent NNE-SSW strike-slip fault crossing Central Ecuador. This structure is suspected to have hosted large earthquakes, including the 1797 Riobamba event which caused severe destructions to buildings and a heavy death toll (more than 12,000 people), as well as widespread secondary effects like landsliding, liquefaction and surface cracking. The scope of this study is to evaluate the seismic history of the fault through a paleoseismological approach. This work also aims at improving the seismotectonic map of this part of the Andes through a new mapping campaign and, finally, aims at improving the seismic hazard assessment. We show that the PF continues to the north of the previously mapped fault portion in the Western Cordillera (Rumipamba-Pallatanga portion) into the Inter-Andean Valley (Riobamba basin). Field evidences of faulting are numerous, ranging from a clear geomorphological signature to fault plane outcrops. Along the western side of the Riobamba basin, the strike-slip component seems predominant along several fault portions, with a typical landscape assemblage (dextral offsets of valleys, fluvial terrace risers and generation of linear pressure ridges). In the core of the inter-Andean valley, the main fault portion exhibits a vertical component along the c. 100 m-high cumulative scarp. The presence of such an active fault bounding the western suburbs of Riobamba drastically increases the seismic risk for this densely inhabited and vulnerable city. To the east (Peltetec Massif, Cordillera Real), the continuation of the Pallatanga fault is suspected, but not definitely proved yet. Based on the analysis of three trenches, we state that the Rumipamba-Pallatanga section of the PF experienced 4 (maybe 5) Holocene to Historical strong events (Mw > 7). The coseismic behavior of the fault is deduced from the occurrence of several colluvial wedges and layers associated with the fault activity and interbedded within the organic black soil sequence. According to a series of 14C datings, we document that these events occurred during the last 6500 years. The clear deformation of the shallowest layer (14C: 1633 AD) is most likely associated with the 1797 Riobamba earthquake. After retrodeforming one of the 3 trenches, we estimate coseismic vertical throws (0.70 to 0.90 m). Because of bad outcrop conditions, we could not determine the horizontal component of slip and we used the slip vector determined in a previous work with a tectonic geomorphology study. Assuming this slip vector, we obtain total coseismic offsets between 3.5 and 4.5 m, indicative of earthquake magnitudes around c. Mw 7.5. The estimated recurrence time intervals range between 1300 and 3000 years, indicating an average slip rate of c. 2.5 mm/a for the Rumipamba-Pallatanga section of the fault.

  17. Multi-temporal mapping of a large, slow-moving earth flow for kinematic interpretation

    USGS Publications Warehouse

    Guerriero, Luigi; Coe, Jeffrey A.; Revellino, Paola; Guadagno, Francesco M.

    2014-01-01

    Periodic movement of large, thick landslides on discrete basal surfaces produces modifications of the topographic surface, creates faults and folds, and influences the locations of springs, ponds, and streams (Baum, et al., 1993; Coe et al., 2009). The geometry of the basal-slip surface, which can be controlled by geological structures (e.g., fold axes, faults, etc.; Revellino et al., 2010; Grelle et al., 2011), and spatial variation in the rate of displacement, are responsible for differential deformation and kinematic segmentation of the landslide body. Thus, large landslides are often composed of several distinct kinematic elements. Each element represents a discrete kinematic domain within the main landslide that is broadly characterized by stretching (extension) of the upper part of the landslide and shortening (compression) near the landslide toe (Baum and Fleming, 1991; Guerriero et al., in review). On the basis of this knowledge, we used photo interpretive and GPS field mapping methods to map structures on the surface of the Montaguto earth flow in the Apennine Mountains of southern Italy at a scale of 1:6,000. (Guerriero et al., 2013a; Fig.1). The earth flow has been periodically active since at least 1954. The most extensive and destructive period of activity began on April 26, 2006, when an estimated 6 million m3 of material mobilized, covering and closing Italian National Road SS90, and damaging residential structures (Guerriero et al., 2013b). Our maps show the distribution and evolution of normal faults, thrust faults, strike-slip faults, flank ridges, and hydrological features at nine different dates (October, 1954; June, 1976; June, 1991; June, 2003; June, 2005; May, 2006; October, 2007; July, 2009; and March , 2010) between 1954 and 2010. Within the earth flow we recognized several kinematic elements and associated structures (Fig.2a). Within each kinematic element (e.g. the earth flow neck; Fig.2b), the flow velocity was highest in the middle, and lowest in the upper and lower parts. As the velocity of movement initiated and increased, stretching of the earth flow body induced the formation of normal faults. Conversely, decreasing velocity and shortening of the earth flow induced the formation of thrust faults. A zone with relatively few structures, bounded by strike-slip faults, was located between stretching and shortening areas. These kinematic elements indicate that the overall earth flow was actually composed of numerous linked internal earth flows, with each internal flow having a distinct pattern of structures representative of stretching and shortening (Guerriero et al., in review). These observations indicated that the spatial variation in movement velocity associated with each internal earth flow, mimicked the pattern of movement for the overall earth flow. That is, the earth flow displayed a self-similar pattern at different scales. Furthermore, the presence of other structures such as back-tilted surfaces, flank-ridges, and hydrological elements provide specific information about the shape of the basal topographic surface. Our multi-temporal maps provided a basis for interpretation of the long-term kinematic evolution of the earth flow and the influence of the basal-slip surface on the earth flow movement. Our maps showed that main faults remained stationary through time, despite extensive mobilization and movement of material. This observation indicated that the slip-surface has remained relatively stationary since at least 1954.

  18. Static stress change from the 8 October, 2005 M = 7.6 Kashmir earthquake

    USGS Publications Warehouse

    Parsons, T.; Yeats, R.S.; Yagi, Y.; Hussain, A.

    2006-01-01

    We calculated static stress changes from the devastating M = 7.6 earthquake that shook Kashmir on 8 October, 2005. We mapped Coulomb stress change on target fault planes oriented by assuming a regional compressional stress regime with greatest principal stress directed orthogonally to the mainshock strike. We tested calculation sensitivity by varying assumed stress orientations, target-fault friction, and depth. Our results showed no impact on the active Salt Range thrust southwest of the rupture. Active faults north of the Main Boundary thrust near Peshawar fall in a calculated stress-decreased zone, as does the Raikot fault zone to the northeast. We calculated increased stress near the rupture where most aftershocks occurred. The greatest increase to seismic hazard is in the Indus-Kohistan seismic zone near the Indus River northwest of the rupture termination, and southeast of the rupture termination near the Kashmir basin.

  19. Fault kinematics and depocenter evolution of oil-bearing, continental successions of the Mina del Carmen Formation (Albian) in the Golfo San Jorge basin, Argentina

    NASA Astrophysics Data System (ADS)

    Paredes, José Matildo; Plazibat, Silvana; Crovetto, Carolina; Stein, Julián; Cayo, Eric; Schiuma, Ariel

    2013-10-01

    Up to 10% of the liquid hydrocarbons of the Golfo San Jorge basin come from the Mina del Carmen Formation (Albian), an ash-dominated fluvial succession preserved in a variably integrated channel network that evolved coeval to an extensional tectonic event, poorly analyzed up to date. Fault orientation, throw distribution and kinematics of fault populations affecting the Mina del Carmen Formation were investigated using a 3D seismic dataset in the Cerro Dragón field (Eastern Sector of the Golfo San Jorge basin). Thickness maps of the seismic sub-units that integrate the Mina del Carmen Formation, named MEC-A-MEC-C in ascending order, and mapping of fluvial channels performed applying geophysical tools of visualization were integrated to the kinematical analysis of 20 main normal faults of the field. The study provides examples of changes in fault throw patterns with time, associated with faults of different orientations. The "main synrift phase" is characterized by NE-SW striking (mean Az = 49°), basement-involved normal faults that attains its maximum throw on top of the volcanic basement; this set of faults was active during deposition of the Las Heras Group and Pozo D-129 formation. A "second synrift phase" is recognized by E-W striking normal faults (mean Az = 91°) that nucleated and propagated from the Albian Mina del Carmen Formation. Fault activity was localized during deposition of the MEC-A sub-unit, but generalized during deposition of MEC-B sub-unit, producing centripetal and partially isolated depocenters. Upward decreasing in fault activity is inferred by more gradual thickness variation of MEC-C and the overlying Lower Member of Bajo Barreal Formation, evidencing passive infilling of relief associated to fault boundaries, and conformation of wider depocenters with well integrated networks of channels of larger dimensions but random orientation. Lately, the Mina del Carmen Formation was affected by the downward propagation of E-W to ESE-WNW striking normal faults (mean Az = 98°) formed during the "third rifting phase", which occurs coeval with the deposition of the Upper Member of the Bajo Barreal Formation. The fault characteristics indicate a counterclockwise rotation of the stress field during the deposition of the Chubut Group of the Golfo San Jorge basin, likely associated to the rotation of Southern South America during the fragmentation of the Gondwana paleocontinent. Understanding the evolution of fault-controlled topography in continental basins allow to infer location and orientation of coeval fluvial systems, providing a more reliable scenario for location of producing oil wells.

  20. Preliminary geologic map of the San Guillermo Mountain Quadrangle, Ventura County, California

    USGS Publications Warehouse

    Minor, S.A.

    1999-01-01

    New 1:24,000-scale geologic mapping in the Cuyama 30' x 60' quadrangle, in support of the USGS Southern California Areal Mapping Project (SCAMP), is contributing to a more complete understanding of the stratigraphy, structure, and tectonic evolution of the complex junction area between the NW-striking Coast Ranges and EW-striking western Transverse Ranges. The 1:24,000-scale geologic map of the San Guillermo Mountain quadrangle is one of six contiguous 7 1/2' quadrangle geologic maps in the eastern part of the Cuyama map area being compiled for a more detailed portrayal and reevaluation of geologic structures and rock units shown on previous geologic maps of the area (e.g., Dibblee, 1979). The following observations and interpretations are based on the new San Guillermo Mountain geologic compilation: (1) The new geologic mapping in the northern part of the San Guillermo Mountain quadrangle allows for reinterpretation of fault architecture that bears on potential seismic hazards of the region. Previous mapping had depicted the eastern Big Pine fault (BPF) as a northeast-striking, sinistral strike-slip fault that extends for 30 km northeast of the Cuyama River to its intersection with the San Andreas fault (SAF). In contrast the new mapping indicates that the eastern BPF is a thrust fault that curves from a northeast strike to an east strike, where it is continuous with the San Guillermo thrust fault, and dies out further east about 15 km south of the SAF. This redefined segment of the BPF is a south-dipping, north-directed thrust, with dominantly dip slip components (rakes > 60 deg.), that places Middle Eocene marine rocks (Juncal and Matilija Formations) over Miocene through Pliocene(?) nonmarine rocks (Caliente, Quatal, and Morales Formations). Although a broad northeast-striking fault zone, exhibiting predominantly sinistral components of slip (rakes < 45 deg.), extends to the SAF as previously mapped, the fault zone does not connect to the southwest with the BPF but instead curves into a southwest-directed thrust fault system a short distance north of the BPF. Oligocene to Pliocene(?) nonmarine sedimentary and volcanic rocks of the Plush Ranch, Caliente, and Morales(?) Formations are folded on both sides of this fault zone (informally named the Lockwood Valley fault zone [LVFZ] on the map). South-southeast of the LVFZ overturned folds have southward vergence. Several moderate-displacement (< 50 m), mainly northwest-dipping thrust and reverse faults, exhibiting mostly sinistral-oblique slip, flank and strike parallel to the overturned folds. The fold vergence and thrust direction associated with the LVFZ is opposite to that of the redefined BPF, providing further evidence that the two faults are distinct structures. These revised fault interpretations bring into question earlier estimates of net sinistral strike-slip displacement of as much as 13 km along the originally defined eastern BPF, which assumed structural connection with the LVFZ. Also, despite sparse evidence for repeated Quaternary movement on the LVFZ (e.g., Dibblee, 1982), the potential for a large earthquake involving coseismic slip on both the LVFZ and the central BPF to the southwest may not be as great as once believed. (2) Several generations of Pleistocene and younger dissected alluvial terrace and fan deposits sit at various levels above modern stream channels throughout the quadrangle. These deposits give testimony to the recent uplift and related fault deformation that has occurred in the area. (3) A vast terrane of Eocene marine sedimentary rocks (Juncal and Matilija Formations and Cozy Dell Shale) exposed south of the Big Pine fault forms the southern two-thirds of the San Guillermo Mountain quadrangle. Benthic foraminifers collected from various shale intervals within the Juncal Formation indicate a Middle Eocene age (Ulatisian) for the entire formation (K. McDougall, unpub. data, 1998) and deposition at paleodepths as great as 2,000 m (i.e., lowe

  1. Right-lateral shear across Iran and kinematic change in the Arabia-Eurasia collision zone

    NASA Astrophysics Data System (ADS)

    Allen, M. B.; Kheirkhah, M.; Emami, M.

    2009-04-01

    New offset determinations for right-lateral strike-slip faults in Iran redefine the kinematics of the Arabia-Eurasia collision. A series of right-lateral strike-slip faults is present across Iran between 48° and 57° E. Fault strikes vary between NW-SE and NNW-SSE. Individual faults west of ~53° E were active in the late Tertiary, but have limited evidence of activity. Faults east of ~53° E are seismically active and/or have geomorphic evidence for Holocene slip. None of the faults affects the GPS-derived regional velocity field, indicating active slip rates are ≤2 mm/yr. We estimate overall slip on these faults from offset geological and geomorphic markers, based on observations from satellite imagery, digital topography, geology maps and our own fieldwork observations, and combine these results with published estimates for fault slip in the east of the study area. Total offset of the Takab, Soltanieh, Indes, Bid Hand, Qom, Kashan, Deh Shir, Anar, Daviran, Kuh Banan and Dehu faults is at least 270 km and possibly higher. Other faults (e.g. Rafsanjan) have unknown amounts of right-lateral slip. Collectively, these faults are inferred to have accommodated part of the Arabia-Eurasia convergence by two mechanisms: (1) anti-clockwise, vertical axis rotations; (2) strain partitioning with coeval NE-SW crustal thickening in the Turkish-Iranian plateau to produce ~350 km of north-south plate convergence. The strike-slip faulting across Iran requires along-strike lengthening of the deformation zone. This was possible until the Pliocene, when the Afghan crust collided with the western margin of the Indian plate, thereby sealing off a free face at the eastern side of the Arabia-Eurasia collision zone. Continuing Arabia-Eurasia plate convergence had to be accommodated in new ways and new areas, leading to the present pattern of faulting from eastern Iran to western Turkey.

  2. Analysis of Seismotektonic Patterns in Sumatra Region Based on the Focal Mechanism of Earthquake Period 1976-2016

    NASA Astrophysics Data System (ADS)

    Indah, F. P.; Syafriani, S.; Andiyansyah, Z. S.

    2018-04-01

    Sumatra is in an active subduction zone between the indo-australian plate and the eurasian plate and is located at a fault along the sumatra fault so that sumatra is vulnerable to earthquakes. One of the ways to find out the cause of earthquake can be done by identifying the type of earthquake-causing faults based on earthquake of focal mechanism. The data used to identify the type of fault cause of earthquake is the earth tensor moment data which is sourced from global cmt period 1976-2016. The data used in this research using magnitude m ≥ 6 sr. This research uses gmt software (generic mapping tolls) to describe the form of fault. From the research result, it is found that the characteristics of fault field that formed in every region in sumatera island based on data processing and data of earthquake history of 1976-2016 period that the type of fault in sumatera fault is strike slip, fault type in mentawai fault is reverse fault (rising faults) and dip-slip, while the fault type in the subduction zone is dip-slip.

  3. Earthquakes and faults in southern California (1970-2010)

    USGS Publications Warehouse

    Sleeter, Benjamin M.; Calzia, James P.; Walter, Stephen R.

    2012-01-01

    The map depicts both active and inactive faults and earthquakes magnitude 1.5 to 7.3 in southern California (1970–2010). The bathymetry was generated from digital files from the California Department of Fish And Game, Marine Region, Coastal Bathymetry Project. Elevation data are from the U.S. Geological Survey National Elevation Database. Landsat satellite image is from fourteen Landsat 5 Thematic Mapper scenes collected between 2009 and 2010. Fault data are reproduced with permission from 2006 California Geological Survey and U.S. Geological Survey data. The earthquake data are from the U.S. Geological Survey National Earthquake Information Center.

  4. Seismicity and gravimetric studies of Cyrenaica platform and adjacent regions, northeastern Libya

    NASA Astrophysics Data System (ADS)

    Ben Suleman, abdunnur

    2013-04-01

    Cyrenaica, located in northeastern Libya, consists of two distinct tectonic provinces; the tectonically unstable northern Cyrenaica and the more stable Cyernaican platform to the south. This study represents detailed investigations that aim to focus on the structure and tectonic setting through a detailed Seismicity and gravity analysis. Seismicity of northeastern Libya is documented back to 262 A.D. when an earthquake destroyed the city of Ceryne. The same area was destroyed by an earthquake in 365 A.D, The city of Al-Maraj was heavily damaged in 1963 by an earthquake measuring 5,3 in the Richter scale. Data collected by the recently established Libyan National Seismograph Network confirms that northeastern Libya is seismically active with most of the activity concentrates on the northern part particularly in the city of Al-Maraj area. Seismic activity is also noticeable in the offshore area. Focal mechanism studies for a number of earthquakes recorded by the Libyan National Seismograph Network suggest that normal faulting is predominant. A gravity data base collected from a variety of sources was compiled to generate a Bouguer gravity anomaly map that represents the basic map used in the overall interpretations, as well as in generating more specialized gravity maps used in the detailed investigations. The Bouguer gravity map demonstrates that the northern inverted basins of Cyrenaica and the coastal plain of Al-Jabal Al-Akhdar show a raped northward increase in gravity values to up to 130 Mgal. In addition a series of steep faults that separates the unstable Al-Jabal Al-Akhdar from the more stable Cyrenaica platform as well as other faults within the platform were well delineated.

  5. Active tectonic deformation of the western Indian plate boundary: A case study from the Chaman Fault System

    NASA Astrophysics Data System (ADS)

    Crupa, Wanda E.; Khan, Shuhab D.; Huang, Jingqiu; Khan, Abdul S.; Kasi, Aimal

    2017-10-01

    Collision of the Eurasian and Indian plates has resulted in two spatially offset subduction zones, the Makran subduction zone to the south and the Himalayan convergent margin to the north. These zones are linked by a system of left-lateral strike-slip faults known as the Chaman Fault System, ∼1200 km, which spans along western Pakistan. Although this is one of the greatest strike-slip faults, yet temporal and spatial variation in displacement has not been adequately defined along this fault system. This study conducted geomorphic and geodetic investigations along the Chaman Fault in a search for evidence of spatial variations in motion. Four study areas were selected over the span of the Chaman Fault: (1) Tarnak-Rud area over the Tarnak-Rud valley, (2) Spinatizha area over the Spinatizha Mountain Range, (3) Nushki area over the Nushki basin, and (4) Kharan area over the northern tip of the Central Makran Mountains. Remote sensing data allowed for in depth mapping of different components and faults within the Kohjak group. Wind and water gap pairs along with offset rivers were identified using high-resolution imagery and digital-elevation models to show displacement for the four study areas. The mountain-front-sinuosity ratio, valley height-to-width-ratio, and the stream-length-gradient index were calculated and used to determine the relative tectonic activity of each area. These geomorphic indices suggest that the Kharan area is the most active and the Tarnak-Rud area is the least active. GPS data were processed into a stable Indian plate reference frame and analyzed. Fault parallel velocity versus fault normal distance yielded a ∼8-10 mm/yr displacement rate along the Chaman Fault just north of the Spinatizha area. InSAR data were also integrated to assess displacement rates along the fault system. Geodetic data support that ultra-slow earthquakes similar to those that strike along other major strike-slip faults, such as the San Andreas Fault System, are possible along the northern segments of the Chaman Fault zone. Geomorphic data suggest that the Chaman Fault along southern part is not very active now but may have gone through high tectonic activity in the past.

  6. Scaling Relations of Earthquakes on Inland Active Mega-Fault Systems

    NASA Astrophysics Data System (ADS)

    Murotani, S.; Matsushima, S.; Azuma, T.; Irikura, K.; Kitagawa, S.

    2010-12-01

    Since 2005, The Headquarters for Earthquake Research Promotion (HERP) has been publishing 'National Seismic Hazard Maps for Japan' to provide useful information for disaster prevention countermeasures for the country and local public agencies, as well as promote public awareness of disaster prevention of earthquakes. In the course of making the year 2009 version of the map, which is the commemorate of the tenth anniversary of the settlement of the Comprehensive Basic Policy, the methods to evaluate magnitude of earthquakes, to predict strong ground motion, and to construct underground structure were investigated in the Earthquake Research Committee and its subcommittees. In order to predict the magnitude of earthquakes occurring on mega-fault systems, we examined the scaling relations for mega-fault systems using 11 earthquakes of which source processes were analyzed by waveform inversion and of which surface information was investigated. As a result, we found that the data fit in between the scaling relations of seismic moment and rupture area by Somerville et al. (1999) and Irikura and Miyake (2001). We also found that maximum displacement of surface rupture is two to three times larger than the average slip on the seismic fault and surface fault length is equal to length of the source fault. Furthermore, compiled data of the source fault shows that displacement saturates at 10m when fault length(L) is beyond 100km, L>100km. By assuming the fault width (W) to be 18km in average of inland earthquakes in Japan, and the displacement saturate at 10m for length of more than 100 km, we derived a new scaling relation between source area and seismic moment, S[km^2] = 1.0 x 10^-17 M0 [Nm] for mega-fault systems that seismic moment (M0) exceeds 1.8×10^20 Nm.

  7. Seismicity and Tectonics of the West Kaibab Fault Zone, AZ

    NASA Astrophysics Data System (ADS)

    Wilgus, J. T.; Brumbaugh, D. S.

    2014-12-01

    The West Kaibab Fault Zone (WKFZ) is the westernmost bounding structure of the Kaibab Plateau of northern Arizona. The WKFZ is a branching complex of high angle, normal faults downthrown to the west. There are three main faults within the WKFZ, the Big Springs fault with a maximum of 165 m offset, the Muav fault with 350 m of displacement, and the North Road fault having a maximum throw of approximately 90 m. Mapping of geologically recent surface deposits at or crossing the fault contacts indicates that the faults are likely Quaternary with the most recent offsets occurring <1.6 Ma. Slip rates are estimated to be less than 0.2 mm/yr. No historic fault slip has been documented. The WKFZ is one of the most seismically active areas in Arizona and lies within the Northern Arizona Seismic Belt (NASB), which stretches across northern Arizona trending NW-SE. The data set for this study includes 156 well documented events with the largest being a M5.75 in 1959 and including a swarm of seven earthquakes in 2012. The seismic data set (1934-2014) reveals that seismic activity clusters in two regions within the study area, the Fredonia cluster located in the NW corner of the study area and the Kaibab cluster located in the south central portion of the study area. The fault plane solutions to date indicate NE-SW to EW extension is occurring in the study area. Source relationships between earthquakes and faults within the WKFZ have not previously been studied in detail. The goal of this study is to use the seismic data set, the available data on faults, and the regional physiography to search for source relationships for the seismicity. Analysis includes source parameters of the earthquake data (location, depth, and fault plane solutions), and comparison of this output to the known faults and areal physiographic framework to indicate any active faults of the WKFZ, or suggested active unmapped faults. This research contributes to a better understanding of the present nature of the WKFZ and the NASB as well.

  8. A microstructural study of fault rocks from the SAFOD: Implications for the deformation mechanisms and strength of the creeping segment of the San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Hadizadeh, Jafar; Mittempergher, Silvia; Gratier, Jean-Pierre; Renard, Francois; Di Toro, Giulio; Richard, Julie; Babaie, Hassan A.

    2012-09-01

    The San Andreas Fault zone in central California accommodates tectonic strain by stable slip and microseismic activity. We study microstructural controls of strength and deformation in the fault using core samples provided by the San Andreas Fault Observatory at Depth (SAFOD) including gouge corresponding to presently active shearing intervals in the main borehole. The methods of study include high-resolution optical and electron microscopy, X-ray fluorescence mapping, X-ray powder diffraction, energy dispersive X-ray spectroscopy, white light interferometry, and image processing. The fault zone at the SAFOD site consists of a strongly deformed and foliated core zone that includes 2-3 m thick active shear zones, surrounded by less deformed rocks. Results suggest deformation and foliation of the core zone outside the active shear zones by alternating cataclasis and pressure solution mechanisms. The active shear zones, considered zones of large-scale shear localization, appear to be associated with an abundance of weak phases including smectite clays, serpentinite alteration products, and amorphous material. We suggest that deformation along the active shear zones is by a granular-type flow mechanism that involves frictional sliding of microlithons along phyllosilicate-rich Riedel shear surfaces as well as stress-driven diffusive mass transfer. The microstructural data may be interpreted to suggest that deformation in the active shear zones is strongly displacement-weakening. The fault creeps because the velocity strengthening weak gouge in the active shear zones is being sheared without strong restrengthening mechanisms such as cementation or fracture sealing. Possible mechanisms for the observed microseismicity in the creeping segment of the SAF include local high fluid pressure build-ups, hard asperity development by fracture-and-seal cycles, and stress build-up due to slip zone undulations.

  9. Surface faulting near Livermore, California, associated with the January 1980 earthquakes

    USGS Publications Warehouse

    Bonilla, Manuel G.; Lienkaemper, James J.; Tinsley, John C.

    1980-01-01

    The earthquakes of 24 January (Ms 5.8) 1980 north of Livermore, California, and 26 January (Ms 5.2), were accompanied by surface faulting in the Greenville fault zone and apparently in the Las Positas fault zone also. The surface faulting was discontinuous and of small displacement. The main rupture within the Greenville fault zone trended about N.38°W. It was at least 4.2 km long and may have extended southward to Interstate Highway 580, giving a possible length of 6.2 km; both of these lengths included more gaps than observed surface rupture. Maximum displacements measured by us were about 25 mm of right slip (including afterslip through 28 January); vertical components of as much as 50 mm were seen locally, but these included gravity effects of unknown amount. The main break within the Greenville fault zones is very close to a fault strand mapped by Herd (1977, and unpublished data). A subsidiary break within the Greenville fault zone was about 0.5 km. long, had a general trend of N.46°W., and lay 0.12 to 0.25 km east of the main break. It was characterized by extension of as much as 40 mm and right slip of as much as 20 mm. This break was no more than 25 m from a fault mapped by Herd (unpublished data). Another break within the Greenville fault zone lay about 0.3 km southwest of the projection of the main break and trended about N33°W. It was at least 0.3 km long and showed mostly extension, but at several places a right-lateral component (up to 5 mm) was seen. This break was 80 to 100 m from a strand of the Greenville fault mapped by Herd (1977). Extensional fractures within the Greenville fault zone on the frontage roads north and south of Interstate Highway 580 may be related to regional extension or other processes, but do not seem to have resulted from faulting of the usual kind. One exception in this group is a fracture at the east side of Livermore valley which showed progressive increase in right-lateral displacement in February and March, 1980, and is directly on the projection of a fault in the Greenville fault zone mapped by Herd (1977). A group of more than 20 extensional fractures in Laughlin Road 1 km north of Interstate 580 probably are related to small tectonic displacements on faults in the Greenville fault zone. They are adjacent and parallel to two faults mapped by Herd (1977), are diagonal to the road, and most of them developed between 25 and 29 January, a period that included the Ms 5.2 shock of 26 January. Observations at two locations indicate tectonic displacement on the Las Positas fault zone as mapped by Herd (1977). At Vasco Road a prominent break on a strand of the fault showed about 0.5 mm of left-lateral strike slip on 7 February. An alinement array across this and other fractures at the locality indicates about 6 mm of left-lateral displacement occurred between 21 February and 26 March. On Tesla Road several right-stepping fractures, one of which showed 1.5 mm of left-lateral strike slip, lie on or close tp previously mapped strands of the Las Positas fault zone. The evidence at these two localities indicates that tectonic surface displacement occurred along at least 1.1 km of the Las Positas fault zone.

  10. Character and Implications of a Newly Identified Creeping Strand of the San Andreas fault NE of Salton Sea, Southern California

    NASA Astrophysics Data System (ADS)

    Janecke, S. U.; Markowski, D.

    2015-12-01

    The overdue earthquake on the Coachella section, San Andreas fault (SAF), the model ShakeOut earthquake, and the conflict between cross-fault models involving the Extra fault array and mapped shortening in the Durmid Hill area motivate new analyses at the southern SAF tip. Geologic mapping, LiDAR, seismic reflection, magnetic and gravity datasets, and aerial photography confirm the existence of the East Shoreline strand (ESS) of the SAF southwest of the main trace of the SAF. We mapped the 15 km long ESS, in a band northeast side of the Salton Sea. Other data suggest that the ESS continues N to the latitude of the Mecca Hills, and is >35 km long. The ESS cuts and folds upper Holocene beds and appears to creep, based on discovery of large NW-striking cracks in modern beach deposits. The two traces of the SAF are parallel and ~0.5 to ~2.5 km apart. Groups of east, SE, and ENE-striking strike-slip cross-faults connect the master dextral faults of the SAF. There are few sinistral-normal faults that could be part of the Extra fault array. The 1-km wide ESS contains short, discontinuous traces of NW-striking dextral-oblique faults. These en-echelon faults bound steeply dipping Pleistocene beds, cut out section, parallel tight NW-trending folds, and produced growth folds. Beds commonly dip toward the ESS on both sides, in accord with persistent NE-SW shortening across the ESS. The dispersed fault-fold structural style of the ESS is due to decollements in faulted mud-rich Pliocene to Holocene sediment and ramps and flats along the strike-slip faults. A sheared ladder-like geometric model of the two master dextral strands of the SAF and their intervening cross-faults, best explains the field relationships and geophysical datasets. Contraction across >40 km2 of the southernmost SAF zone in the Durmid Hills suggest that interaction of active structures in the SAF zone may inhibit the nucleation of large earthquakes in this region. The ESS may cross the northern Coachella Valley to join the blind Palm Spring dextral fault- a source of microearthquakes and differential subsidence. The ESS may also continue north parallel to the margin of the Salton Trough or have both a NW and NE branch. The risk of a future large earthquake directly beneath the greater Palm Springs metropolitan area may be larger if the first or last options are correct.

  11. Tectonic stress regime in the 2003-2004 and 2012-2015 earthquake swarms in the Ubaye Valley, French Alps

    NASA Astrophysics Data System (ADS)

    Fojtíková, Lucia; Vavryčuk, Václav

    2018-02-01

    We study two earthquake swarms that occurred in the Ubaye Valley, French Alps within the past decade: the 2003-2004 earthquake swarm with the strongest shock of magnitude ML = 2.7, and the 2012-2015 earthquake swarm with the strongest shock of magnitude ML = 4.8. The 2003-2004 seismic activity clustered along a 9-km-long rupture zone at depth between 3 and 8 km. The 2012-2015 activity occurred a few kilometres to the northwest from the previous one. We applied the iterative joint inversion for stress and fault orientations developed by Vavryčuk (2014) to focal mechanisms of 74 events of the 2003-2004 swarm and of 13 strongest events of the 2012-2015 swarm. The retrieved stress regime is consistent for both seismic activities. The σ 3 principal axis is nearly horizontal with azimuth of 103°. The σ 1 and σ 2 principal axes are inclined and their stress magnitudes are similar. The active faults are optimally oriented for shear faulting with respect to tectonic stress and differ from major fault systems known from geological mapping in the region. The estimated low value of friction coefficient at the faults 0.2-0.3 supports an idea of seismic activity triggered or strongly affected by presence of fluids.

  12. Logs of Paleoseismic Excavations Across the Central Range Fault, Trinidad

    USGS Publications Warehouse

    Crosby, Christopher J.; Prentice, Carol S.; Weber, John; Ragona, Daniel

    2009-01-01

    This publication makes available maps and trench logs associated with studies of the Central Range Fault, part of the South American-Caribbean plate boundary in Trinidad. Our studies were conducted in 2001 and 2002. We mapped geomorphic features indicative of active faulting along the right-lateral, Central Range Fault, part of the South American-Caribbean plate boundary in Trinidad. We excavated trenches at two sites, the Samlalsingh and Tabaquite sites. At the Samlalsingh site, sediments deposited after the most recent fault movement bury the fault, and the exact location of the fault was unknown until we exposed it in our excavations. At this site, we excavated a total of eleven trenches, six of which exposed the fault. The trenches exposed fluvial sediments deposited over a strath terrace developed on Miocene bedrock units. We cleaned the walls of the excavations, gridded the walls with either 1 m X 1 m or 1 m X 0.5 m nail and string grid, and logged the walls in detail at a scale of 1:20. Additionally, we described the different sedimentary units in the field, incorporating these descriptions into our trench logs. We mapped the locations of the trenches using a tape and compass. Our field logs were scanned, and unit contacts were traced in Adobe Illustrator. The final drafted logs of all the trenches are presented here, along with photographs showing important relations among faults and Holocene sedimentary deposits. Logs of south walls were reversed in Illustrator, so that all logs are drafted with the view direction to the north. We collected samples of various materials exposed in the trench walls, including charcoal samples for radiocarbon dating from both faulted and unfaulted deposits. The locations of all samples collected are shown on the logs. The ages of seventeen of the charcoal samples submitted for radiocarbon analysis at the University of Arizona Accelerator Mass Spectrometry Laboratory in Tucson, Ariz., are given in Table 1. Samples found in Table 1 are shown in red on the trench logs. All radiocarbon ages are calibrated and given with 2 standard deviation age ranges. Our studies suggest that the Central Range Fault is a Holocene fault capable of producing damaging earthquakes in Trinidad

  13. Mapping offshore portions of the Khlong Marui and Ranong faults in Thailand: Implications for seismic hazards in the Thai peninsula

    NASA Astrophysics Data System (ADS)

    Ramirez, H.; Furlong, K.; Pananont, P.; Krastel, S.; Nhongkai, S. N.

    2017-12-01

    Thailand experiences Mw < 6.5 earthquakes, but the frequency of these earthquakes is considerably less within Thailand than at plate boundaries. Faults in Thailand that are potentially active, but have not historically hosted a large earthquake pose an unknown seismic hazard. Two such faults are the Khlong Marui and Ranong faults, which are left lateral strike-slip faults that strike northeast across the Thai peninsula and have been assumed to continue into the Andaman Sea. The Ranong and Khlong Marui fault zones have clear surface expression onshore, but their offshore extent is unknown. An estimated 100 km of sinistral displacement has occurred in the last 52 million years on the Ranong fault zone and the Khlong Marui fault zone is assumed to be similar (Watkinson et al., 2008; Kornsawan and Morley, 2002). Five Mw < 4.5 earthquakes have occurred near the inferred offshore extension of the Ranong and Khlong Marui faults since 2005. However, the maximum earthquake magnitude possible and recurrence interval of events on these faults is unconstrained, leaving southern Thailand unprepared for a Mw < 6 earthquake. To constrain the location of offshore portion of these two faults we performed a marine seismic reflection survey in the Andaman Sea, and construct an offshore fault map. Additionally, we are working to resolve the depth extent of displacement associated with faulting in the seismic data to constrain the timing of fault motion. Using empirical scaling between fault area and earthquake size we will be able to estimate a maximum earthquake magnitude for the Ranong and Khlong Marui faults. This will provide additional information to help southern Thailand prepare for potential seismic events. Kornsawan, A., & Morley, C. K. (2002). The origin and evolution of complex transfer zones (graben shifts) in conjugate fault systems around the Funan Field, Pattani Basin, Gulf of Thailand. Journal of Structural Geology, 24(3), 435-449. http://doi.org/10.1016/S0191- 8141(01)00080-3 Watkinson, I., Elders, C., & Hall, R. (2008). The kinematic history of the Khlong Marui and Ranong Faults, southern Thailand. Journal of Structural Geology, 30, 1554-1571. http://doi.org/10.1016/j.jsg.2008.09.001

  14. Geologic map of the northern White Hills, Mohave County, Arizona

    USGS Publications Warehouse

    Howard, Keith A.; Priest, Susan S.; Lundstrom, Scott C.; Block, Debra L.

    2017-07-10

    IntroductionThe northern White Hills map area lies within the Kingman Uplift, a regional structural high in which Tertiary rocks lie directly on Proterozoic rocks as a result of Cretaceous orogenic uplift and erosional stripping of Paleozoic and Mesozoic strata. The Miocene Salt Spring Fault forms the major structural boundary in the map area. This low-angle normal fault separates a footwall (lower plate) of Proterozoic gneisses on the east and south from a hanging wall (upper plate) of faulted middle Miocene volcanic and sedimentary rocks and their Proterozoic substrate. The fault is part of the South Virgin–White Hills Detachment Fault, which records significant tectonic extension that decreases from north to south. Along most of its trace, the Salt Spring Fault dips gently westward, but it also has north-dipping segments along salients. A dissected, domelike landscape on the eroded footwall, which contains antiformal salients and synformal reentrants, extends through the map area from Salt Spring Bay southward to the Golden Rule Peak area. The “Lost Basin Range” represents an upthrown block of the footwall, raised on the steeper Lost Basin Range Fault.The Salt Spring Fault, as well as the normal faults that segment its hanging wall, deform rocks that are about 16 to 10 Ma, and younger deposits overlie the faults. Rhyodacitic welded tuff about 15 Ma underlies a succession of geochemically intermediate to progressively more mafic lavas (including alkali basalt) that range from about 14.7 to 8 Ma, interfingered with sedimentary rocks and breccias in the western part of the map area. Upper Miocene strata record further filling of the extension-formed continental basins. Basins that are still present in the modern landscape reflect the youngest stages of extensional-basin formation, expressed as the downfaulted Detrital Valley and Hualapai Wash basins in the western and eastern parts of the map area, respectively, as well as the north-centrally located, northward-sagged Temple Basin. Pliocene fluvial and piedmont alluvial fan deposits record postextensional basin incision, refilling, and reincision driven by the inception and evolution of the westward-flowing Colorado River, centered north of the map area.

  15. Bedrock geologic map of the Yucca Mountain area, Nye County, Nevada

    USGS Publications Warehouse

    Day, Warren C.; Dickerson, Robert P.; Potter, Christopher J.; Sweetkind, Donald S.; San Juan, Carma A.; Drake, Ronald M.; Fridrich, Christopher J.

    1998-01-01

    Yucca Mountain, Nye County, Nevada, has been identified as a potential site for underground storage of high-level radioactive nuclear waste. Detailed bedrock geologic maps form an integral part of the site characterization program by providing the fundamental framework for research into the geologic hazards and hydrologic behavior of the mountain. This bedrock geologic map provides the geologic framework and structural setting for the area in and adjacent to the site of the potential repository. The study area comprises the northern and central parts of Yucca Mountain, located on the southern flank of the Timber Mountain-Oasis Valley caldera complex, which was the source for many of the volcanic units in the area. The Timber Mountain-Oasis Valley caldera complex is part of the Miocene southwestern Nevada volcanic field, which is within the Walker Lane belt. This tectonic belt is a northwest-striking megastructure lying between the more active Inyo-Mono and Basin-and-Range subsections of the southwestern Great Basin.Excluding Quaternary surficial deposits, the map area is underlain by Miocene volcanic rocks, principally ash-flow tuffs with lesser amounts of lava flows. These volcanic units include the Crater Flat Group, the Calico Hills Formation, the Paintbrush Group, and the Timber Mountain Group, as well as minor basaltic dikes. The tuffs and lava flows are predominantly rhyolite with lesser amounts of latite and range in age from 13.4 to 11.6 Ma. The 10-Ma basaltic dikes intruded along a few fault traces in the north-central part of the study area. Fault types in the area can be classified as block bounding, relay structures, strike slip, and intrablock. The block-bounding faults separate the 1- to 4-km-wide, east-dipping structural blocks and exhibit hundreds of meters of displacement. The relay structures are northwest-striking normal fault zones that kinematically link the block-bounding faults. The strike-slip faults are steep, northwest-striking dextral faults located in the northern part of Yucca Mountain. The intrablock faults are modest faults of limited offset (tens of meters) and trace length (less than 7 km) that accommodated intrablock deformation.The concept of structural domains provides a useful tool in delineating and describing variations in structural style. Domains are defined across the study area on the basis of the relative amount of internal faulting, style of deformation, and stratal dips. In general, there is a systematic north to south increase in extensional deformation as recorded in the amount of offset along the block-bounding faults as well as an increase in the intrablock faulting.The rocks in the map area had a protracted history of Tertiary extension. Rocks of the Paintbrush Group cover much of the area and obscure evidence for older tectonism. An earlier history of Tertiary extension can be inferred, however, because the Timber Mountain-Oasis Valley caldera complex lies within and cuts an older north-trending rift (the Kawich-Greenwater rift}. Evidence for deformation during eruption of the Paintbrush Group is locally present as growth structures. Post-Paintbrush Group, pre-Timber Mountain Group extension occurred along the block-bounding faults. The basal contact of the 11.6-Ma Rainier Mesa Tuff of the Timber Mountain Group provides a key time horizon throughout the area. Other workers have shown that west of the study area in northern Crater Flat the basal angular unconformity is as much as 20° between the Rainier Mesa and underlying Paintbrush Group rocks. In the westernmost part of the study area the unconformity is smaller (less than 10°), whereas in the central and eastern parts of the map area the contact is essentially conformable. In the central part of the map the Rainier Mesa Tuff laps over fault splays within the Solitario Canyon fault zone. However, displacement did occur on the block-bounding faults after deposition of the Rainier Mesa Tuff inasmuch as it is locally caught up in the hanging-wall deformation of the block-bounding faults. Therefore, the regional Tertiary to Recent extension was protracted, occurring prior to and after the eruption of the tuffs exposed at Yucca Mountain.

  16. Using Magnetics and Topography to Model Fault Splays of the Hilton Creek Fault System within the Long Valley Caldera

    NASA Astrophysics Data System (ADS)

    De Cristofaro, J. L.; Polet, J.

    2017-12-01

    The Hilton Creek Fault (HCF) is a range-bounding extensional fault that forms the eastern escarpment of California's Sierra Nevada mountain range, near the town of Mammoth Lakes. The fault is well mapped along its main trace to the south of the Long Valley Caldera (LVC), but the location and nature of its northern terminus is poorly constrained. The fault terminates as a series of left-stepping splays within the LVC, an area of active volcanism that most notably erupted 760 ka, and currently experiences continuous geothermal activity and sporadic earthquake swarms. The timing of the most recent motion on these fault splays is debated, as is the threat posed by this section of the Hilton Creek Fault. The Third Uniform California Earthquake Rupture Forecast (UCERF3) model depicts the HCF as a single strand projecting up to 12km into the LVC. However, Bailey (1989) and Hill and Montgomery-Brown (2015) have argued against this model, suggesting that extensional faulting within the Caldera has been accommodated by the ongoing volcanic uplift and thus the intracaldera section of the HCF has not experienced motion since 760ka.We intend to map the intracaldera fault splays and model their subsurface characteristics to better assess their rupture history and potential. This will be accomplished using high-resolution topography and subsurface geophysical methods, including ground-based magnetics. Preliminary work was performed using high-precision Nikon Nivo 5.C total stations to generate elevation profiles and a backpack mounted GEM GS-19 proton precession magnetometer. The initial results reveal a correlation between magnetic anomalies and topography. East-West topographic profiles show terrace-like steps, sub-meter in height, which correlate to changes in the magnetic data. Continued study of the magnetic data using Oasis Montaj 3D modeling software is planned. Additionally, we intend to prepare a high-resolution terrain model using structure-from-motion techniques derived from imagery acquired by an unmanned aerial vehicle and ground control points measured with realtime kinematic GPS receivers. This terrain model will be combined with subsurface geophysical data to form a comprehensive model of the subsurface.

  17. Is There a Tectonic Component On The Subsidence Process In Morelia, Mexico?

    NASA Astrophysics Data System (ADS)

    Cabral-Cano, E.; Arciniega-Ceballos, A.; Diaz-Molina, O.; Garduno-Monroy, V.; Avila-Olivera, J.; Hernández-Madrigal, V.; Hernández-Quintero, E.

    2009-12-01

    Subsidence and faulting have affected cities in central Mexico for decades. This process causes substantial damages to the urban infrastructure, housing and large buildings, and is an important factor to be consider when planning urban development, land use zoning and hazard mitigation strategies. In Mexico, studies using InSAR and GPS based observations have shown that high subsidence areas are usually associated with the presence of thick lacustrine and fluvial deposits. In most cases the subsidence is closely associated with intense groundwater extraction that results in sediment consolidation. However, recent studies in the colonial city of Morelia in central Mexico show a different scenario, where groundwater extraction cannot solely explain the observed surface deformation. Our results indicate that a more complex interplay between sediment consolidation and tectonic forces is responsible for the subsidence and fault distribution within the city. The city of Morelia has experienced fault development recognized since the 80’s. This situation has led to the recognition of 9 NE-SW trending faults that cover most of its urbanized area. Displacement maps derived from differential InSAR analysis show that the La Colina fault is the highest subsiding area in Morelia with maximum annual rates over -35 mm/yr. However, lithological mapping and field reconnaissance clearly show basalts outcropping this area of high surface deformation. The subsurface characterization of the La Colina fault was carried out along 27 Ground Penetrating Radar (GPR) sections and 6 seismic tomography profiles. Assuming a constant, linear past behavior of the subsidence as observed by InSAR techniques, and based on the interpretation of the fault dislocation imaged by the shallow GPR and seismic tomography, it is suggested that the La Colina fault may have been active for the past 220-340 years and clearly pre-dates the intense water well extraction from the past century. These conditions suggest the existence of a tectonic component overlapped to the soil consolidation and its related subsidence. Therefore, these results suggest that the fault system observed within the city of Morelia may be an active segment of the Morelia-Acambay tectonic fault system.

  18. Updating the USGS seismic hazard maps for Alaska

    USGS Publications Warehouse

    Mueller, Charles; Briggs, Richard; Wesson, Robert L.; Petersen, Mark D.

    2015-01-01

    The U.S. Geological Survey makes probabilistic seismic hazard maps and engineering design maps for building codes, emergency planning, risk management, and many other applications. The methodology considers all known earthquake sources with their associated magnitude and rate distributions. Specific faults can be modeled if slip-rate or recurrence information is available. Otherwise, areal sources are developed from earthquake catalogs or GPS data. Sources are combined with ground-motion estimates to compute the hazard. The current maps for Alaska were developed in 2007, and included modeled sources for the Alaska-Aleutian megathrust, a few crustal faults, and areal seismicity sources. The megathrust was modeled as a segmented dipping plane with segmentation largely derived from the slip patches of past earthquakes. Some megathrust deformation is aseismic, so recurrence was estimated from seismic history rather than plate rates. Crustal faults included the Fairweather-Queen Charlotte system, the Denali–Totschunda system, the Castle Mountain fault, two faults on Kodiak Island, and the Transition fault, with recurrence estimated from geologic data. Areal seismicity sources were developed for Benioff-zone earthquakes and for crustal earthquakes not associated with modeled faults. We review the current state of knowledge in Alaska from a seismic-hazard perspective, in anticipation of future updates of the maps. Updated source models will consider revised seismicity catalogs, new information on crustal faults, new GPS data, and new thinking on megathrust recurrence, segmentation, and geometry. Revised ground-motion models will provide up-to-date shaking estimates for crustal earthquakes and subduction earthquakes in Alaska.

  19. The San Andreas Fault System, California

    USGS Publications Warehouse

    Wallace, Robert E.

    1990-01-01

    Maps of northern and southern California printed on flyleaf inside front cover and on adjacent pages show faults that have had displacement within the past 2 million years. Those that have had displacement within historical time are shown in red. Bands of red tint emphasize zones of historical displacement; bands of orange tint emphasize major faults that have had Quaternary displacement before historical time. Faults are dashed where uncertain, dotted where covered by sedimentary deposits, and queried when doubtful. Arrows indicate direction of relative movement; sawteeth on upper plate of thrust fault. These maps are reproductions, in major part, of selected plates from the "Fault Map of California," published in 1975 by the California Division of Mines and Geology at a scale of 1:750,000; the State map was compiled and data interpreted by Charles W. Jennings. New data about faults, not shown on the 1975 edition, required modest revisions, primarily additions however, most of the map was left unchanged because the California Division of Mines and Geology is currently engaged in a major revision and update of the 1975 edition. Because of the reduced scale here, names of faults and places were redrafted or omitted. Faults added to the reduced map are not as precise as on the original State map, and the editor of this volume selected certain faults and omitted others. Principal regions for which new information was added are the region north of the San Francisco Bay area and the offshore regions.Many people have contributed to the present map, but the editor is solely responsible for any errors and omissions. Among those contributing informally, but extensively, and the regions to which each contributed were G.A. Carver, onland region north of lat 40°N.; S.H. Clarke, offshore region north of Cape Mendocino; R.J. McLaughlin, onland region between lat 40°00' and 40°30' N. and long 123°30' and 124°30' W.; D.S. McCulloch offshore region between lat 35° and 40° N.; J.G. Vedder, offshore reglor south of lat 35° N.; and D.G. Herd, southern San Francisco Bay region. The Fault Evaluation Program of the California Division of Mines and Geology under the direction of E.W. Hart, provided much data about many faults. Unpublished material about the Bartlett Springs fault zone that was gathered by Geomatrix Consultants for the Pacific Gas and Electric Co. was very useful. In addition, selected publications that provided invaluable data include Bortugno (1982), Herd (1977), Herd and Helley (1977), Pampeyan and others (1981), and Yerkes and others (1980). 

  20. Reinterpretation of Mesozoic and Cenozoic tectonic events, Mountain Pass area, northeastern San Bernardino County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nance, M.A.

    1993-04-01

    Detailed mapping, stratigraphic structural analysis in the Mountain Pass area has resulted in a reinterpretation of Mesozoic and Cenozoic tectonic events in the area. Mesozoic events are characterized by north vergent folds and thrust faults followed by east vergent thrusting. Folding created two synclines and an anticline which were than cut at different stratigraphic levels by subsequent thrust faults. Thrusting created composite tectono-stratigraphic sections containing autochthonous, para-autothonous, and allochthonous sections. Normal faults cutting these composite sections including North, Kokoweef, White Line, and Piute fault must be post-thrusting, not pre-thrusting as in previous interpretations. Detailed study of these faults results inmore » differentiation of at least three orders of faults and suggest they represent Cenozoic extension correlated with regional extensional events between 11 and 19 my. Mesozoic stratigraphy reflects regional orogenic uplift, magmatic activity, and thrusting. Inclusion of Kaibab clasts in the Chinle, Kaibab and Chinle clasts in the Aztec, and Chinle, Aztec, and previously deposited Delfonte Volcanics clasts in the younger members of the Delfonte Volcanics suggest regional uplift prior to the thrusting of Cambrian Bonanza King over Delfonte Volcanics by the Mescal Thrust fault. The absence of clasts younger than Kaibab argues against pre-thrusting activity for the Kokoweef fault.« less

  1. Digital Data for Volcano Hazards in the Crater Lake Region, Oregon

    USGS Publications Warehouse

    Schilling, S.P.; Doelger, S.; Bacon, C.R.; Mastin, L.G.; Scott, K.E.; Nathenson, M.

    2008-01-01

    Crater Lake lies in a basin, or caldera, formed by collapse of the Cascade volcano known as Mount Mazama during a violent, climactic eruption about 7,700 years ago. This event dramatically changed the character of the volcano so that many potential types of future events have no precedent there. This potentially active volcanic center is contained within Crater Lake National Park, visited by 500,000 people per year, and is adjacent to the main transportation corridor east of the Cascade Range. Because a lake is now present within the most likely site of future volcanic activity, many of the hazards at Crater Lake are different from those at most other Cascade volcanoes. Also significant are many faults near Crater Lake that clearly have been active in the recent past. These faults, and historic seismicity, indicate that damaging earthquakes can occur there in the future. The USGS Open-File Report 97-487 (Bacon and others, 1997) describes the various types of volcano and earthquake hazards in the Crater Lake area, estimates of the likelihood of future events, recommendations for mitigation, and a map of hazard zones. The geographic information system (GIS) volcano hazard data layers used to produce the Crater Lake earthquake and volcano hazard map in USGS Open-File Report 97-487 are included in this data set. USGS scientists created one GIS data layer, c_faults, that delineates these faults and one layer, cballs, that depicts the downthrown side of the faults. Additional GIS layers chazline, chaz, and chazpoly were created to show 1)the extent of pumiceous pyroclastic-flow deposits of the caldera forming Mount Mazama eruption, 2)silicic and mafic vents in the Crater Lake region, and 3)the proximal hazard zone around the caldera rim, respectively.

  2. Geologic map of the Montoso Peak quadrangle, Santa Fe and Sandoval Counties, New Mexico

    USGS Publications Warehouse

    Thompson, Ren A.; Hudson, Mark R.; Shroba, Ralph R.; Minor, Scott A.; Sawyer, David A.

    2011-01-01

    The Montoso Peak quadrangle is underlain by volcanic rocks and associated sediments of the Cerros del Rio volcanic field in the southern part of the Española Basin that record volcanic, faulting, alluvial, colluvial, and eolian processes over the past three million years. The geology was mapped from 1997 to 1999 and modified in 2004 to 2008. The geologic mapping was carried out in support of the U.S. Geological Survey (USGS) Rio Grande Basin Project, funded by the USGS National Cooperative Geologic mapping Program. The mapped distribution of units is based primarily on interpretation of 1:16,000-scale, color aerial photographs taken in 1992, and 1:40,000-scale, black-and-white, aerial photographs taken in 1996. Most of the contacts on the map were transferred from the aerial photographs using a photogrammetric stereoplotter and subsequently field checked for accuracy and revised based on field determination of allostratigraphic and lithostratigraphic units. Determination of lithostratigraphic units in volcanic deposits was aided by geochemical data, 40Ar/39Ar geochronology, aeromagnetic and paleomagnetic data. Supplemental revision of mapped contacts was based on interpretation of USGS 1-meter orthoimagery. This version of the Montoso Peak quadrangle geologic map uses a traditional USGS topographic base overlain on a shaded relief base generated from 10-m digital elevation model (DEM) data from the USGS National Elevation Dataset (NED). Faults are identified with varying confidence levels in the map area. Recognizing and mapping faults developed near the surface in young, brittle volcanic rocks is difficult because (1) they tend to form fractured zones tens of meters wide rather than discrete fault planes, (2) the youth of the deposits has allowed only modest displacements to accumulate for most faults, and (3) many may have significant strike-slip components that do not result in large vertical offsets that are readily apparent in offset of sub-horizontal contacts. Those faults characterized as "certain" either have distinct offset of map units or had slip planes that were directly observed in the field. Faults classed as "inferred" were traced based on linear alignments of geologic, topographic and aerial photo features such as vents, lava flow edges, and drainages inferred to preferentially develop on fractured rock. Lineaments defined from magnetic anomalies form an additional constraint on potential fault locations.

  3. Using focal mechanism solutions to correlate earthquakes with faults in the Lake Tahoe-Truckee area, California and Nevada, and to help design LiDAR surveys for active-fault reconnaissance

    NASA Astrophysics Data System (ADS)

    Cronin, V. S.; Lindsay, R. D.

    2011-12-01

    Geomorphic analysis of hillshade images produced from aerial LiDAR data has been successful in identifying youthful fault traces. For example, the recently discovered Polaris fault just northwest of Lake Tahoe, California/Nevada, was recognized using LiDAR data that had been acquired by local government to assist land-use planning. Subsequent trenching by consultants under contract to the US Army Corps of Engineers has demonstrated Holocene displacement. The Polaris fault is inferred to be capable of generating a magnitude 6.4-6.9 earthquake, based on its apparent length and offset characteristics (Hunter and others, 2011, BSSA 101[3], 1162-1181). Dingler and others (2009, GSA Bull 121[7/8], 1089-1107) describe paleoseismic or geomorphic evidence for late Neogene displacement along other faults in the area, including the West Tahoe-Dollar Point, Stateline-North Tahoe, and Incline Village faults. We have used the seismo-lineament analysis method (SLAM; Cronin and others, 2008, Env Eng Geol 14[3], 199-219) to establish a tentative spatial correlation between each of the previously mentioned faults, as well as with segments of the Dog Valley fault system, and one or more earthquake(s). The ~18 earthquakes we have tentatively correlated with faults in the Tahoe-Truckee area occurred between 1966 and 2008, with magnitudes between 3 and ~6. Given the focal mechanism solution for a well-located shallow-focus earthquake, the nodal planes can be projected to Earth's surface as represented by a DEM, plus-or-minus the vertical and horizontal uncertainty in the focal location, to yield two seismo-lineament swaths. The trace of the fault that generated the earthquake is likely to be found within one of the two swaths [1] if the fault surface is emergent, and [2] if the fault surface is approximately planar in the vicinity of the focus. Seismo-lineaments from several of the earthquakes studied overlap in a manner that suggests they are associated with the same fault. The surface trace of both the Polaris fault and the Dog Valley fault system are within composite swaths defined by overlapping seismo-lineaments. Composite seismo-lineaments indicate that multiple historic earthquakes might be associated with a fault. This apparently successful correlation of earthquakes with faults in an area where geologic mapping is good suggests another use for SLAM in areas where fault mapping is incomplete, inadequate or made particularly difficult because of vegetative cover. If no previously mapped fault exists along a composite swath generated using well constrained focal mechanism solutions, the swath might be used to guide the design of a LiDAR survey in support of reconnaissance for the causative fault. The acquisition and geomorphic analysis of LiDAR data along a compound seismo-lineament swath might reveal geomorphic evidence of a previously unrecognized fault trace that is worthy of additional field study.

  4. Anatomy of an Active Seismic Source: the Interplay between Present-Day Seismic Activity and Inherited Fault Zone Architecture (Central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Fondriest, M.; Demurtas, M.; Bistacchi, A.; Fabrizio, B.; Storti, F.; Valoroso, L.; Di Toro, G.

    2017-12-01

    The mechanics and seismogenic behaviour of fault zones are strongly influenced by their internal structure, in terms of both fault geometry and fault rock constitutive properties. In recent years high-resolution seismological techniques yielded new constraints on the geometry and velocity structure of seismogenic faults down to 10s meters length scales. This reduced the gap between geophysical imaging of active seismic sources and field observations of exhumed fault zones. Nevertheless fundamental questions such as the origin of geometrical and kinematic complexities associated to seismic faulting remain open. We addressed these topics by characterizing the internal structure of the Vado di Corno Fault Zone, an active seismogenic normal fault cutting carbonates in the Central Apennines of Italy and comparing it with the present-day seismicity of the area. The fault footwall block, which was exhumed from < 2 km depth, was mapped with high detail (< 1 m spatial resolution) for 2 km of exposure along strike, combining field structural data and photogrammetric surveys in a three dimensional structural model. Three main structural units separated by principal fault strands were recognized: (i) cataclastic unit (20-100 m thick), (ii) damage zone (≤ 300 m thick), (iii) breccia unit ( 20 thick). The cataclastic unit lines the master fault and represents the core of the normal fault zone. In-situ shattering together with evidence of extreme (possibly coseismic) shear strain localization (e.g., mirror-like faults with truncated clasts, ultrafine-grained sheared veins) was recognized. The breccia unit is an inherited thrust zone affected by pervasive veining and secondary dolomitization. It strikes subparallel to the active normal fault and is characterized by a non-cylindrical geometry with 10-100 m long frontal and lateral ramps. The cataclastic unit cuts through thrust flats within the breccia unit, whereas normal to oblique inversion occur on frontal and lateral ramps. A comparable structural setting was imaged South-West of the study area, during the 2009 L'Aquila seismic sequence. Here at 2 km depth, the master normal fault cross-cuts a 10 km long flat structure and clear lateral ramps are illuminated, suggesting the superposition of normal seismic faulting on inherited compressional structures.

  5. Active tectonics of the Imperial Valley, southern California: fault damage zones, complex basins and buried faults

    NASA Astrophysics Data System (ADS)

    Persaud, P.; Ma, Y.; Stock, J. M.; Hole, J. A.; Fuis, G. S.; Han, L.

    2016-12-01

    Ongoing oblique slip at the Pacific-North America plate boundary in the Salton Trough produced the Imperial Valley. Deformation in this seismically active area is distributed across a complex network of exposed and buried faults resulting in a largely unmapped seismic hazard beneath the growing population centers of El Centro, Calexico and Mexicali. To better understand the shallow crustal structure in this region and the connectivity of faults and seismicity lineaments, we used data primarily from the Salton Seismic Imaging Project (SSIP) to construct a P-wave velocity profile to 15 km depth, and a 3-D velocity model down to 8 km depth including the Brawley Geothermal area. We obtained detailed images of a complex wedge-shaped basin at the southern end of the San Andreas Fault system. Two deep subbasins (VP <5.65 km/s) are located in the western part of the larger Imperial Valley basin, where seismicity trends and active faults play a significant role in shaping the basin edge. Our 3-D VP model reveals previously unrecognized NE-striking cross faults that are interacting with the dominant NW-striking faults to control deformation. New findings in our profile include localized regions of low VP (thickening of a 5.65-5.85 km/s layer) near faults or seismicity lineaments interpreted as possibly faulting-related. Our 3-D model and basement map reveal velocity highs associated with the geothermal areas in the eastern valley. The improved seismic velocity model from this study, and the identification of important unmapped faults or buried interfaces will help refine the seismic hazard for parts of Imperial County, California.

  6. Fluid-controlled faulting process in the Asal Rift, Djibouti, from 8 yr of radar interferometry observations

    NASA Astrophysics Data System (ADS)

    Doubre, Cécile; Peltzer, Gilles

    2007-01-01

    The deformation in the Asal Rift (Djibouti) is characterized by magmatic inflation, diking, distributed extension, fissure opening, and normal faulting. An 8 yr time line of surface displacement maps covering the rift, constructed using radar interferometry data acquired by the Canadian satellite Radarsat between 1997 and 2005, reveals the aseismic behavior of faults and its relation with bursts of microseismicity. The observed ground movements show the asymmetric subsidence of the inner floor of the rift with respect to the bordering shoulders accommodated by slip on three of the main active faults. Fault slip occurs both as steady creep and during sudden slip events accompanied by an increase in the seismicity rate around the slipping fault and the Fieale volcanic center. Slip distribution along fault strike shows triangular sections, a pattern not explained by simple elastic dislocation theory. These observations suggest that the Asal Rift faults are in a critical failure state and respond instantly to small pressure changes in fluid-filled fractures connected to the faults, reducing the effective normal stress on their locked section at depth.

  7. The temporal and spatial distribution of upper crustal faulting and magmatism in the south Lake Turkana rift, East Africa

    NASA Astrophysics Data System (ADS)

    Muirhead, J.; Scholz, C. A.

    2017-12-01

    During continental breakup extension is accommodated in the upper crust largely through dike intrusion and normal faulting. The Eastern branch of the East African Rift arguably represents the premier example of active continental breakup in the presence magma. Constraining how faulting is distributed in both time and space in these regions is challenging, yet can elucidate how extensional strain localizes within basins as rifting progresses to sea-floor spreading. Studies of active rifts, such as the Turkana Rift, reveal important links between faulting and active magmatic processes. We utilized over 1100 km of high-resolution Compressed High Intensity Radar Pulse (CHIRP) 2D seismic reflection data, integrated with a suite of radiocarbon-dated sediment cores (3 in total), to constrain a 17,000 year history of fault activity in south Lake Turkana. Here, a set of N-S-striking intra-rift faults exhibit time-averaged slip-rates as high as 1.6 mm/yr, with the highest slip-rates occurring along faults within 3 km of the rift axis. Results show that strain has localized into a zone of intra-rift faults along the rift axis, forming an approximately 20 km-wide graben in central parts of the basin. Subsurface structural mapping and fault throw profile analyses reveal increasing basin subsidence and fault-related strain as this faulted graben approaches a volcanic island in the center of the basin (South Island). The long-axis of this island trends north-south, and it contains a number of elongate cones that support recent emplacement of N-S-striking dike intrusions, which parallel recently active intra-rift faults. Overall, these observations suggest strain localization into intra-rift faults in the rift center is likely a product of both volcanic loading and the mechanical and thermal effects of diking along the rift axis. These results support the establishment of magmatic segmentation in southern Lake Turkana, and highlight the importance of magmatism for focusing upper crustal strain as rifts evolve to sea-floor spreading.

  8. Fault distribution in the Precambrian basement of South Norway

    NASA Astrophysics Data System (ADS)

    Gabrielsen, Roy H.; Nystuen, Johan Petter; Olesen, Odleiv

    2018-03-01

    Mapping of the structural pattern by remote sensing methods (Landsat, SPOT, aerial photography, potential field data) and field study of selected structural elements shows that the cratonic basement of South Norway is strongly affected by a regular lineament pattern that encompasses fault swarms of different orientation, age, style, attitude and frequency. Albeit counting numerous fault and fracture populations, the faults are not evenly distributed and N-S to NNE-SSW/NNW-SSE and NE-SE/ENE-WSW-systems are spatially dominant. N-S to NNW-SSE structures can be traced underneath the Caledonian nappes to the Western Gneiss Region in western and central South Norway, emphasizing their ancient roots. Dyke swarms of different ages are found within most of these zones. Also, the Østfold, Oslo-Trondheim and the Mandal-Molde lineament zones coincide with trends of Sveconorwegian post-collision granites. We conclude that the N-S-trend includes the most ancient structural elements, and that the trend can be traced back to the Proterozoic (Svecofennian and Sveconorwegian) orogenic events. Some of the faults may have been active in Neoproterozoic times as marginal faults of rift basins at the western margin of Baltica. Remnants of such fault activity have survived in the cores of many of the faults belonging to this system. The ancient systems of lineaments were passively overridden by the Caledonian fold-and-thrust system and remained mostly, but note entirely inactive throughout the Sub-Cambrian peneplanation and the Caledonian orogenic collapse in the Silurian-Devonian. The system was reactivated in extension from Carboniferous times, particularly in the Permian with the formation of the Oslo Rift and parts of it remain active to the Present, albeit by decreasing extension and fault activity.

  9. High-Resolution Aeromagnetic Survey To Image Shallow Faults, Poncha Springs and Vicinity, Chaffee County, Colorado

    USGS Publications Warehouse

    Grauch, V.J.S.; Drenth, Benjamin J.

    2009-01-01

    High-resolution aeromagnetic data were acquired over the town of Poncha Springs and areas to the northwest to image faults, especially where they are concealed. Because this area has known hot springs, faults or fault intersections at depth can provide pathways for upward migration of geothermal fluids or concentrate fracturing that enhances permeability. Thus, mapping concealed faults provides a focus for follow-up geothermal studies. Fault interpretation was accomplished by synthesizing interpretative maps derived from several different analytical methods, along with preliminary depth estimates. Faults were interpreted along linear aeromagnetic anomalies and breaks in anomaly patterns. Many linear features correspond to topographic features, such as drainages. A few of these are inferred to be fault-related. The interpreted faults show an overall pattern of criss-crossing fault zones, some of which appear to step over where they cross. Faults mapped by geologists suggest similar crossing patterns in exposed rocks along the mountain front. In low-lying areas, interpreted faults show zones of west-northwest-, north-, and northwest-striking faults that cross ~3 km (~2 mi) west-northwest of the town of Poncha Springs. More easterly striking faults extend east from this juncture. The associated aeromagnetic anomalies are likely caused by magnetic contrasts associated with faulted sediments that are concealed less than 200 m (656 ft) below the valley floor. The faults may involve basement rocks at greater depth as well. A relatively shallow (<300 m or <984 ft), faulted basement block is indicated under basin-fill sediments just north of the hot springs and south of the town of Poncha Springs.

  10. Late Miocene-Pleistocene evolution of a Rio Grande rift subbasin, Sunshine Valley-Costilla Plain, San Luis Basin, New Mexico and Colorado

    USGS Publications Warehouse

    Ruleman, C.A.; Thompson, R.A.; Shroba, R.R.; Anderson, M.; Drenth, B.J.; Rotzien, J.; Lyon, J.

    2013-01-01

    The Sunshine Valley-Costilla Plain, a structural subbasin of the greater San Luis Basin of the northern Rio Grande rift, is bounded to the north and south by the San Luis Hills and the Red River fault zone, respectively. Surficial mapping, neotectonic investigations, geochronology, and geophysics demonstrate that the structural, volcanic, and geomorphic evolution of the basin involves the intermingling of climatic cycles and spatially and temporally varying tectonic activity of the Rio Grande rift system. Tectonic activity has transferred between range-bounding and intrabasin faults creating relict landforms of higher tectonic-activity rates along the mountain-piedmont junction. Pliocene–Pleistocene average long-term slip rates along the southern Sangre de Cristo fault zone range between 0.1 and 0.2 mm/year with late Pleistocene slip rates approximately half (0.06 mm/year) of the longer Quaternary slip rate. During the late Pleistocene, climatic influences have been dominant over tectonic influences on mountain-front geomorphic processes. Geomorphic evidence suggests that this once-closed subbasin was integrated into the Rio Grande prior to the integration of the once-closed northern San Luis Basin, north of the San Luis Hills, Colorado; however, deep canyon incision, north of the Red River and south of the San Luis Hills, initiated relatively coeval to the integration of the northern San Luis Basin.Long-term projections of slip rates applied to a 1.6 km basin depth defined from geophysical modeling suggests that rifting initiated within this subbasin between 20 and 10 Ma. Geologic mapping and geophysical interpretations reveal a complex network of northwest-, northeast-, and north-south–trending faults. Northwest- and northeast-trending faults show dual polarity and are crosscut by north-south– trending faults. This structural model possibly provides an analog for how some intracontinental rift structures evolve through time.

  11. GPS-aided inertial technology and navigation-based photogrammetry for aerial mapping the San Andreas fault system

    USGS Publications Warehouse

    Sanchez, Richard D.; Hudnut, Kenneth W.

    2004-01-01

    Aerial mapping of the San Andreas Fault System can be realized more efficiently and rapidly without ground control and conventional aerotriangulation. This is achieved by the direct geopositioning of the exterior orientation of a digital imaging sensor by use of an integrated Global Positioning System (GPS) receiver and an Inertial Navigation System (INS). A crucial issue to this particular type of aerial mapping is the accuracy, scale, consistency, and speed achievable by such a system. To address these questions, an Applanix Digital Sensor System (DSS) was used to examine its potential for near real-time mapping. Large segments of vegetation along the San Andreas and Cucamonga faults near the foothills of the San Bernardino and San Gabriel Mountains were burned to the ground in the California wildfires of October-November 2003. A 175 km corridor through what once was a thickly vegetated and hidden fault surface was chosen for this study. Both faults pose a major hazard to the greater Los Angeles metropolitan area and a near real-time mapping system could provide information vital to a post-disaster response.

  12. Influence of fault trend, fault bends, and fault convergence on shallow structure, geomorphology, and hazards, Hosgri strike-slip fault, offshore central California

    NASA Astrophysics Data System (ADS)

    Johnson, S. Y.; Watt, J. T.; Hartwell, S. R.

    2012-12-01

    We mapped a ~94-km-long portion of the right-lateral Hosgri Fault Zone from Point Sal to Piedras Blancas in offshore central California using high-resolution seismic reflection profiles, marine magnetic data, and multibeam bathymetry. The database includes 121 seismic profiles across the fault zone and is perhaps the most comprehensive reported survey of the shallow structure of an active strike-slip fault. These data document the location, length, and near-surface continuity of multiple fault strands, highlight fault-zone heterogeneity, and demonstrate the importance of fault trend, fault bends, and fault convergences in the development of shallow structure and tectonic geomorphology. The Hosgri Fault Zone is continuous through the study area passing through a broad arc in which fault trend changes from about 338° to 328° from south to north. The southern ~40 km of the fault zone in this area is more extensional, resulting in accommodation space that is filled by deltaic sediments of the Santa Maria River. The central ~24 km of the fault zone is characterized by oblique convergence of the Hosgri Fault Zone with the more northwest-trending Los Osos and Shoreline Faults. Convergence between these faults has resulted in the formation of local restraining and releasing fault bends, transpressive uplifts, and transtensional basins of varying size and morphology. We present a hypothesis that links development of a paired fault bend to indenting and bulging of the Hosgri Fault by a strong crustal block translated to the northwest along the Shoreline Fault. Two diverging Hosgri Fault strands bounding a central uplifted block characterize the northern ~30 km of the Hosgri Fault in this area. The eastern Hosgri strand passes through releasing and restraining bends; the releasing bend is the primary control on development of an elongate, asymmetric, "Lazy Z" sedimentary basin. The western strand of the Hosgri Fault Zone passes through a significant restraining bend and dies out northward where we propose that its slip transfers to active structures in the Piedras Blancas fold belt. Given the continuity of the Hosgri Fault Zone through our study area, earthquake hazard assessments should incorporate a minimum rupture length of 110 km. Our data do not constrain lateral slip rates on the Hosgri, which probably vary along the fault (both to the north and south) as different structures converge and diverge but are likely in the geodetically estimated range of 2 to 4 mm/yr. More focused mapping of lowstand geomorphic features (e.g., channels, paleoshorelines) has the potential to provide better constraints. The post-Last-Glacial Maximum unconformity is an important surface for constraining vertical deformation, yielding local fault offset rates that may be as high as 1.4 mm/yr and off-fault deformation rates as high as 0.5 mm/yr. These vertical rates are short-term and not sustainable over longer geologic time, emphasizing the complex evolution and dynamics of strike-slip zones.

  13. Tectonic Signals Deduced from Quantitative Analysis of Geomorphic Parameters in Bedrock Rivers and Structural Mapping: A case study from the Surai Khola Siwalik Section, Nepalese Himalaya

    NASA Astrophysics Data System (ADS)

    Bhattarai, I.; Gani, N. D.

    2016-12-01

    The Nepalese Himalaya is one of the most active regions within the Himalayan Mountain Belt, which is characterized by a thick succession of Siwalik sedimentary rocks deposited at its foreland basin. To date, much of the tectonic geomorphologic study in the Nepalese Siwalik is poorly understood, particularly in the Surai Khola section. Thus, the study of quantitative analysis of bedrock river parameters will provide crucial information regarding tectonic activities in the area. This study investigates geomorphic parameters of longitudinal river profiles from 54 watersheds within the Siwalik section of the Nepalese Himalaya. We extracted a total of 140 bedrock rivers from these watersheds using stream power-law function and 30-meter resolution ASTER DEM. In addition, we used 90-meter resolution SRTM DEM for structural mapping within the Surai Khola section. Our new results show presence of major and minor knickpoints that were classified on the basis of relief of the longitudinal profiles. We identified 180 major knickpoints out of 305 total knickpoints. Normalized steepness index (ksn) and concavity index values vary above and below these knicpoints. The ksn values range from 5.3 to 140.6 while concavity index of the streams in the study area ranges from as low as -12.1 to as high as 31.1. We also identified a total of 133 structural lineations that were mapped for the first time using various sun illumination angles and azimuths, and slope. Most of these structural lineations are likely faults that follow the similar east-west trends of the Main Frontal Thrust (MFT) Fault. The length of these faults ranges from 0.5 km to 8 km. We interpreted that a few measured knickpoints might be associated with our mapped mesoscale faults, while the majority of the knickpoints in the river profiles are locally adjusting to the MFT related uplift.

  14. Thin-skinned tectonics of the Upper Ojai Valley and Sulphur Mountain area, Ventura basin, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huftile, G.J.

    1991-08-01

    By integrating surface mapping with subsurface well data and drawing cross sections and subsurface maps, the geometry of shallow structures and their geologic history of the Upper Ojai Valley of California can be reconstructed. The geometry of shallow structures, the geologic history, and the location of earthquake foci then offer constraints on the deep structure of this complex area. The Upper Ojai Valley is a tectonic depression between opposing reverse faults. Its northern border is formed by the active, north-dipping San Cayetano fault, which has 6.0 km of stratigraphic separation in the Silverthread area of the Ojai oil field andmore » 2.6 km of stratigraphic separation west of Sisar Creek. The fault dies out farther west in Ojai Valley, where the south-vergent shortening is transferred to a blind thrust. The southern border of the Upper Ojai Valley is formed by the Quaternary Lion fault set, which dips south and merges into the Sisar decollement within the south-dipping, ductile, lower Miocene Rincon formation. By the middle Pleistocene, the Sulphur Mountain anticlinorium and the Big Canyon syncline began forming as a fault-propagation fold; the fault-propagation fold is rooted in the Sisar decollement, a passive backthrust rising from a blind thrust at depth. The formation of the Sulphur Mountain anticlinorium was followed closely by the ramping of the south-dipping Lion fault set to the surface over the nonmarine upper Pleistocene Saugus Formation. To the east, the San Cayetano fault overrides and folds the Lion Fault set near the surface. Area-balancing of the deformation shows shortening of 15.5 km, and suggests a 17 km depth to the brittle-ductile transition.« less

  15. Microseismicity Studies in Northern Baja California: General Results.

    NASA Astrophysics Data System (ADS)

    Frez, J.; Acosta, J.; Gonzalez, J.; Nava, F.; Suarez, F.

    2005-12-01

    Between 1997 and 2003, we installed local seismological networks in northern Baja California with digital, three-component, Reftek instruments, and with 100-125 Hz sampling. Each local network had from 15 to 40 stations over an area approximately of 50 x 50 km2. Surveys have been carried out for the Mexicali seismic zone and the Ojos Negros region (1997), the San Miguel fault system (1998), the Pacific coast between Tijuana and Ensenada (1999), the Agua Blanca and Vallecito fault systems (2001), the Sierra Juarez fault system (2002), and other smaller areas (2001 and 2003). These detailed microseismicity surveys are complemented with seismograms and arrival times from regional networks (RESNOM and SCSN). Selected locations presented here have errors (formal errors from HYPO71) less than 1 km. Phase reading errors are estimated at less than or about 0.03 s. Most of the activity is located between mapped fault traces, along alignments which do not follow the fault traces, and where tectonic alignments intersect. The results suggests an orthogonal pattern at various scales. Depth distributions generally have two maxima, one secondary maximum, at about 5 km; the other, located at 12-17 km. The Agua Blanca fault is essentially inactive for earthquakes with ML > 1.7. Most focal mechanisms are strike-slip with a minor normal component; the others are dominantly normal; the resulting pattern indicates a regional extensional regime for all the regions with an average NS azimuth for the P-axes. Fracture directions, obtained from directivity measurements, show orthogonal directions, one of which approximately coincides with the azimuth of mapped fault traces. These results indicate that the Pacific-North American interplate motion is not being entirely accommodated by the NW trending faults, but rather is creating a complex system of conjugate faults.

  16. Role of the offshore Pedro Banks left-lateral strike-slip fault zone in the plate tectonic evolution of the northern Caribbean

    NASA Astrophysics Data System (ADS)

    Ott, B.; Mann, P.; Saunders, M.

    2013-12-01

    Previous workers, mainly mapping onland active faults on Caribbean islands, defined the northern Caribbean plate boundary zone as a 200-km-wide bounded by two active and parallel strike-slip faults: the Oriente fault along the northern edge of the Cayman trough with a GPS rate of 14 mm/yr, and and the Enriquillo-Plaintain Garden fault zone (EPGFZ) with a rate of 5-7 mm/yr. In this study we use 5,000 km of industry and academic data from the Nicaraguan Rise south and southwest of the EPGFZ in the maritime areas of Jamaica, Honduras, and Colombia to define an offshore, 700-km-long, active, left-lateral strike-slip fault in what has previously been considered the stable interior of the Caribbean plate as determined from plate-wide GPS studies. The fault was named by previous workers as the Pedro Banks fault zone because a 100-km-long segment of the fault forms an escarpment along the Pedro carbonate bank of the Nicaraguan Rise. Two fault segments of the PBFZ are defined: the 400-km-long eastern segment that exhibits large negative flower structures 10-50 km in width, with faults segments rupturing the sea floor as defined by high resolution 2D seismic data, and a 300-km-long western segment that is defined by a narrow zone of anomalous seismicity first observed by previous workers. The western end of the PBFZ terminates on a Quaternary rift structure, the San Andres rift, associated with Plio-Pleistocene volcanism and thickening trends indicating initial rifting in the Late Miocene. The southern end of the San Andreas rift terminates on the western Hess fault which also exhibits active strands consistent with left-lateral, strike-slip faults. The total length of the PBFZ-San Andres rift-Southern Hess escarpment fault is 1,200 km and traverses the entire western end of the Caribbean plate. Our interpretation is similar to previous models that have proposed the "stable" western Caribbean plate is broken by this fault whose rate of displacement is less than the threshold recognizable from the current GPS network (~3 mm/yr). The Late Miocene age of the fault indicates it may have activated during the Late Miocene to recent Hispaniola-Bahamas oblique collision event.

  17. Geologic map of Detrital, Hualapai, and Sacramento Valleys and surrounding areas, northwest Arizona

    USGS Publications Warehouse

    Beard, L. Sue; Kennedy, Jeffrey; Truini, Margot; Felger, Tracey

    2011-01-01

    A 1:250,000-scale geologic map and report covering the Detrital, Hualapai, and Sacramento valleys in northwest Arizona is presented for the purpose of improving understanding of the geology and geohydrology of the basins beneath those valleys. The map was compiled from existing geologic mapping, augmented by digital photogeologic reconnaissance mapping. The most recent geologic map for the area, and the only digital one, is the 1:1,000,000-scale Geologic Map of Arizona. The larger scale map presented here includes significantly more detailed geology than the Geologic Map of Arizona in terms of accuracy of geologic unit contacts, number of faults, fault type, fault location, and details of Neogene and Quaternary deposits. Many sources were used to compile the geology; the accompanying geodatabase includes a source field in the polygon feature class that lists source references for polygon features. The citations for the source field are included in the reference section.

  18. Strike-slip faulting in the Inner California Borderlands, offshore Southern California.

    NASA Astrophysics Data System (ADS)

    Bormann, J. M.; Kent, G. M.; Driscoll, N. W.; Harding, A. J.; Sahakian, V. J.; Holmes, J. J.; Klotsko, S.; Kell, A. M.; Wesnousky, S. G.

    2015-12-01

    In the Inner California Borderlands (ICB), offshore of Southern California, modern dextral strike-slip faulting overprints a prominent system of basins and ridges formed during plate boundary reorganization 30-15 Ma. Geodetic data indicate faults in the ICB accommodate 6-8 mm/yr of Pacific-North American plate boundary deformation; however, the hazard posed by the ICB faults is poorly understood due to unknown fault geometry and loosely constrained slip rates. We present observations from high-resolution and reprocessed legacy 2D multichannel seismic (MCS) reflection datasets and multibeam bathymetry to constrain the modern fault architecture and tectonic evolution of the ICB. We use a sequence stratigraphy approach to identify discrete episodes of deformation in the MCS data and present the results of our mapping in a regional fault model that distinguishes active faults from relict structures. Significant differences exist between our model of modern ICB deformation and existing models. From east to west, the major active faults are the Newport-Inglewood/Rose Canyon, Palos Verdes, San Diego Trough, and San Clemente fault zones. Localized deformation on the continental slope along the San Mateo, San Onofre, and Carlsbad trends results from geometrical complexities in the dextral fault system. Undeformed early to mid-Pleistocene age sediments onlap and overlie deformation associated with the northern Coronado Bank fault (CBF) and the breakaway zone of the purported Oceanside Blind Thrust. Therefore, we interpret the northern CBF to be inactive, and slip rate estimates based on linkage with the Holocene active Palos Verdes fault are unwarranted. In the western ICB, the San Diego Trough fault (SDTF) and San Clemente fault have robust linear geomorphic expression, which suggests that these faults may accommodate a significant portion of modern ICB slip in a westward temporal migration of slip. The SDTF offsets young sediments between the US/Mexico border and the eastern margin of Avalon Knoll, where the fault is spatially coincident and potentially linked with the San Pedro Basin fault (SPBF). Kinematic linkage between the SDTF and the SPBF increases the potential rupture length for earthquakes on either fault and may allow events nucleating on the SDTF to propagate much closer to the LA Basin.

  19. Evolution of triangular topographic facets along active normal faults

    NASA Astrophysics Data System (ADS)

    Balogun, A.; Dawers, N. H.; Gasparini, N. M.; Giachetta, E.

    2011-12-01

    Triangular shaped facets, which are generally formed by the erosion of fault - bounded mountain ranges, are arguably one of the most prominent geomorphic features on active normal fault scarps. Some previous studies of triangular facet development have suggested that facet size and slope exhibit a strong linear dependency on fault slip rate, thus linking their growth directly to the kinematics of fault initiation and linkage. Other studies, however, generally conclude that there is no variation in triangular facet geometry (height and slope) with fault slip rate. The landscape of the northeastern Basin and Range Province of the western United States provides an opportunity for addressing this problem. This is due to the presence of well developed triangular facets along active normal faults, as well as spatial variations in fault scale and slip rate. In addition, the Holocene climatic record for this region suggests a dominant tectonic regime, as the faulted landscape shows little evidence of precipitation gradients associated with tectonic uplift. Using GIS-based analyses of USGS 30 m digital elevation data (DEMs) for east - central Idaho and southwestern Montana, we analyze triangular facet geometries along fault systems of varying number of constituent segments. This approach allows us to link these geometries with established patterns of along - strike slip rate variation. For this study, we consider major watersheds to include only catchments with upstream and downstream boundaries extending from the drainage divide to the mapped fault trace, respectively. In order to maintain consistency in the selection criteria for the analyzed triangular facets, only facets bounded on opposite sides by major watersheds were considered. Our preliminary observations reflect a general along - strike increase in the surface area, average slope, and relief of triangular facets from the tips of the fault towards the center. We attribute anomalies in the along - strike geometric measurements of the triangular facets to represent possible locations of fault segment linkage associated with normal fault evolution.

  20. Preliminary geologic map of the Santa Barbara coastal plain area, Santa Barbara County, California

    USGS Publications Warehouse

    Minor, Scott A.; Kellogg, Karl S.; Stanley, Richard G.; Stone, Paul; Powell, Charles L.; Gurrola, Larry D.; Selting, Amy J.; Brandt, Theodore R.

    2002-01-01

    This report presents a new geologic digital map of the Santa Barbara coastal plain area at a compilation scale of 1:24,000 (one inch on the map = 2,000 feet on the ground) and with a horizontal positional accuracy of at least 20 m. This preliminary map depicts the distribution of bedrock units and surficial deposits and associated deformation underlying and adjacent to the coastal plain within the contiguous Santa Barbara and Goleta 7.5' quadrangles. A planned second version will extend the mapping westward into the adjoining Dos Pueblos Canyon quadrangle and eastward into the Carpinteria quadrangle. The mapping presented here results from the collaborative efforts of geologists with the U.S. Geological Survey Southern California Areal Mapping Project (SCAMP) (Minor, Kellogg, Stanley, Stone, and Powell) and the tectonic geomorphology research group at the University of California at Santa Barbara (Gurrola and Selting). C.L. Powell, II, performed all new fossil identifications and interpretations reported herein. T.R. Brandt designed and edited the GIS database,performed GIS database integration and created the digital cartography for the map layout. The Santa Barbara coastal plain is located in the western Transverse Ranges physiographic province along a west-trending segment of the southern California coastline about 100 km (62 mi) northwest of Los Angeles. The coastal plain region, which extends from the Santa Ynez Mountains on the north to the Santa Barbara Channel on the south, is underlain by numerous active and potentially active folds and partly buried thrust faults of the Santa Barbara fold and fault belt. Strong earthquakes that occurred in the region in 1925 (6.8 magnitude) and 1978 (5.1 magnitude) are evidence that such structures pose a significant earthquake hazard to the approximately 200,000 people living within the major coastal population centers of Santa Barbara and Goleta. Also, young landslide deposits along the steep lower flank of the Santa Ynez Mountains indicate the potential for continued slope failures and mass movements that may threaten urbanized parts of the coastal plain. Deformed sedimentary rocks in the subsurface of the coastal plain and the adjacent Santa Barbara Channel contain deposits of oil and gas, some of which are currently being extracted. Shallow, localized sedimentary aquifers underlying the coastal plain provide limited amounts of water for the urban areas, but the quality of some of this groundwater is compromised by coastal salt-water contamination. The present map compilation provides a set of uniform geologic digital coverages that can be used for analysis and prediction of these and other geologic hazards and resources in the coastal plain region. In the map area the oldest stratigraphic units consist of resistant Eocene to Oligocene marine and terrestrial sedimentary rocks that form a mostly southward-dipping and laterally continuous sequence along the south flank of the Santa Ynez Mountains. Less resistant, but more variably deformed, Miocene, Pliocene, and Pleistocene marine sedimentary rocks and deposits are exposed in the lower Santa Ynez foothills and in the coastal hills and sea cliffs farther south. Pleistocene and Holocene surficial alluvial, colluvial, estuarine, and marine-terrace deposits directly underlie much of the low-lying coastal plain area, and similar-aged alluvial and landslide deposits locally mantle the lower flanks of the Santa Ynez Mountains. Structurally, the Santa Barbara coastal plain area is dominated by the Santa Barbara fold and fault belt, an east-west-trending zone of Quaternary, partly active folds and blind and exposed reverse and thrust faults. The dominant trend of individual structures within the belt is west-northwest -- slightly oblique to the overall trend of the fold and fault belt. A conspicuous exception, however, is the More Ranch fault system, which strikes east-northeast across the fold and f

  1. Features and dimensions of the Hayward Fault Zone in the Strawberry and Blackberry Creek Area, Berkeley, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, P.L.

    1995-03-01

    This report presents an examination of the geometry of the Hayward fault adjacent to the Lawrence Berkeley Laboratory and University of California campuses in central Berkeley. The fault crosses inside the eastern border of the UC campus. Most subtle geomorphic (landform) expressions of the fault have been removed by development and by the natural processes of landsliding and erosion. Some clear expressions of the fault remain however, and these are key to mapping the main trace through the campus area. In addition, original geomorphic evidence of the fault`s location was recovered from large scale mapping of the site dating frommore » 1873 to 1897. Before construction obscured and removed natural landforms, the fault was expressed by a linear, northwest-tending zone of fault-related geomorphic features. There existed well-defined and subtle stream offsets and beheaded channels, fault scarps, and a prominent ``shutter ridge``. To improve our confidence in fault locations interpreted from landforms, we referred to clear fault exposures revealed in trenching, revealed during the construction of the Foothill Housing Complex, and revealed along the length of the Lawson Adit mining tunnel. Also utilized were the locations of offset cultural features. At several locations across the study area, distress features in buildings and streets have been used to precisely locate the fault. Recent published mapping of the fault (Lienkaemper, 1992) was principally used for reference to evidence of the fault`s location to the northwest and southeast of Lawrence Berkeley Laboratory.« less

  2. Clustering of GPS velocities in the Mojave Block, southeastern California

    USGS Publications Warehouse

    Savage, James C.; Simpson, Robert W.

    2013-01-01

    We find subdivisions within the Mojave Block using cluster analysis to identify groupings in the velocities observed at GPS stations there. The clusters are represented on a fault map by symbols located at the positions of the GPS stations, each symbol representing the cluster to which the velocity of that GPS station belongs. Fault systems that separate the clusters are readily identified on such a map. The most significant representation as judged by the gap test involves 4 clusters within the Mojave Block. The fault systems bounding the clusters from east to west are 1) the faults defining the eastern boundary of the Northeast Mojave Domain extended southward to connect to the Hector Mine rupture, 2) the Calico-Paradise fault system, 3) the Landers-Blackwater fault system, and 4) the Helendale-Lockhart fault system. This division of the Mojave Block is very similar to that proposed by Meade and Hager. However, no cluster boundary coincides with the Garlock Fault, the northern boundary of the Mojave Block. Rather, the clusters appear to continue without interruption from the Mojave Block north into the southern Walker Lane Belt, similar to the continuity across the Garlock Fault of the shear zone along the Blackwater-Little Lake fault system observed by Peltzer et al. Mapped traces of individual faults in the Mojave Block terminate within the block and do not continue across the Garlock Fault [Dokka and Travis, ].

  3. AC-DCFS: a toolchain implementation to Automatically Compute Coulomb Failure Stress changes after relevant earthquakes.

    NASA Astrophysics Data System (ADS)

    Alvarez-Gómez, José A.; García-Mayordomo, Julián

    2017-04-01

    We present an automated free software-based toolchain to obtain Coulomb Failure Stress change maps on fault planes of interest following the occurrence of a relevant earthquake. The system uses as input the focal mechanism data of the event occurred and an active fault database for the region. From the focal mechanism the orientations of the possible rupture planes, the location of the event and the size of the earthquake are obtained. From the size of the earthquake, the dimensions of the rupture plane are obtained by means of an algorithm based on empirical relations. Using the active fault database in the area, the stress-receiving planes are obtained and a verisimilitude index is assigned to the source plane from the two nodal planes of the focal mechanism. The obtained product is a series of layers in a format compatible with any type of GIS (or map completely edited in PDF format) showing the possible stress change maps on the different families of fault planes present in the epicentral zone. These type of products are presented generally in technical reports developed in the weeks following the occurrence of the event, or in scientific publications; however they have been proven useful for emergency management in the hours and days after a major event being these stress changes responsible of aftershocks, in addition to the mid-term earthquake forecasting. The automation of the calculation allows its incorporation within the products generated by the alert and surveillance agencies shortly after the earthquake occurred. It is now being implemented in the Spanish Geological Survey as one of the products that this agency would provides after the occurrence of relevant seismic series in Spain.

  4. Assessment method for epithermal gold deposits in Northeast Washington State using weights-of-evidence GIS modeling

    USGS Publications Warehouse

    Boleneus, D.E.; Raines, G.L.; Causey, J.D.; Bookstrom, A.A.; Frost, T.P.; Hyndman, P.C.

    2001-01-01

    The weights-of-evidence analysis, a quantitative mineral resource mapping tool, is used to delineate favorable areas for epithermal gold deposits and to predict future exploration activity of the mineral industry for similar deposits in a four-county area (222 x 277 km), including the Okanogan and Colville National Forests of northeastern Washington. Modeling is applied in six steps: (1) building a spatial digital database, (2) extracting predictive evidence for a particular deposit, based on an exploration model, (3) calculating relative weights for each predictive map, (4) combining the geologic evidence maps to predict the location of undiscovered mineral resources and (5) measuring the intensity of recent exploration activity by use of mining claims on federal lands, and (6) combining mineral resource and exploration activity into an assessment model of future mining activity. The analysis is accomplished on a personal computer using ArcView GIS platform with Spatial Analyst and Weights-of-Evidence software. In accord with the descriptive model for epithermal gold deposits, digital geologic evidential themes assembled include lithologic map units, thrust faults, normal faults, and igneous dikes. Similarly, geochemical evidential themes include placer gold deposits and gold and silver analyses from stream sediment (silt) samples from National Forest lands. Fifty mines, prospects, or occurrences of epithermal gold deposits, the training set, define the appropriate a really-associated terrane. The areal (or spatial) correlation of each evidential theme with the training set yield predictor theme maps for lithology, placer sites and normal faults. The weights-of-evidence analysis disqualified the thrust fault, dike, and gold and silver silt analyses evidential themes because they lacked spatial correlation with the training set. The decision to accept or reject evidential themes as predictors is assisted by considering probabilistic data consisting of weights and contrast values calculated for themes according to areal correlation with the training sites. Predictor themes having acceptable weights and contrast values are combined into a preliminary model to predict the locations of undiscovered epithermal gold deposits. This model facilitates ranking of tracts as non-permissive, permissive or favorable categories based on exclusionary, passive, and active criteria through evaluation of probabilistic data provided by interaction of predictor themes. The method is very similar to the visual inspection method of drawing conclusions from anomalies on a manually overlain system of maps. This method serves as a model for future mineral assessment procedures because of its objective nature. To develop a model to predict future exploration activity, the locations of lode mining claims were summarized for 1980, 1985, 1990, and 1996. Land parcels containing historic claims were identified either as those with mining claims present in 1980 or valid claims present in 1985. Current claim parcels were identified as those containing valid lode claims in either 1990 or 1996. A consistent parcel contains both historic and current claims. The epithermal gold and mining claim activity models were combined into an assessment (or mineral resource-activity) model to assist in land use decisions by providing a prediction of mineral exploration activity on federal land in the next decade. Ranks in the assessment model are: (1) no activity, (2) low activity, (3) low to moderate activity, (4) moderate activity and (5) high activity.

  5. Assessing earthquake hazards with fault trench and LiDAR maps in the Puget Lowland, Washington, USA (Invited)

    NASA Astrophysics Data System (ADS)

    Nelson, A. R.; Bradley, L.; Personius, S. F.; Johnson, S. Y.

    2010-12-01

    Deciphering the earthquake histories of faults over the past few thousands of years in tectonically complex forearc regions relies on detailed site-specific as well as regional geologic maps. Here we present examples of site-specific USGS maps used to reconstruct earthquake histories for faults in the Puget Lowland. Near-surface faults and folds in the Puget Lowland accommodate 4-7 mm/yr of north-south shortening resulting from northward migration of forearc blocks along the Cascadia convergent margin. The shortening has produced east-trending uplifts, basins, and associated reverse faults that traverse urban areas. Near the eastern and northern flanks of the Olympic Mountains, complex interactions between north-south shortening and mountain uplift are reflected by normal, oblique-slip, and reverse surface faults. Holocene oblique-slip movement has also been mapped on Whidbey Island and on faults in the foothills of the Cascade Mountains in the northeastern lowland. The close proximity of lowland faults to urban areas may pose a greater earthquake hazard there than do much longer but more distant plate-boundary faults. LiDAR imagery of the densely forested lowland flown over the past 12 years revealed many previously unknown 0.5-m to 6-m-high scarps showing Holocene movement on upper-plate faults. This imagery uses two-way traveltimes of laser light pulses to detect as little as 0.2 m of relative relief on the forest floor. The returns of laser pulses with the longest travel times yield digital elevation models of the ground surface, which we vertically exaggerate and digitally shade from multiple directions at variable transparencies to enhance identification of scarps. Our maps include imagery at scales of 1:40,000 to 1:2500 with contour spacings of 100 m to 0.5 m. Maps of the vertical walls of fault-scarp trenches show complex stratigraphies and structural relations used to decipher the histories of large surface-rupturing earthquakes. These logs (field mapping at 1:8 to 1:20 scales) of 25 trenches are included in five published (and one in preparation) maps along with lithologic descriptions of stratigraphic units and tables of 14C, structural, and stratigraphic data. Maps include soil profile data, topographic profiles across scarps, structural orientation data, or photographs of trench sites or trench walls. Stratigraphy and 14C ages suggest that earthquake recurrence varies from less than a century to many thousands of years. Interpretation and synthesis of such data are reserved for journal papers, which commonly cannot accommodate the detailed, large-format information shown on the maps. Many thanks to Brian Sherrod, Harvey Kelsey, Jason Buck, Ray Wells, Liz Schermer, Rob Witter, Rich Koehler, Rich Briggs, Robert Bogar, Gary Henley, Dave Harding, Koji Okumura, Silvio Pezzopane, Bob Bucknam, Zeb Maharrey, Bill Laprade, Ralph Haugerud, Lee Liberty, Michael Polenz, Eliza Nemser, Trenton Cladouhos, and many others for days to many weeks of effort in our trenches over the past 12 years.

  6. Structural controls on geothermal circulation in Surprise Valley, California: A re-evaluation of the Lake City fault zone

    USGS Publications Warehouse

    Anne E. Egger,; Glen, Jonathan; McPhee, Darcy K.

    2014-01-01

    Faults and fractures play an important role in the circulation of geothermal fluids in the crust, and the nature of that role varies according to structural setting and state of stress. As a result, detailed geologic and geophysical mapping that relates thermal springs to known structural features is essential to modeling geothermal systems. Published maps of Surprise Valley in northeastern California suggest that the “Lake City fault” or “Lake City fault zone” is a significant structural feature, cutting obliquely across the basin and connecting thermal springs across the valley. Newly acquired geophysical data (audio-magnetotelluric, gravity, and magnetic), combined with existing geochemical and geological data, suggest otherwise. We examine potential field profiles and resistivity models that cross the mapped Lake City fault zone. While there are numerous geophysical anomalies that suggest subsurface structures, they mostly do not coincide with the mapped traces of the Lake City fault zone, nor do they show a consistent signature in gravity, magnetics, or resistivities that would suggest a through-going fault that would promote connectivity through lateral fluid flow. Instead of a single, continuous fault, we propose the presence of a deformation zone associated with the growth of the range-front Surprise Valley fault. The implication for geothermal circulation is that this is a zone of enhanced porosity but lacks length-wise connectivity that could conduct fluids across the valley. Thermal fluid circulation is most likely controlled primarily by interactions between N-S–trending normal faults.

  7. Width of the Surface Rupture Zone for Thrust Earthquakes and Implications for Earthquake Fault Zoning: Chi-Chi 1999 and Wenchuan 2008 Earthquakes

    NASA Astrophysics Data System (ADS)

    Boncio, P.; Caldarella, M.

    2016-12-01

    We analyze the zones of coseismic surface faulting along thrust faults, whit the aim of defining the most appropriate criteria for zoning the Surface Fault Rupture Hazard (SFRH) along thrust faults. Normal and strike-slip faults were deeply studied in the past, while thrust faults were not studied with comparable attention. We analyze the 1999 Chi-Chi, Taiwan (Mw 7.6) and 2008 Wenchuan, China (Mw 7.9) earthquakes. Several different types of coseismic fault scarps characterize the two earthquakes, depending on the topography, fault geometry and near-surface materials. For both the earthquakes, we collected from the literature, or measured in GIS-georeferenced published maps, data about the Width of the coseismic Rupture Zone (WRZ). The frequency distribution of WRZ compared to the trace of the main fault shows that the surface ruptures occur mainly on and near the main fault. Ruptures located away from the main fault occur mainly in the hanging wall. Where structural complexities are present (e.g., sharp bends, step-overs), WRZ is wider then for simple fault traces. We also fitted the distribution of the WRZ dataset with probability density functions, in order to define a criterion to remove outliers (e.g., by selecting 90% or 95% probability) and define the zone where the probability of SFRH is the highest. This might help in sizing the zones of SFRH during seismic microzonation (SM) mapping. In order to shape zones of SFRH, a very detailed earthquake geologic study of the fault is necessary. In the absence of such a very detailed study, during basic (First level) SM mapping, a width of 350-400 m seems to be recommended (95% of probability). If the fault is carefully mapped (higher level SM), one must consider that the highest SFRH is concentrated in a narrow zone, 50 m-wide, that should be considered as a "fault-avoidance (or setback) zone". These fault zones should be asymmetric. The ratio of footwall to hanging wall (FW:HW) calculated here ranges from 1:5 to 1:3.

  8. Time-dependent seismic hazard analysis for the Greater Tehran and surrounding areas

    NASA Astrophysics Data System (ADS)

    Jalalalhosseini, Seyed Mostafa; Zafarani, Hamid; Zare, Mehdi

    2018-01-01

    This study presents a time-dependent approach for seismic hazard in Tehran and surrounding areas. Hazard is evaluated by combining background seismic activity, and larger earthquakes may emanate from fault segments. Using available historical and paleoseismological data or empirical relation, the recurrence time and maximum magnitude of characteristic earthquakes for the major faults have been explored. The Brownian passage time (BPT) distribution has been used to calculate equivalent fictitious seismicity rate for major faults in the region. To include ground motion uncertainty, a logic tree and five ground motion prediction equations have been selected based on their applicability in the region. Finally, hazard maps have been presented.

  9. Geomorphic evidence of Quaternary tectonics within an underlap fault zone of southern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Giano, Salvatore Ivo; Pescatore, Eva; Agosta, Fabrizio; Prosser, Giacomo

    2018-02-01

    A composite seismic source, the Irpinia - Agri Valley Fault zone, located in the axial sector of the fold-and-thrust belt of southern Apennines, Italy, is investigated. This composite source is made up of a series of nearly parallel, NW-striking normal fault segments which caused many historical earthquakes. Two of these fault segments, known as the San Gregorio Magno and Pergola-Melandro, and the fault-related mountain fronts, form a wedge-shaped, right-stepping, underlap fault zone. This work is aimed at documenting tectonic geomorphology and geology of this underlap fault zone. The goal is to decipher the evidence of surface topographic interaction between two bounding fault segments and their related mountain fronts. In particular, computation of geomorphic indices such as mountain front sinuosity (Smf), water divide sinuosity (Swd), asymmetry factor (AF), drainage basin elongation (Bs), relief ratio (Rh), Hypsometry (HI), normalized steepness (Ksn), and concavity (θ) is integrated with geomorphological analysis, the geological mapping, and structural analysis in order to assess the recent activity of the fault scarp sets recognized within the underlap zone. Results are consistent with the NW-striking faults as those showing the most recent tectonic activity, as also suggested by presence of related slope deposits younger than 38 ka. The results of this work therefore show how the integration of a multidisciplinary approach that combines geomorphology, morphometry, and structural analyses may be key to solving tectonic geomorphology issues in a complex, fold-and-thrust belt configuration.

  10. The Cottage Grove fault system (Illinois Basin): Late Paleozoic transpression along a Precambrian crustal boundary

    USGS Publications Warehouse

    Duchek, A.B.; McBride, J.H.; Nelson, W.J.; Leetaru, H.E.

    2004-01-01

    The Cottage Grove fault system in southern Illinois has long been interpreted as an intracratonic dextral strike-slip fault system. We investigated its structural geometry and kinematics in detail using (1) outcrop data, (2) extensive exposures in underground coal mines, (3) abundant borehole data, and (4) a network of industry seismic reflection profiles, including data reprocessed by us. Structural contour mapping delineates distinct monoclines, broad anticlines, and synclines that express Paleozoic-age deformation associated with strike slip along the fault system. As shown on seismic reflection profiles, prominent near-vertical faults that cut the entire Paleozoic section and basement-cover contact branch upward into outward-splaying, high-angle reverse faults. The master fault, sinuous along strike, is characterized along its length by an elongate anticline, ???3 km wide, that parallels the southern side of the master fault. These features signify that the overall kinematic regime was transpressional. Due to the absence of suitable piercing points, the amount of slip cannot be measured, but is constrained at less than 300 m near the ground surface. The Cottage Grove fault system apparently follows a Precambrian terrane boundary, as suggested by magnetic intensity data, the distribution of ultramafic igneous intrusions, and patterns of earthquake activity. The fault system was primarily active during the Alleghanian orogeny of Late Pennsylvanian and Early Permian time, when ultramatic igneous magma intruded along en echelon tensional fractures. ?? 2004 Geological Society of America.

  11. A geophysical investigation of shallow deformation along an anomalous section of the Wasatch fault zone, Utah, USA

    USGS Publications Warehouse

    McBride, J.H.; Stephenson, W.J.; Thompson, T.J.; Harper, M.P.; Eipert, A.A.; Hoopes, J.C.; Tingey, D.G.; Keach, R.W.; Okojie-Ayoro, A. O.; Gunderson, K.L.; Meirovitz, C.D.; Hicks, T.C.; Spencer, C.J.; Yaede, J.R.; Worley, D.M.

    2008-01-01

    We report the results of a geophysical study of the Wasatch fault zone near the Provo and Salt Lake City segment boundary. This area is anomalous because the fault zone strikes more east-west than north-south. Vibroseis was used to record a common mid-point (CMP) profile that provides information to depths of ???500 m. A tomographic velocity model, derived from first breaks, constrained source and receiver static corrections; this was required due to complex terrain and significant lateral velocity contrasts. The profile reveals an ???250-m-wide graben in the hanging wall of the main fault that is associated with both synthetic and antithetic faults. Faults defined by apparent reflector offsets propagate upward toward topographic gradients. Faults mapped from a nearby trench and the seismic profile also appear to correlate with topographic alignments on LiDAR gradient maps. The faults as measured in the trench show a wide range of apparent dips, 20??-90??, and appear to steepen with depth on the seismic section. Although the fault zone is likely composed of numerous small faults, the broad asymmetric structure in the hanging wall is fairly simple and dominated by two inward-facing ruptures. Our results indicate the feasibility of mapping fault zones in rugged terrain and complex near-surface geology using low-frequency vibroseis. Further, the integration of geologic mapping and seismic reflection can extend surface observations in areas where structural deformation is obscured by poorly stratified or otherwise unmappable deposits. Therefore, the vibroseis technique, when integrated with geological information, provides constraints for assessing geologic hazards in areas of potential development.

  12. Active Structures in the Georgia Basin, NW Washington State, USA, and SW British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Polivka, P.; Riedel, M.; Pratt, T. L.

    2013-12-01

    The Georgia basin is a local depression in the Cascadia forearc straddling the USA-Canadian border that hosts Canada's largest west coast population. The basin contains late Pleistocene and Holocene sediments overlying a thick sequence of Eocene and Cretaceous sedimentary rocks and is currently experiencing N-S shortening. Tectonic structures capable of accommodating this N-S shortening are recognized in Oregon and Washington; however, none have been identified in southwest Canada despite multiple independent geodetic studies indicating that shortening continues further north. This conflict of observed shortening over a region without recognized active structures suggests that seismic hazard may be underestimated in Canada. We combine multiple seismic reflection surveys and multibeam bathymetry with published geophysical data and on-shore mapping to identify active structures and assess seismic hazard. Reflection datasets span the USA-CA border and include those from the deep 1998 Seismic Hazards Investigations of Puget Sound (SHIPS), high resolution 2002 SHIPS, localized sparker, and deep industry lines. These data are augmented by digitized paper records of past reflection surveys. The 1998 SHIPS and industry lines show strong reflections of folded and faulted Cretaceous and Eocene sedimentary bedrock to 5 km depth. Shallow sediment deformation is imaged on the 2002 SHIPS and sparker lines. Combining these profiles, bathymetry, and surficial bedrock mapping in a 3-D interpretation program facilitated the correlation of features across multiple 2-D seismic lines, allowing us to interpret four new regional stratigraphic and tectonic characteristics. (1) The 1997 ML4.6 Gabriola Island earthquake was a north-side up thrust event occurring 30 km west of Vancouver at ~3.5 km depth. The event was previously correlated with a zone of low coherence on the SHIPS 1998 line. We reprocessed the line and imaged distinct reflector terminations. A generally E-W strike is interpreted from regional bedrock fault trends and shallow sediment deformation imaged on the 2002 SHIPS lines. (2) Kelsey et al. (2012, JGR) identified three subparallel NW-striking faults in NW Washington. We use the industry lines to constrain the subsurface geometries of these faults to >4 km depth. (3) Interpreting on-shore mapping, bathymetric bedrock ridges, and intersecting deep seismic profiles, we conclude that the E-K boundary is an angular unconformity across and along the length of the basin. (4) We correlate kinks in bathymetric bedrock ridges with bedrock folds on the intersecting SHIPS 1998 profile to re-interpret previously identified NE-trending 'secondary faults' as blind and broken-through fault-propagation folds. These faults are orthogonal to the subduction margin and collectively deemed the Vancouver Fold and Thrust Belt. The Gabriola Island earthquake indicates that the fault system is active, and likely accommodates at least part of the strain measured on GPS networks but not accounted for in previous tectonic models.

  13. Database for the Geologic Map of the Summit Region of Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Dutton, Dillon R.; Ramsey, David W.; Bruggman, Peggy E.; Felger, Tracey J.; Lougee, Ellen; Margriter, Sandy; Showalter, Patrick; Neal, Christina A.; Lockwood, John P.

    2007-01-01

    INTRODUCTION The area covered by this map includes parts of four U.S. Geological Survey (USGS) 7.5' topographic quadrangles (Kilauea Crater, Volcano, Ka`u Desert, and Makaopuhi). It encompasses the summit, upper rift zones, and Koa`e Fault System of Kilauea Volcano and a part of the adjacent, southeast flank of Mauna Loa Volcano. The map is dominated by products of eruptions from Kilauea Volcano, the southernmost of the five volcanoes on the Island of Hawai`i and one of the world's most active volcanoes. At its summit (1,243 m) is Kilauea Crater, a 3 km-by-5 km collapse caldera that formed, possibly over several centuries, between about 200 and 500 years ago. Radiating away from the summit caldera are two linear zones of intrusion and eruption, the east and the southwest rift zones. Repeated subaerial eruptions from the summit and rift zones have built a gently sloping, elongate shield volcano covering approximately 1,500 km2. Much of the volcano lies under water: the east rift zone extends 110 km from the summit to a depth of more than 5,000 m below sea level; whereas, the southwest rift zone has a more limited submarine continuation. South of the summit caldera, mostly north-facing normal faults and open fractures of the Koa`e Fault System extend between the two rift zones. The Koa`e Fault System is interpreted as a tear-away structure that accommodates southward movement of Kilauea's flank in response to distension of the volcano perpendicular to the rift zones. This digital release contains all the information used to produce the geologic map published as USGS Geologic Investigations Series I-2759 (Neal and Lockwood, 2003). The main component of this digital release is a geologic map database prepared using ArcInfo GIS. This release also contains printable files for the geologic map and accompanying descriptive pamphlet from I-2759.

  14. Large-scale fault interactions at the termination of a subduction margin

    NASA Astrophysics Data System (ADS)

    Mouslopoulou, V.; Nicol, A., , Prof; Moreno, M.; Oncken, O.; Begg, J.; Kufner, S. K.

    2017-12-01

    Active subduction margins terminate against, and transfer their slip onto, plate-boundary transform faults. The manner in which plate motion is accommodated and partitioned across such kinematic transitions from thrust to strike-slip faulting over earthquake timescales, is poorly documented. The 2016 November 14th, Mw 7.8 Kaikoura Earthquake provides a rare snapshot of how seismic-slip may be accommodated at the tip of an active subduction margin. Analysis of uplift data collected using a range of techniques (field measurements, GPS, LiDAR) and published mapping coupled with 3D dislocation modelling indicates that earthquake-slip ruptured multiple faults with various orientations and slip mechanisms. Modelled and measured uplift patterns indicate that slip on the plate-interface was minor. Instead, a large offshore thrust fault, modelled to splay-off the plate-interface and to extend to the seafloor up to 15 km east of the South Island, appears to have released subduction-related strain and to have facilitated slip on numerous, strike-slip and oblique-slip faults on its hanging-wall. The Kaikoura earthquake suggests that these large splay-thrust faults provide a key mechanism in the transfer of plate motion at the termination of a subduction margin and represent an important seismic hazard.

  15. Geologic map of Lake Mead and surrounding regions, southern Nevada, southwestern Utah, and northwestern Arizona

    USGS Publications Warehouse

    Felger, Tracey J.; Beard, Sue

    2010-01-01

    Regional stratigraphic units and structural features of the Lake Mead region are presented as a 1:250,000 scale map, and as a Geographic Information System database. The map, which was compiled from existing geologic maps of various scales, depicts geologic units, bedding and foliation attitudes, faults and folds. Units and structural features were generalized to highlight the regional stratigraphic and tectonic aspects of the geology of the Lake Mead region. This map was prepared in support of the papers presented in this volume, Special Paper 463, as well as to facilitate future investigations in the region. Stratigraphic units exposed within the area record 1800 million years of geologic history and include Proterozoic crystalline rocks, Paleozoic and Mesozoic sedimentary rocks, Mesozoic plutonic rocks, Cenozoic volcanic and intrusive rocks, sedimentary rocks and surfi cial deposits. Following passive margin sedimentation in the Paleozoic and Mesozoic, late Mesozoic (Sevier) thrusting and Late Cretaceous and early Tertiary compression produced major folding, reverse faulting, and thrust faulting in the Basin and Range, and resulted in regional uplift and monoclinal folding in the Colorado Plateau. Cenozoic extensional deformation, accompanied by sedimentation and volcanism, resulted in large-magnitude high- and low-angle normal faulting and strike-slip faulting in the Basin and Range; on the Colorado Plateau, extension produced north-trending high-angle normal faults. The latest history includes integration of the Colorado River system, dissection, development of alluvial fans, extensive pediment surfaces, and young faulting.

  16. Investigating The Relationship Between Structural Geology and Wetland Loss Near Golden Meadow, Louisiana By Utilizing 3D Seismic Reflection and Well Log Data

    NASA Astrophysics Data System (ADS)

    Johnston, A. S.; Zhang, R.; Gottardi, R.; Dawers, N. H.

    2017-12-01

    Wetland loss is one of the greatest environmental and economic threats in the deltaic plain of the Gulf Coast. This loss is controlled by subsidence, sea level rise, decreased sediment supply rates, movement along normal faults, salt tectonics, fluid extraction related to oil, gas and water exploration, and compaction. However, the interplay and feedback between these different processes are still poorly understood. In this study, we investigate the role of active faulting and salt tectonics on wetland loss in an area located between Golden Meadow and Leeville, Louisiana. Using industry 3D seismic and well log data, we investigate key segments of the Golden Meadow fault zone and map shallow faults that overlie the Leeville salt dome, to compare those fault planes with areas of wetland loss and subsidence. Faults were mapped to a depth of 1200 m, and well logs were tied to the upper 180 m of the seismic data to make accurate projections of the faults to the surface. Preliminary results highlight a graben structure south of a segment of the Golden Meadow fault. Well log and published data from shallow borings reveal a thicker Holocene accumulation at the center of the graben, up to 45 m than on the flanks of the graben. The location of this graben spatially correlates with Catfish Lake, and part of it overlies salt adjacent to the main fault surface. Bayou Lafourche, the main distributary channel of the Lafourche lobe of the Mississippi River delta complex, appears to have its path controlled by faults. Bayou Lafourche changes orientation and flows parallel to, and on the downthrown side of, two radial faults associated with the Leeville salt dome. These preliminary results indicate that there is a relationship between surface geomorphology and subsurface structures that, at least in part, exert a control on wetland loss in southern Louisiana.

  17. Characterization of intrabasin faulting and deformation for earthquake hazards in southern Utah Valley, Utah, from high-resolution seismic imaging

    USGS Publications Warehouse

    Stephenson, William J.; Odum, Jack K.; Williams, Robert A.; McBride, John H.; Tomlinson, Iris

    2012-01-01

    We conducted active and passive seismic imaging investigations along a 5.6-km-long, east–west transect ending at the mapped trace of the Wasatch fault in southern Utah Valley. Using two-dimensional (2D) P-wave seismic reflection data, we imaged basin deformation and faulting to a depth of 1.4 km and developed a detailed interval velocity model for prestack depth migration and 2D ground-motion simulations. Passive-source microtremor data acquired at two sites along the seismic reflection transect resolve S-wave velocities of approximately 200 m/s at the surface to about 900 m/s at 160 m depth and confirm a substantial thickening of low-velocity material westward into the valley. From the P-wave reflection profile, we interpret shallow (100–600 m) bedrock deformation extending from the surface trace of the Wasatch fault to roughly 1.5 km west into the valley. The bedrock deformation is caused by multiple interpreted fault splays displacing fault blocks downward to the west of the range front. Further west in the valley, the P-wave data reveal subhorizontal horizons from approximately 90 to 900 m depth that vary in thickness and whose dip increases with depth eastward toward the Wasatch fault. Another inferred fault about 4 km west of the mapped Wasatch fault displaces horizons within the valley to as shallow as 100 m depth. The overall deformational pattern imaged in our data is consistent with the Wasatch fault migrating eastward through time and with the abandonment of earlier synextensional faults, as part of the evolution of an inferred 20-km-wide half-graben structure within Utah Valley. Finite-difference 2D modeling suggests the imaged subsurface basin geometry can cause fourfold variation in peak ground velocity over distances of 300 m.

  18. Observations of Static Coulomb Stress Triggering During the Mw 5.7 Pawnee Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Pennington, C.; Chen, X.; Nakata, N.; Chang, J. C.

    2016-12-01

    The Pawnee earthquake occurred at 12:02 UTC on September 3 and was felt throughout Oklahoma and is the largest event recorded in Oklahoma instrumented history. The earthquake occurred near the junction of two previously mapped faults (Watchorn Fault and Labette Fault), but the actual fault that ruptured was a left-lateral unmapped basement fault (now known as the Sooner Lake Fault) with a strike of 107°, which is conjugate to a segment of the Labette fault that is optimally oriented (referred as OOF). We located 634 events from both before and after the mainshock (updated on September 15, 2016) and use these locations to map other seismogenic faults in the area. Examining the catalog, we found two episodes of seismicity, which started at 100 days and 40 days prior to mainshock, each episode has two clusters occurring two days apart on both OOF and near the mainshock. The near-simultaneous occurrence of clusters suggests possible stress interaction between the Sooner Lake Fault and the Labette fault. We examined the Coulomb stress changes on the surrounding faults caused by the mainshock and have found an increase of coulomb stress along the rakes of mapped faults in the area, the highest being along the Sooner Lake fault and the OOF segment of the Labette fault (see fig 1). These faults experienced up to 5 bars of positive coulomb stress increase, which matched the areas that experience the most aftershocks. To better understand the effect of the coulomb stress on the aftershocks, we plan on refining the catalogs for both aftershocks over a longer period and focal mechanisms to obtain accurate nodal planes, which will be used to see how and if the aftershocks were triggered by the Coulomb stress changes. We will also examine and refine the focal mechanisms that were produced for the events that occurred both before and after the main shock to investigate Coulomb stress interaction. Fig 1. (a) Is a map of faults in the Pawnee area with the red line being the source fault, which is part of the Sooner Lake Fault (green and red line segments.) The opitimally oriented segment of the Labette Fault (OOF) is shown in blue. (b) Shows the coulomb stress change for individual rakes after the rupture along the source fault.

  19. Identification of Lembang fault, West-Java Indonesia by using controlled source audio-magnetotelluric (CSAMT)

    NASA Astrophysics Data System (ADS)

    Sanny, Teuku A.

    2017-07-01

    The objective of this study is to determine boundary and how to know surrounding area between Lembang Fault and Cimandiri fault. For the detailed study we used three methodologies: (1). Surface deformation modeling by using Boundary Element method and (2) Controlled Source Audiomagneto Telluric (CSAMT). Based on the study by using surface deformation by using Boundary Element Methods (BEM), the direction Lembang fault has a dominant displacement in east direction. The eastward displacement at the nothern fault block is smaller than the eastward displacement at the southern fault block which indicates that each fault block move in left direction relative to each other. From this study we know that Lembang fault in this area has left lateral strike slip component. The western part of the Lembang fault move in west direction different from the eastern part that moves in east direction. Stress distribution map of Lembang fault shows difference between the eastern and western segments of Lembang fault. Displacement distribution map along x-direction and y-direction of Lembang fault shows a linement oriented in northeast-southwest direction right on Tangkuban Perahu Mountain. Displacement pattern of Cimandiri fault indicates that the Cimandiri fault is devided into two segment. Eastern segment has left lateral strike slip component while the western segment has right lateral strike slip component. Based on the displacement distribution map along y-direction, a linement oriented in northwest-southeast direction is observed at the western segment of the Cimandiri fault. The displacement along x-direction and y-direction between the Lembang and Cimandiri fault is nearly equal to zero indicating that the Lembang fault and Cimandiri Fault are not connected to each others. Based on refraction seismic tomography that we know the characteristic of Cimandiri fault as normal fault. Based on CSAMT method th e lembang fault is normal fault that different of dip which formed as graben structure.

  20. Geologic map of the Bartlett Springs Fault Zone in the vicinity of Lake Pillsbury and adjacent areas of Mendocino, Lake, and Glenn Counties, California

    USGS Publications Warehouse

    Ohlin, Henry N.; McLaughlin, Robert J.; Moring, Barry C.; Sawyer, Thomas L.

    2010-01-01

    The Lake Pillsbury area lies in the eastern part of the northern California Coast Ranges, along the east side of the transform boundary between the Pacific and North American plates (fig. 1). The Bartlett Springs Fault Zone is a northwest-trending zone of faulting associated with this eastern part of the transform boundary. It is presently active, based on surface creep (Svarc and others, 2008), geomorphic expression, offset of Holocene units (Lienkaemper and Brown, 2009), and microseismicity (Bolt and Oakeshott, 1982; Dehlinger and Bolt, 1984; DePolo and Ohlin, 1984). Faults associated with the Bartlett Springs Fault Zone at Lake Pillsbury are steeply dipping and offset older low to steeply dipping faults separating folded and imbricated Mesozoic terranes of the Franciscan Complex and interleaved rocks of the Coast Range Ophiolite and Great Valley Sequence. Parts of this area were mapped in the late 1970s and 1980s by several investigators who were focused on structural relations in the Franciscan Complex (Lehman, 1978; Jordan, 1975; Layman, 1977; Etter, 1979). In the 1980s the U.S. Geological Survey (USGS) mapped a large part of the area as part of a mineral resource appraisal of two U.S. Forest Service Roadless areas. For evaluating mineral resource potential, the USGS mapping was published at a scale of 1:62,500 as a generalized geologic summary map without a topographic base (Ohlin and others, 1983; Ohlin and Spear, 1984). The previously unpublished mapping with topographic base is presented here at a scale of 1:30,000, compiled with other mapping in the vicinity of Lake Pillsbury. The mapping provides a geologic framework for ongoing investigations to evaluate potential earthquake hazards and structure of the Bartlett Springs Fault Zone. This geologic map includes part of Mendocino National Forest (the Elk Creek Roadless Area) in Mendocino, Glenn, and Lake Counties and is traversed by several U.S. Forest Service Routes, including M1 and M6 (fig. 2). The study area is characterized by northwest-trending ridges separated by steep-sided valleys. Elevations in this part of the Coast Ranges vary from 1,500 ft (457 m) to 6,600 ft (2,012 m), commonly with gradients of 1,000 ft per mile (90 m per km). The steep slopes are covered by brush, grass, oak, and conifer forests. Access to most of the area is by county roads and Forest Service Route M6 from Potter Valley to Lake Pillsbury and by county road and Forest Service Route M6 and M1 from Upper Lake and State Highway 20. From the north, State Highway 261 provides access from Covelo. Forest Service Route M1 trends roughly north from its intersection with Route M6 south of Hull Mountain and through the Elk Creek and Black Butte Roadless areas to State Highway 261. Side roads used for logging and jeep trails provide additional access in parts of the area.

  1. Geology of the Western Part of Los Alamos National Laboratory (TA-3 to TA-16), Rio Grande Rift, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C.J.Lewis; A.Lavine; S.L.Reneau

    2002-12-01

    We present data that elucidate the stratigraphy, geomorphology, and structure in the western part of Los Alamos National Laboratory between Technical Areas 3 and 16 (TA-3 and TA-16). Data include those gathered by geologic mapping of surficial, post-Bandelier Tuff strata, conventional and high-precision geologic mapping and geochemical analysis of cooling units within the Bandelier Tuff, logging of boreholes and a gas pipeline trench, and structural analysis using profiles, cross sections, structure contour maps, and stereographic projections. This work contributes to an improved understanding of the paleoseismic and geomorphic history of the area, which will aid in future seismic hazard evaluationsmore » and other investigations. The study area lies at the base of the main, 120-m (400-ft) high escarpment formed by the Pajarito fault, an active fault of the Rio Grande rift that bounds Los Alamos National Laboratory on the west. Subsidiary fracturing, faulting, and folding associated with the Pajarito fault zone extends at least 1,500 m (5,000 ft) to the east of the main Pajarito fault escarpment. Stratigraphic units in the study area include upper units of the Tshirege Member of the early Pleistocene Bandelier Tuff, early Pleistocene alluvial fan deposits that predate incision of canyons on this part of the Pajarito Plateau, and younger Pleistocene and Holocene alluvium and colluvium that postdate drainage incision. We discriminate four sets of structures in the area between TA-3 and TA-16: (a) north-striking faults and folds that mark the main zone of deformation, including a graben in the central part of the study area; (b) north-northwest-striking fractures and rare faults that bound the eastern side of the principal zone of deformation and may be the surface expression of deep-seated faulting; (c) rare northeast-striking structures near the northern limit of the area associated with the southern end of the Rendija Canyon fault; and (d) several small east-west-striking faults. We consider all structures to be Quaternary in that they postdate the Tshirege Member (1.22 million years old) of the Bandelier Tuff. Older mesa-top alluvial deposits (Qoal), which may have a large age range but are probably in part about 1.13 million years old, are clearly faulted or deformed by many structures. At two localities, younger alluvial units (Qfo and Qfi) appear to be truncated by faults, but field relations are obscure, and we cannot confirm the presence of fault contacts. The youngest known faulting in the study area occurred in Holocene time on a down-to-the-west fault, recently trenched at the site of a new LANL Emergency Operations Center (Reneau et al. 2002).« less

  2. Database of potential sources for earthquakes larger than magnitude 6 in Northern California

    USGS Publications Warehouse

    ,

    1996-01-01

    The Northern California Earthquake Potential (NCEP) working group, composed of many contributors and reviewers in industry, academia and government, has pooled its collective expertise and knowledge of regional tectonics to identify potential sources of large earthquakes in northern California. We have created a map and database of active faults, both surficial and buried, that forms the basis for the northern California portion of the national map of probabilistic seismic hazard. The database contains 62 potential sources, including fault segments and areally distributed zones. The working group has integrated constraints from broadly based plate tectonic and VLBI models with local geologic slip rates, geodetic strain rate, and microseismicity. Our earthquake source database derives from a scientific consensus that accounts for conflict in the diverse data. Our preliminary product, as described in this report brings to light many gaps in the data, including a need for better information on the proportion of deformation in fault systems that is aseismic.

  3. Current microseismicity and generating faults in the Gyeongju area, southeastern Korea

    NASA Astrophysics Data System (ADS)

    Han, Minhui; Kim, Kwang-Hee; Son, Moon; Kang, Su Young

    2017-01-01

    A study of microseismicity in a 15 × 20 km2 subregion of Gyeongju, southeastern Korea, establishes a direct link between minor earthquakes and known fault structures. The study area has a complex history of tectonic deformation and has experienced large historic earthquakes, with small earthquakes recorded since the beginning of modern instrumental monitoring. From 5 years of continuously recorded local seismic data, 311 previously unidentified microearthquakes can be reliably located using the double-difference algorithm. These newly discovered events occur in linear streaks that can be spatially correlated with active faults, which could pose a serious hazard to nearby communities. At-risk infrastructure includes the largest industrial park in South Korea, nuclear power plants, and disposal facilities for radioactive waste. The current work suggests that the southern segment of the Yeonil Tectonic Line and segments of the Seokup and Waup Basin boundary faults are active. For areas with high rates of microseismic activity, reliably located hypocenters are spatially correlated with mapped faults; in less active areas, earthquake clusters tend to occur at fault intersections. Microearthquakes in stable continental regions are known to exist, but have been largely ignored in assessments of seismic hazard because their magnitudes are well below the detection thresholds of seismic networks. The total number of locatable microearthquakes could be dramatically increased by lowering the triggering thresholds of network detection algorithms. The present work offers an example of how microearthquakes can be reliably detected and located with advanced techniques. This could make it possible to create a new database to identify subsurface fault geometries and modes of fault movement, which could then be considered in the assessments of seismic hazard in regions where major earthquakes are rare.

  4. A pilot GIS database of active faults of Mt. Etna (Sicily): A tool for integrated hazard evaluation

    NASA Astrophysics Data System (ADS)

    Barreca, Giovanni; Bonforte, Alessandro; Neri, Marco

    2013-02-01

    A pilot GIS-based system has been implemented for the assessment and analysis of hazard related to active faults affecting the eastern and southern flanks of Mt. Etna. The system structure was developed in ArcGis® environment and consists of different thematic datasets that include spatially-referenced arc-features and associated database. Arc-type features, georeferenced into WGS84 Ellipsoid UTM zone 33 Projection, represent the five main fault systems that develop in the analysed region. The backbone of the GIS-based system is constituted by the large amount of information which was collected from the literature and then stored and properly geocoded in a digital database. This consists of thirty five alpha-numeric fields which include all fault parameters available from literature such us location, kinematics, landform, slip rate, etc. Although the system has been implemented according to the most common procedures used by GIS developer, the architecture and content of the database represent a pilot backbone for digital storing of fault parameters, providing a powerful tool in modelling hazard related to the active tectonics of Mt. Etna. The database collects, organises and shares all scientific currently available information about the active faults of the volcano. Furthermore, thanks to the strong effort spent on defining the fields of the database, the structure proposed in this paper is open to the collection of further data coming from future improvements in the knowledge of the fault systems. By layering additional user-specific geographic information and managing the proposed database (topological querying) a great diversity of hazard and vulnerability maps can be produced by the user. This is a proposal of a backbone for a comprehensive geographical database of fault systems, universally applicable to other sites.

  5. Fault kinematics and active tectonics of the Sabah margin: Insights from the 2015, Mw 6.0, Mt. Kinabalu earthquake

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Wei, S.; Tapponnier, P.; WANG, X.; Lindsey, E.; Sieh, K.

    2016-12-01

    A gravity-driven "Mega-Landslide" model has been evoked to explain the shortening seen offshore Sabah and Brunei in oil-company seismic data. Although this model is considered to account simultaneously for recent folding at the edge of the submarine NW Sabah trough and normal faulting on the Sabah shelf, such a gravity-driven model is not consistent with geodetic data or critical examination of extant structural restorations. The rupture that produced the 2015 Mw6.0 Mt. Kinabalu earthquake is also inconsistent with the gravity-driven model. Our teleseismic analysis shows that the centroid depth of that earthquake's mainshock was 13 to 14 km, and its favored fault-plane solution is a 60° NW-dipping normal fault. Our finite-rupture model exhibits major fault slip between 5 and 15 km depth, in keeping with our InSAR analysis, which shows no appreciable surface deformation. Both the hypocentral depth and the depth of principal slip are far too deep to be explained by gravity-driven failure, as such a model would predict a listric normal fault connecting at a much shallower depth with a very gentle detachment. Our regional mapping of tectonic landforms also suggests the recent rupture is part of a 200-km long system of narrowly distributed active extension in northern Sabah. Taken together, the nature of the 2015 rupture, the belt of active normal faults, and structural consideration indicate that active tectonic shortening plays the leading role in controlling the overall deformation of northern Sabah and that deep-seated, onland normal faulting likely results from an abrupt change in the dip-angle of the collision interface beneath the Sabah accretionary prism.

  6. Coseismic fault zone deformation caused by the 2014 Mw=6.2 Nagano-ken-hokubu, Japan, earthquake on the Itoigawa-Shizuoka Tectonic Line revealed with differential LiDAR

    NASA Astrophysics Data System (ADS)

    Toda, S.; Ishimura, D.; Homma, S.; Mukoyama, S.; Niwa, Y.

    2015-12-01

    The Mw = 6.2 Nagano-ken-hokubu earthquake struck northern Nagano, central Japan, on November 22, 2014, and accompanied a 9-km-long surface rupture mostly along the previously mapped N-NW trending Kamishiro fault, one of the segments of the 150-km-long Itoigawa-Shizuoka Tectonic Line active fault system. While we mapped the rupture and measured vertical displacement of up to 80 cm at the field, interferometric synthetic aperture radar (InSAR) shows densely spaced fringes on the hanging wall side, suggesting westward or uplift movement associated with thrust faulting. The mainshock focal mechanism and aftershock hypocenters indicate the source fault dips to the east but the InSAR images cannot exactly differentiate between horizontal and vertical movements and also lose coherence within and near the fault zone itself. To reveal near-field deformation and shallow fault slip, here we demonstrate a differential LiDAR analysis using a pair of 1 m-resolution pre-event and post-event bare Earth digital terrain models (DTMs) obtained from commercial LiDAR provider. We applied particle image velocity (PIV) method incorporating elevation change to obtain 3-D vectors of coseismic displacements (Mukoyama, 2011, J. Mt. Sci). Despite sporadic noises mostly due to local landslides, we detected up to 1.5 m net movement at the tip of the hanging wall, more than the field measurement of 80 cm. Our result implies that a 9-km-long rupture zone is not a single continuous fault but composed of two bow-shaped fault strands, suggesting a combination of shallow fault dip and modest amount (< 1.5 m) of slip. Eastward movement without notable subsidence on the footwall also supports the low angle fault dip near the surface, and significant fault normal contraction, observed as buckled cultural features across the fault zone. Secondary features, such as subsidiary back-thrust faults confirmed at the field, are also visible as a significant contrast of vector directions and slip amounts.

  7. Preliminary Surficial Geologic Map of the Mesquite Lake 30' X 60' Quadrangle, California and Nevada

    USGS Publications Warehouse

    Schmidt, Kevin M.; McMackin, Matthew

    2006-01-01

    The Quaternary surficial geologic map of the Mesquite Lake, California-Nevada 30'X60' quadrangle depicts deposit age and geomorphic processes of erosion and deposition, as identified by a composite of remote sensing investigations, laboratory analyses, and field work, in the arid to semi-arid Mojave Desert area, straddling the California-Nevada border. Mapping was motivated by the need to address pressing scientific and social issues such as understanding and predicting the effects of climate and associated hydrologic changes, human impacts on landscapes, ecosystem function, and natural hazards at a regional scale. As the map area lies just to the south of Las Vegas, Nevada, a rapidly expanding urban center, land use pressures and the need for additional construction materials are forecasted for the region. The map contains information on the temporal and spatial patterns of surface processes and hazards that can be used to model specific landscape applications. Key features of the geologic map include: (1) spatially extensive Holocene alluvial deposits that compose the bulk of Quaternary units (~25%), (2) remote sensing and field studies that identified fault scarps or queried faults in the Kingston Wash area, Shadow Mountains, southern Pahrump Valley, Bird Spring Range, Lucy Gray Mountains and Piute Valley, (3) a lineament indicative of potential fault offset is located in Mesquite Valley, (4) active eolian dunes and sand ramps located on the east side of Mesquite, Ivanpah, and Hidden Valleys adjacent to playas, (4) groundwater discharge deposits in southern Pahrump Valley, Spring Mountains, and Lucy Gray Mountains and (5) debris-flow deposits spanning almost the entire Quaternary period in age.

  8. The Pawnee earthquake as a result of the interplay among injection, faults and foreshocks.

    PubMed

    Chen, Xiaowei; Nakata, Nori; Pennington, Colin; Haffener, Jackson; Chang, Jefferson C; He, Xiaohui; Zhan, Zhongwen; Ni, Sidao; Walter, Jacob I

    2017-07-10

    The Pawnee M5.8 earthquake is the largest event in Oklahoma instrument recorded history. It occurred near the edge of active seismic zones, similar to other M5+ earthquakes since 2011. It ruptured a previously unmapped fault and triggered aftershocks along a complex conjugate fault system. With a high-resolution earthquake catalog, we observe propagating foreshocks leading to the mainshock within 0.5 km distance, suggesting existence of precursory aseismic slip. At approximately 100 days before the mainshock, two M ≥ 3.5 earthquakes occurred along a mapped fault that is conjugate to the mainshock fault. At about 40 days before, two earthquakes clusters started, with one M3 earthquake occurred two days before the mainshock. The three M ≥ 3 foreshocks all produced positive Coulomb stress at the mainshock hypocenter. These foreshock activities within the conjugate fault system are near-instantaneously responding to variations in injection rates at 95% confidence. The short time delay between injection and seismicity differs from both the hypothetical expected time scale of diffusion process and the long time delay observed in this region prior to 2016, suggesting a possible role of elastic stress transfer and critical stress state of the fault. Our results suggest that the Pawnee earthquake is a result of interplay among injection, tectonic faults, and foreshocks.

  9. Vertical tectonic deformation associated with the San Andreas fault zone offshore of San Francisco, California

    USGS Publications Warehouse

    Ryan, H.F.; Parsons, T.; Sliter, R.W.

    2008-01-01

    A new fault map of the shelf offshore of San Francisco, California shows that faulting occurs as a distributed shear zone that involves many fault strands with the principal displacement taken up by the San Andreas fault and the eastern strand of the San Gregorio fault zone. Structures associated with the offshore faulting show compressive deformation near where the San Andreas fault goes offshore, but deformation becomes extensional several km to the north off of the Golden Gate. Our new fault map serves as the basis for a 3-D finite element model that shows that the block between the San Andreas and San Gregorio fault zone is subsiding at a long-term rate of about 0.2-0.3??mm/yr, with the maximum subsidence occurring northwest of the Golden Gate in the area of a mapped transtensional basin. Although the long-term rates of vertical displacement primarily show subsidence, the model of coseismic deformation associated with the 1906 San Francisco earthquake indicates that uplift on the order of 10-15??cm occurred in the block northeast of the San Andreas fault. Since 1906, 5-6??cm of regional subsidence has occurred in that block. One implication of our model is that the transfer of slip from the San Andreas fault to a fault 5??km to the east, the Golden Gate fault, is not required for the area offshore of San Francisco to be in extension. This has implications for both the deposition of thick Pliocene-Pleistocene sediments (the Merced Formation) observed east of the San Andreas fault, and the age of the Peninsula segment of the San Andreas fault.

  10. Neogene contraction between the San Andreas fault and the Santa Clara Valley, San Francisco Bay region, California

    USGS Publications Warehouse

    McLaughlin, R.J.; Langenheim, V.E.; Schmidt, K.M.; Jachens, R.C.; Stanley, R.G.; Jayko, A.S.; McDougall, K.A.; Tinsley, J.C.; Valin, Z.C.

    1999-01-01

    In the southern San Francisco Bay region of California, oblique dextral reverse faults that verge northeastward from the San Andreas fault experienced triggered slip during the 1989 M7.1 Loma Prieta earthquake. The role of these range-front thrusts in the evolution of the San Andreas fault system and the future seismic hazard that they may pose to the urban Santa Clara Valley are poorly understood. Based on recent geologic mapping and geophysical investigations, we propose that the range-front thrust system evolved in conjunction with development of the San Andreas fault system. In the early Miocene, the region was dominated by a system of northwestwardly propagating, basin-bounding, transtensional faults. Beginning as early as middle Miocene time, however, the transtensional faulting was superseded by transpressional NE-stepping thrust and reverse faults of the range-front thrust system. Age constraints on the thrust faults indicate that the locus of contraction has focused on the Monte Vista, Shannon, and Berrocal faults since about 4.8 Ma. Fault slip and fold reconstructions suggest that crustal shortening between the San Andreas fault and the Santa Clara Valley within this time frame is ~21%, amounting to as much as 3.2 km at a rate of 0.6 mm/yr. Rates probably have not remained constant; average rates appear to have been much lower in the past few 100 ka. The distribution of coseismic surface contraction during the Loma Prieta earthquake, active seismicity, late Pleistocene to Holocene fluvial terrace warping, and geodetic data further suggest that the active range-front thrust system includes blind thrusts. Critical unresolved issues include information on the near-surface locations of buried thrusts, the timing of recent thrust earthquake events, and their recurrence in relation to earthquakes on the San Andreas fault.

  11. Parallel Fault Strands at 9-km Depth Resolved on the Imperial Fault, Southern California

    NASA Astrophysics Data System (ADS)

    Shearer, P. M.

    2001-12-01

    The Imperial Fault is one of the most active faults in California with several M>6 events during the 20th century and geodetic results suggesting that it currently carries almost 80% of the total plate motion between the Pacific and North American plates. We apply waveform cross-correlation to a group of ~1500 microearthquakes along the Imperial Fault and find that about 25% of the events form similar event clusters. Event relocation based on precise differential times among events in these clusters reveals multiple streaks of seismicity up to 5 km in length that are at a nearly constant depth of ~9 km but are spaced about 0.5 km apart in map view. These multiples are unlikely to be a location artifact because they are spaced more widely than the computed location errors and different streaks can be resolved within individual similar event clusters. The streaks are parallel to the mapped surface rupture of the 1979 Mw=6.5 Imperial Valley earthquake. No obvious temporal migration of the event locations is observed. Limited focal mechanism data for the events within the streaks are consistent with right-lateral slip on vertical fault planes. The seismicity not contained in similar event clusters cannot be located as precisely; our locations for these events scatter between 7 and 11 km depth, but it is possible that their true locations could be much more tightly clustered. The observed streaks have some similarities to those previously observed in northern California along the San Andreas and Hayward faults (e.g., Rubin et al., 1999; Waldhauser et al., 1999); however those streaks were imaged within a single fault plane rather than the multiple faults resolved on the Imperial Fault. The apparent constant depth of the Imperial streaks is similar to that seen in Hawaii at much shallower depth by Gillard et al. (1996). Geodetic results (e.g., Lyons et al., 2001) suggest that the Imperial Fault is currently slipping at 45 mm/yr below a locked portion that extends to ~10 km depth. We interpret our observed seismicity streaks as representing activity on multiple fault strands at transition depths between the locked shallow part of the Imperial Fault and the slipping portion at greater depths. It is likely that these strands extend into the aseismic region below, suggesting that the lower crustal shear zone is at least 2 km wide.

  12. The Active Structure of the Greater Dead Sea Basin

    NASA Astrophysics Data System (ADS)

    Shamir, G.

    2002-12-01

    The Greater Dead Sea Basin (GDSB) is a 220km long depression situated along the southern section of the Dead Sea Transform (DST), between two structurally and gravitationally elevated points, Wadi Malih in the north and Paran fault zone in the south. In its center is the Dead Sea basin 'sensu strictu' (DSB), which has been described since the 1970s as a pull-apart basin at a left step-over along the DST. However, several observations, or their lack thereof, contradict this scheme, e.g. (i) It is not supported by recent seismological and geomorphic data; (ii) It does not explain the fault pattern and mixed sinistral and dextral offset along the DSB western boundary; (iii) It does not simply explain the presence of intense deformation outside the presumed fault step zone; (iv) It is inconsistent with the orientation of seismically active faults within the Dead Sea and Jericho Valley; (v) The length of the DSB exceeds the total offset along the Dead Sea Transform, while its subsidence is about the age of the DST. In this study, newly acquired and analyzed data (high resolution seismic reflection and earthquake relocation and fault plane solutions) has been integrated with previously published data (structural mapping, fracture orientation distribution, Bouguer anomaly maps, sinkhole distribution, geomorphic lineaments). The results show that the GDSB is dominated by two active fault systems, one trending NNE and showing normal-dextral motion, the other trending NW. These systems are identified by earthquake activity, seismic reflection observations, alignment of recent sinkholes, and distribution of Bouguer anomaly gradients. As a result, the intra-basin structure is of a series of rectangular blocks. The dextral slip component along NNE trending faults, the mixed sense of lateral offset along the western boundary of the DSB and temporal change in fracture orientation in the Jericho Valley suggest that the intra-basin blocks have rotated counterclockwise since the Pleistocene. The overall sinistral motion between the Arabian and Israel-Sinai plates along the GDSB may thus be accommodated by the postulated, internally rotating shear zone. Then, the subsidence of the DSB may possibly be explained if the rate of the resulting internal E-W shortening is greater than the rate of plate convergence.

  13. Multi-interferogram method for measuring interseismic deformation: Denali Fault, Alaska

    USGS Publications Warehouse

    Biggs, Juliet; Wright, Tim; Lu, Zhong; Parsons, Barry

    2007-01-01

    Studies of interseismic strain accumulation are crucial to our understanding of continental deformation, the earthquake cycle and seismic hazard. By mapping small amounts of ground deformation over large spatial areas, InSAR has the potential to produce continental-scale maps of strain accumulation on active faults. However, most InSAR studies to date have focused on areas where the coherence is relatively good (e.g. California, Tibet and Turkey) and most analysis techniques (stacking, small baseline subset algorithm, permanent scatterers, etc.) only include information from pixels which are coherent throughout the time-span of the study. In some areas, such as Alaska, where the deformation rate is small and coherence very variable, it is necessary to include information from pixels which are coherent in some but not all interferograms. We use a three-stage iterative algorithm based on distributed scatterer interferometry. We validate our method using synthetic data created using realistic parameters from a test site on the Denali Fault, Alaska, and present a preliminary result of 10.5 ?? 5.0 mm yr-1 for the slip rate on the Denali Fault based on a single track of radar data from ERS1/2. ?? 2007 The Authors Journal compilation ?? 2007 RAS.

  14. Near-shore Evaluation of Holocene Faulting and Earthquake Hazard in the New York City Metropolitan Region

    NASA Astrophysics Data System (ADS)

    Cormier, M. H.; King, J. W.; Seeber, L.; Heil, C. W., Jr.; Caccioppoli, B.

    2016-12-01

    During its relatively short historic period, the Atlantic Seaboard of North America has experienced a few M6+ earthquakes. These events raise the specter of a similar earthquake occurring anywhere along the eastern seaboard, including in the greater New York City (NYC) metropolitan area. Indeed, the NYC Seismic Zone is one of several concentrations of earthquake activity that stand out in the field of epicenters over eastern North America. Various lines of evidence point to a maximum magnitude in the M7 range for metropolitan NYC - a dramatic scenario that is counterbalanced by the low probability of such an event. Several faults mapped near NYC strike NW, sub-normal to the NE-striking structural trends of the Appalachians, and all earthquake sequences with well-established fault sources in the NYC seismic zone originate from NW-striking faults. With funding from the USGS Earthquake Hazard Program, we recently (July 2016) collected 85 km of high-resolution sub-bottom (CHIRP) profiles along the north shore of western Long Island Sound, immediately adjacent to metropolitan NYC. This survey area is characterized by a smooth, 15.5 kyr-old erosional surface and overlying strata with small original relief. CHIRP sonar profiles of these reflectors are expected to resolve fault or fold-related vertical relief (if present) greater than 50 cm. They would also resolve horizontal fault displacements with similar resolution, as may be expressed by offsets of either sedimentary or geomorphic features. No sedimentary cover on the land portion of the metro area offers such ideal reference surfaces, which are continuous in both time and space. Seismic profiles have a spacing of 200 m and have been acquired mostly perpendicular to the NW-striking faults mapped on land. These new data will be analyzed systematically for all resolvable features and then interpreted, distinguishing sedimentary, geomorphic, and tectonic features. The absence of evidence of post-glacial tectonic deformation would be a reliable negative result with implications regarding the lateral dimensions and southeastward continuity of the brittle faults mapped on land, and their potential for generation of large earthquakes with surface ruptures.

  15. Clustering of GPS velocities in the Mojave Block, southeastern California

    NASA Astrophysics Data System (ADS)

    Savage, J. C.; Simpson, R. W.

    2013-04-01

    find subdivisions within the Mojave Block using cluster analysis to identify groupings in the velocities observed at GPS stations there. The clusters are represented on a fault map by symbols located at the positions of the GPS stations, each symbol representing the cluster to which the velocity of that GPS station belongs. Fault systems that separate the clusters are readily identified on such a map. The most significant representation as judged by the gap test involves 4 clusters within the Mojave Block. The fault systems bounding the clusters from east to west are 1) the faults defining the eastern boundary of the Northeast Mojave Domain extended southward to connect to the Hector Mine rupture, 2) the Calico-Paradise fault system, 3) the Landers-Blackwater fault system, and 4) the Helendale-Lockhart fault system. This division of the Mojave Block is very similar to that proposed by Meade and Hager []. However, no cluster boundary coincides with the Garlock Fault, the northern boundary of the Mojave Block. Rather, the clusters appear to continue without interruption from the Mojave Block north into the southern Walker Lane Belt, similar to the continuity across the Garlock Fault of the shear zone along the Blackwater-Little Lake fault system observed by Peltzer et al. []. Mapped traces of individual faults in the Mojave Block terminate within the block and do not continue across the Garlock Fault [Dokka and Travis, ].

  16. Structural features of the San Andreas fault at Tejon Pass, California

    NASA Astrophysics Data System (ADS)

    Dewers, T. A.; Reches, Z.; Brune, J. N.

    2002-12-01

    We mapped a 2 km belt along the San Andreas fault (SAF) in the Tejon Pass area where road cuts provide fresh exposures of the fault zone and surrounding rocks. Our 1:2,000 structural mapping is focused on analysis of faulting processes and is complementary to regional mapping at 1:12,000 scale by Ramirez (M.Sc., UC Santa Barbara, 1984). The dominant rock units are the Hungry Valley Formation of Pliocene age (clastic sediments) exposed south of the SAF, and the Tejon Lookout granite (Cretaceous) and Neenach Volcanic Formation exposed north of it. Ramirez (1983) deduced ~220 km of post-Miocene lateral slip. The local trend of the SAF is about N60W and it includes at least three main, subparallel segments that form a 200 m wide zone. The traces of the segments are quasi-linear, discontinuous, and they are stepped with respect to each other, forming at least five small pull-aparts and sag ponds in the mapping area. The three segments were not active semi-contemporaneously and the southern segment is apparently the oldest. The largest pull-apart, 60-70 m wide, displays young (Quaternary?) silt and shale layers. We found two rock bodies that are suspected as fault-rocks. One is a 1-2 m thick sheet-like body that separates the Tejon Lookout granite from young (Recent?) clastic rocks. In the field, it appears as a gouge zone composed of poorly cemented, dark clay size grains; however, the microstructure of this rock does not reveal clear shear features. The second body is the 80-120 m wide zone of Tejon Lookout granite that extends for less than 1 km along the SAF in the mapped area. It is characterized by three structural features: (1) pulverization into friable, granular material by multitude of grain-crossing fractures; (2) abundance of dip-slip small faults that are gently dipping toward and away from the SAF; and (3) striking lack of evidence for shear parallel to the SAF. The relationships between these features and the large right-lateral shear along the SAF are puzzling. Our future work on these relations will include extensive microstructural analysis, determination of the depth of granite pulverization and the examination of several models that have been proposed to explain the enigmatic field features.

  17. Geologic map of the Vail West quadrangle, Eagle County, Colorado

    USGS Publications Warehouse

    Scott, Robert B.; Lidke, David J.; Grunwald, Daniel J.

    2002-01-01

    This new 1:24,000-scale geologic map of the Vail West 7.5' quadrangle, as part of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of the stratigraphy, structure, and geologic hazards in the area on the southwest flank of the Gore Range. Bedrock strata include Miocene tuffaceous sedimentary rocks, Mesozoic and upper Paleozoic sedimentary rocks, and undivided Early(?) Proterozoic metasedimentary and igneous rocks. Tuffaceous rocks are found in fault-tilted blocks. Only small outliers of the Dakota Sandstone, Morrison Formation, Entrada Sandstone, and Chinle Formation exist above the redbeds of the Permian-Pennsylvanian Maroon Formation and Pennsylvanian Minturn Formation, which were derived during erosion of the Ancestral Front Range east of the Gore fault zone. In the southwestern area of the map, the proximal Minturn facies change to distal Eagle Valley Formation and the Eagle Valley Evaporite basin facies. The Jacque Mountain Limestone Member, previously defined as the top of the Minturn Formation, cannot be traced to the facies change to the southwest. Abundant surficial deposits include Pinedale and Bull Lake Tills, periglacial deposits, earth-flow deposits, common diamicton deposits, common Quaternary landslide deposits, and an extensive, possibly late Pliocene landslide deposit. Landscaping has so extensively modified the land surface in the town of Vail that a modified land-surface unit was created to represent the surface unit. Laramide movement renewed activity along the Gore fault zone, producing a series of northwest-trending open anticlines and synclines in Paleozoic and Mesozoic strata, parallel to the trend of the fault zone. Tertiary down-to-the-northeast normal faults are evident and are parallel to similar faults in both the Gore Range and the Blue River valley to the northeast; presumably these are related to extensional deformation that occurred during formation of the northern end of the Rio Grande rift system in Colorado. In the southwestern part of the map area, a diapiric(?) exposure of the Eagle Valley Evaporite exists and chaotic faults and folds suggest extensive dissolution and collapse of overlying bedrock, indicating the presence of a geologic hazard. Quaternary landslides are common and indicate that landslide hazards are widespread in the area, particularly where old slide deposits are disturbed by construction. The late Pliocene(?) landslide that consists largely of a smectitic upper Morrison Formation matrix and boulders of Dakota Sandstone is readily reactivated. Debris flows are likely to invade low-standing areas within the towns of Vail and West Vail where tributaries of Gore Creek issue from the mountains on the north side of the valley.

  18. Neogene-Recent Reactivation of Cretaceous-age Faults in Southern Vietnam, with Implications for the Himalayan-Tibetan Orogen

    NASA Astrophysics Data System (ADS)

    Burberry, C. M.; Elkins, L. J.; Hoang, N.; Anh, L. D.; Dinh, S. Q.

    2017-12-01

    The tectonic activity and ongoing diffuse volcanic activity of the Central Highlands of Vietnam have, to date, been challenging to explain using accepted plate tectonics principles. The various hypotheses invoked to explain the voluminous magmatism include extrusion related to the Himalayan-Tibetan orogen, extension related to the South China Sea, and plume activity beneath Hainan. We present a combined remote sensing and field study, focused on fault orientation and age relative to lava flows in order to discriminate between these models. Landsat ETM+ and SPOT data were processed to highlight variations in lithology and to remove vegetation, and lineaments were interpreted from these images. The lineament data were compared to existing geologic maps, and to regions of known flow age. Key locations were visited in the field, where fault orientations and relative age were recorded. At many locations, the slip direction could be measured using trend and plunge of mineral lineations. The remote data reveal a complex pattern of lineaments, with prominent N-S, NE-SW and NW-SE directions. Lineaments are observed to cut lava flows with ages of 2.2+/- 0.1 Ma and younger. In the field, NE-SW oriented faults were identified in Jurassic-Cretaceous sedimentary rocks with two phases of movement; a dip-slip phase and a younger, dominantly strike-slip phase. Strike-slip faults were identified in lava flows of approx. 3.2 Ma, also oriented NE-SW. These results indicate that there has been fault activity since the Pliocene, and that this fault activity includes reactivation of dip-slip faults as strike-slip. This is consistent with the movement vector of the southern Indochina Block SE with respect to the Sunda block, and with microplate rotation due to asthenospheric extrusion. These results therefore suggest that ongoing Himalayan-Tibetan collision is still being accommodated, in part, by active lithospheric extrusion of the Indo-China block.

  19. Spatial and temporal seismic velocity changes on Kyushu Island during the 2016 Kumamoto earthquake

    PubMed Central

    Nimiya, Hiro; Ikeda, Tatsunori; Tsuji, Takeshi

    2017-01-01

    Monitoring of earthquake faults and volcanoes contributes to our understanding of their dynamic mechanisms and to our ability to predict future earthquakes and volcanic activity. We report here on spatial and temporal variations of seismic velocity around the seismogenic fault of the 2016 Kumamoto earthquake [moment magnitude (Mw) 7.0] based on ambient seismic noise. Seismic velocity near the rupture faults and Aso volcano decreased during the earthquake. The velocity reduction near the faults may have been due to formation damage, a change in stress state, and an increase in pore pressure. Further, we mapped the post-earthquake fault-healing process. The largest seismic velocity reduction observed at Aso volcano during the earthquake was likely caused by pressurized volcanic fluids, and the large increase in seismic velocity at the volcano’s magma body observed ~3 months after the earthquake may have been a response to depressurization caused by the eruption. This study demonstrates the usefulness of continuous monitoring of faults and volcanoes. PMID:29202026

  20. A distal earthquake cluster concurrent with the 2006 explosive eruption of Augustine Volcano, Alaska

    USGS Publications Warehouse

    Fisher, M.A.; Ruppert, N.A.; White, R.A.; Wilson, Frederic H.; Comer, D.; Sliter, R.W.; Wong, F.L.

    2009-01-01

    Clustered earthquakes located 25??km northeast of Augustine Volcano began about 6??months before and ceased soon after the volcano's 2006 explosive eruption. This distal seismicity formed a dense cluster less than 5??km across, in map view, and located in depth between 11??km and 16??km. This seismicity was contemporaneous with sharply increased shallow earthquake activity directly below the volcano's vent. Focal mechanisms for five events within the distal cluster show strike-slip fault movement. Cluster seismicity best defines a plane when it is projected onto a northeast-southwest cross section, suggesting that the seismogenic fault strikes northwest. However, two major structural trends intersect near Augustine Volcano, making it difficult to put the seismogenic fault into a regional-geologic context. Specifically, interpretation of marine multichannel seismic-reflection (MCS) data shows reverse faults, directly above the seismicity cluster, that trend northeast, parallel to the regional geologic strike but perpendicular to the fault suggested by the clustered seismicity. The seismogenic fault could be a reactivated basement structure.

  1. Seafloor bathymetry and gravity from the ALBACORE marine seismic experiment offshore southern California

    NASA Astrophysics Data System (ADS)

    Shintaku, N.; Weeraratne, D. S.; Kohler, M. D.

    2010-12-01

    Although the North America side of the plate boundary surrounding the southern California San Andreas fault region is well studied and instrumented, the Pacific side of this active tectonic boundary is poorly understood. In order to better understand this complex plate boundary offshore, its microplate structures, deformation, and the California Borderland formation, we have recently conducted the first stage of a marine seismic experiment (ALBACORE - Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment) deploying 34 ocean bottom seismometers offshore southern California in August 2010. We present preliminary data consisting of seafloor bathymetry and free air gravity collected from this experiment. We present high-resolution maps of bathymetry and gravity from the ALBACORE experiment compiled with previous ship track data obtained from the NGDC (National Geophysical Data Center) and the USGS. We use gravity data from Smith and Sandwell and study correlations with ship track bathymetry data for the features described below. We observe new seafloor geomorphological features far offshore and within the Borderland. Steep canyon walls which line the edges of the Murray fracture zone with possible volcanic flows along the canyon floor were mapped by multibeam bathymetry for the first time. Deep crevices juxtaposed with high edifices of intensely deformed plateaus indicate high strain deformation along the arcuate boundary of the Arguello microplate. Small volcanic seamounts are mapped which straddle the Ferrelo fault (Outer Borderland) and San Pedro fault (Inner Borderland), and appear to exhibit fracture and fault displacement of a portion of the volcanic centers in a left-lateral sense. A large landslide is also imaged extending approximately 6 miles in length and 3 miles in width in the Santa Cruz basin directly south of Santa Rosa Island. Deformation associated with capture of Arguello and Patton microplates by the Pacific plate is studied as well as deformation surrounding the Murray fracture zone near the California shore. Faults in the Borderland identified by improved sea floor mapping may indicate offshore earthquake sources.

  2. Large mid-Holocene and late Pleistocene earthquakes on the Oquirrh fault zone, Utah

    USGS Publications Warehouse

    Olig, S.S.; Lund, W.R.; Black, B.D.

    1994-01-01

    The Oquirrh fault zone is a range-front normal fault that bounds the east side of Tooele Valley and it has long been recognized as a potential source for large earthquakes that pose a significant hazard to population centers along the Wasatch Front in central Utah. Scarps of the Oquirrh fault zone offset the Provo shoreline of Lake Bonneville and previous studies of scarp morphology suggested that the most recent surface-faulting earthquake occurred between 9000 and 13,500 years ago. Based on a potential rupture length of 12 to 21 km from previous mapping, moment magnitude (Mw) estimates for this event range from 6.3 to 6.6 In contrast, our results from detailed mapping and trench excavations at two sites indicate that the most-recent event actually occurred between 4300 and 6900 yr B.P. (4800 and 7900 cal B.P.) and net vertical displacements were 2.2 to 2.7 m, much larger than expected considering estimated rupture lengths for this event. Empirical relations between magnitude and displacement yield Mw 7.0 to 7.2. A few, short discontinuous fault scarps as far south as Stockton, Utah have been identified in a recent mapping investigation and our results suggest that they may be part of the Oquirrh fault zone, increasing the total fault length to 32 km. These results emphasize the importance of integrating stratigraphic and geomorphic information in fault investigations for earthquake hazard evaluations. At both the Big Canyon and Pole Canyon sites, trenches exposed faulted Lake Bonneville sediments and thick wedges of fault-scarp derived colluvium associated with the most-recent event. Bulk sediment samples from a faulted debris-flow deposit at the Big Canyon site yield radiocarbon ages of 7650 ?? 90 yr B.P. and 6840 ?? 100 yr B.P. (all lab errors are ??1??). A bulk sediment sample from unfaulted fluvial deposits that bury the fault scarp yield a radiocarbon age estimate of 4340 ?? 60 yr B.P. Stratigraphic evidence for a pre-Bonneville lake cycle penultimate earthquake was exposed at the Pole Canyon site, and although displacement is not well constrained, the penultimate event colluvial wedge is comparable in size to the most-recent event wedges. Charcoal from a marsh deposit, which overlies the penultimate event colluvium and was deposited during the Bonneville lake cycle transgression, yields an AMS radiocarbon age of 20,370 ?? 120 yr B.P. Multiple charcoal fragments from fluvial deposits faulted during the penultimate event yield an AMS radiocarbon age of 26,200 ?? 200 yr B.P. Indirect stratigraphic evidence for an antepenultimate event was also exposed at Pole Canyon. Charcoal from fluvial sediments overlying the eroded free-face for this event yields an AMS age of 33,950 ?? 1160 yr B.P., providing a minimum limiting age on the antepenultimate event. Ages for the past two events on the Oquirrh fault zone yield a recurrence interval of 13,300 to 22,100 radiocarbon years and estimated slip rates of 0.1 to 0.2 mm/yr. Temporal clustering of earthquakes on the nearby Wasatch fault zone in the late Holocene does not appear to have influenced activity on the Oquirrh fault zone. However, consistent with findings on the Wasatch fault zone and with some other Quaternary faults within the Bonneville basin, we found evidence for higher rates of activity during interpluvial periods than during the Bonneville lake cycle. If a causal relation between rates of strain release along faults and changes in loads imposed by the lake does exist, it may have implications for fault dips and mechanics. However, our data are only complete for one deep-lake cycle (the past 32,000 radiocarbon years), and whether this pattern persisted during the previous Cutler Dam and Little Valley deep-lake cycles is unknown. ?? 1994.

  3. Long term landscape evolution within central Apennines (Italy): Marsica and Peligna region morphotectonics and surface processes

    NASA Astrophysics Data System (ADS)

    Miccadei, E.; Piacentini, T.; Berti, C.

    2010-12-01

    The relief features of the Apennines have been developed in a complex geomorphological and geological setting from Neogene to Quaternary. Growth of topography has been driven by active tectonics (thrust-related crustal shortening and high-angle normal faulting related to crustal extension), regional rock uplift, and surface processes, starting from Late Miocene(?) - Early Pliocene. At present a high-relief landscape is dominated by morphostructures including high-standing, resistant Mesozoic and early Tertiary carbonates ridges (i.e. thrust ridges, faulted homocline ridges) and intervening, erodible Tertiary siliciclastics valleys (i.e. fault line valleys) and Quaternary continental deposits filled basins (i.e. tectonic valleys, tectonic basins). This study tries to identify paleo-uplands that may be linked to paleo-base levels and aims at the reconstruction of ancient landscapes since the incipient phases of morphogenesis. It analyzes the role of tectonics and morphogenic processes in the long term temporal scale landscape evolution (i.e. Mio?-Pliocene to Quaternary). It is focused on the marsicano-peligna region, located along the main drainage divide between Adriatic side and Tyrrhenian side of Central Apennines, one of the highest average elevation area of the whole chain. The work incorporates GIS-based geomorphologic field mapping of morphostructures and Quaternary continental deposits, and plano-altimetric analysis and morphometry (DEM-, map-based) of the drainage network (i.e. patterns, hypsometry, knick points, Ks). Field mapping give clues on the definition of paleo-landscapes related to different paleo-morpho-climatic environments (i.e. karst, glacial, slope, fluvial). Geomorphological evidence of tectonics and their cross-cutting relationships with morphostructures, continental deposits and faults, provide clues on the deciphering of the reciprocal relationship of antecedence of the paleo-landscapes and on the timing of morphotectonics. Morphotectonic features are related to Neogene thrusts, reactivated or displaced by complex kinematic strike slip and followed by extensional tectonic features (present surface evidence given by fault line scarps, fault line valleys, fault scarps, fault slopes, wind gaps, etc.). Geomorphic evidence of faults is provided also by morphometry of the drainage network: highest long slope of the main streams (knick points and Ks) are located where the streams cut across or run along recent faults. Correlation of tectonic elements, paleosurfaces, Quaternary continental deposits, by means of morphotectonic cross sections, lead to the identification, in the marsicano-peligna region, of areas in which morphotectonics acted in the same period, becoming younger moving from the West to the East. In conclusion, recognition of different morphotectonic features, identification of different paleo-landscapes, and reconstruction of their migration history, contribute to define the main phases of syn and post orogenic, Apennine chain landscape evolution: it results from the link of alternating morphotectonics and surface processes, due to migrating fault activity, rock uplift processes and alternating karst, glacial, slope, fluvial processes.

  4. Integration of InSAR and GIS in the Study of Surface Faults Caused by Subsidence-Creep-Fault Processes in Celaya, Guanajuato, Mexico

    NASA Astrophysics Data System (ADS)

    Avila-Olivera, Jorge A.; Farina, Paolo; Garduño-Monroy, Victor H.

    2008-05-01

    In Celaya city, Subsidence-Creep-Fault Processes (SCFP) began to become visible at the beginning of the 1980s with the sprouting of the crackings that gave rise to the surface faults "Oriente" and "Poniente". At the present time, the city is being affected by five surface faults that display a preferential NNW-SSE direction, parallel to the regional faulting system "Taxco-San Miguel de Allende". In order to study the SCFP in the city, the first step was to obtain a map of surface faults, by integrating in a GIS field survey and an urban city plan. The following step was to create a map of the current phreatic level decline in city with the information of deep wells and using the "kriging" method in order to obtain a continuous surface. Finally the interferograms maps resulted of an InSAR analysis of 9 SAR images covering the time interval between July 12 of 2003 and May 27 of 2006 were integrated to a GIS. All the maps generated, show how the surface faults divide the city from North to South, in two zones that behave in a different way. The difference of the phreatic level decline between these two zones is 60 m; and the InSAR study revealed that the Western zone practically remains stable, while sinkings between the surface faults "Oriente" and "Universidad Pedagógica" are present, as well as in portions NE and SE of the city, all of these sinkings between 7 and 10 cm/year.

  5. Integration of InSAR and GIS in the Study of Surface Faults Caused by Subsidence-Creep-Fault Processes in Celaya, Guanajuato, Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avila-Olivera, Jorge A.; Instituto de Investigaciones Metalurgicas, Universidad Michoacana de San Nicolas de Hidalgo, C.U., 58030 Morelia, Michoacan; Farina, Paolo

    2008-05-07

    In Celaya city, Subsidence-Creep-Fault Processes (SCFP) began to become visible at the beginning of the 1980s with the sprouting of the crackings that gave rise to the surface faults 'Oriente' and 'Poniente'. At the present time, the city is being affected by five surface faults that display a preferential NNW-SSE direction, parallel to the regional faulting system 'Taxco-San Miguel de Allende'. In order to study the SCFP in the city, the first step was to obtain a map of surface faults, by integrating in a GIS field survey and an urban city plan. The following step was to create amore » map of the current phreatic level decline in city with the information of deep wells and using the 'kriging' method in order to obtain a continuous surface. Finally the interferograms maps resulted of an InSAR analysis of 9 SAR images covering the time interval between July 12 of 2003 and May 27 of 2006 were integrated to a GIS. All the maps generated, show how the surface faults divide the city from North to South, in two zones that behave in a different way. The difference of the phreatic level decline between these two zones is 60 m; and the InSAR study revealed that the Western zone practically remains stable, while sinkings between the surface faults 'Oriente' and 'Universidad Pedagogica' are present, as well as in portions NE and SE of the city, all of these sinkings between 7 and 10 cm/year.« less

  6. Method and apparatus for in-situ detection and isolation of aircraft engine faults

    NASA Technical Reports Server (NTRS)

    Bonanni, Pierino Gianni (Inventor); Brunell, Brent Jerome (Inventor)

    2007-01-01

    A method for performing a fault estimation based on residuals of detected signals includes determining an operating regime based on a plurality of parameters, extracting predetermined noise standard deviations of the residuals corresponding to the operating regime and scaling the residuals, calculating a magnitude of a measurement vector of the scaled residuals and comparing the magnitude to a decision threshold value, extracting an average, or mean direction and a fault level mapping for each of a plurality of fault types, based on the operating regime, calculating a projection of the measurement vector onto the average direction of each of the plurality of fault types, determining a fault type based on which projection is maximum, and mapping the projection to a continuous-valued fault level using a lookup table.

  7. Kinematics, mechanics, and potential earthquake hazards for faults in Pottawatomie County, Kansas, USA

    USGS Publications Warehouse

    Ohlmacher, G.C.; Berendsen, P.

    2005-01-01

    Many stable continental regions have subregions with poorly defined earthquake hazards. Analysis of minor structures (folds and faults) in these subregions can improve our understanding of the tectonics and earthquake hazards. Detailed structural mapping in Pottawatomie County has revealed a suite consisting of two uplifted blocks aligned along a northeast trend and surrounded by faults. The first uplift is located southwest of the second. The northwest and southeast sides of these uplifts are bounded by northeast-trending right-lateral faults. To the east, both uplifts are bounded by north-trending reverse faults, and the first uplift is bounded by a north-trending high-angle fault to the west. The structural suite occurs above a basement fault that is part of a series of north-northeast-trending faults that delineate the Humboldt Fault Zone of eastern Kansas, an integral part of the Midcontinent Rift System. The favored kinematic model is a contractional stepover (push-up) between echelon strike-slip faults. Mechanical modeling using the boundary element method supports the interpretation of the uplifts as contractional stepovers and indicates that an approximately east-northeast maximum compressive stress trajectory is responsible for the formation of the structural suite. This stress trajectory suggests potential activity during the Laramide Orogeny, which agrees with the age of kimberlite emplacement in adjacent Riley County. The current stress field in Kansas has a N85??W maximum compressive stress trajectory that could potentially produce earthquakes along the basement faults. Several epicenters of seismic events (

  8. Investigating Strain Transfer Along the Southern San Andreas Fault: A Geomorphic and Geodetic Study of Block Rotation in the Eastern Transverse Ranges, Joshua Tree National Park, CA

    NASA Astrophysics Data System (ADS)

    Guns, K. A.; Bennett, R. A.; Blisniuk, K.

    2017-12-01

    To better evaluate the distribution and transfer of strain and slip along the Southern San Andreas Fault (SSAF) zone in the northern Coachella valley in southern California, we integrate geological and geodetic observations to test whether strain is being transferred away from the SSAF system towards the Eastern California Shear Zone through microblock rotation of the Eastern Transverse Ranges (ETR). The faults of the ETR consist of five east-west trending left lateral strike slip faults that have measured cumulative offsets of up to 20 km and as low as 1 km. Present kinematic and block models present a variety of slip rate estimates, from as low as zero to as high as 7 mm/yr, suggesting a gap in our understanding of what role these faults play in the larger system. To determine whether present-day block rotation along these faults is contributing to strain transfer in the region, we are applying 10Be surface exposure dating methods to observed offset channel and alluvial fan deposits in order to estimate fault slip rates along two faults in the ETR. We present observations of offset geomorphic landforms using field mapping and LiDAR data at three sites along the Blue Cut Fault and one site along the Smoke Tree Wash Fault in Joshua Tree National Park which indicate recent Quaternary fault activity. Initial results of site mapping and clast count analyses reveal at least three stages of offset, including potential Holocene offsets, for one site along the Blue Cut Fault, while preliminary 10Be geochronology is in progress. This geologic slip rate data, combined with our new geodetic surface velocity field derived from updated campaign-based GPS measurements within Joshua Tree National Park will allow us to construct a suite of elastic fault block models to elucidate rates of strain transfer away from the SSAF and how that strain transfer may be affecting the length of the interseismic period along the SSAF.

  9. Map and data for Quaternary faults and folds in Washington state

    USGS Publications Warehouse

    Lidke, David J.; Johnson, Samuel Y.; McCrory, Patricia A.; Personius, Stephen F.; Nelson, Alan R.; Dart, Richard L.; Bradley, Lee-Ann; Haller, Kathleen M.; Machette, Michael N.

    2004-01-01

    The map shows faults and folds in Washington State that exhibit evidence of Quaternary deformation and includes data on timing of most recent movement, sense of movement, slip rate, and continuity of surface expression.

  10. Characterizing the potential for fault reactivation related to CO2 injection through subsurface structural mapping and stress field analysis, Wellington Field, Sumner County, KS

    NASA Astrophysics Data System (ADS)

    Schwab, D.; Bidgoli, T.; Taylor, M. H.

    2015-12-01

    South-central Kansas has experienced an unprecedented increase in seismic activity since 2013. The spatial and temporal relationship of the seismicity with brine disposal operations has renewed interest in the role of fluids in fault reactivation. This study focuses on determining the suitability of CO2 injection into a Cambro-Ordovician reservoir for long-term storage and a Mississippian reservoir for enhanced oil recovery in Wellington Field, Sumner County, Kansas. Our approach for determining the potential for induced seismicity has been to (1) map subsurface faults and estimate in-situ stresses, (2) perform slip and dilation tendency analysis to identify optimally-oriented faults relative to the estimated stress field, and (3) monitor surface deformation through cGPS data and InSAR imaging. Through the use of 3D seismic reflection data, 60 near vertical, NNE-striking faults have been identified. The faults range in length from 140-410 m and have vertical separations of 3-32m. A number of faults appear to be restricted to shallow intervals, while others clearly cut the top basement reflector. Drilling-induced tensile fractures (N=78) identified from image logs and inversion of earthquake focal mechanism solutions (N=54) are consistent with the maximum horizontal stress (SHmax) oriented ~E-W. Both strike-slip and normal-slip fault plane solutions for earthquakes near the study area suggest that SHmax and Sv may be similar in magnitude. Estimates of stress magnitudes using step rate tests (Shmin = 2666 psi), density logs (Sv = 5308 psi), and calculations from wells with drilling induced tensile fractures (SHmax = 4547-6655 psi) are determined at the gauge depth of 4869ft. Preliminary slip and dilation tendency analysis indicates that faults striking 0°-20° are stable, whereas faults striking 26°-44° may have a moderate risk for reactivation with increasing pore-fluid pressure.

  11. Stratigraphic record of Pliocene-Pleistocene basin evolution and deformation within the Southern San Andreas Fault Zone, Mecca Hills, California

    NASA Astrophysics Data System (ADS)

    McNabb, James C.; Dorsey, Rebecca J.; Housen, Bernard A.; Dimitroff, Cassidy W.; Messé, Graham T.

    2017-11-01

    A thick section of Pliocene-Pleistocene nonmarine sedimentary rocks exposed in the Mecca Hills, California, provides a record of fault-zone evolution along the Coachella Valley segment of the San Andreas fault (SAF). Geologic mapping, measured sections, detailed sedimentology, and paleomagnetic data document a 3-5 Myr history of deformation and sedimentation in this area. SW-side down offset on the Painted Canyon fault (PCF) starting 3.7 Ma resulted in deposition of the Mecca Conglomerate southwest of the fault. The lower member of the Palm Spring Formation accumulated across the PCF from 3.0 to 2.6 Ma during regional subsidence. SW-side up slip on the PCF and related transpressive deformation from 2.6 to 2.3 Ma created a time-transgressive angular unconformity between the lower and upper members of the Palm Spring Formation. The upper member accumulated in discrete fault-bounded depocenters until initiation of modern deformation, uplift, and basin inversion starting at 0.7 Ma. Some spatially restricted deposits can be attributed to the evolution of fault-zone geometric complexities. However, the deformation events at ca. 2.6 Ma and 0.7 Ma are recorded regionally along 80 km of the SAF through Coachella Valley, covering an area much larger than mapped fault-zone irregularities, and thus require regional explanations. We therefore conclude that late Cenozoic deformation and sedimentation along the SAF in Coachella Valley has been controlled by a combination of regional tectonic drivers and local deformation due to dextral slip through fault-zone complexities. We further propose a kinematic link between the 2.6-2.3 Ma angular unconformity and a previously documented but poorly dated reorganization of plate-boundary faults in the northern Gulf of California at 3.3-2.0 Ma. This analysis highlights the potential for high-precision chronologies in deformed terrestrial deposits to provide improved understanding of local- to regional-scale structural controls on basin formation and deformation along an active transform margin.

  12. Strike-Slip Fault Deformation and Its Control in Hydrocarbon Trapping in Ketaling Area, Jambi Subbasin, Indonesia

    NASA Astrophysics Data System (ADS)

    Ramadhan, Aldis; Badai Samudra, Alexis; Jaenudin; Puji Lestari, Enik; Saputro, Julian; Sugiono; Hirosiadi, Yosi; Amrullah, Indi

    2018-03-01

    Geologically, Ketaling area consists of a local high considered as flexure margin of Tempino-Kenali Asam Deep in west part and graben in east part also known as East Ketaling Deep. Numerous proven plays were established in Ketaling area with reservoir in early Miocene carbonate and middle Miocene sand. This area underwent several major deformations. Faults are developed widely, yet their geometrical features and mechanisms of formation remained so far indistinct, which limited exploration activities. With new three-dimensional seismic data acquired in 2014, this area evidently interpreted as having strike-slip mechanism. The objective of this study is to examine characteristic of strike slip fault and its affect to hydrocarbon trapping in Ketaling Area. Structural pattern and characteristic of strike slip fault deformation was examined with integration of normal seismic with variance seismic attribute analysis and the mapping of Syn-rift to Post-rift horizon. Seismic flattening on 2D seismic cross section with NW-SE direction is done to see the structural pattern related to horst (paleohigh) and graben. Typical flower structure, branching strike-slip fault system and normal fault in synrift sediment clearly showed in section. An echelon pattern identified from map view as the result of strike slip mechanism. Detail structural geology analysis show the normal fault development which has main border fault in the southern of Ketaling area dipping to the Southeast-East with NE-SW lineament. These faults related to rift system in Ketaling area. NW-SE folds with reactive NE-SW fault which act as hydrocarbon trapping in the shallow zone. This polyphase tectonic formed local graben, horst and inverted structure developed a good kitchen area (graben) and traps (horst, inverted structure). Subsequently, hydrocarbon accumulation potentials such as basement fractures, inverted syn-rift deposit and shallow zone are very interesting to explore in this area.

  13. Upper-crustal structure beneath the strait of Georgia, Southwest British Columbia

    USGS Publications Warehouse

    Dash, R.K.; Spence, G.D.; Riedel, M.; Hyndman, R.D.; Brocher, T.M.

    2007-01-01

    We present a new three-dimensional (3-D) P-wave velocity model for the upper-crustal structure beneath the Strait of Georgia, southwestern British Columbia based on non-linear tomographic inversion of wide-angle seismic refraction data. Our study, part of the Georgia Basin Geohazards Initiative (GBGI) is primarily aimed at mapping the depth of the Cenozoic sedimentary basin and delineating the near-surface crustal faults associated with recent seismic activities (e.g. M = 4.6 in 1997 and M = 5.0 in 1975) in the region. Joint inversion of first-arrival traveltimes from the 1998 Seismic Hazards Investigation in Puget Sound (SHIPS) and the 2002 Georgia Basin experiment provides a high-resolution velocity model of the subsurface to a depth of ???7 km. In the southcentral Georgia Basin, sedimentary rocks of the Cretaceous Nanaimo Group and early Tertiary rocks have seismic velocities between 3.0 and 5.5 km s-1. The basin thickness increases from north to south with a maximum thickness of 7 (??1) km (depth to velocities of 5.5 km s-1) at the southeast end of the strait. The underlying basement rocks, probably representing the Wrangellia terrane, have velocities of 5.5-6.5 km-1 with considerable lateral variation. Our tomographic model reveals that the Strait of Georgia is underlain by a fault-bounded block within the central Georgia Basin. It also shows a correlation between microearthquakes and areas of rapid change in basin thickness. The 1997/1975 earthquakes are located near a northeast-trending hinge line where the thicknesses of sedimentary rocks increase rapidly to the southeast. Given its association with instrumentally recorded, moderate sized earthquakes, we infer that the hinge region is cored by an active fault that we informally name the Gabriola Island fault. A northwest-trending, southwest dipping velocity discontinuity along the eastern side of Vancouver Island correlates spatially with the surface expression of the Outer Island fault. The Outer Island fault as mapped in our seismic tomography model is a thrust fault that projects directly into the Lummi Island fault, suggesting that they are related structures forming a fault system that is continuous for nearly 90 km. Together, these inferred thrust faults may account for at least a portion of the basement uplift at the San Juan Islands. ?? 2007 The Authors Journal compilation ?? 2007 RAS.

  14. Principal facts and an approach to collecting gravity data using near-real-time observations in the vicinity of Barstow, California

    USGS Publications Warehouse

    Phelps, G.; Cronkite-Ratcliff, C.; Klofas, L.

    2013-01-01

    A gravity survey was done in the vicinity of Barstow, California, in which data were processed and analyzed in the field. The purpose of the data collection was to investigate possible changes in gravity across mapped Quaternary faults and to improve regional gravity coverage, adding to the existing national gravity database. Data were collected, processed, analyzed, and interpreted in the field in order to make decisions about where to collect data for the remainder of the survey. Geological targets in the Barstow area included the Cady Fault, the Manix Fault, and the Yermo Hills. Upon interpreting initial results, additional data were collected to more completely define the fault targets, rather than collecting data to improve the regional gravity coverage in an adjacent area. Both the Manix and Cady Faults showed gravitational expression of the subsurface in the form of steep gravitational gradients that we interpret to represent down-dropped blocks. The gravitational expression of the Cady Fault is on trend with the linear projection of the mapped fault, and the gravitational expression of the Manix Fault is north of the current northernmost mapped strand of the fault. The relative gravitational low over the Yermo Hills was confirmed and better constrained, indicating a significant thickness of sediments at the junction of the Calico, Manix, and Tin Can Alley Faults.

  15. Northern California LIDAR Data: A Tool for Mapping the San Andreas Fault and Pleistocene Marine Terraces in Heavily Vegetated Terrain

    NASA Astrophysics Data System (ADS)

    Prentice, C. S.; Crosby, C. J.; Harding, D. J.; Haugerud, R. A.; Merritts, D. J.; Gardner, T. W.; Koehler, R. D.; Baldwin, J. N.

    2003-12-01

    Recent acquisition of airborne LIDAR (also known as ALSM) data covering approximately 418 square kilometers of coastal northern California provides a powerful new tool for mapping geomorphic features related to the San Andreas Fault and coastal uplift. LIDAR data has been previously used in the Puget Lowland region of Washington to identify and map Holocene faults and uplifted shorelines concealed under dense vegetation (Haugerud et al., 2003; see http://pugetsoundlidar.org). Our effort represents the first use of LIDAR data for this purpose along the San Andreas Fault. This data set is the result of a collaborative effort between NASA Solid Earth and Natural Hazards Program, Goddard Space Flight Center, Stennis Space Center, USGS, and TerraPoint, LLC. The coverage extends from near Fort Ross, California, in Sonoma County, along the coast northward to the town of Mendocino, in Mendocino County, and as far inland as about 1-3 km east of the San Andreas Fault. The survey area includes about 70 km of the northern San Andreas Fault under dense redwood forest, and Pleistocene coastal marine terraces both north and south of the fault. The average data density is two laser pulses per square meter, with up to four LIDAR returns per pulse. Returns are classified as ground or vegetation, allowing construction of both canopy-top and bare-earth DEMs with 1.8m grid spacing. Vertical accuracy is better than 20 cm RMSE, confirmed by a network of ground-control points established using high-precision GPS surveying. We are using hillshade images generated from the bare-earth DEMs to begin detailed mapping of geomorphic features associated with San Andreas Fault traces, such as scarps, offset streams, linear valleys, shutter ridges, and sag ponds. In addition, we are using these data in conjunction with field mapping and interpretation of conventional 1:12,000 and 1:6000 scale aerial photographs to map and correlate marine terraces to better understand rates of coastal uplift, and rates of strike-slip motion across the San Andreas Fault.

  16. Aeromagnetic anomaly patterns reveal buried faults along the eastern margin of the Wilkes Subglacial Basin (East Antarctica)

    USGS Publications Warehouse

    Armadillo, E.; Ferraccioli, F.; Zunino, A.; Bozzo, E.

    2007-01-01

    The Wilkes Subglacial Basin (WSB) is the major morphological feature recognized in the hinterland of the Transantarctic Mountains. The origin of this basin remains contentious and relatively poorly understood due to the lack of extensive geophysical exploration. We present a new aeromagnetic anomaly map over the transition between the Transantarctic Mountains and the WSB for an area adjacent to northern Victoria Land. The aeromagnetic map reveals the existence of subglacial faults along the eastern margin of the WSB. These inferred faults connect previously proposed fault zones over Oates Land with those mapped along the Ross Sea Coast. Specifically, we suggest a link between the Matusevich Frature Zone and the Priestley Fault during the Cenozoic. The new evidence for structural control on the eastern margin of the WSB implies that a purely flexural origin for the basin is unlikely.

  17. Historical coseismic surface deformation of fluvial gravel deposits, Schafberg fault, Lower Rhine Graben, Germany

    NASA Astrophysics Data System (ADS)

    Kübler, Simon; Friedrich, Anke M.; Gold, Ryan D.; Strecker, Manfred R.

    2018-03-01

    Intraplate earthquakes pose a significant seismic hazard in densely populated rift systems like the Lower Rhine Graben in Central Europe. While the locations of most faults in this region are well known, constraints on their seismogenic potential and earthquake recurrence are limited. In particular, the Holocene deformation history of active faults remains enigmatic. In an exposure excavated across the Schafberg fault in the southwestern Lower Rhine Graben, south of Untermaubach, in the epicentral region of the 1756 Düren earthquake ( M L 6.2), we mapped a complex deformation zone in Holocene fluvial sediments. We document evidence for at least one paleoearthquake that resulted in vertical surface displacement of 1.2 ± 0.2 m. The most recent earthquake is constrained to have occurred after 815 AD, and we have modeled three possible earthquake scenarios constraining the timing of the latest event. Coseismic deformation is characterized by vertical offset of sedimentary contacts distributed over a 10-m-wide central damage zone. Faults were identified where they fracture and offset pebbles in the vertically displaced gravel layers and fracture orientation is consistent with the orientation of the Schafberg fault. This study provides the first constraint on the most recent surface-rupturing earthquake on the Schafberg fault. We cannot rule out that this fault acted as the source of the 1756 Düren earthquake. Our study emphasizes the importance of, and the need for, paleoseismic studies in this and other intracontinental regions, in particular on faults with subtle geomorphic expression that would not typically be recognized as being potentially seismically active. Our study documents textural features in unconsolidated sediment that formed in response to coseismic rupturing of the underlying bedrock fault. We suggest that these features, e.g., abundant oriented transgranular fractures in their context, should be added to the list of criteria used to identify a fault as potentially active. Such information would result in an increase of the number of potentially active faults that contribute to seismic hazards of intracontinental regions.

  18. Taking apart the Big Pine fault: Redefining a major structural feature in southern California

    USGS Publications Warehouse

    Onderdonk, N.W.; Minor, S.A.; Kellogg, K.S.

    2005-01-01

    New mapping along the Big Pine fault trend in southern California indicates that this structural alignment is actually three separate faults, which exhibit different geometries, slip histories, and senses of offset since Miocene time. The easternmost fault, along the north side of Lockwood Valley, exhibits left-lateral reverse Quaternary displacement but was a north dipping normal fault in late Oligocene to early Miocene time. The eastern Big Pine fault that bounds the southern edge of the Cuyama Badlands is a south dipping reverse fault that is continuous with the San Guillermo fault. The western segment of the Big Pine fault trend is a north dipping thrust fault continuous with the Pine Mountain fault and delineates the northern boundary of the rotated western Transverse Ranges terrane. This redefinition of the Big Pine fault differs greatly from the previous interpretation and significantly alters regional tectonic models and seismic risk estimates. The outcome of this study also demonstrates that basic geologic mapping is still needed to support the development of geologic models. Copyright 2005 by the American Geophysical Union.

  19. Colorado Late Cenozoic Fault and Fold Database and Internet Map Server: User-friendly technology for complex information

    USGS Publications Warehouse

    Morgan, K.S.; Pattyn, G.J.; Morgan, M.L.

    2005-01-01

    Internet mapping applications for geologic data allow simultaneous data delivery and collection, enabling quick data modification while efficiently supplying the end user with information. Utilizing Web-based technologies, the Colorado Geological Survey's Colorado Late Cenozoic Fault and Fold Database was transformed from a monothematic, nonspatial Microsoft Access database into a complex information set incorporating multiple data sources. The resulting user-friendly format supports easy analysis and browsing. The core of the application is the Microsoft Access database, which contains information compiled from available literature about faults and folds that are known or suspected to have moved during the late Cenozoic. The database contains nonspatial fields such as structure type, age, and rate of movement. Geographic locations of the fault and fold traces were compiled from previous studies at 1:250,000 scale to form a spatial database containing information such as length and strike. Integration of the two databases allowed both spatial and nonspatial information to be presented on the Internet as a single dataset (http://geosurvey.state.co.us/pubs/ceno/). The user-friendly interface enables users to view and query the data in an integrated manner, thus providing multiple ways to locate desired information. Retaining the digital data format also allows continuous data updating and quick delivery of newly acquired information. This dataset is a valuable resource to anyone interested in earthquake hazards and the activity of faults and folds in Colorado. Additional geologic hazard layers and imagery may aid in decision support and hazard evaluation. The up-to-date and customizable maps are invaluable tools for researchers or the public.

  20. Precambrian basement geologic map of Montana; an interpretation of aeromagnetic anomalies

    USGS Publications Warehouse

    Sims, P.K.; O'Neill, J. M.; Bankey, Viki; Anderson, E.

    2004-01-01

    Newly compiled aeromagnetic anomaly data of Montana, in conjunction with the known geologic framework of basement rocks, have been combined to produce a new interpretive geologic basement map of Montana. Crystalline basement rocks compose the basement, but are exposed only in the cores of mountain ranges in southwestern Montana. Principal features deduced from the map are: (1) A prominent northeast-trending, 200-km-wide zone of spaced negative anomalies, which extends more than 700 km from southwestern Montana's Beaverhead Mountains to the Canadian border and reflects suturing of the Archean Mexican Hat Block against the Archean Wyoming Province along the Paleoproterozoic Trans-Montana Orogen (new name) at about 1.9-1.8 Ga; (2) North-northwest-trending magnetic lows in northeastern Montana, which reflect the 1.9-1.8 Ga Trans-Hudson Orogen and truncate the older Trans-Montana Zone; and (3) Subtle northwest- and west-trending negative anomalies in central and western Montana, which represent the northernmost segment of brittle-ductile transcurrent faults of the newly recognized Mesoproterozoic Trans-Rocky Mountain fault system. Structures developed in the Proterozoic provided zones of crustal weakness reactivated during younger Proterozoic and Phanerozoic igneous and tectonic activity. For example, the Trans-Montana Zone guided basement involved thrust faulting in southwestern Montana during the Sevier Orogeny. The Boulder Batholith and associated ore deposits and the linear belt of alkaline intrusions to the northeast were localized along a zone of weakness between the Missouri River suture and the Dillon shear zone of the Trans-Montana Orogen. The northwest-trending faults of Trans-Rocky Mountain system outline depocenters for sedimentary rocks in the Belt Basin. This fault system provided zones of weakness that guided Laramide uplifts during basement crustal shortening. Northwest-trending zones have been locally reactivated during Neogene basin-range extension.

  1. Drilling into a present-day migration pathway for hydrocarbons within a fault zone conduit in the Eugene Island 330 field, offshore Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, R.N.

    1995-11-01

    Within the Global Basins Research Network, we have developed 4-D seismic analysis techniques that, when integrated with pressure and temperature mapping, production history, geochemical monitoring, and finite element modeling, allow for the imaging of active fluid migration in the subsurface. We have imaged fluid flow pathways that are actively recharging shallower hydrocarbon reservoirs in the Eugene Island 330 field, offshore Louisiana. The hydrocarbons appear to be sourcing from turbidite stacks within the salt-withdrawal mini-basin buried deep within geopressure. Fault zone conduits provide transient migration pathways out of geopressure. To accomplish this 4-D imaging, we use multiple 3-D seismic surveys donemore » several years apart over the same blocks. 3-D volume processing and attribute analysis algorithms are used to identify significant seismic amplitude interconnectivity and changes over time that result from active fluid migration. Pressures and temperatures are then mapped and modeled to pro- vide rate and timing constraints for the fluid movement. Geochemical variability observed in the shallow reservoirs is attributed to the mixing of new with old oils. The Department of Energy has funded an industry cost-sharing project to drill into one of these active conduits in Eugene Island Block 330. Active fluid flow was encountered within the fault zone in the field demonstration experiment, and hydrocarbons were recovered. The active migration events connecting shallow reservoirs to deep sourcing regions imply that large, heretofore undiscovered hydrocarbon reserves exist deep within geopressures along the deep continental shelf of the northern Gulf of Mexico.« less

  2. Late Quaternary paleoearthquakes along the northern segment of the Nantinghe fault on the southeastern margin of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Sun, Haoyue; He, Honglin; Wei, Zhanyu; Shi, Feng; Gao, Wei

    2017-05-01

    The strong earthquake behaviors of faults are significant for learning crustal deformation mechanisms and for assessing regional seismic risk. To date, faults that bound tectonic blocks have attracted considerable concern and many studies; however, scant attention has been paid to faults within blocks that can also host devastating earthquakes. The Nantinghe fault is a left-lateral strike-slip fault within the Southwestern Yunnan Block, and it slips at ∼4 mm/yr suggesting strong activity in the late Quaternary. Nevertheless, no earthquake greater than 6 has ever been recorded along it, except for the 1941 M ∼7 earthquake near the Myanmar-China border region. In contrast, many earthquakes have occurred in the near region, delineating a seismic gap near the Nantinghe fault. Although several studies have been conducted upon it, the activity of its northern segment is confusing, and whether this fault segment has loaded sufficient stress to fail remains debatable. Furthermore, previous work failed to conduct any paleoseismological studies bringing out great uncertainty in learning its activity and faulting behavior, as well as in assessing the regional seismic risk. To solve these problems, we mapped the fault traces utilizing high-resolution satellite images and aerial photographs, and conducted three paleoseismological trenches along the northern segment of the Nantinghe fault. The trench excavations revealed a ∼45,000-year incomplete paleoearthquake history and confirmed that this fault segment has been active since the late Pleistocene but was not ruptured during the 1941 earthquake. Additionally, at least five paleoearthquakes are identified with their respective age ranges of before 39,030 BCE; 38,500-37,220 BCE; 28,475-5445 BCE; 3535 BCE-800 CE; and 1320-1435 CE based on radiocarbon dating. Among the paleoearthquakes, the latest is suggested to have generated a surface rupture much longer than 14 km with a magnitude likely up to Ms 7.0. Furthermore, based on the elapsed time since the latest paleoearthquake and the sinistral slip rate along the fault, it is proposed that the northern segment of the Nantinghe fault has accumulated a seismic energy equivalent to Ms 7.0, and it is in a high seismic risk along this fault segment and in the neighboring area.

  3. Active tectonics of the northern Mojave Desert: The 2017 Desert Symposium field trip road log

    USGS Publications Warehouse

    Miller, David; Reynolds, R.E.; Phelps, Geoffrey; Honke, Jeff; Cyr, Andrew J.; Buesch, David C.; Schmidt, Kevin M.; Losson, G.

    2017-01-01

    The 2017 Desert Symposium field trip will highlight recent work by the U.S. Geological Survey geologists and geophysicists, who have been mapping young sediment and geomorphology associated with active tectonic features in the least well-known part of the eastern California Shear Zone (ECSZ). This area, stretching from Barstow eastward in a giant arc to end near the Granite Mountains on the south and the Avawatz Mountains on the north (Fig. 1-1), encompasses the two major structural components of the ECSZ—east-striking sinistral faults and northwest-striking dextral faults—as well as reverseoblique and normal-oblique faults that are associated with topographic highs and sags, respectively. In addition, folds and stepovers (both restraining stepovers that form pop-up structures and releasing stepovers that create narrow basins) have been identified. The ECSZ is a segment in the ‘soft’ distributed deformation of the North American plate east of the San Andreas fault (Fig. 1-1), where it takes up approximately 20-25% of plate motion in a broad zone of right-lateral shear (Sauber et al., 1994) The ECSZ (sensu strictu) begins in the Joshua Tree area and passes north through the Mojave Desert, past the Owens Valley-to-Death Valley swath and northward, where it is termed the Walker Lane. It has been defined as the locus of active faulting (Dokka and Travis, 1990), but when the full history from about 10 Ma forward is considered, it lies in a broader zone of right shear that passes westward in the Mojave Desert to the San Andreas fault (Mojave strike-slip province of Miller and Yount, 2002) and passes eastward to the Nevada state line or beyond (Miller, this volume).We will visit several accessible highlights for newly studied faults, signs of young deformation, and packages of syntectonic sediments. These pieces of a complex active tectonic puzzle have yielded some answers to longstanding questions such as: How is fault slip transfer in this area accommodated between northwest-striking dextral faults and eaststriking sinistral faults?How is active deformation on the Ludlow fault transferred northward, presumably to connect to the southern Death Valley fault zone?When were faults in this area of the central Mojave Desert initiated?Are faults in this area more or less active than faults in the ECSZ to the west?What is the role of NNW-striking faults and when did they form?How has fault slip changed over time? Locations and fault names are provided in figure 1-2. Important turns and locations are identified with locations in the projection: UTM, zone 11; datum NAD 83: (578530 3917335).

  4. Shaded Relief with Height as Color, Kunlun fault, east-central Tibet

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These two images show exactly the same area, part of the Kunlun fault in northern Tibet. The image on the left was created using the best global topographic data set previously available, the U.S. Geological Survey's GTOPO30. In contrast, the much more detailed image on the right was generated with data from the Shuttle Radar Topography Mission, which collected enough measurements to map 80 percent of Earth's landmass at this level of precision.

    The area covered is the western part of the Kunlun fault, at the north edge of east-central Tibet. The sharp line marking the southern edge of the mountains, running left to right across the scene represents s strike-slip fault, much like California's San Andreas Fault, which is more than 1,000 kilometers (621 miles) long. The most recent earthquake on the Kunlun fault occurred on November 14, 2001. At a magnitude of 8.1, it produced a surface break over 350 kilometers (217 miles) long. Preliminary reports indicate a maximum offset of 7 meters (23 feet) in the central section of the break. This five-kilometer (three mile) high area is uninhabited by humans, so there was little damage reported, despite the large magnitude. Shuttle Radar Topography Mission maps of active faults in Tibet and other parts of the world provide geologists with a unique tool for determining how active a fault is and the probability of future large earthquakes on the fault. This is done by both measuring offsets in topographic features and using the SRTM digital map as a baseline for processing data from orbiting satellites using the techniques of radar interferometry. Based on geologic evidence, the Kunlun fault's long-term slip rate is believed to be about 11 millimeters per year (0.4 inches per year). The Kunlun fault and the Altyn Tagh fault, 400 kilometers (249 miles) to the north, are two major faults that help accommodate the ongoing collision between the Indian and Asian tectonic plates.

    In contrast with the wealth of detail visible in the Shuttle Radar Topography Mission topographic map (right), the best data previously available (left) barely discriminate the sharp break caused by the fault. Note also that the upper left quadrant of the GTOPO30 map was created from a lower-resolution source than the rest of the GTOPO30 data. Another major advantage of the shuttle radar mission is its consistent coverage, unlike previous topography data.

    For some parts of the globe, the shuttle radar measurements are 30 times more precise than previously available topographic information, according to NASA scientists. Mission data will be a welcome resource for national and local governments, scientists, commercial enterprises and members of the public alike. The applications are as diverse as earthquake and volcano studies, flood control, transportation, urban and regional planning, aviation, recreation, and communications. The data's military applications include mission planning and rehearsal, modeling, and simulation.

    This image combines three visualizations of data from the Shuttle Radar Topography Mission. The image brightness corresponds to the strength of the radar signal reflected from the ground combined with shaded relief derived from the mission's topography measurements, while colors show the mission's elevation measurements. Colors range from blue at the lowest elevations to brown and white at the highest elevations.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard Space Shuttle Endeavour, launched on Feb. 11,2000. The Shuttle Radar Topography Mission used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Endeavour in 1994. The Shuttle Radar Topography Mission was designed to collect 3-D measurements of Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

    Size: 111 by 90 kilometers (69 by 56 miles) Location: 36.0 degrees north latitude, 93.0 degrees east longitude Orientation: North is at the top Date Acquired: February 2000 (SRTM)

  5. California State Waters Map Series: offshore of San Gregorio, California

    USGS Publications Warehouse

    Cochrane, Guy R.; Dartnell, Peter; Greene, H. Gary; Watt, Janet T.; Golden, Nadine E.; Endris, Charles A.; Phillips, Eleyne L.; Hartwell, Stephen R.; Johnson, Samuel Y.; Kvitek, Rikk G.; Erdey, Mercedes D.; Bretz, Carrie K.; Manson, Michael W.; Sliter, Ray W.; Ross, Stephanie L.; Dieter, Bryan E.; Chin, John L.; Cochran, Susan A.; Cochrane, Guy R.; Cochran, Susan A.

    2014-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California's State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of San Gregorio map area is located in northern California, on the Pacific coast of the San Francisco Peninsula about 50 kilometers south of the Golden Gate. The map area lies offshore of the Santa Cruz Mountains, part of the northwest-trending Coast Ranges that run roughly parallel to the San Andreas Fault Zone. The Santa Cruz Mountains lie between the San Andreas Fault Zone and the San Gregorio Fault system. The nearest significant onshore cultural centers in the map area are San Gregorio and Pescadero, both unincorporated communities with populations well under 1,000. Both communities are situated inland of state beaches that share their names. No harbor facilities are within the Offshore of San Gregorio map area. The hilly coastal area is virtually undeveloped grazing land for sheep and cattle. The coastal geomorphology is controlled by late Pleistocene and Holocene slip in the San Gregorio Fault system. A westward bend in the San Andreas Fault Zone, southeast of the map area, coupled with right-lateral movement along the San Gregorio Fault system have caused regional folding and uplift. The coastal area consists of high coastal bluffs and vertical sea cliffs. Coastal promontories in the northern and southern parts of the map area are the result of right-lateral motion on strands of the San Gregorio Fault system. In the south, headlands near Pescadero Point have been uplifted by motion along the west strand of the San Gregorio Fault (also called the Frijoles Fault), which separates rocks of the Pigeon Point Formation south of the fault from rocks of the Purisima Formation north of the fault. The regional uplift in this map area has caused relatively shallow water depths within California's State Waters and, thus, little accommodation space for sediment accumulation. Sediment is observed offshore in the central part of the map area, in the shelter of the headlands north of the east strand of the San Gregorio Fault (also called the Coastways Fault) around Miramontes Point (about 5 km north of the map area) and also on the outer half of the California's State Waters shelf in the south where depths exceed 40 m. Sediment in the outer shelf of California's State Waters is rippled, indicating some mobility. The Offshore of San Gregorio map area lies within the cold-temperate biogeographic zone that is called either the "Oregonian province" or the "northern California ecoregion." This biogeographic province is maintained by the long-term stability of the southward-flowing California Current, an eastern limb of the North Pacific subtropical gyre that flows from Oregon to Baja California. At its midpoint off central California, the California Current transports subarctic surface (0–500 m deep) waters southward, about 150 to 1,300 km from shore. Seasonal northwesterly winds that are, in part, responsible for the California Current, generate coastal upwelling. The south end of the Oregonian province is at Point Conception (about 350 km south of the map area), although its associated phylogeographic group of marine fauna may extend beyond to the area offshore of Los Angeles in southern California. The ocean off of central California has experienced a warming over the last 50 years that is driving an ecosystem shift away from the productive subarctic regime towards a depopulated subtropical environment. Seafloor habitats in the Offshore of San Gregorio map area, which lies within the Shelf (continental shelf) megahabitat, range from significant rocky outcrops that support kelp-forest communities nearshore to rocky-reef communities in deep water. Biological productivity resulting from coastal upwelling supports diverse populations of sea birds such as Sooty Shearwater, Western Gull, Common Murre, Cassin's Auklet, and many other less populous bird species. In addition, an observable recovery of Humpback and Blue Whales has occurred in the area; both species are dependent on coastal upwelling to provide nutrients. The large extent of exposed inner shelf bedrock supports large forests of "bull kelp," which is well adapted for high wave-energy environments. Common fish species found in the kelp beds and rocky reefs include lingcod and various species of rockfish and greenling.

  6. Morphologic dating of fault scarps using airborne laser swath mapping (ALSM) data

    USGS Publications Warehouse

    Hilley, G.E.; Delong, S.; Prentice, C.; Blisniuk, K.; Arrowsmith, J.R.

    2010-01-01

    Models of fault scarp morphology have been previously used to infer the relative age of different fault scarps in a fault zone using labor-intensive ground surveying. We present a method for automatically extracting scarp morphologic ages within high-resolution digital topography. Scarp degradation is modeled as a diffusive mass transport process in the across-scarp direction. The second derivative of the modeled degraded fault scarp was normalized to yield the best-fitting (in a least-squared sense) scarp height at each point, and the signal-to-noise ratio identified those areas containing scarp-like topography. We applied this method to three areas along the San Andreas Fault and found correspondence between the mapped geometry of the fault and that extracted by our analysis. This suggests that the spatial distribution of scarp ages may be revealed by such an analysis, allowing the recent temporal development of a fault zone to be imaged along its length.

  7. Index of faults of Cretaceous and Cenozoic age in the eastern United States

    USGS Publications Warehouse

    Prowell, David C.

    1983-01-01

    The data in this report represent the presently available knowledge of fault characteristics and distribution. Clearly, as current investigations progress and as geologists become more aware of the evidence for Cenozoic faulting, the number of known Cenozoic faults will increase substantially. Until such time, the data that are shown here must be viewed conservatively because I believe they are not a totally representative collection of information at this scale. the data are useful in characterizing basic fault patterns in the region, but certain factors limit the usefulness of the map. Limitations of this information are discussed in the following text, and the reader should give them major consideration when using the map and fault table.

  8. Characterization of Stream Channel Evolution Due to Extensional Tectonics Along the Western Margin of North Boulder Basin (Bull Mountain), SW Montana with the Use of Geologic Mapping and Thermochronologic (U-Th/He) Dating.

    NASA Astrophysics Data System (ADS)

    Cataldo, K.; Douglas, B. J.; Yanites, B.

    2017-12-01

    Landscape response to active tectonics, such as fault motion or regional uplift, can be recorded in river profiles as changes in slope (i.e. knickpoints) or topography. North Boulder basin region (SW Montana), experienced two separate phases of extension, from 45 - 35 Ma and again beginning 14 Ma to the present, producing basin-and-range style fault-blocks. Focusing on the Bull Mountain region, located on the western margin of the North Boulder basin, data is collected to test the hypothesis that Bull Mountain is located on the hanging wall of a half-graben. Our objective is to elucidate the active tectonics of the study area within a regional context by utilizing river profile analysis and thermochronometric data. High-resolution (< 5cm) river profile data is obtained from five of the main tributaries of Bull Mountain. Comprehensive geologic mapping along the main tributaries and topographic highs of the region allowed for the identification and measurement of knickpoints, composition of detailed lithologic descriptions, and analysis of key structural features. The absence of knickpoints within the four tributaries mapped on east Bull Mountain are consistent with a lack of tectonic activity. In contrast, Dearborn Creek, on western Bull Mountain, is located along an active normal fault and presents several knickpoints. Geologic mapping confirms that the primary lithologies of the region belong to the Elkhorn Mountain Volcanics. At lower elevations, there are massive plutonic intrusions of Quartz Monzonite and Diorite, both constituents of the Boulder batholith. These lithologies contain minerals suited for low-temperature thermochronology (U-Th/He) to constrain the timing of tectonic activity (i.e. uplift and exhumation) and erosion rates in the region. High-resolution stream profiles and a 10m DEM are used to delineate watersheds and produce steepness and concavity maps of major tributaries to investigate changes in slope or topography. The effects of extensional tectonic events can reshape drainage patterns of streams and their distribution of water, which is an important commodity in SW Montana for ranchers and farmers. Thus, the ability to discern the probability of recurring tectonic events and the effects on the regional watersheds, could help facilitate solutions before these events take place.

  9. Complex faulting associated with the 22 December 2003 Mw 6.5 San Simeon California, earthquake, aftershocks and postseismic surface deformation

    USGS Publications Warehouse

    McLaren, Marcia K.; Hardebeck, Jeanne L.; Van Der Elst, Nicholas; Unruh, Jeffrey R.; Bawden, Gerald W.; Blair, James Luke

    2008-01-01

    We use data from two seismic networks and satellite interferometric synthetic aperture radar (InSAR) imagery to characterize the 22 December 2003 Mw 6.5 San Simeon earthquake sequence. Absolute locations for the mainshock and nearly 10,000 aftershocks were determined using a new three-dimensional (3D) seismic velocity model; relative locations were obtained using double difference. The mainshock location found using the 3D velocity model is 35.704° N, 121.096° W at a depth of 9.7±0.7 km. The aftershocks concentrate at the northwest and southeast parts of the aftershock zone, between the mapped traces of the Oceanic and Nacimiento fault zones. The northwest end of the mainshock rupture, as defined by the aftershocks, projects from the mainshock hypocenter to the surface a few kilometers west of the mapped trace of the Oceanic fault, near the Santa Lucia Range front and the >5 mm postseismic InSAR imagery contour. The Oceanic fault in this area, as mapped by Hall (1991), is therefore probably a second-order synthetic thrust or reverse fault that splays upward from the main seismogenic fault at depth. The southeast end of the rupture projects closer to the mapped Oceanic fault trace, suggesting much of the slip was along this fault, or at a minimum is accommodating much of the postseismic deformation. InSAR imagery shows ∼72 mm of postseismic uplift in the vicinity of maximum coseismic slip in the central section of the rupture, and ∼48 and ∼45 mm at the northwest and southeast end of the aftershock zone, respectively. From these observations, we model a ∼30-km-long northwest-trending northeast-dipping mainshock rupture surface—called the mainthrust—which is likely the Oceanic fault at depth, a ∼10-km-long southwest-dipping backthrust parallel to the mainthrust near the hypocenter, several smaller southwest-dipping structures in the southeast, and perhaps additional northeast-dipping or subvertical structures southeast of the mainshock plane. Discontinuous backthrust features opposite the mainthrust in the southeast part of the aftershock zone may offset the relic Nacimiento fault zone at depth. The InSAR data image surface deformation associated with both aseismic slip and aftershock production on the mainthrust and the backthrusts at the northwest and southeast ends of the aftershock zone. The well-defined mainthrust at the latitude of the epicenter and antithetic backthrust illuminated by the aftershock zone indicate uplift of the Santa Lucia Range as a popup block; aftershocks in the southeast part of the zone also indicate a popup block, but it is less well defined. The absence of backthrust features in the central part of the zone suggests range-front uplift by fault-propagation folding, or backthrusts in the central part were not activated during the mainshock.

  10. New seismic sources parameterization in El Salvador. Implications to seismic hazard.

    NASA Astrophysics Data System (ADS)

    Alonso-Henar, Jorge; Staller, Alejandra; Jesús Martínez-Díaz, José; Benito, Belén; Álvarez-Gómez, José Antonio; Canora, Carolina

    2014-05-01

    El Salvador is located at the pacific active margin of Central America, here, the subduction of the Cocos Plate under the Caribbean Plate at a rate of ~80 mm/yr is the main seismic source. Although the seismic sources located in the Central American Volcanic Arc have been responsible for some of the most damaging earthquakes in El Salvador. The El Salvador Fault Zone is the main geological structure in El Salvador and accommodates 14 mm/yr of horizontal displacement between the Caribbean Plate and the forearc sliver. The ESFZ is a right lateral strike-slip fault zone c. 150 km long and 20 km wide .This shear band distributes the deformation among strike-slip faults trending N90º-100ºE and secondary normal faults trending N120º- N170º. The ESFZ is relieved westward by the Jalpatagua Fault and becomes less clear eastward disappearing at Golfo de Fonseca. Five sections have been proposed for the whole fault zone. These fault sections are (from west to east): ESFZ Western Section, San Vicente Section, Lempa Section, Berlin Section and San Miguel Section. Paleoseismic studies carried out in the Berlin and San Vicente Segments reveal an important amount of quaternary deformation and paleoearthquakes up to Mw 7.6. In this study we present 45 capable seismic sources in El Salvador and their preliminary slip-rate from geological and GPS data. The GPS data detailled results are presented by Staller et al., 2014 in a complimentary communication. The calculated preliminary slip-rates range from 0.5 to 8 mm/yr for individualized faults within the ESFZ. We calculated maximum magnitudes from the mapped lengths and paleoseismic observations.We propose different earthquakes scenario including the potential combined rupture of different fault sections of the ESFZ, resulting in maximum earthquake magnitudes of Mw 7.6. We used deterministic models to calculate acceleration distribution related with maximum earthquakes of the different proposed scenario. The spatial distribution of seismic accelerations are compared and calibrated using the February 13, 2001 earthquake, as control earthquake. To explore the sources of historical earthquakes we compare synthetic acceleration maps with the historical earthquakes of March 6, 1719 and June 8, 1917. control earthquake. To explore the sources of historical earthquakes we compare synthetic acceleration maps with the historical earthquakes of March 6, 1719 and June 8, 1917.

  11. Areas of Unsolved Problems in Caribbean Active Tectonics

    NASA Astrophysics Data System (ADS)

    Mann, P.

    2015-12-01

    I review some unsolved problems in Caribbean active tectonics. At the regional and plate scale: 1) confirm the existence of intraplate deformation zones of the central Caribbean plate that are within the margin of error of ongoing GPS measurements; 2) carry out field studies to evaluate block models versus models for distributed fault shear on the densely populated islands of Jamaica, Hispaniola, Puerto Rico, and the Virgin Islands; 3) carry out paleoseismological research of key plate boundary faults that may have accumulated large strains but have not been previously studied in detail; 4) determine the age of onset and far-field effects of the Cocos ridge and the Central America forearc sliver; 4) investigate the origin and earthquake-potential of obliquely-sheared rift basins along the northern coast of Venezuela; 5) determine the age of onset and regional active, tectonic effects of the Panama-South America collision including the continued activation of the Maracaibo block; and 6) validate longterm rates on active subduction zones with improving, tomographic maps of subducted slabs. At the individual fault scale: 1) determine the mode of termination of large and active strike -slip faults and application of the STEP model (Septentrional, Polochic, El Pilar, Bocono, Santa Marta-Bucaramanaga); 2) improve the understanding of the earthquake potential on the Enriquillo-Plantain Garden fault zone given "off-fault" events such as the 2010 Haiti earthquake; how widespread is this behavior?; and 3) estimate size of future tsunamis from studies of historic or prehistoric slump scars and mass transport deposits; what potential runups can be predicted from this information?; and 4) devise ways to keep rapidly growing, circum-Caribbean urban populations better informed and safer in the face of inevitable and future, large earthquakes.

  12. Quaternary Activity of the Erciyes Fault Southeast of the Kayseri Basin, Turkey

    NASA Astrophysics Data System (ADS)

    Okumura, K.; Hayakawa, Y. S.; Kontani, R.; Fikri, K.

    2016-12-01

    The Erciyes fault in SE of the Kayseri basin is one of the most active Quaternary faults in Central Anatolia. Emre et al. (2011) mapped about 100 km long faults including a section runs across the Erciyes volcano. A M 7+ earthquake from the fault would be a big threat for the 1.5 million people in Kayseri basin, but little has been know about its activity and earthquake potential. We studied Plio-Pleistocene volacanics, Quaternary sediments, and UAV-SfM topography in southeast of the Kayseri basin and recognized significant dip-slip separation as well as sinistral slip in Late Quaternary. The Incesu ignimbrite (IC) of 2.52±0.49 Ma (Aydar et al., 2012) is a very distinctive densely welded ignimbrite layer in and around Kayseri basin. The Plinian pumice fall deposits from the Erciyes in Late Pleistocene (Sen et al. 2003) at Gesi Bagpnar (GBP) is another key-bed. There are two strands and one group of faults. The NE strike frontal strand separates the basin floor and the upland in SW extending from Kayseri city to more than 50 km NE. The Gesi Guney strand runs parallel to the frontal strand at 3 to 4 km away from the basin floor for 20 km from Ali Dag. The NS trending fault group is observed both inside and outside of the basin under IC. These NS faults are swarm of normal Pliocene faults. The Gesi Guney strand offsets IC around 120 m vertically. There is no information to infer the initiation of its activity, but the normal offset of an alluvial fan and unconsolidated fresh talus deposits indicate Late Quaternary activities. Near the SW end of the frontal strand, IC is vertically offset around 40 m. 15 km NE from the SW end, sand and gravel layers that intercalates GBP (0.11-0.14 Ma) are tilted to NW for 30 to 40 m and truncated by a sub-vertical sinistral faults. Most of frontal strand deformation occurred in Late Pleistocene because the offset of IC and GBP are similar. Estimated slip-rate of 0.3 to 0.4 mm/yr is significant for Central Anatolia.

  13. Active Fault Topography and Fault Outcrops in the Central Part of the Nukumi fault, the 1891 Nobi Earthquake Fault System, Central Japan

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Ueta, K.; Inoue, D.; Aoyagi, Y.; Yanagida, M.; Ichikawa, K.; Goto, N.

    2010-12-01

    It is important to evaluate the magnitude of earthquake caused by multiple active faults, taking into account the simultaneous effects. The simultaneity of adjacent active faults are often decided on the basis of geometric distances except for known these paleoseismic records. We have been studied the step area between the Nukumi fault and the Neodani fault, which appeared as consecutive ruptures in the 1891 Nobi earthquake, since 2009. The purpose of this study is to establish innovation in valuation technique of the simultaneity of adjacent active faults in addition to the paleoseismic record and the geometric distance. Geomorphological, geological and reconnaissance microearthquake surveys are concluded. The present work is intended to clarify the distribution of tectonic geomorphology along the Nukumi fault and the Neodani fault by high-resolution interpretations of airborne LiDAR DEM and aerial photograph, and the field survey of outcrops and location survey. The study area of this work is the southeastern Nukumi fault and the northwestern Neodani fault. We interpret DEM using shaded relief map and stereoscopic bird's-eye view made from 2m mesh DEM data which is obtained by airborne laser scanner of Kokusai Kogyo Co., Ltd. Aerial photographic survey is for confirmation of DEM interpretation using 1/16,000 scale photo. As a result of topographic survey, we found consecutive tectonic topography which is left lateral displacement of ridge and valley lines and reverse scarplets along the Nukumi fault and the Neodani fault . From Ogotani 2km southeastern of Nukumi pass which is located at the southeastern end of surface rupture along the Nukumi fault by previous study to Neooppa 9km southeastern of Nukumi pass, we can interpret left lateral topographies and small uphill-facing fault scarps on the terrace surface by detail DEM investigation. These topographies are unrecognized by aerial photographic survey because of heavy vegetation. We have found several new outcrops in this area where the surface ruptures of the 1891 Nobi earthquake have not been known. These outcrops have active fault which cut the layer of terrace deposit and slope deposit to the bottom of present soil layer in common. At the locality of Ogotani outcrop, the humic layer which age is from14th century to 15th century by 14C age dating is deformed by the active fault. The vertical displacement of the humic layer is 0.8-0.9m and the terrace deposit layer below the humic layer is ca. 1.3m. For this reason and the existence of fain grain deposit including AT tephra (28ka) in the footwall of the fault, this fault movement occurred more than once since the last glacial age. We conclude that the surface rupture of Nukumi fault in the 1891 Nobi earthquake is continuous to 9km southeast of Nukumi pass. In other words, these findings indicate that there is 10km parallel overlap zone between the surface rupture of the southeastern end of Nukumi fault and the northwestern end of Neodani fault.

  14. Fault specific GIS based seismic hazard maps for the Attica region, Greece

    NASA Astrophysics Data System (ADS)

    Deligiannakis, G.; Papanikolaou, I. D.; Roberts, G.

    2018-04-01

    Traditional seismic hazard assessment methods are based on the historical seismic records for the calculation of an annual probability of exceedance for a particular ground motion level. A new fault-specific seismic hazard assessment method is presented, in order to address problems related to the incompleteness and the inhomogeneity of the historical records and to obtain higher spatial resolution of hazard. This method is applied to the region of Attica, which is the most densely populated area in Greece, as nearly half of the country's population lives in Athens and its surrounding suburbs, in the Greater Athens area. The methodology is based on a database of 24 active faults that could cause damage to Attica in case of seismic rupture. This database provides information about the faults slip rates, lengths and expected magnitudes. The final output of the method is four fault-specific seismic hazard maps, showing the recurrence of expected intensities for each locality. These maps offer a high spatial resolution, as they consider the surface geology. Despite the fact that almost half of the Attica region lies on the lowest seismic risk zone according to the official seismic hazard zonation of Greece, different localities have repeatedly experienced strong ground motions during the last 15 kyrs. Moreover, the maximum recurrence for each intensity occurs in different localities across Attica. Highest recurrence for intensity VII (151-156 times over 15 kyrs, or up to a 96 year return period) is observed in the central part of the Athens basin. The maximum intensity VIII recurrence (115 times over 15 kyrs, or up to a 130 year return period) is observed in the western part of Attica, while the maximum intensity IX (73-77/15 kyrs, or a 195 year return period) and X (25-29/15 kyrs, or a 517 year return period) recurrences are observed near the South Alkyonides fault system, which dominates the strong ground motions hazard in the western part of the Attica mainland.

  15. Seismic environment of the Burro Flats site, Ventura County, California: a brief, limited literature review

    USGS Publications Warehouse

    Wentworth, Carl M.; Bonilla, Manuel G.; Buchanan, Jane M.

    1969-01-01

    A limited review of available literature suggests that the maximum horizontal ground acceleration at the Burro Flats site from earthquakes in the region could range from less than 0.1 to 0.49 g. A magnitude 8 earthquake on the nearby San Andreas fault could produce ground acceleration in the range 0.18 to 0.31 g, and an expectable larger earthquake on that fault could produce larger accelerations. Ground motion from possible smaller but closer earthquakes ranges up to 0.49 g for an earthquake of magnitude 6.5 on the adjacent "Burro Flats fault". Estimation of these accelerations is dependent on determining the geologic environment of the site, the appropriate earthquake magnitudes to be assigned significant faults in that environment, and the attenuation of shaking between the earthquake epicenters and the site. The site lies within a tectonically active region--the historically active San Andreas fault is only 34 miles to the northeast, and lesser faults showing evidence of late Quaternary displacement are located closer to the site. Evidence for youthfulness of these lesser faults varies, and except for the active Newport-Inglewood zone and the Santa Ynez fault, they qualify as possible but as yet-unproven active faults. All known faults with appropriate length to site-distance ratios that are reasonably classed as late Quaternary faults are discussed, and are included as potential earthquake generators. Earthquakes of appropriate magnitude to be assigned to each fault are determined by assuming rupture in one event of half the map length of the fault, and applying relations (determined by several authors) between earthquake magnitude and rupture length in historic events to determine magnitudes. These magnitudes are, for the purposes of this brief review, probably reasonable estimates of the capabilities of each fault, although earthquakes of larger magnitude are possible. Accelerations are then determined by assuming earthquakes of the above determined magnitude placed at the closest point to the site on the fault trace, and applying attenuation curves of three different authors. Considerable uncertainty is inherent in the rough estimates of seismic accelerations made herein, for they are dependent on a chain of judgments, each of which, in itself, is uncertain. Present knowledge of the geology of the region is incomplete, so that geometry and structural relations of the faults are in part uncertain, and much evidence bearing on the youth of the faults has yet to be gathered and evaluated. Estimation of earthquake magnitude is also uncertain, and even assuming that approximate magnitude is known rather than estimated from fault length, estimates of maximum ground acceleration may differ greatly depending on the authority used. Further consideration of ground acceleration at the site might refine the estimates made herein and resolve the apparent contradictions between the authorities cited. Attention to frequency and duration of strong shaking would also be appropriate. This study was undertaken at the request of A. J. Pressesky, Assistant Director for Nuclear Safety, Division of Reactor-Development and Technology, U.S. Atomic Energy Commission, in March, 1969. It is based on a brief review of pertinent literature to which the authors had immediate access during the few weeks (April-May, 1969) available for report preparation. Because the report is limited both in scope and thoroughness, it must be considered no more than a first estimate of the tectonic and seismic environment of the Burro Flats site, and should not be considered sufficient, in itself, as a basis for design. The report is intended, however, to indicate the breadth of inquiry that is necessary in the consideration of ground acceleration at sites in California, and to indicate the incomplete status of geologic mapping and other geologic studies in the region. The report describes the tectonic environment of the Burro Flats site, discusses 10 pertinent faults individually, and presents possible earthquake magnitudes for those faults and resultant potential ground accelerations at the site.

  16. Probabilistic seismic hazard study based on active fault and finite element geodynamic models

    NASA Astrophysics Data System (ADS)

    Kastelic, Vanja; Carafa, Michele M. C.; Visini, Francesco

    2016-04-01

    We present a probabilistic seismic hazard analysis (PSHA) that is exclusively based on active faults and geodynamic finite element input models whereas seismic catalogues were used only in a posterior comparison. We applied the developed model in the External Dinarides, a slow deforming thrust-and-fold belt at the contact between Adria and Eurasia.. is the Our method consists of establishing s two earthquake rupture forecast models: (i) a geological active fault input (GEO) model and, (ii) a finite element (FEM) model. The GEO model is based on active fault database that provides information on fault location and its geometric and kinematic parameters together with estimations on its slip rate. By default in this model all deformation is set to be released along the active faults. The FEM model is based on a numerical geodynamic model developed for the region of study. In this model the deformation is, besides along the active faults, released also in the volumetric continuum elements. From both models we calculated their corresponding activity rates, its earthquake rates and their final expected peak ground accelerations. We investigated both the source model and the earthquake model uncertainties by varying the main active fault and earthquake rate calculation parameters through constructing corresponding branches of the seismic hazard logic tree. Hazard maps and UHS curves have been produced for horizontal ground motion on bedrock conditions VS 30 ≥ 800 m/s), thereby not considering local site amplification effects. The hazard was computed over a 0.2° spaced grid considering 648 branches of the logic tree and the mean value of 10% probability of exceedance in 50 years hazard level, while the 5th and 95th percentiles were also computed to investigate the model limits. We conducted a sensitivity analysis to control which of the input parameters influence the final hazard results in which measure. The results of such comparison evidence the deformation model and with their internal variability together with the choice of the ground motion prediction equations (GMPEs) are the most influencing parameter. Both of these parameters have significan affect on the hazard results. Thus having good knowledge of the existence of active faults and their geometric and activity characteristics is of key importance. We also show that PSHA models based exclusively on active faults and geodynamic inputs, which are thus not dependent on past earthquake occurrences, provide a valid method for seismic hazard calculation.

  17. Magnetotelluric Studies of Fault Zones Surrounding the 2016 Pawnee, Oklahoma Earthquake

    NASA Astrophysics Data System (ADS)

    Evans, R. L.; Key, K.; Atekwana, E. A.

    2016-12-01

    Since 2008, there has been a dramatic increase in earthquake activity in the central United States in association with major oil and gas operations. Oklahoma is now considered one the most seismically active states. Although seismic networks are able to detect activity and map its locus, they are unable to image the distribution of fluids in the fault responsible for triggering seismicity. Electrical geophysical methods are ideally suited to image fluid bearing faults since the injected waste-waters are highly saline and hence have a high electrical conductivity. To date, no study has imaged the fluids in the faults in Oklahoma and made a direct link to the seismicity. The 2016 M5.8 Pawnee, Oklahoma earthquake provides an unprecedented opportunity for scientists to provide that link. Several injection wells are located within a 20 km radius of the epicenter; and studies have suggested that injection of fluids in high-volume wells can trigger earthquakes as far away as 30 km. During late October to early November, 2016, we are collecting magnetotelluric (MT) data with the aim of constraining the distribution of fluids in the fault zone. The MT technique uses naturally occurring electric and magnetic fields measured at Earth's surface to measure conductivity structure. We plan to carry out a series of short two-dimensional (2D) profiles of wideband MT acquisition located through areas where the fault recently ruptured and seismic activity is concentrated and also across the faults in the vicinity that did not rupture. The integration of our results and ongoing seismic studies will lead to a better understanding of the links between fluid injection and seismicity.

  18. Earthquake Hazard Assessment Based on Geological Data: An approach from Crystalline Terrain of Peninsular India

    NASA Astrophysics Data System (ADS)

    John, B.

    2009-04-01

    Earthquake Hazard Assessment Based on Geological Data: An approach from Crystalline Terrain of Peninsular India Biju John National Institute of Rock Mechanics b_johnp@yahoo.co.in Peninsular India was for long considered as seismically stable. But the recent earthquake sequence of Latur (1993), Jabalpur (1997), Bhuj (2001) suggests this region is among one of the active Stable Continental Regions (SCRs) of the world, where the recurrence intervals is of the order of tens of thousands of years. In such areas, earthquake may happen at unexpected locations, devoid of any previous seismicity or dramatic geomorphic features. Even moderate earthquakes will lead to heavy loss of life and property in the present scenario. So it is imperative to map suspected areas to identify active faults and evaluate its activities, which will be a vital input to seismic hazard assessment of SCR area. The region around Wadakkanchery, Kerala, South India has been experiencing micro seismic activities since 1989. Subsequent studies, by the author, identified a 30 km long WNW-ESE trending reverse fault, dipping south (45°), that influenced the drainage system of the area. The macroscopic and microscopic studies of the fault rocks from the exposures near Desamangalam show an episodic nature of faulting. Dislocations of pegmatitic veins across the fault indicate a cumulative dip displacement of 2.1m in the reverse direction. A minimum of four episodes of faulting were identified in this fault based on the cross cutting relations of different structural elements and from the mineralogic changes of different generations of gouge zones. This suggests that an average displacement of 52cm per event might have occurred for each event. A cyclic nature of faulting is identified in this fault zone in which the inter-seismic period is characterized by gouge induration and fracture sealing aided by the prevailing fluids. Available empirical relations connecting magnitude with displacement and rupture length show that each event might have produced an earthquake of magnitude ≥ 6.0, which could be a damaging one to an area like peninsular India. Electron Spin Resonance dating of fault gouge indicates a major event around 430ka. In the present stress regime this fault can be considered as seismically active, because the orientation of the fault is favorable for reactivation.

  19. High-resolution mapping based on an Unmanned Aerial Vehicle (UAV) to capture paleoseismic offsets along the Altyn-Tagh fault, China.

    PubMed

    Gao, Mingxing; Xu, Xiwei; Klinger, Yann; van der Woerd, Jerome; Tapponnier, Paul

    2017-08-15

    The recent dramatic increase in millimeter- to centimeter- resolution topographic datasets obtained via multi-view photogrammetry raises the possibility of mapping detailed offset geomorphology and constraining the spatial characteristics of active faults. Here, for the first time, we applied this new method to acquire high-resolution imagery and generate topographic data along the Altyn Tagh fault, which is located in a remote high elevation area and shows preserved ancient earthquake surface ruptures. A digital elevation model (DEM) with a resolution of 0.065 m and an orthophoto with a resolution of 0.016 m were generated from these images. We identified piercing markers and reconstructed offsets based on both the orthoimage and the topography. The high-resolution UAV data were used to accurately measure the recent seismic offset. We obtained the recent offset of 7 ± 1 m. Combined with the high resolution satellite image, we measured cumulative offsets of 15 ± 2 m, 20 ± 2 m, 30 ± 2 m, which may be due to multiple paleo-earthquakes. Therefore, UAV mapping can provide fine-scale data for the assessment of the seismic hazards.

  20. Study of Seismogenic Crust In The Eastern Province of Saudi Arabia And Its Relation To The Seismicity of The Ghawar Fields

    NASA Astrophysics Data System (ADS)

    Mogren, S. M.; Mukhopadhyay, M.

    2013-12-01

    The Rayn Anticlines (RA) developed in the Eastern Province of Saudi Arabia are truncated by the Abu-Jifan Fault (AJF) to their southeast and by the Wadi-Batin Fault (WBF) to the northwest. This set of anticlines is comprised of six sub-parallel super-giant anticlines, including the Ghawar Anticline (GA). Here we firstly present a revised seismicity map for the Eastern Province on the basis of ';Reviewed ISC Earthquake Catalogue' for the period 1970-2010 that shows the Eastern Province crust is seismogenic down to about 45 km depth while its surface width is 220 km (what is seven times wider than the width of GA). The Saudi Geological Survey (SGS) Earthquake Network Catalogue for Eastern Province shows that characteristic magnitude completeness (Mc), based on the assumption of self-similarity, have detected all local earthquakes above the cut-off magnitude ≥ 2.7. SGS catalogue events demonstrate that the GA is seismically intensely active where 826 events have originated during the period of 2005-10, of maximum magnitude ML 4.24. These events came almost in equal proportions from the Uthmaniyah-Hawaiyah and Haradh production divisions belonging to the central and southern Ghawar oil/gas Fields, where, the seismic zones orient in NE and NW directions respectively. Focal-depth distribution of events along the strike direction of seismic zones follows the ';En Nala axis' in GA and broadly defines an inverted triangular zone extending to crustal depths. Seismic activity below both the production divisions is supposedly triggered by hydrocarbon fluid-extraction activity; although, their root cause is probably due to regional compressive stress operative across RA. Triggered seismicity locally shows better correlation to mutually opposite reverse faults oriented NW and NE transgressing the Haradh and Uthmaniyah-Hawaiyah production divisions under the influence of regional compressive stress oriented N40°E. Some support to this inference comes from mapped surface faults/lineaments, four composite focal mechanism solutions as well as from the subsurface structural sections showing the pattern of basement uplift below GA. 3D computer simulation for seismicity below GA illustrates that some such attendant basement-faults are crust-penetrative. Location map of the study area showing the regularly-spaced, N-trending super-giant anticlines.

  1. Fault linkage and continental breakup

    NASA Astrophysics Data System (ADS)

    Cresswell, Derren; Lymer, Gaël; Reston, Tim; Stevenson, Carl; Bull, Jonathan; Sawyer, Dale; Morgan, Julia

    2017-04-01

    The magma-poor rifted margin off the west coast of Galicia (NW Spain) has provided some of the key observations in the development of models describing the final stages of rifting and continental breakup. In 2013, we collected a 68 x 20 km 3D seismic survey across the Galicia margin, NE Atlantic. Processing through to 3D Pre-stack Time Migration (12.5 m bin-size) and 3D depth conversion reveals the key structures, including an underlying detachment fault (the S detachment), and the intra-block and inter-block faults. These data reveal multiple phases of faulting, which overlap spatially and temporally, have thinned the crust to between zero and a few km thickness, producing 'basement windows' where crustal basement has been completely pulled apart and sediments lie directly on the mantle. Two approximately N-S trending fault systems are observed: 1) a margin proximal system of two linked faults that are the upward extension (breakaway faults) of the S; in the south they form one surface that splays northward to form two faults with an intervening fault block. These faults were thus demonstrably active at one time rather than sequentially. 2) An oceanward relay structure that shows clear along strike linkage. Faults within the relay trend NE-SW and heavily dissect the basement. The main block bounding faults can be traced from the S detachment through the basement into, and heavily deforming, the syn-rift sediments where they die out, suggesting that the faults propagated up from the S detachment surface. Analysis of the fault heaves and associated maps at different structural levels show complementary fault systems. The pattern of faulting suggests a variation in main tectonic transport direction moving oceanward. This might be interpreted as a temporal change during sequential faulting, however the transfer of extension between faults and the lateral variability of fault blocks suggests that many of the faults across the 3D volume were active at least in part simultaneously. Alternatively, extension may have varied in direction spatially if it were a rotation about a pole located to the north.

  2. USGS lidar science strategy—Mapping the technology to the science

    USGS Publications Warehouse

    Stoker, Jason M.; Brock, John C.; Soulard, Christopher E.; Ries, Kernell G.; Sugarbaker, Larry J.; Newton, Wesley E.; Haggerty, Patricia K.; Lee, Kathy E.; Young, John A.

    2016-01-11

    The U.S. Geological Survey (USGS) utilizes light detection and ranging (lidar) and enabling technologies to support many science research activities. Lidar-derived metrics and products have become a fundamental input to complex hydrologic and hydraulic models, flood inundation models, fault detection and geologic mapping, topographic and land-surface mapping, landslide and volcano hazards mapping and monitoring, forest canopy and habitat characterization, coastal and fluvial erosion mapping, and a host of other research and operational activities. This report documents the types of lidar being used by the USGS, discusses how lidar technology facilitates the achievement of individual mission area goals within the USGS, and offers recommendations and suggested changes in direction in terms of how a mission area could direct work using lidar as it relates to the mission area goals that have already been established.

  3. Using cluster analysis to organize and explore regional GPS velocities

    USGS Publications Warehouse

    Simpson, Robert W.; Thatcher, Wayne; Savage, James C.

    2012-01-01

    Cluster analysis offers a simple visual exploratory tool for the initial investigation of regional Global Positioning System (GPS) velocity observations, which are providing increasingly precise mappings of actively deforming continental lithosphere. The deformation fields from dense regional GPS networks can often be concisely described in terms of relatively coherent blocks bounded by active faults, although the choice of blocks, their number and size, can be subjective and is often guided by the distribution of known faults. To illustrate our method, we apply cluster analysis to GPS velocities from the San Francisco Bay Region, California, to search for spatially coherent patterns of deformation, including evidence of block-like behavior. The clustering process identifies four robust groupings of velocities that we identify with four crustal blocks. Although the analysis uses no prior geologic information other than the GPS velocities, the cluster/block boundaries track three major faults, both locked and creeping.

  4. High-resolution lidar topography of the Puget Lowland, Washington - A bonanza for earth science

    USGS Publications Warehouse

    Haugerud, R.A.; Harding, D.J.; Johnson, S.Y.; Harless, J.L.; Weaver, C.S.; Sherrod, B.L.

    2003-01-01

    More than 10,000 km2 of high-resolution, public-domain topography acquired by the Puget Sound Lidar Consortium is revolutionizing investigations of active faulting, continental glaciation, landslides, and surficial processes in the seismically active Puget Lowland. The Lowland-the population and economic center of the Pacific Northwest-presents special problems for hazards investigations, with its young glacial topography, dense forest cover, and urbanization. Lidar mapping during leaf-off conditions has led to a detailed digital model of the landscape beneath the forest canopy. The surface thus revealed contains a rich and diverse record of previously unknown surface-rupturing faults, deep-seated landslides, uplifted Holocene and Pleistocene beaches, and subglacial and periglacial features. More than half a dozen suspected postglacial fault scarps have been identified to date. Five scarps that have been trenched show evidence of large, Holocene, surface-rupturing earthquakes.

  5. Comparing the stress change characteristics and aftershock decay rate of the 2011 Mineral, VA, earthquake with similar earthquakes from a variety of tectonic settings

    NASA Astrophysics Data System (ADS)

    Walsh, L. S.; Montesi, L. G.; Sauber, J. M.; Watters, T. R.; Kim, W.; Martin, A. J.; Anderson, R.

    2011-12-01

    On August 23, 2011, the magnitude 5.8 Mineral, VA, earthquake rocked the U.S. national capital region (Washington, DC) drawing worldwide attention to the occurrence of intraplate earthquakes. Using regional Coulomb stress change, we evaluate to what extent slip on faults during the Mineral, VA, earthquake and its aftershocks may have increased stress on notable Cenozoic fault systems in the DC metropolitan area: the central Virginia seismic zone, the DC fault zone, and the Stafford fault system. Our Coulomb stress maps indicate that the transfer of stress from the Mineral, VA, mainshock was at least 500 times greater than that produced from the magnitude 3.4 Germantown, MD, earthquake that occurred northwest of DC on July 16, 2010. Overall, the Mineral, VA, earthquake appears to have loaded faults of optimum orientation in the DC metropolitan region, bringing them closer to failure. The distribution of aftershocks of the Mineral, VA, earthquake will be compared with Coulomb stress change maps. We further characterize the Mineral, VA, earthquake by comparing its aftershock decay rate with that of blind thrust earthquakes with similar magnitude, focal mechanism, and depth from a variety of tectonic settings. In particular, we compare aftershock decay relations of the Mineral, VA, earthquake with two well studied California reverse faulting events, the August 4, 1985 Kettleman Hills (Mw = 6.1) and October 1, 1987 Whittier Narrow (Mw = 5.9) earthquakes. Through these relations we test the hypothesis that aftershock duration is inversely proportional to fault stressing rate, suggesting that aftershocks in active tectonic margins may last only a few years while aftershocks in intraplate regions could endure for decades to a century.

  6. Geologic map of the Kechumstuk fault zone in the Mount Veta area, Fortymile mining district, east-central Alaska

    USGS Publications Warehouse

    Day, Warren C.; O’Neill, J. Michael; Dusel-Bacon, Cynthia; Aleinikoff, John N.; Siron, Christopher R.

    2014-01-01

    This map was developed by the U.S. Geological Survey Mineral Resources Program to depict the fundamental geologic features for the western part of the Fortymile mining district of east-central Alaska, and to delineate the location of known bedrock mineral prospects and their relationship to rock types and structural features. This geospatial map database presents a 1:63,360-scale geologic map for the Kechumstuk fault zone and surrounding area, which lies 55 km northwest of Chicken, Alaska. The Kechumstuk fault zone is a northeast-trending zone of faults that transects the crystalline basement rocks of the Yukon-Tanana Upland of the western part of the Fortymile mining district. The crystalline basement rocks include Paleozoic metasedimentary and metaigneous rocks as well as granitoid intrusions of Triassic, Jurassic, and Cretaceous age. The geologic units represented by polygons in this dataset are based on new geologic mapping and geochronological data coupled with an interpretation of regional and new geophysical data collected by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys. The geochronological data are reported in the accompanying geologic map text and represent new U-Pb dates on zircons collected from the igneous and metaigneous units within the map area.

  7. Principales lignes structurales du Maroc nord-oriental : apport de la gravimétrie

    NASA Astrophysics Data System (ADS)

    Chennouf, Touria; Khattach, Driss; Milhi, Abdellah; Andrieux, Pierre; Keating, Pierre

    2007-05-01

    The present work is based on various filtered maps (horizontal derivative, upward continuation) and Euler deconvolution of the gravity data from northeastern Morocco. These results allow the delineation of many geological structures, such as faults, basins, or diapirs. Some of these structures are hidden totally or partially by the Mesozoic and Cenozoic cover. The results were used to make a structural map of the study area; this map confirms the existence of several faults, localised or inferred, from former geological studies. It complements information on some of them and outlines a great number of deep or near-surface faults that had remained unknown until the present time. The major features show two principal directions: N080°-085° and N055°-065°, with a predominance of the latter, and their depth can reach 4500 m. The N080°-085° directions correspond to the Kebdana, Sidi Bouhouria, Naima, and Guefait faults, and the N055°-065° directions correspond to a fault parallel to the Mediterranean coast and the Moulouya, Madagh, Angad, and Zekkara faults.

  8. Plate convergence and deformation, North Luzon Ridge, Philippines

    NASA Astrophysics Data System (ADS)

    Lewis, Stephen D.; Hayes, Dennis E.

    1989-10-01

    Marine geophysical and earthquake seismology data indicate that the North Luzon Ridge, a volcano-capped bathymetrie ridge system that extends between Luzon and Taiwan, is presently undergoing deformation in response to the relative motion between the Asian and Philippine Sea plates. Plate motion models predict convergence along the western side of the Philippine Sea plate, from Japan in the north to Indonesia in the south, and most of this plate margin is defined by active subduction zones. However, the western boundary of the Philippine Sea plate adjacent to the North Luzon Ridge shows no evidence of an active WNW-dipping subduction zone; this is in marked contrast to the presence of both the Philippine Trench/East Luzon Trough subduction zones to the south and the Ryukyu Trench subduction zone to the north. Crustal shortening, in response to ongoing plate convergence in the North Luzon Ridge region, apparently takes place through a complex pattern of strike-slip and thrust faulting, rather than by the typical subduction of oceanic lithosphere along a discreet zone. The curvilinear bathymetrie trends within the North Luzon Ridge represent the traces of active faults. The distribution of these faults, mapped by both multichannel and single-channel seismic reflection methods and earthquake seismicity patterns and focal mechanism solutions, suggest that right-lateral, oblique-slip faulting occurs along NE-trending faults, and left-lateral, oblique-slip faulting takes place on N- and NNW-trending faults. The relative plate convergence accommodated by the deformation of the North Luzon Ridge will probably be taken up in the future by the northward-propagating East Luzon Trough subduction zone.

  9. Identification of Geomorphic Conditions Favoring Preservation of Multiple Individual Displacements Across Transform Faults

    NASA Astrophysics Data System (ADS)

    Williams, P. L.; Phillips, D. A.; Bowles-Martinez, E.; Masana, E.; Stepancikova, P.

    2010-12-01

    Terrestrial and airborne LiDAR data, and low altitude aerial photography have been utilized in conjunction with field work to identify and map single and multiple-event stream-offsets along all strands of the San Andreas fault in the Coachella Valley. Goals of the work are characterizing the range of displacements associated with the fault’s prehistoric surface ruptures, evaluating patterns of along-fault displacement, and disclosing processes associated with the prominent Banning-Mission Creek fault junction. Preservation offsets is associated with landscape conditions including: (1) well-confined and widely spaced source streams up-slope of the fault; (2) persistent geomorphic surfaces below the fault; (3) slope directions oriented approximately perpendicular to the fault. Notably, a pair of multiple-event offset sites have been recognized in coarse fan deposits below the Mission Creek fault near 1000 Palms oasis. Each of these sites is associated with a single source drainage oriented approximately perpendicular to the fault, and preserves a record of individual fault displacements affecting the southern portion of the Mission Creek branch of the San Andreas fault. The two sites individually record long (>10 event) slip-per-event histories. Documentation of the sites indicates a prevalence of moderate displacements and a small number of large offsets. This is consistent with evidence developed in systematic mapping of individual and multiple event stream offsets in the area extending 70 km south to Durmid Hill. Challenges to site interpretation include the presence of closely spaced en echelon fault branches and indications of stream avulsion in the area of the modern fault crossing. Conversely, strong bar and swale topography produce high quality offset indicators that can be identified across en echelon branches in most cases. To accomplish the detailed mapping needed to fully recover the complex yet well-preserved geomorphic features under investigation, a program of terrestrial laser scanning (TLS) was conducted at the 1000 Palms oasis stream offset sites. Data products and map interpretations will be presented along with initial applications of the study to characterizing San Andreas fault rupture hazard. Continuing work will seek to more fully populate the dataset of larger offsets, evaluate means to objectively date the larger offsets, and, as completely as possible, to characterize magnitudes of past surface ruptures of the San Andreas fault in the Coachella Valley.

  10. MAP Fault Localization Based on Wide Area Synchronous Phasor Measurement Information

    NASA Astrophysics Data System (ADS)

    Zhang, Yagang; Wang, Zengping

    2015-02-01

    In the research of complicated electrical engineering, the emergence of phasor measurement units (PMU) is a landmark event. The establishment and application of wide area measurement system (WAMS) in power system has made widespread and profound influence on the safe and stable operation of complicated power system. In this paper, taking full advantage of wide area synchronous phasor measurement information provided by PMUs, we have carried out precise fault localization based on the principles of maximum posteriori probability (MAP). Large numbers of simulation experiments have confirmed that the results of MAP fault localization are accurate and reliable. Even if there are interferences from white Gaussian stochastic noise, the results from MAP classification are also identical to the actual real situation.

  11. Aeromagnetic Study of the Nortern Acambay Graben and Amealco Caldera, Central Mexican Volcanic Belt

    NASA Astrophysics Data System (ADS)

    Gonzalez, T.

    2011-12-01

    The Mexican Volcanic Belt (MVB) is characterized by E-W striking faults which form a series of en echelon graben along its length. In the central region of the MVB is located the Acambay graben an intra-arc tectonic depression structure, of apparent Quaternary age, which gives rise to pronounced scarps over a distance of about 80 Km. and 15 to 35 Km wide. The general arrangement of the faults that constitute the Acambay graben shows E-W trend which defines the fronts of the graben exhibits a major fault discontinuity. The graben is limited of the north by the Acambay- Tixmadeje and Epitafio Huerta faults and in the south by the Pastores and Venta de Bravo faults.. In the northern wall in the graben is located the Amealco caldera. This volcanic center (approximately 10 km in diameter) was formed by several discrete volcanic events, which produced an ignimbrite which covers the area. It is partially cut by a regional fault and the southern portion of the Amealco Caldera was displaced by a normal faulting along a segment of the Epitafio Huerta system. Continued tectonic activity in the Acambay area is confirmed by recent seismic episodes The Amealco tuff is the most important volcanic unit because of its volume and distribution. Aeromagnetic data was obtained and analyzed the anomalies. The anomaly map was compared with the surface geology and larger anomalies were correlated with major volcanic features. Since our main interest was in mapping the subsurface intrusive and volcanic bodies, the total field magnetic anomalies were reduced to the pole by using the double integral Fourier method. The reduced to the pole anomaly map results in a simplified pattern of isolated positive and negative anomalies, which show an improved correlation with all major volcanic structures. For the analysis and interpretation of the anomalies, the reduced to the pole anomalies were continued upward at various reference levels. These operations result in smoothing of the anomaly field by the filtering of high frequency anomalies that may be related to shallow sources.

  12. Distribution of the Crustal Magnetic Field in Sichuan-Yunnan Region, Southwest China

    PubMed Central

    Bai, Chunhua; Kang, Guofa; Gao, Guoming

    2014-01-01

    Based on the new and higher degree geomagnetic model NGDC-720-V3, we have investigated the spatial distribution, the altitude decay characteristics of the crustal magnetic anomaly, the contributions from different wavelength bands to the anomaly, and the relationship among the anomaly, the geological structure, and the geophysical field in Sichuan-Yunnan region of China. It is noted that the most outstanding feature in this area is the strong positive magnetic anomaly in Sichuan Basin, a geologically stable block. Contrasting with this feature, a strong negative anomaly can be seen nearby in Longmen Mountain block, an active block. This contradiction implies a possible relationship between the magnetic field and the geological activity. Completely different feature in magnetic field distribution is seen in the central Yunnan block, another active region, where positive and negative anomalies distribute alternatively, showing a complex magnetic anomaly map. Some fault belts, such as the Longmen Mountain fault, Lijiang-Xiaojinhe fault, and the Red River fault, are the transitional zones of strong and weak or negative and positive anomalies. The corresponding relationship between the magnetic anomaly and the geophysical fields was confirmed. PMID:25243232

  13. Internal structure, fault rocks, and inferences regarding deformation, fluid flow, and mineralization in the seismogenic Stillwater normal fault, Dixie Valley, Nevada

    USGS Publications Warehouse

    Caine, Jonathan S.; Bruhn, R.L.; Forster, C.B.

    2010-01-01

    Outcrop mapping and fault-rock characterization of the Stillwater normal fault zone in Dixie Valley, Nevada are used to document and interpret ancient hydrothermal fluid flow and its possible relationship to seismic deformation. The fault zone is composed of distinct structural and hydrogeological components. Previous work on the fault rocks is extended to the map scale where a distinctive fault core shows a spectrum of different fault-related breccias. These include predominantly clast-supported breccias with angular clasts that are cut by zones containing breccias with rounded clasts that are also clast supported. These are further cut by breccias that are predominantly matrix supported with angular and rounded clasts. The fault-core breccias are surrounded by a heterogeneously fractured damage zone. Breccias are bounded between major, silicified slip surfaces, forming large pod-like structures, systematically oriented with long axes parallel to slip. Matrix-supported breccias have multiply brecciated, angular and rounded clasts revealing episodic deformation and fluid flow. These breccias have a quartz-rich matrix with microcrystalline anhedral, equant, and pervasively conformable mosaic texture. The breccia pods are interpreted to have formed by decompression boiling and rapid precipitation of hydrothermal fluids whose flow was induced by coseismic, hybrid dilatant-shear deformation and hydraulic connection to a geothermal reservoir. The addition of hydrothermal silica cement localized in the core at the map scale causes fault-zone widening, local sealing, and mechanical heterogeneities that impact the evolution of the fault zone throughout the seismic cycle. ?? 2010.

  14. Active simultaneous uplift and margin-normal extension in a forearc high, Crete, Greece

    NASA Astrophysics Data System (ADS)

    Gallen, S. F.; Wegmann, K. W.; Bohnenstiehl, D. R.; Pazzaglia, F. J.; Brandon, M. T.; Fassoulas, C.

    2014-07-01

    The island of Crete occupies a forearc high in the central Hellenic subduction zone and is characterized by sustained exhumation, surface uplift and extension. The processes governing orogenesis and topographic development here remain poorly understood. Dramatic topographic relief (2-6 km) astride the southern coastline of Crete is associated with large margin-parallel faults responsible for deep bathymetric depressions known as the Hellenic troughs. These structures have been interpreted as both active and inactive with either contractional, strike-slip, or extensional movement histories. Distinguishing between these different structural styles and kinematic histories here allows us to explore more general models for improving our global understanding of the tectonic and geodynamic processes of syn-convergent extension. We present new observations from the south-central coastline of Crete that clarifies the role of these faults in the late Cenozoic evolution of the central Hellenic margin and the processes controlling Quaternary surface uplift. Pleistocene marine terraces are used in conjunction with optically stimulated luminesce dating and correlation to the Quaternary eustatic curve to document coastal uplift and identify active faults. Two south-dipping normal faults are observed, which extend offshore, offset these marine terrace deposits and indicate active N-S (margin-normal) extension. Further, marine terraces preserved in the footwall and hanging wall of both faults demonstrate that regional net uplift of Crete is occurring despite active extension. Field mapping and geometric reconstructions of an active onshore normal fault reveal that the subaqueous range-front fault of south-central Crete is synthetic to the south-dipping normal faults on shore. These findings are inconsistent with models of active horizontal shortening in the upper crust of the Hellenic forearc. Rather, they are consistent with topographic growth of the forearc in a viscous orogenic wedge, where crustal thickening and uplift are a result of basal underplating of material that is accompanied by extension in the upper portions of the wedge. Within this framework a new conceptual model is presented for the late Cenozoic vertical tectonics of the Hellenic forearc.

  15. Semi-automatic mapping of fault rocks on a Digital Outcrop Model, Gole Larghe Fault Zone (Southern Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Vho, Alice; Bistacchi, Andrea

    2015-04-01

    A quantitative analysis of fault-rock distribution is of paramount importance for studies of fault zone architecture, fault and earthquake mechanics, and fluid circulation along faults at depth. Here we present a semi-automatic workflow for fault-rock mapping on a Digital Outcrop Model (DOM). This workflow has been developed on a real case of study: the strike-slip Gole Larghe Fault Zone (GLFZ). It consists of a fault zone exhumed from ca. 10 km depth, hosted in granitoid rocks of Adamello batholith (Italian Southern Alps). Individual seismogenic slip surfaces generally show green cataclasites (cemented by the precipitation of epidote and K-feldspar from hydrothermal fluids) and more or less well preserved pseudotachylytes (black when well preserved, greenish to white when altered). First of all, a digital model for the outcrop is reconstructed with photogrammetric techniques, using a large number of high resolution digital photographs, processed with VisualSFM software. By using high resolution photographs the DOM can have a much higher resolution than with LIDAR surveys, up to 0.2 mm/pixel. Then, image processing is performed to map the fault-rock distribution with the ImageJ-Fiji package. Green cataclasites and epidote/K-feldspar veins can be quite easily separated from the host rock (tonalite) using spectral analysis. Particularly, band ratio and principal component analysis have been tested successfully. The mapping of black pseudotachylyte veins is more tricky because the differences between the pseudotachylyte and biotite spectral signature are not appreciable. For this reason we have tested different morphological processing tools aimed at identifying (and subtracting) the tiny biotite grains. We propose a solution based on binary images involving a combination of size and circularity thresholds. Comparing the results with manually segmented images, we noticed that major problems occur only when pseudotachylyte veins are very thin and discontinuous. After having tested and refined the image analysis processing for some typical images, we have recorded a macro with ImageJ-Fiji allowing to process all the images for a given DOM. As a result, the three different types of rocks can be semi-automatically mapped on large DOMs using a simple and efficient procedure. This allows to develop quantitative analyses of fault rock distribution and thickness, fault trace roughness/curvature and length, fault zone architecture, and alteration halos due to hydrothermal fluid-rock interaction. To improve our workflow, additional or different morphological operators could be integrated in our procedure to yield a better resolution on small and thin pseudotachylyte veins (e.g. perimeter/area ratio).

  16. High-resolution aeromagnetic mapping of volcanic terrain, Yellowstone National Park

    USGS Publications Warehouse

    Finn, C.A.; Morgan, L.A.

    2002-01-01

    High-resolution aeromagnetic data acquired over Yellowstone National Park (YNP) show contrasting patterns reflecting differences in rock composition, types and degree of alteration, and crustal structures that mirror the variable geology of the Yellowstone Plateau. The older, Eocene, Absaroka Volcanic Supergroup, a series of mostly altered, andesitic volcanic and volcaniclastic rocks partially exposed in mountains on the eastern margin of YNP, produces high-amplitude, positive magnetic anomalies, strongly contrasting with the less magnetic, younger, latest Cenozoic, Yellowstone Plateau Group, primarily a series of fresh and variably altered rhyolitic rocks covering most of YNP. The Yellowstone caldera is the centerpiece of the Yellowstone Plateau; part of its boundary can be identified on the aeromagnetic map as a series of discontinuous, negative magnetic anomalies that reflect faults or zones along which extensive hydrothermal alteration is localized. The large-volume rhyolitic ignimbrite deposits of the 0.63-Ma Lava Creek Tuff and the 2.1-Ma Huckleberry Ridge Tuff, which are prominent lithologies peripheral to the Yellowstone caldera, produce insignificant magnetic signatures. A zone of moderate amplitude positive anomalies coincides with the mapped extent of several post-caldera rhyolitic lavas. Linear magnetic anomalies reflect the rectilinear fault systems characteristic of resurgent domes in the center of the caldera. Peripheral to the caldera, the high-resolution aeromagnetic map clearly delineates flow unit boundaries of pre- and post-caldera basalt flows, which occur stratigraphically below the post-caldera rhyolitic lavas and are not exposed extensively at the surface. All of the hot spring and geyser basins, such as Norris, Upper and Lower Geyser Basins, West Thumb, and Gibbon, are associated with negative magnetic anomalies, reflecting hydrothermal alteration that has destroyed the magnetic susceptibility of minerals in the volcanic rocks. Within Yellowstone Lake, which is mostly within the Yellowstone caldera, aeromagnetic lows also are associated with known hydrothermal activity in the lake. Many of the magnetic lows extend beyond the areas of alteration and hot springs, suggesting a more extensive currently active or fossil hydrothermal system than is currently mapped. Steep magnetic gradients, suggesting faults or fractures, bound the magnetic lows. This implies that fractures localize the hot springs. Magnetic gradient trends reflect the mapped Basin and Range structural trends of north and northwest, as well as northeasterly trends that parallel the regional trend of the Snake River Plain and the track of the Yellowstone hot spot which follow the Precambrian structural grain. These trends are found both at small scales such as in hydrothermal basins and at more regional fault scales, which suggests that the regional stress field and reactivated older structures may exert some control on localization of hydrothermal activity. ?? 2002 Elsevier Science B.V. All rights reserved.

  17. Paleoseismology of Sinistral-Slip Fault System, Focusing on the Mae Chan Fault, on the Shan Plateau, SE Asia.

    NASA Astrophysics Data System (ADS)

    Curtiss, E. R.; Weldon, R. J.; Wiwegwin, W.; Weldon, E. M.

    2017-12-01

    The Shan Plateau, which includes portions of Myanmar, China, Thailand, Laos, and Vietnam lies between the dextral NS-trending Sagaing and SE-trending Red River faults and contains 14 active E-W sinistral-slip faults, including the Mae Chan Fault (MCF) in northern Thailand. The last ground-rupturing earthquake to occur on the broader sinistral fault system was the M6.8 Tarlay earthquake in Myanmar in March 2011 on the Nam Ma fault immediately north of the MCF the last earthquake to occur on the MCF was a M4.0 in the 5th century that destroyed the entire city of Wiang Yonok (Morley et al., 2011). We report on a trenching study of the MCF, which is part of a broader study to create a regional seismic hazard map of the entire Shan Plateau. By studying the MCF, which appears to be representative of the sinistral faults, and easy to work on, we hope to characterize both it and the other unstudied faults in the system. As part of a paleoseismology training course we dug two trenches at the Pa Tueng site on the MCF, within an offset river channel and the trenches exposed young sediment with abundant charcoal (in process of dating), cultural artifacts, and evidence for the last two (or three) ground-rupturing earthquakes on the fault. We hope to use the data from this site to narrow the recurrence interval, which is currently to be 2,000-4,000 years and the slip rate of 1-2 mm/year, being developed at other sites on the fault. By extrapolating the data of the MCF to the other faults we will have a better understanding of the whole fault system. Once we have characterized the MCF, we plan to use geomorphic offsets and strain rates from regional GPS to relatively estimate the activity of the other faults in this sinistral system.

  18. Fault-based PSHA of an active tectonic region characterized by low deformation rates: the case of the Lower Rhine Graben

    NASA Astrophysics Data System (ADS)

    Vanneste, Kris; Vleminckx, Bart; Camelbeeck, Thierry

    2016-04-01

    The Lower Rhine Graben (LRG) is one of the few regions in intraplate NW Europe where seismic activity can be linked to active faults, yet probabilistic seismic hazard assessments of this region have hitherto been based on area-source models, in which the LRG is modeled as a single or a small number of seismotectonic zones with uniform seismicity. While fault-based PSHA has become common practice in more active regions of the world (e.g., California, Japan, New Zealand, Italy), knowledge of active faults has been lagging behind in other regions, due to incomplete tectonic inventory, low level of seismicity, lack of systematic fault parameterization, or a combination thereof. The past few years, efforts are increasingly being directed to the inclusion of fault sources in PSHA in these regions as well, in order to predict hazard on a more physically sound basis. In Europe, the EC project SHARE ("Seismic Hazard Harmonization in Europe", http://www.share-eu.org/) represented an important step forward in this regard. In the frame of this project, we previously compiled the first parameterized fault model for the LRG that can be applied in PSHA. We defined 15 fault sources based on major stepovers, bifurcations, gaps, and important changes in strike, dip direction or slip rate. Based on the available data, we were able to place reasonable bounds on the parameters required for time-independent PSHA: length, width, strike, dip, rake, slip rate, and maximum magnitude. With long-term slip rates remaining below 0.1 mm/yr, the LRG can be classified as a low-deformation-rate structure. Information on recurrence interval and elapsed time since the last major earthquake is lacking for most faults, impeding time-dependent PSHA. We consider different models to construct the magnitude-frequency distribution (MFD) of each fault: a slip-rate constrained form of the classical truncated Gutenberg-Richter MFD (Anderson & Luco, 1983) versus a characteristic MFD following Youngs & Coppersmith (1985). The summed Anderson & Luco fault MFDs show a remarkably good agreement with the MFD obtained from the historical and instrumental catalog for the entire LRG, whereas the summed Youngs & Coppersmith MFD clearly underpredicts low to moderate magnitudes, but yields higher occurrence rates for M > 6.3 than would be obtained by simple extrapolation of the catalog MFD. The moment rate implied by the Youngs & Coppersmith MFDs is about three times higher, but is still within the range allowed by current GPS uncertainties. Using the open-source hazard engine OpenQuake (http://openquake.org/), we compute hazard maps for return periods of 475, 2475, and 10,000 yr, and for spectral periods of 0 s (PGA) and 1 s. We explore the impact of various parameter choices, such as MFD model, GMPE distance metric, and inclusion of a background zone to account for lower magnitudes, and we also compare the results with hazard maps based on area-source models. References: Anderson, J. G., and J. E. Luco (1983), Consequences of slip rate constraints on earthquake occurrence relations, Bull. Seismol. Soc. Am., 73(2), 471-496. Youngs, R. R., and K. J. Coppersmith (1985), Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates, Bull. Seismol. Soc. Am., 75(4), 939-964.

  19. Strong ground motion prediction applying dynamic rupture simulations for Beppu-Haneyama Active Fault Zone, southwestern Japan

    NASA Astrophysics Data System (ADS)

    Yoshimi, M.; Matsushima, S.; Ando, R.; Miyake, H.; Imanishi, K.; Hayashida, T.; Takenaka, H.; Suzuki, H.; Matsuyama, H.

    2017-12-01

    We conducted strong ground motion prediction for the active Beppu-Haneyama Fault zone (BHFZ), Kyushu island, southwestern Japan. Since the BHFZ runs through Oita and Beppy cities, strong ground motion as well as fault displacement may affect much to the cities.We constructed a 3-dimensional velocity structure of a sedimentary basin, Beppu bay basin, where the fault zone runs through and Oita and Beppu cities are located. Minimum shear wave velocity of the 3d model is 500 m/s. Additional 1-d structure is modeled for sites with softer sediment: holocene plain area. We observed, collected, and compiled data obtained from microtremor surveys, ground motion observations, boreholes etc. phase velocity and H/V ratio. Finer structure of the Oita Plain is modeled, as 250m-mesh model, with empirical relation among N-value, lithology, depth and Vs, using borehole data, then validated with the phase velocity data obtained by the dense microtremor array observation (Yoshimi et al., 2016).Synthetic ground motion has been calculated with a hybrid technique composed of a stochastic Green's function method (for HF wave), a 3D finite difference (LF wave) and 1D amplification calculation. Fault geometry has been determined based on reflection surveys and active fault map. The rake angles are calculated with a dynamic rupture simulation considering three fault segments under a stress filed estimated from source mechanism of earthquakes around the faults (Ando et al., JpGU-AGU2017). Fault parameters such as the average stress drop, a size of asperity etc. are determined based on an empirical relation proposed by Irikura and Miyake (2001). As a result, strong ground motion stronger than 100 cm/s is predicted in the hanging wall side of the Oita plain.This work is supported by the Comprehensive Research on the Beppu-Haneyama Fault Zone funded by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan.

  20. Probabilistic seismic hazard assessments of Sabah, east Malaysia: accounting for local earthquake activity near Ranau

    NASA Astrophysics Data System (ADS)

    Khalil, Amin E.; Abir, Ismail A.; Ginsos, Hanteh; Abdel Hafiez, Hesham E.; Khan, Sohail

    2018-02-01

    Sabah state in eastern Malaysia, unlike most of the other Malaysian states, is characterized by common seismological activity; generally an earthquake of moderate magnitude is experienced at an interval of roughly every 20 years, originating mainly from two major sources, either a local source (e.g. Ranau and Lahad Dato) or a regional source (e.g. Kalimantan and South Philippines subductions). The seismicity map of Sabah shows the presence of two zones of distinctive seismicity, these zones are near Ranau (near Kota Kinabalu) and Lahad Datu in the southeast of Sabah. The seismicity record of Ranau begins in 1991, according to the international seismicity bulletins (e.g. United States Geological Survey and the International Seismological Center), and this short record is not sufficient for seismic source characterization. Fortunately, active Quaternary fault systems are delineated in the area. Henceforth, the seismicity of the area is thus determined as line sources referring to these faults. Two main fault systems are believed to be the source of such activities; namely, the Mensaban fault zone and the Crocker fault zone in addition to some other faults in their vicinity. Seismic hazard assessments became a very important and needed study for the extensive developing projects in Sabah especially with the presence of earthquake activities. Probabilistic seismic hazard assessments are adopted for the present work since it can provide the probability of various ground motion levels during expected from future large earthquakes. The output results are presented in terms of spectral acceleration curves and uniform hazard curves for periods of 500, 1000 and 2500 years. Since this is the first time that a complete hazard study has been done for the area, the output will be a base and standard for any future strategic plans in the area.

  1. The role of large strike-slip faults in a convergent continental setting - first results from the Dzhungarian Fault in Eastern Kazakhstan

    NASA Astrophysics Data System (ADS)

    Grützner, Christoph; Campbell, Grace; Elliott, Austin; Walker, Richard; Abdrakhmatov, Kanatbek

    2016-04-01

    The Tien Shan and the Dzhungarian Ala-tau mountain ranges in Eastern Kazakhstan and China take up a significant portion of the total convergence between India and Eurasia, despite the fact that they are more than 1000 km away from the actual plate boundary. Shortening is accommodated by large thrust faults that strike more or less perpendicular to the convergence vector, and by a set of conjugate strike-slip faults. Some of these strike-slip faults are major features of several hundred kilometres length and have produced great historical earthquakes. In most cases, little is known about their slip-rates and earthquake history, and thus, about their role in the regional tectonic setting. This study deals with the NW-SE trending Dzhungarian Fault, a more than 350 km-long, right-lateral strike slip feature. It borders the Dzhungarian Ala-tau range and forms one edge of the so-called Dzhungarian Gate. The fault curves from a ~305° strike at its NW tip in Kazakhstan to a ~328° strike in China. No historical ruptures are known from the Kazakh part of the fault. A possible rupture in 1944 in the Chinese part remains discussed. We used remote sensing, Structure-from-Motion (SfM), differential GPS, field mapping, and Quaternary dating of offset geological markers in order to map the fault-related morphology and to measure the slip rate of the fault at several locations along strike. We also aimed to find out the age of the last surface rupturing earthquake and to determine earthquake recurrence intervals and magnitudes. We were further interested in the relation between horizontal and vertical motion along the fault and possible fault segmentation. Here we present first results from our 2015 survey. High-resolution digital elevation models of offset river terraces allowed us to determine the slip vector of the most recent earthquake. Preliminary dating results from abandoned fluvial terraces allow us to speculate on a late Holocene surface rupturing event. Morphological data indicate that more than one fault strand was activated in the Holocene. Folded river terraces testify to the amplitude of long-term deformation associated with the Dzhungarian Fault, but no dating results are available yet.

  2. Evidence of Multiple Ground-rupturing Earthquakes in the Past 4000 Years along the Pasuruan Fault, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Marliyani, G. I.; Arrowsmith, R.; Helmi, H.

    2015-12-01

    Instrumental and historical records of earthquakes, supplemented by paleoeseismic constraints can help reveal the earthquake potential of an area. The Pasuruan fault is a high angle normal fault with prominent youthful scarps cutting young deltaic sediments in the north coast of East Java, Indonesia and may pose significant hazard to the densely populated region. This fault has not been considered a significant structure, and mapped as a lineament with no sense of motion. Information regarding past earthquakes along this fault is not available. The fault is well defined both in the imagery and in the field as a ~13km long, 2-50m-high scarp. Open and filled fractures and natural exposures of the south-dipping fault plane indicate normal sense of motion. We excavated two fault-perpendicular trenches across a relay ramp identified during our surface mapping. Evidence for past earthquakes (documented in both trenches) includes upward fault termination with associated fissure fills, colluvial wedges and scarp-derived debris, folding, and angular unconformities. The ages of the events are constrained by 23 radiocarbon dates on detrital charcoal. We calibrated the dates using IntCal13 and used Oxcal to build the age model of the events. Our preliminary age model indicates that since 2006±134 B.C., there has been at least five ground rupturing earthquakes along the fault. The oldest event identified in the trench however, is not well-dated. Our modeled 95th percentile ranges of the next four earlier earthquakes (and their mean) are A.D. 1762-1850 (1806), A.D. 1646-1770 (1708), A.D. 1078-1648 (1363), and A.D. 726-1092 (909), yielding a rough recurrence rate of 302±63 yrs. These new data imply that Pasuruan fault is more active than previously thought. Additional well-dated earthquakes are necessary to build a solid earthquake recurrence model. Rupture along the whole section implies a minimum earthquake magnitude of 6.3, considering 13km as the minimum surface rupture length.

  3. Seismic Evidence of A Widely Distributed West Napa Fault Zone, Hendry Winery, Napa, California

    NASA Astrophysics Data System (ADS)

    Goldman, M.; Catchings, R.; Chan, J. H.; Criley, C.

    2015-12-01

    Following the 24 August 2014 Mw 6.0 South Napa earthquake, surface rupture was mapped along the West Napa Fault Zone (WNFZ) for a distance of ~ 14 km and locally within zones up to ~ 2 km wide. Near the northern end of the surface rupture, however, several strands coalesced to form a narrow, ~100-m-wide zone of surface rupture. To determine the location, width, and shallow (upper few hundred meters) geometry of the fault zone, we acquired an active-source seismic survey across the northern surface rupture in February 2015. We acquired both P- and S-wave data, from which we developed reflection images and tomographic images of Vp, Vs, Vp/Vs, and Poisson's ratio of the upper 100 m. We also used small explosive charges within surface ruptures located ~600 m north of our seismic array to record fault-zone guided waves. Our data indicate that at the latitude of the Hendry Winery, the WNFZ is characterized by at least five fault traces that are spaced 60 to 200 m apart. Zones of low-Vs, low-Vp/Vs, and disrupted reflectors highlight the fault traces on the tomography and reflection images. On peak-ground-velocity (PGV) plots, the most pronounced high-amplitude guided-wave seismic energy coincides precisely with the mapped surface ruptures, and the guided waves also show discrete high PGV zones associated with unmapped fault traces east of the surface ruptures. Although the surface ruptures of the WNFZ were observed only over a 100-m-wide zone at the Hendry Winery, our data indicate that the fault zone is at least 400 m wide, which is probably a minimum width given the 400-m length of our seismic profile. Slip on the WNFZ is generally considered to be low relative to most other Bay Area faults, but we suggest that the West Napa Fault is a zone of widely distributed shear, and to fully account for the total slip on the WNFZ, slip on all traces of this wide fault zone must be considered.

  4. The transtensional offshore portion of the northern San Andreas fault: Fault zone geometry, late Pleistocene to Holocene sediment deposition, shallow deformation patterns, and asymmetric basin growth

    USGS Publications Warehouse

    Beeson, Jeffrey W.; Johnson, Samuel Y.; Goldfinger, Chris

    2017-01-01

    We mapped an ~120 km offshore portion of the northern San Andreas fault (SAF) between Point Arena and Point Delgada using closely spaced seismic reflection profiles (1605 km), high-resolution multibeam bathymetry (~1600 km2), and marine magnetic data. This new data set documents SAF location and continuity, associated tectonic geomorphology, shallow stratigraphy, and deformation. Variable deformation patterns in the generally narrow (∼1 km wide) fault zone are largely associated with fault trend and with transtensional and transpressional fault bends.We divide this unique transtensional portion of the offshore SAF into six sections along and adjacent to the SAF based on fault trend, deformation styles, seismic stratigraphy, and seafloor bathymetry. In the southern region of the study area, the SAF includes a 10-km-long zone characterized by two active parallel fault strands. Slip transfer and long-term straightening of the fault trace in this zone are likely leading to transfer of a slice of the Pacific plate to the North American plate. The SAF in the northern region of the survey area passes through two sharp fault bends (∼9°, right stepping, and ∼8°, left stepping), resulting in both an asymmetric lazy Z–shape sedimentary basin (Noyo basin) and an uplifted rocky shoal (Tolo Bank). Seismic stratigraphic sequences and unconformities within the Noyo basin correlate with the previous 4 major Quaternary sea-level lowstands and record basin tilting of ∼0.6°/100 k.y. Migration of the basin depocenter indicates a lateral slip rate on the SAF of 10–19 mm/yr for the past 350 k.y.Data collected west of the SAF on the south flank of Cape Mendocino are inconsistent with the presence of an offshore fault strand that connects the SAF with the Mendocino Triple Junction. Instead, we suggest that the SAF previously mapped onshore at Point Delgada continues onshore northward and transitions to the King Range thrust.

  5. Chasing the Garlock: A study of tectonic response to vertical axis rotation

    NASA Astrophysics Data System (ADS)

    Guest, Bernard; Pavlis, Terry L.; Golding, Heather; Serpa, Laura

    2003-06-01

    Vertical-axis, clockwise block rotations in the Northeast Mojave block are well documented by numerous authors. However, the effects of these rotations on the crust to the north of the Northeast Mojave block have remained unexplored. In this paper we present a model that results from mapping and geochronology conducted in the north and central Owlshead Mountains. The model suggests that some or all of the transtension and rotation observed in the Owlshead Mountains results from tectonic response to a combination of clockwise block rotation in the Northeast Mojave block and Basin and Range extension. The Owlshead Mountains are effectively an accommodation zone that buffers differential extension between the Northeast Mojave block and the Basin and Range. In addition, our model explores the complex interactions that occur between faults and fault blocks at the junction of the Garlock, Brown Mountain, and Owl Lake faults. We hypothesize that the bending of the Garlock fault by rotation of the Northeast Mojave block resulted in a misorientation of the Garlock that forced the Owl Lake fault to break in order to accommodate slip on the western Garlock fault. Subsequent sinistral slip on the Owl Lake fault offset the Garlock, creating the now possibly inactive Mule Springs strand of the Garlock fault. Dextral slip on the Brown Mountain fault then locked the Owl Lake fault, forcing the active Leach Lake strand of the Garlock fault to break.

  6. Structure of a normal seismogenic fault zone in carbonates: The Vado di Corno Fault, Campo Imperatore, Central Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Demurtas, Matteo; Fondriest, Michele; Balsamo, Fabrizio; Clemenzi, Luca; Storti, Fabrizio; Bistacchi, Andrea; Di Toro, Giulio

    2016-09-01

    The Vado di Corno Fault Zone (VCFZ) is an active extensional fault cutting through carbonates in the Italian Central Apennines. The fault zone was exhumed from ∼2 km depth and accommodated a normal throw of ∼2 km since Early-Pleistocene. In the studied area, the master fault of the VCFZ dips N210/54° and juxtaposes Quaternary colluvial deposits in the hangingwall with cataclastic dolostones in the footwall. Detailed mapping of the fault zone rocks within the ∼300 m thick footwall-block evidenced the presence of five main structural units (Low Strain Damage Zone, High Strain Damage Zone, Breccia Unit, Cataclastic Unit 1 and Cataclastic Unit 2). The Breccia Unit results from the Pleistocene extensional reactivation of a pre-existing Pliocene thrust. The Cataclastic Unit 1 forms a ∼40 m thick band lining the master fault and recording in-situ shattering due to the propagation of multiple seismic ruptures. Seismic faulting is suggested also by the occurrence of mirror-like slip surfaces, highly localized sheared calcite-bearing veins and fluidized cataclasites. The VCFZ architecture compares well with seismological studies of the L'Aquila 2009 seismic sequence (mainshock MW 6.1), which imaged the reactivation of shallow-seated low-angle normal faults (Breccia Unit) cut by major high-angle normal faults (Cataclastic Units).

  7. Preliminary report on the Nelson and Radovan copper prospects, Nizina district, Alaska

    USGS Publications Warehouse

    Sainsbury, C.J.

    1952-01-01

    Renewed copper exploration by Alaska Copper Mines, Incorporated, at the Nelson and Radovan prospects, Nizina district, Alaska, led the Geological Survey in 1951 to map in detail the Nelson fault block, and to re-examine the old workings. In addition, two new prospects were studied. The Nelson fault block is cut by many dominantly strike-slip faults of small displacement, and by bedding faults. Slickensided chalcocite shows post-mineral movement, and chalcocite veinlet in a filled solution cavity indicates that some of the chalcocite is secondary, perhaps very recent. Structural relations indicate two overthrust faults cut the block. The Radovan Greenstone prospect shows massive chalcocite, up to 3 feet wide, in a silicified, epidotized fault zone in the Nikolai greenstone. Ore indicated by surface exposures may amount to 450 tons of chalcocite. The Radovan Low-Contact prospect is on a continuation of the same fault approximately 3 miles southwest of the Greenstone prospect, and 150 feet above the contact of the Nikolai greenstone and the overlying Chitistone limestone. Limonite staining is widespread in bedding planes and small faults near the fault zone; mineralization in the fault zone consists of pyrite, chalcocite, bornite, malachite, realgar, orpiment and stibnite. The sulphides in the fault zone, plus the widespread silicification and epidotization indicate a strong zone of hydrothermal activity which merits extensive prospecting.

  8. Structural Geology of the Northwestern Portion of Los Alamos National Laboratory, Rio Grande Rift, New Mexico: Implications for Seismic Surface Rupture Potential from TA-3 to TA-55

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamie N. Gardner: Alexis Lavine; Giday WoldeGabriel; Donathon Krier

    1999-03-01

    Los Alamos National Laboratory lies at the western boundary of the Rio Grande rift, a major tectonic feature of the North American Continent. Three major faults locally constitute the modem rift boundary, and each of these is potentially seismogenic. In this study we have gathered structural geologic data for the northwestern portion of Los Alamos National Laboratory through high-precision geologic mapping, conventional geologic mapping, stratigraphic studies, drilling, petrologic studies, and stereographic aerial photograph analyses. Our study area encompasses TA-55 and TA-3, where potential for seismic surface rupture is of interest, and is bounded on the north and south by themore » townsite of Los Alamos and Twomile Canyon, respectively. The study area includes parts of two of the potentially active rift boundary faults--the Pajarito and Rendija Canyon faults-that form a large graben that we name the Diamond Drive graben. The graben embraces the western part of the townsite of Los Alamos, and its southern end is in the TA-3 area where it is defined by east-southeast-trending cross faults. The cross faults are small, but they accommodate interactions between the two major fault zones and gentle tilting of structural blocks to the north into the graben. North of Los Alamos townsite, the Rendija Canyon fault is a large normal fault with about 120 feet of down-to-the-west displacement over the last 1.22 million years. South from Los Alamos townsite, the Rendija Canyon fault splays to the southwest into a broad zone of deformation. The zone of deformation is about 2,000 feet wide where it crosses Los Alamos Canyon and cuts through the Los Alamos County Landfill. Farther southwest, the fault zone is about 3,000 feet wide at the southeastern corner of TA-3 in upper Mortandad Canyon and about 5,000 feet wide in Twomile Canyon. Net down-to-the-west displacement across the entire fault zone over the last 1.22 million years decreases to the south as the fault zone broadens as follows: about 100 feet at Los Alamos Canyon, about 50 feet at upper Mortandad Canyon, and less than 30 feet at Twomile Canyon. These relations lead us to infer that the Rendija Canyon fault probably dies out just south of Twomile Canyon. In detail, the surface deformation expressed within the fault zones can be large, fairly simple normal faults, broad zones of smaller faults, largely unfaulted monocline, and faulted monocline. Our study indicates that the seismic surface rupture hazard, associated with the faults in the study area, is localized. South of the county landfill and Los Alamos Canyon, displacements on individual faults become very small, less than about 10 feet in the last 1.22 million years. Such small displacements imply that these little faults do not have much continuity along strike and in a worst-case scenario present a mean probabilistic fault displacement hazard of less than 0.67 inches in 10,000 years (Olig et al., 1998). We encourage, however, site-specific fault investigations for new construction in certain zones of our study area and that facility siting on potentially active faults be avoided.« less

  9. Active Fault Mapping of Naga-Disang Thrust (Belt of Schuppen) for Assessing Future Earthquake Hazards in NE India

    NASA Astrophysics Data System (ADS)

    Kumar, A.

    2014-12-01

    We observe the geodynamic appraisal of Naga-Disang Thrust North East India. The Disang thrust extends NE-SW over a length of 480 km and it defines the eastern margin of Neogene basin. It branches out from Haflong-Naga thrust and in the NE at Bulbulia in the right bank of Noa Dihing River, it is terminated by Mishmi thrust, which extends into Myanmar as 'Sagaing fault,which dip generally towards SE. It extends between Dauki fault in the SW and Mishmi thrust in the NE. When the SW end of 'Belt of Schuppen' moved upwards and towards east along the Dauki fault, the NE end moved downwards and towards west along the Mishmi thrust, causing its 'S' shaped bending. The SRTM generated DEM is used to map the topographic expression of the schuppen belt, where these thrusts are significantly marked by topographic break. Satellite imagery map also shows presence lineaments supporting the post tectonic activities along Naga-Disang Thrusts. The southern part of 'Belt of Schuppen' extends along the sheared western limb of southerly plunging Kohima synform, a part of Indo Burma Ranges (IBR) and it is seismically active.The crustal velocity at SE of Schuppen is 39.90 mm/yr with a azimuth of 70.780 at Lumami, 38.84 mm/yr (Azimuth 54.09) at Senapati and 36.85 mm/yr (Azimuth 54.09) at Imphal. The crustal velocity at NW of Schuppen belt is 52.67 mm/yr (Azimuth 57.66) near Dhauki Fault in Meghalaya. It becomes 43.60 mm/yr (Azimuth76.50) - 44.25 (Azimuth 73.27) at Tiding and Kamlang Nagar around Mishmi thrust. The presence of Schuppen is marked by a change in high crustal velocity from Indian plate to low crustal velocity in Mishmi Suture as well as Indo Burma Ranges. The difference in crustal velocities results in building up of strain along the Schuppen which may trigger a large earthquake in the NE India in future. The belt of schuppean seems to be seismically active, however, the enough number of large earthquakes are not recorded. These observations are significant on Naga-Disang Thrusts to reveal a possible seismic gap in NE India observed from two great earthquakes in the region viz. 1897 (Shillong 8.7M) and 1950 (Arunachal-China 8.7M), which is required to be investigated.

  10. Detailed Mapping of Historical and Preinstrumental Earthquake Ruptures in Central Asia Using Multi-Scale, Multi-Platform Photogrammetry

    NASA Astrophysics Data System (ADS)

    Elliott, A. J.; Walker, R. T.; Parsons, B.; Ren, Z.; Ainscoe, E. A.; Abdrakhmatov, K.; Mackenzie, D.; Arrowsmith, R.; Gruetzner, C.

    2016-12-01

    In regions of the planet with long historical records, known past seismic events can be attributed to specific fault sources through the identification and measurement of single-event scarps in high-resolution imagery and topography. The level of detail captured by modern remote sensing is now sufficient to map and measure complete earthquake ruptures that were originally only sparsely mapped or overlooked entirely. We can thus extend the record of mapped earthquake surface ruptures into the preinstrumental period and capture the wealth of information preserved in the numerous historical earthquake ruptures throughout regions like Central Asia. We investigate two major late 19th and early 20th century earthquakes that are well located macroseismically but whose fault sources had proved enigmatic in the absence of detailed imagery and topography. We use high-resolution topographic models derived from photogrammetry of satellite, low-altitude, and ground-based optical imagery to map and measure the coseismic scarps of the 1889 M8.3 Chilik, Kazakhstan and 1932 M7.6 Changma, China earthquakes. Measurement of the scarps on the combined imagery and topography reveals the extent and slip distribution of coseismic rupture in each of these events, showing both earthquakes involved multiple faults with variable kinematics. We use a 1-m elevation model of the Changma fault derived from Pleiades satellite imagery to map the changing kinematics of the 1932 rupture along strike. For the 1889 Chilik earthquake we use 1.5-m SPOT-6 satellite imagery to produce a regional elevation model of the fault ruptures, from which we identify three distinct, intersecting fault systems that each have >20 km of fresh, single-event scarps. Along sections of each of these faults we construct high resolution (330 points per sq m) elevation models using quadcopter- and helikite-mounted cameras. From the detailed topography we measure single-event oblique offsets of 6-10 m, consistent with the large inferred magnitude of the 1889 Chilik event. High resolution, photogrammetric topography offers a low-cost, effective way to thoroughly map rupture traces and measure coseismic displacements for past fault ruptures, extending our record of coseismic displacements into a past rich with formerly sparsely documented ruptures.

  11. Development of an expert analysis tool based on an interactive subsidence hazard map for urban land use in the city of Celaya, Mexico

    NASA Astrophysics Data System (ADS)

    Alloy, A.; Gonzalez Dominguez, F.; Nila Fonseca, A. L.; Ruangsirikulchai, A.; Gentle, J. N., Jr.; Cabral, E.; Pierce, S. A.

    2016-12-01

    Land Subsidence as a result of groundwater extraction in central Mexico's larger urban centers initiated in the 80's as a result of population and economic growth. The city of Celaya has undergone subsidence for a few decades and a consequence is the development of an active normal fault system that affects its urban infrastructure and residential areas. To facilitate its analysis and a land use decision-making process we created an online interactive map enabling users to easily obtain information associated with land subsidence. Geological and socioeconomic data of the city was collected, including fault location, population data, and other important infrastructure and structural data has been obtained from fieldwork as part of a study abroad interchange undergraduate course. The subsidence and associated faulting hazard map was created using an InSAR derived subsidence velocity map and population data from INEGI to identify hazard zones using a subsidence gradient spatial analysis approach based on a subsidence gradient and population risk matrix. This interactive map provides a simple perspective of different vulnerable urban elements. As an accessible visualization tool, it will enhance communication between scientific and socio-economic disciplines. Our project also lays the groundwork for a future expert analysis system with an open source and easily accessible Python coded, SQLite database driven website which archives fault and subsidence data along with visual damage documentation to civil structures. This database takes field notes and provides an entry form for uniform datasets, which are used to generate a JSON. Such a database is useful because it allows geoscientists to have a centralized repository and access to their observations over time. Because of the widespread presence of the subsidence phenomena throughout cities in central Mexico, the spatial analysis has been automated using the open source software R. Raster, rgeos, shapefiles, and rgdal libraries have been used to develop the script which permits to obtain the raster maps of horizontal gradient and population density. An advantage is that this analysis can be automated for periodic updates or repurposed for similar analysis in other cities, providing an easily accessible tool for land subsidence hazard assessments.

  12. Helicopter Electromagnetic and Magnetic Surveys of the Upper and Middle Zones of the Trinity Aquifer, Uvalde and Bexar Counties, Texas

    NASA Astrophysics Data System (ADS)

    Smith, D. V.; Blome, C. D.; Smith, B. D.; Clark, A. C.

    2009-12-01

    Detailed helicopter electromagnetic and magnetic surveys (HEM) were conducted in northern Uvalde and Bexar Counties, Texas, as part of a geologic mapping and hydrologic study being conducted by the U.S. Geological Survey (USGS). The aquifers of the Lower Cretaceous Trinity Group (collectively termed the Trinity aquifer) are an important regional water source in the Hill Country of south-central Texas. Rock units comprising the middle aquifer segment are represented by the lower member of the Glen Rose Formation and the Cow Creek Limestone and Hensel Sandstone members of the Pearsall Formation. The lower Trinity hydrologic segment is composed of the Hosston and Sligo Limestones and is confined by the overlying Hammet Shale. Karst features commonly occur in the Trinity Group because of the dissolution of gypsum- and anhydrite-rich beds. Faults and fractures have not been sufficiently analyzed to evaluate the effects these structures have on inter- and intra-formational groundwater flow. The survey in the north Seco Creek area covers the recharge zone of the Edwards aquifer and part of the catchment zone composed of the upper Trinity segment. These data augment the scant geologic mapping in the area by delineating faults, collapse features, and hydrostratigraphic units. The HEM survey in northern Bexar County covered the Camp Stanley Storage Activity, the Camp Bullis Training Site, parts of the recharge zone of the Edwards aquifer south of the military bases, and part of Cibolo Creek to the north. Basic line spacing was 200 meters using six frequencies. In-fill lines were flown with a spacing of 100 meters in the central part of the study area to better resolve geologic structures and karst features. The data processing took into account high EM interference and cultural noise. Apparent resistivity (ρa) maps are used in interpretation of geologic structures, trends, and in the identification of electrical properties of lithologic units. The ρa maps show the northwest trending faults of the Balcones fault zone as well as oblique trending cross faults. Though many of the major faults had been identified in previous geologic mapping, other possibly significant faults were not recognized from traditional techniques. High resistivities within the Glen Rose Limestone are indicative of more competent lithologies which have a greater limestone content. During the evolution of the groundwater system the limestone units are most likely to have developed secondary porosity conducive to establishing flow paths. In contrast, lower resistivities are associated with clay, marl, and mudstone units which have lower porosity and permeability. Resistivity depth sections along flight lines and 3D visualization of resistive zones define reefal structures in the middle Trinity segment. Detailed hydrogeologic mapping and HEM depth modeling illustrate the approach to be taken in future studies of the Trinity.

  13. Precise location of San Andreas Fault tremors near Cholame, California using seismometer clusters: Slip on the deep extension of the fault?

    USGS Publications Warehouse

    Shelly, D.R.; Ellsworth, W.L.; Ryberg, T.; Haberland, C.; Fuis, G.S.; Murphy, J.; Nadeau, R.M.; Burgmann, R.

    2009-01-01

    We examine a 24-hour period of active San Andreas Fault (SAF) tremor and show that this tremor is largely composed of repeated similar events. Utilizing this similarity, we locate the subset of the tremor with waveforms similar to an identified low frequency earthquake (LFE) "master template," located using P and S wave arrivals to be ???26 km deep. To compensate for low signal-to-noise, we estimate event-pair differential times at "clusters" of nearby stations rather than at single stations. We find that the locations form a near-linear structure in map view, striking parallel to the SAF and near the surface trace. Therefore, we suggest that at least a portion of the tremor occurs on the deep extension of the fault, likely reflecting shear slip, similar to subduction zone tremor. If so, the SAF may extend to the base of the crust, ???10 km below the deepest regular earthquakes on the fault. ?? 2009 by the American Geophysical Union.

  14. Analysis of the 2003-2004 microseismic sequence in the western part of the Corinth Rift

    NASA Astrophysics Data System (ADS)

    Godano, Maxime; Bernard, Pascal; Dublanchet, Pierre; Canitano, Alexandre; Marsan, David

    2013-04-01

    The Corinth rift is one of the most seismically active zones in Europe. The seismic activity follows a swarm organization with alternation of intensive crisis and more quiescent periods. The seismicity mainly occurs under the Gulf of Corinth in a 3-4 km north-dipping layer between 5 and 12 km. Several hypotheses have been proposed to explain this seismic layer. Nevertheless, the relationships between seismicity, deep structures and faults mapped at the surface remain unclear. Moreover, fluids seem to play a key role in the occurrence of the seismic activity (Bourouis and Cornet 2009, Pacchiani and Lyon-Caen 2009). Recently, a detailed analysis of the microseismicity (multiplets identification, precise relocation, focal mechanisms determination) between 2000 and 2007 in the western part of the Corinth rift have highlighted north-dipping (and some south-dipping) planar active microstructures in the seismic layer with normal fault mechanisms (Lambotte et al., in preparation; Godano et al., in preparation). A multiplet (group of earthquakes with similar waveform) can be interpreted as repeated ruptures on the same asperity due to transient forcing as silent creep on fault segment or fluid circulation. The detailed analysis of the multiplets in the Corinth rift is an opportunity to better understand coupling between seismic and aseismic processes. In the present study we focus on the seismic crisis that occurred from October 2003 to July 2004 in the western part of the Corinth Gulf. This crisis consists in 2431 relocated events with magnitude ranging from 0.5 to 3.1 (b-value = 1.4). The joint analysis of (1) the position of the multiplets with respect to the faults mapped at the surface, (2) the geometry of the main multiplets and (3) the fault plane solutions shows that the seismic crisis is probably related to the activation in depth of the Fassouleika and Aigion faults. The spatio-temporal analysis of the microseismicity highlights an overall migration from south-east to north-west characterized by the successive activation of the multiplets. We next perform a spectral analysis to determine source parameters for each multiplet in order to estimate size of the asperities and cumulative coseismic slip. From the preceding observations and results we finally try to reproduce the 2003-2004 microseismic sequence using rate-and-state 3D asperity model (Dublanchet et al., submitted). The deformation measured during the crisis by the strainmeter installed in the Trizonia island is used in the modeling to constrain the maximum slip amplitude.

  15. Mountain Meadows Dacite: Oligocene intrusive complex that welds together the Los Angeles Basin, northwestern Peninsular Ranges, and central Transverse Ranges, California

    USGS Publications Warehouse

    McCulloh, Thane H.; Beyer, Larry A.; Morin, Ronald W.

    2001-01-01

    Dikes and irregular intrusive bodies of distinctive Oligocene biotite dacite and serially related hornblende latite and felsite occur widely in the central and eastern San Gabriel Mountains, southern California, and are related to the Telegraph Peak granodiorite pluton. Identical dacite is locally present beneath Middle Miocene Topanga Group Glendora Volcanics at the northeastern edge of the Los Angeles Basin, where it is termed Mountain Meadows Dacite. This study mapped the western and southwestern limits of the dacite distribution to understand the provenance of derived redeposited clasts, to perceive Neogene offsets on several large strike-slip faults, to test published palinspastic reconstructions, and to better understand the tectonic boundaries that separate contrasting pre-Tertiary rock terranes where the Peninsular Ranges meet the central and western Transverse Ranges and the Los Angeles Basin. Transported and redeposited clasts of dacite-latite occur in deformed lower Miocene and lower middle Miocene sandy conglomerates (nonmarine, nearshore, and infrequent upper bathyal) close to the northern and northeastern margins of the Los Angeles Basin for a distance of nearly 60 km. Tie-lines between distinctive source suites and clast occurrences indicate that large tracts of the ancestral San Gabriel Mountains were elevated along range-bounding faults as early as 16–15 Ma. The tie-lines prohibit very large strike-slip offsets on those faults. Transport of eroded dacite began south of the range as early as 18 Ma. Published and unpublished data about rocks adjacent to the active Santa Monica-Hollywood-Raymond oblique reverse left-lateral fault indicate that cumulative left slip totals 13–14 km and total offset postdates 7 Ma. This cumulative slip, with assembly of stratigraphic and paleogeographic data, invalidates prior estimates of 60 to 90 km of left slip on these faults beginning about 17–16 Ma. A new and different palinspastic reconstruction of a region southwest of the San Andreas Fault Zone is proposed. Our reconstruction incorporates 20° of clockwise rotation of tracts north of the Raymond Fault from the easternmost Santa Monica Mountains to the Vasquez Creek Fault (San Gabriel south branch). We interpret the Vasquez Creek Fault as a reverse and right-lateral tear fault. Right slip on the tear becomes reverse dip slip on the northeast-striking Clamshell-Sawpit fault complex, interpreted as an offset part of the Mount Lukens Fault. This explains the absence of evidence for lateral offset of the Glendora Volcanics and associated younger marine strata where those are broken farther east by the eastern Sierra Madre reverse fault system. About 34 km of right slip is suggested for all breaks of the San Gabriel fault system. New paleogeographic maps of the Paleogene basin margin and of a Middle Miocene marine embayment and strandline derive in part from our palinspastic reconstruction. These appealingly simple maps fit well with data from the central Los Angeles Basin to the south and southwest.

  16. Post-caldera faulting of the Late Quaternary Menengai caldera, Central Kenya Rift (0.20°S, 36.07°E)

    NASA Astrophysics Data System (ADS)

    Riedl, Simon; Melnick, Daniel; Mibei, Geoffrey K.; Njue, Lucy; Strecker, Manfred R.

    2015-04-01

    A structural geological analysis of young caldera volcanoes is necessary to characterize their volcanic activity, assess their geothermal potential, and decipher the spatio-temporal relationships of faults on a larger tectonic scale. Menengai caldera is one of several major Quaternary trachytic caldera volcanoes that are aligned along the volcano-tectonic axis of the Kenya Rift, the archetypal active magmatic rift and nascent plate boundary between the Nubia and Somalia plates. The caldera covers an area of approximately 80 km² and is among the youngest and also largest calderas in the East African Rift, situated close to Nakuru - a densely populated urban area. There is an increasing interest in caldera volcanoes in the Kenya Rift, because these are sites of relatively young volcanic and tectonic activity, and they are considered important sites for geothermal exploration and future use for the generation of geothermal power. Previous studies of Menengai showed that the caldera collapsed in a multi-event, multiple-block style, possibly as early as 29 ka. In an attempt to characterize the youngest tectonic activity along the volcano-tectonic axis in the transition between the Central and Northern Kenya rifts we first used a high-resolution digital surface model, which we derived by structure-from-motion from an unmanned aerial vehicle campaign. This enabled us to identify previously unrecognized normal faults, associated dyke intrusions and volcanic eruptive centers, and transfer faults with strike-slip kinematics in the caldera interior and its vicinity. In a second step we verified these structures at outcrop scale, assessed their relationship with known stratigraphic horizons and dated units, and performed detailed fault measurements, which we subsequently used for fault-kinematic analysis. The most important structures that we mapped are a series of north-northeast striking normal faults, which cross-cut both the caldera walls and early Holocene lake shorelines outside the caldera. These faults have similar strikes as Pleistocene faults that define the left-stepping, north-northeast oriented segments of the volcano-tectonic axis of the inner trough of the Central Kenya Rift. In the center of the caldera, these faults are kinematically linked with oblique-slip and strike-slip transfer faults, similar to other sectors in the Central Kenya Rift. The structural setup of Menengai and the faults to the north and south of the eruptive center is thus compatible with tectono-magmatic activity in an oblique extensional tectonic regime, which reflects the tectonic and seismic activity along a nascent plate boundary.

  17. High sedimentation rates and thrust fault modulation: Insights from ocean drilling offshore the St. Elias Mountains, southern Alaska

    NASA Astrophysics Data System (ADS)

    Worthington, Lindsay L.; Daigle, Hugh; Clary, Wesley A.; Gulick, Sean P. S.; Montelli, Aleksandr

    2018-02-01

    The southern Alaskan margin offshore the St. Elias Mountains has experienced the highest recorded offshore sediment accumulation rates globally. Combined with high uplift rates, active convergence and extensive temperate glaciation, the margin provides a superb setting for evaluating competing influences of tectonic and surface processes on orogen development. We correlate results from Integrated Ocean Drilling Program (IODP) Expedition 341 Sites U1420 and U1421 with regional seismic data to determine the spatial and temporal evolution of the Pamplona Zone fold-thrust belt that forms the offshore St. Elias deformation front on the continental shelf. Our mapping shows that the pattern of active faulting changed from distributed across the shelf to localized away from the primary glacial depocenter over ∼300-780 kyrs, following an order-of-magnitude increase in sediment accumulation rates. Simple Coulomb stress calculations show that the suppression of faulting is partially controlled by the change in sediment accumulation rates which created a differential pore pressure regime between the underlying, faulted strata and the overlying, undeformed sediments.

  18. Seismic cycle feedbacks in a mid-crustal shear zone

    NASA Astrophysics Data System (ADS)

    Melosh, Benjamin L.; Rowe, Christie D.; Gerbi, Christopher; Smit, Louis; Macey, Paul

    2018-07-01

    Mid-crustal fault rheology is controlled by alternating brittle and plastic deformation mechanisms, which cause feedback cycles that influence earthquake behavior. Detailed mapping and microstructural observations in the Pofadder Shear Zone (Namibia and South Africa) reveal a lithologically heterogeneous shear zone core with quartz-rich mylonites and ultramylonites, plastically overprinted pseudotachylyte and active shear folds. We present evidence for a positive feedback cycle in which coseismic grain size reduction facilitates active shear folding by enhancing competency contrasts and promoting crystal plastic flow. Shear folding strengthens a portion of a shear zone by limb rotation, focusing deformation and promoting plastic flow or brittle slip in resulting areas of localized high stress. Using quartz paleopiezometry, we estimate strain and slip rates consistent with other studies of exhumed shear zones and modern plate boundary faults, helping establish the Pofadder Shear Zone as an ancient analogue to modern, continental-scale, strike-slip faults. This feedback cycle influences seismicity patterns at the scale of study (10s of meters) and possibly larger scales as well, and contributes to bulk strengthening of the brittle-plastic transition on modern plate boundary faults.

  19. Active fault systems of the Kivu rift and Virunga volcanic province, and implications for geohazards

    NASA Astrophysics Data System (ADS)

    Zal, H. J.; Ebinger, C. J.; Wood, D. J.; Scholz, C. A.; d'Oreye, N.; Carn, S. A.; Rutagarama, U.

    2013-12-01

    H Zal, C Ebinger, D. Wood, C. Scholz, N. d'Oreye, S. Carn, U. Rutagarama The weakly magmatic Western rift system, East Africa, is marked by fault-bounded basins filled by freshwater lakes that record tectonic and climatic signals. One of the smallest of the African Great Lakes, Lake Kivu, represents a unique geohazard owing to the warm, saline bottom waters that are saturated in methane, as well as two of the most active volcanoes in Africa that effectively dam the northern end of the lake. Yet, the dynamics of the basin system and the role of magmatism were only loosely constrained prior to new field and laboratory studies in Rwanda. In this work, we curated, merged, and analyzed historical and digital data sets, including spectral analyses of merged Shuttle Radar Topography Mission topography and high resolution CHIRP bathymetry calibrated by previously mapped fault locations along the margins and beneath the lake. We quantitatively compare these fault maps with the time-space distribution of earthquakes located using data from a temporary array along the northern sector of Lake Kivu, as well as space-based geodetic data. During 2012, seismicity rates were highest beneath Nyiragongo volcano, where a range of low frequency (1-3 s peak frequency) to tectonic earthquakes were located. Swarms of low-frequency earthquakes correspond to periods of elevated gas emissions, as detected by Ozone Monitoring Instrument (OMI). Earthquake swarms also occur beneath Karisimbi and Nyamuragira volcanoes. A migrating swarm of earthquakes in May 2012 suggests a sill intrusion at the DR Congo-Rwanda border. We delineate two fault sets: SW-NE, and sub-N-S. Excluding the volcano-tectonic earthquakes, most of the earthquakes are located along subsurface projections of steep border faults, and intrabasinal faults calibrated by seismic reflection data. Small magnitude earthquakes also occur beneath the uplifted rift flanks. Time-space variations in seismicity patterns provide a baseline for hazard assessment, and guide future studies in the Kivu rift, and document the role of magmatism in rifting processes.

  20. Geologic Map and GIS Data for the Patua Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2011-10-31

    Patua—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, veins, dikes, unit polygons, and attitudes of strata and faults. - List of stratigraphic units. - Locations of geothermal wells. - Locations of 40Ar/39Ar and tephra samples.

  1. Geologic Map and GID Data for the Salt Wells Geothermal Area

    DOE Data Explorer

    Hinz, Nick

    2011-10-31

    Salt Wells—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, dikes, unit polygons, and attitudes of strata and faults. - List of stratigraphic units and stratigraphic correlation diagram. - Locations of 40Ar/39Ar samples.

  2. Southern San Andreas Fault evaluation field activity: approaches to measuring small geomorphic offsets--challenges and recommendations for active fault studies

    USGS Publications Warehouse

    Scharer, Katherine M.; Salisbury, J. Barrett; Arrowsmith, J. Ramon; Rockwell, Thomas K.

    2014-01-01

    In southern California, where fast slip rates and sparse vegetation contribute to crisp expression of faults and microtopography, field and high‐resolution topographic data (<1  m/pixel) increasingly are used to investigate the mark left by large earthquakes on the landscape (e.g., Zielke et al., 2010; Zielke et al., 2012; Salisbury, Rockwell, et al., 2012, Madden et al., 2013). These studies measure offset streams or other geomorphic features along a stretch of a fault, analyze the offset values for concentrations or trends along strike, and infer that the common magnitudes reflect successive surface‐rupturing earthquakes along that fault section. Wallace (1968) introduced the use of such offsets, and the challenges in interpreting their “unique complex history” with offsets on the Carrizo section of the San Andreas fault; these were more fully mapped by Sieh (1978) and followed by similar field studies along other faults (e.g., Lindvall et al., 1989; McGill and Sieh, 1991). Results from such compilations spurred the development of classic fault behavior models, notably the characteristic earthquake and slip‐patch models, and thus constitute an important component of the long‐standing contrast between magnitude–frequency models (Schwartz and Coppersmith, 1984; Sieh, 1996; Hecker et al., 2013). The proliferation of offset datasets has led earthquake geologists to examine the methods and approaches for measuring these offsets, uncertainties associated with measurement of such features, and quality ranking schemes (Arrowsmith and Rockwell, 2012; Salisbury, Arrowsmith, et al., 2012; Gold et al., 2013; Madden et al., 2013). In light of this, the Southern San Andreas Fault Evaluation (SoSAFE) project at the Southern California Earthquake Center (SCEC) organized a combined field activity and workshop (the “Fieldshop”) to measure offsets, compare techniques, and explore differences in interpretation. A thorough analysis of the measurements from the field activity will be provided separately; this paper discusses the complications presented by such offset measurements using two channels from the San Andreas fault as illustrative cases. We conclude with best approaches for future data collection efforts based on input from the Fieldshop.

  3. Revision of the geological context of the Port-au-Prince, Haiti, metropolitan area: implications for seismic microzonation

    NASA Astrophysics Data System (ADS)

    Terrier, M.; Bialkowski, A.; Nachbaur, A.; Prépetit, C.; Joseph, Y. F.

    2014-02-01

    A geological study has been conducted in the framework of the microzonation of Port-au-Prince, Haiti. It reveals the deposit of Miocene and Pliocene formations in a marine environment and the impact on these deposits of the Enriquillo-Plantain Garden N80° E fault system and of N110° E faults. The tectonic and morphological analysis indicates motion during the Quaternary along several mapped reverse left-lateral N110° E faults affecting the capital. Assessing ground-movement hazards represents an integral component of seismic microzonation. The geological results have provided essential groundwork for this assessment. Seismic microzonation aims to take seismic risk more fully into account in the city's urbanization and development policies. To this end, assumptions are made as to risks induced by surface rupture and ground movement from active faults.

  4. Mass-transport deposits controlling fault propagation, reactivation and structural decoupling on continental margins (Espírito Santo Basin, SE Brazil)

    NASA Astrophysics Data System (ADS)

    Omosanya, Kamal'deen O.; Alves, Tiago M.

    2014-07-01

    This work uses high-quality 3D seismic data to assess the importance of mass-transport deposits (MTDs) as markers of fault propagation. We mapped three distinct MTDs and several fault families on the continental slope of Espírito Santo, SE Brazil. Fault mapping was based on seismic attributes such as seismic coherence and structural smoothing, and was further completed using ant tracking algorithms. Genetically related fault families were analysed in terms of their throw-depth (t-z) and throw-distance (t-x) gradient curves. A key result in this paper is that vertical fault propagation can be hindered by MTDs, as demonstrated for Eocene to Early Miocene faults in parts of the study area. Throw-depth variations in faults affected by MTDs are associated with: a) lithologic controls resulting from the presence of MTDs, b) local fault segmentation and c) reactivation by dip linkage. Based on their orientation and degree of interaction with MTDs, interpreted faults can be classified as decoupled and non-decoupled. Importantly, faults decoupled by MTDs have quasi-elliptical t-x profiles and show smaller cumulative throw values and fault propagation rates when compared to their non-decoupled counterparts. Recurrent MTDs can therefore be used as markers to estimate structural decoupling between distinct fault families.

  5. Exhumation History of an Oblique Plate Boundary: Investigating Kaikoura Mountain-building within the Marlborough Fault System, NE South Island New Zealand

    NASA Astrophysics Data System (ADS)

    Collett, C.; Duvall, A. R.; Flowers, R. M.; Tucker, G. E.

    2015-12-01

    The Kaikoura Mountains stand high as topographic anomalies in the oblique Pacific-Australian plate boundary zone known as the Marlborough Fault System (MFS), NE South Island New Zealand. The base of both the Inland and Seaward Kaikoura Ranges are bound on the SE by major, steeply NW-dipping, right lateral, active strike-slips (Clarence and Hope faults of the MFS, respectively). Previous geologic mapping, observations of predominantly horizontal fault slip at the surface from GPS and offset Quaternary deposits, and uplift of marine terraces, provide evidence for shortening and mountain-building via distributed deformation off of the main MFS strike-slip faults. However, quantitative estimates of the magnitude and spatial patterns of exhumation and of the timing of mountain-building in the Kaikouras are needed to understand more fully the nature of oblique deformation in the MFS. We present new apatite and zircon (U-Th)/He ages from opposite sides of the Hope and Clarence faults, spanning over 2 km of relief within the Kaikoura Mountains to identify spatial and temporal changes in exhumation rates in relation to the adjacent faults. Young (~3 Ma) apatite He ages and rapid (potentially > 1 mm/yr) exhumation rates from opposite sides of the faults are consistent with previously mentioned evidence of recent, regional, distributed deformation off of the main MFS faults. Moreover, early Miocene zircon He ages imply that parts of this region experienced an earlier phase of fault-related exhumation. Large changes in zircon He ages across the faults from ~20 Ma to > 100 Ma support hypotheses that portions of the Marlborough Faults may be re-activated, early Miocene thrusts. The zircon data are also consistent with the hypothesis of an early Miocene initiation of the oblique Pacific-Australian plate boundary in this region. Evidence for this comes from a change in sedimentation during this time from fine marine sediments to coarse, terrigenous conglomerates. Observing more than one phase of deformation in this active, oblique tectonic setting provides a new quantitative assessment of the evolution of the Pacific-Australian plate boundary in this region and how the accommodation of deformation may change over time.

  6. Applicability of ERTS-1 to Montana geology

    NASA Technical Reports Server (NTRS)

    Weidman, R. M. (Principal Investigator); Alt, D. D.; Berg, R.; Johns, W.; Flood, R.; Hawley, K.; Wackwitz, L.

    1976-01-01

    The author has identified the following significant results. Late autumn imagery provides the advantages of topographic shadow enhancement and low cloud cover. Mapping of rock units was done locally with good results for alluvium, basin fill, volcanics, inclined Paleozoic and Mesozoic beds, and host strata of bentonite beds. Folds, intrusive domes, and even dip directions were mapped where differential erosion was significant. However, mapping was not possible for belt strata, was difficult for granite, and was hindered by conifers compared to grass cover. Expansion of local mapping required geologic control and encountered significant areas unmappable from ERTS imagery. Annotation of lineaments provided much new geologic data. By extrapolating test site comparisons, it is inferred that 27 percent of some 1200 lineaments mapped from western Montana represent unknown faults. The remainder appear to be localized mainly by undiscovered faults and sets of minor faults or joints.

  7. Kinematic evolution of the Maacama Fault Zone, Northern California Coast Ranges

    NASA Astrophysics Data System (ADS)

    Schroeder, Rick D.

    The Maacama Fault Zone (MFZ) is a major component of the Pacific-North American transform boundary in northern California, and its distribution of deformation and kinematic evolution defines that of a young continental transform boundary. The USGS Quaternary database (2010) currently defines the MFZ as a relatively narrow fault zone; however, a cluster analysis of microearthquakes beneath the MFZ defines a wider fault zone, composed of multiple seismogenically active faults. The surface projection of best-fit tabular zones through foci clusters correlates with previously interpreted faults that were assumed inactive. New investigations further delineate faults within the MFZ based on geomorphic features and shallow resistivity surveys, and these faults are interpreted to be part of several active pull-apart fault systems. The location of faults and changes in their geometry in relation to geomorphic features, indicate >8 km of cumulative dextral displacement across the eastern portion of the MFZ at Little Lake Valley, which includes other smaller offsets on fault strands in the valley. Some faults within the MFZ have geometries consistent with reactivated subduction-related reverse faults, and project near outcrops of pre-existing faults, filled with mechanically weak minerals. The mechanical behavior of fault zones is influenced by the spatial distribution and abundance of mechanically weak lithologies and mineralogies within the heterogeneous Franciscan melange that the MFZ displaces. This heterogeneity is characterized near Little Lake Valley (LLV) using remotely sensed data, field mapping, and wellbore data, and is composed of 2--5 km diameter disk-shaped coherent blocks that can be competent and resist deformation. Coherent blocks and the melange that surrounds them are the source for altered minerals that fill portions of fault zones. Mechanically weak minerals in pre-existing fault zones, identified by X-ray diffraction and electron microprobe analyses, are interpreted as a major reason for complex configurations of clusters of microearthquakes and zones of aseismic creep along the MFZ. Analysis of the kinematics of the MFZ and the distribution of its deformation is important because it improves the understanding of young stages of transform system evolution, which has implications that affect issues ranging from seismic hazard to petroleum and minerals exploration around the world.

  8. Do mesoscale faults in a young fold belt indicate regional or local stress?

    NASA Astrophysics Data System (ADS)

    Kokado, Akihiro; Yamaji, Atsushi; Sato, Katsushi

    2017-04-01

    The result of paleostress analyses of mesoscale faults is usually thought of as evidence of a regional stress. On the other hand, the recent advancement of the trishear modeling has enabled us to predict the deformation field around fault-propagation folds without the difficulty of assuming paleo mechanical properties of rocks and sediments. We combined the analysis of observed mesoscale faults and the trishear modeling to understand the significance of regional and local stresses for the formation of mesoscale faults. To this end, we conducted the 2D trishear inverse modeling with a curved thrust fault to predict the subsurface structure and strain field of an anticline, which has a more or less horizontal axis and shows a map-scale plane strain perpendicular to the axis, in the active fold belt of Niigata region, central Japan. The anticline is thought to have been formed by fault-propagation folding under WNW-ESE regional compression. Based on the attitudes of strata and the positions of key tephra beds in Lower Pleistocene soft sediments cropping out at the surface, we obtained (1) a fault-propagation fold with the fault tip at a depth of ca. 4 km as the optimal subsurface structure, and (2) the temporal variation of deformation field during the folding. We assumed that mesoscale faults were activated along the direction of maximum shear strain on the faults to test whether the fault-slip data collected at the surface were consistent with the deformation in some stage(s) of folding. The Wallace-Bott hypothesis was used to estimate the consistence of faults with the regional stress. As a result, the folding and the regional stress explained 27 and 33 of 45 observed faults, respectively, with the 11 faults being consistent with the both. Both the folding and regional one were inconsistent with the remaining 17 faults, which could be explained by transfer faulting and/or the gravitational spreading of the growing anticline. The lesson we learnt from this work was that we should pay attention not only to regional but also to local stresses to interpret the results of paleostress analysis in the shallow levels of young orogenic belts.

  9. Neotectonic Investigation of the southern Rodgers Creek fault, Sonoma County, California

    NASA Astrophysics Data System (ADS)

    Randolph, C. E.; Caskey, J.

    2001-12-01

    The 60-km-long Rodgers Creek fault (RCF) between San Pablo Bay and Santa Rosa strikes approximately N35W, and is characterized by a late Holocene right-lateral slip rate of 6.4-10.4 mm/yr. Recent field studies along the southern section of the fault have resulted in: 1) new insight concerning the structural relations across the fault and the long-term slip budget on the system of faults that make up the East Bay fault system; 2) a new annotated map documenting details of the tectonic geomorphology of the fault zone; 3) and new paleoseismic data. Structural relations found west of the RCF indicate that previously mapped thrust klippen of Donnell Ranch Volcanic's (DRV)(Ar/Ar 9-10 Ma), were emplaced over the Petaluma formation (Ar/Ar 8.52 Ma) along east-vergent thrust faults, rather than along west-vergent thrusts that splay from the RCF as previously proposed. This implies that: 1) the allochthonous DRV which have been correlated to volcanic rocks in the Berkeley Hills (Ar/Ar 9-10 Ma) must have orginated from west of the Tolay fault; and 2) much of the 45 km of northward translation of the DRV from the Berkeley Hills was accomplished along the Hayward-Tolay-Petaluma Valley system of faults, and not the RCF. Long-term offset along the RCF can be more reasonably estimated by matching similar aged Sonoma volcanic rocks (Ar/Ar 3-8 Ma) across the fault which suggests only about 10-15 km of net right-lateral translation across the fault. This estimate is more consistent with independently derived offsets across the RCF using paleogeographic reconstructions of the Roblar Tuff as well as Pliocene sedimentary units (Sarna-Wojcicki, 1992; Mclaughlin, 1996) An annotated strip map compiled from 1:6000 scale aerial photos for the southern 25 km of the fault has resulted in unprecedented new details on the surficial and bedrock deposits, and tectonic geomorphology along the fault. The new maps together with GPR surveys provided the basis for a site specific paleoseimic investigation. We recently opened a 50-meter-long exploratory trench located 2 km northwest of Wildcat Mountain, in Sonoma County. The trench exposed two main traces of the fault that bound a 7-meter-wide sag pond. Stratigraphic and structural relations have provided evidence for multiple faulting events, the youngest of which may have ruptured to the ground surface. Information pertaining to the timing and chronology of events recorded in the trench exposure is pending the results of laboratory analysis of radiocarbon samples.

  10. The Maurice field: New gas reserves from buried structure along the Oligocene trend of southwestern Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prescott, M.P.

    1990-09-01

    Significant new gas reserves have recently been discovered in the Marginulina texana sands along the Oligocene trend at the Maurice field. Detailed subsurface maps and seismic data are presented to exhibit the extent and nature of this local buried structure and to demonstrate future opportunities along the Oligocene trend. Since discovery in 1988, the MARG. TEX. RC has extended the Maurice field one-half mile south and has encountered over 170 ft of Marginulina texana pay Estimated reserves are in the order of 160 BCFG with limits of the reservoir still unknown. This reserve addition would increase the estimated ultimate ofmore » the Maurice field by over 70% from 220 BCFG to 380 BCFG. Cross sections across the field depict the new reservoir trap as a buried upthrown fault closure with an anticipated gas column of 700 ft. Interpretation of the origin of this local structure is that of a buried rotated fault block on an overall larger depositional structure. Detailed subsurface maps at the Marginulina texana and the overlying Miogypsinoides level are presented. These maps indicate that one common fault block is productive from two different levels. The deeper Marginulina texana sands are trapped on north dip upthrown to a southern boundary fault, Fault B. The overlying Miogypsinoides sands are trapped on south dip downthrown to a northern boundary fault, Fault A. The northern boundary fault, Fault A, was the Marginulina texana expansion fault and rotated that downthrown section to north dip. Because of the difference in dip between the two levels, the apex of the deeper Marginulina texana fault closure is juxtaposed by one mile south relative to the overlying Miogypsinoides fault closure. Analysis indicates that important structural growth occur-red during Marginulina texana deposition with a local unconformity covering the apex of the upthrown fault closure. State-of-the-art reconnaissance seismic data clearly exhibit this buried rotated fault block.« less

  11. Using 10Be erosion rates and fluvial channel morphology to constrain fault throw rates in the southwestern Sacramento River Valley, California, USA

    NASA Astrophysics Data System (ADS)

    Cyr, A. J.

    2013-12-01

    The Sacramento - San Joaquin River Delta, California, USA, is a critical region for California water resources, agriculture, and threatened or endangered species. This landscape is affected by an extensive set of levees that enclose artificial islands created for agricultural use. In addition to their importance for sustaining agriculture, this levee system also supports extensive transport and power transmission infrastructure and urban/suburban development. These levees are susceptible to damage from even moderate ground shaking by either a large earthquake on one of the high-activity faults in the nearby San Francisco Bay region, or even a moderate earthquake on one of the low-activity faults in the Delta region itself. However, despite this danger the earthquake hazards in this region are poorly constrained due to our lack of understanding of faults in and near the Delta region. As part of an effort to better constrain the seismic hazard associated with known, but poorly constrained, faults in the region, a geomorphic analysis of the Dunnigan Hills, northwest of Woodland, CA, is being combined with cosmogenic 10Be catchment-averaged erosion rates. The Dunnigan Hills are a low-relief (maximum elevation 87 m) landscape generated by fault-bend folding above the west-vergent Sweitzer reverse fault that soles into a blind east-vergent reverse fault. These faults have been imaged by seismic reflection data, and local microseismicity indicates that this system is actively propagating to the east. However, the throw rates on the faults in this system remain unconstrained, despite the potential for significant shaking such as that experienced in the nearby April, 1892 earthquake sequence between Winters and Vacaville, Ca, ~25 km to the south, which has been estimated at magnitude 6.0 or greater. Geomorphic and cosmogenic 10Be analyses from 12 catchments draining the eastern flank of the Dunnigan Hills will be used to infer vertical rock uplift rates to better constrain activity on the west-vergent Sweitzer fault and the east-vergent blind reverse fault. All of the sampled catchments are underlain exclusively by Tehama Sandstone. Moreover, there are no mapped surface traces of faults in the sampled catchments. This minimizes the possibility of changes in lithogic resistance to impact the erosion rates and channel analyses. These analyses, combined with fault geometries derived from published seismic reflection data and structural cross sections, allows us to constrain the throw rates on these faults and thus better evaluate the associated seismic hazard.

  12. Quaternary extensional growth folding beneath Reno, Nevada, imaged by urban seismic profiling

    USGS Publications Warehouse

    Stephenson, William J.; Frary, Roxy N.; Louie, John; Odum, Jackson K.

    2013-01-01

    We characterize shallow subsurface faulting and basin structure along a transect through heavily urbanized Reno, Nevada, with high‐resolution seismic reflection imaging. The 6.8 km of P‐wave data image the subsurface to approximately 800 m depth and delineate two subbasins and basin uplift that are consistent with structure previously inferred from gravity modeling in this region of the northern Walker Lane. We interpret two primary faults that bound the uplift and deform Quaternary deposits. The dip of Quaternary and Tertiary strata in the western subbasin increases with greater depth to the east, suggesting recurrent fault motion across the westernmost of these faults. Deformation in the Quaternary section of the western subbasin is likely evidence of extensional growth folding at the edge of the Truckee River through Reno. This deformation is north of, and on trend with, previously mapped Quaternary fault strands of the Mt. Rose fault zone. In addition to corroborating the existence of previously inferred intrabasin structure, these data provide evidence for an active extensional Quaternary fault at a previously unknown location within the Truckee Meadows basin that furthers our understanding of both the seismotectonic framework and earthquake hazards in this urbanized region.

  13. New evidence for Oligocene to Recent slip along the San Juan fault, a terrane-bounding structure within the Cascadia forearc of southern British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Harrichhausen, N.; Morell, K. D.; Regalla, C.; Lynch, E. M.

    2017-12-01

    Active forearc deformation in the southern Cascadia subduction zone is partially accommodated by faults in the upper crust in both Washington state and Oregon, but until recently, these types of active forearc faults have not been documented in the northern part of the Cascadia forearc on Vancouver Island, British Columbia. Here we present new evidence for Quaternary slip on the San Juan fault that indicates that this terrane-bounding structure has been reactivated since its last documented slip in the Eocene. Field work targeted by newly acquired hi-resolution lidar topography reveals a deformed debris flow channel network developed within colluvium along the central portion of the San Juan fault, consistent with a surface-rupturing earthquake with 1-2 m of offset since deglaciation 13 ka. Near the western extent of the San Juan fault, marine sediments are in fault contact with mélange of the Pandora Peak Unit. These marine sediments are likely Oligocene or younger in age, given their similarity in facies and fossil assemblages to nearby outcrops of the Carmanah Group sediments, but new dating using strontium isotope stratigraphy will confirm this hypothesis. If these sediments are part of the Carmanah Group, they occur further east and at a higher elevation than previously documented. The presence of Oligocene or younger marine sediments, more than 400 meters above current sea level, requires a substantial amount of Neogene rock uplift that could have been accommodated by slip on the San Juan fault. A preliminary analysis of fault slickensides indicates a change in slip sense from left-lateral to normal along the strike of the fault. Until further mapping and analysis is completed, however, it remains unclear whether this kinematic change reflects spatial and/or temporal variability. These observations suggest that the San Juan fault is likely part of a network of active faults accommodating forearc strain on Vancouver Island. With the recent discovery of Quaternary slip on another nearby terrane-bounding fault, the Leech River fault, it is essential that these faults are identified and studied, in order to both understand their role in forearc deformation and characterize the seismic hazard that they pose.

  14. Characterization of active faulting beneath the Strait of Georgia, British Columbia

    USGS Publications Warehouse

    Cassidy, J.F.; Rogers, Gary C.; Waldhauser, F.

    2000-01-01

    Southwestern British Columbia and northwestern Washington State are subject to megathrust earthquakes, deep intraslab events, and earthquakes in the continental crust. Of the three types of earthquakes, the most poorly understood are the crustal events. Despite a high level of seismicity, there is no obvious correlation between the historical crustal earthquakes and the mapped surface faults of the region. On 24 June 1997, a ML = 4.6 earthquake occurred 3-4 km beneath the Strait of Georgia, 30 km to the west of Vancouver, British Columbia. This well-recorded earthquake was preceded by 11 days by a felt foreshock (ML = 3.4) and was followed by numerous small aftershocks. This earthquake sequence occurred in one of the few regions of persistent shallow seismic activity in southwestern British Columbia, thus providing an ideal opportunity to attempt to characterize an active near-surface fault. We have computed focal mechanisms and utilized a waveform cross-correlation and joint hypocentral determination routine to obtain accurate relative hypocenters of the mainshock, foreshock, and 53 small aftershocks in an attempt to image the active fault and the extent of rupture associated with this earthquake sequence. Both P-nodal and CMT focal mechanisms show thrust faulting for the mainshock and the foreshock. The relocated hypocenters delineate a north-dipping plane at 2-4 km depth, dipping at 53??, in good agreement with the focal mechanism nodal plane dipping to the north at 47??. The rupture area is estimated to be a 1.3-km-diameter circular area, comparable to that estimated using a Brune rupture model with the estimated seismic moment of 3.17 ?? 1015 N m and the stress drop of 45 bars. The temporal sequence indicates a downdip migration of the seismicity along the fault plane. The results of this study provide the first unambiguous evidence for the orientation and sense of motion for active faulting in the Georgia Strait area of British Columbia.

  15. Detecting Blind Fault with Fractal and Roughness Factors from High Resolution LiDAR DEM at Taiwan

    NASA Astrophysics Data System (ADS)

    Cheng, Y. S.; Yu, T. T.

    2014-12-01

    There is no obvious fault scarp associated with blind fault. The traditional method of mapping this unrevealed geological structure is the cluster of seismicity. Neither the seismic event nor the completeness of cluster could be captured by network to chart the location of the entire possible active blind fault within short period of time. High resolution DEM gathered by LiDAR could denote actual terrain information despite the existence of plantation. 1-meter interval DEM of mountain region at Taiwan is utilized by fractal, entropy and roughness calculating with MATLAB code. By jointing these handing, the regions of non-sediment deposit are charted automatically. Possible blind fault associated with Chia-Sen earthquake at southern Taiwan is served as testing ground. GIS layer help in removing the difference from various geological formation, then multi-resolution fractal index is computed around the target region. The type of fault movement controls distribution of fractal index number. The scale of blind fault governs degree of change in fractal index. Landslide induced by rainfall and/or earthquake possesses larger degree of geomorphology alteration than blind fault; special treatment in removing these phenomena is required. Highly weathered condition at Taiwan should erase the possible trace remained upon DEM from the ruptured of blind fault while reoccurrence interval is higher than hundreds of years. This is one of the obstacle in finding possible blind fault at Taiwan.

  16. Interpretation of a Magnetic Map of the Valles Marineris Region, Mars

    NASA Technical Reports Server (NTRS)

    Purucker, M. E.; Langlais, B.; Mandea, M.

    2001-01-01

    A magnetic map of Valles Marineris is interpreted in terms of left-lateral faulting, the first evidence for substantial strike-slip faulting here. Surface exposures of highly magnetic material may exist in the walls of Valles Marineris. Additional information is contained in the original extended abstract.

  17. High stresses stored in fault zones: example of the Nojima fault (Japan)

    NASA Astrophysics Data System (ADS)

    Boullier, Anne-Marie; Robach, Odile; Ildefonse, Benoît; Barou, Fabrice; Mainprice, David; Ohtani, Tomoyuki; Fujimoto, Koichiro

    2018-04-01

    During the last decade pulverized rocks have been described on outcrops along large active faults and attributed to damage related to a propagating seismic rupture front. Questions remain concerning the maximal lateral distance from the fault plane and maximal depth for dynamic damage to be imprinted in rocks. In order to document these questions, a representative core sample of granodiorite located 51.3 m from the Nojima fault (Japan) that was drilled after the Hyogo-ken Nanbu (Kobe) earthquake is studied by using electron backscattered diffraction (EBSD) and high-resolution X-ray Laue microdiffraction. Although located outside of the Nojima damage fault zone and macroscopically undeformed, the sample shows pervasive microfractures and local fragmentation. These features are attributed to the first stage of seismic activity along the Nojima fault characterized by laumontite as the main sealing mineral. EBSD mapping was used in order to characterize the crystallographic orientation and deformation microstructures in the sample, and X-ray microdiffraction was used to measure elastic strain and residual stresses on each point of the mapped quartz grain. Both methods give consistent results on the crystallographic orientation and show small and short wavelength misorientations associated with laumontite-sealed microfractures and alignments of tiny fluid inclusions. Deformation microstructures in quartz are symptomatic of the semi-brittle faulting regime, in which low-temperature brittle plastic deformation and stress-driven dissolution-deposition processes occur conjointly. This deformation occurred at a 3.7-11.1 km depth interval as indicated by the laumontite stability domain. Residual stresses are calculated from deviatoric elastic strain tensor measured using X-ray Laue microdiffraction using the Hooke's law. The modal value of the von Mises stress distribution is at 100 MPa and the mean at 141 MPa. Such stress values are comparable to the peak strength of a deformed granodiorite from the damage zone of the Nojima fault. This indicates that, although apparently and macroscopically undeformed, the sample is actually damaged. The homogeneously distributed microfracturing of quartz is the microscopically visible imprint of this damage and suggests that high stresses were stored in the whole sample and not only concentrated on some crystal defects. It is proposed that the high residual stresses are the sum of the stress fields associated with individual dislocations and dislocation microstructures. These stresses are interpreted to be originated from the dynamic damage related to the propagation of rupture fronts or seismic waves at a depth where confining pressure prevented pulverization. Actually, M6 to M7 earthquakes occurred during the Paleocene on the Nojima fault and are good candidates for inducing this dynamic damage. The high residual stresses and the deformation microstructures would have contributed to the widening of the damaged fault zone with additional large earthquakes occurring on the Nojima fault.

  18. Geology of the Prince William Sound and Kenai Peninsula region, Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Hults, Chad P.

    2012-01-01

    The Prince William Sound and Kenai Peninsula region includes a significant part of one of the world’s largest accretionary complexes and a small part of the classic magmatic arc geology of the Alaska Peninsula. Physiographically, the map area ranges from the high glaciated mountains of the Alaska and Aleutian Ranges and the Chugach Mountains to the coastal lowlands of Cook Inlet and the Copper River delta. Structurally, the map area is cut by a number of major faults and postulated faults, the most important of which are the Border Ranges, Contact, and Bruin Bay Fault systems. The rocks of the map area belong to the Southern Margin composite terrane, a Tertiary and Cretaceous or older subduction-related accretionary complex, and the Alaska Peninsula terrane. Mesozoic rocks between these two terranes have been variously assigned to the Peninsular or the Hidden terranes. The oldest rocks in the map area are blocks of Paleozoic age within the mélange of the McHugh Complex; however, the protolith age of the greenschist and blueschist within the Border Ranges Fault zone is not known. Extensive glacial deposits mantle the Kenai Peninsula and the lowlands on the west side of Cook Inlet and are locally found elsewhere in the map area. This map was compiled from existing mapping, without generalization, and new or revised data was added where available.

  19. The Potential For A Large Earthquake In Intraplate Europe: The Contribution Of Remote Sensing

    NASA Astrophysics Data System (ADS)

    Kervyn, F.; Ferry, M.; Peters, G.; Alasset, P.-J.; Jacques, E.; Meghraoui, M.

    The use of SAR interferometry for the computation of high resolution Digital Eleva- tion Models for various applications in neotectonics and geomorphology is increasing dramatically. The approach merges map-DEM, interferometric-DEM, satellite radar and optical images (ERS, SPOT, ASTER), aerial photographs, geophysical data and field observations into a single representation. This representation enables greater constraint on the identification of active faults and therefore gives an improved un- derstanding of complex active zones. Recent studies of the Lower and Upper Rhine graben display evidence of active deformation. Despite the low slip rate~0.1 mm/yr, vegetation cover and anthropic activity, we demonstrate that the surface deformation, although extremely sublte is preserved. In comparison, the Rukwa rift (East Africa) is a region with negligable anthropic activity, has a semi-arid climate and a higher deformation rate (1 - 4 mm/yr). Both rifts exhibit similar characteristics, such as: (1) half graben structures, (2) fault lengths ranging from 20 to 40 km, (3) graben width~ 40 km, (4) seismic activity with M 6 - 6.5 (1910 Rukwa, M~7.3). The Basel-Reinach fault, southern Upper Rhine graben, has been identified and characterised as responsi- ble for the 1356 earthquake (M 6.2 - 6.5). Three paleoearthquakes were demonstrated to have occurred within the last 8500 years, yielding a mean uplift rate of 0.21 mm/yr. Assuming that the physical parameters, geometry, and fault behavior are comparable, rifting processes with high deformation rates may serve as analogs to active regions with slower deformation. An intraplate European event rupturing the whole of the fault may possibly reach M 7.

  20. Newport-Inglewood-Carlsbad-Coronado Bank Fault System Nearshore Southern California: Testing models for Quaternary deformation

    NASA Astrophysics Data System (ADS)

    Bennett, J. T.; Sorlien, C. C.; Cormier, M.; Bauer, R. L.

    2011-12-01

    The San Andreas fault system is distributed across hundreds of kilometers in southern California. This transform system includes offshore faults along the shelf, slope and basin- comprising part of the Inner California Continental Borderland. Previously, offshore faults have been interpreted as being discontinuous and striking parallel to the coast between Long Beach and San Diego. Our recent work, based on several thousand kilometers of deep-penetration industry multi-channel seismic reflection data (MCS) as well as high resolution U.S. Geological Survey MCS, indicates that many of the offshore faults are more geometrically continuous than previously reported. Stratigraphic interpretations of MCS profiles included the ca. 1.8 Ma Top Lower Pico, which was correlated from wells located offshore Long Beach (Sorlien et. al. 2010). Based on this age constraint, four younger (Late) Quaternary unconformities are interpreted through the slope and basin. The right-lateral Newport-Inglewood fault continues offshore near Newport Beach. We map a single fault for 25 kilometers that continues to the southeast along the base of the slope. There, the Newport-Inglewood fault splits into the San Mateo-Carlsbad fault, which is mapped for 55 kilometers along the base of the slope to a sharp bend. This bend is the northern end of a right step-over of 10 kilometers to the Descanso fault and about 17 km to the Coronado Bank fault. We map these faults for 50 kilometers as they continue over the Mexican border. Both the San Mateo - Carlsbad with the Newport-Inglewood fault and the Coronado Bank with the Descanso fault are paired faults that form flower structures (positive and negative, respectively) in cross section. Preliminary kinematic models indicate ~1km of right-lateral slip since ~1.8 Ma at the north end of the step-over. We are modeling the slip on the southern segment to test our hypothesis for a kinematically continuous right-lateral fault system. We are correlating four younger Quaternary unconformities across portions of these faults to test whether the post- ~1.8 Ma deformation continues into late Quaternary. This will provide critical information for a meaningful assessment of the seismic hazards facing Newport beach through metropolitan San Diego.

  1. Active fault databases and seismic hazard calculations: a compromise between science and practice. Review of case studies from Spain.

    NASA Astrophysics Data System (ADS)

    Garcia-Mayordomo, Julian; Martin-Banda, Raquel; Insua-Arevalo, Juan Miguel; Alvarez-Gomez, Jose Antonio; Martinez-Diaz, Jose Jesus

    2017-04-01

    Since the Quaternary Active Faults Database of Iberia (QAFI) was released in February 2012 a number of studies aimed at producing seismic hazard assessments have made use of it. We will present a summary of the shortcomings and advantages that were faced when QAFI was considered in different seismic hazard studies. These include the production of the new official seismic hazard map of Spain, performed in the view of the foreseen adoption of Eurocode-8 throughout 2017. The QAFI database was considered as a complementary source of information for designing the seismogenic source-zone models used in the calculations, and particularly for the estimation of maximum magnitude distribution in each zone, as well as for assigning the predominant rupture mechanism based on style of faulting. We will also review the different results obtained by other studies that considered QAFI faults as independent seismogenic-sources in opposition to source-zones, revealing, on one hand, the crucial importance of data-reliability and, on the other, the very much influence that ground motion attenuation models have on the actual impact of fault-sources on hazard results. Finally, we will present briefly the updated version of the database (QAFI v.3, 2015), which includes an original scheme for evaluating the reliability of fault seismic parameters specifically devised to facilitate decision-making to seismic hazard practitioners.

  2. Active faulting induced by the slip partitioning in the Lesser Antilles arc

    NASA Astrophysics Data System (ADS)

    Leclerc, Frédérique; Feuillet, Nathalie

    2010-05-01

    AGUADOMAR marine cruise data acquired 11 years ago allowed us to identified and map two main sets of active faults within the Lesser Antilles arc (Feuillet et al., 2002; 2004). The faults belonging to the first set, such as Morne-Piton in Guadeloupe, bound up to 100km-long and 50km-wide arc-perpendicular graben or half graben that disrupt the fore-arc reef platforms. The faults of the second set form right-stepping en echelon arrays, accommodating left-lateral slip along the inner, volcanic islands. The two fault systems form a sinistral horsetail east of the tip of the left-lateral Puerto Rico fault zone that takes up the trench-parallel component of convergence between the North-American and Caribbean plates west of the Anegada passage. In other words, they together accommodate large-scale slip partitioning along the northeastern arc, consistent with recent GPS measurements (Lopez et al., 2006). These intraplate faults are responsible for a part of the shallow seismicity in the arc and have produce damaging historical earthquakes. Two magnitude 6.3 events occurred in the last 25 years along the inner en echelon faults, the last one on November 21 2004 in Les Saintes in the Guadeloupe archipelago. To better constrain the seismic hazard related to the inner arc faults and image the ruptures and effects on the seafloor of Les Saintes 2004 earthquake, we acquired new marine data between 23 February and 25 March 2009 aboard the French R/V le Suroît during the GWADASEIS cruise. We present here the data (high-resolution 72 channel and very high-resolution chirp 3.5 khz seismic reflection profiles, EM300 multibeam bathymetry, Küllenberg coring and SAR imagery) and the first results. We identified, mapped and characterized in detail several normal to oblique fault systems between Martinique and Saba. They offset the seafloor by several hundred meters and crosscut all active volcanoes, among them Nevis Peak, Soufriere Hills, Soufriere de Guadeloupe and Montagne Pelée. Some faults, located between Guadeloupe and Montserrat have throws up to thousand meters. Between St Lucia and Martinique, the St Lucia channel is crosscut by several normal faults with scarps up to 100m-high. These faults extend onshore and cut the southern shore of Martinique. Given their length (~20km), they could produce magnitude 6 or more earthquakes in the most tourist towns of the island (St Anne, St Lucie). Recent coseismic offsets could be identified along most faults in the chirp profiles. Turbidite deposits recognized in the Küllenberg cores could be related to damaging earthquakes. High resolution SAR imagery (25 cm) reveals several coseismic scarps in Les Saintes channel along the faults that ruptured in 2004. References: Feuillet, N., I. Manighetti, and P. Tapponnier, Arc parallel extension and localization of volcanic complexes in guadeloupe, lesser antilles, Journal of Geophysical Research, 107, 2002. Feuillet, N., P. Tapponnier, I. Manighetti, B. Villemant, and G. C. P. King, Differential uplift and tilt of pleistocene reef platforms and quaternary slip Lopez, A.M., S. Stein, T. Dixon, G. Sella, E. Calais, P. Jansma, J. Weber, and P. La Femina, Is there a northern lesser antilles forearc block ?, Geophysical Research Letters, 33, 2006.

  3. Seismic Hazard Maps for Seattle, Washington, Incorporating 3D Sedimentary Basin Effects, Nonlinear Site Response, and Rupture Directivity

    USGS Publications Warehouse

    Frankel, Arthur D.; Stephenson, William J.; Carver, David L.; Williams, Robert A.; Odum, Jack K.; Rhea, Susan

    2007-01-01

    This report presents probabilistic seismic hazard maps for Seattle, Washington, based on over 500 3D simulations of ground motions from scenario earthquakes. These maps include 3D sedimentary basin effects and rupture directivity. Nonlinear site response for soft-soil sites of fill and alluvium was also applied in the maps. The report describes the methodology for incorporating source and site dependent amplification factors into a probabilistic seismic hazard calculation. 3D simulations were conducted for the various earthquake sources that can affect Seattle: Seattle fault zone, Cascadia subduction zone, South Whidbey Island fault, and background shallow and deep earthquakes. The maps presented in this document used essentially the same set of faults and distributed-earthquake sources as in the 2002 national seismic hazard maps. The 3D velocity model utilized in the simulations was validated by modeling the amplitudes and waveforms of observed seismograms from five earthquakes in the region, including the 2001 M6.8 Nisqually earthquake. The probabilistic seismic hazard maps presented here depict 1 Hz response spectral accelerations with 10%, 5%, and 2% probabilities of exceedance in 50 years. The maps are based on determinations of seismic hazard for 7236 sites with a spacing of 280 m. The maps show that the most hazardous locations for this frequency band (around 1 Hz) are soft-soil sites (fill and alluvium) within the Seattle basin and along the inferred trace of the frontal fault of the Seattle fault zone. The next highest hazard is typically found for soft-soil sites in the Duwamish Valley south of the Seattle basin. In general, stiff-soil sites in the Seattle basin exhibit higher hazard than stiff-soil sites outside the basin. Sites with shallow bedrock outside the Seattle basin have the lowest estimated hazard for this frequency band.

  4. Results of Gravity Fieldwork Conducted in March 2008 in the Moapa Valley Region of Clark County, Nevada

    USGS Publications Warehouse

    Scheirer, Daniel S.; Andreasen, Arne Dossing

    2008-01-01

    In March 2008, we collected gravity data along 12 traverses across newly-mapped faults in the Moapa Valley region of Clark County, Nevada. In areas crossed by these faults, the traverses provide better definition of the gravity field and, thus, the density structure, than prior gravity observations. Access problems prohibited complete gravity coverage along all of the planned gravity traverses, and we added and adjusted the locations of traverses to maximize our data collection. Most of the traverses exhibit isostatic gravity anomalies that have gradients characteristic of exposed or buried faults, including several of the newly-mapped faults.

  5. Cross-sections and maps showing double-difference relocated earthquakes from 1984-2000 along the Hayward and Calaveras faults, California

    USGS Publications Warehouse

    Simpson, Robert W.; Graymer, Russell W.; Jachens, Robert C.; Ponce, David A.; Wentworth, Carl M.

    2004-01-01

    We present cross-section and map views of earthquakes that occurred from 1984 to 2000 in the vicinity of the Hayward and Calaveras faults in the San Francisco Bay region, California. These earthquakes came from a catalog of events relocated using the double-difference technique, which provides superior relative locations of nearby events. As a result, structures such as fault surfaces and alignments of events along these surfaces are more sharply defined than in previous catalogs.

  6. Southeastern extension of the Lake Basin fault zone in south- central Montana: implications for coal and hydrocarbon exploration ( USA).

    USGS Publications Warehouse

    Robinson, L.N.; Barnum, B.E.

    1986-01-01

    The Lake Basin fault zone consists mainly of en echelon NE-striking normal faults that have been interpreted to be surface expressions of left-lateral movement along a basement wrench fault. Information gathered from recent field mapping of coal beds and from shallow, closely-spaced drill holes resulted in detailed coal bed correlations, which revealed another linear zone of en echelon faulting directly on the extended trend of the Lake Basin fault zone. This faulted area, referred to as the Sarpy Creek area, is located 48 km E of Hardin, Montana. It is about 16 km long, 13 km wide, and contains 21 en echelon normal faults that have an average strike of N 63oE. We therefore extend the Lake Basin fault zone 32 km farther SE than previously mapped to include the Sarpy Creek area. The Ash Creek oil field, Wyoming, 97 km due S of the Sarpy Creek area, produces from faulted anticlinal structues that have been interpreted to be genetically related to the primary wrench-fault system known as the Nye-Bowler fault zone. The structural similarities between the Sarpy Creek area and the Ash Creek area indicate that the Sarpy Creek area is a possible site for hydrocarbon accumulation.-from Authors

  7. The mechanics of fault-bend folding and tear-fault systems in the Niger Delta

    NASA Astrophysics Data System (ADS)

    Benesh, Nathan Philip

    This dissertation investigates the mechanics of fault-bend folding using the discrete element method (DEM) and explores the nature of tear-fault systems in the deep-water Niger Delta fold-and-thrust belt. In Chapter 1, we employ the DEM to investigate the development of growth structures in anticlinal fault-bend folds. This work was inspired by observations that growth strata in active folds show a pronounced upward decrease in bed dip, in contrast to traditional kinematic fault-bend fold models. Our analysis shows that the modeled folds grow largely by parallel folding as specified by the kinematic theory; however, the process of folding over a broad axial surface zone yields a component of fold growth by limb rotation that is consistent with the patterns observed in natural folds. This result has important implications for how growth structures can he used to constrain slip and paleo-earthquake ages on active blind-thrust faults. In Chapter 2, we expand our DEM study to investigate the development of a wider range of fault-bend folds. We examine the influence of mechanical stratigraphy and quantitatively compare our models with the relationships between fold and fault shape prescribed by the kinematic theory. While the synclinal fault-bend models closely match the kinematic theory, the modeled anticlinal fault-bend folds show robust behavior that is distinct from the kinematic theory. Specifically, we observe that modeled structures maintain a linear relationship between fold shape (gamma) and fault-horizon cutoff angle (theta), rather than expressing the non-linear relationship with two distinct modes of anticlinal folding that is prescribed by the kinematic theory. These observations lead to a revised quantitative relationship for fault-bend folds that can serve as a useful interpretation tool. Finally, in Chapter 3, we examine the 3D relationships of tear- and thrust-fault systems in the western, deep-water Niger Delta. Using 3D seismic reflection data and new map-based structural restoration techniques, we find that the tear faults have distinct displacement patterns that distinguish them from conventional strike-slip faults and reflect their roles in accommodating displacement gradients within the fold-and-thrust belt.

  8. Aeromagnetic Map with Geology of the Los Angeles 30 x 60 Minute Quadrangle, Southern California

    USGS Publications Warehouse

    Langenheim, V.E.; Hildenbrand, T.G.; Jachens, R.C.; Campbell, R.H.; Yerkes, R.F.

    2006-01-01

    Introduction: An important objective of geologic mapping is to project surficial structures and stratigraphy into the subsurface. Geophysical data and analysis are useful tools for achieving this objective. This aeromagnetic anomaly map provides a three-dimensional perspective to the geologic mapping of the Los Angeles 30 by 60 minute quadrangle. Aeromagnetic maps show the distribution of magnetic rocks, primarily those containing magnetite (Blakely, 1995). In the Los Angeles quadrangle, the magnetic sources are Tertiary and Mesozoic igneous rocks and Precambrian crystalline rocks. Aeromagnetic anomalies mark abrupt spatial contrasts in magnetization that can be attributed to lithologic boundaries, perhaps caused by faulting of these rocks or by intrusive contacts. This aeromagnetic map overlain on geology, with information from wells and other geophysical data, provides constraints on the subsurface geology by allowing us to trace faults beneath surficial cover and estimate fault dip and offset. This map supersedes Langenheim and Jachens (1997) because of its digital form and the added value of overlaying the magnetic data on a geologic base. The geologic base for this map is from Yerkes and Campbell (2005); some of their subunits have been merged into one on this map.

  9. Using high-resolution multibeam bathymetry to identify seafloor surface rupture along the Palos Verdes fault complex in offshore Southern California

    USGS Publications Warehouse

    Marlow, M. S.; Gardner, J.V.; Normark, W.R.

    2000-01-01

    Recently acquired high-resolution multibeam bathymetric data reveal several linear traces that are the surficial expressions of seafloor rupture of Holocene faults on the upper continental slope southeast of the Palos Verdes Peninsula. High-resolution multichannel and boomer seismic-reflection profiles show that these linear ruptures are the surficial expressions of Holocene faults with vertical to steep dips. The most prominent fault on the multibeam bathymetry is about 10 km to the west of the mapped trace of the Palos Verdes fault and extends for at least 14 km between the shelf edge and the base of the continental slope. This fault is informally called the Avalon Knoll fault for the nearby geographic feature of that name. Seismic-reflection profiles show that the Avalon Knoll fault is part of a northwest-trending complex of faults and anticlinal uplifts that are evident as scarps and bathymetric highs on the multibeam bathymetry. This fault complex may extend onshore and contribute to the missing balance of Quaternary uplift determined for the Palos Verdes Hills and not accounted for by vertical uplift along the onshore Palos Verdes fault. We investigate the extent of the newly located offshore Avalon Knoll fault and use this mapped fault length to estimate likely minimum magnitudes for events along this fault.

  10. Seismic Hazard Analysis for Armenia and its Surrounding Areas

    NASA Astrophysics Data System (ADS)

    Klein, E.; Shen-Tu, B.; Mahdyiar, M.; Karakhanyan, A.; Pagani, M.; Weatherill, G.; Gee, R. C.

    2017-12-01

    The Republic of Armenia is located within the central part of a large, 800 km wide, intracontinental collision zone between the Arabian and Eurasian plates. Active deformation occurs along numerous structures in the form of faulting, folding, and volcanism distributed throughout the entire zone from the Bitlis-Zargos suture belt to the Greater Caucasus Mountains and between the relatively rigid Back Sea and Caspian Sea blocks without any single structure that can be claimed as predominant. In recent years, significant work has been done on mapping active faults, compiling and reviewing historic and paleoseismological studies in the region, especially in Armenia; these recent research contributions have greatly improved our understanding of the seismogenic sources and their characteristics. In this study we performed a seismic hazard analysis for Armenia and its surrounding areas using the latest detailed geological and paleoseismological information on active faults, strain rates estimated from kinematic modeling of GPS data and all available historic earthquake data. The seismic source model uses a combination of characteristic earthquake and gridded seismicity models to take advantage of the detailed knowledge of the known faults while acknowledging the distributed deformation and regional tectonic environment of the collision zone. In addition, the fault model considers earthquake ruptures that include single and multi-segment or fault rupture scenarios with earthquakes that can rupture any part of a multiple segment fault zone. The ground motion model uses a set of ground motion prediction equations (GMPE) selected from a pool of GMPEs based on the assessment of each GMPE against the available strong motion data in the region. The hazard is computed in the GEM's OpenQuake engine. We will present final hazard results and discuss the uncertainties associated with various input data and their impact on the hazard at various locations.

  11. Fine-scale delineation of the location of and relative ground shaking within the San Andreas Fault zone at San Andreas Lake, San Mateo County, California

    USGS Publications Warehouse

    Catchings, R.D.; Rymer, M.J.; Goldman, M.R.; Prentice, C.S.; Sickler, R.R.

    2013-01-01

    The San Francisco Public Utilities Commission is seismically retrofitting the water delivery system at San Andreas Lake, San Mateo County, California, where the reservoir intake system crosses the San Andreas Fault (SAF). The near-surface fault location and geometry are important considerations in the retrofit effort. Because the SAF trends through highly distorted Franciscan mélange and beneath much of the reservoir, the exact trace of the 1906 surface rupture is difficult to determine from surface mapping at San Andreas Lake. Based on surface mapping, it also is unclear if there are additional fault splays that extend northeast or southwest of the main surface rupture. To better understand the fault structure at San Andreas Lake, the U.S. Geological Survey acquired a series of seismic imaging profiles across the SAF at San Andreas Lake in 2008, 2009, and 2011, when the lake level was near historical lows and the surface traces of the SAF were exposed for the first time in decades. We used multiple seismic methods to locate the main 1906 rupture zone and fault splays within about 100 meters northeast of the main rupture zone. Our seismic observations are internally consistent, and our seismic indicators of faulting generally correlate with fault locations inferred from surface mapping. We also tested the accuracy of our seismic methods by comparing our seismically located faults with surface ruptures mapped by Schussler (1906) immediately after the April 18, 1906 San Francisco earthquake of approximate magnitude 7.9; our seismically determined fault locations were highly accurate. Near the reservoir intake facility at San Andreas Lake, our seismic data indicate the main 1906 surface rupture zone consists of at least three near-surface fault traces. Movement on multiple fault traces can have appreciable engineering significance because, unlike movement on a single strike-slip fault trace, differential movement on multiple fault traces may exert compressive and extensional stresses on built structures within the fault zone. Such differential movement and resulting distortion of built structures appear to have occurred between fault traces at the gatewell near the southern end of San Andreas Lake during the 1906 San Francisco earthquake (Schussler, 1906). In addition to the three fault traces within the main 1906 surface rupture zone, our data indicate at least one additional fault trace (or zone) about 80 meters northeast of the main 1906 surface rupture zone. Because ground shaking also can damage structures, we used fault-zone guided waves to investigate ground shaking within the fault zones relative to ground shaking outside the fault zones. Peak ground velocity (PGV) measurements from our guided-wave study indicate that ground shaking is greater at each of the surface fault traces, varying with the frequency of the seismic data and the wave type (P versus S). S-wave PGV increases by as much as 5–6 times at the fault traces relative to areas outside the fault zone, and P-wave PGV increases by as much as 3–10 times. Assuming shaking increases linearly with increasing earthquake magnitude, these data suggest strong shaking may pose a significant hazard to built structures that extend across the fault traces. Similarly complex fault structures likely underlie other strike-slip faults (such as the Hayward, Calaveras, and Silver Creek Faults) that intersect structures of the water delivery system, and these fault structures similarly should be investigated.

  12. Preliminary geologic map of the Black Mountain area northeast of Victorville, San Bernardino County, California

    USGS Publications Warehouse

    Stone, Paul

    2006-01-01

    The Black Mountain area is in the Mojave Desert about 20 km northeast of Victorville, California. The geology of this area is of interest primarily for its excellent exposures of the early Mesozoic Fairview Valley Formation, a sequence of weakly metamorphosed sedimentary rocks including a thick, commercially important unit of limestone conglomerate that has been mined for cement at Black Mountain Quarry for several decades. Recent geochronologic work has shown that the Fairview Valley Formation is probably of Early Jurassic age. This preliminary geologic map of the Black Mountain area depicts the stratigraphic and structural relations of the Fairview Valley Formation and the associated rocks, most notably the overlying Sidewinder Volcanics of Early(?), Middle, and Late(?) Jurassic age. The map is based on new field studies by the author designed to clarify details of the stratigraphy and structure unresolved by previous investigations. The map is considered preliminary because the ages of some geologic units critical for a satisfactory understanding of the stratigraphic and structural framework remain unknown. The map area also includes a segment of the Helendale Fault, one of several faults of known or inferred late Cenozoic right-lateral displacement that make up the Eastern California Shear Zone. The fault is marked by aligned northeast-facing scarps in Pleistocene or older alluvial deposits and the underlying bedrock units. Relations in the map area suggest that right-lateral displacement on the Helendale Fault probably does not exceed 2 km, a conclusion compatible with previous estimates of displacement on this fault based on relations both within and outside the Black Mountain area.

  13. Parabolic distribution of circumeastern Snake River Plain seismicity and latest Quaternary faulting: Migratory pattern and association with the Yellowstone hotspot

    NASA Astrophysics Data System (ADS)

    Anders, Mark H.; Geissman, John Wm.; Piety, Lucille A.; Sullivan, J. Timothy

    1989-02-01

    The Intermountain and Idaho seismic belts within Idaho, Wyoming, and Montana form an unusual parabolic pattern about the axis of the aseismic eastern Snake River Plain (SRP). This pattern is also reflected in the distribution of latest Quaternary normal faults. Several late Cenozoic normal faults that trend perpendicular to the axis of the eastern SRP extend from the aseismic region to the region of latest Quaternary faulting and seismicity. A study of the late Miocene to Holocene displacement history of one of these, the Grand Valley fault system in southeastern Idaho and western Wyoming, indicates that a locus of high displacement rates has migrated away from the eastern SRP to its present location in southern Star Valley in western Wyoming. In Swan Valley the studied area closest to the eastern SRP, isotopic ages, and paleomagnetic data for over 300 samples from 47 sites on well-exposed late Cenozoic volcanic rocks (the tuff of Spring Creek, the tuff of Heise, the Huckleberry Ridge tuff, the Pine Creek Basalt, and an older tuff thought to be the tuff of Cosgrove Road) are used to demonstrate differences in the displacement rate on the Grand Valley fault over the last ˜10 m.y. Tectonic tilts for these volcanic rocks are estimated by comparing the results of paleomagnetic analyses in Swan Valley to similar analyses of samples from undeformed volcanic rocks outside of Swan Valley. Basin geometry and tilt axes are established using seismic reflection profiles and field mapping. Combining these data with the tilt data makes it possible to calculate displacement rates during discrete temporal intervals. An average displacement rate of ˜1.8 mm/yr is calculated for the Grand Valley fault in Swan Valley between 4.4 and 2.0 Ma. In the subsequent 2.0-m.y. interval the rate dropped 2 orders of magnitude to ˜0.014 mm/yr; during the preceding 5.5-m.y. interval the displacement rate is ˜0.15 mm/yr, or about 1 order of magnitude less than the rate between 4.4 and 2.0 Ma. Mapping of fault scarps and unfaulted deposits along the Grand Valley fault system shows that latest Quaternary fault scarps are restricted to the portion farthest from the eastern SRP, the southern part of the Star Valley fault. Surface displacements estimated from scarp profiles and deposit ages estimated from soil development suggest a latest Quaternary displacement rate of 0.6-1.2 mm/yr for the southern portion of the Star Valley fault. Morphologic evidence suggests that this displacement rate persisted on the Star Valley fault throughout most of the Quaternary. The latest Quaternary displacement rate calculated for the southern portion of the Star Valley fault is similar to the rate calculated for Swan Valley during the interval from 2.0 to 4.4 Ma. This similarity, together with evidence for a low Quaternary displacement rate on the fault system in Swan Valley, suggests that the location of the highest displacement rate has migrated away from the eastern SRP. Other normal faults in southeastern Idaho, northwestern Wyoming, and southwestern Montana, while less well described than the Grand Valley fault system, exhibit a similar outward migrating pattern of increased fault activity followed by quiescence. Furthermore, a temporal and spatial relationship between fault activity and the 3.5 cm/yr northeastward track of the Yellowstone hotspot is observable on the Grand Valley fault system and on other north-northwest trending late Cenozoic faults that border the eastern SRP. The temporal and spatial relationship of Miocene to present high displacement rates for other circumeastern SRP faults and the observable outwardly migrating pattern of fault activity suggest that a similar parabolic distribution of seismicity and high displacement rates was symmetrically positioned about the former position of the hotspot. Moreover, the tandem migration of the hotspot and the parabolic distribution of increased fault activity and seismicity are closely followed by a parabolic-shaped "collapse shadow," or region of fault inactivity and aseismicity. We suggest that the outwardly migrating pattern of increased fault activity (active region) results from reduced integrated lithospheric strength caused by thermal effects of the hotspot. Conversely, the outwardly propagating quiescent region is the result of a reduction or "collapse" of crustal extension rates caused by increased integrated lithospheric strength. Lithospheric strength in this region is increased by addition of mafic materials at the base of the crust and at midcrustal levels. Although the strength of the mantle portion of the lithosphere is reduced, the increased strength of the crust results in a total integrated increase in lithospheric strength. Paradoxically, the surface heat flow data suggest that the region within the interior parabola has a higher heat flow (after accounting for the cooling effects of the eastern SRP aquifer) than the adjacent regions, yet the interior region exhibits significantly lower extension rates. It appears that in this region the surface heat flow is not a good predictor of rates of lithospheric extension.

  14. Reconnaissance Geologic Map of the Duncan Canal-Zarembo Island Area, Southeastern Alaska

    USGS Publications Warehouse

    Karl, Susan M.; Haeussler, Peter J.; McCafferty, Anne E.

    1999-01-01

    The geologic map of the Duncan Canal-Zarembo Island area is the result of a multidisciplinary investigation of an area where an airborne geophysical survey was flown in the spring of 1997. The area was chosen for the geophysical survey because of its high mineral potential, a conclusion of the Petersburg Mineral Resource Assessment Project, conducted by the U.S. Geological Survey from 1978 to 1982. The City of Wrangell, in southeastern Alaska, the Bureau of Land Management, and the State of Alaska provided funding for the airborne geophysical survey. The geophysical data from the airborne survey were released in September 1997. The U.S. Geological Survey conducted field investigations in the spring and fall of 1998 to identify and understand the sources of the geophysical anomalies from the airborne survey. This geologic map updates the geologic maps of the same area published by David A. Brew at 1:63,360 (Brew, 1997a-m; Brew and Koch, 1997). This update is based on 3 weeks of field work, new fossil collections, and the geophysical maps released by the State of Alaska ( DGGS, Staff, and others, 1997a-o). Geologic data from outcrops, fossil ages, radiometric ages, and geochemical signatures were used to identify lithostratigraphic units. Where exposure is poor, geophysical characteristics were used to help control the boundaries of these units. No unit boundaries were drawn based on geophysics alone. The 7200 Hertz resistivity maps (DGGS, Staff, and others, 1997k-o) were particularly helpful for controlling unit boundaries, because different stratigraphic units have distinctive characteristic conductive signatures (Karl and others, 1998). Increased knowledge of unit ages, unit structure, and unit distribution, led to improved understanding of the nature of unit contacts. Northwest- to southwest-directed thrust faults, particularly on Kupreanof Island, are new discovery. Truncated faults and map patterns suggest there were at least 2 generations of thrusting, and that the thrust faults have been folded. Subsequent right-lateral strike-slip NW-SE faults, have offset thrust faults, and these in turn are offset by N-S right-lateral strike-slip faults. Our fieldwork raised as many questions as it answered, and we see this map as a progress report at a reconnaissance level. The main contributions of this map are 1) the greater distribution of Triassic rocks, 2) increased fossil age information, and 3) the identification of thrust faults within and between units.

  15. Late Quaternary tectonic activity and lake level change in the Rukwa Rift Basin

    NASA Astrophysics Data System (ADS)

    Delvaux, D.; Kervyn, F.; Vittori, E.; Kajara, R. S. A.; Kilembe, E.

    1998-04-01

    Interpretation of remotely sensed images and air photographs, compilation of geological and topographical maps, morphostructural and fault kinematic observations and 14C dating reveal that, besides obvious climatic influences, the lake water extent and sedimentation in the closed hydrological system of Lake Rukwa is strongly influenced by tectonic processes. A series of sandy ridges, palaeolacustrine terraces and palaeounderwater delta fans are related to an Early Holocene high lake level and subsequent progressive lowering. The maximum lake level was controlled by the altitude of the watershed between the Rukwa and Tanganyika hydrological systems. Taking as reference the present elevation of the palaeolacustrine terraces around Lake Rukwa, two orders of vertical tectonic movement are evidenced: i) a general uplift centred on the Rungwe Volcanic Province between the Rukwa and Malawi Rift Basins; and ii) a tectonic northeastward tilting of the entire Rukwa Rift Basin, including the depression and rift shoulders. This is supported by the observed hydromorphological evolution. Local uplift is also induced by the development of an active fault zone in the central part of the depression, in a prolongation of the Mbeya Range-Galula Fault system. The Ufipa and Lupa Border Faults, bounding the Rukwa depression on the southwestern and northeastern sides, respectively, exert passive sedimentation control only. They appear inactive or at least less active in the Late Quaternary than during the previous rifting stage. The main Late Quaternary tectonic activity is represented by dextral strike-slip movement along the Mbeya Range-Galula Fault system, in the middle of the Rukwa Rift Basin, and by normal dip-slip movements along the Kanda Fault, in the western rift shoulder.

  16. A windowing and mapping strategy for gear tooth fault detection of a planetary gearbox

    NASA Astrophysics Data System (ADS)

    Liang, Xihui; Zuo, Ming J.; Liu, Libin

    2016-12-01

    When there is a single cracked tooth in a planet gear, the cracked tooth is enmeshed for very short time duration in comparison to the total time of a full revolution of the planet gear. The fault symptom generated by the single cracked tooth may be very weak. This study aims to develop a windowing and mapping strategy to interpret the vibration signal of a planetary gear at the tooth level. The fault symptoms generated by a single cracked tooth of the planet gear of interest can be extracted. The health condition of the planet gear can be assessed by comparing the differences among the signals of all teeth of the planet gear. The proposed windowing and mapping strategy is tested with both simulated vibration signals and experimental vibration signals. The tooth signals can be successfully decomposed and a single tooth fault on a planet gear can be effectively detected.

  17. Three-thrust fault system at the plate suture of arc-continent collision in the southernmost Longitudinal Valley, eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, J.; Chen, H.; Hsu, Y.; Yu, S.

    2013-12-01

    Active faults developed into a rather complex three-thrust fault system at the southern end of the narrow Longitudinal Valley in eastern Taiwan, a present-day on-land plate suture between the Philippine Sea plate and Eurasia. Based on more than ten years long geodetic data (including GPS and levelling), field geological investigation, seismological data, and regional tomography, this paper aims at elucidating the architecture of this three-thrust system and the associated surface deformation, as well as providing insights on fault kinematics, slip behaviors and implications of regional tectonics. Combining the results of interseismic (secular) horizontal and vertical velocities, we are able to map the surface traces of the three active faults in the Taitung area. The west-verging Longitudinal Valley Fault (LVF), along which the Coastal Range of the northern Luzon arc is thrusting over the Central Range of the Chinese continental margin, braches into two active strands bounding both sides of an uplifted, folded Quaternary fluvial deposits (Peinanshan massif) within the valley: the Lichi fault to the east and the Luyeh fault to the west. Both faults are creeping, to some extent, in the shallow surface level. However, while the Luyeh fault shows nearly pure thrust type, the Lichi fault reveals transpression regime in the north and transtension in the south end of the LVF in the Taitung plain. The results suggest that the deformation in the southern end of the Longitudinal Valley corresponds to a transition zone from present arc-collision to pre-collision zone in the offshore SE Taiwan. Concerning the Central Range, the third major fault in the area, the secular velocities indicate that the fault is mostly locked during the interseismic period and the accumulated strain would be able to produce a moderate earthquake, such as the example of the 2006 M6.1 Peinan earthquake, expressed by an oblique thrust (verging toward east) with significant left-lateral strike slip component. Taking into account of the recent study on the regional seismic Vp tomography, it shows a high velocity zone with steep east-dipping angle fills the gap under the Longitudinal Valley between the opposing verging LVF and the Central Range fault, implying a possible rolled-back forearc basement under the Coastal Range.

  18. Structural Controls of Neal Hot Springs Geothermal Field, Malhuer County, Oregon

    NASA Astrophysics Data System (ADS)

    Edwards, J. H.; Faulds, J. E.

    2012-12-01

    Detailed mapping (1:24,000) of the Neal Hot Springs area (90 km2) in eastern Oregon is part of a larger study of geothermal systems in the Basin and Range, which focuses on the structural controls of geothermal activity. The study area lies within the intersection of two regional grabens, the middle-late Miocene, N-striking, Oregon-Idaho graben and younger late Miocene to Holocene, NW-striking, western Snake River Plain graben. The geothermal field is marked by Neal Hot Springs, which effuse from opaline sinter mounds just north of Bully Creek. Wells producing geothermal fluids, with temperatures at 138°C, intersect a major, W-dipping, NNW-striking, high-angle normal fault at depths of 850-915 m. Displacement along this structure dies southward, with likely horse-tailing, which commonly produces high fracture density and a zone of high permeability conducive for channeling hydrothermal fluids. Mapping reveals that the geothermal resource lies within a local, left step-over. 'Hard-linkage' between strands of the left-stepping normal fault, revealed through a study of well chips and well logs, occurs through two concealed structures. Both are W-striking faults, with one that runs parallel to Cottonwood Creek and one 0.5 km N of the creek. Injection wells intersect these two transverse structures within the step-over. Stepping and displacement continue to the NW of the known geothermal field, along W-dipping, N-striking faults that cut lower to middle Miocene Hog Creek Formation, consisting of silicic and mafic volcanic rocks. These N-striking faults were likely initiated during initial Oregon-Idaho graben subsidence (15.3-15.1 Ma), with continued development through late Miocene. Bully Creek Formation deposits, middle to upper Miocene lacustrine and pyroclastic rocks, concomitantly filled the sub half-grabens, and they dip gently to moderately eastward. Younger, western Snake River Plain deposits, upper Miocene to Pliocene fluvial, lacustrine, and pyroclastic rocks, show various dip directions and gentle tilting. Extensive alluvial fan cover hinders collection of fault kinematic data, which coupled with limited regional seismicity, precludes careful calculation of local stress field orientations. However, the proximity of Neal (4 km) to the active, N- to NW-striking, oblique-normal slip Cottonwood Mountain fault and active hot springs (~90°C), opaline sinter mounds, and geothermal fluid flow at Neal suggest that the geothermal field lies within a reactived (Quaternary), southward-terminating, left-stepping, fault zone, which probably accommodates oblique-slip with a dominant normal component. Sugarloaf Butte (completely silicified and replaced) lies within a left step of this fault zone, ~5 km of Neal Hot Springs and is possibly related to the evolution of the geothermal system. Epithermal deposits and argillic to propylitic alteration in other nearby areas (e.g., Hope Butte, ~3 Ma, 5 km N) indicate previous geothermal activity.

  19. Reconnaissance geologic map of the Kuskokwim Bay region, southwest Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Hults, Chad P.; Mohadjer, Solmaz; Coonrad, Warren L.

    2013-01-01

    The rocks of the map area range from Proterozoic age metamorphic rocks of the Kanektok metamorphic complex (Kilbuck terrane) to Quaternary age mafic volcanic rocks of Nunivak Island. The map area encompasses much of the type area of the Togiak-Tikchik Complex. The geologic maps used to construct this compilation were, for the most part, reconnaissance studies done in the time period from the 1950s to 1990s. Pioneering work in the map area by J.M. Hoare and W.L. Coonrad forms the basis for much of this map, either directly or as the stepping off point for later studies compiled here. Physiographically, the map area ranges from glaciated mountains, as much as 1,500 m high, in the Ahklun Mountains to the coastal lowlands of northern Bristol Bay and the Kuskokwim River delta. The mountains and the finger lakes (drowned fiords) on the east have been strongly affected by Pleistocene and Holocene glaciation. Within the map area are a number of major faults. The Togiak-Tikchik Fault and its extension to the northeast, the Holitna Fault, are considered extensions of the Denali fault system of central Alaska. Other sub-parallel faults include the Golden Gate, Sawpit, Goodnews, and East Kulukak Faults. Northwest-trending strike-slip faults crosscut and offset northeast-trending fault systems. Rocks of the area are assigned to a number of distinctive lithologic packages. Most distinctive among these packages are the high-grade metamorphic rocks of the Kanektok metamorphic complex or Kilbuck terrane, composed of a high-grade metamorphic orthogneiss core surrounded by greenschist and amphibolite facies schist, gneiss, and rare marble and quartzite. These rocks have yielded radiometric ages strongly suggestive of a 2.05 Ga emplacement age. Poorly known Paleozoic rocks, including Ordovician to Devonian and Permian limestone, are found east of the Kanektok metamorphic complex. A Triassic(?) ophiolite complex is on the southeast side of Kuskokwim Bay; otherwise only minor Triassic rock units are known. The most widespread rocks of the area are Jurassic and Early Cretaceous(?) volcanic and volcaniclastic rocks. The Kuskokwim Group flysch is restricted largely to the northeast part of the map area. It consists primarily of shelf and minor nearshore facies rocks. Primarily exposed in the lowlands west of the Ahklun Mountains, extensive latest Tertiary and Quaternary alkalic basalt flows and lesser pyroclastic rocks form much of the bedrock of the remaining area. On Saint Matthew Island, Cretaceous volcanic and pyroclastic rocks occur that are not found elsewhere within the map area. The Kuskokwim Group and older rocks, including on Saint Matthew Island, but not the Kanektok metamorphic complex, are intruded by widely dispersed Late Cretaceous and (or) Early Tertiary granitic rocks. Much of the lowland area is mantled by unconsolidated deposits that include glacial, alluvial and fluvial, marine, estuarine, and eolian deposits. These formed during several episodes of Quaternary glaciation.

  20. Width of surface rupture zone for thrust earthquakes: implications for earthquake fault zoning

    NASA Astrophysics Data System (ADS)

    Boncio, Paolo; Liberi, Francesca; Caldarella, Martina; Nurminen, Fiia-Charlotta

    2018-01-01

    The criteria for zoning the surface fault rupture hazard (SFRH) along thrust faults are defined by analysing the characteristics of the areas of coseismic surface faulting in thrust earthquakes. Normal and strike-slip faults have been deeply studied by other authors concerning the SFRH, while thrust faults have not been studied with comparable attention. Surface faulting data were compiled for 11 well-studied historic thrust earthquakes occurred globally (5.4 ≤ M ≤ 7.9). Several different types of coseismic fault scarps characterize the analysed earthquakes, depending on the topography, fault geometry and near-surface materials (simple and hanging wall collapse scarps, pressure ridges, fold scarps and thrust or pressure ridges with bending-moment or flexural-slip fault ruptures due to large-scale folding). For all the earthquakes, the distance of distributed ruptures from the principal fault rupture (r) and the width of the rupture zone (WRZ) were compiled directly from the literature or measured systematically in GIS-georeferenced published maps. Overall, surface ruptures can occur up to large distances from the main fault ( ˜ 2150 m on the footwall and ˜ 3100 m on the hanging wall). Most of the ruptures occur on the hanging wall, preferentially in the vicinity of the principal fault trace ( > ˜ 50 % at distances < ˜ 250 m). The widest WRZ are recorded where sympathetic slip (Sy) on distant faults occurs, and/or where bending-moment (B-M) or flexural-slip (F-S) fault ruptures, associated with large-scale folds (hundreds of metres to kilometres in wavelength), are present. A positive relation between the earthquake magnitude and the total WRZ is evident, while a clear correlation between the vertical displacement on the principal fault and the total WRZ is not found. The distribution of surface ruptures is fitted with probability density functions, in order to define a criterion to remove outliers (e.g. 90 % probability of the cumulative distribution function) and define the zone where the likelihood of having surface ruptures is the highest. This might help in sizing the zones of SFRH during seismic microzonation (SM) mapping. In order to shape zones of SFRH, a very detailed earthquake geologic study of the fault is necessary (the highest level of SM, i.e. Level 3 SM according to Italian guidelines). In the absence of such a very detailed study (basic SM, i.e. Level 1 SM of Italian guidelines) a width of ˜ 840 m (90 % probability from "simple thrust" database of distributed ruptures, excluding B-M, F-S and Sy fault ruptures) is suggested to be sufficiently precautionary. For more detailed SM, where the fault is carefully mapped, one must consider that the highest SFRH is concentrated in a narrow zone, ˜ 60 m in width, that should be considered as a fault avoidance zone (more than one-third of the distributed ruptures are expected to occur within this zone). The fault rupture hazard zones should be asymmetric compared to the trace of the principal fault. The average footwall to hanging wall ratio (FW : HW) is close to 1 : 2 in all analysed cases. These criteria are applicable to "simple thrust" faults, without considering possible B-M or F-S fault ruptures due to large-scale folding, and without considering sympathetic slip on distant faults. Areas potentially susceptible to B-M or F-S fault ruptures should have their own zones of fault rupture hazard that can be defined by detailed knowledge of the structural setting of the area (shape, wavelength, tightness and lithology of the thrust-related large-scale folds) and by geomorphic evidence of past secondary faulting. Distant active faults, potentially susceptible to sympathetic triggering, should be zoned as separate principal faults. The entire database of distributed ruptures (including B-M, F-S and Sy fault ruptures) can be useful in poorly known areas, in order to assess the extent of the area within which potential sources of fault displacement hazard can be present. The results from this study and the database made available in the Supplement can be used for improving the attenuation relationships for distributed faulting, with possible applications in probabilistic studies of fault displacement hazard.

  1. Spatial modeling for estimation of earthquakes economic loss in West Java

    NASA Astrophysics Data System (ADS)

    Retnowati, Dyah Ayu; Meilano, Irwan; Riqqi, Akhmad; Hanifa, Nuraini Rahma

    2017-07-01

    Indonesia has a high vulnerability towards earthquakes. The low adaptive capacity could make the earthquake become disaster that should be concerned. That is why risk management should be applied to reduce the impacts, such as estimating the economic loss caused by hazard. The study area of this research is West Java. The main reason of West Java being vulnerable toward earthquake is the existence of active faults. These active faults are Lembang Fault, Cimandiri Fault, Baribis Fault, and also Megathrust subduction zone. This research tries to estimates the value of earthquakes economic loss from some sources in West Java. The economic loss is calculated by using HAZUS method. The components that should be known are hazard (earthquakes), exposure (building), and the vulnerability. Spatial modeling is aimed to build the exposure data and make user get the information easier by showing the distribution map, not only in tabular data. As the result, West Java could have economic loss up to 1,925,122,301,868,140 IDR ± 364,683,058,851,703.00 IDR, which is estimated from six earthquake sources with maximum possibly magnitude. However, the estimation of economic loss value in this research is the worst case earthquakes occurrence which is probably over-estimated.

  2. Isostatic Gravity Map with Geology of the Santa Ana 30' x 60' Quadrangle, Southern California

    USGS Publications Warehouse

    Langenheim, V.E.; Lee, Tien-Chang; Biehler, Shawn; Jachens, R.C.; Morton, D.M.

    2006-01-01

    This report presents an updated isostatic gravity map, with an accompanying discussion of the geologic significance of gravity anomalies in the Santa Ana 30 by 60 minute quadrangle, southern California. Comparison and analysis of the gravity field with mapped geology indicates the configuration of structures bounding the Los Angeles Basin, geometry of basins developed within the Elsinore and San Jacinto Fault zones, and a probable Pliocene drainage network carved into the bedrock of the Perris block. Total cumulative horizontal displacement on the Elsinore Fault derived from analysis of the length of strike-slip basins within the fault zone is about 5-12 km and is consistent with previously published estimates derived from other sources of information. This report also presents a map of density variations within pre-Cenozoic metamorphic and igneous basement rocks. Analysis of basement gravity patterns across the Elsinore Fault zone suggests 6-10 km of right-lateral displacement. A high-amplitude basement gravity high is present over the San Joaquin Hills and is most likely caused by Peninsular Ranges gabbro and/or Tertiary mafic intrusion. A major basement gravity gradient coincides with the San Jacinto Fault zone and marked magnetic, seismic-velocity, and isotopic gradients that reflect a discontinuity within the Peninsular Ranges batholith in the northeast corner of the quadrangle.

  3. Structure of the Wagner Basin in the Northern Gulf of California From Interpretation of Seismic Reflexion Data

    NASA Astrophysics Data System (ADS)

    Gonzalez, M.; Aguilar, C.; Martin, A.

    2007-05-01

    The northern Gulf of California straddles the transition in the style of deformation along the Pacific-North America plate boundary, from distributed deformation in the Upper Delfin and Wagner basins to localized dextral shear along the Cerro Prieto transform fault. Processing and interpretation of industry seismic data adquired by Petroleos Mexicanos (PEMEX) allow us to map the main fault structures and depocenters in the Wagner basin and to unravel the way strain is transferred northward into the Cerro Prieto fault system. Seismic data records from 0.5 to 5 TWTT. Data stacking and time-migration were performed using semblance coefficient method. Subsidence in the Wagner basin is controlled by two large N-S trending sub-parallel faults that intersect the NNW-trending Cerro Prieto transform fault. The Wagner fault bounds the eastern margin of the basin for more than 75 km. This fault dips ~50° to the west (up to 2 seconds) with distinctive reflectors displaced more than 1 km across the fault zone. The strata define a fanning pattern towards the Wagner fault. Northward the Wagner fault intersects the Cerro Prieto fault at 130° on map view and one depocenter of the Wagner basin bends to the NW adjacent to the Cerro Prieto fault zone. The eastern boundary of the modern depocenter is the Consag fault, which extends over 100 km in a N-S direction with an average dip of ~50° (up to 2s) to the east. The northern segment of the Consag fault bends 25° and intersects the Cerro Prieto fault zone at an angle of 110° on map view. The acoustic basement was not imaged in the northwest, but the stratigraphic succession increases its thickness towards the depocenter of the Wagner basin. Another important structure is El Chinero fault, which runs parallel to the Consag fault along 60 km and possibly intersects the Cerro Prieto fault to the north beneath the delta of the Colorado River. El Chinero fault dips at low-angle (~30°) to the east and has a vertical offset of about 0.5 seconds (TWTT). Seismic imaging indicates that the Wagner and Consag faults transfer most of their slip to the Cerro Prieto fault. Moreover, the 130° intersection between the Wagner and Cerro Prieto faults suggests that the Wagner fault has a significant strike-slip component. Our results indicate that most of the strain in this plate boundary is transferred along two main sub-parallel oblique faults in a narrow zone 35 km-wide.

  4. Holocene slip rate along the northern Kongur Shan extensional system: insights on the large pull-apart structure in the NE Pamir

    NASA Astrophysics Data System (ADS)

    Pan, J.; Li, H.; Chevalier, M.; Liu, D.; Sun, Z.; Pei, J.; Wu, F.; Xu, W.

    2013-12-01

    Located at the northwestern end of the Himalayan-Tibetan orogenic belt, the Kongur Shan extensional system (KES) is a significant tectonic unit in the Chinese Pamir. E-W extension of the KES accommodates deformation due to the India/Asia collision in this area. Cenozoic evolution of the KES has been extensively studied, whereas Late Quaternary deformation along the KES is still poorly constrained. Besides, whether the KES is the northern extension of the Karakorum fault is still debated. Well-preserved normal fault scarps are present all along the KES. Interpretation of satellite images as well as field investigation allowed us to map active normal faults and associated vertically offset geomorphological features along the KES. At one site along the northern Kongur Shan detachment fault, in the eastern Muji basin, a Holocene alluvial fan is vertically offset by the active fault. We measured the vertical displacement of the fan with total station, and collected quartz cobbles for cosmogenic nuclide 10Be dating. Combining the 5-7 m offset and the preliminary surface-exposure ages of ~2.7 ka, we obtain a Holocene vertical slip-rate of 1.8-2.6 mm/yr along the fault. This vertical slip-rate is comparable to the right-lateral horizontal-slip rate along the Muji fault (~4.5 mm/yr, which is the northern end of the KES. Our result is also similar to the Late Quaternary slip-rate derived along the KES around the Muztagh Ata as well as the Tashkurgan normal fault (1-3 mm/yr). Geometry, kinematics, and geomorphology of the KES combined with the compatible slip-rate between the right-lateral strike-slip Muji fault and the Kongur Shan normal fault indicate that the KES may be an elongated pull-apart basin formed between the EW-striking right-lateral strike-slip Muji fault and the NW-SE-striking Karakorum fault. This unique elongated pull-apart structure with long normal fault in the NS direction and relatively short strike-slip fault in the ~EW direction seems to still be in formation, with the Karakorum fault still propagating to the north.

  5. A new tectonic model for southern Alaska

    NASA Astrophysics Data System (ADS)

    Reeder, J. W.

    2013-12-01

    S Alaska consists of a complex tectonic boundary that is gradational from subduction of Pacific Plate (PAC) beneath N American Plate (NA) in the W to a transform fault between these two plates in the SE. Adding complexity, the Yakutat Plate (YAK) is in between. The YAK is exposed in NE Gulf of Alaska and has been well mapped (Plafker, 1987). It is bound by the NA to the E at the Fairweather fault and by the PAC to the S. Relative to NA, YAK is moving 47 mm/yr N30°W and PAC is moving 51 mm/yr N20°W (Fletcher & Freymueller, 2003). The YAK and deeper PAC extend NW beneath the NA as flat slabs (Brocher et al., 1994). They subduct to the W and NW in Cook Inlet region (Ratchkovsky et al., 1997), resulting in the Cook Inlet volcanic arc. They also subduct farther NNW toward the Denali volcanic gap and fault. The subducted part of the YAK is split by a transform fault exposed at Montana Creek (MC) at 62°06'N to 62°10'N at 150°W. It extends S60°W toward the most N Cook Inlet volcano, Hayes, and extends N60°E beyond Talkeetna Mts. Right-lateral WSW motion and thick fault gauge have been documented by McGee (1978) on MC and a S60°W fault scarp cutting Quaternary deposits has been mapped (Reed & Nelson, 1980). Fuis et al. (2008) seismically recognized 110 km of missing YAP NW of Talkeetna Mts, which he thought was due to a 'tear' in the YAK to the far S. Nikoli Greenstone has been found in the Talkeetna Mts just S of this transform (Schmidt, 2003) that is 70 km SW of any other mapped Nikoli. This fault offset is also shown by 7.8 km/sec Vp depth contours, which represent the YAK (Eberhart-Phillips et al., 2006), as 110 km at N60°W. Based on magnetic data (Csejtey & Griscom, 1978; Saltus et al., 2007), the fault is regionally recognized as a 10× km zone on the WSW margin of the large S Alaska magnetic high. The fault zone has narrow WSW magnetic highs and depressions. This fault is also recognized on digital relief (Riehle et al., 1996); but, another pronounced N60°E linear feature also exists 20× km S, which trends into Mt. Spurr volcano. It could be another transform. If the MC transform is taking all the discrepancy between PAC and YAK, the S part of the fault would be moving relatively 9 mm/yr to S60°W. This transform has possibly been active for 12 million years. The Wrangell volcanoes with respect to YAK are associated with a spreading ridge. Yet, with respect to PAC, they are associated with a subduction zone (Stevens et al., 1984). The Totschunda and Fairweather faults are the new westward developing Denali transform. The Castle Mountain fault, located about 65 km to the SE of the MC transform, is oriented N65°E. It has had significant right-lateral offset of at least 30 km based on 7.8 km/sec Vp depth contours and of 26 km by magnetic offsets (Haeussler & Saltus, 2004). This older transform probably corresponds to Tertiary volcanics SW of the Mt Spurr/Hayes volcanic complex. Two active megathrust faults exist in south central Alaska; a 1964 type megathrust between PAC and YAK (Plafker, 1969), and a more continental megathrust between YAK and NA (Reeder, 2012). Based on Knik Arm subsidence events, these two types alternate and the next megathrust should occur in 350× years. This more continental megathrust would result in uplift of the N side of the Castle Mountain fault. It might even correspond to significant right-lateral movement on the seismically quiet MC transform.

  6. Quaternary Slip History for the Agua Blanca Fault, northern Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Gold, P. O.; Behr, W. M.; Rockwell, T. K.; Fletcher, J. M.

    2017-12-01

    The Agua Blanca Fault (ABF) is the primary structure accommodating San Andreas-related right-lateral slip across the Peninsular Ranges of northern Baja California. Activity on this fault influences offshore faults that parallel the Pacific coast from Ensenada to Los Angeles and is a potential threat to communities in northern Mexico and southern California. We present a detailed Quaternary slip history for the ABF, including new quantitative constraints on geologic slip rates, slip-per-event, the timing of most recent earthquake, and the earthquake recurrence interval. Cosmogenic 10Be exposure dating of clasts from offset fluvial geomorphic surfaces at 2 sites located along the western, and most active, section of the ABF yield preliminary slip rate estimates of 2-4 mm/yr and 3 mm/yr since 20 ka and 2 ka, respectively. Fault zone geomorphology preserved at the younger site provides evidence for right-lateral surface displacements measuring 2.5 m in the past two ruptures. Luminescence dating of an offset alluvial fan at a third site is in progress, but is expected to yield a slip rate relevant to the past 10 kyr. Adjacent to this third site, we excavated 2 paleoseismic trenches across a sag pond formed by a right step in the fault. Preliminary radiocarbon dates indicate that the 4 surface ruptures identified in the trenches occurred in the past 6 kyr, although additional dating should clarify earthquake timing and the mid-Holocene to present earthquake recurrence interval, as well as the likely date of the most recent earthquake. Our new slip rate estimates are somewhat lower than, but comparable within error to, previous geologic estimates based on soil morphology and geodetic estimates from GPS, but the new record of surface ruptures exposed in the trenches is the most complete and comprehensively dated earthquake history yet determined for this fault. Together with new and existing mapping of tectonically generated geomorphology along the ABF, our constraints show that contrary to some theories of fault interaction and activity for this section of the San Andreas system, the Agua Blanca Fault has been active over the late Holocene, and should be considered as a potential source of seismic hazard.

  7. An Application of Hydraulic Tomography to a Large-Scale Fractured Granite Site, Mizunami, Japan.

    PubMed

    Zha, Yuanyuan; Yeh, Tian-Chyi J; Illman, Walter A; Tanaka, Tatsuya; Bruines, Patrick; Onoe, Hironori; Saegusa, Hiromitsu; Mao, Deqiang; Takeuchi, Shinji; Wen, Jet-Chau

    2016-11-01

    While hydraulic tomography (HT) is a mature aquifer characterization technology, its applications to characterize hydrogeology of kilometer-scale fault and fracture zones are rare. This paper sequentially analyzes datasets from two new pumping tests as well as those from two previous pumping tests analyzed by Illman et al. (2009) at a fractured granite site in Mizunami, Japan. Results of this analysis show that datasets from two previous pumping tests at one side of a fault zone as used in the previous study led to inaccurate mapping of fracture and fault zones. Inclusion of the datasets from the two new pumping tests (one of which was conducted on the other side of the fault) yields locations of the fault zone consistent with those based on geological mapping. The new datasets also produce a detailed image of the irregular fault zone, which is not available from geological investigation alone and the previous study. As a result, we conclude that if prior knowledge about geological structures at a field site is considered during the design of HT surveys, valuable non-redundant datasets about the fracture and fault zones can be collected. Only with these non-redundant data sets, can HT then be a viable and robust tool for delineating fracture and fault distributions over kilometer scales, even when only a limited number of boreholes are available. In essence, this paper proves that HT is a new tool for geologists, geophysicists, and engineers for mapping large-scale fracture and fault zone distributions. © 2016, National Ground Water Association.

  8. White Sands Missile Range Main Cantonment and NASA Area Faults, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, Greg

    This is a zipped ArcGIS shapefile containing faults mapped for the Tularosa Basin geothermal play fairway analysis project. The faults were interpolated from gravity and seismic (NASA area) data, and from geomorphic features on aerial photography. Field work was also done for validation of faults which had surface expressions.

  9. Publications - PIR 2014-5 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    the Iniskin Peninsula: Implications for the kinematic history of the Bruin Bay fault system, lower Iniskin Peninsula: Implications for the kinematic history of the Bruin Bay fault system, lower Cook Inlet (3.0 M) Keywords Bruin Bay Fault; Chinitna Bay; Faults; Folds; Forearc Basin; Geologic Map; Iniskin Bay

  10. The Maradi fault zone: 3-D imagery of a classic wrench fault in Oman

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhaus, D.

    1993-09-01

    The Maradi fault zone extends for almost 350 km in a north-northwest-south-southeast direction from the Oman Mountain foothills into the Arabian Sea, thereby dissecting two prolific hydrocarbon provinces, the Ghaba and Fahud salt basins. During its major Late Cretaceous period of movement, the Maradi fault zone acted as a left-lateral wrench fault. An early exploration campaign based on two-dimensional seismic targeted at fractured Cretaceous carbonates had mixed success and resulted in the discovery of one producing oil field. The structural complexity, rapidly varying carbonate facies, and uncertain fracture distribution prevented further drilling activity. In 1990 a three-dimensional (3-D) seismic surveymore » covering some 500 km[sup 2] was acquired over the transpressional northern part of the Maradi fault zone. The good data quality and the focusing power of 3-D has enabled stunning insight into the complex structural style of a [open quotes]textbook[close quotes] wrench fault, even at deeper levels and below reverse faults hitherto unexplored. Subtle thickness changes within the carbonate reservoir and the unconformably overlying shale seal provided the tool for the identification of possible shoals and depocenters. Horizon attribute maps revealed in detail the various structural components of the wrench assemblage and highlighted areas of increased small-scale faulting/fracturing. The results of four recent exploration wells will be demonstrated and their impact on the interpretation discussed.« less

  11. Maximum Historical Seismic Intensity Map of S. Miguel Island (azores)

    NASA Astrophysics Data System (ADS)

    Silveira, D.; Gaspar, J. L.; Ferreira, T.; Queiroz, G.

    The Azores archipelago is situated in the Atlantic Ocean where the American, African and Eurasian lithospheric plates meet. The so-called Azores Triple Junction located in the area where the Terceira Rift, a NW-SE to WNW-ESE fault system with a dextral component, intersects the Mid-Atlantic Ridge, with an approximate N-S direction, dominates its geological setting. S. Miguel Island is located in the eastern segment of the Terceira Rift, showing a high diversity of volcanic and tectonic structures. It is the largest Azorean island and includes three active trachytic central volcanoes with caldera (Sete Cidades, Fogo and Furnas) placed in the intersection of the NW-SE Ter- ceira Rift regional faults with an E-W deep fault system thought to be a relic of a Mid-Atlantic Ridge transform fault. N-S and NE-SW faults also occur in this con- text. Basaltic cinder cones emplaced along NW-SE fractures link that major volcanic structures. The easternmost part of the island comprises an inactive trachytic central volcano (Povoação) and an old basaltic volcanic complex (Nordeste). Since the settle- ment of the island, early in the XV century, several destructive earthquakes occurred in the Azores region. At least 11 events hit S. Miguel Island with high intensity, some of which caused several deaths and significant damages. The analysis of historical documents allowed reconstructing the history and the impact of all those earthquakes and new intensity maps using the 1998 European Macrosseismic Scale were produced for each event. The data was then integrated in order to obtain the maximum historical seismic intensity map of S. Miguel. This tool is regarded as an important document for hazard assessment and risk mitigation taking in account that indicates the location of dangerous seismogenic zones and provides a comprehensive set of data to be applied in land-use planning, emergency planning and building construction.

  12. Fracture mapping of lineaments and recognizing their tectonic significance using SPOT-5 satellite data: A case study from the Bajestan area, Lut Block, east of Iran

    NASA Astrophysics Data System (ADS)

    Ahmadirouhani, Reyhaneh; Rahimi, Behnam; Karimpour, Mohammad Hassan; Malekzadeh Shafaroudi, Azadeh; Afshar Najafi, Sadegh; Pour, Amin Beiranvand

    2017-10-01

    Syste'm Pour l'Observation de la Terre (SPOT) remote sensing satellite data have useful characteristics for lineament extraction and enhancement related to the tectonic evaluation of a region. In this study, lineament features in the Bajestan area associated with the tectonic significance of the Lut Block (LB), east Iran were mapped and characterized using SPOT-5 satellite data. The structure of the Bajestan area is affected by the activity of deep strike-slip faults in the boundary of the LB. Structural elements such as faults and major joints were extracted, mapped, and analyzed by the implementation of high-Pass and standard kernels (Threshold and Sobel) filters to bands 1, 2 and 3 of SPOT-5 Level 2 A scene product of the Bajestan area. Lineament map was produced by assigning resultant filter images to red-green-blue (RGB) colour combinations of three main directions such as N-S, E-W and NE-SW. Results derived from image processing technique and statistical assessment indicate that two main orientations, including NW-SE with N-110 azimuth and NE-SW with N-40 azimuth, were dominated in the Bajestan area. The NW-SE trend has a high frequency in the study area. Based on the results of remote sensing lineament analysis and fieldwork, two dextral and sinistral strike-slip components were identified as main fault trends in the Bajestan region. Two dextral faults have acted as the cause of shear in the south and north of the Bajestan granitoid mass. Furthermore, the results indicate that the most of the lineaments in this area are extensional fractures corresponding to both the dykes emplacement and hydrothermal alteration zones. The application of SPOT-5 satellite data for structural analysis in a study region has great capability to provide very useful information of a vast area with low cost and time-consuming.

  13. The structural architecture of the Los Humeros volcanic complex and geothermal field, Trans-Mexican Volcanic Belt, Central Mexico

    NASA Astrophysics Data System (ADS)

    Norini, Gianluca; Groppelli, Gianluca; Sulpizio, Roberto; Carrasco Núñez, Gerardo; Davila Harris, Pablo

    2014-05-01

    The development of geothermal energy in Mexico is a very important goal, given the presence of a large heat anomaly, associated with the Trans-Mexican Volcanic Belt, the renewability of the resource and the low environmental impact. The Quaternary Los Humeros volcanic complex is an important geothermal target, whose evolution involved at least two caldera events, that alternated with other explosive and effusive activity. The first caldera forming event was the 460 ka eruption that produced the Xaltipan ignimbrite and formed a 15-20 km wide caldera. The second collapse event occurred 100 ka with the formation of the Zaragoza ignimbrite and a nested 8-10 km wide caldera. The whole volcano structure, the style of the collapses and the exact location of the calderas scarps and ring faults are still a matter of debate. The Los Humeros volcano hosts the productive Los Humeros Geothermal Field, with an installed capacity of 40 MW and additional 75 MW power plants under construction. Recent models of the geothermal reservoir predict the existence of at least two reservoirs in the geothermal system, separated by impermeable rock units. Hydraulic connectivity and hydrothermal fluids circulation occurs through faults and fractures, allowing deep steam to ascend while condensate flows descend. As a consequence, the plans for the exploration and exploitation of the geothermal reservoir have been based on the identification of the main channels for the circulation of hydrothermal fluids, constituted by faults, so that the full comprehension of the structural architecture of the caldera is crucial to improve the efficiency and minimize the costs of the geothermal field operation. In this study, we present an analysis of the Los Humeros volcanic complex focused on the Quaternary tectonic and volcanotectonics features, like fault scarps and aligned/elongated monogenetic volcanic centres. Morphostructural analysis and field mapping reveal the geometry, kinematics and dynamics of the structural features of the studied area. The integration of these structural data with available stratigraphy, geological maps and well logs is used to propose a new model of the caldera and geothermal field. As a result of our study, we interpret the Xaltipan and Zaragoza calderas mainly as trap-door structures. These calderas affected a cone-shaped volcanic sequence, formed mainly by effusive products emitted in the pre-caldera forming phase and now hosting the geothermal reservoir (11-1.5 Ma). The main ring faults of the two calderas are buried and sealed by widespread post-calderas volcanic products, and for this reason probably do not have enough secondary permeability to be main channels for hydrothermal fluid circulation. Active, fast-moving subvertical faults have been identified inside the Zaragoza caldera depression. These structures affect recent post-caldera pyroclastic deposits and probably are related both to active resurgence inside the caldera and to regional faults NW-SE striking. The presence of active faults generating high secondary permeability is the most important structural element shaping the geothermal reservoir. Future plans of expansion of the geothermal field should focus on these active faults, considering their geometry at depth and the whole structural architecture of the Los Humeros volcanic complex.

  14. 3D Modelling of Seismically Active Parts of Underground Faults via Seismic Data Mining

    NASA Astrophysics Data System (ADS)

    Frantzeskakis, Theofanis; Konstantaras, Anthony

    2015-04-01

    During the last few years rapid steps have been taken towards drilling for oil in the western Mediterranean sea. Since most of the countries in the region benefit mainly from tourism and considering that the Mediterranean is a closed sea only replenishing its water once every ninety years careful measures are being taken to ensure safe drilling. In that concept this research work attempts to derive a three dimensional model of the seismically active parts of the underlying underground faults in areas of petroleum interest. For that purpose seismic spatio-temporal clustering has been applied to seismic data to identify potential distinct seismic regions in the area of interest. Results have been coalesced with two dimensional maps of underground faults from past surveys and seismic epicentres, having followed careful reallocation processing, have been used to provide information regarding the vertical extent of multiple underground faults in the region of interest. The end product is a three dimensional map of the possible underground location and extent of the seismically active parts of underground faults. Indexing terms: underground faults modelling, seismic data mining, 3D visualisation, active seismic source mapping, seismic hazard evaluation, dangerous phenomena modelling Acknowledgment This research work is supported by the ESPA Operational Programme, Education and Life Long Learning, Students Practical Placement Initiative. References [1] Alves, T.M., Kokinou, E. and Zodiatis, G.: 'A three-step model to assess shoreline and offshore susceptibility to oil spills: The South Aegean (Crete) as an analogue for confined marine basins', Marine Pollution Bulletin, In Press, 2014 [2] Ciappa, A., Costabile, S.: 'Oil spill hazard assessment using a reverse trajectory method for the Egadi marine protected area (Central Mediterranean Sea)', Marine Pollution Bulletin, vol. 84 (1-2), pp. 44-55, 2014 [3] Ganas, A., Karastathis, V., Moshou, A., Valkaniotis, S., Mouzakiotis, E. and Papathanassiou, G.: 'Aftershock relocation and frequency-size distribution, stress inversion and seismotectonic setting of the 7 August 2013 M=5.4 earthquake in Kallidromon Mountain, central Greece', Tectonophysics, vol. 617, pp. 101-113, 2014 [4] Maravelakis, E., Bilalis, N., Mantzorou, I., Konstantaras, A. and Antoniadis, A.: '3D modelling of the oldest olive tree of the world', International Journal Of Computational Engineering Research, vol. 2 (2), pp. 340-347, 2012 [5] Konstantaras, A., Katsifarakis, E, Maravelakis, E, Skounakis, E, Kokkinos, E. and Karapidakis, E.: 'Intelligent spatial-clustering of seismicity in the vicinity of the Hellenic seismic arc', Earth Science Research, vol. 1 (2), pp. 1- 10, 2012 [6] Georgoulas, G., Konstantaras, A., Katsifarakis, E., Stylios, C., Maravelakis, E and Vachtsevanos, G.: 'Seismic-mass" density-based algorithm for spatio-temporal clustering', Expert Systems with Applications, vol. 40 (10), pp. 4183-4189, 2013 [7] Konstantaras, A.: 'Classification of Distinct Seismic Regions and Regional Temporal Modelling of Seismicity in the Vicinity of the Hellenic Seismic Arc', Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of', vol. 99, pp. 1-7, 2013

  15. Geologic map of Mészáros revisited: Pioneering tectonic mapping of the Transdanubian Range in the early 1980s

    NASA Astrophysics Data System (ADS)

    Zámolyi, A.; Horváth, F.; Kovács, G.; Timár, G.; Székely, B.

    2009-04-01

    Rocks, even in tectonically active areas are very solid compared to the changes within the scientific theories that occured especially in Eastern Europe as the political landscape changed and the separation into socialist and capitalist countries started to fade. While in Western Europe, Wegener's mobilistic approach gained widespread acceptance in the 1960-ies, in the countries of Eastern Europe (partly due to political reasons) fixistic ideas were supported. Despite the fact that most important early concepts in Hungarian tectonics were born about a century ago as a results of exploration of the Lake Balaton and its surroundings conducted by Lajos Lóczy, initiatives to integrate various geodynamic observations were rare exceptions in the second half of the 20th century. The high priority of economic geologic prospection in order to find raw materials resulted in an enormous amount of observations. In the central Transdanubian Range (TR), hosting bauxite, coal and manganese deposits, extensive surveying was carried out according to fixistic tectonic concepts. Although the recognition of faults was of vital importance in mining, mapped faults were rarely integrated into a global geodynamic model. A pioneering approach was presented by Mészáros (1983), who compiled a 1: 100 000 scale structural and economic-geologic map of large parts of TR. The map focuses on the Bakony hills that are of key importance for the geodynamic understanding of the formation of PB. TR forms inselbergs with well preserved outcrops, which is rare in PB, thus allowing for direct measurements of fault striations and fault plane orientations. Prinz (1926) maintained the theory that the TR is a rigid block and named it Tisia block. An alternative to this approach was the monograph of Uhlig (1907) proposing mobilistic concepts. Csontos et al (1991) reviewed the evolution of neogene stress-fields in the Carpatho-Pannonian region observing microtectonic faults in TR. The authors conclude that the faults mapped by Mészáros (1983) coincide fairly well with their microtectonic measurements. TR is nowadays interpreted as the uppermost Cretaceous thrust sheet of the Alpine nappes based on the interpretation of seismic surveys (Rumpler & Horváth, 1988; Horváth, 1993) and microtectonic measurements (Kiss & Fodor, 2007). We integrated the map into a GIS environment in order to evaluate the spatial accuracy of tectonic features and deformation style in the study area. Georeferencing was based upon control points applying rubber sheeting. Geological formations were digitized as polygons with their respective attributes (colour- or numerically coded). Three different categories of bounding elements are represented on the map: established, supposed and covered by younger geologic formations. Mészáros put a major emphasis on tectonic features, using 21 different line-types for representation. Digital terrain analysis methods using a 10 m DTM reveal a good correlation of the fault pattern with geomorphologic features, especially in the category of confirmed strike-slip faults. The connection of tectonic elements with the topography is a very anticipatory way of thinking for the early 1980s that became widely accepted by the end of the century. Csontos, L., Tari, G., Bergerat, F., Fodor, L. 1991. Tectonophysics, 199, 73-91. Horváth, F. 1993. In: Cloething, S., Sassi, W. & Horváth, F. (eds.) Tectonophysics, 226, 333-358. Kiss, A., Fodor, L. I. 2007. Geologica Carpathica, 58(5), 465-475. Mészáros, J. 1983. Ann. Rep. Hung. Geol. Inst. 1981, 485-502. Prinz, Gy. 1926. Danubia könyvkiadó, Pécs, 202 p. Rumpler, J., Horváth, F. 1988. In: L.H. Royden and F. Horváth (eds.) AAPG Mem. 45, Tulsa, Okl., 153-169p. Uhlig, V. 1907. Sitz. Ber. Akad. Wiss., math.- nat., Kl. 116(1), 871-982.

  16. Geophysical Characterization of the Hilton Creek Fault System

    NASA Astrophysics Data System (ADS)

    Lacy, A. K.; Macy, K. P.; De Cristofaro, J. L.; Polet, J.

    2016-12-01

    The Long Valley Caldera straddles the eastern edge of the Sierra Nevada Batholith and the western edge of the Basin and Range Province, and represents one of the largest caldera complexes on Earth. The caldera is intersected by numerous fault systems, including the Hartley Springs Fault System, the Round Valley Fault System, the Long Valley Ring Fault System, and the Hilton Creek Fault System, which is our main region of interest. The Hilton Creek Fault System appears as a single NW-striking fault, dipping to the NE, from Davis Lake in the south to the southern rim of the Long Valley Caldera. Inside the caldera, it splays into numerous parallel faults that extend toward the resurgent dome. Seismicity in the area increased significantly in May 1980, following a series of large earthquakes in the vicinity of the caldera and a subsequent large earthquake swarm which has been suggested to be the result of magma migration. A large portion of the earthquake swarms in the Long Valley Caldera occurs on or around the Hilton Creek Fault splays. We are conducting an interdisciplinary geophysical study of the Hilton Creek Fault System from just south of the onset of splay faulting, to its extension into the dome of the caldera. Our investigation includes ground-based magnetic field measurements, high-resolution total station elevation profiles, Structure-From-Motion derived topography and an analysis of earthquake focal mechanisms and statistics. Preliminary analysis of topographic profiles, of approximately 1 km in length, reveals the presence of at least three distinct fault splays within the caldera with vertical offsets of 0.5 to 1.0 meters. More detailed topographic mapping is expected to highlight smaller structures. We are also generating maps of the variation in b-value along different portions of the Hilton Creek system to determine whether we can detect any transition to more swarm-like behavior towards the North. We will show maps of magnetic anomalies, topography, various models of the Hilton Creek Fault System and cross-sections through focal mechanism and earthquake catalogs, and will attempt to integrate these observations into a single fault geometry model.

  17. Preliminary geologic map of Black Canyon and surrounding region, Nevada and Arizona

    USGS Publications Warehouse

    Felger, Tracey J.; Beard, L. Sue; Anderson, Zachary W.; Fleck, Robert J.; Wooden, Joseph L.; Seixas, Gustav B.

    2014-01-01

    Thermal springs in Black Canyon of the Colorado River, downstream of Hoover Dam, are important recreational, ecological, and scenic features of the Lake Mead National Recreation Area. This report presents the results from a U.S. Geological Survey study of the geologic framework of the springs. The study was conducted in cooperation with the National Park Service and funded by both the National Park Service and National Cooperative Geologic Mapping Program of the U.S. Geological Survey. The report has two parts: A, a 1:48,000-scale geologic map created from existing geologic maps and augmented by new geologic mapping and geochronology; and B, an interpretive report that presents results based on a collection of fault kinematic data near springs within Black Canyon and construction of 1:100,000-scale geologic cross sections that extend across the western Lake Mead region. Exposures in Black Canyon are mostly of Miocene volcanic rocks, underlain by crystalline basement composed of Miocene plutonic rocks or Proterozoic metamorphic rocks. The rocks are variably tilted and highly faulted. Faults strike northwest to northeast and include normal and strike-slip faults. Spring discharge occurs along faults intruded by dacite dikes and plugs; weeping walls and seeps extend away from the faults in highly fractured rock or relatively porous volcanic breccias, or both. Results of kinematic analysis of fault data collected along tributaries to the Colorado River indicate two episodes of deformation, consistent with earlier studies. The earlier episode formed during east-northeast-directed extension, and the later during east-southeast-directed extension. At the northern end of the study area, pre-existing fault blocks that formed during the first episode were rotated counterclockwise along the left-lateral Lake Mead Fault System. The resulting fault pattern forms a complex arrangement that provides both barriers and pathways for groundwater movement within and around Black Canyon. Regional cross sections in this report show that thick Paleozoic carbonate aquifer rocks of east-central Nevada do not extend into the Black Canyon area and generally are terminated to the south at a major tectonic boundary defined by the northeast-striking Lake Mead Fault System and the northwest-striking Las Vegas Valley shear zone. Faults to the west of Black Canyon strike dominantly north-south and form a complicated pattern that may inhibit easterly groundwater movement from Eldorado Valley. To the east of Black Canyon, crystalline Proterozoic rocks locally overlain by Tertiary volcanic rocks in the Black Mountains are bounded by steep north-south normal faults. These faults may also inhibit westerly groundwater movement from Detrital Valley toward Black Canyon. Finally, the cross sections show clearly that Proterozoic basement rocks and (or) Tertiary plutonic rocks are shallow in the Black Canyon area (at the surface to a few hundred meters depth) and are cut by several major faults that discharge most of the springs in the Black Canyon. Therefore, the faults most likely provide groundwater pathways to sufficient depths that the groundwater is heated to the observed temperatures of up to 55 °C.

  18. The 2016 central Italy earthquake sequence: surface effects, fault model and triggering scenarios

    NASA Astrophysics Data System (ADS)

    Chatzipetros, Alexandros; Pavlides, Spyros; Papathanassiou, George; Sboras, Sotiris; Valkaniotis, Sotiris; Georgiadis, George

    2017-04-01

    The results of fieldwork performed during the 2016 earthquake sequence around the karstic basins of Norcia and La Piana di Castelluccio, at an altitude of 1400 m, on the Monte Vettore (altitude 2476 m) and Vettoretto, as well as the three mapped seismogenic faults, striking NNW-SSW, are presented in this paper. Surface co-seismic ruptures were observed in the Vettore and Vettoretto segment of the fault for several kilometres ( 7 km) in the August earthquakes at high altitudes, and were re-activated and expanded northwards during the October earthquakes. Coseismic ruptures and the neotectonic Mt. Vettore fault zone were modelled in detail using images acquired from specifically planned UAV (drone) flights. Ruptures, typically with displacement of up to 20 cm, were observed after the August event both in the scree and weathered mantle (elluvium), as well as the bedrock, consisting mainly of fragmented carbonate rocks with small tectonic surfaces. These fractures expanded and new ones formed during the October events, typically of displacements of up to 50 cm, although locally higher displacements of up to almost 2 m were observed. Hundreds of rock falls and landslides were mapped through satellite imagery, using pre- and post- earthquake Sentinel 2A images. Several of them were also verified in the field. Based on field mapping results and seismological information, the causative faults were modelled. The model consists of five seismogenic sources, each one associated with a strong event in the sequence. The visualisation of the seismogenic sources follows INGV's DISS standards for the Individual Seismogenic Sources (ISS) layer, while strike, dip and rake of the seismic sources are obtained from selected focal mechanisms. Based on this model, the ground deformation pattern was inferred, using Okada's dislocation solution formulae, which shows that the maximum calculated vertical displacement is 0.53 m. This is in good agreement with the statistical analysis of the observed surface rupture displacement. Stress transfer analysis was also performed in the five modelled seismogenic sources, using seismologically defined parameters. The resulting stress transfer pattern, based on the sequence of events, shows that the causative fault of each event was influenced by loading from the previous ones.

  19. Regional methods for mapping major faults in areas of uniform low relief, as used in the London Basin, UK

    NASA Astrophysics Data System (ADS)

    Haslam, Richard; Aldiss, Donald

    2013-04-01

    Most of the London Basin, south-eastern UK, is underlain by the Palaeogene London Clay Formation, comprising a succession of rather uniform marine clay deposits up to 150 m thick, with widespread cover of Quaternary deposits and urban development. Therefore, in this area faults are difficult to delineate (or to detect) by conventional geological surveying methods in the field, and few are shown on the geological maps of the area. However, boreholes and excavations, especially those for civil engineering works, indicate that faults are probably widespread and numerous in the London area. A representative map of fault distribution and patterns of displacement is a pre-requisite for understanding the tectonic development of a region. Moreover, faulting is an important influence on the design and execution of civil engineering works, and on the hydrogeological characteristics of the ground. This paper reviews methods currently being used to map faults in the London Basin area. These are: the interpretation of persistent scatterer interferometry (PSI) data from time-series satellite-borne radar measurements; the interpretation of regional geophysical fields (Bouguer gravity anomaly and aeromagnetic), especially in combination with a digital elevation model; and the construction and interpretation of 3D geological models. Although these methods are generally not as accurate as large-scale geological field surveys, due to the availability of appropriate data in the London Basin they provide the means to recognise and delineate more faults, and with more confidence, than was possible using traditional geological mapping techniques. Together they reveal regional structures arising during Palaeogene crustal extension and subsidence in the North Sea, followed by inversion of a Mesozoic sedimentary basin in the south of the region, probably modified by strike-slip fault motion associated with the relative northward movement of the African Plate and the Alpine orogeny. This work is distributed under the Creative Commons Attribution 3.0 Unported License together with an NERC copyright. This license does not conflict with the regulations of the Crown Copyright.

  20. Episodic Rifting Events Within the Tjörnes Fracture Zone, an Onshore-Offshore Ridge-Transform in N-Iceland

    NASA Astrophysics Data System (ADS)

    Brandsdottir, B.; Magnusdottir, S.; Karson, J. A.; Detrick, R. S.; Driscoll, N. W.

    2015-12-01

    The multi-branched plate boundary across Iceland is made up of divergent and oblique rifts, and transform zones, characterized by entwined extensional and transform tectonics. The Tjörnes Fracture Zone (TFZ), located on the coast and offshore Northern Iceland, is a complex transform linking the northern rift zone (NVZ) on land with the Kolbeinsey Ridge offshore. Extension across TFZ is partitioned across three N-S trending rift basins; Eyjafjarðaráll, Skjálfandadjúp (SB) and Öxarfjörður and three WNW-NW oriented seismic lineaments; the Grímsey Oblique Rift, Húsavík-Flatey Faults (HFFs) and Dalvík Lineament. We compile the tectonic framework of the TFZ ridge-transform from aerial photos, satellite images, multibeam bathymetry and high-resolution seismic reflection data (Chirp). The rift basins are made up of normal faults with vertical displacements of up to 50-60 m, and post-glacial sediments of variable thickness. The SB comprises N5°W obliquely trending, eastward dipping normal faults as well as N10°E striking, westward dipping faults oriented roughly perpendicular to the N104°E spreading direction, indicative of early stages of rifting. Correlation of Chirp reflection data and tephrachronology from a sediment core within SB reveal major rifting episodes between 10-12.1 kyrs BP activating the whole basin, followed by smaller-scale fault movements throughout Holocene. Onshore faults have the same orientations as those mapped offshore and provide a basis for the interpretation of the kinematics of the faults throughout the region. These include transform parallel right-lateral, strike-slip faults separating domains dominated by spreading parallel left-lateral bookshelf faults. Shearing is most prominent along the HFFs, a system of right-lateral strike-slip faults with vertical displacement up to 15 m. Vertical fault movements reflect increased tectonic activity during early postglacial time coinciding with isostatic rebound enhancing volcanism within Iceland.

  1. Setting the baseline before geothermal exploration begins: the search of microseismic activity in the Geneva Basin, Western Switzerland

    NASA Astrophysics Data System (ADS)

    Antunes, Verónica; Lupi, Matteo; Carrier, Aurore; Planès, Thomas; Martin, François

    2017-04-01

    Switzerland is moving towards the development of renewable energies. Following this trend, SIG (Services Industriels de Genève) and the Canton of Geneva is investing in the exploration of geothermal energy. Before the exploration takes place it is crucial to understand the rate of seismic activity in the region and its relationship with the existing faults. Historical and instrumental times suggest the presence of active faults in the region but to date little is known about the seismic activity in the Geneva Basin. Tectonic maps show the presence of major faults crossing the basin and recent seismic events indicate that such systems are still active on a regional scale. However, available data indicate infrequent and dispersed activity. This can be partially due to the small number of permanent stations in the area. To understand where micro-seismic activity may be located around and within the Geneva Basin we have deployed a temporary network composed of 20 broadband stations. With the densification of the network it could be possible to capture and localise small magnitude seismic events (i.e. M less than 1). Here we present the preliminary results obtained during the first months of the temporary network deployment.

  2. Geomorphology of the Burnt River, eastern Oregon, USA: Topographic adjustments to tectonic and dynamic deformation

    NASA Astrophysics Data System (ADS)

    Morriss, Matthew Connor; Wegmann, Karl W.

    2017-02-01

    Eastern Oregon contains the deepest gorge in North America, where the Snake River cuts vertically down 2300 m. This deep gorge is known as Hells Canyon. A landscape containing such a topographic feature is likely undergoing relatively recent deformation. Study of the Burnt River, a tributary to the Snake River at the upstream end of Hells Canyon, yields data on active river incision in eastern Oregon, indicating that Quaternary faults are a first order control on regional landscape development. Through 1:24,000-scale geologic mapping, a 500,000-year record of fluvial incision along the Burnt River was constructed and is chronologically anchored by optically stimulated luminescence dating and tephrochronology analyses. A conceptual model of fluvial terrace formation was developed using these ages and likely applies to other non-glaciated catchments in eastern Oregon. Mapped terraces, inferred to have formed during glacial-interglacial cycles, provide constraints on rates of incision of the Burnt River. Incision through these terraces indicates that the Burnt River is down-cutting at 0.15 to 0.57 m kyr- 1. This incision appears to reflect a combination of local base-level adjustments tied to movement along the newly mapped Durkee fault and regional base-level control imposed by the downcutting of the Snake River. Deformation of terraces as young as 38.7 ± 5.1 ka indicates Quaternary activity along the Durkee fault, and when combined with topographic metrics (slope, relief, hypsometry, and stream-steepness), reveals a landscape in disequilibrium. Longer wavelength lithospheric dynamics (delamination and crustal foundering) that initiated in the Miocene may also be responsible for continued regional deformation of the Earth's surface.

  3. An Undergraduate Research Experience that Integrates Traditional Field Mapping, LiDAR, and 3D Numerical Modeling: Applying Lessons from a Recent Report from the National Academies of Sciences, Engineering, and Medicine in an Intermediate-Level Tectonic Landscapes Course

    NASA Astrophysics Data System (ADS)

    Reinen, L. A.; Brenner, K.

    2017-12-01

    Ongoing efforts to improve undergraduate education in science, technology, engineering, and mathematics (STEM) fields focus on increasing active student participation and decreasing traditional lecture-based teaching. Undergraduate research experiences (UREs), which engage students in the work of STEM professionals, are an example of these efforts. A recent report from the National Academies of Sciences, Engineering and Medicine (Undergraduate Research Experiences for STEM Students: Successes, Challenges, and Opportunities; 2017) provides characteristics of UREs, and indicates that participation in UREs increases student interest and persistence in STEM as well as provides opportunities to broaden student participation in these fields. UREs offer an excellent opportunity to engage students in research using the rapidly evolving technologies used by STEM professionals. In the fall of 2016, students in the Tectonic Landscapes class at Pomona College participated in a course-based URE that combined traditional field mapping methods with analysis of high-resolution topographic data (LiDAR) and 3D numerical modeling to investigate questions of active local faulting. During the first ten weeks students developed skills in: creation of fault maps from both field observations (GPS included) and high-resolution digital elevation models (DEMs), assessment of tectonic activity through analyses of DEMs of hill slope diffusion models and geomorphic indices, and evaluation of fault geometry hypotheses via 3D elastic modeling. Most of these assignments were focused on a single research site. While students primarily used Excel, ArcMap, and Poly3D, no previous knowledge of these was required or assumed. Through this iterative approach, students used increasingly more complex methods as well as gained greater ownership of the research process with time. The course culminated with a 4-week independent research project in which each student investigated a question of their own choosing using skills developed earlier in the course. We will provide details of the course, scaffolding of the technical skills, growing the independence of students in the research process, and discuss early outcomes of student confidence, engagement and retention.

  4. Geologic Map and GIS Data for the Tuscarora Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    Tuscarora—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, unit polygons, and attitudes of strata and faults. - List of stratigraphic units and stratigraphic correlation diagram. - Detailed unit descriptions of stratigraphic units. - Five cross‐sections. - Locations of production, injection, and monitor wells. - 3D model constructed with EarthVision using geologic map data, cross‐sections, drill‐hole data, and geophysics (model not in the ESRI geodatabase).

  5. Preliminary Geologic Map of the Sanchez Reservoir Quadrangle and Eastern Part of the Garcia Quadrangle, Costilla County, Colorado

    USGS Publications Warehouse

    Thompson, Ren A.; Machette, Michael N.; Drenth, Benjamin J.

    2007-01-01

    This geologic map is based entirely on new mapping by Thompson and Machette, whereas the geophysical data and interpretations were supplied by Drenth. The map area includes most of San Pedro Mesa, a basalt covered mesa that is uplifted as a horst between the Southern Sangre de Cristo fault zone (on the west) and the San Luis fault zone on the east. The map also includes most of the Sanchez graben, a deep structural basin that lies between the San Luis fault zone (on the west) and the Central Sangre de Cristo fault zone on the east. The oldest rocks in the map area are Proterozoic granites and Paleozoic sedimentary rocks, which are only exposed in a small hill on the west-central part of the mesa. The low hills that rise above San Pedro mesa are comprised of middle(?) Miocene volcanic rocks that are undated, but possibly correlative with mapped rocks to the east of Sanchez Reservoir. The bulk of the map area is comprised of the Servilleta Basalt, a regional series of flood basalts of Pliocene age. The west, north, and northeast margins of the mesa are covered by extensive landslide deposits that rest on poorly exposed sediment of the Santa Fe Group. Rare exposures of the sediment are comprised of siltstones, sandstones, and minor fluvial conglomerates. Most of the low ground surrounding the mesa is covered by surficial deposits of Quaternary age. The piedmont alluvium is subdivided into three Pleistocene units, and three Holocene units. The oldest Pleistocene gravel (unit Qao) forms an extensive coalesced alluvial fan and piedmont surface that is known as the Costilla Plains. This surface extends west from San Pedro Mesa to the Rio Grande. The primary geologic hazards in the map are are from earthquakes and landslides. There are three major fault zones in the area (as discussed above), and they all show evidence for late Pleistocene to possible Holocene movement. Two generations of landslides are mapped (younger and older), and both may have seismogenic origins.

  6. MARs Tools for Interactive ANalysis (MARTIAN): Google Maps Tools for Visual Exploration of Geophysical Modeling on Mars

    NASA Astrophysics Data System (ADS)

    Dimitrova, L. L.; Haines, M.; Holt, W. E.; Schultz, R. A.; Richard, G.; Haines, A. J.

    2006-12-01

    Interactive maps of surface-breaking faults and stress models on Mars provide important tools to engage undergraduate students, educators, and scientists with current geological and geophysical research. We have developed a map based on the Google Maps API -- an Internet based tool combining DHTML and AJAX, -- which allows very large maps to be viewed over the World Wide Web. Typically, small portions of the maps are downloaded as needed, rather than the entire image at once. This set-up enables relatively fast access for users with low bandwidth. Furthermore, Google Maps provides an extensible interactive interface making it ideal for visualizing multiple data sets at the user's choice. The Google Maps API works primarily with data referenced to latitudes and longitudes, which is then mapped in Mercator projection only. We have developed utilities for general cylindrical coordinate systems by converting these coordinates into equivalent Mercator projection before including them on the map. The MARTIAN project is available at http://rock.geo.sunysb.edu/~holt/Mars/MARTIAN/. We begin with an introduction to the Martian surface using a topography model. Faults from several datasets are classified by type (extension vs. compression) and by time epoch. Deviatoric stresses due to gravitational potential energy differences, calculated from the topography and crustal thickness, can be overlain. Several quantitative measures for the fit of the stress field to the faults are also included. We provide introductory text and exercises spanning a range of topics: how are faults identified, what stress is and how it relates to faults, what gravitational potential energy is and how variations in it produce stress, how the models are created, and how these models can be evaluated and interpreted. The MARTIAN tool is used at Stony Brook University in GEO 310: Introduction to Geophysics, a class geared towards junior and senior geosciences majors. Although this project is in its early stages, high school and college teachers, as well as researchers have expressed interest in using and extending these tools for visualizing and interacting with data on Earth and other planetary bodies.

  7. Multidisciplinary study (CO2 flux, ERT, self-potential, permeability and structural surveys) in Fondi di Baia, Astroni and Agnano volcanoes: insights for the structural architecture of the Campi Flegrei caldera (southern Italy)

    NASA Astrophysics Data System (ADS)

    Isaia, Roberto; Carapezza, Maria Luisa; Conti, Eric; Giulia Di Giuseppe, Maria; Lucchetti, Carlo; Prinzi, Ernesto; Ranaldi, Massimo; Tarchini, Luca; Tramparulo, Francesco; Troiano, Antonio; Vitale, Stefano; Cascella, Enrico; Castello, Nicola; Cicatiello, Alessandro; Maiolino, Marco; Puzio, Domenico; Tazza, Lucia; Villani, Roberto

    2017-04-01

    Recent volcanism at Campi Flegrei caldera produced more than 70 eruptions in the last 15 ka formed different volcanic edifices. The vent distribution was related to the main volcano-tectonic structure active in the caldera along which also concentrated part of the present hydrothermal and fumarolic activity, such as in the Solfatara area. In order to define the role of major faults in the Campi Flegrei Caldera, we analyzed some volcanic craters (Fondi di Baia and Astroni) and the Agnano caldera, by means of different geochemical and geophysical technics including CO2 flux, electrical resistivity (ERT), self-potential and permeability surveys. We provided some ERT profiles and different maps of geochemical and geophysical features. Major fault planes were identified comparing ERT imaging with alignments of anomalies in maps. The results can improve the knowledge on the present state of these volcanoes actually not fully monitored though included in the area with high probability of future vent opening within the Campi Flegrei caldera.

  8. The Generation of Oceanic Lithosphere in an Embryonic Oceanic Crust : the Example of the Chenaillet Ophiolite in the Western Alps

    NASA Astrophysics Data System (ADS)

    Masini, E.; Manatschal, G.; Muntener, O.

    2007-12-01

    The Chenaillet Ophiolite exposed in the Franco-Italian Alps represents a well-preserved ocean-floor sequence that was only weakly affected by later Alpine convergence. Based on the similarity between rock types and structures reported from ultraslow spreading ridges and those observed in the Chenaillet Ophiolite, it may represent a field analogue for slow to ultraslow spreading ridges such as the Gakkel Ridge or the Southwest Indian Ridge. Mapping of the Chenaillet Ophiolite enabled to identify an oceanic detachment fault that extends over a surface of about 16 km2 capping exhumed mantle and gabbros onto which clastic sediments have been deposited. The footwall of the detachment is formed by mafic and ultramafic rocks. The mantle rocks are strongly serpentinized lherzolites and subordinate harzburgites and dunites. Microstructures reminiscent of impregnation, and cpx major and trace element chemistry indicate that spinel peridotite is (locally) replaced by plagioclase-bearing assemblages. Pyroxene thermometry on primary minerals indicates high temperatures of equilibration ( max 1200°C) for the mantle rocks. Gabbros range from troctolite and olivine-gabbros to Fe-Ti gabbros and show clear evidence of syn-magmatic deformation, partially obliterated by retrograde amphibolite and low-grade metamorphic conditions. In sections perpendicular to the detachment within the footwall, syn-tectonic gabbros and serpentinized peridotites grade over some tens of meters into cataclasites that are capped by fault gouges. Petro-structural investigations of the fault rocks reveal a syn-tectonic retrograde metamorphic evolution. Clasts of dolerite within the fault zone suggest that detachment faulting was accompanied by magmatic activity. Hydrothermal alteration is indicated by strong mineralogical and chemical modifications. Gabbro and serpentinized peridotite, together with serpentinite cataclasites occur as clasts in tectono-sedimentary breccias overlying directly the detachment fault. Across the whole Chenaillet Ophiolite, volcanic rocks directly overlie either the detachment fault or the sediments. In several places, N-S trending high-angle normal faults have been mapped. These faults truncate and displace the detachment fault leading to small domino-like structures. The basins, limited by these high-angle faults, are some hundreds to a few kilometres wide and few tens to some hundreds of meters deep. Because these high- angle faults are sealed locally by basalts and obliterated by volcanic structures, we interpret them as oceanic structures being active during the emplacement of the basalts. The alignment of porphyritic basaltic dykes parallel to, and their increasing abundance towards the high-angle faults suggest that they may have served as feeder channels for the overlying volcanic rocks. The complex poly-phase tectonic and magmatic processes observed in the Chenaillet Ophiolite are reminiscent of those reported from slow to ultraslow spreading ridges. The key result from our study is that mantle exhumation along detachment faults is followed by syn-magmatic normal faulting resulting in the emplacement of laterally variable, up to 300 meters thick massive lavas and pillow basalts covering the exhumed detachment fault. This implies that off-axis processes are more important as previously assumed and that large-scale detachment faults may be buried under massive volcanic sequences suggesting that detachment faulting is presumably more common than suggested by dredging or morpho-structural investigations of ultra- to slow- spreading oceanic crust.

  9. Relationships between Induced Seismicity and Fluid Injection: Development of Strategies to Manage Injection

    NASA Astrophysics Data System (ADS)

    Eichhubl, Peter; Frohlich, Cliff; Gale, Julia; Olson, Jon; Fan, Zhiqiang; Gono, Valerie

    2014-05-01

    Induced seismicity during or following the subsurface injection of waste fluids such as well stimulation flow back and production fluids has recently received heightened public and industry attention. It is understood that induced seismicity occurs by reactivation of existing faults that are generally present in the injection intervals. We seek to address the question why fluid injection triggers earthquakes in some areas and not in others, with the aim toward improved injection methods that optimize injection volume and cost while avoiding induced seismicity. A GIS database has been built of natural and induced earthquakes in four hydrocarbon-producing basins: the Fort Worth Basin, South Texas, East Texas/Louisiana, and the Williston Basin. These areas are associated with disposal from the Barnett, Eagle Ford, Bakken, and Haynesville Shales respectively. In each region we analyzed data that were been collected using temporary seismographs of the National Science Foundation's USArray Transportable Array. Injection well locations, formations, histories, and volumes are also mapped using public and licensed datasets. Faults are mapped at a range of scales for selected areas that show different levels of seismic activity, and scaling relationships used to extrapolate between the seismic and wellbore scale. Reactivation potential of these faults is assessed using fault occurrence, and in-situ stress conditions, identifying areas of high and low fault reactivation potential. A correlation analysis between fault reactivation potential, induced seismicity, and fluid injection will use spatial statistics to quantify the probability of seismic fault reactivation for a given injection pressure in the studied reservoirs. The limiting conditions inducing fault reactivation will be compared to actual injection parameters (volume, rate, injection duration and frequency) where available. The objective of this project is a statistical reservoir- to basin-scale assessment of fault reactivation and seismicity induced by fluid injection. By assessing the occurrence of earthquakes (M>2) evenly across large geographic regions, this project differs from previous studies of injection-induced seismicity that focused on earthquakes large enough to cause public concern in well-populated areas. The understanding of triggered seismicity gained through this project is expected to allow for improved design strategies for waste fluid injection to industry and public decision makers.

  10. Geologic map of the Fittstown 7.5΄ quadrangle, Pontotoc and Johnston Counties, Oklahoma

    USGS Publications Warehouse

    Lidke, David J.; Blome, Charles D.

    2017-01-09

    This 1:24,000-scale geologic map includes new geologic mapping as well as compilation and revision of previous geologic maps in the area. Field investigations were carried out during 2009–2011 that included mapping and investigations of the geology and hydrology of the Chickasaw National Recreation Area, Oklahoma, west of the map area.The Fittstown quadrangle is in Pontotoc and Johnston Counties in south-central Oklahoma, which is in the northeastern part of the Arbuckle Mountains. The Arbuckle Mountains are composed of a thick sequence of Paleozoic sedimentary rocks that overlie Lower Cambrian and Precambrian igneous rocks; these latter rocks are not exposed in the quadrangle. From Middle to Late Pennsylvanian time, the Arbuckle Mountains region was folded, faulted, and uplifted. Periods of erosion followed these Pennsylvanian mountain-building events, beveling this region and ultimately developing the current subtle topography that includes hills and incised uplands. The southern and northwestern parts of the Fittstown quadrangle are directly underlain by Lower Ordovician dolomite of the Arbuckle Group that has eroded to form an extensive, stream-incised upland containing the broad, gently southeast-plunging, Pennsylvanian-age Hunton anticline. The northeastern part of the map area is underlain by Middle Ordovician to Pennsylvanian limestone, shale, and sandstone units that predominantly dip northeast and form the northeastern limb of the Hunton anticline; this limb is cut by steeply dipping, northwest-southeast striking faults of the Franks fault zone. This limb and the Franks fault zone define the southwestern margin of the Franks graben, which is underlain by Pennsylvanian rocks in the northeast part of the map area.

  11. The Investigation of Active Tectonism Offshore Cide-Sinop, Southern Black Sea by Seismic Reflection and Bathymetric Data

    NASA Astrophysics Data System (ADS)

    Alp, Y. I.; Ocakoglu, N.; Kılıc, F.; Ozel, A. O.

    2017-12-01

    The active tectonism offshore Cide-Sinop at the Southern Black Sea shelf area was first time investigated by multi-beam bathymetric and multi-channel seismic reflection data under the Research Project of The Scientific and Technological Research Council of Turkey (TUBİTAK-ÇAYDAG-114Y057). The multi-channel seismic reflection data of about 700 km length were acquired in 1991 by Turkish Petroleum Company (TP). Multibeam bathymetric data were collected between 2002-2008 by the Turkish Navy, Department of Navigation, Hydrography and Oceanography (TN-DNHO). Conventional data processing steps were applied as follows: in-line geometry definition, shot-receiver static correction, editing, shot muting, gain correction, CDP sorting, velocity analysis, NMO correction, muting, stacking, predictive deconvolution, band-pass filtering, finite-difference time migration, and automatic gain correction. Offshore area is represented by a quite smooth and large shelf plain with an approx. 25 km wide and the water depth of about -100 m. The shelf gently deepens and it is limited by the shelf break with average of -120 m contour. The seafloor morphology is charasterised by an erosional surface. Structurally, E-W trending strike-slip faults with generally compression components and reverse/thrust faults have been regionally mapped for the first time. Most of these faults deform all seismic units and reach the seafloor delimiting the morphological highs and submarine plains. Thus, these faults are intepreted as active faults. These results support the idea that the area is under the active compressional tectonic regime

  12. Earthquake relocation near the Leech River Fault, southern Vancouver Island

    NASA Astrophysics Data System (ADS)

    Li, G.; Liu, Y.; Regalla, C.

    2015-12-01

    The Leech River Fault (LRF), a northeast dipping thrust, extends across the southern tip of Vancouver Island in Southwest British Columbia, where local tectonic regime is dominated by the subduction of the Juan de Fuca plate beneath the North American plate at the present rate of 40-50 mm/year. British Columbia geologic map (Geoscience Map 2009-1A) shows that this area also consists of many crosscutting minor faults in addition to the San Juan Fault north of the LRF. To investigate the seismic evidence of the subsurface structures of these minor faults and of possible hidden active structures in this area, precise earthquake locations are required. In this study, we relocate 941 earthquakes reported by Canadian National Seismograph Network (CNSN) catalog from 2000 to 2015 within a 100km x 55km study area surrounding the LRF. We use HypoDD [Waldhauser, F., 2001] double-difference relocation method by combining P/S phase arrivals provided by the CNSN at 169 stations and waveform data with correlation coefficient values greater than 0.7 at 50 common stations and event separation less than 10km. A total of 900 out of the 931 events satisfy the above relocation criteria. Velocity model used is a 1-D model extracted from the Ramachandran et al. (2005) model. Average relative location errors estimated by the bootstrap method are 546.5m (horizontal) and 1128.6m (in depth). Absolute errors reported by SVD method for individual clusters are ~100m in both dimensions. We select 5 clusters visually according to their epicenters (see figure). Cluster 1 is parallel to the LRF and a thrust FID #60. Clusters 2 and 3 are bounded by two faults: FID #75, a northeast dipping thrust marking the southwestern boundary of the Wrangellia terrane, and FID #2 marking the northern boundary. Clusters 4 and 5, to the northeast and northwest of Victoria respectively, however, do not represent the surface traces of any mapped faults. The depth profile of Cluster 5 depicts a hidden northeast dipping structure, while other clusters illustrate near-vertical structures. Seismicity of Clusters 1 and 3 suggests vertically dipping patterns for FID #60 and FID #2, while Cluster 4 may reveal a hidden vertically dipping structure. It is noteworthy that most events in this area are deeper than 20km, but the explanation for such deep earthquakes is still unclear.

  13. Multi-temporal InSAR measurement of interseimic motion on the eastern Tibet border

    NASA Astrophysics Data System (ADS)

    Doin, M. P.; Lasserre, C.; He, P.; de Sigoyer, J.

    2014-12-01

    We use here SAR interferometry using archived Envisat data to map the interseismic deformation of eastern Tibet. The area under study starts just South of the Haiyuan fault, crosses the eastern termination of the Kunlun fault and the bend on the XianShuiHe fault to the South. It includes the Longriba fault system, an active structure located 150 km west of the Longmen Shan front (Xu et al., 2008, Ren et al., 2013). GPS data suggest that it may accommodate a large part of the present-day relative movement (6-8 mm/yr) between the Aba block and the south China block (Thatcher, 2007, Shen et al 2005). The Longriba and the Longmen Shan faults might be linked at depth by a decollement zone or by ductile shear in the crust (Shu et al., 2008). We process three adjacent Envisat 1000 km long swaths crossing this mountainous and vegetated terrain using a small baseline strategy. The interferograms show numerous phase perturbations that mask the interseismic motion due to : (1) coherence loss, (2) stratified atmospheric delays, (3) DEM error contribution, (4) the 2008 Sichuan earthquake. We will show how we tackle these limitations and display the effect of successive corrections. Focus will first be brought to the corrections applied before filtering and unwrapping, that increase phase spatial continuity. We estimate empirically stratified atmospheric delay polynomial relationship, depending on azimuth and elevation, on wrapped interferograms. We then estimate the local DEM error for each pixel. Multi-looking and filtering are based on various measures of pixel reliability in order to increase the signal to noise ratio of filtered interferograms. Finally, unwrapping is obtained by a region growing algorithm, from the most reliable areas to the least, avoiding to cross layover areas. Time series of phase delay maps in the Longriba area are dominated by a side lobe of the May 2008 Sichuan earthquake. After its extraction and correction, principal component analysis clearly evidences a linear trend modulated south of the Longriba fault system by post-seismic transient motion, in agreement with GPS data (Huang et al., 2014). Finally, we obtain a LOS velocity map of interseismic motion with an amplitude of a few mm/yr. We will discuss strain localization along the main eastern Tibet faults and possible vertical motion.

  14. New Geologic Data on the Seismic Risks of the Most Dangerous Fault on Shore in Central Japan, the Itoigawa-Shizuoka Tectonic Line Active Fault System

    NASA Astrophysics Data System (ADS)

    Okumura, K.; Kondo, H.; Toda, S.; Takada, K.; Kinoshita, H.

    2006-12-01

    Ten years have past since the first official assessment of the long-term seismic risks of the Itoigawa-Shizuoka tectonic line active fault system (ISTL) in 1996. The disaster caused by the1995 Kobe (Hyogo-ken-Nanbu) earthquake urged the Japanese government to initiated a national project to assess the long-term seismic risks of on-shore active faults using geologic information. ISTL was the first target of the 98 significant faults and the probability of a M7 to M8 event turned out to be the highest among them. After the 10 years of continued efforts to understand the ISTL, now it is getting ready to revise the assessment. Fault mapping and segmentation: The most active segment of the Gofukuji fault (~1 cm/yr left-lateral strike slip, R=500~800 yrs.) had been maped only for less than 10 km. Adjacent segments were much less active. This large slip on such a short segment was contradictory. However, detailed topographic study including Lidar survey revealed the length of the Gofukuji fault to be 25 km or more. High slip rate with frequent earthquakes may be restricted to the Gofukuji fault while the 1996 assessment modeled frequent >100 km rupture scenario. The geometry of the fault is controversial especially on the left-lateral strike-slip section of the ISTL. There are two models of high-angle Middel ISTL and low-angle Middle ISTL with slip partitioning. However, all geomorphic and shallow geologic data supports high-angle almost pure strike slip on the faults in the Middle ISTL. CRIEPI's 3- dimensional trenching in several sites as well as the previous results clearly demonstrated repeated pure strike-slip offset during past a few events. In Middle ISTL, there is no evidence of recent activity of pre-existing low-angle thrust faults that are inferred to be active from shallow seismic survey. Separation of high (~3000 m) mountain ranges and low (<1000 m) basin floor requires significant dip-slip component, but basin-fill sediments and geology of the range do not need vertical separation along the Gofukuji fault. The key issue for the time-dependent assessment of the Northern ISTL (east dipping reverse faults) was the lack of reliable time constraints on past earthquakes. In order to solve this problem, we have carried out intensive geoslicer and boring survey of buried faults at Kisaki. Along a 35 m long transect, we collected total 150 m complete cores in 9 geoslicer and 5 all-core boring holes. This is one of the most intensive surveys of a buried fault scarp under the water table. About 20 m vertical offset of 6000-year-old buried A-horizon is now underlain by a series of flood deposits, point bars and over-bank sediments, that intercalates 2 or 3 faulting events. The precise timing and offset of each event recorded in the section will be the critical evidence to tell the synchroneity of earthquakes in the Northern ISTL and the Middle ISTL. The magnitude of the coming event on ISTL is the most important but uncertain parameter of the 1996 assessment. The structural and paleoseimological information will present better constraints on the earthquake.

  15. Analysis of tectonic features in US southwest from Skylab photographs

    NASA Technical Reports Server (NTRS)

    Abdel-Gawad, M. (Principal Investigator); Tubbesing, L.

    1975-01-01

    The author has identified the following significant results. Skylab photographs were utilized to study faults and tectonic lines in selected areas of the U.S. Southwest. Emphasis was on elements of the Texas Zone in the Mojave Desert and the tectonic intersection in southern Nevada. Transverse faults believed to represent the continuation of the Texas Zone were found to be anomalous in strike. This suggests that the Mojave Desert block was rotated counterclockwise as a unit with the Sierra Nevada. Left-lateral strike-slip faults in Lake Mead area are interpreted as elements of the Wasatch tectonic zone; their anomalous trend indicates that the Lake Mead area has rotated clockwise with the Colorado Plateau. A tectonic model relating major fault zones to fragmentation and rotation of crustal blocks was developed. Detailed correlation of the high resolution S190B metric camera photographs with U-2 photographs and geologic maps demonstrates the feasibility of utilizing S190B photographs for the identification of geomorphic features associated with recent and active faults and for the assessment of seismic hazards.

  16. Applicability of ERTS-1 to Montana geology

    NASA Technical Reports Server (NTRS)

    Weidman, R. M. (Principal Investigator); Alt, D. D.; Berg, R. A.; Johns, W. M.; Flood, R. E.; Hawley, K. T.; Wackwitz, L. K.

    1973-01-01

    The author has identified the following significant results. A detailed band 7 ERTS-1 lineament map covering western Montana and northern Idaho has been prepared and is being evaluated by direct comparison with geologic maps, by statistical plots of lineaments and known faults, and by field checking. Lineament patterns apparent in the Idaho and Boulder batholiths do not correspond to any known geologic structures. A band 5 mosaic of Montana and adjacent areas has been laid and a lineament annotation prepared for comparison with the band 7 map. All work to date indicates that ERTS-1 imagery is very useful for revealing patterns of high-angle faults, though much less useful for mapping rock units and patterns of low-angle faults. Large-scale mosaics of U-2 photographs of three test sites have been prepared for annotation and comparison with ERTS-1 maps. Mapping of Quaternary deposits in the Glacial Lake Missoula basin using U-2 color infrared transparencies has been successful resulting in the discovery of some deposits not previously mapped. Detailed work has been done for Test Site 354 D using ERTS-1 imagery; criteria for recognition of several rock types have been found. Photogeologic mapping for southeastern Montana suggest Wasatch deposits where none shown of geologic map.

  17. Grizzly Valley fault system, Sierra Valley, CA

    USGS Publications Warehouse

    Gold, Ryan; Stephenson, William; Odum, Jack; Briggs, Rich; Crone, Anthony; Angster, Steve

    2012-01-01

    The Grizzly Valley fault system (GVFS) strikes northwestward across Sierra Valley, California and is part of a network of active, dextral strike-slip faults in the northern Walker Lane (Figure 1). To investigate Quaternary motion across the GVFS, we analyzed high-resolution (0.25 m) airborne LiDAR data (Figure 2) in combination with six, high-resolution, P-wave, seismic-reflection profiles [Gold and others, 2012]. The 0.5- to 2.0-km-long seismic-reflection profiles were sited orthogonal to suspected tectonic lineaments identified from previous mapping and our analysis of airborne LiDAR data. To image the upper 400–700 m of subsurface stratigraphy of Sierra Valley (Figure 3), we used a 230-kg accelerated weight drop source. Geophone spacing ranged from 2 to 5 m and shots were co-located with the geophones. The profiles reveal a highly reflective, deformed basal marker that we interpret to be the top of Tertiary volcanic rocks, overlain by a 120- to 300-m-thick suite of subhorizontal reflectors we interpret as Plio-Pleistocene lacustrine deposits. Three profiles image the principle active trace of the GVFS, which is a steeply dipping fault zone that offsets the volcanic rocks and the basin fill (Figures 4 & 5).

  18. 3-D Structure and Morphology of the S-reflector Detachment Fault, Offshore Galicia, Spain

    NASA Astrophysics Data System (ADS)

    Schuba, C. N.; Sawyer, D. S.; Gray, G. G.; Morgan, J.; Bull, J.; Shillington, D. J.; Jordan, B.; Reston, T. J.

    2017-12-01

    The crustal architecture of passive continental margins provides valuable clues for understanding rift initiation and evolution. The Galicia margin is an archetypal magma-poor margin displaying exhumed serpentinized mantle, and is an optimal setting in which to examine rift-related processes. A new 3-D seismic reflection volume images this margin in great detail. The S-reflector detachment fault, one of the most prominent structural features associated with the Galicia margin, is imaged as a continuous interface over an area of 600 km2. The top and base of the fault zone can be mapped independently, which enables seismic attribute analysis of this significant structure. RMS amplitude maps extracted from this interface show localized patches of high amplitude stripes that coincide with thickness variations of the fault zone and undulations in the bounding surfaces of the fault. These variations bear similarities to grooves on the fault surface such as slickensides, and appear to have developed as the fault zone evolved. These features thus represent good indicators of the kinematics of the fault system. In general, there is good correlation between S-reflector morphology and the overriding fault intersections; however this relationship does not appear to be present with the fault gouge thickness.

  19. The Najd Fault System of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Stüwe, Kurt; Kadi, Khalid; Abu-Alam, Tamer; Hassan, Mahmoud

    2014-05-01

    The Najd Fault System of the Arabian-Nubian Shield is considered to be the largest Proterozoic Shear zone system on Earth. The shear zone was active during the late stages of the Pan African evolution and is known to be responsible for the exhumation of fragments of juvenile Proterozoic continental crust that form a series of basement domes across the shield areas of Egypt and Saudi Arabia. A three year research project funded by the Austrian Science Fund (FWF) and supported by the Saudi Geological Survey (SGS) has focused on structural mapping, petrology and geochronology of the shear zone system in order to constrain age and mechanisms of exhumation of the domes - with focus on the Saudi Arabian side of the Red Sea. We recognise important differences in comparison with the basement domes in the Eastern desert of Egypt. In particular, high grade metamorphic rocks are not exclusively confined to basement domes surrounded by shear zones, but also occur within shear zones themselves. Moreover, we recognise both exhumation in extensional and in transpressive regimes to be responsible for exhumation of high grade metamorphic rocks in different parts of the shield. We suggest that these apparent structural differences between different sub-regions of the shield largely reflect different timing of activity of various branches of the Najd Fault System. In order to tackle the ill-resolved timing of the Najd Fault System, zircon geochronology is performed on intrusive rocks with different cross cutting relationships to the shear zone. We are able to constrain an age between 580 Ma and 605 Ma for one of the major branches of the shear zone, namely the Ajjaj shear zone. In our contribution we present a strain map for the shield as well as early geochronological data for selected shear zone branches.

  20. Geologic map of the Strawberry Butte 7.5’ quadrangle, Meagher County, Montana

    USGS Publications Warehouse

    Reynolds, Mitchell W.; Brandt, Theodore R.

    2017-06-19

    The 7.5′ Strawberry Butte quadrangle in Meagher County, Montana near the southwest margin of the Little Belt Mountains, encompasses two sharply different geologic terranes.  The northern three-quarters of the quadrangle are underlain mainly by Paleoproterozoic granite gneiss, across which Middle Cambrian sedimentary rocks rest unconformably.  An ancestral valley of probable late Eocene age, eroded northwest across the granite gneiss terrane, is filled with Oligocene basalt and overlying Miocene and Oligocene sandstone, siltstone, tuffaceous siltstone, and conglomerate.  The southern quarter of the quadrangle is underlain principally by deformed Mesoproterozoic sedimentary rocks of the Newland Formation, which are intruded by Eocene biotite hornblende dacite dikes.  In this southern terrane, Tertiary strata are exposed only in a limited area near the southeast margin of the quadrangle.  The distinct terranes are juxtaposed along the Volcano Valley fault zone—a zone of recurrent crustal movement beginning possibly in Mesoproterozoic time and certainly established from Neoproterozoic–Early Cambrian to late Tertiary time.  Movement along the fault zone has included normal faulting, the southern terrane faulted down relative to the northern terrane, some reverse faulting as the southern terrane later moved up against the northern terrane, and lateral movement during which the southern terrane likely moved west relative to the northern terrane.  Near the eastern margin of the quadrangle, the Newland Formation is locally the host of stratabound sulfide mineralization adjacent to the fault zone; west along the fault zone across the remainder of the quadrangle are significant areas and bands of hematite and iron-silicate mineral concentrations related to apparent alteration of iron sulfides.  The map defines the distribution of a variety of surficial deposits, including the distribution of hematite-rich colluvium and iron-silicate boulders.  The southeast corner of the quadrangle is the site of active exploration and potential development for copper from the sulfide-bearing strata of the Newland Formation.

  1. River gradient anomalies reveal recent tectonic movements when assuming an exponential gradient decrease along a river course

    NASA Astrophysics Data System (ADS)

    Žibret, Gorazd; Žibret, Lea

    2017-03-01

    High resolution digital models, combined with GIS or other terrain modelling software, allow many new possibilities in geoscience. In this paper we develop, describe and test a novel method, the GLA method, to detect active tectonic uplift or subsidence along river courses. It is a modification of Hack's SL-index method in order to overcome the disadvantages of the latter. The core assumption of the GLA method is that over geological time river profiles quickly adjust to follow an exponential decrease in elevation along the river course. Any large deviation can be attributed to active tectonic movement, or to disturbances in erosion/sedimentation processes caused by an anthropogenic structure (e.g. artificial dam). During the testing phase, the locations of identified deviations were compared to the locations of faults, identified on a 1:100,000 geological map. Results show that higher magnitude deviations are found within a maximum radius of 200 m from the fault, and the majority of detected deviations within a maximum radius of 600 m from faults or thrusts. However, these results are not the best that could be obtained because the geological map that was used (and the only one available for the area) is not of the appropriate scale, and was therefore not precise enough. Comparison of deviation magnitudes against PSInSAR measurements of vertical displacements in the vicinity revealed that in spite of the very few suitable points available, a good correlation between both independent methods was obtained (R2 = 0.68 for the E research area and R2 = 0.69 for the W research area). The GLA method was applied to the three test sites where previous studies have shown active tectonic movements. It shows that deviations occur at the intersections between active faults and river courses, as well as also correctly detected active uplift, attributed to the increased sedimentation rate above an artificial hydropower dam, and an increased erosion rate below. The method gives promising results, and it is acknowledged that the GLA method needs to be tested in other locations around the world.

  2. Development of a low cost method to estimate the seismic signature of a geothermal field from ambient seismic noise analysis, Authors: Tibuleac, I. M., J. Iovenitti, S. Pullammanapallil, D. von Seggern, F.H. Ibser, D. Shaw and H. McLahlan

    NASA Astrophysics Data System (ADS)

    Tibuleac, I. M.; Iovenitti, J. L.; Pullammanappallil, S. K.; von Seggern, D. H.; Ibser, H.; Shaw, D.; McLachlan, H.

    2015-12-01

    A new, cost effective and non-invasive exploration method using ambient seismic noise has been tested at Soda Lake, NV, with promising results. Seismic interferometry was used to extract Green's Functions (P and surface waves) from 21 days of continuous ambient seismic noise. With the advantage of S-velocity models estimated from surface waves, an ambient noise seismic reflection survey along a line (named Line 2), although with lower resolution, reproduced the results of the active survey, when the ambient seismic noise was not contaminated by strong cultural noise. Ambient noise resolution was less at depth (below 1000m) compared to the active survey. Useful information could be recovered from ambient seismic noise, including dipping features and fault locations. Processing method tests were developed, with potential to improve the virtual reflection survey results. Through innovative signal processing techniques, periods not typically analyzed with high frequency sensors were used in this study to obtain seismic velocity model information to a depth of 1.4km. New seismic parameters such as Green's Function reflection component lateral variations, waveform entropy, stochastic parameters (Correlation Length and Hurst number) and spectral frequency content extracted from active and passive surveys showed potential to indicate geothermal favorability through their correlation with high temperature anomalies, and showed potential as fault indicators, thus reducing the uncertainty in fault identification. Geothermal favorability maps along ambient seismic Line 2 were generated considering temperature, lithology and the seismic parameters investigated in this study and compared to the active Line 2 results. Pseudo-favorability maps were also generated using only the seismic parameters analyzed in this study.

  3. An L-band interferometric synthetic aperture radar study on the Ganos section of the north Anatolian fault zone between 2007 and 2011: Evidence for along strike segmentation and creep in a shallow fault patch.

    PubMed

    de Michele, Marcello; Ergintav, Semih; Aochi, Hideo; Raucoules, Daniel

    2017-01-01

    We utilize L-band interferometric synthetic aperture radar (InSAR) data in this study to retrieve a ground velocity map for the near field of the Ganos section of the north Anatolian fault (NAF) zone. The segmentation and creep distribution of this section, which last ruptured in 1912 to generate a moment magnitude (Mw)7.3 earthquake, remains incompletely understood. Because InSAR processing removes the mean orbital plane, we do not investigate large scale displacements due to regional tectonics in this study as these can be determined using global positioning system (GPS) data, instead concentrating on the close-to-the-fault displacement field. Our aim is to determine whether, or not, it is possible to retrieve robust near field velocity maps from stacking L-band interferograms, combining both single and dual polarization SAR data. In addition, we discuss whether a crustal velocity map can be used to complement GPS observations in an attempt to discriminate the present-day surface displacement of the Ganos fault (GF) across multiple segments. Finally, we characterize the spatial distribution of creep on shallow patches along multiple along-strike segments at shallow depths. Our results suggest the presence of fault segmentation along strike as well as creep on the shallow part of the fault (i.e. the existence of a shallow creeping patch) or the presence of a smoother section on the fault plane. Data imply a heterogeneous fault plane with more complex mechanics than previously thought. Because this study improves our knowledge of the mechanisms underlying the GF, our results have implications for local seismic hazard assessment.

  4. Focal Mechanisms of Recent Earthquakes in the Southern Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Park, J.; Kim, W.; Chung, T.; Baag, C.; Ree, J.

    2005-12-01

    There has been a lack of seismic data in the Korean Peninsula mainly because it is in a seismically stable area within the Eurasian plate (or Amurian microplate) and because a network of seismic stations has been poor until recently. Consequently, first motion studies on the peninsula showed a large uncertainty or covered only local areas. Also, a tectonic province map constructed based on pre-Cenozoic tectonic events in Korea has been used for a seismic zonation. To solve these problems, we made focal mechanism solutions for 71 earthquakes (ML = 1.9 to 5.2) occurred in and around the peninsula from 1999 to 2004 and collected by a new dense seismic network established since 1995. For this, we relocated the hypocenters and obtained fault plane solutions with errors of fault parameter less than 15° from the data set of 1,270 clear P-wave polarities and from 46 SH/P amplitude ratios. The focal mechanism solutions show that subhorizontal ENE P- and subhorizontal NNW T-axes are predominant, representing the common direction of P- and T-axes within the Amurian plate. The faulting mechanisms are mostly strike-slip faulting or strike-slip-dominant-oblique-slip faulting with a reverse-slip component, although normal-slip-dominant-oblique-slip faultings occur locally probably due to a local reorientation of stress. These results incorporated with those from the kinematic studies of the Quaternary faults imply that NNE-striking faults (dextral strike-slip or oblique-slip with a reverse-slip component) are highly likely to generate earthquakes in South Korea. The spatial distribution of the maximum horizontal stress direction and faulting types does not correlate with the preexisting tectonic province map of Korea, and a new construction of seismic zonation map is required for a better seismic evaluation.

  5. An L-band interferometric synthetic aperture radar study on the Ganos section of the north Anatolian fault zone between 2007 and 2011: Evidence for along strike segmentation and creep in a shallow fault patch

    PubMed Central

    Ergintav, Semih; Aochi, Hideo; Raucoules, Daniel

    2017-01-01

    We utilize L-band interferometric synthetic aperture radar (InSAR) data in this study to retrieve a ground velocity map for the near field of the Ganos section of the north Anatolian fault (NAF) zone. The segmentation and creep distribution of this section, which last ruptured in 1912 to generate a moment magnitude (Mw)7.3 earthquake, remains incompletely understood. Because InSAR processing removes the mean orbital plane, we do not investigate large scale displacements due to regional tectonics in this study as these can be determined using global positioning system (GPS) data, instead concentrating on the close-to-the-fault displacement field. Our aim is to determine whether, or not, it is possible to retrieve robust near field velocity maps from stacking L-band interferograms, combining both single and dual polarization SAR data. In addition, we discuss whether a crustal velocity map can be used to complement GPS observations in an attempt to discriminate the present-day surface displacement of the Ganos fault (GF) across multiple segments. Finally, we characterize the spatial distribution of creep on shallow patches along multiple along-strike segments at shallow depths. Our results suggest the presence of fault segmentation along strike as well as creep on the shallow part of the fault (i.e. the existence of a shallow creeping patch) or the presence of a smoother section on the fault plane. Data imply a heterogeneous fault plane with more complex mechanics than previously thought. Because this study improves our knowledge of the mechanisms underlying the GF, our results have implications for local seismic hazard assessment. PMID:28961264

  6. Geologic Map of the Neal Hot Springs Geothermal Area - GIS Data

    DOE Data Explorer

    Faulds, James E.

    2013-03-31

    Neal Hot Springs—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, unit polygons, and attitudes of strata and faults. - List of stratigraphic units and stratigraphic correlation diagram. - Three cross‐sections. - Locations of production, injection, and exploration wells. - Locations of 40Ar/39Ar samples. - Location of XRF geochemical samples. - 3D model constructed with EarthVision using geologic map data, cross‐sections, drill‐hole data, and geophysics (model not in the ESRI geodatabase).

  7. AADL Fault Modeling and Analysis Within an ARP4761 Safety Assessment

    DTIC Science & Technology

    2014-10-01

    Analysis Generator 27 3.2.3 Mapping to OpenFTA Format File 27 3.2.4 Mapping to Generic XML Format 28 3.2.5 AADL and FTA Mapping Rules 28 3.2.6 Issues...PSSA), System Safety Assessment (SSA), Common Cause Analysis (CCA), Fault Tree Analysis ( FTA ), Failure Modes and Effects Analysis (FMEA), Failure...Modes and Effects Summary, Mar - kov Analysis (MA), and Dependence Diagrams (DDs), also referred to as Reliability Block Dia- grams (RBDs). The

  8. Late Quaternary Faulting in Southeastern Louisiana: A Natural Laboratory for Understanding Shallow Faulting in Deltaic Materials

    NASA Astrophysics Data System (ADS)

    Dawers, N. H.; McLindon, C.

    2017-12-01

    A synthesis of late Quaternary faults within the Mississippi River deltaic plain aims to provide a more accurate assessment of regional and local fault architecture, and interactions between faulting, sediment loading, salt withdrawal and compaction. This effort was initiated by the New Orleans Geological Society and has resulted in access to industry 3d seismic reflection data, as well as fault trace maps, and various types of well data and biostratigraphy. An unexpected outgrowth of this project is a hypothesis that gravity-driven normal faults in deltaic settings may be good candidates for shallow aseismic and slow-slip phenomena. The late Quaternary fault population is characterized by several large, highly segmented normal fault arrays: the Baton Rouge-Tepetate fault zone, the Lake Pontchartrain-Lake Borgne fault zone, the Golden Meadow fault zone (GMFZ), and a major counter-regional salt withdrawal structure (the Bay Marchand-Timbalier Bay-Caillou Island salt complex and West Delta fault zone) that lies just offshore of southeastern Louisiana. In comparison to the other, more northerly fault zones, the GMFZ is still significantly salt-involved. Salt structures segment the GMFZ with fault tips ending near or within salt, resulting in highly localized fault and compaction related subsidence separated by shallow salt structures, which are inherently buoyant and virtually incompressible. At least several segments within the GMFZ are characterized by marsh breaks that formed aseismically over timescales of days to months, such as near Adams Bay and Lake Enfermer. One well-documented surface rupture adjacent to a salt dome propagated over a 3 day period in 1943. We suggest that Louisiana's coastal faults make excellent analogues for deltaic faults in general, and propose that a series of positive feedbacks keep them active in the near surface. These include differential sediment loading and compaction, weak fault zone materials, high fluid pressure, low elastic stiffness in surrounding materials, and low confining pressure.

  9. Estimation of Maximum Ground Motions in the Form of ShakeMaps and Assessment of Potential Human Fatalities from Scenario Earthquakes on the Chishan Active Fault in southern Taiwan

    NASA Astrophysics Data System (ADS)

    Liu, Kun Sung; Huang, Hsiang Chi; Shen, Jia Rong

    2017-04-01

    Historically, there were many damaging earthquakes in southern Taiwan during the last century. Some of these earthquakes had resulted in heavy loss of human lives. Accordingly, assessment of potential seismic hazards has become increasingly important in southern Taiwan, including Kaohsiung, Tainan and northern Pingtung areas since the Central Geological Survey upgraded the Chishan active fault from suspected fault to Category I in 2010. In this study, we first estimate the maximum seismic ground motions in term of PGA, PGV and MMI by incorporating a site-effect term in attenuation relationships, aiming to show high seismic hazard areas in southern Taiwan. Furthermore, we will assess potential death tolls due to large future earthquakes occurring on Chishan active fault. As a result, from the maximum PGA ShakeMap for an Mw7.2 scenario earthquake on the Chishan active fault in southern Taiwan, we can see that areas with high PGA above 400 gals, are located in the northeastern, central and northern parts of southwestern Kaohsiung as well as the southern part of central Tainan. In addition, comparing the cities located in Tainan City at similar distances from the Chishan fault have relatively greater PGA and PGV than those in Kaohsiung City and Pingtung County. This is mainly due to large site response factors in Tainan. On the other hand, seismic hazard in term of PGA and PGV, respectively, show that they are not particular high in the areas near the Chishan fault. The main reason is that these areas are marked with low site response factors. Finally, the estimated fatalities in Kaohsiung City at 5230, 4285 and 2786, respectively, for Mw 7.2, 7.0 and 6.8 are higher than those estimated for Tainan City and Pingtung County. The main reason is high population density above 10000 persons per km2 are present in Fongshan, Zuoying, Sanmin, Cianjin, Sinsing, Yancheng, Lingya Districts and between 5,000 and 10,000 persons per km2 are present in Nanzih and Gushan Districts in Kaohsiung City. Another to pay special attention is Kaohsiung City has more than 540 thousands households whose residences over 50 years old, including bungalows and 2-3 stories houses. Many of them are still in use. Even more worry some is that in Kaohsiung many of these old structures are used for shops in the city center where population is highly concentrated. In case of earthquake, the consequences would be unthinkable. In light of results of this study, we urge both the municipal and central governments to take effective seismic hazard mitigation measures in the highly urbanized areas with large number of old buildings in southern Taiwan.

  10. Documentation for Initial Seismic Hazard Maps for Haiti

    USGS Publications Warehouse

    Frankel, Arthur; Harmsen, Stephen; Mueller, Charles; Calais, Eric; Haase, Jennifer

    2010-01-01

    In response to the urgent need for earthquake-hazard information after the tragic disaster caused by the moment magnitude (M) 7.0 January 12, 2010, earthquake, we have constructed initial probabilistic seismic hazard maps for Haiti. These maps are based on the current information we have on fault slip rates and historical and instrumental seismicity. These initial maps will be revised and improved as more data become available. In the short term, more extensive logic trees will be developed to better capture the uncertainty in key parameters. In the longer term, we will incorporate new information on fault parameters and previous large earthquakes obtained from geologic fieldwork. These seismic hazard maps are important for the management of the current crisis and the development of building codes and standards for the rebuilding effort. The boundary between the Caribbean and North American Plates in the Hispaniola region is a complex zone of deformation. The highly oblique ~20 mm/yr convergence between the two plates (DeMets and others, 2000) is partitioned between subduction zones off of the northern and southeastern coasts of Hispaniola and strike-slip faults that transect the northern and southern portions of the island. There are also thrust faults within the island that reflect the compressional component of motion caused by the geometry of the plate boundary. We follow the general methodology developed for the 1996 U.S. national seismic hazard maps and also as implemented in the 2002 and 2008 updates. This procedure consists of adding the seismic hazard calculated from crustal faults, subduction zones, and spatially smoothed seismicity for shallow earthquakes and Wadati-Benioff-zone earthquakes. Each one of these source classes will be described below. The lack of information on faults in Haiti requires many assumptions to be made. These assumptions will need to be revisited and reevaluated as more fieldwork and research are accomplished. We made two sets of maps using different assumptions about site conditions. One set of maps is for a firm-rock site condition (30-m averaged shear-wave velocity, Vs30, of 760 m/s). We also developed hazard maps that contain site amplification based on a grid of Vs30 values estimated from topographic slope. These maps take into account amplification from soils. We stress that these new maps are designed to quantify the hazard for Haiti; they do not consider all the sources of earthquake hazard that affect the Dominican Republic and therefore should not be considered as complete hazard maps for eastern Hispaniola. For example, we have not included hazard from earthquakes in the Mona Passage nor from large earthquakes on the subduction zone interface north of Puerto Rico. Furthermore, they do not capture all the earthquake hazards for eastern Cuba.

  11. Faults, lineaments, and earthquake epicenters digital map of the Pahute Mesa 30' x 60' Quadrangle, Nevada

    USGS Publications Warehouse

    Minor, S.A.; Vick, G.S.; Carr, M.D.; Wahl, R.R.

    1996-01-01

    This map database, identified as Faults, lineaments, and earthquake epicenters digital map of the Pahute Mesa 30' X 60' quadrangle, Nevada, has been approved for release and publication by the Director of the USGS. Although this database has been subjected to rigorous review and is substantially complete, the USGS reserves the right to revise the data pursuant to further analysis and review. Furthermore, it is released on condition that neither the USGS nor the United States Government may be held liable for any damages resulting from its authorized or unauthorized use. This digital map compilation incorporates fault, air photo lineament, and earthquake epicenter data from within the Pahute Mesa 30' by 60' quadrangle, southern Nye County, Nevada (fig. 1). The compilation contributes to the U.S. Department of Energy's Yucca Mountain Project, established to determine whether or not the Yucca Mountain site is suitable for the disposal of high-level nuclear waste. Studies of local and regional faulting and earthquake activity, including the features depicted in this compilation, are carried out to help characterize seismic hazards and tectonic processes that may be relevant to the future stability of Yucca Mountain. The Yucca Mountain site is located in the central part of the Beatty 30' by 60' quadrangle approximately 15 km south of the south edge of the Pahute Mesa quadrangle (fig. 1). The U.S. Geological Survey participates in studies of the Yucca Mountain site under Interagency Agreement DE-AI08-78ET44802. The map compilation is only available on line as a digital database in ARC/INFO ASCII (Generate) and export formats. The database can be downloaded via 'anonymous ftp' from a USGS system named greenwood.cr.usgs.gov (136.177.48.5). The files are located in a directory named /pub/open-file-reports/ofr-96-0262. This directory contains a text document named 'README.1 ST' that contains database technical and explanatory documentation, including instructions for uncompressing the bundled (tar) file. In displaying the compilation it is important to note that the map data set is considered accurate when depicted at a scale of about 1:100,000; displaying the compilation at scales significantly larger than this may result in distortions and (or) mislocations of the data.

  12. Investigating the deformation of upper crustal faults at the N-Chilean convergent plate boundary at different scales using high-resolution topography datasets and creepmeter measurements

    NASA Astrophysics Data System (ADS)

    Ewiak, O.; Victor, P.; Ziegenhagen, T.; Oncken, O.

    2012-04-01

    The Chilean convergent plate boundary is one of the tectonically most active regions on earth and prone to large megathrust earthquakes as e. g. the 2010 Mw 8.8 Maule earthquake which ruptured a mature seismic gap in south-central Chile. In northern Chile historical data suggests the existence of a seismic gap between Arica and Mejillones Peninsula (MP), which has not ruptured since 1877. Further south, the 1995 Mw 8.0 Antofagasta earthquake ruptured the subduction interface between MP and Taltal. In this study we investigate the deformation at four active upper plate faults (dip-slip and strike-slip) located above the coupling zone of the subduction interface. The target faults (Mejillones Fault - MF, Salar del Carmen Fault - SCF, Cerro Fortuna Fault - CFF, Chomache Fault - CF) are situated in forearc segments, which are in different stages of the megathrust seismic cycle. The main question of this study is how strain is accumulated in the overriding plate, what is the response of the target faults to the megathrust seismic cycle and what are the mechanisms / processes involved. The hyper arid conditions of the Atacama desert and the extremely low erosion rates enable us to investigate geomorphic markers, e .g. fault scarps and knickpoints, which serve as a record for upper crustal deformation and fault activity about ten thousands years into the past. Fault scarp data has been acquired with Differential-GPS by measuring high-resolution topographic profiles perpendicular to the fault scarps and along incised gullies. The topographic data show clear variations between the target faults which possibly result from their position within the forearc. The surveyed faults, e. g. the SCF, exhibit clear along strike variations in the morphology of surface ruptures attributed to seismic events and can be subdivided into individual segments. The data allows us to distinguish single, composite and multiple fault scarps and thus to detect differences in fault growth initiated either by seismic rupture or fault creep. Additional information on the number of seismic events responsible for the cumulative displacement can be derived from the mapping of knickpoints. By reconstructing the stress field responsible for the formation of identified seismic surface ruptures we can determine stress conditions for failure of upper crustal faults. Comparing these paleo stress conditions with the recent forearc stresses (interseismic / coseismic) we can derive information about a possible activation of upper crustal faults during the megathrust seismic cycle. In addition to the morphotectonic surveys we explore the recent deformation of the target faults by analyzing time series of displacements recorded with micron precision by an array of creepmeters at the target faults for over three years. Total displacement is composed of steady state creep, creep events and sudden displacement events (SDEs) related to seismic rupture. The percentage of SDEs accounts for >50 % (SCF) to 90 % (CFF) of the cumulative displacement. This result very well reflects the field observation that a considerable amount of the total displacement has been accumulated during multiple seismic events.

  13. San Andreas fault geometry in the Parkfield, California, region

    USGS Publications Warehouse

    Simpson, R.W.; Barall, M.; Langbein, J.; Murray, J.R.; Rymer, M.J.

    2006-01-01

    In map view, aftershocks of the 2004 Parkfield earthquake lie along a line that forms a straighter connection between San Andreas fault segments north and south of the Parkfield reach than does the mapped trace of the fault itself. A straightedge laid on a geologic map of Central California reveals a ???50-km-long asymmetric northeastward warp in the Parkfield reach of the fault. The warp tapers gradually as it joins the straight, creeping segment of the San Andreas to the north-west, but bends abruptly across Cholame Valley at its southeast end to join the straight, locked segment that last ruptured in 1857. We speculate that the San Andreas fault surface near Parkfield has been deflected in its upper ???6 km by nonelastic behavior of upper crustal rock units. These units and the fault surface itself are warped during periods between large 1857-type earthquakes by the presence of the 1857-locked segment to the south, which buttresses intermittent coseismic and continuous aseismic slip on the Parkfield reach. Because of nonelastic behavior, the warping is not completely undone when an 1857-type event occurs, and the upper portion of the three-dimensional fault surface is slowly ratcheted into an increasingly prominent bulge. Ultimately, the fault surface probably becomes too deformed for strike-slip motion, and a new, more vertical connection to the Earth's surface takes over, perhaps along the Southwest Fracture Zone. When this happens a wedge of material currently west of the main trace will be stranded on the east side of the new main trace.

  14. Rift brittle deformation of SE-Brazilian continental margin: Kinematic analysis of onshore structures relative to the transfer and accommodation zones of southern Campos Basin

    NASA Astrophysics Data System (ADS)

    Savastano, Vítor Lamy Mesiano; Schmitt, Renata da Silva; Araújo, Mário Neto Cavalcanti de; Inocêncio, Leonardo Campos

    2017-01-01

    High-resolution drone-supported mapping and traditional field work were used to refine the hierarchy and kinematics of rift-related faults in the basement rocks and Early Cretaceous mafic dikes onshore of the Campos Basin, SE-Brazil. Two sets of structures were identified. The most significant fault set is NE-SW oriented with predominantly normal displacement. At mesoscale, this fault set is arranged in a rhombic pattern, interpreted here as a breached relay ramp system. The rhombic pattern is a penetrative fabric from the thin-section to regional scale. The second-order set of structures is an E-W/ESE-WNW system of normal faults with sinistral component. These E-W structures are oriented parallel with regional intrabasinal transfer zones associated with the earliest stages of Campos Basin's rift system. The crosscutting relationship between the two fault sets and tholeiitic dikes implies that the NE-SW fault set is the older feature, but remained active until the final stages of rifting in this region as the second-order fault set is older than the tholeiitic dikes. Paleostresses estimated from fault slip inversion method indicated that extension was originally NW-SE, with formation of the E-W transfer, followed by ESE-WNW oblique opening associated with a relay ramp system and related accommodation zones.

  15. Variation of the fractal dimension anisotropy of two major Cenozoic normal fault systems over space and time around the Snake River Plain, Idaho and SW Montana

    NASA Astrophysics Data System (ADS)

    Davarpanah, A.; Babaie, H. A.

    2012-12-01

    The interaction of the thermally induced stress field of the Yellowstone hotspot (YHS) with existing Basin and Range (BR) fault blocks, over the past 17 m.y., has produced a new, spatially and temporally variable system of normal faults around the Snake River Plain (SRP) in Idaho and Wyoming-Montana area. Data about the trace of these new cross faults (CF) and older BR normal faults were acquired from a combination of satellite imageries, DEM, and USGS geological maps and databases at scales of 1:24,000, 1:100,000, 1:250,000, 1:1000, 000, and 1:2,500, 000, and classified based on their azimuth in ArcGIS 10. The box-counting fractal dimension (Db) of the BR fault traces, determined applying the Benoit software, and the anisotropy intensity (ellipticity) of the fractal dimensions, measured with the modified Cantor dust method applying the AMOCADO software, were measured in two large spatial domains (I and II). The Db and anisotropy of the cross faults were studied in five temporal domains (T1-T5) classified based on the geologic age of successive eruptive centers (12 Ma to recent) of the YHS along the eastern SRP. The fractal anisotropy of the CF system in each temporal domain was also spatially determined in the southern part (domain S1), central part (domain S2), and northern part (domain S3) of the SRP. Line (fault trace) density maps for the BR and CF polylines reveal a higher linear density (trace length per unit area) for the BR traces in the spatial domain I, and a higher linear density of the CF traces around the present Yellowstone National Park (S1T5) where most of the seismically active faults are located. Our spatio-temporal analysis reveals that the fractal dimension of the BR system in domain I (Db=1.423) is greater than that in domain II (Db=1.307). It also shows that the anisotropy of the fractal dimension in domain I is less eccentric (axial ratio: 1.242) than that in domain II (1.355), probably reflecting the greater variation in the trend of the BR system in domain I. The CF system in the S1T5 domain has the highest fractal dimension (Db=1.37) and the lowest anisotropy eccentricity (1.23) among the five temporal domains. These values positively correlate with the observed maxima on the fault trace density maps. The major axis of the anisotropy ellipses is consistently perpendicular to the average trend of the normal fault system in each domain, and therefore approximates the orientation of extension for normal faulting in each domain. This fact gives a NE-SW and NW-SE extension direction for the BR system in domains I and II, respectively. The observed NE-SW orientation of the major axes of the anisotropy ellipses in the youngest T4 and T5 temporal domains, oriented perpendicular to the mean trend of the normal faults in the these domains, suggests extension along the NE-SW direction for cross faulting in these areas. The spatial trajectories (form lines) of the minor axes of the anisotropy ellipses, and the mean trend of fault traces in the T4 and T5 temporal domains, define a large parabolic pattern about the axis of the eastern SRP, with its apex at the Yellowstone plateau.

  16. Structural and Tectonic Map Along the Pacific-North America Plate Boundary in Northern Gulf of California, Sonora Desert and Valle de Mexicali, Mexico, from Seismic Reflection Evidence

    NASA Astrophysics Data System (ADS)

    Gonzalez-Escobar, M.; Suarez-Vidal, F.; Mendoza-Borunda, R.; Martin Barajas, A.; Pacheco-Romero, M.; Arregui-Estrada, S.; Gallardo-Mata, C.; Sanchez-Garcia, C.; Chanes-Martinez, J.

    2012-12-01

    Between 1978 and 1983, Petróleos Mexicanos (PEMEX) carried on an intense exploration program in the northern Gulf of California, the Sonora Desert and the southern part of the Mexicali Valley. This program was supported by a seismic reflection field operation. The collected seismic data was 2D, with travel time of 6 s recording, in 48 channels, and the source energy was: dynamite, vibroseis and air guns. Since 2007 to present time, the existing seismic data has been re-processing and ire-interpreting as part of a collaboration project between the PEMEX's Subdirección de Exploración (PEMEX) and CICESE. The study area is located along a large portion of the Pacific-North America plate boundary in the northern Gulf of California and the Southern part of the Salton Trough tectonic province (Mexicali Valley). We present the result of the processes reflection seismic lines. Many of the previous reported known faults were identify along with the first time described located within the study region. We identified regions with different degree of tectonic activity. In structural map it can see the location of many of these known active faults and their associated seismic activity, as well as other structures with no associated seismicity. Where some faults are mist placed they were deleted or relocated based on new information. We included historical seismicity for the region. We present six reflection lines that cross the aftershocks zone of the El Mayor-Cucapah earthquake of April 4, 2010 (Mw7.2). The epicenter of this earthquake and most of the aftershocks are located in a region where pervious to this earthquake no major earthquakes are been reported. A major result of this study is to demonstrate that there are many buried faults that increase the seismic hazard.

  17. Map of the Rinconada and Reliz Fault Zones, Salinas River Valley, California

    USGS Publications Warehouse

    Rosenberg, Lewis I.; Clark, Joseph C.

    2009-01-01

    The Rinconada Fault and its related faults constitute a major structural element of the Salinas River valley, which is known regionally, and referred to herein, as the 'Salinas Valley'. The Rinconada Fault extends 230 km from King City in the north to the Big Pine Fault in the south. At the south end of the map area near Santa Margarita, the Rinconada Fault separates granitic and metamorphic crystalline rocks of the Salinian Block to the northeast from the subduction-zone assemblage of the Franciscan Complex to the southwest. Northwestward, the Rinconada Fault lies entirely within the Salinian Block and generally divides this region into two physiographically and structurally distinct areas, the Santa Lucia Range to the west and the Salinas Valley to the east. The Reliz Fault, which continues as a right stepover from the Rinconada Fault, trends northwestward along the northeastern base of the Sierra de Salinas of the Santa Lucia Range and beyond for 60 km to the vicinity of Spreckels, where it is largely concealed. Aeromagnetic data suggest that the Reliz Fault continues northwestward another 25 km into Monterey Bay, where it aligns with a high-definition magnetic boundary. Geomorphic evidence of late Quaternary movement along the Rinconada and Reliz Fault Zones has been documented by Tinsley (1975), Dibblee (1976, 1979), Hart (1976, 1985), and Klaus (1999). Although definitive geologic evidence of Holocene surface rupture has not been found on these faults, they were regarded as an earthquake source for the California Geological Survey [formerly, California Division of Mines and Geology]/U.S. Geological Survey (CGS/USGS) Probabilistic Seismic Hazards Assessment because of their postulated slip rate of 1+-1 mm/yr and their calculated maximum magnitude of 7.3. Except for published reports by Durham (1965, 1974), Dibblee (1976), and Hart (1976), most information on these faults is unpublished or is contained in theses, field trip guides, and other types of reports. Therefore, the main purpose of this project is to compile and synthesize this body of knowledge into a comprehensive report for the geologic community. This report follows the format of Dibblee (1976) and includes discussions of the sections of the Rinconada Fault and of the Reliz Fault, as well as their Neogene history and key localities. Accompanying this report is a geologic map database of the faults, key localities, and earthquake epicenters, in ESRI shapefile format.

  18. High resolution shallow imaging of the mega-splay fault in the central Nankai Trough off Kumano

    NASA Astrophysics Data System (ADS)

    Ashi, J.

    2012-12-01

    Steep slopes are continuously developed at water depths between 2200 to 2800 m at the Nankai accretionary prism off Kumano. These slopes are interpreted to be surface expressions caused by the megasplay fault on seismic reflection profiles. The fault plane has been drilled at multiple depths below seafloor by IODP NanTroSEIZE project. Mud breccias only recognized at the hanging wall of the fault (Site C0004) by Xray CT scanner are interpreted be formed by strong ground shaking and the age of the shallowest event of mud breccia layers suggests deformation in 1944 Tonankai earthquake (Sakaguchi et al., 2011). Detailed structures around the fault have been examined by seismic reflection profiles including 3D experiments. Although the fault plane deeper than 100 m is well imaged, the structure shallower than 100 m is characterized by obscure sediment veneer suggesting no recent fault activity. Investigation of shallow deformation structures is significant for understanding of recent tectonic activity. Therefore, we carried out deep towed subbottom profile survey by ROV NSS (Navigable Sampling System) during Hakuho-maru KH-11-9 cruise. We introduced a chirp subbottom profiling system of EdgeTech DW-106 for high resolution mapping of shallow structures. ROV NSS also has capability to take a long core with a pinpoint accuracy. The subbottom profiler crossing the megasplay fault near Site C0004 exhibits a landward dipping reflector suggesting the fault plane. The shallowest depth of the reflector is about 10 m below seafloor and the strata above it shows reflectors parallel to the seafloor without any topographic undulation. The fault must have displaced the shallow formation because intense deformation indicated by mud breccia was restricted to near fault zone. Slumping or sliding probably modified the shallow formation after the faulting. The shallow deformations near the megasplay fault were well imaged at the fault scarp 20 km southwest of Site C0004. Although the fault plane itself is not recognized, displacements of sedimentary layers are observed along the fault up to 30 meter below the seafloor. Landward dip of the fault is estimated to be 30 degrees. Displacements of strata are about 3 m near the surface and about 5 m at 7 m below the seafloor suggesting accumulation of fault displacement. The structure more than 30 m below the seafloor is obscure due to decrease of acoustic signal. Active cold seep is expected in this site by high heat flow (Yamano et al., 2012) and many trails of Calyptogena detected by seafloor observations. These results are consistent with the shallow structures reveled by our subbottom profiling survey. References Sakaguchi, A. et al., Geology 39, 919-922, 2011. Yamano, M. et al., JpGU Meeting abstract, SSS38-P23, 2012

  19. New geologic slip rates for the Agua Blanca Fault, northern Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Gold, P. O.; Behr, W. M.; Fletcher, J. M.; Hinojosa-Corona, A.; Rockwell, T. K.

    2015-12-01

    Within the southern San Andreas transform plate boundary system, relatively little is known regarding active faulting in northern Baja California, Mexico, or offshore along the Inner Continental Borderland. The inner offshore system appears to be fed from the south by the Agua Blanca Fault (ABF), which strikes northwest across the Peninsular Ranges of northern Baja California. Therefore, the geologic slip rate for the ABF also provides a minimum slip rate estimate for the offshore system, which is connected to the north to faults in the Los Angeles region. Previous studies along the ABF determined slip rates of ~4-6 mm/yr (~10% of relative plate motion). However, these rates relied on imprecise age estimates and offset geomorphic features of a type that require these rates to be interpreted as minima, allowing for the possibility that the slip rate for the ABF may be greater. Although seismically quiescent, the surface trace of the ABF clearly reflects Holocene activity, and given its connectivity with the offshore fault system, more quantitative slip rates for the ABF are needed to better understand earthquake hazard for both US and Mexican coastal populations. Using newly acquired airborne LiDAR, we have mapped primary and secondary fault strands along the segmented western 70 km of the ABF. Minimal development has left the geomorphic record of surface slip remarkably well preserved, and we have identified abundant evidence meter to km scale right-lateral displacement, including new Late Quaternary slip rate sites. We verified potential reconstructions at each site during summer 2015 fieldwork, and selected an initial group of three high potential slip rate sites for detailed mapping and geochronologic analyses. Offset landforms, including fluvial terrace risers, alluvial fans, and incised channel fill deposits, record displacements of ~5-80 m, and based on minimal soil development, none appear older than early Holocene. To quantitatively constrain landform ages, we collected surface and depth profile samples for 10Be cosmogenic exposure dating. We also identified sites for new paleoseismic excavations, and documented evidence of the last two earthquakes, each of which produced ~2.5 m of surface displacement. We expect new Holocene slip rates for the Agua Blanca Fault to be forthcoming in fall of 2015.

  20. Geophysical Data (Gravity and Magnetic) from the Area Between Adana, Kahramanmaras and Hatay in the Eastern Mediterranean Region: Tectonic Implications

    NASA Astrophysics Data System (ADS)

    Over, Semir; Akin, Ugur; Sen, Rahime

    2018-01-01

    The gravity and magnetic maps of the area between Adana-Kahramanmaras-Hatay provinces were produced from a compilation of data gathered during the period between 1973 and 1989. Reduced to the pole (RTP) and pseudo-gravity transformation (PGT) methods were applied to the magnetic data, while derivative ratio (DR) processing was applied to both gravity and magnetic data, respectively. Bouguer, RTP and PGT maps show the image of a buried structure corresponding to ophiolites under undifferentiated Quaternary deposits in the Adana depression and Iskenderun Gulf. DR maps show two important faults which reflect the tectonic framework in the study area: (1) the Karatas-Osmaniye Fault extending from Osmaniye to Karatas in the south between Adana and Iskenderun depressions and (2) Amanos Fault (southern part of East Anatolian Fault) in the Hatay region running southward from Turkoglu to Amik Basin along Amanos Mountain forming the actual plate boundary between the Anatolian block (part of Eurasian plate) and Arabian plate.

Top