Science.gov

Sample records for mapping rover mission

  1. Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.

    2008-01-01

    This viewgraph presentation reviews the Mars Exploration Rover Mission. The design of the Rover along with the Athena science payload is also described. Photographs of the Gusev Crater and Meridiani rocks are also shown.

  2. High precision landing site mapping and rover localization for Chang'e-3 mission

    NASA Astrophysics Data System (ADS)

    Liu, ZhaoQin; Di, KaiChang; Peng, Man; Wan, WenHui; Liu, Bin; Li, LiChun; Yu, TianYi; Wang, BaoFeng; Zhou, JianLiang; Chen, HongMin

    2015-01-01

    This paper presents the comprehensive results of landing site topographic mapping and rover localization in Chang'e-3 mission. High-precision topographic products of the landing site with extremely high resolutions (up to 0.05 m) were generated from descent images and registered to CE-2 DOM. Local DEM and DOM with 0.02 m resolution were produced routinely at each waypoint along the rover traverse. The lander location was determined to be (19.51256°W, 44.11884°N, -2615.451 m) using a method of DOM matching. In order to reduce error accumulation caused by wheel slippage and IMU drift in dead reckoning, cross-site visual localization and DOM matching localization methods were developed to localize the rover at waypoints; the overall traveled distance from the lander is 114.8 m from cross-site visual localization and 111.2 m from DOM matching localization. The latter is of highest accuracy and has been verified using a LRO NAC image where the rover trajeactory is directly identifiable. During CE-3 mission operations, landing site mapping and rover localization products including DEMs and DOMs, traverse maps, vertical traverse profiles were generated timely to support teleoperation tasks such as obstacle avoidance and rover path planning.

  3. Requirements assessment and operational demands for a resource mapping rover mission to the lunar polar regions

    SciTech Connect

    KLARER,PAUL R.; BINDER,ALAN B.; LENARD,ROGER X.

    2000-01-26

    A preliminary set of requirements for a robotic rover mission to the lunar polar region are described and assessed. Tasks to be performed by the rover include core drill sample acquisition, mineral and volatile soil content assay, and significant wide area traversals. Assessment of the postulated requirements is performed using first order estimates of energy, power, and communications throughput issues. Two potential rover system configurations are considered, a smaller rover envisioned as part of a group of multiple rovers, and a larger single rover envisioned along more traditional planetary surface rover concept lines.

  4. Mars Exploration Rover mission

    NASA Astrophysics Data System (ADS)

    Crisp, Joy A.; Adler, Mark; Matijevic, Jacob R.; Squyres, Steven W.; Arvidson, Raymond E.; Kass, David M.

    2003-10-01

    In January 2004 the Mars Exploration Rover mission will land two rovers at two different landing sites that show possible evidence for past liquid-water activity. The spacecraft design is based on the Mars Pathfinder configuration for cruise and entry, descent, and landing. Each of the identical rovers is equipped with a science payload of two remote-sensing instruments that will view the surrounding terrain from the top of a mast, a robotic arm that can place three instruments and a rock abrasion tool on selected rock and soil samples, and several onboard magnets and calibration targets. Engineering sensors and components useful for science investigations include stereo navigation cameras, stereo hazard cameras in front and rear, wheel motors, wheel motor current and voltage, the wheels themselves for digging, gyros, accelerometers, and reference solar cell readings. Mission operations will allow commanding of the rover each Martian day, or sol, on the basis of the previous sol's data. Over a 90-sol mission lifetime, the rovers are expected to drive hundreds of meters while carrying out field geology investigations, exploration, and atmospheric characterization. The data products will be delivered to the Planetary Data System as integrated batch archives.

  5. Design of a Mars rover and sample return mission

    NASA Technical Reports Server (NTRS)

    Bourke, Roger D.; Kwok, Johnny H.; Friedlander, Alan

    1990-01-01

    The design of a Mars Rover Sample Return (MRSR) mission that satisfies scientific and human exploration precursor needs is described. Elements included in the design include an imaging rover that finds and certifies safe landing sites and maps rover traverse routes, a rover that operates the surface with an associated lander for delivery, and a Mars communications orbiter that allows full-time contact with surface elements. A graph of MRSR candidate launch vehice performances is presented.

  6. The Extended Mission Rover (EMR)

    NASA Astrophysics Data System (ADS)

    Shields, W.; Halecki, Anthony; Chung, Manh; Clarke, Ken; Frankle, Kevin; Kassemkhani, Fariba; Kuhlhoff, John; Lenzini, Josh; Lobdell, David; Morgan, Sam

    A key component in ensuring America's status as a leader in the global community is its active pursuit of space exploration. On the twentieth anniversary of Apollo 11, President George Bush challenged the nation to place a man on the moon permanently and to conduct human exploration of Mars in the 21st century. The students of the FAMU/FSU College of Engineering hope to make a significant contribution to this challenge, America's Space Exploration Initiative (SEI), with their participation in the NASA/USRA Advanced Design Program. The project selected by the 1991/1992 Aerospace Design group is the design of an Extended Mission Rover (EMR) for use on the lunar surface. This vehicle will serve as a mobile base to provide future astronauts with a 'shirt-sleeve' living and working environment. Some of the proposed missions are planetary surface exploration, construction and maintenance, hardware setup, and in situ resource experimentation. This vehicle will be put into use in the 2010-2030 time frame.

  7. The Extended Mission Rover (EMR)

    NASA Technical Reports Server (NTRS)

    Shields, W.; Halecki, Anthony; Chung, Manh; Clarke, Ken; Frankle, Kevin; Kassemkhani, Fariba; Kuhlhoff, John; Lenzini, Josh; Lobdell, David; Morgan, Sam

    1992-01-01

    A key component in ensuring America's status as a leader in the global community is its active pursuit of space exploration. On the twentieth anniversary of Apollo 11, President George Bush challenged the nation to place a man on the moon permanently and to conduct human exploration of Mars in the 21st century. The students of the FAMU/FSU College of Engineering hope to make a significant contribution to this challenge, America's Space Exploration Initiative (SEI), with their participation in the NASA/USRA Advanced Design Program. The project selected by the 1991/1992 Aerospace Design group is the design of an Extended Mission Rover (EMR) for use on the lunar surface. This vehicle will serve as a mobile base to provide future astronauts with a 'shirt-sleeve' living and working environment. Some of the proposed missions are planetary surface exploration, construction and maintenance, hardware setup, and in situ resource experimentation. This vehicle will be put into use in the 2010-2030 time frame.

  8. Overview of the Mars Exploration Rover Mission

    NASA Astrophysics Data System (ADS)

    Adler, M.

    2002-12-01

    The Mars Exploration Rover (MER) Project is an ambitious mission to land two highly capable rovers at different sites in the equatorial region of Mars. The two vehicles are launched separately in May through July of 2003. Mars surface operations begin on January 4, 2004 with the first landing, followed by the second landing three weeks later on January 25. The useful surface lifetime of each rover will be at least 90 sols. The science objectives of exploring multiple locations within each of two widely separated and scientifically distinct landing sites will be accomplished along with the demonstration of key surface exploration technologies for future missions. The two MER spacecraft are planned to be identical. The rovers are landed using the Mars Pathfinder approach of a heatshield and parachute to slow the vehicle relative to the atmosphere, solid rockets to slow the lander near the surface, and airbags to cushion the surface impacts. During entry, descent, and landing, the vehicles will transmit coded tones directly to Earth, and in the terminal descent phase will also transmit telemetry to the MGS orbiter to indicate progress through the critical events. Once the lander rolls to a stop, a tetrahedral structure opens to right the lander and to reveal the folded rover, which then deploys and later by command will roll off of the lander to begin its exploration. Each six-wheeled rover carries a suite of instruments to collect contextual information about the landing site using visible and thermal infrared remote sensing, and to collect in situ information on the composition, mineralogy, and texture of selected Martian soils and rocks using an arm-mounted microscopic imager, rock abrasion tool, and spectrometers. During their surface missions, the rovers will communicate with Earth directly through the Deep Space Network as well as indirectly through the Odyssey and MGS orbiters. The solar-powered rovers will be commanded in the morning of each Sol, with the

  9. Virtual prototype model for lunar rover missions

    NASA Astrophysics Data System (ADS)

    Lu, Desheng; Hong, Bingrong; Tang, Haoxuan

    2004-11-01

    By means of virtual prototype technolgy, the virtual enviroment of the lunar rover is established on graphics workstation. The model of virtual lunar rover based on rocker and redirector is derived for full six degree of freedom motions enabling movements in three directions, as well as pith, roll and yaw rotations. In order to make the operator see and believe the virtual enviroment of the scene while controlling the rover, a self-calibration system is developed by the method of transforming 3-D CAD models into 2-D graphics and superimposing the model built on the computer onto the image taken by the CCD camera, which can calibrate the figure of virtual enviroment. For the purpose of dispelling the time delay impact on the stability of the teleoperation system during lunar missions, a two-level control frame of teleoperation based on virtual reality preview, which can lay communication time delay out of the control loops, is applied to the simulation system. A man-machine interface based on six degree Space ball is developed so as to control the virtual lunar rover efficiently. The effectiveness and the feasibility of the model are verified by the climb simulation experiments of the virtual lunar rover.

  10. Autonomous Navigation Results from the Mars Exploration Rover (MER) Mission

    NASA Technical Reports Server (NTRS)

    Maimone, Mark; Johnson, Andrew; Cheng, Yang; Willson, Reg; Matthies, Larry H.

    2004-01-01

    In January, 2004, the Mars Exploration Rover (MER) mission landed two rovers, Spirit and Opportunity, on the surface of Mars. Several autonomous navigation capabilities were employed in space for the first time in this mission. ]n the Entry, Descent, and Landing (EDL) phase, both landers used a vision system called the, Descent Image Motion Estimation System (DIMES) to estimate horizontal velocity during the last 2000 meters (m) of descent, by tracking features on the ground with a downlooking camera, in order to control retro-rocket firing to reduce horizontal velocity before impact. During surface operations, the rovers navigate autonomously using stereo vision for local terrain mapping and a local, reactive planning algorithm called Grid-based Estimation of Surface Traversability Applied to Local Terrain (GESTALT) for obstacle avoidance. ]n areas of high slip, stereo vision-based visual odometry has been used to estimate rover motion, As of mid-June, Spirit had traversed 3405 m, of which 1253 m were done autonomously; Opportunity had traversed 1264 m, of which 224 m were autonomous. These results have contributed substantially to the success of the mission and paved the way for increased levels of autonomy in future missions.

  11. Extended mission/lunar rover, executive summary

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The design project selected to be undertaken by the 1991/92 Aerospace Design Group was that of conceptually designing an Extended Mission Rover for use on the Lunar Surface. This vehicle would serve the function as a mobile base of sorts, and be able to provide future astronauts with a mobile 'shirt-sleeve' self-sufficient living and working environment. Some of the proposed missions would be planetary surface exploration, construction and maintenance, hardware set-up and in-situ resource experimentation. The need for this type of vehicle has already been declared in the Stafford Group's report on the future of America's Space Program, entitled 'America at the Threshold: America's Space Exploration Initiative'. In the four architectures described within the report, the concept of a pressurized vehicle occurred multiple times. The approximate time frame that this vehicle would be put into use is 2010-2030.

  12. (abstract) Telecommunications for Mars Rovers and Robotic Missions

    NASA Technical Reports Server (NTRS)

    Cesarone, Robert J.; Hastrup, Rolf C.; Horne, William; McOmber, Robert

    1997-01-01

    Telecommunications plays a key role in all rover and robotic missions to Mars both as a conduit for command information to the mission and for scientific data from the mission. Telecommunications to the Earth may be accomplished using direct-to-Earth links via the Deep Space Network (DSN) or by relay links supported by other missions at Mars. This paper reviews current plans for missions to Mars through the 2005 launch opportunity and their capabilities in support of rover and robotic telecommunications.

  13. Mars Rover/Sample Return (MRSR) Mission: Mars Rover Technology Workshop

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A return to the surface of Mars has long been an objective of NASA mission planners. The ongoing Mars Rover and Sample Return (MRSR) mission study represents the latest stage in that interest. As part of NASA's preparation for a possible MRSR mission, a technology planning workshop was held to attempt to define technology requirements, options, and preliminary plans for the principal areas of Mars rover technology. The proceedings of that workshop are presented.

  14. The Collaborative Information Portal and NASA's Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Mak, Ronald; Walton, Joan

    2005-01-01

    The Collaborative Information Portal was enterprise software developed jointly by the NASA Ames Research Center and the Jet Propulsion Laboratory for NASA's Mars Exploration Rover mission. Mission managers, engineers, scientists, and researchers used this Internet application to view current staffing and event schedules, download data and image files generated by the rovers, receive broadcast messages, and get accurate times in various Mars and Earth time zones. This article describes the features, architecture, and implementation of this software, and concludes with lessons we learned from its deployment and a look towards future missions.

  15. MRSR: Rationale for a Mars Rover/Sample Return mission

    NASA Technical Reports Server (NTRS)

    Carr, Michael H.

    1992-01-01

    The Solar System Exploration Committee of the NASA Advisory Council has recommended that a Mars Rover/Sample Return mission be launched before the year 2000. The recommendation is consistent with the science objectives as outlined by the National Academy of Sciences committees on Planetary and Lunar Exploration, and Planetary Biology and Chemical Evolution. Interest has also focused on Mars Rover/Sample Return (MRSR) missions, because of their crucial role as precursors for human exploration. As a result of this consensus among the advisory groups, a study of an MRSR mission began early in 1987. The study has the following goals: (1) to assess the technical feasibility of the mission; (2) to converge on two or three options for the general architecture of the mission; (3) to determine what new technologies need to be developed in order to implement the mission; (4) to define the different options sufficiently well that preliminary cost estimates can be made; and (5) to better define the science requirements. This chapter briefly describes Mars Rover/Sample Return missions that were examined in the late 1980s. These missions generally include a large (1000 kg) rover and return of over 5 kg of sample.

  16. NASA Mars 2020 Rover Mission: New Frontiers in Science

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.

    2014-01-01

    The Mars 2020 rover mission is the next step in NASAs robotic exploration of the red planet. The rover, based on the Mars Science Laboratory Curiosity rover now on Mars, will address key questions about the potential for life on Mars. The mission would also provide opportunities to gather knowledge and demonstrate technologies that address the challenges of future human expeditions to Mars.Like the Mars Science Laboratory rover, which has been exploring Mars since 2012, the Mars 2020 spacecraft will use a guided entry, descent, and landing system which includes a parachute, descent vehicle, and, during the provides the ability to land a very large, heavy rover on the surface of Mars in a more precise landing area. The Mars 2020 mission is designed to accomplish several high-priority planetary science goals and will be an important step toward meeting NASAs challenge to send humans to Mars in the 2030s. The mission will conduct geological assessments of the rover's landing site, determine the habitability of the environment, search for signs of ancient Martian life, and assess natural resources and hazards for future human explorers. The science instruments aboard the rover also will enable scientists to identify and select a collection of rock and soil samples that will be stored for potential return to Earth in the future. The rover also may help designers of a human expedition understand the hazards posed by Martian dust and demonstrate how to collect carbon dioxide from the atmosphere, which could be a valuable resource for producing oxygen and rocket fuel.

  17. A preliminary study of Mars rover/sample return missions

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Solar System Exploration Committee (SSEC) of the NASA Advisory Council recommends that a Mars Sample Return mission be undertaken before the year 2000. Comprehensive studies of a Mars Sample Return mission have been ongoing since 1984. The initial focus of these studies was an integrated mission concept with the surface rover and sample return vehicle elements delivered to Mars on a single launch and landed together. This approach, to be carried out as a unilateral U.S. initiative, is still a high priority goal in an Augmented Program of exploration, as the SSEC recommendation clearly states. With this background of a well-understood mission concept, NASA decided to focus its 1986 study effort on a potential opportunity not previously examined; namely, a Mars Rover/Sample Return (MRSR) mission which would involve a significant aspect of international cooperation. As envisioned, responsibility for the various mission operations and hardware elements would be divided in a logical manner with clearly defined and acceptable interfaces. The U.S. and its international partner would carry out separately launched but coordinated missions with the overall goal of accomplishing in situ science and returning several kilograms of surface samples from Mars. Important considerations for implementation of such a plan are minimum technology transfer, maximum sharing of scientific results, and independent credibility of each mission role. Under the guidance and oversight of a Mars Exploration Strategy Advisory Group organized by NASA, a study team was formed in the fall of 1986 to develop a preliminary definition of a flight-separable, cooperative mission. The selected concept assumes that the U.S. would undertake the rover mission with its sample collection operations and our international partner would return the samples to Earth. Although the inverse of these roles is also possible, this study report focuses on the rover functions of MRSR because rover operations have not

  18. Pressurized Rover for Moon and Mars Surface Missions

    NASA Astrophysics Data System (ADS)

    Imhof, Barbara; Ransom, Stephen; Mohanty, Susmita; Özdemir, Kürsad; Häuplik-Meusburger, Sandra; Frischauf, Norbert; Hoheneder, Waltraut; Waclavicek, René

    The work described in this paper was done under ESA and Thales Alenia Space contract in the frame of the Analysis of Surface Architecture for European Space Exploration -Element Design. Future manned space missions to the Moon or to Mars will require a vehicle for transporting astronauts in a controlled and protected environment and in relative comfort during surface traverses of these planetary bodies. The vehicle that will be needed is a pressurized rover which serves the astronauts as a habitat, a refuge and a research laboratory/workshop. A number of basic issues influencing the design of such a rover, e.g. habitability, human-machine interfaces, safety, dust mitigation, interplanetary contamination and radiation protection, have been analysed in detail. The results of these analyses were subsequently used in an investigation of various designs for a rover suitable for surface exploration, from which a single concept was developed that satisfied scientific requirements as well as environmental requirements encoun-tered during surface exploration of the Moon and Mars. This concept was named in memory of the late Sir Arthur C. Clark RAMA (Rover for Advanced Mission Applications, Rover for Advanced Moon Applications, Rover for Advanced Mars Applications) The concept design of the pressurized rover meets the scientific and operational requirements defined during the course of the Surface Architecture Study. It is designed for surface missions with a crew of two or three lasting up to approximately 40 days, its source of energy, a liquid hydrogen/liquid oxygen fuel cell, allowing it to be driven and operated during the day as well as the night. Guidance, navigation and obstacle avoidance systems are foreseen as standard equipment to allow it to travel safely over rough terrain at all times of the day. The rover allows extra-vehicular activity and a remote manipulator is provided to recover surface samples, to deploy surface instruments and equipment and, in general

  19. A Conceptual Venus Rover Mission Using Advanced Radioisotope Power Systems

    NASA Astrophysics Data System (ADS)

    Evans, Michael; Shirley, James H.; Abelson, Robert Dean

    2006-01-01

    This concept study demonstrates that a long lived Venus rover mission could be enabled by a novel application of advanced RPS technology. General Purpose Heat Source (GPHS) modules would be employed to drive an advanced thermoacoustic Stirling engine, pulse tube cooler and linear alternator that provides electric power and cooling for the rover. The Thermoacoustic Stirling Heat Engine (TASHE) is a system for converting high-temperature heat into acoustic power which then drives linear alternators and a pulse tube cooler to provide both electric power and coolin6g for the rover. A small design team examined this mission concept focusing on the feasibility of using the TASHE system in this hostile environment. A rover design is described that would provide a mobile platform for science measurements on the Venus surface for 60 days, with the potential of operating well beyond that. A suite of science instruments is described that collects data on atmospheric and surface composition, surface stratigraphy, and subsurface structure. An Earth-Venus-Venus trajectory would be used to deliver the rover to a low entry angle allowing an inflated ballute to provide a low deceleration and low heat descent to the surface. All rover systems would be housed in a pressure vessel in vacuum with the internal temperature maintained by the TASHE at under 50 °C.

  20. A Long Range Science Rover For Future Mars Missions

    NASA Technical Reports Server (NTRS)

    Hayati, Samad

    1997-01-01

    This paper describes the design and implementation currently underway at the Jet Propulsion Laboratory of a long range science rover for future missions to Mars. The small rover prototype, called Rocky 7, is capable of long traverse. autonomous navigation. and science instrument control, carries three science instruments, and can be commanded from any computer platform and any location using the World Wide Web. In this paper we describe the mobility system, the sampling system, the sensor suite, navigation and control, onboard science instruments. and the ground command and control system.

  1. Accessing Information on the Mars Exploration Rovers Mission

    NASA Astrophysics Data System (ADS)

    Walton, J. D.; Schreiner, J. A.

    2005-12-01

    In January 2004, the Mars Exploration Rovers (MER) mission successfully deployed two robotic geologists - Spirit and Opportunity - to opposite sides of the red planet. Onboard each rover is an array of cameras and scientific instruments that send data back to Earth, where ground-based systems process and store the information. During the height of the mission, a team of about 250 scientists and engineers worked around the clock to analyze the collected data, determine a strategy and activities for the next day and then carefully compose the command sequences that would instruct the rovers in how to perform their tasks. The scientists and engineers had to work closely together to balance the science objectives with the engineering constraints so that the mission achieved its goals safely and quickly. To accomplish this coordinated effort, they adhered to a tightly orchestrated schedule of meetings and processes. To keep on time, it was critical that all team members were aware of what was happening, knew how much time they had to complete their tasks, and could easily access the information they need to do their jobs. Computer scientists and software engineers at NASA Ames Research Center worked closely with the mission managers at the Jet Propulsion Laboratory (JPL) to create applications that support the mission. One such application, the Collaborative Information Portal (CIP), helps mission personnel perform their daily tasks, whether they work inside mission control or the science areas at JPL, or in their homes, schools, or offices. With a three-tiered, service-oriented architecture (SOA) - client, middleware, and data repository - built using Java and commercial software, CIP provides secure access to mission schedules and to data and images transmitted from the Mars rovers. This services-based approach proved highly effective for building distributed, flexible applications, and is forming the basis for the design of future mission software systems. Almost two

  2. 3D Vision on Mars: Stereo processing and visualizations for NASA and ESA rover missions

    NASA Astrophysics Data System (ADS)

    Huber, Ben

    2016-07-01

    Three dimensional (3D) vision processing is an essential component of planetary rover mission planning and scientific data analysis. Standard ground vision processing products are digital terrain maps, panoramas, and virtual views of the environment. Such processing is currently developed for the PanCam instrument of ESA's ExoMars Rover mission by the PanCam 3D Vision Team under JOANNEUM RESEARCH coordination. Camera calibration, quality estimation of the expected results and the interfaces to other mission elements such as operations planning, rover navigation system and global Mars mapping are a specific focus of the current work. The main goals of the 3D Vision team in this context are: instrument design support & calibration processing: Development of 3D vision functionality Visualization: development of a 3D visualization tool for scientific data analysis. 3D reconstructions from stereo image data during the mission Support for 3D scientific exploitation to characterize the overall landscape geomorphology, processes, and the nature of the geologic record using the reconstructed 3D models. The developed processing framework PRoViP establishes an extensible framework for 3D vision processing in planetary robotic missions. Examples of processing products and capabilities are: Digital Terrain Models, Ortho images, 3D meshes, occlusion, solar illumination-, slope-, roughness-, and hazard-maps. Another important processing capability is the fusion of rover and orbiter based images with the support of multiple missions and sensors (e.g. MSL Mastcam stereo processing). For 3D visualization a tool called PRo3D has been developed to analyze and directly interpret digital outcrop models. Stereo image products derived from Mars rover data can be rendered in PRo3D, enabling the user to zoom, rotate and translate the generated 3D outcrop models. Interpretations can be digitized directly onto the 3D surface, and simple measurements of the outcrop and sedimentary features

  3. Autonomous Onboard Science Image Analysis for Future Mars Rover Missions

    NASA Technical Reports Server (NTRS)

    Gulick, V. C.; Morris, R. L.; Ruzon, M. A.; Roush, T. L.

    1999-01-01

    To explore high priority landing sites and to prepare for eventual human exploration, future Mars missions will involve rovers capable of traversing tens of kilometers. However, the current process by which scientists interact with a rover does not scale to such distances. Specifically, numerous command cycles are required to complete even simple tasks, such as, pointing the spectrometer at a variety of nearby rocks. In addition, the time required by scientists to interpret image data before new commands can be given and the limited amount of data that can be downlinked during a given command cycle constrain rover mobility and achievement of science goals. Experience with rover tests on Earth supports these concerns. As a result, traverses to science sites as identified in orbital images would require numerous science command cycles over a period of many weeks, months or even years, perhaps exceeding rover design life and other constraints. Autonomous onboard science analysis can address these problems in two ways. First, it will allow the rover to transmit only "interesting" images, defined as those likely to have higher science content. Second, the rover will be able to anticipate future commands. For example, a rover might autonomously acquire and return spectra of "interesting" rocks along with a high resolution image of those rocks in addition to returning the context images in which they were detected. Such approaches, coupled with appropriate navigational software, help to address both the data volume and command cycle bottlenecks that limit both rover mobility and science yield. We are developing fast, autonomous algorithms to enable such intelligent on-board decision making by spacecraft. Autonomous algorithms developed to date have the ability to identify rocks and layers in a scene, locate the horizon, and compress multi-spectral image data. Output from these algorithms could be used to autonomously obtain rock spectra, determine which images should be

  4. Mars Exploration Rover surface mission flight thermal performance

    NASA Technical Reports Server (NTRS)

    Novak, Keith S.; Phillips, Charles J.; Sunada, Eric T.; Kinsella, Gary M.

    2005-01-01

    NASA launched two rovers in June and July of 2003 as a part of the Mars Exploration Rover (MER) project. MER-A (Spirit) landed on Mars in Gusev Crater at 15 degrees South latitude and 175 degree East longitude on January 4, 2004 (Squyres, et al., Dec. 2004)). MER-B (Opportunity) landed on Mars in Terra Meridiani at 2 degrees South latitude and 354 degrees East longitude on January 25, 2004 (Squyres, et al., August 2004) Both rovers have well exceeded their design lifetime (90 Sols) by more than a factor of 4. Spirit and Opportunity are still healthy and continue to execute their roving science missions at the time of this writing. This paper discusses rover flight thermal performance during the surface missions of both vehicles, covering roughly the time from the MER-A landing in late Southern Summer (Ls = 328, Sol 1A) through the Southern Winter solstice (Ls = 90, Sol 255A) to nearly Southern Vernal equinox (Ls = 160 , Sol 398A).

  5. NASA Selects Mars Exploration Program Rover for 2003 Mission

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In 2003, NASA plans to launch a relative of the now-famous 1997 Mars Pathfinder rover. Using drop, bounce and roll technology, this larger cousin is expected to reach the surface of the red planet in January 2004 and begin the longest journey of scientific exploration ever undertaken across the surface of that alien world. The rover will weigh about nearly 150 kilograms (about 300 pounds) and has a range of up to about 100 meters (110 yards) per sol, or Martian day. Surface operations will last for at least 90 sols, extending to late April 2004, but could continue longer, depending on the health of the rover. One aspect of the Mars rover's mission is to determine history of climate and water at a site or sites on Mars where conditions may once have been warmer and wetter and thus potentially favorable to life as we know it here on Earth. The exact landing site has not yet been chosen, but is likely to be a location such as a former lakebed or channel deposit -- a place where scientists believe there was once water. A site will be selected on the basis of intensive study of orbital data collected by the Mars Global Surveyor spacecraft, as well as the Mars 2001 orbiter and other missions.

  6. Path planning for planetary rover using extended elevation map

    NASA Technical Reports Server (NTRS)

    Nakatani, Ichiro; Kubota, Takashi; Yoshimitsu, Tetsuo

    1994-01-01

    This paper describes a path planning method for planetary rovers to search for paths on planetary surfaces. The planetary rover is required to travel safely over a long distance for many days over unfamiliar terrain. Hence it is very important how planetary rovers process sensory information in order to understand the planetary environment and to make decisions based on that information. As a new data structure for informational mapping, an extended elevation map (EEM) has been introduced, which includes the effect of the size of the rover. The proposed path planning can be conducted in such a way as if the rover were a point while the size of the rover is automatically taken into account. The validity of the proposed methods is verified by computer simulations.

  7. Rover Traverse Planning to Support a Lunar Polar Volatiles Mission

    NASA Technical Reports Server (NTRS)

    Heldmann, J.L.; Colaprete, A.C.; Elphic, R. C.; Bussey, B.; McGovern, A.; Beyer, R.; Lees, D.; Deans, M. C.; Otten, N.; Jones, H.; Wettergreen, D.

    2015-01-01

    Studies of lunar polar volatile depositsare of interest for scientific purposes to understandthe nature and evolution of the volatiles, and alsofor exploration reasons as a possible in situ resource toenable long term exploration and settlement of theMoon. Both theoretical and observational studies havesuggested that significant quantities of volatiles exist inthe polar regions, although the lateral and horizontaldistribution remains unknown at the km scale and finerresolution. A lunar polar rover mission is required tofurther characterize the distribution, quantity, andcharacter of lunar polar volatile deposits at thesehigher spatial resolutions. Here we present two casestudies for NASA’s Resource Prospector (RP) missionconcept for a lunar polar rover and utilize this missionarchitecture and associated constraints to evaluatewhether a suitable landing site exists to support an RPflight mission.

  8. Mars rover/sample return mission requirements affecting space station

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The possible interfaces between the Space Station and the Mars Rover/Sample Return (MRSR) mission are defined. In order to constrain the scope of the report a series of seven design reference missions divided into three major types were assumed. These missions were defined to span the probable range of Space Station-MRSR interactions. The options were reduced, the MRSR sample handling requirements and baseline assumptions about the MRSR hardware and the key design features and requirements of the Space Station are summarized. Only the aspects of the design reference missions necessary to define the interfaces, hooks and scars, and other provisions on the Space Station are considered. An analysis of each of the three major design reference missions, is reported, presenting conceptual designs of key hardware to be mounted on the Space Station, a definition of weights, interfaces, and required hooks and scars.

  9. Mars Exploration Rover Spirit End of Mission Report

    NASA Technical Reports Server (NTRS)

    Callas, John L.

    2015-01-01

    The Mars Exploration Rover (MER) Spirit landed in Gusev crater on Mars on January 4, 2004, for a prime mission designed to last three months (90 sols). After more than six years operating on the surface of Mars, the last communication received from Spirit occurred on Sol 2210 (March 22, 2010). Following the loss of signal, the Mars Exploration Rover Project radiated over 1400 commands to Mars in an attempt to elicit a response from the rover. Attempts were made utilizing Deep Space Network X-Band and UHF relay via both Mars Odyssey and the Mars Reconnaissance Orbiter. Search and recovery efforts concluded on July 13, 2011. It is the MER project's assessment that Spirit succumbed to the extreme environmental conditions experienced during its fourth winter on Mars. Focusing on the time period from the end of the third Martian winter through the fourth winter and end of recovery activities, this report describes possible explanations for the loss of the vehicle and the extent of recovery efforts that were performed. It offers lessons learned and provides an overall mission summary.

  10. Science Results from the Mars Exploration Rover Mission

    SciTech Connect

    Squyres, Steven

    2007-10-05

    NASA launched two Mars Exploration Rovers, on June 10 and July 7, 2003, primarily to probe the history of water on the red planet. After landing on Mars in January 2004, the robots began to explore the planet. One of the most important scientific goals of the mission was to find and identify a variety of rocks and soils that provide evidence of the past presence of water on the planet. To obtain this information, Squyres is studying the data obtained on Mars by several sophisticated scientific instruments. In his talk, he will discuss his conclusions about water on Mars and other observations about the nature of the planet.

  11. Mars 2020 Science Rover: Science Goals and Mission Concept

    NASA Astrophysics Data System (ADS)

    Mustard, John F.; Beaty, D.; Bass, D.

    2013-10-01

    The Mars 2020 Science Definition Team (SDT), chartered in January 2013 by NASA, formulated a spacecraft mission concept for a science-focused, highly mobile rover to explore and investigate in detail a site on Mars that likely was once habitable. The mission, based on the Mars Science Laboratory landing and rover systems, would address, within a cost- and time-constrained framework, four objectives: (A) Explore an astrobiologically relevant ancient environment on Mars to decipher its geological processes and history, including the assessment of past habitability; (B) Assess the biosignature preservation potential within the selected geological environment and search for potential biosignatures; (C) Demonstrate significant technical progress towards the future return of scientifically selected, well-documented samples to Earth; and (D) provide an opportunity for contributed instruments from Human Exploration or Space Technology Programs. The SDT addressed the four mission objectives and six additional charter-specified tasks independently while specifically looking for synergy among them. Objectives A and B are each ends unto themselves, while Objective A is also the means by which samples are selected for objective B, and together they motivate and inform Objective C. The SDT also found that Objective D goals are well aligned with A through C. Critically, Objectives A, B, and C as an ensemble brought the SDT to the conclusion that exploration oriented toward both astrobiology and the preparation of a returnable cache of scientifically selected, well documented surface samples is the only acceptable mission concept. Importantly the SDT concluded that the measurements needed to attain these objectives were essentially identical, consisting of six types of field measurements: 1) context imaging 2) context mineralogy, 3) fine-scale imaging, 4) fine-scale mineralogy, 5) fine-scale elemental chemistry, and 6) organic matter detection. The mission concept fully addresses

  12. Mars Science Laboratory (MSL) : the US 2009 Mars rover mission

    NASA Technical Reports Server (NTRS)

    Palluconi, Frank; Tampari, Leslie; Steltzner, Adam; Umland, Jeff

    2003-01-01

    The Mars Science Laboratory mission is the 2009 United States Mars Exploration Program rover mission. The MSL Project expects to complete its pre-Phase A definition activity this fiscal year (FY2003), investigations in mid-March 2004, launch in 2009, arrive at Mars in 2010 during Northern hemisphere summer and then complete a full 687 day Mars year of surface exploration. MSL will assess the potential for habitability (past and present) of a carefully selected landing region on Mars by exploring for the chemical building blocks of life, and seeking to understand quantitatively the chemical and physical environment with which these components have interacted over the geologic history of the planet. Thus, MSL will advance substantially our understanding of the history of Mars and potentially, its capacity to sustain life.

  13. Heat Capacity Mapping Mission

    NASA Technical Reports Server (NTRS)

    Nilsson, C. S.; Andrews, J. C.; Scully-Power, P.; Ball, S.; Speechley, G.; Latham, A. R. (Principal Investigator)

    1980-01-01

    The Tasman Front was delineated by airborne expendable bathythermograph survey; and an Heat Capacity Mapping Mission (HCMM) IR image on the same day shows the same principal features as determined from ground-truth. It is clear that digital enhancement of HCMM images is necessary to map ocean surface temperatures and when done, the Tasman Front and other oceanographic features can be mapped by this method, even through considerable scattered cloud cover.

  14. Preliminary assessment of rover power systems for the Mars Rover Sample Return Mission

    SciTech Connect

    Bents, D.J.

    1989-01-01

    Four isotope power system concepts were presented and compared on a common basis for application to on-board electrical prime power for an autonomous planetary rover vehicle. A representative design point corresponding to the Mars Rover Sample Return (MRSR) preliminary mission requirements (500 W) was selected for comparison purposes. All systems concepts utilize the General Purpose Heat Source (GPHS) isotope heat source developed by DOE. Two of the concepts employ thermoelectric (TE) conversion: one using the GPHS Radioisotope Thermoelectric Generator (RTG) used as a reference case, the other using an advanced RTG with improved thermoelectric materials. The other two concepts employed are dynamic isotope power systems (DIPS): one using a closed Brayton cycle (CBC) turboalternator, and the other using a free piston Stirling cycle engine/linear alternator (FPSE) with integrated heat source/heater head. Near term technology levels have been assumed for concept characterization using component technology figure-of-merit values taken from the published literature. For example, the CBC characterization draws from the historical test database accumulated from space Brayton cycle subsystems and components from the NASA B engine through the mini-Brayton rotating unit. TE system performance is estimated from Voyager/multihundred Watt (MHW)-RTG flight experience through Mod-RTG performance estimates considering recent advances in TE materials under the DOD/DOE/NASA SP-100 and NASA Committee on Scientific and Technological Information programs. The Stirling DIPS system is characterized from scaled-down Space Power Demonstrator Engine (SPDE) data using the GPHS directly incorporated into the heater head.

  15. The Mars 2020 Rover Mission: EISD Participation in Mission Science and Exploration

    NASA Technical Reports Server (NTRS)

    Fries, M.; Bhartia, R.; Beegle, L.; Burton, A. S.; Ross, A.

    2014-01-01

    The Mars 2020 Rover mission will search for potential biosignatures on the martian surface, use new techniques to search for and identify tracelevel organics, and prepare a cache of samples for potential return to Earth. Identifying trace organic compounds is an important tenet of searching for potential biosignatures. Previous landed missions have experienced difficulty identifying unambiguously martian, unaltered organic compounds, possibly because any organic species have been destroyed on heating in the presence of martian perchlorates and/or other oxidants. The SHERLOC instrument on Mars 2020 will use ultraviolet (UV) fluorescence and Raman spectroscopy to identify trace organic compounds without heating the samples.

  16. Lunar Compass: A Rover Mission for Exploration of a Lunar Crustal Magnetic Anomaly

    NASA Astrophysics Data System (ADS)

    Blewett, D. T.; Hurley, D. M.; Denevi, B. W.; Cahill, J. T. S.; Klima, R. L.; Plescia, J. B.; Paranicas, C. P.; Greenhagen, B. T.; Anderson, B. A.; Korth, H.; Ho, G. C.; Nunez, J. I.; Zimmerman, M. I.; Brandt, P. C.

    2016-11-01

    We suggest that a rover mission to a lunar magnetic anomaly could answer key questions in several major fields of planetary science: planetary magnetism, space plasma physics, lunar geology, and space weathering.

  17. The 1999 Marsokhod rover mission simulation at Silver Lake, California: Mission overview, data sets, and summary of results

    NASA Astrophysics Data System (ADS)

    Stoker, C. R.; Bishop, J.; Chapman, M.; Clifford, S.; Cockell, C.; Crumpler, L.; Craddock, R.; De Hon, R.; Foster, T.; Gulick, V.; Grin, E.; Horton, K.; Hovde, G.; Johnson, J. R.; Lee, P. C.; Lemmon, M. T.; Marshall, J.; Newsom, H. E.; Ori, G. G.; Reagan, M.; Rice, J. W.; Ruff, S. W.; Schreiner, J.; Sims, M.; Smith, P. H.; Tanaka, K.; Thomas, H. J.; Thomas, G.; Yingst, R. A.

    2001-04-01

    We report on a field experiment held near Silver Lake playa in the Mojave Desert in February 1999 with the Marsokhod rover. The payload (Descent Imager, PanCam, Mini-TES, and Robotic Arm Camera), data volumes, and data transmission/receipt windows simulated those planned for the Mars Surveyor mission selected for 2001. A central mast with a pan and tilt platform at 150 cm height carried a high-resolution color stereo imager to simulate the PanCam and a visible/near-infrared fiberoptic spectrometer (operating range 0.35-2.5 μm). Monochrome stereo navigation cameras were mounted on the mast and the front and rear of the rover near the wheels. A field portable infrared spectroradiometer (operating range 8-14 μm) simulated the Mini-TES. A Robotic Arm Camera, capable of close-up color imaging at 23 μm/pixel resolution, was used in conjunction with the excavation of a trench into the subsurface. The science team was also provided with simulated images from the Mars Descent Imager and orbital panchromatic and multispectral imaging of the site obtained with the French SPOT, airborne Thermal Infrared Mapping Spectrometer, and Landsat Thematic Mapper instruments. Commands sequences were programmed and sent daily to the rover, and data returned were limited to 40 Mbits per communication cycle. During the simulated mission, 12 commands were uplinked to the rover, it traversed ~90 m, six sites were analyzed, 11 samples were collected for laboratory analysis, and over 5 Gbits of data were collected. Twenty-two scientists, unfamiliar with the location of the field site, participated in the science mission from a variety of locations, accessing data via the World Wide Web. Remote science interpretations were compared with ground truth from the field and laboratory analysis of collected samples. Using this payload and mission approach, the science team synergistically interpreted orbital imaging and infrared spectroscopy, descent imaging, rover-based imaging, infrared

  18. The Artemis Jr. rover: Mobility platform for lunar ISRU mission simulation

    NASA Astrophysics Data System (ADS)

    Reid, Ewan; Iles, Peter; Muise, Jason; Cristello, Nick; Jones, Brad; Faragalli, Michele; Visscher, Peter; Boucher, Dale; Simard-Bilodeau, Vincent; Apostolopoulos, Dimi; Rocco, Paul; Picard, Martin

    2015-05-01

    The Regolith and Environment Science and Oxygen and Lunar Volatiles Extraction (RESOLVE) project aims to verify the presence of water and other volatiles on the Moon, and to serve as a precursor for future prospecting missions. The Artemis Jr. rover was developed as the surface mobility component of the RESOLVE project, and was specifically designed to accommodate the RESOLVE payload in a six-day NASA-CSA mission simulation carried out on Mauna Kea, Hawaii in July 2012. This paper describes the preparation, results, and lessons learned as they apply to the Artemis Jr. rover. Areas of focus include the operations as well as the rover software and hardware. Key results include support for the skid-steer configuration of the rover and the success of the absolute and relative localization functions of the rover.

  19. Site Selection and Automatically Calculated Rover Traverse for a Lunar Teleoperated Landing Mission

    NASA Astrophysics Data System (ADS)

    Kamps, Oscar; Foing, Bernard; Flahaut, Jessica

    2016-04-01

    With the recent interest for the Moon, and the plans from the ESA side to do a tele-operated mission from Earth or lunar orbit, it is important to target a well-defined location. One of the major topics to study on the Moon is the existence and availability of volatiles and ices. Because no lander ever visited one of the poles on the Moon the theories with respect to water ice are only based on data from orbiters. In a four month research project the data from the orbiters was used for assessing potential landing sites and a rover traverse planning. Mainly data from the Prospector and LRO were used to select regions of interest. The prior selection was based on slope, temperature and a geological map from the USGS. Three sites on both the North as South Pole were used to test a proposed method for rover traverse planning. Besides the scientific interest, the sites where assessed on its accessibility for landing and roving. This assessment was done based on some assumptions what would be possible for landing and roving. For landing sites it was proposed to pick a site larger than 1km in diameter, in a (partial) illuminated area with a slope lower than 5o, which was inside an area which would be accessible for a rover. The requirements to be selected as accessible area was a slope lower than 20o, the largest polygon which meets this requirement was chosen as accessible area. As destination a site in the PSR was selected which was inside the accessible area and had extremely low temperatures. The boundary for extremely low was defined as 54K which is the sublimation temperature of CO2 in lunar atmospheric pressure. As additional target for the rover a site was selected where the temperature difference would be more than 150K to study volatile migration processes. A combination of tools in ArcGIS were used to do the site selection and rover traverse planning. In the end Rozhdestvensky and Amundsen were selected as most accessible and interesting. After comparing both

  20. A Wind-powered Rover for a Low-Cost Venus Mission

    NASA Technical Reports Server (NTRS)

    Benigno, Gina; Hoza, Kathleen; Motiwala, Samira; Landis, Geoffrey A.; Colozza, Anthony J.

    2013-01-01

    Venus, with a surface temperature of 450 C and an atmospheric pressure 90 times higher than that of the Earth, is a difficult target for exploration. However, high-temperature electronics and power systems now being developed make it possible that future missions may be able to operate in the Venus environment. Powering such a rover within the scope of a Discovery class mission will be difficult, but harnessing Venus' surface winds provides a possible way to keep a powered rover small and light. This project scopes out the feasibility of a wind-powered rover for Venus surface missions. Two rover concepts, a land-sailing rover and a wind-turbine-powered rover, were considered. The turbine-powered rover design is selected as being a low-risk and low-cost strategy. Turbine detailed analysis and design shows that the turbine can meet mission requirements across the desired range of wind speeds by utilizing three constant voltage generators at fixed gear ratios.

  1. PDS MSL Analyst's Notebook: Supporting Active Rover Missions and Adding Value to Planetary Data Archives

    NASA Astrophysics Data System (ADS)

    Stein, Thomas

    , instruments, and data formats. In addition, observation planning and targeting information is extracted from each sol’s tactical science plan. A number of methods allow user access to the Notebook contents. The mission summary provides a high level overview of science operations. The Sol Summaries are the primary interface to integrated data and documents contained within the Notebooks. Data, documents, and planned observations are grouped for easy scanning. Data products are displayed in order of acquisition, and are grouped into logical sequences, such as a series of image data. Sequences and the individual products that comprise them may be viewed in detail, manipulated, and downloaded. Color composites and anaglyph stereo images may be created on demand. Graphs of some non-image data, such as spectra, may be viewed. Data may be downloaded as zip or gzip files, or as multiband ENVI image files. The Notebook contains a map with the rover traverse plotted on a HiRISE basemap using the raw and corrected drive telemetry provided by the project. Users may zoom and pan the map. Clicking on a traverse location brings up links to corresponding data. Three types of searching through data and documents are available within the Notebook. Free text searching of data set and sol documents are supported. Data are searchable by instrument, acquisition time, data type, and product ID. Results may be downloaded in a single collection or selected individually for detailed viewing. Additional resources include data set documents, references to published mission, links to related web resources, and online help. Finally, feedback is handled through an online forum. Work continues to improve functionality, including locating features of interest and a spectral library search/view/download tool. A number of Notebook functions are based on previous user suggestions, and feedback continues to be sought. The Analyst’s Notebook is available at http://an.rsl.wustl.edu.

  2. The Preparation for and Execution of Engineering Operations for the Mars Curiosity Rover Mission

    NASA Technical Reports Server (NTRS)

    Samuels, Jessica A.

    2013-01-01

    The Mars Science Laboratory Curiosity Rover mission is the most complex and scientifically packed rover that has ever been operated on the surface of Mars. The preparation leading up to the surface mission involved various tests, contingency planning and integration of plans between various teams and scientists for determining how operation of the spacecraft (s/c) would be facilitated. In addition, a focused set of initial set of health checks needed to be defined and created in order to ensure successful operation of rover subsystems before embarking on a two year science journey. This paper will define the role and responsibilities of the Engineering Operations team, the process involved in preparing the team for rover surface operations, the predefined engineering activities performed during the early portion of the mission, and the evaluation process used for initial and day to day spacecraft operational assessment.

  3. 1999 Marsokhod Field Experiment: A Simulation of a Mars Rover Science Mission

    NASA Technical Reports Server (NTRS)

    Stoker, C.; Cabrol, N.; Roush, T.; Gulick, V.; Hovde, G.; Moersch, J.

    1999-01-01

    A field experiment to simulate a rover mission to Mars was performed in February 1999. This experiment, the latest in a series of rover field experiments, was designed to demonstrate and validate technologies and investigation strategies for high-science, high-technology performance, and cost-effective planetary rover operations. Objectives: The experiment objectives were to: (1) train scientists in a mission configuration relevant to Surveyor program rover missions at a terrestrial analog field site simulating the criteria of high-priority candidate landing-sites on Mars; (2) develop optimal exploration strategies; (3) evaluate the effectiveness of imaging and spectroscopy in addressing science objectives; (4) assess the value and limitation of descent imaging in supporting rover operations; and (5) evaluate the ability of a science team to correctly interpret the geology of the field site using rover observations. A field site in the California Mojave Desert was chosen for its relevance to the criteria for landing site selection for the Mars Surveyor program. These criteria are: (1) evidence of past water activity; (2) presence of a mechanism to concentrate life; (3) presence of thermal energy sources; (4) evidence of rapid burial; and (5) excavation mechanisms that could expose traces of life.

  4. Field Experiments using Telepresence and Virtual Reality to Control Remote Vehicles: Application to Mars Rover Missions

    NASA Technical Reports Server (NTRS)

    Stoker, Carol

    1994-01-01

    This paper will describe a series of field experiments to develop and demonstrate file use of Telepresence and Virtual Reality systems for controlling rover vehicles on planetary surfaces. In 1993, NASA Ames deployed a Telepresence-Controlled Remotely Operated underwater Vehicle (TROV) into an ice-covered sea environment in Antarctica. The goal of the mission was to perform scientific exploration of an unknown environment using a remote vehicle with telepresence and virtual reality as a user interface. The vehicle was operated both locally, from above a dive hole in the ice through which it was launched, and remotely over a satellite communications link from a control room at NASA's Ames Research center, for over two months. Remote control used a bidirectional Internet link to the vehicle control computer. The operator viewed live stereo video from the TROV along with a computer-gene rated graphic representation of the underwater terrain showing file vehicle state and other related information. Tile actual vehicle could be driven either from within the virtual environment or through a telepresence interface. In March 1994, a second field experiment was performed in which [lie remote control system developed for the Antarctic TROV mission was used to control the Russian Marsokhod Rover, an advanced planetary surface rover intended for launch in 1998. Marsokhod consists of a 6-wheel chassis and is capable of traversing several kilometers of terrain each day, The rover can be controlled remotely, but is also capable of performing autonomous traverses. The rover was outfitted with a manipulator arm capable of deploying a small instrument, collecting soil samples, etc. The Marsokhod rover was deployed at Amboy Crater in the Mojave desert, a Mars analog site, and controlled remotely from Los Angeles. in two operating modes: (1) a Mars rover mission simulation with long time delay and (2) a Lunar rover mission simulation with live action video. A team of planetary

  5. A conceptual design and operational characteristics for a Mars rover for a 1979 or 1981 Viking science mission

    NASA Technical Reports Server (NTRS)

    Darnell, W. L.; Wessel, V. W.

    1974-01-01

    The feasibility of a small Mars rover for use on a 1979 or 1981 Viking mission was studied and a preliminary design concept was developed. Three variations of the concept were developed to provide comparisons in mobility and science capability of the rover. Final masses of the three rover designs were approximately 35 kg, 40 kg, and 69 kg. The smallest rover is umbilically connected to the lander for power and communications purposes whereas the larger two rovers have secondary battery power and a 2-way very high frequency communication link to the lander. The capability for carrying Viking rovers (including development system) to the surface of Mars was considered first. It was found to be feasible to carry rovers of over 100 kg. Virtually all rover systems were then studied briefly to determine a feasible system concept and a practical interface with the comparable system of a 1979 or 1981 lander vehicle.

  6. Recent Results From the Mars Exploration Rover Spirit Mission

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.; Squyres, S. W.

    2005-12-01

    Spirit traversed from the basaltic plains to the West Spur of the Columbia Hills on the ~157th sol after landing. On sol 581 the rover reached the summit of Husband Hill, located ~1.2 km from the entry to the West Spur and ~80 m above the plains. On the way to the summit the rover conducted detailed measurements on numerous rock targets, including outcrops tilted to the northwest and exposed along the Cumberland Ridge, and rocks exposed along the western flank of Husband Hill. Several soil targets were examined in detail, most notably Paso Robles, a bright, sulfur rich deposit exposed by rover wheel motions. The rocks are largely granular in nature and range from breccias, finely laminated deposits, to cryptocrystalline materials. Six rock classes are identified: Clovis (soil-like composition with hematite and goethite), Wishstone and Watchtower (enriched in phosphorus, titanium, and aluminum relative to plains basalts), Peace (basaltic sand cemented by sulfate minerals), Backstay (basalt enriched in sodium and potassium relative to plains basalts), and Independence (fine-grained rock enriched in silicon relative to plains basalts and may contain phyllosilicate phases). With the exception of Paso Robles, the soils are basaltic materials similar in composition, mineralogy, and textural characteristics to plains soils. Soils are interpreted to be largely of aeolian origin and well-mixed over the length scales traversed by the rover. The rock outcrop, Voltaire, is a breccia deposit with clasts of Wishstone materials within a fine-grained matrix with a soil-like composition. Some clasts were rounded by surface processes before emplacement in the breccia. The Columbia Hills rock data indicate significant alteration by water relative to the younger plains basalts. The emplacement of the West Spur and Husband Hill rocks is interpreted to be due to a combination of impact and volcanic events, with varying degrees of aqueous alteration. The range of rock textures and

  7. Mars methane analogue mission: Mission simulation and rover operations at Jeffrey Mine and Norbestos Mine Quebec, Canada

    NASA Astrophysics Data System (ADS)

    Qadi, A.; Cloutis, E.; Samson, C.; Whyte, L.; Ellery, A.; Bell, J. F.; Berard, G.; Boivin, A.; Haddad, E.; Lavoie, J.; Jamroz, W.; Kruzelecky, R.; Mack, A.; Mann, P.; Olsen, K.; Perrot, M.; Popa, D.; Rhind, T.; Sharma, R.; Stromberg, J.; Strong, K.; Tremblay, A.; Wilhelm, R.; Wing, B.; Wong, B.

    2015-05-01

    The Canadian Space Agency (CSA), through its Analogue Missions program, supported a microrover-based analogue mission designed to simulate a Mars rover mission geared toward identifying and characterizing methane emissions on Mars. The analogue mission included two, progressively more complex, deployments in open-pit asbestos mines where methane can be generated from the weathering of olivine into serpentine: the Jeffrey mine deployment (June 2011) and the Norbestos mine deployment (June 2012). At the Jeffrey Mine, testing was conducted over 4 days using a modified off-the-shelf Pioneer rover and scientific instruments including Raman spectrometer, Picarro methane detector, hyperspectral point spectrometer and electromagnetic induction sounder for testing rock and gas samples. At the Norbestos Mine, we used the research Kapvik microrover which features enhanced autonomous navigation capabilities and a wider array of scientific instruments. This paper describes the rover operations in terms of planning, deployment, communication and equipment setup, rover path parameters and instrument performance. Overall, the deployments suggest that a search strategy of “follow the methane” is not practical given the mechanisms of methane dispersion. Rather, identification of features related to methane sources based on image tone/color and texture from panoramic imagery is more profitable.

  8. Distributed Operations for the Mars Exploration Rover Mission with the Science Activity Planner

    NASA Technical Reports Server (NTRS)

    Wick, Justin V.; Callas, John L.; Norris, Jeffrey S.; Powell, Mark W.; Vona, Marsette A., III

    2005-01-01

    Due to the length of the Mars Exploration Rover Mission, most scientists were unable to stay at the central operations facility at the Jet Propulsion Laboratory. This created a need for distributed operations software, in the form of the Distributed Science Activity Planner. The distributed architecture saved a considerable amount of money and increased the number of individuals who could be actively involved in the mission, contributing to its success.

  9. First results from the Mojave Volatiles Prospector (MVP) Field Campaign, a Lunar Polar Rover Mission Analog

    NASA Astrophysics Data System (ADS)

    Heldmann, J. L.; Colaprete, A.; Cook, A.; Deans, M. C.; Elphic, R. C.; Lim, D. S. S.; Skok, J. R.

    2014-12-01

    The Mojave Volatiles Prospector (MVP) project is a science-driven field program with the goal to produce critical knowledge for conducting robotic exploration of the Moon. MVP will feed science, payload, and operational lessons learned to the development of a real-time, short-duration lunar polar volatiles prospecting mission. MVP achieves these goals through a simulated lunar rover mission to investigate the composition and distribution of surface and subsurface volatiles in a natural and a priori unknown environment within the Mojave Desert, improving our understanding of how to find, characterize, and access volatiles on the Moon. The MVP field site is the Mojave Desert, selected for its low, naturally occurring water abundance. The Mojave typically has on the order of 2-6% water, making it a suitable lunar analog for this field test. MVP uses the Near Infrared and Visible Spectrometer Subsystem (NIRVSS), Neutron Spectrometer Subsystem (NSS), and a downward facing GroundCam camera on the KREX-2 rover to investigate the relationship between the distribution of volatiles and soil crust variation. Through this investigation, we mature robotic in situ instruments and concepts of instrument operations, improve ground software tools for real time science, and carry out publishable research on the water cycle and its connection to geomorphology and mineralogy in desert environments. A lunar polar rover mission is unlike prior space missions and requires a new concept of operations. The rover must navigate 3-5 km of terrain and examine multiple sites in in just ~6 days. Operational decisions must be made in real time, requiring constant situational awareness, data analysis and rapid turnaround decision support tools. This presentation will focus on the first science results and operational architecture findings from the MVP field deployment relevant to a lunar polar rover mission.

  10. Entry Trajectory and Atmosphere Reconstruction Methodologies for the Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Desai, Prasun N.; Blanchard, Robert C.; Powell, Richard W.

    2003-01-01

    The Mars Exploration Rover (MER) mission will land two landers on the surface of Mars, arriving in January 2004. Both landers will deliver the rovers to the surface by decelerating with the aid of an aeroshell, a supersonic parachute, retro-rockets, and air bags for safely landing on the surface. The reconstruction of the MER descent trajectory and atmosphere profile will be performed for all the phases from hypersonic flight through landing. A description of multiple methodologies for the flight reconstruction is presented from simple parameter identification methods through a statistical Kalman filter approach.

  11. Real-time science operations to support a lunar polar volatiles rover mission

    NASA Astrophysics Data System (ADS)

    Heldmann, Jennifer L.; Colaprete, Anthony; Elphic, Richard C.; Mattes, Greg; Ennico, Kimberly; Fritzler, Erin; Marinova, Margarita M.; McMurray, Robert; Morse, Stephanie; Roush, Ted L.; Stoker, Carol R.

    2015-05-01

    Future human exploration of the Moon will likely rely on in situ resource utilization (ISRU) to enable long duration lunar missions. Prior to utilizing ISRU on the Moon, the natural resources (in this case lunar volatiles) must be identified and characterized, and ISRU demonstrated on the lunar surface. To enable future uses of ISRU, NASA and the CSA are developing a lunar rover payload that can (1) locate near subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. Such investigations are important both for ISRU purposes and for understanding the scientific nature of these intriguing lunar volatile deposits. Temperature models and orbital data suggest near surface volatile concentrations may exist at briefly lit lunar polar locations outside persistently shadowed regions. A lunar rover could be remotely operated at some of these locations for the ∼ 2-14 days of expected sunlight at relatively low cost. Due to the limited operational time available, both science and rover operations decisions must be made in real time, requiring immediate situational awareness, data analysis, and decision support tools. Given these constraints, such a mission requires a new concept of operations. In this paper we outline the results and lessons learned from an analog field campaign in July 2012 which tested operations for a lunar polar rover concept. A rover was operated in the analog environment of Hawaii by an off-site Flight Control Center, a rover navigation center in Canada, a Science Backroom at NASA Ames Research Center in California, and support teams at NASA Johnson Space Center in Texas and NASA Kennedy Space Center in Florida. We find that this type of mission requires highly efficient, real time, remotely operated rover operations to enable low cost, scientifically relevant exploration of the distribution and nature of lunar polar volatiles. The field

  12. Learning from the Mars Rover Mission: Scientific Discovery, Learning and Memory

    NASA Technical Reports Server (NTRS)

    Linde, Charlotte

    2005-01-01

    Purpose: Knowledge management for space exploration is part of a multi-generational effort. Each mission builds on knowledge from prior missions, and learning is the first step in knowledge production. This paper uses the Mars Exploration Rover mission as a site to explore this process. Approach: Observational study and analysis of the work of the MER science and engineering team during rover operations, to investigate how learning occurs, how it is recorded, and how these representations might be made available for subsequent missions. Findings: Learning occurred in many areas: planning science strategy, using instrumen?s within the constraints of the martian environment, the Deep Space Network, and the mission requirements; using software tools effectively; and running two teams on Mars time for three months. This learning is preserved in many ways. Primarily it resides in individual s memories. It is also encoded in stories, procedures, programming sequences, published reports, and lessons learned databases. Research implications: Shows the earliest stages of knowledge creation in a scientific mission, and demonstrates that knowledge management must begin with an understanding of knowledge creation. Practical implications: Shows that studying learning and knowledge creation suggests proactive ways to capture and use knowledge across multiple missions and generations. Value: This paper provides a unique analysis of the learning process of a scientific space mission, relevant for knowledge management researchers and designers, as well as demonstrating in detail how new learning occurs in a learning organization.

  13. Science Results from the Mars Exploration Rover Mission

    SciTech Connect

    Squyres, Steven

    2007-10-05

    One of the most important scientific goals of the mission was to find and identify a variety of rocks and soils that provide evidence of the past presence of water on the planet. To obtain this information, Squyres is studying the data obtained on Mars by several sophisticated scientific instruments.

  14. Science Results from the Mars Exploration Rover Mission

    ScienceCinema

    Squyres, Steven [Cornell University, Ithaca, New York, United States

    2016-07-12

    One of the most important scientific goals of the mission was to find and identify a variety of rocks and soils that provide evidence of the past presence of water on the planet. To obtain this information, Squyres is studying the data obtained on Mars by several sophisticated scientific instruments.

  15. Mars Exploration Rover Terminal Descent Mission Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Raiszadeh, Behzad; Queen, Eric M.

    2004-01-01

    Because of NASA's added reliance on simulation for successful interplanetary missions, the MER mission has developed a detailed EDL trajectory modeling and simulation. This paper summarizes how the MER EDL sequence of events are modeled, verification of the methods used, and the inputs. This simulation is built upon a multibody parachute trajectory simulation tool that has been developed in POST I1 that accurately simulates the trajectory of multiple vehicles in flight with interacting forces. In this model the parachute and the suspended bodies are treated as 6 Degree-of-Freedom (6 DOF) bodies. The terminal descent phase of the mission consists of several Entry, Descent, Landing (EDL) events, such as parachute deployment, heatshield separation, deployment of the lander from the backshell, deployment of the airbags, RAD firings, TIRS firings, etc. For an accurate, reliable simulation these events need to be modeled seamlessly and robustly so that the simulations will remain numerically stable during Monte-Carlo simulations. This paper also summarizes how the events have been modeled, the numerical issues, and modeling challenges.

  16. Accumulation mapping at Summit, Greenland using an autonomous rover (Invited)

    NASA Astrophysics Data System (ADS)

    Robertson, M. E.; Koenig, L.; Trisca, G.; Marshall, H.

    2013-12-01

    New and advanced technologies in firn studies continue to emerge in both remote sensing tools and the platforms that deploy them. A new autonomous robot, called GROVER, was tested and deployed in May 2013 at Summit, Greenland. The robot operates a 8 GHz bandwidth frequency-modulated continuous-wave (FMCW) radar capable of imaging the near-surface firn at very high vertical resolution (~2 cm). The radar penetrated to depths of ~10 m with identifiable annual layers. Here we briefly describe GROVER's capabilities and applications for firn studies. We present the nearly 25 km of accumulation measurements derived from annual layering in the radar echograms. The GROVER-made measurements are compared to radar-derived accumulation from previous studies using a similar FMCW system in 2009 pulled by a snowmobile, as well as, with airborne laser altimetry and GPS measurements taken over the roved lines. Discrepancies and similarities between the measurement methods are investigated and explained. The robot-based firn echograms are also used to estimate the depth and extent of the 2012 melt layer over the roved lines. Near-surface radars have proven useful for monitoring and calculating snow and firn processes such as SWE and accumulation; moving firn studies onto an autonomous rover can reduce costs and increase spatial coverage for validation of future satellite missions.

  17. Rover imaging system for the Mars rover/sample return mission

    NASA Astrophysics Data System (ADS)

    1993-02-01

    In the past year, the conceptual design of a panoramic imager for the Mars Environmental Survey (MESUR) Pathfinder was finished. A prototype camera was built and its performace in the laboratory was tested. The performance of this camera was excellent. Based on this work, we have recently proposed a small, lightweight, rugged, and highly capable Mars Surface Imager (MSI) instrument for the MESUR Pathfinder mission. A key aspect of our approach to optimization of the MSI design is that we treat image gathering, coding, and restoration as a whole, rather than as separate and independent tasks. Our approach leads to higher image quality, especially in the representation of fine detail with good contrast and clarity, without increasing either the complexity of the camera or the amount of data transmission. We have made significant progress over the past year in both the overall MSI system design and in the detailed design of the MSI optics. We have taken a simple panoramic camera and have upgraded it substantially to become a prototype of the MSI flight instrument. The most recent version of the camera utilizes miniature wide-angle optics that image directly onto a 3-color, 2096-element CCD line array. There are several data-taking modes, providing resolution as high as 0.3 mrad/pixel. Analysis tasks that were performed or that are underway with the test data from the prototype camera include the following: construction of 3-D models of imaged scenes from stereo data, first for controlled scenes and later for field scenes; and checks on geometric fidelity, including alignment errors, mast vibration, and oscillation in the drive system. We have outlined a number of tasks planned for Fiscal Year '93 in order to prepare us for submission of a flight instrument proposal for MESUR Pathfinder.

  18. A Reliable Service-Oriented Architecture for NASA's Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Mak, Ronald; Walton, Joan; Keely, Leslie; Hehner, Dennis; Chan, Louise

    2005-01-01

    The Collaborative Information Portal (CIP) was enterprise software developed jointly by the NASA Ames Research Center and the Jet Propulsion Laboratory (JPL) for NASA's highly successful Mars Exploration Rover (MER) mission. Both MER and CIP have performed far beyond their original expectations. Mission managers and engineers ran CIP inside the mission control room at JPL, and the scientists ran CIP in their laboratories, homes, and offices. All the users connected securely over the Internet. Since the mission ran on Mars time, CIP displayed the current time in various Mars and Earth time zones, and it presented staffing and event schedules with Martian time scales. Users could send and receive broadcast messages, and they could view and download data and image files generated by the rovers' instruments. CIP had a three-tiered, service-oriented architecture (SOA) based on industry standards, including J2EE and web services, and it integrated commercial off-the-shelf software. A user's interactions with the graphical interface of the CIP client application generated web services requests to the CIP middleware. The middleware accessed the back-end data repositories if necessary and returned results for these requests. The client application could make multiple service requests for a single user action and then present a composition of the results. This happened transparently, and many users did not even realize that they were connecting to a server. CIP performed well and was extremely reliable; it attained better than 99% uptime during the course of the mission. In this paper, we present overviews of the MER mission and of CIP. We show how CIP helped to fulfill some of the mission needs and how people used it. We discuss the criteria for choosing its architecture, and we describe how the developers made the software so reliable. CIP's reliability did not come about by chance, but was the result of several key design decisions. We conclude with some of the important

  19. Multi-Mission Radioisotope Thermoelectric Generator Heat Exchangers for the Mars Science Laboratory Rover

    NASA Technical Reports Server (NTRS)

    Mastropietro, A. J.; Beatty, John S.; Kelly, Frank P.; Bhandari, Pradeep; Bame, David P.; Liu, Yuanming; Birux, Gajanana C.; Miller, Jennifer R.; Pauken, Michael T.; Illsley, Peter M.

    2012-01-01

    The addition of the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) to the Mars Science Laboratory (MSL) Rover requires an advanced thermal control system that is able to both recover and reject the waste heat from the MMRTG as needed in order to maintain the onboard electronics at benign temperatures despite the extreme and widely varying environmental conditions experienced both on the way to Mars and on the Martian surface. Based on the previously successful Mars landed mission thermal control schemes, a mechanically pumped fluid loop (MPFL) architecture was selected as the most robust and efficient means for meeting the MSL thermal requirements. The MSL heat recovery and rejection system (HRS) is comprised of two Freon (CFC-11) MPFLs that interact closely with one another to provide comprehensive thermal management throughout all mission phases. The first loop, called the Rover HRS (RHRS), consists of a set of pumps, thermal control valves, and heat exchangers (HXs) that enables the transport of heat from the MMRTG to the rover electronics during cold conditions or from the electronics straight to the environment for immediate heat rejection during warm conditions. The second loop, called the Cruise HRS (CHRS), is thermally coupled to the RHRS during the cruise to Mars, and provides a means for dissipating the waste heat more directly from the MMRTG as well as from both the cruise stage and rover avionics by promoting circulation to the cruise stage radiators. A multifunctional structure was developed that is capable of both collecting waste heat from the MMRTG and rejecting the waste heat to the surrounding environment. It consists of a pair of honeycomb core sandwich panels with HRS tubes bonded to both sides. Two similar HX assemblies were designed to surround the MMRTG on the aft end of the rover. Heat acquisition is accomplished on the interior (MMRTG facing) surface of each HX while heat rejection is accomplished on the exterior surface of

  20. Rover Family Photo

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Members of the Mars Exploration Rovers Assembly, Test and Launch Operations team gather around Rover 2 and its predecessor, a flight spare of the Pathfinder mission's Sojourner rover, named Marie Curie.

  1. Middleware and Web Services for the Collaborative Information Portal of NASA's Mars Exploration Rovers Mission

    NASA Technical Reports Server (NTRS)

    Sinderson, Elias; Magapu, Vish; Mak, Ronald

    2004-01-01

    We describe the design and deployment of the middleware for the Collaborative Information Portal (CIP), a mission critical J2EE application developed for NASA's 2003 Mars Exploration Rover mission. CIP enabled mission personnel to access data and images sent back from Mars, staff and event schedules, broadcast messages and clocks displaying various Earth and Mars time zones. We developed the CIP middleware in less than two years time usins cutting-edge technologies, including EJBs, servlets, JDBC, JNDI and JMS. The middleware was designed as a collection of independent, hot-deployable web services, providing secure access to back end file systems and databases. Throughout the middleware we enabled crosscutting capabilities such as runtime service configuration, security, logging and remote monitoring. This paper presents our approach to mitigating the challenges we faced, concluding with a review of the lessons we learned from this project and noting what we'd do differently and why.

  2. MIMA: Mars Infrared MApper - The Fourier spectrometer for the ESA Pasteur/ExoMars rover mission

    NASA Astrophysics Data System (ADS)

    Marzo, G. A.; Bellucci, G.; Fonti, S.; Saggin, B.; Alberti, E.; Altieri, F.; Politi, R.; Zasova, L.; Mima Team

    The MIMA team is developing a FT-IR miniaturized spectrometer to be mounted on the mast of the ExoMars rover Such instrument shall make remote measurements typically a few tens of meters away searching for evidence of water and of water-related processes e g carbonates sulfates clay minerals and if possible organics A survey instrument of this type will be extremely important for any rover mission on Mars especially for the Pasteur payload on the ExoMars mission whose scientific objective is to search for life and or hazards to humans Survey instruments on rover mast could provide necessary guidance if they can identify water evidence of long standing-water clay minerals carbonates sulfates so that detailed studies and drilling can be conducted at the right location The MIMA design is based on the peculiar pendulum optical design already successfully used on ESA PFS for Mars Express and Venus Express missions The wide spectral range 2-25 micron is not covered by means of a double channel as in PFS but using an innovative architecture two different detectors on the same focal plane sharing the same optical path in order to strongly reduce mass and size In this work MIMA technical and scientific issues will be discussed The MIMA team is Giancarlo Bellucci Team Coordinator Francesca Altieri Maria Blecka Roberto Bonsignori Sergio Fonti Giuseppe A Marzo Sandro Meli Jose Juan Lopez Moreno Boris Moshkin GianGabriele Ori Vincenzo Orofino Romolo Politi Giampaolo Preti Andrea Romoli Ted L Roush Bortolino Saggin Maria

  3. MAPGEN: Mixed-Initiative Activity Planning for the Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Ai-Chang, Mitchell; Bresina, John; Hsu, Jennifer; Jonsson, Ari; Kanefsky, Bob; McCurdy, Michael; Morris, Paul; Rajan, Kanna; Vera, Alonso; Yglesias, Jeffrey

    2004-01-01

    This document describes the Mixed initiative Activity Plan Generation system MAPGEN. This system is one of the critical tools in the Mars Exploration Rover mission surface operations, where it is used to build activity plans for each of the rovers, each Martian day. The MAPGEN system combines an existing tool for activity plan editing and resource modeling, with an advanced constraint-based reasoning and planning framework. The constraint-based planning component provides active constraint and rule enforcement, automated planning capabilities, and a variety of tools and functions that are useful for building activity plans in an interactive fashion. In this demonstration, we will show the capabilities of the system and demonstrate how the system has been used in actual Mars rover operations. In contrast to the demonstration given at ICAPS 03, significant improvement have been made to the system. These include various additional capabilities that are based on automated reasoning and planning techniques, as well as a new Constraint Editor support tool. The Constraint Editor (CE) as part of the process for generating these command loads, the MAPGEN tool provides engineers and scientists an intelligent activity planning tool that allows them to more effectively generate complex plans that maximize the science return each day. The key to the effectiveness of the MAPGEN tool is an underlying constraint-based planning and reasoning engine.

  4. Rover exploration on the lunar surface; a science proposal for SELENE-B mission

    NASA Astrophysics Data System (ADS)

    Sasaki, S.; Kubota, T.; Akiyama, H.; Hirata, N.; Kunii, Y.; Matsumoto, K.; Okada, T.; Otake, M.; Saiki, K.; Sugihara, T.

    LUNARSURFACE:ASCIENCES. Sasaki (1), T. Kubota (2) , H. Akiyama (1) , N. Hirata (3), Y. Kunii (4), K. Matsumoto (5), T. Okada (2), M. Otake (3), K. Saiki (6), T. Sugihara (3) (1) Department of Earth and Planetary Science, Univ. Tokyo, (2) Institute of Space and Astronautical Sciences, (3) National Space Development Agency of Japan, (4) Department of Electrical and Electronic Engineering, Chuo Univ., (5) National Aerospace Laboratory of Japan, (6) Research Institute of Materials and Resources, Akita Univ. sho@eps.s.u -tokyo.ac.jp/Fax:+81-3-5841-4569 A new lunar landing mission (SELENE-B) is now in consideration in Japan. Scientific investigation plans using a rover are proposed. To clarify the origin and evolution of the moon, the early crustal formation and later mare volcanic processes are still unveiled. We proposed two geological investigation plans: exploration of a crater central peak to discover subsurface materials and exploration of dome-cone structures on young mare region. We propose multi-band macro/micro camera using AOTF, X-ray spectrometer/diffractometer and gamma ray spectrometer. Since observation of rock fragments in brecciaed rocks is necessary, the rover should have cutting or scraping mechanism of rocks. In our current scenario, landing should be performed about 500m from the main target (foot of a crater central peak or a cone/dome). After the spectral survey by multi-band camera on the lander, the rover should be deployed for geological investigation. The rover should make a short (a few tens meter) round trip at first, then it should perform traverse observation toward the main target. Some technological investigations on SELENE-B project will be also presented.

  5. Preliminary Geological Map of the Peace Vallis Fan Integrated with In Situ Mosaics From the Curiosity Rover, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Sumner, D. Y.; Palucis, M.; Dietrich, B.; Calef, F.; Stack, K. M.; Ehlmann, B.; Bridges, J.; Dromart, J.; Eigenbrode, J.; Farmer, J.; Grant, J.; Grotzinger, J.; Hamilton, V.; Hardgrove, C.; Kah, L.; Leveille, R.; Mangold, N.; Rowland, S.; Williams, R.

    2013-01-01

    A geomorphically defined alluvial fan extends from Peace Vallis on the NW wall of Gale Crater, Mars into the Mars Science Laboratory (MSL) Curiosity rover landing ellipse. Prior to landing, the MSL team mapped the ellipse and surrounding areas, including the Peace Vallis fan. Map relationships suggest that bedded rocks east of the landing site are likely associated with the fan, which led to the decision to send Curiosity east. Curiosity's mast camera (Mastcam) color images are being used to refine local map relationships. Results from regional mapping and the first 100 sols of the mission demonstrate that the area has a rich geological history. Understanding this history will be critical for assessing ancient habitability and potential organic matter preservation at Gale Crater.

  6. 2003 Mars Exploration Rover Mission: Robotic Field Geologists for a Mars Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.

    2008-01-01

    The Mars Exploration Rover (MER) Spirit landed in Gusev crater on Jan. 4, 2004 and the rover Opportunity arrived on the plains of Meridiani Planum on Jan. 25, 2004. The rovers continue to return new discoveries after 4 continuous Earth years of operations on the surface of the red planet. Spirit has successfully traversed 7.5 km over the Gusev crater plains, ascended to the top of Husband Hill, and entered into the Inner Basin of the Columbia Hills. Opportunity has traveled nearly 12 km over flat plains of Meridiani and descended into several impact craters. Spirit and Opportunity carry an integrated suite of scientific instruments and tools called the Athena science payload. The Athena science payload consists of the 1) Panoramic Camera (Pancam) that provides high-resolution, color stereo imaging, 2) Miniature Thermal Emission Spectrometer (Mini-TES) that provides spectral cubes at mid-infrared wavelengths, 3) Microscopic Imager (MI) for close-up imaging, 4) Alpha Particle X-Ray Spectrometer (APXS) for elemental chemistry, 5) Moessbauer Spectrometer (MB) for the mineralogy of Fe-bearing materials, 6) Rock Abrasion Tool (RAT) for removing dusty and weathered surfaces and exposing fresh rock underneath, and 7) Magnetic Properties Experiment that allow the instruments to study the composition of magnetic martian materials [1]. The primary objective of the Athena science investigation is to explore two sites on the martian surface where water may once have been present, and to assess past environmental conditions at those sites and their suitability for life. The Athena science instruments have made numerous scientific discoveries over the 4 plus years of operations. The objectives of this paper are to 1) describe the major scientific discoveries of the MER robotic field geologists and 2) briefly summarize what major outstanding questions were not answered by MER that might be addressed by returning samples to our laboratories on Earth.

  7. Chebbi region, Morocco: a testing site for future rover missions to Mars

    NASA Astrophysics Data System (ADS)

    Ángel de Pablo, Miguel; Blanco, Juan Jose; Moya, M. E.; Garcia, M.; Acaso, E.; Rubial, M. J.; Blanco, J. J.

    In the future, new robotic missions will be launch toward Mars with the objective of studying this planet from its surface. Phoenix (2007), Mars Science Laboratory (2009), Mars Sample Return, ExoMars, Astrobiological Field Laboratory or the Deep-drill lander (beyond 2009) are the missions already launched, approved or under planning by NASA for the future exploration of Mars by rovers. These missions involve an important number of different sensors that should be firstly tested on Earth in order to check their correct function and improve their efficiency. Furthermore, the scientific teams can be acquainted with the operations involved previously to receive data from the mission on Mars. On Earth, there are very few sites where the Martian climatic conditions and landscape similarities could be found, as the dry valleys on Antarctica or the volcanic plains forming the inner deserts of Iceland. However, there are other sites on the Earth where the landscape and geomorphological features are similar to the landscapes observed on Viking Lander, Mars Pathfinder, Sojourner and Mars Exploration Rovers images. One of these sites is the Chebbi region (31o 10'N, 4o 4'W), in Central-south of Morocco. This area is located at the south of the Atlas range, forming the northern edge of the Sahara desert. The main characteristic is the plain landscape with smooth hills and an important dune field composed of different types of dunes. Wind-streaks are also frequent with sizes ranging between centimetres to tens of meters. Aeolian processes like dust storms and dust devils are very often in spring and summer. The region is also characterized by the desertical pavement formed by different size particles from sand to blocks. Decimetres to meters in diameter blocks are also found in the dry channels formed on sporadic floods. Water from floods and rains are quickly evaporated but mud and water-marks are more perdurable. Salts deposits and crusts are visible in different areas related

  8. Site selection and traverse planning to support a lunar polar rover mission: A case study at Haworth Crater

    NASA Astrophysics Data System (ADS)

    Heldmann, Jennifer L.; Colaprete, Anthony; Elphic, Richard C.; Bussey, Ben; McGovern, Andrew; Beyer, Ross; Lees, David; Deans, Matt

    2016-10-01

    Studies of lunar polar volatile deposits are of interest for scientific purposes to understand the nature and evolution of the volatiles, and also for exploration reasons as a possible in situ resource to enable long term human exploration and settlement of the Moon. Both theoretical and observational studies have suggested that significant quantities of volatiles exist in the polar regions, although the lateral and horizontal distribution remains unknown at the km scale and finer resolution. A lunar polar rover mission is required to further characterize the distribution, quantity, and character of lunar polar volatile deposits at these higher spatial resolutions. Here we present a case study for NASA's Resource Prospector (RP) mission concept for a lunar polar rover and utilize this mission architecture and associated constraints to evaluate whether a suitable landing site exists to support an RP flight mission. We evaluate the landing site criteria to characterize the Haworth Crater region in terms of expected hydrogen abundance, surface topography, and prevalence of shadowed regions, as well as solar illumination and direct to Earth communications as a function of time to develop a notional rover traverse plan that addresses both science and engineering requirements. We also present lessons-learned regarding lunar traverse path planning focusing on the critical nature of landing site selection, the influence of illumination patterns on traverse planning, the effects of performing shadowed rover operations, the influence of communications coverage on traverse plan development, and strategic planning to maximize rover lifetime and science at end of mission. Here we present a detailed traverse path scenario for a lunar polar volatiles rover mission and find that the particular site north of Haworth Crater studied here is suitable for further characterization of polar volatile deposits.

  9. The heat capacity mapping mission

    NASA Technical Reports Server (NTRS)

    Short, N. M.

    1981-01-01

    The first in a series of low cost Atmospheric Explorer Satellites, the Heat Capacity Mapping Mission (HCMM) was designed to evaluate the utility of thermal inertial and other thermal and reflectance data for: (1) discriminating bedrock and unconsolidated regolith types; (2) mapping soil moisture; (3) measuring plant canopy temperatures; (4) examining thermal circulation in large bodies of water; and (5) monitoring urban heat islands. Final reports from the HCMM investigator's program are beginning to define the utility of day/the night thermal data. Under favorable circumstances, some major rock types can be identified, soil moisture in extensive agricultural and alluvial terrains can be detected and at least semiqualitatively assessed; and circulation of currents in large bodies of water can be followed by noting thermal patterns.

  10. Preliminary Results of a New Type of Surface Property Measurement Ideal for a Future Mars Rover Mission

    NASA Technical Reports Server (NTRS)

    Buhler, C. R.; Calle, C. I.; Mantovani, J. G.; Buehler, M. G.; Nowicki, A. W.; Ritz, M.

    2004-01-01

    The success of the recent rover missions to Mars has stressed the importance of acquiring the maximum amount of geological information with the least amount of data possible. We have designed, tested and implemented special sensors mounted on a rover s wheel capable of detecting minute changes in surface topology thus eliminating the need for specially- made science platforms. These sensors, based on the previously designed, flight qualified Mars Environmental Compatibility Assessment (MECA) Electrometer, measure the static electricity (triboelectricity) generated between polymer materials and the Martian regolith during rover transverses. The sensors are capable of detecting physical changes in the soil that may not be detectable by other means, such as texture, size and moisture content. Although triboelectricity is a surface phenomenon, the weight of a rover will undoubtedly protrude the sensors below the dust covered layers, exposing underlying regolith whose properties may not be detectable through other means.

  11. Using Mars Rover Missions as a Vehicle for Introducing Space Science and Engineering in Grades 3-8

    NASA Astrophysics Data System (ADS)

    Bering, Edgar A.; Slagle, Elana M.; Nieser, Kenneth; Carlson, Coleen; Kapral, Andrew J.; Jacobs, Laura A.

    2014-11-01

    The Mars Rover Celebration and Mars Rover Curriculum (MRC) for grades 3-8 are centered around an open-ended, student-led collaborative project to design a mission to Mars. This curriculum incorporates up-to-date SMD education resources and science and mission data relating to NASA’s explorations of Mars. The MRC focuses on the adventure of learning and discovery, asking participating teams to propose their own scientific mission to Mars, design a rover to carry it out, and present a mock-up at an open house. The curriculum is structured to be inquiry-based throughout. The “students choose the mission” structure is highly engaging. The latter half of the curriculum presents the Engineering Design Process and walks the students through the steps of designing and engineering a spacecraft/rover to meet the mission objectives chosen by the students. Students are introduced to engineering using the design-project approach. The six-week project period culminates in a public celebration at which students present their missions to members of the community including undergraduate and graduate students in science, engineering, and education fields; university faculty in these fields; and professionals from associated industries.

  12. Designing and Implementing a Distributed System Architecture for the Mars Rover Mission Planning Software (Maestro)

    NASA Technical Reports Server (NTRS)

    Goldgof, Gregory M.

    2005-01-01

    Distributed systems allow scientists from around the world to plan missions concurrently, while being updated on the revisions of their colleagues in real time. However, permitting multiple clients to simultaneously modify a single data repository can quickly lead to data corruption or inconsistent states between users. Since our message broker, the Java Message Service, does not ensure that messages will be received in the order they were published, we must implement our own numbering scheme to guarantee that changes to mission plans are performed in the correct sequence. Furthermore, distributed architectures must ensure that as new users connect to the system, they synchronize with the database without missing any messages or falling into an inconsistent state. Robust systems must also guarantee that all clients will remain synchronized with the database even in the case of multiple client failure, which can occur at any time due to lost network connections or a user's own system instability. The final design for the distributed system behind the Mars rover mission planning software fulfills all of these requirements and upon completion will be deployed to MER at the end of 2005 as well as Phoenix (2007) and MSL (2009).

  13. Two dogs, new tricks: A two-rover mission simulation using K9 and FIDO at Black Rock Summit, Nevada

    NASA Astrophysics Data System (ADS)

    Stoker, Carol R.; Roush, Ted L.; Arvidson, Raymond E.; Bresina, John L.; Bualat, Maria G.; Edwards, Laurence J.; Flueckiger, Lorenzo J.; Washington, Richard M.; Nguyen, Laurent A.; Thomas, Hans; Wright, Anne R.

    2002-11-01

    An experiment illustrating two rovers cooperatively exploring a field site was performed at Black Rock Summit, Nevada, in May 2000. The rovers FIDO and K9 are mechanically identical prototype planetary rovers designed at the Jet Propulsion Laboratory. FIDO carried high-resolution false-color infrared and low-resolution monochrome stereo cameras and an infrared point spectrometer on a mast-mounted pointable platform, a manipulator arm equipped with a color microscopic imager, and a coring drill for sample collection. K9 carried on a mast-mounted pointable platform high-resolution color and low-resolution monochrome stereo cameras, and a Laser Induced Breakdown Spectrometer for standoff elemental analysis. A team located at Jet Propulsion Laboratory commanded the two rovers for 3 days. K9 obtained stereo images of targets, and three-dimensional models were constructed to determine the best locations for FIDO to obtain core samples. A drilling target was selected 1.5 m from the starting position of FIDO. Six command cycles and 2 m of traversing were required for FIDO to reach, drill into, and place an instrument on the target. K9 required 11 command cycles to traverse 60 m and obtain full-coverage stereo images of two rock targets along its route. Virtual reality-based visualization software called Viz provided situational awareness of the environment for both rovers. Commands to K9 were planned using Viz, resulting in improved rover performance. The results show that two rovers can be used synergistically to achieve science goals, but further testing is needed to completely explore the value of two-rover missions.

  14. Performance Testing of Lithium Li-ion Cells and Batteries in Support of JPL's 2003 Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Ratnakumar, B. V.; Ewell, R. C.; Whitcanack, L. D.; Surampudi, S.; Puglia, F.; Gitzendanner, R.

    2007-01-01

    In early 2004, JPL successfully landed two Rovers, named Spirit and Opportunity, on the surface of Mars after traveling > 300 million miles over a 6-7 month period. In order to operate for extended duration on the surface of Mars, both Rovers are equipped with rechargeable Lithium-ion batteries, which were designed to aid in the launch, correct anomalies during cruise, and support surface operations in conjunction with a triple-junction deployable solar arrays. The requirements of the Lithium-ion battery include the ability to provide power at least 90 sols on the surface of Mars, operate over a wide temperature range (-20(super 0)C to +40(super 0)C), withstand long storage periods (e.g., including pre-launch and cruise period), operate in an inverted position, and support high currents (e.g., firing pyro events). In order to determine the inability of meeting these requirements, ground testing was performed on a Rover Battery Assembly Unit RBAU), consisting of two 8-cell 8 Ah lithium-ion batteries connected in parallel. The RBAU upon which the performance testing was performed is nearly identical to the batteries incorporated into the two Rovers currently on Mars. The primary focus of this paper is to communicate the latest results regarding Mars surface operation mission simulation testing, as well as, the corresponding performance capacity loss and impedance characteristics as a function of temperature and life. As will be discussed, the lithium-ion batteries (fabricated by Yardney Technical Products, Inc.) have been demonstrated to far exceed the requirements defined by the mission, being able to support the operation of the rovers for over three years, and are projected to support an even further extended mission.

  15. Potential scientific objectives for a 2018 2-rover mission to Mars and implications for the landing site and landed operations

    NASA Astrophysics Data System (ADS)

    Grant, J. A.; Westall, F.; Beaty, D.; Cady, S. L.; Carr, M. H.; Ciarletti, V.; Coradini, A.; Elfving, A.; Glavin, D.; Goesmann, F.; Hurowitz, J. A.; Ori, G. G.; Phillips, R. J.; Salvo, C.; Sephton, M.; Syvertson, M.; Vago, J. L.

    2010-12-01

    A study sponsored by MEPAG has defined the possibilities for cooperative science using two rovers under consideration for launch to Mars in 2018 (ESA’s ExoMars, and a NASA-sourced rover concept for which we use the working name of MAX-C). The group considered collaborative science opportunities both without change to either proposed rover, as well as with some change allowed. Planning focused on analysis of shared and separate objectives, with concurrence on two high priority shared objectives that could form the basis of highly significant collaborative exploration activity. The first shared objective relates to sending the proposed rovers to a site interpreted to contain evidence of past environments with high habitability potential, and with high preservation potential for physical and chemical biosignatures where they would evaluate paleoenvironmental conditions, assess the potential for preservation of biotic and/or prebiotic signatures, and search for possible evidence of past life and prebiotic chemistry. The second shared objective relates to the collection, documentation, and suitable packaging of a set of samples by the rovers that would be sufficient to achieve the scientific objectives of a possible future sample return mission. Achieving cooperative science with the two proposed rovers implies certain compromises that might include less time available for pursuing each rover’s independent objectives, implementation of some hardware modifications, and the need to share a landing site that may not be optimized for either rover. Sharing a landing site has multiple implications, including accepting a common latitude restriction, accepting the geological attributes of the common landing site, and creation of a potential telecommunications bottleneck. Moreover, ensuring a safe landing with the sky crane and pallet system envisioned for the mission would likely result in landing terrain engineering requirements more constraining than those for MSL

  16. Self-Directed Cooperative Planetary Rovers

    NASA Technical Reports Server (NTRS)

    Zilberstein, Shlomo; Morris, Robert (Technical Monitor)

    2003-01-01

    The project is concerned with the development of decision-theoretic techniques to optimize the scientific return of planetary rovers. Planetary rovers are small unmanned vehicles equipped with cameras and a variety of sensors used for scientific experiments. They must operate under tight constraints over such resources as operation time, power, storage capacity, and communication bandwidth. Moreover, the limited computational resources of the rover limit the complexity of on-line planning and scheduling. We have developed a comprehensive solution to this problem that involves high-level tools to describe a mission; a compiler that maps a mission description and additional probabilistic models of the components of the rover into a Markov decision problem; and algorithms for solving the rover control problem that are sensitive to the limited computational resources and high-level of uncertainty in this domain.

  17. The Mars Astrobiology Explorer-Cacher (MAX-C): a potential rover mission for 2018. Final report of the Mars Mid-Range Rover Science Analysis Group (MRR-SAG) October 14, 2009.

    PubMed

    2010-03-01

    This report documents the work of the Mid-Range Rover Science Analysis Group (MRR-SAG), which was assigned to formulate a concept for a potential rover mission that could be launched to Mars in 2018. Based on programmatic and engineering considerations as of April 2009, our deliberations assumed that the potential mission would use the Mars Science Laboratory (MSL) sky-crane landing system and include a single solar-powered rover. The mission would also have a targeting accuracy of approximately 7 km (semimajor axis landing ellipse), a mobility range of at least 10 km, and a lifetime on the martian surface of at least 1 Earth year. An additional key consideration, given recently declining budgets and cost growth issues with MSL, is that the proposed rover must have lower cost and cost risk than those of MSL--this is an essential consideration for the Mars Exploration Program Analysis Group (MEPAG). The MRR-SAG was asked to formulate a mission concept that would address two general objectives: (1) conduct high priority in situ science and (2) make concrete steps toward the potential return of samples to Earth. The proposed means of achieving these two goals while balancing the trade-offs between them are described here in detail. We propose the name Mars Astrobiology Explorer-Cacher(MAX-C) to reflect the dual purpose of this potential 2018 rover mission.

  18. The Mars Astrobiology Explorer-Cacher (MAX-C): a potential rover mission for 2018. Final report of the Mars Mid-Range Rover Science Analysis Group (MRR-SAG) October 14, 2009.

    PubMed

    2010-03-01

    This report documents the work of the Mid-Range Rover Science Analysis Group (MRR-SAG), which was assigned to formulate a concept for a potential rover mission that could be launched to Mars in 2018. Based on programmatic and engineering considerations as of April 2009, our deliberations assumed that the potential mission would use the Mars Science Laboratory (MSL) sky-crane landing system and include a single solar-powered rover. The mission would also have a targeting accuracy of approximately 7 km (semimajor axis landing ellipse), a mobility range of at least 10 km, and a lifetime on the martian surface of at least 1 Earth year. An additional key consideration, given recently declining budgets and cost growth issues with MSL, is that the proposed rover must have lower cost and cost risk than those of MSL--this is an essential consideration for the Mars Exploration Program Analysis Group (MEPAG). The MRR-SAG was asked to formulate a mission concept that would address two general objectives: (1) conduct high priority in situ science and (2) make concrete steps toward the potential return of samples to Earth. The proposed means of achieving these two goals while balancing the trade-offs between them are described here in detail. We propose the name Mars Astrobiology Explorer-Cacher(MAX-C) to reflect the dual purpose of this potential 2018 rover mission. PMID:20298148

  19. Automated science target selection for future Mars rovers: A machine vision approach for the future ESA ExoMars 2018 rover mission

    NASA Astrophysics Data System (ADS)

    Tao, Yu; Muller, Jan-Peter

    2013-04-01

    The ESA ExoMars 2018 rover is planned to perform autonomous science target selection (ASTS) using the approaches described in [1]. However, the approaches shown to date have focused on coarse features rather than the identification of specific geomorphological units. These higher-level "geoobjects" can later be employed to perform intelligent reasoning or machine learning. In this work, we show the next stage in the ASTS through examples displaying the identification of bedding planes (not just linear features in rock-face images) and the identification and discrimination of rocks in a rock-strewn landscape (not just rocks). We initially detect the layers and rocks in 2D processing via morphological gradient detection [1] and graph cuts based segmentation [2] respectively. To take this further requires the retrieval of 3D point clouds and the combined processing of point clouds and images for reasoning about the scene. An example is the differentiation of rocks in rover images. This will depend on knowledge of range and range-order of features. We show demonstrations of these "geo-objects" using MER and MSL (released through the PDS) as well as data collected within the EU-PRoViScout project (http://proviscout.eu). An initial assessment will be performed of the automated "geo-objects" using the OpenSource StereoViewer developed within the EU-PRoViSG project (http://provisg.eu) which is released in sourceforge. In future, additional 3D measurement tools will be developed within the EU-FP7 PRoViDE2 project, which started on 1.1.13. References: [1] M. Woods, A. Shaw, D. Barnes, D. Price, D. Long, D. Pullan, (2009) "Autonomous Science for an ExoMars Rover-Like Mission", Journal of Field Robotics Special Issue: Special Issue on Space Robotics, Part II, Volume 26, Issue 4, pages 358-390. [2] J. Shi, J. Malik, (2000) "Normalized Cuts and Image Segmentation", IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 22. [3] D. Shin, and J.-P. Muller (2009

  20. Conceptual studies on the integration of a nuclear reactor system to a manned rover for Mars missions

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Morley, Nicholas J.

    1991-07-01

    Multiyear civilian manned missions to explore the surface of Mars are thought by NASA to be possible early in the next century. Expeditions to Mars, as well as permanent bases, are envisioned to require enhanced piloted vehicles to conduct science and exploration activities. Piloted rovers, with 30 kWe user net power (for drilling, sampling and sample analysis, onboard computer and computer instrumentation, vehicle thermal management, and astronaut life support systems) in addition to mobility are being considered. The rover design, for this study, included a four car train type vehicle complete with a hybrid solar photovoltaic/regenerative fuel cell auxiliary power system (APS). This system was designed to power the primary control vehicle. The APS supplies life support power for four astronauts and a limited degree of mobility allowing the primary control vehicle to limp back to either a permanent base or an accent vehicle. The results showed that the APS described above, with a mass of 667 kg, was sufficient to provide live support power and a top speed of five km/h for 6 hours per day. It was also seen that the factors that had the largest effect on the APS mass were the life support power, the number of astronauts, and the PV cell efficiency. The topics covered include: (1) power system options; (2) rover layout and design; (3) parametric analysis of total mass and power requirements for a manned Mars rover; (4) radiation shield design; and (5) energy conversion systems.

  1. Conceptual studies on the integration of a nuclear reactor system to a manned rover for Mars missions

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed S.; Morley, Nicholas J.

    1991-01-01

    Multiyear civilian manned missions to explore the surface of Mars are thought by NASA to be possible early in the next century. Expeditions to Mars, as well as permanent bases, are envisioned to require enhanced piloted vehicles to conduct science and exploration activities. Piloted rovers, with 30 kWe user net power (for drilling, sampling and sample analysis, onboard computer and computer instrumentation, vehicle thermal management, and astronaut life support systems) in addition to mobility are being considered. The rover design, for this study, included a four car train type vehicle complete with a hybrid solar photovoltaic/regenerative fuel cell auxiliary power system (APS). This system was designed to power the primary control vehicle. The APS supplies life support power for four astronauts and a limited degree of mobility allowing the primary control vehicle to limp back to either a permanent base or an accent vehicle. The results showed that the APS described above, with a mass of 667 kg, was sufficient to provide live support power and a top speed of five km/h for 6 hours per day. It was also seen that the factors that had the largest effect on the APS mass were the life support power, the number of astronauts, and the PV cell efficiency. The topics covered include: (1) power system options; (2) rover layout and design; (3) parametric analysis of total mass and power requirements for a manned Mars rover; (4) radiation shield design; and (5) energy conversion systems.

  2. Ground testing of the Li-ion batteries in support of JPL's 2003 Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Ewell, R. C.; Whitcanack, L. D.; Chin, K. B.; Surampudi, S.; Puglia, F.; Gitzendanner, R.

    2005-01-01

    In early 2004, JPL successfully landed two Rovers, named Spirit and Opportunity, on the surface of Mars after traveling > 300 million miles over a 6-7 month period. In order to operate for extended duration on the surface of Mars, both Rovers are equipped with rechargeable Lithium-ion batteries, which were designed to aid in the launch, correct anomalies during cruise, and support surface operations in conjunction with a triple-junction deployable solar arrays. The requirements of the Lithium-ion battery include the ability to provide power at least 90 sols on the surface of Mars, operate over a wide temperature range (-20(deg)C to +4O(deg)C), withstand long storage periods (e.g., cruise period), operate in an inverted position, and support high currents (e.g., firing pyro events). In order to determine the viability of meeting these requirements, ground testing was performed on a Rover Battery Assembly Unit (RBAU), consisting of two 8-cell 8 Ah lithium-ion batteries connected in parallel. The RBAU upon which the performance testing was performed is nearly identical to the batteries incorporated into the two Rovers currently on Mars. The testing performed includes, (a) performing initial characterization tests (discharge capacity at different temperatures), (b) simulating the launch conditions, (c) simulating the cruise phase conditions (including trajectory corrections), (d) simulating the entry, decent, and landing pulse load profile (if required to support the pyros) (e) simulating the Mars surface operation mission simulation conditions, as well as, (f) assessing performance capacity loss and impedance characteristics as a function of temperature and life. As will be discussed, the lithium-ion batteries (fabricated by LithiodYardney, Inc.) were demonstrated to far exceed the requirements defined by the mission, and are projected to support an extended mission (> 2 years) with margin to spare.

  3. In-situ Image Acquisition Strategy on Asteroid Surface by MINERVA Rover in HAYABUSA Mission

    NASA Astrophysics Data System (ADS)

    Yoshimitsu, T.; Sasaki, S.; Yanagisawa, M.

    Institute of Space and Astronautical Science (ISAS) has launched the engineering test spacecraft ``HAYABUSA'' (formerly called ``MUSES-C'') to the near Earth asteroid ``ITOKAWA (1998SF36)'' on May 9, 2003. HAYABUSA will go to the target asteroid after two years' interplanetary cruise and will descend onto the asteroid surface in 2005 to acquire some fragments, which will be brought back to the Earth in 2007. A tiny rover called ``MINERVA'' has boarded the HAYABUSA spacecraft. MINERVA is the first asteroid rover in the world. It will be deployed onto the surface immediately before the spacecraft touches the asteroid to acquire some fragments. Then it will autonomously move over the surface by hopping for a couple of days and the obtained data on multiple places are transmitted to the Earth via the mother spacecraft. Small cameras and thermometers are installed in the rover. This paper describes the image acquisition strategy by the cameras installed in the rover.

  4. Tumbleweed Rovers

    NASA Technical Reports Server (NTRS)

    Behar, Alberto; Jones, Jack; Carsey, Frank; Matthews, Jaret

    2005-01-01

    Tumbleweed rovers, now undergoing development, are lightweight, inflatable, approximately spherical exploratory robotic vehicles designed to roll across terrain, using only wind for propulsion. Tumbleweed rovers share many features with beach-ball rovers, which were discussed in several prior NASA Tech Briefs articles. Conceived for use in exploring remote planets, tumbleweed rovers could also be used for exploring relatively inaccessible terrain on Earth. A fully developed tumbleweed rover would consist of an instrumentation package suspended in an inflated twolayer (nylon/polypropylene) ball. The total mass of the rover would be of the order of 10 kg, the diameter of the ball when inflated would be 2 meters, and the minimum wind speed needed for propulsion would be about 5 m/s. The instrumentation package would contain a battery power supply, sensors, a Global Positioning System (GPS) receiver, and a radio transmitter that would send the sensor readings and the GPS position and time readings to a monitoring station via a satellite communication system. Depending on the specific exploratory mission, the sensors could include a thermometer, a barometer, a magnetometer (for studying the terrestrial magnetic field and/or detecting buried meteorites), a subsurface radar system (for measuring ice thickness and/or detecting buried meteorites), and/or one or two diametrally opposed cameras that would take the part of sending two side-looking images out. In the planned Antarctic field test, a prototype tumbleweed rover was released at a location near the South Pole. Using the global Iridium satellite network to send information about its position, the rover transmitted temperature, pressure, humidity, and light intensity data to NASA s Jet Propulsion Laboratory. The rover reached speeds of 30 km per hour over the Antarctic ice cap, and traveled at an average speed of about 6 km per hour. The test was designed to confirm the rover s long-term durability in an extremely

  5. Determining Wheel-Soil Interaction Loads Using a Meshfree Finite Element Approach Assisting Future Missions with Rover Wheel Design

    NASA Technical Reports Server (NTRS)

    Contreras, Michael T.; Peng, Chia-Yen; Wang, Dongdong; Chen, Jiun-Shyan

    2012-01-01

    A wheel experiencing sinkage and slippage events poses a high risk to rover missions as evidenced by recent mobility challenges on the Mars Exploration Rover (MER) project. Because several factors contribute to wheel sinkage and slippage conditions such as soil composition, large deformation soil behavior, wheel geometry, nonlinear contact forces, terrain irregularity, etc., there are significant benefits to modeling these events to a sufficient degree of complexity. For the purposes of modeling wheel sinkage and slippage at an engineering scale, meshfree finite element approaches enable simulations that capture sufficient detail of wheel-soil interaction while remaining computationally feasible. This study demonstrates some of the large deformation modeling capability of meshfree methods and the realistic solutions obtained by accounting for the soil material properties. A benchmark wheel-soil interaction problem is developed and analyzed using a specific class of meshfree methods called Reproducing Kernel Particle Method (RKPM). The benchmark problem is also analyzed using a commercially available finite element approach with Lagrangian meshing for comparison. RKPM results are comparable to classical pressure-sinkage terramechanics relationships proposed by Bekker-Wong. Pending experimental calibration by future work, the meshfree modeling technique will be a viable simulation tool for trade studies assisting rover wheel design.

  6. Working on Mars: Understanding How Scientists, Engineers and Rovers Interacted Across Space and Time during the Mars Exploration Rover (MER) Mission

    NASA Technical Reports Server (NTRS)

    Wales, Roxana C.

    2005-01-01

    This viewgraph presentation summarizes the scheduling and planning difficulties inherent in operating the Mars Exploration Rovers (MER) during the overlapping terrestrial day and Martian sol. The presentation gives special empahsis to communication between the teams controlling the rovers from Earth, and keeping track of time on the two planets.

  7. FIDO Rover

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Field Integrated Design and Operations (FIDO) rover is being used in ongoing NASA field tests to simulate driving conditions on Mars. FIDO is at a geologically interesting site in central Nevada while it is controlled from the mission control room at JPL's Planetary Robotics Laboratory in Pasadena. FIDO uses a robot arm to manipulate science instruments and it has a new mini-corer or drill to extract and cache rock samples. Several camera systems onboard allow the rover to collect science and navigation images by remote-control. The rover is about the size of a coffee table and weighs as much as a St. Bernard, about 70 kilograms (150 pounds). It is approximately 85 centimeters (about 33 inches) wide, 105 centimeters (41 inches) long, and 55 centimeters (22 inches) high. The rover moves up to 300 meters an hour (less than a mile per hour) over smooth terrain, using its onboard stereo vision systems to detect and avoid obstacles as it travels 'on-the-fly.' During these tests, FIDO is powered by both solar panels that cover the top of the rover and by replaceable, rechargeable batteries.

  8. The Microwave Anisotropy Probe (MAP) Mission

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.; Ericsson, Aprille J.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe mission is designed to produce a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an Inertial Reference Unit, two Autonomous Star Trackers, a Digital Sun Sensor, twelve Coarse Sun Sensors, three Reaction Wheel Assemblies, and a propulsion system. This paper describes the design of the attitude control system that carries out this mission and presents some early flight experience.

  9. The Microwave Anisotropy Probe (MAP) Mission

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe mission is designed to produce a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an inertial reference unit, two star trackers, a digital sun sensor, twelve coarse sun sensors, three reaction wheel assemblies, and a propulsion system. This paper presents an overview of the design of the attitude control system to carry out this mission and presents some early flight experience.

  10. Spirit rover localization and topographic mapping at the landing site of Gusev crater, Mars

    USGS Publications Warehouse

    Li, R.; Archinal, B.A.; Arvidson, R. E.; Bell, J.; Christensen, P.; Crumpler, L.; Des Marais, D.J.; Di, K.; Duxbury, T.; Golombek, M.P.; Grant, J. A.; Greeley, R.; Guinn, J.; Johnson, Aaron H.; Kirk, R.L.; Maimone, M.; Matthies, L.H.; Malin, M.; Parker, T.; Sims, M.; Thompson, S.; Squyres, S. W.; Soderblom, L.A.

    2006-01-01

    By sol 440, the Spirit rover has traversed a distance of 3.76 km (actual distance traveled instead of odometry). Localization of the lander and the rover along the traverse has been successfully performed at the Gusev crater landing site. We localized the lander in the Gusev crater using two-way Doppler radio positioning and cartographic triangulations through landmarks visible in both orbital and ground images. Additional high-resolution orbital images were used to verify the determined lander position. Visual odometry and bundle adjustment technologies were applied to compensate for wheel slippage, azimuthal angle drift, and other navigation errors (which were as large as 10.5% in the Husband Hill area). We generated topographic products, including 72 ortho maps and three-dimensional (3-D) digital terrain models, 11 horizontal and vertical traverse profiles, and one 3-D crater model (up to sol 440). Also discussed in this paper are uses of the data for science operations planning, geological traverse surveys, surveys of wind-related features, and other science applications. Copyright 2006 by the American Geophysical Union.

  11. "Where On Mars?": A Web Map Visualisation of the ExoMars 2018 Rover Candidate Landing Sites

    NASA Astrophysics Data System (ADS)

    Manaud, N.; Boix, O.; Vago, J.; Hill, A.; Iriberri, C.; Carrión, D.

    2015-10-01

    The ExoMars 2018 mission will deliver a European rover and a Russian surface platform to the surface of Mars. Armed with a drill that can bore 2 metres into rock, the ExoMars rover will travel across the Martian surface to search for signs of life, past or present. But where on Mars to land? - The search for a suitable ExoMars rover landing site began in December 2013, when the planetary science community was asked to propose candidates. Eight proposals were considered during a workshop held by the ExoMars Landing Site Selection Working Group (LSSWG). By the end of the workshop, there were four clear front-runners. Following additional review, the four sites have now been formally recommended for further detailed analysis [1]: Mawrth Vallis, Oxia Planum, Hypanis Vallis and Aram Dorsum. Scientists will continue working on the characterisation of these four sites until they provide their final recommendation in October 2017.

  12. The MAP Autonomous Mission Control System

    NASA Technical Reports Server (NTRS)

    Breed, Juile; Coyle, Steven; Blahut, Kevin; Dent, Carolyn; Shendock, Robert; Rowe, Roger

    2000-01-01

    The Microwave Anisotropy Probe (MAP) mission is the second mission in NASA's Office of Space Science low-cost, Medium-class Explorers (MIDEX) program. The Explorers Program is designed to accomplish frequent, low cost, high quality space science investigations utilizing innovative, streamlined, efficient management, design and operations approaches. The MAP spacecraft will produce an accurate full-sky map of the cosmic microwave background temperature fluctuations with high sensitivity and angular resolution. The MAP spacecraft is planned for launch in early 2001, and will be staffed by only single-shift operations. During the rest of the time the spacecraft must be operated autonomously, with personnel available only on an on-call basis. Four (4) innovations will work cooperatively to enable a significant reduction in operations costs for the MAP spacecraft. First, the use of a common ground system for Spacecraft Integration and Test (I&T) as well as Operations. Second, the use of Finite State Modeling for intelligent autonomy. Third, the integration of a graphical planning engine to drive the autonomous systems without an intermediate manual step. And fourth, the ability for distributed operations via Web and pager access.

  13. Three Dimensional Rover/Lander/Orbiter Mission-Planning (3D-ROMPS) System: A Modern Approach to Mission Planning

    NASA Technical Reports Server (NTRS)

    Scharfe, Nathan D.

    2005-01-01

    NASA's current mission planning system is based on point design, two-dimensional display, spread sheets, and report technology. This technology does not enable engineers to analyze the results of parametric studies of missions plans. This technology will not support the increased observational complexity and data volume of missions like Cassini, Mars Reconnaissance Orbiter (MRO), Mars Science Laboratory (MSL), and Mars Sample Return (MSR). The goal of the 3D-ROMPS task has been to establish a set of operational mission planning and analysis tools in the Image Processing Laboratory (IPL) Mission Support Area (MSA) that will respond to engineering requirements for planning future Solar System Exploration (SSE) missions using a three-dimensional display.

  14. Mineralogic Context of the Circum-Chryse Planitia Candidate Landing Sites for the ExoMars Rover Mission

    NASA Astrophysics Data System (ADS)

    Carter, John; Loizeau, Damien; Quantin, Cathy; Balme, Matt; Poulet, Francois; Gupta, Sanjeev; Vago, Jorge; Bibring, Jean-Pierre

    2015-04-01

    The ExoMars rover mission [1] will sample ancient, aqueously altered terrains to search for traces of extinct life and characterize the water history of Early Mars. These objectives translate into site-specific constraints in order to maximize the opportunity to access morphological and/or chemical markers for past aqueous environments and possibly life [2]. Currently, four candidate landing sites are being considered, all located on the margin of Chryse Planitia and all exhibiting hydrous clays within or near the ellipse. Assessing the composition and morphologic/stratigraphic context of these clays is necessary to narrow down possible formation scenarios and help rank the sites according to their relevance to the science goals. This work investigates the aqueous mineralogy of the circum-Chyrse region -where the LS are proposed-, in order to provide a framework for future in-depth investigations. Regional mapping of the clay mineralogy was performed using the OMEGA and CRISM NIR imaging spectrometers [3,4]. Global coverage of the circum-Chryse margin was achieved with OMEGA while detailed mapping was carried out locally with OMEGA and CRISM. Over 250 observations with pixel scales ranging 20 m - 4 km were investigated. Additionally, detailed analysis of the clay chemical composition was carried out using linear unmixing which provided the relative abundances of several Fe/Mg-rich phyllosilicate endmembers in the region. The analysis revealed large exposures of dominantly Fe/Mg-rich phyllosilicates over most of the preserved Noachian-aged margins of Chryse Planitia. These minerals have spectral features which are generally similar to what is found elsewhere on Mars [5], consistent with either vermiculites or smectite-bearing mixed-layered clays [6,7]. A regional outlier exists at and around the Mawrth Vallis LS: the most common clay there is likely Fe-rich nontronite associated with Al-rich phyllosilicates within layered deposits [8,9], indicating a different

  15. An Ontology for Requesting Distant Robotic Action: A Case Study in Naming and Action Identification for Planning on the Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Wales, Roxana C.; Shalin, Valerie L.; Bass, Deborah S.

    2004-01-01

    This paper focuses on the development and use of the abbreviated names as well as an emergent ontology associated with making requests for action of a distant robotic rover during the 2003-2004 NASA Mars Exploration Rover (MER) mission, run by the Jet Propulsion Laboratory. The infancy of the domain of Martian telerobotic science, in which specialists request work from a rover moving through the landscape, as well as the need to consider the interdisciplinary teams involved in the work required an empirical approach. The formulation of this ontology is grounded in human behavior and work practice. The purpose of this paper is to identify general issues for an ontology of action (specifically for requests for action), while maintaining sensitivity to the users, tools and the work system within a specific technical domain. We found that this ontology of action must take into account a dynamic environment, changing in response to the movement of the rover, changes on the rover itself, as well as be responsive to the purposeful intent of the science requestors. Analysis of MER mission events demonstrates that the work practice and even robotic tool usage changes over time. Therefore, an ontology must adapt and represent both incremental change and revolutionary change, and the ontology can never be more than a partial agreement on the conceptualizations involved. Although examined in a rather unique technical domain, the general issues pertain to the control of any complex, distributed work system as well as the archival record of its accomplishments.

  16. Heat Capacity Mapping Mission (HCMM) Notification Efforts

    NASA Technical Reports Server (NTRS)

    1980-01-01

    To encourage wide use of the Heat Capacity Mapping Mission (HCMM) data, especially among the scientific community, special notifications were prepared to inform them about the data's availability, its form, and the procedures for obtaining them. To achieve the widest distribution to the primary audiences of interest, mailings were made to scientists associated with the OSTA Resource Observation Division programs and to scientific and professional societies and journals. Accompanying the notifications to the societies and journals were samples of the HCMM imagery and a description of the image's predominant characteristics. A follow-up survey was completed to determine the effectiveness of the HCMM notifications.

  17. Acid Sulfate Weathering on Mars: Results from the Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Morris, R. V.; Golden, D. C.

    2006-01-01

    Sulfur has played a major role in the formation and alteration of outcrops, rocks, and soils at the Mars Exploration Rover landing sites on Meridiani Planum and in Gusev crater. Jarosite, hematite, and evaporite sulfates (e.g., Mg and Ca sulfates) occur along with siliciclastic sediments in outcrops at Meridiani Planum. The occurrence of jarosite is a strong indicator for an acid sulfate weathering environment at Meridiani Planum. Some outcrops and rocks in the Columbia Hills in Gusev crater appear to be extensively altered as suggested by their relative softness as compared to crater floor basalts, high Fe(3+)/FeT, iron mineralogy dominated by nanophase Fe(3+) oxides, hematite and/or goethite, corundum-normative mineralogies, and the presence of Mg- and Casulfates. One scenario for aqueous alteration of these rocks and outcrops is that vapors and/or fluids rich in SO2 (volcanic source) and water interacted with rocks that were basaltic in bulk composition. Ferric-, Mg-, and Ca-sulfates, phosphates, and amorphous Si occur in several high albedo soils disturbed by the rover's wheels in the Columbia Hills. The mineralogy of these materials suggests the movement of liquid water within the host material and the subsequent evaporation of solutions rich in Fe, Mg, Ca, S, P, and Si. The presence of ferric sulfates suggests that these phases precipitated from highly oxidized, low-pH solutions. Several hypotheses that invoke acid sulfate weathering environments have been suggested for the aqueous formation of sulfate-bearing phases on the surface of Mars including (1) the oxidative weathering of ultramafic igneous rocks containing sulfides; (2) sulfuric acid weathering of basaltic materials by solutions enriched by volcanic gases (e.g., SO2); and (3) acid fog (i.e., vapors rich in H2SO4) weathering of basaltic or basaltic-derived materials.

  18. Overview of the Opportunity Mars Exploration Rover Mission to Meridiani Planum: Eagle Crater to Purgatory Ripple

    NASA Astrophysics Data System (ADS)

    Squyres, S. W.; Arvidson, R. E.; Bollen, D.; Bell, J. F.; Brückner, J.; Cabrol, N. A.; Calvin, W. M.; Carr, M. H.; Christensen, P. R.; Clark, B. C.; Crumpler, L.; Des Marais, D. J.; d'Uston, C.; Economou, T.; Farmer, J.; Farrand, W. H.; Folkner, W.; Gellert, R.; Glotch, T. D.; Golombek, M.; Gorevan, S.; Grant, J. A.; Greeley, R.; Grotzinger, J.; Herkenhoff, K. E.; Hviid, S.; Johnson, J. R.; Klingelhöfer, G.; Knoll, A. H.; Landis, G.; Lemmon, M.; Li, R.; Madsen, M. B.; Malin, M. C.; McLennan, S. M.; McSween, H. Y.; Ming, D. W.; Moersch, J.; Morris, R. V.; Parker, T.; Rice, J. W.; Richter, L.; Rieder, R.; Schröder, C.; Sims, M.; Smith, M.; Smith, P.; Soderblom, L. A.; Sullivan, R.; Tosca, N. J.; Wänke, H.; Wdowiak, T.; Wolff, M.; Yen, A.

    2006-12-01

    The Mars Exploration Rover Opportunity touched down at Meridiani Planum in January 2004 and since then has been conducting observations with the Athena science payload. The rover has traversed more than 5 km, carrying out the first outcrop-scale investigation of sedimentary rocks on Mars. The rocks of Meridiani Planum are sandstones formed by eolian and aqueous reworking of sand grains that are composed of mixed fine-grained siliciclastics and sulfates. The siliciclastic fraction was produced by chemical alteration of a precursor basalt. The sulfates are dominantly Mg-sulfates and also include Ca-sulfates and jarosite. The stratigraphic section observed to date is dominated by eolian bedforms, with subaqueous current ripples exposed near the top of the section. After deposition, interaction with groundwater produced a range of diagenetic features, notably the hematite-rich concretions known as ``blueberries.'' The bedrock at Meridiani is highly friable and has undergone substantial erosion by wind-transported basaltic sand. This sand, along with concretions and concretion fragments eroded from the rock, makes up a soil cover that thinly and discontinuously buries the bedrock. The soil surface exhibits both ancient and active wind ripples that record past and present wind directions. Loose rocks on the soil surface are rare and include both impact ejecta and meteorites. While Opportunity's results show that liquid water was once present at Meridiani Planum below and occasionally at the surface, the environmental conditions recorded were dominantly arid, acidic, and oxidizing and would have posed some significant challenges to the origin of life.

  19. Mobile Payload Element (MPE): Concept study for a sample fetching rover for the ESA Lunar Lander Mission

    NASA Astrophysics Data System (ADS)

    Haarmann, R.; Jaumann, R.; Claasen, F.; Apfelbeck, M.; Klinkner, S.; Richter, L.; Schwendner, J.; Wolf, M.; Hofmann, P.

    2012-12-01

    In late 2010, the DLR Space Administration invited the German industry to submit a proposal for a study about a Mobile Payload Element (MPE), which could be a German national contribution to the ESA Lunar Lander Mission. Several spots in the south polar region of the moon come into consideration as landing site for this mission. All possible spots provide sustained periods of solar illumination, interrupted by darkness periods of several 10 h. The MPE is outlined to be a small, autonomous, innovative vehicle in the 10 kg class for scouting and sampling the environment in the vicinity of the lunar landing site. The novel capabilities of the MPE will be to acquire samples of lunar regolith from surface, subsurface as well as shadowed locations, define their geological context and bring them back to the lander. This will enable access to samples that are not contaminated by the lander descent propulsion system plumes to increase the chances of detecting any indigenous lunar volatiles contained within the samples. Kayser-Threde, as prime industrial contractor for Phase 0/A, has assembled for this study a team of German partners with relevant industrial and institutional competence in space robotics and lunar science. The primary scientific objective of the MPE is to acquire clearly documented samples and to bring them to the lander for analysis with the onboard Lunar Dust Analysis Package (L-DAP) and Lunar Volatile Resources Analysis Package (L-VRAP). Due to the unstable nature of volatiles, which are of particular scientific interest, the MPE design needs to provide a safe storage and transportation of the samples to the lander. The proposed MPE rover concept has a four-wheeled chassis configuration with active suspension, being a compromise between innovation and mass efficiency. The suspension chosen allows a compact stowage of the MPE on the lander as well as precise alignment of the solar generators and instruments. Since therefore no further complex mechanics are

  20. The SuperCam Remote-Sensing Instrument Suite for the Mars 2020 Rover Mission

    NASA Astrophysics Data System (ADS)

    Wiens, R. C.; Maurice, S.; Clegg, S. M.; Rull, F.; Sharma, S. K.; Anderson, R. B.; Beyssac, O.; Bonal, L.; DeFlores, L. P.; Dromart, G.; Fischer, W. W.; Forni, O.; Gasnault, O.; Grotzinger, J. P.; Johnson, J. R.; Martinez-Frias, J.; Mangold, N.; McLennan, S. M.; Montmessin, F.

    2015-12-01

    The SuperCam remote-sensing instrument suite in development for the Mars 2020 rover represents a significant advance from its precursor, ChemCam, by adding Raman spectroscopy (to 12 m distance) and visible and near-infrared (VISIR) reflectance spectroscopy. For Raman spectroscopy the LIBS Nd:YAG laser is frequency-doubled to 532 nm (green Raman). A transmission spectrometer with an intensified CCD covers 150-4400 cm-1 spectral range at a resolution of 10 cm-1. The system is adjustably time-gated, removing much of the mineral fluorescence from the Raman spectra and also facilitating time-resolved fluorescence studies. The infrared range covers 1.3-2.6 microns in addition to the existing 400-840 nm range on ChemCam. Additional upgrades include doubling the LIBS resolution in the 535-860 nm range and adding color to the Remote Micro-Imager (RMI), which is the highest resolution remote imager on the rover. A large-scale effort is being applied to the on-board standards, being led by U. Valladolid in Spain, with targets contributed by many institutions. The number of geological targets will be increased from 8 (on ChemCam) to 22, planned to include end-member plagioclase feldspars, hi- and low-Ca pyroxene, olivines, several fine-grained basalts, hematite, jarosite, carbonates, apatite, and several synthetic targets doped with trace elements. Three Spectralon targets are planned for IR calibration and several color bands for the RMI. All but the Spectralon and color bands should be available for LIBS calibration, and many are also being designed for Raman and VISIR calibration. For LIBS this collection of standards will significantly improve the accuracy relative to ChemCam; other precision improvements are anticipated to come from correcting for variable plasma temperature. The presentation will illustrate how Mars datasets will be significantly improved via this multi-technique approach and will give a first look at prototype SuperCam spectra.

  1. Overview of the Spirit Mars Exploration Rover Mission to Gusev Crater: Landing Site to Backstay Rock in the Columbia Hills

    NASA Technical Reports Server (NTRS)

    Arvidson, R. E.; Squyres, S. W,; Anderson, R. C.; Bell, J. F., III; Blaney, D.; Brueckner, J.; Cabrol, N. A.; Calvin, W. M.; Carr, M. H.; Christensen, P. R.; Clark, B. C.; Crumpler, L.; Des Marais, D. J.; deSouza, P. A., Jr.; d'Uston, C.; Economou, T.

    2005-01-01

    Spirit landed on the floor of Gusev Crater and conducted initial operations on soil covered, rock-strewn cratered plains underlain by olivine-bearing basalts. Plains surface rocks are covered by wind-blown dust and show evidence for surface enrichment of soluble species as vein and void-filling materials and coatings. The surface enrichment is the result of a minor amount of transport and deposition by aqueous processes. Layered granular deposits were discovered in the Columbia Hills, with outcrops that tend to dip conformably with the topography. The granular rocks are interpreted to be volcanic ash and/or impact ejecta deposits that have been modified by aqueous fluids during and/or after emplacement. Soils consist of basaltic deposits that are weakly cohesive, relatively poorly sorted, and covered by a veneer of wind blown dust. The soils have been homogenized by wind transport over at least the several kilometer length scale traversed by the rover. Mobilization of soluble species has occurred within at least two soil deposits examined. The presence of mono-layers of coarse sand on wind-blown bedforms, together with even spacing of granule-sized surface clasts, suggest that some of the soil surfaces encountered by Spirit have not been modified by wind for some time. On the other hand, dust deposits on the surface and rover deck have changed during the course of the mission. Detection of dust devils, monitoring of the dust opacity and lower boundary layer, and coordinated experiments with orbiters provided new insights into atmosphere-surface dynamics.

  2. Panoramic camera on the Yutu lunar rover of the Chang'e-3 mission

    NASA Astrophysics Data System (ADS)

    Yang, Jian-Feng; Li, Chun-Lai; Xue, Bin; Ruan, Ping; Gao, Wei; Qiao, Wei-Dong; Lu, Di; Ma, Xiao-Long; Li, Fu; He, Ying-Hong; Li, Ting; Ren, Xin; Yan, Xing-Tao

    2015-11-01

    The Chang'e-3 panoramic camera, which is composed of two cameras with identical functions, performances and interfaces, is installed on the lunar rover mast. It can acquire 3D images of the lunar surface based on the principle of binocular stereo vision. By rotating and pitching the mast, it can take several photographs of the patrol area. After stitching these images, panoramic images of the scenes will be obtained. Thus the topography and geomorphology of the patrol area and the impact crater, as well as the geological structure of the lunar surface, will be analyzed and studied. In addition, it can take color photographs of the lander using the Bayer color coding principle. It can observe the working status of the lander by switching between static image mode and dynamic video mode with automatic exposure time. The focal length of the lens on the panoramic camera is 50 mm and the field of view is 19.7° × 14.5°. Under the best illumination and viewing conditions, the largest signal-to-noise ratio of the panoramic camera is 44 dB. Its static modulation transfer function is 0.33. A large number of ground testing experiments and on-orbit imaging results show that the functional interface of the panoramic camera works normally. The image quality of the panoramic camera is satisfactory. All the performance parameters of the panoramic camera satisfy the design requirements.

  3. The opearation and scientific data of MINERVA rover in Hayabusa mission

    NASA Astrophysics Data System (ADS)

    Yoshimitsu, T.; Kubota, T.; Nakatani, I.

    section Introduction The asteroid explorer Hayabusa operated by Institute of Space and Astronautical Science ISAS JAXA made a rendezvous with the target asteroid Itokawa in September 2005 after more than two years interplanetary cruise since the launch in 2003 The spacecraft precisely observed the target from the vicinity of the asteroid for two months and then tried to land on the surface in order to get some fragments which will be brought back to the Earth The authors installed a experimental small rover named MINERVA into the spacecraft It was supposed to make a surface exploration after having been deployed onto the surface MINERVA is the smallest spacecraft with a weight of 591 g and a dimension of about 10 cm in size In this small body it is equipped with a moving ability over the micro-gravity environment on the asteroid and a few scientific instruments cameras and thermometers to characterize the surface MINERVA was deployed in November 2005 but it could not reach at the asteroid because the deployment was not done at the good timing Thus it became a artificial solar satellite and the surface exploration was not conducted It survived at least for 18 hours after the deployment while the obtained data were transmitted to the Earth via the mother spacecraft This paper describes the operation and the possible science from the obtained data by MINERVA section Deployment MINERVA was deployed in November 12 2005 by sending a command from the Earth when the rehearsal operation of the touchdown was in

  4. Lunar polar rover science operations: Lessons learned and mission architecture implications derived from the Mojave Volatiles Prospector (MVP) terrestrial field campaign

    NASA Astrophysics Data System (ADS)

    Heldmann, Jennifer L.; Colaprete, Anthony; Elphic, Richard C.; Lim, Darlene; Deans, Matthew; Cook, Amanda; Roush, Ted; Skok, J. R.; Button, Nicole E.; Karunatillake, S.; Stoker, Carol; Marquez, Jessica J.; Shirley, Mark; Kobayashi, Linda; Lees, David; Bresina, John; Hunt, Rusty

    2016-08-01

    The Mojave Volatiles Prospector (MVP) project is a science-driven field program with the goal of producing critical knowledge for conducting robotic exploration of the Moon. Specifically, MVP focuses on studying a lunar mission analog to characterize the form and distribution of lunar volatiles. Although lunar volatiles are known to be present near the poles of the Moon, the three dimensional distribution and physical characteristics of lunar polar volatiles are largely unknown. A landed mission with the ability to traverse the lunar surface is thus required to characterize the spatial distribution of lunar polar volatiles. NASA's Resource Prospector (RP) mission is a lunar polar rover mission that will operate primarily in sunlit regions near a lunar pole with near-real time operations to characterize the vertical and horizontal distribution of volatiles. The MVP project was conducted as a field campaign relevant to the RP lunar mission to provide science, payload, and operational lessons learned to the development of a real-time, short-duration lunar polar volatiles prospecting mission. To achieve these goals, the MVP project conducted a simulated lunar rover mission to investigate the composition and distribution of surface and subsurface volatiles in a natural environment with an unknown volatile distribution within the Mojave Desert, improving our understanding of how to find, characterize, and access volatiles on the Moon.

  5. Risk analysis of earth return options for the Mars rover/sample return mission

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Four options for return of a Mars surface sample to Earth were studied to estimate the risk of mission failure and the risk of a sample container breach that might result in the release of Martian life forms, should such exist, in the Earth's biosphere. The probabilities calculated refer only to the time period from the last midcourse correction burn to possession of the sample on Earth. Two extreme views characterize this subject. In one view, there is no life on Mars, therefore there is no significant risk and no serious effort is required to deal with back contamination. In the other view, public safety overrides any desire to return Martian samples, and any risk of damaging contamination greater than zero is unacceptable. Zero risk requires great expense to achieve and may prevent the mission as currently envisioned from taking place. The major conclusion is that risk of sample container breach can be reduced to a very low number within the framework of the mission as now envisioned, but significant expense and effort, above that currently planned is needed. There are benefits to the public that warrant some risk. Martian life, if it exists, will be a major discovery. If it does not, there is no risk.

  6. Activity Scratchpad Prototype: Simplifying the Rover Activity Planning Cycle

    NASA Technical Reports Server (NTRS)

    Abramyan, Lucy

    2005-01-01

    The Mars Exploration Rover mission depends on the Science Activity Planner as its primary interface to the Spirit and Opportunity Rovers. Scientists alternate between a series of mouse clicks and keyboard inputs to create a set of instructions for the rovers. To accelerate planning by minimizing mouse usage, a rover planning editor should receive the majority of inputted commands from the keyboard. Thorough investigation of the Eclipse platform's Java editor has provided the understanding of the base model for the Activity Scratchpad. Desirable Eclipse features can be mapped to specific rover planning commands, such as auto-completion for activity titles and content assist for target names. A custom editor imitating the Java editor's features was created with an XML parser for experimenting purposes. The prototype editor minimized effort for redundant tasks and significantly improved the visual representation of XML syntax by highlighting keywords, coloring rules, folding projections, and providing hover assist, templates and an outline view of the code.

  7. Sensitivity of simulated Martian atmospheric temperature to prescribed dust opacity distribution: Comparison of model results with reconstructed data from Mars Exploration Rover missions

    NASA Astrophysics Data System (ADS)

    Natarajan, Murali; Dwyer Cianciolo, Alicia; Fairlie, T. Duncan; Richardson, Mark I.; McConnochie, Timothy H.

    2015-11-01

    We use the Mars Weather Research and Forecasting (MarsWRF) general circulation model to simulate the atmospheric structure corresponding to the landing location and time of the Mars Exploration Rovers (MER) Spirit (A) and Opportunity (B) in 2004. The multiscale capability of MarsWRF facilitates high-resolution nested model runs centered near the landing site of each of the rovers. Dust opacity distributions based on measurements by Thermal Emission Spectrometer (TES) aboard the Mars Global Surveyor spacecraft, and those from an old version of the Mars Climate Database (MCD v3.1 released in 2001) are used to study the sensitivity of the model temperature profile to variations in the dust prescription. The reconstructed entry, descent, and landing (EDL) data from the rover missions are used for comparisons. We show that the model using dust opacity from TES limb and nadir data for the year of MER EDL, Mars Year 26 (MY26), yields temperature profiles in closer agreement with the reconstructed data than the prelaunch EDL simulations and models using other dust opacity specifications. The temperature at 100 Pa from the model (MY26) and the reconstruction are within 5°K. These results highlight the role of vertical dust opacity distribution in determining the atmospheric thermal structure. Similar studies involving data from past missions and models will be useful in understanding the extent to which atmospheric variability is captured by the models and in developing realistic preflight characterization required for future lander missions to Mars.

  8. Opportunity Mars Rover mission: Overview and selected results from Purgatory ripple to traverses to Endeavour crater

    USGS Publications Warehouse

    Arvidson, R. E.; Ashley, James W.; Bell, J.F.; Chojnacki, M.; Cohen, J.; Economou, T.E.; Farrand, W. H.; Fergason, R.; Fleischer, I.; Geissler, P.; Gellert, Ralf; Golombek, M.P.; Grotzinger, J.P.; Guinness, E.A.; Haberle, R.M.; Herkenhoff, K. E.; Herman, J.A.; Iagnemma, K.D.; Jolliff, B.L.; Johnson, J. R.; Klingelhofer, G.; Knoll, A.H.; Knudson, A.T.; Li, R.; McLennan, S.M.; Mittlefehldt, D. W.; Morris, R.V.; Parker, T.J.; Rice, M.S.; Schroder, C.; Soderblom, L.A.; Squyres, S. W.; Sullivan, R.J.; Wolff, M.J.

    2011-01-01

    Opportunity has been traversing the Meridiani plains since 25 January 2004 (sol 1), acquiring numerous observations of the atmosphere, soils, and rocks. This paper provides an overview of key discoveries between sols 511 and 2300, complementing earlier papers covering results from the initial phases of the mission. Key new results include (1) atmospheric argon measurements that demonstrate the importance of atmospheric transport to and from the winter carbon dioxide polar ice caps; (2) observations showing that aeolian ripples covering the plains were generated by easterly winds during an epoch with enhanced Hadley cell circulation; (3) the discovery and characterization of cobbles and boulders that include iron and stony-iron meteorites and Martian impact ejecta; (4) measurements of wall rock strata within Erebus and Victoria craters that provide compelling evidence of formation by aeolian sand deposition, with local reworking within ephemeral lakes; (5) determination that the stratigraphy exposed in the walls of Victoria and Endurance craters show an enrichment of chlorine and depletion of magnesium and sulfur with increasing depth. This result implies that regional-scale aqueous alteration took place before formation of these craters. Most recently, Opportunity has been traversing toward the ancient Endeavour crater. Orbital data show that clay minerals are exposed on its rim. Hydrated sulfate minerals are exposed in plains rocks adjacent to the rim, unlike the surfaces of plains outcrops observed thus far by Opportunity. With continued mechanical health, Opportunity will reach terrains on and around Endeavour's rim that will be markedly different from anything examined to date.

  9. Opportunity Mars Rover mission: Overview and selected results from Purgatory ripple to traverses to Endeavour crater

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.; Ashley, J. W.; Bell, J. F.; Chojnacki, M.; Cohen, J.; Economou, T. E.; Farrand, W. H.; Fergason, R.; Fleischer, I.; Geissler, P.; Gellert, R.; Golombek, M. P.; Grotzinger, J. P.; Guinness, E. A.; Haberle, R. M.; Herkenhoff, K. E.; Herman, J. A.; Iagnemma, K. D.; Jolliff, B. L.; Johnson, J. R.; Klingelhöfer, G.; Knoll, A. H.; Knudson, A. T.; Li, R.; McLennan, S. M.; Mittlefehldt, D. W.; Morris, R. V.; Parker, T. J.; Rice, M. S.; Schröder, C.; Soderblom, L. A.; Squyres, S. W.; Sullivan, R. J.; Wolff, M. J.

    2011-02-01

    Opportunity has been traversing the Meridiani plains since 25 January 2004 (sol 1), acquiring numerous observations of the atmosphere, soils, and rocks. This paper provides an overview of key discoveries between sols 511 and 2300, complementing earlier papers covering results from the initial phases of the mission. Key new results include (1) atmospheric argon measurements that demonstrate the importance of atmospheric transport to and from the winter carbon dioxide polar ice caps; (2) observations showing that aeolian ripples covering the plains were generated by easterly winds during an epoch with enhanced Hadley cell circulation; (3) the discovery and characterization of cobbles and boulders that include iron and stony-iron meteorites and Martian impact ejecta; (4) measurements of wall rock strata within Erebus and Victoria craters that provide compelling evidence of formation by aeolian sand deposition, with local reworking within ephemeral lakes; (5) determination that the stratigraphy exposed in the walls of Victoria and Endurance craters show an enrichment of chlorine and depletion of magnesium and sulfur with increasing depth. This result implies that regional-scale aqueous alteration took place before formation of these craters. Most recently, Opportunity has been traversing toward the ancient Endeavour crater. Orbital data show that clay minerals are exposed on its rim. Hydrated sulfate minerals are exposed in plains rocks adjacent to the rim, unlike the surfaces of plains outcrops observed thus far by Opportunity. With continued mechanical health, Opportunity will reach terrains on and around Endeavour's rim that will be markedly different from anything examined to date.

  10. Opportunity Mars Rover mission: Overview and selected results from Purgatory ripple to traverses to Endeavour crater

    USGS Publications Warehouse

    Arvidson, R. E.; Ashley, James W.; Bell, J.F.; Chojnacki, M.; Cohen, J.; Economou, T.E.; Farrand, W. H.; Fergason, R.; Fleischer, I.; Geissler, P.; Gellert, Ralf; Golombek, M.P.; Grotzinger, J.P.; Guinness, E.A.; Haberle, R.M.; Herkenhoff, K. E.; Herman, J.A.; Iagnemma, K.D.; Jolliff, B.L.; Johnson, J. R.; Klingelhofer, G.; Knoll, A.H.; Knudson, A.T.; Li, R.; McLennan, S.M.; Mittlefehldt, D. W.; Morris, R.V.; Parker, T.J.; Rice, M.S.; Schroder, C.; Soderblom, L.A.; Squyres, S. W.; Sullivan, R.J.; Wolff, M.J.

    2011-01-01

    Opportunity has been traversing the Meridiani plains since 25 January 2004 (sol 1), acquiring numerous observations of the atmosphere, soils, and rocks. This paper provides an overview of key discoveries between sols 511 and 2300, complementing earlier papers covering results from the initial phases of the mission. Key new results include (1) atmospheric argon measurements that demonstrate the importance of atmospheric transport to and from the winter carbon dioxide polar ice caps; (2) observations showing that aeolian ripples covering the plains were generated by easterly winds during an epoch with enhanced Hadley cell circulation; (3) the discovery and characterization of cobbles and boulders that include iron and stony-iron meteorites and Martian impact ejecta; (4) measurements of wall rock strata within Erebus and Victoria craters that provide compelling evidence of formation by aeolian sand deposition, with local reworking within ephemeral lakes; (5) determination that the stratigraphy exposed in the walls of Victoria and Endurance craters show an enrichment of chlorine and depletion of magnesium and sulfur with increasing depth. This result implies that regional-scale aqueous alteration took place before formation of these craters. Most recently, Opportunity has been traversing toward the ancient Endeavour crater. Orbital data show that clay minerals are exposed on its rim. Hydrated sulfate minerals are exposed in plains rocks adjacent to the rim, unlike the surfaces of plains outcrops observed thus far by Opportunity. With continued mechanical health, Opportunity will reach terrains on and around Endeavour's rim that will be markedly different from anything examined to date. Copyright 2011 by the American Geophysical Union.

  11. Instrument Deployment for Mars Rovers

    NASA Technical Reports Server (NTRS)

    Pedersen, Liam; Bualat, Maria; Kunz, C.; Lee, Susan; Sargent, Randy; Washington, Rich; Wright, Anne; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Future Mars rovers, such as the planned 2009 MSL rover, require sufficient autonomy to robustly approach rock targets and place an instrument in contact with them. It took the 1997 Sojourner Mars rover between 3 and 5 communications cycles to accomplish this. This paper describes the technologies being developed and integrated onto the NASA Ames K9 prototype Mars rover to both accomplish this in one cycle, and to extend the complexity and duration of operations that a Mars rover can accomplish without intervention from mission control.

  12. EXPLORING MARS WITH SOLAR-POWERED ROVERS

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2006-01-01

    The Mars Exploration Rover (MER) project landed two solar-powered rovers, "Spirit" and "Opportunity," on the surface of Mars in January of 2003. This talk reviews the history of solar-powered missions to Mars and looks at the science mission of the MER rovers, focusing on the solar energy and array performance.

  13. 3D Data Products and Web-GIS for Mars Rover Mission for Seamless Visualisation from Orbit to Ground-level

    NASA Astrophysics Data System (ADS)

    Tao, Y.; Muller, J.-P.; Willner, K.; Morley, J.; Sprinks, J.; Traxler, C.; Paar, G.

    2014-04-01

    This paper presents a wide range of research and processing results in the area of multi-resolution orbital data co-registration, multiresolution ground 3D reconstruction, and orbit-to-ground data fusion, achieved within the EU-FP7 PRoVisG and PRoViDE project. We focus on three NASA rover missions, MER-A, MER-B, and MSL, to provide examples of automated methods for producing coregistered, multi-resolution 3D products. We highlight the mis-registration discovered between current HiRISE to HRSC datasets, CTX to HRSC and HiRISE to CTX co- results, wide baseline stereo reconstruction results of rover imagery, ground-to-orbit coregistration, i.e. reconstructed wide baseline ground ORI and HiRISE ORI co-registration, and extensive exploitation of the coregistered datasets in visualisation and interactive web-GIS.

  14. Mapping Venus: Modeling the Magellan Mission.

    ERIC Educational Resources Information Center

    Richardson, Doug

    1997-01-01

    Provides details of an activity designed to help students understand the relationship between astronomy and geology. Applies concepts of space research and map-making technology to the construction of a topographic map of a simulated section of Venus. (DDR)

  15. An Update of the Ground Testing of the Li-ion Batteries in Support of JPL's 2003 Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Ratnakumar, B. V.; Ewell, R. C.; Whitcanack, L. D.; Surampudi, S.; Puglia, F.; Gitzendanner, R.

    2006-01-01

    In early 2004, JPL successfully landed two Rovers, named Spirit and Opportunity, on the surface of Mars after traveling > 300 million miles over a 6-7 month period. In order to operate for extended duration (>9 months), both Rovers are equipped with rechargeable Lithium-ion batteries, which have enabled operation for over 854 and 834 Sols of operation, respectively, to date. Given that the batteries were required to support the mission for 90 Sols of operation by design, it is significant that the batteries have demonstrated over a nine fold increase in life over mission objectives. In addition to supporting the surface operations in conjunction with a triple-junction deployable solar arrays, the batteries were designed to aid in the launch and the EDL pyros, and allow for anomalies during cruise. In summary, the requirements of the Lithium-ion battery include the ability to provide power at least 90 sols on the surface of Mars, operate over a wide temperature range (-20 C to +30 C), withstand long storage periods (e.g., cruise period), operate in an inverted orientation, and support high current pulses (e.g., firing pyro events). In order to determine the viability of meeting these requirements, ground testing was performed on a Rover Battery Assembly Unit (RBAU), consisting of two 8-cell 10 Ah lithium-ion batteries connected in parallel. The RBAU upon which the performance testing was performed is nearly identical to the batteries incorporated into the two Rovers currently on Mars. The testing includes, (a) performing initial characterization tests (discharge capacity at different temperatures), (b) simulating the launch conditions, (c) simulating the cruise phase conditions (including trajectory correction maneuvers), (d) simulating the entry, decent, and landing (EDL) pulse load profile (required to support the pyros) (e) simulating the Mars surface operation mission simulation conditions, as well as, (f) assessing capacity loss and impedance characteristics as

  16. Field trial of a dual-wavelength fluorescent emission (L.I.F.E.) instrument and the Magma White rover during the MARS2013 Mars analog mission.

    PubMed

    Groemer, Gernot; Sattler, Birgit; Weisleitner, Klemens; Hunger, Lars; Kohstall, Christoph; Frisch, Albert; Józefowicz, Mateusz; Meszyński, Sebastian; Storrie-Lombardi, Michael; Bothe, Claudia; Boyd, Andrea; Dinkelaker, Aline; Dissertori, Markus; Fasching, David; Fischer, Monika; Föger, Daniel; Foresta, Luca; Frischauf, Norbert; Fritsch, Lukas; Fuchs, Harald; Gautsch, Christoph; Gerard, Stephan; Goetzloff, Linda; Gołebiowska, Izabella; Gorur, Paavan; Groemer, Gerhard; Groll, Petra; Haider, Christian; Haider, Olivia; Hauth, Eva; Hauth, Stefan; Hettrich, Sebastian; Jais, Wolfgang; Jones, Natalie; Taj-Eddine, Kamal; Karl, Alexander; Kauerhoff, Tilo; Khan, Muhammad Shadab; Kjeldsen, Andreas; Klauck, Jan; Losiak, Anna; Luger, Markus; Luger, Thomas; Luger, Ulrich; McArthur, Jane; Moser, Linda; Neuner, Julia; Orgel, Csilla; Ori, Gian Gabriele; Paternesi, Roberta; Peschier, Jarno; Pfeil, Isabella; Prock, Silvia; Radinger, Josef; Ragonig, Christoph; Ramirez, Barbara; Ramo, Wissam; Rampey, Mike; Sams, Arnold; Sams, Elisabeth; Sams, Sebastian; Sandu, Oana; Sans, Alejandra; Sansone, Petra; Scheer, Daniela; Schildhammer, Daniel; Scornet, Quentin; Sejkora, Nina; Soucek, Alexander; Stadler, Andrea; Stummer, Florian; Stumptner, Willibald; Taraba, Michael; Tlustos, Reinhard; Toferer, Ernst; Turetschek, Thomas; Winter, Egon; Zanella-Kux, Katja

    2014-05-01

    Abstract We have developed a portable dual-wavelength laser fluorescence spectrometer as part of a multi-instrument optical probe to characterize mineral, organic, and microbial species in extreme environments. Operating at 405 and 532 nm, the instrument was originally designed for use by human explorers to produce a laser-induced fluorescence emission (L.I.F.E.) spectral database of the mineral and organic molecules found in the microbial communities of Earth's cryosphere. Recently, our team had the opportunity to explore the strengths and limitations of the instrument when it was deployed on a remote-controlled Mars analog rover. In February 2013, the instrument was deployed on board the Magma White rover platform during the MARS2013 Mars analog field mission in the Kess Kess formation near Erfoud, Morocco. During these tests, we followed tele-science work flows pertinent to Mars surface missions in a simulated spaceflight environment. We report on the L.I.F.E. instrument setup, data processing, and performance during field trials. A pilot postmission laboratory analysis determined that rock samples acquired during the field mission exhibited a fluorescence signal from the Sun-exposed side characteristic of chlorophyll a following excitation at 405 nm. A weak fluorescence response to excitation at 532 nm may have originated from another microbial photosynthetic pigment, phycoerythrin, but final assignment awaits development of a comprehensive database of mineral and organic fluorescence spectra. No chlorophyll fluorescence signal was detected from the shaded underside of the samples.

  17. Mission opportunity maps for rendezvous with earth-crossing asteroids

    NASA Technical Reports Server (NTRS)

    Yen, C.-W. L.

    1984-01-01

    Rendezvous missions for earth-crossing asteroids are of interest to NASA, for scientific purposes as well as for technological applications and ecological implications. To provide a comprehensive data base for planners of such missions, a mission opportunity map (MOM) has been created for eight relatively easy-to-access asteroids. A MOM presents such mission data as launch dates, flight times, and launch and postlaunch delta-V requirements for all useful mission opportunities. The merits of a MOM are: (1) searches for all useful mission opportunities are completed in the process of generating a MOM, and (2) a clear view of good and bad opportunities, the extent of performance variations, and the repeatability of the missions.

  18. Mission opportunity maps for rendezvous with earth-crossing asteroids

    NASA Technical Reports Server (NTRS)

    Yen, Chen-Wan L.

    1989-01-01

    Rendezvous missions to earth-crossing asteroids are of interest to NASA, for scientific purposes as well as for technological applications and ecological implications. To provide a comprehensive data base for planners of such missions, a mission opportunity map (MOM) has been created for eight relatively easy-to-access asteroids. A MOM presents such mission data as launch dates, flight times, and launch and postlaunch delta V requirements for all useful mission opportunities. The merits of a MOM are: (1) searches for all useful mission oportunities are completed in the process of generating a MOM, and (2) a MOM provides a clear view of good and bad opportunities, the extent of performance variations, and the repeatability of the missions.

  19. Rover Wheel Sizes (Isometric)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Mars rovers keep getting bigger. This photo provides a comparison of the wheel sizes for three generations of them. The first rover on Mars was Sojourner, on the Mars Pathfinder mission launched in 1996. It was small and didn't go far. The Mars Exploration Rovers Spirit and Opportunity, launched in 2003, are bigger and have driven many times farther than expected. The Mars Science Laboratory, in development for a 200 launch, represents another leap in capability. It will carry its onboard chemistry laboratory long distances.

    NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, built Sojourner, Spirit and Opportunity, and is building the Mars Science Laboratory. It has managed these missions for the NASA Science Mission Directorate, Washington.

  20. A lunar L2-Farside exploration and science mission concept with the Orion Multi-Purpose Crew Vehicle and a teleoperated lander/rover

    NASA Astrophysics Data System (ADS)

    Burns, Jack O.; Kring, David A.; Hopkins, Joshua B.; Norris, Scott; Lazio, T. Joseph W.; Kasper, Justin

    2013-07-01

    A novel concept is presented in this paper for a human mission to the lunar L2 (Lagrange) point that would be a proving ground for future exploration missions to deep space while also overseeing scientifically important investigations. In an L2 halo orbit above the lunar farside, the astronauts aboard the Orion Crew Vehicle would travel 15% farther from Earth than did the Apollo astronauts and spend almost three times longer in deep space. Such a mission would serve as a first step beyond low Earth orbit and prove out operational spaceflight capabilities such as life support, communication, high speed re-entry, and radiation protection prior to more difficult human exploration missions. On this proposed mission, the crew would teleoperate landers/rovers on the unexplored lunar farside, which would obtain samples from the geologically interesting farside and deploy a low radio frequency telescope. Sampling the South Pole-Aitken basin, one of the oldest impact basins in the solar system, is a key science objective of the 2011 Planetary Science Decadal Survey. Observations at low radio frequencies to track the effects of the Universe's first stars/galaxies on the intergalactic medium are a priority of the 2010 Astronomy and Astrophysics Decadal Survey. Such telerobotic oversight would also demonstrate capability for human and robotic cooperation on future, more complex deep space missions such as exploring Mars.

  1. Mars Rover RTG Study

    SciTech Connect

    Schock, Alfred

    1989-11-27

    This report summarizes the results of a Radioisotope Thermoelectric Generator (RTG) design study conducted by Fairchild Space Company at the direction of the U.S. Department of Energy's Office of Special Applications, in support of the Mars Rover and Sample Return mission under investigation at NASA's Jet Propulsion Laboratory. Presented at the 40th Congress of the IAF, Oct. 7-13, 1989 in Torremolinos, Malaga-Spain. The paper describes the design and analysis of Radioisotope Thermoelectric Generators (RTGs) for powering the Mars Rover vehicle, which is a critical element of the unmanned Mars Rover and Sample Return mission (MRSR). The RTG design study was conducted by Fairchild Space for the U.S. DOE in support of the JPL MRSR Project. The paper briefly describes a reference mission scenario, an illustrative Rover design and activity pattern on Mars, and its power system requirements and environmental constraints, including the RTG cooling requirements during transit to Mars. It summarizes the baseline RTG's mass breakdown, and presents a detailed description of its thermal, thermoelectric, and electrical analysis. The results presented show the RTG performance achievable with current technology, and the performance improvements that would be achievable with various technology developments. It provides a basis for selecting the optimum strategy for meeting the Mars Rover design goals with minimal programmatic risk and cost. Cross Reference CID #7135 dated 10/1989. There is a duplicate copy. This document is not relevant to the OSTI Library. Do not send.

  2. A Lunar L2-Farside Exploration and Science Mission Concept with the ORion Multi-Purpose Crew Vehicle and a Teleoperated Lander/Rover

    NASA Technical Reports Server (NTRS)

    Burns, Jack O.; Kring, David; Norris, Scott; Hopkins, Josh; Lazio, Joseph; Kasper, Justin

    2012-01-01

    A novel concept is presented in this paper for a human mission to the lunar L2 (Lagrange) point that would be a proving ground for future exploration missions to deep space while also overseeing scientifically important investigations. In an L2 halo orbit above the lunar farside, the astronauts would travel 15% farther from Earth than did the Apollo astronauts and spend almost three times longer in deep space. Such missions would validate the Orion MPCV's life support systems, would demonstrate the high-speed re-entry capability needed for return from deep space, and would measure astronauts' radiation dose from cosmic rays and solar flares to verify that Orion would provide sufficient protection, as it is designed to do. On this proposed mission, the astronauts would teleoperate landers and rovers on the unexplored lunar farside, which would obtain samples from the geologically interesting farside and deploy a low radio frequency telescope. Sampling the South Pole-Aitkin basin (one of the oldest impact basins in the solar system) is a key science objective of the 2011 Planetary Science Decadal Survey. Observations of the Universe's first stars/galaxies at low radio frequencies are a priority of the 2010 Astronomy & Astrophysics Decadal Survey. Such telerobotic oversight would also demonstrate capability for human and robotic cooperation on future, more complex deep space missions.

  3. The Magellan Venus radar mapping mission

    NASA Astrophysics Data System (ADS)

    Saunders, R. S.; Pettengill, G. H.; Arvidson, R. E.; Sjogren, W. L.; Johnson, W. T. K.; Pieri, L.

    1990-06-01

    The NASA Magellan Venus Radar Mapper spacecraft, which will be placed into orbit around Venus on August 10, 1990, is described and its mission is discussed. The orbiter's 12-cm wavelength, multimode radar system is examined and the applications of its modes are addressed. In the SAR mode, it can image most of the Venus surface at a resolution of better than 300 m, approaching 120 m over more than half the planet. In the altimeter mode, the radar will determine topographic relief to a vertical accuracy of better than 50 m averaged over a surface resolution cell approximately 10 km in diameter. In the radiometer mode, the radar receiver can determine the surface radio emission brightness temperature with an absolute accuracy of 20 K, at a resolution of 2 K. The nature of the data products and the archiving plans are also considered.

  4. Rover tracks

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Tracks made by the Sojourner rover are visible in this image, taken by one of the cameras aboard Sojourner on Sol 3. The tracks represent the rover maneuvering towards the rock dubbed 'Barnacle Bill.' The rover, having exited the lander via the rear ramp, first traveled towards the right portion of the image, and then moved forward towards the left where Barnacle Bill sits. The fact that the rover was making defined tracks indicates that the soil is made up of particles on a micron scale.

    Mars Pathfinder was developed and managed by the Jet Propulsion Laboratory (JPL) for the National Aeronautics and Space Administration.

  5. Field trial of a dual-wavelength fluorescent emission (L.I.F.E.) instrument and the Magma White rover during the MARS2013 Mars analog mission.

    PubMed

    Groemer, Gernot; Sattler, Birgit; Weisleitner, Klemens; Hunger, Lars; Kohstall, Christoph; Frisch, Albert; Józefowicz, Mateusz; Meszyński, Sebastian; Storrie-Lombardi, Michael; Bothe, Claudia; Boyd, Andrea; Dinkelaker, Aline; Dissertori, Markus; Fasching, David; Fischer, Monika; Föger, Daniel; Foresta, Luca; Frischauf, Norbert; Fritsch, Lukas; Fuchs, Harald; Gautsch, Christoph; Gerard, Stephan; Goetzloff, Linda; Gołebiowska, Izabella; Gorur, Paavan; Groemer, Gerhard; Groll, Petra; Haider, Christian; Haider, Olivia; Hauth, Eva; Hauth, Stefan; Hettrich, Sebastian; Jais, Wolfgang; Jones, Natalie; Taj-Eddine, Kamal; Karl, Alexander; Kauerhoff, Tilo; Khan, Muhammad Shadab; Kjeldsen, Andreas; Klauck, Jan; Losiak, Anna; Luger, Markus; Luger, Thomas; Luger, Ulrich; McArthur, Jane; Moser, Linda; Neuner, Julia; Orgel, Csilla; Ori, Gian Gabriele; Paternesi, Roberta; Peschier, Jarno; Pfeil, Isabella; Prock, Silvia; Radinger, Josef; Ragonig, Christoph; Ramirez, Barbara; Ramo, Wissam; Rampey, Mike; Sams, Arnold; Sams, Elisabeth; Sams, Sebastian; Sandu, Oana; Sans, Alejandra; Sansone, Petra; Scheer, Daniela; Schildhammer, Daniel; Scornet, Quentin; Sejkora, Nina; Soucek, Alexander; Stadler, Andrea; Stummer, Florian; Stumptner, Willibald; Taraba, Michael; Tlustos, Reinhard; Toferer, Ernst; Turetschek, Thomas; Winter, Egon; Zanella-Kux, Katja

    2014-05-01

    Abstract We have developed a portable dual-wavelength laser fluorescence spectrometer as part of a multi-instrument optical probe to characterize mineral, organic, and microbial species in extreme environments. Operating at 405 and 532 nm, the instrument was originally designed for use by human explorers to produce a laser-induced fluorescence emission (L.I.F.E.) spectral database of the mineral and organic molecules found in the microbial communities of Earth's cryosphere. Recently, our team had the opportunity to explore the strengths and limitations of the instrument when it was deployed on a remote-controlled Mars analog rover. In February 2013, the instrument was deployed on board the Magma White rover platform during the MARS2013 Mars analog field mission in the Kess Kess formation near Erfoud, Morocco. During these tests, we followed tele-science work flows pertinent to Mars surface missions in a simulated spaceflight environment. We report on the L.I.F.E. instrument setup, data processing, and performance during field trials. A pilot postmission laboratory analysis determined that rock samples acquired during the field mission exhibited a fluorescence signal from the Sun-exposed side characteristic of chlorophyll a following excitation at 405 nm. A weak fluorescence response to excitation at 532 nm may have originated from another microbial photosynthetic pigment, phycoerythrin, but final assignment awaits development of a comprehensive database of mineral and organic fluorescence spectra. No chlorophyll fluorescence signal was detected from the shaded underside of the samples. PMID:24823800

  6. Arusha Rover Deployable Medical Workstation

    NASA Technical Reports Server (NTRS)

    Boswell, Tyrone; Hopson, Sonya; Marzette, Russell; Monroe, Gilena; Mustafa, Ruqayyah

    2014-01-01

    The NSBE Arusha rover concept offers a means of human transport and habitation during long-term exploration missions on the moon. This conceptual rover calls for the availability of medical supplies and equipment for crew members in order to aid in mission success. This paper addresses the need for a dedicated medical work station aboard the Arusha rover. The project team investigated multiple options for implementing a feasible deployable station to address both the medical and workstation layout needs of the rover and crew. Based on layout specifications and medical workstation requirements, the team has proposed a deployable workstation concept that can be accommodated within the volumetric constraints of the Arusha rover spacecraft

  7. Size Comparison: Three Generations of Mars Rovers

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Full-scale models of three generations of NASA Mars rovers show the increase in size from the Sojourner rover of the Mars Pathfinder project that landed on Mars in 1997 (center), to the twin Mars Exploration Rovers Spirit and Opportunity that landed in 2004 (left), to the Mars Science Laboratory rover for a mission to land in 2010 (right).

    The Mars Science Laboratory rover is about 9 feet wide, 10 feet long (not counting its robotic arm) and 7 feet tall.

    This image was taken in May 2008 at NASA's Jet Propulsion Laboratory, Pasadena, Calif., which has built the real Mars rovers and managed the rover missions for NASA's Science Mission Directorate, Washington. JPL is a division of the California Institute of Technology.

  8. (abstract) Mars Global Surveyor: A Global Mapping Mission

    NASA Technical Reports Server (NTRS)

    Albee, Arden L.; Palluconi, Frank D.

    1995-01-01

    The Mars Global Surveyor Mission will launch a single spacecraft to Mars in November 1996. After arrival at the planet in September 1997 aerobraking will be used to lower the spacecraft into a low, sun-synchronous, polar-mapping orbit over several months. Early in 1998 mapping observations will begin and continue for a Mars year (687 days). Following completion of this first Mars year of mapping the spacecraft will continue to act as a relay orbiter for an additional three Earth years. The five instruments carried involve magnetometry, surface and atmosphere imaging, atmospheric sounding, laser altimetry, gravity and thermal emission spectroscopy. In addition, the spacecraft carries a Mars relay receiver/transmitter which will operate over the entire five year orbital mission ending in January of 2003. The Mars Global Surveyor mission is intended to accomplish a portion of the scientific objectives of the Mars Observer mission which was lost in 1993 three days before entering Mars orbit. The instrumentation to be used for the magnetometers, cameras, laser altimeter, emission spectrometer and radio science are very nearly the same as those carried by Mars Observer. The spacecraft design will be new but will use spare equipment from Mars Observer and has a mass about two and one-half time smaller. All experiments will be controlled remotely from their investigators home installation. The long planned period of observation supports the mission's global and seasonal objectives.

  9. Multi-resolution mapping using surface, descent and orbit images

    NASA Technical Reports Server (NTRS)

    Olson, C.; Matthies, L.; Xiong, Y.; Li, R.; Ma, F.

    2001-01-01

    Our objective is to produce high-accuracy maps of the terrain elevation at landing sites on planetary bodies through the use of all available image data. These technologies are important for performing rover navigation in future space missions and the maps provide a tool for coordinating rovers in a robotic colony.

  10. Rover wheel & tracks - color

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This view from the Sojourner rover's rear color camera shows wheel tracks in the orange-red martian soil. One of the rover's cleated wheels is visible at left.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech).

  11. Mars Rover Missions and Science Education: A Decade of Education and Public Outreach Using the Mars Exploration Rover Mission at the New Mexico Museum of Natural History and Science

    NASA Astrophysics Data System (ADS)

    Aubele, J. C.; Crumpler, L. S.

    2014-07-01

    New Mexico Museum of Natural History & Science exhibits and educational programming related to the MER mission reached over two million museum visitors through exhibits and over 15,000 participants in targeted educational programs.

  12. Spirit Mars Rover Mission to the Columbia Hills, Gusev Crater: Mission overview and selected results from the Cumberland Ridge to Home Plate

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.; Ruff, S. W.; Morris, R. V.; Ming, D. W.; Crumpler, L. S.; Yen, A. S.; Squyres, S. W.; Sullivan, R. J.; Bell, J. F.; Cabrol, N. A.; Clark, B. C.; Farrand, W. H.; Gellert, R.; Greenberger, R.; Grant, J. A.; Guinness, E. A.; Herkenhoff, K. E.; Hurowitz, J. A.; Johnson, J. R.; Klingelhöfer, G.; Lewis, K. W.; Li, R.; McCoy, T. J.; Moersch, J.; McSween, H. Y.; Murchie, S. L.; Schmidt, M.; Schröder, C.; Wang, A.; Wiseman, S.; Madsen, M. B.; Goetz, W.; McLennan, S. M.

    2008-11-01

    This paper summarizes the Spirit rover operations in the Columbia Hills of Gusev Crater from sols 513 to 1476 and provides an overview of selected findings that focus on synergistic use of the Athena Payload and comparisons to orbital data. Results include discovery of outcrops (Voltaire) on Husband Hill that are interpreted to be altered impact melt deposits that incorporated local materials during emplacement. Evidence for extensive volcanic activity and aqueous alteration in the Inner Basin is also detailed, including discovery and characterization of accretionary lapilli and formation of sulfate, silica, and hematite-rich deposits. Use of Spirit's data to understand the range of spectral signatures observed over the Columbia Hills by the Mars Reconnaissance Orbiter's Compact Reconnaissance Imaging Spectrometer (CRISM) hyperspectral imager (0.4-4 μm) is summarized. We show that CRISM spectra are controlled by the proportion of ferric-rich dust to ferrous-bearing igneous minerals exposed in ripples and other wind-blown deposits. The evidence for aqueous alteration derived from Spirit's data is associated with outcrops that are too small to be detected from orbital observations or with materials exposed from the shallow subsurface during rover activities. Although orbital observations show many other locations on Mars with evidence for minerals formed or altered in an aqueous environment, Spirit's data imply that the older crust of Mars has been altered even more extensively than evident from orbital data. This result greatly increases the potential that the surface or shallow subsurface was once a habitable regime.

  13. United States planetary rover status: 1989

    NASA Technical Reports Server (NTRS)

    Pivirotto, Donna L. S.; Dias, William C.

    1990-01-01

    A spectrum of concepts for planetary rovers and rover missions, is covered. Rovers studied range from tiny micro rovers to large and highly automated vehicles capable of traveling hundreds of kilometers and performing complex tasks. Rover concepts are addressed both for the Moon and Mars, including a Lunar/Mars common rover capable of supporting either program with relatively small modifications. Mission requirements considered include both Science and Human Exploration. Studies include a range of autonomy in rovers, from interactive teleoperated systems to those requiring and onboard System Executive making very high level decisions. Both high and low technology rover options are addressed. Subsystems are described for a representative selection of these rovers, including: Mobility, Sample Acquisition, Science, Vehicle Control, Thermal Control, Local Navigation, Computation and Communications. System descriptions of rover concepts include diagrams, technology levels, system characteristics, and performance measurement in terms of distance covered, samples collected, and area surveyed for specific representative missions. Rover development schedules and costs are addressed for Lunar and Mars exploration initiatives.

  14. Geoscientific Mapping of Vesta by the Dawn Mission

    NASA Technical Reports Server (NTRS)

    Jaumann, R.; Pieters, C. M.; Neukum, G.; Mottola, S.; DeSanctis, M. C.; Russell, C. T.; Raymond, C. A.; McSween, H. Y.; Roatsch, T.; Nathues, A.; Preusker, F.; Scholten, F.; Blewett, D.; Buczkowski, D. L.; Hiesinger, H.; McCord, T.; Rayman, M.; Schenk, P.; Stephan, K.; Turrini, D.; Yingst, R. A.

    2011-01-01

    The geologic objectives of the Dawn Mission are to derive Vesta's shape, map the surface geology, understand the geological context and contribute to the determination of the asteroids' origin and evolution. Geomorphology and distribution of surface features will provide evidence for impact cratering, tectonic activity, volcanism, and regolith processes. Spectral measurements of the surface will provide evidence of the compositional characteristics of geological units. Age information, as derived from crater size-frequency distributions, provides the stratigraphic context for the structural and compositional mapping results into the stratigraphic context and thusrevealing the geologic history of Vesta.

  15. Mars Rover RTG Study

    SciTech Connect

    Schock, Alfred

    1989-10-01

    Presented at the 40th Congress of the IAF, Oct. 7-13, 1989 in Torremolinos, Malaga-Spain. The paper describes the design and analysis of Radioisotope Thermoelectric Generators (RTGs) for powering the Mars Rover vehicle, which is a critical element of the unmanned Mars Rover and Sample Return mission (MRSR). The RTG design study was conducted by Fairchild Space for the U.S. DOE in support of the JPL MRSR Project. The paper briefly describes a reference mission scenario, an illustrative Rover design and activity pattern on Mars, and its power system requirements and environmental constraints, including the RTG cooling requirements during transit to Mars. It summarizes the baseline RTG's mass breakdown, and presents a detailed description of its thermal, thermoelectric, and electrical analysis. The results presented show the RTG performance achievable with current technology, and the performance improvements that would be achievable with various technology developments. It provides a basis for selecting the optimum strategy for meeting the Mars Rover design goals with minimal programmatic risk and cost. There is a duplicate copy and three copies in the file.

  16. Mars dust mineralogy and structure obtained by a simple Mars rover instrumentation development - suggestions for future missions.

    NASA Astrophysics Data System (ADS)

    Nørnberg, Per

    2016-04-01

    Selective spectroscopic observations of the dust on the surface of Mars have neither been possible from Earth nor from orbiters as ESA, Mars Express or NASA, MRO. Even in surface soil sampling detailed chemical or mineralogical information about Martian dust cannot be separated from the soil. Remote spectroscopic data contain a mixture of mineralogical components which do not provide any specific information on the dust. Information about chemical composition and mineralogy of the Martian airborne dust was derived from APXS and Mössbauer data from the MER rovers by Goetz et al. (2005). This paper concluded that magnetite and not maghemite is the magnetic phase of the dust, and also that the presence of olivine indicates that liquid water did not play a dominant role in the formation of atmospheric dust. The dust is most likely formed by mechanical comminution comparable to the fine fractions of dust in dune sand on Earth (Nørnberg, P. 2002). Our Mars dust model operates with particles (2-3 μm) that inside consists of primary minerals which are either oxidized down to tenths of nm below the surface or have captured electrically charged nanoparticles of hematite on the surface giving the dust its red colour. Experiments done by Merrison, J.P. et al. ( 2010) showed that mechanical tumbling (abrasion)of a mixture of 10g quartz and 1 g magnetite in a dry process in a Martian atmosphere transformed magnetite to hematite. This experiment supports the dry comminution process indicated by Goetz et al (2005). The XRD analyses on the NASA, MSL are done on a mixture of soil material in which the dust accounts for only a minor part. However, if dust could have been captured separately from the atmosphere e.g. by magnets on the MSL and taken off by e.g. tape or another mechanism that could be transferred into the target holder of the XRD diffractometer on the rover, it could by Rietveld analyses have provided valuable quantitative information on the mineral content of the

  17. Dust Aerosol, Clouds, and the Atmospheric Optical Depth Record over 5 Mars Years of the Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Lemmon, Mark T.; Wolff, Michael J.; Bell, James F., III; Smith, Michael D.; Cantor, Bruce A.; Smith, Peter H.

    2014-01-01

    Dust aerosol plays a fundamental role in the behavior and evolution of the Martian atmosphere. The first five Mars years of Mars Exploration Rover data provide an unprecedented record of the dust load at two sites. This record is useful for characterization of the atmosphere at the sites and as ground truth for orbital observations. Atmospheric extinction optical depths have been derived from solar images after calibration and correction for time-varying dust that has accumulated on the camera windows. The record includes local, regional, and globally extensive dust storms. Comparison with contemporaneous thermal infrared data suggests significant variation in the size of the dust aerosols, with a 1 micrometer effective radius during northern summer and a 2 micrometer effective radius at the onset of a dust lifting event. The solar longitude (L (sub s)) 20-136 degrees period is also characterized by the presence of cirriform clouds at the Opportunity site, especially near LS = 50 and 115 degrees. In addition to water ice clouds, a water ice haze may also be present, and carbon dioxide clouds may be present early in the season. Variations in dust opacity are important to the energy balance of each site, and work with seasonal variations in insolation to control dust devil frequency at the Spirit site.

  18. Mars Rover RTG Study

    SciTech Connect

    Schock, Alfred

    1989-08-25

    This report summarizes the results of a Radioisotope Thermoelectric Generator (RTG) design study conducted by Fairchild Space Company at the direction of the U.S. Department of Energy's Office of SpecialApplications, in suppport of the Mars Rover and Sample Return mission under investigation at NASA's Jet Propulsion Laboratory. The report is a rearranged, updated, and significantly expanded amalgam of three interrelated papers presented at the 24th Intersocity Energy Conversion Engineering Conference (IECEC) at Arlington, Virginia, on August 10, 1989.

  19. Anomalistic Disturbance Torques during the Entry Phase of the Mars Exploration Rover Missions: A Telemetry and Mars-Surface Investigation

    NASA Technical Reports Server (NTRS)

    Tolson, Robert H.; Willcockson, William H.; Desai, Prasun N.; Thomas, Paige

    2006-01-01

    Shortly after landing on Mars, post-flight analysis of the "Spirit" entry data suggested that the vehicle experienced large, anomalistic oscillations in angle-of-attack starting at about M=6. Similar analysis for "Opportunity " found even larger oscillations starting immediately after maximum dynamic pressure at M=14. Where angles-of-attack of 1-2 degrees were expected from maximum dynamic pressure to drogue deployment, the reconstructions suggested 4 to 9 degrees. The next Mars lander, 2007 Phoenix project, was concerned enough to recommend further exploration of the anomalies. Detailed analysis of "Opportunity" data found significant anomalies in the hypersonic aerodynamic torques. The analysis showed that these torques were essentially fixed in the spinning vehicle. Nearly a year after landing, the "Oportunity" rover took pictures of its aeroshell on the surface, which showed that portions of the aeroshell thermal blanket assembly still remained. This blanket assembly was supposed to burn off very early in the entry. An analysis of the aeroshell photographs led to an estimate of the aerodynamic torques that the remnants could have produced. A comparison of two estimates of the aerodynamic torque perturbations (one extracted from telemetry data and the other from Mars surface photographs) showed exceptional agreement. Trajectory simulations using a simple data derived torque perturbation model provided rigid body motions similar to that observed during the "Opportunity" entry. Therefore, the case of the anomalistic attitude behavior for the "Opportunity" EDL is now considered closed and a suggestion is put forth that a similar event occurred for the "Spirit" entry as well.

  20. Modeling and matching of landmarks for automation of Mars Rover localization

    NASA Astrophysics Data System (ADS)

    Wang, Jue

    The Mars Exploration Rover (MER) mission, begun in January 2004, has been extremely successful. However, decision-making for many operation tasks of the current MER mission and the 1997 Mars Pathfinder mission is performed on Earth through a predominantly manual, time-consuming process. Unmanned planetary rover navigation is ideally expected to reduce rover idle time, diminish the need for entering safe-mode, and dynamically handle opportunistic science events without required communication to Earth. Successful automation of rover navigation and localization during the extraterrestrial exploration requires that accurate position and attitude information can be received by a rover and that the rover has the support of simultaneous localization and mapping. An integrated approach with Bundle Adjustment (BA) and Visual Odometry (VO) can efficiently refine the rover position. However, during the MER mission, BA is done manually because of the difficulty in the automation of the cross-sitetie points selection. This dissertation proposes an automatic approach to select cross-site tie points from multiple rover sites based on the methods of landmark extraction, landmark modeling, and landmark matching. The first step in this approach is that important landmarks such as craters and rocks are defined. Methods of automatic feature extraction and landmark modeling are then introduced. Complex models with orientation angles and simple models without those angles are compared. The results have shown that simple models can provide reasonably good results. Next, the sensitivity of different modeling parameters is analyzed. Based on this analysis, cross-site rocks are matched through two complementary stages: rock distribution pattern matching and rock model matching. In addition, a preliminary experiment on orbital and ground landmark matching is also briefly introduced. Finally, the reliability of the cross-site tie points selection is validated by fault detection, which

  1. What We Might Know About Gusev Crater if the Mars Exploration Rover Spirit Mission were Coupled with a Mars Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Morris, Richard V.

    2008-01-01

    The science instruments on the Mars Exploration Rover (MER) Spirit have provided an enormous amount of chemical and mineralogical data during more than 1450 sols of exploration at Gusev crater. The Moessbauer (MB) instrument identified 10 Fe-bearing phases at Gusev Crater: olivine, pyroxene, ilmenite, chromite, and magnetite as primary igneous phases and nanophase ferric oxide (npOx), goethite, hematite, a ferric sulfate, and pyrite/marcusite as secondary phases. The Miniature Thermal Emission Spectrometer (Mini-TES) identified some of these Fe-bearing phases (olivine and pyroxene), non- Fe-bearing phases (e.g., feldspar), and an amorphous high-SiO2 phase near Home Plate. Chemical data from the Alpha Particle X-Ray Spectrometer (APXS) provided the framework for rock classification, chemical weathering/alteration, and mineralogical constraints. APXS-based mineralogical constraints include normative calculations (with Fe(3+)/FeT from MB), elemental associations, and stoichiometry (e.g., 90% SiO2 implicates opalline silica). If Spirit had cached a set of representative samples and if those samples were returned to the Earth for laboratory analysis, what value is added by Mars Sample return (MSR) over and above the mineralogical and chemical data provided by MER?

  2. Heat capacity mapping mission. [satellite for earth surface temperature measurement

    NASA Technical Reports Server (NTRS)

    Price, J. C.

    1978-01-01

    A Heat Capacity Mapping Mission (HCMM), part of a series of Applications Explorers Missions, is designed to provide data on surface heating as a response to solar energy input. The data is obtained by a two channel scanning radiometer, with one channel covering the visible and near-IR band between 0.5 and 1.1 micrometers, and the other covering the thermal-IR between 10.5 and 12.5 micrometers. The temperature range covered lies between 260 and 340 K, in 0.3 deg steps, with an accuracy at 280 K of plus or minus 0.5 K. Nominal altitude is 620 km, with a ground swath 700 km wide.

  3. A new planetary mapping for future space missions

    NASA Astrophysics Data System (ADS)

    Karachevtseva, Irina; Kokhanov, Alexander; Rodionova, Janna; Zubarev, Anatoliy; Nadezhdina, Irina; Kreslavsky, Mikhail; Oberst, Jürgen

    2015-04-01

    The wide studies of Solar system, including different planetary bodies, were announced by new Russian space program. Their geodesy and cartography support provides by MIIGAiK Extraterrestrial Laboratory (http://mexlab.miigaik.ru/eng) in frames of the new project "Studies of Fundamental Geodetic Parameters and Topography of Planets and Satellites". The objects of study are satellites of the outer planets (satellites of Jupiter - Europa, Calisto and Ganymede; Saturnine satellite Enceladus), some planets (Mercury and Mars) and the satellites of the terrestrial planets - Phobos (Mars) and the Moon (Earth). The new research project, which started in 2014, will address the following important scientific and practical tasks: - Creating new three-dimensional geodetic control point networks of satellites of the outer planets using innovative photogrammetry techniques; - Determination of fundamental geodetic parameters and study size, shape, and spin parameters and to create the basic framework for research of their surfaces; - Studies of relief of planetary bodies and comparative analysis of general surface characteristics of the Moon, Mars, and Mercury, as well as studies of morphometric parameters of volcanic formations on the Moon and Mars; - Modeling of meteoritic bombardment of celestial bodies and the study of the dynamics of particle emissions caused by a meteorite impacts; - Development of geodatabase for studies of planetary bodies, including creation of object catalogues, (craters and volcanic forms, etc.), and thematic mapping using GIS technology. The significance of the project is defined both by necessity of obtaining fundamental characteristics of the Solar System bodies, and practical tasks in preparation for future Russian and international space missions to the Jupiter system (Laplace-P and JUICE), the Moon (Luna-Glob and Luna-Resource), Mars (Exo-Mars), Mercury (Bepi-Colombo), and possible mission to Phobos (project Boomerang). For cartographic support of

  4. Microbial Ecology of a Crewed Rover Traverse in the Arctic: Low Microbial Dispersal and Implications for Planetary Protection on Human Mars Missions.

    PubMed

    Schuerger, Andrew C; Lee, Pascal

    2015-06-01

    Between April 2009 and July 2011, the NASA Haughton-Mars Project (HMP) led the Northwest Passage Drive Expedition (NWPDX), a multi-staged long-distance crewed rover traverse along the Northwest Passage in the Arctic. In April 2009, the HMP Okarian rover was driven 496 km over sea ice along the Northwest Passage, from Kugluktuk to Cambridge Bay, Nunavut, Canada. During the traverse, crew members collected samples from within the rover and from undisturbed snow-covered surfaces around the rover at three locations. The rover samples and snow samples were stored at subzero conditions (-20°C to -1°C) until processed for microbial diversity in labs at the NASA Kennedy Space Center, Florida. The objective was to determine the extent of microbial dispersal away from the rover and onto undisturbed snow. Interior surfaces of the rover were found to be associated with a wide range of bacteria (69 unique taxa) and fungi (16 unique taxa). In contrast, snow samples from the upwind, downwind, uptrack, and downtrack sample sites exterior to the rover were negative for both bacteria and fungi except for two colony-forming units (cfus) recovered from one downwind (1 cfu; site A4) and one uptrack (1 cfu; site B6) sample location. The fungus, Aspergillus fumigatus (GenBank JX517279), and closely related bacteria in the genus Brevibacillus were recovered from both snow (B. agri, GenBank JX517278) and interior rover surfaces. However, it is unknown whether the microorganisms were deposited onto snow surfaces at the time of sample collection (i.e., from the clothing or skin of the human operator) or via airborne dispersal from the rover during the 12-18 h layovers at the sites prior to collection. Results support the conclusion that a crewed rover traveling over previously undisturbed terrain may not significantly contaminate the local terrain via airborne dispersal of propagules from the vehicle. PMID:26060984

  5. Microbial Ecology of a Crewed Rover Traverse in the Arctic: Low Microbial Dispersal and Implications for Planetary Protection on Human Mars Missions.

    PubMed

    Schuerger, Andrew C; Lee, Pascal

    2015-06-01

    Between April 2009 and July 2011, the NASA Haughton-Mars Project (HMP) led the Northwest Passage Drive Expedition (NWPDX), a multi-staged long-distance crewed rover traverse along the Northwest Passage in the Arctic. In April 2009, the HMP Okarian rover was driven 496 km over sea ice along the Northwest Passage, from Kugluktuk to Cambridge Bay, Nunavut, Canada. During the traverse, crew members collected samples from within the rover and from undisturbed snow-covered surfaces around the rover at three locations. The rover samples and snow samples were stored at subzero conditions (-20°C to -1°C) until processed for microbial diversity in labs at the NASA Kennedy Space Center, Florida. The objective was to determine the extent of microbial dispersal away from the rover and onto undisturbed snow. Interior surfaces of the rover were found to be associated with a wide range of bacteria (69 unique taxa) and fungi (16 unique taxa). In contrast, snow samples from the upwind, downwind, uptrack, and downtrack sample sites exterior to the rover were negative for both bacteria and fungi except for two colony-forming units (cfus) recovered from one downwind (1 cfu; site A4) and one uptrack (1 cfu; site B6) sample location. The fungus, Aspergillus fumigatus (GenBank JX517279), and closely related bacteria in the genus Brevibacillus were recovered from both snow (B. agri, GenBank JX517278) and interior rover surfaces. However, it is unknown whether the microorganisms were deposited onto snow surfaces at the time of sample collection (i.e., from the clothing or skin of the human operator) or via airborne dispersal from the rover during the 12-18 h layovers at the sites prior to collection. Results support the conclusion that a crewed rover traveling over previously undisturbed terrain may not significantly contaminate the local terrain via airborne dispersal of propagules from the vehicle.

  6. Ground water applications of the heat capacity mapping mission

    NASA Technical Reports Server (NTRS)

    Heilman, J. L.; Moore, D. G.

    1981-01-01

    The paper discusses the ground water portion of a hydrologic investigation of eastern South Dakota using data from the Heat Capacity Mapping Mission (HCMM) satellite. The satellite carries a two-channel radiometer (0.5-1.1 and 10.5-12.5 microns) in a sun synchronous orbit and collects data at approximately 0230 and 1330 local standard time with repeat coverage of 5 to 16 days depending on latitude. It is shown that HCMM data acquired at appropriate periods of the diurnal and annual temperature cycle can provide useful information on shallow ground water.

  7. Heat Capacity Mapping Mission investigation no. 25 (Tellus project)

    NASA Technical Reports Server (NTRS)

    Deparatesi, S. G. (Principal Investigator); Reiniger, P. (Editor)

    1982-01-01

    The TELLUS pilot project, utilizing 0.5 to 1.1 micron and 10.5 to 12.5 micron day and/or night imagery from the Heat Capacity Mapping Mission, is described. The application of remotely sensed data to synoptic evaluation of evapotranspiration and moisture in agricultural soils was considered. The influence of topography, soils, land use, and meteorology on surface temperature distribution was evaluated. Anthropogenic heat release was investigated. Test areas extended from semi-arid land in southern Italy to polders in the Netherlands, and from vine-growing hills in the Rhineland to grasslands in Buckinghamshire.

  8. Mapping Hydration with the Mars Exploration Rover (MER) Pancam Instruments: Recent Results from Opportunity at Endeavour Crater

    NASA Astrophysics Data System (ADS)

    Rice, Melissa S.; Bell, James F., III; Arvidson, Raymond E.; Farrand, William H.; Johnson, Jeffrey R.; Rice, James W.; Ruff, Steven W.; Squyres, Steven W.; Wang, Alian

    2013-04-01

    Using the Mars Exploration Rover (MER) Panoramic Camera (Pancam) instruments, we have developed a "hydration signature" for mapping H2O- and/or OH-bearing materials at Mars landing sites with multispectral visible to near-infrared (Vis-NIR) images. Pancam's 13 narrowband geology filters cover 11 unique wavelengths in the visible and near infrared (434 to 1009 nm) [1-2]. The hydration signature is based on a negative slope from 934 to 1009 nm [3] that characterizes the spectra of hydrated silica-rich rocks and soils observed by MER Spirit; this feature is likely due to the 2ν1 + ν3 H2O combination band and/or the 3νOH overtone centered near ~1000 nm, whose positions vary slightly depending on bonding to nearest-neighbor atoms [4]. The hydration signature is sensitive to many - but not all - hydrated minerals, including silica, gypsum and water ice. At Gusev Crater, the hydration signature is widespread along Spirit's traverse in the Columbia Hills, which adds to the growing body of evidence that aqueous alteration has played a significant role in the complex geologic history of this site [4]. At Meridiani Planum, the hydration signature is associated with a specific stratigraphic layer ("Smith") exposed within the walls of Victoria Crater [5], in addition to light-toned veins composed of calcium sulfate at Cape York on the rim of Endeavour Crater [6]. Recently, Opportunity has completed a traverse loop at Matijevic Hill at the southern end of Cape York and has encountered numerous small, light-toned, fracture-filling veins that may be indicative of fluid flow. Spectra of these veins are also consistent with hydrated materials, as are spectra of "Whitewater Lake" outcrops at Matijevic Hill, which may contain phyllosilicate minerals [7-8]. Here we also discuss limitations to the use of the hydration signature, which can give false detections under specific viewing geometries. For example, the Pancam calibration model assumes that the calibration target behaves as a

  9. Design issues for Mars planetary rovers

    NASA Technical Reports Server (NTRS)

    Lee, Gordon K. F.; Dejarnette, Fred R.; Walberg, Gerald D.

    1993-01-01

    The paper presents some of the design issues and vehicle requirements that need to be addressed for the Mars planetary rovers. Some of the designs currently being investigated, including the JPL rover, the Martin Marietta vehicle, and the French Space Agency's VAP project, are examined. The rover must satisfy such mission requirements as surveying the terrain, preparing the landing sites, loading and unloading components for base operations, and aiding in the recovery of in situ materials.

  10. Mare Imbrium Regolith and Rock Information Retrieved from Imaging Spectrometer and Panorama Cameras onboard the Yutu Rover of Chang'E 3 Mission

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Jin, Weidong; Yuan, Ye; Yang, Yazhou; Wang, Ziwei; Xiao, Long

    2014-11-01

    The Chang’E 3 mission successfully landed on the Mare Imbrium region on December 14, 2013 and deployed the Yutu Rover to roam near the Chang’E A Crater. Although the rover roamed just over 100 meters before its premature failure, its onboard visible and near-infrared (VisNIR) imaging spectrometer was able to collect 4 spectra at 4 different sites which are the first in-situ lunar surface spectra ever taken. The onboard panorama cameras (PCAM) also photographed large amount of surface features since the Apollo era and some images have clearly shown the lunar opposition effect. The VisNIR spectrometer spans the wavelength from 450 to 2395 nm with a step of 5 nm. By performing radiometric and photometric calibrations, the absolute reflectance are obtained and it is found that the in-situ spectra are much bighter than that of the same area measured by the M3 instrument. The in-situ spectra also have a much deeper 1 μm absorption feature than that of the M3 spectra measured remotely. We conjecture that such differences are caused by the fact that the lander’s descent engines must have blown away the top-most layers which are much more mature than the exposed underlying layers. A comparison of the continuum-removed in-situ spectra with that of the mineral spectral library gives the concentrations of major lunar rock-forming minerals including olivine, pyroxenes and plagioclase at these 4 different sites. The phase curve retrieved from the PCAM shows a strong opposition surge below 10-deg phase angle and the phase reddening effect. We attempt to retrieve the regolith physical properties using both the Hapke and Shkuratov photometric models. At a close distance the PCAM also captured high resolution images of a 4-meter across boulder at the edge of the Chang’E A Crater. Centimeter-sized bright clasts on its surface may indicate its basaltic nature. By comparing the VisNIR spectra of its nearby regoliths with that of the Apollo samples, we believe this boulder

  11. Landing site rationality scaling for subsurface sampling on Mars—Case study for ExoMars Rover-like missions

    NASA Astrophysics Data System (ADS)

    Kereszturi, Akos

    2012-11-01

    Subsurface sampling will be important in the robotic exploration of Mars in the future, and this activity requires a somewhat different approach in landing site selection than earlier, surface analysis focused missions. In this work theoretical argumentation for the selection of ideal sites is summarized, including various parameters that were defined as examples for the earlier four candidate landing sites of Mars Science Laboratory. The aim here was to compare interesting sites; the decision on the final site does not affect this work. Analyzing the theoretical background, to identify ideal locations for subsurface analysis, several factors could be identified by remote sensing, including the dust and dune coverage, the cap layer distribution as well as the location of probable important outcrops. Beyond the fact that image based information on the rock hardness on Mars is lacking, more work would be also useful to put the interesting sites into global context and to understand the role of secondary cratering in age estimation. More laboratory work would be also necessary to improve our knowledge on the extraction and preservation of organic materials under different conditions. Beyond the theoretical argumentation mentioned above, the size and accessibility of possible important shallow subsurface materials were analyzed at the four earlier candidate landing sites of Mars Science Laboratory. At the sample terrains, interesting but inaccessible, interesting and sideward accessible, and interesting and from above accessible outcrops were identified. Surveying these outcrop types at the sample terrains, the currently available datasets showed only 3-9% of exposed strata over the entire analyzed area is present at Eberswalde and Holden crater, and individual outcrops have an average diameter between 100 and 400 m there. For Gale crater and Mawrth Valles region, these parameters were 46-35% of exposed strata, with an average outcrop diameter of ˜300 m. In the case

  12. Euclid Mission: Mapping the Geometry of the Dark Universe. Mission and Consortium Status

    NASA Technical Reports Server (NTRS)

    Rhodes, Jason

    2011-01-01

    Euclid concept: (1) High-precision survey mission to map the geometry of the Dark Universe (2) Optimized for two complementary cosmological probes: (2a) Weak Gravitational Lensing (2b) Baryonic Acoustic Oscillations (2c) Additional probes: clusters, redshift space distortions, ISW (3) Full extragalactic sky survey with 1.2m telescope at L2: (3a) Imaging: (3a-1) High precision imaging at visible wavelengths (3a-2) Photometry/Imaging in the near-infrared (3b) Near Infrared Spectroscopy (4) Synergy with ground based surveys (5) Legacy science for a wide range of in astronomy

  13. Rover Sequencing and Visualization Program

    NASA Technical Reports Server (NTRS)

    Cooper, Brian; Hartman, Frank; Maxwell, Scott; Yen, Jeng; Wright, John; Balacuit, Carlos

    2005-01-01

    The Rover Sequencing and Visualization Program (RSVP) is the software tool for use in the Mars Exploration Rover (MER) mission for planning rover operations and generating command sequences for accomplishing those operations. RSVP combines three-dimensional (3D) visualization for immersive exploration of the operations area, stereoscopic image display for high-resolution examination of the downlinked imagery, and a sophisticated command-sequence editing tool for analysis and completion of the sequences. RSVP is linked with actual flight-code modules for operations rehearsal to provide feedback on the expected behavior of the rover prior to committing to a particular sequence. Playback tools allow for review of both rehearsed rover behavior and downlinked results of actual rover operations. These can be displayed simultaneously for comparison of rehearsed and actual activities for verification. The primary inputs to RSVP are downlink data products from the Operations Storage Server (OSS) and activity plans generated by the science team. The activity plans are high-level goals for the next day s activities. The downlink data products include imagery, terrain models, and telemetered engineering data on rover activities and state. The Rover Sequence Editor (RoSE) component of RSVP performs activity expansion to command sequences, command creation and editing with setting of command parameters, and viewing and management of rover resources. The HyperDrive component of RSVP performs 2D and 3D visualization of the rover s environment, graphical and animated review of rover-predicted and telemetered state, and creation and editing of command sequences related to mobility and Instrument Deployment Device (IDD) operations. Additionally, RoSE and HyperDrive together evaluate command sequences for potential violations of flight and safety rules. The products of RSVP include command sequences for uplink that are stored in the Distributed Object Manager (DOM) and predicted rover

  14. Aerokats and Rover

    NASA Astrophysics Data System (ADS)

    Bland, G.; Miles, T.; Nagchaudhuri, A.; Henry, A.; Coronado, P.; Smith, S.; Bydlowski, D.; Gaines, J.; Hartman, C.

    2015-12-01

    Two novel tools are being developed for team-based environmental and science observations suitable for use in Middle School through Undergraduate settings. Partnerships with NASA's Goddard Space Flight Center are critical for this work, and the concepts and practices are aimed at providing affordable and easy-to-field hardware to the classroom. The Advanced Earth Research Observation Kites and Atmospheric and Terrestrial Sensors (AEROKATS) system brings affordable and easy-to-field remote sensing and in-situ measurements within reach for local-scale Earth observations and data gathering. Using commercial kites, a wide variety of sensors, and a new NASA technology, AEROKATS offers a quick-to-learn method to gather airborne remote sensing and in-situ data for classroom analysis. The Remotely Operated Vehicle for Education and Research (ROVER) project introduces team building for mission operations and research, using modern technologies for exploring aquatic environments. ROVER projects use hobby-type radio control hardware and common in-water instrumentation, to highlight the numerous roles and responsibilities needed in real-world research missions, such as technology, operations, and science disciplines. NASA GSFC's partnerships have enabled the fielding of several AEROKATS and ROVER prototypes, and results suggest application of these methods is feasible and engaging.

  15. Strategic Map for Enceladus Plume Biosignature Sample Return Missions

    NASA Astrophysics Data System (ADS)

    Sherwood, Brent; Yano, Hajime

    The discovery of jets emitting salty water from the interior of Saturn’s small moon Enceladus is one of the most astounding results of the Cassini mission to date. The measured presence of organic species in the resulting plume, the finding that the jet activity is valved by tidal stretching at apochrone, and the modeled lifetime of E-ring particles, all indicate that the textbook conditions for habitability are met at Enceladus today: liquid water, biologically available elements, and source of energy, longevity of conducive conditions. Enceladus may be the best place in our solar system to search for direct evidence of biomarkers, and the plume provides a way to sample for and even return them to Earth for detailed analysis. It is straightforward to imagine a Stardust-like, fly-through, plume particle and gas collection and return mission for Enceladus. An international team (LIFE, Life Investigation For Enceladus) has dedicated itself to pursuing such a flight project. Concept engineering and evaluation indicate that the associated technical, programmatic, regulatory, and cost issues are quite unlike the Stardust precedent however, not least because of such a mission’s Category-V, Restricted Earth Return, classification. The paper presents a strategic framework that systematically integrates the cultivation of science advocacy, resolution of diverse stakeholder issues, development of verifiable and affordable technical solutions, validation of cost estimation methods, alignment with other candidate astrobiology missions, complementarity of international agency goals, and finally the identification of appropriate research and flight-mission opportunities. Resolving and using this map is essential if we are to know the astrobiological state of Enceladus in our lifetime.

  16. Rovers for Mars Polar Exploration

    NASA Technical Reports Server (NTRS)

    Stoker, Carol; DeVincenzi, Donald (Technical Monitor)

    1998-01-01

    Mobility is a generic capability needed for Mars exploration. Requirements for mobility range from those to get observations of individual rocks all the way to getting high resolution observations of regional areas. Table 1 shows the required-range of mobility to achieve various tasks. The Pathfinder mission and field experiments simulating rover missions [1, 2, 3, 4, 5] provide guidance as to rover capabilities that can reasonably be expected in the next decade. Rover mobility can be accomplished in a variety of ways, the most common being wheels or tracks and legged-walkers. Wheeled vehicles can traverse over rocks smaller than 1/2 wheel diameter, and with path planning to avoid larger rocks, can traverse terrains comparable to those seen on Mars in the Viking and Pathfinder landing sites. Slopes of 45 deg can be easily negotiated by wheeled rovers. Walking vehicles can negotiate even more complex terrain but requires computation capability to select each leg placement. Extremely complex terrain was traversed by the Nomad II walker which descended into (and most of the way out of) an active volcanic caldera (Mount Spur, AK) in 1995, although a slope failure eventually resulted in broken legs. The traverse range of a rover is limited by its science objectives, performance capabilities, and operational lifetime. The speed of rover traverse is a relative minor factor. With a different communication system, and no stops for science experiments, Sojourner could probably have traveled a kilometer. But, achieving land speed records is not a major objective of a science mission. Achieving science objectives requires targeting particular objects and studying them in detail, and the associated operational requirements will likely limit rover traverse range significantly. Traversing from target to target requires relatively few command cycles provided the traverse is over a short enough distance that it can be adequately planned. An operational goal of 100 m traverse per

  17. Integrated Thermal Control for Mars Rover

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Braun, David; Wen, Liang-Chi; Eisen, Howard J.

    1996-01-01

    The Mars Rover has been built, environmentally tested and qualified for the 1996 launch of the Pathfinder mission to Mars. The basic structure for the thermal control for the Mars Rover is the Warm Electronics Box (WEB). This consists of a thermal isolating composite structure with co-cured thermal control surfaces and an ultralightweight hydrophobic solid silica aerogel which minimizes conduction and radiation.

  18. Opportunity Mars Rover Mission: Overview and Selected Results from Leaving Purgatory Ripple to Traverses Toward Endeavour Crater

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.; Athena Team

    2010-12-01

    Opportunity has been traversing the plains of Meridiani since January 25, 2004, acquiring remote sensing and in-situ observations of soils, cobbles, and bedrock, together with atmospheric observations. This paper provides an overview of discoveries between sols 511 (July 1, 2005) and 2300 (July 13, 2010), complementing a similar paper by Squyres et al., [2006] covering results from the initial phase of the mission. Use of the Alpha Particle X-Ray Spectrometer to measure atmospheric argon shows the importance of the southern seasonal ice cap in controlling atmospheric dynamics, with inter-annual variations evident over the three Mars years of observations. The plains are partially covered by aeolian ripples produced by easterly winds during a previous epoch with enhanced Hadley cell circulation. During the current climatic regime, fine-grained particles continue to be reworked locally and trapped. Ripple surfaces are composed of basaltic sand mixed with varying amounts of dust and hematitic concretions. Cobbles examined by Opportunity include iron and stony iron meteorites and both sedimentary and basaltic impact ejecta. Hematite-rich deposits in fractures within ejecta from Concepcion crater, together with iron oxide deposits on meteorites, imply on-going aqueous alteration at low rates. Measurements of sulfate-rich rock strata within the walls of Erebus and Victoria craters provide compelling evidence of sand deposition by wind, with local reworking within ephemeral lakes. We continue to search for the lacustrine facies that would confirm or refute the hypothesis that the sands were produced in an acid-sulfate evaporitic environment. Rocks examined in the upper walls of Victoria and Endurance craters also show enrichment of Cl and a decrease in Mg and S with increasing depth. This pattern implies that regional-scale aqueous alteration took place before formation of these craters. Opportunity has been traversing toward the rim of the 20 km wide Endeavour crater

  19. Soil moisture applications of the heat capacity mapping mission

    NASA Technical Reports Server (NTRS)

    Heilman, J. L.; Moore, D. G.

    1981-01-01

    Results are presented of ground, aircraft and satellite investigations conducted to evaluate the potential of the Heat Capacity Mapping Mission (HCMM) to monitor soil moisture and the depth of shallow ground water. The investigations were carried out over eastern South Dakota to evaluate the relation between directly measured soil temperatures and water content at various stages of canopy development, aircraft thermal scanner measurements of apparent canopy temperature and the reliability of actual HCMM data. The results demonstrate the possibility of evaluating soil moisture on the basis of HCMM apparent canopy temperature and day-night soil temperature difference measurements. Limitations on the use of thermal data posed by environmental factors which influence energy balance interactions, including phase transformations, wind patterns, topographic variations and atmospheric constituents are pointed out.

  20. Microbial Ecology of a Crewed Rover Traverse in the Arctic: Low Microbial Dispersal and Implications for Planetary Protection on Human Mars Missions

    PubMed Central

    Lee, Pascal

    2015-01-01

    Abstract Between April 2009 and July 2011, the NASA Haughton-Mars Project (HMP) led the Northwest Passage Drive Expedition (NWPDX), a multi-staged long-distance crewed rover traverse along the Northwest Passage in the Arctic. In April 2009, the HMP Okarian rover was driven 496 km over sea ice along the Northwest Passage, from Kugluktuk to Cambridge Bay, Nunavut, Canada. During the traverse, crew members collected samples from within the rover and from undisturbed snow-covered surfaces around the rover at three locations. The rover samples and snow samples were stored at subzero conditions (−20°C to −1°C) until processed for microbial diversity in labs at the NASA Kennedy Space Center, Florida. The objective was to determine the extent of microbial dispersal away from the rover and onto undisturbed snow. Interior surfaces of the rover were found to be associated with a wide range of bacteria (69 unique taxa) and fungi (16 unique taxa). In contrast, snow samples from the upwind, downwind, uptrack, and downtrack sample sites exterior to the rover were negative for both bacteria and fungi except for two colony-forming units (cfus) recovered from one downwind (1 cfu; site A4) and one uptrack (1 cfu; site B6) sample location. The fungus, Aspergillus fumigatus (GenBank JX517279), and closely related bacteria in the genus Brevibacillus were recovered from both snow (B. agri, GenBank JX517278) and interior rover surfaces. However, it is unknown whether the microorganisms were deposited onto snow surfaces at the time of sample collection (i.e., from the clothing or skin of the human operator) or via airborne dispersal from the rover during the 12–18 h layovers at the sites prior to collection. Results support the conclusion that a crewed rover traveling over previously undisturbed terrain may not significantly contaminate the local terrain via airborne dispersal of propagules from the vehicle. Key Words: Planetary protection

  1. Microbial Ecology of a Crewed Rover Traverse in the Arctic: Low Microbial Dispersal and Implications for Planetary Protection on Human Mars Missions

    NASA Technical Reports Server (NTRS)

    Schuerger, Andrew C.; Lee, Pascal

    2015-01-01

    Between April 2009 and July 2011, the NASA Haughton-Mars Project (HMP) led the Northwest Passage Drive Expedition (NWPDX), a multi-staged long-distance crewed rover traverse along the Northwest Passage in the Arctic. In April 2009, the HMP Okarian rover was driven 496 km over sea ice along the Northwest Passage, from Kugluktuk to Cambridge Bay, Nunavut, Canada. During the traverse, crew members collected samples from within the rover and from undisturbed snow-covered surfaces around the rover at three locations. The rover samples and snow samples were stored at subzero conditions (-20C to -1C) until processed for microbial diversity in labs at the NASA Kennedy Space Center, Florida. The objective was to determine the extent of microbial dispersal away from the rover and onto undisturbed snow. Interior surfaces of the rover were found to be associated with a wide range of bacteria (69 unique taxa) and fungi (16 unique taxa). In contrast, snow samples from the upwind, downwind, uptrack, and downtrack sample sites exterior to the rover were negative for both bacteria and fungi except for two colony-forming units (cfus) recovered from one downwind (1 cfu; site A4) and one uptrack (1 cfu; site B6) sample location. The fungus, Aspergillus fumigatus (GenBank JX517279), and closely related bacteria in the genus Brevibacillus were recovered from both snow (B. agri, GenBank JX517278) and interior rover surfaces. However, it is unknown whether the microorganisms were deposited onto snow surfaces at the time of sample collection (i.e., from the clothing or skin of the human operator) or via airborne dispersal from the rover during the 12-18 h layovers at the sites prior to collection. Results support the conclusion that a crewed rover traveling over previously undisturbed terrain may not significantly contaminate the local terrain via airborne dispersal of propagules from the vehicle. Key Words: Planetary protection-Contamination-Habitability-Haughton Crater-Mars. Astrobiology

  2. Electrostatic Charging of the Pathfinder Rover

    NASA Technical Reports Server (NTRS)

    Siebert, Mark W.; Kolecki, Joseph C.

    1996-01-01

    The Mars Pathfinder mission will send a lander and a rover to the martian surface. Because of the extremely dry conditions on Mars, electrostatic charging of the rover is expected to occur as it moves about. Charge accumulation may result in high electrical potentials and discharge through the martian atmosphere. Such discharge could interfere with the operation of electrical elements on the rover. A strategy was sought to mitigate this charge accumulation as a precautionary measure. Ground tests were performed to demonstrate charging in laboratory conditions simulating the surface conditions expected at Mars. Tests showed that a rover wheel, driven at typical rover speeds, will accumulate electrical charge and develop significant electrical potentials (average observed, 110 volts). Measurements were made of wheel electrical potential, and wheel capacitance. From these quantities, the amount of absolute charge was estimated. An engineering solution was developed and recommended to mitigate charge accumulation. That solution has been implemented on the actual rover.

  3. MSLICE Science Activity Planner for the Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Powell, Mark W.; Shams, Khawaja S.; Wallick, Michael N.; Norris, Jeffrey S.; Joswig, Joseph C.; Crockett, Thomas M.; Fox, Jason M.; Torres, Recaredo J.; Kurien, James A.; McCurdy, Michael P.; Pyrzak, Guy; Aghevli, Arash; Bachmann, Andrew G.

    2009-01-01

    MSLICE (Mars Science Laboratory InterfaCE) is the tool used by scientists and engineers on the Mars Science Laboratory rover mission to visualize the data returned by the rover and collaboratively plan its activities. It enables users to efficiently and effectively search all mission data to find applicable products (e.g., images, targets, activity plans, sequences, etc.), view and plan the traverse of the rover in HiRISE (High Resolution Imaging Science Experiment) images, visualize data acquired by the rover, and develop, model, and validate the activities the rover will perform. MSLICE enables users to securely contribute to the mission s activity planning process from their home institutions using off-the-shelf laptop computers. This software has made use of several plug-ins (software components) developed for previous missions [e.g., Mars Exploration Rover (MER), Phoenix Mars Lander (PHX)] and other technology tasks. It has a simple, intuitive, and powerful search capability. For any given mission, there is a huge amount of data and associated metadata that is generated. To help users sort through this information, MSLICE s search interface is provided in a similar fashion as major Internet search engines. With regard to the HiRISE visualization of the rover s traverse, this view is a map of the mission that allows scientists to easily gauge where the rover has been and where it is likely to go. The map also provides the ability to correct or adjust the known position of the rover through the overlaying of images acquired from the rover on top of the HiRISE image. A user can then correct the rover s position by collocating the visible features in the overlays with the same features in the underlying HiRISE image. MSLICE users can also rapidly search all mission data for images that contain a point specified by the user in another image or panoramic mosaic. MSLICE allows the creation of targets, which provides a way for scientists to collaboratively name

  4. Using Planning, Scheduling and Execution for Autonomous Mars Rover Operations

    NASA Technical Reports Server (NTRS)

    Estlin, Tara A.; Gaines, Daniel M.; Chouinard, Caroline M.; Fisher, Forest W.; Castano, Rebecca; Judd, Michele J.; Nesnas, Issa A.

    2006-01-01

    With each new rover mission to Mars, rovers are traveling significantly longer distances. This distance increase raises not only the opportunities for science data collection, but also amplifies the amount of environment and rover state uncertainty that must be handled in rover operations. This paper describes how planning, scheduling and execution techniques can be used onboard a rover to autonomously generate and execute rover activities and in particular to handle new science opportunities that have been identified dynamically. We also discuss some of the particular challenges we face in supporting autonomous rover decision-making. These include interaction with rover navigation and path-planning software and handling large amounts of uncertainty in state and resource estimations. Finally, we describe our experiences in testing this work using several Mars rover prototypes in a realistic environment.

  5. Targeting and Localization for Mars Rover Operations

    NASA Technical Reports Server (NTRS)

    Powell, Mark W.; Crockett, Thomas; Fox, Jason M.; Joswig, Joseph C.; Norris, Jeffrey S.; Rabe, Kenneth J.; McCurdy, Michael; Pyrzak, Guy

    2006-01-01

    In this work we discuss how the quality of localization knowledge impacts the remote operation of rovers on the surface of Mars. We look at the techniques of localization estimation used in the Mars Pathfinder and Mars Exploration Rover missions. We examine the motivation behind the modes of targeting for different types of activities, such as navigation, remote science, and in situ science. We discuss the virtues and shortcomings of existing approaches and new improvements in the latest operations tools used to support the Mars Exploration Rover missions and rover technology development tasks at the Jet Propulsion Laboratory. We conclude with future directions we plan to explore in improving the localization knowledge available for operations and more effective targeting of rovers and their instrument payloads.

  6. Launch Lock Mechanism for Resource Prospector Rover

    NASA Technical Reports Server (NTRS)

    Tamasy, Gabor J.; Smith, Jonathan D.; Mueller, Robert P.; Townsend, Ivan I., III

    2016-01-01

    The Resource Prospector Rover is being designed to carry the RESOLVE (Regolith Environment Science, and Oxygen Lunar Volatile Extraction) payload on a mission to the Moon to prospect for water ice. This is a joint project between KSC Swamp Works UB-R1 and JSC. JSC is building the Resource Prospector 2015 (RP15) rover and KSC designed and fabricated a Launch-Lock (LL) hold down mechanism for the rover. The LL mechanism will attach and support the rover on a Lunar Lander during launch and transit to the moon, then release the RP15 rover after touchdown on the lunar surface. This report presents the design and development of the LL mechanism and its unique features which make it suitable for this lunar exploration mission. An EDU (engineering development unit) prototype of the LL has been built and tested at KSC which is the subject of this paper.

  7. Pressurized lunar rover

    NASA Astrophysics Data System (ADS)

    Creel, Kenneth; Frampton, Jeffrey; Honaker, David; McClure, Kerry; Zeinali, Mazyar

    1992-05-01

    The pressurized lunar rover (PLR) consists of a 7 m long, 3 m diameter cylindrical main vehicle and a trailer which houses the power and heat rejection systems. The main vehicle carries the astronauts, life support systems, navigation and communication systems, directional lighting, cameras, and equipment for exploratory experiments. The PLR shell is constructed of a layered carbon-fiber/foam composite. The rover has six 1.5 m diameter wheels on the main body and two 1.5 m diameter wheels on the trailer. The wheels are constructed of composites and flex to increase traction and shock absorption. The wheels are each attached to a double A-arm aluminum suspension, which allows each wheel 1 m of vertical motion. In conjunction with a 0.75 m ground clearance, the suspension aids the rover in negotiating the uneven lunar terrain. The 15 N-m torque brushless electric motors are mounted with harmonic drive units inside each of the wheels. The rover is steered by electrically varying the speeds of the wheels on either side of the rover. The PLR trailer contains a radiosotope thermoelectric generator providing 6.7 kW. A secondary back-up energy storage system for short-term high-power needs is provided by a bank of batteries. The trailer can be detached to facilitate docking of the main body with the lunar base via an airlock located in the rear of the PLR. The airlock is also used for EVA operation during missions. Life support is a partly regenerative system with air and hygiene water being recycled. A layer of water inside the composite shell surrounds the command center. The water absorbs any damaging radiation, allowing the command center to be used as a safe haven during solar flares. Guidance, navigation, and control are supplied by a strapdown inertial measurement unit that works with the on-board computer. Star mappers provide periodic error correction.

  8. Pressurized Lunar Rover

    NASA Technical Reports Server (NTRS)

    Creel, Kenneth; Frampton, Jeffrey; Honaker, David; Mcclure, Kerry; Zeinali, Mazyar

    1992-01-01

    The pressurized lunar rover (PLR) consists of a 7 m long, 3 m diameter cylindrical main vehicle and a trailer which houses the power and heat rejection systems. The main vehicle carries the astronauts, life support systems, navigation and communication systems, directional lighting, cameras, and equipment for exploratory experiments. The PLR shell is constructed of a layered carbon-fiber/foam composite. The rover has six 1.5 m diameter wheels on the main body and two 1.5 m diameter wheels on the trailer. The wheels are constructed of composites and flex to increase traction and shock absorption. The wheels are each attached to a double A-arm aluminum suspension, which allows each wheel 1 m of vertical motion. In conjunction with a 0.75 m ground clearance, the suspension aids the rover in negotiating the uneven lunar terrain. The 15 N-m torque brushless electric motors are mounted with harmonic drive units inside each of the wheels. The rover is steered by electrically varying the speeds of the wheels on either side of the rover. The PLR trailer contains a radiosotope thermoelectric generator providing 6.7 kW. A secondary back-up energy storage system for short-term high-power needs is provided by a bank of batteries. The trailer can be detached to facilitate docking of the main body with the lunar base via an airlock located in the rear of the PLR. The airlock is also used for EVA operation during missions. Life support is a partly regenerative system with air and hygiene water being recycled. A layer of water inside the composite shell surrounds the command center. The water absorbs any damaging radiation, allowing the command center to be used as a safe haven during solar flares. Guidance, navigation, and control are supplied by a strapdown inertial measurement unit that works with the on-board computer. Star mappers provide periodic error correction. The PLR is capable of voice, video, and data transmission. It is equipped with two 5 W X-band transponder

  9. Planetary missions

    NASA Technical Reports Server (NTRS)

    Mclaughlin, William I.

    1989-01-01

    The scientific and engineering aspects of near-term missions for planetary exploration are outlined. The missions include the Voyager Neptune flyby, the Magellan survey of Venus, the Ocean Topography Experiment, the Mars Observer mission, the Galileo Jupiter Orbiter and Probe, the Comet Rendezvous Asteroid Flyby mission, the Mars Rover Sample Return mission, the Cassini mission to Saturn and Titan, and the Daedalus probe to Barnard's star. The spacecraft, scientific goals, and instruments for these missions are noted.

  10. Planetary rover technology development requirements

    NASA Technical Reports Server (NTRS)

    Bedard, Roger J., Jr.; Muirhead, Brian K.; Montemerlo, Melvin D.; Hirschbein, Murray S.

    1989-01-01

    Planetary surface (including lunar) mobility and sampling capability is required to support proposed future National Aeronautics and Space Administration (NASA) solar system exploration missions. The NASA Office of Aeronautics and Space Technology (OAST) is addressing some of these technology needs in its base research and development program, the Civil Space Technology Initiative (CSTI) and a new technology initiative entitled Pathfinder. The Pathfinder Planetary Rover (PPR) and Sample Acquisition, Analysis and Preservation (SAAP) programs will develop and validate the technologies needed to enable both robotic and piloted rovers on various planetary surfaces. The technology requirements for a planetary roving vehicle and the development plans of the PPR and SAAP programs are discussed.

  11. Lightweight rovers for Mars science exploration and sample return

    NASA Astrophysics Data System (ADS)

    Schenker, Paul S.; Sword, Lee F.; Ganino, A. J.; Bickler, Donald B.; Hickey, G. S.; Brown, D. K.; Baumgartner, Eric T.; Matthies, Larry H.; Wilcox, Brian H.; Balch, T.; Aghazarian, H.; Garrett, M. S.

    1997-09-01

    We report on the development of new mobile robots for Mars exploration missions. These 'lightweight survivable rover (LSR)' systems are of potential interest to both space and terrestrial applications, and are distinguished from more conventional designs by their use of new composite materials, collapsible running gear, integrated thermal-structural chassis, and other mechanical features enabling improved mobility and environmental robustness at reduced mass, volume, and power. Our first demonstrated such rover architecture, LSR-1, introduces running gear based on 2D composite struts and 3D machined composite joints, a novel collapsible hybrid composite-aluminum wheel design, a unit-body structural- thermal chassis with improved internal temperature isolation and stabilization, and a spot-pushbroom laser/CCD sensor enabling accurate, fast hazard detection and terrain mapping. LSR-1 is an approximately .7 $MIL 1.0 meter(Lambda) 2(W X L) footprint six-wheel (20 cm dia.) rocker-bogie geometry vehicle of approximately 30 cm ground clearance, weighing only 7 kilograms with an onboard .3 kilogram multi-spectral imager and spectroscopic photometer. By comparison, NASA/JPL's recently flown Mars Pathfinder rover Sojourner is an 11+ kilogram flight experiment (carrying a 1 kg APXS instrument) having approximately .45 X .6 meter(Lambda) 2(WXL) footprint and 15 cm ground clearance, and about half the warm electronics enclosure (WEE) volume with twice the diurnal temperature swing (-40 to +40 degrees Celsius) of LSR- 1 in nominal Mars environments. We are also developing a new, smaller 5 kilogram class LSR-type vehicle for Mars sample return -- the travel to, localization of, pick-up, and transport back to an Earth return ascent vehicle of a sample cache collected by earlier science missions. This sample retrieval rover R&D prototype has a completely collapsible mobility system enabling rover stowage to approximately 25% operational volume, as well an actively articulated axle

  12. Mars Exploration Rovers: 4 Years on Mars

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2008-01-01

    This January, the Mars Exploration Rovers "Spirit" and "Opportunity" are starting their fifth year of exploring the surface of Mars, well over ten times their nominal 90-day design lifetime. This lecture discusses the Mars Exploration Rovers, presents the current mission status for the extended mission, some of the most results from the mission and how it is affecting our current view of Mars, and briefly presents the plans for the coming NASA missions to the surface of Mars and concepts for exploration with robots and humans into the next decade, and beyond.

  13. Mission Statements--Rhetoric, Reality, or Road Map to Success?

    ERIC Educational Resources Information Center

    Keeling, Mary

    2013-01-01

    Mission statements are expected elements of business plans and corporate communications. Yet, practice in creating them and monitoring their impact varies and skeptics wonder about their usefulness. A survey of business literature provides a context for school library mission statements. Mission statements define the nature, purpose, and role of…

  14. A study of an orbital radar mapping mission to Venus. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A preliminary design of a Venus radar mapping orbiter mission and spacecraft was developed. The important technological problems were identified and evaluated. The study was primarily concerned with trading off alternate ways of implementing the mission and examining the most attractive concepts in order to assess technology requirements. Compatible groupings of mission and spacecraft parameters were analyzed by examining the interaction of their functioning elements and assessing their overall cost effectiveness in performing the mission.

  15. Autonomous Rock Tracking and Acquisition from a Mars Rover

    NASA Technical Reports Server (NTRS)

    Maimone, Mark W.; Nesnas, Issa A.; Das, Hari

    1999-01-01

    Future Mars exploration missions will perform two types of experiments: science instrument placement for close-up measurement, and sample acquisition for return to Earth. In this paper we describe algorithms we developed for these tasks, and demonstrate them in field experiments using a self-contained Mars Rover prototype, the Rocky 7 rover. Our algorithms perform visual servoing on an elevation map instead of image features, because the latter are subject to abrupt scale changes during the approach. 'This allows us to compensate for the poor odometry that results from motion on loose terrain. We demonstrate the successful grasp of a 5 cm long rock over 1m away using 103-degree field-of-view stereo cameras, and placement of a flexible mast on a rock outcropping over 5m away using 43 degree FOV stereo cameras.

  16. Robust Coordination for Large Sets of Simple Rovers

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan; Agogino, Adrian

    2006-01-01

    The ability to coordinate sets of rovers in an unknown environment is critical to the long-term success of many of NASA;s exploration missions. Such coordination policies must have the ability to adapt in unmodeled or partially modeled domains and must be robust against environmental noise and rover failures. In addition such coordination policies must accommodate a large number of rovers, without excessive and burdensome hand-tuning. In this paper we present a distributed coordination method that addresses these issues in the domain of controlling a set of simple rovers. The application of these methods allows reliable and efficient robotic exploration in dangerous, dynamic, and previously unexplored domains. Most control policies for space missions are directly programmed by engineers or created through the use of planning tools, and are appropriate for single rover missions or missions requiring the coordination of a small number of rovers. Such methods typically require significant amounts of domain knowledge, and are difficult to scale to large numbers of rovers. The method described in this article aims to address cases where a large number of rovers need to coordinate to solve a complex time dependent problem in a noisy environment. In this approach, each rover decomposes a global utility, representing the overall goal of the system, into rover-specific utilities that properly assign credit to the rover s actions. Each rover then has the responsibility to create a control policy that maximizes its own rover-specific utility. We show a method of creating rover-utilities that are "aligned" with the global utility, such that when the rovers maximize their own utility, they also maximize the global utility. In addition we show that our method creates rover-utilities that allow the rovers to create their control policies quickly and reliably. Our distributed learning method allows large sets rovers be used unmodeled domains, while providing robustness against

  17. Mars Exploration Rover engineering cameras

    USGS Publications Warehouse

    Maki, J.N.; Bell, J.F.; Herkenhoff, K. E.; Squyres, S. W.; Kiely, A.; Klimesh, M.; Schwochert, M.; Litwin, T.; Willson, R.; Johnson, Aaron H.; Maimone, M.; Baumgartner, E.; Collins, A.; Wadsworth, M.; Elliot, S.T.; Dingizian, A.; Brown, D.; Hagerott, E.C.; Scherr, L.; Deen, R.; Alexander, D.; Lorre, J.

    2003-01-01

    NASA's Mars Exploration Rover (MER) Mission will place a total of 20 cameras (10 per rover) onto the surface of Mars in early 2004. Fourteen of the 20 cameras are designated as engineering cameras and will support the operation of the vehicles on the Martian surface. Images returned from the engineering cameras will also be of significant importance to the scientific community for investigative studies of rock and soil morphology. The Navigation cameras (Navcams, two per rover) are a mast-mounted stereo pair each with a 45?? square field of view (FOV) and an angular resolution of 0.82 milliradians per pixel (mrad/pixel). The Hazard Avoidance cameras (Hazcams, four per rover) are a body-mounted, front- and rear-facing set of stereo pairs, each with a 124?? square FOV and an angular resolution of 2.1 mrad/pixel. The Descent camera (one per rover), mounted to the lander, has a 45?? square FOV and will return images with spatial resolutions of ???4 m/pixel. All of the engineering cameras utilize broadband visible filters and 1024 x 1024 pixel detectors. Copyright 2003 by the American Geophysical Union.

  18. Newest is Biggest: Three Generations of NASA Mars Rovers

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Full-scale models of three generations of NASA Mars rovers show the increase in size from the Sojourner rover of the Mars Pathfinder project that landed on Mars in 1997 (center), to the twin Mars Exploration Rovers Spirit and Opportunity that landed in 2004 (left), to the Mars Science Laboratory rover for a mission to land in 2012 (right).

    The Mars Science Laboratory rover is about 9 feet wide, 10 feet long (not counting its robotic arm) and 7 feet tall.

    The Mars Science Laboratory rover will have a mass of about 875 kilograms (1,929 pounds), compared with 174 kilograms (384 pounds) for each of the Mars Exploration Rovers and with 11 kilograms (24 pounds) for Sojourner. The main reason for the growth is to carry a larger payload of science instruments: about 83 kilograms (183 pounds) for the Mars Science Laboratory rover compared with 16 kilograms (35 pounds) for the Mars Exploration Rover and 1.4 kilograms (3 pounds) for Sojourner.

    This image was taken in May 2008 at NASA's Jet Propulsion Laboratory, Pasadena, Calif., which has built the real Mars rovers and managed the rover missions for NASA's Science Mission Directorate, Washington. JPL is a division of the California Institute of Technology.

  19. Planning for rover opportunistic science

    NASA Technical Reports Server (NTRS)

    Gaines, Daniel M.; Estlin, Tara; Forest, Fisher; Chouinard, Caroline; Castano, Rebecca; Anderson, Robert C.

    2004-01-01

    The Mars Exploration Rover Spirit recently set a record for the furthest distance traveled in a single sol on Mars. Future planetary exploration missions are expected to use even longer drives to position rovers in areas of high scientific interest. This increase provides the potential for a large rise in the number of new science collection opportunities as the rover traverses the Martian surface. In this paper, we describe the OASIS system, which provides autonomous capabilities for dynamically identifying and pursuing these science opportunities during longrange traverses. OASIS uses machine learning and planning and scheduling techniques to address this goal. Machine learning techniques are applied to analyze data as it is collected and quickly determine new science gods and priorities on these goals. Planning and scheduling techniques are used to alter the behavior of the rover so that new science measurements can be performed while still obeying resource and other mission constraints. We will introduce OASIS and describe how planning and scheduling algorithms support opportunistic science.

  20. Supporting Increased Autonomy for a Mars Rover

    NASA Technical Reports Server (NTRS)

    Estlin, Tara; Castano, Rebecca; Gaines, Dan; Bornstein, Ben; Judd, Michele; Anderson, Robert C.; Nesnas, Issa

    2008-01-01

    This paper presents an architecture and a set of technology for performing autonomous science and commanding for a planetary rover. The MER rovers have outperformed all expectations by lasting over 1100 sols (or Martian days), which is an order of magnitude longer than their original mission goal. The longevity of these vehicles will have significant effects on future mission goals, such as objectives for the Mars Science Laboratory rover mission (scheduled to fly in 2009) and the Astrobiology Field Lab rover mission (scheduled to potentially fly in 2016). Common objectives for future rover missions to Mars include the handling of opportunistic science, long-range or multi-sol driving, and onboard fault diagnosis and recovery. To handle these goals, a number of new technologies have been developed and integrated as part of the CLARAty architecture. CLARAty is a unified and reusable robotic architecture that was designed to simplify the integration, testing and maturation of robotic technologies for future missions. This paper focuses on technology comprising the CLARAty Decision Layer, which was designed to support and validate high-level autonomy technologies, such as automated planning and scheduling and onboard data analysis.

  1. Rapid Generation of Image Mosaics and Maps for the OSIRIS-REx Mission

    NASA Astrophysics Data System (ADS)

    Kinney-Spano, Ellyne K.; DellaGiustina, Daniella; Tanquary, Hannah E.; Rizk, Bashar; Golish, Dathon R.; Ko, Wenjeng

    2014-11-01

    The OSIRIS-REx mission will rely on image mosaics and maps of asteroid Bennu to support critical mission operations such as sample site selection and long-term science investigations. These mosaics and maps provide a convenient method for visualizing the surface of Bennu and serve as the foundation for the geology maps required to carry out the science investigation for the mission. During proximity operations at Bennu, rapid turnaround of calibrated images into image mosaics and maps will be required to support mission planning and sample site selection. Updated operational and publication quality science maps will be needed as improved spacecraft information, photometric models, and shape models of Bennu become available. Quick turnaround image mosaics and map products will also support the public engagement activities of the mission.Semi-automated image mosaic and map generation software is being developed based on the ISIS software package from the USGS. This software suite will consist of scripts, workflows and data quality checks that support automated control network development and image mosaic generation. Reprocessing capabilities will be incorporated in the software suite to support quick turnaround generation of updated image mosaics and maps resulting from new instrument calibration files, spacecraft trajectory and pointing kernels, photometric correction models and shape model information. Images from the NEAR-Shoemaker rendezvous mission to asteroid Eros provide a test dataset for verification and validation of the software. We present the results of our initial implementation of the system using MSI images of asteroid Eros.

  2. Mission maps for use in the choice of specific impulse for manned Mars missions

    SciTech Connect

    Madsen, W.W.; Neuman, J.E.; Olson, T.S.; Siahpush, A.S.

    1991-01-01

    The choice of engine concept for the initial manned missions to Mars should be driven by what can be feasibly built and flight qualified in the near term, and by the level of engine performance that is required for these missions. This paper addresses how mission requirements affect the choice of specific impulse, and consequently what values of the specific impulse best serve these missions. Broad mission surveys and sensitivity studies were performed to determine the specific impulse values that allow for fast transfer times and wide launch windows. We find that a specific impulse of around 1000 to 1200 sec is sufficient. Choosing an engine concept that has a higher specific impulse value is not justified for these missions because the modest reduction in propellant requirements and further widening of the launch windows does not compensate for the substantially greater technical risk. 3 refs., 8 figs.

  3. Unmanned lunar rovers: Utilization for exploration

    NASA Technical Reports Server (NTRS)

    Plescia, J. B.; Lane, A. L.; Miller, D. P.

    1993-01-01

    A small lunar rover and its use for lunar exploration are described. Constraints on a rover mission in the fields of communications, power, speed, navigation/hazard avoidance, and operational time are discussed. The rover design concept consistent with the constraints is described. The instruments to be used, again constrained by mass and power requirements, are listed. Three mission objectives are examined: geological exploration; resource assessment; and a geotechnical survey. It was determined that a small rover, with a mass of less than 60 kg and which would be compatible with being carried on the first Artemis lunar lander, could be built and could accomplish significant scientific exploration or the collection of engineering information.

  4. Analytic investigation of the AEM-A/HCMM attitude control system performance. [Application Explorer Missions/Heat Capacity Mapping Mission

    NASA Technical Reports Server (NTRS)

    Lerner, G. M.; Huang, W.; Shuster, M. D.

    1977-01-01

    The Heat Capacity Mapping Mission (HCMM), scheduled for launch in 1978, will be three-axis stabilized relative to the earth in a 600-kilometer altitude, polar orbit. The autonomous attitude control system consists of three torquing coils and a momentum wheel driven in response to error signals computed from data received from an infrared horizon sensor and a magnetometer. This paper presents a simple model of the attitude dynamics and derives the equations that determine the stability of the system during both attitude acquisition (acquisition-mode) and mission operations (mission-mode). Modifications to the proposed mission-mode control laws which speed the system's response to transient attitude errors and reduce the steady-state attitude errors are suggested. Numerical simulations are performed to validate the results obtained with the simple model.

  5. Mars Exploration Rover Heat Shield Recontact Analysis

    NASA Technical Reports Server (NTRS)

    Raiszadeh, Behzad; Desai, Prasun N.; Michelltree, Robert

    2011-01-01

    The twin Mars Exploration Rover missions landed successfully on Mars surface in January of 2004. Both missions used a parachute system to slow the rover s descent rate from supersonic to subsonic speeds. Shortly after parachute deployment, the heat shield, which protected the rover during the hypersonic entry phase of the mission, was jettisoned using push-off springs. Mission designers were concerned about the heat shield recontacting the lander after separation, so a separation analysis was conducted to quantify risks. This analysis was used to choose a proper heat shield ballast mass to ensure successful separation with low probability of recontact. This paper presents the details of such an analysis, its assumptions, and the results. During both landings, the radar was able to lock on to the heat shield, measuring its distance, as it descended away from the lander. This data is presented and is used to validate the heat shield separation/recontact analysis.

  6. Newly Deployed Sojourner Rover

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This 8-image mosaic was acquired during the late afternoon (near 5pm LST, note the long shadows) on Sol 2 as part of the predeploy 'insurance panorama' and shows the newly deployed rover sitting on the Martian surface. This color image was generated from images acquired at 530,600, and 750 nm. The insurance panorama was designed as 'insurance' against camera failure upon deployment. Had the camera failed, the losslessly-compressed, multispectral insurance panorama would have been the main source of image data from the IMP.

    However, the camera deployment was successful, leaving the insurance panorama to be downlinked to Earth several weeks later. Ironically enough, the insurance panorama contains some of the best quality image data because of the lossless data compression and relatively dust-free state of the camera and associated lander/rover hardware on Sol 2.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The IMP was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal investigator.

  7. Searching for Life with Rovers: Exploration Methods & Science Results from the 2004 Field Campaign of the "Life in the Atacama" Project and Applications to Future Mars Missions

    NASA Technical Reports Server (NTRS)

    Cabrol, N. A.a; Wettergreen, D. S.; Whittaker, R.; Grin, E. A.; Moersch, J.; Diaz, G. Chong; Cockell, C.; Coppin, P.; Dohm, J. M.; Fisher, G.

    2005-01-01

    The Life In The Atacama (LITA) project develops and field tests a long-range, solarpowered, automated rover platform (Zo ) and a science payload assembled to search for microbial life in the Atacama desert. Life is barely detectable over most of the driest desert on Earth. Its unique geological, climatic, and biological evolution have created a unique training site for designing and testing exploration strategies and life detection methods for the robotic search for life on Mars.

  8. The Mars Exploration Rover Project

    NASA Technical Reports Server (NTRS)

    Cook, Richard A.

    2004-01-01

    The twin rovers of the Mars Exploration Rover Project successfully landed on the surface of Mars in January 2004, and initiated a highly successful science and exploration campaign. This marked the culmination of an unprecedented four-year effort to design, build, launch, and operate two of the most complex planetary spacecraft ever built. The project was started in the aftermath of the 1999 Mars mission failures, and was commissioned to take advantage of the highly advantageous 2003 opportunity. The development schedule from project start to launch was only 35 months, so schedule management was the most significant challenge facing the project. This problem was compounded when early assumptions about the extent of design heritage from Mars Pathfinder proved to be flawed. The project derived a number of useful lessons learned in solving these challenges that can be applied to future missions.

  9. Beam-powered lunar rover design

    SciTech Connect

    Dagle, J.E.; Coomes, E.P.; Antoniak, Z.I.; Bamberger, J.A.; Bates, J.M.; Chiu, M.A.; Dodge, R.E.; Wise, J.A.

    1992-03-01

    Manned exploration of our nearest neighbors in the solar systems is the primary goal of the Space Exploration Initiative (SEI). An integral part of any manned lunar or planetary outpost will be a system for manned excursions over the surface of the planet. This report presents a preliminary design for a lunar rover capable of supporting four astronauts on long-duration excursions across the lunar landscape. The distinguishing feature of this rover design is that power is provided to rover via a laser beam from an independent orbiting power satellite. This system design provides very high power availability with minimal mass on the rover vehicle. With this abundance of power, and with a relatively small power-system mass contained in the rover, the vehicle can perform an impressive suite of mission-related activity. The rover might be used as the first outpost for the lunar surface (i.e., a mobile base). A mobile base has the advantage of providing extensive mission activities without the expense of establishing a fixed base. This concept has been referred to as Rove First.'' A manned over, powered through a laser beam, has been designed for travel on the lunar surface for round-trip distances in the range of 1000 km, although the actual distance traveled is not crucial since the propulsion system does not rely on energy storage. The life support system can support a 4-person crew for up to 30 days, and ample power is available for mission-related activities. The 8000-kg rover has 30 kW of continuous power available via a laser transmitter located at the Earth-moon L1 libration point, about 50,000 km above the surface of the moon. This rover, which is designed to operate in either day or night conditions, has the flexibility to perform a variety of power-intensive missions. 24 refs.

  10. Beam-powered lunar rover design

    SciTech Connect

    Dagle, J.E.; Coomes, E.P.; Antoniak, Z.I.; Bamberger, J.A.; Bates, J.M.; Chiu, M.A.; Dodge, R.E.; Wise, J.A.

    1992-03-01

    Manned exploration of our nearest neighbors in the solar systems is the primary goal of the Space Exploration Initiative (SEI). An integral part of any manned lunar or planetary outpost will be a system for manned excursions over the surface of the planet. This report presents a preliminary design for a lunar rover capable of supporting four astronauts on long-duration excursions across the lunar landscape. The distinguishing feature of this rover design is that power is provided to rover via a laser beam from an independent orbiting power satellite. This system design provides very high power availability with minimal mass on the rover vehicle. With this abundance of power, and with a relatively small power-system mass contained in the rover, the vehicle can perform an impressive suite of mission-related activity. The rover might be used as the first outpost for the lunar surface (i.e., a mobile base). A mobile base has the advantage of providing extensive mission activities without the expense of establishing a fixed base. This concept has been referred to as ``Rove First.`` A manned over, powered through a laser beam, has been designed for travel on the lunar surface for round-trip distances in the range of 1000 km, although the actual distance traveled is not crucial since the propulsion system does not rely on energy storage. The life support system can support a 4-person crew for up to 30 days, and ample power is available for mission-related activities. The 8000-kg rover has 30 kW of continuous power available via a laser transmitter located at the Earth-moon L1 libration point, about 50,000 km above the surface of the moon. This rover, which is designed to operate in either day or night conditions, has the flexibility to perform a variety of power-intensive missions. 24 refs.

  11. THERMAL-INERTIA MAPPING IN VEGETATED TERRAIN FROM HEAT CAPACITY MAPPING MISSION SATELLITE DATA.

    USGS Publications Warehouse

    Watson, Ken; Hummer-Miller, Susanne

    1984-01-01

    Thermal-inertia data, derived from the Heat Capacity Mapping Mission (HCMM) satellite, were analyzed in areas of varying amounts of vegetation cover. Thermal differences which appear to correlate with lithologic differences have been observed previously in areas of substantial vegetation cover. However, the energy exchange occurring within the canopy is much more complex than that used to develop the methods employed to produce thermal-inertia images. Because adequate models are lacking at present, the interpretation is largely dependent on comparison, correlation, and inference. Two study areas were selected in the western United States: the Richfield, Utah and the Silver City, Arizona-New Mexico, 1 degree multiplied by 2 degree quadrangles. Many thermal-inertia highs were found to be associated with geologic-unit boundaries, faults, and ridges. Lows occur in valleys with residual soil cover.

  12. Electric Propulsion Options for a Magnetospheric Mapping Mission

    NASA Technical Reports Server (NTRS)

    Oleson, Steven; Russell, Chris; Hack, Kurt; Riehl, John

    1998-01-01

    The Twin Electric Magnetospheric Probes Exploring on Spiral Trajectories mission concept was proposed as a Middle Explorer class mission. A pre-phase-A design was developed which utilizes the advantages of electric propulsion for Earth scientific spacecraft use. This paper presents propulsion system analyses performed for the proposal. The proposed mission required two spacecraft to explore near circular orbits 0.1 to 15 Earth radii in both high and low inclination orbits. Since the use of chemical propulsion would require launch vehicles outside the Middle Explorer class a reduction in launch mass was sought using ion, Hall, and arcjet electric propulsion system. Xenon ion technology proved to be the best propulsion option for the mission requirements requiring only two Pegasus XL launchers. The Hall thruster provided an alternative solution but required two larger, Taurus launch vehicles. Arcjet thrusters did not allow for significant launch vehicle reduction in the Middle Explorer class.

  13. Terrain Modelling for Immersive Visualization for the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Wright, J.; Hartman, F.; Cooper, B.; Maxwell, S.; Yen, J.; Morrison, J.

    2004-01-01

    Immersive environments are being used to support mission operations at the Jet Propulsion Laboratory. This technology contributed to the Mars Pathfinder Mission in planning sorties for the Sojourner rover and is being used for the Mars Exploration Rover (MER) missions. The stereo imagery captured by the rovers is used to create 3D terrain models, which can be viewed from any angle, to provide a powerful and information rich immersive visualization experience. These technologies contributed heavily to both the mission success and the phenomenal level of public outreach achieved by Mars Pathfinder and MER. This paper will review the utilization of terrain modelling for immersive environments in support of MER.

  14. Maps for Planning, Situation Assessment and Mission Control

    NASA Astrophysics Data System (ADS)

    Taylor, R. M.; MacLeod, I. S.

    Maps are familiar objects that need little introduction. By strict definition, a map is a diagrammatic representation of the spatial environment - for example, the Earth's surface, the stars or parts thereof. The techniques of map-making, or cartography, are basically concerned with reducing the spatial characteristics of large surface areas to a form that makes them observable. Cartography has been considered as both a science and an art. As an art form and craft tradition with printed maps, cartography traditionally has sought to address aesthetic criteria for human appreciation and visual attractiveness, in addition to considerations of functional utility.

  15. Mars Sample Return mission: Two alternate scenarios

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Two scenarios for accomplishing a Mars Sample Return mission are presented herein. Mission A is a low cost, low mass scenario, while Mission B is a high technology, high science alternative. Mission A begins with the launch of one Titan IV rocket with a Centaur G' upper stage. The Centaur performs the trans-Mars injection burn and is then released. The payload consists of two lander packages and the Orbital Transfer Vehicle, which is responsible for supporting the landers during launch and interplanetary cruise. After descending to the surface, the landers deploy small, local rovers to collect samples. Mission B starts with 4 Titan IV launches, used to place the parts of the Planetary Transfer Vehicle (PTV) into orbit. The fourth launch payload is able to move to assemble the entire vehicle by simple docking routines. Once complete, the PTV begins a low thrust trajectory out from low Earth orbit, through interplanetary space, and into low Martian orbit. It deploys a communication satellite into a 1/2 sol orbit and then releases the lander package at 500 km altitude. The lander package contains the lander, the Mars Ascent Vehicle (MAV), two lighter than air rovers (called Aereons), and one conventional land rover. The entire package is contained with a biconic aeroshell. After release from the PTV, the lander package descends to the surface, where all three rovers are released to collect samples and map the terrain.

  16. Update on Rover Sequencing and Visualization Program

    NASA Technical Reports Server (NTRS)

    Cooper, Brian; Hartman, Frank; Maxwell, Scott; Yen, Jeng; Wright, John; Balacuit, Carlos

    2005-01-01

    The Rover Sequencing and Visualization Program (RSVP) has been updated. RSVP was reported in Rover Sequencing and Visualization Program (NPO-30845), NASA Tech Briefs, Vol. 29, No. 4 (April 2005), page 38. To recapitulate: The Rover Sequencing and Visualization Program (RSVP) is the software tool to be used in the Mars Exploration Rover (MER) mission for planning rover operations and generating command sequences for accomplishing those operations. RSVP combines three-dimensional (3D) visualization for immersive exploration of the operations area, stereoscopic image display for high-resolution examination of the downlinked imagery, and a sophisticated command-sequence editing tool for analysis and completion of the sequences. RSVP is linked with actual flight code modules for operations rehearsal to provide feedback on the expected behavior of the rover prior to committing to a particular sequence. Playback tools allow for review of both rehearsed rover behavior and downlinked results of actual rover operations. These can be displayed simultaneously for comparison of rehearsed and actual activities for verification. The primary inputs to RSVP are downlink data products from the Operations Storage Server (OSS) and activity plans generated by the science team. The activity plans are high-level goals for the next day s activities. The downlink data products include imagery, terrain models, and telemetered engineering data on rover activities and state. The Rover Sequence Editor (RoSE) component of RSVP performs activity expansion to command sequences, command creation and editing with setting of command parameters, and viewing and management of rover resources. The HyperDrive component of RSVP performs 2D and 3D visualization of the rover s environment, graphical and animated review of rover predicted and telemetered state, and creation and editing of command sequences related to mobility and Instrument Deployment Device (robotic arm) operations. Additionally, RoSE and

  17. Using SFOC to fly the Magellan Venus mapping mission

    NASA Technical Reports Server (NTRS)

    Bucher, Allen W.; Leonard, Robert E., Jr.; Short, Owen G.

    1993-01-01

    Traditionally, spacecraft flight operations at the Jet Propulsion Laboratory (JPL) have been performed by teams of spacecraft experts utilizing ground software designed specifically for the current mission. The Jet Propulsion Laboratory set out to reduce the cost of spacecraft mission operations by designing ground data processing software that could be used by multiple spacecraft missions, either sequentially or concurrently. The Space Flight Operations Center (SFOC) System was developed to provide the ground data system capabilities needed to monitor several spacecraft simultaneously and provide enough flexibility to meet the specific needs of individual projects. The Magellan Spacecraft Team utilizes the SFOC hardware and software designed for engineering telemetry analysis, both real-time and non-real-time. The flexibility of the SFOC System has allowed the spacecraft team to integrate their own tools with SFOC tools to perform the tasks required to operate a spacecraft mission. This paper describes how the Magellan Spacecraft Team is utilizing the SFOC System in conjunction with their own software tools to perform the required tasks of spacecraft event monitoring as well as engineering data analysis and trending.

  18. Mars Exploration Rover Operations with the Science Activity Planner

    NASA Technical Reports Server (NTRS)

    Jeffrey S. Norris; Powell, Mark W.; Vona, Marsette A.; Backes, Paul G.; Wick, Justin V.

    2005-01-01

    The Science Activity Planner (SAP) is the primary science operations tool for the Mars Exploration Rover mission and NASA's Software of the Year for 2004. SAP utilizes a variety of visualization and planning capabilities to enable the mission operations team to direct the activities of the Spirit and Opportunity rovers. This paper outlines some of the challenging requirements that drove the design of SAP and discusses lessons learned from the development and use of SAP in mission operations.

  19. Exploration Rover Concepts and Development Challenges

    NASA Technical Reports Server (NTRS)

    Zakrajsek, James J.; McKissock, David B.; Woytach, Jeffrey M.; Zakrajsek, June F.; Oswald, Fred B.; McEntire, Kelly J.; Hill, Gerald M.; Abel, Phillip; Eichenberg, Dennis J.; Goodnight, Thomas W.

    2005-01-01

    This paper presents an overview of exploration rover concepts and the various development challenges associated with each as they are applied to exploration objectives and requirements for missions on the Moon and Mars. A variety of concepts for surface exploration vehicles have been proposed since the initial development of the Apollo-era lunar rover. This paper provides a brief description of the rover concepts, along with a comparison of their relative benefits and limitations. In addition, this paper outlines, and investigates a number of critical development challenges that surface exploration vehicles must address in order to successfully meet the exploration mission vision. These include: mission and environmental challenges, design challenges, and production and delivery challenges. Mission and environmental challenges include effects of terrain, extreme temperature differentials, dust issues, and radiation protection. Design methods are discussed that focus on optimum methods for developing highly reliable, long-life and efficient systems. In addition, challenges associated with delivering a surface exploration system is explored and discussed. Based on all the information presented, modularity will be the single most important factor in the development of a truly viable surface mobility vehicle. To meet mission, reliability, and affordability requirements, surface exploration vehicles, especially pressurized rovers, will need to be modularly designed and deployed across all projected Moon and Mars exploration missions.

  20. Autonomous Martian flying rover

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A remotely programmable, autonomous flying rover is proposed to extensively survey the Martian surface environment. A Mach .3, solar powered, modified flying wing could cover roughly a 2000 mile range during Martian daylight hours. Multiple craft launched from an orbiting mother ship could provide near-global coverage. Each craft is envisioned to fly at about 1 km above the surface and measure atmospheric composition, pressure and temperature, map surface topography, and remotely penetrate the near subsurface looking for water (ice) and perhaps evidence of life. Data collected are relayed to Earth via the orbiting mother ship. Near surface guidance and control capability is an adaptation of current cruise missile technology. A solar powered aircraft designed to fly in the low temperature, low density, carbon dioxide Martian atmosphere near the surface appears feasible.

  1. Essential Autonomous Science Inference on Rovers (EASIR)

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; Shipman, Mark; Morris, Robert; Gazis, Paul; Pedersen, Liam

    2003-01-01

    Existing constraints on time, computational, and communication resources associated with Mars rover missions suggest on-board science evaluation of sensor data can contribute to decreasing human-directed operational planning, optimizing returned science data volumes, and recognition of unique or novel data. All of which act to increase the scientific return from a mission. Many different levels of science autonomy exist and each impacts the data collected and returned by, and activities of, rovers. Several computational algorithms, designed to recognize objects of interest to geologists and biologists, are discussed. The algorithms represent various functions that producing scientific opinions and several scenarios illustrate how the opinions can be used.

  2. Two Years Onboard the MER Opportunity Rover

    NASA Technical Reports Server (NTRS)

    Estlin, Tara; Anderson, Robert C.; Bornstein, Benjamin; Burl, Michael; Castano, Rebecca; Gaines, Daniel; Judd, Michele; Thompson, David R.

    2012-01-01

    The Autonomous Exploration for Gathering Increased Science (AEGIS) system provides automated data collection for planetary rovers. AEGIS is currently being used onboard the Mars Exploration Rover (MER) mission's Opportunity to provide autonomous targeting of the MER Panoramic camera. Prior to AEGIS, targeted data was collected in a manual fashion where targets were manually identified in images transmitted to Earth and the rover had to remain in the same location for one to several communication cycles. AEGIS enables targeted data to be rapidly acquired with no delays for ground communication. Targets are selected by AEGIS through the use of onboard data analysis techniques that are guided by scientist-specified objectives. This paper provides an overview of the how AEGIS has been used on the Opportunity rover, focusing on usage that occurred during a 21 kilometer historic trek to the Mars Endeavour crater.

  3. Human and Robotic Mission to Small Bodies: Mapping, Planning and Exploration

    NASA Technical Reports Server (NTRS)

    Neffian, Ara V.; Bellerose, Julie; Beyer, Ross A.; Archinal, Brent; Edwards, Laurence; Lee, Pascal; Colaprete, Anthony; Fong, Terry

    2013-01-01

    This study investigates the requirements, performs a gap analysis and makes a set of recommendations for mapping products and exploration tools required to support operations and scientific discovery for near- term and future NASA missions to small bodies. The mapping products and their requirements are based on the analysis of current mission scenarios (rendezvous, docking, and sample return) and recommendations made by the NEA Users Team (NUT) in the framework of human exploration. The mapping products that sat- isfy operational, scienti c, and public outreach goals include topography, images, albedo, gravity, mass, density, subsurface radar, mineralogical and thermal maps. The gap analysis points to a need for incremental generation of mapping products from low (flyby) to high-resolution data needed for anchoring and docking, real-time spatial data processing for hazard avoidance and astronaut or robot localization in low gravity, high dynamic environments, and motivates a standard for coordinate reference systems capable of describing irregular body shapes. Another aspect investigated in this study is the set of requirements and the gap analysis for exploration tools that support visualization and simulation of operational conditions including soil interactions, environment dynamics, and communications coverage. Building robust, usable data sets and visualisation/simulation tools is the best way for mission designers and simulators to make correct decisions for future missions. In the near term, it is the most useful way to begin building capabilities for small body exploration without needing to commit to specific mission architectures.

  4. Rover and Telerobotics Technology Program

    NASA Technical Reports Server (NTRS)

    Weisbin, Charles R.

    1998-01-01

    The Jet Propulsion Laboratory's (JPL's) Rover and Telerobotics Technology Program, sponsored by the National Aeronautics and Space Administration (NASA), responds to opportunities presented by NASA space missions and systems, and seeds commerical applications of the emerging robotics technology. The scope of the JPL Rover and Telerobotics Technology Program comprises three major segments of activity: NASA robotic systems for planetary exploration, robotic technology and terrestrial spin-offs, and technology for non-NASA sponsors. Significant technical achievements have been reached in each of these areas, including complete telerobotic system prototypes that have built and tested in realistic scenarios relevant to prospective users. In addition, the program has conducted complementary basic research and created innovative technology and terrestrial applications, as well as enabled a variety of commercial spin-offs.

  5. Rover Soil Experiments Near Yogi

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Sojourner, while on its way to the rock Yogi, performed several soil mechanics experiments. Piles of loose material churned up from the experiment are seen in front of and behind the Rover. The rock Pop-Tart is visible near the front right rover wheel. Yogi is at upper right. The image was taken by the Imager for Mars Pathfinder.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  6. Registration of Heat Capacity Mapping Mission day and night images

    NASA Technical Reports Server (NTRS)

    Watson, K.; Hummer-Miller, S.; Sawatzky, D. L. (Principal Investigator)

    1982-01-01

    Neither iterative registration, using drainage intersection maps for control, nor cross correlation techniques were satisfactory in registering day and night HCMM imagery. A procedure was developed which registers the image pairs by selecting control points and mapping the night thermal image to the daytime thermal and reflectance images using an affine transformation on a 1300 by 1100 pixel image. The resulting image registration is accurate to better than two pixels (RMS) and does not exhibit the significant misregistration that was noted in the temperature-difference and thermal-inertia products supplied by NASA. The affine transformation was determined using simple matrix arithmetic, a step that can be performed rapidly on a minicomputer.

  7. Zephyr: A Landsailing Rover for Venus

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Oleson, Steven R.; Grantier, David

    2014-01-01

    With an average temperature of 450C and a corrosive atmosphere at a pressure of 90 bars, the surface of Venus is the most hostile environment of any planetary surface in the solar system. Exploring the surface of Venus would be an exciting goal, since Venus is a planet with significant scientific mysteries, and interesting geology and geophysics. Technology to operate at the environmental conditions of Venus is under development. A rover on the surface of Venus with capability comparable to the rovers that have been sent to Mars would push the limits of technology in high-temperature electronics, robotics, and robust systems. Such a rover would require the ability to traverse the landscape on extremely low power levels. We have analyzed an innovative concept for a planetary rover: a sail-propelled rover to explore the surface of Venus. Such a rover can be implemented with only two moving parts; the sail, and the steering. Although the surface wind speeds are low (under 1 m/s), at Venus atmospheric density even low wind speeds develop significant force. Under funding by the NASA Innovative Advanced Concepts office, a conceptual design for such a rover has been done. Total landed mass of the system is 265 kg, somewhat less than that of the MER rovers, with a 12 square meter rigid sail. The rover folds into a 3.6 meter aeroshell for entry into the Venus atmosphere and subsequent parachute landing on the surface. Conceptual designs for a set of hightemperature scientific instruments and a UHF communication system were done. The mission design lifetime is 50 days, allowing operation during the sunlit portion of one Venus day. Although some technology development is needed to bring the high-temperature electronics to operational readiness, the study showed that such a mobility approach is feasible, and no major difficulties are seen.

  8. Mars Exploration Rover surface operations: driving spirit at Gusev Crater

    NASA Technical Reports Server (NTRS)

    Leger, Chris; Trebi-Ollennu, Ashitey; Wright, John; Maxwell, Scott; Bonitz, Bob; Biesiadecki, Jeff; Hartman, Frank; Cooper, Brian; Baumgartner, Eric; Maimone, Mark

    2005-01-01

    Spirit is one of two rovers, that landed on Mars in January 2004 as part of NASA's Mars Exploration Rovers mission. Since then, Spirit has traveled over 4 kilometers accross the Martian surface while investigating rocks and soils, digging trenches to examine the subsurface environment, and climbing hills to reach outcrops of bedrock.

  9. Autonomous navigation system for the Marsokhod rover project

    NASA Technical Reports Server (NTRS)

    Proy, C.; Lamboley, M.; Rastel, L.

    1994-01-01

    This paper presents a general overview of the Marsokhod rover mission. The autonomous navigation for a Mars exploration rover is controlled by a vision system which has been developed on the basis of two CCD cameras, stereovision and path planning algorithms. Its performances have been tested on a Mars-like experimentation site.

  10. Exobiology and Future Mars Missions

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P. (Editor); Davis, Wanda, L. (Editor)

    1989-01-01

    Scientific questions associated with exobiology on Mars were considered and how these questions should be addressed on future Mars missions was determined. The mission that provided a focus for discussions was the Mars Rover/Sample Return Mission.

  11. Ongoing Mars Missions: Extended Mission Plans

    NASA Astrophysics Data System (ADS)

    Zurek, Richard; Diniega, Serina; Crisp, Joy; Fraeman, Abigail; Golombek, Matt; Jakosky, Bruce; Plaut, Jeff; Senske, David A.; Tamppari, Leslie; Thompson, Thomas W.; Vasavada, Ashwin R.

    2016-10-01

    Many key scientific discoveries in planetary science have been made during extended missions. This is certainly true for the Mars missions both in orbit and on the planet's surface. Every two years, ongoing NASA planetary missions propose investigations for the next two years. This year, as part of the 2016 Planetary Sciences Division (PSD) Mission Senior Review, the Mars Odyssey (ODY) orbiter project submitted a proposal for its 7th extended mission, the Mars Exploration Rover (MER-B) Opportunity submitted for its 10th, the Mars Reconnaissance Orbiter (MRO) for its 4th, and the Mars Science Laboratory (MSL) Curiosity rover and the Mars Atmosphere and Volatile Evolution (MVN) orbiter for their 2nd extended missions, respectively. Continued US participation in the ongoing Mars Express Mission (MEX) was also proposed. These missions arrived at Mars in 2001, 2004, 2006, 2012, 2014, and 2003, respectively. Highlights of proposed activities include systematic observations of the surface and atmosphere in twilight (early morning and late evening), building on a 13-year record of global mapping (ODY); exploration of a crater rim gully and interior of Endeavour Crater, while continuing to test what can and cannot be seen from orbit (MER-B); refocused observations of ancient aqueous deposits and polar cap interiors, while adding a 6th Mars year of change detection in the atmosphere and the surface (MRO); exploration and sampling by a rover of mineralogically diverse strata of Mt. Sharp and of atmospheric methane in Gale Crater (MSL); and further characterization of atmospheric escape under different solar conditions (MVN). As proposed, these activities follow up on previous discoveries (e.g., recurring slope lineae, habitable environments), while expanding spatial and temporal coverage to guide new detailed observations. An independent review panel evaluated these proposals, met with project representatives in May, and made recommendations to NASA in June 2016. In this

  12. WISDOM GPR subsurface investigations in the Atacama desert during the SAFER rover operation simulation

    NASA Astrophysics Data System (ADS)

    Dorizon, Sophie; Ciarletti, Valérie; Vieau, André-Jean; Plettemeier, Dirk; Benedix, Wolf-Stefan; Mütze, Marco; Hassen-Kodja, Rafik; Humeau, Olivier

    2014-05-01

    SAFER (Sample Acquisition Field Experiment with a Rover) is a field trial that occured from 7th to 13th October 2013 in the Atacama desert, Chile. This trial was designed to gather together scientists and engineers in a context of a real spatial mission with a rover. This is ESA's opportunity to validate operations procedures for the ExoMars 2018 mission, since a rover, provided by Astrium, was equipped with three ExoMars payload instruments, namely the WISDOM (Water Ice Subsurface Deposits Observations on Mars) Ground Penetrating Radar, PANCAM (Panoramic Camera) and CLUPI (Close-UP Imager), and was used to experiment the real context of a Martian rover mission. The test site was located close to the Paranal ESO's Observatory (European Southern Observatorys) while the operations were conducted in the Satellite Applications Catapult remote Center in Harwell, UK. The location was chosen for its well-known resemblance with Mars' surface and its arid dryness. To provide the best from this trial, geologists, engineers and instrumentation scientists teams collaborated by processing and analyzing the data, planning in real time the next trajectories for the Bridget rover, as well as the sites of interest for WISDOM subsurface investigations. This WISDOM GPR has been designed to define the geological context of the ExoMars 2018 landing site by characterizing the shallow subsurface in terms of electromagnetic properties and structures. It will allow to lead the drill to locations of potential exobiologocal interest. WISDOM is a polarimetric step frequency radar operating from 0.5GHz to 3GHz, which allows a vertical resolution of a few centimeters over a few meters depth. Provided with a DEM (Digital Elevation Model) and a low-resolution map to assist the team with the rover's operations, several soudings with WISDOM were done over the area. The WISDOM data allowed, in collaboration with the SCISCYS team, to map the electromagnetic contrasts into the subsurface underneath

  13. Science Activity Planner for the MER Mission

    NASA Technical Reports Server (NTRS)

    Norris, Jeffrey S.; Crockett, Thomas M.; Fox, Jason M.; Joswig, Joseph C.; Powell, Mark W.; Shams, Khawaja S.; Torres, Recaredo J.; Wallick, Michael N.; Mittman, David S.

    2008-01-01

    The Maestro Science Activity Planner is a computer program that assists human users in planning operations of the Mars Explorer Rover (MER) mission and visualizing scientific data returned from the MER rovers. Relative to its predecessors, this program is more powerful and easier to use. This program is built on the Java Eclipse open-source platform around a Web-browser-based user-interface paradigm to provide an intuitive user interface to Mars rovers and landers. This program affords a combination of advanced display and simulation capabilities. For example, a map view of terrain can be generated from images acquired by the High Resolution Imaging Science Explorer instrument aboard the Mars Reconnaissance Orbiter spacecraft and overlaid with images from a navigation camera (more precisely, a stereoscopic pair of cameras) aboard a rover, and an interactive, annotated rover traverse path can be incorporated into the overlay. It is also possible to construct an overhead perspective mosaic image of terrain from navigation-camera images. This program can be adapted to similar use on other outer-space missions and is potentially adaptable to numerous terrestrial applications involving analysis of data, operations of robots, and planning of such operations for acquisition of scientific data.

  14. The NASA Langley Mars Tumbleweed Rover Prototype

    NASA Technical Reports Server (NTRS)

    Antol, Jeffrey; Chattin, Richard L.; Copeland, Benjamin M.; Krizann, Shawn A.

    2005-01-01

    Mars Tumbleweed is a concept for an autonomous rover that would achieve mobility through use of the natural winds on Mars. The wind-blown nature of this vehicle make it an ideal platform for conducting random surveys of the surface, scouting for signs of past or present life as well as examining the potential habitability of sites for future human exploration. NASA Langley Research Center (LaRC) has been studying the dynamics, aerodynamics, and mission concepts of Tumbleweed rovers and has recently developed a prototype Mars Tumbleweed Rover for demonstrating mission concepts and science measurement techniques. This paper will provide an overview of the prototype design, instrumentation to be accommodated, preliminary test results, and plans for future development and testing of the vehicle.

  15. Activity Planning for the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Bresina, John L.; Jonsson, Ari K.; Morris, Paul H.; Rajan, Kanna

    2004-01-01

    Operating the Mars Exploration Rovers is a challenging, time-pressured task. Each day, the operations team must generate a new plan describing the rover activities for the next day. These plans must abide by resource limitations, safety rules, and temporal constraints. The objective is to achieve as much science as possible, choosing from a set of observation requests that oversubscribe rover resources. In order to accomplish this objective, given the short amount of planning time available, the MAPGEN (Mixed-initiative Activity Plan GENerator) system was made a mission-critical part of the ground operations system. MAPGEN is a mixed-initiative system that employs automated constraint-based planning, scheduling, and temporal reasoning to assist operations staff in generating the daily activity plans. This paper describes the adaptation of constraint-based planning and temporal reasoning to a mixed-initiative setting and the key technical solutions developed for the mission deployment of MAPGEN.

  16. Pressurized Lunar Rover (PLR)

    NASA Technical Reports Server (NTRS)

    Creel, Kenneth; Frampton, Jeffrey; Honaker, David; Mcclure, Kerry; Zeinali, Mazyar; Bhardwaj, Manoj; Bulsara, Vatsal; Kokan, David; Shariff, Shaun; Svarverud, Eric

    1992-01-01

    The objective of this project was to design a manned pressurized lunar rover (PLR) for long-range transportation and for exploration of the lunar surface. The vehicle must be capable of operating on a 14-day mission, traveling within a radius of 500 km during a lunar day or within a 50-km radius during a lunar night. The vehicle must accommodate a nominal crew of four, support two 28-hour EVA's, and in case of emergency, support a crew of six when near the lunar base. A nominal speed of ten km/hr and capability of towing a trailer with a mass of two mt are required. Two preliminary designs have been developed by two independent student teams. The PLR 1 design proposes a seven meter long cylindrical main vehicle and a trailer which houses the power and heat rejection systems. The main vehicle carries the astronauts, life support systems, navigation and communication systems, lighting, robotic arms, tools, and equipment for exploratory experiments. The rover uses a simple mobility system with six wheels on the main vehicle and two on the trailer. The nonpressurized trailer contains a modular radioisotope thermoelectric generator (RTG) supplying 6.5 kW continuous power. A secondary energy storage for short-term peak power needs is provided by a bank of lithium-sulfur dioxide batteries. The life support system is partly a regenerative system with air and hygiene water being recycled. A layer of water inside the composite shell surrounds the command center allowing the center to be used as a safe haven during solar flares. The PLR 1 has a total mass of 6197 kg. It has a top speed of 18 km/hr and is capable of towing three metric tons, in addition to the RTG trailer. The PLR 2 configuration consists of two four-meter diameter, cylindrical hulls which are passively connected by a flexible passageway, resulting in the overall vehicle length of 11 m. The vehicle is driven by eight independently suspended wheels. The dual-cylinder concept allows articulated as well as double

  17. Pressurized Lunar Rover (PLR)

    NASA Astrophysics Data System (ADS)

    Creel, Kenneth; Frampton, Jeffrey; Honaker, David; McClure, Kerry; Zeinali, Mazyar; Bhardwaj, Manoj; Bulsara, Vatsal; Kokan, David; Shariff, Shaun; Svarverud, Eric

    The objective of this project was to design a manned pressurized lunar rover (PLR) for long-range transportation and for exploration of the lunar surface. The vehicle must be capable of operating on a 14-day mission, traveling within a radius of 500 km during a lunar day or within a 50-km radius during a lunar night. The vehicle must accommodate a nominal crew of four, support two 28-hour EVA's, and in case of emergency, support a crew of six when near the lunar base. A nominal speed of ten km/hr and capability of towing a trailer with a mass of two mt are required. Two preliminary designs have been developed by two independent student teams. The PLR 1 design proposes a seven meter long cylindrical main vehicle and a trailer which houses the power and heat rejection systems. The main vehicle carries the astronauts, life support systems, navigation and communication systems, lighting, robotic arms, tools, and equipment for exploratory experiments. The rover uses a simple mobility system with six wheels on the main vehicle and two on the trailer. The nonpressurized trailer contains a modular radioisotope thermoelectric generator (RTG) supplying 6.5 kW continuous power. A secondary energy storage for short-term peak power needs is provided by a bank of lithium-sulfur dioxide batteries. The life support system is partly a regenerative system with air and hygiene water being recycled. A layer of water inside the composite shell surrounds the command center allowing the center to be used as a safe haven during solar flares. The PLR 1 has a total mass of 6197 kg. It has a top speed of 18 km/hr and is capable of towing three metric tons, in addition to the RTG trailer. The PLR 2 configuration consists of two four-meter diameter, cylindrical hulls which are passively connected by a flexible passageway, resulting in the overall vehicle length of 11 m. The vehicle is driven by eight independently suspended wheels. The dual-cylinder concept allows articulated as well as double

  18. Pancam Imaging of the Mars Exploration Rover Landing Sites in Gusev Crater and Meridiani Planum

    NASA Technical Reports Server (NTRS)

    Bell, J. F., III; Squyres, S. W.; Arvidson, R. E.; Arneson, H. M.; Bass, D.; Cabrol, N.; Calvin, W.; Farmer, J.; Farrand, W. H.

    2004-01-01

    The Mars Exploration Rovers carry four Panoramic Camera (Pancam) instruments (two per rover) that have obtained high resolution multispectral and stereoscopic images for studies of the geology, mineralogy, and surface and atmospheric physical properties at both rover landing sites. The Pancams are also providing significant mission support measurements for the rovers, including Sun-finding for rover navigation, hazard identification and digital terrain modeling to help guide long-term rover traverse decisions, high resolution imaging to help guide the selection of in situ sampling targets, and acquisition of education and public outreach imaging products.

  19. Engineering Feasibility and Trade Studies for the NASA/VSGC MicroMaps Space Mission

    NASA Technical Reports Server (NTRS)

    Abdelkhalik, Ossama O.; Nairouz, Bassem; Weaver, Timothy; Newman, Brett

    2003-01-01

    Knowledge of airborne CO concentrations is critical for accurate scientific prediction of global scale atmospheric behavior. MicroMaps is an existing NASA owned gas filter radiometer instrument designed for space-based measurement of atmospheric CO vertical profiles. Due to programmatic changes, the instrument does not have access to the space environment and is in storage. MicroMaps hardware has significant potential for filling a critical scientific need, thus motivating concept studies for new and innovative scientific spaceflight missions that would leverage the MicroMaps heritage and investment, and contribute to new CO distribution data. This report describes engineering feasibility and trade studies for the NASA/VSGC MicroMaps Space Mission. Conceptual studies encompass: 1) overall mission analysis and synthesis methodology, 2) major subsystem studies and detailed requirements development for an orbital platform option consisting of a small, single purpose spacecraft, 3) assessment of orbital platform option consisting of the International Space Station, and 4) survey of potential launch opportunities for gaining assess to orbit. Investigations are of a preliminary first-order nature. Results and recommendations from these activities are envisioned to support future MicroMaps Mission design decisions regarding program down select options leading to more advanced and mature phases.

  20. Mission (im)possible - mapping the brain becomes a reality.

    PubMed

    Eberle, Anna Lena; Selchow, Olaf; Thaler, Marlene; Zeidler, Dirk; Kirmse, Robert

    2015-02-01

    Charting and understanding the full wiring diagram of complex neuronal structures such as the central nervous system or the brain (Connectomics) is one of the big remaining challenges in life sciences. Although at first it appears nearly impossible to map out a full diagram of, e.g., a mouse brain with sufficient resolution to identify each and every connection between neurons, recent technological advances move such an ambitious undertaking into the realms of possibility without spending decades at a microscope. However there are still many challenges to address in order to pave the way for fast and systematic neurobiological understanding of whole networks. These challenges range from a more robust and reproducible sample preparation to automated image data acquisition, more efficient data storage strategies and powerful data analysis tools. Here we will review novel imaging techniques developed for the challenge of mapping out the full connectome of a nervous system, brain or eye to name just a few examples. The imaging techniques reviewed cover light sheet illumination methods, single and multi-beam scanning electron microscopy, and we will briefly mention the possible combination of both light and electron microscopy. In particular we will review 'clearing' and in vivo methods that can be performed with light sheet fluroescence microscopes such as the ZEISS Lightsheet Z.1. We will then focus on scanning electron microscopy with single and multi-beam instruments including methods such as serial blockface imaging and array tomography methods.

  1. Machine learning challenges in Mars rover traverse science

    NASA Technical Reports Server (NTRS)

    Castano, R.; Judd, M.; Anderson, R. C.; Estlin, T.

    2003-01-01

    The successful implementation of machine learning in autonomous rover traverse science requires addressing challenges that range from the analytical technical realm, to the fuzzy, philosophical domain of entrenched belief systems within scientists and mission managers.

  2. Animation of Curiosity Rover's First 'Touch and Go'

    NASA Video Gallery

    Animation shows NASA's Mars Curiosity rover touching a rock with aninstrument on its arm, then stowing the arm and driving on.Credit: NASA/JPL-Caltech› Curiosity's mission site › Related s...

  3. Wheel for Mars Science Laboratory Rover

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Each of the six wheels for NASA's Mars Science Laboratory rover is about half a meter (20 inches) in diameter.

    JPL, a division of the California Institute of Technology, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington.

  4. The Curiosity Mars Rover's Fault Protection Engine

    NASA Technical Reports Server (NTRS)

    Benowitz, Ed

    2014-01-01

    The Curiosity Rover, currently operating on Mars, contains flight software onboard to autonomously handle aspects of system fault protection. Over 1000 monitors and 39 responses are present in the flight software. Orchestrating these behaviors is the flight software's fault protection engine. In this paper, we discuss the engine's design, responsibilities, and present some lessons learned for future missions.

  5. Structural Design Challenges for Mars Rovers

    NASA Technical Reports Server (NTRS)

    Schenker, Paul; Hickey, Gregory S.

    1997-01-01

    On July 4, 1997 the Pathfinder Mission Successfully began a new era of robotic exploration of Mars. The primary scientific payload of the Pathfinder Lander is the Sojourner Truth Mars Rover, an autonomous robotic vehicle, which is exploring and conducting scientific measurements on the Mars surface.

  6. xLuna - D emonstrator on ESA Mars Rover

    NASA Astrophysics Data System (ADS)

    Braga, P.; Henriques, L.; Carvalho, B.; Chevalley, P.; Zulianello, M.

    2008-08-01

    There is a significant gap between the services offered by existing space qualified Real-Time Operating Systems (RTOS) and those required by the most demanding future space applications. New requirements for autonomy, terrain mapping and navigation, Simultaneous Location and Mapping (SLAM), improvement of the throughput of science tasks, all demand high level services such as file systems or POSIX compliant interfaces. xLuna is an operating system that aims fulfilling these new requirements. Besides providing the typical services that of an RTOS (tasks and interrupts management, timers, message queues, etc), it also includes most of the features available in modern general-purpose operating systems, such as Linux. This paper describes a case study that proposes to demonstrate the usage of xLuna on board a rover currently in use for the development of algorithms in preparation of a mission to Mars.

  7. The Mars Exploration Rovers : hitting the road on Mars

    NASA Technical Reports Server (NTRS)

    Cox, Nagin

    2005-01-01

    Since the beginning of time, people have been fascinated by Mars. From the earliest mission to now-Mars has been (and is) a challenging destination. The Rovers were developed at a breakneck pace in 3 years and landed successfully on Mars in January 2004. This paper will discuss how the Mars Rover mission fits into the overall Mars Program and NASA's program of planetary exploration. Building the rovers in such a short time period created some difficult design challenges that were mainly schedule driven. in addition, it will cover the process of selecting the rover landing sites as well as the engineering challenges faced in the entry, descent and landing process. The rovers have a great deal of autonomous control ability on the surface and the process of developing and testing those was part of the challenge of doing this in 3 years.

  8. The Effects of Clock Drift on the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Ali, Khaled S.; Vanelli, C. Anthony

    2012-01-01

    All clocks drift by some amount, and the mission clock on the Mars Exploration Rovers (MER) is no exception. The mission clock on both MER rovers drifted significantly since the rovers were launched, and it is still drifting on the Opportunity rover. The drift rate is temperature dependent. Clock drift causes problems for onboard behaviors and spacecraft operations, such as attitude estimation, driving, operation of the robotic arm, pointing for imaging, power analysis, and telecom analysis. The MER operations team has techniques to deal with some of these problems. There are a few techniques for reducing and eliminating the clock drift, but each has drawbacks. This paper presents an explanation of what is meant by clock drift on the rovers, its relationship to temperature, how we measure it, what problems it causes, how we deal with those problems, and techniques for reducing the drift.

  9. Design Concept for a Nuclear Reactor-Powered Mars Rover

    NASA Technical Reports Server (NTRS)

    Elliott, John; Poston, Dave; Lipinski, Ron

    2007-01-01

    A report presents a design concept for an instrumented robotic vehicle (rover) to be used on a future mission of exploration of the planet Mars. The design incorporates a nuclear fission power system to provide long range, long life, and high power capabilities unachievable through the use of alternative solar or radioisotope power systems. The concept described in the report draws on previous rover designs developed for the 2009 Mars Science laboratory (MSL) mission to minimize the need for new technology developments.

  10. Designing a Mars surface rover

    NASA Technical Reports Server (NTRS)

    Ruoff, C.; Wilcox, B.; Klein, G.

    1985-01-01

    Only three categories of vehicular configuration are under consideration for the Mars rover geological exploration mission: a six-wheeled 'lunar roving vehicle' (LRV), an elastic loopwheeled mobility system (ELMS), and a 'walking' vehicle. The LRV uses three compliantly coupled modules, each of which is equipped with two powered wheels. The ELMS uses three loopwheels that are reminiscent of tracks mounted on an articulated suspension. Walkers, which use leg-like mechanisms, are the least developed of the three categories. A comparative assessment of the capabilities and economies of the three vehicle types is presented.

  11. Advanced Radioisotope Power System Enabled Titan Rover Concept with Inflatable Wheels

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.; Schriener, Timothy M.; Shirley, James H.

    2006-01-01

    This viewgraph presentation reviews study into exploration of Titan. Including a possible Titan Rover that would use the advanced radioisotope power system (RPS). The goal of the study is to demonstrate a simple, credible and affordable rover mission concept for Titan in-situ exploration, enabled by an Advanced RPS. The presentation reviews the possible launch vehicle, and trajectory options; desired instrumentation that would be aboard the rover; and considerations for the design of the rover.

  12. Mars Exploration Rovers Landing Dispersion Analysis

    NASA Technical Reports Server (NTRS)

    Knocke, Philip C.; Wawrzyniak, Geoffrey G.; Kennedy, Brian M.; Desai, Prasun N.; Parker, TImothy J.; Golombek, Matthew P.; Duxbury, Thomas C.; Kass, David M.

    2004-01-01

    Landing dispersion estimates for the Mars Exploration Rover missions were key elements in the site targeting process and in the evaluation of landing risk. This paper addresses the process and results of the landing dispersion analyses performed for both Spirit and Opportunity. The several contributors to landing dispersions (navigation and atmospheric uncertainties, spacecraft modeling, winds, and margins) are discussed, as are the analysis tools used. JPL's MarsLS program, a MATLAB-based landing dispersion visualization and statistical analysis tool, was used to calculate the probability of landing within hazardous areas. By convolving this with the probability of landing within flight system limits (in-spec landing) for each hazard area, a single overall measure of landing risk was calculated for each landing ellipse. In-spec probability contours were also generated, allowing a more synoptic view of site risks, illustrating the sensitivity to changes in landing location, and quantifying the possible consequences of anomalies such as incomplete maneuvers. Data and products required to support these analyses are described, including the landing footprints calculated by NASA Langley's POST program and JPL's AEPL program, cartographically registered base maps and hazard maps, and flight system estimates of in-spec landing probabilities for each hazard terrain type. Various factors encountered during operations, including evolving navigation estimates and changing atmospheric models, are discussed and final landing points are compared with approach estimates.

  13. Application of Monte-Carlo Analyses for the Microwave Anisotropy Probe (MAP) Mission

    NASA Technical Reports Server (NTRS)

    Mesarch, Michael A.; Rohrbaugh, David; Schiff, Conrad; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The Microwave Anisotropy Probe (MAP) is the third launch in the National Aeronautics and Space Administration's (NASA's) a Medium Class Explorers (MIDEX) program. MAP will measure, in greater detail, the cosmic microwave background radiation from an orbit about the Sun-Earth-Moon L2 Lagrangian point. Maneuvers will be required to transition MAP from it's initial highly elliptical orbit to a lunar encounter which will provide the remaining energy to send MAP out to a lissajous orbit about L2. Monte-Carlo analysis methods were used to evaluate the potential maneuver error sources and determine their effect of the fixed MAP propellant budget. This paper will discuss the results of the analyses on three separate phases of the MAP mission - recovering from launch vehicle errors, responding to phasing loop maneuver errors, and evaluating the effect of maneuver execution errors and orbit determination errors on stationkeeping maneuvers at L2.

  14. 4. "X15 TYPICAL MISSION." A photo of a map graphic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. "X-15 TYPICAL MISSION." A photo of a map graphic showing a flight path from Wendover to Edwards, with an inset graphic showing the landing pattern turns. - Edwards Air Force Base, X-15 Engine Test Complex, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA

  15. Accuracy of mapping the Earth's gravity field fine structure with a spaceborne gravity gradiometer mission

    NASA Technical Reports Server (NTRS)

    Kahn, W. D.

    1984-01-01

    The spaceborne gravity gradiometer is a potential sensor for mapping the fine structure of the Earth's gravity field. Error analyses were performed to investigate the accuracy of the determination of the Earth's gravity field from a gravity field satellite mission. The orbital height of the spacecraft is the dominating parameter as far as gravity field resolution and accuracies are concerned.

  16. Rovers as Geological Helpers for Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Stoker, Carol; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    Rovers can be used to perform field science on other planetary surfaces and in hostile and dangerous environments on Earth. Rovers are mobility systems for carrying instrumentation to investigate targets of interest and can perform geologic exploration on a distant planet (e.g. Mars) autonomously with periodic command from Earth. For nearby sites (such as the Moon or sites on Earth) rovers can be teleoperated with excellent capabilities. In future human exploration, robotic rovers will assist human explorers as scouts, tool and instrument carriers, and a traverse "buddy". Rovers can be wheeled vehicles, like the Mars Pathfinder Sojourner, or can walk on legs, like the Dante vehicle that was deployed into a volcanic caldera on Mt. Spurr, Alaska. Wheeled rovers can generally traverse slopes as high as 35 degrees, can avoid hazards too big to roll over, and can carry a wide range of instrumentation. More challenging terrain and steeper slopes can be negotiated by walkers. Limitations on rover performance result primarily from the bandwidth and frequency with which data are transmitted, and the accuracy with which the rover can navigate to a new position. Based on communication strategies, power availability, and navigation approach planned or demonstrated for Mars missions to date, rovers on Mars will probably traverse only a few meters per day. Collecting samples, especially if it involves accurate instrument placement, will be a slow process. Using live teleoperation (such as operating a rover on the Moon from Earth) rovers have traversed more than 1 km in an 8 hour period while also performing science operations, and can be moved much faster when the goal is simply to make the distance. I will review the results of field experiments with planetary surface rovers, concentrating on their successful and problematic performance aspects. This paper will be accompanied by a working demonstration of a prototype planetary surface rover.

  17. Design of a pressurized lunar rover

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Manoj; Bulsara, Vatsal; Kokan, David; Shariff, Shaun; Svarverud, Eric; Wirz, Richard

    1992-01-01

    A pressurized lunar rover is necessary for future long-term habitation of the moon. The rover must be able to safely perform many tasks, ranging from transportation and reconnaissance to exploration and rescue missions. Numerous designs were considered in an effort to maintain a low overall mass and good mobility characteristics. The configuration adopted consists of two cylindrical pressure hulls passively connected by a pressurized flexible passageway. The vehicle has an overall length of 11 meters and a total mass of seven metric tons. The rover is driven by eight independently powered two meter diameter wheels. The dual-cylinder concept allows a combination of articulated frame and double Ackermann steering for executing turns. In an emergency, the individual drive motors allow the option of skid steering as well. Two wheels are connected to either side of each cylinder through a pinned bar which allows constant ground contact. Together, these systems allow the rover to easily meet its mobility requirements. A dynamic isotope power system (DIPS), in conjunction with a closed Brayton cycle, supplied the rover with a continuous supply of 8.5 kW. The occupants are all protected from the DIPS system's radiation by a shield of tantalum. The large amount of heat produced by the DIPS and other rover systems is rejected by thermal radiators. The thermal radiators and solar collectors are located on the top of the rear cylinder. The solar collectors are used to recharge batteries for peak power periods. The rover's shell is made of graphite-epoxy coated with multi-layer insulation (MLI). The graphite-epoxy provides strength while the thermally resistant MLI gives protection from the lunar environment. An elastomer separates the two materials to compensate for the thermal mismatch. The communications system allows for communication with the lunar base with an option for direct communication with earth via a lunar satellite link. The various links are combined into one

  18. Design of a pressurized lunar rover

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Manoj; Bulsara, Vatsal; Kokan, David; Shariff, Shaun; Svarverud, Eric; Wirz, Richard

    1992-04-01

    A pressurized lunar rover is necessary for future long-term habitation of the moon. The rover must be able to safely perform many tasks, ranging from transportation and reconnaissance to exploration and rescue missions. Numerous designs were considered in an effort to maintain a low overall mass and good mobility characteristics. The configuration adopted consists of two cylindrical pressure hulls passively connected by a pressurized flexible passageway. The vehicle has an overall length of 11 meters and a total mass of seven metric tons. The rover is driven by eight independently powered two meter diameter wheels. The dual-cylinder concept allows a combination of articulated frame and double Ackermann steering for executing turns. In an emergency, the individual drive motors allow the option of skid steering as well. Two wheels are connected to either side of each cylinder through a pinned bar which allows constant ground contact. Together, these systems allow the rover to easily meet its mobility requirements. A dynamic isotope power system (DIPS), in conjunction with a closed Brayton cycle, supplied the rover with a continuous supply of 8.5 kW. The occupants are all protected from the DIPS system's radiation by a shield of tantalum. The large amount of heat produced by the DIPS and other rover systems is rejected by thermal radiators. The thermal radiators and solar collectors are located on the top of the rear cylinder. The solar collectors are used to recharge batteries for peak power periods. The rover's shell is made of graphite-epoxy coated with multi-layer insulation (MLI). The graphite-epoxy provides strength while the thermally resistant MLI gives protection from the lunar environment. An elastomer separates the two materials to compensate for the thermal mismatch.

  19. Path planning and execution monitoring for a planetary rover

    NASA Technical Reports Server (NTRS)

    Gat, Erann; Slack, Marc G.; Miller, David P.; Firby, R. James

    1990-01-01

    A path planner and an execution monitoring planner that will enable the rover to navigate to its various destinations safely and correctly while detecting and avoiding hazards are described. An overview of the complete architecture is given. Implementation and testbeds are described. The robot can detect unforseen obstacles and take appropriate action. This includes having the rover back away from the hazard and mark the area as untraversable in the in the rover's internal map. The experiments have consisted of paths roughly 20 m in length. The architecture works with a large variety of rover configurations with different kinematic constraints.

  20. A rover wheel in soil - color

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The image was taken by a camera aboard the Sojourner rover on Sol 4. A rover wheel is at center, and tracks are visible in the soil at top where the cleated wheel passed over the surface.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech).

  1. Hazard Avoidance For A Mars Rover

    NASA Astrophysics Data System (ADS)

    Spiessbach, Andrew J.

    1989-03-01

    The challenging geology of the surface of Mars, when coupled with the impossibility of continuous remote driving from Earth, dictate the need for autonomous hazard detection, recognition and possibly hazard avoidance capabilities onboard any robotic Mars roving vehicle. The main technical issues represented by terrain hazards are accidental damage and vehicle entrapment. Several approaches to vehicle design geared to prevent such immobilization threats are identified. The gamut of alternatives for rover autonomy are also presented, and the applicability of the various options for the Mars Rover/Sample Return (MRSR) mission are assessed in the context of the technology state of the art for hazard sensors and processing algorithms.

  2. Shark as viewed by Sojourner Rover

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This close-up image of Shark, in the Bookshelf at the back of the Rock Garden, was taken by Sojourner Rover on Sol 75. Also in the image are Half Dome (right) and Desert Princess (lower right). At the bottom left, a thin 'crusty' soil layer has been disturbed by the rover wheels.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  3. Application Explorer Mission-A heat capacity mapping mission. [Bavaria, Germany and Marrakech, Morocco

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The author has identified the following significant results. Fine orogenic sediments, not detectable on the images recorded within the visible wavelength region, can be clearly recognized on all night IR-images. The area of glaciation in the northern foreland of the Alps can be partially identified on the basis of night-IR data. The terminal moraine of various glacierization phases can be mapped and the relative dry and unsorted moraine material consisting of crystalline components can be located through the vegetation cover. The eastern part of the glaciation area can be traced because of reverse temperature effect. In addition to the upper Bavarian lakes, the night-IR images clearly indicate the distribution of high soil moisture areas such as swamps and bogs. The geological border of the upper fresh water molasse in the northern part of the basin north of Munich is identifiable on night IR-imagery. Drift peat areas can be located on day-IR images of the dry season of the year.

  4. A visual display aid for planning rover traversals

    NASA Technical Reports Server (NTRS)

    Bernard, Herbert F.; Ellis, Stephen R.

    1992-01-01

    An interactive graphical planning system has been developed, which allows a human operator to design and check traversals (cross-country paths) for a planetary rover vehicle. The display provides the operator with necessary information about the terrain and indicates violations of operational or dynamic constraints on the rover. The operator can select different kinds of two-dimensional maps as well as a perspective view of the rover environment to plan the traversals. An experiment has been carried out to determine the ability of the operator to estimate the rover attitude in a large variety of situations. It turned out that the estimation error is highly dependent on the rover attitude itself. This result can be used to determine a vertical scale for the perspective representation of the terrain which avoids an underestimation of dangerous rover attitudes.

  5. Planetary micro-rover operations on Mars using a Bayesian framework for inference and control

    NASA Astrophysics Data System (ADS)

    Post, Mark A.; Li, Junquan; Quine, Brendan M.

    2016-03-01

    With the recent progress toward the application of commercially-available hardware to small-scale space missions, it is now becoming feasible for groups of small, efficient robots based on low-power embedded hardware to perform simple tasks on other planets in the place of large-scale, heavy and expensive robots. In this paper, we describe design and programming of the Beaver micro-rover developed for Northern Light, a Canadian initiative to send a small lander and rover to Mars to study the Martian surface and subsurface. For a small, hardware-limited rover to handle an uncertain and mostly unknown environment without constant management by human operators, we use a Bayesian network of discrete random variables as an abstraction of expert knowledge about the rover and its environment, and inference operations for control. A framework for efficient construction and inference into a Bayesian network using only the C language and fixed-point mathematics on embedded hardware has been developed for the Beaver to make intelligent decisions with minimal sensor data. We study the performance of the Beaver as it probabilistically maps a simple outdoor environment with sensor models that include uncertainty. Results indicate that the Beaver and other small and simple robotic platforms can make use of a Bayesian network to make intelligent decisions in uncertain planetary environments.

  6. The real-time control of planetary rovers through behavior modification

    NASA Technical Reports Server (NTRS)

    Miller, David P.

    1991-01-01

    It is not yet clear of what type, and how much, intelligence is needed for a planetary rover to function semi-autonomously on a planetary surface. Current designs assume an advanced AI system that maintains a detailed map of its journeys and the surroundings, and that carefully calculates and tests every move in advance. To achieve these abilities, and because of the limitations of space-qualified electronics, the supporting rover is quite sizable, massing a large fraction of a ton, and requiring technology advances in everything from power to ground operations. An alternative approach is to use a behavior driven control scheme. Recent research has shown that many complex tasks may be achieved by programming a robot with a set of behaviors and activation or deactivating a subset of those behaviors as required by the specific situation in which the robot finds itself. Behavior control requires much less computation than is required by tradition AI planning techniques. The reduced computation requirements allows the entire rover to be scaled down as appropriate (only down-link communications and payload do not scale under these circumstances). The missions that can be handled by the real-time control and operation of a set of small, semi-autonomous, interacting, behavior-controlled planetary rovers are discussed.

  7. Autonomous navigation and control of a Mars rover

    NASA Technical Reports Server (NTRS)

    Miller, D. P.; Atkinson, D. J.; Wilcox, B. H.; Mishkin, A. H.

    1990-01-01

    A Mars rover will need to be able to navigate autonomously kilometers at a time. This paper outlines the sensing, perception, planning, and execution monitoring systems that are currently being designed for the rover. The sensing is based around stereo vision. The interpretation of the images use a registration of the depth map with a global height map provided by an orbiting spacecraft. Safe, low energy paths are then planned through the map, and expectations of what the rover's articulation sensors should sense are generated. These expectations are then used to ensure that the planned path is correctly being executed.

  8. Small-RPS Enabled Mars Rover Concept

    NASA Astrophysics Data System (ADS)

    Balint, Tibor S.

    2005-02-01

    Both the MER and the Mars Pathfinder rovers operated on Mars in an energy-limited mode, since the solar panels generated power during daylight hours only. At other times the rovers relied on power stored in batteries. In comparison, Radioisotope Power Systems (RPS) offer a power-enabled paradigm, where power can be generated for long mission durations (measured in years), independently from the Sun, and on a continuous basis. A study was performed at JPL to assess the feasibility of a small-RPS enabled MER-class rover concept and any associated advantages of its mission on Mars, The rover concept relied on design heritage from MER with two significant changes. First, the solar panels were replaced with two single GPHS module based small-RPSs. Second, the Mossbauer spectroscope was substituted with a laser Raman spectroscope, in order to move towards MEPAG defined astrobiology driven science goals. The highest power requirements were contributed to mobility and telecommunication type operating modes, hence influencing power system sizing. The resulting hybrid power system included two small-RPSs and two batteries. Each small-RPS was assumed to generate 50 We of power or 620 Wh/sol of energy (BOL), comparable to that of MER. The two 8 Ah batteries were considered available during peak power usage. Mission architecture, power trades, science instruments, data, communication, thermal and radiation environments, mobility, and mass issues were also addressed. The study demonstrated that a new set of RPS-enabled rover missions could be envisioned for Mars exploration within the next decade, targeting astrobiology oriented science objectives, while powered by 2 to 4 GPHS modules.

  9. Small-RPS Enabled Mars Rover Concept

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.

    2004-01-01

    Both the MER and the Mars Pathfinder rovers operated on Mars in an energy-limited mode, since the solar panels generated power during daylight hours only. At other times the rovers relied on power stored in batteries. In comparison, Radioisotope Power Systems (RPS) offer a power-enabled paradigm, where power can be generated for long mission durations (measured in years), independently from the Sun, and on a continuous basis. A study was performed at PL to assess the feasibility of a small-RPS enabled MER-class rover concept and any associated advantages of its mission on Mars. The rover concept relied on design heritage from MER with two significant changes. First, the solar panels were replaced with two single GPHS module based small-RPSs. Second, the Mossbauer spectroscope was substituted with a laser Raman spectroscope, in order to move towards MEPAG defined astrobiology driven science goals. The highest power requirements were contributed to mobility and telecommunication type operating modes, hence influencing power system sizing. The resulting hybrid power system included two small-RPSs and two batteries. Each small-RPS was assumed to generate 50We of power or 62OWh/sol of energy (BOL), comparable to that of MER. The two 8Ah batteries were considered available during peak power usage. Mission architecture, power trades, science instruments, data, communication, thermal and radiation environments, mobility, mass issues were also addressed. The study demonstrated that a new set of RPS-enabled rover missions could be envisioned for Mars exploration within the next decade, targeting astrobiology oriented science objectives, while powered by 2 to 4 GPHS modules.

  10. Student Participation in Rover Field Trials

    NASA Astrophysics Data System (ADS)

    Bowman, C. D.; Arvidson, R. E.; Nelson, S. V.; Sherman, D. M.; Squyres, S. W.

    2001-12-01

    The LAPIS program was developed in 1999 as part of the Athena Science Payload education and public outreach, funded by the JPL Mars Program Office. For the past three years, the Athena Science Team has been preparing for 2003 Mars Exploration Rover Mission operations using the JPL prototype Field Integrated Design and Operations (FIDO) rover in extended rover field trials. Students and teachers participating in LAPIS work with them each year to develop a complementary mission plan and implement an actual portion of the annual tests using FIDO and its instruments. LAPIS is designed to mirror an end-to-end mission: Small, geographically distributed groups of students form an integrated mission team, working together with Athena Science Team members and FIDO engineers to plan, implement, and archive a two-day test mission, controlling FIDO remotely over the Internet using the Web Interface for Telescience (WITS) and communicating with each other by email, the web, and teleconferences. The overarching goal of LAPIS is to get students excited about science and related fields. The program provides students with the opportunity to apply knowledge learned in school, such as geometry and geology, to a "real world" situation and to explore careers in science and engineering through continuous one-on-one interactions with teachers, Athena Science Team mentors, and FIDO engineers. A secondary goal is to help students develop improved communication skills and appreciation of teamwork, enhanced problem-solving skills, and increased self-confidence. The LAPIS program will provide a model for outreach associated with future FIDO field trials and the 2003 Mars mission operations. The base of participation will be broadened beyond the original four sites by taking advantage of the wide geographic distribution of Athena team member locations. This will provide greater numbers of students with the opportunity to actively engage in rover testing and to explore the possibilities of

  11. FIDO Rover Retracted Arm and Camera

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Field Integrated Design and Operations (FIDO) rover extends the large mast that carries its panoramic camera. The FIDO is being used in ongoing NASA field tests to simulate driving conditions on Mars. FIDO is controlled from the mission control room at JPL's Planetary Robotics Laboratory in Pasadena. FIDO uses a robot arm to manipulate science instruments and it has a new mini-corer or drill to extract and cache rock samples. Several camera systems onboard allow the rover to collect science and navigation images by remote-control. The rover is about the size of a coffee table and weighs as much as a St. Bernard, about 70 kilograms (150 pounds). It is approximately 85 centimeters (about 33 inches) wide, 105 centimeters (41 inches) long, and 55 centimeters (22 inches) high. The rover moves up to 300 meters an hour (less than a mile per hour) over smooth terrain, using its onboard stereo vision systems to detect and avoid obstacles as it travels 'on-the-fly.' During these tests, FIDO is powered by both solar panels that cover the top of the rover and by replaceable, rechargeable batteries.

  12. Preliminary Geologic Mapping of the Ac-S-3 Hemisphere of Ceres from NASA's Dawn Mission

    NASA Astrophysics Data System (ADS)

    Buczkowski, D. L.; Yingst, R. A.; Williams, D. A.; Scully, J. E. C.; Mest, S. C.; Crown, D. A.; Jaumann, R.; Russell, C. T.; Raymond, C. A.; Schenk, P. M.; Marchi, S.; O'Brien, D. P.; Nathues, A.; Hoffmann, M.; Schafer, M.; Platz, T.; Roatsch, T.; Kersten, E.; Preusker, F.; Stephan, K.

    2015-10-01

    NASA's Dawn spacecraft [1] was captured into orbit by the dwarf planet (1) Ceres on March 6, 2015. During the Approach phase capture was preceded and followed by a series of optical navigation and rotation characterization observations by Dawn's Framing Camera (FC) [2], which provided the first images of Ceres' surface. As was done at Vesta [3], the Dawn Science Team will conduct a geological mapping campaign at Ceres during the Nominal Mission, including iterative mapping using data obtained during each orbital phase. In this presentation we will describe the approach of the Ceres Mapping Campaign and discuss the preliminary geological mapping of the Ac-S-3 (180- 360˚E) hemisphere of Ceres.

  13. Gravity Recovery and Interior Laboratory (GRAIL) Mission: Status at the Initiation of the Science Mapping Phase

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T.; Smith, David E.; Asmar, Sami W.; Alomon; Konopliv, Alexander S.; Lemoine, Frank G.; Melosh, H. Jay; Neumann, Gregory A.; Phillips. Roger J.; Solomon, Sean C.; Watkins, Michael M.; Wieczorek, Mark A.; Williams, James G.

    2012-01-01

    The Gravity Recovery And Interior Laboratory (GRAIL) mission, a component of NASA's Discovery Program, launched successfully from Cape Canaveral Air Force Station on September 10, 2011. The dual spacecraft traversed independent, low-energy trajectories to the Moon via the EL-1 Lagrange point and inserted into elliptical, 11.5-hour polar orbits around the Moon on December 31, 2011, and January 1, 2012. The spacecraft are currently executing a series of maneuvers to circularize their orbits at 55-km mean altitude. Once the mapping orbit is achieved, the spacecraft will undergo additional maneuvers to align them into mapping configuration. The mission is on track to initiate the Science Phase on March 8, 2012.

  14. VIMS spectral mapping observations of Titan during the Cassini prime mission

    USGS Publications Warehouse

    Barnes, J.W.; Soderblom, J.M.; Brown, R.H.; Buratti, B.J.; Sotin, C.; Baines, K.H.; Clark, R.N.; Jaumann, R.; McCord, T.B.; Nelson, R.; Le, Mouelic S.; Rodriguez, S.; Griffith, C.; Penteado, P.; Tosi, F.; Pitman, K.M.; Soderblom, L.; Stephan, K.; Hayne, P.; Vixie, G.; Bibring, J.-P.; Bellucci, G.; Capaccioni, F.; Cerroni, P.; Coradini, A.; Cruikshank, D.P.; Drossart, P.; Formisano, V.; Langevin, Y.; Matson, D.L.; Nicholson, P.D.; Sicardy, B.

    2009-01-01

    This is a data paper designed to facilitate the use of and comparisons to Cassini/visual and infrared mapping spectrometer (VIMS) spectral mapping data of Saturn's moon Titan. We present thumbnail orthographic projections of flyby mosaics from each Titan encounter during the Cassini prime mission, 2004 July 1 through 2008 June 30. For each flyby we also describe the encounter geometry, and we discuss the studies that have previously been published using the VIMS dataset. The resulting compliation of metadata provides a complementary big-picture overview of the VIMS data in the public archive, and should be a useful reference for future Titan studies. ?? 2009 Elsevier Ltd.

  15. Social network analysis and dual rover communications

    NASA Astrophysics Data System (ADS)

    Litaker, Harry L.; Howard, Robert L.

    2013-10-01

    Social network analysis (SNA) refers to the collection of techniques, tools, and methods used in sociometry aiming at the analysis of social networks to investigate decision making, group communication, and the distribution of information. Human factors engineers at the National Aeronautics and Space Administration (NASA) conducted a social network analysis on communication data collected during a 14-day field study operating a dual rover exploration mission to better understand the relationships between certain network groups such as ground control, flight teams, and planetary science. The analysis identified two communication network structures for the continuous communication and Twice-a-Day Communication scenarios as a split network and negotiated network respectfully. The major nodes or groups for the networks' architecture, transmittal status, and information were identified using graphical network mapping, quantitative analysis of subjective impressions, and quantified statistical analysis using Sociometric Statue and Centrality. Post-questionnaire analysis along with interviews revealed advantages and disadvantages of each network structure with team members identifying the need for a more stable continuous communication network, improved robustness of voice loops, and better systems training/capabilities for scientific imagery data and operational data during Twice-a-Day Communications.

  16. Scout Rover Applications for Forward Acquisition of Soil and Terrain Data

    NASA Astrophysics Data System (ADS)

    Sonsalla, R.; Ahmed, M.; Fritsche, M.; Akpo, J.; Voegele, T.

    2014-04-01

    As opposed to the present mars exploration missions future mission concepts ask for a fast and safe traverse through vast and varied expanses of terrain. As seen during the Mars Exploration Rover (MER) mission the rovers suffered a lack of detailed soil and terrain information which caused Spirit to get permanently stuck in soft soil. The goal of the FASTER1 EU-FP7 project is to improve the mission safety and the effective traverse speed for planetary rover exploration by determining the traversability of the terrain and lowering the risk to enter hazardous areas. To achieve these goals, a scout rover will be used for soil and terrain sensing ahead of the main rover. This paper describes a highly mobile, and versatile micro scout rover that is used for soil and terrain sensing and is able to co-operate with a primary rover as part of the FASTER approach. The general reference mission idea and concept is addressed within this paper along with top-level requirements derived from the proposed ESA/NASA Mars Sample Return mission (MSR) [4]. Following the mission concept and requirements [3], a concept study for scout rover design and operations has been performed [5]. Based on this study the baseline for the Coyote II rover was designed and built as shown in Figure 1. Coyote II is equipped with a novel locomotion concept, providing high all terrain mobility and allowing to perform side-to-side steering maneuvers which reduce the soil disturbance as compared to common skid steering [6]. The rover serves as test platform for various scout rover application tests ranging from locomotion testing to dual rover operations. From the lessons learned from Coyote II and for an enhanced design, a second generation rover (namely Coyote III) as shown in Figure 2 is being built. This rover serves as scout rover platform for the envisaged FASTER proof of concept field trials. The rover design is based on the test results gained by the Coyote II trials. Coyote III is equipped with two

  17. Lunar Resource Exploitation with Team Hakuto Swarm Rovers

    NASA Astrophysics Data System (ADS)

    Acierno, Kyle

    2016-07-01

    While much research has been done on the exploration, extraction and utilization of the Moon's resources, little attention has been given to exploring the economic opportunities that exist in the exploitation of those resources with the use of swam rovers. In order to develop a holistic view of lunar resources, this paper will first investigate the most important volatiles and minerals that are known to exist on the Moon. Next, Google Lunar XPRIZE Team Hakuto's technology and current robotic set up will be given. Finally, TEAM HAKUTO's 2017 Lunar mission plan will be outlined, providing an overview of future architectures using future swarm robotics to search for, map and eventually exploit the resources and volatiles.

  18. Geology of the Mars Exploration Rover

    NASA Astrophysics Data System (ADS)

    Bell, J. F.

    2004-05-01

    sedimentary structures is being pursued. At the scale of the MI images the outcrop materials appear to have undergone significant differential erosion, suggesting compositional diversity within the layers that is as yet unconfirmed by direct measurements. The second surprise is the discovery of a population of well sorted spherical grains ("spherules"), typically several mm in diameter, that have been observed to vary in relative abundance from place to place within the crater but generally increase in relative abundance closer to the outcrop. In some places the spherules can be seen to be randomly distributed or even overdispersed within the laminated matrix of the outcrop, and/or eroding directly out of the outcrop itself, suggesting that their origin is intimately tied to the origin of those deposits. Hypotheses for spherule origin include volcanic (e.g., accretionary lapilli), impact (impact spherules, tektites), or chemical precipitation (concretions, pisoliths), all of which are being explored and tested in detail as new imaging and compositional data are obtained. For example, no evidence has yet been found that the spherules are aggregated, in layers or otherwise, or (where broken spherules are seen) that they are themselves composed of concentric or laminated structures. This argues against an impact spherule/lapilli or oolite/pisolite origin, but certainly not conclusively. After exploring the outcrop the rover will most likely leave the crater and explore the surrounding plains. The goal of this next phase of the rover's mission will be to search for and determine the origin of the hematite deposits and other layered/outcropping materials thought to be part of the potentially aqueous sedimentary rocks mapped from orbit in this region of Mars.

  19. Measuring Total Surface Moisture with the COSMOS Rover

    NASA Astrophysics Data System (ADS)

    Chrisman, B. B.; Zreda, M.; Franz, T. E.; Rosolem, R.

    2012-12-01

    The COSMOS rover is the mobile application of the cosmic-ray soil moisture probe. By quantifying the relative amount of the hydrogen molecules within the instrument's support volume (~335 m radius in air, 10-70 cm depth in soil) the instrument makes an area-average surface moisture measurement. We call this measurement "total surface moisture". Quantifying hydrogen in all major stocks (soils, infrastructure, vegetation, and water vapor) allows for an isolation of the volumetric fraction of the exchangeable surface moisture. By isolating the hydrogen molecule we can measure the exchangeable surface moisture over all land cover types including those with built-up infrastructure and dense vegetation; two environments which have been challenging to existing technologies. . The cosmic-ray rover has the capability to improve hydrologic, climate, and weather models by parameterizing the exchangeable surface moisture status over complex landscapes. It can also fill a gap in the verification and development processes of surface moisture satellite missions, such as SMOS and SMAP. In our current research program, 2D transects are produced twice a week and 3D maps are produced once a week during the 2012 monsoon season (July-September) within the Tucson Basin. The 40 km x 40 km area includes four land cover classes; developed, scrub (natural Sonoran Desert), crops, and evergreen forest. The different land cover types show significant differences in their surface moisture behavior with irrigation acting as the largest controlling factor in the developed and crop areas. In addition we investigated the use of the cosmic-ray rover data to verify/compare with satellite derived soil moisture. A Maximum Entropy model is being used to create soil moisture profiles from shallow surface measurements (SMOS data). With the cosmic-ray penetration depth and weighting function known, the satellite measurement can be interpolated, weighted and compared with the cosmic-ray measurement when the

  20. Finding the path to a better Mars rover

    NASA Astrophysics Data System (ADS)

    Pivirotto, Donna S.

    1993-09-01

    A Microrover Flight Experiment (MFEX) based on a basic Rocky 4 design and conducted in the framework of the NASA Mars Environmental Survey (MESUR) Pathfinder program is described. The MFEX rover design features six powered wheels attached by a set of 'bogie levers' to a single body. The rover is designed to perform technology, science, and mission experiments. Instruments on the rover mechanisms will determine wheel-soil interactions, detect hazards, and determine navigational errors. Science data will be gathered using an alpha-proton-X-ray spectrometer against one or more rocks, and possible soil. The pathfinder will also serve as an engineering test of a transport and landing system for the MESUR network mission and the rover will image the lander to assess its condition.

  1. Decision-Theoretic Control of Planetary Rovers

    NASA Technical Reports Server (NTRS)

    Zilberstein, Shlomo; Washington, Richard; Bernstein, Daniel S.; Mouaddib, Abdel-Illah; Morris, Robert (Technical Monitor)

    2003-01-01

    Planetary rovers are small unmanned vehicles equipped with cameras and a variety of sensors used for scientific experiments. They must operate under tight constraints over such resources as operation time, power, storage capacity, and communication bandwidth. Moreover, the limited computational resources of the rover limit the complexity of on-line planning and scheduling. We describe two decision-theoretic approaches to maximize the productivity of planetary rovers: one based on adaptive planning and the other on hierarchical reinforcement learning. Both approaches map the problem into a Markov decision problem and attempt to solve a large part of the problem off-line, exploiting the structure of the plan and independence between plan components. We examine the advantages and limitations of these techniques and their scalability.

  2. Bringing Terramechanics to bear on Planetary Rover Design

    NASA Astrophysics Data System (ADS)

    Richter, L.

    2007-08-01

    Thus far, planetary rovers have been successfully operated on the Earth's moon and on Mars. In particular, the two NASA Mars Exploration Rovers (MERs) ,Spirit' and ,Opportunity' are still in sustained daily operations at two sites on Mars more than 3 years after landing there. Currently, several new planetary rover missions are in development targeting Mars (the US Mars Science Lab vehicle for launch in 2009 and ESA's ExoMars rover for launch in 2013), with lunar rover missions under study by China and Japan for launches around 2012. Moreover, the US Constellation program is preparing pre-development of lunar rovers for initially unmanned and, subsequently, human missions to the Moon with a corresponding team dedicated to mobility system development having been set up at the NASA Glenn Research Center. Given this dynamic environment, it was found timely to establish an expert group on off-the-road mobility as relevant for robotic vehicles that would involve individuals representing the various on-going efforts on the different continents. This was realized through the International Society of Terrain-Vehicle Systems (ISTVS), a research organisation devoted to terramechanics and to the ,science' of off-the-road vehicle development which as a result is just now establishing a Technical Group on Terrestrial and Planetary Rovers. Members represent space-related as well as military research institutes and universities from the US, Germany, Italy, and Japan. The group's charter for 2007 is to define its objectives, functions, organizational structure and recommended research objectives to support planetary rover design and development. Expected areas of activity of the ISTVS-sponsored group include: the problem of terrain specification for planetary rovers; identification of limitations in modelling of rover mobility; a survey of existing rover mobility testbeds; the consolidation of mobility predictive models and their state of validation; sensing and real

  3. Using Multi-Core Systems for Rover Autonomy

    NASA Technical Reports Server (NTRS)

    Clement, Brad; Estlin, Tara; Bornstein, Benjamin; Springer, Paul; Anderson, Robert C.

    2010-01-01

    Task Objectives are: (1) Develop and demonstrate key capabilities for rover long-range science operations using multi-core computing, (a) Adapt three rover technologies to execute on SOA multi-core processor (b) Illustrate performance improvements achieved (c) Demonstrate adapted capabilities with rover hardware, (2) Targeting three high-level autonomy technologies (a) Two for onboard data analysis (b) One for onboard command sequencing/planning, (3) Technologies identified as enabling for future missions, (4)Benefits will be measured along several metrics: (a) Execution time / Power requirements (b) Number of data products processed per unit time (c) Solution quality

  4. The Maneuver Planning Process for the Microwave Anisotropy Probe (MAP) Mission

    NASA Technical Reports Server (NTRS)

    Mesarch, Michael A.; Andrews, Stephen; Bauer, Frank (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe (MAP) was successfully launched from Kennedy Space Center's Eastern Range on June 30, 2001. MAP will measure the cosmic microwave background as a follow up to NASA's Cosmic Background Explorer (COBE) mission from the early 1990's. MAP will take advantage of its mission orbit about the Sun-Earth/Moon L2 Lagrangian point to produce results with higher resolution, sensitivity, and accuracy than COBE. A strategy comprising highly eccentric phasing loops with a lunar gravity assist was utilized to provide a zero-cost insertion into a lissajous orbit about L2. Maneuvers were executed at the phasing loop perigees to correct for launch vehicle errors and to target the lunar gravity assist so that a suitable orbit at L2 was achieved. This paper will discuss the maneuver planning process for designing, verifying, and executing MAP's maneuvers. A discussion of the tools and how they interacted will also be included. The maneuver planning process was iterative and crossed several disciplines, including trajectory design, attitude control, propulsion, power, thermal, communications, and ground planning. Several commercial, off-the-shelf (COTS) packages were used to design the maneuvers. STK/Astrogator was used as the trajectory design tool. All maneuvers were designed in Astrogator to ensure that the Moon was met at the correct time and orientation to provide the energy needed to achieve an orbit about L2. The Mathworks Matlab product was used to develop a tool for generating command quaternions. The command quaternion table (CQT) was used to drive the attitude during the perigee maneuvers. The MatrixX toolset, originally written by Integrated Systems, Inc., now distributed by Mathworks, was used to create HiFi, a high fidelity simulator of the MAP attitude control system. HiFi was used to test the CQT and to make sure that all attitude requirements were met during the maneuver. In addition, all ACS data plotting and output were generated in

  5. In-Situ Pointing Correction and Rover Microlocalization

    NASA Technical Reports Server (NTRS)

    Deen, Robert G.; Lorre, Jean J.

    2010-01-01

    Two software programs, marstie and marsnav, work together to generate pointing corrections and rover micro-localization for in-situ images. The programs are based on the PIG (Planetary Image Geometry) library, which handles all mission dependencies. As a result, there is no mission-specific code in either of these programs. This software corrects geometric seams in images as much as possible.

  6. Conceptual Design and Architecture of Mars Exploration Rover (MER) for Seismic Experiments Over Martian Surfaces

    NASA Astrophysics Data System (ADS)

    Garg, Akshay; Singh, Amit

    2012-07-01

    Keywords: MER, Mars, Rover, Seismometer Mars has been a subject of human interest for exploration missions for quite some time now. Both rover as well as orbiter missions have been employed to suit mission objectives. Rovers have been preferentially deployed for close range reconnaissance and detailed experimentation with highest accuracy. However, it is essential to strike a balance between the chosen science objectives and the rover operations as a whole. The objective of this proposed mechanism is to design a vehicle (MER) to carry out seismic studies over Martian surface. The conceptual design consists of three units i.e. Mother Rover as a Surrogate (Carrier) and Baby Rovers (two) as seeders for several MEMS-based accelerometer / seismometer units (Nodes). Mother Rover can carry these Baby Rovers, having individual power supply with solar cells and with individual data transmission capabilities, to suitable sites such as Chasma associated with Valles Marineris, Craters or Sand Dunes. Mother rover deploys these rovers in two opposite direction and these rovers follow a triangulation pattern to study shock waves generated through firing tungsten carbide shells into the ground. Till the time of active experiments Mother Rover would act as a guiding unit to control spatial spread of detection instruments. After active shock experimentation, the babies can still act as passive seismometer units to study and record passive shocks from thermal quakes, impact cratering & landslides. Further other experiments / payloads (XPS / GAP / APXS) can also be carried by Mother Rover. Secondary power system consisting of batteries can also be utilized for carrying out further experiments over shallow valley surfaces. The whole arrangement is conceptually expected to increase the accuracy of measurements (through concurrent readings) and prolong life cycle of overall experimentation. The proposed rover can be customised according to the associated scientific objectives and further

  7. Combined Exact-Repeat and Geodetic Mission Altimetry for High-Resolution Empirical Tide Mapping

    NASA Astrophysics Data System (ADS)

    Zaron, E. D.

    2014-12-01

    The configuration of present and historical exact-repeat mission (ERM) altimeter ground tracks determines the maximum resolution of empirical tidal maps obtained with ERM data. Although the mode-1 baroclinic tide is resolvable at mid-latitudes in the open ocean, the ability to detect baroclinic and barotropic tides near islands and complex coastlines is limited, in part, by ERM track density. In order to obtain higher resolution maps, the possibility of combining ERM and geodetic mission (GM) altimetry is considered, using a combination of spatial thin-plate splines and temporal harmonic analysis. Given the present spatial and temporal distribution of GM missions, it is found that GM data can contribute to resolving tidal features smaller than 75 km, provided the signal amplitude is greater than about 1 cm. Uncertainties in the mean sea surface and environmental corrections are significant components of the GM error budget, and methods to optimize data selection and along-track filtering are still being optimized. Application to two regions, Monterey Bay and Luzon Strait, finds evidence for complex tidal fields in agreement with independent observations and modeling studies.

  8. Young and Rover on the Descartes

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, Commander of the Apollo 16 mission, replaces tools in the hand tool carrier at the aft end of the 'Rover' Lunar Roving Vehicle (LRV) during the second Apollo 16 extravehicular activity (EVA-2) at the Descartes landing site. This photograph was taken by Astronaut Charles M. Duke Jr., Lunar Module pilot. Smokey Mountain, with the large Ravine crater on its flank, is in the left background. This view is looking Northeast.

  9. Mars Rover/Sample Return landing strategy

    NASA Technical Reports Server (NTRS)

    Friedlander, Alan L.; German, Darla J.

    1988-01-01

    This paper describes the analysis and results of an investigation of the Mars Rover/Sample Return mission's landing strategy, together with the trade-offs of different landing strategies. The percentile points and the descriptive statistics of the probability distribution of traverse distances are calculated using a simple model formulated on the basis of landing error characteristics. The results show that variations in the landing stratgegy can significantly affect the traverse distance requirements, which range from 20 to 200 km.

  10. Electrical power technology for robotic planetary rovers

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Shirbacheh, M.; Bents, D. J.; Bozek, J. M.

    1993-01-01

    Power technologies which will enable a range of robotic rover vehicle missions by the end of the 1990s and beyond are discussed. The electrical power system is the most critical system for reliability and life, since all other on board functions (mobility, navigation, command and data, communications, and the scientific payload instruments) require electrical power. The following are discussed: power generation, energy storage, power management and distribution, and thermal management.

  11. A study of an orbital radar mapping mission to Venus. Volume 2: Configuration comparisons and systems evaluation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Configuration comparisons and systems evaluation for the orbital radar mapping mission of the planet Venus are discussed. Designs are recommended which best satisfy the science objectives of the Venus radar mapping concept. Attention is given to the interaction and integration of those specific mission-systems recommendations with one another, and the final proposed designs are presented. The feasibility, cost, and scheduling of these configurations are evaluated against assumptions of reasonable state-of-the-art growth and space funding expectations.

  12. Operational Experience with Long Duration Wildfire Mapping: UAS Missions Over the Western United States

    NASA Technical Reports Server (NTRS)

    Hall, Philip; Cobleigh, Brent; Buoni, Greg; Howell, Kathleen

    2008-01-01

    The National Aeronautics and Space Administration, United States Forest Service, and National Interagency Fire Center have developed a partnership to develop and demonstrate technology to improve airborne wildfire imaging and data dissemination. In the summer of 2007, a multi-spectral infrared scanner was integrated into NASA's Ikhana Unmanned Aircraft System (UAS) (a General Atomics Predator-B) and launched on four long duration wildfire mapping demonstration missions covering eight western states. Extensive safety analysis, contingency planning, and mission coordination were key to securing an FAA certificate of authorization (COA) to operate in the national airspace. Infrared images were autonomously geo-rectified, transmitted to the ground station by satellite communications, and networked to fire incident commanders within 15 minutes of acquisition. Close coordination with air traffic control ensured a safe operation, and allowed real-time redirection around inclement weather and other minor changes to the flight plan. All objectives of the mission demonstrations were achieved. In late October, wind-driven wildfires erupted in five southern California counties. State and national emergency operations agencies requested Ikhana to help assess and manage the wildfires. Four additional missions were launched over a 5-day period, with near realtime images delivered to multiple emergency operations centers and fire incident commands managing 10 fires.

  13. Chandrayaan-2: India's First Soft-landing Mission to Moon

    NASA Astrophysics Data System (ADS)

    Mylswamy, Annadurai; Krishnan, A.; Alex, T. K.; Rama Murali, G. K.

    2012-07-01

    The first Indian planetary mission to moon, Chandrayaan-1, launched on 22nd October, 2008 with a suite of Indian and International payloads on board, collected very significant data over its mission duration of close to one year. Important new findings from this mission include, discovery of hydroxyl and water molecule in sunlit lunar surface region around the poles, exposure of large anorthositic blocks confirming the global lunar magma hypothesis, signature of sub surface ice layers in permanently shadowed regions near the lunar north pole, evidence for a new refractory rock type, mapping of reflected lunar neutral atoms and identification of mini-magnetosphere, possible signature of water molecule in lunar exosphere, preserved lava tube that may provide site for future human habitation and radiation dose en-route and around the moon. Chandrayaan-2:, The success of Chandrayaan-1 orbiter mission provided impetus to implement the second approved Indian mission to moon, Chandrayaan-2, with an Orbiter-Lander-Rover configuration. The enhanced capabilities will enable addressing some of the questions raised by the results obtained from the Chandrayaan-1 and other recent lunar missions and also to enhance our understanding of origin and evolution of the moon. The orbiter that will carry payloads to further probe the morphological, mineralogical and chemical properties of the lunar surface material through remote sensing observations in X-ray, visible, infra-red and microwave regions. The Lander-Rover system will enable in-depth studies of a specific lunar location and probe various physical properties of the moon. The Chandrayaan-2 mission will be collaboration between Indian Space Research Organization (ISRO) and the Federal Space Agency of Russia. ISRO will be responsible for the Launch Vehicle, the Orbiter and the Rover while the Lander will be provided by Russia. Initial work to realize the different elements of the mission is currently in progress in both countries

  14. Rover waste assay system

    SciTech Connect

    Akers, D.W.; Stoots, C.M.; Kraft, N.C.; Marts, D.J.

    1997-11-01

    The Rover Waste Assay System (RWAS) is a nondestructive assay system designed for the rapid assay of highly-enriched {sup 235}U contaminated piping, tank sections, and debris from the Rover nuclear rocket fuel processing facility at the Idaho Chemical Processing Plant. A scanning system translates a NaI(Tl) detector/collimator system over the structural components where both relative and calibrated measurements for {sup 137}Cs are made. Uranium-235 concentrations are in operation and is sufficiently automated that most functions are performed by the computer system. These functions include system calibration, problem identification, collimator control, data analysis, and reporting. Calibration of the system was done through a combination of measurements on calibration standards and benchmarked modeling. A description of the system is presented along with the methods and uncertainties associated with the calibration and analysis of the system for components from the Rover facility. 4 refs., 2 figs., 4 tabs.

  15. Mars Methane Analogue Mission (M3): Near Subsurface Electromagnetic Techniques and Analysis

    NASA Astrophysics Data System (ADS)

    Boivin, A.; Samson, C.; Holladay, J. S.; Cloutis, E. A.; Ernst, R. E.

    2012-03-01

    As part of the Canadian Space Agency's Mars Methane Analogue Mission, a micro-rover mission, an Electromagnetic Induction Sounder (EMIS) was used with the goal of demonstrating its value as a potential science instrument onboard future rovers.

  16. Rover Magnets All Around

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This illustration shows the locations of the various magnets on the Mars Exploration Rover, which are: its front side, or chest; its back, near the color calibration target; and on its rock abrasion tool. Scientists will use these tools to collect dust for detailed studies. The origins of martian dust are a mystery, although it is believed to come from at least one of three sources: volcanic ash, pulverized rocks or mineral precipitates from liqiud water. By studying the dust with the rover's two spectrometers, scientists hope to find an answer.

  17. WATER ON MARS: EVIDENCE FROM MER MISSION RESULTS

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2006-01-01

    The Mars Exploration Rover (MER) mission landed two rovers on Mars, equipped with a highly-capable suite of science instruments. The Spirit rover landed on the inside Gusev Crater on January 5, 2004, and the Opportunity rover three weeks later on Meridiani Planum. This paper summarizes some of the findings from the MER rovers related to the NASA science strategy of investigating past and present water on Mars.

  18. Evaluating near-surface soil moisture using Heat Capacity Mapping Mission data

    NASA Technical Reports Server (NTRS)

    Heilman, J. L.; Moore, D. G.

    1982-01-01

    Four dates of Heat Capacity Mapping Mission (HCMM) data were analyzed in order to evaluate HCMM thermal data use in estimating near-surface soil moisture in a complex agricultural landscape. Because of large spatial and temporal ground cover variations, HCMM radiometric temperatures alone did not correlate with soil water content. The radiometric temperatures consisted of radiance contributions from different canopies and their respective soil backgrounds. However, when surface soil temperatures were empirically estimated from HCMM temperatures and percent cover of each pixel, a highly significant correlation was obtained between the estimated soil temperatures and near-surface soil water content.

  19. Snow hydrology studies using data from the Heat Capacity Mapping Mission

    NASA Technical Reports Server (NTRS)

    Barnes, J. C.; Bowley, C. J.

    1981-01-01

    This paper describes a study of the snow hydrology application of thermal infrared (IR) data from the Heat Capacity Mapping Mission (HCMM) satellite. The HCMM data in both imagery and digital tape formats are analyzed for two study areas: the Salt-Verde Watershed in central Arizona and the southern Sierra Nevada in California. The analysis procedures are described, including the development of a unique contour plotting program that makes it possible to overlay HCMM thermal contours directly onto the visible channel imagery. The results indicate that satellite thermal-IR data can provide the hydrologist with additional useful information on snow cover.

  20. Slip Validation and Prediction for Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Yen, Jeng

    2007-01-01

    This paper presents a novel technique to validate and predict the rover slips on Martian surface for NASA's Mars Exploration Rovers. Different from the traditional approach, the proposed method uses the actual velocity profile of the wheels and the digital elevation map (DEM) from the stereo images of the terrain to formulate simplified equations of motion of the rovers. A weighted factor to the wheel-ground speed from the empirical data comprises the velocity equations of the simplified differential-algebraic system of the rover motion. Applying the discretization operator to these equations, the full kinematics state of the rover is then resolved by the configuration kinematics solution in the Robot Sequencing and Visualization Program (RSVP). This method produced accurate simulation of the rover movements compared with these of the earth testing vehicle. Using the telemetry from the onboard Visual Odometry, the simulated rover path also compares well with the actual track of the vehicle. Preliminary results indicated that the proposed computational method is very effective in planning the path of the rovers on the high-slope areas.

  1. The SOLERO Rover for Regional Exploration of Planetary Surfaces

    NASA Astrophysics Data System (ADS)

    Bertrand, R.; Lamon, P.; Michaud, S.; Schiele, A.; Siegwart, R.

    2003-04-01

    New planned missions such as Europe's EXOMARS mission call for regional exploration rover systems with an operational travel distance in the range of some kilometers or some tens of kilometers. This implies the requirement for a higher degree of autonomy for both, rover system operations for travel, and payload operations for scientific mission purposes. The efforts linked to control autonomy are closely linked to the active control needs of a rover's locomotion system: If a rover is capable to passively cope with a wide range of terrain topologies, the corresponding control system will be much simpler in terms of hardware and software. This contribution presents the results of a Technology Development Activity carried out for t he European Space Agency (ESA) under the label "SOLERO" - Solar Powered Exploration Rover. The activity defined a complete system for a regional exploration rover based on a new and innovative six-wheeled locomotion system. Furthermore, a breadboard model of the 10 kg-class rover was designed and realized in order to demonstrate the feasibility of the mechanical, power management, and control concepts. The SOLERO mechanical structure is an optimization of the "Shrimp" rover developed at EPFL. It has one wheel mounted on a fork in the front, one wheel in the rear and two bogies on each side. The parallel architecture of the bogies and the spring suspended fork provides a high ground clearance while keeping all its 6 motorized wheels in ground contact. This ensures excellent climbing capabilities over obstacles higher than the wheel diameter. Moreover, this original combination of wheeled locomotion and passive adaptation helps to reduce power consumption compared to active design such as legged rovers, without sensible reduction of climbing abilities. To remove the problems linked with energy storage, not only power reduction is important, but also the power management. SOLERO uses mainly solar cells to generate the electrical power, because

  2. Comparative Field Tests of Pressurised Rover Prototypes

    NASA Astrophysics Data System (ADS)

    Mann, G. A.; Wood, N. B.; Clarke, J. D.; Piechochinski, S.; Bamsey, M.; Laing, J. H.

    The conceptual designs, interior layouts and operational performances of three pressurised rover prototypes - Aonia, ARES and Everest - were field tested during a recent simulation at the Mars Desert Research Station in Utah. A human factors experiment, in which the same crew of three executed the same simulated science mission in each of the three vehicles, yielded comparative data on the capacity of each vehicle to safely and comfortably carry explorers away from the main base, enter and exit the vehicle in spacesuits, perform science tasks in the field, and manage geological and biological samples. As well as offering recommendations for design improvements for specific vehicles, the results suggest that a conventional Sports Utility Vehicle (SUV) would not be suitable for analog field work; that a pressurised docking tunnel to the main habitat is essential; that better provisions for spacesuit storage are required; and that a crew consisting of one driver/navigator and two field science crew specialists may be optimal. From a field operations viewpoint, a recurring conflict between rover and habitat crews at the time of return to the habitat was observed. An analysis of these incidents leads to proposed refinements of operational protocols, specific crew training for rover returns and again points to the need for a pressurised docking tunnel. Sound field testing, circulating of results, and building the lessons learned into new vehicles is advocated as a way of producing ever higher fidelity rover analogues.

  3. Software for Displaying Data from Planetary Rovers

    NASA Technical Reports Server (NTRS)

    Powell, Mark; Backers, Paul; Norris, Jeffrey; Vona, Marsette; Steinke, Robert

    2003-01-01

    Science Activity Planner (SAP) DownlinkBrowser is a computer program that assists in the visualization of processed telemetric data [principally images, image cubes (that is, multispectral images), and spectra] that have been transmitted to Earth from exploratory robotic vehicles (rovers) on remote planets. It is undergoing adaptation to (1) the Field Integrated Design and Operations (FIDO) rover (a prototype Mars-exploration rover operated on Earth as a test bed) and (2) the Mars Exploration Rover (MER) mission. This program has evolved from its predecessor - the Web Interface for Telescience (WITS) software - and surpasses WITS in the processing, organization, and plotting of data. SAP DownlinkBrowser creates Extensible Markup Language (XML) files that organize data files, on the basis of content, into a sortable, searchable product database, without the overhead of a relational database. The data-display components of SAP DownlinkBrowser (descriptively named ImageView, 3DView, OrbitalView, PanoramaView, ImageCubeView, and SpectrumView) are designed to run in a memory footprint of at least 256MB on computers that utilize the Windows, Linux, and Solaris operating systems.

  4. Mars Science Laboratory Rover Mobility Bushing Development

    NASA Technical Reports Server (NTRS)

    Riggs, Benjamin

    2008-01-01

    NASA s Mars Science Laboratory (MSL) Project will send a six-wheeled rover to Mars in 2009. The rover will carry a scientific payload designed to search for organic molecules on the Martian surface during its primary mission. This paper describes the development and testing of a bonded film lubricated bushing system to be used in the mobility system of the rover. The MSL Rover Mobility System contains several pivots that are tightly constrained with respect to mass and volume. These pivots are also exposed to relatively low temperatures (-135 C) during operation. The combination of these constraints led the mobility team to consider the use of solid film lubricated metallic bushings and dry running polymeric bushings in several flight pivot applications. A test program was developed to mitigate the risk associated with using these materials in critical pivots on the MSL vehicle. The program was designed to characterize bushing friction and wear performance over the expected operational temperature range (-135 C to +70 C). Seven different bushing material / lubricant combinations were evaluated to aid in the selection of the final flight pivot bushing material / lubricant combination.

  5. Japanese Global Precipitation Measurement (GPM) mission status and application of satellite-based global rainfall map

    NASA Astrophysics Data System (ADS)

    Kachi, Misako; Shimizu, Shuji; Kubota, Takuji; Yoshida, Naofumi; Oki, Riko; Kojima, Masahiro; Iguchi, Toshio; Nakamura, Kenji

    2010-05-01

    . Collaboration with GCOM-W is not only limited to its participation to GPM constellation but also coordination in areas of algorithm development and validation in Japan. Generation of high-temporal and high-accurate global rainfall map is one of targets of the GPM mission. As a proto-type for GPM era, JAXA has developed and operates the Global Precipitation Map algorithm in near-real-time since October 2008, and hourly and 0.1-degree resolution binary data and images available at http://sharaku.eorc.jaxa.jp/GSMaP/ four hours after observation. The algorithms are based on outcomes from the Global Satellite Mapping for Precipitation (GSMaP) project, which was sponsored by the Japan Science and Technology Agency (JST) under the Core Research for Evolutional Science and Technology (CREST) framework between 2002 and 2007 (Okamoto et al., 2005; Aonashi et al., 2009; Ushio et al., 2009). Target of GSMaP project is to produce global rainfall maps that are highly accurate and in high temporal and spatial resolution through the development of rain rate retrieval algorithms based on reliable precipitation physical models by using several microwave radiometer data, and comprehensive use of precipitation radar and geostationary infrared imager data. Near-real-time GSMaP data is distributed via internet and utilized by end users. Purpose of data utilization by each user covers broad areas and in world wide; Science researches (model validation, data assimilation, typhoon study, etc.), weather forecast/service, flood warning and rain analysis over river basin, oceanographic condition forecast, agriculture, and education. Toward the GPM era, operational application should be further emphasized as well as science application. JAXA continues collaboration with hydrological communities to utilize satellite-based precipitation data as inputs to future flood prediction and warning system, as well as with meteorological agencies to proceed further data utilization in numerical weather prediction

  6. RAVEN - High-resolution Mapping of Venus within a Discovery Mission Budget

    NASA Astrophysics Data System (ADS)

    Sharpton, V. L.; Herrick, R. R.; Rogers, F.; Waterman, S.

    2009-12-01

    It has been more than 15 years since the Magellan mission mapped Venus with S-band synthetic aperture radar (SAR) images at ~100-m resolution. Advances in radar technology are such that current Earth-orbiting SAR instruments are capable of providing images at meter-scale resolution. RAVEN (RAdar at VENus) is a mission concept that utilizes the instrument developed for the RADARSAT Constellation Mission (RCM) to map Venus in an economical, highly capable, and reliable way. RCM relies on a C-band SAR that can be tuned to generate images at a wide variety of resolutions and swath widths, ranging from ScanSAR mode (broad swaths at 30-m resolution) to strip-map mode (resolutions as fine as 3 m), as well as a spotlight mode that can image patches at 1-m resolution. In particular, the high-resolution modes allow the landing sites of previous missions to be pinpointed and characterized. Repeat-pass interferometric SAR (InSAR) and stereo radargrammetry provide options for constraining topography to better than 100-m horizontal and 10-m vertical resolution. InSAR also provides the potential for detecting surface deformation at centimeter precision. Performing InSAR requires precise knowledge and control of the orbital geometry, and for this reason a 600-km circular polar orbit is favored. This configuration causes the equatorial nadir point to move ~9 km per orbit. Considering both ascending and descending passes, the spacecraft will pass over every point on the planet in half a Venus day (~4 Earth months). The ability to transmit data back to Earth via the Deep Space Network is the primary limiting factor on the volume of data that can be collected. Our current estimates indicate that within an imaging cycle of one Venus day we can image 20-30 percent of the planet at 20-30-m resolution and several percent at 3-5 m resolution. These figures compare favorably to the coverage provided by recent imaging systems orbiting Mars. Our strategy calls for the first cycle of coverage

  7. PRoViScout: a planetary scouting rover demonstrator

    NASA Astrophysics Data System (ADS)

    Paar, Gerhard; Woods, Mark; Gimkiewicz, Christiane; Labrosse, Frédéric; Medina, Alberto; Tyler, Laurence; Barnes, David P.; Fritz, Gerald; Kapellos, Konstantinos

    2012-01-01

    Mobile systems exploring Planetary surfaces in future will require more autonomy than today. The EU FP7-SPACE Project ProViScout (2010-2012) establishes the building blocks of such autonomous exploration systems in terms of robotics vision by a decision-based combination of navigation and scientific target selection, and integrates them into a framework ready for and exposed to field demonstration. The PRoViScout on-board system consists of mission management components such as an Executive, a Mars Mission On-Board Planner and Scheduler, a Science Assessment Module, and Navigation & Vision Processing modules. The platform hardware consists of the rover with the sensors and pointing devices. We report on the major building blocks and their functions & interfaces, emphasizing on the computer vision parts such as image acquisition (using a novel zoomed 3D-Time-of-Flight & RGB camera), mapping from 3D-TOF data, panoramic image & stereo reconstruction, hazard and slope maps, visual odometry and the recognition of potential scientifically interesting targets.

  8. The Maneuver Planning Process for the Microwave Anisotropy Probe (MAP) Mission

    NASA Technical Reports Server (NTRS)

    Mesarch, Michael A.; Andrews, Stephen F.; Bauer, Frank (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe (MAP) mission utilized a strategy combining highly eccentric phasing loops with a lunar gravity assist to provide a zero-cost insertion into a Lissajous orbit about the Sun-Earth/Moon L2 point. Maneuvers were executed at the phasing loop perigees to correct for launch vehicle errors and to target the lunar gravity assist so that a suitable orbit at L2 was achieved. This paper will discuss the maneuver planning process for designing, verifying, and executing MAP's maneuvers. This paper will also describe how commercial off-the-shelf (COTS) tools were used to execute these tasks and produce a command sequence ready for upload to the spacecraft. These COTS tools included Satellite Tool Kit, MATLAB, and Matrix-X.

  9. Some examples of the utility of HCMM data in geologic remote sensing. [Heat Capacity Mapping Mission

    NASA Technical Reports Server (NTRS)

    Kahle, A. B.; Schieldge, J. P.; Abrams, M. J.; Alley, R. E.

    1981-01-01

    Examples of HCMM (Heat Capacity Mapping Mission) data in geologic remote sensing are presented, and the data set is composed of HCMM and aircraft digital scanner data and ground truth data from four western U.S. test sites. Data are used in the thermal model to test thermal data effectiveness, and changes in temperature with depth and time for dry soils are described by the model. It is found that the HCMM thermal inertia image is useful in the separability of bedrock and alluvium in Death Valley, and aa and pahoehoe flows in the Pisgah basalt flow. In a color composite of HCMM day temperature, night temperature, and day visible images of the Pisgah Crater test site, it is possible to distinguish alluvium, playa, aa and pahoehoe basalt flow, rhyolite intrusives, and other elements. Ground checking of units at a few points will extend capabilities to large areas and assist in creating telegeologic maps.

  10. Lunar Prospecting Using Thermal Wadis and Compact Rovers. Part A; Infrastructure for Surviving the Lunar Night

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt R.; Wegeng, Robert S.; Suzuki, Nantel H.

    2012-01-01

    Recent missions have confirmed the existence of water and other volatiles on the Moon, both in permanently-shadowed craters and elsewhere. Non-volatile lunar resources may represent significant additional value as infrastructure or manufacturing feedstock. Characterization of lunar resources in terms of abundance concentrations, distribution, and recoverability is limited to in-situ Apollo samples and the expanding remote-sensing database. This paper introduces an approach to lunar resource prospecting supported by a simple lunar surface infrastructure based on the Thermal Wadi concept of thermal energy storage and using compact rovers equipped with appropriate prospecting sensors and demonstration resource extraction capabilities. Thermal Wadis are engineered sources of heat and power based on the storage and retrieval of solar-thermal energy in modified lunar regolith. Because Thermal Wadis keep compact prospecting rovers warm during periods of lunar darkness, the rovers are able to survive months to years on the lunar surface rather than just weeks without being required to carry the burdensome capability to do so. The resulting lower-cost, long-lived rovers represent a potential paradigm breakthrough in extra-terrestrial prospecting productivity and will enable the production of detailed resource maps. Integrating resource processing and other technology demonstrations that are based on the content of the resource maps will inform engineering economic studies that can define the true resource potential of the Moon. Once this resource potential is understood quantitatively, humans might return to the Moon with an economically sound objective including where to go, what to do upon arrival, and what to bring along.

  11. Performance of the Mechanically Pumped Fluid Loop Rover Heat Rejection System Used for Thermal Control of the Mars Science Laboratory Curiosity Rover on the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Birur, Gajanana; Bame, David; Mastropietro, A. J.; Miller, Jennifer; Karlmann, Paul; Liu, Yuanming; Anderson, Kevin

    2013-01-01

    The challenging range of landing sites for which the Mars Science Laboratory Rover was designed, required a rover thermal management system that is capable of keeping temperatures controlled across a wide variety of environmental conditions. On the Martian surface where temperatures can be as cold as -123 C and as warm as 38 C, the Rover relies upon a Mechanically Pumped Fluid Loop (MPFL) Rover Heat Rejection System (RHRS) and external radiators to maintain the temperature of sensitive electronics and science instruments within a -40 C to +50 C range. The RHRS harnesses some of the waste heat generated from the Rover power source, known as the Multi Mission Radioisotope Thermoelectric Generator (MMRTG), for use as survival heat for the rover during cold conditions. The MMRTG produces 110 Watts of electrical power while generating waste heat equivalent to approximately 2000 Watts. Heat exchanger plates (hot plates) positioned close to the MMRTG pick up this survival heat from it by radiative heat transfer and supply it to the rover. This design is the first instance of use of a RHRS for thermal control of a rover or lander on the surface of a planet. After an extremely successful landing on Mars (August 5), the rover and the RHRS have performed flawlessly for close to an earth year (half the nominal mission life). This paper will share the performance of the RHRS on the Martian surface as well as compare it to its predictions.

  12. Telecommunications for Mars Rovers and Robotic Missions

    NASA Technical Reports Server (NTRS)

    Horne, W. D.; Hastrup, R.; Cesarone, R.

    1997-01-01

    The Mars exploration program of NASA and the international community will evolve from an early emphasis on orbital remote sensing toward in situ science activity on, or just above, the Martian surface.

  13. Telecommunications for Mars Rovers and Robotic Mission

    NASA Technical Reports Server (NTRS)

    Horne, W. D.; Hastrup, R.; Cesarone, R.

    1997-01-01

    The Mars exploration program of NASA and the international community will evolve from an early emphasis on orbital remote sensing toward in-situ science activity on, or just above, the Martian surface.

  14. ARPS Enabled Titan Rover Concept with Inflatable Wheels

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.; Schriener, Timothy M.; Shirley, James H.

    2006-01-01

    The Decadal Survey identified Titan as one of the top priority science destinations in the large moons category, while NASA's proposed Design Reference Mission Set ranked a Titan in-situ explorer second, after a recommended Europa Geophysical Observer mission. This paper discusses a Titan rover concept, enabled by a single advanced Radioisotope Power System that could provide about 110We (BOL). The concept targets the smaller Flagship or potentially the New Frontiers mission class. This MSL class rover would traverse on four 1.5 m diameter inflatable wheels during its 3 years mission duration and would use as much design and flight heritage as possible to reduce mission cost. Direct to Earth communication would remove the need for a relay orbiter. Details on the strawman instrument payload, and rover subsystems are given for this science driven mission concept. In addition, power system trades between Advanced RTG, TPV, and Advanced Stirling and Brayton Radioisotope Power Systems (RPS) are outlined. While many possible approaches exist for Titan in-situ exploration, the Titan rover concept presented here could provide a scientifically interesting and programmatically affordable solution.

  15. Mars Surveyor Program 2001 Mission Overview

    NASA Technical Reports Server (NTRS)

    Saunders, R. Stephen

    1999-01-01

    The Mars Surveyor 2001 mission to Mars was initially a key element in the Mars sample return sequence of missions. A capable rover, carrying the Cornell Athena instruments would be placed on Mars to roam over several kilometers, select samples, and place them in a cache for return by a subsequent mission. Inevitably, budget constraints forced descopes. At one critical point, the landed payload consisted only of the HEDS (Human Exploration and Development of Space) payloads selected for testing environmental properties of the surface for future human exploration. Then Congress intervened and put back some of the funding that had been deleted. NASA next redefined the payload to include as many of the Athena instruments as possible, to be distributed between the lander deck and a Sojourner class rover. This payload would then be placed on a modified version of the Mars Polar Lander rather than on the much larger, and more expensive, lander that had been originally designed for the mission. With this functionality restored the '01 mission remains an important and pivotal element of the Mars Surveyor program. It completes the Mars Observer objectives with the gamma ray spectrometer mapping. This mission will largely complete the global characterization phase of Mars exploration and mark the beginning of focused surface exploration leading to return of the first samples and the search for evidence of past Martian life. MSP'01 also is the first mission in the combined Mars exploration strategy of the HEDS and Space Science Enterprises of NASA. This mission, and those to follow, will demonstrate technologies and collect environmental data that will provide the basis for a decision to send humans to Mars. The NASA exploration strategy for Mars includes orbiters, landers and rovers launched in 2001 and 2003 and a sample return mission to be launched in 2005, returning a sample by 2008. The purpose of the rovers is to explore and characterize sites on Mars. The 2003 and 2005

  16. Mars Rover Navigation Results Using Sun Sensor Heading Determination

    NASA Technical Reports Server (NTRS)

    Volpe, Richard

    1998-01-01

    Upcoming missions to the surface of Mars will use mobile robots to traverse long distances from the landing site. To prepare for these missions, the prototype rover, Rocky 7, has been tested in desert field trials conducted with a team of planetary scientists. While several new capabilities have been demonstrated, foremost among these was sun-sensor based traversal of natural terrain totaling a distance of one kilometer. This paper describes navigation results obtained in the field tests, where cross-track error was only 6% of distance traveled. Comparison with previous results of other planetary rover systems shows this to be a significant improvement.

  17. High Gain Antenna Pointing on the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Vanelli, C. Anthony; Ali, Khaled

    2005-01-01

    This paper describes the algorithm used to point the high gain antennae on NASA/JPL's Mars exploration rovers. Each rover's gimballed antenna must track the Earth as it moves across the Martian sky during communication sessions. The pointing algorithm accounts for obstacles to the line-of-sight posed by (1) features on the rover and in the surrounding environment (2) gimbal range limitations, and (3) kinematic singularities in the gimbal mechanism. The algorithm treats all obstacles with a generalized approach that computes the intercept-times to each obstacle. Where possible, the algorithm takes advantage of pairs of joint-space solutions arising from the mechanism design. The algorithm chooses the solution that provides the longest obstruction-free tracking time. Upon encountering an obstacle, the algorithm automatically switches to the other solution if it is not also obstructed. This algorithm has successfully provided obstruction-free pointing for both rovers throughout the mission.

  18. Design of a Day/Night Lunar Rover

    NASA Astrophysics Data System (ADS)

    Berkelman, Peter; Easudes, Jesse; Martin, Martin C.; Rollins, Eric; Silberman, Jack; Chen, Mei; Hancock, John; Mor, Andrew B.; Sharf, Alex; Warren, Tom; Bapna, Deepak

    1995-06-01

    The pair of lunar rovers discussed in this report will return video and state data to various ventures, including theme park and marketing concerns, science agencies, and educational institutions. The greatest challenge accepted by the design team was to enable operations throughout the extremely cold and dark lunar night, an unprecedented goal in planetary exploration. This is achieved through the use of the emerging technology of Alkali Metal Thermal to Electric Converters (AMTEC), provided with heat from a innovative beta-decay heat source, Krypton-85 gas. Although previous space missions have returned still images, our design will convey panoramic video from a ring of cameras around the rover. A six-wheel rocker bogie mechanism is implemented to propel the rover. The rovers will also provide the ability to safeguard their operation to allow untrained members of the general public to drive the vehicle. Additionally, scientific exploration and educational outreach will be supported with a user operable, steerable and zoomable camera.

  19. VERITAS: A Mission Concept for the High Resolution Topographic Mapping and Imaging of Venus

    NASA Astrophysics Data System (ADS)

    Hensley, S.; Smrekar, S. E.; Pollard, B.

    2012-12-01

    Magellan, a NASA mission to Venus in the early 1990's, mapped nearly the entire surface of Venus with an S-band (12 cm) synthetic aperture radar and microwave radiometer and made radar altimeter measurements of the topography. These measurements revolutionized our understanding of the geomorphology, geology and geophysical processes that have shaped the evolution of the surface of Venus. The Magellan spacecraft had an elliptical orbit with an apoapsis of approximately 8000 km and a periapsis of 257 km and an orbital inclination of 86°. In this way the radar was able to collect long strips of data approximately 10000 km in length running north to south with altitudes varying from 3000 km to 257 km. During the remainder of the orbit the collected data was down linked to earth. The SAR mode operated in burst mode fashion whereby it transmitted a small string of pulses up to a couple of hundred pulses in length followed by a quiescent period when the radar ceased transmission and allowed interleaved operation of the altimeter and radiometer modes. This mode of operation allowed for a significant reduction in downlinked SAR imaging data at the expense of azimuth (i.e. along-track) resolution. However, the lack of finer resolution imagery and topography of the surface than that obtained by the Magellan mission has hampered the definitive answer to key questions concerning the processes and evolution of the surface of Venus. The Venus Emissivity, Radio Science, InSAR Topography And Spectroscopy (VERITAS) Mission is a proposed mission to Venus designed to obtain high resolution imagery and topography of the surface using an X-band radar configured as a single pass radar interferometer coupled with a multispectral NIR emissivity mapping capability. VERITAS would map surface topography with a spatial resolution of 250 m and 5 m vertical accuracy and generate radar imagery with 30 m spatial resolution. These capabilities represent an order of magnitude or better improvement

  20. Spatial Coverage Planning for a Planetary Rover

    NASA Technical Reports Server (NTRS)

    Gaines, Daniel M.; Estlin, Tara; Chouinard, Caroline

    2008-01-01

    We are developing onboard planning and execution technologies to support the exploration and characterization of geological features by autonomous rovers. In order to generate high quality mission plans, an autonomous rover must reason about the relative importance of the observations it can perform. In this paper we look at the scientific criteria of selecting observations that improve the quality of the area covered by samples. Our approach makes use of a priori information, if available, and allows scientists to mark sub-regions of the area with relative priorities for exploration. We use an efficient algorithm for prioritizing observations based on spatial coverage that allows the system to update observation rankings as new information is gained during execution.

  1. Rover Soil Experiments Near Casper & Shaggy

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Imager for Mars Pathfinder (IMP) caught this image of the rover as it was digging in the 'compressible' material near the rock Casper to determine the soil's mechanical properties on Sol 23. Shaggy is the large rock behind the Rover.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  2. Optomechanical Design of Ten Modular Cameras for the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Ford, Virginia G.; Karlmann, Paul; Hagerott, Ed; Scherr, Larry

    2003-01-01

    This viewgraph presentation reviews the design and fabrication of the modular cameras for the Mars Exploration Rovers. In the 2003 mission there were to be 2 landers and 2 rovers, each were to have 10 cameras each. Views of the camera design, the lens design, the lens interface with the detector assembly, the detector assembly, the electronics assembly are shown.

  3. Surface temperature variations as measured by the Heat Capacity Mapping Mission

    NASA Technical Reports Server (NTRS)

    Price, J. C.

    1979-01-01

    The AEM-1 satellite, the Heat Capacity Mapping Mission, has acquired high-quality thermal infrared data at times of day especially suited for studying the earth's surface and the exchange of heat and moisture with the atmosphere. Selected imagery illustrates the considerable variability of surface temperature in and around cities, in the dry southwestern United States, in the Appalachian Mountains, and in agricultural areas. Through simplifying assumptions, an analytic experience is derived that relates day/night temperature differences to the near-surface layer (thermal inertia) and to meteorological factors. Analysis of the result suggests that, in arid regions, estimates of relative thermal inertia may be inferred, whereas, in agricultural areas, a hydrologic interpretation is possible.

  4. Evaluating depth to shallow groundwater using Heat Capacity Mapping Mission (HCMM) data

    USGS Publications Warehouse

    Heilman, J. L.; Moore, Donald G.

    1982-01-01

    Four dates of Heat Capacity Mapping Mission (HCMM) data were analyzed to evaluate the utility of HCMM thermal data for evaluating depth to shallow groundwater. During the summer, shallow water tables can create lower soil temperatures throughout the diurnal temperature cycle. Because of large spatial and temporal ground cover variations, HCMM daytime radiometric temperatures alone did not correlate with water table depth. The radiometric temperatures consisted of radiance contributions from different crop canopies and their respective soil backgrounds. However, when surface soil temperatures were empirically estimated from HCMM temperatures and percent cover of each pixel, significant correlations were obtained between estimated soil temperatures and water table depth. Correlations increased as the season progressed and temperature gradients within the soil profile increased. However, estimated soil temperatures were also correlated with near-surface soil moisture since during the daytime, increasing soil moisture reduced surface soil temperature. Complementary effects of shallow water tables and soil moisture on daytime temperatures cannot be separated.

  5. Design concept for an IR mapping spectrometer for the Pluto fast flyby mission

    NASA Technical Reports Server (NTRS)

    Fink, U.; Low, F.; Hubbard, B.; Rieke, M.; Rieke, G.; Mumma, M.; Nozette, S.; Neukum, G.; Hamel, H.; Disanti, M.

    1993-01-01

    The design of an IR mapping spectrometer that exceeds all the criteria of the Pluto Fast Flyby Mission will be presented. The instrument has a mass of approximately 1700 g and uses less than 4 W of power. The design concept is based on an f/3 spectrograph using an aberration-corrected concave holographic grating. Up to four spectral regions can be covered simultaneously by dividing the grating into two to four sections, each imaging the entrance slit on a different area of the array. The spectrography will be fed by a lightweight 5 in. f/3 telescope based on SDIO precepts. In order to provide spectroscopic access to the fundamental molecule frequencies, an extended-range NICMOS array to approximately 3.5 microns and an InSb array going to 5.8 microns will be considered.

  6. Global Elemental Maps of the Moon Using Gamma Rays Measured by the Kaguya (SELENE) Mission

    NASA Astrophysics Data System (ADS)

    Reedy, Robert C.; Hasebe, N.; Yamashita, N.; Karouji, Y.; Kobayashi, S.; Hareyama, M.; Hayatsu, K.; Okudaira, O.; Kobayashi, M.; d'Uston, C.; Maurice, S.; Gasnault, O.; Forni, O.; Diez, B.; Kim, K.

    2009-09-01

    The Kaguya spacecraft was in a circular polar lunar orbit from 17 October 2007 until 10 June 2009 as part of JAXA's SELENE lunar exploration program. Among the 13 instruments, an advanced gamma-ray spectrometer (GRS) studied the distributions of many elements. The gamma rays were from the decay of the naturally-radioactive elements K, Th, and U and from cosmic-ray interactions with H, O, Mg, Al, Si, Ca, Ti, Fe, and other elements. They are emitted from the top few tens of centimeters of the lunar surface. The main detector of the GRS was high-purity germanium, which was surrounded by bismuth germanate and plastic scintillators to reduce backgrounds. Gamma-ray spectra were sent to the Earth every 17 seconds (1 degree of the lunar surface) with energies from 0-12 MeV. These spectra were adjusted to a standard gain and then summed over many lunar regions. Background spectra were also determined. Over 200 gamma rays have been observed, with most being backgrounds but many being from the lunar surface, an order more gamma rays than from any previous lunar GRS missions. Elemental results have been determined for K, Th, and U. Results for K and Th are consistent with those from the GRS on Apollo and Lunar Prospector. The first lunar global maps for U have been determined. These 3 elements show strong correlations among themselves, which implies that the Moon is homogeneous in these elements over the entire Moon. Their elemental ratios agree well with those measured in lunar samples and meteorites. Preliminary maps for Fe are consistent with earlier maps. Other elements, including O, Mg, Si, Ca, and Ti, are being mapped, and their distributions vary over the lunar surface and appear consistent with previous lunar elemental results. This work was supported by JAXA, NASA, and CNRS, France.

  7. Geological Mapping of the Ac-H-14 Yalode Quadrangle of Ceres from NASA's Dawn Mission

    NASA Astrophysics Data System (ADS)

    Crown, David; Yingst, Aileen; Mest, Scott; Platz, Thomas; Sizemore, Hanna; Berman, Daniel; Williams, David; Roatsch, Thomas; Preusker, Frank; Nathues, Andreas; Hoffman, Martin; Schäfer, Michael; Raymond, Carol; Russell, Christopher

    2016-04-01

    elsewhere. Image and topographic data suggest that Yalode may have developed an interior ring structure. The western rim of Yalode is disrupted by Urvara basin, and structural features extend from Urvara across Yalode's floor. Hummocky deposits interior to a prominent scarp are observed along Yalode's northern rim. These observations and the more pristine morphology of Urvara suggest the Urvara impact event post-dated formation of Yalode and may have caused collapse and burial of Yalode's rim and also triggered resurfacing of Yalode's floor. The basin floor includes hummocky and smooth areas (some bounded by scarps), crater chains, and a densely lineated zone. Preliminary geologic mapping of the Yalode Quadrangle of Ceres using Dawn Mission data shows that: 1) Yalode Quadrangle exhibits abundant impact craters with wide ranges in crater size and morphology (degraded to well-preserved) and diverse interior deposits/structures; 2) Yalode's rim includes prominent scarps indicating basin enlargement by collapse and mass-wasting; 3) well-defined craters occur through the region, including on the Yalode floor, and suggest significant crustal strength even where disrupted by large impacts; and 4) basin morphologies and cross-cutting relationships suggest Urvara basin post-dates Yalode basin. Support from Dawn Instrument, Operations, and Science Teams is acknowledged. This work is supported by grants from NASA, DLR and MPG.

  8. Geologic Measurements using Rover Images: Lessons from Pathfinder with Application to Mars 2001

    NASA Technical Reports Server (NTRS)

    Bridges, N. T.; Haldemann, A. F. C.; Herkenhoff, K. E.

    1999-01-01

    The Pathfinder Sojourner rover successfully acquired images that provided important and exciting information on the geology of Mars. This included the documentation of rock textures, barchan dunes, soil crusts, wind tails, and ventifacts. It is expected that the Marie Curie rover cameras will also successfully return important information on landing site geology. Critical to a proper analysis of these images will be a rigorous determination of rover location and orientation. Here, the methods that were used to compute rover position for Sojourner image analysis are reviewed. Based on this experience, specific recommendations are made that should improve this process on the '01 mission.

  9. Microbiological Cleanliness of the Mars Exploration Rover Spacecraft

    NASA Astrophysics Data System (ADS)

    Newlin, L.; Barengoltz, J.; Chung, S.; Kirschner, L.; Koukol, R.; Morales, F.

    The soon to launch Mars Exploration Rover twin spacecraft, each involving a lander and a rover scheduled to land on Mars in January and February of 2004, are required to comply with the National Aeronautics and Space Administration planetary protection regulations for such space missions. The microbial cleanliness requirements are driving a major effort to assemble clean spacecraft and to verify and maintain their cleanliness. Planetary protection for Mars missions is described, and the approach being taken by the Mars Exploration Rover Project is discussed. Specific topics include alcohol wiping, dry heat microbial reduction, microbiological assays, and the Kennedy Space center's PHSF clean room. Current best estimate for the number of aerobic spores to be found on the spacecraft at launch are presented and compared to the Viking 1975 and Mars Pathfinder 1996 values.

  10. Remote image analysis for Mars Exploration Rover mobility and manipulation operations

    NASA Technical Reports Server (NTRS)

    Leger, Chris; Deen, Robert G.; Bonitz, Robert G.

    2005-01-01

    NASA's Mars Exploration Rovers are two sixwheeled, 175-kg robotic vehicles which have operated on Mars for over a year as of March 2005. The rovers are controlled by teams who must understand the rover's surroundings and develop command sequences on a daily basis. The tight tactical planning timeline and everchanging environment call for tools that allow quick assessment of potential manipulator targets and traverse goals, since command sequences must be developed in a matter of hours after receipt of new data from the rovers. Reachability maps give a visual indication of which targets are reachable by each rover's manipulator, while slope and solar energy maps show the rover operator which terrain areas are safe and unsafe from different standpoints.

  11. Traverses for lunar rovers and sample return teleoperated from Earth or cislunar orbit

    NASA Astrophysics Data System (ADS)

    Kamps, Oscar; Foing, Bernard H.; Flahaut, Jessica

    2016-07-01

    Most interesting sites for exploration are near the poles of the Moon where water and other ices and volatiles could be stable in the permanent shaded regions. Several instruments on multiple orbiters have indicated the presence of hydrogen or hydration but the relation with the illumination conditions are not as clear. Which other variables are involved to trap water near the poles is not known. This ignorance makes it of high interest to do in-situ research on the Moon. ESA, NASA and other agencies are studying a teleoperated mission from cislunar orbit with Orion (eg. HERACLES international lunar exploration architecture) with the possibility of long rover traverses, and human assisted sample return. This mission concept was used for this study on a rover traverse. This study focuses on both the North as South Pole. The site selection for a traverse was based on the temperature map from Diviner. Regions of interests were made as primary selection and cover areas where the maximum temperature is lower than the sublimation temperature of CO2. Data from neutron spectrometer from the Prospector, and crater epoch according to the USGS were used to make a selection of regions of interest. These selected sites where studied on their accessibility for a rover, based on the slope map made from the LOLA elevation model. A landing site was selected based on assumptions that it should be at least one kilometre in diameter and have a slope lower than 5 degrees. The temperature difference (Tmax-Tmin from the Diviner measurements) was used select a scientifically interesting site between the landing site and destination inside a PSR. It was thought that a site with a temperature difference larger than 150K is interesting to study volatile migration processes. Eventually for the traverse planning a tool in ArcGIS was used which calculates the easiest from one location to another where the slope is used as limiting factor. We give the example study of rover traverse planning

  12. PRo3D®: A Tool for High Resolution Rendering and Geological Analysis of Martian Rover-Derived Digital Outcrop Models.

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Barnes, R.; Ortner, T.; Huber, B.; Paar, G.; Muller, J. P.; Giordano, M.; Willner, K.; Traxler, C.; Juhart, K.; Fritz, L.; Hesina, G.; Tasdelen, E.

    2015-12-01

    NASA's Mars Exploration Rovers (MER) and Mars Science Laboratory Curiosity Rover (MSL) are proxies for field geologists on Mars, taking high resolution imagery of rock formations and landscapes which is analysed in detail on Earth. Panoramic digital cameras (PanCam on MER and MastCam on MSL) are used for characterising the geology of rock outcrops along rover traverses. A key focus is on sedimentary rocks that have the potential to contain evidence for ancient life on Mars. Clues to determine ancient sedimentary environments are preserved in layer geometries, sedimentary structures and grain size distribution. The panoramic camera systems take stereo images which are co-registered to create 3D point clouds of rock outcrops to be quantitatively analysed much like geologists would do on Earth. The EU FP7 PRoViDE project is compiling all Mars rover vision data into a database accessible through a web-GIS (PRoGIS) and 3D viewer (PRo3D). Stereo-imagery selected in PRoGIS can be rendered in PRo3D, enabling the user to zoom, rotate and translate the 3D outcrop model. Interpretations can be digitised directly onto the 3D surface, and simple measurements can be taken of the dimensions of the outcrop and sedimentary features. Dip and strike is calculated within PRo3D from mapped bedding contacts and fracture traces. Results from multiple outcrops can be integrated in PRoGIS to gain a detailed understanding of the geological features within an area. These tools have been tested on three case studies; Victoria Crater, Yellowknife Bay and Shaler. Victoria Crater, in the Meridiani Planum region of Mars, was visited by the MER-B Opportunity Rover. Erosional widening of the crater produced <15 m high outcrops which expose ancient Martian eolian bedforms. Yellowknife Bay and Shaler were visited in the early stages of the MSL mission, and provide excellent opportunities to characterise Martian fluvio-lacustrine sedimentary features. Development of these tools is crucial to

  13. Lithium-Ion rechargeable batteries on Mars Rover

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Smart, M. C.; Ewell, R. C.; Whitcanack, L. D.; Chin, K. B.; Surampudi, S.

    2004-01-01

    NASA's Mars Rovers, Spirit and Opportunity, have been roving on the surface of Mars, capturing impressive images of its terrain and analyzing the drillings from Martian rocks, to answer the ever -puzzling questions of life beyond Earth and origin of our planets. These rovers are being enabled by an advanced rechargeable battery system, lithium-ion, for the first time on a space mission of this scale, for keeping the rover electronics warm, and for supporting nighttime experimentation and communications. These rover Li-ion batteries are characterized by their unique low temperature capability, in addition to the usual advantages associated with Li-ion chemistry in terms of mass, volume and energy efficiency. To enable a rapid insertion of this advanced Li-ion chemistry into flight missions, we have performed several performance assessment studies on several prototype cells over the last few years. These tests mainly focused primarily on the long-term performance characteristics, such as cycling and storage, as described in our companion paper. In addition, various tests have been performed on MER cells and engineering and proto flight batteries; under conditions relevant to these missions. For example, we have examined the performance of the cells in: a) an inverted orientation, as during integration and launch, and b) conditions of low rate discharge, between 3.0-2.5 V to support the mission clock. Likewise, we have determined the impedance of the proto-flight Rover battery assembly unit in detail, with a view to asses whether a current-limiting resistor would be unduly stressed, in the event of a shorting induced by a failed pyro. In this paper we will describe these studies in detail, as well as the performance of Li-ion batteries in Spirit and Opportunity rovers, during cruise and on Mars.

  14. Mars Exploration Rover Flight Operations Technical Consultation

    NASA Technical Reports Server (NTRS)

    Leckrone, Dave S.; Null, Cynthia H.; Caldwell, John; Graves, Claude; Konitinos, Dean A.

    2009-01-01

    The Mars Exploration Rover (MER) Project at the Jet Propulsion Laboratory developed two golf-cart size robotic vehicles, Spirit and Opportunity, for geological exploration of designated target areas on the surface of Mars. The primary scientific objective of these missions was the search for evidence of the presence of water on or near the surface of the planet during its history. Spirit and Opportunity were launched on June 10 and July 7, 2003, with their respective landings scheduled for January 4 and January 25, 2004 (UTC). NASA views the MER missions as particularly critical because of their scientific importance in the ongoing search for conditions under which life might have existed elsewhere in the solar system, because of their high level of public interest and because more than half of all prior missions launched to Mars internationally have failed. This report summarizes the findings and recommendations of the NASA Engineering and Safety Center review of the project.

  15. Mars rover technology development requirements

    NASA Technical Reports Server (NTRS)

    Bedard, Roger; Cunningham, Glenn; Gershman, Robert; Pivirotto, Donna; Wilcox, Brian

    1988-01-01

    The technology development requirements for various Mars rover range capabilities are discussed, focusing on local navigation of the rover. The capabilities of two methods are compared. In one method, operators on the earth view stereo pictures sent by the rover and determine short traverse paths which the rover follows. The other method achieves more autonomous capability by using computer vision from orbital imagery with approximate long routes commanded from earth. The locomotion, navigation, ground operations, computation, power, thermal control, communications, sample acquisition, and analysis and preservation requirements are examined.

  16. A Comparison of the Unpressurized Rover and Small Pressurized Rover During a Desert Field Evaluation

    NASA Technical Reports Server (NTRS)

    Litaker, Harry; Thompson, Shelby; Howard, Robert

    2009-01-01

    To effectively explore the lunar surface, astronauts will need a transportation vehicle which can traverse all types of terrain. Currently, the National Aeronautics and Space Administration s (NASA) is investigating two lunar rover configurations to meet such a requirement. Under the Lunar Electric Rover (LER) project, a comparison study between the unpressurized rover (UPR) and the small pressurized rover (SPR) was conducted at the Black Point Lava Flow in Arizona. The objective of the study was to obtain human-in-the-loop performance data on the vehicles with respect to human-machine interfaces, vehicle impacts on crew productivity, and scientific observations. Four male participants took part in four, one-day field tests using the exact same terrain and scientific sites for an accurate comparison between vehicle configurations. Subjective data was collected using several human factors performance measures. Results indicate either vehicle configuration was generally acceptable for a lunar mission; however, the SPR configuration was preferred over the UPR configuration primarily for the SPR s ability to cause less fatigue and enabling greater crew productivity.

  17. A study of an orbital radar mapping mission to Venus. Volume 3: Parametric studies and subsystem comparisons

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Parametric studies and subsystem comparisons for the orbital radar mapping mission to planet Venus are presented. Launch vehicle requirements and primary orbiter propulsion system requirements are evaluated. The systems parametric analysis indicated that orbit size and orientation interrelated with almost all of the principal spacecraft systems and influenced significantly the definition of orbit insertion propulsion requirements, weight in orbit capability, radar system design, and mapping strategy.

  18. Student Participation in Mars Sample Return Rover Field Tests, Silver Lake, California

    NASA Technical Reports Server (NTRS)

    Anderson, R. C.; Arvidson, R. E.; Bowman, J. D.; Dunham, C. D.; Backes, P.; Baumgartner, E. T.; Bell, J.; Dworetzky, S. C.; Klug, S.; Peck, N.

    2000-01-01

    An integrated team of students and teachers from four high schools across the country developed and implemented their own mission of exploration and discovery using the Mars Sample Return prototype rover, FIDO, at Silver Lake in the Mojave Desert.

  19. Geological Mapping of the Ac-H-3 Dantu Quadrangle of Ceres from NASA's Dawn Mission.

    NASA Astrophysics Data System (ADS)

    Kneissl, Thomas; Schmedemann, Nico; Neesemann, Adrian; Williams, David A.; Crown, David A.; Mest, Scott C.; Buczkowski, Debra L.; Scully, Jennifer E. C.; Frigeri, Allessandro; Ruesch, Ottaviano; Hiesinger, Harald; Walter, Sebastian H. G.; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Kersten, Elke; Naß, Andrea; Nathues, Andreas; Platz, Thomas; Russell, Chistopher T.

    2016-04-01

    The Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that done for Vesta [1,2], including production of a Survey- and High Altitude Mapping Orbit (HAMO)-based global map and a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. In this abstract we discuss the geologic evolution of the Ac-H-3 Dantu Quadrangle. The current map is based on a Framing Camera (FC) clear-filter image mosaic from HAMO data (~140 m/px) as well as a digital terrain model (DTM) derived from imagery of the Survey phase [3]. Albedo variations were identified and mapped using a mosaic of photometrically corrected HAMO images provided by DLR. FC color images provided further context for map unit identification. LAMO images (35m/pixel), which have just become available at the time of writing, will be used to update the map to be presented as a poster. The quadrangle is located between 21-66°N and 90-180°E in a large-scale depression north of the impact basin Kerwan. The northern and southeastern parts of the quadrangle are characterized by cratered terrain while the south and southwest are dominated by the partially smooth ejecta blankets of craters Dantu and Gaue. East-west oriented pit/crater chains in the southern half of the quadrangle might be related to tectonic processes [4,5]. Dantu crater (d=~126 km) is a complex impact crater showing slump terraces and a partially smooth crater floor with concentric and radial fractures. Furthermore, Dantu shows a central pit structure with pitted terrain on its floor as well as several bright spots in the interior and exterior of the crater. High-resolution measurements of crater size-frequency distributions (CSFDs) superposed on Dantu indicate a formation/modification age of ~200 - 700 Ma. Most of the ejecta appear to be relatively bright and correspond to parts of the #2 high albedo region observed with the Hubble Space Telescope [6]. However, the southwestern portion of the ejecta blanket is

  20. Acquisition of Skill Proficiency Over Multiple Sessions of a Novel Rover Simulation

    NASA Technical Reports Server (NTRS)

    Dean, S. L.; DeDios,Y. E.; MacDougall, H. G.; Moore, S. T.; Wood, S. J.

    2011-01-01

    Following long-duration exploration transits, adaptive changes in sensorimotor function may impair the crew's ability to safely perform manual control tasks such as operating pressurized rovers. Postflight performance will also be influenced by the level of preflight skill proficiency they have attained. The purpose of this study was to characterize the acquisition of skills in a motion-based rover simulation over multiple sessions, and to investigate the effects of varying the simulation scenarios. METHODS: Twenty healthy subjects were tested in 5 sessions, with 1-3 days between sessions. Each session consisted of a serial presentation of 8 discrete tasks to be completed as quickly and accurately as possible. Each task consisted of 1) perspective-taking, using a map that defined a docking target, 2) navigation toward the target around a Martian outpost, and 3) docking a side hatch of the rover to a visually guided target. The simulator utilized a Stewart-type motion base (CKAS, Australia), single-seat cabin with triple scene projection covering 150 deg horizontal by 50 deg vertical, and joystick controller. Subjects were randomly assigned to a control group (tasks identical in the first 4 sessions) or a varied-practice group. The dependent variables for each task included accuracy toward the target and time to completion. RESULTS: The greatest improvements in time to completion occurred during the docking phase. The varied-practice group showed more improvement in perspective-taking accuracy. Perspective-taking accuracy was also affected by the relative orientation of the rover to the docking target. Skill acquisition was correlated with self-ratings of previous gaming experience. DISCUSSION: Varying task selection and difficulty will optimize the preflight acquisition of skills when performing novel operational tasks. Simulation of operational manual control will provide functionally relevant evidence regarding the impact of sensorimotor adaptation on early

  1. Post-Mission Quality Assurance Procedure for Survey-Grade Mobile Mapping Systems

    NASA Astrophysics Data System (ADS)

    Kerstinga, A. P.; Friess, P.

    2016-06-01

    Mobile Mapping Systems (MMS) consist of terrestrial-based moving platforms that integrate a set of imaging sensors (typically digital cameras and laser scanners) and a Position and Orientation System (POS), designed to collect data of the surrounding environment. MMS can be classified as "mapping-grade" or "survey-grade" depending on the system's attainable accuracy. Mapping-grade MMS produce geospatial data suitable for GIS applications (e.g., asset management) while survey-grade systems should satisfy high-accuracy applications such as engineering/design projects. The delivered accuracy of an MMS is dependent on several factors such as the accuracy of the system measurements and calibration parameters. It is critical, especially for survey-grade systems, to implement a robust Quality Assurance (QA) procedure to ensure the achievement of the expected accuracy. In this paper, a new post-mission QA procedure is presented. The presented method consists of a fully-automated self-calibration process that allows for the estimation of corrections to the system calibration parameters (e.g., boresight angles and lever-arm offsets relating the lidar sensor(s) to the IMU body frame) as well as corrections to the system measurements (e.g., post-processed trajectory position and orientation, scan angles and ranges). As for the system measurements, the major challenge for MMS is related to the trajectory determination in the presence of multipath signals and GNSS outages caused by buildings, underpasses and high vegetation. In the proposed self-calibration method, trajectory position errors are properly modelled while utilizing an efficient/meaningful trajectory segmentation technique. The validity of the proposed method is demonstrated using a dataset collected under unfavorable GNSS conditions.

  2. Geological Mapping of the Ac-H-2 Coniraya Quadrangle of Ceres from NASA's Dawn Mission.

    NASA Astrophysics Data System (ADS)

    Hendrik Pasckert, Jan; Hiesinger, Harald; Williams, David; Crown, David; Mest, Scott; Buczkowski, Debra; Scully, Jennifer; Schmedemann, Nico; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Naß, Andrea; Nathues, Andreas; Hoffmann, Martin; Schäfer, Michael; De Sanctis, Maria Cristina; Raymond, Carol; Russell, Christopher

    2016-04-01

    Dwarf planet Ceres (˜950 km) is located at ˜2.8 AU in the main asteroid belt [1], and is currently orbited by NASA's Dawn spacecraft. Similar to Vesta [2], the 15 quadrangles of Ceres will be mapped on the basis of Framing Camera mosaics from Low Altitude Mapping Orbits (LAMO) with a spatial resolution of ˜35 m/px. Here we report on our preliminary geological map of the Ac-H-2 Coniraya Quadrangle (located between 21-66 ° N and 0-90 ° E) based on High Altitude Mapping Orbit (HAMO) data (˜120 m/px), as LAMO images are just becoming available. The Coniraya Quadrangle is dominated by craters of different sizes and degradation stages. Most of the craters are highly degraded and no ejecta blankets are visible (e.g., Coniraya: 136 km; 65.8° E/40.5° N). Only some craters like Gaue and Ikapati seem to be relatively fresh, and still have ejecta blankets. Such fresher impact craters could already be mapped in detail on HAMO data, and subdivided into crater ejecta, crater wall, crater floor, and crater central peak materials. At the crater floor and around Ikapati crater we also identified smooth materials that fill local depressions. The formation of the smooth material seems to be related to the formation of the impact crater, as crater densities of the smooth materials and the ejecta blanket are similar, as are their absolute model ages (AMAs), derived from crater size-frequency distribution (CSFD) measurements. Using the lunar derived chronology, CSFD measurements of Ikapati's ejecta blanket and the smooth materials located in and around the crater show AMAs of 300 to 390 Ma. CSFD measurements of Gaue crater show AMAs of 910-980 Ma. Both craters show background AMAs of 3.1 to 3.5 Ga, which might be related to old large craters (e.g., Coniraya or Kerwan). Apart from crater related units, we identified one dome-like structure (˜65 km wide; ˜3 km high) at the crater floor of a large degraded crater at the western edge of this quadrangle. This might be an indication

  3. Requirements and Designs for Mars Rover RTGs

    SciTech Connect

    Schock, Alfred; Shirbacheh, M; Sankarankandath, V

    2012-01-19

    The current-generation RTGs (both GPHS and MOD) are designed for operation in a vacuum environment. The multifoil thermal insulation used in those RTGs only functions well in a good vacuum. Current RTGs are designed to operate with an inert cover gas before launch, and to be vented to space vacuum after launch. Both RTGs are sealed with a large number of metallic C-rings. Those seals are adequate for retaining the inert-gas overpressure during short-term launch operations, but would not be adequate to prevent intrusion of the Martian atmospheric gases during long-term operations there. Therefore, for the Mars Rover application, those RTGs just be modified to prevent the buildup of significant pressures of Mars atmosphere or of helium (from alpha decay of the fuel). In addition, a Mars Rover RTG needs to withstand a long-term dynamic environment that is much more severe than that seen by an RTG on an orbiting spacecraft or on a stationary planetary lander. This paper describes a typical Rover mission, its requirements, the environment it imposes on the RTG, and a design approach for making the RTG operable in such an environment. Specific RTG designs for various thermoelectric element alternatives are presented.; Reference CID #9268 and CID #9276.

  4. Mars rover mechanisms designed for Rocky 4

    NASA Technical Reports Server (NTRS)

    Rivellini, Tommaso P.

    1993-01-01

    A Mars rover prototype vehicle named Rocky 4 was designed and built at JPL during the fall of 1991 and spring 1992. This vehicle is the fourth in a series of rovers designed to test vehicle mobility and navigation software. Rocky 4 was the first attempt to design a vehicle with 'flight like' mass and functionality. It was consequently necessary to develop highly efficient mechanisms and structures to meet the vehicles very tight mass limit of 3 Kg for the entire mobility system (7 Kg for the full system). This paper will discuss the key mechanisms developed for the rover's innovative drive and suspension system. These are the wheel drive and strut assembly, the rocker-bogie suspension mechanism and the differential pivot. The end-to-end design, analysis, fabrication and testing of these components will also be discussed as will their performance during field testing. The lessons learned from Rocky 4 are already proving invaluable for the design of Rocky 6. Rocky 6 is currently being designed to fly on NASA's MESUR mission to Mars scheduled to launch in 1996.

  5. Mars rover mechanisms designed for Rocky 4

    NASA Astrophysics Data System (ADS)

    Rivellini, Tommaso P.

    1993-05-01

    A Mars rover prototype vehicle named Rocky 4 was designed and built at JPL during the fall of 1991 and spring 1992. This vehicle is the fourth in a series of rovers designed to test vehicle mobility and navigation software. Rocky 4 was the first attempt to design a vehicle with 'flight like' mass and functionality. It was consequently necessary to develop highly efficient mechanisms and structures to meet the vehicles very tight mass limit of 3 Kg for the entire mobility system (7 Kg for the full system). This paper will discuss the key mechanisms developed for the rover's innovative drive and suspension system. These are the wheel drive and strut assembly, the rocker-bogie suspension mechanism and the differential pivot. The end-to-end design, analysis, fabrication and testing of these components will also be discussed as will their performance during field testing. The lessons learned from Rocky 4 are already proving invaluable for the design of Rocky 6. Rocky 6 is currently being designed to fly on NASA's MESUR mission to Mars scheduled to launch in 1996.

  6. Power transmission by laser beam from lunar-synchronous satellites to a lunar rover

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Deyoung, R. J.; Schuster, G. L.; Choi, S. H.; Dagle, J. E.; Coomes, E. P.; Antoniak, Z. I.; Bamberger, J. A.; Bates, J. M.; Chiu, M. A.

    1992-01-01

    This study addresses the possibility of beaming laser power from synchronous lunar orbits (L1 and L2 LaGrange points) to a manned long-range lunar rover. The rover and two versions of a satellite system (one powered by a nuclear reactor; the other by photovoltaics) are described in terms of their masses, geometry, power needs, mission and technological capabilities. Laser beam power is generated by a laser diode array in the satellite and converted to 30 kW of electrical power at the rover. Present technological capabilities, with some extrapolation to near future capabilities, are used in the descriptions. The advantages of the two satellite/rover systems over other such systems and over rovers with on-board power are discussed along with the possibility of enabling other missions.

  7. Design considerations for a Martian Balloon Rover

    NASA Technical Reports Server (NTRS)

    Redd, F.; Levesque, R. J.; Williams, G. E.

    1987-01-01

    The present NASA-sponsored design feasibility study for a balloon-borne sensor platform that is to be used over environmentally dissimilar sites on Mars gives attention to specific environmental and configurational parameters of a baseline balloon design, with a view to day/night altitude variations in response to temperature extremes. It is concluded that a Martian Balloon Rover can be developed using current technology; projected reductions in high-strength fabric density and radiation-resistant coatings will further enhance mission effectiveness, permitting either balloon size reductions or payload capacity increases.

  8. Nuclear Safety Analysis for the Mars Exploration Rover 2003 Project

    NASA Astrophysics Data System (ADS)

    Firstenberg, Henry; Rutger, Lyle L.; Mukunda, Meera; Bartram, Bart W.

    2004-02-01

    The National Aeronautics and Space Administration's Mars Exploration Rover (MER) 2003 project is designed to place two mobile laboratories (Rovers) on Mars to remotely characterize a diversity of rocks and soils. Milestones accomplished so far include two successful launches of identical spacecraft (the MER-A and MER-B missions) from Cape Canaveral Air Force Station, Florida on June 10 and July 7, 2003. Each Rover uses eight Light Weight Radioisotope Heater Units (LWRHUs) fueled with plutonium-238 dioxide to provide local heating of Rover components. The LWRHUs are provided by the U.S. Department of Energy. In addition, small quantities of radioactive materials in sealed sources are used in scientific instrumentation on the Rover. Due to the radioactive nature of these materials and the potential for accidents, a formal Launch Approval Process requires the preparation of a Final Safety Analysis Report (FSAR) for submittal to and independent review by an Interagency Nuclear Safety Review Panel. This paper presents a summary of the FSAR in terms of potential accident scenarios, probabilities, source terms, radiological consequences, mission risks, and uncertainties in the reported results.

  9. Viking and Mars Rover exobiology

    NASA Technical Reports Server (NTRS)

    Schwartz, D. E.; Mancinelli, Rocco L.; Ohara, B. J.

    1989-01-01

    Other than Earth, Mars is the planet generating the greatest interest among those researching and contemplating the origin and distribution of life throughout the universe. The similarity of the early environments of Earth and Mars, and the biological evolution on early Earth provides the motivation to seriously consider the possibility of a primordial Martian biosphere. In 1975 the Viking project launched two unmanned spacecraft to Mars with the intent of finding evidence of the existence of present or past life on this planet. Three Viking Biology experiments were employed: the Labeled Release experiment, the Gas Exchange Experiment, and the Pyrolytic Release experiment. Each of these three experiments tested for microbial existence and utilization of a substrate by examining the gases evolved from specific chemical reactions. Although the results of these experiments were inconclusive, they inferred that there are no traces of extant life on Mars. However, the experiments did not specifically look for indication of extinct life. Therefore, most of the exobiologic strategies and experiments suggested for the Mars Rover Sample Return Mission involve searching for signature of extinct life. The most significant biological signatures and chemical traces to detect include: isotopic and chemical signatures of metabolic activity, anomalous concentrations of certain metals, trace and microfossils, organically preserved materials, carbonates, nitrates, and evaporites.

  10. Onboard autonomous mineral detectors for Mars rovers

    NASA Astrophysics Data System (ADS)

    Gilmore, M. S.; Bornstein, B.; Castano, R.; Merrill, M.; Greenwood, J.

    2005-12-01

    Mars rovers and orbiters currently collect far more data than can be downlinked to Earth, which reduces mission science return; this problem will be exacerbated by future rovers of enhanced capabilities and lifetimes. We are developing onboard intelligence sufficient to extract geologically meaningful data from spectrometer measurements of soil and rock samples, and thus to guide the selection, measurement and return of these data from significant targets at Mars. Here we report on techniques to construct mineral detectors capable of running on current and future rover and orbital hardware. We focus on carbonate and sulfate minerals which are of particular geologic importance because they can signal the presence of water and possibly life. Sulfates have also been discovered at the Eagle and Endurance craters in Meridiani Planum by the Mars Exploration Rover (MER) Opportunity and at other regions on Mars by the OMEGA instrument aboard Mars Express. We have developed highly accurate artificial neural network (ANN) and Support Vector Machine (SVM) based detectors capable of identifying calcite (CaCO3) and jarosite (KFe3(SO4)2(OH)6) in the visible/NIR (350-2500 nm) spectra of both laboratory specimens and rocks in Mars analogue field environments. To train the detectors, we used a generative model to create 1000s of linear mixtures of library end-member spectra in geologically realistic percentages. We have also augmented the model to include nonlinear mixing based on Hapke's models of bidirectional reflectance spectroscopy. Both detectors perform well on the spectra of real rocks that contain intimate mixtures of minerals, rocks in natural field environments, calcite covered by Mars analogue dust, and AVIRIS hyperspectral cubes. We will discuss the comparison of ANN and SVM classifiers for this task, technical challenges (weathering rinds, atmospheric compositions, and computational complexity), and plans for integration of these detectors into both the Coupled Layer

  11. Methods and decision making on a Mars rover for identification of fossils

    NASA Technical Reports Server (NTRS)

    Eberlein, Susan; Yates, Gigi

    1989-01-01

    A system for automated fusion and interpretation of image data from multiple sensors, including multispectral data from an imaging spectrometer is being developed. Classical artificial intelligence techniques and artificial neural networks are employed to make real time decision based on current input and known scientific goals. Emphasis is placed on identifying minerals which could indicate past life activity or an environment supportive of life. Multispectral data can be used for geological analysis because different minerals have characteristic spectral reflectance in the visible and near infrared range. Classification of each spectrum into a broad class, based on overall spectral shape and locations of absorption bands is possible in real time using artificial neural networks. The goal of the system is twofold: multisensor and multispectral data must be interpreted in real time so that potentially interesting sites can be flagged and investigated in more detail while the rover is near those sites; and the sensed data must be reduced to the most compact form possible without loss of crucial information. Autonomous decision making will allow a rover to achieve maximum scientific benefit from a mission. Both a classical rule based approach and a decision neural network for making real time choices are being considered. Neural nets may work well for adaptive decision making. A neural net can be trained to work in two steps. First, the actual input state is mapped to the closest of a number of memorized states. After weighing the importance of various input parameters, the net produces an output decision based on the matched memory state. Real time, autonomous image data analysis and decision making capabilities are required for achieving maximum scientific benefit from a rover mission. The system under development will enhance the chances of identifying fossils or environments capable of supporting life on Mars

  12. SCREAM (Subsurface Characterization Rover for Exobiology Assessment on Mars)

    NASA Astrophysics Data System (ADS)

    Cook, A. M.; Spencer, M.; Avnet, M.; Bonetti, J.; Bryson, K.; Busch, M.; Cheng, S.; Crawford, Z.; Edmunson, J.; Fahnestock, E.; Fuse, C.; Hardgrove, C.; Hier-Majumder, C.; Johnson, N.; Mikucki, J.; Smith, H.; Son, L.; Wilson, S.; Balint, T.

    2006-12-01

    The Jet Propulsion Laboratory (JPL) hosts a Planetary Science Summer School (PSSS) annually to train a group of early- career scientists (graduate and post-doctoral students) for NASA mission planning. This work presents the results of the 2006 design study modeled after the European Space Agency's (ESA) ExoMars Rover. The PSSS students designed a mission commensurate with the science goals of the ExoMars mission, but within the mass, design, and cost constraints of a NASA mid-class rover. This, in turn, allowed them to evaluate the feasibility of the proposed ExoMars mission. SCREAM also represents a bridge between NASA's Mars Science Lab (MSL) Rover and Astrobiology Field Lab (AFL) Rover. Primary science goals include the search for subsurface biology (extant or extinct) in context with geological morphology, and demonstration of subsurface core sampling. The rovers enabling instruments include an ultra-sonic drill capable of producing cores at a depth of 1 meter, and a Panoramic Camera for surface navigation. The analysis instruments are the MAHLI (Mars Hand Lens Imager) and an AP-MALDI with GCMS (Atmospheric Pressure Matrix-Assisted Laser Desorption/Ionization instrument with Gas Chromatograph Mass Spectrometry). Results of the study indicate that ESA's ExoMars is a difficult mission to design within a $900 million cost cap and 180 kg maximum mass. However, most of the primary science goals for ExoMars were satisfied by the SCREAM design, with about one-fifth of the proposed ExoMars instruments. The design of the instrument suite highlighted the major difficulties associated with indisputable detection of biological material.

  13. Investigation of Life in the Atacama Desert by Astrobiology Rover

    NASA Astrophysics Data System (ADS)

    Wettergreen, D.; Cabrol, N.

    2005-12-01

    terrestrial life and some directed toward the in situ detection of life's signatures (biological and physical, such as biological constructs and patterns). The payload is designed to both detect organic biomarkers, including DNA, carbohydrates, lipids, and proteins, and to characterize habitats. The existence of endoliths in extreme environments similar to early Mars makes the testing of detection methods for chlorophyll-based life a valid working hypothesis. Whether or not life on Mars (if any) used-or uses-photosynthesis, detecting its signature will likely involve accessing isolated oases scattered over large distances. LITA is demonstrating this capability in a relevant terrestrial analogue. In our first field season (2003) we found that microhabitats, on the scale of a few meters or tens of meters, were sparsely distributed in coastal regions and were detectable by fluorescent and spectral signatures. In our second season (2004) Zo revisited the coastal region and also investigated the existence and character of habitats in the desert core. In the third field season (2005), with our astrobiology payload fully functional and operational procedures established, the rover is collecting measurements that provide the basis for a map of life in local areas. Our goal is to make genuine discoveries about the limits of life on Earth and to generate knowledge about life in extreme environments that can be applied to future planetary missions. Through these experiments we also hope to develop and practice the methods by which a rover might best be employed to survey desert terrain and seek evidence of life.

  14. General characteristics and availability of Landsat 3 and heat capacity mapping mission thermal infrared data

    USGS Publications Warehouse

    Southworth, C. Scott

    1983-01-01

    Two satellite systems launched by the National Aeronautics and Space Administration (NASA) in 1978 carried sensors which operated in the thermal infrared (IR) region of the electromagnetic spectrum, The final IR radiation data provide spectral information about the physical properties of the Earth's surficial materials not duplicated in either the visible or reflective IR wavelength regions. Landsat 3, launched on March 5, 1978, contained a thermal sensor as part of the multispectral scanner (MSS) system. The sensor operated in the 10.4- to 12.6-?m (band 8) wavelength region and produced imagery with a ground resolution of approximately 235 m. Launched on April 26) 1978) the Heat Capacity Mapping Mission (HCMM) spacecraft carried a sensor, the heat capacity mapping radiometer (HCMR) which operated in the 10.5- to 12.5?m wavelength region and produced imagery with a ground resolution of approximately 600 m at nadir. The HCMM satellite acquired over 6,600 data passes of visible (0.55-1.1 ?m), as well as thermal IR data, over North America, Europe, and Australia. General characteristics and availability of Landsat 3 and HCMM thermal IR data are discussed. Landsat 3 reflected IR band 7 (0.55-1.1 ?m) and Landsat 3 band 8 thermal data acquired over the eastern and western United States are analyzed and compared with HCMM visible, thermal IR, thermal inertia, and day-night temperature difference imagery for geologic applications. Digitally processed and enhanced HCMM data (high-pass filters, diagonal derivatives, and band ratios), produced by the U.S. Geological Survey, Flagstaff) Ariz., are presented for geologic interpretation.

  15. Nuclear thermal rocket workshop reference system Rover/NERVA

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.

    1991-01-01

    The Rover/NERVA engine system is to be used as a reference, against which each of the other concepts presented in the workshop will be compared. The following topics are reviewed: the operational characteristics of the nuclear thermal rocket (NTR); the accomplishments of the Rover/NERVA programs; and performance characteristics of the NERVA-type systems for both Mars and lunar mission applications. Also, the issues of ground testing, NTR safety, NASA's nuclear propulsion project plans, and NTR development cost estimates are briefly discussed.

  16. The search for life on Mars: The role of rovers

    NASA Astrophysics Data System (ADS)

    Stoker, Carol

    1998-12-01

    The search for evidence of life on Mars will require highly capable rovers. The strategy for the search for life divides into four major objectives: understanding the history of the Martian climate, finding evidence of chemical evolution, searching for evidence of past life, and searching for evidence of living organisms. To achieve these objectives, rovers will need to traverse distances of the order of 10 km to study a variety of relevant features (e.g., fluvial channels, shorelines, eskers, hydrothermal deposits) in sufficient detail to diagnose their formation processes. Requirements for rovers include color imaging at a range of spatial scales (wide angle for geologic context, high resolution for resolving millimeter- to centimeter-scale textures, submillimeter resolution of selected areas); in situ capabilities to perform chemical, mineralogical, and organic analysis; and the ability to collect samples of rocks, soils, and subsurface samples for return to Earth for detailed laboratory analysis. Simulations of rover missions to Mars and the Moon were performed for 3 days each in February 1995 using the Marsokhod rover deployed on Kilauea volcano, Hawaii, and operated via satellite communications from Moffett Field, California. During the simulations, science teams analyzed images taken by the Marsokhod and deduced the geologic setting and history of the field site. Imaging for the Mars mission simulation used mast-mounted monochrome stereo cameras with 30° field of view, 1.4 mrad/pixel resolution, 1.7 m height, 1 m horizontal spacing, and fixed pointing. A camera mounted on a manipulator arm was capable of resolving 1 mm features. During 18 hours of operation, the rover traversed 800 m of terrain, made observations at eight science targets, and obtained 52 stereo images and 18 arm camera images. For the lunar mission simulation, stereo cameras were mounted on a mast with a pointable platform at 1.5 m height and 10 cm horizontal spacing. Stereo color video was

  17. Low Altitude Mapping Orbit Design and Maintenance for the Dawn Discovery Mission at Vesta

    NASA Technical Reports Server (NTRS)

    Whiffen, Gregory J.

    2011-01-01

    NASA's Dawn discovery mission will orbit the giant asteroid Vesta beginning in the summer of 2011. Four different near polar science orbits are planned. The lowest planned orbit at Vesta is called the Low Altitude Mapping Orbit or LAMO and is by far the most challenging to design and maintain due to the strong, nonspherical gravity expected there. This paper describes the orbit selection process. The true gravity field of Vesta remains highly uncertain. The proposed orbit selection process will be applied once sufficient gravity knowledge is obtained at higher orbits. The orbit selection process is applied here to a fictitious gravity field based on a Hubble space telescope shape model for Vesta assuming uniform density. The outcome of the process described here is a variety of stable orbits. However, Initially stable orbits at the LAMO altitude are not expected to remain stable operationally due to the unpredictable impulses resulting from the Dawn spacecraft thruster firings to de-saturate its momentum wheels. As a result, orbital maintenance maneuvers will be probably be necessary. This paper also briefly describes the statistical maneuver design process that resulted in the orbit maintenance plan.

  18. Short-Arc Analysis of Intersatellite Tracking Data in a Gravity Mapping Mission

    NASA Technical Reports Server (NTRS)

    Rowlands, David D.; Ray, Richard D.; Chinn, Douglas S.; Lemoine, Frank G.; Smith, David E. (Technical Monitor)

    2001-01-01

    A technique for the analysis of low-low intersatellite range-rate data in a gravity mapping mission is explored. The technique is based on standard tracking data analysis for orbit determination but uses a spherical coordinate representation of the 12 epoch state parameters describing the baseline between the two satellites. This representation of the state parameters is exploited to allow the intersatellite range-rate analysis to benefit from information provided by other tracking data types without large simultaneous multiple data type solutions. The technique appears especially valuable for estimating gravity from short arcs (e.g., less than 15 minutes) of data. Gravity recovery simulations which use short arcs are compared with those using arcs a day in length. For a high-inclination orbit, the short-arc analysis recovers low-order gravity coefficients remarkably well, although higher order terms, especially sectorial terms, are less accurate. Simulations suggest that either long or short arcs of GRACE data are likely to improve parts of the geopotential spectrum by orders of magnitude.

  19. Autonomously Generating Operations Sequences for a Mars Rover Using Artificial Intelligence-Based Planning

    NASA Astrophysics Data System (ADS)

    Sherwood, R.; Mutz, D.; Estlin, T.; Chien, S.; Backes, P.; Norris, J.; Tran, D.; Cooper, B.; Rabideau, G.; Mishkin, A.; Maxwell, S.

    2001-07-01

    This article discusses a proof-of-concept prototype for ground-based automatic generation of validated rover command sequences from high-level science and engineering activities. This prototype is based on ASPEN, the Automated Scheduling and Planning Environment. This artificial intelligence (AI)-based planning and scheduling system will automatically generate a command sequence that will execute within resource constraints and satisfy flight rules. An automated planning and scheduling system encodes rover design knowledge and uses search and reasoning techniques to automatically generate low-level command sequences while respecting rover operability constraints, science and engineering preferences, environmental predictions, and also adhering to hard temporal constraints. This prototype planning system has been field-tested using the Rocky 7 rover at JPL and will be field-tested on more complex rovers to prove its effectiveness before transferring the technology to flight operations for an upcoming NASA mission. Enabling goal-driven commanding of planetary rovers greatly reduces the requirements for highly skilled rover engineering personnel. This in turn greatly reduces mission operations costs. In addition, goal-driven commanding permits a faster response to changes in rover state (e.g., faults) or science discoveries by removing the time-consuming manual sequence validation process, allowing rapid "what-if" analyses, and thus reducing overall cycle times.

  20. Thermal Performance of the Mars Science Laboratory Rover During Mars Surface Operations

    NASA Technical Reports Server (NTRS)

    Novak, Keith S.; Kempenaar, Joshua E.; Liu, Yuanming; Bhandari, Pradeep; Lee, Chern-Jiin

    2013-01-01

    On November 26, 2011, NASA launched a large (900 kg) rover as part of the Mars Science Laboratory (MSL) mission to Mars. Eight months later, on August 5, 2012, the MSL rover (Curiosity) successfully touched down on the surface of Mars. As of the writing of this paper, the rover had completed over 200 Sols of Mars surface operations in the Gale Crater landing site (4.5 deg S latitude). This paper describes the thermal performance of the MSL Rover during the early part of its two Earth-0.year (670 Sols) prime surface mission. Curiosity landed in Gale Crater during early Spring (Ls=151) in the Southern Hemisphere of Mars. This paper discusses the thermal performance of the rover from landing day (Sol 0) through Summer Solstice (Sol 197) and out to Sol 204. The rover surface thermal design performance was very close to pre-landing predictions. The very successful thermal design allowed a high level of operational power dissipation immediately after landing without overheating and required a minimal amount of survival heating. Early morning operations of cameras and actuators were aided by successful heating activities. MSL rover surface operations thermal experiences are discussed in this paper. Conclusions about the rover surface operations thermal performance are also presented.

  1. Thermal Performance of the Mars Science Laboratory Rover During Mars Surface Operations

    NASA Technical Reports Server (NTRS)

    Novak, Keith S.; Kempenaar, Joshua E.; Liu, Yuanming; Bhandari, Pradeep; Lee, Chern-Jiin

    2013-01-01

    On November 26, 2011, NASA launched a large (900 kg) rover as part of the Mars Science Laboratory (MSL) mission to Mars. Eight months later, on August 5, 2012, the MSL rover (Curiosity) successfully touched down on the surface of Mars. As of the writing of this paper, the rover had completed over 200 Sols of Mars surface operations in the Gale Crater landing site (4.5 degrees South latitude). This paper describes the thermal performance of the MSL Rover during the early part of its two Earth-0.year (670 Sols) prime surface mission. Curiosity landed in Gale Crater during early Spring (Solar longitude=151) in the Southern Hemisphere of Mars. This paper discusses the thermal performance of the rover from landing day (Sol 0) through Summer Solstice (Sol 197) and out to Sol 204. The rover surface thermal design performance was very close to pre-landing predictions. The very successful thermal design allowed a high level of operational power dissipation immediately after landing without overheating and required a minimal amount of survival heating. Early morning operations of cameras and actuators were aided by successful heating activities. MSL rover surface operations thermal experiences are discussed in this paper. Conclusions about the rover surface operations thermal performance are also presented.

  2. Long Range Navigation for Mars Rovers Using Sensor-Based Path Planning and Visual Localisation

    NASA Technical Reports Server (NTRS)

    Laubach, Sharon L.; Olson, Clark F.; Burdick, Joel W.; Hayati, Samad

    1999-01-01

    The Mars Pathfinder mission illustrated the benefits of including a mobile robotic explorer on a planetary mission. However, for future Mars rover missions, significantly increased autonomy in navigation is required in order to meet demanding mission criteria. To address these requirements, we have developed new path planning and localisation capabilities that allow a rover to navigate robustly to a distant landmark. These algorithms have been implemented on the JPL Rocky 7 prototype microrover and have been tested extensively in the JPL MarsYard, as well as in natural terrain.

  3. The Athena Mars Rover Science Payload

    NASA Technical Reports Server (NTRS)

    Squyes, S. W.; Arvidson, R.; Bell, J. F., III; Carr, M.; Christensen, P.; DesMarais, D.; Economou, T.; Gorevan, S.; Klingelhoefer, G.; Haskin, L.

    1998-01-01

    The Mars Surveyor missions that will be launched in April of 2001 will include a highly capable rover that is a successor to the Mars Pathfinder mission's Sojourner rover. The design goals for this rover are a total traverse distance of at least 10 km and a total lifetime of at least one Earth year. The rover's job will be to explore a site in Mars' ancient terrain, searching for materials likely to preserve a record of ancient martian water, climate, and possibly biology. The rover will collect rock and soil samples, and will store them for return to Earth by a subsequent Mars Surveyor mission in 2005. The Athena Mars rover science payload is the suite of scientific instruments and sample collection tools that will be used to perform this job. The specific science objectives that NASA has identified for the '01 rover payload are to: (1) Provide color stereo imaging of martian surface environments, and remotely-sensed point discrimination of mineralogical composition. (2) Determine the elemental and mineralogical composition of martian surface materials. (3) Determine the fine-scale textural properties of these materials. (4) Collect and store samples. The Athena payload has been designed to meet these objectives. The focus of the design is on field operations: making sure the rover can locate, characterize, and collect scientifically important samples in a dusty, dirty, real-world environment. The topography, morphology, and mineralogy of the scene around the rover will be revealed by Pancam/Mini-TES, an integrated imager and IR spectrometer. Pancam views the surface around the rover in stereo and color. It uses two high-resolution cameras that are identical in most respects to the rover's navigation cameras. The detectors are low-power, low-mass active pixel sensors with on-chip 12-bit analog-to-digital conversion. Filters provide 8-12 color spectral bandpasses over the spectral region from 0.4 to 1.1 micron Narrow-angle optics provide an angular resolution of 0

  4. Dual rover human habitation field study

    NASA Astrophysics Data System (ADS)

    Litaker, Harry L.; Thompson, Shelby G.; Szabo, Richard; Twyford, Evan S.; Conlee, Carl S.; Howard, Robert L.

    2013-10-01

    For the last 3 years, the National Aeronautics and Space Administration (NASA) has been testing a pressurized rover prototype in the deserts of Arizona to obtain human-in-the-loop performance data. This year's field trial consisted of operating two rovers simultaneously while embarking on two 7-day flight-like exploration missions. During the 2010 Desert Research and Technology Studies (DRATS) at Black Point Lava Flow and SP Mountain in Arizona, NASA human factors investigators, in cooperation with other engineers and scientists, collected data on both the daily living and working within and around the Space Exploration Vehicle (SEV). Both objective and subjective data were collected using standard human factors metrics. Over 305 h of crew habitability data were recorded during the field trial with 65 elements of habitation examined. Acceptability of the vehicles over the course of the missions was considered satisfactory by the majority of the crews. As with previous testing, habitation was considered acceptable by the crews, but some issues concerning stowage, Waste Containment System (WCS) volume, and sleep curtains need to be considered for redesign for the next generation vehicle.

  5. Geological Mapping of the Ac-H-9 Occator Quadrangle of Ceres from NASA Dawn Mission

    NASA Astrophysics Data System (ADS)

    Buczkowski, Debra; Williams, David; Scully, Jennifer; Mest, Scott; Crown, David; Aileen Yingst, R.; Schenk, Paul; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Platz, Thomas; Nathues, Andreas; Hoffmann, Martin; Schaefer, Michael; Marchi, Simone; De Sanctis, M. Cristina; Raymond, Carol; Russell, Chris

    2016-04-01

    As was done at Vesta [1], the Dawn Science Team is conducting a geological mapping cam-paign at Ceres during the nominal mission, including iterative mapping using data obtained dur-ing each orbital phase. We are using geological mapping as a method to identify the geologic processes that have modified the surface of dwarf planet Ceres. We here present the geology of the Ac-H-9 Occator quadrangle, located between 22°S-22°N and 216-288°E. The Ac-H-9 map area is completely within the topographically high region on Ceres named Erntedank Planum. It is one of two longitudinally distinct regions where ESA Herschel space telescope data suggested a release of water vapor [2]. The quadrangle includes several other notable features, including those discussed below. Occator is the 92 km diameter crater that hosts the "Bright Spot 5" that was identified in Hubble Space Telescope data [3], which is actually comprised of multiple bright spots on the crater floor. The floor of Occator is cut by linear fractures, while circumferential fractures are found in the ejecta and on the crater walls. The bright spots are noticeably associated with the floor fractures, although the brightest spot is associated with a central pit [4]. Multiple lobate flows are observed on the crater floor; these appear to be sourced from the center of the crater. The crater has a scalloped rim that is cut by regional linear structures, displaying a cross-section of one structure in the crater wall. Color data show that the Occator ejecta have multiple colors, generally related to changes in morphology. Azacca is a 50 km diameter crater that has a central peak and bright spots on its floor and within its ejecta. Like Occator, Azacca has both floor fractures and circumferential fractures in its ejecta and crater walls. Also like Occator, the Azacca ejecta is multi-colored with variable morphology. Linear structures - including grooves, pit crater chains, fractures and troughs - cross much of the eastern

  6. Data Management for Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Snyder, Joseph F.; Smyth, David E.

    2004-01-01

    Data Management for the Mars Exploration Rovers (MER) project is a comprehensive system addressing the needs of development, test, and operations phases of the mission. During development of flight software, including the science software, the data management system can be simulated using any POSIX file system. During testing, the on-board file system can be bit compared with files on the ground to verify proper behavior and end-to-end data flows. During mission operations, end-to-end accountability of data products is supported, from science observation concept to data products within the permanent ground repository. Automated and human-in-the-loop ground tools allow decisions regarding retransmitting, re-prioritizing, and deleting data products to be made using higher level information than is available to a protocol-stack approach such as the CCSDS File Delivery Protocol (CFDP).

  7. Targeting and Localization for Mars Rover Operations

    NASA Technical Reports Server (NTRS)

    Powell, Mark W.; Crockett, Thomas; Fox, Jason M.; Joswig, Joseph C.; Norris, Jeffrey S.; Rabe, Kenneth J.

    2008-01-01

    A design and a partially developed application framework were presented for improving localization and targeting for surface spacecraft. The program has value for the Mars Science Laboratory mission, and has been delivered to support the Mars Exploration Rovers as part of the latest version of the Maestro science planning tool. It also has applications for future missions involving either surface-based or low-altitude atmospheric robotic vehicles. The targeting and localization solutions solve the problem of how to integrate localization estimate updates into operational planning tools, operational data product generalizations, and flight software by adding expanded flexibility to flight software, the operations data product pipeline, and operations planning tools based on coordinate frame updates during a planning cycle.

  8. Roll over, Rover

    NASA Astrophysics Data System (ADS)

    Shaw, Mike

    2011-04-01

    Here's a quick, simple, and inexpensive demonstration of an induced static charge. Everyone has probably demonstrated static induction by first rubbing a balloon across his or her hair or animal fur and then sticking it on a wall, whiteboard, or chalkboard. Now you can add a humorous twist to that golden oldie. You will need two balloons (the type clowns use to make animal shapes), an animal fur friction pad or your hair, and a marking pen. Inflate both balloons to their full length and tie off the openings. Along the center of one balloon, in large letters write the word "Rover." Allow the ink to dry and you are ready for the demonstration.

  9. A cognitive robotic system based on the Soar cognitive architecture for mobile robot navigation, search, and mapping missions

    NASA Astrophysics Data System (ADS)

    Hanford, Scott D.

    Most unmanned vehicles used for civilian and military applications are remotely operated or are designed for specific applications. As these vehicles are used to perform more difficult missions or a larger number of missions in remote environments, there will be a great need for these vehicles to behave intelligently and autonomously. Cognitive architectures, computer programs that define mechanisms that are important for modeling and generating domain-independent intelligent behavior, have the potential for generating intelligent and autonomous behavior in unmanned vehicles. The research described in this presentation explored the use of the Soar cognitive architecture for cognitive robotics. The Cognitive Robotic System (CRS) has been developed to integrate software systems for motor control and sensor processing with Soar for unmanned vehicle control. The CRS has been tested using two mobile robot missions: outdoor navigation and search in an indoor environment. The use of the CRS for the outdoor navigation mission demonstrated that a Soar agent could autonomously navigate to a specified location while avoiding obstacles, including cul-de-sacs, with only a minimal amount of knowledge about the environment. While most systems use information from maps or long-range perceptual capabilities to avoid cul-de-sacs, a Soar agent in the CRS was able to recognize when a simple approach to avoiding obstacles was unsuccessful and switch to a different strategy for avoiding complex obstacles. During the indoor search mission, the CRS autonomously and intelligently searches a building for an object of interest and common intersection types. While searching the building, the Soar agent builds a topological map of the environment using information about the intersections the CRS detects. The agent uses this topological model (along with Soar's reasoning, planning, and learning mechanisms) to make intelligent decisions about how to effectively search the building. Once the

  10. Control technique for planetary rover

    NASA Technical Reports Server (NTRS)

    Nakatani, Ichiro; Kubota, Takashi; Adachi, Tadashi; Saitou, Hiroaki; Okamoto, Sinya

    1994-01-01

    Beginning next century, several schemes for sending a planetary rover to the moon or Mars are being planned. As part of the development program, autonomous navigation technology is being studied to allow the rover the ability to move autonomously over a long range of unknown planetary surface. In the previous study, we ran the autonomous navigation experiment on an outdoor test terrain by using a rover test-bed that was controlled by a conventional sense-plan-act method. In some cases during the experiment, a problem occurred with the rover moving into untraversable areas. To improve this situation, a new control technique has been developed that gives the rover the ability of reacting to the outputs of the proximity sensors, a reaction behavior if you will. We have developed a new rover test-bed system on which an autonomous navigation experiment was performed using the newly developed control technique. In this outdoor experiment, the new control technique effectively produced the control command for the rover to avoid obstacles and be guided to the goal point safely.

  11. A Modular Re-configurable Rover System

    NASA Astrophysics Data System (ADS)

    Bouloubasis, A.; McKee, G.; Active Robotics Lab

    design allows the MTR to lift, lower, roll or tilt its body. It also provides the ability to lift any of the legs by nearly 300mm, enhancing internal re-configurability and therefore rough terrain stability off the robotic vehicle. A modular software and control architecture will be used so that integration to, and operation through the MTR, of different Packs can be demonstrated. An on-board high-level controller [4] will communicate with a small network of micro-controllers through an RS485 bus. Additional processing power could be obtained through a Pack with equivalent or higher computational capabilities. 1 The nature of the system offers many opportunities for behavior based control. The control system must accommodate not only rover based behaviors like obstacle avoidance and vehicle stabilization, but also any additional behaviors that different Packs may introduce. The Ego-Behavior Architecture (EBA) [5] comprises a number of behaviors which operate autonomously and independent of each other. This facilitates the design and suits the operation of the MTR since it fulfills the need for uncomplicated assimilation of new behaviors in the existing architecture. Our work at the moment focuses on the design and construction of the mechanical and electronic systems for the MTR and an associated Pack. References [1] NASA, Human Exploration of Mars: The Reference Mission (Version 3.0 with June, 1998 Addendum) of the NASA Mars Exploration Study Team, Exploration Office, Advanced Development Office, Lyndon B. Johnson Space Center, Houston, TX 77058, June, 1998. [2] A. Trebi-Ollennu, H Das Nayer, H Aghazarian, A ganino, P Pirjanian, B Kennedy, T Huntsberger and P Schenker, Mars Rover Pair Cooperatively Transporting a Long Payload, in Proceedings of the 2002 IEEE International Conference on Robotics and Automation, May 2002, pp. 3136-3141. [3] A. K. Bouloubasis, G. T McKee, P. S. Schenker, A Behavior-Based Manipulator for Multi-Robot Transport Tasks, in proceedings of the

  12. Scaling Up Decision Theoretic Planning to Planetary Rover Problems

    NASA Technical Reports Server (NTRS)

    Meuleau, Nicolas; Dearden, Richard; Washington, Rich

    2004-01-01

    Because of communication limits, planetary rovers must operate autonomously during consequent durations. The ability to plan under uncertainty is one of the main components of autonomy. Previous approaches to planning under uncertainty in NASA applications are not able to address the challenges of future missions, because of several apparent limits. On another side, decision theory provides a solid principle framework for reasoning about uncertainty and rewards. Unfortunately, there are several obstacles to a direct application of decision-theoretic techniques to the rover domain. This paper focuses on the issues of structure and concurrency, and continuous state variables. We describes two techniques currently under development that address specifically these issues and allow scaling-up decision theoretic solution techniques to planetary rover planning problems involving a small number of goals.

  13. A Battery Health Monitoring Framework for Planetary Rovers

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew J.; Kulkarni, Chetan Shrikant

    2014-01-01

    Batteries have seen an increased use in electric ground and air vehicles for commercial, military, and space applications as the primary energy source. An important aspect of using batteries in such contexts is battery health monitoring. Batteries must be carefully monitored such that the battery health can be determined, and end of discharge and end of usable life events may be accurately predicted. For planetary rovers, battery health estimation and prediction is critical to mission planning and decision-making. We develop a model-based approach utilizing computaitonally efficient and accurate electrochemistry models of batteries. An unscented Kalman filter yields state estimates, which are then used to predict the future behavior of the batteries and, specifically, end of discharge. The prediction algorithm accounts for possible future power demands on the rover batteries in order to provide meaningful results and an accurate representation of prediction uncertainty. The framework is demonstrated on a set of lithium-ion batteries powering a rover at NASA.

  14. High gain antenna pointing on the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Vanelli, C. Anthony; Ali, Khaled S.

    2005-01-01

    This paper describes the algorithm used to point the high gain antennae on NASA/JPL's Mars Exploration Rovers. The gimballed antennae must track the Earth as it moves across the Martian sky during communication sessions. The algorithm accounts for (1) gimbal range limitations, (2) obstructions both on the rover and in the surrounding environment, (3) kinematic singularities in the gimbal design, and (4) up to two joint-space solutions for a given pointing direction. The algorithm computes the intercept-times for each of the occlusions and chooses the jointspace solution that provides the longest track time before encountering an occlusion. Upon encountering an occlusion, the pointing algorithm automatically switches to the other joint-space solution if it is not also occluded. The algorithm has successfully provided flop-free pointing for both rovers throughout the mission.

  15. The Full-sky Astrometric Mapping Explorer - An optical, astrometric survey mission

    NASA Astrophysics Data System (ADS)

    Horner, S. D.; Germain, M. E.; Greene, T. P.; Harris, F. H.; Harris, H. C.; Johnson, M. S.; Johnston, K. J.; Monet, D. G.; Murison, M. A.; Phillips, J. D.; Reasenberg, R. D.; Seidelmann, P. K.; Urban, S. E.; Vassar, R. H.

    1999-12-01

    The Full-sky Astrometric Mapping Explorer (FAME) is a NASA MIDEX mission scheduled for launch in 2004. It will perform an all sky, astrometric survey with unprecedented accuracy. FAME will determine the positions, parallaxes, proper motions, and photometry of 40,000,000 stars with visual band magnitudes 5 < V < 15. For bright stars, 5 < V < 9, FAME will determine positions and parallaxes accurate to < 50 microarcseconds, with proper motion errors < 50 microarcseconds/year. For fainter stars, 9 < V < 15, FAME will determine positions and parallaxes accurate to < 500 microarcseconds, with proper motion errors < 500 microarcseconds/year. FAME will also collect photometric data on these 40,000,000 stars in four Sloan DSS colors. FAME will enable a wide range of scientific investigations using its large, rich database of information on stellar properties. It will: * Calibrate the zero point of the extragalactic distance scale to 1% * Determine absolute luminosities of a wide range of spectral types * Detect a meaningful statistical sample of companion stars, brown dwarfs, and giant planets * Enable studies of the kinematics of our galaxy, including the effect of dark matter in the disk * Characterize stellar variability of a large sample of stars at the 0.1% level * Define a rigid optical reference frame for future scientific endeavors FAME is evolved from design concepts from the Hipparcos mission, using current CCD technology to observe more and fainter stars. Like Hipparcos, FAME has a compound mirror consisting of two flats angled relative to each other. The compound mirror feeds the two fields of view separated by the ``basic angle'' into a common telescope. The two fields of view are used to control the growth of stochastic errors in determining the relative separations of stars. FAME is a joint development effort of the U.S. Naval Observatory, the Naval Research Laboratory, Lockheed Martin Missiles and Space Advanced Technology Center, and the Smithsonian

  16. Mars Rover Curriculum: Impact Assessment and Evaluation

    NASA Astrophysics Data System (ADS)

    Bering, E. A., III; Carlson, C.; Nieser, K.; Slagle, E. M.; Jacobs, L. T.; Kapral, A. J.

    2014-12-01

    The University of Houston is in the process of developing a flexible program that offers children an in-depth educational experience culminating in the design and construction of their own model Mars rover: the Mars Rover Model Celebration (MRC). It focuses on students, teachers and parents in grades 3-8. Students design and build a model of a Mars rover to carry out a student selected science mission on the surface of Mars. A total of 140 Mars Rover teachers from the 2012-2013 and 2013-2014 cohorts were invited to complete the Mars Rover Teacher Evaluation Survey. The survey was administered online and could be taken at the convenience of the participant. So far ~40 teachers have participated with responses still coming in. A total of 675 students from the 2013-2014 cohort were invited to submit brief self-assessments of their participation in the program. Teachers were asked to rate their current level of confidence in their ability to teach specific topics within the Earth and Life Science realms, as well as their confidence in their ability to implement teaching strategies with their students. The majority of teachers (81-90%) felt somewhat to very confident in their ability to effectively teach concepts related to earth and life sciences to their students. In addition, many of the teachers felt that their confidence in teaching these concepts increased somewhat to quite a bit as a result of their participation in the MRC program (54-88%). The most striking increase in this area was the reported 48% of teachers who felt their confidence in teaching "Earth and the solar system and universe" increased "Quite a bit" as a result of their participation in the MRC program. The vast majority of teachers (86-100%) felt somewhat to very confident in their ability to effectively implement all of the listed teaching strategies. The most striking increases were the percentage of teachers who felt their confidence increased "Quite a bit" as a result of their participation

  17. Mars Rover proposed for 2018 to seek signs of life and to cache samples for potential return to Earth

    NASA Astrophysics Data System (ADS)

    Pratt, Lisa; Beaty, David; Westall, Frances; Parnell, John; Poulet, François

    2010-05-01

    Mars Rover proposed for 2018 to seek signs of life and to cache samples for potential return to Earth Lisa Pratt, David Beatty, Frances Westall, John Parnell, François Poulet, and the MRR-SAG team The search for preserved evidence of life is the keystone concept for a new generation of Mars rover capable of exploring, sampling, and caching diverse suites of rocks from outcrops. The proposed mission is conceived to address two general objectives: conduct high-priority in situ science and make concrete steps towards the possible future return of samples to Earth. We propose the name Mars Astrobiology Explorer-Cacher (MAX-C) to best reflect the dual purpose of the proposed mission. The scientific objective of the proposed MAX-C would require rover access to a site with high preservation potential for physical and chemical biosignatures in order to evaluate paleo-environmental conditions, characterize the potential for preservation of biosignatures, and access multiple sequences of geological units in a search for evidence of past life and/or prebiotic chemistry. Samples addressing a variety of high-priority scientific objectives should be collected, documented, and packaged in a manner suitable for possible return to Earth by a future mission. Relevant experience from study of ancient terrestrial strata, martian meteorites, and from the Mars exploration Rovers indicates that the proposed MAX-C's interpretive capability should include: meter to submillimeter texture (optical imaging), mineral identification, major element content, and organic molecular composition. Analytical data should be obtained by direct investigation of outcrops and should not entail acquisition of rock chips or powders. We propose, therefore, a set of arm-mounted instruments that would be capable of interrogating a relatively smooth, abraded surface by creating co-registered 2-D maps of visual texture, mineralogy and geochemical properties. This approach is judged to have particularly high

  18. Sojourner Rover Near The Dice

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Lander image of rover near The Dice (three small rocks behind the rover) and Yogi on sol 22. Color (red, green, and blue filters at 6:1 compression) image shows dark rocks, bright red dust, dark red soil exposed in rover tracks, and dark (black) soil. The APXS is in view at the rear of the vehicle, and the forward stereo cameras and laser light stripers are in shadow just below the front edge of the solar panel.

    NOTE: original caption as published in Science Magazine

  19. Device for Lowering Mars Science Laboratory Rover to the Surface

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is hardware for controlling the final lowering of NASA's Mars Science Laboratory rover to the surface of Mars from the spacecraft's hovering, rocket-powered descent stage.

    The photo shows the bridle device assembly, which is about two-thirds of a meter, or 2 feet, from end to end, and has two main parts. The cylinder on the left is the descent brake. On the right is the bridle assembly, including a spool of nylon and Vectran cords that will be attached to the rover.

    When pyrotechnic bolts fire to sever the rigid connection between the rover and the descent stage, gravity will pull the tethered rover away from the descent stage. The bridle or tether, attached to three points on the rover, will unspool from the bridle assembly, beginning from the larger-diameter portion of the spool at far right. The rotation rate of the assembly, hence the descent rate of the rover, will be governed by the descent brake. Inside the housing of that brake are gear boxes and banks of mechanical resistors engineered to prevent the bridle from spooling out too quickly or too slowly. The length of the bridle will allow the rover to be lowered about 7.5 meters (25 feet) while still tethered to the descent stage.

    The Starsys division of SpaceDev Inc., Poway, Calif., provided the descent brake. NASA's Jet Propulsion Laboratory, Pasadena, Calif., built the bridle assembly. Vectran is a product of Kuraray Co. Ltd., Tokyo. JPL, a division of the California Institute of Technology, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington.

  20. Field reconnaissance geologic mapping of the Columbia Hills, Mars, based on Mars Exploration Rover Spirit and MRO HiRISE observations

    USGS Publications Warehouse

    Crumpler, L.S.; Arvidson, R. E.; Squyres, S. W.; McCoy, T.; Yingst, A.; Ruff, S.; Farrand, W.; McSween, Y.; Powell, M.; Ming, D. W.; Morris, R.V.; Bell, J.F.; Grant, J.; Greeley, R.; DesMarais, D.; Schmidt, M.; Cabrol, N.A.; Haldemann, A.; Lewis, K.W.; Wang, A.E.; Schroder, C.; Blaney, D.; Cohen, B.; Yen, A.; Farmer, J.; Gellert, Ralf; Guinness, E.A.; Herkenhoff, K. E.; Johnson, J. R.; Klingelhfer, G.; McEwen, A.; Rice, J.W.; Rice, M.; deSouza, P.; Hurowitz, J.

    2011-01-01

    Chemical, mineralogic, and lithologic ground truth was acquired for the first time on Mars in terrain units mapped using orbital Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (MRO HiRISE) image data. Examination of several dozen outcrops shows that Mars is geologically complex at meter length scales, the record of its geologic history is well exposed, stratigraphic units may be identified and correlated across significant areas on the ground, and outcrops and geologic relationships between materials may be analyzed with techniques commonly employed in terrestrial field geology. Despite their burial during the course of Martian geologic time by widespread epiclastic materials, mobile fines, and fall deposits, the selective exhumation of deep and well-preserved geologic units has exposed undisturbed outcrops, stratigraphic sections, and structural information much as they are preserved and exposed on Earth. A rich geologic record awaits skilled future field investigators on Mars. The correlation of ground observations and orbital images enables construction of a corresponding geologic reconnaissance map. Most of the outcrops visited are interpreted to be pyroclastic, impactite, and epiclastic deposits overlying an unexposed substrate, probably related to a modified Gusev crater central peak. Fluids have altered chemistry and mineralogy of these protoliths in degrees that vary substantially within the same map unit. Examination of the rocks exposed above and below the major unconformity between the plains lavas and the Columbia Hills directly confirms the general conclusion from remote sensing in previous studies over past years that the early history of Mars was a time of more intense deposition and modification of the surface. Although the availability of fluids and the chemical and mineral activity declined from this early period, significant later volcanism and fluid convection enabled additional, if localized, chemical activity

  1. Planetary surface exploration: MESUR/autonomous lunar rover

    NASA Technical Reports Server (NTRS)

    Stauffer, Larry; Dilorenzo, Matt; Austin, Dave; Ayers, Raymond; Burton, David; Gaylord, Joe; Kennedy, Jim; Lentz, Dale; Laux, Richard; Nance, Preston

    1992-01-01

    Planetary surface exploration micro-rovers for collecting data about the Moon and Mars was designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA-Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental SURvey (MESUR) Alpha Particle/Proton/X-ray instruments (APX). The system is to be launched with the sixteen MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker was developed to deploy the APX from the lander to the Martian surface. While on Mars the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar-terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation which NASA can use for future lunar exploratory missions. A detailed description of the designs, methods, and procedures which the University of Idaho design teams followed to arrive at the final designs are included.

  2. Planetary surface exploration MESUR/autonomous lunar rover

    NASA Technical Reports Server (NTRS)

    Stauffer, Larry; Dilorenzo, Matt; Austin, Dave; Ayers, Raymond; Burton, David; Gaylord, Joe; Kennedy, Jim; Laux, Richard; Lentz, Dale; Nance, Preston

    1992-01-01

    Planetary surface exploration micro-rovers for collecting data about the Moon and Mars have been designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA/Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental Survey (MESUR) Alpha Particle/Proton/X-ray (APX) Instrument. The system is to be launched with the 16 MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker have been developed to deploy the APX from the lander to the Martian Surface. While on Mars, the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation that NASA can use for future lunar exploratory missions. This report includes a detailed description of the designs and the methods and procedures which the University of Idaho design teams followed to arrive at the final designs.

  3. Planetary surface exploration MESUR/autonomous lunar rover

    NASA Astrophysics Data System (ADS)

    Stauffer, Larry; Dilorenzo, Matt; Austin, Dave; Ayers, Raymond; Burton, David; Gaylord, Joe; Kennedy, Jim; Laux, Richard; Lentz, Dale; Nance, Preston

    Planetary surface exploration micro-rovers for collecting data about the Moon and Mars have been designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA/Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental Survey (MESUR) Alpha Particle/Proton/X-ray (APX) Instrument. The system is to be launched with the 16 MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker have been developed to deploy the APX from the lander to the Martian Surface. While on Mars, the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation that NASA can use for future lunar exploratory missions. This report includes a detailed description of the designs and the methods and procedures which the University of Idaho design teams followed to arrive at the final designs.

  4. Planning for the V&V of infused software technologies for the Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Feather, Martin S.; Fesq, Lorraine M.; Ingham, Michel D.; Klein, Suzanne L.; Nelson, Stacy D.

    2004-01-01

    NASA's Mars Science Laboratory (MSL) rover mission is planning to make use of advanced software technologies in order to support fulfillment of its ambitious science objectives. The mission plans to adopt the Mission Data System (MDS) as the mission software architecture, and plans to make significant use of on-board autonomous capabilities for the rover software.

  5. Cylindrical isomorphic mapping applied to invariant manifold dynamics for Earth-Moon Missions

    NASA Astrophysics Data System (ADS)

    Giancotti, Marco; Pontani, Mauro; Teofilatto, Paolo

    2014-11-01

    Several families of periodic orbits exist in the context of the circular restricted three-body problem. This work studies orbital motion of a spacecraft among these periodic orbits in the Earth-Moon system, using the planar circular restricted three-body problem model. A new cylindrical representation of the spacecraft phase space (i.e., position and velocity) is described, and allows representing periodic orbits and the related invariant manifolds. In the proximity of the libration points, the manifolds form a four-fold surface, if the cylindrical coordinates are employed. Orbits departing from the Earth and transiting toward the Moon correspond to the trajectories located inside this four-fold surface. The isomorphic mapping under consideration is also useful for describing the topology of the invariant manifolds, which exhibit a complex geometrical stretch-and-folding behavior as the associated trajectories reach increasing distances from the libration orbit. Moreover, the cylindrical representation reveals extremely useful for detecting periodic orbits around the primaries and the libration points, as well as the possible existence of heteroclinic connections. These are asymptotic trajectories that are ideally traveled at zero-propellant cost. This circumstance implies the possibility of performing concretely a variety of complex Earth-Moon missions, by combining different types of trajectory arcs belonging to the manifolds. This work studies also the possible application of manifold dynamics to defining a suitable, convenient end-of-life strategy for spacecraft placed in any of the unstable orbits. The final disposal orbit is an externally confined trajectory, never approaching the Earth or the Moon, and can be entered by means of a single velocity impulse (of modest magnitude) along the right unstable manifold that emanates from the Lyapunov orbit at L_2.

  6. Electrostatic Dust Control for Planetary Rovers

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Curtis, S. A.; Farrell, W. M.; Nuth, J. A.; Stubbs, T. J.; Rilee, M. L.

    2005-12-01

    Detailed study of the physical and chemical nature of the fine particulate portion of the regoliths of these bodies is a key to understanding micrometeorite bombardment and the nature of regolith formation. Thus, missions to sample the surfaces of atmosphereless bodies, including the Moon, asteroids, and Mercury, have been identified as crucial components of solar system exploration over the next decades. We have proposed autonomous reconfigurable robotic manual assistants and lander/rovers for such missions. On the other hand, dust poses problems for mechanisms and exposed surfaces on landers/rovers sent to such bodies. Compromise of seals and loss of sample material, as well as mechanical damage to systems and surfaces, occurred after hours of operation during the Apollo missions. Thus both dust mitigation and dust collection are issues which must be addressed for sampling missions. Dust activity on atmosphereless bodies is ubiquitous and induced by complex interactions of fine particulates, environmentally-dependent fields, and charged particles with vehicle surfaces and mechanisms. Dust particles are both abrasive and adhesive as a result of the melting and crushing from micrometeorite bombardment. Thus, dust dynamics result from the interplay between mechanical and electrostatic forces and are a critical environmental factor with which all rover technologies must deal. We have considered various strategies for dust mitigation. Passive ones include the use of conducting surfaces and O-ring sealing of all mechanisms. Several active mechanisms for not only removing but collecting dust are under consideration. Our inter-disciplinary team is investigating the feasibility of an electrostatically based concept for a dust control. Relatively little work has been done on empirically simulating what happens when another surface is introduced into a non-conducting, dusty regolith. We plan to test our concept by performing empirical simulations of the interaction between

  7. APOLLO 16: Putting the 'rover' thru its paces

    NASA Technical Reports Server (NTRS)

    1974-01-01

    APOLLO 16 : Cmdr Young puts the 'rover' thru a full field test... From the film documentary 'APOLLO 16: 'Nothing So Hidden'', part of a documentary series on the APOLLO missions made in the early '70's and narrated by Burgess Meredith. APOLLO 16: Fifth manned lunar landing mission with John W. Young, Ken Mattingly, and Charles M. Duke. Landed at Descartes on April 20 1972. Deployed camera and experiments; performed EVA with lunar roving vehicle. Deployed P&F subsattelite in lunar orbit. Mission Duration 265hrs. 51 min. 5sec.

  8. Challenges of Rover Navigation at the Lunar Poles

    NASA Technical Reports Server (NTRS)

    Nefian, Ara; Deans, Matt; Bouyssounouse, Xavier; Edwards, Larry; Dille, Michael; Fong, Terry; Colaprete, Tony; Miller, Scott; Vaughan, Ryan; Andrews, Dan; Allan, Mark; Furlong, Michael

    2015-01-01

    Observations from Lunar Prospector, LCROSS, Lunar Reconnaissance Orbiter (LRO), and other missions have contributed evidence that water and other volatiles exist at the lunar poles in permanently shadowed regions. Combining a surface rover and a volatile prospecting and analysis payload would enable the detection and characterization of volatiles in terms of nature, abundance, and distribution. This knowledge could have impact on planetary science, in-situ resource utilization, and human exploration of space. While Lunar equatorial regions of the Moon have been explored by manned (Apollo) and robotic missions (Lunokhod, Cheng'e), no surface mission has reached the lunar poles.

  9. Autonomous Rovers for Polar Science Campaigns

    NASA Astrophysics Data System (ADS)

    Lever, J. H.; Ray, L. E.; Williams, R. M.; Morlock, A. M.; Burzynski, A. M.

    2012-12-01

    We have developed and deployed two over-snow autonomous rovers able to conduct remote science campaigns on Polar ice sheets. Yeti is an 80-kg, four-wheel-drive (4WD) battery-powered robot with 3 - 4 hr endurance, and Cool Robot is a 60-kg 4WD solar-powered robot with unlimited endurance during Polar summers. Both robots navigate using GPS waypoint-following to execute pre-planned courses autonomously, and they can each carry or tow 20 - 160 kg instrument payloads over typically firm Polar snowfields. In 2008 - 12, we deployed Yeti to conduct autonomous ground-penetrating radar (GPR) surveys to detect hidden crevasses to help establish safe routes for overland resupply of research stations at South Pole, Antarctica, and Summit, Greenland. We also deployed Yeti with GPR at South Pole in 2011 to identify the locations of potentially hazardous buried buildings from the original 1950's-era station. Autonomous surveys remove personnel from safety risks posed during manual GPR surveys by undetected crevasses or buried buildings. Furthermore, autonomous surveys can yield higher quality and more comprehensive data than manual ones: Yeti's low ground pressure (20 kPa) allows it to cross thinly bridged crevasses or other voids without interrupting a survey, and well-defined survey grids allow repeated detection of buried voids to improve detection reliability and map their extent. To improve survey efficiency, we have automated the mapping of detected hazards, currently identified via post-survey manual review of the GPR data. Additionally, we are developing machine-learning algorithms to detect crevasses autonomously in real time, with reliability potentially higher than manual real-time detection. These algorithms will enable the rover to relay crevasse locations to a base station for near real-time mapping and decision-making. We deployed Cool Robot at Summit Station in 2005 to verify its mobility and power budget over Polar snowfields. Using solar power, this zero

  10. A Real-Time Rover Executive based On Model-Based Reactive Planning

    NASA Technical Reports Server (NTRS)

    Bias, M. Bernardine; Lemai, Solange; Muscettola, Nicola; Korsmeyer, David (Technical Monitor)

    2003-01-01

    This paper reports on the experimental verification of the ability of IDEA (Intelligent Distributed Execution Architecture) effectively operate at multiple levels of abstraction in an autonomous control system. The basic hypothesis of IDEA is that a large control system can be structured as a collection of interacting control agents, each organized around the same fundamental structure. Two IDEA agents, a system-level agent and a mission-level agent, are designed and implemented to autonomously control the K9 rover in real-time. The system is evaluated in the scenario where the rover must acquire images from a specified set of locations. The IDEA agents are responsible for enabling the rover to achieve its goals while monitoring the execution and safety of the rover and recovering from dangerous states when necessary. Experiments carried out both in simulation and on the physical rover, produced highly promising results.

  11. First geological mapping of 67P/Churyumov-Gerasimenko nucleus from Rosetta mission

    NASA Astrophysics Data System (ADS)

    Massironi, M.; Cremonese, G.; Giacomini, L.; Pajola, M.; Marchi, S.; Besse, S.; Thomas, N.; Vincent, J.-B.; Barucci, M. A.; Bertini, I.; Ferri, F.; Fornasier, S.; Lazzarin, M.; Magrin, S.; A'Hearn, M. F.; Marzari, F.; Snodgrass, C.; Naletto, G.; Barbieri, C.; Sierks, H.

    2014-04-01

    Up to date several cometary nuclei have been observed at different resolutions: 9P/Tempel 1 (up to 10 m/pixel), 19P/Borrelly (up to 47 m/pixel) 103P/Hartley 2 (up to 7m/pixel), 81/Wild2 (up to 14 m/pixel). These observations have revealed that geology and geomorphology of cometary nuclei are extremely variable but with several recurrent features such as spike/pitted and mottled terrains, flat floored craters, smooth and flat surfaces, mesas, ridges and troughs (e.g. [1], [2]). The great inhomogeneity of cometary surfaces is thought to be mostly due to different degree of repeated sublimation which leads to planation, slope retreats, development of lag deposits of variable thickness, focused ablation on pits, smoothening, widening and degradation of impact craters. Jet activity has been instead seen associated to rough areas and mounds on 103P/Hartley 2 comet [3], [4]. Finally layered terrains (recognized on 9P/Tempel 1 [5]), fractures, pits and faults can give important hints on the geological evolution of the body since they might reflect primordial aggregation (potentially defining boundaries of "cometesimals" sensu [6]) as well as later thermal and impacting evolution. All these geomorphological features are prone to modifications due to cometary activity, while the comet is approaching the Sun. The Rosetta mission, following the comet along its path towards the Sun will give the unique opportunity of realizing detailed geological maps with the aim of defining primary stratigraphic and structural relationships among geological bodies as well as monitoring surface changes. In particular on August 2nd, 2014, the Rosetta far approach trajectory towards 67P/C-G, will end up reaching a distance from the comet surface of about 720 km. At this time, the 67P/C-G nucleus will be imaged through 288 OSIRIS-Narrow Angle Camera (NAC) pixels covering its diameter with a spatial resolution of 13 m. From August 3rd, up to August 31st, i.e. during the Comet Approach Trajectory

  12. Mars Pathfinder Rover-Lewis Research Center Technology Experiments Program

    NASA Technical Reports Server (NTRS)

    Stevenson, Steven M.

    1997-01-01

    An overview of NASA's Mars Pathfinder Program is given and the development and role of three technology experiments from NASA's Lewis Research Center and carried on the Mars Pathfinder rover is described. Two recent missions to Mars were developed and managed by the Jet Propulsion Laboratory, and launched late last year: Mars Global Surveyor in November 1996 and Mars Pathfinder in December 1996. Mars Global Surveyor is an orbiter which will survey the planet with a number of different instruments, and will arrive in September 1997, and Mars Pathfinder which consists of a lander and a small rover, landing on Mars July 4, 1997. These are the first two missions of the Mars Exploration Program consisting of a ten year series of small robotic martian probes to be launched every 26 months. The Pathfinder rover will perform a number of technology and operational experiments which will provide the engineering information necessary to design and operate more complex, scientifically oriented surface missions involving roving vehicles and other machinery operating in the martian environment. Because of its expertise in space power systems and technologies, space mechanisms and tribology, Lewis Research Center was asked by the Jet Propulsion Laboratory, which is heading the Mars Pathfinder Program, to contribute three experiments concerning the effects of the martian environment on surface solar power systems and the abrasive qualities of the Mars surface material. In addition, rover static charging was investigated and a static discharge system of several fine Tungsten points was developed and fixed to the rover. These experiments and current findings are described herein.

  13. Rovers and Lasers: The Autonomous, Non-Destructive Search for Life in Lava Tubes

    NASA Astrophysics Data System (ADS)

    Ruiz, A.; Messenger, S.; Yang, J.; Kim, S.; Paudel, S.; Lyzenga, G.; Clark, C.; Storrie-Lombardi, M.

    2014-07-01

    We report here on work conducted at Harvey Mudd College by undergraduate students to build the optical science probes and the cooperative, autonomous rovers necessary to map and search for life in the radiation-shielded lava tubes of Mars.

  14. NASA mission planning for space nuclear power

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Schnyer, A. D.

    1991-01-01

    An evaluation is conducted of those aspects of the Space Exploration Initiative which stand to gain from the use of nuclear powerplants. Low-power, less than 10 kW(e) missions in question encompass the Comet Rendezvous Asteroid Flyby, the Cassini mission to Saturn, the Mars Network mission, a solar probe, the Mars Rover Sample Return mission, the Rosetta comet nucleus sample return mission, and an outer planets orbiter/probe. Reactor power yielding 10-100 kW(e) can be used by advanced rovers and initial lunar and Martian outposts, as well as Jovian and Saturnian grand tours and sample-return missions.

  15. Lunar Surface Operations with Dual Rovers

    NASA Technical Reports Server (NTRS)

    Horz, Friedrich; Lofgren, Gary E.; Eppler, Dean E.; Ming, Douglas

    2010-01-01

    Lunar Electric Rovers (LER) are currently being developed that are substantially more capable than the Apollo vehicle (LRN ,"). Unlike the LRV, the new LERs provide a pressurized cabin that serves as short-sleeve environment for the crew of two, including sleeping accommodations and other provisions that allow for long tern stays, possibly up to 60 days, on the hear surface, without the need to replenish consumables from some outside source, such as a lander or outpost. As a consequence, significantly larger regions may be explored in the future and traverse distances may be measured in a few hundred kilometers (1, 2). However, crew safety remains an overriding concern, and methods other than "walk back", the major operational constraint of all Apollo traverses, must be implemented to assure -at any time- the safe return of the crew to the lander or outpost. This then causes current Constellation plans to envision long-tern traverses to be conducted with 2 LERs exclusively, each carrying a crew of two: in case one rover fails, the other will rescue the stranded crew and return all 4 astronauts in a single LER to base camp. Recent Desert Research and Technology Studies (DRATS) analog field tests simulated a continuous 14 day traverse (3), covering some 135 km, and included a rescue operation that transferred the crew and diverse consumables from one LER to another these successful tests add substantial realism to the development of long-term, dual rover operations. The simultaneous utilization of 2 LERs is of course totally unlike Apollo and raises interesting issues regarding science productivity and mission operations, the thrust of this note.

  16. Planetary Surface Exploration Using Raman Spectroscopy on Rovers and Landers

    NASA Astrophysics Data System (ADS)

    Blacksberg, Jordana; Alerstam, E.; Maruyama, Y.; Charbon, E.; Rossman, G. R.

    2013-10-01

    Planetary surface exploration using laser induced breakdown spectroscopy (LIBS) to probe the composition of rocks has recently become a reality with the operation of the mast-mounted ChemCam instrument onboard the Curiosity rover. Following this success, Raman spectroscopy has steadily gained support as a means for using laser spectroscopy to identify not just composition but mineral phases, without the need for sample preparation. The RLS Raman Spectrometer is included on the payload for the ExoMars mission, and a Raman spectrometer has been included in an example strawman payload for NASA’s Mars 2020 mission. Raman spectroscopy has been identified by the community as a feasible means for pre-selection of samples on Mars for subsequent return to Earth. We present a next-generation instrument that builds on the widely used green-Raman technique to provide a means for performing Raman spectroscopy without the background noise that is often generated by fluorescence of minerals and organics. Microscopic Raman spectroscopy with a laser spot size smaller than the grains of interest can provide surface mapping of mineralogy while preserving morphology. A very small laser spot size 1 µm) is often necessary to identify minor phases that are often of greater interest than the matrix phases. In addition to the difficulties that can be posed by fine-grained material, fluorescence interference from the very same material is often problematic. This is particularly true for many of the minerals of interest that form in environments of aqueous alteration and can be highly fluorescent. We use time-resolved laser spectroscopy to eliminate fluorescence interference that can often make it difficult or impossible to obtain Raman spectra. We will discuss significant advances leading to the feasibility of a compact time-resolved spectrometer, including the development of a new solid-state detector capable of sub-ns time resolution. We will present results on planetary analog

  17. SEI power source alternatives for rovers and other multi-kWe distributed surface applications

    NASA Technical Reports Server (NTRS)

    Bents, David J.; Kohout, L. L.; Mckissock, Barbara I.; Rodriguez, C. D.; Withrow, C. A.; Colozza, A.; Hanlon, James C.; Schmitz, Paul C.

    1991-01-01

    To support the Space Exploration Initiative (SEI), a study was performed to investigate power system alternatives for the rover vehicles and servicers that were subsequently generated for each of these rovers and servicers, candidate power sources incorporating various power generation and energy storage technologies were identified. The technologies were those believed most appropriate to the SEI missions, and included solar, electrochemical, and isotope systems. The candidates were characterized with respect to system mass, deployed area, and volume. For each of the missions a preliminary selection was made. Results of this study depict the available power sources in light of mission requirements as they are currently defined.

  18. Tetrahedral Rovers: The Next Generation

    NASA Astrophysics Data System (ADS)

    Clark, Pamela E.; Curtis, S. A.; Rilee, M. L.; Wesenberg, R.; Cheug, C. Y.; Dorband, J.; Brown, G.; Sams, J.

    2006-09-01

    Addressable, reconfigurable rover architectures capable of real time transformation in size, shape, and gait will be essential for accessing those `hard to reach’ places where evidence for activity, geological or biological, might be hiding on planetary surfaces. We have designed and field tested simple tetrahedral rovers and are about to finish our third generation prototype, a human-sized 12tetrahedral rover capable of rolling, crawling, and climbing gaits. Our first prototype (1tet) walked a steep, slaggy slope at meteor crater. The performance of the new prototype will be evaluated in a variety of field environments using metrics which will allow comparison to wheeled rover performance in analogous terrains. Extreme mobililty is based on the capability for rapid reconfiguation of addressable struts interconnected at nodes (forming the space-filling tetrahedra) combined with rapid and low bandwidth position determination, communication and navigation/maneuvering systems. These latter capabilities are already under development elsewhere. We are designing a payload node which will allow lightweight sensors to remain upright for operation. Power generation requiring peak power for locomotion will be via a tetrahedrally deployable solar cell/rechargeable battery system. A variety of electrostatic dust control methods are being investigated. Basic gaits, developed for prevailing terrain conditions, are adjustable with movement across terrain approaching `real time’ for a human explorer.`Falling’ (except over a cliff) is not possible. Such a rover provides complimentary capabilities to a wheeled rover, which has the most efficient locomotion on terrain relatively smooth and flat on the scale of the wheels, and is thus capable of acting as an equipment base. The tetrahedral rover, acting as a scout, could provide reconnaissance, surveying, in situ sensing/sampling, and monitoring on what would be `slippery slopes’ for wheels.

  19. Next-Generation Tumbleweed Rover

    NASA Technical Reports Server (NTRS)

    Nosanov, Jeffrey P.

    2012-01-01

    A document describes a next-generation tumbleweed rover that involves a split balloon system that is made up of two half-spherical air bladders with a disc between them. This disc contains all the electronics and instruments. By deflating only the bottom balloon, the rover can sit, bringing the surface probe into contact with the ground. The bottom balloon has a channel passing through it, allowing the surface probe to reach the surface through the balloon. Once the sample has been gathered and analyzed, the rover can re-inflate the lower air bladder and continue rolling. The rover will use a small set of instruments and electronics situated at the center of its inflatable spherical hull. The current version is a large beach-ball-like construction, about 1.8 m in diameter and weighing roughly 15 kg. The rover comprises two major parts, an outer spherical hull (split in half at the central disc) and an inner, disc-shaped cylindrical section. The balloons are attached to the bottom and top of the disc. Inside the disc, there are temperature and pressure sensors to keep track of the inner and outer conditions of the rover. A system of pumps and valves is responsible for independently inflating and deflating the balloons as necessary. There are also accelerometers to record the movement, together with a GPS receiver. The data are then sent through a modem to a control station. This work builds upon the project Tumbleweed rover for planetary exploration, described in the Technical Support Package.

  20. Solar power for an Antarctic rover

    NASA Astrophysics Data System (ADS)

    Lever, J. H.; Ray, L. R.; Streeter, A.; Price, A.

    2006-03-01

    Sensors mounted on mobile robots could serve a variety of science missions in Antarctica. Although weather conditions can be harsh, Antarctic snowfields offer unique conditions to facilitate long-distance robot deployment: the absence of obstacles, firm snow with high albedo, and 24 h sunlight during the summer. We have developed a four-wheel-drive, solar-powered rover that capitalizes on these advantages. Analyses and field measurements confirm that solar power reflected from Antarctic snow contributes 30-40% of the power available to a robot consisting of a five-side box of solar panels. Mobility analyses indicate that the 80 kg rover can move at 0.8 m s-1 during clear sky conditions on firm snow into a 5 m s-1 headwind, twice the speed needed to achieve the design target of 500 km in 2 weeks. Local winter tests of the chassis demonstrated good grade-climbing ability and lower than predicted rolling resistance. Tests of the completed robot occurred in Greenland in 2005.

  1. Mastcam-Z: Designing a Geologic, Stereoscopic, and Multispectral Pair of Zoom Cameras for the NASA Mars 2020 Rover

    NASA Astrophysics Data System (ADS)

    Bell, J. F.; Maki, J. N.; Mehall, G. L.; Ravine, M. A.; Caplinger, M. A.; Mastcam-Z Team

    2016-10-01

    Mastcam-Z is a stereoscopic, multispectral imaging investigation selected for flight on the Mars 2020 rover mission. In this presentation we review our science goals and requirements and describe our CDR-level design and operational plans.

  2. Students Work Alongside Scientists to Test Mars Rover

    NASA Technical Reports Server (NTRS)

    Fuchs, M. P.; Green, T. J.; Levant, J. M. S.; Nunez, J. I.; Bowman, C. D.; Sherman, D. M.

    2003-01-01

    NASA's 2003-2004 Mars Exploration Rovers and associated Athena Science Payload will provide an exciting opportunity to get students and the public involved in Mars exploration. One outreach component, the Athena Student Interns Program, will directly engage high school students in scientific discovery on Mars by incorporating the students into the mission s science team. The Athena Student Interns Program, based on the successful LAPIS program, was prototyped during the FIDO rover field trials that took place in the Arizona desert and at the Jet Propulsion Laboratory (JPL) in August 2002 (http://mars.jpl.nasa.gov/mer/fido). Use of a participatory evaluation process allowed mid-course corrections to be made to the program and provided the model for mission-related outreach.

  3. Surface Telerobotics: Development and Testing of a Crew Controlled Planetary Rover System

    NASA Technical Reports Server (NTRS)

    Fong, Terry; Bualat, Maria; Allan, Mark B; Bouyssounouse, Xavier; Cohen, Tamar

    2013-01-01

    During Summer 2013, we conducted a series of tests to examine how astronauts in the In- ternational Space Station (ISS) can remotely operate a planetary rover. The tests simulated portions of a proposed mission, in which an astronaut in lunar orbit remotely operates a planetary rover to deploy a radio telescope on the lunar farside. In this paper, we present the design, implementation, and preliminary test results.

  4. Lithium-sulfur dioxide batteries on Mars rovers

    NASA Technical Reports Server (NTRS)

    Ratnakumar, Bugga V.; Smart, M. C.; Ewell, R. C.; Whitcanack, L. D.; Kindler, A.; Narayanan, S. R.; Surampudi, S.

    2004-01-01

    NASA's 2003 Mars Exploration Rover (MER) missions, Spirit and Opportunity, have been performing exciting surface exploration studies for the past six months. These two robotic missions were aimed at examining the presence of water and, thus, any evidence of life, and at understanding the geological conditions of Mars, These rovers have been successfully assisted by primary lithium-sulfur dioxide batteries during the critical entry, descent, and landing (EDL) maneuvers. These batteries were located on the petals of the lander, which, unlike in the Mars Pathfinder mission, was designed only to carry the rover. The selection of the lithium-sulfur dioxide battery system for this application was based on its high specific energy and high rate discharge capability, combined with low heat evolution, as dictated by this application. Lithium-sulfur dioxide batteries exhibit voltage delay, which tends to increase at low discharge temperatures, especially after extended storage at warm temperatures, In the absence of a depassivation circuit, as provided on earlier missions, e.g., Galileo, we were required to depassivate the lander primary batteries in a unique manner. The batteries were brought onto a shunt-regulated bus set at pre-selected discharge voltages, thus affecting depassivation during constant discharge voltages. Several ground tests were preformed, on cells, cell strings and battery assembly with five parallel strings, to identify optimum shunt voltages and durations of depassivation. We also examined the repassivation of lithium anodes, subsequent to depassivation. In this paper, we will describe these studies, in detail, as well as the depassivation of the lander flight batteries on both Spirit and Opportunity rover prior to the EDL sequence and their performance during landing on Mars.

  5. Mars exploration. Plan for two rovers squeezes NASA budget.

    PubMed

    Lawler, A; MacNeil, J

    2000-08-18

    NASA's decision last week to send two rovers to Mars in 2003 is being hailed by researchers as affirming the agency's commitment to exploring the Red Planet. But once the applause dies down, cash-strapped space science managers will be forced to make tough decisions about how to shoulder the added $200 million cost of a second mission, starting with $96 million that must come out of NASA's 2001 budget. PMID:10970217

  6. Mars exploration. Plan for two rovers squeezes NASA budget.

    PubMed

    Lawler, A; MacNeil, J

    2000-08-18

    NASA's decision last week to send two rovers to Mars in 2003 is being hailed by researchers as affirming the agency's commitment to exploring the Red Planet. But once the applause dies down, cash-strapped space science managers will be forced to make tough decisions about how to shoulder the added $200 million cost of a second mission, starting with $96 million that must come out of NASA's 2001 budget.

  7. A Risk-Constrained Multi-Stage Decision Making Approach to the Architectural Analysis of Mars Missions

    NASA Technical Reports Server (NTRS)

    Kuwata, Yoshiaki; Pavone, Marco; Balaram, J. (Bob)

    2012-01-01

    This paper presents a novel risk-constrained multi-stage decision making approach to the architectural analysis of planetary rover missions. In particular, focusing on a 2018 Mars rover concept, which was considered as part of a potential Mars Sample Return campaign, we model the entry, descent, and landing (EDL) phase and the rover traverse phase as four sequential decision-making stages. The problem is to find a sequence of divert and driving maneuvers so that the rover drive is minimized and the probability of a mission failure (e.g., due to a failed landing) is below a user specified bound. By solving this problem for several different values of the model parameters (e.g., divert authority), this approach enables rigorous, accurate and systematic trade-offs for the EDL system vs. the mobility system, and, more in general, cross-domain trade-offs for the different phases of a space mission. The overall optimization problem can be seen as a chance-constrained dynamic programming problem, with the additional complexity that 1) in some stages the disturbances do not have any probabilistic characterization, and 2) the state space is extremely large (i.e, hundreds of millions of states for trade-offs with high-resolution Martian maps). To this purpose, we solve the problem by performing an unconventional combination of average and minimax cost analysis and by leveraging high efficient computation tools from the image processing community. Preliminary trade-off results are presented.

  8. Mars Rover Proposed for 2018 to Seek Signs of Life and to Cache Samples for Potential Return to Earth

    NASA Astrophysics Data System (ADS)

    Pratt, L. M.

    2009-12-01

    The search for preserved evidence of life is the keystone concept for a new generation of Mars rover capable of exploring, sampling, and caching diverse suites of rocks from outcrops. The proposed mission is conceived to address two general objectives: conduct high-priority in situ science and make concrete steps towards the possible future return of samples to Earth. We propose the name Mars Astrobiology Explorer-Cacher (MAX-C) to best reflect the dual purpose of the proposed mission. The scientific objective of the proposed MAX-C would require rover access to a site with high preservation potential for physical and chemical biosignatures in order to evaluate paleo-environmental conditions, characterize the potential for preservation of biosignatures, and access multiple sequences of geological units in a search for evidence of past life and/or prebiotic chemistry. Samples addressing a variety of high-priority scientific objectives should be collected, documented, and packaged in a manner suitable for possible return to Earth by a future mission. Relevant experience from study of ancient terrestrial strata, martian meteorites, and from the Mars Exploration Rovers indicates that the proposed MAX-C’s interpretive capability should include: meter to submillimeter texture (optical imaging), mineral identification, major element content, and organic molecular composition. Analytical data should be obtained by direct investigation of outcrops and should not entail acquisition of rock chips or powders. We propose, therefore, a set of arm-mounted instruments that would be capable of interrogating a relatively smooth, abraded surface by creating co-registered 2-D maps of visual texture, mineralogy and geochemical properties. This approach is judged to have particularly high value for evaluating potential signs of ancient microbial life likely to be manifested at relatively small scale. Scientists could use the 2-D micro-mapping data to select an outstanding set of

  9. Rover's Wheel Churns Up Bright Martian Soil

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA's Mars Exploration Rover Spirit acquired this mosaic on the mission's 1,202nd Martian day, or sol (May 21, 2007), while investigating the area east of the elevated plateau known as 'Home Plate' in the 'Columbia Hills.' The mosaic shows an area of disturbed soil, nicknamed 'Gertrude Weise' by scientists, made by Spirit's stuck right front wheel.

    The trench exposed a patch of nearly pure silica, with the composition of opal. It could have come from either a hot-spring environment or an environment called a fumarole, in which acidic, volcanic steam rises through cracks. Either way, its formation involved water, and on Earth, both of these types of settings teem with microbial life.

    Spirit acquired this mosaic with the panoramic camera's 753-nanometer, 535-nanometer, and 432-nanometer filters. The view presented here is an approximately true-color rendering.

  10. Mars Exploration Rovers orbit determination filter strategy

    NASA Technical Reports Server (NTRS)

    McElrath, Tim; Watkins, Michael L.; Portock, Brian; Graat, Eric; Baird, Darren; Wawrzyniak, Geoffrey; Guinn, Joseph; Antreasian, Peter; Attiyah, Amy; Baalke, Ronald; Taber, William

    2004-01-01

    The successful delivery of the Mars Exploration Rover (MER) landers to well with in the boundaries of their surface target areas in January of 2004 was the culmination of years of orbit determination analysis. The process began with a careful consideration of the filter parameters used for pre-launch covariance studies, and continued with the refinement of the filter after launch based on operational experience. At the same time, tools were developed to run a plethora of variations around the nominal filter and anlyze the results in ways that had never been previously attempted for an interplanetary mission. In addition to the achieved sub-kilometer Mars B plane orbit determination knowledge, the filter strategy and process responded to unexpected error sources by both detecting them and proving robust. All these facets of the MER orbit determination filter strategy are described in this paper.

  11. Adaptive multisensor fusion for planetary exploration rovers

    NASA Technical Reports Server (NTRS)

    Collin, Marie-France; Kumar, Krishen; Pampagnin, Luc-Henri

    1992-01-01

    The purpose of the adaptive multisensor fusion system currently being designed at NASA/Johnson Space Center is to provide a robotic rover with assured vision and safe navigation capabilities during robotic missions on planetary surfaces. Our approach consists of using multispectral sensing devices ranging from visible to microwave wavelengths to fulfill the needs of perception for space robotics. Based on the illumination conditions and the sensors capabilities knowledge, the designed perception system should automatically select the best subset of sensors and their sensing modalities that will allow the perception and interpretation of the environment. Then, based on reflectance and emittance theoretical models, the sensor data are fused to extract the physical and geometrical surface properties of the environment surface slope, dielectric constant, temperature and roughness. The theoretical concepts, the design and first results of the multisensor perception system are presented.

  12. Lunar rover technology demonstrations with Dante and Ratler

    NASA Technical Reports Server (NTRS)

    Krotkov, Eric; Bares, John; Katragadda, Lalitesh; Simmons, Reid; Whittaker, Red

    1994-01-01

    Carnegie Mellon University has undertaken a research, development, and demonstration program to enable a robotic lunar mission. The two-year mission scenario is to traverse 1,000 kilometers, revisiting the historic sites of Apollo 11, Surveyor 5, Ranger 8, Apollo 17, and Lunokhod 2, and to return continuous live video amounting to more than 11 terabytes of data. Our vision blends autonomously safeguarded user driving with autonomous operation augmented with rich visual feedback, in order to enable facile interaction and exploration. The resulting experience is intended to attract mass participation and evoke strong public interest in lunar exploration. The encompassing program that forwards this work is the Lunar Rover Initiative (LRI). Two concrete technology demonstration projects currently advancing the Lunar Rover Initiative are: (1) The Dante/Mt. Spurr project, which, at the time of this writing, is sending the walking robot Dante to explore the Mt. Spurr volcano, in rough terrain that is a realistic planetary analogue. This project will generate insights into robot system robustness in harsh environments, and into remote operation by novices; and (2) The Lunar Rover Demonstration project, which is developing and evaluating key technologies for navigation, teleoperation, and user interfaces in terrestrial demonstrations. The project timetable calls for a number of terrestrial traverses incorporating teleoperation and autonomy including natural terrain this year, 10 km in 1995. and 100 km in 1996. This paper will discuss the goals of the Lunar Rover Initiative and then focus on the present state of the Dante/Mt. Spurr and Lunar Rover Demonstration projects.

  13. Powering Mars Rovers

    SciTech Connect

    Stewert, Robin

    2010-01-01

    INL scientists are doing their best to help solve our energy problems here on Earth. But did you know the lab is playing a key role in the exploration of other worlds, too? Meet INL Engineer Robin Stewart helps build and test generators that power NASA missions to Pluto and Mars. You can learn more about INL projects at http://www.facebook.com/idahonationallaboratory.

  14. Powering Mars Rovers

    ScienceCinema

    Stewert, Robin

    2016-07-12

    INL scientists are doing their best to help solve our energy problems here on Earth. But did you know the lab is playing a key role in the exploration of other worlds, too? Meet INL Engineer Robin Stewart helps build and test generators that power NASA missions to Pluto and Mars. You can learn more about INL projects at http://www.facebook.com/idahonationallaboratory.

  15. Swarm - The European Space Agency's Constellation Mission: Mapping Earth's Magnetic and Electric Fields

    NASA Astrophysics Data System (ADS)

    Floberghagen, Rune

    2016-07-01

    Launched on 22 November 2013, the three-satellite Swarm constellation is about halfway into its four-year nominal mission. Embarking identical, high accuracy and high spatial as well as temporal resolution instrumentation on all satellites, the mission has ambitious goals reaching from the deep Earth interior (the liquid outer core) all the way out to the solar-terrestrial interaction in the magnetosphere. One may safely state that the mission addresses a diverse range of science issues, and therefore acts as a true discoverer in many fields. Measurements of the magnetic field (magnitude and vector components), the electric field (through ion drift velocity, ion density, ion temperature, electron density, electron temperature and spacecraft potential), the gas density and horizontal winds as well as precise positioning are supported by a range of derived products for the magnetic field, geophysics, aeronomy and space physics communities. Indeed, Swarm is at the forefront of cross-cutting science issues that involve significant parts of the space and earth physics community. In recent data exploitation and science projects we have also seen a high number of coupling studies emerging. This contribution details the status and achievements of the mission in the field of magnetic field, electric field and geospace research. It furthermore discusses the the Agency's further plans, beyond the currently foreseen nominal end of mission in spring 2018. The role of Swarm for space weather research will also be discussed.

  16. Next Red Planet Rover: Mars Science Laboratory

    NASA Video Gallery

    Did Mars once have an environment capable of supporting life? NASA's next rover -- the Mars Science Laboratory, or Curiosity, will further unravel that mystery. The rover carries a whole laboratory...

  17. Rover Takes a Sunday Drive

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This animation, made with images from the Mars Exploration Rover Spirit hazard-identification camera, shows the rover's perspective of its first post-egress drive on Mars Sunday. Engineers drove Spirit approximately 3 meters (10 feet) toward its first rock target, a football-sized, mountain-shaped rock called Adirondack. The drive took approximately 30 minutes to complete, including time stopped to take images. Spirit first made a series of arcing turns totaling approximately 1 meter (3 feet). It then turned in place and made a series of short, straightforward movements totaling approximately 2 meters (6.5 feet).

  18. The Program of ``EXOMARS'' Mission Planetary Protection

    NASA Astrophysics Data System (ADS)

    Khamidullina, N.; Novikova, Nataliya; Deshevaya, Elena; Orlov, Oleg; Aleksashkin, Sergey; Kalashnikov, Viktor; Trofimov, Vladislav

    The main purpose of “Exomars” interplanetary mission is landing of Descent Module onto the Mars surface and investigation of Martian environment, including implementation of biological experiments on the search for possible life forms by Rover. According to COSPАR classification the Descent Module is related to category IVa and the Rover is related to category IVb. The report contains main provisions of the program on planetary protection of Mars which will be implemented in the process of the mission preparation.

  19. The Athena Mars Rover Science Payload

    NASA Technical Reports Server (NTRS)

    Squyes, S. W.; Arvidson, R.; Bell, J. F., III; Carr, M.; Christensen, P.; DesMarais, D.; Economou, T.; Gorevan, S.; Klingelhoefer, G.; Haskin, L.

    1998-01-01

    The Mars Surveyor missions that will be launched in April of 2001 will include a highly capable rover that is a successor to the Mars Pathfinder mission's Sojourner rover. The design goals for this rover are a total traverse distance of at least 10 km and a total lifetime of at least one Earth year. The rover's job will be to explore a site in Mars' ancient terrain, searching for materials likely to preserve a record of ancient martian water, climate, and possibly biology. The rover will collect rock and soil samples, and will store them for return to Earth by a subsequent Mars Surveyor mission in 2005. The Athena Mars rover science payload is the suite of scientific instruments and sample collection tools that will be used to perform this job. The specific science objectives that NASA has identified for the '01 rover payload are to: (1) Provide color stereo imaging of martian surface environments, and remotely-sensed point discrimination of mineralogical composition. (2) Determine the elemental and mineralogical composition of martian surface materials. (3) Determine the fine-scale textural properties of these materials. (4) Collect and store samples. The Athena payload has been designed to meet these objectives. The focus of the design is on field operations: making sure the rover can locate, characterize, and collect scientifically important samples in a dusty, dirty, real-world environment. The topography, morphology, and mineralogy of the scene around the rover will be revealed by Pancam/Mini-TES, an integrated imager and IR spectrometer. Pancam views the surface around the rover in stereo and color. It uses two high-resolution cameras that are identical in most respects to the rover's navigation cameras. The detectors are low-power, low-mass active pixel sensors with on-chip 12-bit analog-to-digital conversion. Filters provide 8-12 color spectral bandpasses over the spectral region from 0.4 to 1.1 micron Narrow-angle optics provide an angular resolution of 0

  20. The RIMFAX Ground Penetrating Radar on the Mars 2020 Rover.

    NASA Astrophysics Data System (ADS)

    Hamran, S. E.; Amundsen, H. E. F.; Carter, L. M.; Ghent, R. R.; Kohler, J.; Mellon, M. T.; Paige, D. A.

    2014-12-01

    The Radar Imager for Mars' Subsurface Exploration - RIMFAX is a Ground Penetrating Radar selected for NASA's Mars 2020 rover mission. RIMFAX will add a new dimension to the rover's toolset by providing the capability to image the shallow subsurface beneath the rover. The principal goals of the RIMFAX investigation are to image subsurface layering and structure, and to provide information regarding subsurface composition. Depending on materials, RIMFAX will image the subsurface stratigraphy to maximum depths of 10 to 500 meters, with vertical resolutions of 5 to 20 cm, with a horizontal sampling distance of 2 to 20 cm along the rover track. The resulting radar cross sections will provide important information on the geological context of surface outcrops as well as the geological and environmental history of the field area. The radar uses a Gated FMCW waveform and a single ultra wideband antenna that is used both for transmitting and receiving. The presentation will give an overview of the RIMFAX investigation, the radar system and show experimental results from a prototype radar.

  1. Current results from a Rover Science Data Analysis System

    NASA Technical Reports Server (NTRS)

    Castano, Rebecca; Judd, Michele; Estlin, Tara; Anderson, Robert C.; Gaines, Daniel; Castano, Andres; Bornstein, Ben; Stough, Tim; Wagstaff, Kiri

    2005-01-01

    In this paper, we provide a brief overview of the OASIS system, and then describe our recent successes in integrating with and using rover hardware. OASIS currently works in a closed loop fashion with onboard control software (e.g., navigation and vision) and has the ability to autonomously perform the following sequence of steps: analyze gray scale images to find rocks, extract the properties of the rocks, identify rocks of interest, retask the rover to take additional imagery of the identified target and then allow the rover to continue on its original mission. We also describe the early 2004 ground test validation of specific OASIS components on selected Mars Exploration Rover (MER) images. These components include the rockfinding algorithm, RockIT, and the rock size feature extraction code. Our team also developed the RockIT GUI, an interface that allows users to easily visualize and modify the rock-finder results. This interface has allowed us to conduct preliminary testing and validation of the rockfinder's performance.

  2. Large-Scale Mapping and Monitoring of Terrestrial Ecosystems with the NISAR Mission

    NASA Astrophysics Data System (ADS)

    Kellndorfer, J. M.; Dubayah, R.; Siqueira, P.; Saatchi, S. S.; Chapman, B. D.; Rosen, P. A.

    2014-12-01

    Set to launch at the early part of the next decade, the NI-SAR mission will measure globally the spatial distribution of vegetation and biomass to understand changes and trends in terrestrial forest and wetland ecosystems and their functioning as carbon sources and sinks, and characterize and quantify changes resulting from forest disturbance and recovery. Novel technology provides for unprecedented forest monitoring and ecosystem structure assessment with NI-SAR based on a 12-m reflector L-band scan-on-receive configuration (known as SweepSAR), which allows for a greater than 240 km swath and unprecedented global wall-to-wall coverage with a 12-day repeat cycle at pixel resolutions better than 25 m. Data from the mission will be made freely available through NASA's open data policy. Latency for basic data products such as co- and cross-pol reflectivity is expected to be less than several days. Through this capability, the mission will provide a crucial tool for forest carbon assessment and monitoring, important for treaties like REDD+, forest inundation monitoring, improved carbon stock estimates for low biomass regions, and monitoring of land-cover conversion to and from agricultural production. In this paper we summarize the capability of NI-SAR's observing strategy, anticipated approaches for monitoring forests, wetlands, and agricultural lands and their changes. We review the science background, science objectives and requirements, and data products stemming from the mission.

  3. Wheels and Suspension on Mars Science Laboratory Rover

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image from August 2008 shows NASA's Mars Science Laboratory rover in the course of its assembly, before additions of its arm, mast, laboratory instruments and other equipment.

    The six wheels are half a meter (20 inches) in diameter. The deck is 1.1 meter (3.6 feet) above the ground.

    The Mars Science Laboratory spacecraft is being assembled and tested for launch in 2011.

    This image was taken at NASA's Jet Propulsion Laboratory, Pasadena, Calif., which manages the Mars Science Laboratory Mission for NASA's Science Mission Directorate, Washington. JPL is a division of the California Institute of Technology.

  4. Next NASA Mars Rover Gets Its Wheels

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Wheels were first attached to NASA's Mars Science Laboratory rover in August 2008. The rover and its descent stage and cruise stage are being assembled and tested at NASA's Jet Propulsion Laboratory, Pasadena, Calif., for launch in 2009.

    The rover has a ground clearance of about 60 centimeters, or 2 feet. The wheel base is 2.2 meters, or 7 feet.

  5. Delivering Images for Mars Rover Science Planning

    NASA Technical Reports Server (NTRS)

    Edmonds, Karina

    2008-01-01

    A methodology has been developed for delivering, via the Internet, images transmitted to Earth from cameras on the Mars Explorer Rovers, the Phoenix Mars Lander, the Mars Science Laboratory, and the Mars Reconnaissance Orbiter spacecraft. The images in question are used by geographically dispersed scientists and engineers in planning Rover scientific activities and Rover maneuvers pertinent thereto.

  6. Autonomous Rover for Polar GPR Surveys

    NASA Astrophysics Data System (ADS)

    Ray, L.; Lever, J. H.; Courville, Z.; Walker, B.; Arcone, S. A.

    2015-12-01

    We deployed Yeti, an 80-kg, 4WD battery-powered rover to conduct ground-penetrating radar (GPR) surveys over crevasse-ridden ice sheets in Antarctica and Greenland. The rover navigated using GPS waypoint following and had 3 - 4 hr endurance at 5 km/hr while towing 60 - 70 kg of GPR equipment. Yeti's low ground pressure allowed it to cross thinly bridged crevasses without interrupting a survey. In Feb - Mar 2014, Yeti executed 23 autonomous GPR surveys covering 94 km of terrain on the ice transition to the main ice sheet in northwest Greenland. This was the first robotic effort directly to support manual crevasse surveys to map a safe route for vehicle travel, in this case a resupply traverse to Summit Station. Yeti towed a radar controller, 400 MHz antenna, GPS receiver and battery pack. Radar scan rate was 16 scans/m and pulse timing allowed good spatial resolution to about 20-m depth. The resulting data allowed us to map hundreds of subsurface crevasses and provide the results nightly to the manual survey team to compliment its efforts. We met our objectives: (a) to enhance operational efficiency of the concurrent manual surveys, and (b) to create a geo-referenced database of crevasse signatures to validate aerial- and satellite-based crevasse-mapping platforms. In Oct - Nov 2014, we deployed Yeti in Antarctica to conduct systematic GPR surveys across a crevasse-ridden section of the shear margin between the Ross and McMurdo ice shelves and thereby gain insight into its state of fracture and long-term stability. Yeti flawlessly executed a total of 613 km of autonomous GPR surveys at temperatures as low as - 33ºC. The rover towed a a radar controlling a 400 MHz and a 200 MHz antenna, the latter added to profile 160 m through the ice sheet. The main survey grid covered 5.7 km x 5.0 km, with survey lines at 50-m spacing oriented west-east across the Shear Zone (575 km total length). Yeti's tracks normally deviated only 1 - 2 m from a straight line between the two

  7. Enhancing Lunar Exploration with a Radioisotope Powered Dual Mode Lunar Rover

    NASA Astrophysics Data System (ADS)

    Elliott, J. O.; Coste, K.; Schriener, T. M.

    2005-12-01

    The emerging plans for lunar exploration and establishment of a permanent human presence on the moon will require development of numerous infrastructure elements to facilitate their implementation. One such element, which manifestly demonstrated its worth in the Apollo missions, is the lunar roving vehicle. While the original Apollo lunar rovers were designed for single mission use, the intention of proceeding with a long-term sustained lunar exploration campaign gives new impetus to consideration of a lunar roving vehicle with extended capabilities, including the ability to support multiple sequential human missions as well as teleoperated exploration activities between human visits. This paper presents a preliminary design concept for such a vehicle, powered by radioisotope power systems which would give the rover greatly extended capabilities and the versatility to operate at any latitude over the entire lunar day/night cycle. The rover would be used for human transportation during astronaut sorties, and be reconfigured for teleoperation by earth-based controllers during the times between crewed landings. In teleoperated mode the rover could be equipped with a range of scientific instrument suites for exploration and detailed assessment of the lunar environment on a regional scale. With modular payload attachments, the rover could be modified between missions to carry out a variety of scientific and utilitarian tasks, including regolith reconfiguration in support of establishment of a permanent human base.

  8. Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 2. Opportunity

    NASA Astrophysics Data System (ADS)

    Johnson, Jeffrey R.; Grundy, William M.; Lemmon, Mark T.; Bell, James F.; Johnson, Miles J.; Deen, Robert; Arvidson, R. E.; Farrand, W. H.; Guinness, E.; Hayes, Alexander G.; Herkenhoff, K. E.; Seelos, F.; Soderblom, J.; Squyres, S.

    2006-12-01

    The Panoramic Camera (Pancam) on the Mars Exploration Rover Opportunity acquired visible/near-infrared multispectral observations of soils and rocks under varying viewing and illumination geometries that were modeled using radiative transfer theory to improve interpretations of the microphysical and surface scattering nature of materials in Meridiani Planum. Nearly 25,000 individual measurements were collected of rock and soil units identified by their color and morphologic properties over a wide range of phase angles (0-150°) at Eagle crater, in the surrounding plains, in Endurance crater, and in the plains between Endurance and Erebus craters through Sol 492. Corrections for diffuse skylight incorporated sky models based on observations of atmospheric opacity throughout the mission. Disparity maps created from Pancam stereo images allowed inclusion of local facet orientation estimates. Outcrop rocks overall exhibited the highest single scattering albedos (<=0.9 at 753 nm), and most spherule-rich soils exhibited the lowest (<=0.6 at 753 nm). Macroscopic roughness among outcrop rocks varied but was typically larger than spherule-rich soils. Data sets with sufficient phase angle coverage (resulting in well-constrained Hapke parameters) suggested that models using single-term and two-term Henyey-Greenstein phase functions exhibit a dominantly broad backscattering trend for most undisturbed spherule-rich soils. Rover tracks and other compressed soils exhibited forward scattering, while outcrop rocks were intermediate in their scattering behaviors. Some phase functions exhibited wavelength-dependent trends that may result from variations in thin deposits of airfall dust that occurred during the mission.

  9. Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 2. Opportunity

    USGS Publications Warehouse

    Johnson, J. R.; Grundy, W.M.; Lemmon, M.T.; Bell, J.F.; Johnson, M.J.; Deen, R.; Arvidson, R. E.; Farrand, W. H.; Guinness, E.; Hayes, A.G.; Herkenhoff, K. E.; Seelos, F.; Soderblom, J.; Squyres, S.

    2006-01-01

    The Panoramic Camera (Pancam) on the Mars Exploration Rover Opportunity acquired visible/near-infrared multispectral observations of soils and rocks under varying viewing and illumination geometries that were modeled using radiative transfer theory to improve interpretations of the microphysical and surface scattering nature of materials in Meridiani Planum. Nearly 25,000 individual measurements were collected of rock and soil units identified by their color and morphologic properties over a wide range of phase angles (0-150??) at Eagle crater, in the surrounding plains, in Endurance crater, and in the plains between Endurance and Erebus craters through Sol 492. Corrections for diffuse skylight incorporated sky models based on observations of atmospheric opacity throughout the mission. Disparity maps created from Pancam stereo images allowed inclusion of local facet orientation estimates. Outcrop rocks overall exhibited the highest single scattering albedos (???0.9 at 753 nm), and most spherule-rich soils exhibited the lowest (???0.6 at 753 nm). Macroscopic roughness among outcrop rocks varied but was typically larger than spherule-rich soils. Data sets with sufficient phase angle coverage (resulting in well-constrained Hapke parameters) suggested that models using single-term and two-term Henyey-Greenstein phase functions exhibit a dominantly broad backscattering trend for most undisturbed spherule-rich soils. Rover tracks and other compressed soils exhibited forward scattering, while outcrop rocks were intermediate in their scattering behaviors. Some phase functions exhibited wavelength-dependent trends that may result from variations in thin deposits of airfall dust that occurred during the mission. Copyright 2006 by the American Geophysical Union.

  10. Mission Implementation Constraints on Planetary Muon Radiography

    NASA Technical Reports Server (NTRS)

    Jones, Cathleen E.; Kedar, Sharon; Naudet, Charles; Webb, Frank

    2011-01-01

    Cost: Use heritage hardware, especially use a tested landing system to reduce cost (Phoenix or MSL EDL stage). The sky crane technology delivers higher mass to the surface and enables reaching targets at higher elevation, but at a higher mission cost. Rover vs. Stationary Lander: Rover-mounted instrument enables tomography, but the increased weight of the rover reduces the allowable payload weight. Mass is the critical design constraint for an instrument for a planetary mission. Many factors that are minor factors or do not enter into design considerations for terrestrial operation are important for a planetary application. (Landing site, diurnal temperature variation, instrument portability, shock/vibration)

  11. Robotic Arm of Rover 1

    NASA Technical Reports Server (NTRS)

    2003-01-01

    JPL engineers examine the robotic arm of Mars Exploration Rover 1. The arm is modeled after a human arm, complete with joints, and holds four devices on its end, the Rock Abrasion Tool which can grind into Martian rocks, a microscopic imager, and two spectrometers for elemental and iron-mineral identification.

  12. A mission concept for near term Lunar exploration

    SciTech Connect

    Purvis, J.W.

    1993-02-01

    A robotic precursor mission to the Lunar surface is proposed. The objective of the mission is to place six to ten 15kg micro-rovers on the planet to investigate equipment left behind during the Apollo missions and to perform other science and exploration duties. The micro-rovers are teleoperated from Earth. An equipment on the rovers is existing technology from NASA, DOE, SDIO, DoD, and industry. The mission is designed to involve several NASA centers, the National Laboratories, multiple universities and the private sector. A major long-term goal which is addressed is the educational outreach aspect of space exploration.

  13. A mission concept for near term Lunar exploration

    SciTech Connect

    Purvis, J.W.

    1993-01-01

    A robotic precursor mission to the Lunar surface is proposed. The objective of the mission is to place six to ten 15kg micro-rovers on the planet to investigate equipment left behind during the Apollo missions and to perform other science and exploration duties. The micro-rovers are teleoperated from Earth. An equipment on the rovers is existing technology from NASA, DOE, SDIO, DoD, and industry. The mission is designed to involve several NASA centers, the National Laboratories, multiple universities and the private sector. A major long-term goal which is addressed is the educational outreach aspect of space exploration.

  14. Precise Pointing for Radio Science Occultations and Radar Mapping During the Cassini Mission at Saturn

    NASA Technical Reports Server (NTRS)

    Burk, Thomas A.

    2015-01-01

    This paper discusses the implementation challenges and lessons learned from radar and radio science pointing observations during the Cassini mission at Saturn. Implementation of the precise desired pointing reveals key issues in the ground system, the flight system, and the pointing paradigm itself. To achieve accurate pointing on some observations, specific workarounds had to be implemented and folded into the sequence development process. Underlying Cassini's pointing system is a remarkable construct known as Inertial Vector Propagation.

  15. Advanced Radioisotope Power System Enabled Titan Rover Concept with Inflatable Wheels

    NASA Astrophysics Data System (ADS)

    Balint, Tibor S.; Schriener, Timothy M.; Shirley, James H.

    2006-01-01

    The Decadal Survey identified Titan as one of the top priority science destinations in the large moons category, while NASA's proposed Design Reference Mission Set ranked a Titan in-situ explorer second, after a recommended Europa Geophysical Explorer mission. This paper discusses a Titan rover concept, enabled by a single advanced Radioisotope Power System that could provide about 110 We (BOL). The concept targets the smaller Flagship or potentially the New Frontiers mission class. This MSL class rover would traverse on four 1.5 m diameter inflatable wheels during its 3 years mission duration and would use as much design and flight heritage as possible to reduce mission cost. Direct to Earth communication would remove the need for a relay orbiter. Details on the strawman instrument payload, and rover subsystems are given for this science driven mission concept. In addition, power system trades between Advanced RTG, TPV, and Advanced-Stirling and Brayton RPSs are outlined. While many possible approaches exist for Titan in-situ exploration, the Titan rover concept presented here could provide a scientifically interesting and programmatically affordable solution.

  16. Spirit Ascent Movie, Rover's-Eye View

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A movie assembled from frames taken by the rear hazard-identification camera on NASA's Mars Exploration Rover Spirit shows the last few days of the rover's ascent to the crest of 'Husband Hill' inside Mars' Gusev Crater. The rover was going in reverse. Rover planners often drive Spirit backwards to keep wheel lubrication well distributed. The images in this clip span a timeframe from Spirit's 573rd martian day, or sol (Aug, 13, 2005) to sol 582 (Aug. 22, 2005), the day after the rover reached the crest. During that period, Spirit drove 136 meters (446 feet),

  17. The mass of massive rover software

    NASA Technical Reports Server (NTRS)

    Miller, David P.

    1993-01-01

    A planetary rover, like a spacecraft, must be fully self contained. Once launched, a rover can only receive information from its designers, and if solar powered, power from the Sun. As the distance from Earth increases, and the demands for power on the rover increase, there is a serious tradeoff between communication and computation. Both of these subsystems are very power hungry, and both can be the major driver of the rover's power subsystem, and therefore the minimum mass and size of the rover. This situation and software techniques that can be used to reduce the requirements on both communication and computation, allowing the overall robot mass to be greatly reduced, are discussed.

  18. Design of a nuclear-powered rover for lunar or Martian exploration

    SciTech Connect

    Trellue, H.R.; Trautner, R.; Houts, M.G.; Poston, D.I.; Giovig, K.; Baca, J.A.; Lipinski, R.J.

    1998-08-01

    To perform more advanced studies on the surface of the moon or Mars, a rover must provide long-term power ({ge}10 kW{sub e}). However, a majority of rovers in the past have been designed for much lower power levels (i.e., on the order of watts) or for shorter operating periods using stored power. Thus, more advanced systems are required to generate additional power. One possible design for a more highly powered rover involves using a nuclear reactor to supply energy to the rover and material from the surface of the moon or Mars to shield the electronics from high neutron fluxes and gamma doses. Typically, one of the main disadvantages of using a nuclear-powered rover is that the required shielding would be heavy and expensive to include as part of the payload on a mission. Obtaining most of the required shielding material from the surface of the moon or Mars would reduce the cost of the mission and still provide the necessary power. This paper describes the basic design of a rover that uses the Heatpipe Power System (HPS) as an energy source, including the shielding and reactor control issues associated with the design. It also discusses briefly the amount of power that can be produced by other power methods (solar/photovoltaic cells, radioisotope power supplies, dynamic radioisotope power systems, and the production of methane or acetylene fuel from the surface of Mars) as a comparison to the HPS.

  19. Robotic Lunar Rover Technologies and SEI Supporting Technologies at Sandia National Laboratories

    NASA Technical Reports Server (NTRS)

    Klarer, Paul R.

    1992-01-01

    Existing robotic rover technologies at Sandia National Laboratories (SNL) can be applied toward the realization of a robotic lunar rover mission in the near term. Recent activities at the SNL-RVR have demonstrated the utility of existing rover technologies for performing remote field geology tasks similar to those envisioned on a robotic lunar rover mission. Specific technologies demonstrated include low-data-rate teleoperation, multivehicle control, remote site and sample inspection, standard bandwidth stereo vision, and autonomous path following based on both internal dead reckoning and an external position location update system. These activities serve to support the use of robotic rovers for an early return to the lunar surface by demonstrating capabilities that are attainable with off-the-shelf technology and existing control techniques. The breadth of technical activities at SNL provides many supporting technology areas for robotic rover development. These range from core competency areas and microsensor fabrication facilities, to actual space qualification of flight components that are designed and fabricated in-house.

  20. Geological Mapping of the Ac-H-13 Urvara Quadrangle of Ceres from NASA's Dawn Mission

    NASA Astrophysics Data System (ADS)

    Sizemore, Hanna; Williams, David; Platz, Thomas; Mest, Scott; Yingst, Aileen; Crown, David; O'Brien, David; Buczkowski, Debra; Schenk, Paul; Scully, Jennifer; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Nathues, Andreas; De Sanctis, Maria Cristina; Russell, Christopher; Raymond, Carol

    2016-04-01

    The Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that done for Vesta [1,2], including production of a Survey- and High Altitude Mapping Orbit (HAMO)-based global map, and a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. In this abstract we discuss the geologic evolution of the Ac-H-13 Urvara Quadrangle. At the time of this writing LAMO images (35 m/pixel) are just becoming available. Thus, our geologic maps are based on HAMO images (140 m/pixel) and Survey (400 m/pixel) digital ter-rain models (for topographic information). Dawn Framing Camera (FC) color images are also used to provide context for map unit identification. The maps to be presented as posters will be updated from analyses of LAMO images. The Urvara Quadrangle is dominated by the 170-km diameter impact basin Urvara (46.4°S, 248.6°E) and includes cratered terrain to the west. Named features include the impact craters Meanderi (40.9°S, 193.7°E, 103 km diameter), Sekhet (66.4°S, 254.9°E, 41 km diameter), and Fluusa (31.5°S, 277.9°E), as well as the crater chains Gerber Catena (38.1°S, 214.8°E) and Sam-hain Catena (19.6°S, 210.3°E). Based on preliminary geologic mapping [3,4], we interpret the two prominent catenae as pit craters associated with large scale tectonism rather than secondary impacts. We interpret two large curvilinear depressions near the eastern quadrangle boundary as secondary crater chains resulting from the Urvara impact. Textural and morphological asymme-tries in crater materials within the quadrangle indicate heterogeneities in subsurface composition and volatile content. Features on the Urvara basin floor are consistent with impact fluidization of target materials; post impact extrusion of volatile rich material may have also played a minor role. References: [1] Williams D.A. et al. (2014) Icarus, 244, 1-12. [2] Yingst R.A. et al. (2014) PSS, 103, 2-23. [3] Sizemore et al. (2015) GSA Abstracts with Program

  1. Geologic Mapping of the Ac-H-1 quadrangle of Ceres from NASA's Dawn mission

    NASA Astrophysics Data System (ADS)

    Rüsch, Ottaviano; McFadden, Lucy A.; Hiesinger, Harald; Scully, Jennifer; Kneissl, Thomas; Hughson, Kynan; Williams, David A.; Roatsch, Thomas; Platz, Thomas; Preusker, Frank; Schmedemann, Nico; Marchi, Simone; Jaumann, Ralf; Nathues, Andreas; Raymond, Carol A.; Russell, Christopher T.

    2016-04-01

    The Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that done for Vesta (1, 2), including production of a Survey- and High Altitude Mapping Orbit (HAMO)-based global map, and a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. In this abstract, we present the geologic map and geologic evolution of the Ac-H-1 Asari Quadrangle. At the time of writing, LAMO images (35 m/pixel) are just becoming available. Thus, our geologic maps are based on HAMO images (140 m/pixel) and HAMO and Survey (400 m/pixel) digital terrain models (for topographic information) (3). Dawn Framing Camera (FC) color images are also used to provide context for map unit identification. The maps to be presented as posters will be updated from analyses of LAMO images. Ac-H-1 quadrangle covers the North Pole area: 65°N-90°N. Key characteristics of the study area are: (i) a high density of impact craters and (ii) only moderate topographic variations across the quadrangle. We measured a crater density of 9.8E-04 km-2 for crater diameters >10 km, the highest on Ceres measured so far. Topographic lows, reaching -4 km, correspond to the floors of impact craters with diameters up to 64 km. A few isolated topographic highs (plateaus), reaching ~5 km in altitude relative to the ellipsoid are present. Their irregular shape is often sculpted by impacts. A peculiar topographic rise is represented by Ysolo Mons: a ~5 km high and ~20 km wide mountain. No downslope striations are preserved on the Mons flanks, indicating an older surface relative to Ahuna Mons, a similar but morphologically fresh appearing mountain at the equator (quadrangle Ac-H-10, (4)). Several impact craters show central peaks and/or mass wasting deposits on their floor. Crater rims often display terraces. These morphologies show varying degrees of degradation. Uncommon crater morphologies are a smooth crater floor (crater located at 79°N-170°E) and a large mass wasting landform inside

  2. Applying FastSLAM to Articulated Rovers

    NASA Astrophysics Data System (ADS)

    Hewitt, Robert Alexander

    This thesis presents the navigation algorithms designed for use on Kapvik, a 30 kg planetary micro-rover built for the Canadian Space Agency; the simulations used to test the algorithm; and novel techniques for terrain classification using Kapvik's LIDAR (Light Detection And Ranging) sensor. Kapvik implements a six-wheeled, skid-steered, rocker-bogie mobility system. This warrants a more complicated kinematic model for navigation than a typical 4-wheel differential drive system. The design of a 3D navigation algorithm is presented that includes nonlinear Kalman filtering and Simultaneous Localization and Mapping (SLAM). A neural network for terrain classification is used to improve navigation performance. Simulation is used to train the neural network and validate the navigation algorithms. Real world tests of the terrain classification algorithm validate the use of simulation for training and the improvement to SLAM through the reduction of extraneous LIDAR measurements in each scan.

  3. Pathfinder Lander Rover Recharge System, and MARCO POLO Controls and ACME Regolith Feed System Controls and Integration

    NASA Technical Reports Server (NTRS)

    Tran, Sarah Diem

    2015-01-01

    This project stems from the Exploration, Research, and Technology Directorate (UB) Projects Division, and one of their main initiatives is the "Journey to Mars". Landing on the surface of Mars which is millions of miles away is an incredibly large challenge. The terrain is covered in boulders, deep canyons, volcanic mountains, and spotted with sand dunes. The robotic lander is a kind of spacecraft with multiple purposes. One purpose is to be the protective shell for the Martian rover and absorb the impact from the landing forces; another purpose is to be a place where the rovers can come back to, actively communicate with, and recharge their batteries from. Rovers have been instrumental to the Journey to Mars initiative. They have been performing key research on the terrain of the red planet, trying to unlock the mysteries of the land for over a decade. The rovers that will need charging will not all have the same kind of internal battery either. RASSOR batteries may differ from the PbAC batteries inside Red Rover's chassis. NASA has invested heavily in the exploration of the surface of Mars. A driving force behind further exploration is the need for a more efficient operation of Martian rovers. One way is to reduce the weight as much as possible to reduce power consumption given the same mission parameters. In order to reduce the mass of the rovers, power generation, communication, and sample analysis systems currently onboard Martian rovers can be moved to a stationary lander deck. Positioning these systems from the rover to the Lander deck allows a taskforce of smaller, lighter rovers to perform the same tasks currently performed by or planned for larger rovers. A major task in transferring these systems to a stationary lander deck is ensuring that power can be transferred to the rovers.

  4. Mars Rover Sample Return aerocapture configuration design and packaging constraints

    NASA Technical Reports Server (NTRS)

    Lawson, Shelby J.

    1989-01-01

    This paper discusses the aerodynamics requirements, volume and mass constraints that lead to a biconic aeroshell vehicle design that protects the Mars Rover Sample Return (MRSR) mission elements from launch to Mars landing. The aerodynamic requirements for Mars aerocapture and entry and packaging constraints for the MRSR elements result in a symmetric biconic aeroshell that develops a L/D of 1.0 at 27.0 deg angle of attack. A significant problem in the study is obtaining a cg that provides adequate aerodynamic stability and performance within the mission imposed constraints. Packaging methods that relieve the cg problems include forward placement of aeroshell propellant tanks and incorporating aeroshell structure as lander structure. The MRSR missions developed during the pre-phase A study are discussed with dimensional and mass data included. Further study is needed for some missions to minimize MRSR element volume so that launch mass constraints can be met.

  5. High Gain Antenna Gimbal for the 2003-2004 Mars Exploration Rover Program

    NASA Technical Reports Server (NTRS)

    Sokol, Jeff; Krishnan, Satish; Ayari, Laoucet

    2004-01-01

    The High Gain Antenna Assemblies built for the 2003-2004 Mars Exploration Rover (MER) missions provide the primary communication link for the Rovers once they arrive on Mars. The High Gain Antenna Gimbal (HGAG) portion of the assembly is a two-axis gimbal that provides the structural support, pointing, and tracking for the High Gain Antenna (HGA). The MER mission requirements provided some unique design challenges for the HGAG. This paper describes all the major subsystems of the HGAG that were developed to meet these challenges, and the requirements that drove their design.

  6. Design and Performance of the MER (Mars Exploration Rovers) Solar Arrays

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Ewell, Richard C.; Hoskin, Julie J.

    2005-01-01

    The Mars Exploration Rovers (MER) program posed a significant engineering and technology challenge. Now that the Rovers have operated beyond their original design life of three months by nearly a factor of four it is clear that the challenge was met and far exceeded. A key to the success of MER has been the enhanced power provided by the cruise and Rover solar arrays. Benefiting from a nearly 50% improvement in cell efficiency compared to the single junction GaAs cells used on Pathfinder, the MER designs were subject to many constraints both in design and in operation. These constraints included limited available panel area, changing illumination levels and temperatures, and variable shadowing, atmospheric conditions and dust accumulation for the rovers. This paper will discuss those constraints and their impact on the design. In addition, flight data will be provided to assess the performance achieved during the mission.

  7. Mars Exploration Rovers 2004-2013: Evolving Operational Tactics Driven by Aging Robotic Systems

    NASA Technical Reports Server (NTRS)

    Townsend, Julie; Seibert, Michael; Bellutta, Paolo; Ferguson, Eric; Forgette, Daniel; Herman, Jennifer; Justice, Heather; Keuneke, Matthew; Sosland, Rebekah; Stroupe, Ashley; Wright, John

    2014-01-01

    Over the course of more than 10 years of continuous operations on the Martian surface, the operations team for the Mars Exploration Rovers has encountered and overcome many challenges. The twin rovers, Spirit and Opportunity, designed for a Martian surface mission of three months in duration, far outlived their life expectancy. Spirit explored for six years and Opportunity still operates and, in January 2014, celebrated the 10th anniversary of her landing. As with any machine that far outlives its design life, each rover has experienced a series of failures and degradations attributable to age, use, and environmental exposure. This paper reviews the failures and degradations experienced by the two rovers and the measures taken by the operations team to correct, mitigate, or surmount them to enable continued exploration and discovery.

  8. Operation and performance of the mars exploration rover imaging system on the martian surface

    USGS Publications Warehouse

    Maki, J.N.; Litwin, T.; Schwochert, M.; Herkenhoff, K.

    2005-01-01

    The Imaging System on the Mars Exploration Rovers has successfully operated on the surface of Mars for over one Earth year. The acquisition of hundreds of panoramas and tens of thousands of stereo pairs has enabled the rovers to explore Mars at a level of detail unprecedented in the history of space exploration. In addition to providing scientific value, the images also play a key role in the daily tactical operation of the rovers. The mobile nature of the MER surface mission requires extensive use of the imaging system for traverse planning, rover localization, remote sensing instrument targeting, and robotic arm placement. Each of these activity types requires a different set of data compression rates, surface coverage, and image acquisition strategies. An overview of the surface imaging activities is provided, along with a summary of the image data acquired to date. ?? 2005 IEEE.

  9. Small rover exploration capabilities

    NASA Astrophysics Data System (ADS)

    Salotti, Jean-Marc; Laithier, Corentin; Machut, Benoit; Marie, Aurélien; Bruneau, Audrey; Grömer, Gernot; Foing, Bernard H.

    2015-05-01

    For a human mission to the Moon or Mars, an important question is to determine the best strategy for the choice of surface vehicles. Recent studies suggest that the first missions to Mars will be strongly constrained and that only small unpressurized vehicles will be available. We analyze the exploration capabilities and limitations of small surface vehicles from the user perspective. Following the “human centered design” paradigm, the team focused on human systems interactions and conducted the following experiments: - Another member of our team participated in the ILEWG EuroMoonMars 2013 simulation at the Mars Desert Research Station in Utah during the same period of time. Although the possible traverses were restricted, a similar study with analog space suits and quads has been carried out. - Other experiments have been conducted in an old rock quarry close to Bordeaux, France. An expert in the use of quads for all types of terrains performed a demonstration and helped us to characterize the difficulties, the risks and advantages and drawbacks of different vehicles and tools. The vehicles that will be used on the surface of Mars have not been defined yet. Nevertheless, the results of our project already show that using a light and unpressurized vehicle (in the order of 150 kg) for the mobility on the Martian surface can be a true advantage. Part of the study was dedicated to the search for appropriate tools that could be used to make

  10. Using Wind Driven Tumbleweed Rovers to Explore Martian Gully Features

    NASA Technical Reports Server (NTRS)

    Antol, Jeffrey; Woodard, Stanley E.; Hajos, Gregory A.; Heldmann, Jennifer L.; Taylor, Bryant D.

    2004-01-01

    Gully features have been observed on the slopes of numerous Martian crater walls, valleys, pits, and graben. Several mechanisms for gully formation have been proposed, including: liquid water aquifers (shallow and deep), melting ground ice, snow melt, CO2 aquifers, and dry debris flow. Remote sensing observations indicate that the most likely erosional agent is liquid water. Debate concerns the source of this water. Observations favor a liquid water aquifer as the primary candidate. The current strategy in the search for life on Mars is to "follow the water." A new vehicle known as a Tumbleweed rover may be able to conduct in-situ investigations in the gullies, which are currently inaccessible by conventional rovers. Deriving mobility through use of the surface winds on Mars, Tumbleweed rovers would be lightweight and relatively inexpensive thus allowing multiple rovers to be deployed in a single mission to survey areas for future exploration. NASA Langley Research Center (LaRC) is developing deployable structure Tumbleweed concepts. An extremely lightweight measurement acquisition system and sensors are proposed for the Tumbleweed rover that greatly increases the number of measurements performed while having negligible mass increase. The key to this method is the use of magnetic field response sensors designed as passive inductor-capacitor circuits that produce magnetic field responses whose attributes correspond to values of physical properties for which the sensors measure. The sensors do not need a physical connection to a power source or to data acquisition equipment resulting in additional weight reduction. Many of the sensors and interrogating antennae can be directly placed on the Tumbleweed using film deposition methods such as photolithography thus providing further weight reduction. Concepts are presented herein for methods to measure subsurface water, subsurface metals, planetary winds and environmental gases.

  11. Using Wind Driven Tumbleweed Rovers to Explore Martian Gully Features

    NASA Technical Reports Server (NTRS)

    Antol, Jeffrey; Woodard, Stanley E.; Hajos, Gregory A.; Heldmann, Jennifer L.; Taylor, Bryant D.

    2005-01-01

    Gully features have been observed on the slopes of numerous Martian crater walls, valleys, pits, and graben. Several mechanisms for gully formation have been proposed, including: liquid water aquifers (shallow and deep), melting ground ice, snow melt, CO2 aquifers, and dry debris flow. Remote sensing observations indicate that the most likely erosional agent is liquid water. Debate concerns the source of this water. Observations favor a liquid water aquifer as the primary candidate. The current strategy in the search for life on Mars is to "follow the water." A new vehicle known as a Tumbleweed rover may be able to conduct in-situ investigations in the gullies, which are currently inaccessible by conventional rovers. Deriving mobility through use of the surface winds on Mars, Tumbleweed rovers would be lightweight and relatively inexpensive thus allowing multiple rovers to be deployed in a single mission to survey areas for future exploration. NASA Langley Research Center (LaRC) is developing deployable structure Tumbleweed concepts. An extremely lightweight measurement acquisition system and sensors are proposed for the Tumbleweed rover that greatly increases the number of measurements performed while having negligible mass increase. The key to this method is the use of magnetic field response sensors designed as passive inductor-capacitor circuits that produce magnetic field responses whose attributes correspond to values of physical properties for which the sensors measure. The sensors do not need a physical connection to a power source or to data acquisition equipment resulting in additional weight reduction. Many of the sensors and interrogating antennae can be directly placed on the Tumbleweed using film deposition methods such as photolithography thus providing further weight reduction. Concepts are presented herein for methods to measure subsurface water, subsurface metals, planetary winds and environmental gases.

  12. Geological Mapping of the Ac-H-12 Toharu Quadrangle of Ceres from NASA Dawn Mission

    NASA Astrophysics Data System (ADS)

    Mest, Scott; Williams, David; Crown, David; Yingst, Aileen; Buczkowski, Debra; Scully, Jennifer; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Nathues, Andres; Hoffmann, Martin; Schaefer, Michael; Raymond, Carol; Russell, Christopher

    2016-04-01

    The Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that done for Vesta [1,2], including production of a Survey- and High Altitude Mapping Orbit (HAMO)-based global map and a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. In this abstract we discuss the surface geology and geologic evolution of the Ac-H-12 Toharu Quadrangle (21-66°S, 90-180°E). At the time of this writing LAMO images (35 m/pixel) are just becoming available. The current geologic map of Ac-H-12 was produced using ArcGIS software, and is based on HAMO images (140 m/pixel) and Survey (400 m/pixel) digital terrain models (for topographic information). Dawn Framing Camera (FC) color images were also used to provide context for map unit identification. The map (to be presented as a poster) will be updated from analyses of LAMO images. The Toharu Quadrangle is named after crater Toharu (86 km diameter; 48.3°S, 156°E), and is dominated by smooth terrain in the north, and more heavily cratered terrain in the south. The quad exhibits ~9 km of relief, with the highest elevations (~3.5-4.6 km) found among the western plateau and eastern crater rims, and the lowest elevation found on the floor of crater Chaminuka. Preliminary geologic mapping has defined three regional units (smooth material, smooth Kerwan floor material, and cratered terrain) that dominate the quadrangle, as well as a series of impact crater material units. Smooth materials form nearly flat-lying plains in the northwest part of the quad, and overlies hummocky materials in some areas. These smooth materials extend over a much broader area outside of the quad, and appear to contain some of the lowest crater densities on Ceres. Cratered terrain forms much of the map area and contains rugged surfaces formed largely by the structures and deposits of impact features. In addition to geologic units, a number of geologic features - including crater rims, furrows, scarps, troughs, and impact

  13. Creating Communications, Computing, and Networking Technology Development Road Maps for Future NASA Human and Robotic Missions

    NASA Astrophysics Data System (ADS)

    Bhasin, Kul; Hayden, Jeffrey L.

    2005-02-01

    For human and robotic exploration missions envisioned in the Vision for Exploration, roadmaps are needed for capability development and investments based on advanced technology developments. A roadmap development process was undertaken for the needed communications, computing, and networking capabilities and technologies for the future human and robotics missions. The underlying processes are derived from work carried out during development of the future space communications architecture, and NASA's Space Architect Office (SAO) defined formats and structures for accumulating data. Interrelationships were established among emerging requirements, the capability analysis and technology status, and performance data. After developing an architectural communications and networking framework structured around the assumed needs for human and robotic exploration, in the vicinity of Earth, Moon, along the path to Mars, and in the vicinity of Mars, information was gathered from expert participants. This information was used to identify the capabilities expected from the new infrastructure and the technological gaps in the way of obtaining them. We define realistic, long-term space communication architectures based on emerging needs and translate the needs into interfaces, functions, and computer processing that will be required. In developing our roadmapping process, we defined requirements for achieving end-to-end activities that will be carried out by future NASA human and robotic missions. This paper describes: 1) the architectural framework developed for analysis; 2) our approach to gathering and analyzing data from NASA, industry, and academia; 3) an outline of the technology research to be done, including milestones for technology research and demonstrations with timelines; and 4) the technology roadmaps themselves.

  14. Creating Communications, Computing, and Networking Technology Development Road Maps for Future NASA Human and Robotic Missions

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul; Hayden, Jeffrey L.

    2005-01-01

    For human and robotic exploration missions in the Vision for Exploration, roadmaps are needed for capability development and investments based on advanced technology developments. A roadmap development process was undertaken for the needed communications, and networking capabilities and technologies for the future human and robotics missions. The underlying processes are derived from work carried out during development of the future space communications architecture, an d NASA's Space Architect Office (SAO) defined formats and structures for accumulating data. Interrelationships were established among emerging requirements, the capability analysis and technology status, and performance data. After developing an architectural communications and networking framework structured around the assumed needs for human and robotic exploration, in the vicinity of Earth, Moon, along the path to Mars, and in the vicinity of Mars, information was gathered from expert participants. This information was used to identify the capabilities expected from the new infrastructure and the technological gaps in the way of obtaining them. We define realistic, long-term space communication architectures based on emerging needs and translate the needs into interfaces, functions, and computer processing that will be required. In developing our roadmapping process, we defined requirements for achieving end-to-end activities that will be carried out by future NASA human and robotic missions. This paper describes: 10 the architectural framework developed for analysis; 2) our approach to gathering and analyzing data from NASA, industry, and academia; 3) an outline of the technology research to be done, including milestones for technology research and demonstrations with timelines; and 4) the technology roadmaps themselves.

  15. Mapping photopolarimeter spectrometer instrument feasibility study for future planetary flight missions

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Evaluations are summarized directed towards defining optimal instrumentation for performing planetary polarization measurements from a spacecraft platform. An overview of the science rationale for polarimetric measurements is given to point out the importance of such measurements for future studies and exploration of the outer planets. The key instrument features required to perform the needed measurements are discussed and applied to the requirements for the Cassini mission to Saturn. The resultant conceptual design of a spectro-polarimeter photometer for Cassini is described in detail.

  16. Low computation vision-based navigation for a Martian rover

    NASA Technical Reports Server (NTRS)

    Gavin, Andrew S.; Brooks, Rodney A.

    1994-01-01

    Construction and design details of the Mobot Vision System, a small, self-contained, mobile vision system, are presented. This system uses the view from the top of a small, roving, robotic vehicle to supply data that is processed in real-time to safely navigate the surface of Mars. A simple, low-computation algorithm for constructing a 3-D navigational map of the Martian environment to be used by the rover is discussed.

  17. Application of Heat Capacity Mapping Mission data to regional geologic analysis for mineral and energy resource evaluation

    NASA Technical Reports Server (NTRS)

    Watson, K. (Principal Investigator); Hummer-Miller, S.; Knepper, D. H., Jr.; Krohn, M. D.; Podwysocki, M. H.; Pohn, H. H.; Raines, G. L.; Rowan, L. C.

    1983-01-01

    Heat Capacity Mapping Mission thermal-inertia images of a diversity of terrains and geologic settings were examined in conjunction with topographic, geologic, geophysical, and LANDSAT data. The images were found to have attributes similar to bedrock maps. In the Cascades region, two new features were identified and a method was developed to characterize regional terranes using linear feature data. Two northeast-trending Lineaments were discovered in the Overthrust Belt of Montana and Idaho. The longer of the two extends from the Idaho-Oregon border, through the Idaho batholith and across the Lewis thrust. It coincides, along segments, with mapped faults and an aeromagnetic pattern change. A major lineament crossing the Colorado Plateau and the Southern Rocky Mountians was detected on several thermal-inertial images and evidence was found for the existence of a geologic discontinuity. Vegetation-covered areas in Richfield and the Silver City quadrangle (Arizona and New Mexico) displayed thermal-inertia differences within heavily vegetation areas although no apreciable correlation was found between vegetation cover and thermal inertia. Resistant ridges and knolls have high thermal inertias and thermal-inertia contrasts occurred at lithologic and fault contacts. In the heavy vegetated Pinaleno Mountains, Arizona, a Lithologic unit obscured on LANDSAT MSS data due to the vegetation cover, exhibited a thermal-inertia contrast with its surroundings.

  18. Geological Mapping of the Ac-H-5 Fejokoo Quadrangle of Ceres from NASA's Dawn Mission

    NASA Astrophysics Data System (ADS)

    Hughson, Kynan; Russell, Christopher; Williams, David; Buczkowski, Debra; Mest, Scott; Scully, Jennifer; Kneissl, Thomas; Ruesch, Ottaviano; Frigeri, Alessandro; Combe, Jean-Philippe; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Platz, Thomas; Nathues, Andreas; Hoffmann, Martin; Schaefer, Michael; Park, Ryan; Marchi, Simone; Raymond, Carol

    2016-04-01

    NASA's Dawn spacecraft arrived at Ceres on March 6, 2015, and has been studying the dwarf planet through a series of successively lower orbits, obtaining morphological & topographical image, mineralogical, elemental abundance, and gravity data. Ceres is the largest object in the asteroid belt with a mean diameter of ~950 km. The Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that done for the asteroid Vesta [1, 2], including production of a Survey- and High Altitude Mapping Orbit (HAMO)-based global map, and a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. In this abstract we present the LAMO-based geologic map of the Ac-H-5 Fejokoo quadrangle (21-66 °N and 270-360 °E) and discuss its geologic evolution. At the time of this writing LAMO images (35 m/pixel) are just becoming available. Thus, our geologic maps are based on HAMO images (~140 m/pixel) and Survey (~400 m/pixel) digital terrain models (for topographic information) [3, 4]. Dawn Framing Camera (FC) color images are also used to provide context for map unit identification. The maps to be presented as posters will be updated from analyses of LAMO images (~35 m/pixel). The Fejokoo quadrangle hosts six primary geologic features: (1) the centrally located, ~80 km diameter, distinctly hexagonal impact crater Fejokoo; (2) Victa crater with its large exterior dark lobate flow feature, and interior lobate and furrowed deposits; (3) Abellio crater, which exhibits a well formed ejecta blanket and has an arcuately textured infilled floor whose morphology is similar to those of homologously sized craters on some of the icy Saturnian satellites [5]; (4) Cozobi crater, whose floor is filled with an unusually bulbous and smooth deposit, thin sheeted multi-lobed flow-like features that are reminiscent of fluidized ejecta as seen on Mars are also observed to be emanating outwards from the N and S rims of this crater [6]; (5) the peculiar Oxo crater on the eastern

  19. Mars Exploration Rovers Entry, Descent, and Landing Trajectory Analysis

    NASA Technical Reports Server (NTRS)

    Desai, Prasun N.; Knocke, Philip C.

    2004-01-01

    The Mars Exploration Rover mission successfully landed two rovers "Spirit" and "Opportunity" on Mars on January 4th and 25th of 2004, respectively. The trajectory analysis performed to define the entry, descent, and landing (EDL) scenario is described. The entry requirements and constraints are presented, as well as uncertainties used in a Monte Carlo dispersion analysis to statistically assess the robustness of the entry design to off-nominal conditions. In the analysis, six-degree-of-freedom and three-degree-of-freedom trajectory results are compared to assess the entry characteristics of the capsule. Comparison of the preentry results to preliminary post-landing reconstruction data shows that all EDL parameters were within the requirements. In addition, the final landing position for both "Spirit" and "Opportunity" were within 15 km of the predicted landing location.

  20. Towards terrain interaction prediction for bioinspired planetary exploration rovers.

    PubMed

    Yeomans, Brian; Saaj, Chakravathini M

    2014-03-01

    Deployment of a small legged vehicle to extend the reach of future planetary exploration missions is an attractive possibility but little is known about the behaviour of a walking rover on deformable planetary terrain. This paper applies ideas from the developing study of granular materials together with a detailed characterization of the sinkage process to propose and validate a combined model of terrain interaction based on an understanding of the physics and micro mechanics at the granular level. Whilst the model reflects the complexity of interactions expected from a walking rover, common themes emerge which enable the model to be streamlined to the extent that a simple mathematical representation is possible without resorting to numerical methods. Bespoke testing and analysis tools are described which reveal some unexpected conclusions and point the way towards intelligent control and foot geometry techniques to improve thrust generation.

  1. RATLER: Robotic All-Terrain Lunar Exploration Rover

    NASA Technical Reports Server (NTRS)

    Purvis, J. W.; Klarer, P. R.

    1993-01-01

    A robotic rover vehicle designed for use in the exploration of the Lunar surface is described. The Robotic All-Terrain Lunar Exploration Rover (RATLER) is a four wheeled all-wheel-drive dual-body vehicle. A uniquely simple method of chassis articulation is employed which allows all four wheels to remain in contact with the ground, even while climbing over step-like obstacles as large as 1.3 wheel diameters. Skid steering and modular construction are used to produce a simple, rugged, highly agile mobility chassis with a reduction in the number of parts required when compared to current designs being considered for planetary exploration missions. The design configuration, mobility parameters, and performance of several existing RATLER prototypes are discussed.

  2. Small image laser range finder for planetary rover

    NASA Technical Reports Server (NTRS)

    Wakabayashi, Yasufumi; Honda, Masahisa; Adachi, Tadashi; Iijima, Takahiko

    1994-01-01

    A variety of technical subjects need to be solved before planetary rover navigation could be a part of future missions. The sensors which will perceive terrain environment around the rover will require critical development efforts. The image laser range finder (ILRF) discussed here is one of the candidate sensors because of its advantage in providing range data required for its navigation. The authors developed a new compact-sized ILRF which is a quarter of the size of conventional ones. Instead of the current two directional scanning system which is comprised of nodding and polygon mirrors, the new ILRF is equipped with the new concept of a direct polygon mirror driving system, which successfully made its size compact to accommodate the design requirements. The paper reports on the design concept and preliminary technical specifications established in the current development phase.

  3. Demonstrating xLuna on ESA EXOMADER Rover

    NASA Astrophysics Data System (ADS)

    Braga, P.

    2012-01-01

    In this article we present xLuna [1] and its successful demonstration on the ESA EXOMArs DEmonstration Rover (EXOMADER) [2]. xLuna is a Linux-specific hypervisor extension for RTEMS, a Real-time Executive already used on ESA missions. On xLuna, RTEMS runs natively and directly on top of the hardware providing all its native services to real- time control applications. On top of the hypervisor runs a Linux kernel para-virtualised specifically for the system that provides all the well known POSIX based services and an endless set of software libraries to payload applications. On the demonstration, the complete navigation software of the rover (with stereo image processing and path processing) that was being tested ran on xLuna's Linux subsystem, while the RTEMS components were running control tasks. Due to impossibilities of integration, the RTEMS tasks running were simulated. The control was performed by existing HW.

  4. Mapping Dark Matter and Large Scale Structure with a MIDEX mission

    NASA Astrophysics Data System (ADS)

    Jahoda, K.; Petre, R.; Mushotzky, R. F.; Gendreau, K.; White, N. E.

    2001-05-01

    We present a MIDEX mission concept, on behalf of an international collaboartion, with the capability of answering numerous fundamental questions about the dark matter which dominates the gravitational mass of the universe, including: How much dark matter is there? What is its spatial distribution? Is the large scale structure that is observed today the result of gravitational instabilities (as assumed by all current theories)? The basis of our concept is an X-ray survey of π sr with the following characteristics: 0.5-10 keV bandpass, 10 arc-sec angular resolution, and (50 photon) flux limit 5 x 10-14 erg/s/cm2 (0.5-2 keV band). The X-ray data will be of sufficient quality to separate the primary dark matter tracers - clusters of galaxies - from the background population of AGN; the mission observation strategy will minimize the time required to measure the third dimension, redshift, by concentrating on the Sloan Digital Sky Survey region, thus performing a large fraction of the optical "follow-up" in advance. Based on the observed log N-log S distribution for clusters, we expect to detect substantially more than 104 clusters of galaxies.

  5. Geological Mapping of the Ac-H-11 Sintana Quadrangle of Ceres from NASA's Dawn Mission.

    NASA Astrophysics Data System (ADS)

    Schulzeck, Franziska; Krohn, Katrin; Jaumann, Ralf; Williams, David A.; Buczkowski, Debra L.; Mest, Scott C.; Scully, Jennifer E. C.; Gathen, Isabel v. d.; Kersten, Elke; Matz, Klaus-Dieter; Naß, Andrea; Otto, Katharina; Pieters, Carle M.; Preusker, Frank; Roatsch, Thomas; De Sanctis, Maria C.; Schenk, Paul; Schröder, Stefanus; Stephan, Katrin; Wagner, Roland

    2016-04-01

    In December 2015, the Dawn spacecraft delivered the first images of the Low Altitude Mapping Orbit (LAMO) of the dwarf planet Ceres at a resolution of 35 m/pixel. This data will be used to finish the geological mapping of Ceres' surface in order to identify composition and surface forming processes. Mapping was already done using Survey Orbit and High Altitude Mapping Orbit (HAMO) data. With the new images, an updated map will be presented. To this point, the data material consists of a HAMO clear-filter mosaic (140 m/pixel) [1], a digital elevation model (DTM) [2] derived from Survey orbit (415 m/pixel) data, color-filter ratios and photometrically corrected images. Ceres' surface has been divided into 15 mapping quadrangles. The Ac-H-11 Sintana quadrangle is located in the southern hemisphere of Ceres between 21 66°S and 0 90°E. Geological units identified so far are cratered terrain, which covers most of the area, and a younger unit of relatively smooth material. The latter is characterized by a low crater density. Material of the same unit was found in adjacent quadrangles as well. Interest is taken in the diversity of crater shapes. Many craters show different forms of asymmetries. One and the same crater for instance displays different stages of rim degradation and some crater walls are partly terraced and their slopes' steepness is varying alongside the crater rim. Several mass wasting features, which partly cause the observed asymmetries, have been identified. Next to the multiple collapsed rims, landslides due to later cratering on the primary crater rim are observed. Whereas collapse structures are mostly blocky, single landslides are characterized by lobate margins. Occurrence and type of mass wasting feature might hint to subsurface differences. Further, there is a diversity of inner crater structures, like relaxed crater floors, ridges, central peaks, mounds and smooth plains. Processes like mass wasting and relaxation have modified many craters

  6. Learning from concurrent Lightning Imaging Sensor and Lightning Mapping Array observations in preparation for the MTG-LI mission

    NASA Astrophysics Data System (ADS)

    Defer, Eric; Bovalo, Christophe; Coquillat, Sylvain; Pinty, Jean-Pierre; Farges, Thomas; Krehbiel, Paul; Rison, William

    2016-04-01

    The upcoming decade will see the deployment and the operation of French, European and American space-based missions dedicated to the detection and the characterization of the lightning activity on Earth. For instance the Tool for the Analysis of Radiation from lightNIng and Sprites (TARANIS) mission, with an expected launch in 2018, is a CNES mission dedicated to the study of impulsive energy transfers between the atmosphere of the Earth and the space environment. It will carry a package of Micro Cameras and Photometers (MCP) to detect and locate lightning flashes and triggered Transient Luminous Events (TLEs). At the European level, the Meteosat Third Generation Imager (MTG-I) satellites will carry in 2019 the Lightning Imager (LI) aimed at detecting and locating the lightning activity over almost the full disk of Earth as usually observed with Meteosat geostationary infrared/visible imagers. The American community plans to operate a similar instrument on the GOES-R mission for an effective operation in early 2016. In addition NASA will install in 2016 on the International Space Station the spare version of the Lightning Imaging Sensor (LIS) that has proved its capability to optically detect the tropical lightning activity from the Tropical Rainfall Measuring Mission (TRMM) spacecraft. We will present concurrent observations recorded by the optical space-borne Lightning Imaging Sensor (LIS) and the ground-based Very High Frequency (VHF) Lightning Mapping Array (LMA) for different types of lightning flashes. The properties of the cloud environment will also be considered in the analysis thanks to coincident observations of the different TRMM cloud sensors. The characteristics of the optical signal will be discussed according to the nature of the parent flash components and the cloud properties. This study should provide some insights not only on the expected optical signal that will be recorded by LI, but also on the definition of the validation strategy of LI, and

  7. Seeking Signs of Life: The Mars 2020 Rover

    NASA Astrophysics Data System (ADS)

    Schulte, M. D.; Meyer, M. A.

    2013-12-01

    The National Aeronautics and Space Administration (NASA) announced plans to send a rover to Mars in the year 2020. With NASA's goals for Mars now focused on determining the habitability of environments and detecting signs of past life, this mission constitutes a logical next step in the exploration of Mars. The Mars 2020 Science Definition Team's (SDT) suggested science objectives of the mission are to: 1) explore an astrobiologically relevant ancient environment on Mars to decipher its geological processes and history, including the assessment of past habitability; 2) assess the biosignature preservation potential within the selected geological environment and search for potential biosignatures; 3) demonstrate significant technical progress towards the future return of scientifically selected, well-documented samples to Earth; and 4) provide an opportunity for contributed human exploration or space technology Program participation, compatible with the science payload and within the mission's payload capacity. Instruments designed for detecting signs of past life and caching samples on Mars are among those considered by the Science Definition Team as the highest priority for science on the 2020 rover. This presentation will detail NASA's response to the SDT's report (released July 2013) in formulating the 2020 mission.

  8. The Athena Mars Rover Investigation

    NASA Technical Reports Server (NTRS)

    Squyres, S. W.; Arvidson, R. E.; Bell, J. F., III; Carr, M.; Christensen, P.; DesMarais, D.; Economou, T.; Gorevan, S.; Haskin, L.; Herkenhoff, K.

    2000-01-01

    The Mars Surveyor program requires tools for martian surface exploration, including remote sensing, in-situ sensing, and sample collection. The Athena Mars rover payload is a suite of scientific instruments and sample collection tools designed to: (1) Provide color stereo imaging of martian surface environments, and remotely-sensed point discrimination of mineralogical composition; (2) Determine the elemental and mineralogical composition of martian surface materials; (3) Determine the fine-scale textural properties of these materials; and (4) Collect and store samples. The Athena payload is designed to be implemented on a long-range rover such as the one now under consideration for the 2003 Mars opportunity. The payload is at a high state of maturity, and most of the instruments have now been built for flight.

  9. Frost on Mars Rover Opportunity

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Frost can form on surfaces if enough water is present and the temperature is sufficiently low. On each of NASA's Mars Exploration Rovers, the calibration target for the panoramic camera provides a good place to look for such events. A thin frost was observed by Opportunity's panoramic camera on the rover's 257th sol (Oct. 13, 2004) 11 minutes after sunrise (left image). The presence of the frost is most clearly seen on the post in the center of the target, particularly when compared with the unsegmented outer ring of the target, which is white. The post is normally black. For comparison, note the difference in appearance in the image on the right, taken about three hours later, after the frost had dissipated. Frost has not been observed at Spirit, where the amount of atmospheric water vapor is observed to be appreciably lower. Both images were taken through a filter centered at a wavelength of 440 nanometers (blue).

  10. Why rover preparatory programmes? The example of the French programme "VAP"

    NASA Astrophysics Data System (ADS)

    Moura, D. J. P.; Baiget, A.; Chaffaut, F. X.; Rocard, F.

    The very first activities concerning planetary rovers began in 1964 in the Soviet Union and in the United States for lunar missions. Nowadays, with the increase of new mission needs and technical possibilities, several space agencies have engaged in some preliminary programmes in that area with the following objectives: —to prepare their involvement in future international rover missions —to ease contacts/discussions between scientists and engineers —to study and develop a new generation of in situ experiments —to perform system/mission analysis in conjunction with the definition of the mission objectives —to analyze robotic problematics and implement robotic concepts in the rover architectures. To perform these activities, several organizations have been set up in Russia, the United States, Japan, Italy and France, according to the relative weight of space engineering over robotic research. In the case of the French programme ('VAP—Automatic Planetary Rover'), the organization is based on a partnership between the CNES, a scientific committee, four national research laboratories and industries in order to optimize scientific and technical work, with an optimal use of past robotic research studies, as well as to generate spin-offs for Earth applications. Indeed, as a preliminary result, we now have a co-operative agreement with Russia to procure cameras and associated software for the autonomous navigation of the Marsokhod 96 and 2 projects for terrestrial applications of robotic concepts defined within the framework of the VAP programme.

  11. Planetary cubesats - mission architectures

    NASA Astrophysics Data System (ADS)

    Bousquet, Pierre W.; Ulamec, Stephan; Jaumann, Ralf; Vane, Gregg; Baker, John; Clark, Pamela; Komarek, Tomas; Lebreton, Jean-Pierre; Yano, Hajime

    2016-07-01

    Miniaturisation of technologies over the last decade has made cubesats a valid solution for deep space missions. For example, a spectacular set 13 cubesats will be delivered in 2018 to a high lunar orbit within the frame of SLS' first flight, referred to as Exploration Mission-1 (EM-1). Each of them will perform autonomously valuable scientific or technological investigations. Other situations are encountered, such as the auxiliary landers / rovers and autonomous camera that will be carried in 2018 to asteroid 1993 JU3 by JAXA's Hayabusas 2 probe, and will provide complementary scientific return to their mothership. In this case, cubesats depend on a larger spacecraft for deployment and other resources, such as telecommunication relay or propulsion. For both situations, we will describe in this paper how cubesats can be used as remote observatories (such as NEO detection missions), as technology demonstrators, and how they can perform or contribute to all steps in the Deep Space exploration sequence: Measurements during Deep Space cruise, Body Fly-bies, Body Orbiters, Atmospheric probes (Jupiter probe, Venus atmospheric probes, ..), Static Landers, Mobile landers (such as balloons, wheeled rovers, small body rovers, drones, penetrators, floating devices, …), Sample Return. We will elaborate on mission architectures for the most promising concepts where cubesat size devices offer an advantage in terms of affordability, feasibility, and increase of scientific return.

  12. Dynamic Modeling and Soil Mechanics for Path Planning of the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Trease, Brian

    2011-01-01

    To help minimize risk of high sinkage and slippage during drives and to better understand soil properties and rover terramechanics from drive data, a multidisciplinary team was formed under the Mars Exploration Rover project to develop and utilize dynamic computer-based models for rover drives over realistic terrains. The resulting system, named ARTEMIS (Adams-based Rover Terramechanics and Mobility Interaction System), consists of the dynamic model, a library of terramechanics subroutines, and the high-resolution digital elevation maps of the Mars surface. A 200-element model of the rovers was developed and validated for drop tests before launch, using Adams dynamic modeling software. The external library was built in Fortran and called by Adams to model the wheel-soil interactions include the rut-formation effect of deformable soils, lateral and longitudinal forces, bull-dozing effects, and applied wheel torque. The paper presents the details and implementation of the system. To validate the developed system, one study case is presented from a realistic drive on Mars of the Opportunity rover. The simulation results match well from the measurement of on-board telemetry data. In its final form, ARTEMIS will be used in a predictive manner to assess terrain navigability and will become part of the overall effort in path planning and navigation for both Martian and lunar rovers.

  13. Dynamic Modeling and Soil Mechanics for Path Planning of the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Trease, Brian; Arvidson, Raymond; Lindemann, Randel; Bennett, Keith; Zhou, Feng; Iagnemma, Karl; Senatore, Carmine; Van Dyke, Lauren

    2011-01-01

    To help minimize risk of high sinkage and slippage during drives and to better understand soil properties and rover terramechanics from drive data, a multidisciplinary team was formed under the Mars Exploration Rover (MER) project to develop and utilize dynamic computer-based models for rover drives over realistic terrains. The resulting tool, named ARTEMIS (Adams-based Rover Terramechanics and Mobility Interaction Simulator), consists of the dynamic model, a library of terramechanics subroutines, and the high-resolution digital elevation maps of the Mars surface. A 200-element model of the rovers was developed and validated for drop tests before launch, using MSC-Adams dynamic modeling software. Newly modeled terrain-rover interactions include the rut-formation effect of deformable soils, using the classical Bekker-Wong implementation of compaction resistances and bull-dozing effects. The paper presents the details and implementation of the model with two case studies based on actual MER telemetry data. In its final form, ARTEMIS will be used in a predictive manner to assess terrain navigability and will become part of the overall effort in path planning and navigation for both Martian and lunar rovers.

  14. Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation

    USGS Publications Warehouse

    Bell, J.F.; Squyres, S. W.; Herkenhoff, K. E.; Maki, J.N.; Arneson, H.M.; Brown, D.; Collins, S.A.; Dingizian, A.; Elliot, S.T.; Hagerott, E.C.; Hayes, A.G.; Johnson, M.J.; Johnson, J. R.; Joseph, J.; Kinch, K.; Lemmon, M.T.; Morris, R.V.; Scherr, L.; Schwochert, M.; Shepard, M.K.; Smith, G.H.; Sohl-Dickstein, J. N.; Sullivan, R.J.; Sullivan, W.T.; Wadsworth, M.

    2003-01-01

    The Panoramic Camera (Pancam) investigation is part of the Athena science payload launched to Mars in 2003 on NASA's twin Mars Exploration Rover (MER) missions. The scientific goals of the Pancam investigation are to assess the high-resolution morphology, topography, and geologic context of each MER landing site, to obtain color images to constrain the mineralogic, photometric, and physical properties of surface materials, and to determine dust and aerosol opacity and physical properties from direct imaging of the Sun and sky. Pancam also provides mission support measurements for the rovers, including Sun-finding for rover navigation, hazard identification and digital terrain modeling to help guide long-term rover traverse decisions, high-resolution imaging to help guide the selection of in situ sampling targets, and acquisition of education and public outreach products. The Pancam optical, mechanical, and electronics design were optimized to achieve these science and mission support goals. Pancam is a multispectral, stereoscopic, panoramic imaging system consisting of two digital cameras mounted on a mast 1.5 m above the Martian surface. The mast allows Pancam to image the full 360?? in azimuth and ??90?? in elevation. Each Pancam camera utilizes a 1024 ?? 1024 active imaging area frame transfer CCD detector array. The Pancam optics have an effective focal length of 43 mm and a focal ratio f/20, yielding an instantaneous field of view of 0.27 mrad/pixel and a field of view of 16?? ?? 16??. Each rover's two Pancam "eyes" are separated by 30 cm and have a 1?? toe-in to provide adequate stereo parallax. Each eye also includes a small eight position filter wheel to allow surface mineralogic studies, multispectral sky imaging, and direct Sun imaging in the 400-1100 nm wavelength region. Pancam was designed and calibrated to operate within specifications on Mars at temperatures from -55?? to +5??C. An onboard calibration target and fiducial marks provide the capability

  15. Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation

    NASA Astrophysics Data System (ADS)

    Bell, J. F.; Squyres, S. W.; Herkenhoff, K. E.; Maki, J. N.; Arneson, H. M.; Brown, D.; Collins, S. A.; Dingizian, A.; Elliot, S. T.; Hagerott, E. C.; Hayes, A. G.; Johnson, M. J.; Johnson, J. R.; Joseph, J.; Kinch, K.; Lemmon, M. T.; Morris, R. V.; Scherr, L.; Schwochert, M.; Shepard, M. K.; Smith, G. H.; Sohl-Dickstein, J. N.; Sullivan, R. J.; Sullivan, W. T.; Wadsworth, M.

    2003-11-01

    The Panoramic Camera (Pancam) investigation is part of the Athena science payload launched to Mars in 2003 on NASA's twin Mars Exploration Rover (MER) missions. The scientific goals of the Pancam investigation are to assess the high-resolution morphology, topography, and geologic context of each MER landing site, to obtain color images to constrain the mineralogic, photometric, and physical properties of surface materials, and to determine dust and aerosol opacity and physical properties from direct imaging of the Sun and sky. Pancam also provides mission support measurements for the rovers, including Sun-finding for rover navigation, hazard identification and digital terrain modeling to help guide long-term rover traverse decisions, high-resolution imaging to help guide the selection of in situ sampling targets, and acquisition of education and public outreach products. The Pancam optical, mechanical, and electronics design were optimized to achieve these science and mission support goals. Pancam is a multispectral, stereoscopic, panoramic imaging system consisting of two digital cameras mounted on a mast 1.5 m above the Martian surface. The mast allows Pancam to image the full 360° in azimuth and +/-90° in elevation. Each Pancam camera utilizes a 1024 × 1024 active imaging area frame transfer CCD detector array. The Pancam optics have an effective focal length of 43 mm and a focal ratio of f/20, yielding an instantaneous field of view of 0.27 mrad/pixel and a field of view of 16° × 16°. Each rover's two Pancam ``eyes'' are separated by 30 cm and have a 1° toe-in to provide adequate stereo parallax. Each eye also includes a small eight position filter wheel to allow surface mineralogic studies, multispectral sky imaging, and direct Sun imaging in the 400-1100 nm wavelength region. Pancam was designed and calibrated to operate within specifications on Mars at temperatures from -55° to +5°C. An onboard calibration target and fiducial marks provide the

  16. A system architecture for a planetary rover

    NASA Technical Reports Server (NTRS)

    Smith, D. B.; Matijevic, J. R.

    1989-01-01

    Each planetary mission requires a complex space vehicle which integrates several functions to accomplish the mission and science objectives. A Mars Rover is one of these vehicles, and extends the normal spacecraft functionality with two additional functions: surface mobility and sample acquisition. All functions are assembled into a hierarchical and structured format to understand the complexities of interactions between functions during different mission times. It can graphically show data flow between functions, and most importantly, the necessary control flow to avoid unambiguous results. Diagrams are presented organizing the functions into a structured, block format where each block represents a major function at the system level. As such, there are six blocks representing telecomm, power, thermal, science, mobility and sampling under a supervisory block called Data Management/Executive. Each block is a simple collection of state machines arranged into a hierarchical order very close to the NASREM model for Telerobotics. Each layer within a block represents a level of control for a set of state machines that do the three primary interface functions: command, telemetry, and fault protection. This latter function is expanded to include automatic reactions to the environment as well as internal faults. Lastly, diagrams are presented that trace the system operations involved in moving from site to site after site selection. The diagrams clearly illustrate both the data and control flows. They also illustrate inter-block data transfers and a hierarchical approach to fault protection. This systems architecture can be used to determine functional requirements, interface specifications and be used as a mechanism for grouping subsystems (i.e., collecting groups of machines, or blocks consistent with good and testable implementations).

  17. APXS on board Chandrayaan-2 Rover

    NASA Astrophysics Data System (ADS)

    Shanmugam, M.; Sripada, V. S. Murty; Acharya, Y. B.; Goyal, S. K.

    2012-07-01

    Alpha Particle X-ray Spectrometer (APXS) is a well proven instrument for quantitative in situ elemental analysis of the planetary surfaces and has been successfully employed for Mars surface exploration. Chandrayaan-2, ISRO's second lunar mission having an Orbiter, Lander and Rover has provided an opportunity to explore the lunar surface with superior detectors such as Silicon Drift Detector (SDD) with energy resolution of about 150eV @ 5.9keV. The objective of the APXS instrument is to analyse several soil/rock samples along the rover traverse for the major elements with characteristic X-rays in 1 to 25keV range. The working principle of APXS involves measuring the intensity of characteristic X-rays emitted from the sample due to Alpha Particle Induced X-ray Emission (PIXE) and X-ray florescence (XRF) processes using suitable radioactive sources, allowing the determination of elements from Na to Br, spanning the energy range of 0.9 to 16keV. For this experiment ^{244}Cm radioactive source has been chosen which emits both Alpha particles (5.8MeV) and X-rays (14.1keV, 18keV). APXS uses six Alpha sources, each about 5mCi activity. Unlike Mars, lunar environment poses additional challenges due to the regolith and extreme surface temperature changes, to operate the APXS. Our APXS instrument consists of two packages namely APXS sensor head and APXS signal electronics. The sensor head assembly contains SDD, six alpha sources and front end electronic circuits such as preamplifier and shaper circuits and will be mounted on a robotic arm which on command brings the sensor head close to the lunar surface at a height of 35±10mm. SDD module to be used in the experiment has 30mm ^{2} active detector area with in-built peltier cooler and heat sink to maintain the detector at about -35°C. The detector is covered with 8 micron thick Be window which results in the low energy threshold of about 1keV. The size of the APXS sensor head is 70x70x70mm ^{3} (approx). APXS signal

  18. Geological Mapping of the Ac-H-7 Kerwan Quadrangle of Ceres from NASA Dawn Mission.

    NASA Astrophysics Data System (ADS)

    Williams, David; Mest, Scott; Kneissl, Thomas; Hendrik Pasckert, Jan; Hiesinger, Harald; Neesemann, Adrian; Schmedemann, Nico; Buczkowski, Debra; Scully, Jennifer; Marchi, Simone; Schenk, Paul; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Nathues, Andreas; Schaefer, Michael; Hoffmann, Martin; Raymond, Carol; Russell, Christopher

    2016-04-01

    NASA's Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that done for Vesta [1,2], including a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. Ac-H-7 Kerwan Quadrangle is located between 22°S-22°N and 72-144°E, and hosts several primary features and terrains: 1) The 280 km diameter impact basin Kerwan occur in the center and SE corner of the quad-rangle. Kerwan's rim is very degraded and there is no obvious ejecta field, indicating it is one of the oldest visible large impact basins on Ceres. Kerwan's interior is filled with a 'smooth terrain' that also extends beyond the rim to the east and west. This smooth terrain hosts a significantly lower impact crater density than most of the rest of Ceres' surface. Preliminary crater counts of the Kerwan smooth terrain derive cratering model ages of ~3 Ga using the lunar-derived chronology and ~600-800 Ma using the asteroid flux-derived chronology (H. Hiesinger, pers. comm., 2016). Our working interpretation is that the Kerwan impact occurred when Ceres' crust had a greater proportion of ice than at present, and that impact heating melted crustal material resulting in resurfacing of the Kerwan region by an icy impact melt, or possibly initiated cryovolcanic flows. There are hints of possible flow margins on the Kerwan floor in HAMO images, that have to be confirmed or denied by study of LAMO images. 2) Part of the 126 km diameter crater Dantu and its ejecta field covers the NE corner of the quadrangle. FC color data show both bright and dark materials in the ejecta field, suggesting ex-cavation of terrains of different compositions. Alternatively, because Dantu is one of two longitudes on Ceres where water vapor release has been detected [3], another interpretation is that the bright and/or dark deposits in the Dantu region could result from explosive cryovolcanism. Further study of LAMO data is required to investigate these hypotheses. 3) Other features include the

  19. Mars rover sample return: An exobiology science scenario

    NASA Technical Reports Server (NTRS)

    Rosenthal, D. A.; Sims, M. H.; Schwartz, Deborah E.; Nedell, S. S.; Mckay, Christopher P.; Mancinelli, Rocco L.

    1988-01-01

    A mission designed to collect and return samples from Mars will provide information regarding its composition, history, and evolution. At the same time, a sample return mission generates a technical challenge. Sophisticated, semi-autonomous, robotic spacecraft systems must be developed in order to carry out complex operations at the surface of a very distant planet. An interdisciplinary effort was conducted to consider how much a Mars mission can be realistically structured to maximize the planetary science return. The focus was to concentrate on a particular set of scientific objectives (exobiology), to determine the instrumentation and analyses required to search for biological signatures, and to evaluate what analyses and decision making can be effectively performed by the rover in order to minimize the overhead of constant communication between Mars and the Earth. Investigations were also begun in the area of machine vision to determine whether layered sedimentary structures can be recognized autonomously, and preliminary results are encouraging.

  20. Designing remote operations strategies to optimize science mission goals: Lessons learned from the Moon Mars Analog Mission Activities Mauna Kea 2012 field test

    NASA Astrophysics Data System (ADS)

    Yingst, R. A.; Russell, P.; ten Kate, I. L.; Noble, S.; Graff, T.; Graham, L. D.; Eppler, D.

    2015-08-01

    The Moon Mars Analog Mission Activities Mauna Kea 2012 (MMAMA 2012) field campaign aimed to assess how effectively an integrated science and engineering rover team operating on a 24-h planning cycle facilitates high-fidelity science products. The science driver of this field campaign was to determine the origin of a glacially-derived deposit: was the deposit the result of (1) glacial outwash from meltwater; or (2) the result of an ice dam breach at the head of the valley? Lessons learned from MMAMA 2012 science operations include: (1) current rover science operations scenarios tested in this environment provide adequate data to yield accurate derivative products such as geologic maps; (2) instrumentation should be selected based on both engineering and science goals; and chosen during, rather than after, mission definition; and (3) paralleling the tactical and strategic science processes provides significant efficiencies that impact science return. The MER-model concept of operations utilized, in which rover operators were sufficiently facile with science intent to alter traverse and sampling plans during plan execution, increased science efficiency, gave the Science Backroom time to develop mature hypotheses and science rationales, and partially alleviated the problem of data flow being greater than the processing speed of the scientists.

  1. Mars exploration rover geologic traverse by the spirit rover in the plains of Gusev crater, Mars

    USGS Publications Warehouse

    Crumpler, L.S.; Squyres, S. W.; Arvidson, R. E.; Bell, J.F.; Blaney, D.; Cabrol, N.A.; Christensen, P.R.; DesMarais, D.J.; Farmer, J.D.; Fergason, R.; Golombek, M.P.; Grant, F.D.; Grant, J. A.; Greeley, R.; Hahn, B.; Herkenhoff, K. E.; Hurowitz, J.A.; Knudson, A.T.; Landis, G.A.; Li, R.; Maki, J.; McSween, H.Y.; Ming, D. W.; Moersch, J.E.; Payne, M.C.; Rice, J.W.; Richter, L.; Ruff, S.W.; Sims, M.; Thompson, S.D.; Tosca, N.; Wang, A.; Whelley, P.; Wright, S.P.; Wyatt, M.B.

    2005-01-01

    The Spirit rover completed a 2.5 km traverse across gently sloping plains on the floor of Gusev crater from its location on the outer rim of Bonneville crater to the lower slopes of the Columbia Hills, Mars. Using the Athena suite of instruments in a transect approach, a systematic series of overlapping panoramic mosaics, remote sensing observations, surface analyses, and trenching operations documented the lateral variations in landforms, geologic materials, and chemistry of the surface throughout the traverse, demonstrating the ability to apply the techniques of field geology by remote rover operations. Textures and shapes of rocks within the plains are consistent with derivation from impact excavation and mixing of the upper few meters of basaltic lavas. The contact between surrounding plains and crater ejecta is generally abrupt and marked by increases in clast abundance and decimeter-scale steps in relief. Basaltic materials of the plains overlie less indurated and more altered rock types at a time-stratigraphic contact between the plains and Columbia Hills that occurs over a distance of one to two meters. This implies that regional geologic contacts are well preserved and that Earth-like field geologic mapping will be possible on Mars despite eons of overturn by small impacts. ?? 2005 Geological Society of America.

  2. Rover nuclear rocket engine program: Overview of rover engine tests

    NASA Technical Reports Server (NTRS)

    Finseth, J. L.

    1991-01-01

    The results of nuclear rocket development activities from the inception of the ROVER program in 1955 through the termination of activities on January 5, 1973 are summarized. This report discusses the nuclear reactor test configurations (non cold flow) along with the nuclear furnace demonstrated during this time frame. Included in the report are brief descriptions of the propulsion systems, test objectives, accomplishments, technical issues, and relevant test results for the various reactor tests. Additionally, this document is specifically aimed at reporting performance data and their relationship to fuel element development with little or no emphasis on other (important) items.

  3. Visual Feedback for Rover-based Coring

    NASA Technical Reports Server (NTRS)

    Backes, Paul; Helmick, Daniel; Bajracharya, Max

    2008-01-01

    Technology for coring from a low-mass rover has been developed to enable core sample acquisition where a planetary rover experiences moderate slip during the coring operation. A new stereo vision technique, Absolute Motion Visual Odometry, is used to measure rover slip during coring and the slip is accommodated through corresponding arm pose updating. Coring rate is controlled by feedback of themeasured force of the coring tool against the environment. Test results in the JPL Marsyard show for the first time that coring from a low-mass rover with slip is feasible.

  4. GIS Methodology for Planning Planetary-Rover Operations

    NASA Technical Reports Server (NTRS)

    Powell, Mark; Norris, Jeffrey; Fox, Jason; Rabe, Kenneth; Shu, I-Hsiang

    2007-01-01

    A document describes a methodology for utilizing image data downlinked from cameras aboard a robotic ground vehicle (rover) on a remote planet for analyzing and planning operations of the vehicle and of any associated spacecraft. Traditionally, the cataloging and presentation of large numbers of downlinked planetary-exploration images have been done by use of two organizational methods: temporal organization and correlation between activity plans and images. In contrast, the present methodology involves spatial indexing of image data by use of the computational discipline of geographic information systems (GIS), which has been maturing in terrestrial applications for decades, but, until now, has not been widely used in support of exploration of remote planets. The use of GIS to catalog data products for analysis is intended to increase efficiency and effectiveness in planning rover operations, just as GIS has proven to be a source of powerful computational tools in such terrestrial endeavors as law enforcement, military strategic planning, surveying, political science, and epidemiology. The use of GIS also satisfies the need for a map-based user interface that is intuitive to rover-activity planners, many of whom are deeply familiar with maps and know how to use them effectively in field geology.

  5. Tele-Operated Lunar Rover Navigation Using Lidar

    NASA Technical Reports Server (NTRS)

    Pedersen, Liam; Allan, Mark B.; Utz, Hans, Heinrich; Deans, Matthew C.; Bouyssounouse, Xavier; Choi, Yoonhyuk; Fluckiger, Lorenzo; Lee, Susan Y.; To, Vinh; Loh, Jonathan; Bluethmann, William; Burridge, Robert R.; Graf, Jodi; Hambuchen, Kimberly

    2012-01-01

    Near real-time tele-operated driving on the lunar surface remains constrained by bandwidth and signal latency despite the Moon s relative proximity. As part of our work within NASA s Human-Robotic Systems Project (HRS), we have developed a stand-alone modular LIDAR based safeguarded tele-operation system of hardware, middleware, navigation software and user interface. The system has been installed and tested on two distinct NASA rovers-JSC s Centaur2 lunar rover prototype and ARC s KRex research rover- and tested over several kilometers of tele-operated driving at average sustained speeds of 0.15 - 0.25 m/s around rocks, slopes and simulated lunar craters using a deliberately constrained telemetry link. The navigation system builds onboard terrain and hazard maps, returning highest priority sections to the off-board operator as permitted by bandwidth availability. It also analyzes hazard maps onboard and can stop the vehicle prior to contacting hazards. It is robust to severe pose errors and uses a novel scan alignment algorithm to compensate for attitude and elevation errors.

  6. A Mars 1984 mission

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Mission objectives are developed for the next logical step in the investigation of the local physical and chemical environments and the search for organic compounds on Mars. The necessity of three vehicular elements: orbiter, penetrator, and rover for in situ investigations of atmospheric-lithospheric interactions is emphasized. A summary report and committee recommendations are included with the full report of the Mars Science Working Group.

  7. Miniature thermal emission spectrometer for the Mars Exploration Rover

    NASA Astrophysics Data System (ADS)

    Silverman, Steven; Peralta, Richard; Christensen, Phil; Mehall, Greg

    2006-10-01

    This paper describes results of the calibration of the miniature thermal emission spectrometer (Mini-TES) being built by Raytheon Santa Barbara Remote Sensing (SBRS) under contract to Arizona State University (ASU). This paper also serves as an update to an earlier paper [R.J. Peralta, S. Silverman, D. Bates, Raytheon/Santa Barbara Remote Sensing, P. Christensen, G. Mehall, T. Tourville, R. Keehn, G. Cannon, Arizona State University, Miniature thermal emission spectrometer for the Mars Exploration Rover, Proceedings of the SPIE, vol. 4485-09, August 2001] for mission description and instrument design. Mini-TES is a single detector Fourier transform spectrometer (FTS), covering the spectral range 5 29μm at 10cm spectral resolution. Launched in June 2003, one Mini-TES instrument will fly to Mars aboard each of the two missions of NASA's Mars Exploration Rover Project (MER), named Spirit and Opportunity. Mini-TES is designed to provide a key minerological remote sensing component of the MER mission, which includes several other science instruments. The first Mini-TES unit was required to meet a two-year development schedule with proven, flight-tested instrumentation. Therefore, SBRS designed Mini-TES based on proven heritage from the successful Mars Global Surveyor (MGS) thermal emission spectrometer (TES), which was launched in 1996 and is still operational with over 500 million spectra collected to date. Mini-TES design, performance, integration onto the rovers, as well as details of the calibration are discussed. Full instrument and calibration details are the subject of an upcoming Journal of Geophysical Research Mini-TES paper by Christensen, et al.

  8. Design and Structural Analysis of Mars Rover RTG

    SciTech Connect

    Schock, Alfred; Hamrick, T.; Sankarankandath, V.; Shirbacheh, M.

    1989-09-29

    The paper describes the design and the structural and mass analysis of a Radioisotope Thermoelectric Generators (RTGs) for powering the MARS Rover vehicle, which is a critical element of the unmanned Mars Rover and Sample Return mission (MRSR). The RTG design study was conducted by Fairchild Space Company for the U.S. Department of Energy, in support of the Jet Propulsion Laboratory's MRSR project.; The paper briefly describes a reference mission scenario, an illustrative Rover design and activity pattern on Mars, and its power system requirements and environmental constraints, including the RTG cooling requirements during transit to Mars. It identifies the key RTG design problem, i.e. venting the helium generated by the fuel's alpha decay without intrusion of the Martian atmosphere into the RTG, and proposes a design approach for solving that problem.; Using that approach, it describes a very conservative baseline RTG design. The design is based on the proven and safety-qualified General Purpose Heat Source module, and employs standard thermoelectric unicouples whose reliability and performance stability has been extensively demonstrated on previous space missions. The heat source of the 250-watt RTG consists of a stack of 18 separate modules that is supported at its ends but not along its length. The paper describes and analyzes the structure that holds the stack together during Earth launch and Mars operations but allows it to come apart in case of an inadvertent reentry.; A companion paper presented at this conference describes the RTG's thermal and electrical analysis, and compares its performance with that of several lighter but less conservative design options.; There is a duplicate copy in the ESD files. This document is not relevent to OSTI Library. Do not send.

  9. An Update on the Performance of Li-Ion Rechargeable Batteries on Mars Rovers

    NASA Technical Reports Server (NTRS)

    Ratnakumara, Bugga V.; Smart, M. C.; Whitcanack, L. D.; Chin, K. B.; Ewell, R. C.; Surampudi, S.; Puglia, F.; Gitzendanner, R.

    2006-01-01

    NASA's Mars Rovers, Spirit and Opportunity have been exploring the surface of Mars for the last thirty months, far exceeding the primary mission life of three months, performing astounding geological studies to examine the habitability of Mars. Such an extended mission life may be attributed to impressive performances of several subsystems, including power subsystem components, i.e., solar array and batteries. The novelty and challenge for this mission in terms of energy storage is the use of lithium-ion batteries, for the first time in a major NASA mission, for keeping the rover electronics warm, and supporting nighttime experimentation and communications. The use of Li-ion batteries has considerably enhanced or even enabled these rovers, by providing greater mass and volume allocations for the payload and wider range of operating temperatures for the power subsystem and thus reduced thermal management. After about 800 days of exploration, there is only marginal change in the end-of discharge (EOD) voltages of the batteries or in their capacities, as estimated from in-flight voltage data and corroborated by ground testing of prototype batteries. Enabled by such impressive durability from the Li-ion batteries, both from a cycling and calendar life stand point, these rovers are poised to extend their exploration well beyond 1000 sols, though other components have started showing signs of decay. In this paper, we will update the performance characteristics of these batteries on both Spirit and Opportunity.

  10. Onboard centralized frame tree database for intelligent space operations of the Mars Science Laboratory Rover.

    PubMed

    Kim, Won S; Diaz-Calderon, Antonio; Peters, Stephen F; Carsten, Joseph L; Leger, Chris

    2014-11-01

    Planetary surface science operations performed by robotic space systems frequently require pointing cameras at various objects and moving a robotic arm end effector tool toward specific targets. Earlier NASA Mars Exploration Rovers did not have the ability to compute actual coordinates for given object coordinate frame names and had to be provided with explicit coordinates. Since it sometimes takes hours to more than a day to get final approval of certain calculated coordinates for command uplink via the Earth-based mission operations procedures, a highly desired enhancement for future rovers was to have the onboard automated capability to compute the coordinates for a given frame name. The Mars Science Laboratory (MSL) rover mission is the first to have a centralized coordinate transform database to maintain the knowledge of spatial relations. This onboard intelligence significantly simplifies communication and control between Earth-based human mission operators and the robotic rover on Mars by supporting higher level abstraction of commands using object and target names instead of coordinates. More specifically, the spatial relations of many object frames are represented hierarchically in a tree data structure, called the frame tree. Individual frame transforms are populated by their respective modules that have specific knowledge of the frames. Through this onboard centralized frame tree database, client modules can query transforms between any two frames and support spacecraft commands that use any frames maintained in the frame tree. Various operational examples in the MSL mission that have greatly benefitted from this onboard centralized frame tree database are presented.

  11. APOLLO 17 ASTRONAUTS IN THEIR MOON ROVER DURING ROLLOUT OF APOLLO 17 ROCKET

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Apollo 17 astronauts (L-R) Lunar Module Pilot Harrison Schmitt, Command Module Pilot Ron Evans, and Commander Gene Cernan pose in their Moon Rover during the rollout of the Apollo 17 rocket. The last of the Apollo/Saturn mission is scheduled for launching Dec. 6, 1972 from Complex 39A.

  12. Onboard centralized frame tree database for intelligent space operations of the Mars Science Laboratory Rover.

    PubMed

    Kim, Won S; Diaz-Calderon, Antonio; Peters, Stephen F; Carsten, Joseph L; Leger, Chris

    2014-11-01

    Planetary surface science operations performed by robotic space systems frequently require pointing cameras at various objects and moving a robotic arm end effector tool toward specific targets. Earlier NASA Mars Exploration Rovers did not have the ability to compute actual coordinates for given object coordinate frame names and had to be provided with explicit coordinates. Since it sometimes takes hours to more than a day to get final approval of certain calculated coordinates for command uplink via the Earth-based mission operations procedures, a highly desired enhancement for future rovers was to have the onboard automated capability to compute the coordinates for a given frame name. The Mars Science Laboratory (MSL) rover mission is the first to have a centralized coordinate transform database to maintain the knowledge of spatial relations. This onboard intelligence significantly simplifies communication and control between Earth-based human mission operators and the robotic rover on Mars by supporting higher level abstraction of commands using object and target names instead of coordinates. More specifically, the spatial relations of many object frames are represented hierarchically in a tree data structure, called the frame tree. Individual frame transforms are populated by their respective modules that have specific knowledge of the frames. Through this onboard centralized frame tree database, client modules can query transforms between any two frames and support spacecraft commands that use any frames maintained in the frame tree. Various operational examples in the MSL mission that have greatly benefitted from this onboard centralized frame tree database are presented. PMID:25330473

  13. The MITy micro-rover: Sensing, control, and operation

    NASA Technical Reports Server (NTRS)

    Malafeew, Eric; Kaliardos, William

    1994-01-01

    The sensory, control, and operation systems of the 'MITy' Mars micro-rover are discussed. It is shown that the customized sun tracker and laser rangefinder provide internal, autonomous dead reckoning and hazard detection in unstructured environments. The micro-rover consists of three articulated platforms with sensing, processing and payload subsystems connected by a dual spring suspension system. A reactive obstacle avoidance routine makes intelligent use of robot-centered laser information to maneuver through cluttered environments. The hazard sensors include a rangefinder, inclinometers, proximity sensors and collision sensors. A 486/66 laptop computer runs the graphical user interface and programming environment. A graphical window displays robot telemetry in real time and a small TV/VCR is used for real time supervisory control. Guidance, navigation, and control routines work in conjunction with the mapping and obstacle avoidance functions to provide heading and speed commands that maneuver the robot around obstacles and towards the target.

  14. Mars Exploration 2003 to 2013 - An Integrated Perspective: Time Sequencing the Missions

    NASA Technical Reports Server (NTRS)

    Briggs, G.; McKay, C.

    2000-01-01

    The science goals for the Mars exploration program, together with the HEDS precursor environmental and technology needs, serve as a solid starting point for re-planning the program in an orderly way. Most recently, the community has recognized the significance of subsurface sampling as a key component in "following the water". Accessing samples from hundreds and even thousands of meters beneath the surface is a challenge that will call for technology development and for one or more demonstration missions. Recent mission failures and concerns about the complexity of the previously planned MSR missions indicate that, before we are ready to undertake sample return and deep sampling, the Mars exploration program needs to include: 1) technology development missions; and 2) basic landing site assessment missions. These precursor missions should demonstrate the capability for reliable & accurate soft landing and in situ propellant production. The precursor missions will need to carry out close-up site observations, ground-penetrating radar mapping from orbit and conduct seismic surveys. Clearly the programs should be planned as a single, continuous exploration effort. A prudent minimum list of missions, including surface rovers with ranges of more than 10 km, can be derived from the numerous goals and requirements; they can be sequenced in an orderly way to ensure that time is available to feed forward the results of the precursor missions. One such sequence of missions is proposed for the decade beginning in 2003.

  15. SEI power source alternatives for rovers and other multi-kWe distributed surface applications

    NASA Technical Reports Server (NTRS)

    Bents, D. J.; Kohout, Lisa L.; Mckissock, B. I.; Rodriguez, C. D.; Withrow, C. A.; Colozza, A.; Hanlon, J. C.; Schmitz, P. C.

    1991-01-01

    Results of the study performed to support the Space Exploration Initiative (SEI) which investigated power system alternatives for the rover vehicles and servicers that would be used for construction and operation of a lunar base is described. Using the mission requirements and power profiles that were subsequently generated for each of these rovers and servicers, candidate power sources incorporating various power generation and energy storage technologies were identified. The technologies were those believed most appropriate to the SEI missions, and included solar, electrochemical, and isotope systems. The candidates were characterized with respect to system mass, deployed area and volume. For each of the missions a preliminary selection was made. Results of this study depict the available power sources in light of the mission requirements as they are currently defined.

  16. Surficial deposits at Gusev Crater along Spirit Rover traverses.

    PubMed

    Grant, J A; Arvidson, R; Bell, J F; Cabrol, N A; Carr, M H; Christensen, P; Crumpler, L; Des Marais, D J; Ehlmann, B L; Farmer, J; Golombek, M; Grant, F D; Greeley, R; Herkenhoff, K; Li, R; McSween, H Y; Ming, D W; Moersch, J; Rice, J W; Ruff, S; Richter, L; Squyres, S; Sullivan, R; Weitz, C

    2004-08-01

    The Mars Exploration Rover Spirit has traversed a fairly flat, rock-strewn terrain whose surface is shaped primarily by impact events, although some of the landscape has been altered by eolian processes. Impacts ejected basaltic rocks that probably were part of locally formed lava flows from at least 10 meters depth. Some rocks have been textured and/or partially buried by windblown sediments less than 2 millimeters in diameter that concentrate within shallow, partially filled, circular impact depressions referred to as hollows. The terrain traversed during the 90-sol (martian solar day) nominal mission shows no evidence for an ancient lake in Gusev crater.

  17. Surficial deposits at Gusev crater along Spirit Rover traverses

    USGS Publications Warehouse

    Grant, J. A.; Arvidson, R.; Bell, J.F.; Cabrol, N.A.; Carr, M.H.; Christensen, P.; Crumpler, L.; Des Marais, D.J.; Ehlmann, B.L.; Farmer, J.; Golombek, M.; Grant, F.D.; Greeley, R.; Herkenhoff, K.; Li, R.; McSween, H.Y.; Ming, D. W.; Moersch, J.; Rice, J. W.; Ruff, S.; Richter, L.; Squyres, S.; Sullivan, R.; Weitz, C.

    2004-01-01

    The Mars Exploration Rover Spirit has traversed a fairly flat, rock-strewn terrain whose surface is shaped primarily by impact events, although some of the landscape has been altered by eolian processes. Impacts ejected basaltic rocks that probably were part of locally formed lava flows from at least 10 meters depth. Some rocks have been textured and/or partially buried by windblown sediments less than 2 millimeters in diameter that concentrate within shallow, partially filled, circular impact depressions referred to as hollows. The terrain traversed during the 90-sol (martian solar day) nominal mission shows no evidence for an ancient lake in Gusev crater.

  18. Surficial deposits at Gusev Crater along Spirit Rover traverses.

    PubMed

    Grant, J A; Arvidson, R; Bell, J F; Cabrol, N A; Carr, M H; Christensen, P; Crumpler, L; Des Marais, D J; Ehlmann, B L; Farmer, J; Golombek, M; Grant, F D; Greeley, R; Herkenhoff, K; Li, R; McSween, H Y; Ming, D W; Moersch, J; Rice, J W; Ruff, S; Richter, L; Squyres, S; Sullivan, R; Weitz, C

    2004-08-01

    The Mars Exploration Rover Spirit has traversed a fairly flat, rock-strewn terrain whose surface is shaped primarily by impact events, although some of the landscape has been altered by eolian processes. Impacts ejected basaltic rocks that probably were part of locally formed lava flows from at least 10 meters depth. Some rocks have been textured and/or partially buried by windblown sediments less than 2 millimeters in diameter that concentrate within shallow, partially filled, circular impact depressions referred to as hollows. The terrain traversed during the 90-sol (martian solar day) nominal mission shows no evidence for an ancient lake in Gusev crater. PMID:15297659

  19. Athena Mars rover science investigation

    USGS Publications Warehouse

    Squyres, S. W.; Arvidson, R. E.; Baumgartner, E.T.; Bell, J.F.; Christensen, P.R.; Gorevan, S.; Herkenhoff, K. E.; Klingelhofer, G.; Madsen, M.B.; Morris, R.V.; Rieder, R.; Romero, R.A.

    2003-01-01

    Each Mars Exploration Rover carries an integrated suite of scientific instruments and tools called the Athena science payload. The primary objective of the Athena science investigation is to explore two sites on the Martian surface where water may once have been present, and to assess past environmental conditions at those sites and their suitability for life. The remote sensing portion of the payload uses a mast called the Pancam Mast Assembly (PMA) that provides pointing for two instruments: the Panoramic Camera (Pancam), and the Miniature Thermal Emission Spectrometer (Mini-TES). Pancam provides high-resolution, color, stereo imaging, while Mini-TES provides spectral cubes at mid-infrared wavelengths. For in-situ study, a five degree-of-freedom arm called the Instrument Deployment Device (IDD) carries four more tools: a Microscopic Imager (MI) for close-up imaging, an Alpha Particle X-Ray Spectrometer (APXS) for elemental chemistry, a Mo??ssbauer Spectrometer (MB) for the mineralogy of Fe-bearing materials, and a Rock Abrasion Tool (RAT) for removing dusty and weathered surfaces and exposing fresh rock underneath. The payload also includes magnets that allow the instruments to study the composition of magnetic Martian materials. All of the Athena instruments have undergone extensive calibration, both individually and using a set of geologic reference materials that are being measured with all the instruments. Using a MER-like rover and payload in a number of field settings, we have devised operations processes that will enable us to use the MER rovers to formulate and test scientific hypotheses concerning past environmental conditions and habitability at the landing sites. Copyright 2003 by the American Geophysical Union.

  20. Quantitative estimation of Tropical Rainfall Mapping Mission precipitation radar signals from ground-based polarimetric radar observations

    NASA Astrophysics Data System (ADS)

    Bolen, Steven M.; Chandrasekar, V.

    2003-06-01

    The Tropical Rainfall Mapping Mission (TRMM) is the first mission dedicated to measuring rainfall from space using radar. The precipitation radar (PR) is one of several instruments aboard the TRMM satellite that is operating in a nearly circular orbit with nominal altitude of 350 km, inclination of 35°, and period of 91.5 min. The PR is a single-frequency Ku-band instrument that is designed to yield information about the vertical storm structure so as to gain insight into the intensity and distribution of rainfall. Attenuation effects on PR measurements, however, can be significant and as high as 10-15 dB. This can seriously impair the accuracy of rain rate retrieval algorithms derived from PR signal returns. Quantitative estimation of PR attenuation is made along the PR beam via ground-based polarimetric observations to validate attenuation correction procedures used by the PR. The reflectivity (Zh) at horizontal polarization and specific differential phase (Kdp) are found along the beam from S-band ground radar measurements, and theoretical modeling is used to determine the expected specific attenuation (k) along the space-Earth path at Ku-band frequency from these measurements. A theoretical k-Kdp relationship is determined for rain when Kdp ≥ 0.5°/km, and a power law relationship, k = a Zhb, is determined for light rain and other types of hydrometers encountered along the path. After alignment and resolution volume matching is made between ground and PR measurements, the two-way path-integrated attenuation (PIA) is calculated along the PR propagation path by integrating the specific attenuation along the path. The PR reflectivity derived after removing the PIA is also compared against ground radar observations.

  1. Buoyant Rover for Under-Ice Exploration

    NASA Astrophysics Data System (ADS)

    Berisford, D. F.; Leichty, J. M.; Klesh, A. T.; Matthews, J. B.; Hand, K. P.

    2012-12-01

    We have designed, constructed and tested a prototype robotic mobility platform for exploring the underside of ice sheets in frozen lake or ocean environments. The ice-water interface often provides some of the most interesting and dynamic chemistry in partially frozen systems, as dissolved impurities are rejected from the advancing freezing front. Higher concentrations of microorganisms can be found in this region, and the topography of the ice underside can help reveal the history of its formation. Furthermore, in lake environments ice cover can serve to trap gases released from biological and geological processes in the subsurface. The rover uses a two-wheeled design with a flexible dragging tail, enabling it to fit into a 10-inch diameter ice borehole. The sealed air-filled cylindrical body, along with closed-cell foam inside of cone-shaped wheels, provides buoyancy force to enable roving along the underside of the ice. The prototype contains two cameras that stream live video via a tethered connection to a ground station and uses semi-autonomous control via a PC. Preliminary testing of the prototype in a cold lab and in northern Alaskan thermokarst lakes demonstrates the utility and simplicity of this type of robotic platform for exploring the ice-water interface. This technology has potential future use in landed missions to icy ocean worlds in the solar system.

  2. A New Paradigm for Robotic Rovers

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Curtis, S. A.; Rilee, M. L.

    We are in the process of developing rovers with extreme mobility needed to explore remote, rugged terrain. We call these systems Tetrahedral Explorer Technologies (TETs). Architecture is based on conformable tetrahedra, the simplest space-filling form, as building blocks, single or networked, where apices act as nodes from which struts reversibly deploy. The tetrahedral framework acts as a simple skeletal muscular structure. We have already prototyped a simple robotic walker from a single reconfigurable tetrahedron capable of tumbling and a more evolved 12Tetrahedral Walker, the Autonomous Landed Investigator (ALI), which has interior nodes for payload, more continuous motion, and is commandable through a user friendly interface. ALI is an EMS level mission concept which would allow autonomous in situ exploration of the lunar poles within the next decade. ALI would consist of one or more 12tetrahedral walkers capable of rapid locomotion with the many degrees of freedom and equipped for navigation in the unilluminated, inaccessible and thus largely unexplored rugged terrains where lunar resources are likely to be found: the Polar Regions. ALI walkers would act as roving reconnaissance teams for unexplored regions, analyzing samples along the way.

  3. Prospecting for lunar ice using a multi-rover cooperative team

    SciTech Connect

    KLARER,PAUL R.; FEDDEMA,JOHN T.; LEWIS,CHRISTOPHER L.

    2000-02-11

    A multi-rover cooperative team or swarm developed by Sandia National Laboratories is described, including various control methodologies that have been implemented to date. How the swarm's capabilities could be applied to a lunar ice prospecting mission is briefly explored. Some of the specific major engineering issues that must be addressed to successfully implement the swarm approach to a lunar surface mission are outlined, and potential solutions are proposed.

  4. The Mars Methane Analogue Mission (M3): Results of the 2011 Field Deployment

    NASA Astrophysics Data System (ADS)

    Cloutis, E. A.; Whyte, L.; Qadi, A.; Bell, J. F.; Berard, G.; Boivin, A.; Ellery, A.; Haddad, E.; Jamroz, W.; Kruzelecky, R.; Mann, P.; Olsen, K.; Perrot, M.; Popa, D.; Rhind, T.; Samson, C.; Sharma, R.; Stromberg, J.; Strong, K.; Tremblay, A.; Wilhelm, R.; Wing, B.; Wong, B.

    2012-03-01

    The M3 mission simulated a rover mission to Mars to search for sources of methane. The 2011 campaign found that methane plumes from serpentinite are very localized and target selection based on imagery is preferred over direct methane detection.

  5. Archaeological field survey automation: concurrent multisensor site mapping and automated analysis

    NASA Astrophysics Data System (ADS)

    Józefowicz, Mateusz; Sokolov, Oleksandr; Meszyński, Sebastian; Siemińska, Dominika; Kołosowski, Przemysław

    2016-04-01

    ABM SE develops mobile robots (rovers) used for analog research of Mars exploration missions. The rovers are all-terrain exploration platforms, carrying third-party payloads: scientific instrumentation. "Wisdom" ground penetrating radar for Exomars mission has been tested onboard, as well as electrical resistivity module and other devices. Robot has operated in various environments, such as Central European countryside, Dachstein ice caves or Sahara, Morocco (controlled remotely via satellite from Toruń, Poland. Currently ABM SE works on local and global positioning system for a Mars rover basing on image and IMU data. This is performed under a project from ESA. In the next Mars rover missions a Mars GIS model will be build, including an acquired GPR profile, DEM and regular image data, integrated into a concurrent 3D terrain model. It is proposed to use similar approach in surveys of archaeological sites, especially those, where solid architecture remains can be expected at shallow depths or being partially exposed. It is possible to deploy a rover that will concurrently map a selected site with GPR, 2D and 3D cameras to create a site model. The rover image processing algorithms are capable of automatic tracing of distinctive features (such as exposed structure remains on a desert ground, differences in color of the ground, etc.) and to mark regularities on a created map. It is also possible to correlate the 3D map with an aerial photo taken under any angle to achieve interpretation synergy. Currently the algorithms are an interpretation aid and their results must be confirmed by a human. The advantages of a rover over traditional approaches, such as a manual cart or a drone include: a) long hours of continuous work or work in unfavorable environment, such as high desert, frozen water pools or large areas, b) concurrent multisensory data acquisition, c) working from the ground level enables capturing of sites obstructed from the air (trees), d) it is possible to

  6. Small Power Technology for Tetrahedral Rovers

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Floyd, S. R.; Butler, C. D.; Flom, Y.

    2006-01-01

    The Small Power Technology (SPOT) being studied at GSFC has the potential to be an efficient and compact radioisotope based electrical power system. Such a system would provide power for innovative tetrahedral robotic arms and walkers to support the lunar exploration initiative within the next decade. Presently, NASA has designated two flight qualified Radioisotope Power Supplies (RPS): the Multi-Mission RTG (MMRTG) which uses thermocouple technology and the more efficient but more massive Stirling RTG (SRTG) which uses a mechanical heat (Stirling) engine technology. With SPOT, thermal output from a radioisotope source is converted to electrical power using a combination of shape memory material and piezoelectric crystals. The SPOT combined energy conversion technologies are potentially more efficient than thermocouples and do not require moving parts, thus keeping efficiency high with an excellent mass to power ratio. Applications of particular interest are highly modular, addressable, reconfigurable arrays of tetrahedral structural components designed to be arms or rovers with high mobility in rough terrain. Such prototypes are currently being built at GSFC. Missions requiring long-lived operation in unilluminated environments preclude the use of solar cells as the main power source and must rely on the use of RPS technology. The design concept calls for a small motor and battery assembly for each strut, and thus a distributed power system. We estimate, based on performance of our current tetrahedral prototypes and power scaling for small motors, that such devices require tens of watts of power output per kilogram of power supply. For these reasons, SPOT is a good candidate for the ART (addressable Reconfigurable Technology) baseline power system.

  7. Dust deposition on the Mars Exploration Rover Panoramic Camera (Pancam) calibration targets

    USGS Publications Warehouse

    Kinch, K.M.; Sohl-Dickstein, J.; Bell, J.F.; Johnson, J. R.; Goetz, W.; Landis, G.A.

    2007-01-01

    The Panoramic Camera (Pancam) on the Mars Exploration Rover mission has acquired in excess of 20,000 images of the Pancam calibration targets on the rovers. Analysis of this data set allows estimates of the rate of deposition and removal of aeolian dust on both rovers. During the first 150-170 sols there was gradual dust accumulation on the rovers but no evidence for dust removal. After that time there is ample evidence for both dust removal and dust deposition on both rover decks. We analyze data from early in both rover missions using a diffusive reflectance mixing model. Assuming a dust settling rate proportional to the atmospheric optical depth, we derive spectra of optically thick layers of airfall dust that are consistent with spectra from dusty regions on the Martian surface. Airfall dust reflectance at the Opportunity site appears greater than at the Spirit site, consistent with other observations. We estimate the optical depth of dust deposited on the Spirit calibration target by sol 150 to be 0.44 ?? 0.13. For Opportunity the value was 0.39 ?? 0.12. Assuming 80% pore space, we estimate that the dust layer grew at a rate of one grain diameter per ???100 sols on the Spirit calibration target. On Opportunity the rate was one grain diameter per ???125 sols. These numbers are consistent with dust deposition rates observed by Mars Pathfinder taking into account the lower atmospheric dust optical depth during the Mars Pathfinder mission. Copyright 2007 by the American Geophysical Union.

  8. SeaRover: An Emerging Technology for Sea Surface Sensor Networks

    NASA Astrophysics Data System (ADS)

    Fong, T.; Kudela, R.; Curcio, J.; Davidson, K.; Darling, D.; Kirkwood, B.

    2005-12-01

    Introduction - SeaRover is envisioned as an autonomous surface vehicle (ASV) for coastal operations. It is intended to lower the cost of existing marine survey applications while enabling new science missions. The current conceptual design is a small vehicle with hull and propulsion system optimized to eliminate cavitation and EM noise. SeaRover will make significant advances over existing platforms by providing longer duration science missions, better positioning and mission control, larger power budgets for instrumentation and significantly lower operational costs than existing vehicles. Science Enabled by SeaRover - SeaRover's unique design and autonomous capability provides several advantages compared to traditional autonomous underwater vehicles (AUV's) and crewed surface vessels: (1) Near surface sampling: SeaRover can sample within the top 1-2 meters. This is difficult to do with crewed vessels because of draft and perturbations from the hull. (2) Adaptive monitoring of dynamic events: SeaRover will be capable of intelligent decision making, as well as real-time remote control. This will enable highly-responsive autonomous tracking of moving phenomena (e.g., algal bloom). (3) Long term monitoring: SeaRover can be deployed for extended periods of time, allowing it to be used for longitudinal baseline studies. SeaRover will represent an advance over existing platforms in terms of: (1) Mobility: operational range from 10-1000 km, GPS accuracy, trajectory control with meter precision, and launch in hours. (2) Duration: from days up to months. (3) Payload and Power: accommodate approximately 100 kg for a 6m hull. Its surface design will allow access to wind and sun energy. (4) Communication: radio, wireless, satellite, direct data return. (5) Operational Cost: target costs are $2K/day (24 hour operation), with no onboard operator. (6) Recovery/Reusability: autonomous return to safe harbor provides sample return and on-base maintenance. Large science and power

  9. Mars Exploration Rovers Launch Contingency Efforts

    NASA Astrophysics Data System (ADS)

    McGrath, Brian E.; Frostbutter, David A.; Parthasarathy, Karungulam N.; Heyler, Gene A.; Chang, Yale

    2004-02-01

    On 10 June 2003 at 1:58 p.m. Eastern Daylight Time (EDT) and 7 July 2003 at 11:18 p.m. EDT, two separate spacecraft/rovers were successfully launched to Mars atop a Delta II 7925 and Delta II 7925H, respectively. Each spacecraft/rover carried eight Light Weight Radioisotope Heater Units (LWRHUs) for thermal conditioning of electronics during the cold Martian nights. As a part of the joint National Aeronautics and Space Administration/U. S. Department of Energy safety effort, a contingency plan was prepared to address the unlikely events of an accidental suborbital reentry or out-of-orbit reentry. The objective of the contingency plan was to develop and implement procedures to predict, within the first hour, the probable Earth Impact Footprints (EIFs) for the LWRHUs or other possible spacecraft debris after an accidental reentry. No ablation burn-through of the heat sources' aeroshells was expected, as a result of earlier testing. Any predictions would be used in subsequent notification and recovery efforts. The Johns Hopkins University Applied Physics Laboratory, as part of a multi-agency team, was responsible for prediction of the EIFs, and the time of reentry from a potential orbital decay. The tools used to predict the EIFs included a Three-Degree-of-Freedom (3DOF) trajectory simulation code, a Six-Degree-of-Freedom (6DOF) code, a database of aerodynamic coefficients for the LWRHUs and other spacecraft debris, secure links to obtain tracking data, and a high fidelity special perturbation orbit integrator code to predict time of spacecraft reentry from orbital decay. This paper will discuss the contingency plan and process, as well as highlight the improvements made to the analytical tools. Improvements to the 3DOF, aerodynamic database, and orbit integrator and inclusion of the 6DOF have significantly enhanced the prediction capabilities. In the days before launch, the trajectory simulation codes were exercised and predictions of hypothetical EIFs were produced

  10. Wind speed retrieval from Ku-band Tropical Rainfall Mapping Mission precipitation radar data at low incidence angles

    NASA Astrophysics Data System (ADS)

    Ren, Lin; Yang, Jingsong; Zheng, Gang; Wang, Juan

    2016-01-01

    A Ku-band low incidence backscatter model (KuLMOD) for retrieving wind speeds from Tropical Rainfall Mapping Mission (TRMM) precipitation radar (PR) data is proposed. The data set consisted of TRMM PR observations and collocated National Data Buoy Center (NDBC) and Tropical Ocean Global Atmosphere program buoy-measured wind and wave data. The TRMM PR data properties were analyzed with regard to their dependence on spatial resolution, wind speed, relative wind direction, and significant wave height. The KuLMOD model was developed using incidence angles (0.5 to 6.5 deg) and wind speeds (1.5 to 16.5 m/s) as inputs. The model coefficients were derived by fitting the collocated data. The KuLMOD-derived normalized radar cross section, σ0, was compared with those obtained from the TRMM PR observations and a quasi-specular theoretical model and showed good agreement. With the KuLMOD, the wind speeds were retrieved from the TRMM PR data using the least squares method and validated with the buoy measurements, yielding a root mean square error of 1.45 m/s. The retrieval accuracies for the different incidence angles, wind speeds, and spatial resolutions were obtained.

  11. The Evolution of Three Dimensional Visualization for Commanding the Mars Rovers

    NASA Technical Reports Server (NTRS)

    Hartman, Frank R.; Wright, John; Cooper, Brian

    2014-01-01

    NASA's Jet Propulsion Laboratory has built and operated four rovers on the surface of Mars. Two and three dimensional visualization has been extensively employed to command both the mobility and robotic arm operations of these rovers. Stereo visualization has been an important component in this set of visualization techniques. This paper discusses the progression of the implementation and use of visualization techniques for in-situ operations of these robotic missions. Illustrative examples will be drawn from the results of using these techniques over more than ten years of surface operations on Mars.

  12. Mars Methane Analogue Mission (M3): Analytical Techniques and Operations

    NASA Astrophysics Data System (ADS)

    Cloutis, E.; Vrionis, H.; Qadi, A.; Bell, J. F.; Berard, G.; Boivin, A.; Ellery, A.; Jamroz, W.; Kruzelecky, R.; Mann, P.; Samson, C.; Stromberg, J.; Strong, K.; Tremblay, A.; Whyte, L.; Wing, B.

    2011-03-01

    The Mars Methane Analogue Mission (M3) project is designed to simulate a rover-based search for, and analysis of, methane sources on Mars at a serpentinite open pit mine in Quebec, using a variety of instruments.

  13. An Overview of Wind-Driven Rovers for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Hajos, Gregory A.; Jones, Jack A.; Behar, Alberto; Dodd, Micheal

    2005-01-01

    The use of in-situ propulsion is considered enabling technology for long duration planetary surface missions. Most studies have focused on stored energy from chemicals extracted from the soil or the use of soil chemicals to produce photovoltaic arrays. An older form of in-situ propulsion is the use of wind power. Recent studies have shown potential for wind driven craft for exploration of Mars, Titan and Venus. The power of the wind, used for centuries to power wind mills and sailing ships, is now being applied to modern land craft. Efforts are now underway to use the wind to push exploration vehicles on other planets and moons in extended survey missions. Tumbleweed rovers are emerging as a new type of wind-driven science platform concept. Recent investigations by the National Aeronautics and Space Administration (NASA) and Jet Propulsion Laboratory (JPL) indicate that these light-weight, mostly spherical or quasi-spherical devices have potential for long distance surface exploration missions. As a power boat has unique capabilities, but relies on stored energy (fuel) to move the vessel, the Tumbleweed, like the sailing ships of the early explorers on earth, uses an unlimited resource the wind to move around the surface of Mars. This has the potential to reduce the major mass drivers of robotic rovers as well as the power generation and storage systems. Jacques Blamont of JPL and the University of Paris conceived the first documented Mars wind-blown ball in 1977, shortly after the Viking landers discovered that Mars has a thin CO2 atmosphere with relatively strong winds. In 1995, Jack Jones, et al, of JPL conceived of a large wind-blown inflated ball for Mars that could also be driven and steered by means of a motorized mass hanging beneath the rolling axis of the ball. A team at NASA Langley Research Center started a biomimetic Tumbleweed design study in 1998. Wind tunnel and CFD analysis were applied to a variety of concepts to optimize the aerodynamic

  14. Terrain modelling and motion planning for an autonomous exploration rover

    NASA Technical Reports Server (NTRS)

    Richard, F.; Benoliel, S.; Faugeras, O.; Grandjean, P.; Hayard, M.; Simeon, T.

    1994-01-01

    To assess the feasibility of planetary exploration missions using rovers, the French national agency CNES, with a consortium of European laboratories and industrial concerns, has initiated the Eureka project, 'Illustration of an Autonomous Robot for the Exploration of Space' (IARES). IARES is a demonstrator composed of a rover and a ground station, linked by telemetry and telecommand. It is aimed at verifying, on earth, robotic concepts developed by the RISP group of French laboratories (LAAS, INRIA, CERT, LETI) to perform scientific missions such as autonomous terrain sample collecting over large areas. To cope with the actual needs of planet exploration, IARES suitability is assessed through constraints on limited bandwidth, time delay and on-board resources. This autonomy relies heavily on robust onboard trajectory generation capabilities. This paper presents the main functions of the IARES navigation sub-system and shows how they are combined to allow movement in Mars-like environments. Section 2 gives an overall description of the IARES system. Section 3 details the functions of the Navigation sub-system, and finally, section 4 illustrates with a simple example the use of these functions.

  15. Lunar exploration rover program developments

    NASA Technical Reports Server (NTRS)

    Klarer, P. R.

    1994-01-01

    The Robotic All Terrain Lunar Exploration Rover (RATLER) design concept began at Sandia National Laboratories in late 1991 with a series of small, proof-of-principle, working scale models. The models proved the viability of the concept for high mobility through mechanical simplicity, and eventually received internal funding at Sandia National Laboratories for full scale, proof-of-concept prototype development. Whereas the proof-of-principle models demonstrated the mechanical design's capabilities for mobility, the full scale proof-of-concept design currently under development is intended to support field operations for experiments in telerobotics, autonomous robotic operations, telerobotic field geology, and advanced man-machine interface concepts. The development program's current status is described, including an outline of the program's work over the past year, recent accomplishments, and plans for follow-on development work.

  16. Lunar exploration rover program developments

    SciTech Connect

    Klarer, P.R.

    1993-09-01

    The Robotic All Terrain Lunar Exploration Rover (RATLER) design concept began at Sandia National Laboratories in late 1991 with a series of small, proof-of-principle, working scale models. The models proved the viability of the concept for high mobility through mechanical simplicity, and eventually received internal funding at Sandia National Laboratories for full scale, proof-of-concept prototype development. Whereas the proof-of-principle models demonstrated the mechanical design`s capabilities for mobility, the full scale proof-of-concept design currently under development is intended to support field operations for experiments in telerobotics, autonomous robotic operations, telerobotic field geology, and advanced man-machine interface concepts. The development program`s current status is described, including an outline of the program`s work over the past year, recent accomplishments, and plans for follow-on development work.

  17. Lifting Mechanism for the Mars Explorer Rover

    NASA Technical Reports Server (NTRS)

    Melko, Joseph; Iskenderian, Theodore; Harrington, Brian; Voorhees, Christopher

    2005-01-01

    A report discusses the design of a rover lift mechanism (RLM) -- a major subsystem of each of the Mars Exploration Rover vehicles, which were landed on Mars in January 2004. The RLM had to satisfy requirements to (1) be foldable as part of an extremely dense packing arrangement and (2) be capable of unfolding itself in a complex, multistep process for disengaging the rover from its restraints in the lander, lifting the main body of the rover off its landing platform, and placing the rover wheels on the platform in preparation for driving the rover off the platform. There was also an overriding requirement to minimize the overall mass of the rover and lander. To satisfy the combination of these and other requirements, it was necessary to formulate an extremely complex design that integrated components and functions of the RLM with those of a rocker-bogie suspension system, the aspects of which have been described in several prior NASA Tech Briefs articles. In this design, suspension components also serve as parts of a 4- bar linkage in the RLM.

  18. Evaluation of simple deployment mechanism of multiple rovers by microgravity experiments using a drop tower

    NASA Astrophysics Data System (ADS)

    Yoshimitsu, Tetsuo; Yano, Hajime; Kubota, Takashi; Adachi, Tadashi; Ishigami, Genya

    2012-07-01

    Introduction, Japan has announced the official development of ``Hayabusa-2'', the second sample return mission to a Near-Earth asteroid. When the development is made smoothly, Hayabusa-2 will be launched in 2014. The predecessor spacecraft ``Hayabusa'' made a great success when it returned to the Earth in June 2010 with