Volume 241, Issue13 (November 2004)
Articles in the Current Issue:
Rapid Research Note
Strong Eu emission of annealed Y2O3:Eu nanotube and nano-sized crystals
NASA Astrophysics Data System (ADS)
Sekita, Masami; Iwanaga, Kenichi; Hamasuna, Tomomi; Mohri, Shinji; Uota, Masafumi; Yada, Mitsunori; Kijima, Tsuyoshi
2004-11-01
We have observed a drastic increase of the Eu3+ emission intensity by annealing nanotubes and nano-sized hexagonal-mesostructured crystals of the Y2O3:Eu system together with bulk samples. It is found that there are three Eu3+ sites in all samples. Stark splitting schemes are proposed for the three homogeneous sites.
- Save Title to My Profile
- Set E-Mail Alert
Volume 201, Issue13 (October 2004)
Articles in the Current Issue:
Rapid Research Note
Scintillation properties of lead tungstate crystals doped with the monovalent ion lithium
NASA Astrophysics Data System (ADS)
Huang, Yanlin; Seo, Hyo Jin; Zhu, Wenliang
2004-10-01
Lithium-doped PbWO4 crystals have been grown by the Czochralski method. Optical absorbance, X-ray excited luminescence, light yield measurements and X-ray pulsed excited decays have been investigated. Li+ doping has a very good uniformity and could enhance the luminescence of PbWO4, give some contributions to the fast decay components.
Nayak, Spurthi N.; Varghese, Nicy; Shah, Trushar M.; Penmetsa, R. Varma; Thirunavukkarasu, Nepolean; Gudipati, Srivani; Gaur, Pooran M.; Kulwal, Pawan L.; Upadhyaya, Hari D.; KaviKishor, Polavarapu B.; Winter, Peter; Kahl, Günter; Town, Christopher D.; Kilian, Andrzej; Cook, Douglas R.; Varshney, Rajeev K.
2011-01-01
Chickpea (Cicer arietinum L.) is the third most important cool season food legume, cultivated in arid and semi-arid regions of the world. The goal of this study was to develop novel molecular markers such as microsatellite or simple sequence repeat (SSR) markers from bacterial artificial chromosome (BAC)-end sequences (BESs) and diversity arrays technology (DArT) markers, and to construct a high-density genetic map based on recombinant inbred line (RIL) population ICC 4958 (C. arietinum)×PI 489777 (C. reticulatum). A BAC-library comprising 55,680 clones was constructed and 46,270 BESs were generated. Mining of these BESs provided 6,845 SSRs, and primer pairs were designed for 1,344 SSRs. In parallel, DArT arrays with ca. 15,000 clones were developed, and 5,397 clones were found polymorphic among 94 genotypes tested. Screening of newly developed BES-SSR markers and DArT arrays on the parental genotypes of the RIL mapping population showed polymorphism with 253 BES-SSR markers and 675 DArT markers. Segregation data obtained for these polymorphic markers and 494 markers data compiled from published reports or collaborators were used for constructing the genetic map. As a result, a comprehensive genetic map comprising 1,291 markers on eight linkage groups (LGs) spanning a total of 845.56 cM distance was developed (http://cmap.icrisat.ac.in/cmap/sm/cp/thudi/). The number of markers per linkage group ranged from 68 (LG 8) to 218 (LG 3) with an average inter-marker distance of 0.65 cM. While the developed resource of molecular markers will be useful for genetic diversity, genetic mapping and molecular breeding applications, the comprehensive genetic map with integrated BES-SSR markers will facilitate its anchoring to the physical map (under construction) to accelerate map-based cloning of genes in chickpea and comparative genome evolution studies in legumes. PMID:22102885
A unified approach to VLSI layout automation and algorithm mapping on processor arrays
NASA Technical Reports Server (NTRS)
Venkateswaran, N.; Pattabiraman, S.; Srinivasan, Vinoo N.
1993-01-01
Development of software tools for designing supercomputing systems is highly complex and cost ineffective. To tackle this a special purpose PAcube silicon compiler which integrates different design levels from cell to processor arrays has been proposed. As a part of this, we present in this paper a novel methodology which unifies the problems of Layout Automation and Algorithm Mapping.
NASA Technical Reports Server (NTRS)
Bruning, Eric C.; Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William; Carey, Larry D.; Koshak, William; Peterson, Harold; MacGorman, Donald R.
2013-01-01
We will use VHF Lightning Mapping Array data to estimate NOx per flash and per unit channel length, including the vertical distribution of channel length. What s the best way to find channel length from VHF sources? This paper presents the rationale for the fractal method, which is closely related to the box-covering method.
- Save Title to My Profile
- Set E-Mail Alert
Volume 28, Issue5 (25 April 2004)
Articles in the Current Issue:
Research Article
Softening, localization and stabilization: capture of discontinuous solutions in J2 plasticity
NASA Astrophysics Data System (ADS)
Cervera, M.; Chiumenti, M.; Agelet de Saracibar, C.
2004-04-01
This paper exploits the concept of stabilization techniques to improve the behaviour of mixed linear/linear simplicial elements (triangles and tetrahedra) in incompressible or nearly incompressible situations. Elasto-J2-plastic constitutive behaviour has been considered with linear and exponential softening. Two different stabilization methods are used to attain global stability of the corresponding discrete finite element formulation. Implementation and computational aspects are also discussed, showing that a robust application of the proposed formulation is feasible. Numerical examples show that the formulation derived is free of volumetric locking and spurious oscillations of the pressure. The results obtained do not suffer from spurious mesh-size or mesh-bias dependence, comparing very favourably with those obtained with the standard, non-stabilized, approaches. Copyright
Brown, Allan F; Yousef, Gad G; Chebrolu, Kranthi K; Byrd, Robert W; Everhart, Koyt W; Thomas, Aswathy; Reid, Robert W; Parkin, Isobel A P; Sharpe, Andrew G; Oliver, Rebekah; Guzman, Ivette; Jackson, Eric W
2014-09-01
A high-resolution genetic linkage map of B. oleracea was developed from a B. napus SNP array. The work will facilitate genetic and evolutionary studies in Brassicaceae. A broccoli population, VI-158 × BNC, consisting of 150 F2:3 families was used to create a saturated Brassica oleracea (diploid: CC) linkage map using a recently developed rapeseed (Brassica napus) (tetraploid: AACC) Illumina Infinium single nucleotide polymorphism (SNP) array. The map consisted of 547 non-redundant SNP markers spanning 948.1 cM across nine chromosomes with an average interval size of 1.7 cM. As the SNPs are anchored to the genomic reference sequence of the rapid cycling B. oleracea TO1000, we were able to estimate that the map provides 96 % coverage of the diploid genome. Carotenoid analysis of 2 years data identified 3 QTLs on two chromosomes that are associated with up to half of the phenotypic variation associated with the accumulation of total or individual compounds. By searching the genome sequences of the two related diploid species (B. oleracea and B. rapa), we further identified putative carotenoid candidate genes in the region of these QTLs. This is the first description of the use of a B. napus SNP array to rapidly construct high-density genetic linkage maps of one of the constituent diploid species. The unambiguous nature of these markers with regard to genomic sequences provides evidence to the nature of genes underlying the QTL, and demonstrates the value and impact this resource will have on Brassica research.
Lightning Mapping With an Array of Fast Antennas
NASA Astrophysics Data System (ADS)
Wu, Ting; Wang, Daohong; Takagi, Nobuyuki
2018-04-01
Fast Antenna Lightning Mapping Array (FALMA), a low-frequency lightning mapping system comprising an array of fast antennas, was developed and established in Gifu, Japan, during the summer of 2017. Location results of two hybrid flashes and a cloud-to-ground flash comprising 11 return strokes (RSs) are described in detail in this paper. Results show that concurrent branches of stepped leaders can be readily resolved, and K changes and dart leaders with speeds up to 2.4 × 107 m/s are also well imaged. These results demonstrate that FALMA can reconstruct three-dimensional structures of lightning flashes with great details. Location accuracy of FALMA is estimated by comparing the located striking points of successive RSs in cloud-to-ground flashes. Results show that distances between successive RSs are mainly below 25 m, indicating exceptionally high location accuracy of FALMA.
Wang, Shichen; Wong, Debbie; Forrest, Kerrie; Allen, Alexandra; Chao, Shiaoman; Huang, Bevan E; Maccaferri, Marco; Salvi, Silvio; Milner, Sara G; Cattivelli, Luigi; Mastrangelo, Anna M; Whan, Alex; Stephen, Stuart; Barker, Gary; Wieseke, Ralf; Plieske, Joerg; International Wheat Genome Sequencing Consortium; Lillemo, Morten; Mather, Diane; Appels, Rudi; Dolferus, Rudy; Brown-Guedira, Gina; Korol, Abraham; Akhunova, Alina R; Feuillet, Catherine; Salse, Jerome; Morgante, Michele; Pozniak, Curtis; Luo, Ming-Cheng; Dvorak, Jan; Morell, Matthew; Dubcovsky, Jorge; Ganal, Martin; Tuberosa, Roberto; Lawley, Cindy; Mikoulitch, Ivan; Cavanagh, Colin; Edwards, Keith J; Hayden, Matthew; Akhunov, Eduard
2014-01-01
High-density single nucleotide polymorphism (SNP) genotyping arrays are a powerful tool for studying genomic patterns of diversity, inferring ancestral relationships between individuals in populations and studying marker–trait associations in mapping experiments. We developed a genotyping array including about 90 000 gene-associated SNPs and used it to characterize genetic variation in allohexaploid and allotetraploid wheat populations. The array includes a significant fraction of common genome-wide distributed SNPs that are represented in populations of diverse geographical origin. We used density-based spatial clustering algorithms to enable high-throughput genotype calling in complex data sets obtained for polyploid wheat. We show that these model-free clustering algorithms provide accurate genotype calling in the presence of multiple clusters including clusters with low signal intensity resulting from significant sequence divergence at the target SNP site or gene deletions. Assays that detect low-intensity clusters can provide insight into the distribution of presence–absence variation (PAV) in wheat populations. A total of 46 977 SNPs from the wheat 90K array were genetically mapped using a combination of eight mapping populations. The developed array and cluster identification algorithms provide an opportunity to infer detailed haplotype structure in polyploid wheat and will serve as an invaluable resource for diversity studies and investigating the genetic basis of trait variation in wheat. PMID:24646323
Performance Analysis for Lateral-Line-Inspired Sensor Arrays
2011-06-01
found to affect numerous aspects of behavior including maneuvering in complex fluid environments, schooling, prey tracking, and environment mapping...190 5-29 Maps of the cost function for a reflected vortex model with an increasing array length but constant sensor spacing . The x at...length but constant sensor spacing . The x in each image denotes the true location of the vortex. The black lines correspond to level sets generated by the
Uncovering Spatial Variation in Acoustic Environments Using Sound Mapping.
Job, Jacob R; Myers, Kyle; Naghshineh, Koorosh; Gill, Sharon A
2016-01-01
Animals select and use habitats based on environmental features relevant to their ecology and behavior. For animals that use acoustic communication, the sound environment itself may be a critical feature, yet acoustic characteristics are not commonly measured when describing habitats and as a result, how habitats vary acoustically over space and time is poorly known. Such considerations are timely, given worldwide increases in anthropogenic noise combined with rapidly accumulating evidence that noise hampers the ability of animals to detect and interpret natural sounds. Here, we used microphone arrays to record the sound environment in three terrestrial habitats (forest, prairie, and urban) under ambient conditions and during experimental noise introductions. We mapped sound pressure levels (SPLs) over spatial scales relevant to diverse taxa to explore spatial variation in acoustic habitats and to evaluate the number of microphones needed within arrays to capture this variation under both ambient and noisy conditions. Even at small spatial scales and over relatively short time spans, SPLs varied considerably, especially in forest and urban habitats, suggesting that quantifying and mapping acoustic features could improve habitat descriptions. Subset maps based on input from 4, 8, 12 and 16 microphones differed slightly (< 2 dBA/pixel) from those based on full arrays of 24 microphones under ambient conditions across habitats. Map differences were more pronounced with noise introductions, particularly in forests; maps made from only 4-microphones differed more (> 4 dBA/pixel) from full maps than the remaining subset maps, but maps with input from eight microphones resulted in smaller differences. Thus, acoustic environments varied over small spatial scales and variation could be mapped with input from 4-8 microphones. Mapping sound in different environments will improve understanding of acoustic environments and allow us to explore the influence of spatial variation in sound on animal ecology and behavior.
New design concept of monopole antenna array for UHF 7T MRI.
Hong, Suk-Min; Park, Joshua Haekyun; Woo, Myung-Kyun; Kim, Young-Bo; Cho, Zang-Hee
2014-05-01
We have developed and evaluated a monopole antenna array that can increase sensitivity at the center of the brain for 7T MRI applications. We have developed a monopole antenna array that has half the length of a conventional dipole antenna with eight channels for brain imaging with a 7T MRI. The eight-channel monopole antenna array and conventional eight-channel transceiver surface coil array were evaluated and compared in terms of transmit properties, specific absorption ratio (SAR), and sensitivity. The sensitivity maps were generated by dividing the SNR map by the flip angle distribution. A single surface coil provides asymmetric sensitivity resulting in reduced sensitivity at the center of the brain. In contrast, a single monopole antenna provides higher sensitivity at the center of the brain. Moreover, the monopole antenna array provides uniform sensitivity over the entire brain, and the sensitivity gain was 1.5 times higher at the center of the brain compared with the surface coil array. The monopole antenna array is a promising candidate for MRI applications, especially for brain imaging in a 7T MRI because it provides increased sensitivity at the center of the brain. Copyright © 2013 Wiley Periodicals, Inc.
Frahm, Jan-Michael; Pollefeys, Marc Andre Leon; Gallup, David Robert
2015-12-08
Methods of generating a three dimensional representation of an object in a reference plane from a depth map including distances from a reference point to pixels in an image of the object taken from a reference point. Weights are assigned to respective voxels in a three dimensional grid along rays extending from the reference point through the pixels in the image based on the distances in the depth map from the reference point to the respective pixels, and a height map including an array of height values in the reference plane is formed based on the assigned weights. An n-layer height map may be constructed by generating a probabilistic occupancy grid for the voxels and forming an n-dimensional height map comprising an array of layer height values in the reference plane based on the probabilistic occupancy grid.
Petroli, César D.; Sansaloni, Carolina P.; Carling, Jason; Steane, Dorothy A.; Vaillancourt, René E.; Myburg, Alexander A.; da Silva, Orzenil Bonfim; Pappas, Georgios Joannis; Kilian, Andrzej; Grattapaglia, Dario
2012-01-01
Diversity Arrays Technology (DArT) provides a robust, high throughput, cost-effective method to query thousands of sequence polymorphisms in a single assay. Despite the extensive use of this genotyping platform for numerous plant species, little is known regarding the sequence attributes and genome-wide distribution of DArT markers. We investigated the genomic properties of the 7,680 DArT marker probes of a Eucalyptus array, by sequencing them, constructing a high density linkage map and carrying out detailed physical mapping analyses to the Eucalyptus grandis reference genome. A consensus linkage map with 2,274 DArT markers anchored to 210 microsatellites and a framework map, with improved support for ordering, displayed extensive collinearity with the genome sequence. Only 1.4 Mbp of the 75 Mbp of still unplaced scaffold sequence was captured by 45 linkage mapped but physically unaligned markers to the 11 main Eucalyptus pseudochromosomes, providing compelling evidence for the quality and completeness of the current Eucalyptus genome assembly. A highly significant correspondence was found between the locations of DArT markers and predicted gene models, while most of the 89 DArT probes unaligned to the genome correspond to sequences likely absent in E. grandis, consistent with the pan-genomic feature of this multi-Eucalyptus species DArT array. These comprehensive linkage-to-physical mapping analyses provide novel data regarding the genomic attributes of DArT markers in plant genomes in general and for Eucalyptus in particular. DArT markers preferentially target the gene space and display a largely homogeneous distribution across the genome, thereby providing superb coverage for mapping and genome-wide applications in breeding and diversity studies. Data reported on these ubiquitous properties of DArT markers will be particularly valuable to researchers working on less-studied crop species who already count on DArT genotyping arrays but for which no reference genome is yet available to allow such detailed characterization. PMID:22984541
-
NASA Astrophysics Data System (ADS)
Hrycik, Janelle M.; Chassé, Joël; Ruddick, Barry R.; Taggart, Christopher T.
2013-11-01
Early life-stage dispersal influences recruitment and is of significance in explaining the distribution and connectivity of marine species. Motivations for quantifying dispersal range from biodiversity conservation to the design of marine reserves and the mitigation of species invasions. Here we compare estimates of real particle dispersion in a coastal marine environment with similar estimates provided by hydrodynamic modelling. We do so by using a system of magnetically attractive particles (MAPs) and a magnetic-collector array that provides measures of Lagrangian dispersion based on the time-integration of MAPs dispersing through the array. MAPs released as a point source in a coastal marine location dispersed through the collector array over a 5-7 d period. A virtual release and observed (real-time) environmental conditions were used in a high-resolution three-dimensional hydrodynamic model to estimate the dispersal of virtual particles (VPs). The number of MAPs captured throughout the collector array and the number of VPs that passed through each corresponding model location were enumerated and compared. Although VP dispersal reflected several aspects of the observed MAP dispersal, the comparisons demonstrated model sensitivity to the small-scale (random-walk) particle diffusivity parameter (Kp). The one-dimensional dispersal kernel for the MAPs had an e-folding scale estimate in the range of 5.19-11.44 km, while those from the model simulations were comparable at 1.89-6.52 km, and also demonstrated sensitivity to Kp. Variations among comparisons are related to the value of Kp used in modelling and are postulated to be related to MAP losses from the water column and (or) shear dispersion acting on the MAPs; a process that is constrained in the model. Our demonstration indicates a promising new way of 1) quantitatively and empirically estimating the dispersal kernel in aquatic systems, and 2) quantitatively assessing and (or) improving regional hydrodynamic models.
-
- Save Title to My Profile
- Set E-Mail Alert
< Previous Issue | Next Issue > Volume 241, Issue12 (October 2004)
Articles in the Current Issue:
Rapid Research Note
Dielectric and optical studies of phase transitions in [(CH3)2NH2]5Cd2CuCl11 crystal
NASA Astrophysics Data System (ADS)
Elyashevskyy, Yu.; Dacko, S.; Kosturek, B.; Czapla, Z.; Kapustyanik, V. B.
2004-10-01
Single crystals of [(CH3)2 NH2]5Cd2CuCl11 have been grown and their dielectric and optical properties have been studied. Electric permittivity, losses and linear optic birefringence measurements have shown that the obtained new crystal is isomorphous with the original one - [(CH3)2 NH2]5Cd3Cl11. Phase transitions were observed at 175 K (continuous) and 120 K (first order). It means that partial replacing of cadmium atoms by copper ones does not change the structure and the heavy Cd2CuCl11-2 anions do not influence significantly the interaction of dimethylammonium cations.
NASA Technical Reports Server (NTRS)
Brooks, Thomas F.; Humphreys, William M.
2006-01-01
Current processing of acoustic array data is burdened with considerable uncertainty. This study reports an original methodology that serves to demystify array results, reduce misinterpretation, and accurately quantify position and strength of acoustic sources. Traditional array results represent noise sources that are convolved with array beamform response functions, which depend on array geometry, size (with respect to source position and distributions), and frequency. The Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) method removes beamforming characteristics from output presentations. A unique linear system of equations accounts for reciprocal influence at different locations over the array survey region. It makes no assumption beyond the traditional processing assumption of statistically independent noise sources. The full rank equations are solved with a new robust iterative method. DAMAS is quantitatively validated using archival data from a variety of prior high-lift airframe component noise studies, including flap edge/cove, trailing edge, leading edge, slat, and calibration sources. Presentations are explicit and straightforward, as the noise radiated from a region of interest is determined by simply summing the mean-squared values over that region. DAMAS can fully replace existing array processing and presentations methodology in most applications. It appears to dramatically increase the value of arrays to the field of experimental acoustics.
Cell force mapping using a double-sided micropillar array based on the moiré fringe method
NASA Astrophysics Data System (ADS)
Zhang, F.; Anderson, S.; Zheng, X.; Roberts, E.; Qiu, Y.; Liao, R.; Zhang, X.
2014-07-01
The mapping of traction forces is crucial to understanding the means by which cells regulate their behavior and physiological function to adapt to and communicate with their local microenvironment. To this end, polymeric micropillar arrays have been used for measuring cell traction force. However, the small scale of the micropillar deflections induced by cell traction forces results in highly inefficient force analyses using conventional optical approaches; in many cases, cell forces may be below the limits of detection achieved using conventional microscopy. To address these limitations, the moiré phenomenon has been leveraged as a visualization tool for cell force mapping due to its inherent magnification effect and capacity for whole-field force measurements. This Letter reports an optomechanical cell force sensor, namely, a double-sided micropillar array (DMPA) made of poly(dimethylsiloxane), on which one side is employed to support cultured living cells while the opposing side serves as a reference pattern for generating moiré patterns. The distance between the two sides, which is a crucial parameter influencing moiré pattern contrast, is predetermined during fabrication using theoretical calculations based on the Talbot effect that aim to optimize contrast. Herein, double-sided micropillar arrays were validated by mapping mouse embryo fibroblast contraction forces and the resulting force maps compared to conventional microscopy image analyses as the reference standard. The DMPA-based approach precludes the requirement for aligning two independent periodic substrates, improves moiré contrast, and enables efficient moiré pattern generation. Furthermore, the double-sided structure readily allows for the integration of moiré-based cell force mapping into microfabricated cell culture environments or lab-on-a-chip devices.
Automated pupil remapping with binary optics
Neal, Daniel R.; Mansell, Justin
1999-01-01
Methods and apparatuses for pupil remapping employing non-standard lenslet shapes in arrays; divergence of lenslet focal spots from on-axis arrangements; use of lenslet arrays to resize two-dimensional inputs to the array; and use of lenslet arrays to map an aperture shape to a different detector shape. Applications include wavefront sensing, astronomical applications, optical interconnects, keylocks, and other binary optics and diffractive optics applications.
USDA-ARS?s Scientific Manuscript database
This final consensus map has allowed us to map a larger number of markers than possible in any individual map of sorghum, to obtain a more complete coverage of the sorghum genome and to fill a number of gaps on individual maps. In addition to overall general consistency of marker order across indiv...
- Save Title to My Profile
- Set E-Mail Alert
Volume 241, Issue5 (April 2004)
Articles in the Current Issue:
Cover Picture
Horizontal line nodes in superconducting Sr2RuO4
NASA Astrophysics Data System (ADS)
Litak, G.; Annett, J. F.; Györffy, B. L.; Wysokiski, K. I.
2004-04-01
Superconductivity in Sr2RuO4 is one of the most interesting phenomena in current condensed matter physics, since it is revealed to be a triplet-pairing state. Our Editor's Choice [1] considers an important problem related to the type of order parameter in this material.The position of line nodes on the Fermi surface, as evident from recent measurements, has been determined for various scenarios shown in the cover picture. Using these models, the temperature dependence of heat capacity and penetration depth has been calculated for easy comparison with experiments.The first author, Grzegorz Litak, is assistant professor at Technical University of Lublin and visiting scientist at the Max Planck Institute in Dresden. He is working on the effect of disorder on correlated and exotic superconductors, nonlinear dynamics, and superconductivity in strontium ruthenate.
USDA-ARS?s Scientific Manuscript database
A DArT marker platform is developed for the cotton genome to evaluate the use of DArT markers compared to AFLPs in mapping, and transferability across the mapping populations. We used a reference genetic map of tetraploid Gossypium that already contained ~5000 loci which coalesced into 26 chromosom...
NASA Astrophysics Data System (ADS)
Haron, Adib; Mahdzair, Fazren; Luqman, Anas; Osman, Nazmie; Junid, Syed Abdul Mutalib Al
2018-03-01
One of the most significant constraints of Von Neumann architecture is the limited bandwidth between memory and processor. The cost to move data back and forth between memory and processor is considerably higher than the computation in the processor itself. This architecture significantly impacts the Big Data and data-intensive application such as DNA analysis comparison which spend most of the processing time to move data. Recently, the in-memory processing concept was proposed, which is based on the capability to perform the logic operation on the physical memory structure using a crossbar topology and non-volatile resistive-switching memristor technology. This paper proposes a scheme to map digital equality comparator circuit on memristive memory crossbar array. The 2-bit, 4-bit, 8-bit, 16-bit, 32-bit, and 64-bit of equality comparator circuit are mapped on memristive memory crossbar array by using material implication logic in a sequential and parallel method. The simulation results show that, for the 64-bit word size, the parallel mapping exhibits 2.8× better performance in total execution time than sequential mapping but has a trade-off in terms of energy consumption and area utilization. Meanwhile, the total crossbar area can be reduced by 1.2× for sequential mapping and 1.5× for parallel mapping both by using the overlapping technique.
NASA Astrophysics Data System (ADS)
Kosugi, Akito; Takemi, Mitsuaki; Tia, Banty; Castagnola, Elisa; Ansaldo, Alberto; Sato, Kenta; Awiszus, Friedemann; Seki, Kazuhiko; Ricci, Davide; Fadiga, Luciano; Iriki, Atsushi; Ushiba, Junichi
2018-06-01
Objective. Motor map has been widely used as an indicator of motor skills and learning, cortical injury, plasticity, and functional recovery. Cortical stimulation mapping using epidural electrodes is recently adopted for animal studies. However, several technical limitations still remain. Test-retest reliability of epidural cortical stimulation (ECS) mapping has not been examined in detail. Many previous studies defined evoked movements and motor thresholds by visual inspection, and thus, lacked quantitative measurements. A reliable and quantitative motor map is important to elucidate the mechanisms of motor cortical reorganization. The objective of the current study was to perform reliable ECS mapping of motor representations based on the motor thresholds, which were stochastically estimated by motor evoked potentials and chronically implanted micro-electrocorticographical (µECoG) electrode arrays, in common marmosets. Approach. ECS was applied using the implanted µECoG electrode arrays in three adult common marmosets under awake conditions. Motor evoked potentials were recorded through electromyographical electrodes implanted in upper limb muscles. The motor threshold was calculated through a modified maximum likelihood threshold-hunting algorithm fitted with the recorded data from marmosets. Further, a computer simulation confirmed reliability of the algorithm. Main results. Computer simulation suggested that the modified maximum likelihood threshold-hunting algorithm enabled to estimate motor threshold with acceptable precision. In vivo ECS mapping showed high test-retest reliability with respect to the excitability and location of the cortical forelimb motor representations. Significance. Using implanted µECoG electrode arrays and a modified motor threshold-hunting algorithm, we were able to achieve reliable motor mapping in common marmosets with the ECS system.
Kosugi, Akito; Takemi, Mitsuaki; Tia, Banty; Castagnola, Elisa; Ansaldo, Alberto; Sato, Kenta; Awiszus, Friedemann; Seki, Kazuhiko; Ricci, Davide; Fadiga, Luciano; Iriki, Atsushi; Ushiba, Junichi
2018-06-01
Motor map has been widely used as an indicator of motor skills and learning, cortical injury, plasticity, and functional recovery. Cortical stimulation mapping using epidural electrodes is recently adopted for animal studies. However, several technical limitations still remain. Test-retest reliability of epidural cortical stimulation (ECS) mapping has not been examined in detail. Many previous studies defined evoked movements and motor thresholds by visual inspection, and thus, lacked quantitative measurements. A reliable and quantitative motor map is important to elucidate the mechanisms of motor cortical reorganization. The objective of the current study was to perform reliable ECS mapping of motor representations based on the motor thresholds, which were stochastically estimated by motor evoked potentials and chronically implanted micro-electrocorticographical (µECoG) electrode arrays, in common marmosets. ECS was applied using the implanted µECoG electrode arrays in three adult common marmosets under awake conditions. Motor evoked potentials were recorded through electromyographical electrodes implanted in upper limb muscles. The motor threshold was calculated through a modified maximum likelihood threshold-hunting algorithm fitted with the recorded data from marmosets. Further, a computer simulation confirmed reliability of the algorithm. Computer simulation suggested that the modified maximum likelihood threshold-hunting algorithm enabled to estimate motor threshold with acceptable precision. In vivo ECS mapping showed high test-retest reliability with respect to the excitability and location of the cortical forelimb motor representations. Using implanted µECoG electrode arrays and a modified motor threshold-hunting algorithm, we were able to achieve reliable motor mapping in common marmosets with the ECS system.
Toyama, J; Tabata, O
1981-10-01
The epicardial breakthrough can be recognized from the localized depression of the body surface potential, which is characterized by a localized bend of the equipotential lines or a send-minimum on isopotential maps. Recognition of epicardial breakthrough with isopotential maps enables us to diagnose location of the block site of the bundle branch blocks more precisely than by ECG or VCG. However, the optimum inter-electrode distance for detection of such a localized potential has not been determined. In the present study, influence of the inter-electrode distance on the characteristic patterns reflecting the epicardial breakthrough was studied on 16 healthy persons using 9 x 9 electrode arrays with inter-electrode distance of 1.25 cm, 5 x 5 with 2.5 cm, and 3 x 3 with 5 cm. Breakthrough was recognized in 15 out of 16 cases (94%) on maps recorded with electrode arrays with inter-electrode distance of 1.25 and 2.5 cm. However, detectability of the breakthrough was reduced to 10 out of 16 cases (63%) with electrode array having inter-electrode distance of 5 cm. In conclusion, it is preferable to use an electrode array with an inter-electrode distance of no more than 2.5 cm for the purpose of breakthrough recognition.
Multifunctional Catheters Combining Intracardiac Ultrasound Imaging and Electrophysiology Sensing
Stephens, Douglas N.; Cannata, Jonathan; Liu, Ruibin; Zhao, Jian Zhong; Shung, K. Kirk; Nguyen, Hien; Chia, Raymond; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai E.; Mahajan, Aman; Shivkumar, Kalyanam; Kim, Kang; O’Donnell, Matthew; Nikoozadeh, Amin; Oralkan, Omer; Khuri-Yakub, Pierre T.; Sahn, David J.
2015-01-01
A family of 3 multifunctional intracardiac imaging and electrophysiology (EP) mapping catheters has been in development to help guide diagnostic and therapeutic intracardiac EP procedures. The catheter tip on the first device includes a 7.5 MHz, 64-element, side-looking phased array for high resolution sector scanning. The second device is a forward-looking catheter with a 24-element 14 MHz phased array. Both of these catheters operate on a commercial imaging system with standard software. Multiple EP mapping sensors were mounted as ring electrodes near the arrays for electrocardiographic synchronization of ultrasound images and used for unique integration with EP mapping technologies. To help establish the catheters’ ability for integration with EP interventional procedures, tests were performed in vivo in a porcine animal model to demonstrate both useful intracardiac echocardiographic (ICE) visualization and simultaneous 3-D positional information using integrated electroanatomical mapping techniques. The catheters also performed well in high frame rate imaging, color flow imaging, and strain rate imaging of atrial and ventricular structures. The companion paper of this work discusses the catheter design of the side-looking catheter with special attention to acoustic lens design. The third device in development is a 10 MHz forward-looking ring array that is to be mounted at the distal tip of a 9F catheter to permit use of the available catheter lumen for adjunctive therapy tools. PMID:18986948
Multifunctional catheters combining intracardiac ultrasound imaging and electrophysiology sensing.
Stephens, D N; Cannata, J; Liu, Ruibin; Zhao, Jian Zhong; Shung, K K; Nguyen, Hien; Chia, R; Dentinger, A; Wildes, D; Thomenius, K E; Mahajan, A; Shivkumar, K; Kim, Kang; O'Donnell, M; Nikoozadeh, A; Oralkan, O; Khuri-Yakub, P T; Sahn, D J
2008-07-01
A family of 3 multifunctional intracardiac imaging and electrophysiology (EP) mapping catheters has been in development to help guide diagnostic and therapeutic intracardiac EP procedures. The catheter tip on the first device includes a 7.5 MHz, 64-element, side-looking phased array for high resolution sector scanning. The second device is a forward-looking catheter with a 24-element 14 MHz phased array. Both of these catheters operate on a commercial imaging system with standard software. Multiple EP mapping sensors were mounted as ring electrodes near the arrays for electrocardiographic synchronization of ultrasound images and used for unique integration with EP mapping technologies. To help establish the catheters' ability for integration with EP interventional procedures, tests were performed in vivo in a porcine animal model to demonstrate both useful intracardiac echocardiographic (ICE) visualization and simultaneous 3-D positional information using integrated electroanatomical mapping techniques. The catheters also performed well in high frame rate imaging, color flow imaging, and strain rate imaging of atrial and ventricular structures. The companion paper of this work discusses the catheter design of the side-looking catheter with special attention to acoustic lens design. The third device in development is a 10 MHz forward-looking ring array that is to be mounted at the distal tip of a 9F catheter to permit use of the available catheter lumen for adjunctive therapy tools.
Automated pupil remapping with binary optics
Neal, D.R.; Mansell, J.
1999-01-26
Methods and apparatuses are disclosed for pupil remapping employing non-standard lenslet shapes in arrays; divergence of lenslet focal spots from on-axis arrangements; use of lenslet arrays to resize two-dimensional inputs to the array; and use of lenslet arrays to map an aperture shape to a different detector shape. Applications include wavefront sensing, astronomical applications, optical interconnects, keylocks, and other binary optics and diffractive optics applications. 24 figs.
Evaluation of Genomic Instability in the Abnormal Prostate
2006-12-01
array CGH maps copy number aberrations relative to the genome sequence by using arrays of BAC or cDNA clones as the hybridization target instead of...data produced from these analyses complicate the interpretation of results . For these reasons, and as outlined by Davies et al., 22 it is desirable...There have been numerous studies of these abnormalities and several techniques, including 9 chromosome painting, array CGH and SNP arrays , have
Development of an Advanced Hydraulic Fracture Mapping System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norm Warpinski; Steve Wolhart; Larry Griffin
The project to develop an advanced hydraulic fracture mapping system consisted of both hardware and analysis components in an effort to build, field, and analyze combined data from tiltmeter and microseismic arrays. The hardware sections of the project included: (1) the building of new tiltmeter housings with feedthroughs for use in conjunction with a microseismic array, (2) the development of a means to use separate telemetry systems for the tilt and microseismic arrays, and (3) the selection and fabrication of an accelerometer sensor system to improve signal-to-noise ratios. The analysis sections of the project included a joint inversion for analysismore » and interpretation of combined tiltmeter and microseismic data and improved methods for extracting slippage planes and other reservoir information from the microseisms. In addition, testing was performed at various steps in the process to assess the data quality and problems/issues that arose during various parts of the project. A prototype array was successfully tested and a full array is now being fabricated for industrial use.« less
NASA Astrophysics Data System (ADS)
Crake, Calum; Brinker, Spencer T.; Coviello, Christian M.; Livingstone, Margaret S.; McDannold, Nathan J.
2018-03-01
Previous work has demonstrated that passive acoustic imaging may be used alongside MRI for monitoring of focused ultrasound therapy. However, past implementations have generally made use of either linear arrays originally designed for diagnostic imaging or custom narrowband arrays specific to in-house therapeutic transducer designs, neither of which is fully compatible with clinical MR-guided focused ultrasound (MRgFUS) devices. Here we have designed an array which is suitable for use within an FDA-approved MR-guided transcranial focused ultrasound device, within the bore of a 3 Tesla clinical MRI scanner. The array is constructed from 5 × 0.4 mm piezoceramic disc elements arranged in pseudorandom fashion on a low-profile laser-cut acrylic frame designed to fit between the therapeutic elements of a 230 kHz InSightec ExAblate 4000 transducer. By exploiting thickness and radial resonance modes of the piezo discs the array is capable of both B-mode imaging at 5 MHz for skull localization, as well as passive reception at the second harmonic of the therapy array for detection of cavitation and 3D passive acoustic imaging. In active mode, the array was able to perform B-mode imaging of a human skull, showing the outer skull surface with good qualitative agreement with MR imaging. Extension to 3D showed the array was able to locate the skull within ±2 mm/2° of reference points derived from MRI, which could potentially allow registration of a patient to the therapy system without the expense of real-time MRI. In passive mode, the array was able to resolve a point source in 3D within a ±10 mm region about each axis from the focus, detect cavitation (SNR ~ 12 dB) at burst lengths from 10 cycles to continuous wave, and produce 3D acoustic maps in a flow phantom. Finally, the array was used to detect and map cavitation associated with microbubble activity in the brain in nonhuman primates.
2001-03-13
Arrays of lights at left focus on solar array panels at right during illumination testing. The solar array is part of the 2001 Mars Odyssey Orbiter. Scheduled for launch April 7, 2001, the orbiter contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers
- Save Title to My Profile
- Set E-Mail Alert
< Previous Issue | Next Issue > Volume 201, Issue14 (November 2004)
Articles in the Current Issue:
Rapid Research Note
Highly (001)-textured WS2-x films prepared by reactive radio frequency magnetron sputtering
NASA Astrophysics Data System (ADS)
Ellmer, K.; Mientus, R.; Seeger, S.; Weiß, V.
2004-11-01
Highly (001)-oriented WS2-x films were grown onto oxidized silicon substrates by reactive magnetron sputtering from a metallic tungsten target in argon-hydrogen sulfide mixtures. The best films with respect to the van-der-Waals orientation, i.e. with the (001) planes parallel to the substrate surface, were grown by excitation of the plasma with radio frequency of 27.12 MHz. These films exhibit the largest grains and the lowest film strain. It is shown that this effect is not due to the lower deposition rate at this high excitation frequency. Instead it was found that the lower DC voltage at the sputtering target is advantageous for the film growth since the bombardment of the growing film by highly energetic particles is avoided by this type of plasma excitation.
-
- Save Title to My Profile
- Set E-Mail Alert
< Previous Issue | Next Issue > Volume 201, Issue12 (September 2004)
Articles in the Current Issue:
Rapid Research Note
Effects of high dose proton irradiation on the electrical performance of ZnO Schottky diodes
NASA Astrophysics Data System (ADS)
Khanna, Rohit; Ip, K.; Allums, K. K.; Baik, K.; Abernathy, C. R.; Pearton, S. J.; Heo, Y. W.; Norton, D. P.; Ren, F.; Dwivedi, R.; Fogarty, T. N.; Wilkins, R.
2004-09-01
The preparation and characterization of terbium doped zinc aluminate photoluminescent films obtained by ultrasonic spray pyrolysis deposition process are described. Variations on doping concentrations in the start spraying solution and substrate temperatures were studied. XRD measurements on these films showed that the crystalline structure depends on the substrate temperature. For an excitation wavelength of 242 nm, all the photoluminescence spectra show peaks located at 488 nm, 546 nm, 589 nm and 621 nm. The photoluminescence intensity reaches values practically constant for the samples deposited at substrate temperatures higher than 400 °C. In this case, concentration quenching of the photoluminescence appears at doping concentrations greater than 0.93 atomic percent into the films. The surface morphology characteristics of the films deposited on glass and silicon substrates, as a function of the deposition temperature, are presented.
Depth map generation using a single image sensor with phase masks.
Jang, Jinbeum; Park, Sangwoo; Jo, Jieun; Paik, Joonki
2016-06-13
Conventional stereo matching systems generate a depth map using two or more digital imaging sensors. It is difficult to use the small camera system because of their high costs and bulky sizes. In order to solve this problem, this paper presents a stereo matching system using a single image sensor with phase masks for the phase difference auto-focusing. A novel pattern of phase mask array is proposed to simultaneously acquire two pairs of stereo images. Furthermore, a noise-invariant depth map is generated from the raw format sensor output. The proposed method consists of four steps to compute the depth map: (i) acquisition of stereo images using the proposed mask array, (ii) variational segmentation using merging criteria to simplify the input image, (iii) disparity map generation using the hierarchical block matching for disparity measurement, and (iv) image matting to fill holes to generate the dense depth map. The proposed system can be used in small digital cameras without additional lenses or sensors.
Nie, Bei; Yang, Min; Fu, Weiling; Liang, Zhiqing
2015-07-07
The surface invasive cleavage assay, because of its innate accuracy and ability for self-signal amplification, provides a potential route for the mapping of hundreds of thousands of human SNP sites. However, its performance on a high density DNA array has not yet been established, due to the unusual "hairpin" probe design on the microarray and the lack of chemical stability of commercially available substrates. Here we present an applicable method to implement a nanocrystalline diamond thin film as an alternative substrate for fabricating an addressable DNA array using maskless light-directed photochemistry, producing the most chemically stable and biocompatible system for genetic analysis and enzymatic reactions. The surface invasive cleavage reaction, followed by degenerated primer ligation and post-rolling circle amplification is consecutively performed on the addressable diamond DNA array, accurately mapping SNP sites from PCR-amplified human genomic target DNA. Furthermore, a specially-designed DNA array containing dual probes in the same pixel is fabricated by following a reverse light-directed DNA synthesis protocol. This essentially enables us to decipher thousands of SNP alleles in a single-pot reaction by the simple addition of enzyme, target and reaction buffers.
Stephens, Douglas N.; Cannata, Jonathan; Liu, Ruibin; Zhao, Jian Zhong; Shung, K. Kirk; Nguyen, Hien; Chia, Raymond; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai E.; Mahajan, Aman; Shivkumar, Kalyanam; Kim, Kang; O’Donnell, Matthew; Sahn, David
2009-01-01
A multifunctional 9F intracardiac imaging and electrophysiology mapping catheter was developed and tested to help guide diagnostic and therapeutic intracardiac electrophysiology (EP) procedures. The catheter tip includes a 7.25-MHz, 64-element, side-looking phased array for high resolution sector scanning. Multiple electrophysiology mapping sensors were mounted as ring electrodes near the array for electrocardiographic synchronization of ultrasound images. The catheter array elevation beam performance in particular was investigated. An acoustic lens for the distal tip array designed with a round cross section can produce an acceptable elevation beam shape; however, the velocity of sound in the lens material should be approximately 155 m/s slower than in tissue for the best beam shape and wide bandwidth performance. To help establish the catheter’s unique ability for integration with electrophysiology interventional procedures, it was used in vivo in a porcine animal model, and demonstrated both useful intracardiac echocardiographic visualization and simultaneous 3-D positional information using integrated electroanatomical mapping techniques. The catheter also performed well in high frame rate imaging, color flow imaging, and strain rate imaging of atrial and ventricular structures. PMID:18407850
ERIC Educational Resources Information Center
Goswami, Usha
1995-01-01
In three experiments, three- and four-year olds were asked to map relative size from one array of objects to another, map relative size to relative proportion, and map relative size to a variety of perceptual dimensions. Children were able to make relational mappings based on size when spatial positions and concrete representations of size of…
2017-10-01
potentials or multi-action potential activity from residual peripheral nerve while patient intends movements of amputated hand/arm Subtask 3.1: Mapping of...neural activity (Months 4 – 36) • Patients will be asked to intend a number of individual finger and multiple finger flexion, extension, adduction...intended movements. We will map the different intended movements onto the neural activity recorded on the electrodes of the micro-electrode array
Conjunction of Photovoltaic and Thermophotovoltaic Power Production in Spacecraft Power Systems
2015-09-01
photovoltaic ( PV ) arrays, which draw electrical energy from the most prominent power source in our solar system, the Sun. These arrays are large, and pose...freemaps/1000px/dni/SolarGIS- Solar -map-DNI-World- map-en.png By contrast, spacecraft PV power production systems are not so limited. With the...operating parameters for a given solar cell, and PMax is generally the described Pout from which the PV cell’s efficiency is calculated. A PV cell’s
Mapping Electrical Crosstalk in Pixelated Sensor Arrays
NASA Technical Reports Server (NTRS)
Seshadri, Suresh (Inventor); Cole, David (Inventor); Smith, Roger M. (Inventor); Hancock, Bruce R. (Inventor)
2017-01-01
The effects of inter pixel capacitance in a pixilated array may be measured by first resetting all pixels in the array to a first voltage, where a first image is read out, followed by resetting only a subset of pixels in the array to a second voltage, where a second image is read out, where the difference in the first and second images provide information about the inter pixel capacitance. Other embodiments are described and claimed.
Mapping Electrical Crosstalk in Pixelated Sensor Arrays
NASA Technical Reports Server (NTRS)
Smith, Roger M (Inventor); Hancock, Bruce R. (Inventor); Cole, David (Inventor); Seshadri, Suresh (Inventor)
2013-01-01
The effects of inter pixel capacitance in a pixilated array may be measured by first resetting all pixels in the array to a first voltage, where a first image is read out, followed by resetting only a subset of pixels in the array to a second voltage, where a second image is read out, where the difference in the first and second images provide information about the inter pixel capacitance. Other embodiments are described and claimed.
Chaudhry, Aafia; Benson, Laura; Varshaver, Michael; Farber, Ori; Weinberg, Uri; Kirson, Eilon; Palti, Yoram
2015-11-11
Optune™, previously known as the NovoTTF-100A System™, generates Tumor Treating Fields (TTFields), an effective anti-mitotic therapy for glioblastoma. The system delivers intermediate frequency, alternating electric fields to the supratentorial brain. Patient therapy is personalized by configuring transducer array layout placement on the scalp to the tumor site using MRI measurements and the NovoTAL System. Transducer array layout mapping optimizes therapy by maximizing electric field intensity to the tumor site. This study evaluated physician performance in conducting transducer array layout mapping using the NovoTAL System compared with mapping performed by the Novocure in-house clinical team. Fourteen physicians (7 neuro-oncologists, 4 medical oncologists, and 3 neurosurgeons) evaluated five blinded cases of recurrent glioblastoma and performed head size and tumor location measurements using a standard Digital Imaging and Communications in Medicine reader. Concordance with Novocure measurement and intra- and inter-rater reliability were assessed using relevant correlation coefficients. The study criterion for success was a concordance correlation coefficient (CCC) >0.80. CCC for each physician versus Novocure on 20 MRI measurements was 0.96 (standard deviation, SD ± 0.03, range 0.90-1.00), indicating very high agreement between the two groups. Intra- and inter-rater reliability correlation coefficients were similarly high: 0.83 (SD ±0.15, range 0.54-1.00) and 0.80 (SD ±0.18, range 0.48-1.00), respectively. This user study demonstrated an excellent level of concordance between prescribing physicians and Novocure in-house clinical teams in performing transducer array layout planning. Intra-rater reliability was very high, indicating reproducible performance. Physicians prescribing TTFields, when trained on the NovoTAL System, can independently perform transducer array layout mapping required for the initiation and maintenance of patients on TTFields therapy.
Mapping the fine structure of cortical activity with different micro-ECoG electrode array geometries
NASA Astrophysics Data System (ADS)
Wang, Xi; Gkogkidis, C. Alexis; Iljina, Olga; Fiederer, Lukas D. J.; Henle, Christian; Mader, Irina; Kaminsky, Jan; Stieglitz, Thomas; Gierthmuehlen, Mortimer; Ball, Tonio
2017-10-01
Objective. Innovations in micro-electrocorticography (µECoG) electrode array manufacturing now allow for intricate designs with smaller contact diameters and/or pitch (i.e. inter-contact distance) down to the sub-mm range. The aims of the present study were: (i) to investigate whether frequency ranges up to 400 Hz can be reproducibly observed in µECoG recordings and (ii) to examine how differences in topographical substructure between these frequency bands and electrode array geometries can be quantified. We also investigated, for the first time, the influence of blood vessels on signal properties and assessed the influence of cortical vasculature on topographic mapping. Approach. The present study employed two µECoG electrode arrays with different contact diameters and inter-contact distances, which were used to characterize neural activity from the somatosensory cortex of minipigs in a broad frequency range up to 400 Hz. The analysed neural data were recorded in acute experiments under anaesthesia during peripheral electrical stimulation. Main results. We observed that µECoG recordings reliably revealed multi-focal cortical somatosensory response patterns, in which response peaks were often less than 1 cm apart and would thus not have been resolvable with conventional ECoG. The response patterns differed by stimulation site and intensity, they were distinct for different frequency bands, and the results of functional mapping proved independent of cortical vascular. Our analysis of different frequency bands exhibited differences in the number of activation peaks in topographical substructures. Notably, signal strength and signal-to-noise ratios differed between the two electrode arrays, possibly due to their different sensitivity for variations in spatial patterns and signal strengths. Significance. Our findings that the geometry of µECoG electrode arrays can strongly influence their recording performance can help to make informed decisions that maybe important in number of clinical contexts, including high-resolution brain mapping, advanced epilepsy diagnostics or brain-machine interfacing.
Mapping protein-protein interactions using yeast two-hybrid assays.
Mehla, Jitender; Caufield, J Harry; Uetz, Peter
2015-05-01
Yeast two-hybrid (Y2H) screens are an efficient system for mapping protein-protein interactions and whole interactomes. The screens can be performed using random libraries or collections of defined open reading frames (ORFs) called ORFeomes. This protocol describes both library and array-based Y2H screening, with an emphasis on array-based assays. Array-based Y2H is commonly used to test a number of "prey" proteins for interactions with a single "bait" (target) protein or pool of proteins. The advantage of this approach is the direct identification of interacting protein pairs without further downstream experiments: The identity of the preys is known and does not require further confirmation. In contrast, constructing and screening a random prey library requires identification of individual prey clones and systematic retesting. Retesting is typically performed in an array format. © 2015 Cold Spring Harbor Laboratory Press.
HIA: a genome mapper using hybrid index-based sequence alignment.
Choi, Jongpill; Park, Kiejung; Cho, Seong Beom; Chung, Myungguen
2015-01-01
A number of alignment tools have been developed to align sequencing reads to the human reference genome. The scale of information from next-generation sequencing (NGS) experiments, however, is increasing rapidly. Recent studies based on NGS technology have routinely produced exome or whole-genome sequences from several hundreds or thousands of samples. To accommodate the increasing need of analyzing very large NGS data sets, it is necessary to develop faster, more sensitive and accurate mapping tools. HIA uses two indices, a hash table index and a suffix array index. The hash table performs direct lookup of a q-gram, and the suffix array performs very fast lookup of variable-length strings by exploiting binary search. We observed that combining hash table and suffix array (hybrid index) is much faster than the suffix array method for finding a substring in the reference sequence. Here, we defined the matching region (MR) is a longest common substring between a reference and a read. And, we also defined the candidate alignment regions (CARs) as a list of MRs that is close to each other. The hybrid index is used to find candidate alignment regions (CARs) between a reference and a read. We found that aligning only the unmatched regions in the CAR is much faster than aligning the whole CAR. In benchmark analysis, HIA outperformed in mapping speed compared with the other aligners, without significant loss of mapping accuracy. Our experiments show that the hybrid of hash table and suffix array is useful in terms of speed for mapping NGS sequencing reads to the human reference genome sequence. In conclusion, our tool is appropriate for aligning massive data sets generated by NGS sequencing.
NASA Astrophysics Data System (ADS)
Deng, Lulu; O'Reilly, Meaghan A.; Jones, Ryan M.; An, Ran; Hynynen, Kullervo
2016-12-01
Focused ultrasound (FUS) phased arrays show promise for non-invasive brain therapy. However, the majority of them are limited to a single transmit/receive frequency and therefore lack the versatility to expose and monitor the treatment volume. Multi-frequency arrays could offer variable transmit focal sizes under a fixed aperture, and detect different spectral content on receive for imaging purposes. Here, a three-frequency (306, 612, and 1224 kHz) sparse hemispherical ultrasound phased array (31.8 cm aperture; 128 transducer modules) was constructed and evaluated for microbubble-mediated transcranial therapy and simultaneous cavitation mapping. The array is able to perform effective electronic beam steering over a volume spanning (-40, 40) and (-30, 50) mm in the lateral and axial directions, respectively. The focal size at the geometric center is approximately 0.9 (2.1) mm, 1.7 (3.9) mm, and 3.1 (6.5) mm in lateral (axial) pressure full width at half maximum (FWHM) at 1224, 612, and 306 kHz, respectively. The array was also found capable of dual-frequency excitation and simultaneous multi-foci sonication, which enables the future exploration of more complex exposure strategies. Passive acoustic mapping of dilute microbubble clouds demonstrated that the point spread function of the receive array has a lateral (axial) intensity FWHM between 0.8-3.5 mm (1.7-11.7 mm) over a volume spanning (-25, 25) mm in both the lateral and axial directions, depending on the transmit/receive frequency combination and the imaging location. The device enabled both half and second harmonic imaging through the intact skull, which may be useful for improving the contrast-to-tissue ratio or imaging resolution, respectively. Preliminary in vivo experiments demonstrated the system’s ability to induce blood-brain barrier opening and simultaneously spatially map microbubble cavitation activity in a rat model. This work presents a tool to investigate optimal strategies for non-thermal FUS brain therapy and concurrent microbubble cavitation monitoring through the availability of multiple frequencies.
Deng, Lulu; O'Reilly, Meaghan A.; Jones, Ryan M.; An, Ran; Hynynen, Kullervo
2016-01-01
Focused ultrasound (FUS) phased arrays show promise for non-invasive brain therapy. However, the majority of them are limited to a single transmit/receive frequency and therefore lack the versatility to expose and monitor the treatment volume. Multi-frequency arrays could offer variable transmit focal sizes under a fixed aperture, and detect different spectral content on receive for imaging purposes. Here, a three-frequency (306, 612 and 1224 kHz) sparse hemispherical ultrasound phased array (31.8 cm aperture; 128 transducer modules) was constructed and evaluated for microbubble-mediated transcranial therapy and simultaneous cavitation mapping. The array is able to perform effective electronic beam steering over a volume spanning [−40, 40] and [−30, 50] mm in the lateral and axial directions, respectively. The focal size at the geometric center is approximately 0.9 (2.1) mm, 1.7 (3.9) mm, and 3.1 (6.5) mm in lateral (axial) pressure full width at half maximum (FWHM) at 1224, 612, and 306 kHz, respectively. The array was also found capable of dual-frequency excitation and simultaneous multi–foci sonication, which enables the future exploration of more complex exposure strategies. Passive acoustic mapping of dilute microbubble clouds demonstrated that the point spread function of the receive array has a lateral (axial) intensity FWHM between 0.8-3.5 mm (1.7-11.7 mm) over a volume spanning [−25, 25] mm in both the lateral and axial directions, depending on the transmit/receive frequency combination and the imaging location. The device enabled both half and second harmonic imaging through the intact skull, which may be useful for improving the contrast-to-tissue ratio or imaging resolution, respectively. Preliminary in-vivo experiments demonstrated the system's ability to induce blood-brain barrier opening and simultaneously spatially map microbubble cavitation activity in a rat model. This work presents a tool to investigate optimal strategies for non-thermal FUS brain therapy and concurrent microbubble cavitation monitoring through the availability of multiple frequencies. PMID:27845920
Deng, Lulu; O'Reilly, Meaghan A; Jones, Ryan M; An, Ran; Hynynen, Kullervo
2016-12-21
Focused ultrasound (FUS) phased arrays show promise for non-invasive brain therapy. However, the majority of them are limited to a single transmit/receive frequency and therefore lack the versatility to expose and monitor the treatment volume. Multi-frequency arrays could offer variable transmit focal sizes under a fixed aperture, and detect different spectral content on receive for imaging purposes. Here, a three-frequency (306, 612, and 1224 kHz) sparse hemispherical ultrasound phased array (31.8 cm aperture; 128 transducer modules) was constructed and evaluated for microbubble-mediated transcranial therapy and simultaneous cavitation mapping. The array is able to perform effective electronic beam steering over a volume spanning (-40, 40) and (-30, 50) mm in the lateral and axial directions, respectively. The focal size at the geometric center is approximately 0.9 (2.1) mm, 1.7 (3.9) mm, and 3.1 (6.5) mm in lateral (axial) pressure full width at half maximum (FWHM) at 1224, 612, and 306 kHz, respectively. The array was also found capable of dual-frequency excitation and simultaneous multi-foci sonication, which enables the future exploration of more complex exposure strategies. Passive acoustic mapping of dilute microbubble clouds demonstrated that the point spread function of the receive array has a lateral (axial) intensity FWHM between 0.8-3.5 mm (1.7-11.7 mm) over a volume spanning (-25, 25) mm in both the lateral and axial directions, depending on the transmit/receive frequency combination and the imaging location. The device enabled both half and second harmonic imaging through the intact skull, which may be useful for improving the contrast-to-tissue ratio or imaging resolution, respectively. Preliminary in vivo experiments demonstrated the system's ability to induce blood-brain barrier opening and simultaneously spatially map microbubble cavitation activity in a rat model. This work presents a tool to investigate optimal strategies for non-thermal FUS brain therapy and concurrent microbubble cavitation monitoring through the availability of multiple frequencies.
The Sao Paulo Lightning Mapping Array (SPLMA): Prospects to GOES-R GLM and CHUVA
NASA Technical Reports Server (NTRS)
Albrecht, Rachel I.; Carrey, Larry; Blakeslee, Richard J.; Bailey, Jeffrey C.; Goodman, Steven J.; Bruning, Eric C.; Koshak, William; Morales, Carlos A.; Machado, Luiz A. T.; Angelis, Carlos F.;

2010-01-01
This paper presents the characteristics and prospects of a Lightning Mapping Array to be deployed at the city of S o Paulo (SPLMA). This LMA network will provide CHUVA campaign with total lightning, lightning channel mapping and detailed information on the locations of cloud charge regions for the thunderstorms investigated during one of its IOP. The real-time availability of LMA observations will also contribute to and support improved weather situational awareness and mission execution. For GOES-R program it will form the basis of generating unique and valuable proxy data sets for both GLM and ABI sensors in support of several on-going research investigations
An automated mapping satellite system ( Mapsat).
Colvocoresses, A.P.
1982-01-01
The favorable environment of space permits a satellite to orbit the Earth with very high stability as long as no local perturbing forces are involved. Solid-state linear-array sensors have no moving parts and create no perturbing force on the satellite. Digital data from highly stabilized stereo linear arrays are amenable to simplified processing to produce both planimetric imagery and elevation data. A satellite imaging system, called Mapsat, including this concept has been proposed to produce data from which automated mapping in near real time can be accomplished. Image maps as large as 1:50 000 scale with contours as close as a 20-m interval may be produced from Mapsat data. -from Author
Acceleration of short and long DNA read mapping without loss of accuracy using suffix array.
Tárraga, Joaquín; Arnau, Vicente; Martínez, Héctor; Moreno, Raul; Cazorla, Diego; Salavert-Torres, José; Blanquer-Espert, Ignacio; Dopazo, Joaquín; Medina, Ignacio
2014-12-01
HPG Aligner applies suffix arrays for DNA read mapping. This implementation produces a highly sensitive and extremely fast mapping of DNA reads that scales up almost linearly with read length. The approach presented here is faster (over 20× for long reads) and more sensitive (over 98% in a wide range of read lengths) than the current state-of-the-art mappers. HPG Aligner is not only an optimal alternative for current sequencers but also the only solution available to cope with longer reads and growing throughputs produced by forthcoming sequencing technologies. https://github.com/opencb/hpg-aligner. © The Author 2014. Published by Oxford University Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cinson, Anthony D.; Crawford, Susan L.; Prowant, Matthew S.
2012-04-16
A sound field beam mapping exercise was conducted to further understand the effects of coarse grained microstructures found in CASS materials on phased array ultrasonic wave propagation. Laboratory measurements were made on three CASS specimens with different microstructures; the specimens were polished and etched to reveal measurable grain sizes, shapes and orientations. Three longitudinal, phased array probes were fixed on a specimen's outside diameter with the sound field directed toward one end (face) of the pipe segment over a fixed range of angles. A point receiver was raster scanned over the surface of the specimen face generating a sound fieldmore » image. A slice of CASS material was then removed from the specimen end and the beam mapping exercise repeated. The sound fields acquired were analyzed for spot size, coherency, and beam redirection. Analyses were conducted between the resulting sound fields and the microstructural characteristics of each specimen.« less
-
Microbial genome sequencing using optical mapping and Illumina sequencing
USDA-ARS?s Scientific Manuscript database
Introduction Optical mapping is a technique in which strands of genomic DNA are digested with one or more restriction enzymes, and a physical map of the genome constructed from the resulting image. In outline, genomic DNA is extracted from a pure culture, linearly arrayed on a specialized glass sli...
-
Genetics Home Reference: cri-du-chat syndrome
... Pinkel D. High-resolution mapping of genotype-phenotype relationships in cri du chat syndrome using array comparative ... for Links Data Files & API Site Map Subscribe Customer Support USA.gov Copyright Privacy Accessibility FOIA Viewers & ...
-
Livingstone, Donald; Stack, Conrad; Mustiga, Guiliana M; Rodezno, Dayana C; Suarez, Carmen; Amores, Freddy; Feltus, Frank A; Mockaitis, Keithanne; Cornejo, Omar E; Motamayor, Juan C
2017-01-01
Cacao ( Theobroma cacao L.) is an important cash crop in tropical regions around the world and has a rich agronomic history in South America. As a key component in the cosmetic and confectionary industries, millions of people worldwide use products made from cacao, ranging from shampoo to chocolate. An Illumina Infinity II array was created using 13,530 SNPs identified within a small diversity panel of cacao. Of these SNPs, 12,643 derive from variation within annotated cacao genes. The genotypes of 3,072 trees were obtained, including two mapping populations from Ecuador. High-density linkage maps for these two populations were generated and compared to the cacao genome assembly. Phenotypic data from these populations were combined with the linkage maps to identify the QTLs for yield and disease resistance.
-
Plasmon Mapping in Au@Ag Nanocube Assemblies
2014-01-01
Surface plasmon modes in metallic nanostructures largely determine their optoelectronic properties. Such plasmon modes can be manipulated by changing the morphology of the nanoparticles or by bringing plasmonic nanoparticle building blocks close to each other within organized assemblies. We report the EELS mapping of such plasmon modes in pure Ag nanocubes, Au@Ag core–shell nanocubes, and arrays of Au@Ag nanocubes. We show that these arrays enable the creation of interesting plasmonic structures starting from elementary building blocks. Special attention will be dedicated to the plasmon modes in a triangular array formed by three nanocubes. Because of hybridization, a combination of such nanotriangles is shown to provide an antenna effect, resulting in strong electrical field enhancement at the narrow gap between the nanotriangles. PMID:25067991
-
The data array, a tool to interface the user to a large data base
NASA Technical Reports Server (NTRS)
Foster, G. H.
1974-01-01
Aspects of the processing of spacecraft data is considered. Use of the data array in a large address space as an intermediate form in data processing for a large scientific data base is advocated. Techniques for efficient indexing in data arrays are reviewed and the data array method for mapping an arbitrary structure onto linear address space is shown. A compromise between the two forms is given. The impact of the data array on the user interface are considered along with implementation.
-
Laubinger, Sascha; Zeller, Georg; Henz, Stefan R; Sachsenberg, Timo; Widmer, Christian K; Naouar, Naïra; Vuylsteke, Marnik; Schölkopf, Bernhard; Rätsch, Gunnar; Weigel, Detlef
2008-01-01
Gene expression maps for model organisms, including Arabidopsis thaliana, have typically been created using gene-centric expression arrays. Here, we describe a comprehensive expression atlas, Arabidopsis thaliana Tiling Array Express (At-TAX), which is based on whole-genome tiling arrays. We demonstrate that tiling arrays are accurate tools for gene expression analysis and identified more than 1,000 unannotated transcribed regions. Visualizations of gene expression estimates, transcribed regions, and tiling probe measurements are accessible online at the At-TAX homepage. PMID:18613972
-
Mission-Oriented Sensor Arrays and UAVs - a Case Study on Environmental Monitoring
NASA Astrophysics Data System (ADS)
Figueira, N. M.; Freire, I. L.; Trindade, O.; Simões, E.
2015-08-01
This paper presents a new concept of UAV mission design in geomatics, applied to the generation of thematic maps for a multitude of civilian and military applications. We discuss the architecture of Mission-Oriented Sensors Arrays (MOSA), proposed in Figueira et Al. (2013), aimed at splitting and decoupling the mission-oriented part of the system (non safety-critical hardware and software) from the aircraft control systems (safety-critical). As a case study, we present an environmental monitoring application for the automatic generation of thematic maps to track gunshot activity in conservation areas. The MOSA modeled for this application integrates information from a thermal camera and an on-the-ground microphone array. The use of microphone arrays technology is of particular interest in this paper. These arrays allow estimation of the direction-of-arrival (DOA) of the incoming sound waves. Information about events of interest is obtained by the fusion of the data provided by the microphone array, captured by the UAV, fused with information from the termal image processing. Preliminary results show the feasibility of the on-the-ground sound processing array and the simulation of the main processing module, to be embedded into an UAV in a future work. The main contributions of this paper are the proposed MOSA system, including concepts, models and architecture.
-
Development and mapping of DArT markers within the Festuca - Lolium complex
Kopecký, David; Bartoš, Jan; Lukaszewski, Adam J; Baird, James H; Černoch, Vladimír; Kölliker, Roland; Rognli, Odd Arne; Blois, Helene; Caig, Vanessa; Lübberstedt, Thomas; Studer, Bruno; Shaw, Paul; Doležel, Jaroslav; Kilian, Andrzej
2009-01-01
Background Grasses are among the most important and widely cultivated plants on Earth. They provide high quality fodder for livestock, are used for turf and amenity purposes, and play a fundamental role in environment protection. Among cultivated grasses, species within the Festuca-Lolium complex predominate, especially in temperate regions. To facilitate high-throughput genome profiling and genetic mapping within the complex, we have developed a Diversity Arrays Technology (DArT) array for five grass species: F. pratensis, F. arundinacea, F. glaucescens, L. perenne and L. multiflorum. Results The DArTFest array contains 7680 probes derived from methyl-filtered genomic representations. In a first marker discovery experiment performed on 40 genotypes from each species (with the exception of F. glaucescens for which only 7 genotypes were used), we identified 3884 polymorphic markers. The number of DArT markers identified in every single genotype varied from 821 to 1852. To test the usefulness of DArTFest array for physical mapping, DArT markers were assigned to each of the seven chromosomes of F. pratensis using single chromosome substitution lines while recombinants of F. pratensis chromosome 3 were used to allocate the markers to seven chromosome bins. Conclusion The resources developed in this project will facilitate the development of genetic maps in Festuca and Lolium, the analysis on genetic diversity, and the monitoring of the genomic constitution of the Festuca × Lolium hybrids. They will also enable marker-assisted selection for multiple traits or for specific genome regions. PMID:19832973
-
A pattern recognition approach to transistor array parameter variance
NASA Astrophysics Data System (ADS)
da F. Costa, Luciano; Silva, Filipi N.; Comin, Cesar H.
2018-06-01
The properties of semiconductor devices, including bipolar junction transistors (BJTs), are known to vary substantially in terms of their parameters. In this work, an experimental approach, including pattern recognition concepts and methods such as principal component analysis (PCA) and linear discriminant analysis (LDA), was used to experimentally investigate the variation among BJTs belonging to integrated circuits known as transistor arrays. It was shown that a good deal of the devices variance can be captured using only two PCA axes. It was also verified that, though substantially small variation of parameters is observed for BJT from the same array, larger variation arises between BJTs from distinct arrays, suggesting the consideration of device characteristics in more critical analog designs. As a consequence of its supervised nature, LDA was able to provide a substantial separation of the BJT into clusters, corresponding to each transistor array. In addition, the LDA mapping into two dimensions revealed a clear relationship between the considered measurements. Interestingly, a specific mapping suggested by the PCA, involving the total harmonic distortion variation expressed in terms of the average voltage gain, yielded an even better separation between the transistor array clusters. All in all, this work yielded interesting results from both semiconductor engineering and pattern recognition perspectives.
-
Haraksingh, Rajini R.; Abyzov, Alexej; Gerstein, Mark; Urban, Alexander E.; Snyder, Michael
2011-01-01
Accurate and efficient genome-wide detection of copy number variants (CNVs) is essential for understanding human genomic variation, genome-wide CNV association type studies, cytogenetics research and diagnostics, and independent validation of CNVs identified from sequencing based technologies. Numerous, array-based platforms for CNV detection exist utilizing array Comparative Genome Hybridization (aCGH), Single Nucleotide Polymorphism (SNP) genotyping or both. We have quantitatively assessed the abilities of twelve leading genome-wide CNV detection platforms to accurately detect Gold Standard sets of CNVs in the genome of HapMap CEU sample NA12878, and found significant differences in performance. The technologies analyzed were the NimbleGen 4.2 M, 2.1 M and 3×720 K Whole Genome and CNV focused arrays, the Agilent 1×1 M CGH and High Resolution and 2×400 K CNV and SNP+CGH arrays, the Illumina Human Omni1Quad array and the Affymetrix SNP 6.0 array. The Gold Standards used were a 1000 Genomes Project sequencing-based set of 3997 validated CNVs and an ultra high-resolution aCGH-based set of 756 validated CNVs. We found that sensitivity, total number, size range and breakpoint resolution of CNV calls were highest for CNV focused arrays. Our results are important for cost effective CNV detection and validation for both basic and clinical applications. PMID:22140474
-
Lyle, Robert; Béna, Frédérique; Gagos, Sarantis; Gehrig, Corinne; Lopez, Gipsy; Schinzel, Albert; Lespinasse, James; Bottani, Armand; Dahoun, Sophie; Taine, Laurence; Doco-Fenzy, Martine; Cornillet-Lefèbvre, Pascale; Pelet, Anna; Lyonnet, Stanislas; Toutain, Annick; Colleaux, Laurence; Horst, Jürgen; Kennerknecht, Ingo; Wakamatsu, Nobuaki; Descartes, Maria; Franklin, Judy C; Florentin-Arar, Lina; Kitsiou, Sophia; Aït Yahya-Graison, Emilie; Costantine, Maher; Sinet, Pierre-Marie; Delabar, Jean M; Antonarakis, Stylianos E
2009-01-01
Down syndrome (DS) is one of the most frequent congenital birth defects, and the most common genetic cause of mental retardation. In most cases, DS results from the presence of an extra copy of chromosome 21. DS has a complex phenotype, and a major goal of DS research is to identify genotype–phenotype correlations. Cases of partial trisomy 21 and other HSA21 rearrangements associated with DS features could identify genomic regions associated with specific phenotypes. We have developed a BAC array spanning HSA21q and used array comparative genome hybridization (aCGH) to enable high-resolution mapping of pathogenic partial aneuploidies and unbalanced translocations involving HSA21. We report the identification and mapping of 30 pathogenic chromosomal aberrations of HSA21 consisting of 19 partial trisomies and 11 partial monosomies for different segments of HSA21. The breakpoints have been mapped to within ∼85 kb. The majority of the breakpoints (26 of 30) for the partial aneuploidies map within a 10-Mb region. Our data argue against a single DS critical region. We identify susceptibility regions for 25 phenotypes for DS and 27 regions for monosomy 21. However, most of these regions are still broad, and more cases are needed to narrow down the phenotypic maps to a reasonable number of candidate genomic elements per phenotype. PMID:19002211
-
NASA Astrophysics Data System (ADS)
Arya, Mahima; Bhatnagar, Mukul; Ranjan, Mukesh; Mukherjee, Subroto; Nath, Rabinder; Mitra, Anirban
2017-11-01
An analytical model has been developed using a modified Yamaguchi model along with the wavelength dependent plasmon line-width correction. The model has been used to calculate the near-field response of random nanoparticles on the plane surface, elongated and spherical silver nanoparticle arrays supported on ion beam produced ripple patterned templates. The calculated near-field mapping for elongated nanoparticles arrays on the ripple patterned surface shows maximum number of hot-spots with a higher near-field enhancement (NFE) as compared to the spherical nanoparticle arrays and randomly distributed nanoparticles on the plane surface. The results from the simulations show a similar trend for the NFE when compared to the far field reflection spectra. The nature of the wavelength dependent NFE is also found to be in agreement with the observed experimental results from surface enhanced Raman spectroscopy (SERS). The calculated and the measured optical response unambiguously reveal the importance of interparticle gap and ordering, where a high intensity Raman signal is obtained for ordered elongated nanoparticles arrays case as against non-ordered and the aligned configuration of spherical nanoparticles on the rippled surface.
-
2011-01-01
Background A number of molecular marker linkage maps have been developed for melon (Cucumis melo L.) over the last two decades. However, these maps were constructed using different marker sets, thus, making comparative analysis among maps difficult. In order to solve this problem, a consensus genetic map in melon was constructed using primarily highly transferable anchor markers that have broad potential use for mapping, synteny, and comparative quantitative trait loci (QTL) analysis, increasing breeding effectiveness and efficiency via marker-assisted selection (MAS). Results Under the framework of the International Cucurbit Genomics Initiative (ICuGI, http://www.icugi.org), an integrated genetic map has been constructed by merging data from eight independent mapping experiments using a genetically diverse array of parental lines. The consensus map spans 1150 cM across the 12 melon linkage groups and is composed of 1592 markers (640 SSRs, 330 SNPs, 252 AFLPs, 239 RFLPs, 89 RAPDs, 15 IMAs, 16 indels and 11 morphological traits) with a mean marker density of 0.72 cM/marker. One hundred and ninety-six of these markers (157 SSRs, 32 SNPs, 6 indels and 1 RAPD) were newly developed, mapped or provided by industry representatives as released markers, including 27 SNPs and 5 indels from genes involved in the organic acid metabolism and transport, and 58 EST-SSRs. Additionally, 85 of 822 SSR markers contributed by Syngenta Seeds were included in the integrated map. In addition, 370 QTL controlling 62 traits from 18 previously reported mapping experiments using genetically diverse parental genotypes were also integrated into the consensus map. Some QTL associated with economically important traits detected in separate studies mapped to similar genomic positions. For example, independently identified QTL controlling fruit shape were mapped on similar genomic positions, suggesting that such QTL are possibly responsible for the phenotypic variability observed for this trait in a broad array of melon germplasm. Conclusions Even though relatively unsaturated genetic maps in a diverse set of melon market types have been published, the integrated saturated map presented herein should be considered the initial reference map for melon. Most of the mapped markers contained in the reference map are polymorphic in diverse collection of germplasm, and thus are potentially transferrable to a broad array of genetic experimentation (e.g., integration of physical and genetic maps, colinearity analysis, map-based gene cloning, epistasis dissection, and marker-assisted selection). PMID:21797998
-
Diaz, Aurora; Fergany, Mohamed; Formisano, Gelsomina; Ziarsolo, Peio; Blanca, José; Fei, Zhanjun; Staub, Jack E; Zalapa, Juan E; Cuevas, Hugo E; Dace, Gayle; Oliver, Marc; Boissot, Nathalie; Dogimont, Catherine; Pitrat, Michel; Hofstede, René; van Koert, Paul; Harel-Beja, Rotem; Tzuri, Galil; Portnoy, Vitaly; Cohen, Shahar; Schaffer, Arthur; Katzir, Nurit; Xu, Yong; Zhang, Haiying; Fukino, Nobuko; Matsumoto, Satoru; Garcia-Mas, Jordi; Monforte, Antonio J
2011-07-28
A number of molecular marker linkage maps have been developed for melon (Cucumis melo L.) over the last two decades. However, these maps were constructed using different marker sets, thus, making comparative analysis among maps difficult. In order to solve this problem, a consensus genetic map in melon was constructed using primarily highly transferable anchor markers that have broad potential use for mapping, synteny, and comparative quantitative trait loci (QTL) analysis, increasing breeding effectiveness and efficiency via marker-assisted selection (MAS). Under the framework of the International Cucurbit Genomics Initiative (ICuGI, http://www.icugi.org), an integrated genetic map has been constructed by merging data from eight independent mapping experiments using a genetically diverse array of parental lines. The consensus map spans 1150 cM across the 12 melon linkage groups and is composed of 1592 markers (640 SSRs, 330 SNPs, 252 AFLPs, 239 RFLPs, 89 RAPDs, 15 IMAs, 16 indels and 11 morphological traits) with a mean marker density of 0.72 cM/marker. One hundred and ninety-six of these markers (157 SSRs, 32 SNPs, 6 indels and 1 RAPD) were newly developed, mapped or provided by industry representatives as released markers, including 27 SNPs and 5 indels from genes involved in the organic acid metabolism and transport, and 58 EST-SSRs. Additionally, 85 of 822 SSR markers contributed by Syngenta Seeds were included in the integrated map. In addition, 370 QTL controlling 62 traits from 18 previously reported mapping experiments using genetically diverse parental genotypes were also integrated into the consensus map. Some QTL associated with economically important traits detected in separate studies mapped to similar genomic positions. For example, independently identified QTL controlling fruit shape were mapped on similar genomic positions, suggesting that such QTL are possibly responsible for the phenotypic variability observed for this trait in a broad array of melon germplasm. Even though relatively unsaturated genetic maps in a diverse set of melon market types have been published, the integrated saturated map presented herein should be considered the initial reference map for melon. Most of the mapped markers contained in the reference map are polymorphic in diverse collection of germplasm, and thus are potentially transferrable to a broad array of genetic experimentation (e.g., integration of physical and genetic maps, colinearity analysis, map-based gene cloning, epistasis dissection, and marker-assisted selection).
-
Brankaer, Carmen; Ghesquière, Pol; De Smedt, Bert
2014-01-01
The ability to map between non-symbolic numerical magnitudes and Arabic numerals has been put forward as a key factor in children’s mathematical development. This mapping ability has been mainly examined indirectly by looking at children’s performance on a symbolic magnitude comparison task. The present study investigated mapping in a more direct way by using a task in which children had to choose which of two choice quantities (Arabic digits or dot arrays) matched the target quantity (dot array or Arabic digit), thereby focusing on small quantities ranging from 1 to 9. We aimed to determine the development of mapping over time and its relation to mathematics achievement. Participants were 36 first graders (M = 6 years 8 months) and 46 third graders (M = 8 years 8 months) who all completed mapping tasks, symbolic and non-symbolic magnitude comparison tasks and standardized timed and untimed tests of mathematics achievement. Findings revealed that children are able to map between non-symbolic and symbolic representations and that this mapping ability develops over time. Moreover, we found that children’s mapping ability is related to timed and untimed measures of mathematics achievement, over and above the variance accounted for by their numerical magnitude comparison skills. PMID:24699664
-
Jones, Ryan M.; O’Reilly, Meaghan A.; Hynynen, Kullervo
2013-01-01
The feasibility of transcranial passive acoustic mapping with hemispherical sparse arrays (30 cm diameter, 16 to 1372 elements, 2.48 mm receiver diameter) using CT-based aberration corrections was investigated via numerical simulations. A multi-layered ray acoustic transcranial ultrasound propagation model based on CT-derived skull morphology was developed. By incorporating skull-specific aberration corrections into a conventional passive beamforming algorithm (Norton and Won 2000 IEEE Trans. Geosci. Remote Sens. 38 1337–43), simulated acoustic source fields representing the emissions from acoustically-stimulated microbubbles were spatially mapped through three digitized human skulls, with the transskull reconstructions closely matching the water-path control images. Image quality was quantified based on main lobe beamwidths, peak sidelobe ratio, and image signal-to-noise ratio. The effects on the resulting image quality of the source’s emission frequency and location within the skull cavity, the array sparsity and element configuration, the receiver element sensitivity, and the specific skull morphology were all investigated. The system’s resolution capabilities were also estimated for various degrees of array sparsity. Passive imaging of acoustic sources through an intact skull was shown possible with sparse hemispherical imaging arrays. This technique may be useful for the monitoring and control of transcranial focused ultrasound (FUS) treatments, particularly non-thermal, cavitation-mediated applications such as FUS-induced blood-brain barrier disruption or sonothrombolysis, for which no real-time monitoring technique currently exists. PMID:23807573
-
Beyond the double banana: improved recognition of temporal lobe seizures in long-term EEG.
Rosenzweig, Ivana; Fogarasi, András; Johnsen, Birger; Alving, Jørgen; Fabricius, Martin Ejler; Scherg, Michael; Neufeld, Miri Y; Pressler, Ronit; Kjaer, Troels W; van Emde Boas, Walter; Beniczky, Sándor
2014-02-01
To investigate whether extending the 10-20 array with 6 electrodes in the inferior temporal chain and constructing computed montages increases the diagnostic value of ictal EEG activity originating in the temporal lobe. In addition, the accuracy of computer-assisted spectral source analysis was investigated. Forty EEG samples were reviewed by 7 EEG experts in various montages (longitudinal and transversal bipolar, common average, source derivation, source montage, current source density, and reference-free montages) using 2 electrode arrays (10-20 and the extended one). Spectral source analysis used source montage to calculate density spectral array, defining the earliest oscillatory onset. From this, phase maps were calculated for localization. The reference standard was the decision of the multidisciplinary epilepsy surgery team on the seizure onset zone. Clinical performance was compared with the double banana (longitudinal bipolar montage, 10-20 array). Adding the inferior temporal electrode chain, computed montages (reference free, common average, and source derivation), and voltage maps significantly increased the sensitivity. Phase maps had the highest sensitivity and identified ictal activity at earlier time-point than visual inspection. There was no significant difference concerning specificity. The findings advocate for the use of these digital EEG technology-derived analysis methods in clinical practice.
-
Ade, P. A. R.; Ahmed, Z.; Aikin, R. W.; ...
2015-09-29
Here, the Keck Array is a system of cosmic microwave background polarimeters, each similar to the Bicep2 experiment. In this paper we report results from the 2012 to 2013 observing seasons, during which the Keck Array consisted of five receivers all operating in the same (150 GHz) frequency band and observing field as Bicep2. We again find an excess of B-mode power over the lensed-ΛCDM expectation of >5σ in the range 30 < ℓ < 150 and confirm that this is not due to systematics using jackknife tests and simulations based on detailed calibration measurements. In map difference and spectralmore » difference tests these new data are shown to be consistent with Bicep2. Finally, we combine the maps from the two experiments to produce final Q and U maps which have a depth of 57 nK deg (3.4 μK arcmin) over an effective area of 400 deg 2 for an equivalent survey weight of 250,000 μK –2. The final BB band powers have noise uncertainty a factor of 2.3 times better than the previous results, and a significance of detection of excess power of >6σ.« less
-
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, P. A. R.; Ahmed, Z.; Aikin, R. W.
2015-10-01
The Keck Array is a system of cosmic microwave background polarimeters, each similar to the Bicep2 experiment. In this paper we report results from the 2012 to 2013 observing seasons, during which the Keck Array consisted of five receivers all operating in the same (150 GHz) frequency band and observing field as Bicep2. We again find an excess of B-mode power over the lensed-ΛCDM expectation of >5σ in the range 30 < ℓ < 150 and confirm that this is not due to systematics using jackknife tests and simulations based on detailed calibration measurements. In map difference and spectral differencemore » tests these new data are shown to be consistent with Bicep2. Finally, we combine the maps from the two experiments to produce final Q and U maps which have a depth of 57 nK deg (3.4 μK arcmin) over an effective area of 400 deg{sup 2} for an equivalent survey weight of 250,000 μK{sup −2}. The final BB band powers have noise uncertainty a factor of 2.3 times better than the previous results, and a significance of detection of excess power of >6σ.« less
-
ERIC Educational Resources Information Center
Hribar, Alenka; Haun, Daniel B. M.; Call, Josep
2012-01-01
We investigated 4- and 5-year-old children's mapping strategies in a spatial task. Children were required to find a picture in an array of three identical cups after observing another picture being hidden in another array of three cups. The arrays were either aligned one behind the other in two rows or placed side by side forming one line.…
-
VizieR Online Data Catalog: Second Planck Catalogue of Compact Sources (PCCS2) (Planck+, 2016)
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Argueso, F.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Beichman, C.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bohringer, H.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clemens, M.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; De Rosa, A.; de Zotti, G.; Delabrouille, J.; Desert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejse, L. A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Heraud, Y.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Leon-Tavares, J.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P. M.; Macias-Perez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschenes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Negrello, M.; Netterfield, C. B.; Norgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prezeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rubino-Martin, J. A.; Rusholme, B.; Sandri, M.; Sanghera, H. S.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Torni Koski, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Turler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Walter, B.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.
2017-01-01
The Low Frequency Instrument (LFI) DPC produced the 30, 44, and 70GHz maps after the completion of eight full surveys (spanning the period 12 August 2009 to 3 August 2013). In addition, special LFI maps covering the period 1 April 2013 to 30 June 2013 were produced in order to compare the Planck flux-density scales with those of the Very Large Array and the Australia Telescope Compact Array, by performing simultaneous observations of a sample of sources over that period. The High Frequency Instrument (HFI) DPC produced the 100, 143, 217, 353, 545, and 857GHz maps after five full surveys (2009 August 12 to 2012 January 11). (16 data files).
-
Livingstone, Donald; Stack, Conrad; Mustiga, Guiliana M.; Rodezno, Dayana C.; Suarez, Carmen; Amores, Freddy; Feltus, Frank A.; Mockaitis, Keithanne; Cornejo, Omar E.; Motamayor, Juan C.
2017-01-01
Cacao (Theobroma cacao L.) is an important cash crop in tropical regions around the world and has a rich agronomic history in South America. As a key component in the cosmetic and confectionary industries, millions of people worldwide use products made from cacao, ranging from shampoo to chocolate. An Illumina Infinity II array was created using 13,530 SNPs identified within a small diversity panel of cacao. Of these SNPs, 12,643 derive from variation within annotated cacao genes. The genotypes of 3,072 trees were obtained, including two mapping populations from Ecuador. High-density linkage maps for these two populations were generated and compared to the cacao genome assembly. Phenotypic data from these populations were combined with the linkage maps to identify the QTLs for yield and disease resistance. PMID:29259608
-
From a meso- to micro-scale connectome: array tomography and mGRASP
Rah, Jong-Cheol; Feng, Linqing; Druckmann, Shaul; Lee, Hojin; Kim, Jinhyun
2015-01-01
Mapping mammalian synaptic connectivity has long been an important goal of neuroscience because knowing how neurons and brain areas are connected underpins an understanding of brain function. Meeting this goal requires advanced techniques with single synapse resolution and large-scale capacity, especially at multiple scales tethering the meso- and micro-scale connectome. Among several advanced LM-based connectome technologies, Array Tomography (AT) and mammalian GFP-Reconstitution Across Synaptic Partners (mGRASP) can provide relatively high-throughput mapping synaptic connectivity at multiple scales. AT- and mGRASP-assisted circuit mapping (ATing and mGRASPing), combined with techniques such as retrograde virus, brain clearing techniques, and activity indicators will help unlock the secrets of complex neural circuits. Here, we discuss these useful new tools to enable mapping of brain circuits at multiple scales, some functional implications of spatial synaptic distribution, and future challenges and directions of these endeavors. PMID:26089781
-
NASA Astrophysics Data System (ADS)
DeBoer, David R.; Welch, William J.; Dreher, John; Tarter, Jill; Blitz, Leo; Davis, Michael; Fleming, Matt; Bock, Douglas; Bower, Geoffrey; Lugten, John; Girmay-Keleta, G.; D'Addario, Larry R.; Harp, Gerry R.; Ackermann, Rob; Weinreb, Sander; Engargiola, Greg; Thornton, Doug; Wadefalk, Niklas
2004-10-01
The Allen Telescope Array, originally called the One Hectare Telescope (1hT) [1] will be a large array radio telescope whose novel characteristics will be a wide field of view (3.5 deg-GHz HPBW), continuous frequency coverage of 0.5 - 11 GHz, four dual-linear polarization output bands of 100 MHz each, four beams in each band, two 100 MHz spectral correlators for two of the bands, and hardware for RFI mitigation built in. Its scientific motivation is for deep SETI searches and, at the same time, a variety of other radio astronomy projects, including transient (e.g. pulsar) studies, HI mapping of the Milky Way and nearby galaxies, Zeeman studies of the galactic magnetic field in a number of transitions, mapping of long chain molecules in molecular clouds, mapping of the decrement in the cosmic background radiation toward galaxy clusters, and observation of HI absorption toward quasars at redshifts up to z=2. The array is planned for 350 6.1-meter dishes giving a physical collecting area of about 10,000 square meters. The large number of components reduces the price with economies of scale. The front end receiver is a single cryogenically cooled MIMIC Low Noise Amplifier covering the whole band. The feed is a wide-band log periodic feed of novel design, and the reflector system is an offset Gregorian for minimum sidelobes and spillover. All preliminary and critical design reviews have been completed. Three complete antennas with feeds and receivers are under test, and an array of 33 antennas is under construction at the Hat Creek Radio Observatory for the end of 2004. The present plan is to have a total of about 200 antennas completed by the summer of 2006 and the balance of the array finished before the end of the decade.
-
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harpool, K; De La Fuente Herman, T; Ahmad, S
Purpose: To investigate quantitatively the accuracy of dose distributions for the Ir-192 high-dose-rate (HDR) brachytherapy source calculated by the Brachytherapy-Planning system (BPS) and measured using a multiple-array-diode-detector in a heterogeneous medium. Methods: A two-dimensional diode-array-detector system (MapCheck2) was scanned with a catheter and the CT-images were loaded into the Varian-Brachytherapy-Planning which uses TG-43-formalism for dose calculation. Treatment plans were calculated for different combinations of one dwell-position and varying irradiation times and different-dwell positions and fixed irradiation time with the source placed 12mm from the diode-array plane. The calculated dose distributions were compared to the measured doses with MapCheck2 delivered bymore » an Ir-192-source from a Nucletron-Microselectron-V2-remote-after-loader. The linearity of MapCheck2 was tested for a range of dwell-times (2–600 seconds). The angular effect was tested with 30 seconds irradiation delivered to the central-diode and then moving the source away in increments of 10mm. Results: Large differences were found between calculated and measured dose distributions. These differences are mainly due to absence of heterogeneity in the dose calculation and diode-artifacts in the measurements. The dose differences between measured and calculated due to heterogeneity ranged from 5%–12% depending on the position of the source relative to the diodes in MapCheck2 and different heterogeneities in the beam path. The linearity test of the diode-detector showed 3.98%, 2.61%, and 2.27% over-response at short irradiation times of 2, 5, and 10 seconds, respectively, and within 2% for 20 to 600 seconds (p-value=0.05) which depends strongly on MapCheck2 noise. The angular dependency was more pronounced at acute angles ranging up to 34% at 5.7 degrees. Conclusion: Large deviations between measured and calculated dose distributions for HDR-brachytherapy with Ir-192 may be improved when considering medium heterogeneity and dose-artifact of the diodes. This study demonstrates that multiple-array-diode-detectors provide practical and accurate dosimeter to verify doses delivered from the brachytherapy Ir-192-source.« less
-
Ordered mapping of 3 alphoid DNA subsets on human chromosome 22
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonacci, R.; Baldini, A.; Archidiacono, N.
1994-09-01
Alpha satellite DNA consists of tandemly repeated monomers of 171 bp clustered in the centromeric region of primate chromosomes. Sequence divergence between subsets located in different human chromosomes is usually high enough to ensure chromosome-specific hybridization. Alphoid probes specific for almost every human chromosome have been reported. A single chromosome can carry different subsets of alphoid DNA and some alphoid subsets can be shared by different chromosomes. We report the physical order of three alphoid DNA subsets on human chromosome 22 determined by a combination of low and high resolution cytological mapping methods. Results visually demonstrate the presence of threemore » distinct alphoid DNA domains at the centromeric region of chromosome 22. We have measured the interphase distances between the three probes in three-color FISH experiments. Statistical analysis of the results indicated the order of the subsets. Two color experiments on prometaphase chromosomes established the order of the three domains relative to the arms of chromosome 22 and confirmed the results obtained using interphase mapping. This demonstrates the applicability of interphase mapping for alpha satellite DNA orderering. However, in our experiments, interphase mapping did not provide any information about the relationship between extremities of the repeat arrays. This information was gained from extended chromatin hybridization. The extremities of two of the repeat arrays were seen to be almost overlapping whereas the third repeat array was clearly separated from the other two. Our data show the value of extended chromatin hybridization as a complement of other cytological techniques for high resolution mapping of repetitive DNA sequences.« less
-
Measurement of Phased Array Point Spread Functions for Use with Beamforming
NASA Technical Reports Server (NTRS)
Bahr, Chris; Zawodny, Nikolas S.; Bertolucci, Brandon; Woolwine, Kyle; Liu, Fei; Li, Juan; Sheplak, Mark; Cattafesta, Louis
2011-01-01
Microphone arrays can be used to localize and estimate the strengths of acoustic sources present in a region of interest. However, the array measurement of a region, or beam map, is not an accurate representation of the acoustic field in that region. The true acoustic field is convolved with the array s sampling response, or point spread function (PSF). Many techniques exist to remove the PSF's effect on the beam map via deconvolution. Currently these methods use a theoretical estimate of the array point spread function and perhaps account for installation offsets via determination of the microphone locations. This methodology fails to account for any reflections or scattering in the measurement setup and still requires both microphone magnitude and phase calibration, as well as a separate shear layer correction in an open-jet facility. The research presented seeks to investigate direct measurement of the array's PSF using a non-intrusive acoustic point source generated by a pulsed laser system. Experimental PSFs of the array are computed for different conditions to evaluate features such as shift-invariance, shear layers and model presence. Results show that experimental measurements trend with theory with regard to source offset. The source shows expected behavior due to shear layer refraction when observed in a flow, and application of a measured PSF to NACA 0012 aeroacoustic trailing-edge noise data shows a promising alternative to a classic shear layer correction method.
-
Digital Mapping of Buried Pipelines with a Dual Array System
DOT National Transportation Integrated Search
2003-06-06
The objective of this research is to develop a non-invasive system for detecting, mapping, and inspecting ferrous and plastic pipelines in place using technology that combines and interprets measurements from ground penetrating radar and electromagne...
-
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harpool, K; De La Fuente Herman, T; Ahmad, S
Purpose: To evaluate the performance of a two-dimensional (2D) array-diode- detector for geometric and dosimetric quality assurance (QA) tests of high-dose-rate (HDR) brachytherapy with an Ir-192-source. Methods: A phantom setup was designed that encapsulated a two-dimensional (2D) array-diode-detector (MapCheck2) and a catheter for the HDR brachytherapy Ir-192 source. This setup was used to perform both geometric and dosimetric quality assurance for the HDR-Ir192 source. The geometric tests included: (a) measurement of the position of the source and (b) spacing between different dwell positions. The dosimteric tests include: (a) linearity of output with time, (b) end effect and (c) relative dosemore » verification. The 2D-dose distribution measured with MapCheck2 was used to perform the previous tests. The results of MapCheck2 were compared with the corresponding quality assurance testes performed with Gafchromic-film and well-ionization-chamber. Results: The position of the source and the spacing between different dwell-positions were reproducible within 1 mm accuracy by measuring the position of maximal dose using MapCheck2 in contrast to the film which showed a blurred image of the dwell positions due to limited film sensitivity to irradiation. The linearity of the dose with dwell times measured from MapCheck2 was superior to the linearity measured with ionization chamber due to higher signal-to-noise ratio of the diode readings. MapCheck2 provided more accurate measurement of the end effect with uncertainty < 1.5% in comparison with the ionization chamber uncertainty of 3%. Although MapCheck2 did not provide absolute calibration dosimeter for the activity of the source, it provided accurate tool for relative dose verification in HDR-brachytherapy. Conclusion: The 2D-array-diode-detector provides a practical, compact and accurate tool to perform quality assurance for HDR-brachytherapy with an Ir-192 source. The diodes in MapCheck2 have high radiation sensitivity and linearity that is superior to Gafchromic-films and ionization chamber used for geometric and dosimetric QA in HDR-brachytherapy, respectively.« less
-
Visualizing the Logistic Map with a Microcontroller
ERIC Educational Resources Information Center
Serna, Juan D.; Joshi, Amitabh
2012-01-01
The logistic map is one of the simplest nonlinear dynamical systems that clearly exhibits the route to chaos. In this paper, we explore the evolution of the logistic map using an open-source microcontroller connected to an array of light-emitting diodes (LEDs). We divide the one-dimensional domain interval [0,1] into ten equal parts, an associate…
-
NASA Astrophysics Data System (ADS)
Jones, Jeremy; Schaefer, Gail; ten Brummelaar, Theo; Gies, Douglas; Farrington, Christopher
2018-01-01
We are building a searchable database for the CHARA Array data archive. The Array consists of six telescopes linked together as an interferometer, providing sub-milliarcsecond resolution in the optical and near-infrared. The Array enables a variety of scientific studies, including measuring stellar angular diameters, imaging stellar shapes and surface features, mapping the orbits of close binary companions, and resolving circumstellar environments. This database is one component of an NSF/MSIP funded program to provide open access to the CHARA Array to the broader astronomical community. This archive goes back to 2004 and covers all the beam combiners on the Array. We discuss the current status of and future plans for the public database, and give directions on how to access it.
-
USDA-ARS?s Scientific Manuscript database
High-density single nucleotide polymorphism (SNP) genotyping chips are a powerful tool for studying genomic patterns of diversity, inferring ancestral relationships among individuals in populations and studying marker-trait associations in mapping experiments. We developed a genotyping array includ...
-
Diversity arrays technology (DArT) markers in apple for genetic linkage maps.
Schouten, Henk J; van de Weg, W Eric; Carling, Jason; Khan, Sabaz Ali; McKay, Steven J; van Kaauwen, Martijn P W; Wittenberg, Alexander H J; Koehorst-van Putten, Herma J J; Noordijk, Yolanda; Gao, Zhongshan; Rees, D Jasper G; Van Dyk, Maria M; Jaccoud, Damian; Considine, Michael J; Kilian, Andrzej
2012-03-01
Diversity Arrays Technology (DArT) provides a high-throughput whole-genome genotyping platform for the detection and scoring of hundreds of polymorphic loci without any need for prior sequence information. The work presented here details the development and performance of a DArT genotyping array for apple. This is the first paper on DArT in horticultural trees. Genetic mapping of DArT markers in two mapping populations and their integration with other marker types showed that DArT is a powerful high-throughput method for obtaining accurate and reproducible marker data, despite the low cost per data point. This method appears to be suitable for aligning the genetic maps of different segregating populations. The standard complexity reduction method, based on the methylation-sensitive PstI restriction enzyme, resulted in a high frequency of markers, although there was 52-54% redundancy due to the repeated sampling of highly similar sequences. Sequencing of the marker clones showed that they are significantly enriched for low-copy, genic regions. The genome coverage using the standard method was 55-76%. For improved genome coverage, an alternative complexity reduction method was examined, which resulted in less redundancy and additional segregating markers. The DArT markers proved to be of high quality and were very suitable for genetic mapping at low cost for the apple, providing moderate genome coverage. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11032-011-9579-5) contains supplementary material, which is available to authorized users.
-
NASA Astrophysics Data System (ADS)
Susanti, Hesty; Suprijanto, Kurniadi, Deddy
2018-02-01
Needle visibility in ultrasound-guided technique has been a crucial factor for successful interventional procedure. It has been affected by several factors, i.e. puncture depth, insertion angle, needle size and material, and imaging technology. The influences of those factors made the needle not always well visible. 20 G needles of 15 cm length (Nano Line, facet) were inserted into water bath with variation of insertion angles and depths. Ultrasound measurements are performed with BK-Medical Flex Focus 800 using 12 MHz linear array and 5 MHz curved array in Ultrasound Guided Regional Anesthesia mode. We propose 3 criteria to evaluate needle visibility, i.e. maximum intensity, mean intensity, and the ratio between minimum and maximum intensity. Those criteria were then depicted into representative maps for practical purpose. The best criterion candidate for representing the needle visibility was criterion 1. Generally, the appearance pattern of the needle from this criterion was relatively consistent, i.e. for linear array, it was relatively poor visibility in the middle part of the shaft, while for curved array, it is relatively better visible toward the end of the shaft. With further investigations, for example with the use of tissue-mimicking phantom, the representative maps can be built for future practical purpose, i.e. as a tool for clinicians to ensure better needle placement in clinical application. It will help them to avoid the "dead" area where the needle is not well visible, so it can reduce the risks of vital structures traversing and the number of required insertion, resulting in less patient morbidity. Those simple criteria and representative maps can be utilized to evaluate general visibility patterns of the needle in vast range of needle types and sizes in different insertion media. This information is also important as an early investigation for future research of needle visibility improvement, i.e. the development of beamforming strategies and ultrasound enhanced (echogenic) needle.
-
NASA Astrophysics Data System (ADS)
Schulte-Pelkum, V.; Mahan, K. H.
2015-12-01
We investigate seismic and geological features related to the tectonic evolution of the crust on a continent-wide scale. We present continent-wide features using Transportable Array data receiver function analysis, followed by regional comparisons to tie to ground truth from xenolith studies and structural mapping. We stress that the Transportable Array, at ~75 km station spacing, only offers a collection of point measurements of the crust due to the lack of crossing raypaths. 7.x layers (lower crust with high seismic velocities) can be created during crustal growth processes such as magmatic or mechanical underplating and during crustal modification such as large-scale melting. We present receiver function results and a compilation of previous regional studies using refraction data or receiver functions from regional dense networks. 7.x layers appear predominantly in parts of the northern U.S. Cordillera and across the southeastern U.S. We compare the seismic results with a xenolith study in Montana that details incremental growth of the 7.x layer from the Archean on. Hydration of a granulitic lower crust can destroy the 7.x layer and has the potential to cause epirogenic uplift. We interpret the pattern seen across the Transportable Array in the light of this hypothesis. Ductile deformation of the deep crust generates shear fabrics that can be detected seismically. Receiver functions detect shear zones via contrasts in foliation to the surrounding material. We map foliation strikes and depths in the crust across the Transportable Array using azimuthal analysis of receiver functions. Strikes from receiver functions typically align with surface fault traces in tectonically active regions, with depths of the converters exceeding the brittle zone. We discuss continent-wide strikes mapped with receiver functions. Contrasting orientations of Proterozoic shear zones and pervasive surrounding foliations in basement exposures in Colorado are reflected in seismic results from the Transportable Array and CREST experiment.
-
Yabe, Shiori; Hara, Takashi; Ueno, Mariko; Enoki, Hiroyuki; Kimura, Tatsuro; Nishimura, Satoru; Yasui, Yasuo; Ohsawa, Ryo; Iwata, Hiroyoshi
2014-01-01
For genetic studies and genomics-assisted breeding, particularly of minor crops, a genotyping system that does not require a priori genomic information is preferable. Here, we demonstrated the potential of a novel array-based genotyping system for the rapid construction of high-density linkage map and quantitative trait loci (QTL) mapping. By using the system, we successfully constructed an accurate, high-density linkage map for common buckwheat (Fagopyrum esculentum Moench); the map was composed of 756 loci and included 8,884 markers. The number of linkage groups converged to eight, which is the basic number of chromosomes in common buckwheat. The sizes of the linkage groups of the P1 and P2 maps were 773.8 and 800.4 cM, respectively. The average interval between adjacent loci was 2.13 cM. The linkage map constructed here will be useful for the analysis of other common buckwheat populations. We also performed QTL mapping for main stem length and detected four QTL. It took 37 days to process 178 samples from DNA extraction to genotyping, indicating the system enables genotyping of genome-wide markers for a few hundred buckwheat plants before the plants mature. The novel system will be useful for genomics-assisted breeding in minor crops without a priori genomic information. PMID:25914583
-
Yabe, Shiori; Hara, Takashi; Ueno, Mariko; Enoki, Hiroyuki; Kimura, Tatsuro; Nishimura, Satoru; Yasui, Yasuo; Ohsawa, Ryo; Iwata, Hiroyoshi
2014-12-01
For genetic studies and genomics-assisted breeding, particularly of minor crops, a genotyping system that does not require a priori genomic information is preferable. Here, we demonstrated the potential of a novel array-based genotyping system for the rapid construction of high-density linkage map and quantitative trait loci (QTL) mapping. By using the system, we successfully constructed an accurate, high-density linkage map for common buckwheat (Fagopyrum esculentum Moench); the map was composed of 756 loci and included 8,884 markers. The number of linkage groups converged to eight, which is the basic number of chromosomes in common buckwheat. The sizes of the linkage groups of the P1 and P2 maps were 773.8 and 800.4 cM, respectively. The average interval between adjacent loci was 2.13 cM. The linkage map constructed here will be useful for the analysis of other common buckwheat populations. We also performed QTL mapping for main stem length and detected four QTL. It took 37 days to process 178 samples from DNA extraction to genotyping, indicating the system enables genotyping of genome-wide markers for a few hundred buckwheat plants before the plants mature. The novel system will be useful for genomics-assisted breeding in minor crops without a priori genomic information.
-
Spatiotemporal norepinephrine mapping using a high-density CMOS microelectrode array.
Wydallis, John B; Feeny, Rachel M; Wilson, William; Kern, Tucker; Chen, Tom; Tobet, Stuart; Reynolds, Melissa M; Henry, Charles S
2015-10-21
A high-density amperometric electrode array containing 8192 individually addressable platinum working electrodes with an integrated potentiostat fabricated using Complementary Metal Oxide Semiconductor (CMOS) processes is reported. The array was designed to enable electrochemical imaging of chemical gradients with high spatiotemporal resolution. Electrodes are arranged over a 2 mm × 2 mm surface area into 64 subarrays consisting of 128 individual Pt working electrodes as well as Pt pseudo-reference and auxiliary electrodes. Amperometric measurements of norepinephrine in tissue culture media were used to demonstrate the ability of the array to measure concentration gradients in complex media. Poly(dimethylsiloxane) microfluidics were incorporated to control the chemical concentrations in time and space, and the electrochemical response at each electrode was monitored to generate electrochemical heat maps, demonstrating the array's imaging capabilities. A temporal resolution of 10 ms can be achieved by simultaneously monitoring a single subarray of 128 electrodes. The entire 2 mm × 2 mm area can be electrochemically imaged in 64 seconds by cycling through all subarrays at a rate of 1 Hz per subarray. Monitoring diffusional transport of norepinephrine is used to demonstrate the spatiotemporal resolution capabilities of the system.
-
Digital Mapping of Buried Pipelines with a Dual Array System
DOT National Transportation Integrated Search
2005-03-01
The project carried out under this agreement, which was informally called the "Dual Array Project" (the term we will use in this report), was part of the research efforts at the Office of Pipeline Safety at U.S. DOT, and was one of seven contracts aw...
-
USDA-ARS?s Scientific Manuscript database
Fragaria iinumae is recognized as an ancestor of the octoploid strawberry species, including the cultivated strawberry, Fragaria ×ananassa. Here we report the construction of the first high density linkage map for F. iinumae. The map is based on two high-throughput techniques of single nucleotide p...
-
Lee Karol Cerveny; Kelly Biedenweg; Rebecca McLain
2017-01-01
Landscape values mapping has been widely employed as a form of public participation GIS (PPGIS) in natural resource planning and decision-making to capture the complex array of values, uses, and interactions between people and landscapes. A landscape values typology has been commonly employed in the mapping of social and environmental values in a variety of management...
-
A Near-Infrared and Thermal Imager for Mapping Titan's Surface Features
NASA Technical Reports Server (NTRS)
Aslam, S.; Hewagma, T.; Jennings, D. E.; Nixon, C.
2012-01-01
Approximately 10% of the solar insolation reaches the surface of Titan through atmospheric spectral windows. We will discuss a filter based imaging system for a future Titan orbiter that will exploit these windows mapping surface features, cloud regions, polar storms. In the near-infrared (NIR), two filters (1.28 micrometer and 1.6 micrometer), strategically positioned between CH1 absorption bands, and InSb linear array pixels will explore the solar reflected radiation. We propose to map the mid, infrared (MIR) region with two filters: 9.76 micrometer and 5.88-to-6.06 micrometers with MCT linear arrays. The first will map MIR thermal emission variations due to surface albedo differences in the atmospheric window between gas phase CH3D and C2H4 opacity sources. The latter spans the crossover spectral region where observed radiation transitions from being dominated by thermal emission to solar reflected light component. The passively cooled linear arrays will be incorporated into the focal plane of a light-weight thin film stretched membrane 10 cm telescope. A rad-hard ASIC together with an FPGA will be used for detector pixel readout and detector linear array selection depending on if the field-of-view (FOV) is looking at the day- or night-side of Titan. The instantaneous FOV corresponds to 3.1, 15.6, and 31.2 mrad for the 1, 5, and 10 micrometer channels, respectively. For a 1500 km orbit, a 5 micrometer channel pixel represents a spatial resolution of 91 m, with a FOV that spans 23 kilometers, and Titan is mapped in a push-broom manner as determined by the orbital path. The system mass and power requirements are estimated to be 6 kg and 5 W, respectively. The package is proposed for a polar orbiter with a lifetime matching two Saturn seasons.
-
An All Silicon Feedhorn-Coupled Focal Plane for Cosmic Microwave Background Polarimetry
NASA Technical Reports Server (NTRS)
Hubmayr, J.; Appel, J. W.; Austermann, J. E.; Beall, J. A.; Becker, D.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Cho, H. M.;

2011-01-01
Upcoming experiments aim to produce high fidelity polarization maps of the cosmic microwave background. To achieve the required sensitivity, we are developing monolithic, feedhorn-coupled transition edge sensor polarimeter arrays operating at 150 GHz. We describe this focal plane architecture and the current status of this technology, focusing on single-pixel polarimeters being deployed on the Atacama B-mode Search (ABS) and an 84-pixel demonstration feedhorn array backed by four 10-pixel polarimeter arrays. The feedhorn array exhibits symmetric beams, cross-polar response less than -23 dB and excellent uniformity across the array. Monolithic polarimeter arrays, including arrays of silicon feedhorns, will be used in the Atacama Cosmology Telescope Polarimeter (ACTPol) and the South Pole Telescope Polarimeter (SPTpol) and have been proposed for upcoming balloon-borne instruments.
-
2001-04-21
KENNEDY SPACE CENTER, FLA. -- Workers in the Spacecraft Assembly and Encapsulation Facility 2 place an antenna on the Microwave Anisotropy Probe (MAP). Several other milestones must be completed while MAP is at SAEF-2, including solar array installation, solar array deployment and illumination testing, a spacecraft comprehensive performance test, fueling with hydrazine propellant and a spin balance test. MAP will then be ready for integration with the solid propellant Payload Assist Module upper stage booster. MAP is scheduled for launch June 30 from Cape Canaveral Air Force Station on a Delta II rocket into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The MAP instrument consists of a set of passively cooled microwave radiometers with 1.4x 1.6-meter diameter primary reflectors to provide the desired angular resolution. MAP measures small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University
-
2001-04-23
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility 2, the Microwave Anisotropy Probe (MAP) undergoes testing and checkout. Several milestones must be completed while MAP is at SAEF-2, including antenna and solar array installation, solar array deployment and illumination testing, a spacecraft comprehensive performance test, fueling with hydrazine propellant and a spin balance test. MAP will then be ready for integration with the solid propellant Payload Assist Module upper stage booster. MAP is scheduled for launch June 30 from Cape Canaveral Air Force Station on a Delta II rocket into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The MAP instrument consists of a set of passively cooled microwave radiometers with 1.4x 1.6-meter diameter primary reflectors to provide the desired angular resolution. MAP measures small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University
-
2001-04-21
KENNEDY SPACE CENTER, FLA. -- The Microwave Anisotropy Probe (MAP) is worked on in the Spacecraft Assembly and Encapsulation Facility 2. Several milestones must be completed while MAP is at SAEF-2, including antenna installations, solar array installation, solar array deployment and illumination testing, a spacecraft comprehensive performance test, fueling with hydrazine propellant and a spin balance test. MAP will then be ready for integration with the solid propellant Payload Assist Module upper stage booster. MAP is scheduled for launch June 30 from Cape Canaveral Air Force Station on a Delta II rocket into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The MAP instrument consists of a set of passively cooled microwave radiometers with 1.4x 1.6-meter diameter primary reflectors to provide the desired angular resolution. MAP measures small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University
-
An Update on Phased Array Results Obtained on the GE Counter-Rotating Open Rotor Model
NASA Technical Reports Server (NTRS)
Podboy, Gary; Horvath, Csaba; Envia, Edmane
2013-01-01
Beamform maps have been generated from 1) simulated data generated by the LINPROP code and 2) actual experimental phased array data obtained on the GE Counter-rotating open rotor model. The beamform maps show that many of the tones in the experimental data come from their corresponding Mach radius. If the phased array points to the Mach radius associated with a tone then it is likely that the tone is a result of the loading and thickness noise on the blades. In this case, the phased array correctly points to where the noise is coming from and indicates the axial location of the loudest source in the image but not necessarily the correct vertical location. If the phased array does not point to the Mach radius associated with a tone then some mechanism other than loading and thickness noise may control the amplitude of the tone. In this case, the phased array may or may not point to the actual source. If the source is not rotating it is likely that the phased array points to the source. If the source is rotating it is likely that the phased array indicates the axial location of the loudest source but not necessarily the correct vertical location. These results indicate that you have to be careful in how you interpret phased array data obtained on an open rotor since they may show the tones coming from a location other than the source location. With a subsonic tip speed open rotor the tones can come form locations outboard of the blade tips. This has implications regarding noise shielding.
-
First results of the Colombia Lightning Mapping Array
NASA Astrophysics Data System (ADS)
López, Jesus; Montanyà, Joan; van der Velde, Oscar; Romero, David; Fabró, Ferran; Taborda, John; Aranguren, Daniel; Torres, Horacio
2016-04-01
In April 2015 the 3D Lightning Mapping Array (COLMA) network was installed on Santa Marta area (north of Colombia). The COLMA maps VHF radio emissions of lightning leaders in three dimensions by the time-of-arrival technique (Rison et al., 1999). This array has six sensors with base lines between 5 km to 20 km. The COLMA is the first VHF 3D network operating in the tropics and it has been installed in the frame of ASIM (Atmosphere-Space Interactions Monitor) ESA's mission in order to investigate the electrical characteristics of tropical thunderstorms favorable for the production of Terrestrial Gamma ray Flashes (TGF). In this paper we present COLMA data of several storms. We discuss lightning activity, lightning leader altitudes and thunderstorm charge structures compared to data form our ELMA (Ebro Lightning Mapping Array) at the north-east coast of Spain. The data confirm what we expected, lightning leaders can propagate at higher altitudes compared to mid latitude thunderstorms because the higher vertical development of tropical thunderstorms. A simple inspection of a ten minute period of the 16th of November of 2015 storm shows a tripolar electric charge structure. In that case, the midlevel negative charge region was located between 7 to 9 km. The structure presented a lower positive charge below the midlevel negative and centred at 6.5 km and an upper positive charge region extending from 9 km to slightly more than 15 km. This vertical extension of the upper positive charge where negative leaders evolve is significantly larger compared to the storms at the ELMA area in Spain. COLMA has shown frequent activity of negative leaders reaching altitudes of more than 15 km.
-
NASA Astrophysics Data System (ADS)
Doll, William E.; Bell, David T.; Gamey, T. Jeffrey; Beard, Les P.; Sheehan, Jacob R.; Norton, Jeannemarie
2010-04-01
Over the past decade, notable progress has been made in the performance of airborne geophysical systems for mapping and detection of unexploded ordnance in terrestrial and shallow marine environments. For magnetometer systems, the most significant improvements include development of denser magnetometer arrays and vertical gradiometer configurations. In prototype analyses and recent Environmental Security Technology Certification Program (ESTCP) assessments using new production systems the greatest sensitivity has been achieved with a vertical gradiometer configuration, despite model-based survey design results which suggest that dense total-field arrays would be superior. As effective as magnetometer systems have proven to be at many sites, they are inadequate at sites where basalts and other ferrous geologic formations or soils produce anomalies that approach or exceed those of target ordnance items. Additionally, magnetometer systems are ineffective where detection of non-ferrous ordnance items is of primary concern. Recent completion of the Battelle TEM-8 airborne time-domain electromagnetic system represents the culmination of nearly nine years of assessment and development of airborne electromagnetic systems for UXO mapping and detection. A recent ESTCP demonstration of this system in New Mexico showed that it was able to detect 99% of blind-seeded ordnance items, 81mm and larger, and that it could be used to map in detail a bombing target on a basalt flow where previous airborne magnetometer surveys had failed. The probability of detection for the TEM-8 in the blind-seeded study area was better than that reported for a dense-array total-field magnetometer demonstration of the same blind-seeded site, and the TEM-8 system successfully detected these items with less than half as many anomaly picks as the dense-array total-field magnetometer system.
-
Spherical beamforming for spherical array with impedance surface
NASA Astrophysics Data System (ADS)
Tontiwattanakul, Khemapat
2018-01-01
Spherical microphone array beamforming has been a popular research topic for recent years. Due to their isotropic beam in three dimensional spaces as well as a certain frequency range, the arrays are widely used in many applications such as sound field recording, acoustic beamforming, and noise source localisation. The body of a spherical array is usually considered perfectly rigid. A sound field captured by the sensors on spherical array can be decomposed into a series of spherical harmonics. In noise source localisation, the amplitude density of sound sources is estimated and illustrated by mean of colour maps. In this work, a rigid spherical array covered by fibrous materials is studied via numerical simulation and the performance of the spherical beamforming is discussed.
-
Genome-Wide Structural Variation Detection by Genome Mapping on Nanochannel Arrays.
Mak, Angel C Y; Lai, Yvonne Y Y; Lam, Ernest T; Kwok, Tsz-Piu; Leung, Alden K Y; Poon, Annie; Mostovoy, Yulia; Hastie, Alex R; Stedman, William; Anantharaman, Thomas; Andrews, Warren; Zhou, Xiang; Pang, Andy W C; Dai, Heng; Chu, Catherine; Lin, Chin; Wu, Jacob J K; Li, Catherine M L; Li, Jing-Woei; Yim, Aldrin K Y; Chan, Saki; Sibert, Justin; Džakula, Željko; Cao, Han; Yiu, Siu-Ming; Chan, Ting-Fung; Yip, Kevin Y; Xiao, Ming; Kwok, Pui-Yan
2016-01-01
Comprehensive whole-genome structural variation detection is challenging with current approaches. With diploid cells as DNA source and the presence of numerous repetitive elements, short-read DNA sequencing cannot be used to detect structural variation efficiently. In this report, we show that genome mapping with long, fluorescently labeled DNA molecules imaged on nanochannel arrays can be used for whole-genome structural variation detection without sequencing. While whole-genome haplotyping is not achieved, local phasing (across >150-kb regions) is routine, as molecules from the parental chromosomes are examined separately. In one experiment, we generated genome maps from a trio from the 1000 Genomes Project, compared the maps against that derived from the reference human genome, and identified structural variations that are >5 kb in size. We find that these individuals have many more structural variants than those published, including some with the potential of disrupting gene function or regulation. Copyright © 2016 by the Genetics Society of America.
-
Multiplexed single-mode wavelength-to-time mapping of multimode light
Chandrasekharan, Harikumar K; Izdebski, Frauke; Gris-Sánchez, Itandehui; Krstajić, Nikola; Walker, Richard; Bridle, Helen L.; Dalgarno, Paul A.; MacPherson, William N.; Henderson, Robert K.; Birks, Tim A.; Thomson, Robert R.
2017-01-01
When an optical pulse propagates along an optical fibre, different wavelengths travel at different group velocities. As a result, wavelength information is converted into arrival-time information, a process known as wavelength-to-time mapping. This phenomenon is most cleanly observed using a single-mode fibre transmission line, where spatial mode dispersion is not present, but the use of such fibres restricts possible applications. Here we demonstrate that photonic lanterns based on tapered single-mode multicore fibres provide an efficient way to couple multimode light to an array of single-photon avalanche detectors, each of which has its own time-to-digital converter for time-correlated single-photon counting. Exploiting this capability, we demonstrate the multiplexed single-mode wavelength-to-time mapping of multimode light using a multicore fibre photonic lantern with 121 single-mode cores, coupled to 121 detectors on a 32 × 32 detector array. This work paves the way to efficient multimode wavelength-to-time mapping systems with the spectral performance of single-mode systems. PMID:28120822
-
- Save Title to My Profile
- Set E-Mail Alert
< Previous Issue | Next Issue > Volume 241, Issue15 (December 2004)
Articles in the Current Issue:
Cover Picture
Quasi-localized low-frequency vibrational modes of disordered solids: Study by single-molecule spectroscopy
NASA Astrophysics Data System (ADS)
Naumov, A. V.; Vainer, Yu. G.; Bauer, M.; Kador, L.
2004-12-01
Editor's Choice of this issue of physica status solidi (b) is the article [1] by Andrei V. Naumov et al. This paper is Part II (Part I see [2]) of a study on elementary excitations in glasses, presented at the 11th International Conference on Phonon Scattering in Condensed Matter, St. Petersburg, 25-30 July 2004. For his outstanding talk, Naumov received the new physica status solidi Young Researcher Award which was bestowed for the first time at this conference.The cover picture is a sketch of a glass with a single impurity molecule and one hypothetical quasi-localized vibrational mode. The broadening and shift of the chromophore spectral line are caused by the interaction with this mode.Andrei V. Naumov is senior scientific researcher and deputy head of the Molecular Spectroscopy Department of the Institute of Spectroscopy, Troitsk. His main research interests are experimental and theoretical studies of low-temperature dynamics of amorphous solids (glasses, polymers etc.) via high resolution laser selective spectroscopy techniques.The second Editor's Choice is an article by E. A. Eliseev and M. D. Glinchuk [3]. Eugene A. Eliseev is scientific researcher at the Frantsevich Institute for Problems of Materials Science of the Ukrainian National Academy of Sciences, Kiev. His research areas are the theory of size and correlation effects in ferroelectric materials as well as modelling of disordered ferroelectrics properties.
A ddRAD Based Linkage Map of the Cultivated Strawberry, Fragaria xananassa
Davik, Jahn; Sargent, Daniel James; Brurberg, May Bente; Lien, Sigbjørn; Kent, Matthew; Alsheikh, Muath
2015-01-01
The cultivated strawberry (Fragaria ×ananassa Duch.) is an allo-octoploid considered difficult to disentangle genetically due to its four relatively similar sub-genomic chromosome sets. This has been alleviated by the recent release of the strawberry IStraw90 whole genome genotyping array. However, array resolution relies on the genotypes used in the array construction and may be of limited general use. SNP detection based on reduced genomic sequencing approaches has the potential of providing better coverage in cases where the studied genotypes are only distantly related from the SNP array’s construction foundation. Here we have used double digest restriction-associated DNA sequencing (ddRAD) to identify SNPs in a 145 seedling F1 hybrid population raised from the cross between the cultivars Sonata (♀) and Babette (♂). A linkage map containing 907 markers which spanned 1,581.5 cM across 31 linkage groups representing the 28 chromosomes of the species. Comparing the physical span of the SNP markers with the F. vesca genome sequence, the linkage groups resolved covered 79% of the estimated 830 Mb of the F. ×ananassa genome. Here, we have developed the first linkage map for F. ×ananassa using ddRAD and show that this technique and other related techniques are useful tools for linkage map development and downstream genetic studies in the octoploid strawberry. PMID:26398886
Howarth, KD; Blood, KA; Ng, BL; Beavis, JC; Chua, Y; Cooke, SL; Raby, S; Ichimura, K; Collins, VP; Carter, NP; Edwards, PAW
2008-01-01
Chromosome translocations in the common epithelial cancers are abundant, yet little is known about them. They have been thought to be almost all unbalanced and therefore dismissed as mostly mediating tumour suppressor loss. We present a comprehensive analysis by array painting of the chromosome translocations of breast cancer cell lines HCC1806, HCC1187 and ZR-75-30. In array painting, chromosomes are isolated by flow cytometry, amplified and hybridized to DNA microarrays. A total of 200 breakpoints were identified and all were mapped to 1Mb resolution on BAC arrays, then 40 selected breakpoints, including all balanced breakpoints, were further mapped on tiling-path BAC arrays or to around 2kb resolution using oligonucleotide arrays. Many more of the translocations were balanced at 1Mb resolution than expected, either reciprocal (eight in total) or balanced for at least one participating chromosome (19 paired breakpoints). Secondly, many of the breakpoints were at genes that are plausible targets of oncogenic translocation, including balanced breaks at CTCF, EP300/p300, and FOXP4. Two gene fusions were demonstrated, TAX1BP1-AHCY and RIF1-PKD1L1. Our results support the idea that chromosome rearrangements may play an important role in common epithelial cancers such as breast cancer. PMID:18084325
Full-Sky Maps of the VHF Radio Sky with the Owens Valley Radio Observatory Long Wavelength Array
NASA Astrophysics Data System (ADS)
Eastwood, Michael W.; Hallinan, Gregg
2018-05-01
21-cm cosmology is a powerful new probe of the intergalactic medium at redshifts 20 >~ z >~ 6 corresponding to the Cosmic Dawn and Epoch of Reionization. Current observations of the highly-redshifted 21-cm transition are limited by the dynamic range they can achieve against foreground sources of low-frequency (<200 MHz) of radio emission. We used the Owens Valley Radio Observatory Long Wavelength Array (OVRO-LWA) to generate a series of new modern high-fidelity sky maps that capture emission on angular scales ranging from tens of degrees to ~15 arcmin, and frequencies between 36 and 73 MHz. These sky maps were generated from the application of Tikhonov-regularized m-mode analysis imaging, which is a new interferometric imaging technique that is uniquely suited for low-frequency, wide-field, drift-scanning interferometers.
Diversity Arrays Technology (DArT) platform for genotyping and mapping in carrot (Daucus carota L.)
USDA-ARS?s Scientific Manuscript database
Carrot is one of the most important root vegetable crops grown worldwide on more than one million hectares. Its progenitor, wild Daucus carota, is a weed commonly occurring across continents in the temperate climatic zone. Diversity Array Technology (DArT) is a microarray-based molecular marker syst...
Laser electro-optic system for rapid three-dimensional /3-D/ topographic mapping of surfaces
NASA Technical Reports Server (NTRS)
Altschuler, M. D.; Altschuler, B. R.; Taboada, J.
1981-01-01
It is pointed out that the generic utility of a robot in a factory/assembly environment could be substantially enhanced by providing a vision capability to the robot. A standard videocamera for robot vision provides a two-dimensional image which contains insufficient information for a detailed three-dimensional reconstruction of an object. Approaches which supply the additional information needed for the three-dimensional mapping of objects with complex surface shapes are briefly considered and a description is presented of a laser-based system which can provide three-dimensional vision to a robot. The system consists of a laser beam array generator, an optical image recorder, and software for controlling the required operations. The projection of a laser beam array onto a surface produces a dot pattern image which is viewed from one or more suitable perspectives. Attention is given to the mathematical method employed, the space coding technique, the approaches used for obtaining the transformation parameters, the optics for laser beam array generation, the hardware for beam array coding, and aspects of image acquisition.
Advanced ACTPol Cryogenic Detector Arrays and Readout
NASA Astrophysics Data System (ADS)
Henderson, S. W.; Allison, R.; Austermann, J.; Baildon, T.; Battaglia, N.; Beall, J. A.; Becker, D.; De Bernardis, F.; Bond, J. R.; Calabrese, E.; Choi, S. K.; Coughlin, K. P.; Crowley, K. T.; Datta, R.; Devlin, M. J.; Duff, S. M.; Dunkley, J.; Dünner, R.; van Engelen, A.; Gallardo, P. A.; Grace, E.; Hasselfield, M.; Hills, F.; Hilton, G. C.; Hincks, A. D.; Hloẑek, R.; Ho, S. P.; Hubmayr, J.; Huffenberger, K.; Hughes, J. P.; Irwin, K. D.; Koopman, B. J.; Kosowsky, A. B.; Li, D.; McMahon, J.; Munson, C.; Nati, F.; Newburgh, L.; Niemack, M. D.; Niraula, P.; Page, L. A.; Pappas, C. G.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Sehgal, N.; Sherwin, B. D.; Sievers, J. L.; Simon, S. M.; Spergel, D. N.; Staggs, S. T.; Stevens, J. R.; Thornton, R.; Van Lanen, J.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.
2016-08-01
Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope, adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28-230 GHz). Its maps of primary and secondary cosmic microwave background anisotropies—imaged in intensity and polarization at few arcminute-scale resolution—will enable precision cosmological constraints and also a wide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the Advanced ACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new multiplexing readout architecture which uses superconducting quantum interference devices and time division to achieve a 64-row multiplexing factor. Here we present the status and scientific goals of the Advanced ACTPol instrument, emphasizing the design and implementation of the Advanced ACTPol cryogenic detector arrays.
Advanced ACTPol Cryogenic Detector Arrays and Readout
NASA Technical Reports Server (NTRS)
Henderson, S.W.; Allison, R.; Austermann, J.; Baildon, T.; Battaglia, N.; Beall, J. A.; Becker, D.; De Bernardis, F.; Bond, J. R.; Wollack, E. J.
2016-01-01
Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope, adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28-230 GHz). Its maps of primary and secondary cosmic microwave background anisotropies-imaged in intensity and polarization at few arcminute-scale resolution-will enable precision cosmological constraints and also awide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the AdvancedACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new multiplexing readout architecture which uses superconducting quantum interference devices and time division to achieve a 64-row multiplexing factor. Here we present the status and scientific goals of the Advanced ACTPol instrument, emphasizing the design and implementation of the AdvancedACTPol cryogenic detector arrays.
-
Deconvolution Methods and Systems for the Mapping of Acoustic Sources from Phased Microphone Arrays
NASA Technical Reports Server (NTRS)
Humphreys, Jr., William M. (Inventor); Brooks, Thomas F. (Inventor)
2012-01-01
Mapping coherent/incoherent acoustic sources as determined from a phased microphone array. A linear configuration of equations and unknowns are formed by accounting for a reciprocal influence of one or more cross-beamforming characteristics thereof at varying grid locations among the plurality of grid locations. An equation derived from the linear configuration of equations and unknowns can then be iteratively determined. The equation can be attained by the solution requirement of a constraint equivalent to the physical assumption that the coherent sources have only in phase coherence. The size of the problem may then be reduced using zoning methods. An optimized noise source distribution is then generated over an identified aeroacoustic source region associated with a phased microphone array (microphones arranged in an optimized grid pattern including a plurality of grid locations) in order to compile an output presentation thereof, thereby removing beamforming characteristics from the resulting output presentation.
-
Deconvolution methods and systems for the mapping of acoustic sources from phased microphone arrays
NASA Technical Reports Server (NTRS)
Brooks, Thomas F. (Inventor); Humphreys, Jr., William M. (Inventor)
2010-01-01
A method and system for mapping acoustic sources determined from a phased microphone array. A plurality of microphones are arranged in an optimized grid pattern including a plurality of grid locations thereof. A linear configuration of N equations and N unknowns can be formed by accounting for a reciprocal influence of one or more beamforming characteristics thereof at varying grid locations among the plurality of grid locations. A full-rank equation derived from the linear configuration of N equations and N unknowns can then be iteratively determined. A full-rank can be attained by the solution requirement of the positivity constraint equivalent to the physical assumption of statically independent noise sources at each N location. An optimized noise source distribution is then generated over an identified aeroacoustic source region associated with the phased microphone array in order to compile an output presentation thereof, thereby removing the beamforming characteristics from the resulting output presentation.
-
Application of a Mycobacterium tuberculosis protein array for antigen discovery in Johne's disease
USDA-ARS?s Scientific Manuscript database
Mycobacterium avium subspecies paratuberculosis (Map), the bacterium that causes Johne’s disease, is a major health concern in farmed ruminant livestock including sheep and cattle. Diagnosis of Map infections, particularly of subclinical animals remains challenging, and we lack effective vaccines f...
-
Camp Blanding Lightning Mapping Array
NASA Technical Reports Server (NTRS)
Blakeslee,Richard; Christian, Hugh; Bailey, Jeffrey; Hall, John; Uman, Martin; Jordan, Doug; Krehbiel, Paul; Rison, William; Edens, Harald
2011-01-01
A seven station, short base-line Lightning Mapping Array was installed at the Camp Blanding International Center for Lightning Research and Testing (ICLRT) during April 2011. This network will support science investigations of Terrestrial Gamma-Ray Flashes (TGFs) and lightning initiation using rocket triggered lightning at the ICLRT. The network operations and data processing will be carried out through a close collaboration between several organizations, including the NASA Marshall Space Flight Center, University of Alabama in Huntsville, University of Florida, and New Mexico Tech. The deployment was sponsored by the Defense Advanced Research Projects Agency (DARPA). The network does not have real-time data dissemination. Description, status and plans will be discussed.
-
NASA Technical Reports Server (NTRS)
Goldfine, Neil; Grundy, David; Zilberstein, Vladimir; Kinchen, David G.; McCool, Alex (Technical Monitor)
2002-01-01
Friction Stir Welds (FSW) of Al 2195-T8 and Al 2219-T8, provided by Lockheed Martin Michoud Operations, were inspected for lack-of-penetration (LOP) defects using a custom designed MWM-Array, a multi-element eddy-current sensor. MWM (registered trademark) electrical conductivity mapping demonstrated high sensitivity to LOP as small as 0.75 mm (0.03 in.), as confirmed by metallographic data that characterized the extent of LOP defects. High sensitivity and high spatial resolution was achieved via a 37-element custom designed MWM-Array allowing LOP detection using the normalized longitudinal component of the MWM measured conductivity. This permitted both LOP detection and correlation of MWM conductivity features with the LOP defect size, as changes in conductivity were apparently associated with metallurgical features within the near-surface layer of the LOP defect zone. MWM conductivity mapping reveals information similar to macro-etching as the MWM-Array is sensitive to small changes in conductivity due to changes in microstructure associated with material thermal processing, in this case welding. The electrical conductivity measured on the root side of FSWs varies across the weld due to microstructural differences introduced by the FSW process, as well as those caused by planar flaws. Weld metal, i.e., dynamically recrystallized zone (DXZ), thermomechanically affected zone (TMZ), heat-affected zone (HAZ), and parent metal (PM) are all evident in the conductivity maps. While prior efforts had met with limited success for NDE (Nondestructive Evaluation) of dissimilar alloy, Al2219 to Al2195 FSW, the new custom designed multi-element MWM-Array achieved detection of all LOP defects even in dissimilar metal welds.
-
Euskirchen, Ghia M.; Rozowsky, Joel S.; Wei, Chia-Lin; Lee, Wah Heng; Zhang, Zhengdong D.; Hartman, Stephen; Emanuelsson, Olof; Stolc, Viktor; Weissman, Sherman; Gerstein, Mark B.; Ruan, Yijun; Snyder, Michael
2007-01-01
Recent progress in mapping transcription factor (TF) binding regions can largely be credited to chromatin immunoprecipitation (ChIP) technologies. We compared strategies for mapping TF binding regions in mammalian cells using two different ChIP schemes: ChIP with DNA microarray analysis (ChIP-chip) and ChIP with DNA sequencing (ChIP-PET). We first investigated parameters central to obtaining robust ChIP-chip data sets by analyzing STAT1 targets in the ENCODE regions of the human genome, and then compared ChIP-chip to ChIP-PET. We devised methods for scoring and comparing results among various tiling arrays and examined parameters such as DNA microarray format, oligonucleotide length, hybridization conditions, and the use of competitor Cot-1 DNA. The best performance was achieved with high-density oligonucleotide arrays, oligonucleotides ≥50 bases (b), the presence of competitor Cot-1 DNA and hybridizations conducted in microfluidics stations. When target identification was evaluated as a function of array number, 80%–86% of targets were identified with three or more arrays. Comparison of ChIP-chip with ChIP-PET revealed strong agreement for the highest ranked targets with less overlap for the low ranked targets. With advantages and disadvantages unique to each approach, we found that ChIP-chip and ChIP-PET are frequently complementary in their relative abilities to detect STAT1 targets for the lower ranked targets; each method detected validated targets that were missed by the other method. The most comprehensive list of STAT1 binding regions is obtained by merging results from ChIP-chip and ChIP-sequencing. Overall, this study provides information for robust identification, scoring, and validation of TF targets using ChIP-based technologies. PMID:17568005
-
Roorkiwal, Manish; Jain, Ankit; Kale, Sandip M; Doddamani, Dadakhalandar; Chitikineni, Annapurna; Thudi, Mahendar; Varshney, Rajeev K
2018-04-01
To accelerate genomics research and molecular breeding applications in chickpea, a high-throughput SNP genotyping platform 'Axiom ® CicerSNP Array' has been designed, developed and validated. Screening of whole-genome resequencing data from 429 chickpea lines identified 4.9 million SNPs, from which a subset of 70 463 high-quality nonredundant SNPs was selected using different stringent filter criteria. This was further narrowed down to 61 174 SNPs based on p-convert score ≥0.3, of which 50 590 SNPs could be tiled on array. Among these tiled SNPs, a total of 11 245 SNPs (22.23%) were from the coding regions of 3673 different genes. The developed Axiom ® CicerSNP Array was used for genotyping two recombinant inbred line populations, namely ICCRIL03 (ICC 4958 × ICC 1882) and ICCRIL04 (ICC 283 × ICC 8261). Genotyping data reflected high success and polymorphic rate, with 15 140 (29.93%; ICCRIL03) and 20 018 (39.57%; ICCRIL04) polymorphic SNPs. High-density genetic maps comprising 13 679 SNPs spanning 1033.67 cM and 7769 SNPs spanning 1076.35 cM were developed for ICCRIL03 and ICCRIL04 populations, respectively. QTL analysis using multilocation, multiseason phenotyping data on these RILs identified 70 (ICCRIL03) and 120 (ICCRIL04) main-effect QTLs on genetic map. Higher precision and potential of this array is expected to advance chickpea genetics and breeding applications. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
-
NASA Astrophysics Data System (ADS)
Johnson, J. B.; Marcillo, O. E.; Arechiga, R. O.; Johnson, R.; Edens, H. E.; Marshall, H.; Havens, S.; Waite, G. P.
2010-12-01
Volcanoes, lightning, and mass wasting events generate substantial infrasonic energy that propagates for long distances through the atmosphere with generally low intrinsic attenuation. Although such sources are often studied with regional infrasound arrays that provide important records of their occurrence, position, and relative magnitudes these signals recorded at tens to hundreds of kilometers are often significantly affected by propagation effects. Complex atmospheric structure, due to heterogeneous winds and temperatures, and intervening topography can be responsible for multi-pathing, signal attenuation, and focusing or, alternatively, information loss (i.e., a shadow zone). At far offsets, geometric spreading diminishes signal amplitude requiring low noise recording sites and high fidelity microphones. In contrast recorded excess pressures at local distances are much higher in amplitude and waveforms are more representative of source phenomena. We report on recent studies of volcanoes, thunder, and avalanches made with networks and arrays of infrasound sensors deployed local (within a few km) to the source. At Kilauea Volcano (Hawaii) we deployed a network of ~50 infrasound sensitive sensors (flat from 50 s to 50 Hz) to track the coherence of persistent infrasonic tremor signals in the near-field (out to a few tens of kilometers). During periods of high winds (> 5-10 m/s) we found significant atmospheric influence for signals recorded at stations only a few kilometers from the source. Such observations have encouraged us to conduct a range of volcano, thunder, and snow avalanche studies with networks of small infrasound arrays (~30 m aperture) deployed close to the source region. We present results from local microphone deployments (12 sensors) at Santiaguito Volcano (Guatemala) where we are able to precisely (~10 m resolution) locate acoustic sources from explosions and rock falls. We also present results from our thunder mapping acoustic arrays (15 sensors) in the Magdalena Mountains of New Mexico capable of mapping lightning channels more than 10 km in extent whose positions are corroborated by the radio wave detecting lightning mapping array. We also discuss the recent implementation of a network of snow avalanche detection arrays (12 sensors) in Idaho that are used to monitor and track and map infrasound produced by moving sources. We contend that local infrasound deployment is analogous to local seismic monitoring in that it enables precision localization and interpretation of source phenomena.
-
Three dimensional stress vector sensor array and method therefor
Pfeifer, Kent Bryant; Rudnick, Thomas Jeffery
2005-07-05
A sensor array is configured based upon capacitive sensor techniques to measure stresses at various positions in a sheet simultaneously and allow a stress map to be obtained in near real-time. The device consists of single capacitive elements applied in a one or two dimensional array to measure the distribution of stresses across a mat surface in real-time as a function of position for manufacturing and test applications. In-plane and normal stresses in rolling bodies such as tires may thus be monitored.
-
Jammed-array wideband sawtooth filter.
Tan, Zhongwei; Wang, Chao; Goda, Keisuke; Malik, Omer; Jalali, Bahram
2011-11-21
We present an all-optical passive low-cost spectral filter that exhibits a high-resolution periodic sawtooth spectral pattern without the need for active optoelectronic components. The principle of the filter is the partial masking of a phased array of virtual light sources with multiply jammed diffraction orders. We utilize the filter's periodic linear map between frequency and intensity to demonstrate fast sensitive interrogation of fiber Bragg grating sensor arrays and ultrahigh-frequency electrical sawtooth waveform generation. © 2011 Optical Society of America
-
Application of electrical resistivity tomography techniques for mapping man-made sinkholes
NASA Astrophysics Data System (ADS)
Rey, J.; Martínez, J.; Hidalgo, C.; Dueñas, J.
2012-04-01
The suitability of the geophysical prospecting by electrical resistivity tomography to detect and map man-made subsurface cavities and related sinkholes has been studied in the Linares abandoned mining district (Spain). We have selected for this study four mined sectors constituted of different lithologies: granite and phyllites of Paleozoic age, and Triassic shales and sandstones. In three of these sectors, detail underground topographic surveys were carried out to chart the position and dimensions of the mining voids (galleries and chamber), in order to analyze the resolution of this methodology to characterize these cavities by using different electrode arrays. The results are variable, depending on the depth and diameter of the void, the selected electrode array, the spacing between electrodes, geological complexity and data density. These results also indicate that when the cavity is empty, an anomaly with a steep gradient and high resistivity values is registered, because the air that fills the mining void is dielectric, while when the cavities are filled with fine grain sediments, frequently saturated in water, the electrical resistance is lower. In relation with the three different multi-electrode arrays tested, the Wenner-Schlumberger array has resulted to offer the maximum resolution in all these cases, with lower and more stable values for the RMS than the other arrays. Therefore, this electrode array has been applied in the fourth studied sector, a former mine near the city centre of Linares, in an area of urban expansion in which there are problems of subsidence. Two sets of four electrical tomography profiles have been carried out, perpendicular to each other, and which have allowed reaching depths of research between 30-35 m. This net-array allowed the identification of two shallow anomalies of low resistivity values, interpreted as old mining galleries filled with fine material saturated in water. It also allows detecting two fractures, correlated in the profiles and which can be mapped to more than 25 m in depth. As showed by this case study, electrical resistivity tomography can be a suitable tool in sub-surface cavities detection and man-made sinkhole investigations.
-
NASA Astrophysics Data System (ADS)
Mohammadi, Akram; Inadama, Naoko; Yoshida, Eiji; Nishikido, Fumihiko; Shimizu, Keiji; Yamaya, Taiga
2017-09-01
We have developed a four-layer depth of interaction (DOI) detector with single-side photon readout, in which segmented crystals with the patterned reflector insertion are separately identified by the Anger-type calculation. Optical conditions between segmented crystals, where there is no reflector, affect crystal identification ability. Our objective of this work was to improve crystal identification performance of the four-layer DOI detector that uses crystals segmented with a recently developed laser processing technique to include laser processed boundaries (LPBs). The detector consisted of 2 × 2 × 4mm3 LYSO crystals and a 4 × 4 array multianode photomultiplier tube (PMT) with 4.5 mm anode pitch. The 2D position map of the detector was calculated by the Anger calculation method. At first, influence of optical condition on crystal identification was evaluated for a one-layer detector consisting of a 2 × 2 crystal array with three different optical conditions between the crystals: crystals stuck together using room temperature vulcanized (RTV) rubber, crystals with air coupling and segmented crystals with LPBs. The crystal array with LPBs gave the shortest distance between crystal responses in the 2D position map compared with the crystal array coupled with RTV rubber or air due to the great amount of cross-talk between segmented crystals with LPBs. These results were used to find optical conditions offering the optimum distance between crystal responses in the 2D position map for the four-layer DOI detector. Crystal identification performance for the four-layer DOI detector consisting of an 8 × 8 array of crystals segmented with LPBs was examined and it was not acceptable for the crystals in the first layer. The crystal identification was improved for the first layer by changing the optical conditions between all 2 × 2 crystal arrays of the first layer to RTV coupling. More improvement was observed by combining different optical conditions between all crystals of the first layer and some crystals of the second and the third layers of the segmented array.
-
Development of Map Construction Skills in Childhood
ERIC Educational Resources Information Center
Hirsch, Pamela L.; Sandberg, Elisabeth Hollister
2013-01-01
Two studies examined children's map construction skills when drawing demands were removed from the task and scenes were highly simplified. Study 1 compared the performance of first graders and third graders on their ability to preserve configuration during transformation of pictured arrays from eye-level to aerial views. For children with…
-
A high-density intraspecific SNP linkage map of pigeonpea (Cajanas cajan L. Millsp.)
Mandal, Paritra; Bhutani, Shefali; Dutta, Sutapa; Kumawat, Giriraj; Singh, Bikram Pratap; Chaudhary, A. K.; Yadav, Rekha; Gaikwad, K.; Sevanthi, Amitha Mithra; Datta, Subhojit; Raje, Ranjeet S.; Sharma, Tilak R.; Singh, Nagendra Kumar
2017-01-01
Pigeonpea (Cajanus cajan (L.) Millsp.) is a major food legume cultivated in semi-arid tropical regions including the Indian subcontinent, Africa, and Southeast Asia. It is an important source of protein, minerals, and vitamins for nearly 20% of the world population. Due to high carbon sequestration and drought tolerance, pigeonpea is an important crop for the development of climate resilient agriculture and nutritional security. However, pigeonpea productivity has remained low for decades because of limited genetic and genomic resources, and sparse utilization of landraces and wild pigeonpea germplasm. Here, we present a dense intraspecific linkage map of pigeonpea comprising 932 markers that span a total adjusted map length of 1,411.83 cM. The consensus map is based on three different linkage maps that incorporate a large number of single nucleotide polymorphism (SNP) markers derived from next generation sequencing data, using Illumina GoldenGate bead arrays, and genotyping with restriction site associated DNA (RAD) sequencing. The genotyping-by-sequencing enhanced the marker density but was met with limited success due to lack of common markers across the genotypes of mapping population. The integrated map has 547 bead-array SNP, 319 RAD-SNP, and 65 simple sequence repeat (SSR) marker loci. We also show here correspondence between our linkage map and published genome pseudomolecules of pigeonpea. The availability of a high-density linkage map will help improve the anchoring of the pigeonpea genome to its chromosomes and the mapping of genes and quantitative trait loci associated with useful agronomic traits. PMID:28654689
-
Tsai, Hsin Y; Robledo, Diego; Lowe, Natalie R; Bekaert, Michael; Taggart, John B; Bron, James E; Houston, Ross D
2016-07-07
High density linkage maps are useful tools for fine-scale mapping of quantitative trait loci, and characterization of the recombination landscape of a species' genome. Genomic resources for Atlantic salmon (Salmo salar) include a well-assembled reference genome, and high density single nucleotide polymorphism (SNP) arrays. Our aim was to create a high density linkage map, and to align it with the reference genome assembly. Over 96,000 SNPs were mapped and ordered on the 29 salmon linkage groups using a pedigreed population comprising 622 fish from 60 nuclear families, all genotyped with the 'ssalar01' high density SNP array. The number of SNPs per group showed a high positive correlation with physical chromosome length (r = 0.95). While the order of markers on the genetic and physical maps was generally consistent, areas of discrepancy were identified. Approximately 6.5% of the previously unmapped reference genome sequence was assigned to chromosomes using the linkage map. Male recombination rate was lower than females across the vast majority of the genome, but with a notable peak in subtelomeric regions. Finally, using RNA-Seq data to annotate the reference genome, the mapped SNPs were categorized according to their predicted function, including annotation of ∼2500 putative nonsynonymous variants. The highest density SNP linkage map for any salmonid species has been created, annotated, and integrated with the Atlantic salmon reference genome assembly. This map highlights the marked heterochiasmy of salmon, and provides a useful resource for salmonid genetics and genomics research. Copyright © 2016 Tsai et al.
-
Ferrand, Guillaume; Luong, Michel; Cloos, Martijn A; Amadon, Alexis; Wackernagel, Hans
2014-08-01
Transmit arrays have been developed to mitigate the RF field inhomogeneity commonly observed in high field magnetic resonance imaging (MRI), typically above 3T. To this end, the knowledge of the RF complex-valued B1 transmit-sensitivities of each independent radiating element has become essential. This paper details a method to speed up a currently available B1-calibration method. The principle relies on slice undersampling, slice and channel interleaving and kriging, an interpolation method developed in geostatistics and applicable in many domains. It has been demonstrated that, under certain conditions, kriging gives the best estimator of a field in a region of interest. The resulting accelerated sequence allows mapping a complete set of eight volumetric field maps of the human head in about 1 min. For validation, the accuracy of kriging is first evaluated against a well-known interpolation technique based on Fourier transform as well as to a B1-maps interpolation method presented in the literature. This analysis is carried out on simulated and decimated experimental B1 maps. Finally, the accelerated sequence is compared to the standard sequence on a phantom and a volunteer. The new sequence provides B1 maps three times faster with a loss of accuracy limited potentially to about 5%.
-
USDA-ARS?s Scientific Manuscript database
Carrot is one of the most economically important vegetables worldwide, however, genetic and genomic resources supporting carrot breeding remain limited. We developed a Diversity Arrays Technology (DArT) platform for wild and cultivated carrot and used it to investigate genetic diversity and to devel...
-
Earthquake Hazard Class Mapping by Parcel in Las Vegas Valley
NASA Astrophysics Data System (ADS)
Pancha, A.; Pullammanappallil, S.; Louie, J. N.; Hellmer, W. K.
2011-12-01
Clark County, Nevada completed the very first effort in the United States to map earthquake hazard class systematically through an entire urban area. The map is used in development and disaster response planning, in addition to its direct use for building code implementation and enforcement. The County contracted with the Nevada System of Higher Education to classify about 500 square miles including urban Las Vegas Valley, and exurban areas considered for future development. The Parcel Map includes over 10,000 surface-wave array measurements accomplished over three years using Optim's SeisOpt° ReMi measurement and processing techniques adapted for large scale data. These array measurements classify individual parcels on the NEHRP hazard scale. Parallel "blind" tests were conducted at 93 randomly selected sites. The rms difference between the Vs30 values yielded by the blind data and analyses and the Parcel Map analyses is 4.92%. Only six of the blind-test sites showed a difference with a magnitude greater than 10%. We describe a "C+" Class for sites with Class B average velocities but soft surface soil. The measured Parcel Map shows a clearly definable C+ to C boundary on the west side of the Valley. The C to D boundary is much more complex. Using the parcel map in computing shaking in the Valley for scenario earthquakes is crucial for obtaining realistic predictions of ground motions.
-
2001-04-21
KENNEDY SPACE CENTER, FLA. -- Workers in the Spacecraft Assembly and Encapsulation Facility 2 stand by while the Microwave Anisotropy Probe (MAP) is lifted to place it on a workstand. Several milestones must be completed while MAP is at SAEF-2, including antenna installations, solar array installation, solar array deployment and illumination testing, a spacecraft comprehensive performance test, fueling with hydrazine propellant and a spin balance test. MAP will then be ready for integration with the solid propellant Payload Assist Module upper stage booster. MAP is scheduled for launch June 30 from Cape Canaveral Air Force Station on a Delta II rocket into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The MAP instrument consists of a set of passively cooled microwave radiometers with 1.4x 1.6-meter diameter primary reflectors to provide the desired angular resolution. MAP measures small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University
-
NASA Technical Reports Server (NTRS)
Parker, Bradford H.; Stahle, C. M.; Barthelmy, S. D.; Parsons, A. M.; Tueller, J.; VanSant, J. T.; Munoz, B. F.; Snodgrass, S. J.; Mullinix, R. E.
1999-01-01
One of the critical challenges for large area cadmium zinc telluride (CdZnTe) detector arrays is obtaining material capable of uniform imaging and spectroscopic response. Two complementary nondestructive techniques for characterizing bulk CdZnTe have been developed to identify material with a uniform response. The first technique, infrared transmission imaging, allows for rapid visualization of bulk defects. The second technique, x-ray spectral mapping, provides a map of the material spectroscopic response when it is configured as a planar detector. The two techniques have been used to develop a correlation between bulk defect type and detector performance. The correlation allows for the use of infrared imaging to rapidly develop wafer mining maps. The mining of material free of detrimental defects has the potential to dramatically increase the yield and quality of large area CdZnTe detector arrays.
- Recommend to Your Librarian
- Save Title to My Profile
- Set E-Mail Alert
-
Staňková, Helena; Hastie, Alex R; Chan, Saki; Vrána, Jan; Tulpová, Zuzana; Kubaláková, Marie; Visendi, Paul; Hayashi, Satomi; Luo, Mingcheng; Batley, Jacqueline; Edwards, David; Doležel, Jaroslav; Šimková, Hana
2016-07-01
The assembly of a reference genome sequence of bread wheat is challenging due to its specific features such as the genome size of 17 Gbp, polyploid nature and prevalence of repetitive sequences. BAC-by-BAC sequencing based on chromosomal physical maps, adopted by the International Wheat Genome Sequencing Consortium as the key strategy, reduces problems caused by the genome complexity and polyploidy, but the repeat content still hampers the sequence assembly. Availability of a high-resolution genomic map to guide sequence scaffolding and validate physical map and sequence assemblies would be highly beneficial to obtaining an accurate and complete genome sequence. Here, we chose the short arm of chromosome 7D (7DS) as a model to demonstrate for the first time that it is possible to couple chromosome flow sorting with genome mapping in nanochannel arrays and create a de novo genome map of a wheat chromosome. We constructed a high-resolution chromosome map composed of 371 contigs with an N50 of 1.3 Mb. Long DNA molecules achieved by our approach facilitated chromosome-scale analysis of repetitive sequences and revealed a ~800-kb array of tandem repeats intractable to current DNA sequencing technologies. Anchoring 7DS sequence assemblies obtained by clone-by-clone sequencing to the 7DS genome map provided a valuable tool to improve the BAC-contig physical map and validate sequence assembly on a chromosome-arm scale. Our results indicate that creating genome maps for the whole wheat genome in a chromosome-by-chromosome manner is feasible and that they will be an affordable tool to support the production of improved pseudomolecules. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
-
Tumino, Giorgio; Voorrips, Roeland E; Rizza, Fulvia; Badeck, Franz W; Morcia, Caterina; Ghizzoni, Roberta; Germeier, Christoph U; Paulo, Maria-João; Terzi, Valeria; Smulders, Marinus J M
2016-09-01
Infinium SNP data analysed as continuous intensity ratios enabled associating genotypic and phenotypic data from heterogeneous oat samples, showing that association mapping for frost tolerance is a feasible option. Oat is sensitive to freezing temperatures, which restricts the cultivation of fall-sown or winter oats to regions with milder winters. Fall-sown oats have a longer growth cycle, mature earlier, and have a higher productivity than spring-sown oats, therefore improving frost tolerance is an important goal in oat breeding. Our aim was to test the effectiveness of a Genome-Wide Association Study (GWAS) for mapping QTLs related to frost tolerance, using an approach that tolerates continuously distributed signals from SNPs in bulked samples from heterogeneous accessions. A collection of 138 European oat accessions, including landraces, old and modern varieties from 27 countries was genotyped using the Infinium 6K SNP array. The SNP data were analyzed as continuous intensity ratios, rather than converting them into discrete values by genotype calling. PCA and Ward's clustering of genetic similarities revealed the presence of two main groups of accessions, which roughly corresponded to Continental Europe and Mediterranean/Atlantic Europe, although a total of eight subgroups can be distinguished. The accessions were phenotyped for frost tolerance under controlled conditions by measuring fluorescence quantum yield of photosystem II after a freezing stress. GWAS were performed by a linear mixed model approach, comparing different corrections for population structure. All models detected three robust QTLs, two of which co-mapped with QTLs identified earlier in bi-parental mapping populations. The approach used in the present work shows that SNP array data of heterogeneous hexaploid oat samples can be successfully used to determine genetic similarities and to map associations to quantitative phenotypic traits.
-
2001-03-13
In the Spacecraft Assembly and Encapsulation Facility (SAEF 2), workers stand back as the panels of the solar array on the 2001 Mars Odyssey Orbiter open. The array will undergo illumination testing. Scheduled for launch April 7, 2001, the orbiter contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers
-
2001-03-13
A worker in the Spacecraft Assembly and Encapsulation Facility (SAEF 2) checks the underside of the extended solar array panels on the 2001 Mars Odyssey Orbiter. The array will undergo illumination testing. Scheduled for launch April 7, 2001, the orbiter contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers
-
On the VHF Source Retrieval Errors Associated with Lightning Mapping Arrays (LMAs)
NASA Technical Reports Server (NTRS)
Koshak, W.
2016-01-01
This presentation examines in detail the standard retrieval method: that of retrieving the (x, y, z, t) parameters of a lightning VHF point source from multiple ground-based Lightning Mapping Array (LMA) time-of-arrival (TOA) observations. The solution is found by minimizing a chi-squared function via the Levenberg-Marquardt algorithm. The associated forward problem is examined to illustrate the importance of signal-to-noise ratio (SNR). Monte Carlo simulated retrievals are used to assess the benefits of changing various LMA network properties. A generalized retrieval method is also introduced that, in addition to TOA data, uses LMA electric field amplitude measurements to retrieve a transient VHF dipole moment source.
-
VizieR Online Data Catalog: L1544 1.2 and 2mm emission maps (Chacon-Tanarro+, 2017)
NASA Astrophysics Data System (ADS)
Chacon-Tanarro, A.; Caselli, P.; Bizzocchi, L.; Pineda, J. E.; Harju, J.; Spaans, M.; Desert, F.-X.
2017-07-01
Millimeter observations of the pre-stellar core L1544 are presented. These observations were carried out at the IRAM 30m telescope, located at Pico Veleta (Spain) using the New IRAM KID Array (NIKA). The project number is 151-13. A region of 3°x3° was mapped using the Lissajous pattern at 1.2 and 2mm. The main beam widths are 12.5-arcsec at 1.2mm and 18.5 arcsec at 2mm. The KID array has a field-of-view is 1.8' at 1.2mm and 2.0' at 2mm. (2 data files).
-
ERIC Educational Resources Information Center
Gottfredson, Linda S.
1986-01-01
United States Employment Service data on the cognitive and noncognitive aptitude requirements of different occupations were used to create an occupational classification--the Occupational Aptitude Patterns (OAP) Map. Thirteen job clusters are arrayed according to major differences in overall intellectual difficulty level and in functional focus…
-
Nested association mapping for dissecting complex traits using Peanut 58K SNP array
USDA-ARS?s Scientific Manuscript database
Genome-wide association studies (GWAS) and linkage mapping have been the two most predominant strategies to dissect complex traits, but are limited by the occurrence of false positives reported for GWAS, and low resolution in the case of linkage analysis. This has led to the development of a joint a...
-
Mapping of submerged vegetation using remote sensing technology
NASA Technical Reports Server (NTRS)
Savastano, K. J.; Faller, K. H.; Mcfadin, L. W.; Holley, H.
1981-01-01
Techniques for mapping submerged sea grasses using aircraft supported remote sensors are described. The 21 channel solid state array spectroradiometer was successfully used as a remote sensor in the experiment in that the system operated without problem and obtained data. The environmental conditions of clear water, bright sandy bottom and monospecific vegetation (Thalassia) were ideal.
-
Water Masers and Accretion Disks in Galactic Nuclei
NASA Astrophysics Data System (ADS)
Greenhill, L. J.
2005-12-01
There are over 50 sources of H2O maser emission in type-2 active galactic nuclei, a large fraction discovered in the last two years. Interferometer maps of water masers are presently the only means by which structures ⪉ 1 pc from massive black holes can be mapped directly, which is particularly important for type-2 systems because edge-on orientation and obscuration complicate study by other means. Investigations of several sources have demonstrated convincingly that the maser emission traces warped accretion disks 0.1 to 1 pc from central engines of order 106-108 M⊙. The same may be true for almost half the known (but unmapped) sources, based on spectral characteristics consistent with emission from edge-on accretion disks. Mapping these sources is a high priority. Study of most recently discovered masers requires long baseline arrays that include 100-m class apertures and would benefit from aggregate bit rates on the order of 1 gigabit per second. The Square Kilometer Array should provide an order of magnitude boost in mapping sensitivity, but outrigger antennas will be needed to achieve necesssary angular resolutions, as may be space-borne antennas.
-
Solar thematic maps for space weather operations
Rigler, E. Joshua; Hill, Steven M.; Reinard, Alysha A.; Steenburgh, Robert A.
2012-01-01
Thematic maps are arrays of labels, or "themes", associated with discrete locations in space and time. Borrowing heavily from the terrestrial remote sensing discipline, a numerical technique based on Bayes' theorem captures operational expertise in the form of trained theme statistics, then uses this to automatically assign labels to solar image pixels. Ultimately, regular thematic maps of the solar corona will be generated from high-cadence, high-resolution SUVI images, the solar ultraviolet imager slated to fly on NOAA's next-generation GOES-R series of satellites starting ~2016. These thematic maps will not only provide quicker, more consistent synoptic views of the sun for space weather forecasters, but digital thematic pixel masks (e.g., coronal hole, active region, flare, etc.), necessary for a new generation of operational solar data products, will be generated. This paper presents the mathematical underpinnings of our thematic mapper, as well as some practical algorithmic considerations. Then, using images from the Solar Dynamics Observatory (SDO) Advanced Imaging Array (AIA) as test data, it presents results from validation experiments designed to ascertain the robustness of the technique with respect to differing expert opinions and changing solar conditions.
-
Milliarcsecond Astronomy with the CHARA Array
NASA Astrophysics Data System (ADS)
Schaefer, Gail; ten Brummelaar, Theo; Gies, Douglas; Jones, Jeremy; Farrington, Christopher
2018-01-01
The Center for High Angular Resolution Astronomy offers 50 nights per year of open access time at the CHARA Array. The Array consists of six telescopes linked together as an interferometer, providing sub-milliarcsecond resolution in the optical and near-infrared. The Array enables a variety of scientific studies, including measuring stellar angular diameters, imaging stellar shapes and surface features, mapping the orbits of close binary companions, and resolving circumstellar environments. The open access time is part of an NSF/MSIP funded program to open the CHARA Array to the broader astronomical community. As part of the program, we will build a searchable database for the CHARA data archive and run a series of one-day community workshops at different locations across the country to expand the user base for stellar interferometry and encourage new scientific investigations with the CHARA Array.
-
Neutron position-sensitive scintillation detector
Strauss, Michael G.; Brenner, Raul
1984-01-01
A device is provided for mapping one- and two-dimensional distributions of neutron-positions in a scintillation detector. The device consists of a lithium glass scintillator coupled by an air gap and a light coupler to an array of photomultipliers. The air gap concentrates light flashes from the scintillator, whereas the light coupler disperses this concentrated light to a predetermined fraction of the photomultiplier tube array.
-
WebArray: an online platform for microarray data analysis
Xia, Xiaoqin; McClelland, Michael; Wang, Yipeng
2005-01-01
Background Many cutting-edge microarray analysis tools and algorithms, including commonly used limma and affy packages in Bioconductor, need sophisticated knowledge of mathematics, statistics and computer skills for implementation. Commercially available software can provide a user-friendly interface at considerable cost. To facilitate the use of these tools for microarray data analysis on an open platform we developed an online microarray data analysis platform, WebArray, for bench biologists to utilize these tools to explore data from single/dual color microarray experiments. Results The currently implemented functions were based on limma and affy package from Bioconductor, the spacings LOESS histogram (SPLOSH) method, PCA-assisted normalization method and genome mapping method. WebArray incorporates these packages and provides a user-friendly interface for accessing a wide range of key functions of limma and others, such as spot quality weight, background correction, graphical plotting, normalization, linear modeling, empirical bayes statistical analysis, false discovery rate (FDR) estimation, chromosomal mapping for genome comparison. Conclusion WebArray offers a convenient platform for bench biologists to access several cutting-edge microarray data analysis tools. The website is freely available at . It runs on a Linux server with Apache and MySQL. PMID:16371165
-
A 7T Spine Array Based on Electric Dipole Transmitters
Duan, Qi; Nair, Govind; Gudino, Natalia; de Zwart, Jacco A.; van Gelderen, Peter; Murphy-Boesch, Joe; Reich, Daniel S.; Duyn, Jeff H.; Merkle, Hellmut
2015-01-01
Purpose In this work the feasibility of using an array of electric dipole antennas for RF transmission in spine MRI at high field is explored. Method A 2-channel transmit array based on an electric dipole design was quantitatively optimized for 7T spine imaging and integrated with a receive array combining 8 loop coils. Using B1+ mapping, the transmit efficiency of the dipole array was compared to a design using quadrature loop pairs. The radio-frequency (RF) energy deposition for each array was measured using a home-built dielectric phantom and MR thermometry. The performance of the proposed array was qualitatively demonstrated in human studies. Results The results indicate dramatically improved transmit efficiency for the dipole design as compared to the loop excitation. Up to 76% gain was achieved within the spinal region. Conclusion For imaging of the spine, electric-dipole based transmitters provided an attractive alternative to the traditional loop-based design. Easy integration with existing receive array technology facilitates practical use at high field. PMID:26190585
-
Geodesy and cartography of the Martian satellites
NASA Technical Reports Server (NTRS)
Batson, R. M.; Edwards, Kathleen; Duxbury, T. C.
1992-01-01
The difficulties connected with conventional maps of Phobos and Deimos are largely overcome by producing maps in digital forms, i.e., by projecting Viking Orbiter images onto a global topographic model made from collections of radii derived by photogrammetry. The resulting digital mosaics are then formatted as arrays of body-centered latitudes, longitudes, radii, and brightness values of Viking Orbiter images. The Phobos mapping described was done with Viking Orbiter data. Significant new coverage was obtained by the Soviet Phobos mission. The mapping of Deimos is in progress, using the techniques developed for Phobos.
-
Phased Array Ultrasound System for Planar Flow Mapping in Liquid Metals.
Mader, Kevin; Nauber, Richard; Galindo, Vladimir; Beyer, Hannes; Buttner, Lars; Eckert, Sven; Czarske, Jurgen
2017-09-01
Controllable magnetic fields can be used to optimize flows in technical and industrial processes involving liquid metals in order to improve quality and yield. However, experimental studies in magnetohydrodynamics often involve complex, turbulent flows and require planar, two-component (2c) velocity measurements through only one acoustical access. We present the phased array ultrasound Doppler velocimeter as a modular research platform for flow mapping in liquid metals. It combines the pulse wave Doppler method with the phased array technique to adaptively focus the ultrasound beam. This makes it possible to resolve smaller flow structures in planar measurements compared with fixed-beam sensors and enables 2c flow mapping with only one acoustical access via the cross beam technique. From simultaneously measured 2-D velocity fields, quantities for turbulence characterization can be derived. The capabilities of this measurement system are demonstrated through measurements in the alloy gallium-indium-tin at room temperature. The 2-D, 2c velocity measurements of a flow in a cubic vessel driven by a rotating magnetic field (RMF) with a spatial resolution of up to 2.2 mm are presented. The measurement results are in good agreement with a semianalytical simulation. As a highlight, two-point correlation functions of the velocity field for different magnitudes of the RMF are presented.
-
Li, Gang; Hillier, LaDeana W; Grahn, Robert A; Zimin, Aleksey V; David, Victor A; Menotti-Raymond, Marilyn; Middleton, Rondo; Hannah, Steven; Hendrickson, Sher; Makunin, Alex; O'Brien, Stephen J; Minx, Pat; Wilson, Richard K; Lyons, Leslie A; Warren, Wesley C; Murphy, William J
2016-06-01
High-resolution genetic and physical maps are invaluable tools for building accurate genome assemblies, and interpreting results of genome-wide association studies (GWAS). Previous genetic and physical maps anchored good quality draft assemblies of the domestic cat genome, enabling the discovery of numerous genes underlying hereditary disease and phenotypes of interest to the biomedical science and breeding communities. However, these maps lacked sufficient marker density to order thousands of shorter scaffolds in earlier assemblies, which instead relied heavily on comparative mapping with related species. A high-resolution map would aid in validating and ordering chromosome scaffolds from existing and new genome assemblies. Here, we describe a high-resolution genetic linkage map of the domestic cat genome based on genotyping 453 domestic cats from several multi-generational pedigrees on the Illumina 63K SNP array. The final maps include 58,055 SNP markers placed relative to 6637 markers with unique positions, distributed across all autosomes and the X chromosome. Our final sex-averaged maps span a total autosomal length of 4464 cM, the longest described linkage map for any mammal, confirming length estimates from a previous microsatellite-based map. The linkage map was used to order and orient the scaffolds from a substantially more contiguous domestic cat genome assembly (Felis catus v8.0), which incorporated ∼20 × coverage of Illumina fragment reads. The new genome assembly shows substantial improvements in contiguity, with a nearly fourfold increase in N50 scaffold size to 18 Mb. We use this map to report probable structural errors in previous maps and assemblies, and to describe features of the recombination landscape, including a massive (∼50 Mb) recombination desert (of virtually zero recombination) on the X chromosome that parallels a similar desert on the porcine X chromosome in both size and physical location. Copyright © 2016 Li et al.
-
Nanoparticle sorting in silicon waveguide arrays
NASA Astrophysics Data System (ADS)
Zhao, H. T.; Zhang, Y.; Chin, L. K.; Yap, P. H.; Wang, K.; Ser, W.; Liu, A. Q.
2017-08-01
This paper presents the optical fractionation of nanoparticles in silicon waveguide arrays. The optical lattice is generated by evanescent coupling in silicon waveguide arrays. The hotspot size is tunable by changing the refractive index of surrounding liquids. In the experiment, 0.2-μm and 0.5-μm particles are separated with a recovery rate of 95.76%. This near-field approach is a promising candidate for manipulating nanoscale biomolecules and is anticipated to benefit the biomedical applications such as exosome purification, DNA optical mapping, cell-cell interaction, etc.
-
NASA Astrophysics Data System (ADS)
Cianciara, Aleksander J.; Anderson, Christopher J.; Chen, Xuelei; Chen, Zhiping; Geng, Jingchao; Li, Jixia; Liu, Chao; Liu, Tao; Lu, Wing; Peterson, Jeffrey B.; Shi, Huli; Steffel, Catherine N.; Stebbins, Albert; Stucky, Thomas; Sun, Shijie; Timbie, Peter T.; Wang, Yougang; Wu, Fengquan; Zhang, Juyong
A wide bandwidth, dual polarized, modified four-square antenna is presented as a feed antenna for radio astronomical measurements. A linear array of these antennas is used as a line-feed for cylindrical reflectors for Tianlai, a radio interferometer designed for 21cm intensity mapping. Simulations of the feed antenna beam patterns and scattering parameters are compared to experimental results at multiple frequencies across the 650-1420MHz range. Simulations of the beam patterns of the combined feed array/reflector are presented as well.
- Recommend to Your Librarian
- Save Title to My Profile
- Set E-Mail Alert
-
Joint application of GPR and electrostatic resistivity to assess mixed pavement condition
NASA Astrophysics Data System (ADS)
Chouteau, M.; Camerlynck, C.; Kaouane, C.
2009-05-01
In planning maintenance and rehabilitation of paved streets it is of first importance to gather internal structure information to establish a diagnostic. We investigate the potential of the GPR and of the capacitively-coupled resistivity array profiling techniques to map the geometry and the defects present at various depths in streets with mixed pavement. GPR is excellent at delineating boundaries of material with contrasting electrical properties whereas the resistivity array is needed to determine the nature and quality of the imaged material. Thicknesses of asphalt and concrete can be continuously determined. Defects such as cracks, delaminations, voids and former repairs can be mapped. Quality of the concrete slab can be assessed by resistivity. The performances of the two techniques are demonstrated first using numerical modeling and imaging of typical pavement defects. Resistivity and GPR data were collected along a few streets in Montreal using a 1GHz GPR smart cart and a compact 2-receiver dipole resistivity system. Streets were selected to demonstrate the responses to different pavement defects. The results allow to show the performance and limitations of present systems. In particular, it is shown that multiple configuration arrays and real-time imaging for the resistivity pulled array are needed. For the arrays we investigate some designs and for the real-time imaging a technique based on Kalman filtering was developed.
-
Sound source localization on an axial fan at different operating points
NASA Astrophysics Data System (ADS)
Zenger, Florian J.; Herold, Gert; Becker, Stefan; Sarradj, Ennes
2016-08-01
A generic fan with unskewed fan blades is investigated using a microphone array method. The relative motion of the fan with respect to the stationary microphone array is compensated by interpolating the microphone data to a virtual rotating array with the same rotational speed as the fan. Hence, beamforming algorithms with deconvolution, in this case CLEAN-SC, could be applied. Sound maps and integrated spectra of sub-components are evaluated for five operating points. At selected frequency bands, the presented method yields sound maps featuring a clear circular source pattern corresponding to the nine fan blades. Depending on the adjusted operating point, sound sources are located on the leading or trailing edges of the fan blades. Integrated spectra show that in most cases leading edge noise is dominant for the low-frequency part and trailing edge noise for the high-frequency part. The shift from leading to trailing edge noise is strongly dependent on the operating point and frequency range considered.
-
SU-F-P-49: Comparison of Mapcheck 2 Commission for Photon and Electron Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, J; Yang, C; Morris, B
2016-06-15
Purpose: We will investigate the performance variation of the MapCheck2 detector array with different array calibration and dose calibration pairs from different radiation therapy machine. Methods: A MapCheck2 detector array was calibrated on 3 Elekta accelerators with different energy of photon (6 MV, 10 MV, 15 MV and 18 MV) and electron (6 MeV, 9 MeV, 12 MeV, 15 MeV, 18 MeV and 20 MeV) beams. Dose calibration was conducted by referring a water phantom measurement following TG-51 protocol and commission data for each accelerator. A 10 cm × 10 cm beam was measured. This measured map was morphed bymore » applying different calibration pairs. Then the difference was quantified by comparing the doses and similarity using gamma analysis of criteria (0.5 %, 0 mm). Profile variation was evaluated on a same dataset with different calibration pairs. The passing rate of an IMRT QA planar dose was calculated by using 3 mm and 3% criteria and compared with respect to each calibration pairs. Results: In this study, a dose variation up to 0.67% for matched photons and 1.0% for electron beams is observed. Differences of flatness and symmetry can be as high as 1% and 0.7% respectively. Gamma analysis shows a passing rate ranging from 34% to 85% for the standard 10 × 10 cm field. Conclusion: Our work demonstrated that a customized array calibration and dose calibration for each machine is preferred to fulfill a high standard patient QA task.« less
-
Catuzzo, P; Zenone, F; Aimonetto, S; Peruzzo, A; Casanova Borca, V; Pasquino, M; Franco, P; La Porta, M R; Ricardi, U; Tofani, S
2012-07-01
To investigate the feasibility of implementing a novel approach for patient-specific QA of TomoDirect(TM) whole breast treatment. The most currently used TomoTherapy DQA method, consisting in the verification of the 2D dose distribution in a coronal or sagittal plane of the Cheese Phantom by means of gafchromic films, was compared with an alternative approach based on the use of two commercially available diode arrays, MapCHECK2(TM) and ArcCHECK(TM). The TomoDirect(TM) plans of twenty patients with a primary unilateral breast cancer were applied to a CT scan of the Cheese Phantom and a MVCT dataset of the diode arrays. Then measurements of 2D dose distribution were performed and compared with the calculated ones using the gamma analysis method with different sets of DTA and DD criteria (3%-3 mm, 3%-2 mm). The sensitivity of the diode arrays to detect delivery and setup errors was also investigated. The measured dose distributions showed excellent agreement with the TPS calculations for each detector, with averaged fractions of passed Γ values greater than 95%. The percentage of points satisfying the constraint Γ < 1 was significantly higher for MapCHECK2(TM) than for ArcCHECK(TM) and gafchromic films using both the 3%-3 mm and 3%-2 mm gamma criteria. Both the diode arrays show a good sensitivity to delivery and setup errors using a 3%-2 mm gamma criteria. MapCHECK2™ and ArcCHECK(TM) may fulfill the demands of an adequate system for TomoDirect(TM) patient-specific QA.
-
Mapping the neglected space: gradients of detection revealed by virtual reality.
Dvorkin, Assaf Y; Bogey, Ross A; Harvey, Richard L; Patton, James L
2012-02-01
Spatial neglect affects perception along different dimensions. However, there is limited availability of 3-dimensional (3D) methods that fully map out a patient's volume of deficit, although this could guide clinical management. To test whether patients with neglect exhibit simple contralesional versus complex perceptual deficits and whether deficits are best described using Cartesian (rectangular) or polar coordinates. Seventeen right-hemisphere persons with stroke (8 with a history of neglect) and 9 healthy controls were exposed to a 3D virtual environment. Targets placed in a dense array appeared one at a time in various locations. When tested using rectangular array of targets, subjects in the neglect group exhibited complex asymmetries across several dimensions in both reaction time and target detection rates. Paper-and-pencil tests only detected neglect in 4 of 8 of these patients. When tested using polar array of targets, 2 patients who initially appeared to perform poorly in both left and near space only showed a simple left-side asymmetry that depended almost entirely on the angle from the sagittal plane. A third patient exhibited left neglect irrespective of the arrangements of targets used. An idealized model with pure dependence on the polar angle demonstrated how such deficits could be misconstrued as near neglect if one uses a rectangular array. Such deficits may be poorly detected by paper-and-pencil tests and even by computerized tests that use regular screens. Assessments that incorporate 3D arrangements of targets enable precise mapping of deficient areas and detect subtle forms of neglect whose identification may be relevant to treatment strategies.
-
NASA Technical Reports Server (NTRS)
Li, Zhenlong; Hu, Fei; Schnase, John L.; Duffy, Daniel Q.; Lee, Tsengdar; Bowen, Michael K.; Yang, Chaowei
2016-01-01
Climate observations and model simulations are producing vast amounts of array-based spatiotemporal data. Efficient processing of these data is essential for assessing global challenges such as climate change, natural disasters, and diseases. This is challenging not only because of the large data volume, but also because of the intrinsic high-dimensional nature of geoscience data. To tackle this challenge, we propose a spatiotemporal indexing approach to efficiently manage and process big climate data with MapReduce in a highly scalable environment. Using this approach, big climate data are directly stored in a Hadoop Distributed File System in its original, native file format. A spatiotemporal index is built to bridge the logical array-based data model and the physical data layout, which enables fast data retrieval when performing spatiotemporal queries. Based on the index, a data-partitioning algorithm is applied to enable MapReduce to achieve high data locality, as well as balancing the workload. The proposed indexing approach is evaluated using the National Aeronautics and Space Administration (NASA) Modern-Era Retrospective Analysis for Research and Applications (MERRA) climate reanalysis dataset. The experimental results show that the index can significantly accelerate querying and processing (10 speedup compared to the baseline test using the same computing cluster), while keeping the index-to-data ratio small (0.0328). The applicability of the indexing approach is demonstrated by a climate anomaly detection deployed on a NASA Hadoop cluster. This approach is also able to support efficient processing of general array-based spatiotemporal data in various geoscience domains without special configuration on a Hadoop cluster.
-
Modeling change from large-scale high-dimensional spatio-temporal array data
NASA Astrophysics Data System (ADS)
Lu, Meng; Pebesma, Edzer
2014-05-01
The massive data that come from Earth observation satellite and other sensors provide significant information for modeling global change. At the same time, the high dimensionality of the data has brought challenges in data acquisition, management, effective querying and processing. In addition, the output of earth system modeling tends to be data intensive and needs methodologies for storing, validation, analyzing and visualization, e.g. as maps. An important proportion of earth system observations and simulated data can be represented as multi-dimensional array data, which has received increasingly attention in big data management and spatial-temporal analysis. Study cases will be developed in natural science such as climate change, hydrological modeling, sediment dynamics, from which the addressing of big data problems is necessary. Multi-dimensional array-based database management and analytics system such as Rasdaman, SciDB, and R will be applied to these cases. From these studies will hope to learn the strengths and weaknesses of these systems, how they might work together or how semantics of array operations differ, through addressing the problems associated with big data. Research questions include: • How can we reduce dimensions spatially and temporally, or thematically? • How can we extend existing GIS functions to work on multidimensional arrays? • How can we combine data sets of different dimensionality or different resolutions? • Can map algebra be extended to an intelligible array algebra? • What are effective semantics for array programming of dynamic data driven applications? • In which sense are space and time special, as dimensions, compared to other properties? • How can we make the analysis of multi-spectral, multi-temporal and multi-sensor earth observation data easy?
-
Chatterjee, Siddhartha [Yorktown Heights, NY; Gunnels, John A [Brewster, NY
2011-11-08
A method and structure of distributing elements of an array of data in a computer memory to a specific processor of a multi-dimensional mesh of parallel processors includes designating a distribution of elements of at least a portion of the array to be executed by specific processors in the multi-dimensional mesh of parallel processors. The pattern of the designating includes a cyclical repetitive pattern of the parallel processor mesh, as modified to have a skew in at least one dimension so that both a row of data in the array and a column of data in the array map to respective contiguous groupings of the processors such that a dimension of the contiguous groupings is greater than one.
-
Li, Feng; Chen, Biyun; Xu, Kun; Wu, Jinfeng; Song, Weilin; Bancroft, Ian; Harper, Andrea L.; Trick, Martin; Liu, Shengyi; Gao, Guizhen; Wang, Nian; Yan, Guixin; Qiao, Jiangwei; Li, Jun; Li, Hao; Xiao, Xin; Zhang, Tianyao; Wu, Xiaoming
2014-01-01
Association mapping can quickly and efficiently dissect complex agronomic traits. Rapeseed is one of the most economically important polyploid oil crops, although its genome sequence is not yet published. In this study, a recently developed 60K Brassica Infinium® SNP array was used to analyse an association panel with 472 accessions. The single-nucleotide polymorphisms (SNPs) of the array were in silico mapped using ‘pseudomolecules’ representative of the genome of rapeseed to establish their hypothetical order and to perform association mapping of seed weight and seed quality. As a result, two significant associations on A8 and C3 of Brassica napus were detected for erucic acid content, and the peak SNPs were found to be only 233 and 128 kb away from the key genes BnaA.FAE1 and BnaC.FAE1. BnaA.FAE1 was also identified to be significantly associated with the oil content. Orthologues of Arabidopsis thaliana HAG1 were identified close to four clusters of SNPs associated with glucosinolate content on A9, C2, C7 and C9. For seed weight, we detected two association signals on A7 and A9, which were consistent with previous studies of quantitative trait loci mapping. The results indicate that our association mapping approach is suitable for fine mapping of the complex traits in rapeseed. PMID:24510440
-
An Evaluation of Substrates for Tactile Maps and Diagrams: Scanning Speed and Users' Preferences
ERIC Educational Resources Information Center
Jehoel, Sandra; Ungar, Simon; McCallum, Don; Rowell, Jonathan
2005-01-01
This study evaluated the relative suitability of a range of base materials for producing tactile maps and diagrams via a new ink-jet process. The visually impaired and sighted participants tactilely scanned arrays of symbols that were printed on seven substrate materials, including paper, plastic, and aluminum. In general, the rougher substrates…
-
Chapter 12 - Mapping wildland fuel across large regions for the LANDFIRE Prototype Project
Robert E. Keane; Tracey Frescino; Matthew C. Reeves; Jennifer L. Long
2006-01-01
The Landscape Fire and Resource Management Planning Tools Prototype Project, or LANDFIRE Prototype Project, required that the entire array of wildland fuel characteristics be mapped to provide fire and landscape managers with consistent baseline geo-spatial information to plan projects for hazardous fuel mitigation and to improve public and firefighter safety. Fuel...
-
NASA Astrophysics Data System (ADS)
Huang, Xiaoping; Zhang, Peifeng; Lin, En; Wang, Peng; Mei, Mingwei; Huang, Qiuying; Jiao, Jiao; Zhao, Qing
2017-09-01
We present the design and fabrication of a novel regularly arrayed plasmonic nanolasers. This main microstructure of the device is composed of a hexagonal array of n-ZnO/p-GaN nanoheterojunctions fabricated using the micro-fabrication method. Furthermore, the optically pumped lasing in the device is demonstrated. The spectroscopy characterization results of the device show that the surface plasmon excited around the NWs surface can be used to stimulate and strongly compress the optical modes in the NW cavity. This electromagnetic confinement effect is employed to optimize the beam quality and increase the light intensity compared to the laser fabricated with the bare NWs array. The impact of the array arrangement on the coherent combining efficiency of the arrayed nanolasers has been numerically studied. The results show that the arrayed hexagonal nanolasers could improve the combining efficiency compared to the nanolaser with the randomly positioned array. Qualitatively, these calculated results agree well with the experimental results of the laser beam spot mapping. This demonstrates the scope for using such architectures to improve the combination efficiency of the arrayed nanolasers.
-
Ultra-Wideband Radars for Measurements over Land and Sea Ice
NASA Astrophysics Data System (ADS)
Gogineni, S.; Hale, R.; Miller, H. G.; Yan, S.; Rodriguez-Morales, F.; Leuschen, C.; Wang, Z.; Gomez-Garcia, D.; Binder, T.; Steinhage, D.; Gehrmann, M.; Braaten, D. A.
2015-12-01
We developed two ultra-wideband (UWB) radars for measurements over the ice sheets in Greenland and Antarctica and sea ice. One of the UWB radars operates over a 150-600 MHz frequency range with a large, cross-track 24-element array. It is designed to sound ice, image the ice-bed interface, and map internal layers with fine resolution. The 24-element array consists of three 8-element sub-arrays. One of these sub-arrays is mounted under the fuselage of a BT-67 aircraft; the other two are mounted under the wings. The polarization of each antenna element can be individually reconfigured depending on the target of interest. The measured inflight VSWR is less than 2 over the operating range. The fuselage sub-array is used both for transmission and reception, and the wing-mounted sub-arrays are used for reception. The transmitter consists of an 8-channel digital waveform generator to synthesize chirped pulses of selectable pulse width, duration, and bandwidth. It also consists of drivers and power amplifiers to increase the power level of each individual channel to about 1 kW and a fast high-power transmit/receive switch. Each receiver consists of a limiter, switches, low-noise and driver amplifiers, and filters to shape and amplify received signals to the level required for digitization. The digital sub-section consists of timing and control sub-systems and 24 14-bit A/D converters to digitize received signals at a rate of 1.6 GSPS. The radar performance is evaluated using an optical delay line to simulate returns from about 2 km thick ice, and the measured radar loop sensitivity is about 215 dB. The other UWB microwave radar operates over a 2-18 GHz frequency range in Frequency-Modulated Continuous Wave (FM-CW) mode. It is designed to sound more than 1 m of snow over sea ice and map internal layers to a depth about 25-40 m in polar firn and ice. We operated the microwave radar over snow-covered sea ice and mapped snow as thin as 5 cm and as thick as 60 cm. We mapped internal layers with an early version of the radar to a depth of 45 m with fine resolution in West Antarctica. In this presentation, we will discuss design considerations and present laboratory results to document radar performance, including the impulse response functions. We will also show the results from a field campaign over the Greenland ice sheet.
-
Fine mapping of copy number variations on two cattle genome assemblies using high density SNP array
USDA-ARS?s Scientific Manuscript database
Btau_4.0 and UMD3.1 are two distinct cattle reference genome assemblies. In our previous study using the low density BovineSNP50 array, we reported a copy number variation (CNV) analysis on Btau_4.0 with 521 animals of 21 cattle breeds, yielding 682 CNV regions with a total length of 139.8 megabases...
-
NASA Astrophysics Data System (ADS)
Keifer, I. S.; Dueker, K. G.
2016-12-01
In an effort to characterize critical zone development in varying regions, seismologist conduct seismic surveys to assist in the realization of critical zone properties e.g. porosity and regolith thickness. A limitation of traditional critical zone seismology is that data is normally collected along lines, to generate two dimensional transects of the subsurface seismic velocity, even though the critical zone structure is 3D. Hence, we deployed six seismic 2D arrays in southeastern Wyoming to gather ambient seismic fields so that 3D shear velocity models could be produced. The arrays were made up of nominally 400 seismic stations arranged in a 200-meter square grid layout. Each array produced a half Terabyte data volume, so a premium was placed on computational efficiency throughout this study, to handle the roughly 65 billion samples recorded by each array. The ambient fields were cross-correlated on the Yellowstone Super-Computer using the pSIN code (Chen et al., 2016), which decreased correlation run times by a factor of 300 with respect to workstation computers. Group delay times extracted from cross-correlations using 8 Hz frequency bands from 10 Hz to 100 Hz show frequency dispersion at sites with shallow regolith underlain by granite bedrock. Dimensionally, the group velocity map inversion is overdetermined, even after extensive culling of spurious group delay times. Model Resolution matrices for our six arrays show values > 0.7 for most of the modal domain, approaching unity at the center of the model domain; we are then confident that we have an adequate number of rays covering our array space, and should experience minimal smearing of our resultant model due to application of inverse solution on the data. After inverting for the group velocity maps, a second inversion is performed of the group velocity maps for the 3D shear velocity model. This inversion is underdetermined and a second order Tikhonov regularization is used to obtain stable inverse images. Results will be presented.
-
The Colorado Lightning Mapping Array
NASA Astrophysics Data System (ADS)
Rison, W.; Krehbiel, P. R.; Thomas, R. J.; Rodeheffer, D.; Fuchs, B.
2012-12-01
A fifteen station Lightning Mapping Array (LMA) was installed in northern Colorado in the spring of 2012. While the driving force for the array was to produce 3-dimensional lightning data to support the Deep Convective Clouds and Chemistry (DC3) Experiment (Barth, this conference), data from the array are being used for several other projects. These include: electrification studies in conjunction with the CSU CHILL radar (Lang et al, this conference); observations of the parent lightning discharges of sprites (Lyons et al, this conference); trying to detect upward discharges triggered by wind turbines, characterizing conditions in which aircraft flying through clouds produce discharges which can be detected by the LMA, and other opportunities, such as observations of lightning in pyrocumulus clouds produced by the High Park Fire west of Fort Collins, CO. All the COLMA stations are solar-powered, and use broadband cellular modems for data communications. This makes the stations completely self-contained and autonomous, allowing a station to be installed anywhere a cellular signal is available. Because most of the stations were installed well away from anthropogenic noise sources, the COLMA is very sensitive. This is evidenced by the numerous plane tracks detected in its the vicinity. The diameter, D, of the COLMA is about 100 km, significantly larger than other LMAs. Because the error in the radial distance r is proportional to (r/D)2, and the error in the altitude z is proportional to (z/D)2, the larger array diameter greatly expands the usable range of the COLMA. The COLMA is able to detect and characterize lighting flashes to a distance of about 350 km from the array center. In addition to a web-based display (lightning.nmt.edu/colma), geo-referenced images are produced and updated at one-minute intervals. These geo-referenced images can be used to overlay the real-time lightning data on Google Earth and other mapping software. These displays were used by the DC3 aircraft operations to guide the research aircraft to the best regions for sampling thunderstorm outflow chemistry, and to provide pilots information on regions to avoid due to lightning hazards.
-
The OncoArray Consortium: A Network for Understanding the Genetic Architecture of Common Cancers.
Amos, Christopher I; Dennis, Joe; Wang, Zhaoming; Byun, Jinyoung; Schumacher, Fredrick R; Gayther, Simon A; Casey, Graham; Hunter, David J; Sellers, Thomas A; Gruber, Stephen B; Dunning, Alison M; Michailidou, Kyriaki; Fachal, Laura; Doheny, Kimberly; Spurdle, Amanda B; Li, Yafang; Xiao, Xiangjun; Romm, Jane; Pugh, Elizabeth; Coetzee, Gerhard A; Hazelett, Dennis J; Bojesen, Stig E; Caga-Anan, Charlisse; Haiman, Christopher A; Kamal, Ahsan; Luccarini, Craig; Tessier, Daniel; Vincent, Daniel; Bacot, François; Van Den Berg, David J; Nelson, Stefanie; Demetriades, Stephen; Goldgar, David E; Couch, Fergus J; Forman, Judith L; Giles, Graham G; Conti, David V; Bickeböller, Heike; Risch, Angela; Waldenberger, Melanie; Brüske-Hohlfeld, Irene; Hicks, Belynda D; Ling, Hua; McGuffog, Lesley; Lee, Andrew; Kuchenbaecker, Karoline; Soucy, Penny; Manz, Judith; Cunningham, Julie M; Butterbach, Katja; Kote-Jarai, Zsofia; Kraft, Peter; FitzGerald, Liesel; Lindström, Sara; Adams, Marcia; McKay, James D; Phelan, Catherine M; Benlloch, Sara; Kelemen, Linda E; Brennan, Paul; Riggan, Marjorie; O'Mara, Tracy A; Shen, Hongbing; Shi, Yongyong; Thompson, Deborah J; Goodman, Marc T; Nielsen, Sune F; Berchuck, Andrew; Laboissiere, Sylvie; Schmit, Stephanie L; Shelford, Tameka; Edlund, Christopher K; Taylor, Jack A; Field, John K; Park, Sue K; Offit, Kenneth; Thomassen, Mads; Schmutzler, Rita; Ottini, Laura; Hung, Rayjean J; Marchini, Jonathan; Amin Al Olama, Ali; Peters, Ulrike; Eeles, Rosalind A; Seldin, Michael F; Gillanders, Elizabeth; Seminara, Daniela; Antoniou, Antonis C; Pharoah, Paul D P; Chenevix-Trench, Georgia; Chanock, Stephen J; Simard, Jacques; Easton, Douglas F
2017-01-01
Common cancers develop through a multistep process often including inherited susceptibility. Collaboration among multiple institutions, and funding from multiple sources, has allowed the development of an inexpensive genotyping microarray, the OncoArray. The array includes a genome-wide backbone, comprising 230,000 SNPs tagging most common genetic variants, together with dense mapping of known susceptibility regions, rare variants from sequencing experiments, pharmacogenetic markers, and cancer-related traits. The OncoArray can be genotyped using a novel technology developed by Illumina to facilitate efficient genotyping. The consortium developed standard approaches for selecting SNPs for study, for quality control of markers, and for ancestry analysis. The array was genotyped at selected sites and with prespecified replicate samples to permit evaluation of genotyping accuracy among centers and by ethnic background. The OncoArray consortium genotyped 447,705 samples. A total of 494,763 SNPs passed quality control steps with a sample success rate of 97% of the samples. Participating sites performed ancestry analysis using a common set of markers and a scoring algorithm based on principal components analysis. Results from these analyses will enable researchers to identify new susceptibility loci, perform fine-mapping of new or known loci associated with either single or multiple cancers, assess the degree of overlap in cancer causation and pleiotropic effects of loci that have been identified for disease-specific risk, and jointly model genetic, environmental, and lifestyle-related exposures. Ongoing analyses will shed light on etiology and risk assessment for many types of cancer. Cancer Epidemiol Biomarkers Prev; 26(1); 126-35. ©2016 AACR. ©2016 American Association for Cancer Research.
-
The OncoArray Consortium: a Network for Understanding the Genetic Architecture of Common Cancers
Amos, Christopher I.; Dennis, Joe; Wang, Zhaoming; Byun, Jinyoung; Schumacher, Fredrick R.; Gayther, Simon A.; Casey, Graham; Hunter, David J.; Sellers, Thomas A.; Gruber, Stephen B.; Dunning, Alison M.; Michailidou, Kyriaki; Fachal, Laura; Doheny, Kimberly; Spurdle, Amanda B.; Li, Yafang; Xiao, Xiangjun; Romm, Jane; Pugh, Elizabeth; Coetzee, Gerhard A.; Hazelett, Dennis J.; Bojesen, Stig E.; Caga-Anan, Charlisse; Haiman, Christopher A.; Kamal, Ahsan; Luccarini, Craig; Tessier, Daniel; Vincent, Daniel; Bacot, François; Van Den Berg, David J.; Nelson, Stefanie; Demetriades, Stephen; Goldgar, David E.; Couch, Fergus J.; Forman, Judith L.; Giles, Graham G.; Conti, David V.; Bickeböller, Heike; Risch, Angela; Waldenberger, Melanie; Brüske, Irene; Hicks, Belynda D.; Ling, Hua; McGuffog, Lesley; Lee, Andrew; Kuchenbaecker, Karoline B.; Soucy, Penny; Manz, Judith; Cunningham, Julie M.; Butterbach, Katja; Kote-Jarai, Zsofia; Kraft, Peter; FitzGerald, Liesel M.; Lindström, Sara; Adams, Marcia; McKay, James D.; Phelan, Catherine M.; Benlloch, Sara; Kelemen, Linda E.; Brennan, Paul; Riggan, Marjorie; O’Mara, Tracy A.; Shen, Hongbin; Shi, Yongyong; Thompson, Deborah J.; Goodman, Marc T.; Nielsen, Sune F.; Berchuck, Andrew; Laboissiere, Sylvie; Schmit, Stephanie L.; Shelford, Tameka; Edlund, Christopher K.; Taylor, Jack A.; Field, John K.; Park, Sue K.; Offit, Kenneth; Thomassen, Mads; Schmutzler, Rita; Ottini, Laura; Hung, Rayjean J.; Marchini, Jonathan; Al Olama, Ali Amin; Peters, Ulrike; Eeles, Rosalind A.; Seldin, Michael F.; Gillanders, Elizabeth; Seminara, Daniela; Antoniou, Antonis C.; Pharoah, Paul D.; Chenevix-Trench, Georgia; Chanock, Stephen J.; Simard, Jacques; Easton, Douglas F.
2016-01-01
Background Common cancers develop through a multistep process often including inherited susceptibility. Collaboration among multiple institutions, and funding from multiple sources, has allowed the development of an inexpensive genotyping microarray, the OncoArray. The array includes a genome-wide backbone, comprising 230,000 SNPs tagging most common genetic variants, together with dense mapping of known susceptibility regions, rare variants from sequencing experiments, pharmacogenetic markers and cancer related traits. Methods The OncoArray can be genotyped using a novel technology developed by Illumina to facilitate efficient genotyping. The consortium developed standard approaches for selecting SNPs for study, for quality control of markers and for ancestry analysis. The array was genotyped at selected sites and with prespecified replicate samples to permit evaluation of genotyping accuracy among centers and by ethnic background. Results The OncoArray consortium genotyped 447,705 samples. A total of 494,763 SNPs passed quality control steps with a sample success rate of 97% of the samples. Participating sites performed ancestry analysis using a common set of markers and a scoring algorithm based on principal components analysis. Conclusions Results from these analyses will enable researchers to identify new susceptibility loci, perform fine mapping of new or known loci associated with either single or multiple cancers, assess the degree of overlap in cancer causation and pleiotropic effects of loci that have been identified for disease-specific risk, and jointly model genetic, environmental and lifestyle related exposures. Impact Ongoing analyses will shed light on etiology and risk assessment for many types of cancer. PMID:27697780
-
2001-03-13
Arrays of lights (left) in the Spacecraft Assembly and Encapsulation Facility (SAEF 2) are used for illumination testing on the solar array panels at right. The panels are part of on the 2001 Mars Odyssey Orbiter. Scheduled for launch April 7, 2001, the orbiter contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers
-
2001-03-13
Workers testing in the Spacecraft Assembly and Encapsulation Facility (SAEF 2) stand alongside the 2001 Mars Odyssey Orbiter and behind its solar array panels. The arrays of lights (right) focus on the panels during illumination testing. Scheduled for launch April 7, 2001, the orbiter contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers
-
The paradigm compiler: Mapping a functional language for the connection machine
NASA Technical Reports Server (NTRS)
Dennis, Jack B.
1989-01-01
The Paradigm Compiler implements a new approach to compiling programs written in high level languages for execution on highly parallel computers. The general approach is to identify the principal data structures constructed by the program and to map these structures onto the processing elements of the target machine. The mapping is chosen to maximize performance as determined through compile time global analysis of the source program. The source language is Sisal, a functional language designed for scientific computations, and the target language is Paris, the published low level interface to the Connection Machine. The data structures considered are multidimensional arrays whose dimensions are known at compile time. Computations that build such arrays usually offer opportunities for highly parallel execution; they are data parallel. The Connection Machine is an attractive target for these computations, and the parallel for construct of the Sisal language is a convenient high level notation for data parallel algorithms. The principles and organization of the Paradigm Compiler are discussed.
-
Radiation response and basic dosimetric characterisation of the ‘Magic Plate’
NASA Astrophysics Data System (ADS)
Alrowaili, Z. A.; Lerch, M.; Petasecca, M.; Carolan, M.; Rosenfeld, A.
2017-02-01
Two Dimensional (2D) silicon diode arrays are often implemented in radiation therapy quality assurance (QA) applications due to their advantages such as: real-time operation (compared to the films), large dynamic range and small size (compared to ionization chambers). The Centre for Medical Radiation Physics, University of Wollongong has developed a multifunctional 2D silicon diode array known as the Magic Plate (MP) for real-time applications and is suitable as a transmission detector for photon flunce mapping (MPTM) or for in phantom dose mapping (MPDM). The paper focusses on the characterisation of the MPDM in terms of output factor and square field beam profiling in 6 MV, 10 MV and 18 MV clinical photon fields. We have found excellent agreement with three different ion chambers for all measured parameters with output factors agreeing within 1.2% and field profiles agreeing within 3% and/or 3mm. This work has important implications for the development of the MP when operating in transmission mapping mode.
-
A Comparison of Global Indexing Schemes to Facilitate Earth Science Data Management
NASA Astrophysics Data System (ADS)
Griessbaum, N.; Frew, J.; Rilee, M. L.; Kuo, K. S.
2017-12-01
Recent advances in database technology have led to systems optimized for managing petabyte-scale multidimensional arrays. These array databases are a good fit for subsets of the Earth's surface that can be projected into a rectangular coordinate system with acceptable geometric fidelity. However, for global analyses, array databases must address the same distortions and discontinuities that apply to map projections in general. The array database SciDB supports enormous databases spread across thousands of computing nodes. Additionally, the following SciDB characteristics are particularly germane to the coordinate system problem: SciDB efficiently stores and manipulates sparse (i.e. mostly empty) arrays. SciDB arrays have 64-bit indexes. SciDB supports user-defined data types, functions, and operators. We have implemented two geospatial indexing schemes in SciDB. The simplest uses two array dimensions to represent longitude and latitude. For representation as 64-bit integers, the coordinates are multiplied by a scale factor large enough to yield an appropriate Earth surface resolution (e.g., a scale factor of 100,000 yields a resolution of approximately 1m at the equator). Aside from the longitudinal discontinuity, the principal disadvantage of this scheme is its fixed scale factor. The second scheme uses a single array dimension to represent the bit-codes for locations in a hierarchical triangular mesh (HTM) coordinate system. A HTM maps the Earth's surface onto an octahedron, and then recursively subdivides each triangular face to the desired resolution. Earth surface locations are represented as the concatenation of an octahedron face code and a quadtree code within the face. Unlike our integerized lat-lon scheme, the HTM allow for objects of different size (e.g., pixels with differing resolutions) to be represented in the same indexing scheme. We present an evaluation of the relative utility of these two schemes for managing and analyzing MODIS swath data.
-
Interferometric Mapping of Perseus Outflows with MASSES
NASA Astrophysics Data System (ADS)
Stephens, Ian; Dunham, Michael; Myers, Philip C.; MASSES Team
2017-01-01
The MASSES (Mass Assembly of Stellar Systems and their Evolution with the SMA) survey, a Submillimeter Array (SMA) large-scale program, is mapping molecular lines and continuum emission about the 75 known Class 0/I sources in the Perseus Molecular Cloud. In this talk, I present some of the key results of this project, with a focus on the CO(2-1) maps of the molecular outflows. In particular, I investigate how protostars inherit their rotation axes from large-scale magnetic fields and filamentary structure.
-
Chiappini, Ciro; Campagnolo, Paola; Almeida, Carina S; Abbassi-Ghadi, Nima; Chow, Lesley W; Hanna, George B; Stevens, Molly M
2015-09-16
Porous silicon nanoneedles can map Cathepsin B activity across normal and tumor human esophageal mucosa. Assembling a peptide-based Cathepsin B cleavable sensor over a large array of nano-needles allows the discrimination of cancer cells from healthy ones in mixed culture. The same sensor applied to tissue can map Cathepsin B activity with high resolution across the tumor margin area of esophageal adenocarcinoma. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
-
A class of parallel algorithms for computation of the manipulator inertia matrix
NASA Technical Reports Server (NTRS)
Fijany, Amir; Bejczy, Antal K.
1989-01-01
Parallel and parallel/pipeline algorithms for computation of the manipulator inertia matrix are presented. An algorithm based on composite rigid-body spatial inertia method, which provides better features for parallelization, is used for the computation of the inertia matrix. Two parallel algorithms are developed which achieve the time lower bound in computation. Also described is the mapping of these algorithms with topological variation on a two-dimensional processor array, with nearest-neighbor connection, and with cardinality variation on a linear processor array. An efficient parallel/pipeline algorithm for the linear array was also developed, but at significantly higher efficiency.
-
Determining subcanopy Psidium cattleianum invasion in Hawaiian forests using imaging spectroscopy
Jomar Barbosa; Gregory Asner; Roberta Martin; Claire Baldeck; Flint Hughes; Tracy Johnson
2016-01-01
High-resolution airborne imaging spectroscopy represents a promising avenue for mapping the spread of invasive tree species through native forests, but for this technology to be useful to forest managers there are two main technical challenges that must be addressed: (1) mapping a single focal species amongst a diverse array of other tree species; and (2) detecting...
-
Welcoming Their Worlds: Rethinking Literacy Instruction through Community Mapping
ERIC Educational Resources Information Center
Dunsmore, KaiLonnie; Ordoñez-Jasis, Rosario; Herrera, George
2013-01-01
In this article we look at how a community of practice in one midsize urban K-12 school district engaged in a community mapping process to discover, gather, and analyze a rich array of community and home resources in order to create classroom practices and curriculum that integrated the literacies of home and school and led to transformed student…
-
Lyon, Lauren M.
2017-01-01
The present study entails descriptions of several well-preserved skulls from the pampathere species Holmesina floridanus, recovered from Pliocene localities in central Florida and housed in the collections of the Florida Museum of Natural History. Bone by bone descriptions have allowed detailed reconstructions of cranial morphology. Cranial foramina are described and illustrated in detail, and their contents inferred. The first ever description of an isolated pampathere petrosal is also included. Cranial osteology of Holmesina floridanus is compared to that of Pleistocene species of Holmesina from both North and South America (Holmesina septentrionalis, Holmesina occidentalis), as well as to the other well-known pampathere genera, to closely related taxa among glyptodonts (Propalaehoplophorus), and to extinct and extant armadillos (Proeutatus, Euphractus). This study identifies a suite of apomorphic cranial features that serve to diagnose a putative, progressive series of more inclusive monophyletic groups, including the species Holmesina floridanus, the genus Holmesina, pampatheres, pampatheres plus glyptodonts, and a clade formed by pampatheres, glyptodonts, and Proeutatus. The study highlights the need for further anatomical investigations of pampathere cranial anatomy, especially those using modern scanning technology, and for analyses of pampathere phylogenetic relationships. PMID:29250462
-
Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana.
Wittenberg, Alexander H J; van der Lee, Theo; Cayla, Cyril; Kilian, Andrzej; Visser, Richard G F; Schouten, Henk J
2005-08-01
Diversity Arrays Technology (DArT) is a microarray-based DNA marker technique for genome-wide discovery and genotyping of genetic variation. DArT allows simultaneous scoring of hundreds of restriction site based polymorphisms between genotypes and does not require DNA sequence information or site-specific oligonucleotides. This paper demonstrates the potential of DArT for genetic mapping by validating the quality and molecular basis of the markers, using the model plant Arabidopsis thaliana. Restriction fragments from a genomic representation of the ecotype Landsberg erecta (Ler) were amplified by PCR, individualized by cloning and spotted onto glass slides. The arrays were then hybridized with labeled genomic representations of the ecotypes Columbia (Col) and Ler and of individuals from an F(2) population obtained from a Col x Ler cross. The scoring of markers with specialized software was highly reproducible and 107 markers could unambiguously be ordered on a genetic linkage map. The marker order on the genetic linkage map coincided with the order on the DNA sequence map. Sequencing of the Ler markers and alignment with the available Col genome sequence confirmed that the polymorphism in DArT markers is largely a result of restriction site polymorphisms.
-
Phased-array ultrasonic surface contour mapping system and method for solids hoppers and the like
Fasching, George E.; Smith, Jr., Nelson S.
1994-01-01
A real time ultrasonic surface contour mapping system is provided including a digitally controlled phased-array of transmitter/receiver (T/R) elements located in a fixed position above the surface to be mapped. The surface is divided into a predetermined number of pixels which are separately scanned by an arrangement of T/R elements by applying phase delayed signals thereto that produce ultrasonic tone bursts from each T/R that arrive at a point X in phase and at the same time relative to the leading edge of the tone burst pulse so that the acoustic energies from each T/R combine in a reinforcing manner at point X. The signals produced by the reception of the echo signals reflected from point X back to the T/Rs are also delayed appropriately so that they add in phase at the input of a signal combiner. This combined signal is then processed to determine the range to the point X using density-corrected sound velocity values. An autofocusing signal is developed from the computed average range for a complete scan of the surface pixels. A surface contour map is generated in real time form the range signals on a video monitor.
-
Griffin, Darren K; Robertson, Lindsay B; Tempest, Helen G; Vignal, Alain; Fillon, Valérie; Crooijmans, Richard PMA; Groenen, Martien AM; Deryusheva, Svetlana; Gaginskaya, Elena; Carré, Wilfrid; Waddington, David; Talbot, Richard; Völker, Martin; Masabanda, Julio S; Burt, Dave W
2008-01-01
Background Comparative genomics is a powerful means of establishing inter-specific relationships between gene function/location and allows insight into genomic rearrangements, conservation and evolutionary phylogeny. The availability of the complete sequence of the chicken genome has initiated the development of detailed genomic information in other birds including turkey, an agriculturally important species where mapping has hitherto focused on linkage with limited physical information. No molecular study has yet examined conservation of avian microchromosomes, nor differences in copy number variants (CNVs) between birds. Results We present a detailed comparative cytogenetic map between chicken and turkey based on reciprocal chromosome painting and mapping of 338 chicken BACs to turkey metaphases. Two inter-chromosomal changes (both involving centromeres) and three pericentric inversions have been identified between chicken and turkey; and array CGH identified 16 inter-specific CNVs. Conclusion This is the first study to combine the modalities of zoo-FISH and array CGH between different avian species. The first insight into the conservation of microchromosomes, the first comparative cytogenetic map of any bird and the first appraisal of CNVs between birds is provided. Results suggest that avian genomes have remained relatively stable during evolution compared to mammalian equivalents. PMID:18410676
-
Li, Guangyan; Connors, Bret A; Schaefer, Ray B; Gallagher, John J; Evan, Andrew P
2017-11-01
In this paper, an extracorporeal shock wave source composed of small ellipsoidal sparker units is described. The sparker units were arranged in an array designed to produce a coherent shock wave of sufficient strength to fracture kidney stones. The objective of this paper was to measure the acoustical output of this array of 18 individual sparker units and compare this array to commercial lithotripters. Representative waveforms acquired with a fiber-optic probe hydrophone at the geometric focus of the sparker array indicated that the sparker array produces a shock wave (P + ∼40-47 MPa, P - ∼2.5-5.0 MPa) similar to shock waves produced by a Dornier HM-3 or Dornier Compact S. The sparker array's pressure field map also appeared similar to the measurements from a HM-3 and Compact S. Compared to the HM-3, the electrohydraulic technology of the sparker array produced a more consistent SW pulse (shot-to-shot positive pressure value standard deviation of ±4.7 MPa vs ±3.3 MPa).
-
A 7T spine array based on electric dipole transmitters.
Duan, Qi; Nair, Govind; Gudino, Natalia; de Zwart, Jacco A; van Gelderen, Peter; Murphy-Boesch, Joe; Reich, Daniel S; Duyn, Jeff H; Merkle, Hellmut
2015-10-01
The goal of this study was to explore the feasibility of using an array of electric dipole antennas for RF transmission in spine MRI at high fields. A two-channel transmit array based on an electric dipole design was quantitatively optimized for 7T spine imaging and integrated with a receive array combining eight loop coils. Using B1+ mapping, the transmit efficiency of the dipole array was compared with a design using quadrature loop pairs. The radiofrequency energy deposition for each array was measured using a home-built dielectric phantom and MR thermometry. The performance of the proposed array was qualitatively demonstrated in human studies. The results indicate dramatically improved transmit efficiency for the dipole design compared with the loop excitation. A gain of up to 76% was achieved within the spinal region. For imaging of the spine, electric dipole-based transmitters provide an attractive alternative to the traditional loop-based design. Easy integration with existing receive array technology facilitates practical use at high fields. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
-
Wen, Weie; He, Zhonghu; Gao, Fengmei; Liu, Jindong; Jin, Hui; Zhai, Shengnan; Qu, Yanying; Xia, Xianchun
2017-01-01
A high-density consensus map is a powerful tool for gene mapping, cloning and molecular marker-assisted selection in wheat breeding. The objective of this study was to construct a high-density, single nucleotide polymorphism (SNP)-based consensus map of common wheat (Triticum aestivum L.) by integrating genetic maps from four recombinant inbred line populations. The populations were each genotyped using the wheat 90K Infinium iSelect SNP assay. A total of 29,692 SNP markers were mapped on 21 linkage groups corresponding to 21 hexaploid wheat chromosomes, covering 2,906.86 cM, with an overall marker density of 10.21 markers/cM. Compared with the previous maps based on the wheat 90K SNP chip detected 22,736 (76.6%) of the SNPs with consistent chromosomal locations, whereas 1,974 (6.7%) showed different chromosomal locations, and 4,982 (16.8%) were newly mapped. Alignment of the present consensus map and the wheat expressed sequence tags (ESTs) Chromosome Bin Map enabled assignment of 1,221 SNP markers to specific chromosome bins and 819 ESTs were integrated into the consensus map. The marker orders of the consensus map were validated based on physical positions on the wheat genome with Spearman rank correlation coefficients ranging from 0.69 (4D) to 0.97 (1A, 4B, 5B, and 6A), and were also confirmed by comparison with genetic position on the previously 40K SNP consensus map with Spearman rank correlation coefficients ranging from 0.84 (6D) to 0.99 (6A). Chromosomal rearrangements reported previously were confirmed in the present consensus map and new putative rearrangements were identified. In addition, an integrated consensus map was developed through the combination of five published maps with ours, containing 52,607 molecular markers. The consensus map described here provided a high-density SNP marker map and a reliable order of SNPs, representing a step forward in mapping and validation of chromosomal locations of SNPs on the wheat 90K array. Moreover, it can be used as a reference for quantitative trait loci (QTL) mapping to facilitate exploitation of genes and QTL in wheat breeding. PMID:28848588
-
2014-01-01
Background Modern watermelon (Citrullus lanatus L.) cultivars share a narrow genetic base due to many years of selection for desirable horticultural qualities. Wild subspecies within C. lanatus are important potential sources of novel alleles for watermelon breeding, but successful trait introgression into elite cultivars has had limited success. The application of marker assisted selection (MAS) in watermelon is yet to be realized, mainly due to the past lack of high quality genetic maps. Recently, a number of useful maps have become available, however these maps have few common markers, and were constructed using different marker sets, thus, making integration and comparative analysis among maps difficult. The objective of this research was to use single-nucleotide polymorphism (SNP) anchor markers to construct an integrated genetic map for C. lanatus. Results Under the framework of the high density genetic map, an integrated genetic map was constructed by merging data from four independent mapping experiments using a genetically diverse array of parental lines, which included three subspecies of watermelon. The 698 simple sequence repeat (SSR), 219 insertion-deletion (InDel), 36 structure variation (SV) and 386 SNP markers from the four maps were used to construct an integrated map. This integrated map contained 1339 markers, spanning 798 cM with an average marker interval of 0.6 cM. Fifty-eight previously reported quantitative trait loci (QTL) for 12 traits in these populations were also integrated into the map. In addition, new QTL identified for brix, fructose, glucose and sucrose were added. Some QTL associated with economically important traits detected in different genetic backgrounds mapped to similar genomic regions of the integrated map, suggesting that such QTL are responsible for the phenotypic variability observed in a broad array of watermelon germplasm. Conclusions The integrated map described herein enhances the utility of genomic tools over previous watermelon genetic maps. A large proportion of the markers in the integrated map are SSRs, InDels and SNPs, which are easily transferable across laboratories. Moreover, the populations used to construct the integrated map include all three watermelon subspecies, making this integrated map useful for the selection of breeding traits, identification of QTL, MAS, analysis of germplasm and commercial hybrid seed detection. PMID:24443961
-
Das, Sayan; Bhat, Prasanna R; Sudhakar, Chinta; Ehlers, Jeffrey D; Wanamaker, Steve; Roberts, Philip A; Cui, Xinping; Close, Timothy J
2008-02-28
Cowpea (Vigna unguiculata L. Walp) is an important food and fodder legume of the semiarid tropics and subtropics worldwide, especially in sub-Saharan Africa. High density genetic linkage maps are needed for marker assisted breeding but are not available for cowpea. A single feature polymorphism (SFP) is a microarray-based marker which can be used for high throughput genotyping and high density mapping. Here we report detection and validation of SFPs in cowpea using a readily available soybean (Glycine max) genome array. Robustified projection pursuit (RPP) was used for statistical analysis using RNA as a surrogate for DNA. Using a 15% outlying score cut-off, 1058 potential SFPs were enumerated between two parents of a recombinant inbred line (RIL) population segregating for several important traits including drought tolerance, Fusarium and brown blotch resistance, grain size and photoperiod sensitivity. Sequencing of 25 putative polymorphism-containing amplicons yielded a SFP probe set validation rate of 68%. We conclude that the Affymetrix soybean genome array is a satisfactory platform for identification of some 1000's of SFPs for cowpea. This study provides an example of extension of genomic resources from a well supported species to an orphan crop. Presumably, other legume systems are similarly tractable to SFP marker development using existing legume array resources.
-
SPIRAL2 Determines Plant Microtubule Organization by Modulating Microtubule Severing
Wightman, Raymond; Chomicki, Guillaume; Kumar, Manoj; Carr, Paul; Turner, Simon R.
2013-01-01
Summary One of the defining characteristics of plant growth and morphology is the pivotal role of cell expansion. While the mechanical properties of the cell wall determine both the extent and direction of cell expansion, the cortical microtubule array plays a critical role in cell wall organization and, consequently, determining directional (anisotropic) cell expansion [1–6]. The microtubule-severing enzyme katanin is essential for plants to form aligned microtubule arrays [7–10]; however, increasing severing activity alone is not sufficient to drive microtubule alignment [11]. Here, we demonstrate that katanin activity depends upon the behavior of the microtubule-associated protein (MAP) SPIRAL2 (SPR2). Petiole cells in the cotyledon epidermis exhibit well-aligned microtubule arrays, whereas adjacent pavement cells exhibit unaligned arrays, even though SPR2 is found at similar levels in both cell types. In pavement cells, however, SPR2 accumulates at microtubule crossover sites, where it stabilizes these crossovers and prevents severing. In contrast, in the adjacent petiole cells, SPR2 is constantly moving along the microtubules, exposing crossover sites that become substrates for severing. Consequently, our study reveals a novel mechanism whereby microtubule organization is determined by dynamics and localization of a MAP that regulates where and when microtubule severing occurs. PMID:24055158
-
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almansouri, Hani; Foster, Benjamin; Kisner, Roger A
2016-01-01
This paper documents our progress developing an ultrasound phased array system in combination with a model-based iterative reconstruction (MBIR) algorithm to inspect the health of and characterize the composition of the near-wellbore region for geothermal reservoirs. The main goal for this system is to provide a near-wellbore in-situ characterization capability that will significantly improve wellbore integrity evaluation and near well-bore fracture network mapping. A more detailed image of the fracture network near the wellbore in particular will enable the selection of optimal locations for stimulation along the wellbore, provide critical data that can be used to improve stimulation design, andmore » provide a means for measuring evolution of the fracture network to support long term management of reservoir operations. Development of such a measurement capability supports current hydrothermal operations as well as the successful demonstration of Engineered Geothermal Systems (EGS). The paper will include the design of the phased array system, the performance specifications, and characterization methodology. In addition, we will describe the MBIR forward model derived for the phased array system and the propagation of compressional waves through a pseudo-homogenous medium.« less
-
Calhoun, Eric S; Hucl, Tomas; Gallmeier, Eike; West, Kristen M; Arking, Dan E; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Chakravarti, Aravinda; Hruban, Ralph H; Kern, Scott E
2006-08-15
Recent advances in oligonucleotide arrays and whole-genome complexity reduction data analysis now permit the evaluation of tens of thousands of single-nucleotide polymorphisms simultaneously for a genome-wide analysis of allelic status. Using these arrays, we created high-resolution allelotype maps of 26 pancreatic cancer cell lines. The areas of heterozygosity implicitly served to reveal regions of allelic loss. The array-derived maps were verified by a panel of 317 microsatellite markers used in a subset of seven samples, showing a 97.1% concordance between heterozygous calls. Three matched tumor/normal pairs were used to estimate the false-negative and potential false-positive rates for identifying loss of heterozygosity: 3.6 regions (average minimal region of loss, 720,228 bp) and 2.3 regions (average heterozygous gap distance, 4,434,994 bp) per genome, respectively. Genomic fractional allelic loss calculations showed that cumulative levels of allelic loss ranged widely from 17.1% to 79.9% of the haploid genome length. Regional increases in "NoCall" frequencies combined with copy number loss estimates were used to identify 41 homozygous deletions (19 first reports), implicating an additional 13 regions disrupted in pancreatic cancer. Unexpectedly, 23 of these occurred in just two lines (BxPc3 and MiaPaCa2), suggesting the existence of at least two subclasses of chromosomal instability (CIN) patterns, distinguished here by allelic loss and copy number changes (original CIN) and those also highly enriched in the genomic "holes" of homozygous deletions (holey CIN). This study provides previously unavailable high-resolution allelotype and deletion breakpoint maps in widely shared pancreatic cancer cell lines and effectively eliminates the need for matched normal tissue to define informative loci.
-
In vivo sensitivity estimation and imaging acceleration with rotating RF coil arrays at 7 Tesla.
Li, Mingyan; Jin, Jin; Zuo, Zhentao; Liu, Feng; Trakic, Adnan; Weber, Ewald; Zhuo, Yan; Xue, Rong; Crozier, Stuart
2015-03-01
Using a new rotating SENSitivity Encoding (rotating-SENSE) algorithm, we have successfully demonstrated that the rotating radiofrequency coil array (RRFCA) was capable of achieving a significant reduction in scan time and a uniform image reconstruction for a homogeneous phantom at 7 Tesla. However, at 7 Tesla the in vivo sensitivity profiles (B1(-)) become distinct at various angular positions. Therefore, sensitivity maps at other angular positions cannot be obtained by numerically rotating the acquired ones. In this work, a novel sensitivity estimation method for the RRFCA was developed and validated with human brain imaging. This method employed a library database and registration techniques to estimate coil sensitivity at an arbitrary angular position. The estimated sensitivity maps were then compared to the acquired sensitivity maps. The results indicate that the proposed method is capable of accurately estimating both magnitude and phase of sensitivity at an arbitrary angular position, which enables us to employ the rotating-SENSE algorithm to accelerate acquisition and reconstruct image. Compared to a stationary coil array with the same number of coil elements, the RRFCA was able to reconstruct images with better quality at a high reduction factor. It is hoped that the proposed rotation-dependent sensitivity estimation algorithm and the acceleration ability of the RRFCA will be particularly useful for ultra high field MRI. Copyright © 2014 Elsevier Inc. All rights reserved.
-
Automated detection of extended sources in radio maps: progress from the SCORPIO survey
NASA Astrophysics Data System (ADS)
Riggi, S.; Ingallinera, A.; Leto, P.; Cavallaro, F.; Bufano, F.; Schillirò, F.; Trigilio, C.; Umana, G.; Buemi, C. S.; Norris, R. P.
2016-08-01
Automated source extraction and parametrization represents a crucial challenge for the next-generation radio interferometer surveys, such as those performed with the Square Kilometre Array (SKA) and its precursors. In this paper, we present a new algorithm, called CAESAR (Compact And Extended Source Automated Recognition), to detect and parametrize extended sources in radio interferometric maps. It is based on a pre-filtering stage, allowing image denoising, compact source suppression and enhancement of diffuse emission, followed by an adaptive superpixel clustering stage for final source segmentation. A parametrization stage provides source flux information and a wide range of morphology estimators for post-processing analysis. We developed CAESAR in a modular software library, also including different methods for local background estimation and image filtering, along with alternative algorithms for both compact and diffuse source extraction. The method was applied to real radio continuum data collected at the Australian Telescope Compact Array (ATCA) within the SCORPIO project, a pathfinder of the Evolutionary Map of the Universe (EMU) survey at the Australian Square Kilometre Array Pathfinder (ASKAP). The source reconstruction capabilities were studied over different test fields in the presence of compact sources, imaging artefacts and diffuse emission from the Galactic plane and compared with existing algorithms. When compared to a human-driven analysis, the designed algorithm was found capable of detecting known target sources and regions of diffuse emission, outperforming alternative approaches over the considered fields.
-
In vivo sensitivity estimation and imaging acceleration with rotating RF coil arrays at 7 Tesla
NASA Astrophysics Data System (ADS)
Li, Mingyan; Jin, Jin; Zuo, Zhentao; Liu, Feng; Trakic, Adnan; Weber, Ewald; Zhuo, Yan; Xue, Rong; Crozier, Stuart
2015-03-01
Using a new rotating SENSitivity Encoding (rotating-SENSE) algorithm, we have successfully demonstrated that the rotating radiofrequency coil array (RRFCA) was capable of achieving a significant reduction in scan time and a uniform image reconstruction for a homogeneous phantom at 7 Tesla. However, at 7 Tesla the in vivo sensitivity profiles (B1-) become distinct at various angular positions. Therefore, sensitivity maps at other angular positions cannot be obtained by numerically rotating the acquired ones. In this work, a novel sensitivity estimation method for the RRFCA was developed and validated with human brain imaging. This method employed a library database and registration techniques to estimate coil sensitivity at an arbitrary angular position. The estimated sensitivity maps were then compared to the acquired sensitivity maps. The results indicate that the proposed method is capable of accurately estimating both magnitude and phase of sensitivity at an arbitrary angular position, which enables us to employ the rotating-SENSE algorithm to accelerate acquisition and reconstruct image. Compared to a stationary coil array with the same number of coil elements, the RRFCA was able to reconstruct images with better quality at a high reduction factor. It is hoped that the proposed rotation-dependent sensitivity estimation algorithm and the acceleration ability of the RRFCA will be particularly useful for ultra high field MRI.
-
Radio synthesis imaging during the GRO solar campaign
NASA Technical Reports Server (NTRS)
Gary, Dale E.
1992-01-01
The Owens Valley (OVRO) Solar Array was recently expanded to 5 antennas. Using frequency synthesis, the 5-element OVRO Solar Array has up to 450 effective baselines, which can be employed as necessary to make maps at frequencies in the range 1 to 18 GHz. Fortuitously, the last of the 5 antennas was completed and brought into operation on 7 Jun., just in time for the Gamma Ray Observatory (GRO)/Max 1991 observing campaign. Many events were observed jointly with OVRO and the BATSE experiment on GRO, including the six larger events that are presented in tabular form. Unfortunately, the X flares that occurred during the campaign all occurred outside the OVRO time range. The UV coverage of the newly expanded solar array, combined with frequency synthesis, should give a more complete view of solar flares in the microwave range by providing simultaneous spatial and spectral resolution. A promising application of MEM (maximum entropy) is also being pursued that will use smoothness criteria in both the spatial and spectral domains to give brightness temperature maps at each observed frequency (up to 45 frequencies every 10 s). Such maps can be compared directly with the theory of microwave emission to yield plasma parameters in the source - notably the number and energy distribution of electrons, for comparison with the x ray and gamma ray results from GRO.
-
NASA Astrophysics Data System (ADS)
Gallin, Louis-Jonardan; Farges, Thomas; Marchiano, Régis; Coulouvrat, François; Defer, Eric; Rison, William; Schulz, Wolfgang; Nuret, Mathieu
2016-04-01
In the framework of the European Hydrological Cycle in the Mediterranean Experiment project, a field campaign devoted to the study of electrical activity during storms took place in the south of France in 2012. An acoustic station composed of four microphones and four microbarometers was deployed within the coverage of a Lightning Mapping Array network. On the 26 October 2012, a thunderstorm passed just over the acoustic station. Fifty-six natural thunder events, due to cloud-to-ground and intracloud flashes, were recorded. This paper studies the acoustic reconstruction, in the low frequency range from 1 to 40 Hz, of the recorded flashes and their comparison with detections from electromagnetic networks. Concurrent detections from the European Cooperation for Lightning Detection lightning location system were also used. Some case studies show clearly that acoustic signal from thunder comes from the return stroke but also from the horizontal discharges which occur inside the clouds. The huge amount of observation data leads to a statistical analysis of lightning discharges acoustically recorded. Especially, the distributions of altitudes of reconstructed acoustic detections are explored in detail. The impact of the distance to the source on these distributions is established. The capacity of the acoustic method to describe precisely the lower part of nearby cloud-to-ground discharges, where the Lightning Mapping Array network is not effective, is also highlighted.
-
NASA Technical Reports Server (NTRS)
Panda, Jayanta; Mosher, Robert N.; Porter, Barry J.
2013-01-01
A 70 microphone, 10-foot by 10-foot, microphone phased array was built for use in the harsh environment of rocket launches. The array was setup at NASA Wallops launch pad 0A during a static test firing of Orbital Sciences' Antares engines, and again during the first launch of the Antares vehicle. It was placed 400 feet away from the pad, and was hoisted on a scissor lift 40 feet above ground. The data sets provided unprecedented insight into rocket noise sources. The duct exit was found to be the primary source during the static test firing; the large amount of water injected beneath the nozzle exit and inside the plume duct quenched all other sources. The maps of the noise sources during launch were found to be time-dependent. As the engines came to full power and became louder, the primary source switched from the duct inlet to the duct exit. Further elevation of the vehicle caused spilling of the hot plume, resulting in a distributed noise map covering most of the pad. As the entire plume emerged from the duct, and the ondeck water system came to full power, the plume itself became the loudest noise source. These maps of the noise sources provide vital insight for optimization of sound suppression systems for future Antares launches.
-
Discovery and mapping of single feature polymorphisms in wheat using Affymetrix arrays
Bernardo, Amy N; Bradbury, Peter J; Ma, Hongxiang; Hu, Shengwa; Bowden, Robert L; Buckler, Edward S; Bai, Guihua
2009-01-01
Background Wheat (Triticum aestivum L.) is a staple food crop worldwide. The wheat genome has not yet been sequenced due to its huge genome size (~17,000 Mb) and high levels of repetitive sequences; the whole genome sequence may not be expected in the near future. Available linkage maps have low marker density due to limitation in available markers; therefore new technologies that detect genome-wide polymorphisms are still needed to discover a large number of new markers for construction of high-resolution maps. A high-resolution map is a critical tool for gene isolation, molecular breeding and genomic research. Single feature polymorphism (SFP) is a new microarray-based type of marker that is detected by hybridization of DNA or cRNA to oligonucleotide probes. This study was conducted to explore the feasibility of using the Affymetrix GeneChip to discover and map SFPs in the large hexaploid wheat genome. Results Six wheat varieties of diverse origins (Ning 7840, Clark, Jagger, Encruzilhada, Chinese Spring, and Opata 85) were analyzed for significant probe by variety interactions and 396 probe sets with SFPs were identified. A subset of 164 unigenes was sequenced and 54% showed polymorphism within probes. Microarray analysis of 71 recombinant inbred lines from the cross Ning 7840/Clark identified 955 SFPs and 877 of them were mapped together with 269 simple sequence repeat markers. The SFPs were randomly distributed within a chromosome but were unevenly distributed among different genomes. The B genome had the most SFPs, and the D genome had the least. Map positions of a selected set of SFPs were validated by mapping single nucleotide polymorphism using SNaPshot and comparing with expressed sequence tags mapping data. Conclusion The Affymetrix array is a cost-effective platform for SFP discovery and SFP mapping in wheat. The new high-density map constructed in this study will be a useful tool for genetic and genomic research in wheat. PMID:19480702
-
Computer generated maps from digital satellite data - A case study in Florida
NASA Technical Reports Server (NTRS)
Arvanitis, L. G.; Reich, R. M.; Newburne, R.
1981-01-01
Ground cover maps are important tools to a wide array of users. Over the past three decades, much progress has been made in supplementing planimetric and topographic maps with ground cover details obtained from aerial photographs. The present investigation evaluates the feasibility of using computer maps of ground cover from satellite input tapes. Attention is given to the selection of test sites, a satellite data processing system, a multispectral image analyzer, general purpose computer-generated maps, the preliminary evaluation of computer maps, a test for areal correspondence, the preparation of overlays and acreage estimation of land cover types on the Landsat computer maps. There is every indication to suggest that digital multispectral image processing systems based on Landsat input data will play an increasingly important role in pattern recognition and mapping land cover in the years to come.
-
Design and Use of Microphone Directional Arrays for Aeroacoustic Measurements
NASA Technical Reports Server (NTRS)
Humphreys, William M., Jr.; Brooks, Thomas F.; Hunter, William W., Jr.; Meadows, Kristine R.
1998-01-01
An overview of the development of two microphone directional arrays for aeroacoustic testing is presented. These arrays were specifically developed to measure airframe noise in the NASA Langley Quiet Flow Facility. A large aperture directional array using 35 flush-mounted microphones was constructed to obtain high resolution noise localization maps around airframe models. This array possesses a maximum diagonal aperture size of 34 inches. A unique logarithmic spiral layout design was chosen for the targeted frequency range of 2-30 kHz. Complementing the large array is a small aperture directional array, constructed to obtain spectra and directivity information from regions on the model. This array, possessing 33 microphones with a maximum diagonal aperture size of 7.76 inches, is easily moved about the model in elevation and azimuth. Custom microphone shading algorithms have been developed to provide a frequency- and position-invariant sensing area from 10-40 kHz with an overall targeted frequency range for the array of 5-60 kHz. Both arrays are employed in acoustic measurements of a 6 percent of full scale airframe model consisting of a main element NACA 632-215 wing section with a 30 percent chord half-span flap. Representative data obtained from these measurements is presented, along with details of the array calibration and data post-processing procedures.
-
Bianco, Luca; Cestaro, Alessandro; Sargent, Daniel James; Banchi, Elisa; Derdak, Sophia; Di Guardo, Mario; Salvi, Silvio; Jansen, Johannes; Viola, Roberto; Gut, Ivo; Laurens, Francois; Chagné, David; Velasco, Riccardo; van de Weg, Eric; Troggio, Michela
2014-01-01
High-density SNP arrays for genome-wide assessment of allelic variation have made high resolution genetic characterization of crop germplasm feasible. A medium density array for apple, the IRSC 8K SNP array, has been successfully developed and used for screens of bi-parental populations. However, the number of robust and well-distributed markers contained on this array was not sufficient to perform genome-wide association analyses in wider germplasm sets, or Pedigree-Based Analysis at high precision, because of rapid decay of linkage disequilibrium. We describe the development of an Illumina Infinium array targeting 20K SNPs. The SNPs were predicted from re-sequencing data derived from the genomes of 13 Malus × domestica apple cultivars and one accession belonging to a crab apple species (M. micromalus). A pipeline for SNP selection was devised that avoided the pitfalls associated with the inclusion of paralogous sequence variants, supported the construction of robust multi-allelic SNP haploblocks and selected up to 11 entries within narrow genomic regions of ±5 kb, termed focal points (FPs). Broad genome coverage was attained by placing FPs at 1 cM intervals on a consensus genetic map, complementing them with FPs to enrich the ends of each of the chromosomes, and by bridging physical intervals greater than 400 Kbps. The selection also included ∼3.7K validated SNPs from the IRSC 8K array. The array has already been used in other studies where ∼15.8K SNP markers were mapped with an average of ∼6.8K SNPs per full-sib family. The newly developed array with its high density of polymorphic validated SNPs is expected to be of great utility for Pedigree-Based Analysis and Genomic Selection. It will also be a valuable tool to help dissect the genetic mechanisms controlling important fruit quality traits, and to aid the identification of marker-trait associations suitable for the application of Marker Assisted Selection in apple breeding programs.
-
Mosaic-Detector-Based Fluorescence Spectral Imager
NASA Technical Reports Server (NTRS)
Son, Kyung-Ah; Moon, Jeong
2007-01-01
A battery-powered, pen-sized, portable instrument for measuring molecular fluorescence spectra of chemical and biological samples in the field has been proposed. Molecular fluorescence spectroscopy is among the techniques used most frequently in laboratories to analyze compositions of chemical and biological samples. Heretofore, it has been possible to measure fluorescence spectra of molecular species at relative concentrations as low as parts per billion (ppb), with a few nm spectral resolution. The proposed instrument would include a planar array (mosaic) of detectors, onto which a fluorescence spectrum would be spatially mapped. Unlike in the larger laboratory-type molecular fluorescence spectrometers, mapping of wavelengths to spatial positions would be accomplished without use of relatively bulky optical parts. The proposed instrument is expected to be sensitive enough to enable measurement of spectra of chemical species at relative concentrations <1 ppb, with spectral resolution that could be tailored by design to be comparable to a laboratory molecular fluorescence spectrometer. The proposed instrument (see figure) would include a button-cell battery and a laser diode, which would generate the monochromatic ultraviolet light needed to excite fluorescence in a sample. The sample would be held in a cell bounded by far-ultraviolet-transparent quartz or optical glass. The detector array would be, more specifically, a complementary metal oxide/ semiconductor or charge-coupled- device imaging photodetector array, the photodetectors of which would be tailored to respond to light in the wavelength range of the fluorescence spectrum to be measured. The light-input face of the photodetector array would be covered with a matching checkerboard array of multilayer thin film interference filters, such that each pixel in the array would be sensitive only to light in a spectral band narrow enough so as not to overlap significantly with the band of an adjacent pixel. The wavelength interval between adjacent pixels (and, thus, the spectral resolution) would typically be chosen by design to be approximately equal to the width of the total fluorescence wavelength range of interest divided by the number of pixels. The unitary structure comprising the photodetector array overlaid with the matching filter array would be denoted a hyperspectral mosaic detector (HMD) array.
-
Bianco, Luca; Cestaro, Alessandro; Sargent, Daniel James; Banchi, Elisa; Derdak, Sophia; Di Guardo, Mario; Salvi, Silvio; Jansen, Johannes; Viola, Roberto; Gut, Ivo; Laurens, Francois; Chagné, David; Velasco, Riccardo; van de Weg, Eric; Troggio, Michela
2014-01-01
High-density SNP arrays for genome-wide assessment of allelic variation have made high resolution genetic characterization of crop germplasm feasible. A medium density array for apple, the IRSC 8K SNP array, has been successfully developed and used for screens of bi-parental populations. However, the number of robust and well-distributed markers contained on this array was not sufficient to perform genome-wide association analyses in wider germplasm sets, or Pedigree-Based Analysis at high precision, because of rapid decay of linkage disequilibrium. We describe the development of an Illumina Infinium array targeting 20K SNPs. The SNPs were predicted from re-sequencing data derived from the genomes of 13 Malus × domestica apple cultivars and one accession belonging to a crab apple species (M. micromalus). A pipeline for SNP selection was devised that avoided the pitfalls associated with the inclusion of paralogous sequence variants, supported the construction of robust multi-allelic SNP haploblocks and selected up to 11 entries within narrow genomic regions of ±5 kb, termed focal points (FPs). Broad genome coverage was attained by placing FPs at 1 cM intervals on a consensus genetic map, complementing them with FPs to enrich the ends of each of the chromosomes, and by bridging physical intervals greater than 400 Kbps. The selection also included ∼3.7K validated SNPs from the IRSC 8K array. The array has already been used in other studies where ∼15.8K SNP markers were mapped with an average of ∼6.8K SNPs per full-sib family. The newly developed array with its high density of polymorphic validated SNPs is expected to be of great utility for Pedigree-Based Analysis and Genomic Selection. It will also be a valuable tool to help dissect the genetic mechanisms controlling important fruit quality traits, and to aid the identification of marker-trait associations suitable for the application of Marker Assisted Selection in apple breeding programs. PMID:25303088
-
Metlapally, Ravikanth; Michaelides, Michel; Bulusu, Anuradha; Li, Yi-Ju; Schwartz, Marianne; Rosenberg, Thomas; Hunt, David M.; Moore, Anthony T.; Züchner, Stephan; Rickman, Catherine Bowes; Young, Terri L.
2014-01-01
Purpose X-linked high myopia with mild cone dysfunction and color vision defects has been mapped to chromosome Xq28 (MYP1 locus). CXorf2/TEX28 is a nested, intercalated gene within the red-green opsin cone pigment gene tandem array on Xq28. The authors investigated whether TEX28 gene alterations were associated with the Xq28-linked myopia phenotype. Genomic DNA from five pedigrees (with high myopia and either protanopia or deuteranopia) that mapped to Xq28 were screened for TEX28 copy number variations (CNVs) and sequence variants. Methods To examine for CNVs, ultra-high resolution array-comparative genomic hybridization (array-CGH) assays were performed comparing the subject genomic DNA with control samples (two pairs from two pedigrees). Opsin or TEX28 gene-targeted quantitative real-time gene expression assays (comparative CT method) were performed to validate the array-CGH findings. All exons of TEX28, including intron/exon boundaries, were amplified and sequenced using standard techniques. Results Array-CGH findings revealed predicted duplications in affected patient samples. Although only three copies of TEX28 were previously reported within the opsin array, quantitative real-time analysis of the TEX28 targeted assay of affected male or carrier female individuals in these pedigrees revealed either fewer (one) or more (four or five) copies than did related and control unaffected individuals. Sequence analysis of TEX28 did not reveal any variants associated with the disease status. Conclusions CNVs have been proposed to play a role in disease inheritance and susceptibility as they affect gene dosage. TEX28 gene CNVs appear to be associated with the MYP1 X-linked myopia phenotypes. PMID:19098318
-
Sumer, Huseyin; Craig, Jeffrey M.; Sibson, Mandy; Choo, K.H. Andy
2003-01-01
Human neocentromeres are fully functional centromeres that arise at previously noncentromeric regions of the genome. We have tested a rapid procedure of genomic array analysis of chromosome scaffold/matrix attachment regions (S/MARs), involving the isolation of S/MAR DNA and hybridization of this DNA to a genomic BAC/PAC array. Using this procedure, we have defined a 2.5-Mb domain of S/MAR-enriched chromatin that fully encompasses a previously mapped centromere protein-A (CENP-A)-associated domain at a human neocentromere. We have independently verified this procedure using a previously established fluorescence in situ hybridization method on salt-treated metaphase chromosomes. In silico sequence analysis of the S/MAR-enriched and surrounding regions has revealed no outstanding sequence-related predisposition. This study defines the S/MAR-enriched domain of a higher eukaryotic centromere and provides a method that has broad application for the mapping of S/MAR attachment sites over large genomic regions or throughout a genome. PMID:12840048
-
Map of low-frequency electromagnetic noise in the sky
NASA Astrophysics Data System (ADS)
Füllekrug, Martin; Mezentsev, Andrew; Watson, Robert; Gaffet, Stéphane; Astin, Ivan; Smith, Nathan; Evans, Adrian
2015-06-01
The Earth's natural electromagnetic environment is disturbed by anthropogenic electromagnetic noise. Here we report the first results from an electromagnetic noise survey of the sky. The locations of electromagnetic noise sources are mapped on the hemisphere above a distributed array of wideband receivers that operate in a small aperture configuration. It is found that the noise sources can be localized at elevation angles up to ˜60° in the sky, well above the horizon. The sky also exhibits zones with little or no noise that are found toward the local zenith and the southwest of the array. These results are obtained by a rigorous analysis of the residuals from the classic dispersion relation for electromagnetic waves using an array analysis of electric field measurements in the frequency range from ˜20 to 250 kHz. The observed locations of the noise sources enable detailed observations of ionospheric modification, for example, caused by particle precipitation and lightning discharges, while the observed exclusion zones enable the detection of weak natural electromagnetic emissions, for example, from streamers in transient luminous events above thunderclouds.
-
NASA Astrophysics Data System (ADS)
Samson, Philippe
2005-05-01
The constant evolution of the satellite market is asking for better technical performances and reliability for a reduced cost. Solar array is in front line of this challenge.This can be achieved by present technologies progressive improvement in cost reduction or by technological breakthrough.To reach an effective End Of Live performance100 W/kg of solar array is not so easy, even if you suppose that the mass of everything is nothing!Thin film cells are potential candidate to contribute to this challenge with certain confidence level and consequent development plan validation and qualification on ground and flight.Based on a strong flight heritage in flexible Solar Array design, the work has allowed in these last years, to pave the way on road map of thin film technologies . This is encouraged by ESA on many technological contracts put in concurrent engineering.CISG was selected cell and their strategy of design, contributions and results will be presented.Trade-off results and Design to Cost solutions will discussed.Main technical drivers, system design constraints, market access, key technologies needed will be detailed in this paper and the resulting road-map and development plan will be presented.
-
NASA Astrophysics Data System (ADS)
Gonsiewski, J.
2015-12-01
Mapping bedrock depth is useful for earthquake hazard analysis, subsurface water transport, and other applications. Recently, collaborative experimentation provided an opportunity to explore a mapping method. Near surface glacial till shear wave velocity (Vs) where data is available from an array of 3-component seismometers were studied for this experiment. Vs is related to depth to bedrock (h) and fundamental resonance (Fo); Fo = Vs/(4h). The H/V spectral peak frequency of recordings from a 3-component seismometer yields a fundamental resonance estimate. Where a suitable average Vs is established, the depth to bedrock can be calculated at every seismometer. 3-component seismometer data was provided by Spectraseis. Geophones, seismographs, and an extra 3-component seismometer were provided by Wright State University for this study. For Vs analysis, three MASW surveys were conducted near the seismometer array. SurfSeis3© was used for processing MASW data. Overtones from complicated bedrock structure and great bedrock depth are improved by combining overtones from multiple source offsets from each survey. From MASW Vs and depth to bedrock results, theoretical fundamental resonance (Fo) was calculated and compared with the H/V peak spectral frequency measured by a seismometer at selected sites and processed by Geopsy processing software. Calculated bedrock depths from all geophysical data were compared with measured bedrock depths at nearby water wells and oil and gas wells provided by ODNR. Vs and depth to bedrock results from MASW produced similar calculated fundamental resonances to the H/V approximations by respective seismometers. Bedrock mapping was performed upon verifying the correlation between the theoretical fundamental resonance and H/V peak frequencies. Contour maps were generated using ArcGIS®. Contour lines interpolated from local wells were compared with the depths calculated from H/V analysis. Bedrock depths calculated from the seismometer array correlate with the major trends indicated by the surrounding wells. A final contour map was developed from depth to bedrock measured by all wells and depths calculated from the average Vs and estimated resonance at select Spectraseis 3-component seismometers.
-
2011-01-01
Background Technological advances are progressively increasing the application of genomics to a wider array of economically and ecologically important species. High-density maps enriched for transcribed genes facilitate the discovery of connections between genes and phenotypes. We report the construction of a high-density linkage map of expressed genes for the heterozygous genome of Eucalyptus using Single Feature Polymorphism (SFP) markers. Results SFP discovery and mapping was achieved using pseudo-testcross screening and selective mapping to simultaneously optimize linkage mapping and microarray costs. SFP genotyping was carried out by hybridizing complementary RNA prepared from 4.5 year-old trees xylem to an SFP array containing 103,000 25-mer oligonucleotide probes representing 20,726 unigenes derived from a modest size expressed sequence tags collection. An SFP-mapping microarray with 43,777 selected candidate SFP probes representing 15,698 genes was subsequently designed and used to genotype SFPs in a larger subset of the segregating population drawn by selective mapping. A total of 1,845 genes were mapped, with 884 of them ordered with high likelihood support on a framework map anchored to 180 microsatellites with average density of 1.2 cM. Using more probes per unigene increased by two-fold the likelihood of detecting segregating SFPs eventually resulting in more genes mapped. In silico validation showed that 87% of the SFPs map to the expected location on the 4.5X draft sequence of the Eucalyptus grandis genome. Conclusions The Eucalyptus 1,845 gene map is the most highly enriched map for transcriptional information for any forest tree species to date. It represents a major improvement on the number of genes previously positioned on Eucalyptus maps and provides an initial glimpse at the gene space for this global tree genome. A general protocol is proposed to build high-density transcript linkage maps in less characterized plant species by SFP genotyping with a concurrent objective of reducing microarray costs. HIgh-density gene-rich maps represent a powerful resource to assist gene discovery endeavors when used in combination with QTL and association mapping and should be especially valuable to assist the assembly of reference genome sequences soon to come for several plant and animal species. PMID:21492453
-
X-ray metrology of an array of active edge pixel sensors for use at synchrotron light sources
NASA Astrophysics Data System (ADS)
Plackett, R.; Arndt, K.; Bortoletto, D.; Horswell, I.; Lockwood, G.; Shipsey, I.; Tartoni, N.; Williams, S.
2018-01-01
We report on the production and testing of an array of active edge silicon sensors as a prototype of a large array. Four Medipix3RX.1 chips were bump bonded to four single chip sized Advacam active edge n-on-n sensors. These detectors were then mounted into a 2 by 2 array and tested on B16 at Diamond Light Source with an x-ray beam spot of 2um. The results from these tests, compared with optical metrology demonstrate that this type of sensor is sensitive to the physical edge of the silicon, with only a modest loss of efficiency in the final two rows of pixels. We present the efficiency maps recorded with the microfocus beam and a sample powder diffraction measurement. These results give confidence that this sensor technology can be used effectively in larger arrays of detectors at synchrotron light sources.
-
Superconducting micro-resonator arrays with ideal frequency spacing
NASA Astrophysics Data System (ADS)
Liu, X.; Guo, W.; Wang, Y.; Dai, M.; Wei, L. F.; Dober, B.; McKenney, C. M.; Hilton, G. C.; Hubmayr, J.; Austermann, J. E.; Ullom, J. N.; Gao, J.; Vissers, M. R.
2017-12-01
We present a wafer trimming technique for producing superconducting micro-resonator arrays with highly uniform frequency spacing. With the light-emitting diode mapper technique demonstrated previously, we first map the measured resonance frequencies to the physical resonators. Then, we fine-tune each resonator's frequency by lithographically trimming a small length, calculated from the deviation of the measured frequency from its design value, from the interdigitated capacitor. We demonstrate this technique on a 127-resonator array made from titanium-nitride and show that the uniformity of frequency spacing is greatly improved. The array yield in terms of frequency collisions improves from 84% to 97%, while the quality factors and noise properties are unaffected. The wafer trimming technique provides an easy-to-implement tool to improve the yield and multiplexing density of large resonator arrays, which is important for various applications in photon detection and quantum computing.
-
Holographic beam mapping of the CHIME pathfinder array
NASA Astrophysics Data System (ADS)
Berger, Philippe; Newburgh, Laura B.; Amiri, Mandana; Bandura, Kevin; Cliche, Jean-François; Connor, Liam; Deng, Meiling; Denman, Nolan; Dobbs, Matt; Fandino, Mateus; Gilbert, Adam J.; Good, Deborah; Halpern, Mark; Hanna, David; Hincks, Adam D.; Hinshaw, Gary; Höfer, Carolin; Johnson, Andre M.; Landecker, Tom L.; Masui, Kiyoshi W.; Mena Parra, Juan; Oppermann, Niels; Pen, Ue-Li; Peterson, Jeffrey B.; Recnik, Andre; Robishaw, Timothy; Shaw, J. Richard; Siegel, Seth; Sigurdson, Kris; Smith, Kendrick; Storer, Emilie; Tretyakov, Ian; Van Gassen, Kwinten; Vanderlinde, Keith; Wiebe, Donald
2016-08-01
The Canadian Hydrogen Intensity Mapping Experiment (CHIME) Pathfinder radio telescope is currently surveying the northern hemisphere between 400 and 800 MHz. By mapping the large scale structure of neutral hydrogen through its redshifted 21 cm line emission between z 0.8-2.5 CHIME will contribute to our understanding of Dark Energy. Bright astrophysical foregrounds must be separated from the neutral hydrogen signal, a task which requires precise characterization of the polarized telescope beams. Using the DRAO John A. Galt 26 m telescope, we have developed a holography instrument and technique for mapping the CHIME Pathfinder beams. We report the status of the instrument and initial results of this effort.
-
LOFAR Lightning Imaging: Mapping Lightning With Nanosecond Precision
NASA Astrophysics Data System (ADS)
Hare, B. M.; Scholten, O.; Bonardi, A.; Buitink, S.; Corstanje, A.; Ebert, U.; Falcke, H.; Hörandel, J. R.; Leijnse, H.; Mitra, P.; Mulrey, K.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Rutjes, C.; Schellart, P.; Thoudam, S.; Trinh, T. N. G.; ter Veen, S.; Winchen, T.
2018-03-01
Lightning mapping technology has proven instrumental in understanding lightning. In this work we present a pipeline that can use lightning observed by the LOw-Frequency ARray (LOFAR) radio telescope to construct a 3-D map of the flash. We show that LOFAR has unparalleled precision, on the order of meters, even for lightning flashes that are over 20 km outside the area enclosed by LOFAR antennas (˜3,200 km2), and can potentially locate over 10,000 sources per lightning flash. We also show that LOFAR is the first lightning mapping system that is sensitive to the spatial structure of the electrical current during individual lightning leader steps.
-
arrayCGHbase: an analysis platform for comparative genomic hybridization microarrays
Menten, Björn; Pattyn, Filip; De Preter, Katleen; Robbrecht, Piet; Michels, Evi; Buysse, Karen; Mortier, Geert; De Paepe, Anne; van Vooren, Steven; Vermeesch, Joris; Moreau, Yves; De Moor, Bart; Vermeulen, Stefan; Speleman, Frank; Vandesompele, Jo
2005-01-01
Background The availability of the human genome sequence as well as the large number of physically accessible oligonucleotides, cDNA, and BAC clones across the entire genome has triggered and accelerated the use of several platforms for analysis of DNA copy number changes, amongst others microarray comparative genomic hybridization (arrayCGH). One of the challenges inherent to this new technology is the management and analysis of large numbers of data points generated in each individual experiment. Results We have developed arrayCGHbase, a comprehensive analysis platform for arrayCGH experiments consisting of a MIAME (Minimal Information About a Microarray Experiment) supportive database using MySQL underlying a data mining web tool, to store, analyze, interpret, compare, and visualize arrayCGH results in a uniform and user-friendly format. Following its flexible design, arrayCGHbase is compatible with all existing and forthcoming arrayCGH platforms. Data can be exported in a multitude of formats, including BED files to map copy number information on the genome using the Ensembl or UCSC genome browser. Conclusion ArrayCGHbase is a web based and platform independent arrayCGH data analysis tool, that allows users to access the analysis suite through the internet or a local intranet after installation on a private server. ArrayCGHbase is available at . PMID:15910681
-
Gravity and magnetic anomaly data analysis
NASA Technical Reports Server (NTRS)
Braile, L. W.; Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator)
1982-01-01
Progress on the analysis MAGSAT data is reported. The MAGSAT data from 40 deg S to 70 deg N latitude and 30 deg W to 60 E longitude was reduced to radial polarization. In addition, gravity anomaly data from this area were processed and a variety of filtered maps were prepared for combined interpretation of the gravity and magnetic data in conjunction with structural and tectonic maps of the area. The VERSATEC listings and cross-reference maps of variable and array names for the spherical Earth analysis programs NVERTSM, SMFLD, NVERTG, and GFLD were also prepared.
-
Pressure mapping at orthopaedic joint interfaces with fiber Bragg gratings
NASA Astrophysics Data System (ADS)
Mohanty, Lipi; Tjin, Swee Chuan
2006-02-01
We present the concept of a fiber-optic sensor that can be used for pressure mapping at the prosthetic knee joint, in vitro and in vivo. An embedded array of fiber Bragg gratings is used to measure the load on the tibial spacer. The sensor gives the magnitude and the location of the applied load. The effect of material properties on the sensitivity of each subgrating is presented. The wavelength-shift maps show the malalignment of implants and demonstrate the potential of this sensor for use during total knee arthroplasty.
-
SNPConvert: SNP Array Standardization and Integration in Livestock Species.
Nicolazzi, Ezequiel Luis; Marras, Gabriele; Stella, Alessandra
2016-06-09
One of the main advantages of single nucleotide polymorphism (SNP) array technology is providing genotype calls for a specific number of SNP markers at a relatively low cost. Since its first application in animal genetics, the number of available SNP arrays for each species has been constantly increasing. However, conversely to that observed in whole genome sequence data analysis, SNP array data does not have a common set of file formats or coding conventions for allele calling. Therefore, the standardization and integration of SNP array data from multiple sources have become an obstacle, especially for users with basic or no programming skills. Here, we describe the difficulties related to handling SNP array data, focusing on file formats, SNP allele coding, and mapping. We also present SNPConvert suite, a multi-platform, open-source, and user-friendly set of tools to overcome these issues. This tool, which can be integrated with open-source and open-access tools already available, is a first step towards an integrated system to standardize and integrate any type of raw SNP array data. The tool is available at: https://github. com/nicolazzie/SNPConvert.git.
-
Solar Glare Hazard Analysis Tool v. 4.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Clifford L.; Sims, Cianan
SGHAT predicts the occurrence and intensity of glare caused by a user-specified solar panel array when viewed from one or more observation points. An interactive mapping interface is used to determine the latitude, longitude and elevation of the array and observation points. The presence and intensity of glare is then calculated along a given time interval throughout the year, based on the position of the sun. The potential ocular hazard is also reported. The maximum energy production of the solar array is also estimated so that alternative designs can be compared to determine the design that yields the most energymore » production while mitigating glare.« less
-
Solar Glaze Hazard Analysis Tool v. 3.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Clifford K.; Sims, Cianan A.
SGHAT predicts the occurrence and intensity of glare caused by a user-specified solar panel array when viewed from one or more observation points. An interactive mapping interface is used to determine the latitude, longitude and elevation of the array and observation points. The presence and intensity of glare is then calculated along a given time interval throughout the year, based on the position of the sun. The potential ocular hazard is also reported. The maximum energy production of the solar array is also estimated so that alternative designs can be compared to determine the design that yields the most energymore » production while mitigating glare.« less
-
Reminiscences regarding Professor R.N. Christiansen
NASA Astrophysics Data System (ADS)
Swarup, Govind
2008-11-01
In this short paper I describe my initiation into the field of radio astronomy fifty years ago, under the guidance of Professor W.N. ('Chris') Christiansen, soon after I joined the C.S.I.R.O.'s Division of Radiophysics (RP) in Sydney, Australia, in 1953 under a 2-year Colombo Plan Fellowship. During the early 1950s Christiansen had developed a remarkable 21 cm interferometric grating array of 32 east-west aligned parabolic dishes and another array of 16 dishes in a north-south direction at Potts Hill. Christiansen and Warburton used these two arrays to scan the Sun strip-wise yielding radio brightness distribution at various position angles. During a three month period I assisted them in making a 2-dimensional map of the Sun by a complex Fourier transform process. In the second year of my Fellowship, Parthasarathy and I converted the 32-antenna east-west grating array to study solar radio emission at 60cm. During this work, I noticed that the procedure adopted by Christiansen for phase adjustment of the grating array was time consuming. Based on this experience, I later developed an innovative technique at Stanford in 1959 for phase adjustment of long transmission lines and paths in space. In a bid to improve on the method used by Christiansen to make a 2-dimensional map of the Sun from strip scans, I suggested to R.N. Bracewell in 1962 a revolutionary method for direct 2-dimensional imaging without Fourier transforms. Bracewell and Riddle developed the method for making a 2-dimensional map of the Moon using strip scans obtained with the 32 element interferometer at Stanford. The method has since revolutionized medical tomography. I describe these developments here to highlight my initial work with Christiansen and to show how new ideas often are developed by necessity and have their origin in prior experience! The 32 Potts Hill solar grating array dishes were eventually donated by the C.S.I.R.0. to India and were set up by me at Kalyan near Mumbai, forming the core of the first radio astronomy group in India. This group went on to construct two of the world's largest radio telescopes, the Ooty Radio Telescope and the Giant Metrewave Radio Telescope. Chris Christiansen was not only my guru but also a mentor and a friend for more than fifty years. I fondly remember his very warm personality.
-
NASA Astrophysics Data System (ADS)
Worthington, L. L.; Ranasinghe, N. R.; Schmandt, B.; Jiang, C.; Finlay, T. S.; Bilek, S. L.; Aster, R. C.
2017-12-01
The Socorro Magma Body (SMB) is one of the largest recognized active mid-crustal magma intrusions globally. Inflation of the SMB drives sporadically seismogenic uplift at rates of up to of few millimeters per year. We examine the upper crustal structure of the northern section of the SMB region using ambient noise seismic data collected from the Sevilleta Array and New Mexico Tech (NMT) seismic network to constrain basin structure and identify possible upper crustal heterogeneities caused by heat flow and/or fluid or magma migration to shallower depths. The Sevilleta Array comprised 801 vertical-component Nodal seismic stations with 10-Hz seismometers deployed within the Sevilleta National Wildlife Refuge in the central Rio Grande rift north of Socorro, New Mexico, for a period of 12 days during February 2015. Five short period seismic stations from the NMT network located south of the Sevilleta array are also used to improve the raypath coverage outside the Sevilleta array. Inter-station ambient noise cross-correlations were computed from all available 20-minute time windows and stacked to obtain estimates of the vertical component Green's function. Clear fundamental mode Rayleigh wave energy is observed from 3 to 6 s period. Beamforming indicates prominent noise sources from the southwest, near Baja California, and the southeast, in the Gulf of Mexico. The frequency-time analysis method was implemented to measure fundamental mode Rayleigh wave phase velocities and the resulting inter-station travel times were inverted to obtain 2-D phase velocity maps. One-dimensional sensitivity kernels indicate that the Rayleigh wave phase velocity maps are sensitive to a depth interval of 1 to 8 km, depending on wave period. The maps show (up to 40%) variations in phase velocity within the Sevilleta Array, with the largest variations found for periods of 5-6 seconds. Holocene to upper Pleistocene, alluvial sediments found in the Socorro Basin consistently show lower phase velocities than the basin-bounding ranges. Two areas of localized low velocities will be the focus of future work and interpretation. One low velocity zone appears to be co-located with the area of maximum InSAR-observed uplift related to the SMB. A second low velocity zone surrounds the Paleogene-aged Black Butte Volcano.
-
Myllymaa, Sami; Myllymaa, Katja; Korhonen, Hannu; Töyräs, Juha; Jääskeläinen, Juha E; Djupsund, Kaj; Tanila, Heikki; Lappalainen, Reijo
2009-06-15
Modern microfabrication techniques make it possible to develop microelectrode arrays that may be utilized not only in neurophysiological research but also in the clinic, e.g. in neurosurgery and as elements of neural prostheses. The aim of this study was to test whether a flexible microelectrode array is suitable for recording cortical surface field potentials in rats. Polyimide-based microelectrode arrays were fabricated by utilizing microfabrication techniques e.g. photolithography and magnetron sputter deposition. The present microelectrode array consists of eight platinum microelectrodes (round-shaped, Ø: 200 microm), transmission lines and connector pads sandwiched between two thin layers of biocompatible polyimide. The microelectrode arrays were electrochemically characterized by impedance spectroscopy in physiological saline solution and successfully tested in vivo by conducting acute and chronic measurements of evoked potentials on the surface of rat cortex. The arrays proved excellent flexibility and mechanical strength during handling and implantation onto the surface of cortex. The excellent electrochemical characteristics and stable in vivo recordings with high spatiotemporal resolution highlight the potential of these arrays. The fabrication protocol described here allows implementation of several other neural interfaces with different layouts, material selections or target areas either for recording or stimulation purposes.
-
Characterization of switching field distributions in Ising-like magnetic arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fraleigh, Robert D.; Kempinger, Susan; Lammert, Paul E.
The switching field distribution within arrays of single-domain ferromagnetic islands incorporates both island-island interactions and quenched disorder in island geometry. Separating these two contributions is important for disentangling the effects of disorder and interactions in themagnetization dynamics of island arrays. Using submicron, spatially resolved Kerr imaging in an external magnetic field for islands with perpendicular magnetic anisotropy, we map out the evolution of island arrays during hysteresis loops. Resolving and tracking individual islands across four different lattice types and a range of interisland spacings, we can extract the individual switching fields of every island and thereby quantitatively determine the contributionsmore » of interactions and quenched disorder in the arrays. The width of the switching field distribution is found to be well fitted by a simple model comprising the sum of an array-independent contribution (interpreted as disorder induced) and a term proportional to the maximum field the entire rest of the array could exert on a single island, i.e., in a fully polarized state. This supports the claim that disorder in these arrays is primarily a single-island property and provides a methodology by which to quantify such disorder.« less
-
NASA Astrophysics Data System (ADS)
Aizebeokhai, Ahzegbobor P.; Oyeyemi, Kehinde D.
2014-12-01
The use of most conventional electrode configurations in electrical resistivity survey is often time consuming and labour intensive, especially when using manual data acquisition systems. Often, data acquisition teams tend to reduce data density so as to speed up field operation thereby reducing the survey cost; but this could significantly degrade the quality and resolution of the inverse models. In the present work, the potential of using the multiple-gradient array, a non-conventional electrode configuration, for practical cost effective and rapid subsurface resistivity and induced polarization mapping was evaluated. The array was used to conduct 2D resistivity and time-domain induced polarization imaging along two traverses in a study site at Ota, southwestern Nigeria. The subsurface was characterised and the main aquifer delineated using the inverse resistivity and chargeability images obtained. The performance of the multiple-gradient array was evaluated by correlating the 2D resistivity and chargeability images with those of the conventional Wenner array as well as the result of some soundings conducted along the same traverses using Schlumberger array. The multiple-gradient array has been found to have the advantage of measurement logistics and improved image resolution over the Wenner array.
-
Characterization of switching field distributions in Ising-like magnetic arrays
NASA Astrophysics Data System (ADS)
Fraleigh, Robert D.; Kempinger, Susan; Lammert, Paul E.; Zhang, Sheng; Crespi, Vincent H.; Schiffer, Peter; Samarth, Nitin
2017-04-01
The switching field distribution within arrays of single-domain ferromagnetic islands incorporates both island-island interactions and quenched disorder in island geometry. Separating these two contributions is important for disentangling the effects of disorder and interactions in the magnetization dynamics of island arrays. Using submicron, spatially resolved Kerr imaging in an external magnetic field for islands with perpendicular magnetic anisotropy, we map out the evolution of island arrays during hysteresis loops. Resolving and tracking individual islands across four different lattice types and a range of interisland spacings, we can extract the individual switching fields of every island and thereby quantitatively determine the contributions of interactions and quenched disorder in the arrays. The width of the switching field distribution is found to be well fitted by a simple model comprising the sum of an array-independent contribution (interpreted as disorder induced) and a term proportional to the maximum field the entire rest of the array could exert on a single island, i.e., in a fully polarized state. This supports the claim that disorder in these arrays is primarily a single-island property and provides a methodology by which to quantify such disorder.
-
Protostellar Outflows Mapped with ALMA and Techniques to Include Short Spacings
NASA Astrophysics Data System (ADS)
Plunkett, Adele
2018-01-01
Protostellar outflows are early signs of star formation, yet in cluster environments - common sites of star formation - their role and interaction with surrounding gas are complicated. Protostellar outflows are interesting and complex because they connect protostars (scales 10s au) to the surrounding gas environment (few pc), and their morphology constrains launching and/or accretion modes. A complete outflow study must use observing methods that recover several orders of magnitude of spatial scales, ideally with sub-arcsecond resolution and mapping over a few parsecs. ALMA provides high-resolution observations of outflows, and in some cases outflows have been mapped in clusters. Combining with observations using the Total Power array is possible, but challenging, and a large single dish telescope providing more overlap in uv space is advantageous. In this presentation I show protostellar outflows observed with ALMA using 12m, 7m, and To tal Power arrays. With a new CASA tool TP2VIS we create total power ``visibility'' data and perform joint imaging and deconvolution of interferometry and single dish data. TP2VIS will ultimately provide synergy between ALMA and AtLAST data.
-
Microphone Array Phased Processing System (MAPPS): Version 4.0 Manual
NASA Technical Reports Server (NTRS)
Watts, Michael E.; Mosher, Marianne; Barnes, Michael; Bardina, Jorge
1999-01-01
A processing system has been developed to meet increasing demands for detailed noise measurement of individual model components. The Microphone Array Phased Processing System (MAPPS) uses graphical user interfaces to control all aspects of data processing and visualization. The system uses networked parallel computers to provide noise maps at selected frequencies in a near real-time testing environment. The system has been successfully used in the NASA Ames 7- by 10-Foot Wind Tunnel.
-
Akerley, John
2010-04-17
Map, image, and data files, and a summary report of a high-resolution aeromagnetic survey of southern Maui, Hawai'i completed by EDCON-PRJ, Inc. for Ormat Nevada Inc using an helicopter and a towed sensor array.
-
HARMONIC SPACE ANALYSIS OF PULSAR TIMING ARRAY REDSHIFT MAPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roebber, Elinore; Holder, Gilbert, E-mail: roebbere@physics.mcgill.ca
2017-01-20
In this paper, we propose a new framework for treating the angular information in the pulsar timing array (PTA) response to a gravitational wave (GW) background based on standard cosmic microwave background techniques. We calculate the angular power spectrum of the all-sky gravitational redshift pattern induced at the Earth for both a single bright source of gravitational radiation and a statistically isotropic, unpolarized Gaussian random GW background. The angular power spectrum is the harmonic transform of the Hellings and Downs curve. We use the power spectrum to examine the expected variance in the Hellings and Downs curve in both cases.more » Finally, we discuss the extent to which PTAs are sensitive to the angular power spectrum and find that the power spectrum sensitivity is dominated by the quadrupole anisotropy of the gravitational redshift map.« less
-
Mobile and replicated alignment of arrays in data-parallel programs
NASA Technical Reports Server (NTRS)
Chatterjee, Siddhartha; Gilbert, John R.; Schreiber, Robert
1993-01-01
When a data-parallel language like FORTRAN 90 is compiled for a distributed-memory machine, aggregate data objects (such as arrays) are distributed across the processor memories. The mapping determines the amount of residual communication needed to bring operands of parallel operations into alignment with each other. A common approach is to break the mapping into two stages: first, an alignment that maps all the objects to an abstract template, and then a distribution that maps the template to the processors. We solve two facets of the problem of finding alignments that reduce residual communication: we determine alignments that vary in loops, and objects that should have replicated alignments. We show that loop-dependent mobile alignment is sometimes necessary for optimum performance, and we provide algorithms with which a compiler can determine good mobile alignments for objects within do loops. We also identify situations in which replicated alignment is either required by the program itself (via spread operations) or can be used to improve performance. We propose an algorithm based on network flow that determines which objects to replicate so as to minimize the total amount of broadcast communication in replication. This work on mobile and replicated alignment extends our earlier work on determining static alignment.
-
KinSNP software for homozygosity mapping of disease genes using SNP microarrays.
Amir, El-Ad David; Bartal, Ofer; Morad, Efrat; Nagar, Tal; Sheynin, Jony; Parvari, Ruti; Chalifa-Caspi, Vered
2010-08-01
Consanguineous families affected with a recessive genetic disease caused by homozygotisation of a mutation offer a unique advantage for positional cloning of rare diseases. Homozygosity mapping of patient genotypes is a powerful technique for the identification of the genomic locus harbouring the causing mutation. This strategy relies on the observation that in these patients a large region spanning the disease locus is also homozygous with high probability. The high marker density in single nucleotide polymorphism (SNP) arrays is extremely advantageous for homozygosity mapping. We present KinSNP, a user-friendly software tool for homozygosity mapping using SNP arrays. The software searches for stretches of SNPs which are homozygous to the same allele in all ascertained sick individuals. User-specified parameters control the number of allowed genotyping 'errors' within homozygous blocks. Candidate disease regions are then reported in a detailed, coloured Excel file, along with genotypes of family members and healthy controls. An interactive genome browser has been included which shows homozygous blocks, individual genotypes, genes and further annotations along the chromosomes, with zooming and scrolling capabilities. The software has been used to identify the location of a mutated gene causing insensitivity to pain in a large Bedouin family. KinSNP is freely available from.
-
KinSNP software for homozygosity mapping of disease genes using SNP microarrays
2010-01-01
Consanguineous families affected with a recessive genetic disease caused by homozygotisation of a mutation offer a unique advantage for positional cloning of rare diseases. Homozygosity mapping of patient genotypes is a powerful technique for the identification of the genomic locus harbouring the causing mutation. This strategy relies on the observation that in these patients a large region spanning the disease locus is also homozygous with high probability. The high marker density in single nucleotide polymorphism (SNP) arrays is extremely advantageous for homozygosity mapping. We present KinSNP, a user-friendly software tool for homozygosity mapping using SNP arrays. The software searches for stretches of SNPs which are homozygous to the same allele in all ascertained sick individuals. User-specified parameters control the number of allowed genotyping 'errors' within homozygous blocks. Candidate disease regions are then reported in a detailed, coloured Excel file, along with genotypes of family members and healthy controls. An interactive genome browser has been included which shows homozygous blocks, individual genotypes, genes and further annotations along the chromosomes, with zooming and scrolling capabilities. The software has been used to identify the location of a mutated gene causing insensitivity to pain in a large Bedouin family. KinSNP is freely available from http://bioinfo.bgu.ac.il/bsu/software/kinSNP. PMID:20846928
-
Mapping Electrical Crosstalk in Pixelated Sensor Arrays
NASA Technical Reports Server (NTRS)
Seshadri, S.; Cole, D. M.; Hancock, B. R.; Smith, R. M.
2008-01-01
Electronic coupling effects such as Inter-Pixel Capacitance (IPC) affect the quantitative interpretation of image data from CMOS, hybrid visible and infrared imagers alike. Existing methods of characterizing IPC do not provide a map of the spatial variation of IPC over all pixels. We demonstrate a deterministic method that provides a direct quantitative map of the crosstalk across an imager. The approach requires only the ability to reset single pixels to an arbitrary voltage, different from the rest of the imager. No illumination source is required. Mapping IPC independently for each pixel is also made practical by the greater S/N ratio achievable for an electrical stimulus than for an optical stimulus, which is subject to both Poisson statistics and diffusion effects of photo-generated charge. The data we present illustrates a more complex picture of IPC in Teledyne HgCdTe and HyViSi focal plane arrays than is presently understood, including the presence of a newly discovered, long range IPC in the HyViSi FPA that extends tens of pixels in distance, likely stemming from extended field effects in the fully depleted substrate. The sensitivity of the measurement approach has been shown to be good enough to distinguish spatial structure in IPC of the order of 0.1%.
-
Pirrone, Gregory F; Mathew, Rose M; Makarov, Alexey A; Bernardoni, Frank; Klapars, Artis; Hartman, Robert; Limanto, John; Regalado, Erik L
2018-03-30
Impurity fate and purge studies are critical in order to establish an effective impurity control strategy for approval of the commercial filing application of new medicines. Reversed phase liquid chromatography-diode array-mass spectrometry (RPLC-DAD-MS) has traditionally been the preferred tool for impurity fate mapping. However, separation of some reaction mixtures by LC can be very problematic requiring combination LC-UV for area % analysis and a different LC-MS method for peak identification. In addition, some synthetic intermediates might be chemically susceptible to the aqueous conditions used in RPLC separations. In this study, the use of supercritical fluid chromatography-photodiode array-electrospray ionization mass spectrometry (SFC-PDA-ESIMS) for fate and purge of two specified impurities in the 1-uridine starting material from the synthesis of a bis-piv 2'keto-uridine, an intermediate in the synthesis of uprifosbuvir, a treatment under investigation for chronic hepatitis C infection. Readily available SFC instrumentation with a Chiralpak IC column (4.6 × 150 mm, 3 μm) and ethanol: carbon dioxide based mobile phase eluent enabled the separation of closely related components from complex reaction mixtures where RLPC failed to deliver optimal chromatographic performance. These results illustrate how SFC combined with PDA and ESI-MS detection can become a powerful tool for direct impurity fate mapping across multiple reaction steps. Copyright © 2018 Elsevier B.V. All rights reserved.
-
NASA Technical Reports Server (NTRS)
Rule, T. D.; Kim, J.; Kalkur, T. S.
1998-01-01
Boiling heat transfer is an efficient means of heat transfer because a large amount of heat can be removed from a surface using a relatively small temperature difference between the surface and the bulk liquid. However, the mechanisms that govern boiling heat transfer are not well understood. Measurements of wall temperature and heat flux near the wall would add to the database of knowledge which is necessary to understand the mechanisms of nucleate boiling. A heater array has been developed which contains 96 heater elements within a 2.5 mm square area. The temperature of each heater element is held constant by an electronic control system similar to a hot-wire anemometer. The voltage that is being applied to each heater element can be measured and digitized using a high-speed A/D converter, and this digital information can be compiled into a series of heat-flux maps. Information for up to 10,000 heat flux maps can be obtained each second. The heater control system, the A/D system and the heater array construction are described in detail. Results are presented which show that this is an effective method of measuring the local heat flux during nucleate and transition boiling. Heat flux maps are obtained for pool boiling in FC-72 on a horizontal surface. Local heat flux variations are shown to be three to six times larger than variations in the spatially averaged heat flux.
-
D'Agnese, F. A.; Faunt, C.C.; Turner, A.K.; ,
1996-01-01
The recharge and discharge components of the Death Valley regional groundwater flow system were defined by techniques that integrated disparate data types to develop a spatially complex representation of near-surface hydrological processes. Image classification methods were applied to multispectral satellite data to produce a vegetation map. The vegetation map was combined with ancillary data in a GIS to delineate different types of wetlands, phreatophytes and wet playa areas. Existing evapotranspiration-rate estimates were used to calculate discharge volumes for these area. An empirical method of groundwater recharge estimation was modified to incorporate data describing soil-moisture conditions, and a recharge potential map was produced. These discharge and recharge maps were readily converted to data arrays for numerical modelling codes. Inverse parameter estimation techniques also used these data to evaluate the reliability and sensitivity of estimated values.The recharge and discharge components of the Death Valley regional groundwater flow system were defined by remote sensing and GIS techniques that integrated disparate data types to develop a spatially complex representation of near-surface hydrological processes. Image classification methods were applied to multispectral satellite data to produce a vegetation map. This map provided a basis for subsequent evapotranspiration and infiltration estimations. The vegetation map was combined with ancillary data in a GIS to delineate different types of wetlands, phreatophytes and wet playa areas. Existing evapotranspiration-rate estimates were then used to calculate discharge volumes for these areas. A previously used empirical method of groundwater recharge estimation was modified by GIS methods to incorporate data describing soil-moisture conditions, and a recharge potential map was produced. These discharge and recharge maps were readily converted to data arrays for numerical modelling codes. Inverse parameter estimation techniques also used these data to evaluate the reliability and sensitivity of estimated values.
-
Bassil, Nahla V; Davis, Thomas M; Zhang, Hailong; Ficklin, Stephen; Mittmann, Mike; Webster, Teresa; Mahoney, Lise; Wood, David; Alperin, Elisabeth S; Rosyara, Umesh R; Koehorst-Vanc Putten, Herma; Monfort, Amparo; Sargent, Daniel J; Amaya, Iraida; Denoyes, Beatrice; Bianco, Luca; van Dijk, Thijs; Pirani, Ali; Iezzoni, Amy; Main, Dorrie; Peace, Cameron; Yang, Yilong; Whitaker, Vance; Verma, Sujeet; Bellon, Laurent; Brew, Fiona; Herrera, Raul; van de Weg, Eric
2015-03-07
A high-throughput genotyping platform is needed to enable marker-assisted breeding in the allo-octoploid cultivated strawberry Fragaria × ananassa. Short-read sequences from one diploid and 19 octoploid accessions were aligned to the diploid Fragaria vesca 'Hawaii 4' reference genome to identify single nucleotide polymorphisms (SNPs) and indels for incorporation into a 90 K Affymetrix® Axiom® array. We report the development and preliminary evaluation of this array. About 36 million sequence variants were identified in a 19 member, octoploid germplasm panel. Strategies and filtering pipelines were developed to identify and incorporate markers of several types: di-allelic SNPs (66.6%), multi-allelic SNPs (1.8%), indels (10.1%), and ploidy-reducing "haploSNPs" (11.7%). The remaining SNPs included those discovered in the diploid progenitor F. iinumae (3.9%), and speculative "codon-based" SNPs (5.9%). In genotyping 306 octoploid accessions, SNPs were assigned to six classes with Affymetrix's "SNPolisher" R package. The highest quality classes, PolyHigh Resolution (PHR), No Minor Homozygote (NMH), and Off-Target Variant (OTV) comprised 25%, 38%, and 1% of array markers, respectively. These markers were suitable for genetic studies as demonstrated in the full-sib family 'Holiday' × 'Korona' with the generation of a genetic linkage map consisting of 6,594 PHR SNPs evenly distributed across 28 chromosomes with an average density of approximately one marker per 0.5 cM, thus exceeding our goal of one marker per cM. The Affymetrix IStraw90 Axiom array is the first high-throughput genotyping platform for cultivated strawberry and is commercially available to the worldwide scientific community. The array's high success rate is likely driven by the presence of naturally occurring variation in ploidy level within the nominally octoploid genome, and by effectiveness of the employed array design and ploidy-reducing strategies. This array enables genetic analyses including generation of high-density linkage maps, identification of quantitative trait loci for economically important traits, and genome-wide association studies, thus providing a basis for marker-assisted breeding in this high value crop.
-
Liang, Yujie; Ying, Rendong; Lu, Zhenqi; Liu, Peilin
2014-01-01
In the design phase of sensor arrays during array signal processing, the estimation performance and system cost are largely determined by array aperture size. In this article, we address the problem of joint direction-of-arrival (DOA) estimation with distributed sparse linear arrays (SLAs) and propose an off-grid synchronous approach based on distributed compressed sensing to obtain larger array aperture. We focus on the complex source distribution in the practical applications and classify the sources into common and innovation parts according to whether a signal of source can impinge on all the SLAs or a specific one. For each SLA, we construct a corresponding virtual uniform linear array (ULA) to create the relationship of random linear map between the signals respectively observed by these two arrays. The signal ensembles including the common/innovation sources for different SLAs are abstracted as a joint spatial sparsity model. And we use the minimization of concatenated atomic norm via semidefinite programming to solve the problem of joint DOA estimation. Joint calculation of the signals observed by all the SLAs exploits their redundancy caused by the common sources and decreases the requirement of array size. The numerical results illustrate the advantages of the proposed approach. PMID:25420150
-
Lo, Shun Qiang; Koh, Dawn X. P.; Sng, Judy C. G.; Augustine, George J.
2015-01-01
Abstract. We describe an experimental approach that uses light to both control and detect neuronal activity in mouse barrel cortex slices: blue light patterned by a digital micromirror array system allowed us to photostimulate specific layers and columns, while a red-shifted voltage-sensitive dye was used to map out large-scale circuit activity. We demonstrate that such all-optical mapping can interrogate various circuits in somatosensory cortex by sequentially activating different layers and columns. Further, mapping in slices from whisker-deprived mice demonstrated that chronic sensory deprivation did not significantly alter feedforward inhibition driven by layer 5 pyramidal neurons. Further development of voltage-sensitive optical probes should allow this all-optical mapping approach to become an important and high-throughput tool for mapping circuit interactions in the brain. PMID:26158003
-
Transducer with a sense of touch
NASA Technical Reports Server (NTRS)
Bejczy, A. K.; Paine, G.
1979-01-01
Matrix of pressure sensors determines shape and pressure distribution of object in contact with its surface. Output can be used to develop pressure map of objects' surface and displayed as array of alphanumeric symbols on video monitor.
-
Direct shear mapping - a new weak lensing tool
NASA Astrophysics Data System (ADS)
de Burgh-Day, C. O.; Taylor, E. N.; Webster, R. L.; Hopkins, A. M.
2015-08-01
We have developed a new technique called direct shear mapping (DSM) to measure gravitational lensing shear directly from observations of a single background source. The technique assumes the velocity map of an unlensed, stably rotating galaxy will be rotationally symmetric. Lensing distorts the velocity map making it asymmetric. The degree of lensing can be inferred by determining the transformation required to restore axisymmetry. This technique is in contrast to traditional weak lensing methods, which require averaging an ensemble of background galaxy ellipticity measurements, to obtain a single shear measurement. We have tested the efficacy of our fitting algorithm with a suite of systematic tests on simulated data. We demonstrate that we are in principle able to measure shears as small as 0.01. In practice, we have fitted for the shear in very low redshift (and hence unlensed) velocity maps, and have obtained null result with an error of ±0.01. This high-sensitivity results from analysing spatially resolved spectroscopic images (i.e. 3D data cubes), including not just shape information (as in traditional weak lensing measurements) but velocity information as well. Spirals and rotating ellipticals are ideal targets for this new technique. Data from any large Integral Field Unit (IFU) or radio telescope is suitable, or indeed any instrument with spatially resolved spectroscopy such as the Sydney-Australian-Astronomical Observatory Multi-Object Integral Field Spectrograph (SAMI), the Atacama Large Millimeter/submillimeter Array (ALMA), the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) and the Square Kilometer Array (SKA).
-
Fast photoacoustic imaging system based on 320-element linear transducer array.
Yin, Bangzheng; Xing, Da; Wang, Yi; Zeng, Yaguang; Tan, Yi; Chen, Qun
2004-04-07
A fast photoacoustic (PA) imaging system, based on a 320-transducer linear array, was developed and tested on a tissue phantom. To reconstruct a test tomographic image, 64 time-domain PA signals were acquired from a tissue phantom with embedded light-absorption targets. A signal acquisition was accomplished by utilizing 11 phase-controlled sub-arrays, each consisting of four transducers. The results show that the system can rapidly map the optical absorption of a tissue phantom and effectively detect the embedded light-absorbing target. By utilizing the multi-element linear transducer array and phase-controlled imaging algorithm, we thus can acquire PA tomography more efficiently, compared to other existing technology and algorithms. The methodology and equipment thus provide a rapid and reliable approach to PA imaging that may have potential applications in noninvasive imaging and clinic diagnosis.
-
A data management system for engineering and scientific computing
NASA Technical Reports Server (NTRS)
Elliot, L.; Kunii, H. S.; Browne, J. C.
1978-01-01
Data elements and relationship definition capabilities for this data management system are explicitly tailored to the needs of engineering and scientific computing. System design was based upon studies of data management problems currently being handled through explicit programming. The system-defined data element types include real scalar numbers, vectors, arrays and special classes of arrays such as sparse arrays and triangular arrays. The data model is hierarchical (tree structured). Multiple views of data are provided at two levels. Subschemas provide multiple structural views of the total data base and multiple mappings for individual record types are supported through the use of a REDEFINES capability. The data definition language and the data manipulation language are designed as extensions to FORTRAN. Examples of the coding of real problems taken from existing practice in the data definition language and the data manipulation language are given.
-
Effective Padding of Multi-Dimensional Arrays to Avoid Cache Conflict Misses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Changwan; Bao, Wenlei; Cohen, Albert
Caches are used to significantly improve performance. Even with high degrees of set-associativity, the number of accessed data elements mapping to the same set in a cache can easily exceed the degree of associativity, causing conflict misses and lowered performance, even if the working set is much smaller than cache capacity. Array padding (increasing the size of array dimensions) is a well known optimization technique that can reduce conflict misses. In this paper, we develop the first algorithms for optimal padding of arrays for a set associative cache for arbitrary tile sizes, In addition, we develop the first solution tomore » padding for nested tiles and multi-level caches. The techniques are in implemented in PAdvisor tool. Experimental results with multiple benchmarks demonstrate significant performance improvement from use of PAdvisor for padding.« less
-
The Cosmology Large Angular Scale Surveyor (CLASS): 38 GHz Detector Array of Bolometric Polarimeters
NASA Technical Reports Server (NTRS)
Appel, John W.; Ali, Aamir; Amiri, Mandana; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.; Colazo, Felipe;

2014-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) experiment aims to map the polarization of the Cosmic Microwave Background (CMB) at angular scales larger than a few degrees. Operating from Cerro Toco in the Atacama Desert of Chile, it will observe over 65% of the sky at 38, 93, 148, and 217 GHz. In this paper we discuss the design, construction, and characterization of the CLASS 38 GHz detector focal plane, the first ever Q-band bolometric polarimeter array.
-
The cosmology large angular scale surveyor (CLASS): 38-GHz detector array of bolometric polarimeters
NASA Astrophysics Data System (ADS)
Appel, John W.; Ali, Aamir; Amiri, Mandana; Araujo, Derek; Bennet, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Dünner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Gothe, Dominik; Halpern, Mark; Harrington, Kathleen; Hilton, Gene; Hinshaw, Gary F.; Huang, Caroline; Irwin, Kent; Jones, Glenn; Karakula, John; Kogut, Alan J.; Larson, David; Limon, Michele; Lowry, Lindsay; Marriage, Tobias; Mehrle, Nicholas; Miller, Amber D.; Miller, Nathan; Moseley, Samuel H.; Novak, Giles; Reintsema, Carl; Rostem, Karwan; Stevenson, Thomas; Towner, Deborah; U-Yen, Kongpop; Wagner, Emily; Watts, Duncan; Wollack, Edward; Xu, Zhilei; Zeng, Lingzhen
2014-07-01
The Cosmology Large Angular Scale Surveyor (CLASS) experiment aims to map the polarization of the Cosmic Microwave Background (CMB) at angular scales larger than a few degrees. Operating from Cerro Toco in the Atacama Desert of Chile, it will observe over 65% of the sky at 38, 93, 148, and 217 GHz. In this paper we discuss the design, construction, and characterization of the CLASS 38 GHz detector focal plane, the first ever Q-band bolometric polarimeter array.
-
Implementation of a noise reduction circuit for spaceflight IR spectrometers
NASA Technical Reports Server (NTRS)
Ramirez, L.; Hickok, R.; Pain, B.; Staller, C.
1992-01-01
The paper discusses the implementation and analysis of a correlated triple sampling circuit using analog subtractor/integrators. The software and test setup for noise measurements are also described. The correlation circuitry is part of the signal chain for a 256-element InSb line array used in the Visible and Infrared Mapping Spectrometer. Using a focal-plane array (FPA) simulator, system noise measurements of 0.7 DN are obtained. A test setup for FPA/SPE (signal processing electronics) characterization along with noise measurements is demonstrated.
-
2013-04-01
liquid nitrogen cooled mercury cadmium telluride ( MCT ) detector and compare their performance to a commercial FT-IR imaging instrument. We examine the...telluride ( MCT ) detector (InfraRed Associates, Stuart, FL), and in a second widefield imaging configuration, we employed a cooled focal plane array (FPA...experiment, a cooled focal plane array (FPA) was substituted for the bolometer. (b) A cooled single-element MCT detector is utilized with an adjustable
-
Charon Message-Passing Toolkit for Scientific Computations
NASA Technical Reports Server (NTRS)
VanderWijngaart, Rob F.; Yan, Jerry (Technical Monitor)
2000-01-01
Charon is a library, callable from C and Fortran, that aids the conversion of structured-grid legacy codes-such as those used in the numerical computation of fluid flows-into parallel, high- performance codes. Key are functions that define distributed arrays, that map between distributed and non-distributed arrays, and that allow easy specification of common communications on structured grids. The library is based on the widely accepted MPI message passing standard. We present an overview of the functionality of Charon, and some representative results.
-
2006-11-01
study of the NCI60 panel of cancer cell lines [39]. More recently, amplifications of NOTCH3 were noted in ovarian tumors by an SNP array analysis...and the functional role of NOTCH3 was suggested by the ability to suppress cell proliferation by inhibiting NOTCH3 [40]. Allele-specific copy...Identified and functionally validated the oncogene MITF. 40 Park JT, Li M, Nakayama K, et al. Notch3 gene amplification in ovarian cancer. Cancer Res
-
Chowdhury, Mustafa H.; Catchmark, Jeffrey M.; Lakowicz, Joseph R.
2009-01-01
The authors introduce a technique for three-dimensional (3D) imaging of the light transmitted through periodic nanoapertures using a scanning probe to perform optical sectioning microscopy. For a 4×4 nanohole array, the transmitted light displays intensity modulations along the propagation axis, with the maximum intensity occurring at 450 μm above the surface. The propagating fields show low divergence, suggesting a beaming effect induced by the array. At distances within 25 μm from the surface, they observe subwavelength confinement of light propagating from the individual nanoholes. Hence, this technique can potentially be used to map the 3D distribution of propagating light, with high spatial resolution. PMID:19696912
-
Effect of interpolation on parameters extracted from seating interface pressure arrays.
Wininger, Michael; Crane, Barbara
2014-01-01
Interpolation is a common data processing step in the study of interface pressure data collected at the wheelchair seating interface. However, there has been no focused study on the effect of interpolation on features extracted from these pressure maps, nor on whether these parameters are sensitive to the manner in which the interpolation is implemented. Here, two different interpolation paradigms, bilinear versus bicubic spline, are tested for their influence on parameters extracted from pressure array data and compared against a conventional low-pass filtering operation. Additionally, analysis of the effect of tandem filtering and interpolation, as well as the interpolation degree (interpolating to 2, 4, and 8 times sampling density), was undertaken. The following recommendations are made regarding approaches that minimized distortion of features extracted from the pressure maps: (1) filter prior to interpolate (strong effect); (2) use of cubic interpolation versus linear (slight effect); and (3) nominal difference between interpolation orders of 2, 4, and 8 times (negligible effect). We invite other investigators to perform similar benchmark analyses on their own data in the interest of establishing a community consensus of best practices in pressure array data processing.
-
2D XANES-XEOL mapping: observation of enhanced band gap emission from ZnO nanowire arrays
NASA Astrophysics Data System (ADS)
Wang, Zhiqiang; Guo, Xiaoxuan; Sham, Tsun-Kong
2014-05-01
Using 2D XANES-XEOL spectroscopy, it is found that the band gap emission of ZnO nanowire arrays is substantially enhanced i.e. that the intensity ratio between the band gap and defect emissions increases by more than an order of magnitude when the excitation energy is scanned across the O K-edge. Possible mechanisms are discussed.Using 2D XANES-XEOL spectroscopy, it is found that the band gap emission of ZnO nanowire arrays is substantially enhanced i.e. that the intensity ratio between the band gap and defect emissions increases by more than an order of magnitude when the excitation energy is scanned across the O K-edge. Possible mechanisms are discussed. Electronic supplementary information (ESI) available: XEOL spectra with different excitation energies. X-ray attenuation length vs. photon energy. Details of surface defects in ZnO NWs. The second O K-edge and Zn L-edge 2D XANES-XEOL maps. Comparison of the first and second TEY at O K-edge and Zn L-edge scans, respectively. Raman spectra of the ZnO NWs with different IBGE/IDE ratios. See DOI: 10.1039/c4nr01049c
-
Design of LED fish lighting attractors using horizontal/vertical LIDC mapping method.
Shen, S C; Huang, H J
2012-11-19
This study employs a sub-module concept to develop high-brightness light-emitting diode (HB-LED) fishing light arrays to replace traditional fishing light attractors. The horizontal/vertical (H/V) plane light intensity distribution curve (LIDC) of a LED light source are mapped to assist in the design of a non-axisymmetric lens with a fish-attracting light pattern that illuminates sufficiently large areas and alternates between bright and dark. These LED fishing light attractors are capable of attracting schools of fish toward the perimeter of the luminous zone surrounding fishing boats. Three CT2 boats (10 to 20 ton capacity) were recruited to conduct a field test for 1 y on the sea off the southwestern coast of Taiwan. Field tests show that HB-LED fishing light array installed 5 m above the boat deck illuminated a sea surface of 5 × 12 m and achieved an illuminance of 2000 lx. The test results show that the HB-LED fishing light arrays increased the mean catch of the three boats by 5% to 27%. In addition, the experimental boats consumed 15% to 17% less fuel than their counterparts.
-
Usaj, Matej; Tan, Yizhao; Wang, Wen; VanderSluis, Benjamin; Zou, Albert; Myers, Chad L.; Costanzo, Michael; Andrews, Brenda; Boone, Charles
2017-01-01
Providing access to quantitative genomic data is key to ensure large-scale data validation and promote new discoveries. TheCellMap.org serves as a central repository for storing and analyzing quantitative genetic interaction data produced by genome-scale Synthetic Genetic Array (SGA) experiments with the budding yeast Saccharomyces cerevisiae. In particular, TheCellMap.org allows users to easily access, visualize, explore, and functionally annotate genetic interactions, or to extract and reorganize subnetworks, using data-driven network layouts in an intuitive and interactive manner. PMID:28325812
-
Usaj, Matej; Tan, Yizhao; Wang, Wen; VanderSluis, Benjamin; Zou, Albert; Myers, Chad L; Costanzo, Michael; Andrews, Brenda; Boone, Charles
2017-05-05
Providing access to quantitative genomic data is key to ensure large-scale data validation and promote new discoveries. TheCellMap.org serves as a central repository for storing and analyzing quantitative genetic interaction data produced by genome-scale Synthetic Genetic Array (SGA) experiments with the budding yeast Saccharomyces cerevisiae In particular, TheCellMap.org allows users to easily access, visualize, explore, and functionally annotate genetic interactions, or to extract and reorganize subnetworks, using data-driven network layouts in an intuitive and interactive manner. Copyright © 2017 Usaj et al.
-
Long term economic relationships from cointegration maps
NASA Astrophysics Data System (ADS)
Vicente, Renato; Pereira, Carlos de B.; Leite, Vitor B. P.; Caticha, Nestor
2007-07-01
We employ the Bayesian framework to define a cointegration measure aimed to represent long term relationships between time series. For visualization of these relationships we introduce a dissimilarity matrix and a map based on the sorting points into neighborhoods (SPIN) technique, which has been previously used to analyze large data sets from DNA arrays. We exemplify the technique in three data sets: US interest rates (USIR), monthly inflation rates and gross domestic product (GDP) growth rates.
-
Asaad, Sameh W; Bellofatto, Ralph E; Brezzo, Bernard; Haymes, Charles L; Kapur, Mohit; Parker, Benjamin D; Roewer, Thomas; Tierno, Jose A
2014-01-28
A plurality of target field programmable gate arrays are interconnected in accordance with a connection topology and map portions of a target system. A control module is coupled to the plurality of target field programmable gate arrays. A balanced clock distribution network is configured to distribute a reference clock signal, and a balanced reset distribution network is coupled to the control module and configured to distribute a reset signal to the plurality of target field programmable gate arrays. The control module and the balanced reset distribution network are cooperatively configured to initiate and control a simulation of the target system with the plurality of target field programmable gate arrays. A plurality of local clock control state machines reside in the target field programmable gate arrays. The local clock state machines are configured to generate a set of synchronized free-running and stoppable clocks to maintain cycle-accurate and cycle-reproducible execution of the simulation of the target system. A method is also provided.
-
PAPER: The Precision Array To Probe The Epoch Of Reionization
NASA Astrophysics Data System (ADS)
Backer, Donald C.; Parsons, A.; Bradley, R.; Parashare, C.; Gugliucci, N.; Mastrantonio, E.; Herne, D.; Lynch, M.; Wright, M.; Werhimer, D.; Carilli, C.; Datta, A.; Aguirre, J.
2007-12-01
The Precision Array to Probe the Epoch of Reionization (PAPER) is an experiment that is being designed to detect the faint HI signal from the epoch of reionization. Our instrumentation goals include: the design and building of dipole elements that are optimized for operation from 120-190 MHz with a clean beam response; amplifiers and receivers with good impedance match and overall flat gain response over a large bandpass; and an FPGA correlator capable of producing full Stokes products for the array. The array is being built and evaluated in stages at the Green Bank Observatory in West Virginia with deployment of the full instrument in Western Australia. We present results from an eight-station deployment in Green Bank and four-station deployment in Western Australia, including phase and amplitude calibration, RFI mitigation and removal, full sky maps, and wide-field snapshot imaging. We have discovered new ways to improve our system's stability and sensitivity from these early experiments, and are applying these concepts to a 16-element array in Green Bank in early 2008 and a 32-element array in Western Australia later in 2008.
-
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ari Palczewski, Rongli Geng, Grigory Eremeev
2011-07-01
We designed and built two high resolution (0.6-0.55mm special resolution [1.1-1.2mm separation]) thermometry arrays prototypes out of the Allen Bradley 90-120 ohm 1/8 watt resistor to measure surface temperature profiles on SRF cavities. One array was designed to be physically flexible and conform to any location on a SRF cavity; the other was modeled after the common G-10/stycast 2850 thermometer and designed to fit on the equator of an ILC (Tesla 1.3GHz) SRF cavity. We will discuss the advantages and disadvantages of each array and their construction. In addition we will present a case study of the arrays performance onmore » a real SRF cavity TB9NR001. TB9NR001 presented a unique opportunity to test the performance of each array as it contained a dual (4mm separation) cat eye defect which conventional methods such as OST (Oscillating Superleak second-sound Transducers) and full coverage thermometry mapping were unable to distinguish between. We will discuss the new arrays ability to distinguish between the two defects and their preheating performance.« less
-
Tikhonenko, Irina; Irizarry, Karen; Khodjakov, Alexey; Koonce, Michael P.
2015-01-01
It has long been known that the interphase microtubule (MT) array is a key cellular scaffold that provides structural support and directs organelle trafficking in eukaryotic cells. Although in animal cells, a combination of centrosome nucleating properties and polymer dynamics at the distal microtubule ends is generally sufficient to establish a radial, polar array of MTs, little is known about how effector proteins (motors and crosslinkers) are coordinated to produce the diversity of interphase MT array morphologies found in nature. This diversity is particularly important in multinucleated environments where multiple MT arrays must coexist and function. We initiate here a study to address the higher ordered coordination of multiple, independent MT arrays in a common cytoplasm. Deletion of a MT crosslinker of the MAP65/Ase1/PRC1 family disrupts the spatial integrity of multiple arrays in Dictyostelium discoideum, reducing the distance between centrosomes and increasing the intermingling of MTs with opposite polarity. This result, coupled with previous dynein disruptions suggest a robust mechanism by which interphase MT arrays can utilize motors and crosslinkers to sense their position and minimize overlap in a common cytoplasm. PMID:26298292
-
NASA Astrophysics Data System (ADS)
Paull, C. K.; Anderson, K.; Barry, J. P.; Caress, D. W.; Chaffey, M. R.; Gales, J. A.; Gwiazda, R.; Kieft, B.; Lundsten, E. M.; Maier, K. L.; McCann, M. P.; McGann, M.; O'Reilly, T. C.; Parsons, D. R.; Rosenberger, K. J.; Sumner, E.; Talling, P. J.; Xu, J.
2016-12-01
Submarine sediment gravity flows (turbidity currents) are among the most important sediment transport processes on Earth, yet there are remarkably few direct measurements of these events in action. The ongoing multi-institution Coordinated Canyon Experiment (CCE) is providing detailed measurements of turbidity currents using multiple sensors and sediment traps deployed in the axis of Monterey Canyon, offshore California, in 6-month long deployments from October 2015 to April 2017 together with seafloor sampling and repeated mapping of seafloor morphology. No previous study has deployed such a dense array of sensors along a turbidity current pathway. Instrumentation includes: an array of 6 moorings carrying downward looking acoustic Doppler current profilers (ADCP) and sediment traps distributed along the canyon axis from 270 to 1,850 m water depth; a benthic instrument node at 1,840 m holding ADCPs of three different frequencies recording on a common time base, as well as salinity, temperature, and turbidity sensors; a McLane profiler at 1,830 m monitoring the lower 500 m of the water column; an array of benthic event detectors (smart boulders) that record their transport within the base of a flow; and precision triangulation beacons to assess creep within the canyon floor. Repeated mapping of the canyon floor at nested grid resolutions ranging from 1-m to 1-cm is being conducted to understand changes in canyon floor morphology. The first 6-month long deployment has been completed and 8 sediment transport events recorded. Seven of these events were restricted to <520 m water depths. However, on January 15th 2016 a sediment-laden turbidity flow ran out for >50 km from <279 m to >1,860 m water depth with an average velocity of 5.4 m/sec. Individual moorings and instruments moved down-canyon up to 7.8 km during this event. The novel instrument array and mapping tools have successfully recorded the down-canyon evolution of the powerful flow in spectacular detail.
-
Silicon Metasurfaces for Integrated Dual Polarized 1.9 THz Heterodyne Array Instruments
NASA Astrophysics Data System (ADS)
Alonso-delPino, Maria
We propose the use of dielectric metasurfaces as the enabling technology to develop a dual polarized heterodyne receiver array with full mapping of the field of view at 1.9 THz. Current heterodyne and non-heterodyne arrays at 1.9 THz are restricted to have sparse mapping in the field of view due to the minimum physical inter-element spacing required between the pixels. Moreover, an integrated dual polarized heterodyne receiver is very difficult to achieve with current technologies at 1.9 THz. We propose the use of metasurfaces that will split the 1.9 THz radiation into two linear polarizations and focus them both on the same receiver plane. Additionally, by overlapping common regions of the metasurface we will have a full mapping of the field of view, i.e. the beams will be highly overlapped in the field of sky observation which is not the case with current generation of array instruments. The metasurface consists of a dielectric planar structure with subwavelength 3D features that controls the amplitude and phase of the electric field that goes through them. These structures are usually used in reflection in the microwave frequency range and has not been used at terahertz frequencies before. We propose the development of these metasurfaces in transmission and integrate them into a multi-pixel heterodyne receiver at 1.9 THz. The silicon micro-machining process developed at JPL allows the fabrication of high aspect ratio multi-depth features on silicon wafers and will allow the integration of both, receiver and metasurfaces, in the same wafer stack. It will lead to a more compact, low-mass, and low loss dual polarized multi-pixel receiver with efficient illumination at 1.9 THz. Even though this work will target the 1.8-2.1 THz band for the CII and OI lines, these designs can be easily scaled to at least 5 THz.
-
Yoneyama, Sachiko; Yao, Jie; Guo, Xiuqing; Fernandez-Rhodes, Lindsay; Lim, Unhee; Boston, Jonathan; Buzková, Petra; Carlson, Christopher S.; Cheng, Iona; Cochran, Barbara; Cooper, Richard; Ehret, Georg; Fornage, Myriam; Gong, Jian; Gross, Myron; Gu, C. Charles; Haessler, Jeff; Haiman, Christopher A.; Henderson, Brian; Hindorff, Lucia A.; Houston, Denise; Irvin, Marguerite R.; Jackson, Rebecca; Kuller, Lew; Leppert, Mark; Lewis, Cora E.; Li, Rongling; Le Marchand, Loic; Matise, Tara C.; Nguyen, Khanh-Dung H.; Chakravarti, Aravinda; Pankow, James S.; Pankratz, Nathan; Pooler, Loreall; Ritchie, Marylyn D.; Bien, Stephanie A.; Wassel, Christina L.; Chen, Yii-Der I.; Taylor, Kent D.; Allison, Matthew; Rotter, Jerome I.; Schreiner, Pamela J.; Schumacher, Fredrick; Wilkens, Lynne; Boerwinkle, Eric; Kooperberg, Charles; Peters, Ulrike; Buyske, Steven; Graff, Mariaelisa; North, Kari E.
2016-01-01
Background/Objectives Central adiposity measures such as waist circumference (WC) and waist-to-hip ratio (WHR) are associated with cardiometabolic disorders independently of BMI and are gaining clinically utility. Several studies report genetic variants associated with central adiposity, but most utilize only European ancestry populations. Understanding whether the genetic associations discovered among mainly European descendants are shared with African ancestry populations will help elucidate the biological underpinnings of abdominal fat deposition. Subjects/Methods To identify the underlying functional genetic determinants of body fat distribution, we conducted an array-wide association meta-analysis among persons of African ancestry across seven studies/consortia participating in the Population Architecture using Genomics and Epidemiology (PAGE) consortium. We used the Metabochip array, designed for fine mapping cardiovascular associated loci, to explore novel array-wide associations with WC and WHR among 15 945 African descendants using all and sex-stratified groups. We further interrogated 17 known WHR regions for African ancestry-specific variants. Results Of the 17 WHR loci, eight SNPs located in four loci were replicated in the sex-combined or sex-stratified meta-analyses. Two of these eight independently associated with WHR after conditioning on the known variant in European descendants (rs12096179 in TBX15-WARS2 and rs2059092 in ADAMTS9). In the fine mapping assessment, the putative functional region was reduced across all four loci but to varying degrees (average 40% drop in number of putative SNPs and 20% drop in genomic region). Similar to previous studies, the significant SNPs in the female stratified analysis were stronger than the significant SNPs from the sex-combined analysis. No novel associations were detected in the array-wide analyses. Conclusions Of 17 previously identified loci, four loci replicated in the African ancestry populations of this study. Utilizing different linkage disequilibrium patterns observed between European and African ancestries, we narrowed the suggestive region containing causative variants for all four loci. PMID:27867202
-
Spatial mapping and statistical reproducibility of an array of 256 one-dimensional quantum wires
NASA Astrophysics Data System (ADS)
Al-Taie, H.; Smith, L. W.; Lesage, A. A. J.; See, P.; Griffiths, J. P.; Beere, H. E.; Jones, G. A. C.; Ritchie, D. A.; Kelly, M. J.; Smith, C. G.
2015-08-01
We utilize a multiplexing architecture to measure the conductance properties of an array of 256 split gates. We investigate the reproducibility of the pinch off and one-dimensional definition voltage as a function of spatial location on two different cooldowns, and after illuminating the device. The reproducibility of both these properties on the two cooldowns is high, the result of the density of the two-dimensional electron gas returning to a similar state after thermal cycling. The spatial variation of the pinch-off voltage reduces after illumination; however, the variation of the one-dimensional definition voltage increases due to an anomalous feature in the center of the array. A technique which quantifies the homogeneity of split-gate properties across the array is developed which captures the experimentally observed trends. In addition, the one-dimensional definition voltage is used to probe the density of the wafer at each split gate in the array on a micron scale using a capacitive model.
-
Novel Wearable Device for Blood Leakage Detection during Hemodialysis Using an Array Sensing Patch.
Du, Yi-Chun; Lim, Bee-Yen; Ciou, Wei-Siang; Wu, Ming-Jui
2016-06-09
Hemodialysis (HD) is a clinical treatment that requires the puncturing of the body surface. However, needle dislodgement can cause a high risk of blood leakage and can be fatal to patients. Previous studies proposed several devices for blood leakage detection using optical or electrical techniques. Nonetheless, these methods used single-point detection and the design was not suitable for multi-bed monitoring. This study proposed a novel wearable device for blood leakage monitoring during HD using an array sensing patch. The array sensing patch combined with a mapping circuit and a wireless module could measure and transmit risk levels. The different risk levels could improve the working process of healthcare workers, and enhance their work efficiency and reduce inconvenience due to false alarms. Experimental results showed that each point of the sensing array could detect up to 0.1 mL of blood leakage and the array sensing patch supports a risk level monitoring system up to 8 h to alert healthcare personnel of pertinent danger to the patients.
-
Chen, Cheng-Kuang; Chang, Ming-Hsuan; Wu, Hsieh-Ting; Lee, Yao-Chang; Yen, Ta-Jen
2014-10-15
In this study, we report a multiband plasmonic-antenna array that bridges optical biosensing and intracellular bioimaging without requiring a labeling process or coupler. First, a compact plasmonic-antenna array is designed exhibiting a bandwidth of several octaves for use in both multi-band plasmonic resonance-enhanced vibrational spectroscopy and refractive index probing. Second, a single-element plasmonic antenna can be used as a multifunctional sensing pixel that enables mapping the distribution of targets in thin films and biological specimens by enhancing the signals of vibrational signatures and sensing the refractive index contrast. Finally, using the fabricated plasmonic-antenna array yielded reliable intracellular observation was demonstrated from the vibrational signatures and intracellular refractive index contrast requiring neither labeling nor a coupler. These unique features enable the plasmonic-antenna array to function in a label-free manner, facilitating bio-sensing and imaging development. Copyright © 2014 Elsevier B.V. All rights reserved.
-
Genetics Home Reference: distal 18q deletion syndrome
... Veltman JA, van Ravenswaaij-Arts CM. Genotype-phenotype mapping of chromosome 18q deletions by high-resolution array ... L, Pihko H. 18q deletions: clinical, molecular, and brain MRI findings of 14 individuals. Am J Med ...
-
NASA Technical Reports Server (NTRS)
Bateman, M. G.; Mach, D. M.; McCaul, M. G.; Bailey, J. C.; Christian, H. J.
2008-01-01
The Lightning Imaging Sensor (LIS) aboard the TRMM satellite has been collecting optical lightning data since November 1997. A Lightning Mapping Array (LMA) that senses VHF impulses from lightning was installed in North Alabama in the Fall of 2001. A dataset has been compiled to compare data from both instruments for all times when the LIS was passing over the domain of our LMA. We have algorithms for both instruments to group pixels or point sources into lightning flashes. This study presents the comparison statistics of the flash data output (flash duration, size, and amplitude) from both algorithms. We will present the results of this comparison study and show "point-level" data to explain the differences. AS we head closer to realizing a Global Lightning Mapper (GLM) on GOES-R, better understanding and ground truth of each of these instruments and their respective flash algorithms is needed.
-
PRISM project optical instrument
NASA Technical Reports Server (NTRS)
Taylor, Charles R.
1994-01-01
The scientific goal of the Passively-cooled Reconnaissance of the InterStellar Medium (PRISM) project is to map the emission of molecular hydrogen at 17.035 micrometers and 28.221 micrometers. Since the atmosphere is opaque at these infrared wavelengths, an orbiting telescope is being studied. The availability of infrared focal plane arrays enables infrared imaging spectroscopy at the molecular hydrogen wavelengths. The array proposed for PRISM is 128 pixels square, with a pixel size of 75 micrometers. In order to map the sky in a period of six months, and to resolve the nearer molecular clouds, each pixel must cover 0.5 arcminutes. This sets the focal length at 51.6 cm. In order for the pixel size to be half the diameter of the central diffraction peak at 28 micrometers would require a telescope aperture of 24 cm; an aperture of 60 cm has been selected for the PRISM study for greater light gathering power.
-
Robust synchronization in fiber laser arrays.
Peles, Slaven; Rogers, Jeffrey L; Wiesenfeld, Kurt
2006-02-01
Synchronization of coupled fiber lasers has been reported in recent experiments [Bruesselbach, Opt. Lett. 30, 1339 (2005); Minden, Proc. SPIE 5335, 89 (2004)]. While these results may lead to dramatic advances in laser technology, the mechanism by which these lasers synchronize is not understood. We analyze a recently proposed [Rogers, IEEE J. Quantum Electron. 41, 767 (2005)] iterated map model of fiber laser arrays to explore this phenomenon. In particular, we look at synchronous solutions of the maps when the gain fields are constant. Determining the stability of these solutions is analytically tractable for a number of different coupling schemes. We find that in the most symmetric physical configurations the most symmetric solution is either unstable or stable over insufficient parameter range to be practical. In contrast, a lower symmetry configuration yields surprisingly robust coherence. This coherence persists beyond the pumping threshold for which the gain fields become time dependent.
-
Methodology for fast detection of false sharing in threaded scientific codes
Chung, I-Hsin; Cong, Guojing; Murata, Hiroki; Negishi, Yasushi; Wen, Hui-Fang
2014-11-25
A profiling tool identifies a code region with a false sharing potential. A static analysis tool classifies variables and arrays in the identified code region. A mapping detection library correlates memory access instructions in the identified code region with variables and arrays in the identified code region while a processor is running the identified code region. The mapping detection library identifies one or more instructions at risk, in the identified code region, which are subject to an analysis by a false sharing detection library. A false sharing detection library performs a run-time analysis of the one or more instructions at risk while the processor is re-running the identified code region. The false sharing detection library determines, based on the performed run-time analysis, whether two different portions of the cache memory line are accessed by the generated binary code.
-
Mapping brain activity with flexible graphene micro-transistors
NASA Astrophysics Data System (ADS)
Blaschke, Benno M.; Tort-Colet, Núria; Guimerà-Brunet, Anton; Weinert, Julia; Rousseau, Lionel; Heimann, Axel; Drieschner, Simon; Kempski, Oliver; Villa, Rosa; Sanchez-Vives, Maria V.; Garrido, Jose A.
2017-06-01
Establishing a reliable communication interface between the brain and electronic devices is of paramount importance for exploiting the full potential of neural prostheses. Current microelectrode technologies for recording electrical activity, however, evidence important shortcomings, e.g. challenging high density integration. Solution-gated field-effect transistors (SGFETs), on the other hand, could overcome these shortcomings if a suitable transistor material were available. Graphene is particularly attractive due to its biocompatibility, chemical stability, flexibility, low intrinsic electronic noise and high charge carrier mobilities. Here, we report on the use of an array of flexible graphene SGFETs for recording spontaneous slow waves, as well as visually evoked and also pre-epileptic activity in vivo in rats. The flexible array of graphene SGFETs allows mapping brain electrical activity with excellent signal-to-noise ratio (SNR), suggesting that this technology could lay the foundation for a future generation of in vivo recording implants.
-
Microseismic Monitoring of the Mounds Drill Cuttings Injection Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branagan, P.T.; Mahrer, K.D.; Moschovidis, Z.A.
This paper describes the microseismic mapping of repeated injections of drill cuttings into two separate formations at a test site near Mounds, OK. Injections were performed in sandstone and shale formations at depths of 830 and 595 m, respectively. Typical injection disposal was simulated using multiple small-volume injections over a three-day period, with long shut-in periods interspersed between the injections. Microseismic monitoring was achieved using a 5-level array of wireline-run, triaxial- accelerometer receivers in a monitor well 76 m from the disposed well. Results of the mapped microseismic locations showed that the disposal domti W= generally aligns with the majormore » horizontal stress with some variations in azimuth and that wide variations in height and length growth occurred with continued injections. These experiments show that the cuttings injection process cm be adequately monitored from a downhole, wireline-run receiver array, thus providing process control and environmental assurance.« less
-
The structure of mode-locking regions of piecewise-linear continuous maps: II. Skew sawtooth maps
NASA Astrophysics Data System (ADS)
Simpson, D. J. W.
2018-05-01
In two-parameter bifurcation diagrams of piecewise-linear continuous maps on , mode-locking regions typically have points of zero width known as shrinking points. Near any shrinking point, but outside the associated mode-locking region, a significant proportion of parameter space can be usefully partitioned into a two-dimensional array of annular sectors. The purpose of this paper is to show that in these sectors the dynamics is well-approximated by a three-parameter family of skew sawtooth circle maps, where the relationship between the skew sawtooth maps and the N-dimensional map is fixed within each sector. The skew sawtooth maps are continuous, degree-one, and piecewise-linear, with two different slopes. They approximate the stable dynamics of the N-dimensional map with an error that goes to zero with the distance from the shrinking point. The results explain the complicated radial pattern of periodic, quasi-periodic, and chaotic dynamics that occurs near shrinking points.
-
NASA Astrophysics Data System (ADS)
Polet, J.; Alvarez, K.; Elizondo, K.
2017-12-01
In the early 1980's and 1990's numerous leveling lines and dry tilt arrays were installed throughout Central and Southern California by United States Geological Survey scientists and other researchers (e.g. Sylvester, 1985). These lines or triangular arrays of geodetic monuments commonly straddle faults or have been installed close to volcanic areas, where significant motion is expected over relatively short time periods. Over the past year, we have incorporated geodetic surveys of these arrays as part of our field exercises in undergraduate and graduate level classes on topics such as shallow subsurface geophysics and field geophysics. In some cases, the monuments themselves first had to be located based on only limited information, testing students' Brunton use and map reading skills. Monuments were then surveyed using total stations and global navigation satellite system (GNSS) receivers, using a variety of experimental procedures. The surveys were documented with tables, photos, maps and graphs in field reports, as well as in wiki pages created by student groups for a geophysics field class this June. The measurements were processed by the students and compared with similar data from surveys conducted soon after installation of the arrays, to analyze the deformation that occurred over the last few decades. The different geodetic techniques were also compared and an error analysis was conducted. The analysis and processing of these data challenged and enhanced students' quantitative literacy and technology skills. The final geodetic measurements are being incorporated into several senior and MSc thesis projects. Further surveys are planned for additional classes, in topics that could include seismology, geodesy, volcanology and global geophysics. We are also considering additional technologies, such as structure from motion (SfM) photogrammetry.
-
Dragonu, Iulius; Almujayyaz, Salam; Batzakis, Alex; Young, Liam A. J.; Purvis, Lucian A. B.; Clarke, William T.; Wichmann, Tobias; Lanz, Titus; Neubauer, Stefan; Robson, Matthew D.; Klomp, Dennis W. J.; Rodgers, Christopher T.
2017-01-01
Purpose Cardiac phosphorus magnetic resonance spectroscopy (31P-MRS) provides unique insight into the mechanisms of heart failure. Yet, clinical applications have been hindered by the restricted sensitivity of the surface radiofrequency-coils normally used. These permit the analysis of spectra only from the interventricular septum, or large volumes of myocardium, which may not be meaningful in focal disease. Löring et al. recently presented a prototype whole-body (52 cm diameter) transmit/receive birdcage coil for 31P at 7T. We now present a new, easily-removable, whole-body 31P transmit radiofrequency-coil built into a patient-bed extension combined with a 16-element receive array for cardiac 31P-MRS. Materials and methods A fully-removable (55 cm diameter) birdcage transmit coil was combined with a 16-element receive array on a Magnetom 7T scanner (Siemens, Germany). Electro-magnetic field simulations and phantom tests of the setup were performed. In vivo maps of B1+, metabolite signals, and saturation-band efficiency were acquired across the torsos of eight volunteers. Results The combined (volume-transmit, local receive array) setup increased signal-to-noise ratio 2.6-fold 10 cm below the array (depth of the interventricular septum) compared to using the birdcage coil in transceiver mode. The simulated coefficient of variation for B1+ of the whole-body coil across the heart was 46.7% (surface coil 129.0%); and the in vivo measured value was 38.4%. Metabolite images of 2,3-diphosphoglycerate clearly resolved the ventricular blood pools, and muscle tissue was visible in phosphocreatine (PCr) maps. Amplitude-modulated saturation bands achieved 71±4% suppression of phosphocreatine PCr in chest-wall muscles. Subjects reported they were comfortable. Conclusion This easy-to-assemble, volume-transmit, local receive array coil combination significantly improves the homogeneity and field-of-view for metabolic imaging of the human heart at 7T. PMID:29073228
-
Audio Tracking in Noisy Environments by Acoustic Map and Spectral Signature.
Crocco, Marco; Martelli, Samuele; Trucco, Andrea; Zunino, Andrea; Murino, Vittorio
2018-05-01
A novel method is proposed for generic target tracking by audio measurements from a microphone array. To cope with noisy environments characterized by persistent and high energy interfering sources, a classification map (CM) based on spectral signatures is calculated by means of a machine learning algorithm. Next, the CM is combined with the acoustic map, describing the spatial distribution of sound energy, in order to obtain a cleaned joint map in which contributions from the disturbing sources are removed. A likelihood function is derived from this map and fed to a particle filter yielding the target location estimation on the acoustic image. The method is tested on two real environments, addressing both speaker and vehicle tracking. The comparison with a couple of trackers, relying on the acoustic map only, shows a sharp improvement in performance, paving the way to the application of audio tracking in real challenging environments.
-
Unique Variants in OPN1LW Cause Both Syndromic and Nonsyndromic X-Linked High Myopia Mapped to MYP1.
Li, Jiali; Gao, Bei; Guan, Liping; Xiao, Xueshan; Zhang, Jianguo; Li, Shiqiang; Jiang, Hui; Jia, Xiaoyun; Yang, Jianhua; Guo, Xiangming; Yin, Ye; Wang, Jun; Zhang, Qingjiong
2015-06-01
MYP1 is a locus for X-linked syndromic and nonsyndromic high myopia. Recently, unique haplotypes in OPN1LW were found to be responsible for X-linked syndromic high myopia mapped to MYP1. The current study is to test if such variants in OPN1LW are also responsible for X-linked nonsyndromic high myopia mapped to MYP1. The proband of the family previously mapped to MYP1 was initially analyzed using whole-exome sequencing and whole-genome sequencing. Additional probands with early-onset high myopia were analyzed using whole-exome sequencing. Variants in OPN1LW were selected and confirmed by Sanger sequencing. Long-range and second PCR were used to determine the haplotype and the first gene of the red-green gene array. Candidate variants were further validated in family members and controls. The unique LVAVA haplotype in OPN1LW was detected in the family with X-linked nonsyndromic high myopia mapped to MYP1. In addition, this haplotype and a novel frameshift mutation (c.617_620dup, p.Phe208Argfs*51) in OPN1LW were detected in two other families with X-linked high myopia. The unique haplotype cosegregated with high myopia in the two families, with a maximum LOD score of 3.34 and 2.31 at θ = 0. OPN1LW with the variants in these families was the first gene in the red-green gene array and was not present in 247 male controls. Reevaluation of the clinical data in both families with the unique haplotype suggested nonsyndromic high myopia. Our study confirms the findings that unique variants in OPN1LW are responsible for both syndromic and nonsyndromic X-linked high myopia mapped to MYP1.
-
Optimization of peptide arrays for studying antibodies to hepatitis C virus continuous epitopes
Ruwona, Tinashe B; Mcbride, Ryan; Chappel, Rebecca; Head, Steven R; Ordoukhanian, Phillip; Burton, Dennis R.; Law, Mansun
2014-01-01
Accurate and in-depth mapping of antibody responses is of great value in vaccine and antibody research. Using hepatitis C virus (HCV) as a model, we developed an affordable and high-throughput microarray-based assay for mapping antibody specificities to continuous antibody epitopes of HCV at high resolution. Important parameters in the chemistry for conjugating peptides/antigens to the array surface, the array layout, fluorophore choice and the methods for data analysis were investigated. Microscopic glass slide pre-coated with N-Hydroxysuccinimide (NHS)-ester (Slide H) was the preferred surface for conjugation of aminooxy-tagged peptides. This combination provides a simple chemical means to orient the peptides to the conjugation surface via an orthogonal covalent linkage at the N- or C-terminus of each peptide. The addition of polyvinyl alcohol to printing buffer gave uniform spot morphology, improved sensitivity and specificity of binding signals. Libraries of overlapping peptides covering the HCV E1 and E2 glycoprotein polypeptides (15-mer, 10 amino acids overlap) of 6 major HCV genotypes and the entire polypeptide sequence of the prototypic strain H77 were synthesized and printed in quadruplets in the assays. The utility of the peptide arrays were confirmed using HCV monoclonal antibodies (mAbs) specific to known continuous epitopes and immune sera of rabbits immunized with HCV antigens. The methods developed here can be easily adapted to studying antibody responses to antigens relevant in vaccine and autoimmune research. PMID:24269751
-
Water turbidity optical meter using optical fiber array for topographical distribution analysis
NASA Astrophysics Data System (ADS)
Mutter, Kussay Nugamesh; Mat Jafri, Mohd Zubir; Yeoh, Stephenie
2017-06-01
This work is presenting an analysis study for using optical fiber array as turbidity meter and topographical distribution. Although many studies have been figure out of utilizing optical fibers as sensors for turbidity measurements, still the topographical map of suspended particles in water as rare as expected among all of works in literatures in this scope. The effect of suspended particles are highly affect the water quality which varies according to the source of these particles. A two dimensional array of optical fibers in a 1 litter rectangular plastic container with 2 cm cladding off sensing portion prepared to point out 632.8 nm laser power at each fiber location at the container center. The overall output map of the optical power were found in an inhomogeneous distribution such that the top to down layers of a present water sample show different magnitudes. Each sample prepared by mixing a distilled water with large grains sand, small grains sand, glucose and salt. All with different amount of concentration which measured by refractometer and turbidity meter. The measurements were done in different times i.e. from 10 min to 60 min. This is to let the heavy particles to move down and accumulate at the bottom of the container. The results were as expected which had a gradually topographical map from low power at top layers into high power at bottom layers. There are many applications can be implemented of this study such as transport vehicles fuel meter, to measure the purity of tanks, and monitoring the fluids quality in pipes.
-
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.; Zwally, H. Jay
1989-01-01
A time series of daily brightness temperature gridded maps (October 25, 1978 through August 15, 1987) were generated from all ten channels of the Nimbus-7 Scanning Multichannel Microwave Radiometer orbital data. This unique data set can be utilized in a wide range of applications including heat flux, ocean circulation, ice edge productivity, and climate studies. Two sets of data in polar stereographic format are created for the Arctic region: one with a grid size of about 30 km on a 293 by 293 array similar to that previously utilized for the Nimbus-5 Electrically Scanning Microwave Radiometer, while the other has a grid size of about 25 km on a 448 by 304 array identical to what is now being used for the DMSP Scanning Multichannel Microwave Imager. Data generated for the Antaractic region are mapped using the 293 by 293 grid only. The general technique for mapping, and a quality assessment of the data set are presented. Monthly and yearly averages are also generated from the daily data and sample geophysical ice images and products derived from the data are given. Contour plots of monthly ice concentrations derived from the data for October 1978 through August 1987 are presented to demonstrate spatial and temporal detail which this data set can offer, and to show potential research applications.
-
Phased array ultrasonic steel corrosion mapping for bridges and ancillary structures.
DOT National Transportation Integrated Search
2017-08-01
Steel corrosion on bridges and ancillary structures due to environmental effects and deicing chemicals is a serious problem for Minnesota's infrastructure. The ability to detect, locate, and measure corrosion is an important aspect of structure inspe...
-
NASA Astrophysics Data System (ADS)
Ivanov, A. A.
2018-04-01
The Yakutsk array data set in the energy interval (1017,1019) eV is revisited in order to interpret the zenith angle distribution of an extensive air shower event rate of ultra-high-energy cosmic rays. The close relation of the distribution to the attenuation of the main measurable parameter of showers, ρ600, is examined. Measured and expected distributions are used to analyze the arrival directions of cosmic rays on an equatorial map including the energy range below 1018 eV , which was previously avoided due to the reduced trigger efficiency of the array in the range. While the null hypothesis cannot be rejected with data from the Yakutsk array, an upper limit on the fraction of cosmic rays from a separable source in the uniform background is derived as a function of declination and energy.
-
Viventi, Jonathan; Kim, Dae-Hyeong; Vigeland, Leif; Frechette, Eric S; Blanco, Justin A; Kim, Yun-Soung; Avrin, Andrew E; Tiruvadi, Vineet R; Hwang, Suk-Won; Vanleer, Ann C; Wulsin, Drausin F; Davis, Kathryn; Gelber, Casey E; Palmer, Larry; Van der Spiegel, Jan; Wu, Jian; Xiao, Jianliang; Huang, Yonggang; Contreras, Diego; Rogers, John A; Litt, Brian
2011-11-13
Arrays of electrodes for recording and stimulating the brain are used throughout clinical medicine and basic neuroscience research, yet are unable to sample large areas of the brain while maintaining high spatial resolution because of the need to individually wire each passive sensor at the electrode-tissue interface. To overcome this constraint, we developed new devices that integrate ultrathin and flexible silicon nanomembrane transistors into the electrode array, enabling new dense arrays of thousands of amplified and multiplexed sensors that are connected using fewer wires. We used this system to record spatial properties of cat brain activity in vivo, including sleep spindles, single-trial visual evoked responses and electrographic seizures. We found that seizures may manifest as recurrent spiral waves that propagate in the neocortex. The developments reported here herald a new generation of diagnostic and therapeutic brain-machine interface devices.
-
Argus: A W-band 16-pixel focal plane array for the Green Bank Telescope
NASA Astrophysics Data System (ADS)
Devaraj, Kiruthika; Church, Sarah; Cleary, Kieran; Frayer, David; Gawande, Rohit; Goldsmith, Paul; Gundersen, Joshua; Harris, Andrew; Kangaslahti, Pekka; Readhead, Tony; Reeves, Rodrigo; Samoska, Lorene; Sieth, Matt; Voll, Patricia
2015-05-01
We are building Argus, a 16-pixel square-packed focal plane array that will cover the 75-115.3 GHz frequency range on the Robert C. Byrd Green Bank Telescope (GBT). The primary research area for Argus is the study of star formation within our Galaxy and nearby galaxies. Argus will map key molecules that trace star formation, including carbon monoxide (CO) and hydrogen cyanide (HCN). An additional key science area is astrochemistry, which will be addressed by observing complex molecules in the interstellar medium, and the study of formation of solar systems, which will be addressed by identifying dense pre-stellar cores and by observing comets in our solar system. Argus has a highly scalable architecture and will be a technology path finder for larger arrays. The array is modular in construction, which will allow easy replacement of malfunctioning and poorly performing components.
-
Acoustic localization of triggered lightning
NASA Astrophysics Data System (ADS)
Arechiga, Rene O.; Johnson, Jeffrey B.; Edens, Harald E.; Thomas, Ronald J.; Rison, William
2011-05-01
We use acoustic (3.3-500 Hz) arrays to locate local (<20 km) thunder produced by triggered lightning in the Magdalena Mountains of central New Mexico. The locations of the thunder sources are determined by the array back azimuth and the elapsed time since discharge of the lightning flash. We compare the acoustic source locations with those obtained by the Lightning Mapping Array (LMA) from Langmuir Laboratory, which is capable of accurately locating the lightning channels. To estimate the location accuracy of the acoustic array we performed Monte Carlo simulations and measured the distance (nearest neighbors) between acoustic and LMA sources. For close sources (<5 km) the mean nearest-neighbors distance was 185 m compared to 100 m predicted by the Monte Carlo analysis. For far distances (>6 km) the error increases to 800 m for the nearest neighbors and 650 m for the Monte Carlo analysis. This work shows that thunder sources can be accurately located using acoustic signals.
-
Li, Gang; Wang, Zhenhai; Mao, Xinyu; Zhang, Yinghuang; Huo, Xiaoye; Liu, Haixiao; Xu, Shengyong
2016-01-01
Dynamic mapping of an object’s local temperature distribution may offer valuable information for failure analysis, system control and improvement. In this letter we present a computerized measurement system which is equipped with a hybrid, low-noise mechanical-electrical multiplexer for real-time two-dimensional (2D) mapping of surface temperatures. We demonstrate the performance of the system on a device embedded with 32 pieces of built-in Cr-Pt thin-film thermocouples arranged in a 4 × 8 matrix. The system can display a continuous 2D mapping movie of relative temperatures with a time interval around 1 s. This technique may find applications in a variety of practical devices and systems. PMID:27347969
-
REPORT ON AN ORBITAL MAPPING SYSTEM.
Colvocoresses, Alden P.; ,
1984-01-01
During June 1984, the International Society for Photogrammetry and Remote Sensing accepted a committee report that defines an Orbital Mapping System (OMS) to follow Landsat and other Earth-sensing systems. The OMS involves the same orbital parameters of Landsats 1, 2, and 3, three wave bands (two in the visible and one in the near infrared) and continuous stereoscopic capability. The sensors involve solid-state linear arrays and data acquisition (including stereo) designed for one-dimensional data processing. It has a resolution capability of 10-m pixels and is capable of producing 1:50,000-scale image maps with 20-m contours. In addition to mapping, the system is designed to monitor the works of man as well as nature and in a cost-effective manner.
-
High-resolution mid-infrared observations of NGC 7469
NASA Technical Reports Server (NTRS)
Miles, J. W.; Houck, J. R.; Hayward, T. L.
1994-01-01
We present a high-resolution 11.7 micrometer image of the starburst/Seyfert hybrid galaxy NGC 7469 using the Hale 5 m telescope at Palomar Observatory. Our map, with diffraction limited spatial resolution of 0.6 sec, shows a 3 sec diameter ring of emission around an unresolved nucleus. The map is similar to the Very Large Array (VLA) 6 cm map of this galaxy made with 0.4 sec resolution by Wilson et al. (1991). About half of the mid-infrared flux in our map emerges from the unresolved nucleus. We also present spatially resolved low resolution spectra that show that the 11.3 micrometer polycyclic aromatic hydrocarbon (PAH) feature comes from the circumnuclear ring but not from the nucleus of the galaxy.
-
Use of a Microphone Phased Array to Determine Noise Sources in a Rocket Plume
NASA Technical Reports Server (NTRS)
Panda, J.; Mosher, R.
2010-01-01
A 70-element microphone phased array was used to identify noise sources in the plume of a solid rocket motor. An environment chamber was built and other precautions were taken to protect the sensitive condenser microphones from rain, thunderstorms and other environmental elements during prolonged stay in the outdoor test stand. A camera mounted at the center of the array was used to photograph the plume. In the first phase of the study the array was placed in an anechoic chamber for calibration, and validation of the indigenous Matlab(R) based beamform software. It was found that the "advanced" beamform methods, such as CLEAN-SC was partially successful in identifying speaker sources placed closer than the Rayleigh criteria. To participate in the field test all equipments were shipped to NASA Marshal Space Flight Center, where the elements of the array hardware were rebuilt around the test stand. The sensitive amplifiers and the data acquisition hardware were placed in a safe basement, and 100m long cables were used to connect the microphones, Kulites and the camera. The array chamber and the microphones were found to withstand the environmental elements as well as the shaking from the rocket plume generated noise. The beamform map was superimposed on a photo of the rocket plume to readily identify the source distribution. It was found that the plume made an exceptionally long, >30 diameter, noise source over a large frequency range. The shock pattern created spatial modulation of the noise source. Interestingly, the concrete pad of the horizontal test stand was found to be a good acoustic reflector: the beamform map showed two distinct source distributions- the plume and its reflection on the pad. The array was found to be most effective in the frequency range of 2kHz to 10kHz. As expected, the classical beamform method excessively smeared the noise sources at lower frequencies and produced excessive side-lobes at higher frequencies. The "advanced" beamform routine CLEAN-SC created a series of lumped sources which may be unphysical. We believe that the present effort is the first-ever attempt to directly measure noise source distribution in a rocket plume.
-
Spatio-temporal dimension of lightning flashes based on three-dimensional Lightning Mapping Array
NASA Astrophysics Data System (ADS)
López, Jesús A.; Pineda, Nicolau; Montanyà, Joan; Velde, Oscar van der; Fabró, Ferran; Romero, David
2017-11-01
3D mapping system like the LMA - Lightning Mapping Array - are a leap forward in lightning observation. LMA measurements has lead to an improvement on the analysis of the fine structure of lightning, allowing to characterize the duration and maximum extension of the cloud fraction of a lightning flash. During several years of operation, the first LMA deployed in Europe has been providing a large amount of data which now allows a statistical approach to compute the full duration and horizontal extension of the in-cloud phase of a lightning flash. The "Ebro Lightning Mapping Array" (ELMA) is used in the present study. Summer and winter lighting were analyzed for seasonal periods (Dec-Feb and Jun-Aug). A simple method based on an ellipse fitting technique (EFT) has been used to characterize the spatio-temporal dimensions from a set of about 29,000 lightning flashes including both summer and winter events. Results show an average lightning flash duration of 440 ms (450 ms in winter) and a horizontal maximum length of 15.0 km (18.4 km in winter). The uncertainties for summer lightning lengths were about ± 1.2 km and ± 0.7 km for the mean and median values respectively. In case of winter lightning, the level of uncertainty reaches up to 1 km and 0.7 km of mean and median value. The results of the successful correlation of CG discharges with the EFT method, represent 6.9% and 35.5% of the total LMA flashes detected in summer and winter respectively. Additionally, the median value of lightning lengths calculated through this correlative method was approximately 17 km for both seasons. On the other hand, the highest median ratios of lightning length to CG discharges in both summer and winter were reported for positive CG discharges.
-
Ogi, Jun; Kato, Yuri; Matoba, Yoshihisa; Yamane, Chigusa; Nagahata, Kazunori; Nakashima, Yusaku; Kishimoto, Takuya; Hashimoto, Shigeki; Maari, Koichi; Oike, Yusuke; Ezaki, Takayuki
2017-12-19
A 24-μm-pitch microelectrode array (MEA) with 6912 readout channels at 12 kHz and 23.2-μV rms random noise is presented. The aim is to reduce noise in a "highly scalable" MEA with a complementary metal-oxide-semiconductor integration circuit (CMOS-MEA), in which a large number of readout channels and a high electrode density can be expected. Despite the small dimension and the simplicity of the in-pixel circuit for the high electrode-density and the relatively large number of readout channels of the prototype CMOS-MEA chip developed in this work, the noise within the chip is successfully reduced to less than half that reported in a previous work, for a device with similar in-pixel circuit simplicity and a large number of readout channels. Further, the action potential was clearly observed on cardiomyocytes using the CMOS-MEA. These results indicate the high-scalability of the CMOS-MEA. The highly scalable CMOS-MEA provides high-spatial-resolution mapping of cell action potentials, and the mapping can aid understanding of complex activities in cells, including neuron network activities.
-
NASA Astrophysics Data System (ADS)
Mooley, Kunal; Hallinan, Gregg; Hotokezaka, Kenta; Frail, Dale; Myers, Steven T.; Horesh, Assaf; Kasliwal, Mansi; Kulkarni, Shri; Pound Singer, Leo; nissanke, Samaya; Rana, Javed
2018-01-01
The era of gravitational waves and multi-messenger astronomy has begun. Telescopes around the globe are now in hot pursuit of electromagnetic counterparts (EM) to aLIGO/VIRGO sources, especially double-neutron star (NS-NS) and neutron star-black hole mergers (NS-BH). The EM counterparts are crucial for 1) providing arcsecond localization and identifying the precise host galaxy and merger redshift, 2) understanding the energetics and physics of the merger, 3) mapping their environments and pre-merger mass ejection processes, and 4) confirming the validity of the GW signals at low signal-to-noise ratios. Radio wavelengths provide one of the best diagnostics of both the dynamical sub-relativistic ejecta and any ultra-relativistic jet launched, as well as the possible interaction of these two components. In this talk I will introduce the Jansky Array mapping of Gravitational Bursts as Afterglows in Radio (JAGWAR) program, running on the VLA, aimed at maximizing the discoveries of the radio afterglows of NS-NS and NS-BH mergers. I will also present the JAGWAR results from the aLIGO/VIRGO observing run O2, which concluded in August 2017.
-
Detection of an electron beam in a high density plasma via an electrostatic probe
NASA Astrophysics Data System (ADS)
Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart; Yamada, Masaaki; Ji, Hantao
2017-10-01
The perturbation in floating potential by an electron beam is detected by a 1D floating potential probe array to evaluate the use of an electron beam for magnetic field line mapping in the Magnetic Reconnection Experiment (MRX) plasma. The MRX plasma is relatively high density (1013 cm-3) and low temperature (5 eV). Beam electrons are emitted from a tungsten filament and are accelerated by a 200 V potential across the sheath. They stream along the magnetic field lines towards the probe array. The spatial electron beam density profile is assumed to be a Gaussian along the radial axis of MRX and the effective beam width is determined from the radial profile of the floating potential. The magnitude of the perturbation is in agreement with theoretical predictions and the location of the perturbation is also in agreement with field line mapping. In addition, no significant broadening of the electron beam is observed after propagation for tens of centimeters through the high density plasma. These results demonstrate that this method of field line mapping is, in principle, feasible in high density plasmas. This work is supported by the DOE Contract No. DE-AC0209CH11466.
-
2011-01-01
Background Single nucleotide polymorphisms (SNPs) are the most abundant source of genetic variation among individuals of a species. New genotyping technologies allow examining hundreds to thousands of SNPs in a single reaction for a wide range of applications such as genetic diversity analysis, linkage mapping, fine QTL mapping, association studies, marker-assisted or genome-wide selection. In this paper, we evaluated the potential of highly-multiplexed SNP genotyping for genetic mapping in maritime pine (Pinus pinaster Ait.), the main conifer used for commercial plantation in southwestern Europe. Results We designed a custom GoldenGate assay for 1,536 SNPs detected through the resequencing of gene fragments (707 in vitro SNPs/Indels) and from Sanger-derived Expressed Sequenced Tags assembled into a unigene set (829 in silico SNPs/Indels). Offspring from three-generation outbred (G2) and inbred (F2) pedigrees were genotyped. The success rate of the assay was 63.6% and 74.8% for in silico and in vitro SNPs, respectively. A genotyping error rate of 0.4% was further estimated from segregating data of SNPs belonging to the same gene. Overall, 394 SNPs were available for mapping. A total of 287 SNPs were integrated with previously mapped markers in the G2 parental maps, while 179 SNPs were localized on the map generated from the analysis of the F2 progeny. Based on 98 markers segregating in both pedigrees, we were able to generate a consensus map comprising 357 SNPs from 292 different loci. Finally, the analysis of sequence homology between mapped markers and their orthologs in a Pinus taeda linkage map, made it possible to align the 12 linkage groups of both species. Conclusions Our results show that the GoldenGate assay can be used successfully for high-throughput SNP genotyping in maritime pine, a conifer species that has a genome seven times the size of the human genome. This SNP-array will be extended thanks to recent sequencing effort using new generation sequencing technologies and will include SNPs from comparative orthologous sequences that were identified in the present study, providing a wider collection of anchor points for comparative genomics among the conifers. PMID:21767361
-
An Ultrasonic Wheel-Array Probe
NASA Astrophysics Data System (ADS)
Drinkwater, B. W.; Brotherhood, C. J.; Freemantle, R. J.
2004-02-01
This paper describes the development and modeling of an ultrasonic array wheel probe scanning system. The system operates at 10 MHz using a 64 element array transducer which is 50 mm in length and located in a fluid filled wheel. The wheel is coupled to the test structure dry, or with a small amount of liquid couplant. When the wheel is rolled over the surface of the test structure a defect map (C-Scan) is generated in real-time. The tyre is made from a soft, durable polymer which has very little acoustic loss. Two application studies are presented; the inspection of sealant layers in an aluminum aircraft wing structure and the detection of embedded defects in a thick section carbon composite sample.
-
The Atacama Cosmology Telescope: Development and preliminary results of point source observations
NASA Astrophysics Data System (ADS)
Fisher, Ryan P.
2009-06-01
The Atacama Cosmology Telescope (ACT) is a six meter diameter telescope designed to measure the millimeter sky with arcminute angular resolution. The instrument is currently conducting its third season of observations from Cerro Toco in the Chilean Andes. The primary science goal of the experiment is to expand our understanding of cosmology by mapping the temperature fluctuations of the Cosmic Microwave Background (CMB) at angular scales corresponding to multipoles up to [cursive l] ~ 10000. The primary receiver for current ACT observations is the Millimeter Bolometer Array Camera (MBAC). The instrument is specially designed to observe simultaneously at 148 GHz, 218 GHz and 277 GHz. To accomplish this, the camera has three separate detector arrays, each containing approximately 1000 detectors. After discussing the ACT experiment in detail, a discussion of the development and testing of the cold readout electronics for the MBAC is presented. Currently, the ACT collaboration is in the process of generating maps of the microwave sky using our first and second season observations. The analysis used to generate these maps requires careful data calibration to produce maps of the arcminute scale CMB temperature fluctuations. Tests and applications of several elements of the ACT calibrations are presented in the context of the second season observations. Scientific exploration has already begun on preliminary maps made using these calibrations. The final portion of this thesis is dedicated to discussing the point sources observed by the ACT. A discussion of the techniques used for point source detection and photometry is followed by a presentation of our current measurements of point source spectral indices.
-
Lightning Mapping and Leader Propagation Reconstruction using LOFAR-LIM
NASA Astrophysics Data System (ADS)
Hare, B.; Ebert, U.; Rutjes, C.; Scholten, O.; Trinh, G. T. N.
2017-12-01
LOFAR (LOw Frequency ARray) is a radio telescope that consists of a large number of dual-polarized antennas spread over the northern Netherlands and beyond. The LOFAR for Lightning Imaging project (LOFAR-LIM) has successfully used LOFAR to map out lightning in the Netherlands. Since LOFAR covers a large frequency range (10-90 MHz), has antennas spread over a large area, and saves the raw trace data from the antennas, LOFAR-LIM can combine all the strongest aspects of both lightning mapping arrays and lightning interferometers. These aspects include a nanosecond resolution between pulses, nanosecond timing accuracy, and an ability to map lightning in all 3 spatial dimensions and time. LOFAR should be able to map out overhead lightning with a spatial accuracy on the order of meters. The large amount of complex data provide by LOFAR has presented new data processing challenges, such as handling the time offsets between stations with large baselines and locating as many sources as possible. New algorithms to handle these challenges have been developed and will be discussed. Since the antennas are dual-polarized, all three components of the electric field can be extracted and the structure of the R.F. pulses can be investigated at a large number of distances and angles relative to the lightning source, potentially allowing for modeling of lightning current distributions relevant to the 10 to 90 MHz frequency range. R.F. pulses due to leader propagation will be presented, which show a complex sub-structure, indicating intricate physics that could potentially be reconstructed.
-
Yan, Xinqiang; Zhang, Xiaoliang; Wei, Long; Xue, Rong
2015-01-01
Radio-frequency coil arrays using dipole antenna technique have been recently applied for ultrahigh field magnetic resonance (MR) imaging to obtain the better signal-noise-ratio (SNR) gain at the deep area of human tissues. However, the unique structure of dipole antennas makes it challenging to achieve sufficient electromagnetic decoupling among the dipole antenna elements. Currently, there is no decoupling methods proposed for dipole antenna arrays in MR imaging. The recently developed magnetic wall (MW) or induced current elimination decoupling technique has demonstrated its feasibility and robustness in designing microstrip transmission line arrays, L/C loop arrays and monopole arrays. In this study, we aim to investigate the possibility and performance of MW decoupling technique in dipole arrays for MR imaging at the ultrahigh field of 7T. To achieve this goal, a two-channel MW decoupled dipole array was designed, constructed and analyzed experimentally through bench test and MR imaging. Electromagnetic isolation between the two dipole elements was improved from about -3.6 dB (without any decoupling treatments) to -16.5 dB by using the MW decoupling method. MR images acquired from a water phantom using the MW decoupled dipole array and the geometry factor maps were measured, calculated and compared with those acquired using the dipole array without decoupling treatments. The MW decoupled dipole array demonstrated well-defined image profiles from each element and had better geometry factor over the array without decoupling treatments. The experimental results indicate that the MW decoupling technique might be a promising solution to reducing the electromagnetic coupling of dipole arrays in ultrahigh field MRI, consequently improving their performance in SNR and parallel imaging.
-
A decametric wavelength radio telescope for interplanetary scintillation observations
NASA Technical Reports Server (NTRS)
Cronyn, W. M.; Shawhan, S. D.
1975-01-01
A phased array, electrically steerable radio telescope (with a total collecting area of 18 acres), constructed for the purpose of remotely sensing electron density irregularity structure in the solar wind, is presented. The radio telescope is able to locate, map, and track large scale features of the solar wind, such as streams and blast waves, by monitoring a large grid of natural radio sources subject to rapid intensity fluctuation (interplanetary scintillation) caused by the irregularity structure. Observations verify the performance of the array, the receiver, and the scintillation signal processing circuitry of the telescope.
-
Gene-Based Single Nucleotide Polymorphism Markers for Genetic and Association Mapping in Common Bean
2012-01-01
Background In common bean, expressed sequence tags (ESTs) are an underestimated source of gene-based markers such as insertion-deletions (Indels) or single-nucleotide polymorphisms (SNPs). However, due to the nature of these conserved sequences, detection of markers is difficult and portrays low levels of polymorphism. Therefore, development of intron-spanning EST-SNP markers can be a valuable resource for genetic experiments such as genetic mapping and association studies. Results In this study, a total of 313 new gene-based markers were developed at target genes. Intronic variation was deeply explored in order to capture more polymorphism. Introns were putatively identified after comparing the common bean ESTs with the soybean genome, and the primers were designed over intron-flanking regions. The intronic regions were evaluated for parental polymorphisms using the single strand conformational polymorphism (SSCP) technique and Sequenom MassARRAY system. A total of 53 new marker loci were placed on an integrated molecular map in the DOR364 × G19833 recombinant inbred line (RIL) population. The new linkage map was used to build a consensus map, merging the linkage maps of the BAT93 × JALO EEP558 and DOR364 × BAT477 populations. A total of 1,060 markers were mapped, with a total map length of 2,041 cM across 11 linkage groups. As a second application of the generated resource, a diversity panel with 93 genotypes was evaluated with 173 SNP markers using the MassARRAY-platform and KASPar technology. These results were coupled with previous SSR evaluations and drought tolerance assays carried out on the same individuals. This agglomerative dataset was examined, in order to discover marker-trait associations, using general linear model (GLM) and mixed linear model (MLM). Some significant associations with yield components were identified, and were consistent with previous findings. Conclusions In short, this study illustrates the power of intron-based markers for linkage and association mapping in common bean. The utility of these markers is discussed in relation with the usefulness of microsatellites, the molecular markers by excellence in this crop. PMID:22734675
-
2016-10-01
isolated action potentials or multi-action potential activity from residual peripheral nerve while patient intends movements of amputated hand/arm...Subtask 3.1: Mapping of neural activity (Months 4 – 36) • Patients will be asked to intend a number of individual finger and multiple finger flexion...during these intended movements. We will map the different intended movements onto the neural activity recorded on the electrodes of the micro-electrode
-
High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells*
Kanderova, Veronika; Kuzilkova, Daniela; Stuchly, Jan; Vaskova, Martina; Brdicka, Tomas; Fiser, Karel; Hrusak, Ondrej; Lund-Johansen, Fridtjof
2016-01-01
Acute leukemia is a disease pathologically manifested at both genomic and proteomic levels. Molecular genetic technologies are currently widely used in clinical research. In contrast, sensitive and high-throughput proteomic techniques for performing protein analyses in patient samples are still lacking. Here, we used a technology based on size exclusion chromatography followed by immunoprecipitation of target proteins with an antibody bead array (Size Exclusion Chromatography-Microsphere-based Affinity Proteomics, SEC-MAP) to detect hundreds of proteins from a single sample. In addition, we developed semi-automatic bioinformatics tools to adapt this technology for high-content proteomic screening of pediatric acute leukemia patients. To confirm the utility of SEC-MAP in leukemia immunophenotyping, we tested 31 leukemia diagnostic markers in parallel by SEC-MAP and flow cytometry. We identified 28 antibodies suitable for both techniques. Eighteen of them provided excellent quantitative correlation between SEC-MAP and flow cytometry (p < 0.05). Next, SEC-MAP was applied to examine 57 diagnostic samples from patients with acute leukemia. In this assay, we used 632 different antibodies and detected 501 targets. Of those, 47 targets were differentially expressed between at least two of the three acute leukemia subgroups. The CD markers correlated with immunophenotypic categories as expected. From non-CD markers, we found DBN1, PAX5, or PTK2 overexpressed in B-cell precursor acute lymphoblastic leukemias, LAT, SH2D1A, or STAT5A overexpressed in T-cell acute lymphoblastic leukemias, and HCK, GLUD1, or SYK overexpressed in acute myeloid leukemias. In addition, OPAL1 overexpression corresponded to ETV6-RUNX1 chromosomal translocation. In summary, we demonstrated that SEC-MAP technology is a powerful tool for detecting hundreds of proteins in clinical samples obtained from pediatric acute leukemia patients. It provides information about protein size and reveals differences in protein expression between particular leukemia subgroups. Forty-seven of SEC-MAP identified targets were validated by other conventional method in this study. PMID:26785729
-
Petersson, Linn; Dexlin-Mellby, Linda; Bengtsson, Anders A; Sturfelt, Gunnar; Borrebaeck, Carl A K; Wingren, Christer
2014-06-07
In the quest to decipher disease-associated biomarkers, miniaturized and multiplexed antibody arrays may play a central role in generating protein expression profiles, or protein maps, of crude serum samples. In this conceptual study, we explored a novel, 4-times larger pen design, enabling us to, in a unique manner, simultaneously print 48 different reagents (antibodies) as individual 78.5 μm(2) (10 μm in diameter) sized spots at a density of 38,000 spots cm(-2) using dip-pen nanolithography technology. The antibody array set-up was interfaced with a high-resolution fluorescent-based scanner for sensitive sensing. The performance and applicability of this novel 48-plex recombinant antibody array platform design was demonstrated in a first clinical application targeting SLE nephritis, a severe chronic autoimmune connective tissue disorder, as the model disease. To this end, crude, directly biotinylated serum samples were targeted. The results showed that the miniaturized and multiplexed array platform displayed adequate performance, and that SLE-associated serum biomarker panels reflecting the disease process could be deciphered, outlining the use of miniaturized antibody arrays for disease proteomics and biomarker discovery.
-
Manycore Performance-Portability: Kokkos Multidimensional Array Library
Edwards, H. Carter; Sunderland, Daniel; Porter, Vicki; ...
2012-01-01
Large, complex scientific and engineering application code have a significant investment in computational kernels to implement their mathematical models. Porting these computational kernels to the collection of modern manycore accelerator devices is a major challenge in that these devices have diverse programming models, application programming interfaces (APIs), and performance requirements. The Kokkos Array programming model provides library-based approach to implement computational kernels that are performance-portable to CPU-multicore and GPGPU accelerator devices. This programming model is based upon three fundamental concepts: (1) manycore compute devices each with its own memory space, (2) data parallel kernels and (3) multidimensional arrays. Kernel executionmore » performance is, especially for NVIDIA® devices, extremely dependent on data access patterns. Optimal data access pattern can be different for different manycore devices – potentially leading to different implementations of computational kernels specialized for different devices. The Kokkos Array programming model supports performance-portable kernels by (1) separating data access patterns from computational kernels through a multidimensional array API and (2) introduce device-specific data access mappings when a kernel is compiled. An implementation of Kokkos Array is available through Trilinos [Trilinos website, http://trilinos.sandia.gov/, August 2011].« less
-
Strauss, Charlie E.
1997-01-01
Apparatus and method for heterodyne-generated, two-dimensional detector array using a single detector. Synthetic-array heterodyne detection, permits a single-element optical detector to behave as though it were divided into an array of separate heterodyne detector elements. A fifteen-element synthetic array has successfully been experimentally realized on a single-element detector, permitting all of the array elements to be read out continuously and in parallel from one electrical connection. A CO.sub.2 laser and a single-element HgCdTe photodiode are employed. A different heterodyne local oscillator frequency is incident upon the spatially resolvable regions of the detector surface. Thus, different regions are mapped to different heterodyne beat frequencies. One can determine where the photons were incident on the detector surface even though a single electrical connection to the detector is used. This also prevents the destructive interference that occurs when multiple speckles are imaged (similar to spatial diversity), In coherent LIDAR this permits a larger field of view. An acoustooptic modulator generates the local oscillator frequencies and can achieve adequate spatial separation of optical frequencies of the order of a megahertz apart.
-
Strauss, C.E.
1997-11-18
Apparatus and method are disclosed for heterodyne-generated, two-dimensional detector array using a single detector. Synthetic-array heterodyne detection, permits a single-element optical detector to behave as though it were divided into an array of separate heterodyne detector elements. A fifteen-element synthetic array has successfully been experimentally realized on a single-element detector, permitting all of the array elements to be read out continuously and in parallel from one electrical connection. A CO{sub 2} laser and a single-element HgCdTe photodiode are employed. A different heterodyne local oscillator frequency is incident upon the spatially resolvable regions of the detector surface. Thus, different regions are mapped to different heterodyne beat frequencies. One can determine where the photons were incident on the detector surface even though a single electrical connection to the detector is used. This also prevents the destructive interference that occurs when multiple speckles are imaged (similar to spatial diversity), In coherent LIDAR this permits a larger field of view. An acoustooptic modulator generates the local oscillator frequencies and can achieve adequate spatial separation of optical frequencies of the order of a megahertz apart. 4 figs.
-
Antenna-coupled TES bolometers used in BICEP2, Keck Array, and SPIDER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, P. A. R.; Aikin, R. W.; Amiri, M.
We have developed antenna-coupled transition-edge sensor bolometers for a wide range of cosmic microwave background (CMB) polarimetry experiments, including Bicep2, Keck Array, and the balloon borne Spider. These detectors have reached maturity and this paper reports on their design principles, overall performance, and key challenges associated with design and production. Our detector arrays repeatedly produce spectral bands with 20%–30% bandwidth at 95, 150, or 230 GHz. The integrated antenna arrays synthesize symmetric co-aligned beams with controlled side-lobe levels. Cross-polarized response on boresight is typicallymore » $$\\sim 0.5\\%$$, consistent with cross-talk in our multiplexed readout system. End-to-end optical efficiencies in our cameras are routinely 35% or higher, with per detector sensitivities of NET ~ 300 $$\\mu {{\\rm{K}}}_{\\mathrm{CMB}}\\sqrt{{\\rm{s}}}$$. Thanks to the scalability of this design, we have deployed 2560 detectors as 1280 matched pairs in Keck Array with a combined instantaneous sensitivity of $$\\sim 9\\;\\mu {{\\rm{K}}}_{\\mathrm{CMB}}\\sqrt{{\\rm{s}}}$$, as measured directly from CMB maps in the 2013 season. Furthermore, similar arrays have recently flown in the Spider instrument, and development of this technology is ongoing.« less
-
Antenna-coupled TES bolometers used in BICEP2, Keck Array, and SPIDER
Ade, P. A. R.; Aikin, R. W.; Amiri, M.; ...
2015-10-20
We have developed antenna-coupled transition-edge sensor bolometers for a wide range of cosmic microwave background (CMB) polarimetry experiments, including Bicep2, Keck Array, and the balloon borne Spider. These detectors have reached maturity and this paper reports on their design principles, overall performance, and key challenges associated with design and production. Our detector arrays repeatedly produce spectral bands with 20%–30% bandwidth at 95, 150, or 230 GHz. The integrated antenna arrays synthesize symmetric co-aligned beams with controlled side-lobe levels. Cross-polarized response on boresight is typicallymore » $$\\sim 0.5\\%$$, consistent with cross-talk in our multiplexed readout system. End-to-end optical efficiencies in our cameras are routinely 35% or higher, with per detector sensitivities of NET ~ 300 $$\\mu {{\\rm{K}}}_{\\mathrm{CMB}}\\sqrt{{\\rm{s}}}$$. Thanks to the scalability of this design, we have deployed 2560 detectors as 1280 matched pairs in Keck Array with a combined instantaneous sensitivity of $$\\sim 9\\;\\mu {{\\rm{K}}}_{\\mathrm{CMB}}\\sqrt{{\\rm{s}}}$$, as measured directly from CMB maps in the 2013 season. Furthermore, similar arrays have recently flown in the Spider instrument, and development of this technology is ongoing.« less
-
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gambino, Nadia, E-mail: gambinon@ethz.ch; Brandstätter, Markus; Rollinger, Bob
2014-09-15
In this work, a new diagnostic tool for laser-produced plasmas (LPPs) is presented. The detector is based on a multiple array of six motorized Langmuir probes. It allows to measure the dynamics of a LPP in terms of charged particles detection with particular attention to droplet-based LPP sources for EUV lithography. The system design permits to temporally resolve the angular and radial plasma charge distribution and to obtain a hemispherical mapping of the ions and electrons around the droplet plasma. The understanding of these dynamics is fundamental to improve the debris mitigation techniques for droplet-based LPP sources. The device hasmore » been developed, built, and employed at the Laboratory for Energy Conversion, ETH Zürich. The experimental results have been obtained on the droplet-based LPP source ALPS II. For the first time, 2D mappings of the ion kinetic energy distribution around the droplet plasma have been obtained with an array of multiple Langmuir probes. These measurements show an anisotropic expansion of the ions in terms of kinetic energy and amount of ion charge around the droplet target. First estimations of the plasma density and electron temperature were also obtained from the analysis of the probe current signals.« less
-
A special purpose silicon compiler for designing supercomputing VLSI systems
NASA Technical Reports Server (NTRS)
Venkateswaran, N.; Murugavel, P.; Kamakoti, V.; Shankarraman, M. J.; Rangarajan, S.; Mallikarjun, M.; Karthikeyan, B.; Prabhakar, T. S.; Satish, V.; Venkatasubramaniam, P. R.
1991-01-01
Design of general/special purpose supercomputing VLSI systems for numeric algorithm execution involves tackling two important aspects, namely their computational and communication complexities. Development of software tools for designing such systems itself becomes complex. Hence a novel design methodology has to be developed. For designing such complex systems a special purpose silicon compiler is needed in which: the computational and communicational structures of different numeric algorithms should be taken into account to simplify the silicon compiler design, the approach is macrocell based, and the software tools at different levels (algorithm down to the VLSI circuit layout) should get integrated. In this paper a special purpose silicon (SPS) compiler based on PACUBE macrocell VLSI arrays for designing supercomputing VLSI systems is presented. It is shown that turn-around time and silicon real estate get reduced over the silicon compilers based on PLA's, SLA's, and gate arrays. The first two silicon compiler characteristics mentioned above enable the SPS compiler to perform systolic mapping (at the macrocell level) of algorithms whose computational structures are of GIPOP (generalized inner product outer product) form. Direct systolic mapping on PLA's, SLA's, and gate arrays is very difficult as they are micro-cell based. A novel GIPOP processor is under development using this special purpose silicon compiler.
-
Airframe Noise from a Hybrid Wing Body Aircraft Configuration
NASA Technical Reports Server (NTRS)
Hutcheson, Florence V.; Spalt, Taylor B.; Brooks, Thomas F.; Plassman, Gerald E.
2016-01-01
A high fidelity aeroacoustic test was conducted in the NASA Langley 14- by 22-Foot Subsonic Tunnel to establish a detailed database of component noise for a 5.8% scale HWB aircraft configuration. The model has a modular design, which includes a drooped and a stowed wing leading edge, deflectable elevons, twin verticals, and a landing gear system with geometrically scaled wheel-wells. The model is mounted inverted in the test section and noise measurements are acquired at different streamwise stations from an overhead microphone phased array and from overhead and sideline microphones. Noise source distribution maps and component noise spectra are presented for airframe configurations representing two different approach flight conditions. Array measurements performed along the aircraft flyover line show the main landing gear to be the dominant contributor to the total airframe noise, followed by the nose gear, the inboard side-edges of the LE droop, the wing tip/LE droop outboard side-edges, and the side-edges of deployed elevons. Velocity dependence and flyover directivity are presented for the main noise components. Decorrelation effects from turbulence scattering on spectral levels measured with the microphone phased array are discussed. Finally, noise directivity maps obtained from the overhead and sideline microphone measurements for the landing gear system are provided for a broad range of observer locations.
-
SoundCompass: A Distributed MEMS Microphone Array-Based Sensor for Sound Source Localization
Tiete, Jelmer; Domínguez, Federico; da Silva, Bruno; Segers, Laurent; Steenhaut, Kris; Touhafi, Abdellah
2014-01-01
Sound source localization is a well-researched subject with applications ranging from localizing sniper fire in urban battlefields to cataloging wildlife in rural areas. One critical application is the localization of noise pollution sources in urban environments, due to an increasing body of evidence linking noise pollution to adverse effects on human health. Current noise mapping techniques often fail to accurately identify noise pollution sources, because they rely on the interpolation of a limited number of scattered sound sensors. Aiming to produce accurate noise pollution maps, we developed the SoundCompass, a low-cost sound sensor capable of measuring local noise levels and sound field directionality. Our first prototype is composed of a sensor array of 52 Microelectromechanical systems (MEMS) microphones, an inertial measuring unit and a low-power field-programmable gate array (FPGA). This article presents the SoundCompass’s hardware and firmware design together with a data fusion technique that exploits the sensing capabilities of the SoundCompass in a wireless sensor network to localize noise pollution sources. Live tests produced a sound source localization accuracy of a few centimeters in a 25-m2 anechoic chamber, while simulation results accurately located up to five broadband sound sources in a 10,000-m2 open field. PMID:24463431
-
Arraycount, an algorithm for automatic cell counting in microwell arrays.
Kachouie, Nezamoddin; Kang, Lifeng; Khademhosseini, Ali
2009-09-01
Microscale technologies have emerged as a powerful tool for studying and manipulating biological systems and miniaturizing experiments. However, the lack of software complementing these techniques has made it difficult to apply them for many high-throughput experiments. This work establishes Arraycount, an approach to automatically count cells in microwell arrays. The procedure consists of fluorescent microscope imaging of cells that are seeded in microwells of a microarray system and then analyzing images via computer to recognize the array and count cells inside each microwell. To start counting, green and red fluorescent images (representing live and dead cells, respectively) are extracted from the original image and processed separately. A template-matching algorithm is proposed in which pre-defined well and cell templates are matched against the red and green images to locate microwells and cells. Subsequently, local maxima in the correlation maps are determined and local maxima maps are thresholded. At the end, the software records the cell counts for each detected microwell on the original image in high-throughput. The automated counting was shown to be accurate compared with manual counting, with a difference of approximately 1-2 cells per microwell: based on cell concentration, the absolute difference between manual and automatic counting measurements was 2.5-13%.
-
SimArray: a user-friendly and user-configurable microarray design tool
Auburn, Richard P; Russell, Roslin R; Fischer, Bettina; Meadows, Lisa A; Sevillano Matilla, Santiago; Russell, Steven
2006-01-01
Background Microarrays were first developed to assess gene expression but are now also used to map protein-binding sites and to assess allelic variation between individuals. Regardless of the intended application, efficient production and appropriate array design are key determinants of experimental success. Inefficient production can make larger-scale studies prohibitively expensive, whereas poor array design makes normalisation and data analysis problematic. Results We have developed a user-friendly tool, SimArray, which generates a randomised spot layout, computes a maximum meta-grid area, and estimates the print time, in response to user-specified design decisions. Selected parameters include: the number of probes to be printed; the microtitre plate format; the printing pin configuration, and the achievable spot density. SimArray is compatible with all current robotic spotters that employ 96-, 384- or 1536-well microtitre plates, and can be configured to reflect most production environments. Print time and maximum meta-grid area estimates facilitate evaluation of each array design for its suitability. Randomisation of the spot layout facilitates correction of systematic biases by normalisation. Conclusion SimArray is intended to help both established researchers and those new to the microarray field to develop microarray designs with randomised spot layouts that are compatible with their specific production environment. SimArray is an open-source program and is available from . PMID:16509966
-
NOY: a neutrino observatory network project based on stand alone air shower detector arrays
NASA Astrophysics Data System (ADS)
Montanet, F.; Lebrun, D.; Chauvin, J.; Lagorio, E.; Stassi, P.
2011-09-01
We have developed a self powered stand alone particle detector array dedicated to the observation of horizontal tau air showers induced by high energy neutrinos interacting in mountain rock. Air shower particle detection reaches a 100% duty cycle and is practically free of background when compared to Cherenkov light or radio techniques. It is thus better suited for rare neutrino event search. An appropriate mountain to valley topological configuration has been identified and the first array will be deployed on an inclined slope at an elevation of 1500 m facing Southern Alps near the city of Grenoble (France). A full simulation has been performed. A neutrino energy dependent mountain tomography chart is obtained using a neutrino and tau propagation code together with a detailed cartography and elevation map of the region. The array acceptance is then evaluated between 1 PeV and 100 EeV by simulating decaying tau air showers across the valley. The effective detection surface is determined by the shower lateral extension at array location and is hence much larger than the array geometrical area. The array exposure will be 1014 cm2 sr s at 100 PeV. Several independent arrays can be deployed with the aim of constituting a large distributed observatory. Some other sites are already under study. At last, special care is dedicated to the educational and outreach aspects of such a cosmic ray detector.
-
Instrumentation for single-dish observations with The Greenland Telescope
NASA Astrophysics Data System (ADS)
Grimes, Paul K.; Asada, K.; Blundell, R.; Burgos, R.; Chang, H.-H.; Chen, M. T.; Goldie, D.; Groppi, C.; Han, C. C.; Ho, P. T. P.; Huang, Y. D.; Inoue, M.; Kubo, D.; Koch, P.; Leech, J.; de Lera Acedo, E.; Martin-Cocher, P.; Nishioka, H.; Nakamura, M.; Matsushita, S.; Paine, S. N.; Patel, N.; Raffin, P.; Snow, W.; Sridharan, T. K.; Srinivasan, R.; Thomas, C. N.; Tong, E.; Wang, M.-J.; Wheeler, C.; Withington, S.; Yassin, G.; Zeng, L.-Z.
2014-07-01
The Greenland Telescope project will deploy and operate a 12m sub-millimeter telescope at the highest point of the Greenland i e sheet. The Greenland Telescope project is a joint venture between the Smithsonian As- trophysical Observatory (SAO) and the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA). In this paper we discuss the concepts, specifications, and science goals of the instruments being developed for single-dish observations with the Greenland Telescope, and the coupling optics required to couple both them and the mm-VLBI receivers to antenna. The project will outfit the ALMA North America prototype antenna for Arctic operations and deploy it to Summit Station,1 a NSF operated Arctic station at 3,100m above MSL on the Greenland I e Sheet. This site is exceptionally dry, and promises to be an excellent site for sub-millimeter astronomical observations. The main science goal of the Greenland Telescope is to carry out millimeter VLBI observations alongside other telescopes in Europe and the Americas, with the aim of resolving the event horizon of the super-massive black hole at the enter of M87. The Greenland Telescope will also be outfitted for single-dish observations from the millimeter-wave to Tera-hertz bands. In this paper we will discuss the proposed instruments that are currently in development for the Greenland Telescope - 350 GHz and 650 GHz heterodyne array receivers; 1.4 THz HEB array receivers and a W-band bolometric spectrometer. SAO is leading the development of two heterodyne array instruments for the Greenland Telescope, a 48- pixel, 325-375 GHz SIS array receiver, and a 4 pixel, 1.4 THz HEB array receiver. A key science goal for these instruments is the mapping of ortho and para H2D+ in old protostellar ores, as well as general mapping of CO and other transitions in molecular louds. An 8-pixel prototype module for the 350 GHz array is currently being built for laboratory and operational testing on the Greenland Telescope. Arizona State University are developing a 650 GHz 256 pixel SIS array receiver based on the KAPPa SIS mixer array technology and ASIAA are developing 1.4 THz HEB single pixel and array receivers. The University of Cambridge and SAO are collaborating on the development of the CAMbridge Emission Line Surveyor (CAMELS), a W-band `on- hip' spectrometer instrument with a spectral resolution of R ~ 3000. CAMELS will consist of two pairs of horn antennas, feeding super conducting niobium nitride filter banks read by tantalum based Kinetic Inductance Detectors.
-
Mapping Hispanic-Serving Institutions: A Typology of Institutional Diversity
ERIC Educational Resources Information Center
Núñez, Anne-Marie; Crisp, Gloria; Elizondo, Diane
2016-01-01
Hispanic-Serving Institutions (HSIs), institutions that enroll at least 25% Hispanic students, are institutionally diverse, including a much wider array of institutional types than other Minority-Serving Institutions (MSIs). Furthermore, they have distinctive institutional characteristics from those typically emphasized in institutional typologies…
-
Moody, Katherine Lynn; Hollingsworth, Neal A.; Zhao, Feng; Nielsen, Jon-Fredrik; Noll, Douglas C.; Wright, Steven M.; McDougall, Mary Preston
2014-01-01
Parallel transmit is an emerging technology to address the technical challenges associated with MR imaging at high field strengths. When developing arrays for parallel transmit systems, one of the primary factors to be considered is the mechanism to manage coupling and create independently operating channels. Recent work has demonstrated the use of amplifiers to provide some or all of the channel-to-channel isolation, reducing the need for on-coil decoupling networks in a manner analogous to the use of isolation preamplifiers with receive coils. This paper discusses an eight-channel transmit/receive head array for use with an ultra-low output impedance (ULOI) parallel transmit system. The ULOI amplifiers eliminated the need for a complex lumped element network to decouple the eight rung array. The design and construction details of the array are discussed in addition to the measurement considerations required for appropriately characterizing an array when using ULOI amplifiers. B1 maps and coupling matrices are used to verify the performance of the system. PMID:25072190
-
Novel Wearable Device for Blood Leakage Detection during Hemodialysis Using an Array Sensing Patch
Du, Yi-Chun; Lim, Bee-Yen; Ciou, Wei-Siang; Wu, Ming-Jui
2016-01-01
Hemodialysis (HD) is a clinical treatment that requires the puncturing of the body surface. However, needle dislodgement can cause a high risk of blood leakage and can be fatal to patients. Previous studies proposed several devices for blood leakage detection using optical or electrical techniques. Nonetheless, these methods used single-point detection and the design was not suitable for multi-bed monitoring. This study proposed a novel wearable device for blood leakage monitoring during HD using an array sensing patch. The array sensing patch combined with a mapping circuit and a wireless module could measure and transmit risk levels. The different risk levels could improve the working process of healthcare workers, and enhance their work efficiency and reduce inconvenience due to false alarms. Experimental results showed that each point of the sensing array could detect up to 0.1 mL of blood leakage and the array sensing patch supports a risk level monitoring system up to 8 h to alert healthcare personnel of pertinent danger to the patients. PMID:27294927
-
Using peptide array to identify binding motifs and interaction networks for modular domains.
Li, Shawn S-C; Wu, Chenggang
2009-01-01
Specific protein-protein interactions underlie all essential biological processes and form the basis of cellular signal transduction. The recognition of a short, linear peptide sequence in one protein by a modular domain in another represents a common theme of macromolecular recognition in cells, and the importance of this mode of protein-protein interaction is highlighted by the large number of peptide-binding domains encoded by the human genome. This phenomenon also provides a unique opportunity to identify protein-protein binding events using peptide arrays and complementary biochemical assays. Accordingly, high-density peptide array has emerged as a useful tool by which to map domain-mediated protein-protein interaction networks at the proteome level. Using the Src-homology 2 (SH2) and 3 (SH3) domains as examples, we describe the application of oriented peptide array libraries in uncovering specific motifs recognized by an SH2 domain and the use of high-density peptide arrays in identifying interaction networks mediated by the SH3 domain. Methods reviewed here could also be applied to other modular domains, including catalytic domains, that recognize linear peptide sequences.
-
Simultaneous electrical recording of cardiac electrophysiology and contraction on chip
Qian, Fang; Huang, Chao; Lin, Yi-Dong; ...
2017-04-18
Prevailing commercialized cardiac platforms for in vitro drug development utilize planar microelectrode arrays to map action potentials, or impedance sensing to record contraction in real time, but cannot record both functions on the same chip with high spatial resolution. We report a novel cardiac platform that can record cardiac tissue adhesion, electrophysiology, and contractility on the same chip. The platform integrates two independent yet interpenetrating sensor arrays: a microelectrode array for field potential readouts and an interdigitated electrode array for impedance readouts. Together, these arrays provide real-time, non-invasive data acquisition of both cardiac electrophysiology and contractility under physiological conditions andmore » under drug stimuli. Furthermore, we cultured human induced pluripotent stem cell-derived cardiomyocytes as a model system, and used to validate the platform with an excitation–contraction decoupling chemical. Preliminary data using the platform to investigate the effect of the drug norepinephrine are combined with computational efforts. Finally, this platform provides a quantitative and predictive assay system that can potentially be used for comprehensive assessment of cardiac toxicity earlier in the drug discovery process.« less
-
Making a chocolate chip: development and evaluation of a 6K SNP array for Theobroma cacao
Livingstone, Donald; Royaert, Stefan; Stack, Conrad; Mockaitis, Keithanne; May, Greg; Farmer, Andrew; Saski, Christopher; Schnell, Ray; Kuhn, David; Motamayor, Juan Carlos
2015-01-01
Theobroma cacao, the key ingredient in chocolate production, is one of the world's most important tree fruit crops, with ∼4,000,000 metric tons produced across 50 countries. To move towards gene discovery and marker-assisted breeding in cacao, a single-nucleotide polymorphism (SNP) identification project was undertaken using RNAseq data from 16 diverse cacao cultivars. RNA sequences were aligned to the assembled transcriptome of the cultivar Matina 1-6, and 330,000 SNPs within coding regions were identified. From these SNPs, a subset of 6,000 high-quality SNPs were selected for inclusion on an Illumina Infinium SNP array: the Cacao6kSNP array. Using Cacao6KSNP array data from over 1,000 cacao samples, we demonstrate that our custom array produces a saturated genetic map and can be used to distinguish among even closely related genotypes. Our study enhances and expands the genetic resources available to the cacao research community, and provides the genome-scale set of tools that are critical for advancing breeding with molecular markers in an agricultural species with high genetic diversity. PMID:26070980
-
NASA Astrophysics Data System (ADS)
Moody, Katherine Lynn; Hollingsworth, Neal A.; Zhao, Feng; Nielsen, Jon-Fredrik; Noll, Douglas C.; Wright, Steven M.; McDougall, Mary Preston
2014-09-01
Parallel transmit is an emerging technology to address the technical challenges associated with MR imaging at high field strengths. When developing arrays for parallel transmit systems, one of the primary factors to be considered is the mechanism to manage coupling and create independently operating channels. Recent work has demonstrated the use of amplifiers to provide some or all of the channel-to-channel isolation, reducing the need for on-coil decoupling networks in a manner analogous to the use of isolation preamplifiers with receive coils. This paper discusses an eight-channel transmit/receive head array for use with an ultra-low output impedance (ULOI) parallel transmit system. The ULOI amplifiers eliminated the need for a complex lumped element network to decouple the eight-rung array. The design and construction details of the array are discussed in addition to the measurement considerations required for appropriately characterizing an array when using ULOI amplifiers. B1 maps and coupling matrices are used to verify the performance of the system.
-
High Frequency High Spectral Resolution Focal Plane Arrays for AtLAST
NASA Astrophysics Data System (ADS)
Baryshev, Andrey
2018-01-01
Large collecting area single dish telescope such as ATLAST will be especially effective for medium (R 1000) and high (R 50000) spectral resolution observations. Large focal plane array is a natural solution to increase mapping speed. For medium resolution direct detectors with filter banks (KIDs) and or heterodyne technology can be employed. We will analyze performance limits of comparable KID and SIS focal plane array taking into account quantum limit and high background condition of terrestrial observing site. For large heterodyne focal plane arrays, a high current density AlN junctions open possibility of large instantaneous bandwidth >40%. This and possible multi frequency band FPSs presents a practical challenge for spatial sampling and scanning strategies. We will discuss phase array feeds as a possible solution, including a modular back-end system, which can be shared between KID and SIS based FPA. Finally we will discuss achievable sensitivities and pixel co unts for a high frequency (>500 GHz) FPAs and address main technical challenges: LO distribution, wire counts, bias line multiplexing, and monolithic vs. discrete mixer component integration.
-
Simultaneous electrical recording of cardiac electrophysiology and contraction on chip
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Fang; Huang, Chao; Lin, Yi-Dong
Prevailing commercialized cardiac platforms for in vitro drug development utilize planar microelectrode arrays to map action potentials, or impedance sensing to record contraction in real time, but cannot record both functions on the same chip with high spatial resolution. We report a novel cardiac platform that can record cardiac tissue adhesion, electrophysiology, and contractility on the same chip. The platform integrates two independent yet interpenetrating sensor arrays: a microelectrode array for field potential readouts and an interdigitated electrode array for impedance readouts. Together, these arrays provide real-time, non-invasive data acquisition of both cardiac electrophysiology and contractility under physiological conditions andmore » under drug stimuli. Furthermore, we cultured human induced pluripotent stem cell-derived cardiomyocytes as a model system, and used to validate the platform with an excitation–contraction decoupling chemical. Preliminary data using the platform to investigate the effect of the drug norepinephrine are combined with computational efforts. Finally, this platform provides a quantitative and predictive assay system that can potentially be used for comprehensive assessment of cardiac toxicity earlier in the drug discovery process.« less
-
Parallel algorithms for mapping pipelined and parallel computations
NASA Technical Reports Server (NTRS)
Nicol, David M.
1988-01-01
Many computational problems in image processing, signal processing, and scientific computing are naturally structured for either pipelined or parallel computation. When mapping such problems onto a parallel architecture it is often necessary to aggregate an obvious problem decomposition. Even in this context the general mapping problem is known to be computationally intractable, but recent advances have been made in identifying classes of problems and architectures for which optimal solutions can be found in polynomial time. Among these, the mapping of pipelined or parallel computations onto linear array, shared memory, and host-satellite systems figures prominently. This paper extends that work first by showing how to improve existing serial mapping algorithms. These improvements have significantly lower time and space complexities: in one case a published O(nm sup 3) time algorithm for mapping m modules onto n processors is reduced to an O(nm log m) time complexity, and its space requirements reduced from O(nm sup 2) to O(m). Run time complexity is further reduced with parallel mapping algorithms based on these improvements, which run on the architecture for which they create the mappings.
-
Classical mapping for Hubbard operators: Application to the double-Anderson model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Bin; Miller, William H.; Levy, Tal J.
A classical Cartesian mapping for Hubbard operators is developed to describe the nonequilibrium transport of an open quantum system with many electrons. The mapping of the Hubbard operators representing the many-body Hamiltonian is derived by using analogies from classical mappings of boson creation and annihilation operators vis-à-vis a coherent state representation. The approach provides qualitative results for a double quantum dot array (double Anderson impurity model) coupled to fermionic leads for a range of bias voltages, Coulomb couplings, and hopping terms. While the width and height of the conduction peaks show deviations from the master equation approach considered to bemore » accurate in the limit of weak system-leads couplings and high temperatures, the Hubbard mapping captures all transport channels involving transition between many electron states, some of which are not captured by approximate nonequilibrium Green function closures.« less
-
High-density genetic map construction and comparative genome analysis in asparagus bean.
Huang, Haitao; Tan, Huaqiang; Xu, Dongmei; Tang, Yi; Niu, Yisong; Lai, Yunsong; Tie, Manman; Li, Huanxiu
2018-03-19
Genetic maps are a prerequisite for quantitative trait locus (QTL) analysis, marker-assisted selection (MAS), fine gene mapping, and assembly of genome sequences. So far, several asparagus bean linkage maps have been established using various kinds of molecular markers. However, these maps were all constructed by gel- or array-based markers. No maps based on sequencing method have been reported. In this study, an NGS-based strategy, SLAF-seq, was applied to create a high-density genetic map for asparagus bean. Through SLAF library construction and Illumina sequencing of two parents and 100 F2 individuals, a total of 55,437 polymorphic SLAF markers were developed and mined for SNP markers. The map consisted of 5,225 SNP markers in 11 LGs, spanning a total distance of 1,850.81 cM, with an average distance between markers of 0.35 cM. Comparative genome analysis with four other legume species, soybean, common bean, mung bean and adzuki bean showed that asparagus bean is genetically more related to adzuki bean. The results will provide a foundation for future genomic research, such as QTL fine mapping, comparative mapping in pulses, and offer support for assembling asparagus bean genome sequence.
-
Ade, P A R; Ahmed, Z; Aikin, R W; Alexander, K D; Barkats, D; Benton, S J; Bischoff, C A; Bock, J J; Bowens-Rubin, R; Brevik, J A; Buder, I; Bullock, E; Buza, V; Connors, J; Crill, B P; Duband, L; Dvorkin, C; Filippini, J P; Fliescher, S; Grayson, J; Halpern, M; Harrison, S; Hilton, G C; Hui, H; Irwin, K D; Karkare, K S; Karpel, E; Kaufman, J P; Keating, B G; Kefeli, S; Kernasovskiy, S A; Kovac, J M; Kuo, C L; Leitch, E M; Lueker, M; Megerian, K G; Netterfield, C B; Nguyen, H T; O'Brient, R; Ogburn, R W; Orlando, A; Pryke, C; Richter, S; Schwarz, R; Sheehy, C D; Staniszewski, Z K; Steinbach, B; Sudiwala, R V; Teply, G P; Thompson, K L; Tolan, J E; Tucker, C; Turner, A D; Vieregg, A G; Weber, A C; Wiebe, D V; Willmert, J; Wong, C L; Wu, W L K; Yoon, K W
2016-01-22
We present results from an analysis of all data taken by the BICEP2 and Keck Array cosmic microwave background (CMB) polarization experiments up to and including the 2014 observing season. This includes the first Keck Array observations at 95 GHz. The maps reach a depth of 50 nK deg in Stokes Q and U in the 150 GHz band and 127 nK deg in the 95 GHz band. We take auto- and cross-spectra between these maps and publicly available maps from WMAP and Planck at frequencies from 23 to 353 GHz. An excess over lensed ΛCDM is detected at modest significance in the 95×150 BB spectrum, and is consistent with the dust contribution expected from our previous work. No significant evidence for synchrotron emission is found in spectra such as 23×95, or for correlation between the dust and synchrotron sky patterns in spectra such as 23×353. We take the likelihood of all the spectra for a multicomponent model including lensed ΛCDM, dust, synchrotron, and a possible contribution from inflationary gravitational waves (as parametrized by the tensor-to-scalar ratio r) using priors on the frequency spectral behaviors of dust and synchrotron emission from previous analyses of WMAP and Planck data in other regions of the sky. This analysis yields an upper limit r_{0.05}<0.09 at 95% confidence, which is robust to variations explored in analysis and priors. Combining these B-mode results with the (more model-dependent) constraints from Planck analysis of CMB temperature plus baryon acoustic oscillations and other data yields a combined limit r_{0.05}<0.07 at 95% confidence. These are the strongest constraints to date on inflationary gravitational waves.
-
Wafer-level radiometric performance testing of uncooled microbolometer arrays
NASA Astrophysics Data System (ADS)
Dufour, Denis G.; Topart, Patrice; Tremblay, Bruno; Julien, Christian; Martin, Louis; Vachon, Carl
2014-03-01
A turn-key semi-automated test system was constructed to perform on-wafer testing of microbolometer arrays. The system allows for testing of several performance characteristics of ROIC-fabricated microbolometer arrays including NETD, SiTF, ROIC functionality, noise and matrix operability, both before and after microbolometer fabrication. The system accepts wafers up to 8 inches in diameter and performs automated wafer die mapping using a microscope camera. Once wafer mapping is completed, a custom-designed quick insertion 8-12 μm AR-coated Germanium viewport is placed and the chamber is pumped down to below 10-5 Torr, allowing for the evaluation of package-level focal plane array (FPA) performance. The probe card is electrically connected to an INO IRXCAM camera core, a versatile system that can be adapted to many types of ROICs using custom-built interface printed circuit boards (PCBs). We currently have the capability for testing 384x288, 35 μm pixel size and 160x120, 52 μm pixel size FPAs. For accurate NETD measurements, the system is designed to provide an F/1 view of two rail-mounted blackbodies seen through the Germanium window by the die under test. A master control computer automates the alignment of the probe card to the dies, the positioning of the blackbodies, FPA image frame acquisition using IRXCAM, as well as data analysis and storage. Radiometric measurement precision has been validated by packaging dies measured by the automated probing system and re-measuring the SiTF and Noise using INO's pre-existing benchtop system.
-
Acoustic Manifestations of Natural versus Triggered Lightning
NASA Astrophysics Data System (ADS)
Arechiga, R. O.; Johnson, J. B.; Edens, H. E.; Rison, W.; Thomas, R. J.; Eack, K.; Eastvedt, E. M.; Aulich, G. D.; Trueblood, J.
2010-12-01
Positive leaders are rarely detected by VHF lightning detection systems; positive leader channels are usually outlined only by recoil events. Positive cloud-to-ground (CG) channels are usually not mapped. The goal of this work is to study the types of thunder produced by natural versus triggered lightning and to assess which types of thunder signals have electromagnetic activity detected by the lightning mapping array (LMA). Towards this end we are investigating the lightning detection capabilities of acoustic techniques, and comparing them with the LMA. In a previous study we used array beam forming and time of flight information to locate acoustic sources associated with lightning. Even though there was some mismatch, generally LMA and acoustic techniques saw the same phenomena. To increase the database of acoustic data from lightning, we deployed a network of three infrasound arrays (30 m aperture) during the summer of 2010 (August 3 to present) in the Magdalena mountains of New Mexico, to monitor infrasound (below 20 Hz) and audio range sources due to natural and triggered lightning. The arrays were located at a range of distances (60 to 1400 m) surrounding the triggering site, called the Kiva, used by Langmuir Laboratory to launch rockets. We have continuous acoustic measurements of lightning data from July 20 to September 18 of 2009, and from August 3 to September 1 of 2010. So far, lightning activity around the Kiva was higher during the summer of 2009. We will present acoustic data from several interesting lightning flashes including a comparison between a natural and a triggered one.
-
A 72 × 60 Angle-Sensitive SPAD Imaging Array for Lens-less FLIM.
Lee, Changhyuk; Johnson, Ben; Jung, TaeSung; Molnar, Alyosha
2016-09-02
We present a 72 × 60, angle-sensitive single photon avalanche diode (A-SPAD) array for lens-less 3D fluorescence lifetime imaging. An A-SPAD pixel consists of (1) a SPAD to provide precise photon arrival time where a time-resolved operation is utilized to avoid stimulus-induced saturation, and (2) integrated diffraction gratings on top of the SPAD to extract incident angles of the incoming light. The combination enables mapping of fluorescent sources with different lifetimes in 3D space down to micrometer scale. Futhermore, the chip presented herein integrates pixel-level counters to reduce output data-rate and to enable a precise timing control. The array is implemented in standard 180 nm complementary metal-oxide-semiconductor (CMOS) technology and characterized without any post-processing.
-
Vortex unbinding in 2D classical JJ arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minnhagen, Petter
1998-05-15
Vortices for 2D superfluids are introduced and are described in terms of a 2D Coulomb gas. The 2D classical JJ array is modeled by a 2D XY-model and a mapping between the XY-model and the Coulomb gas is given. The physical properties of a JJ array are then given in terms of the corresponding Coulomb gas properties. First aspects of the Kosterlitz-Thouless vortex unbinding transitions are reviewed. Consequences for the resistance as well as the frequency dependent conductivity are described. Next the vortex unbinding induced by an external current is considered with Consequencies for the non-linear IV-characteristics. Finally some somemore » effects of a perpendicular magnetic field are discussed in terms of an interplay between free vortices and bound vortex pairs.« less
-
A 72 × 60 Angle-Sensitive SPAD Imaging Array for Lens-less FLIM
Lee, Changhyuk; Johnson, Ben; Jung, TaeSung; Molnar, Alyosha
2016-01-01
We present a 72 × 60, angle-sensitive single photon avalanche diode (A-SPAD) array for lens-less 3D fluorescence lifetime imaging. An A-SPAD pixel consists of (1) a SPAD to provide precise photon arrival time where a time-resolved operation is utilized to avoid stimulus-induced saturation, and (2) integrated diffraction gratings on top of the SPAD to extract incident angles of the incoming light. The combination enables mapping of fluorescent sources with different lifetimes in 3D space down to micrometer scale. Futhermore, the chip presented herein integrates pixel-level counters to reduce output data-rate and to enable a precise timing control. The array is implemented in standard 180 nm complementary metal-oxide-semiconductor (CMOS) technology and characterized without any post-processing. PMID:27598170
-
Population sequencing reveals breed and sub-species specific CNVs in cattle
USDA-ARS?s Scientific Manuscript database
Individualized copy number variation (CNV) maps have highlighted the need for population surveys of cattle to detect rare and common variants. While SNP and comparative genomic hybridization (CGH) arrays have provided preliminary data, next-generation sequence (NGS) data analysis offers an increased...
-
QTL mapping of potato chip color and tuber traits within an autotetraploid family
USDA-ARS?s Scientific Manuscript database
Cultivated potato (Solanum tuberosum L.) is a highly heterozygous autotetraploid crop species, and this presents challenges for traditional line development and molecular breeding. Recent availability of a single nucleotide polymorphism (SNP) array with 8303 features and software packages for linkag...
-
A Detailed Study of Transom Breaking Waves
2009-05-01
be effectively mapped over a desired area. The novel projection optics of the DLP-enhanced QViz system used a Digital Micromirror Device (DMD), an...optical semiconductor instrument. The DMD device (Texas Instruments, DMD Discovery 1100) contains an array of 1024 by 768 micromirrors . In the
-
Calculation of incompressible fluid flow through cambered blades
NASA Technical Reports Server (NTRS)
Hsu, C. C.
1970-01-01
Conformal mapping technique yields linear, approximate solutions for calculating flow of an incompressible fluid through staggered array of cambered blades for the cases of flow with partial cavitation and supercavitation. Lift and drag coefficients, cavitation number, cavity shape, and exit flow conditions can be determined.
-
McKenzie, Elizabeth M.; Balter, Peter A.; Stingo, Francesco C.; Jones, Jimmy; Followill, David S.; Kry, Stephen F.
2014-01-01
Purpose: The authors investigated the performance of several patient-specific intensity-modulated radiation therapy (IMRT) quality assurance (QA) dosimeters in terms of their ability to correctly identify dosimetrically acceptable and unacceptable IMRT patient plans, as determined by an in-house-designed multiple ion chamber phantom used as the gold standard. A further goal was to examine optimal threshold criteria that were consistent and based on the same criteria among the various dosimeters. Methods: The authors used receiver operating characteristic (ROC) curves to determine the sensitivity and specificity of (1) a 2D diode array undergoing anterior irradiation with field-by-field evaluation, (2) a 2D diode array undergoing anterior irradiation with composite evaluation, (3) a 2D diode array using planned irradiation angles with composite evaluation, (4) a helical diode array, (5) radiographic film, and (6) an ion chamber. This was done with a variety of evaluation criteria for a set of 15 dosimetrically unacceptable and 9 acceptable clinical IMRT patient plans, where acceptability was defined on the basis of multiple ion chamber measurements using independent ion chambers and a phantom. The area under the curve (AUC) on the ROC curves was used to compare dosimeter performance across all thresholds. Optimal threshold values were obtained from the ROC curves while incorporating considerations for cost and prevalence of unacceptable plans. Results: Using common clinical acceptance thresholds, most devices performed very poorly in terms of identifying unacceptable plans. Grouping the detector performance based on AUC showed two significantly different groups. The ion chamber, radiographic film, helical diode array, and anterior-delivered composite 2D diode array were in the better-performing group, whereas the anterior-delivered field-by-field and planned gantry angle delivery using the 2D diode array performed less well. Additionally, based on the AUCs, there was no significant difference in the performance of any device between gamma criteria of 2%/2 mm, 3%/3 mm, and 5%/3 mm. Finally, optimal cutoffs (e.g., percent of pixels passing gamma) were determined for each device and while clinical practice commonly uses a threshold of 90% of pixels passing for most cases, these results showed variability in the optimal cutoff among devices. Conclusions: IMRT QA devices have differences in their ability to accurately detect dosimetrically acceptable and unacceptable plans. Field-by-field analysis with a MapCheck device and use of the MapCheck with a MapPhan phantom while delivering at planned rotational gantry angles resulted in a significantly poorer ability to accurately sort acceptable and unacceptable plans compared with the other techniques examined. Patient-specific IMRT QA techniques in general should be thoroughly evaluated for their ability to correctly differentiate acceptable and unacceptable plans. Additionally, optimal agreement thresholds should be identified and used as common clinical thresholds typically worked very poorly to identify unacceptable plans. PMID:25471949
-
McKenzie, Elizabeth M; Balter, Peter A; Stingo, Francesco C; Jones, Jimmy; Followill, David S; Kry, Stephen F
2014-12-01
The authors investigated the performance of several patient-specific intensity-modulated radiation therapy (IMRT) quality assurance (QA) dosimeters in terms of their ability to correctly identify dosimetrically acceptable and unacceptable IMRT patient plans, as determined by an in-house-designed multiple ion chamber phantom used as the gold standard. A further goal was to examine optimal threshold criteria that were consistent and based on the same criteria among the various dosimeters. The authors used receiver operating characteristic (ROC) curves to determine the sensitivity and specificity of (1) a 2D diode array undergoing anterior irradiation with field-by-field evaluation, (2) a 2D diode array undergoing anterior irradiation with composite evaluation, (3) a 2D diode array using planned irradiation angles with composite evaluation, (4) a helical diode array, (5) radiographic film, and (6) an ion chamber. This was done with a variety of evaluation criteria for a set of 15 dosimetrically unacceptable and 9 acceptable clinical IMRT patient plans, where acceptability was defined on the basis of multiple ion chamber measurements using independent ion chambers and a phantom. The area under the curve (AUC) on the ROC curves was used to compare dosimeter performance across all thresholds. Optimal threshold values were obtained from the ROC curves while incorporating considerations for cost and prevalence of unacceptable plans. Using common clinical acceptance thresholds, most devices performed very poorly in terms of identifying unacceptable plans. Grouping the detector performance based on AUC showed two significantly different groups. The ion chamber, radiographic film, helical diode array, and anterior-delivered composite 2D diode array were in the better-performing group, whereas the anterior-delivered field-by-field and planned gantry angle delivery using the 2D diode array performed less well. Additionally, based on the AUCs, there was no significant difference in the performance of any device between gamma criteria of 2%/2 mm, 3%/3 mm, and 5%/3 mm. Finally, optimal cutoffs (e.g., percent of pixels passing gamma) were determined for each device and while clinical practice commonly uses a threshold of 90% of pixels passing for most cases, these results showed variability in the optimal cutoff among devices. IMRT QA devices have differences in their ability to accurately detect dosimetrically acceptable and unacceptable plans. Field-by-field analysis with a MapCheck device and use of the MapCheck with a MapPhan phantom while delivering at planned rotational gantry angles resulted in a significantly poorer ability to accurately sort acceptable and unacceptable plans compared with the other techniques examined. Patient-specific IMRT QA techniques in general should be thoroughly evaluated for their ability to correctly differentiate acceptable and unacceptable plans. Additionally, optimal agreement thresholds should be identified and used as common clinical thresholds typically worked very poorly to identify unacceptable plans.
-
Error Analyses of the North Alabama Lightning Mapping Array (LMA)
NASA Technical Reports Server (NTRS)
Koshak, W. J.; Solokiewicz, R. J.; Blakeslee, R. J.; Goodman, S. J.; Christian, H. J.; Hall, J. M.; Bailey, J. C.; Krider, E. P.; Bateman, M. G.; Boccippio, D. J.
2003-01-01
Two approaches are used to characterize how accurately the North Alabama Lightning Mapping Array (LMA) is able to locate lightning VHF sources in space and in time. The first method uses a Monte Carlo computer simulation to estimate source retrieval errors. The simulation applies a VHF source retrieval algorithm that was recently developed at the NASA-MSFC and that is similar, but not identical to, the standard New Mexico Tech retrieval algorithm. The second method uses a purely theoretical technique (i.e., chi-squared Curvature Matrix theory) to estimate retrieval errors. Both methods assume that the LMA system has an overall rms timing error of 50ns, but all other possible errors (e.g., multiple sources per retrieval attempt) are neglected. The detailed spatial distributions of retrieval errors are provided. Given that the two methods are completely independent of one another, it is shown that they provide remarkably similar results, except that the chi-squared theory produces larger altitude error estimates than the (more realistic) Monte Carlo simulation.
-
Jeon, Dae-Young; Pregl, Sebastian; Park, So Jeong; Baraban, Larysa; Cuniberti, Gianaurelio; Mikolajick, Thomas; Weber, Walter M
2015-07-08
Si nanowire (Si-NW) based thin-film transistors (TFTs) have been considered as a promising candidate for next-generation flexible and wearable electronics as well as sensor applications with high performance. Here, we have fabricated ambipolar Schottky-barrier (SB) TFTs consisting of a parallel array of Si-NWs and performed an in-depth study related to their electrical performance and operation mechanism through several electrical parameters extracted from the channel length scaling based method. Especially, the newly suggested current-voltage (I-V) contour map clearly elucidates the unique operation mechanism of the ambipolar SB-TFTs, governed by Schottky-junction between NiSi2 and Si-NW. Further, it reveals for the first-time in SB based FETs the important internal electrostatic coupling between the channel and externally applied voltages. This work provides helpful information for the realization of practical circuits with ambipolar SB-TFTs that can be transferred to different substrate technologies and applications.
-
Zhao, Dong-Jie; Wang, Zhong-Yi; Huang, Lan; Jia, Yong-Peng; Leng, John Q.
2014-01-01
Damaging thermal stimuli trigger long-lasting variation potentials (VPs) in higher plants. Owing to limitations in conventional plant electrophysiological recording techniques, recorded signals are composed of signals originating from all of the cells that are connected to an electrode. This limitation does not enable detailed spatio-temporal distributions of transmission and electrical activities in plants to be visualised. Multi-electrode array (MEA) enables the recording and imaging of dynamic spatio-temporal electrical activities in higher plants. Here, we used an 8 × 8 MEA with a polar distance of 450 μm to measure electrical activities from numerous cells simultaneously. The mapping of the data that were recorded from the MEA revealed the transfer mode of the thermally induced VPs in the leaves of Helianthus annuus L. seedlings in situ. These results suggest that MEA can enable recordings with high spatio-temporal resolution that facilitate the determination of the bioelectrical response mode of higher plants under stress. PMID:24961469
-
Zhao, Dong-Jie; Wang, Zhong-Yi; Huang, Lan; Jia, Yong-Peng; Leng, John Q
2014-06-25
Damaging thermal stimuli trigger long-lasting variation potentials (VPs) in higher plants. Owing to limitations in conventional plant electrophysiological recording techniques, recorded signals are composed of signals originating from all of the cells that are connected to an electrode. This limitation does not enable detailed spatio-temporal distributions of transmission and electrical activities in plants to be visualised. Multi-electrode array (MEA) enables the recording and imaging of dynamic spatio-temporal electrical activities in higher plants. Here, we used an 8 × 8 MEA with a polar distance of 450 μm to measure electrical activities from numerous cells simultaneously. The mapping of the data that were recorded from the MEA revealed the transfer mode of the thermally induced VPs in the leaves of Helianthus annuus L. seedlings in situ. These results suggest that MEA can enable recordings with high spatio-temporal resolution that facilitate the determination of the bioelectrical response mode of higher plants under stress.
-
Kote-Jarai, Zsofia; Saunders, Edward J.; Leongamornlert, Daniel A.; Tymrakiewicz, Malgorzata; Dadaev, Tokhir; Jugurnauth-Little, Sarah; Ross-Adams, Helen; Al Olama, Ali Amin; Benlloch, Sara; Halim, Silvia; Russel, Roslin; Dunning, Alison M.; Luccarini, Craig; Dennis, Joe; Neal, David E.; Hamdy, Freddie C.; Donovan, Jenny L.; Muir, Ken; Giles, Graham G.; Severi, Gianluca; Wiklund, Fredrik; Gronberg, Henrik; Haiman, Christopher A.; Schumacher, Fredrick; Henderson, Brian E.; Le Marchand, Loic; Lindstrom, Sara; Kraft, Peter; Hunter, David J.; Gapstur, Susan; Chanock, Stephen; Berndt, Sonja I.; Albanes, Demetrius; Andriole, Gerald; Schleutker, Johanna; Weischer, Maren; Canzian, Federico; Riboli, Elio; Key, Tim J.; Travis, Ruth C.; Campa, Daniele; Ingles, Sue A.; John, Esther M.; Hayes, Richard B.; Pharoah, Paul; Khaw, Kay-Tee; Stanford, Janet L.; Ostrander, Elaine A.; Signorello, Lisa B.; Thibodeau, Stephen N.; Schaid, Dan; Maier, Christiane; Vogel, Walther; Kibel, Adam S.; Cybulski, Cezary; Lubinski, Jan; Cannon-Albright, Lisa; Brenner, Hermann; Park, Jong Y.; Kaneva, Radka; Batra, Jyotsna; Spurdle, Amanda; Clements, Judith A.; Teixeira, Manuel R.; Govindasami, Koveela; Guy, Michelle; Wilkinson, Rosemary A.; Sawyer, Emma J.; Morgan, Angela; Dicks, Ed; Baynes, Caroline; Conroy, Don; Bojesen, Stig E.; Kaaks, Rudolf; Vincent, Daniel; Bacot, François; Tessier, Daniel C.; Easton, Douglas F.; Eeles, Rosalind A.
2013-01-01
Associations between single nucleotide polymorphisms (SNPs) at 5p15 and multiple cancer types have been reported. We have previously shown evidence for a strong association between prostate cancer (PrCa) risk and rs2242652 at 5p15, intronic in the telomerase reverse transcriptase (TERT) gene that encodes TERT. To comprehensively evaluate the association between genetic variation across this region and PrCa, we performed a fine-mapping analysis by genotyping 134 SNPs using a custom Illumina iSelect array or Sequenom MassArray iPlex, followed by imputation of 1094 SNPs in 22 301 PrCa cases and 22 320 controls in The PRACTICAL consortium. Multiple stepwise logistic regression analysis identified four signals in the promoter or intronic regions of TERT that independently associated with PrCa risk. Gene expression analysis of normal prostate tissue showed evidence that SNPs within one of these regions also associated with TERT expression, providing a potential mechanism for predisposition to disease. PMID:23535824
-
Detection of an electron beam in a high density plasma via an electrostatic probe
NASA Astrophysics Data System (ADS)
Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart; Yamada, Masaaki
2018-07-01
An electron beam is detected by a 1D floating potential probe array in a relatively high density (1012–1013 cm‑3) and low temperature (∼5 eV) plasma of the Magnetic Reconnection Experiment. Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstrate the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.
-
NASA Technical Reports Server (NTRS)
Hill, J. D.; Pilkey, J.; Uman, M, A.; Jordan, D. M.; Biggerstaff, M. I.; Rison, W.; Blakeslee, R.
2012-01-01
We characterize the geometrical and electrical characteristics of the initial stages of nine Florida triggered lightning discharges using a Lightning Mapping Array (LMA), a C-band SMART radar, and measured channel-base currents. We determine initial channel and subsequent branch lengths, average initial channel and branch propagation speeds, and channel-base current at the time of each branch initiation. The channel-base current is found to not change significantly when branching occurs, an unexpected result. The initial stage of Florida triggered lightning typically transitions from vertical to horizontal propagation at altitudes of 3-6 km, near the typical 0 C level of 4-5 km and several kilometers below the expected center of the negative cloud-charge region at 7-8 km. The data presented potentially provide information on thunderstorm electrical and hydrometeor structure and discharge propagation physics. LMA source locations were obtained from VHF sources of positive impulsive currents as small as 10 A, in contrast to expectations found in the literature.
-
Detection of an electron beam in a high density plasma via an electrostatic probe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart
Here, an electron beam is detected by a 1D floating potential probe array in a relatively high density (10 12–10 13 cm -3) and low temperature (~5 eV) plasma of the Magnetic Reconnection Experiment. Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstratemore » the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.« less
-
Detection of an electron beam in a high density plasma via an electrostatic probe
Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart; ...
2018-05-08
Here, an electron beam is detected by a 1D floating potential probe array in a relatively high density (10 12–10 13 cm -3) and low temperature (~5 eV) plasma of the Magnetic Reconnection Experiment. Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstratemore » the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.« less
-
Interferometry meets the third and fourth dimensions in galaxies
NASA Astrophysics Data System (ADS)
Trimble, Virginia
2015-02-01
Radio astronomy began with one array (Jansky's) and one paraboloid of revolution (Reber's) as collecting areas and has now reached the point where a large number of facilities are arrays of paraboloids, each of which would have looked enormous to Reber in 1932. In the process, interferometry has contributed to the counting of radio sources, establishing superluminal velocities in AGN jets, mapping of sources from the bipolar cow shape on up to full grey-scale and colored images, determining spectral energy distributions requiring non-thermal emission processes, and much else. The process has not been free of competition and controversy, at least partly because it is just a little difficult to understand how earth-rotation, aperture-synthesis interferometry works. Some very important results, for instance the mapping of HI in the Milky Way to reveal spiral arms, warping, and flaring, actually came from single moderate-sized paraboloids. The entry of China into the radio astronomy community has given large (40-110 meter) paraboloids a new lease on life.
-
2D Presentation Techniques of Mind-maps for Blind Meeting Participants.
Pölzer, Stephan; Miesenberger, Klaus
2015-01-01
Mind-maps, used as ideation technique in co-located meetings (e.g. in brainstorming sessions), which meet with increased importance in business and education, show considerably accessibility challenges for blind meeting participants. Besides an overview of general aspects of accessibility issues in co-located meetings, this paper focuses on the design and development of alternative non-visual presentation techniques for mind-maps. The different aspects of serialized presentation techniques (e.g. treeview) for Braille and audio rendering and two dimensional presentation techniques (e.g. tactile two dimensional array matrix and edge-projection method [1]) are discussed based on the user feedback gathered in intermediate tests following a user centered design approach.
-
Ron, Micha; Israeli, Galit; Seroussi, Eyal; Weller, Joel I; Gregg, Jeffrey P; Shani, Moshe; Medrano, Juan F
2007-01-01
Background Many studies have found segregating quantitative trait loci (QTL) for milk production traits in different dairy cattle populations. However, even for relatively large effects with a saturated marker map the confidence interval for QTL location by linkage analysis spans tens of map units, or hundreds of genes. Combining mapping and arraying has been suggested as an approach to identify candidate genes. Thus, gene expression analysis in the mammary gland of genes positioned in the confidence interval of the QTL can bridge the gap between fine mapping and quantitative trait nucleotide (QTN) determination. Results We hybridized Affymetrix microarray (MG-U74v2), containing 12,488 murine probes, with RNA derived from mammary gland of virgin, pregnant, lactating and involuting C57BL/6J mice in a total of nine biological replicates. We combined microarray data from two additional studies that used the same design in mice with a total of 75 biological replicates. The same filtering and normalization was applied to each microarray data using GeneSpring software. Analysis of variance identified 249 differentially expressed probe sets common to the three experiments along the four developmental stages of puberty, pregnancy, lactation and involution. 212 genes were assigned to their bovine map positions through comparative mapping, and thus form a list of candidate genes for previously identified QTLs for milk production traits. A total of 82 of the genes showed mammary gland-specific expression with at least 3-fold expression over the median representing all tissues tested in GeneAtlas. Conclusion This work presents a web tool for candidate genes for QTL (cgQTL) that allows navigation between the map of bovine milk production QTL, potential candidate genes and their level of expression in mammary gland arrays and in GeneAtlas. Three out of four confirmed genes that affect QTL in livestock (ABCG2, DGAT1, GDF8, IGF2) were over expressed in the target organ. Thus, cgQTL can be used to determine priority of candidate genes for QTN analysis based on differential expression in the target organ. PMID:17584498
-
Construction of Improved Maps of Mercury's Crustal Magnetic Field at Northern Midlatitudes
NASA Astrophysics Data System (ADS)
Hood, L. L.; Oliveira, J. S.
2017-12-01
We report progress toward the construction of a refined version of the northern midlatitude crustal magnetic field map of Hood [GRL, 2016], extended to cover latitudes from 35N to 80N and all longitudes. The main improvements include: (1) Combining MESSENGER magnetometer data from August and September of 2014 with that from February, March, and April of 2015 to provide the best overall input data set for mapping and the largest possible area of coverage; (2) improving the elimination of external and core field contamination by using a model for Mercury's core field and a more conservative high-pass filter length; and (3) improving the equivalent source dipole (ESD) mapping technique using an equidistant equivalent source dipole array and varying the depth, orientation, and resolution of the array to minimize the overall root mean square misfit. Combining data from the two time intervals allows the total latitude range of the final map to be increased by at least 5 degrees to 35N - 80N. Also, previous mapping has concentrated on the hemisphere from 90E to 270E; inclusion of all available data will allow the final maps to be extended to all longitudes, more than doubling the coverage reported by Hood [2016]. Previous work has demonstrated a concentration of relatively strong magnetic anomalies near and within the Caloris impact basin. A secondary concentration near Sobkou Planitia, which contains an older impact basin, was also found. The existence of anomalies within the Caloris rim implies that a steady magnetizing field, i.e., a core dynamo, was present when this basin formed. A major application of the improved map will be to investigate whether anomalies are concentrated near and within other impact basins. If some basins are found not to have concentrations of magnetic anomalies, this could imply a role of impactor composition (e.g., iron content) in producing the crustal materials that are most strongly magnetized, as has previously been proposed to be the case on the Moon [Wieczorek et al., Science, 2012].
-
NASA Astrophysics Data System (ADS)
Childers, Jeffery Dale
The Background Emission Anisotropy Scanning Telescope (BEAST) is a millimeter wavelength experiment designed to generate maps of fluctuations in the cosmic microwave background (CMB). The telescope is composed of an off-axis Gregorian optical system with a 2.2 meter primary that focuses the collected microwave radiation onto an array of cryogenically cooled high electron mobility transistor (HEMT) receivers. This array is composed of six corrugated scalar feed horns in the Q band (38 to 45 GHz) and two more in the Ka band (26 to 36 GHz) with one of the six Q-band horns connected to an ortho-mode transducer for extraction of both polarizations incident on the single feed. The system has a minimum beam size of 20' with an average sensitivity of 900 m K [Special characters omitted.] per receiver. A map of the CMB centered on the north celestial pole has been generated from the BEAST telescope in a 9 ° wide annulus at declination 37° with a typical pixel error of 57 ± 5 m K when smoothed to 30' resolution. Cosmological parameter estimation of the power spectrum resulting from the map provides a measure of O k == 1- O total = -0.0= 74 ± .070, which is consistent with a flat universe. This paper describes the design and performance of the BEAST instrument and provides the details of subsystems developed and used toward the goal of generating a map of CMB fluctuations on 20' scales with sensitivity in l space between l ~100 and l ~500. A summary of the map and results generated by an observing campaign at the University of California White Mountain Research Station are also included.
-
NASA Astrophysics Data System (ADS)
Bradford, Charles Matt; Origins Space Telescope Study Team
2018-01-01
The Medium-Resolution Survey Spectrometer (MRSS) is a multi-purpose wideband spectrograph being designed for the Origins Space Telescope (OST -- the NASA-funded far-IR flagship mission study being prepared for the 2020 Decadal Survey). The sensitivity possible with the combination of the actively-cooled OST telescope and new-generation far-IR direct detector arrays is outstanding; potentially offering a 10,000x improvement in speed over the Herschel, SOFIA for point-source measurements, and factor of more than 1,000,000 for spatial-spectral mapping. Massive galaxy detection rates are possible via the rest-frame mid- and far-IR spectral features, overcoming continuum confusion and reaching back to the epoch of reionization. The MRSS covers the full 30 to 670 micron band instantaneously at a resolving power (R) of 500 using 6 logarithmically-spaced grating modules. Each module couples at least 60 and up to 200 spatial beams simultaneously, enabling true 3-D spectral mapping, both for the blind extragalactic surveys and for mapping all phases of interstellar matter in the Milky Way and nearby galaxies. Furthermore, a high-resolution mode inserts a long-path Fourier-transform interferometer into the light path in advance of the grating backends, enabling R up to 38,000 x [100 microns / lambda], while preserving the basic grating sensitivity for line detection.Maximum scientific return with the MRSS on OST will require large arrays of direct detectors with sensitivity meeting or exceeding the photon background limit due to zodiacal and Galactic dust: NEP~3e-20 W/sqrt(Hz). The total pixel count for all 6 bands is ~200,000 pixels. These sensitive far-IR detector arrays are not provided by the kind of industrial efforts producing the the optical and near-IR detectors, but they are being developed by NASA scientists, including OST team members. We outline the rapid progress in this area, briefly highlighting a) recent low-NEP single-pixel measurements which meet the sensitivity requirement, and b) the progress in implementing the large array formats using RF multiplexing with micro-resonators.
-
A Multi-Modality CMOS Sensor Array for Cell-Based Assay and Drug Screening.
Chi, Taiyun; Park, Jong Seok; Butts, Jessica C; Hookway, Tracy A; Su, Amy; Zhu, Chengjie; Styczynski, Mark P; McDevitt, Todd C; Wang, Hua
2015-12-01
In this paper, we present a fully integrated multi-modality CMOS cellular sensor array with four sensing modalities to characterize different cell physiological responses, including extracellular voltage recording, cellular impedance mapping, optical detection with shadow imaging and bioluminescence sensing, and thermal monitoring. The sensor array consists of nine parallel pixel groups and nine corresponding signal conditioning blocks. Each pixel group comprises one temperature sensor and 16 tri-modality sensor pixels, while each tri-modality sensor pixel can be independently configured for extracellular voltage recording, cellular impedance measurement (voltage excitation/current sensing), and optical detection. This sensor array supports multi-modality cellular sensing at the pixel level, which enables holistic cell characterization and joint-modality physiological monitoring on the same cellular sample with a pixel resolution of 80 μm × 100 μm. Comprehensive biological experiments with different living cell samples demonstrate the functionality and benefit of the proposed multi-modality sensing in cell-based assay and drug screening.
-
Detection of unburned fuel as contaminant in engine oil by a gas microsensor array
NASA Astrophysics Data System (ADS)
Capone, Simonetta; Zuppa, Marzia; Presicce, Dominique S.; Epifani, Mauro; Francioso, Luca; Siciliano, Pietro; Distante, C.
2007-05-01
We developed a novel method to detect the presence of unburned diesel fuel in used diesel fuel engine oil. The method is based on the use of an array of different gas microsensors based on metal oxide thin films deposited by sol-gel technique on Si substrates. The sensor array, exposed to the volatile chemical species of different diesel fuel engine oil samples contaminated in different percentages by diesel fuel, resulted to be appreciable sensitive to them. Principal Component Analysis (PCA) and Self-Organizing Map (SOM) applied to the sensor response data-set gave a first proof of the sensor array ability to discriminate among the different diesel fuel diluted lubricating oils. Moreover, in order to get information about the headspace composition of the diesel fuel-contaminated engine oils used for gas-sensing tests, we analyzed the engine oil samples by Static Headspace Solid Phase Micro Extraction/Gas Chromatograph/Mass Spectrometer (SHS-SPME/ GC/MS).
-
Application of Nexus copy number software for CNV detection and analysis.
Darvishi, Katayoon
2010-04-01
Among human structural genomic variation, copy number variants (CNVs) are the most frequently known component, comprised of gains/losses of DNA segments that are generally 1 kb in length or longer. Array-based comparative genomic hybridization (aCGH) has emerged as a powerful tool for detecting genomic copy number variants (CNVs). With the rapid increase in the density of array technology and with the adaptation of new high-throughput technology, a reliable and computationally scalable method for accurate mapping of recurring DNA copy number aberrations has become a main focus in research. Here we introduce Nexus Copy Number software, a platform-independent tool, to analyze the output files of all types of commercial and custom-made comparative genomic hybridization (CGH) and single-nucleotide polymorphism (SNP) arrays, such as those manufactured by Affymetrix, Agilent Technologies, Illumina, and Roche NimbleGen. It also supports data generated by various array image-analysis software tools such as GenePix, ImaGene, and BlueFuse. (c) 2010 by John Wiley & Sons, Inc.
-
Description of a prototype emission-transmission computed tomography imaging system
NASA Technical Reports Server (NTRS)
Lang, T. F.; Hasegawa, B. H.; Liew, S. C.; Brown, J. K.; Blankespoor, S. C.; Reilly, S. M.; Gingold, E. L.; Cann, C. E.
1992-01-01
We have developed a prototype imaging system that can perform simultaneous x-ray transmission CT and SPECT phantom studies. This system employs a 23-element high-purity-germanium detector array. The detector array is coupled to a collimator with septa angled toward the focal spot of an x-ray tube. During image acquisition, the x-ray fan beam and the detector array move synchronously along an arc pivoted at the x-ray source. Multiple projections are obtained by rotating the object, which is mounted at the center of rotation of the system. The detector array and electronics can count up to 10(6) cps/element with sufficient energy-resolution to discriminate between x-rays at 100-120 kVp and gamma rays from 99mTc. We have used this device to acquire x-ray CT and SPECT images of a three-dimensional Hoffman brain phantom. The emission and transmission images may be superimposed in order to localize the emission image on the transmission map.
-
A ring lasers array for fundamental physics
NASA Astrophysics Data System (ADS)
Di Virgilio, Angela; Allegrini, Maria; Beghi, Alessandro; Belfi, Jacopo; Beverini, Nicolò; Bosi, Filippo; Bouhadef, Bachir; Calamai, Massimo; Carelli, Giorgio; Cuccato, Davide; Maccioni, Enrico; Ortolan, Antonello; Passeggio, Giuseppe; Porzio, Alberto; Ruggiero, Matteo Luca; Santagata, Rosa; Tartaglia, Angelo
2014-12-01
After reviewing the importance of light as a probe for testing the structure of space-time, we describe the GINGER project. GINGER will be a three-dimensional array of large-size ring-lasers able to measure the de Sitter and Lense-Thirring effects. The instrument will be located at the underground laboratory of Gran Sasso, in Italy. We describe the preliminary actions and measurements already under way and present the full road map to GINGER. The intermediate apparatuses GP2 and GINGERino are described. GINGER is expected to be fully operating in few years. xml:lang="fr"
-
Lightning Location Using Acoustic Signals
NASA Astrophysics Data System (ADS)
Badillo, E.; Arechiga, R. O.; Thomas, R. J.
2013-05-01
In the summer of 2011 and 2012 a network of acoustic arrays was deployed in the Magdalena mountains of central New Mexico to locate lightning flashes. A Times-Correlation (TC) ray-tracing-based-technique was developed in order to obtain the location of lightning flashes near the network. The TC technique, locates acoustic sources from lightning. It was developed to complement the lightning location of RF sources detected by the Lightning Mapping Array (LMA) developed at Langmuir Laboratory, in New Mexico Tech. The network consisted of four arrays with four microphones each. The microphones on each array were placed in a triangular configuration with one of the microphones in the center of the array. The distance between the central microphone and the rest of them was about 30 m. The distance between centers of the arrays ranged from 500 m to 1500 m. The TC technique uses times of arrival (TOA) of acoustic waves to trace back the location of thunder sources. In order to obtain the times of arrival, the signals were filtered in a frequency band of 2 to 20 hertz and cross-correlated. Once the times of arrival were obtained, the Levenberg-Marquardt algorithm was applied to locate the spatial coordinates (x,y, and z) of thunder sources. Two techniques were used and contrasted to compute the accuracy of the TC method: Nearest-Neighbors (NN), between acoustic and LMA located sources, and standard deviation from the curvature matrix of the system as a measure of dispersion of the results. For the best case scenario, a triggered lightning event, the TC method applied with four microphones, located sources with a median error of 152 m and 142.9 m using nearest-neighbors and standard deviation respectively.; Results of the TC method in the lightning event recorded at 18:47:35 UTC, August 6, 2012. Black dots represent the results computed. Light color dots represent the LMA data for the same event. The results were obtained with the MGTM station (four channels). This figure shows a map of Altitude vs Longitude (in km).
-
Population sequencing reveals breed and sub-species specific CNVs in cattle
USDA-ARS?s Scientific Manuscript database
Individualized copy number variation (CNV) maps have highlighted the need for population surveys of cattle to detect the rare and common variants. While SNP and comparative genomic hybridization (CGH) arrays have provided preliminary data, next-generation sequence (NGS) data analysis offers an incre...
-
USDA-ARS?s Scientific Manuscript database
Johne’s disease, a chronic gastrointestinal inflammatory disease caused by Mycobacterium avium subspecies paratuberculosis (Map), is endemic in dairy cattle and other ruminants worldwide and remains a challenge to diagnose using traditional serological methods. Given the close phylogenetic relations...
-
Asymmetric neighborhood functions accelerate ordering process of self-organizing maps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ota, Kaiichiro; Aoki, Takaaki; Kurata, Koji
2011-02-15
A self-organizing map (SOM) algorithm can generate a topographic map from a high-dimensional stimulus space to a low-dimensional array of units. Because a topographic map preserves neighborhood relationships between the stimuli, the SOM can be applied to certain types of information processing such as data visualization. During the learning process, however, topological defects frequently emerge in the map. The presence of defects tends to drastically slow down the formation of a globally ordered topographic map. To remove such topological defects, it has been reported that an asymmetric neighborhood function is effective, but only in the simple case of mapping one-dimensionalmore » stimuli to a chain of units. In this paper, we demonstrate that even when high-dimensional stimuli are used, the asymmetric neighborhood function is effective for both artificial and real-world data. Our results suggest that applying the asymmetric neighborhood function to the SOM algorithm improves the reliability of the algorithm. In addition, it enables processing of complicated, high-dimensional data by using this algorithm.« less
-
An Ultra-High-Density, Transcript-Based, Genetic Map of Lettuce
Truco, Maria José; Ashrafi, Hamid; Kozik, Alexander; van Leeuwen, Hans; Bowers, John; Wo, Sebastian Reyes Chin; Stoffel, Kevin; Xu, Huaqin; Hill, Theresa; Van Deynze, Allen; Michelmore, Richard W.
2013-01-01
We have generated an ultra-high-density genetic map for lettuce, an economically important member of the Compositae, consisting of 12,842 unigenes (13,943 markers) mapped in 3696 genetic bins distributed over nine chromosomal linkage groups. Genomic DNA was hybridized to a custom Affymetrix oligonucleotide array containing 6.4 million features representing 35,628 unigenes of Lactuca spp. Segregation of single-position polymorphisms was analyzed using 213 F7:8 recombinant inbred lines that had been generated by crossing cultivated Lactuca sativa cv. Salinas and L. serriola acc. US96UC23, the wild progenitor species of L. sativa. The high level of replication of each allele in the recombinant inbred lines was exploited to identify single-position polymorphisms that were assigned to parental haplotypes. Marker information has been made available using GBrowse to facilitate access to the map. This map has been anchored to the previously published integrated map of lettuce providing candidate genes for multiple phenotypes. The high density of markers achieved in this ultradense map allowed syntenic studies between lettuce and Vitis vinifera as well as other plant species. PMID:23550116
-
An Ultra-High-Density, Transcript-Based, Genetic Map of Lettuce.
Truco, Maria José; Ashrafi, Hamid; Kozik, Alexander; van Leeuwen, Hans; Bowers, John; Wo, Sebastian Reyes Chin; Stoffel, Kevin; Xu, Huaqin; Hill, Theresa; Van Deynze, Allen; Michelmore, Richard W
2013-04-09
We have generated an ultra-high-density genetic map for lettuce, an economically important member of the Compositae, consisting of 12,842 unigenes (13,943 markers) mapped in 3696 genetic bins distributed over nine chromosomal linkage groups. Genomic DNA was hybridized to a custom Affymetrix oligonucleotide array containing 6.4 million features representing 35,628 unigenes of Lactuca spp. Segregation of single-position polymorphisms was analyzed using 213 F 7:8 recombinant inbred lines that had been generated by crossing cultivated Lactuca sativa cv. Salinas and L. serriola acc. US96UC23, the wild progenitor species of L. sativa The high level of replication of each allele in the recombinant inbred lines was exploited to identify single-position polymorphisms that were assigned to parental haplotypes. Marker information has been made available using GBrowse to facilitate access to the map. This map has been anchored to the previously published integrated map of lettuce providing candidate genes for multiple phenotypes. The high density of markers achieved in this ultradense map allowed syntenic studies between lettuce and Vitis vinifera as well as other plant species. Copyright © 2013 Truco et al.
-
ShakeMap manual: technical manual, user's guide, and software guide
Wald, David J.; Worden, Bruce C.; Quitoriano, Vincent; Pankow, Kris L.
2005-01-01
ShakeMap (http://earthquake.usgs.gov/shakemap) --rapidly, automatically generated shaking and intensity maps--combines instrumental measurements of shaking with information about local geology and earthquake location and magnitude to estimate shaking variations throughout a geographic area. The results are rapidly available via the Web through a variety of map formats, including Geographic Information System (GIS) coverages. These maps have become a valuable tool for emergency response, public information, loss estimation, earthquake planning, and post-earthquake engineering and scientific analyses. With the adoption of ShakeMap as a standard tool for a wide array of users and uses came an impressive demand for up-to-date technical documentation and more general guidelines for users and software developers. This manual is meant to address this need. ShakeMap, and associated Web and data products, are rapidly evolving as new advances in communications, earthquake science, and user needs drive improvements. As such, this documentation is organic in nature. We will make every effort to keep it current, but undoubtedly necessary changes in operational systems take precedence over producing and making documentation publishable.
-
Rosenkrantz, Andrew B; Zhang, Bei; Ben-Eliezer, Noam; Le Nobin, Julien; Melamed, Jonathan; Deng, Fang-Ming; Taneja, Samir S; Wiggins, Graham C
2015-01-01
To report design of a simplified external transmit-receive coil array for 7 Tesla (T) prostate MRI, including demonstration of the array for tumor localization using T2-weighted imaging (T2WI) at 7T before prostatectomy. Following simulations of transmitter designs not requiring parallel transmission or radiofrequency-shimming, a coil array was constructed using loop elements, with anterior and posterior rows comprising one transmit-receive element and three receive-only elements. This coil structure was optimized using a whole-body phantom. In vivo sequence optimization was performed to optimize achieved flip angle (FA) and signal to noise ratio (SNR) in prostate. The system was evaluated in a healthy volunteer at 3T and 7T. The 7T T2WI was performed in two prostate cancer patients before prostatectomy, and localization of dominant tumors was subjectively compared with histopathological findings. Image quality was compared between 3T and 7T in these patients. Simulations of the B1(+) field in prostate using two-loop design showed good magnitude (B1(+) of 0.245 A/m/w(1/2)) and uniformity (nonuniformity [SD/mean] of 10.4%). In the volunteer, 90° FA was achieved in prostate using 225 v 1 ms hard-pulse (indicating good efficiency), FA maps confirmed good uniformity (14.1% nonuniformity), and SNR maps showed SNR gain of 2.1 at 7T versus 3T. In patients, 7T T2WI showed excellent visual correspondence with prostatectomy findings. 7T images demonstrated higher estimated SNR (eSNR) in benign peripheral zone (PZ) and tumor compared with 3T, but lower eSNR in fat and slight decreases in tumor-to-PZ contrast and PZ-homogeneity. We have demonstrated feasibility of a simplified external coil array for high-resolution T2-weighted prostate MRI at 7T. © 2013 Wiley Periodicals, Inc.
-
Experimental implementation of array-compressed parallel transmission at 7 tesla.
Yan, Xinqiang; Cao, Zhipeng; Grissom, William A
2016-06-01
To implement and validate a hardware-based array-compressed parallel transmission (acpTx) system. In array-compressed parallel transmission, a small number of transmit channels drive a larger number of transmit coils, which are connected via an array compression network that implements optimized coil-to-channel combinations. A two channel-to-eight coil array compression network was developed using power splitters, attenuators and phase shifters, and a simulation was performed to investigate the effects of coil coupling on power dissipation in a simplified network. An eight coil transmit array was constructed using induced current elimination decoupling, and the coil and network were validated in benchtop measurements, B1+ mapping scans, and an accelerated spiral excitation experiment. The developed attenuators came within 0.08 dB of the desired attenuations, and reflection coefficients were -22 dB or better. The simulation demonstrated that up to 3× more power was dissipated in the network when coils were poorly isolated (-9.6 dB), versus well-isolated (-31 dB). Compared to split circularly-polarized coil combinations, the additional degrees of freedom provided by the array compression network led to 54% lower squared excitation error in the spiral experiment. Array-compressed parallel transmission was successfully implemented in a hardware system. Further work is needed to develop remote network tuning and to minimize network power dissipation. Magn Reson Med 75:2545-2552, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
-
A Background Noise Reduction Technique Using Adaptive Noise Cancellation for Microphone Arrays
NASA Technical Reports Server (NTRS)
Spalt, Taylor B.; Fuller, Christopher R.; Brooks, Thomas F.; Humphreys, William M., Jr.; Brooks, Thomas F.
2011-01-01
Background noise in wind tunnel environments poses a challenge to acoustic measurements due to possible low or negative Signal to Noise Ratios (SNRs) present in the testing environment. This paper overviews the application of time domain Adaptive Noise Cancellation (ANC) to microphone array signals with an intended application of background noise reduction in wind tunnels. An experiment was conducted to simulate background noise from a wind tunnel circuit measured by an out-of-flow microphone array in the tunnel test section. A reference microphone was used to acquire a background noise signal which interfered with the desired primary noise source signal at the array. The technique s efficacy was investigated using frequency spectra from the array microphones, array beamforming of the point source region, and subsequent deconvolution using the Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) algorithm. Comparisons were made with the conventional techniques for improving SNR of spectral and Cross-Spectral Matrix subtraction. The method was seen to recover the primary signal level in SNRs as low as -29 dB and outperform the conventional methods. A second processing approach using the center array microphone as the noise reference was investigated for more general applicability of the ANC technique. It outperformed the conventional methods at the -29 dB SNR but yielded less accurate results when coherence over the array dropped. This approach could possibly improve conventional testing methodology but must be investigated further under more realistic testing conditions.
-
Recording and assessment of evoked potentials with electrode arrays.
Miljković, N; Malešević, N; Kojić, V; Bijelić, G; Keller, T; Popović, D B
2015-09-01
In order to optimize procedure for the assessment of evoked potentials and to provide visualization of the flow of action potentials along the motor systems, we introduced array electrodes for stimulation and recording and developed software for the analysis of the recordings. The system uses a stimulator connected to an electrode array for the generation of evoked potentials, an electrode array connected to the amplifier, A/D converter and computer for the recording of evoked potentials, and a dedicated software application. The method has been tested for the assessment of the H-reflex on the triceps surae muscle in six healthy humans. The electrode array with 16 pads was positioned over the posterior aspect of the thigh, while the recording electrode array with 16 pads was positioned over the triceps surae muscle. The stimulator activated all the pads of the stimulation electrode array asynchronously, while the signals were recorded continuously at all the recording sites. The results are topography maps (spatial distribution of evoked potentials) and matrices (spatial visualization of nerve excitability). The software allows the automatic selection of the lowest stimulation intensity to achieve maximal H-reflex amplitude and selection of the recording/stimulation pads according to predefined criteria. The analysis of results shows that the method provides rich information compared with the conventional recording of the H-reflex with regard the spatial distribution.
-
Imaging properties of pixellated scintillators with deep pixels
Barber, H. Bradford; Fastje, David; Lemieux, Daniel; Grim, Gary P.; Furenlid, Lars R.; Miller, Brian W.; Parkhurst, Philip; Nagarkar, Vivek V.
2015-01-01
We have investigated the light-transport properties of scintillator arrays with long, thin pixels (deep pixels) for use in high-energy gamma-ray imaging. We compared 10×10 pixel arrays of YSO:Ce, LYSO:Ce and BGO (1mm × 1mm × 20 mm pixels) made by Proteus, Inc. with similar 10×10 arrays of LSO:Ce and BGO (1mm × 1mm × 15mm pixels) loaned to us by Saint-Gobain. The imaging and spectroscopic behaviors of these scintillator arrays are strongly affected by the choice of a reflector used as an inter-pixel spacer (3M ESR in the case of the Proteus arrays and white, diffuse-reflector for the Saint-Gobain arrays). We have constructed a 3700-pixel LYSO:Ce Prototype NIF Gamma-Ray Imager for use in diagnosing target compression in inertial confinement fusion. This system was tested at the OMEGA Laser and exhibited significant optical, inter-pixel cross-talk that was traced to the use of a single-layer of ESR film as an inter-pixel spacer. We show how the optical cross-talk can be mapped, and discuss correction procedures. We demonstrate a 10×10 YSO:Ce array as part of an iQID (formerly BazookaSPECT) imager and discuss issues related to the internal activity of 176Lu in LSO:Ce and LYSO:Ce detectors. PMID:26236070
-
Imaging properties of pixellated scintillators with deep pixels
NASA Astrophysics Data System (ADS)
Barber, H. Bradford; Fastje, David; Lemieux, Daniel; Grim, Gary P.; Furenlid, Lars R.; Miller, Brian W.; Parkhurst, Philip; Nagarkar, Vivek V.
2014-09-01
We have investigated the light-transport properties of scintillator arrays with long, thin pixels (deep pixels) for use in high-energy gamma-ray imaging. We compared 10x10 pixel arrays of YSO:Ce, LYSO:Ce and BGO (1mm x 1mm x 20 mm pixels) made by Proteus, Inc. with similar 10x10 arrays of LSO:Ce and BGO (1mm x 1mm x 15mm pixels) loaned to us by Saint-Gobain. The imaging and spectroscopic behaviors of these scintillator arrays are strongly affected by the choice of a reflector used as an inter-pixel spacer (3M ESR in the case of the Proteus arrays and white, diffuse-reflector for the Saint-Gobain arrays). We have constructed a 3700-pixel LYSO:Ce Prototype NIF Gamma-Ray Imager for use in diagnosing target compression in inertial confinement fusion. This system was tested at the OMEGA Laser and exhibited significant optical, inter-pixel cross-talk that was traced to the use of a single-layer of ESR film as an inter-pixel spacer. We show how the optical cross-talk can be mapped, and discuss correction procedures. We demonstrate a 10x10 YSO:Ce array as part of an iQID (formerly BazookaSPECT) imager and discuss issues related to the internal activity of 176Lu in LSO:Ce and LYSO:Ce detectors.
-
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branagan, P.T.; Warpinski, N.R.; Engler, B.
A vertical inclinometer array consisting of six biaxial tiltmeters was cemented behind pipe at depths between 4,273 and 4,628 ft. This wide-aperture array provided real-time tilt profiles corresponding to a series of seven hydraulic fractures being conducted in a nearby offset well in a fluvial sandstone reservoir. Array profiles for three KCl water fracs indicated that height growth was confined to the gross thickness of the reservoir despite extensive fracture length extension. Long-term monitoring of the array suggests that a substantial residual frac: width remained long after fracture closure occurred. For two 400-bbl linear gel minifracs, some height growth wasmore » observed but it was not extensive. Tilt amplitudes related to expanded frac widths were found to increase as would be expected with these thicker frac fluids. When cross-linker and proppant were included in the last fracture, tilt-derived heights were seen to grow rapidly extending into the bounding layers as the more complex fluids entered the fracture system. This inclinometer array was one of several independent, yet complimentary, fracture diagnostics tools that included crosswell multilevel microseismic arrays, FRACPRO{reg_sign} and a remote fracture intersection well. Their purpose was to provide integrated field-scale data regarding hydraulic fracture dynamics and geometry that would be used to construct accurate fracture mapping and diagnostic techniques.« less
-
Event-Based Tone Mapping for Asynchronous Time-Based Image Sensor
Simon Chane, Camille; Ieng, Sio-Hoi; Posch, Christoph; Benosman, Ryad B.
2016-01-01
The asynchronous time-based neuromorphic image sensor ATIS is an array of autonomously operating pixels able to encode luminance information with an exceptionally high dynamic range (>143 dB). This paper introduces an event-based methodology to display data from this type of event-based imagers, taking into account the large dynamic range and high temporal accuracy that go beyond available mainstream display technologies. We introduce an event-based tone mapping methodology for asynchronously acquired time encoded gray-level data. A global and a local tone mapping operator are proposed. Both are designed to operate on a stream of incoming events rather than on time frame windows. Experimental results on real outdoor scenes are presented to evaluate the performance of the tone mapping operators in terms of quality, temporal stability, adaptation capability, and computational time. PMID:27642275
-
Seasonal patterns of wind stress and wind stress curl over the Gulf of Mexico
NASA Astrophysics Data System (ADS)
de Velasco, Guillermo Gutiérrez; Winant, Clinton D.
1996-08-01
Meteorological observations from an array of stations deployed along the periphery of the Gulf of Mexico, between 1990 and 1993, are used to describe the seasonal fluctuations in patterns of atmospheric variables from a contemporary set of measurements. Seasonal maps of wind stress based on these measurements resemble wind stress maps based on ship observations, as published by Elliott [1979], rather than maps based on analyses of numerical weather forecasts, as published by Rhodes et al. [1989], particularly near the western boundary of the gulf. Seasonal maps of wind stress curl are characterized by positive curls over the western and southwestern gulf. The central result of this study is to document the important role of the mountain chain which extends along the southwestern section of the gulf in channeling the wind toward the Isthmus of Tehuantepec.
-
ABMapper: a suffix array-based tool for multi-location searching and splice-junction mapping.
Lou, Shao-Ke; Ni, Bing; Lo, Leung-Yau; Tsui, Stephen Kwok-Wing; Chan, Ting-Fung; Leung, Kwong-Sak
2011-02-01
Sequencing reads generated by RNA-sequencing (RNA-seq) must first be mapped back to the genome through alignment before they can be further analyzed. Current fast and memory-saving short-read mappers could give us a quick view of the transcriptome. However, they are neither designed for reads that span across splice junctions nor for repetitive reads, which can be mapped to multiple locations in the genome (multi-reads). Here, we describe a new software package: ABMapper, which is specifically designed for exploring all putative locations of reads that are mapped to splice junctions or repetitive in nature. The software is freely available at: http://abmapper.sourceforge.net/. The software is written in C++ and PERL. It runs on all major platforms and operating systems including Windows, Mac OS X and LINUX.
-
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Supinski, B.; Caliga, D.
2017-09-28
The primary objective of this project was to develop memory optimization technology to efficiently deliver data to, and distribute data within, the SRC-6's Field Programmable Gate Array- ("FPGA") based Multi-Adaptive Processors (MAPs). The hardware/software approach was to explore efficient MAP configurations and generate the compiler technology to exploit those configurations. This memory accessing technology represents an important step towards making reconfigurable symmetric multi-processor (SMP) architectures that will be a costeffective solution for large-scale scientific computing.
-
Challenging aspects of contemporary cochlear implant electrode array design.
Mistrík, Pavel; Jolly, Claude; Sieber, Daniel; Hochmair, Ingeborg
2017-12-01
A design comparison of current perimodiolar and lateral wall electrode arrays of the cochlear implant (CI) is provided. The focus is on functional features such as acoustic frequency coverage and tonotopic mapping, battery consumption and dynamic range. A traumacity of their insertion is also evaluated. Review of up-to-date literature. Perimodiolar electrode arrays are positioned in the basal turn of the cochlea near the modiolus. They are designed to initiate the action potential in the proximity to the neural soma located in spiral ganglion. On the other hand, lateral wall electrode arrays can be inserted deeper inside the cochlea, as they are located along the lateral wall and such insertion trajectory is less traumatic. This class of arrays targets primarily surviving neural peripheral processes. Due to their larger insertion depth, lateral wall arrays can deliver lower acoustic frequencies in manner better corresponding to cochlear tonotopicity. In fact, spiral ganglion sections containing auditory nerve fibres tuned to low acoustic frequencies are located deeper than 1 and half turn inside the cochlea. For this reason, a significant frequency mismatch might be occurring for apical electrodes in perimodiolar arrays, detrimental to speech perception. Tonal languages such as Mandarin might be therefore better treated with lateral wall arrays. On the other hand, closer proximity to target tissue results in lower psychophysical threshold levels for perimodiolar arrays. However, the maximal comfort level is also lower, paradoxically resulting in narrower dynamic range than that of lateral wall arrays. Battery consumption is comparable for both types of arrays. Lateral wall arrays are less likely to cause trauma to cochlear structures. As the current trend in cochlear implantation is the maximal protection of residual acoustic hearing, the lateral wall arrays seem more suitable for hearing preservation CI surgeries. Future development could focus on combining the advantages of both types: perimodiolar location in the basal turn extended to lateral wall location for higher turn locations.
-
Development of an Infrared Lamp Array for the Smap Spacecraft Thermal Balance Test
NASA Technical Reports Server (NTRS)
Miller, Jennifer R.; Emis, Nickolas; Forgette, Daniel
2015-01-01
NASA launched the SMAP observatory in January 2015 aboard a Delta II into a sun-synchronous orbit around Earth. The science payload of a radar and a radiometer utilizes a shared rotating six-meter antenna to provide a global map of the Earth's soil moisture content and its freeze/thaw state on a global, high-resolution scale in this three-year mission. An observatory-level thermal balance test conducted in May/June 2014 validated the thermal design and demonstrated launch readiness as part of the planned environmental test campaign. An infrared lamp array was designed and used in the thermal balance test to replicate solar heating on the solar array and sunlit side of the spacecraft that would normally be seen in orbit. The design, implementation, and operation of an infrared lamp array used for this nineteen-day system thermal test are described in this paper. Instrumental to the smooth operation of this lamp array was a characterization test performed in the same chamber two months prior to the observatory test to provide insight into its array operation and flux uniformity. This knowledge was used to identify the lamp array power settings that would provide the worst case predicted on-orbit fluxes during eclipse, cold, and hot cases. It also showed the lamp array variation when adjustments in flux were needed. Calorimeters calibrated prior to testing determined a relationship between calorimeter temperature and lamp array flux. This allowed the team to adjust the lamp output for the desired absorbed flux on the solar array. Flux levels were within 10% of the desired value at the center of the solar array with an ability to maintain these levels within 5% during steady state cases. All tests demonstrated the infrared lamp array functionality and furthered lamp array understanding for modeling purposes. This method contributed to a high-fidelity environmental simulation, which was required to replicate the extreme on-orbit thermal environments.
-
Thalhammer, Christof; Renz, Wolfgang; Winter, Lukas; Hezel, Fabian; Rieger, Jan; Pfeiffer, Harald; Graessl, Andreas; Seifert, Frank; Hoffmann, Werner; von Knobelsdorff-Brenkenhoff, Florian; Tkachenko, Valeriy; Schulz-Menger, Jeanette; Kellman, Peter; Niendorf, Thoralf
2012-01-01
Purpose To design, evaluate and apply a two-dimensional 16 channel transmit/receive coil array tailored for cardiac MRI at 7.0 Tesla. Material and Methods The cardiac coil array consists of 2 sections each using 8 elements arranged in a 2 × 4 array. RF safety was validated by SAR simulations. Cardiac imaging was performed using 2D CINE FLASH imaging, T2* mapping and fat-water separation imaging. The characteristics of the coil array were analyzed including parallel imaging performance, left ventricular chamber quantification and overall image quality. Results RF characteristics were found to be appropriate for all subjects included in the study. The SAR values derived from the simulations fall well in the limits of legal guidelines. The baseline SNR advantage at 7.0 T was put to use to acquire 2D CINE images of the heart with a very high spatial resolution of (1 × 1 × 4) mm3. The proposed coil array supports 1D acceleration factors of up to R=4 without impairing image quality significantly. Conclusions The 16 channel TX/RX coil has the capability to acquire high contrast and high spatial resolution images of the heart at 7.0 Tesla. PMID:22706727
-
Li, Nianqiang; Susanto, H; Cemlyn, B R; Henning, I D; Adams, M J
2018-02-19
We study the nonlinear dynamics of solitary and optically injected two-element laser arrays with a range of waveguide structures. The analysis is performed with a detailed direct numerical simulation, where high-resolution dynamic maps are generated to identify regions of dynamic instability in the parameter space of interest. Our combined one- and two-parameter bifurcation analysis uncovers globally diverse dynamical regimes (steady-state, oscillation, and chaos) in the solitary laser arrays, which are greatly influenced by static design waveguiding structures, the amplitude-phase coupling factor of the electric field, i.e. the linewidth-enhancement factor, as well as the control parameter, e.g. the pump rate. When external optical injection is introduced to one element of the arrays, we show that the whole system can be either injection-locked simultaneously or display rich, different dynamics outside the locking region. The effect of optical injection is to significantly modify the nature and the regions of nonlinear dynamics from those found in the solitary case. We also show similarities and differences (asymmetry) between the oscillation amplitude of the two elements of the array in specific well-defined regions, which hold for all the waveguiding structures considered. Our findings pave the way to a better understanding of dynamic instability in large arrays of lasers.
-
Experimental demonstration of conformal phased array antenna via transformation optics.
Lei, Juan; Yang, Juxing; Chen, Xi; Zhang, Zhiya; Fu, Guang; Hao, Yang
2018-02-28
Transformation Optics has been proven a versatile technique for designing novel electromagnetic devices and it has much wider applicability in many subject areas related to general wave equations. Among them, quasi-conformal transformation optics (QCTO) can be applied to minimize anisotropy of transformed media and has opened up the possibility to the design of broadband antennas with arbitrary geometries. In this work, a wide-angle scanning conformal phased array based on all-dielectric QCTO lens is designed and experimentally demonstrated. Excited by the same current distribution as such in a conventional planar array, the conformal system in presence of QCTO lens can preserve the same radiation characteristics of a planar array with wide-angle beam-scanning and low side lobe level (SLL). Laplace's equation subject to Dirichlet-Neumann boundary conditions is adopted to construct the mapping between the virtual and physical spaces. The isotropic lens with graded refractive index is realized by all-dielectric holey structure after an effective parameter approximation. The measurements of the fabricated system agree well with the simulated results, which demonstrate its excellent wide-angle beam scanning performance. Such demonstration paves the way to a robust but efficient array synthesis, as well as multi-beam and beam forming realization of conformal arrays via transformation optics.
-
DAMAS Processing for a Phased Array Study in the NASA Langley Jet Noise Laboratory
NASA Technical Reports Server (NTRS)
Brooks, Thomas F.; Humphreys, William M.; Plassman, Gerald e.
2010-01-01
A jet noise measurement study was conducted using a phased microphone array system for a range of jet nozzle configurations and flow conditions. The test effort included convergent and convergent/divergent single flow nozzles, as well as conventional and chevron dual-flow core and fan configurations. Cold jets were tested with and without wind tunnel co-flow, whereas, hot jets were tested only with co-flow. The intent of the measurement effort was to allow evaluation of new phased array technologies for their ability to separate and quantify distributions of jet noise sources. In the present paper, the array post-processing method focused upon is DAMAS (Deconvolution Approach for the Mapping of Acoustic Sources) for the quantitative determination of spatial distributions of noise sources. Jet noise is highly complex with stationary and convecting noise sources, convecting flows that are the sources themselves, and shock-related and screech noise for supersonic flow. The analysis presented in this paper addresses some processing details with DAMAS, for the array positioned at 90 (normal) to the jet. The paper demonstrates the applicability of DAMAS and how it indicates when strong coherence is present. Also, a new approach to calibrating the array focus and position is introduced and demonstrated.
-
Solar observations with the prototype of the Brazilian Decimetric Array
NASA Astrophysics Data System (ADS)
Sawant, H. S.; Ramesh, R.; Faria, C.; Cecatto, J. R.; Fernandes, F. C. R.; Madsen, F. H. R.; Subramanian, K. R.; Sundararajan, M. S.
The prototype of the Brazilian Decimetric Array BDA consists of 5 element alt-az mounted parabolic mesh type dishes of 4-meter diameter having base lines up to 220 meters in the E--W direction The array was put into regular operation at Cachoeira Paulista Brazil longitude 45 r 00 20 W and latitude 22 r 41 19 S This array operates in the frequency range of 1 2 -- 1 7 GHz Solar observations are carried at sim 1 4 GHz in transit and tracking modes Spatial fine structures superimposed on the one dimensional brightness map of the sun associated with active regions and or with solar activity and their time evolution will be presented In the second phase of the project the frequency range will be increased to 1 2 - 1 7 2 8 and 5 6 GHz Central part of the array will consist of 26 antennas with 4-meter diameter laid out randomically in the square of 256 by 256 meter with minimum and maximum base lines of 8 and 256 meters respectively Details of this array with imaging capabilities in snap shot mode for solar observations and procedure of the phase and amplitude calibrations will be presented The development of instrument will be completed by the beginning of 2008
-
Characterization of Kilopixel TES detector arrays for PIPER
NASA Astrophysics Data System (ADS)
Datta, Rahul; Ade, Peter; Benford, Dominic; Bennett, Charles; Chuss, David; Costen, Nicholas; Coughlin, Kevin; Dotson, Jessie; Eimer, Joseph; Fixsen, Dale; Gandilo, Natalie; Halpern, Mark; Essinger-Hileman, Thomas; Hilton, Gene; Hinshaw, Gary; Irwin, Kent; Jhabvala, Christine; Kimball, Mark; Kogut, Al; Lazear, Justin; Lowe, Luke; Manos, George; McMahon, Jeff; Miller, Timothy; Mirel, Paul; Moseley, Samuel Harvey; Pawlyk, Samuel; Rodriguez, Samelys; Sharp, Elmer; Shirron, Peter; Staguhn, Johannes G.; Sullivan, Dan; Switzer, Eric; Taraschi, Peter; Tucker, Carole; Walts, Alexander; Wollack, Edward
2018-01-01
The Primordial Inflation Polarization ExploreR (PIPER) is a balloon-borne instrument optimized to measure the polarization of the Cosmic Microwave Background (CMB) at large angular scales. It will map 85% of the sky in four frequency bands centered at 200, 270, 350, and 600 GHz to characterize dust foregrounds and constrain the tensor-to-scalar ratio, r. The sky is imaged on to 32x40 pixel arrays of time-domain multiplexed Transition-Edge Sensor (TES) bolometers operating at a bath temperature of 100 mK to achieve background-limited sensitivity. Each kilopixel array is indium-bump-bonded to a 2D superconducting quantum interference device (SQUID) time-domain multiplexer (MUX) chip and read out by warm electronics. Each pixel measures total incident power over a frequency band defined by bandpass filters in front of the array, while polarization sensitivity is provided by the upstream Variable-delay Polarization Modulators (VPMs) and analyzer grids. We present measurements of the detector parameters from the laboratory characterization of the first kilopixel science array for PIPER including transition temperature, saturation power, thermal conductivity, time constant, and noise performance. We also describe the testing of the 2D MUX chips, optimization of the integrated readout parameters, and the overall pixel yield of the array. The first PIPER science flight is planned for June 2018 from Palestine, Texas.
-
Erliandri, Indri; Fu, Haiqing; Nakano, Megumi; Kim, Jung-Hyun; Miga, Karen H.; Liskovykh, Mikhail; Earnshaw, William C.; Masumoto, Hiroshi; Kouprina, Natalay; Aladjem, Mirit I.; Larionov, Vladimir
2014-01-01
In human chromosomes, centromeric regions comprise megabase-size arrays of 171 bp alpha-satellite DNA monomers. The large distances spanned by these arrays preclude their replication from external sites and imply that the repetitive monomers contain replication origins. However, replication within these arrays has not previously been profiled and the role of alpha-satellite DNA in initiation of DNA replication has not yet been demonstrated. Here, replication of alpha-satellite DNA in endogenous human centromeric regions and in de novo formed Human Artificial Chromosome (HAC) was analyzed. We showed that alpha-satellite monomers could function as origins of DNA replication and that replication of alphoid arrays organized into centrochromatin occurred earlier than those organized into heterochromatin. The distribution of inter-origin distances within centromeric alphoid arrays was comparable to the distribution of inter-origin distances on randomly selected non-centromeric chromosomal regions. Depletion of CENP-B, a kinetochore protein that binds directly to a 17 bp CENP-B box motif common to alpha-satellite DNA, resulted in enrichment of alpha-satellite sequences for proteins of the ORC complex, suggesting that CENP-B may have a role in regulating the replication of centromeric regions. Mapping of replication initiation sites in the HAC revealed that replication preferentially initiated in transcriptionally active regions. PMID:25228468
-
NASA Astrophysics Data System (ADS)
Zare, Ehsan; Huang, Jingyi; Koganti, Triven; Triantafilis, John
2017-04-01
In order to understand the drivers of topsoil salinization, the distribution and movement of salt in accordance with groundwater need mapping. In this study, we described a method to map the distribution of soil salinity, as measured by the electrical conductivity of a saturated soil-paste extract (ECe), and in 3-dimensions around a water storage reservoir in an irrigated field near Bourke, New South Wales, Australia. A quasi-3d electromagnetic conductivity image (EMCI) or model of the true electrical conductivity (sigma) was developed using 133 apparent electrical conductivity (ECa) measurements collected on a 50 m grid and using various coil arrays of DUALEM-421S and EM34 instruments. For the DUALEM-421S we considered ECa in horizontal coplanar (i.e., 1 mPcon, 2 mPcon and 4 mPcon) and vertical coplanar (i.e., 1 mHcon, 2 mHcon and 4 mHcon) arrays. For the EM34, three measurements in the horizontal mode (i.e., EM34-10H, EM34-20H and EM34-40H) were considered. We estimated σ using a quasi-3d joint-inversion algorithm (EM4Soil). The best correlation (R2 = 0.92) between σ and measured soil ECe was identified when a forward modelling (FS), inversion algorithm (S2) and damping factor (lambda = 0.2) were used and using both DUALEM-421 and EM34 data; but not including the 4 m coil arrays of the DUALEM-421S. A linear regression calibration model was used to predict ECe in 3-dimensions beneath the study field. The predicted ECe was consistent with previous studies and revealed the distribution of ECe and helped to infer a freshwater intrusion from a water storage reservoir at depth and as a function of its proximity to near-surface prior stream channels and buried paleochannels. It was concluded that this method can be applied elsewhere to map the soil salinity and water movement and provide guidance for improved land management.|
-
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chacko, M; Aldoohan, S; Sonnad, J
2015-06-15
Purpose: To evaluate quantitatively dose distributions from helical, axial and cone-beam CT clinical imaging techniques by measurement using a two-dimensional (2D) diode-array detector. Methods: 2D-dose distributions from selected clinical protocols used for axial, helical and cone-beam CT imaging were measured using a diode-array detector (MapCheck2). The MapCheck2 is composed from solid state diode detectors that are arranged in horizontal and vertical lines with a spacing of 10 mm. A GE-Light-Speed CT-simulator was used to acquire axial and helical CT images and a kV on-board-imager integrated with a Varian TrueBeam-STx machine was used to acquire cone-beam CT (CBCT) images. Results: Themore » dose distributions from axial, helical and cone-beam CT were non-uniform over the region-of-interest with strong spatial and angular dependence. In axial CT, a large dose gradient was measured that decreased from lateral sides to the middle of the phantom due to large superficial dose at the side of the phantom in comparison with larger beam attenuation at the center. The dose decreased at the superior and inferior regions in comparison to the center of the phantom in axial CT. An asymmetry was found between the right-left or superior-inferior sides of the phantom which possibly to angular dependence in the dose distributions. The dose level and distribution varied from one imaging technique into another. For the pelvis technique, axial CT deposited a mean dose of 3.67 cGy, helical CT deposited a mean dose of 1.59 cGy, and CBCT deposited a mean dose of 1.62 cGy. Conclusions: MapCheck2 provides a robust tool to measure directly 2D-dose distributions for CT imaging with high spatial resolution detectors in comparison with ionization chamber that provides a single point measurement or an average dose to the phantom. The dose distributions measured with MapCheck2 consider medium heterogeneity and can represent specific patient dose.« less
-
Huang, J; Koganti, T; Santos, F A Monteiro; Triantafilis, J
2017-01-15
In order to understand the drivers of topsoil salinization, the distribution and movement of salt in accordance with groundwater need mapping. In this study, we described a method to map the distribution of soil salinity, as measured by the electrical conductivity of a saturated soil-paste extract (EC e ), and in 3-dimensions around a water storage reservoir in an irrigated field near Bourke, New South Wales, Australia. A quasi-3d electromagnetic conductivity image (EMCI) or model of the true electrical conductivity (σ) was developed using 133 apparent electrical conductivity (EC a ) measurements collected on a 50m grid and using various coil arrays of DUALEM-421S and EM34 instruments. For the DUALEM-421S we considered EC a in horizontal coplanar (i.e., 1mPcon, 2mPcon and 4mPcon) and vertical coplanar (i.e., 1mHcon, 2mHcon and 4mHcon) arrays. For the EM34, three measurements in the horizontal mode (i.e., EM34-10H, EM34-20H and EM34-40H) were considered. We estimated σ using a quasi-3d joint-inversion algorithm (EM4Soil). The best correlation (R 2 =0.92) between σ and measured soil EC e was identified when a forward modelling (FS), inversion algorithm (S2) and damping factor (λ=0.2) were used and using both DUALEM-421 and EM34 data; but not including the 4m coil arrays of the DUALEM-421S. A linear regression calibration model was used to predict EC e in 3-dimensions beneath the study field. The predicted EC e was consistent with previous studies and revealed the distribution of EC e and helped to infer a freshwater intrusion from a water storage reservoir at depth and as a function of its proximity to near-surface prior stream channels and buried paleochannels. It was concluded that this method can be applied elsewhere to map the soil salinity and water movement and provide guidance for improved land management. Copyright © 2016 Elsevier B.V. All rights reserved.
-
NASA Astrophysics Data System (ADS)
Ozel, A. O.; Arslan, M. S.; Aksahin, B. B.; Genc, T.; Isseven, T.; Tuncer, M. K.
2015-12-01
Tekirdag region (NW Turkey) is quite close to the North Anatolian Fault which is capable of producing a large earthquake. Therefore, earthquake hazard mitigation studies are important for the urban areas close to the major faults. From this point of view, integration of different geophysical methods has important role for the study of seismic hazard problems including seismotectonic zoning. On the other hand, geological mapping and determining the subsurface structure, which is a key to assist management of new developed areas, conversion of current urban areas or assessment of urban geological hazards can be performed by integrated geophysical methods. This study has been performed in the frame of a national project, which is a complimentary project of the cooperative project between Turkey and Japan (JICA&JST), named as "Earthquake and Tsunami Disaster Mitigation in the Marmara Region and Disaster Education". With this principal aim, this study is focused on Tekirdag and its surrounding region (NW of Turkey) where some uncertainties in subsurface knowledge (maps of bedrock depth, thickness of quaternary sediments, basin geometry and seismic velocity structure,) need to be resolved. Several geophysical methods (microgravity, magnetic and single station and array microtremor measurements) are applied and the results are evaluated to characterize lithological changes in the region. Array microtremor measurements with several radiuses are taken in 30 locations and 1D-velocity structures of S-waves are determined by the inversion of phase velocities of surface waves, and the results of 1D structures are verified by theoretical Rayleigh wave modelling. Following the array measurements, single-station microtremor measurements are implemented at 75 locations to determine the predominant frequency distribution. The predominant frequencies in the region range from 0.5 Hz to 8 Hz in study area. On the other hand, microgravity and magnetic measurements are performed on the seven profiles of 45km to 60km length. We attempt to map varioations in bedrock, its geologic structure along the profiles. Final target would be 3-dimensional mapping of bedrock in the area.
-
A combined microphone and camera calibration technique with application to acoustic imaging.
Legg, Mathew; Bradley, Stuart
2013-10-01
We present a calibration technique for an acoustic imaging microphone array, combined with a digital camera. Computer vision and acoustic time of arrival data are used to obtain microphone coordinates in the camera reference frame. Our new method allows acoustic maps to be plotted onto the camera images without the need for additional camera alignment or calibration. Microphones and cameras may be placed in an ad-hoc arrangement and, after calibration, the coordinates of the microphones are known in the reference frame of a camera in the array. No prior knowledge of microphone positions, inter-microphone spacings, or air temperature is required. This technique is applied to a spherical microphone array and a mean difference of 3 mm was obtained between the coordinates obtained with this calibration technique and those measured using a precision mechanical method.
-
Supercomputing on massively parallel bit-serial architectures
NASA Technical Reports Server (NTRS)
Iobst, Ken
1985-01-01
Research on the Goodyear Massively Parallel Processor (MPP) suggests that high-level parallel languages are practical and can be designed with powerful new semantics that allow algorithms to be efficiently mapped to the real machines. For the MPP these semantics include parallel/associative array selection for both dense and sparse matrices, variable precision arithmetic to trade accuracy for speed, micro-pipelined train broadcast, and conditional branching at the processing element (PE) control unit level. The preliminary design of a FORTRAN-like parallel language for the MPP has been completed and is being used to write programs to perform sparse matrix array selection, min/max search, matrix multiplication, Gaussian elimination on single bit arrays and other generic algorithms. A description is given of the MPP design. Features of the system and its operation are illustrated in the form of charts and diagrams.
-
An Empirical Methodology for Investigating Geocognition in the Field
ERIC Educational Resources Information Center
Petcovic, Heather L.; Libarkin, Julie C.; Baker, Kathleen M.
2009-01-01
The investigation of how geologists engage in field mapping, including strategies and behaviors, is an open area of research with significant potential for identifying connections to best instructional practices. While study of experts in an array of disciplines has yielded general conclusions about the nature of expertise, the consideration of…
-
E3 Success Story - Making an Investment in the Company: C.U.E.
C.U.E. in Mount Hope, West Virginia, makes molded and cast parts.An array of opportunities were found by WVMEP to implement lean production principles in areas such as mistake proofing, kanban systems, rapid exchange of dies, 5S, and value stream mapping.
-
Recent Developments Related To An Optically Controlled Microwave Phased Array Antenna.
NASA Astrophysics Data System (ADS)
Kittel, A.; Peinke, J.; Klein, M.; Baier, G.; Parisi, J.; Rössler, O. E.
1990-12-01
A generic 3-dimensional diffeomorphic map, with constant Jacobian determinant, is proposed and looked at numerically. It contains a lower-dimensional basin boundary along which a chaotic motion takes place. This boundary is nowhere differentiable in one direction. Therefore, nowhere differentiable limit sets exist generically in nature.
-
USDA-ARS?s Scientific Manuscript database
Individualized copy number variation (CNV) maps have highlighted the need for population surveys of cattle to detect rare and common variants. While SNP and comparative genomic hybridization (CGH) arrays have provided preliminary data, next-generation sequence (NGS) data analysis offers an increased...
-
USDA-ARS?s Scientific Manuscript database
Transcription factors (TFs) mediate stress resistance indirectly via physiological mechanisms driven by the array of genes they regulate. Therefore, when studying TF-mediated stress resistance, it is important to understand how TFs interact with different genetic backgrounds. Here, we fine-mapped th...
-
Aircraft Route Optimization using the A-Star Algorithm
2014-03-27
Map Cost array allows a search for a route that not only seeks to minimize the distance travelled, but also considers other factors that may impact ...Rules (VFR) flight profile requires aviators to plan a 20-minute fuel reserve into the flight while an Instrument Flight Rules ( IFR ) flight profile
-
VizieR Online Data Catalog: Molecular clumps in W51 giant molecular cloud (Parsons+, 2012)
NASA Astrophysics Data System (ADS)
Parsons, H.; Thompson, M. A.; Clark, J. S.; Chrysostomou, A.
2013-04-01
The W51 GMC was mapped using the Heterodyne Array Receiver Programme (HARP) receiver with the back-end digital autocorrelator spectrometer Auto-Correlation Spectral Imaging System (ACSIS) on the James Clerk Maxwell Telescope (JCMT). Data were taken in 2008 May. (2 data files).
-
Supplementary Measurements in the Beaufort/Chukchi 2015 MIZ
2015-09-30
parameters. To put these measurements in a larger spatial context satellite data was also requested. Our minimalistic array included: • 3 x...began over 30 years ago. From the ice concentration maps below we can see that the region north of Alaska/Canada started to open up in June and
-
Mobile Atmospheric Pollutant Mapping System (MAPMS)
1989-12-01
SHOULD DIRECT REQUESTS FOR COPIES OF THIS REPORT TO: DEFENSE TECHNICAL INFORMATION CENTER CAMERON STATION ALEXANDRIA, VIRGINIA 22314 UNCLASSIFIED...22 7. Flip-Flop Array ..... ............ .. 22 8. RF Switches and RF Power Splitter . 22 9. RFI Shielding ......... ............. 2? 10. Transient...Boxcar Averager ...... ............ .. 24 5. Spectrum Analyzer .... ........... .. 26 6. Laser Power Meters .... ........... ... 26 M. COMPUTER
-
A Comparative Study of a 1/4-Scale Gulfstream G550 Aircraft Nose Gear Model
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R.; Neuhart, Dan H.; Zawodny, Nikolas S.; Liu, Fei; Yardibi, Tarik; Cattafesta, Louis; Van de Ven, Thomas
2009-01-01
A series of fluid dynamic and aeroacoustic wind tunnel experiments are performed at the University of Florida Aeroacoustic Flow Facility and the NASA-Langley Basic Aerodynamic Research Tunnel Facility on a high-fidelity -scale model of Gulfstream G550 aircraft nose gear. The primary objectives of this study are to obtain a comprehensive aeroacoustic dataset for a nose landing gear and to provide a clearer understanding of landing gear contributions to overall airframe noise of commercial aircraft during landing configurations. Data measurement and analysis consist of mean and fluctuating model surface pressure, noise source localization maps using a large-aperture microphone directional array, and the determination of far field noise level spectra using a linear array of free field microphones. A total of 24 test runs are performed, consisting of four model assembly configurations, each of which is subjected to three test section speeds, in two different test section orientations. The different model assembly configurations vary in complexity from a fully-dressed to a partially-dressed geometry. The two model orientations provide flyover and sideline views from the perspective of a phased acoustic array for noise source localization via beamforming. Results show that the torque arm section of the model exhibits the highest rms pressures for all model configurations, which is also evidenced in the sideline view noise source maps for the partially-dressed model geometries. Analysis of acoustic spectra data from the linear array microphones shows a slight decrease in sound pressure levels at mid to high frequencies for the partially-dressed cavity open model configuration. In addition, far field sound pressure level spectra scale approximately with the 6th power of velocity and do not exhibit traditional Strouhal number scaling behavior.
-
Use of Microtremor Array Recordings for Mapping Subsurface Soil Structure, Singapore
NASA Astrophysics Data System (ADS)
Walling, M.
2012-12-01
Microtremor array recordings are carried out in Singapore, for different geology, to study the influence of each site in modeling the subsurface structure. The Spatial Autocorrelation (SPAC) method is utilized for the computation of the soil profiles. The array configuration of the recording consists of 7 seismometers, recording the vertical component of the ground motion, and the recording at each site is carried out for 30 minutes. The results from the analysis show that the soil structure modeled for the young alluvial of Kallang Formation (KF), in terms of shear wave velocity (Vs), gives a good correlation with borehole information, while for the older geological formation of Jurong Formation (JF) (sedimentary rock sequence) and Old Alluvial (OA) (dense alluvium formation), the correlation is not very clear due to the lack of impedance contrast. The older formation of Bukit Timah Granite (BTG) show contrasting results within the formation, with the northern BTG suggesting a low Vs upper layer of about 20m - 30m while the southern BTG reveals a dense formation. The discrepancy in the variation within BTG is confirmed from borehole data that reveals the northern BTG to have undergone intense weathering while the southern BTG have not undergone noticeable weathering. Few sites with bad recording quality could not resolve the soil structure. Microtremor array recording is good for mapping sites with soft soil formation and weathered rock formation but can be limited in the absence of subsurface velocity contrast and bad quality of microtremor records.; The correlation between the Vs30 estimated from SPAC method and borehole data for the four major geological formations of Singapore. The encircled sites are the sites with recording error.
-
High-resolution shallow structure revealed with ambient noise tomography on a dense array
NASA Astrophysics Data System (ADS)
Zeng, X.; Thurber, C. H.; Luo, Y.; Matzel, E.; Team, P.
2016-12-01
A dense seismic array was deployed by the PoroTomo research team at Brady Hot Springs, Nevada in March 2016. The array consisted of 238 short-period three-component geophones (5-Hz corner frequency) with about 60 m spacing. Over the 15 day deployment, the array recorded over 6,000 active source signals (vibroseis sweeps) and ambient noise that was dominated by traffic noise.We adopted the one-bit method to better reduce the effect of the active source. Spectral whitening was performed between 0.5 and 2 Hz. The continuous record was chopped into 1 minute segments. The 1-minute cross-correlation functions were initially stacked linearly, and then the phase-weighted stacking method was applied to improve signal quality. More than two million noise correlation functions (NCFs) have been obtained.The Rayleigh wave group velocity was measured on the symmetric component of the NCFs with the frequency-time analysis method. The average group velocity is about 400 m/s at 4 Hz, which is consistent with preliminary active source result. To avoid mis-picking possible precursors, the arrival time was picked at the peak in a two-second time window predicted with the average group velocity of the fundamental mode. The quality of the arrival measurements is defined by the signal-to-noise ratio. We were able to pick reliable arrivals at about 35% of the station-pairs. Since the straight-ray assumption may not be valid in a strongly heterogeneous medium, the wave path was traced with a finite difference scheme and the LSQR method was utilized to invert group velocity. The heterogeneous features of the group velocity map are consistent with a local geologic map. The PoroTomo project is funded by a grant from the U.S. Department of Energy.
-
Advanced Antenna-Coupled Superconducting Detector Arrays for CMB Polarimetry
NASA Astrophysics Data System (ADS)
Bock, James
2014-01-01
We are developing high-sensitivity millimeter-wave detector arrays for measuring the polarization of the cosmic microwave background (CMB). This development is directed to advance the technology readiness of the Inflation Probe mission in NASA's Physics of the Cosmos program. The Inflation Probe is a fourth-generation CMB satellite that will measure the polarization of the CMB to astrophysical limits, characterizing the inflationary polarization signal, mapping large-scale structure based on polarization induced by gravitational lensing, and mapping Galactic magnetic fields through measurements of polarized dust emission. The inflationary polarization signal is produced by a background of gravitational waves from the epoch of inflation, an exponential expansion of space-time in the early universe, with an amplitude that depends on the physical mechanism producing inflation. The inflationary polarization signal may be distinguished by its unique 'B-mode' vector properties from polarization from the density variations that predominantly source CMB temperature anisotropy. Mission concepts for the Inflation Probe are being developed in the US, Europe and Japan. The arrays are based on planar antennas that provide integral beam collimation, polarization analysis, and spectral band definition in a compact lithographed format that eliminates discrete fore-optics such as lenses and feedhorns. The antennas are coupled to transition-edge superconducting bolometers, read out with multiplexed SQUID current amplifiers. The superconducting sensors and readouts developed in this program share common technologies with NASA X-ray and FIR detector applications. Our program targets developments required for space observations, and we discuss our technical progress over the past two years and plans for future development. We are incorporating arrays into active sub-orbital and ground-based experiments, which advance technology readiness while producing state of the art CMB polarization measurements.
-
Wong, Gerard; Leckie, Christopher; Gorringe, Kylie L; Haviv, Izhak; Campbell, Ian G; Kowalczyk, Adam
2010-04-15
High-density single nucleotide polymorphism (SNP) genotyping arrays are efficient and cost effective platforms for the detection of copy number variation (CNV). To ensure accuracy in probe synthesis and to minimize production costs, short oligonucleotide probe sequences are used. The use of short probe sequences limits the specificity of binding targets in the human genome. The specificity of these short probeset sequences has yet to be fully analysed against a normal reference human genome. Sequence similarity can artificially elevate or suppress copy number measurements, and hence reduce the reliability of affected probe readings. For the purpose of detecting narrow CNVs reliably down to the width of a single probeset, sequence similarity is an important issue that needs to be addressed. We surveyed the Affymetrix Human Mapping SNP arrays for probeset sequence similarity against the reference human genome. Utilizing sequence similarity results, we identified a collection of fine-scaled putative CNVs between gender from autosomal probesets whose sequence matches various loci on the sex chromosomes. To detect these variations, we utilized our statistical approach, Detecting REcurrent Copy number change using rank-order Statistics (DRECS), and showed that its performance was superior and more stable than the t-test in detecting CNVs. Through the application of DRECS on the HapMap population datasets with multi-matching probesets filtered, we identified biologically relevant SNPs in aberrant regions across populations with known association to physical traits, such as height, covered by the span of a single probe. This provided empirical confirmation of the existence of naturally occurring narrow CNVs as well as the sensitivity of the Affymetrix SNP array technology in detecting them. The MATLAB implementation of DRECS is available at http://ww2.cs.mu.oz.au/ approximately gwong/DRECS/index.html.
-
Increasing diversity in the geosciences through the AfricaArray geophysics field course
NASA Astrophysics Data System (ADS)
Vallejo, G.; Emry, E.; Galindo, B. L.; Carranza, V.; Gomez, C. D.; Ortiz, K.; Castro, J. G.; Guandique, J.; Falzone, C.; Webb, S. J.; Manzi, M.; Mngadi, S. B.; Stephens, K.; Chinamora, B.; Whitehead, R.; de Villiers, D. P.; Tshitlho, K.; Delhaye, R. P.; Smith, J. A.; Nyblade, A.
2014-12-01
For the past nine years, the AfricaArray diversity program, sponsored by industry, the National Science Foundation, and several partnering universities have supported outstanding U.S. STEM underrepresented minority undergraduates to gain field experience in near-surface geophysical techniques during an 8-week summer program at Penn State University and the University of Witwatersrand (Wits). The AfricaArray geophysics field school, which is run by Wits, has been teaching field-based geophysics to African students for over a decade. In the first 2-3 weeks of the program, the U.S. students are given basic instruction in near-surface geophysics, South African geology, and South African history and culture. The students then join the Wits AfricaArray geophysics field school - working alongside Wits students and students from several other African universities to map the shallow subsurface in prospective areas of South Africa for platinum mining. In addition to the primary goals of collecting and interpreting gravity, magnetic, resistivity, seismic refraction, seismic reflection, and EM data, students spend time mapping geologic units and gathering information on the physical properties of the rocks in the region (i.e. seismic velocity, density, and magnetic susceptibility). Subsurface targets include mafic dikes, faults, the water table, and overburden thickness. Upon returning to the U.S., students spend 2-3 weeks finalizing their project reports and presentations. The program has been effective at not only providing students with fundamental skills in applied geophysics, but also in fostering multicultural relationships, preparing students for graduate work in the geosciences, and attracting STEM students into the geosciences. Student presenters will discuss their experiences gained through the field school and give their impressions about how the program works towards the goal of increasing diversity in the geosciences in the U.S.
-
rasdaman Array Database: current status
NASA Astrophysics Data System (ADS)
Merticariu, George; Toader, Alexandru
2015-04-01
rasdaman (Raster Data Manager) is a Free Open Source Array Database Management System which provides functionality for storing and processing massive amounts of raster data in the form of multidimensional arrays. The user can access, process and delete the data using SQL. The key features of rasdaman are: flexibility (datasets of any dimensionality can be processed with the help of SQL queries), scalability (rasdaman's distributed architecture enables it to seamlessly run on cloud infrastructures while offering an increase in performance with the increase of computation resources), performance (real-time access, processing, mixing and filtering of arrays of any dimensionality) and reliability (legacy communication protocol replaced with a new one based on cutting edge technology - Google Protocol Buffers and ZeroMQ). Among the data with which the system works, we can count 1D time series, 2D remote sensing imagery, 3D image time series, 3D geophysical data, and 4D atmospheric and climate data. Most of these representations cannot be stored only in the form of raw arrays, as the location information of the contents is also important for having a correct geoposition on Earth. This is defined by ISO 19123 as coverage data. rasdaman provides coverage data support through the Petascope service. Extensions were added on top of rasdaman in order to provide support for the Geoscience community. The following OGC standards are currently supported: Web Map Service (WMS), Web Coverage Service (WCS), and Web Coverage Processing Service (WCPS). The Web Map Service is an extension which provides zoom and pan navigation over images provided by a map server. Starting with version 9.1, rasdaman supports WMS version 1.3. The Web Coverage Service provides capabilities for downloading multi-dimensional coverage data. Support is also provided for several extensions of this service: Subsetting Extension, Scaling Extension, and, starting with version 9.1, Transaction Extension, which defines request types for inserting, updating and deleting coverages. A web client, designed for both novice and experienced users, is also available for the service and its extensions. The client offers an intuitive interface that allows users to work with multi-dimensional coverages by abstracting the specifics of the standard definitions of the requests. The Web Coverage Processing Service defines a language for on-the-fly processing and filtering multi-dimensional raster coverages. rasdaman exposes this service through the WCS processing extension. Demonstrations are provided online via the Earthlook website (earthlook.org) which presents use-cases from a wide variety of application domains, using the rasdaman system as processing engine.
-
Three Element Phased Array Coil for Imaging of Rat Spinal Cord at 7T
Mogatadakala, Kishore V.; Bankson, James A.; Narayana, Ponnada A.
2008-01-01
In order to overcome some of the limitations of an implantable coil, including its invasive nature and limited spatial coverage, a three element phased array coil is described for high resolution magnetic resonance imaging (MRI) of rat spinal cord. This coil allows imaging both thoracic and cervical segments of rat spinal cord. In the current design, coupling between the nearest neighbors was minimized by overlapping the coil elements. A simple capacitive network was used for decoupling the next neighbor elements. The dimensions of individual coils in the array were determined based on the signal-to-noise ratio (SNR) measurements performed on a phantom with three different surface coils. SNR measurements on a phantom demonstrated higher SNR of the phased array coil relative to two different volume coils. In-vivo images acquired on rat spinal cord with our coil demonstrated excellent gray and white matter contrast. To evaluate the performance of the phased array coil under parallel imaging, g-factor maps were obtained for two different acceleration factors of 2 and 3. These simulations indicate that parallel imaging with acceleration factor of 2 would be possible without significant image reconstruction related noise amplifications. PMID:19025892
-
Making a chocolate chip: development and evaluation of a 6K SNP array for Theobroma cacao.
Livingstone, Donald; Royaert, Stefan; Stack, Conrad; Mockaitis, Keithanne; May, Greg; Farmer, Andrew; Saski, Christopher; Schnell, Ray; Kuhn, David; Motamayor, Juan Carlos
2015-08-01
Theobroma cacao, the key ingredient in chocolate production, is one of the world's most important tree fruit crops, with ∼4,000,000 metric tons produced across 50 countries. To move towards gene discovery and marker-assisted breeding in cacao, a single-nucleotide polymorphism (SNP) identification project was undertaken using RNAseq data from 16 diverse cacao cultivars. RNA sequences were aligned to the assembled transcriptome of the cultivar Matina 1-6, and 330,000 SNPs within coding regions were identified. From these SNPs, a subset of 6,000 high-quality SNPs were selected for inclusion on an Illumina Infinium SNP array: the Cacao6kSNP array. Using Cacao6KSNP array data from over 1,000 cacao samples, we demonstrate that our custom array produces a saturated genetic map and can be used to distinguish among even closely related genotypes. Our study enhances and expands the genetic resources available to the cacao research community, and provides the genome-scale set of tools that are critical for advancing breeding with molecular markers in an agricultural species with high genetic diversity. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
-
High-density functional-RNA arrays as a versatile platform for studying RNA-based interactions.
Phillips, Jack O; Butt, Louise E; Henderson, Charlotte A; Devonshire, Martin; Healy, Jess; Conway, Stuart J; Locker, Nicolas; Pickford, Andrew R; Vincent, Helen A; Callaghan, Anastasia J
2018-05-28
We are just beginning to unravel the myriad of interactions in which non-coding RNAs participate. The intricate RNA interactome is the foundation of many biological processes, including bacterial virulence and human disease, and represents unexploited resources for the development of potential therapeutic interventions. However, identifying specific associations of a given RNA from the multitude of possible binding partners within the cell requires robust high-throughput systems for their rapid screening. Here, we present the first demonstration of functional-RNA arrays as a novel platform technology designed for the study of such interactions using immobilized, active RNAs. We have generated high-density RNA arrays by an innovative method involving surface-capture of in vitro transcribed RNAs. This approach has significant advantages over existing technologies, particularly in its versatility in regards to binding partner character. Indeed, proof-of-principle application of RNA arrays to both RNA-small molecule and RNA-RNA pairings is demonstrated, highlighting their potential as a platform technology for mapping RNA-based networks and for pharmaceutical screening. Furthermore, the simplicity of the method supports greater user-accessibility over currently available technologies. We anticipate that functional-RNA arrays will find broad utility in the expanding field of RNA characterization.
-
Micro-dressing of a carbon nanotube array with MoS2 gauze
NASA Astrophysics Data System (ADS)
Lim, Sharon Xiaodai; Woo, Kah Whye; Ng, Junju; Lu, Junpeng; Kwang, Siu Yi; Zhang, Zheng; Tok, Eng Soon; Sow, Chorng-Haur
2015-10-01
Few-layer MoS2 film has been successfully assembled over an array of CNTs. Using different focused laser beams with different wavelengths, site selective patterning of either the MoS2 film or the supporting CNT array is achieved. This paves the way for applications and investigations into the fundamental properties of the hybrid MoS2/CNT material with a controlled architecture. Through Raman mapping, straining and electron doping of the MoS2 film as a result of interaction with the supporting CNT array are detected. The role of the MoS2 film was further emphasized with a lower work function being detected from Ultra-violet Photoelectron Spectrsocopy (UPS) measurements of the hybrid material, compared to the CNT array. The effect of the changes in the work function was illustrated through the optoelectronic behavior of the hybrid material. At 0 V, 3.49 nA of current is measured upon illuminating the sample with a broad laser beam emitting laser light with a wavelength of 532 nm. With a strong response to external irradiation of different wavelengths, and changes to the power of the excitation source, the hybrid material has shown potential for applications in optoelectronic devices.
-
Compression of color-mapped images
NASA Technical Reports Server (NTRS)
Hadenfeldt, A. C.; Sayood, Khalid
1992-01-01
In a standard image coding scenario, pixel-to-pixel correlation nearly always exists in the data, especially if the image is a natural scene. This correlation is what allows predictive coding schemes (e.g., DPCM) to perform efficient compression. In a color-mapped image, the values stored in the pixel array are no longer directly related to the pixel intensity. Two color indices which are numerically adjacent (close) may point to two very different colors. The correlation still exists, but only via the colormap. This fact can be exploited by sorting the color map to reintroduce the structure. The sorting of colormaps is studied and it is shown how the resulting structure can be used in both lossless and lossy compression of images.
-
Spatial organization of xylem cell walls by ROP GTPases and microtubule-associated proteins.
Oda, Yoshihisa; Fukuda, Hiroo
2013-12-01
Proper patterning of cellulosic cell walls is critical for cell shaping and differentiation of plant cells. Cortical microtubule arrays regulate the deposition patterns of cellulose microfibrils by controlling the targeting and trajectory of cellulose synthase complexes. Although some microtubule-associated proteins (MAPs) regulate the arrangement of cortical microtubules, knowledge about the overall mechanism governing the spacing of cortical microtubules is still limited. Recent studies reveal that ROP GTPases and MAPs spatially regulate the assembly and disassembly of cortical microtubules in developing xylem cells, in which localized secondary cell walls are deposited. Here, we review recent insights into the regulation of xylem cell wall patterning by cortical microtubules, ROP GTPases, and MAPs. Copyright © 2013 Elsevier Ltd. All rights reserved.
-
Cartographic potential of SPOT image data
NASA Technical Reports Server (NTRS)
Welch, R.
1985-01-01
In late 1985, the SPOT (Systeme Probatoire d'Observation de la Terre) satellite is to be launched by the Ariane rocket from French Guiana. This satellite will have two High Resolution Visible (HRV) line array sensor systems which are capable of providing monoscopic and stereoscopic coverage of the earth. Cartographic applications are related to the recording of stereo image data and the acquisition of 20-m data in a multispectral mode. One of the objectives of this study involves a comparison of the suitability of SPOT and TM image data for mapping urban land use/cover. Another objective is concerned with a preliminary assessment of the potential of SPOT image data for map revision when merged with conventional map sheets converted to raster formats.
-
Yu, Shoukai; Lemos, Bernardo
2016-01-01
Ribosomal RNAs (rRNAs) account for >60% of all RNAs in eukaryotic cells and are encoded in the ribosomal DNA (rDNA) arrays. The rRNAs are produced from two sets of loci: the 5S rDNA array resides exclusively on human chromosome 1, whereas the 45S rDNA array resides on the short arm of five human acrocentric chromosomes. The 45S rDNA gives origin to the nucleolus, the nuclear organelle that is the site of ribosome biogenesis. Intriguingly, 5S and 45S rDNA arrays exhibit correlated copy number variation in lymphoblastoid cells (LCLs). Here we examined the genomic architecture and repeat content of the 5S and 45S rDNA arrays in multiple human genome assemblies (including PacBio MHAP assembly) and ascertained contacts between the rDNA arrays and the rest of the genome using Hi-C datasets from two human cell lines (erythroleukemia K562 and lymphoblastoid cells). Our analyses revealed that 5S and 45S arrays each have thousands of contacts in the folded genome, with rDNA-associated regions and genes dispersed across all chromosomes. The rDNA contact map displayed conserved and disparate features between two cell lines, and pointed to specific chromosomes, genomic regions, and genes with evidence of spatial proximity to the rDNA arrays; the data also showed a lack of direct physical interaction between the 5S and 45S rDNA arrays. Finally, the analysis identified an intriguing organization in the 5S array with Alu and 5S elements adjacent to one another and organized in opposite orientation along the array. Portraits of genome folding centered on the ribosomal DNA array could help understand the emergence of concerted variation, the control of 5S and 45S expression, as well as provide insights into an organelle that contributes to the spatial localization of human chromosomes during interphase. PMID:27797956
-
Algorithms for Automatic Alignment of Arrays
NASA Technical Reports Server (NTRS)
Chatterjee, Siddhartha; Gilbert, John R.; Oliker, Leonid; Schreiber, Robert; Sheffler, Thomas J.
1996-01-01
Aggregate data objects (such as arrays) are distributed across the processor memories when compiling a data-parallel language for a distributed-memory machine. The mapping determines the amount of communication needed to bring operands of parallel operations into alignment with each other. A common approach is to break the mapping into two stages: an alignment that maps all the objects to an abstract template, followed by a distribution that maps the template to the processors. This paper describes algorithms for solving the various facets of the alignment problem: axis and stride alignment, static and mobile offset alignment, and replication labeling. We show that optimal axis and stride alignment is NP-complete for general program graphs, and give a heuristic method that can explore the space of possible solutions in a number of ways. We show that some of these strategies can give better solutions than a simple greedy approach proposed earlier. We also show how local graph contractions can reduce the size of the problem significantly without changing the best solution. This allows more complex and effective heuristics to be used. We show how to model the static offset alignment problem using linear programming, and we show that loop-dependent mobile offset alignment is sometimes necessary for optimum performance. We describe an algorithm with for determining mobile alignments for objects within do loops. We also identify situations in which replicated alignment is either required by the program itself or can be used to improve performance. We describe an algorithm based on network flow that replicates objects so as to minimize the total amount of broadcast communication in replication.
-
Ding, Ting; Hu, Hong; Bai, Chen; Guo, Shifang; Yang, Miao; Wang, Supin; Wan, Mingxi
2016-07-01
Cavitation plays important roles in almost all high-intensity focused ultrasound (HIFU) applications. However, current two-dimensional (2D) cavitation mapping could only provide cavitation activity in one plane. This study proposed a three-dimensional (3D) ultrasound plane-by-plane active cavitation mapping (3D-UPACM) for HIFU in free field and pulsatile flow. The acquisition of channel-domain raw radio-frequency (RF) data in 3D space was performed by sequential plane-by-plane 2D ultrafast active cavitation mapping. Between two adjacent unit locations, there was a waiting time to make cavitation nuclei distribution of the liquid back to the original state. The 3D cavitation map equivalent to the one detected at one time and over the entire volume could be reconstructed by Marching Cube algorithm. Minimum variance (MV) adaptive beamforming was combined with coherence factor (CF) weighting (MVCF) or compressive sensing (CS) method (MVCS) to process the raw RF data for improved beamforming or more rapid data processing. The feasibility of 3D-UPACM was demonstrated in tap-water and a phantom vessel with pulsatile flow. The time interval between temporal evolutions of cavitation bubble cloud could be several microseconds. MVCF beamformer had a signal-to-noise ratio (SNR) at 14.17dB higher, lateral and axial resolution at 2.88times and 1.88times, respectively, which were compared with those of B-mode active cavitation mapping. MVCS beamformer had only 14.94% time penalty of that of MVCF beamformer. This 3D-UPACM technique employs the linear array of a current ultrasound diagnosis system rather than a 2D array transducer to decrease the cost of the instrument. Moreover, although the application is limited by the requirement for a gassy fluid medium or a constant supply of new cavitation nuclei that allows replenishment of nuclei between HIFU exposures, this technique may exhibit a useful tool in 3D cavitation mapping for HIFU with high speed, precision and resolution, especially in a laboratory environment where more careful analysis may be required under controlled conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
-
D'Agnese, F. A.; Faunt, C.C.; Keith, Turner A.
1996-01-01
The recharge and discharge components of the Death Valley regional groundwater flow system were defined by remote sensing and GIS techniques that integrated disparate data types to develop a spatially complex representation of near-surface hydrological processes. Image classification methods were applied to multispectral satellite data to produce a vegetation map. This map provided a basis for subsequent evapotranspiration and infiltration estimations. The vegetation map was combined with ancillary data in a GIS to delineate different types of wetlands, phreatophytes and wet playa areas. Existing evapotranspiration-rate estimates were then used to calculate discharge volumes for these areas. A previously used empirical method of groundwater recharge estimation was modified by GIS methods to incorporate data describing soil-moisture conditions, and a recharge potential map was produced. These discharge and recharge maps were readily converted to data arrays for numerical modelling codes. Inverse parameter estimation techniques also used these data to evaluate the reliability and sensitivity of estimated values.
-
Concurrent and Accurate Short Read Mapping on Multicore Processors.
Martínez, Héctor; Tárraga, Joaquín; Medina, Ignacio; Barrachina, Sergio; Castillo, Maribel; Dopazo, Joaquín; Quintana-Ortí, Enrique S
2015-01-01
We introduce a parallel aligner with a work-flow organization for fast and accurate mapping of RNA sequences on servers equipped with multicore processors. Our software, HPG Aligner SA (HPG Aligner SA is an open-source application. The software is available at http://www.opencb.org, exploits a suffix array to rapidly map a large fraction of the RNA fragments (reads), as well as leverages the accuracy of the Smith-Waterman algorithm to deal with conflictive reads. The aligner is enhanced with a careful strategy to detect splice junctions based on an adaptive division of RNA reads into small segments (or seeds), which are then mapped onto a number of candidate alignment locations, providing crucial information for the successful alignment of the complete reads. The experimental results on a platform with Intel multicore technology report the parallel performance of HPG Aligner SA, on RNA reads of 100-400 nucleotides, which excels in execution time/sensitivity to state-of-the-art aligners such as TopHat 2+Bowtie 2, MapSplice, and STAR.
-
Vipin, Cina Ann; Luckett, David J.; Harper, John D.I.; Ash, Gavin J.; Kilian, Andrzej; Ellwood, Simon R.; Phan, Huyen T.T.; Raman, Harsh
2013-01-01
We report the development of a Diversity Arrays Technology (DArT) marker panel and its utilisation in the development of an integrated genetic linkage map of white lupin (Lupinus albus L.) using an F8 recombinant inbred line population derived from Kiev Mutant/P27174. One hundred and thirty-six DArT markers were merged into the first genetic linkage map composed of 220 amplified fragment length polymorphisms (AFLPs) and 105 genic markers. The integrated map consists of 38 linkage groups of 441 markers and spans a total length of 2,169 cM, with an average interval size of 4.6 cM. The DArT markers exhibited good genome coverage and were associated with previously identified genic and AFLP markers linked with quantitative trait loci for anthracnose resistance, flowering time and alkaloid content. The improved genetic linkage map of white lupin will aid in the identification of markers for traits of interest and future syntenic studies. PMID:24273424
-
UGC Galaxies Stronger than 25 MJy at 4.85 GHz
NASA Astrophysics Data System (ADS)
Condon, J. J.; Frayer, D. T.; Broderick, J. J.
1995-11-01
UGC galaxies in the declination band +5 degrees < delta < +75 degrees were identified by position coincidence with radio sources stronger than 25 mJy on the Green Bank 4.85 GHz sky maps. Candidate identifications were confirmed or rejected with the aid of published aperture-synthesis maps (including those in the companion directory UGC20CM.DIR) and new 4.86 GHz VLA D-array maps having 15 or 18 arcsec FWHM resolution. The 4.86 GHz maps in this directory cover both confirmed identifications and candidates rejected because of confusion, low flux density, etc. For more information on this study, please see the following references: Condon, J. J., Frayer, D. T., and Broderick, J. J. 1991, AJ, 101, 362. The image(s) and related TeX file come from the NRAO CDROM "Images From the Radio Universe" (c. 1992 National Radio Astronomy Observatory, used with permission).
-
Dai, Xiaochuan; Zhou, Wei; Gao, Teng; Liu, Jia; Lieber, Charles M
2016-09-01
Real-time mapping and manipulation of electrophysiology in three-dimensional (3D) tissues could have important impacts on fundamental scientific and clinical studies, yet realization is hampered by a lack of effective methods. Here we introduce tissue-scaffold-mimicking 3D nanoelectronic arrays consisting of 64 addressable devices with subcellular dimensions and a submillisecond temporal resolution. Real-time extracellular action potential (AP) recordings reveal quantitative maps of AP propagation in 3D cardiac tissues, enable in situ tracing of the evolving topology of 3D conducting pathways in developing cardiac tissues and probe the dynamics of AP conduction characteristics in a transient arrhythmia disease model and subsequent tissue self-adaptation. We further demonstrate simultaneous multisite stimulation and mapping to actively manipulate the frequency and direction of AP propagation. These results establish new methodologies for 3D spatiotemporal tissue recording and control, and demonstrate the potential to impact regenerative medicine, pharmacology and electronic therapeutics.
-
Dai, Xiaochuan; Zhou, Wei; Gao, Teng; Liu, Jia; Lieber, Charles M.
2016-01-01
Real-time mapping and manipulation of electrophysiology in three-dimensional (3D) tissues could impact broadly fundamental scientific and clinical studies, yet realization lacks effective methods. Here we introduce tissue-scaffold-mimicking 3D nanoelectronic arrays consisting of 64 addressable devices with subcellular dimensions and sub-millisecond time-resolution. Real-time extracellular action potential (AP) recordings reveal quantitative maps of AP propagation in 3D cardiac tissues, enable in situ tracing of the evolving topology of 3D conducting pathways in developing cardiac tissues, and probe the dynamics of AP conduction characteristics in a transient arrhythmia disease model and subsequent tissue self-adaptation. We further demonstrate simultaneous multi-site stimulation and mapping to manipulate actively the frequency and direction of AP propagation. These results establish new methodologies for 3D spatiotemporal tissue recording and control, and demonstrate the potential to impact regenerative medicine, pharmacology and electronic therapeutics. PMID:27347837
-
Symbolic, Nonsymbolic and Conceptual: An Across-Notation Study on the Space Mapping of Numerals.
Zhang, Yu; You, Xuqun; Zhu, Rongjuan
2016-07-01
Previous studies suggested that there are interconnections between two numeral modalities of symbolic notation and nonsymbolic notation (array of dots), differences and similarities of the processing, and representation of the two modalities have both been found in previous research. However, whether there are differences between the spatial representation and numeral-space mapping of the two numeral modalities of symbolic notation and nonsymbolic notation is still uninvestigated. The present study aims to examine whether there are differences between the spatial representation and numeral-space mapping of the two numeral modalities of symbolic notation and nonsymbolic notation; especially how zero, as both a symbolic magnitude numeral and a nonsymbolic conceptual numeral, mapping onto space; and if the mapping happens automatically at an early stage of the numeral information processing. Results of the two experiments demonstrate that the low-level processing of symbolic numerals including zero and nonsymbolic numerals except zero can mapping onto space, whereas the low-level processing of nonsymbolic zero as a semantic conceptual numeral cannot mapping onto space, which indicating the specialty of zero in the numeral domain. The present study indicates that the processing of non-semantic numerals can mapping onto space, whereas semantic conceptual numerals cannot mapping onto space. © The Author(s) 2016.
-
Geraldes, A; Difazio, S P; Slavov, G T; Ranjan, P; Muchero, W; Hannemann, J; Gunter, L E; Wymore, A M; Grassa, C J; Farzaneh, N; Porth, I; McKown, A D; Skyba, O; Li, E; Fujita, M; Klápště, J; Martin, J; Schackwitz, W; Pennacchio, C; Rokhsar, D; Friedmann, M C; Wasteneys, G O; Guy, R D; El-Kassaby, Y A; Mansfield, S D; Cronk, Q C B; Ehlting, J; Douglas, C J; Tuskan, G A
2013-03-01
Genetic mapping of quantitative traits requires genotypic data for large numbers of markers in many individuals. For such studies, the use of large single nucleotide polymorphism (SNP) genotyping arrays still offers the most cost-effective solution. Herein we report on the design and performance of a SNP genotyping array for Populus trichocarpa (black cottonwood). This genotyping array was designed with SNPs pre-ascertained in 34 wild accessions covering most of the species latitudinal range. We adopted a candidate gene approach to the array design that resulted in the selection of 34 131 SNPs, the majority of which are located in, or within 2 kb of, 3543 candidate genes. A subset of the SNPs on the array (539) was selected based on patterns of variation among the SNP discovery accessions. We show that more than 95% of the loci produce high quality genotypes and that the genotyping error rate for these is likely below 2%. We demonstrate that even among small numbers of samples (n = 10) from local populations over 84% of loci are polymorphic. We also tested the applicability of the array to other species in the genus and found that the number of polymorphic loci decreases rapidly with genetic distance, with the largest numbers detected in other species in section Tacamahaca. Finally, we provide evidence for the utility of the array to address evolutionary questions such as intraspecific studies of genetic differentiation, species assignment and the detection of natural hybrids. © 2013 Blackwell Publishing Ltd.
< Previous Issue | Next Issue > Volume 29, Issue1 (January 2005)
Articles in the Current Issue:
Research Article
Homogenization framework for three-dimensional elastoplastic finite element analysis of a grouted pipe-roofing reinforcement method for tunnelling
NASA Astrophysics Data System (ADS)
Bae, G. J.; Shin, H. S.; Sicilia, C.; Choi, Y. G.; Lim, J. J.
2005-01-01
This paper deals with the grouted pipe-roofing reinforcement method that is used in the construction of tunnels through weak grounds. This system consists on installing, prior to the excavation of a length of tunnel, an array of pipes forming a kind of umbrella above the area to be excavated. In some cases, these pipes are later used to inject grout to strengthen the ground and connect the pipes.This system has proven to be very efficient in reducing tunnel convergence and water inflow when tunnelling through weak grounds. However, due to the geometrical and mechanical complexity of the problem, existing finite element frameworks are inappropriate to simulate tunnelling using this method.In this paper, a mathematical framework based on a homogenization technique to simulate grouted pipe-roofing reinforced ground and its implementation into a 3-D finite element programme that can consider stage construction situations are presented. The constitutive model developed allows considering the main design parameters of the problem and only requires geometrical and mechanical properties of the constituents. Additionally, the use of a homogenization approach implies that the generation of the finite element mesh can be easily produced and that re-meshing is not required as basic geometrical parameters such as the orientation of the pipes are changed.
The model developed is used to simulate tunnelling with the grouted pipe-roofing reinforcement method. From the analyses, the effects of the main design parameters on the elastic and the elastoplastic analyses are considered. Copyright < Previous Issue | Next Issue > Volume 28, Issue12 (October 2004)
Articles in the Current Issue:
Research Article
Modelling poroelastic hollow cylinder experiments with realistic boundary conditions
NASA Astrophysics Data System (ADS)
Jourine, S.; Valkó, P. P.; Kronenberg, A. K.
2004-10-01
A general poroelastic solution for axisymmetrical plane strain problems with time dependent boundary conditions is developed in Laplace domain. Time-domain results are obtained using numerical inversion of the Laplace transform. Previously published solutions can be considered as special cases of the proposed solution. In particular, we could reproduce numerical results for solid and hollow poroelastic cylinders with suddenly applied load/pressure (Rice and Cleary, Rev. Geophys. Space Phys. 1976; 14:227; Schmitt, Tait and Spann, Int. J. Rock Mech. Min. Sci. 1993; 30:1057; Cui and Abousleiman, ASCE J. Eng. Mech. 2001; 127:391).
The new solution is used to model laboratory tests on thick-walled hollow cylinders of Berea sandstone subjected to intensive pressure drawdown. In the experiments, pressure at the inner boundary of the hollow cylinder is observed to decline exponentially with a decay constant of 3-5 1/s. It is found that solutions with idealized step-function type inner boundary conditions overestimate the induced tensile radial stresses considerably. Although basic poroelastic phenomena can be modelled properly at long time following a stepwise change in pressure, realistic time varying boundary conditions predict actual rock behaviour better at early time. Experimentally observed axial stresses can be matched but appear to require different values for α and than are measured at long time. The proposed solution can be used to calculate the stress and pore pressure distributions around boreholes under infinite/finite boundary conditions. Prospective applications include investigating the effect of gradually changing pore pressure, modelling open-hole cavity completions, and describing the phenomenon of wellbore collapse (bridging) during oil or gas blowouts. Copyright Some links on this page may take you to non-federal websites. Their policies may differ from this site.Top
