Map-IT! A Web-Based GIS Tool for Watershed Science Education.
ERIC Educational Resources Information Center
Curtis, David H.; Hewes, Christopher M.; Lossau, Matthew J.
This paper describes the development of a prototypic, Web-accessible GIS solution for K-12 science education and citizen-based watershed monitoring. The server side consists of ArcView IMS running on an NT workstation. The client is built around MapCafe. The client interface, which runs through a standard Web browser, supports standard MapCafe…
First Prototype of a Web Map Interface for ESA's Planetary Science Archive (PSA)
NASA Astrophysics Data System (ADS)
Manaud, N.; Gonzalez, J.
2014-04-01
We present a first prototype of a Web Map Interface that will serve as a proof of concept and design for ESA's future fully web-based Planetary Science Archive (PSA) User Interface. The PSA is ESA's planetary science archiving authority and central repository for all scientific and engineering data returned by ESA's Solar System missions [1]. All data are compliant with NASA's Planetary Data System (PDS) Standards and are accessible through several interfaces [2]: in addition to serving all public data via FTP and the Planetary Data Access Protocol (PDAP), a Java-based User Interface provides advanced search, preview, download, notification and delivery-basket functionality. It allows the user to query and visualise instrument observations footprints using a map-based interface (currently only available for Mars Express HRSC and OMEGA instruments). During the last decade, the planetary mapping science community has increasingly been adopting Geographic Information System (GIS) tools and standards, originally developed for and used in Earth science. There is an ongoing effort to produce and share cartographic products through Open Geospatial Consortium (OGC) Web Services, or as standalone data sets, so that they can be readily used in existing GIS applications [3,4,5]. Previous studies conducted at ESAC [6,7] have helped identify the needs of Planetary GIS users, and define key areas of improvement for the future Web PSA User Interface. Its web map interface shall will provide access to the full geospatial content of the PSA, including (1) observation geometry footprints of all remote sensing instruments, and (2) all georeferenced cartographic products, such as HRSC map-projected data or OMEGA global maps from Mars Express. It shall aim to provide a rich user experience for search and visualisation of this content using modern and interactive web mapping technology. A comprehensive set of built-in context maps from external sources, such as MOLA topography, TES infrared maps or planetary surface nomenclature, provided in both simple cylindrical and polar stereographic projections, shall enhance this user experience. In addition, users should be able to import and export data in commonly used open- GIS formats. It is also intended to serve all PSA geospatial data through OGC-compliant Web Services so that they can be captured, visualised and analysed directly from GIS software, along with data from other sources. The following figure illustrates how the PSA web map interface and services shall fit in a typical Planetary GIS user working environment.
ERIC Educational Resources Information Center
Science Scope, 1997
1997-01-01
Presents The Learning Web, a web site dedicated to K-12 earth science education that is maintained by the U.S. Geological Survey. Includes earth science activities and information presented in three categories: (1) Global Change; (2) Working With Maps; and (3) Earth Science. Also features other educational sections such as Ask-A-Geologist, Dynamic…
NASA Astrophysics Data System (ADS)
Abdi, A.
2012-12-01
Science and science education benefit from easy access to data yet often geophysical data sets are large, complex and difficult to share. The difficulty in sharing data and imagery easily inhibits both collaboration and the use of real data in educational applications. The dissemination of data products through web maps serves a very efficient and user-friendly method for students, the public and the science community to gain insights and understanding from data. Few research groups provide direct access to their data, let alone map-based visualizations. By building upon current GIS infrastructure with web mapping technologies, like ArcGIS Server, scientific groups, institutions and agencies can enhance the value of their GIS investments. The advantages of web maps to serve data products are many; existing web-mapping technology allows complex GIS analysis to be shared across the Internet, and can be easily scaled from a few users to millions. This poster highlights the features of an interactive web map developed at the Polar Geophysics Group at the Lamont-Doherty Earth Observatory of Columbia University that provides a visual representation of, and access to, data products that resulted from the group's recently concluded AGAP project (http://pgg.ldeo.columbia.edu). The AGAP project collected more than 120,000 line km of new aerogeophysical data using two Twin Otter aircrafts. Data included ice penetrating radar, magnetometer, gravimeter and laser altimeter measurements. The web map is based upon ArcGIS Viewer for Flex, which is a configurable client application built on the ArcGIS API for Flex that works seamlessly with ArcGIS Server 10. The application can serve a variety of raster and vector file formats through the Data Interoperability for Server, which eliminates data sharing barriers across numerous file formats. The ability of the application to serve large datasets is only hindered by the availability of appropriate hardware. ArcGIS is a proprietary product, but there are a few data portals in the earth sciences that have a map interface using open access products such as MapServer and OpenLayers, the most notable being the NASA IceBridge Data Portal. Indeed, with the widespread availability of web mapping technology, the scientific community should advance towards this direction when disseminating their data.
Paradigms, Citations, and Maps of Science: A Personal History.
ERIC Educational Resources Information Center
Small, Henry
2003-01-01
Discusses mapping science and Kuhn's theories of paradigms and scientific development. Highlights include cocitation clustering; bibliometric definition of a paradigm; specialty dynamics; pathways through science; a new Web tool called Essential Science Indicators (ESI) for studying the structure of science; and microrevolutions. (Author/LRW)
Arctic Research Mapping Application (ARMAP): 2D Maps and 3D Globes Support Arctic Science
NASA Astrophysics Data System (ADS)
Johnson, G.; Gaylord, A. G.; Brady, J. J.; Cody, R. P.; Aguilar, J. A.; Dover, M.; Garcia-Lavigne, D.; Manley, W.; Score, R.; Tweedie, C. E.
2007-12-01
The Arctic Research Mapping Application (ARMAP) is a suite of online services to provide support of Arctic science. These services include: a text based online search utility, 2D Internet Map Server (IMS); 3D globes and Open Geospatial Consortium (OGC) Web Map Services (WMS). With ARMAP's 2D maps and 3D globes, users can navigate to areas of interest, view a variety of map layers, and explore U.S. Federally funded research projects. Projects can be queried by location, year, funding program, discipline, and keyword. Links take you to specific information and other web sites associated with a particular research project. The Arctic Research Logistics Support Service (ARLSS) database is the foundation of ARMAP including US research funded by the National Science Foundation, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, and the United States Geological Survey. Avoiding a duplication of effort has been a primary objective of the ARMAP project which incorporates best practices (e.g. Spatial Data Infrastructure and OGC standard web services and metadata) and off the shelf technologies where appropriate. The ARMAP suite provides tools for users of various levels of technical ability to interact with the data by importing the web services directly into their own GIS applications and virtual globes; performing advanced GIS queries; simply printing maps from a set of predefined images in the map gallery; browsing the layers in an IMS; or by choosing to "fly to" sites using a 3D globe. With special emphasis on the International Polar Year (IPY), ARMAP has targeted science planners, scientists, educators, and the general public. In sum, ARMAP goes beyond a simple map display to enable analysis, synthesis, and coordination of Arctic research. ARMAP may be accessed via the gateway web site at http://www.armap.org.
Mapping the Themes, Impact, and Cohesion of Creativity Research over the Last 25 Years
ERIC Educational Resources Information Center
Williams, Rich; Runco, Mark A.; Berlow, Eric
2016-01-01
This article describes the themes found in the past 25 years of creativity research. Computational methods and network analysis were used to map keyword theme development across ~1,400 documents and ~5,000 unique keywords from 1990 (the first year keywords are available in Web of Science) to 2015. Data were retrieved from Web of Science using the…
Geoinquiries: Maps and Data for Everyone
ERIC Educational Resources Information Center
Baker, Thomas R.
2015-01-01
Ever want to take a quick, deep-dive into a map found in students' textbooks? Ever want to use a web-based map to bring that static, print map to life? Maybe the map would be better with interactive or near real-time data. This article discusses the new Earth Science GeoInquiries! Earth Science GeoInquiries from Esri are instructional resources…
Story Maps as an Effective Social Medium for Data Synthesis, Communication, and Dissemination
NASA Astrophysics Data System (ADS)
Wright, D. J.; Verrill, A.; Artz, M.; Deming, R.
2014-12-01
The story map is a new medium for sharing not only data, but also photos, videos, sounds, and maps, as a way to tell a specific and compelling story by way of that content. It is emerging as a popular and effective social media too. The user may employ some fairly sophisticated cartographic functionality without advanced training in cartography or GIS. Story maps are essentially web map applications built from web maps, which in turn are built from web-accessible data (including OGC WMS, WFS). This paper will emphasize the approaches and technologies of web-based GIS to tell "stories" about important connections among scientists, resource managers, and policy makers focused on oceans and coasts within the US; and how combining the new medium of "intelligent Web maps" with text, multimedia content, and intuitive user experiences has a great potential to synthesize the data, and it primary interpretative message in order to inform, educate, and inspire about a wide variety of ocean science and policy issues.
BingEO: Enable Distributed Earth Observation Data for Environmental Research
NASA Astrophysics Data System (ADS)
Wu, H.; Yang, C.; Xu, Y.
2010-12-01
Our planet is facing great environmental challenges including global climate change, environmental vulnerability, extreme poverty, and a shortage of clean cheap energy. To address these problems, scientists are developing various models to analysis, forecast, simulate various geospatial phenomena to support critical decision making. These models not only challenge our computing technology, but also challenge us to feed huge demands of earth observation data. Through various policies and programs, open and free sharing of earth observation data are advocated in earth science. Currently, thousands of data sources are freely available online through open standards such as Web Map Service (WMS), Web Feature Service (WFS) and Web Coverage Service (WCS). Seamless sharing and access to these resources call for a spatial Cyberinfrastructure (CI) to enable the use of spatial data for the advancement of related applied sciences including environmental research. Based on Microsoft Bing Search Engine and Bing Map, a seamlessly integrated and visual tool is under development to bridge the gap between researchers/educators and earth observation data providers. With this tool, earth science researchers/educators can easily and visually find the best data sets for their research and education. The tool includes a registry and its related supporting module at server-side and an integrated portal as its client. The proposed portal, Bing Earth Observation (BingEO), is based on Bing Search and Bing Map to: 1) Use Bing Search to discover Web Map Services (WMS) resources available over the internet; 2) Develop and maintain a registry to manage all the available WMS resources and constantly monitor their service quality; 3) Allow users to manually register data services; 4) Provide a Bing Maps-based Web application to visualize the data on a high-quality and easy-to-manipulate map platform and enable users to select the best data layers online. Given the amount of observation data accumulated already and still growing, BingEO will allow these resources to be utilized more widely, intensively, efficiently and economically in earth science applications.
Clickstream data yields high-resolution maps of science.
Bollen, Johan; Van de Sompel, Herbert; Hagberg, Aric; Bettencourt, Luis; Chute, Ryan; Rodriguez, Marko A; Balakireva, Lyudmila
2009-01-01
Intricate maps of science have been created from citation data to visualize the structure of scientific activity. However, most scientific publications are now accessed online. Scholarly web portals record detailed log data at a scale that exceeds the number of all existing citations combined. Such log data is recorded immediately upon publication and keeps track of the sequences of user requests (clickstreams) that are issued by a variety of users across many different domains. Given these advantages of log datasets over citation data, we investigate whether they can produce high-resolution, more current maps of science. Over the course of 2007 and 2008, we collected nearly 1 billion user interactions recorded by the scholarly web portals of some of the most significant publishers, aggregators and institutional consortia. The resulting reference data set covers a significant part of world-wide use of scholarly web portals in 2006, and provides a balanced coverage of the humanities, social sciences, and natural sciences. A journal clickstream model, i.e. a first-order Markov chain, was extracted from the sequences of user interactions in the logs. The clickstream model was validated by comparing it to the Getty Research Institute's Architecture and Art Thesaurus. The resulting model was visualized as a journal network that outlines the relationships between various scientific domains and clarifies the connection of the social sciences and humanities to the natural sciences. Maps of science resulting from large-scale clickstream data provide a detailed, contemporary view of scientific activity and correct the underrepresentation of the social sciences and humanities that is commonly found in citation data.
Clickstream Data Yields High-Resolution Maps of Science
Bollen, Johan; Van de Sompel, Herbert; Rodriguez, Marko A.; Balakireva, Lyudmila
2009-01-01
Background Intricate maps of science have been created from citation data to visualize the structure of scientific activity. However, most scientific publications are now accessed online. Scholarly web portals record detailed log data at a scale that exceeds the number of all existing citations combined. Such log data is recorded immediately upon publication and keeps track of the sequences of user requests (clickstreams) that are issued by a variety of users across many different domains. Given these advantages of log datasets over citation data, we investigate whether they can produce high-resolution, more current maps of science. Methodology Over the course of 2007 and 2008, we collected nearly 1 billion user interactions recorded by the scholarly web portals of some of the most significant publishers, aggregators and institutional consortia. The resulting reference data set covers a significant part of world-wide use of scholarly web portals in 2006, and provides a balanced coverage of the humanities, social sciences, and natural sciences. A journal clickstream model, i.e. a first-order Markov chain, was extracted from the sequences of user interactions in the logs. The clickstream model was validated by comparing it to the Getty Research Institute's Architecture and Art Thesaurus. The resulting model was visualized as a journal network that outlines the relationships between various scientific domains and clarifies the connection of the social sciences and humanities to the natural sciences. Conclusions Maps of science resulting from large-scale clickstream data provide a detailed, contemporary view of scientific activity and correct the underrepresentation of the social sciences and humanities that is commonly found in citation data. PMID:19277205
Using a Web-based GIS to Teach Problem-based Science in High School and College
NASA Astrophysics Data System (ADS)
Metzger, E.; Lenkeit Meezan, , K. A.; Schmidt, C.; Taketa, R.; Carter, J.; Iverson, R.
2008-12-01
Foothill College has partnered with San Jose State University to bring GIS web mapping technology to the high school and college classroom. The project consists of two parts. In the first part, Foothill and San Jose State University have teamed up to offer classes on building and maintaining Web based Geographic Information Systems (GIS). Web-based GIS such as Google Maps, MapQuest and Yahoo Maps have become ubiquitous, and the skills to build and maintain these systems are in high demand from many employers. In the second part of the project, high school students will be able to learn about Web GIS as a real world tool used by scientists. The students in the Foothill College/San Jose State class will build their Web GIS using scientific data related to the San Francisco/San Joaquin Delta region, with a focus on watersheds, biodiversity and earthquake hazards. This project includes high school level curriculum development that will tie in to No Child Left Behind and National Curriculum Standards in both Science and Geography, and provide workshops for both pre-and in- service teachers in the use of Web GIS-driven course material in the high school classroom. The project will bring the work of professional scientists into any high school classroom with an internet connection; while simultaneously providing workforce training in high demand technology based jobs.
Reconstructing a School's Past Using Oral Histories and GIS Mapping.
ERIC Educational Resources Information Center
Alibrandi, Marsha; Beal, Candy; Thompson, Ann; Wilson, Anna
2000-01-01
Describes an interdisciplinary project that incorporated language arts, social studies, instructional technology, and science where middle school students were involved in oral history, Geographic Information System (GIS) mapping, architectural research, the science of dendrochronology, and the creation of an archival school Web site. (CMK)
Exploring NASA GES DISC Data with Interoperable Services
NASA Technical Reports Server (NTRS)
Zhao, Peisheng; Yang, Wenli; Hegde, Mahabal; Wei, Jennifer C.; Kempler, Steven; Pham, Long; Teng, William; Savtchenko, Andrey
2015-01-01
Overview of NASA GES DISC (NASA Goddard Earth Science Data and Information Services Center) data with interoperable services: Open-standard and Interoperable Services Improve data discoverability, accessibility, and usability with metadata, catalogue and portal standards Achieve data, information and knowledge sharing across applications with standardized interfaces and protocols Open Geospatial Consortium (OGC) Data Services and Specifications Web Coverage Service (WCS) -- data Web Map Service (WMS) -- pictures of data Web Map Tile Service (WMTS) --- pictures of data tiles Styled Layer Descriptors (SLD) --- rendered styles.
Global Land Survey Impervious Mapping Project Web Site
NASA Technical Reports Server (NTRS)
DeColstoun, Eric Brown; Phillips, Jacqueline
2014-01-01
The Global Land Survey Impervious Mapping Project (GLS-IMP) aims to produce the first global maps of impervious cover at the 30m spatial resolution of Landsat. The project uses Global Land Survey (GLS) Landsat data as its base but incorporates training data generated from very high resolution commercial satellite data and using a Hierarchical segmentation program called Hseg. The web site contains general project information, a high level description of the science, examples of input and output data, as well as links to other relevant projects.
ERIC Educational Resources Information Center
Anderson, O. Roger; Contino, Julie
2010-01-01
Current research indicates that students with enhanced knowledge networks are more effective in learning science content and applying higher order thinking skills in open-ended inquiry learning. This research examined teacher implementation of a novel teaching strategy called "web diagramming," a form of network mapping, in a secondary school…
Exploratory visualization of earth science data in a Semantic Web context
NASA Astrophysics Data System (ADS)
Ma, X.; Fox, P. A.
2012-12-01
Earth science data are increasingly unlocked from their local 'safes' and shared online with the global science community as well as the average citizen. The European Union (EU)-funded project OneGeology-Europe (1G-E, www.onegeology-europe.eu) is a typical project that promotes works in that direction. The 1G-E web portal provides easy access to distributed geological data resources across participating EU member states. Similar projects can also be found in other countries or regions, such as the geoscience information network USGIN (www.usgin.org) in United States, the groundwater information network GIN-RIES (www.gw-info.net) in Canada and the earth science infrastructure AuScope (www.auscope.org.au) in Australia. While data are increasingly made available online, we currently face a shortage of tools and services that support information and knowledge discovery with such data. One reason is that earth science data are recorded in professional language and terms, and people without background knowledge cannot understand their meanings well. The Semantic Web provides a new context to help computers as well as users to better understand meanings of data and conduct applications. In this study we aim to chain up Semantic Web technologies (e.g., vocabularies/ontologies and reasoning), data visualization (e.g., an animation underpinned by an ontology) and online earth science data (e.g., available as Web Map Service) to develop functions for information and knowledge discovery. We carried out a case study with data of the 1G-E project. We set up an ontology of geological time scale using the encoding languages of SKOS (Simple Knowledge Organization System) and OWL (Web Ontology Language) from W3C (World Wide Web Consortium, www.w3.org). Then we developed a Flash animation of geological time scale by using the ActionScript language. The animation is underpinned by the ontology and the interrelationships between concepts of geological time scale are visualized in the animation. We linked the animation and the ontology to the online geological data of 1G-E project and developed interactive applications. The animation was used to show legends of rock age layers in geological maps dynamically. In turn, these legends were used as control panels to filter out and generalize geospatial features of certain rock ages on map layers. We tested the functions with maps of various EU member states. As a part of the initial results, legends for rock age layers of EU individual national maps were generated respectively, and the functions for filtering and generalization were examined with the map of United Kingdom. Though new challenges are rising in the tests, like those caused by synonyms (e.g., 'Lower Cambrian' and 'Terreneuvian'), the initial results achieved the designed goals of information and knowledge discovery by using the ontology-underpinned animation. This study shows that (1) visualization lowers the barrier of ontologies, (2) integrating ontologies and visualization adds value to online earth science data services, and (3) exploratory visualization supports the procedure of data processing as well as the display of results.
HCLS 2.0/3.0: health care and life sciences data mashup using Web 2.0/3.0.
Cheung, Kei-Hoi; Yip, Kevin Y; Townsend, Jeffrey P; Scotch, Matthew
2008-10-01
We describe the potential of current Web 2.0 technologies to achieve data mashup in the health care and life sciences (HCLS) domains, and compare that potential to the nascent trend of performing semantic mashup. After providing an overview of Web 2.0, we demonstrate two scenarios of data mashup, facilitated by the following Web 2.0 tools and sites: Yahoo! Pipes, Dapper, Google Maps and GeoCommons. In the first scenario, we exploited Dapper and Yahoo! Pipes to implement a challenging data integration task in the context of DNA microarray research. In the second scenario, we exploited Yahoo! Pipes, Google Maps, and GeoCommons to create a geographic information system (GIS) interface that allows visualization and integration of diverse categories of public health data, including cancer incidence and pollution prevalence data. Based on these two scenarios, we discuss the strengths and weaknesses of these Web 2.0 mashup technologies. We then describe Semantic Web, the mainstream Web 3.0 technology that enables more powerful data integration over the Web. We discuss the areas of intersection of Web 2.0 and Semantic Web, and describe the potential benefits that can be brought to HCLS research by combining these two sets of technologies.
HCLS 2.0/3.0: Health Care and Life Sciences Data Mashup Using Web 2.0/3.0
Cheung, Kei-Hoi; Yip, Kevin Y.; Townsend, Jeffrey P.; Scotch, Matthew
2010-01-01
We describe the potential of current Web 2.0 technologies to achieve data mashup in the health care and life sciences (HCLS) domains, and compare that potential to the nascent trend of performing semantic mashup. After providing an overview of Web 2.0, we demonstrate two scenarios of data mashup, facilitated by the following Web 2.0 tools and sites: Yahoo! Pipes, Dapper, Google Maps and GeoCommons. In the first scenario, we exploited Dapper and Yahoo! Pipes to implement a challenging data integration task in the context of DNA microarray research. In the second scenario, we exploited Yahoo! Pipes, Google Maps, and GeoCommons to create a geographic information system (GIS) interface that allows visualization and integration of diverse categories of public health data, including cancer incidence and pollution prevalence data. Based on these two scenarios, we discuss the strengths and weaknesses of these Web 2.0 mashup technologies. We then describe Semantic Web, the mainstream Web 3.0 technology that enables more powerful data integration over the Web. We discuss the areas of intersection of Web 2.0 and Semantic Web, and describe the potential benefits that can be brought to HCLS research by combining these two sets of technologies. PMID:18487092
Exploration and Discovery through Maps: Teaching Science with Technology
Online maps have the power to bring students closer to their local natural environments. EnviroAtlas is an interactive, web-based tool that was designed by the EPA and its partners to provide access to maps that show the status of the local environment and social elements of an ...
Tampa Bay Study Data and Information Management System (DIMS)
NASA Astrophysics Data System (ADS)
Edgar, N. T.; Johnston, J. B.; Yates, K.; Smith, K. E.
2005-05-01
Providing easy access to data and information is an essential component of both science and management. The Tampa Bay Data and Information Management System (DIMS) catalogs and publicizes data and products which are generated through the Tampa Bay Integrated Science Study. The publicly accessible interface consists of a Web site (http://gulfsci.usgs.gov), a digital library, and an interactive map server (IMS). The Tampa Bay Study Web site contains information from scientists involved in the study, and is also the portal site for the digital library and IMS. Study information is highlighted on the Web site according to the estuarine component: geology and geomorphology, water and sediment quality, ecosystem structure and function, and hydrodynamics. The Tampa Bay Digital Library is a web-based clearinghouse for digital products on Tampa Bay, including documents, maps, spatial and tabular data sets, presentations, etc. New developments to the digital library include new search features, 150 new products over the past year, and partnerships to expand the offering of science products. The IMS is a Web-based geographic information system (GIS) used to store, analyze and display data pertaining to Tampa Bay. Upgrades to the IMS have improved performance and speed, as well as increased the number of data sets available for mapping. The Tampa Bay DIMS is a dynamic entity and will continue to evolve with the study. Beginning in 2005, the Tampa Bay Integrated Coastal Model will have a more prominent presence within the DIMS. The Web site will feature model projects and plans; the digital library will host model products and data sets; the IMS will display spatial model data sets and analyses. These tools will be used to increase communication of USGS efforts in Tampa Bay to the public, local managers, and scientists.
Clickstream data yields high-resolution maps of science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bollen, Johan; Van De Sompel, Herbert; Hagberg, Aric
2009-01-01
Intricate maps of science have been created from citation data to visualize the structure of scientific activity. However, most scientific publications are now accessed online. Scholarly web portals record detailed log data at a scale that exceeds the number of all existing citations combined. Such log data is recorded immediately upon publication and keeps track of the sequences of user requests (clickstreams) that are issued by a variety of users across many different domains. Given these advantagees of log datasets over citation data, we investigate whether they can produce high-resolution, more current maps of science.
Education modules using EnviroAtlas (#2)
Session Title #1: Exploration and Discovery through Maps: Teaching Science with Technology. Online maps have the power to spark student interest and bring students closer to their local natural environments. EnviroAtlas is an interactive, web-based tool that was designed by the...
Education modules using EnviroAtlas
Proposal #1: Exploration and Discovery through Maps: Teaching Science with Technology (Elementary)Online maps have the power to bring students closer to their local natural environments. EnviroAtlas is an interactive, web-based tool that was designed by the EPA and its partners ...
Interoperability in planetary research for geospatial data analysis
NASA Astrophysics Data System (ADS)
Hare, Trent M.; Rossi, Angelo P.; Frigeri, Alessandro; Marmo, Chiara
2018-01-01
For more than a decade there has been a push in the planetary science community to support interoperable methods for accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (e.g., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized geospatial image formats, geologic mapping conventions, U.S. Federal Geographic Data Committee (FGDC) cartographic and metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Map Tile Services (cached image tiles), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they can be just as valuable for planetary domain. Another initiative, called VESPA (Virtual European Solar and Planetary Access), will marry several of the above geoscience standards and astronomy-based standards as defined by International Virtual Observatory Alliance (IVOA). This work outlines the current state of interoperability initiatives in use or in the process of being researched within the planetary geospatial community.
Using Web GIS for Public Health Education
ERIC Educational Resources Information Center
Reed, Rajika E.; Bodzin, Alec M.
2016-01-01
An interdisciplinary curriculum unit that used Web GIS mapping to investigate malaria disease patterns and spread in relation to the environment for a high school Advanced Placement Environmental Science course was developed. A feasibility study was conducted to investigate the efficacy of the unit to promote geospatial thinking and reasoning…
Integrating Socioeconomic and Earth Science Data Using Geobrowsers and Web Services: A Demonstration
NASA Astrophysics Data System (ADS)
Schumacher, J. A.; Yetman, G. G.
2007-12-01
The societal benefit areas identified as the focus for the Global Earth Observing System of Systems (GEOSS) 10- year implementation plan are an indicator of the importance of integrating socioeconomic data with earth science data to support decision makers. To aid this integration, CIESIN is delivering its global and U.S. demographic data to commercial and open source Geobrowsers and providing open standards based services for data access. Currently, data on population distribution, poverty, and detailed census data for the U.S. are available for visualization and access in Google Earth, NASA World Wind, and a browser-based 2-dimensional mapping client. The mapping client allows for the creation of web map documents that pull together layers from distributed servers and can be saved and shared. Visualization tools with Geobrowsers, user-driven map creation and sharing via browser-based clients, and a prototype for characterizing populations at risk to predicted precipitation deficits will be demonstrated.
COEUS: “semantic web in a box” for biomedical applications
2012-01-01
Background As the “omics” revolution unfolds, the growth in data quantity and diversity is bringing about the need for pioneering bioinformatics software, capable of significantly improving the research workflow. To cope with these computer science demands, biomedical software engineers are adopting emerging semantic web technologies that better suit the life sciences domain. The latter’s complex relationships are easily mapped into semantic web graphs, enabling a superior understanding of collected knowledge. Despite increased awareness of semantic web technologies in bioinformatics, their use is still limited. Results COEUS is a new semantic web framework, aiming at a streamlined application development cycle and following a “semantic web in a box” approach. The framework provides a single package including advanced data integration and triplification tools, base ontologies, a web-oriented engine and a flexible exploration API. Resources can be integrated from heterogeneous sources, including CSV and XML files or SQL and SPARQL query results, and mapped directly to one or more ontologies. Advanced interoperability features include REST services, a SPARQL endpoint and LinkedData publication. These enable the creation of multiple applications for web, desktop or mobile environments, and empower a new knowledge federation layer. Conclusions The platform, targeted at biomedical application developers, provides a complete skeleton ready for rapid application deployment, enhancing the creation of new semantic information systems. COEUS is available as open source at http://bioinformatics.ua.pt/coeus/. PMID:23244467
COEUS: "semantic web in a box" for biomedical applications.
Lopes, Pedro; Oliveira, José Luís
2012-12-17
As the "omics" revolution unfolds, the growth in data quantity and diversity is bringing about the need for pioneering bioinformatics software, capable of significantly improving the research workflow. To cope with these computer science demands, biomedical software engineers are adopting emerging semantic web technologies that better suit the life sciences domain. The latter's complex relationships are easily mapped into semantic web graphs, enabling a superior understanding of collected knowledge. Despite increased awareness of semantic web technologies in bioinformatics, their use is still limited. COEUS is a new semantic web framework, aiming at a streamlined application development cycle and following a "semantic web in a box" approach. The framework provides a single package including advanced data integration and triplification tools, base ontologies, a web-oriented engine and a flexible exploration API. Resources can be integrated from heterogeneous sources, including CSV and XML files or SQL and SPARQL query results, and mapped directly to one or more ontologies. Advanced interoperability features include REST services, a SPARQL endpoint and LinkedData publication. These enable the creation of multiple applications for web, desktop or mobile environments, and empower a new knowledge federation layer. The platform, targeted at biomedical application developers, provides a complete skeleton ready for rapid application deployment, enhancing the creation of new semantic information systems. COEUS is available as open source at http://bioinformatics.ua.pt/coeus/.
Regional Geology Web Map Application Development: Javascript v2.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Glenn
This is a milestone report for the FY2017 continuation of the Spent Fuel, Storage, and Waste, Technology (SFSWT) program (formerly Used Fuel Disposal (UFD) program) development of the Regional Geology Web Mapping Application by the Idaho National Laboratory Geospatial Science and Engineering group. This application was developed for general public use and is an interactive web-based application built in Javascript to visualize, reference, and analyze US pertinent geological features of the SFSWT program. This tool is a version upgrade from Adobe FLEX technology. It is designed to facilitate informed decision making of the geology of continental US relevant to themore » SFSWT program.« less
Teaching science with technology: Using EPA’s EnviroAtlas in the classroom
Background/Question/Methods U.S. EPA’s EnviroAtlas provides a collection of web-based, interactive tools and resources for exploring ecosystem goods and services. EnviroAtlas contains two primary tools: An Interactive Map, which provides access to 300+ maps at multiple exte...
NASA Astrophysics Data System (ADS)
Satheendran, S.; John, C. M.; Fasalul, F. K.; Aanisa, K. M.
2014-11-01
Web geoservices is the obvious graduation of Geographic Information System in a distributed environment through a simple browser. It enables organizations to share domain-specific rich and dynamic spatial information over the web. The present study attempted to design and develop a web enabled GIS application for the School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, India to publish various geographical databases to the public through its website. The development of this project is based upon the open source tools and techniques. The output portal site is platform independent. The premier webgis frame work `Geomoose' is utilized. Apache server is used as the Web Server and the UMN Map Server is used as the map server for this project. It provides various customised tools to query the geographical database in different ways and search for various facilities in the geographical area like banks, attractive places, hospitals, hotels etc. The portal site was tested with the output geographical database of 2 projects of the School such as 1) the Tourism Information System for the Malabar region of Kerala State consisting of 5 northern districts 2) the geoenvironmental appraisal of the Athirappilly Hydroelectric Project covering the entire Chalakkudy river basin.
NASA Astrophysics Data System (ADS)
Cody, R. P.; Escarzaga, S. M.; Gaylord, A. G.; Kassin, A.; Barba, M.; Tweedie, C. E.
2017-12-01
The Utqiaġvik (Barrow) area of northern Alaska is one of the most intensely researched locations in the Arctic and the Barrow Area Information Database (BAID, www.barrowmapped.org) tracks and facilitates a gamut of research, management, and educational activities in the area. BAID is a cyberinfrastructure (CI) that details much of the historic and extant research undertaken within in the Barrow region in a suite of interactive web-based mapping and information portals (geobrowsers). The BAID user community and target audience for BAID is diverse and includes research scientists, science logisticians, land managers, educators, students, and the general public. BAID contains information on more than 18,000 Barrow area research sites that extend back to the 1940's and more than 640 remote sensing images and geospatial datasets. In a web-based setting, users can zoom, pan, query, measure distance, save or print maps and query results, and filter or view information by space, time, and/or other tags. Recent advances include provision of differential global positioning (dGPS) system and high resolution aerial imagery support to visiting scientists, analysis and multitemporal mapping of over 120 km of coastline for erosion monitoring; maintenance of a wireless micrometeorological sensor network; links to Barrow area datasets housed at national data archives; a NOAA funded community outreach program for citizen science and public outreach on costal erosion; and substantial upgrades to the BAID website. Web mapping applications that have launched to the public include: an Imagery Time Viewer that allows users to compare imagery of the Barrow area between 1948 and the present; a Coastal Erosion Viewer that allows users to view long-term (1955-2015) and recent (2013-2015) rates of erosion for the Barrow area; and a Community Planning tool that allows users to view and print dynamic reports based on an array of basemaps including a new 0.5m resolution wetlands map designed to enhance decision making for development and land management.
Quantitative Analysis of the Usage of the COSMOS Science Education Portal
ERIC Educational Resources Information Center
Sotiriou, Sofoklis; Bogner, Franz X.; Neofotistos, George
2011-01-01
A quantitative method of mapping the web usage of an innovative educational portal is applied to analyze the behaviour of users of the COSMOS Science Education Portal. The COSMOS Portal contains user-generated resources (that are uploaded by its users). It has been designed to support a science teacher's search, retrieval and access to both,…
NASA Astrophysics Data System (ADS)
Blachowski, Jan; Łuczak, Jakub; Zagrodnik, Paulina
2018-01-01
Public participation geographic information system (GIS) and participatory mapping data collection methods are means that enhance capacity in generating, managing, and communicating spatial information in various fields ranging from local planning to environmental management. In this study these methods have been used in two ways. The first one, to gather information on the additional functionality of campus web map expected by its potential users, i.e. students, staff and visitors, through web based survey. The second, to collect geographically referenced information on campus areas that are liked and disliked in a geo-survey carried out with ArcGIS Online GeoForm Application. The results of the first survey were used to map facilities such as: bicycle infrastructure, building entrances, wheelchair accessible infrastructure and benches. The results of the second one, to analyse the most and the least attractive parts of the campus with heat and hot spot analyses in GIS. In addition, the answers have been studied with regard to the visual and functional aspects of campus area raised in the survey. The thematic layers developed in the results of field mapping and geoprocessing of geosurvey data were included in the campus web map project. The paper describes the applied methodology of data collection, processing, analysis, interpretation and geovisualisation.
RIMS: An Integrated Mapping and Analysis System with Applications to Earth Sciences and Hydrology
NASA Astrophysics Data System (ADS)
Proussevitch, A. A.; Glidden, S.; Shiklomanov, A. I.; Lammers, R. B.
2011-12-01
A web-based information and computational system for analysis of spatially distributed Earth system, climate, and hydrologic data have been developed. The System allows visualization, data exploration, querying, manipulation and arbitrary calculations with any loaded gridded or vector polygon dataset. The system's acronym, RIMS, stands for its core functionality as a Rapid Integrated Mapping System. The system can be deployed for a Global scale projects as well as for regional hydrology and climatology studies. In particular, the Water Systems Analysis Group of the University of New Hampshire developed the global and regional (Northern Eurasia, pan-Arctic) versions of the system with different map projections and specific data. The system has demonstrated its potential for applications in other fields of Earth sciences and education. The key Web server/client components of the framework include (a) a visualization engine built on Open Source libraries (GDAL, PROJ.4, etc.) that are utilized in a MapServer; (b) multi-level data querying tools built on XML server-client communication protocols that allow downloading map data on-the-fly to a client web browser; and (c) data manipulation and grid cell level calculation tools that mimic desktop GIS software functionality via a web interface. Server side data management of the system is designed around a simple database of dataset metadata facilitating mounting of new data to the system and maintaining existing data in an easy manner. RIMS contains "built-in" river network data that allows for query of upstream areas on-demand which can be used for spatial data aggregation and analysis of sub-basin areas. RIMS is an ongoing effort and currently being used to serve a number of websites hosting a suite of hydrologic, environmental and other GIS data.
GIS Technologies For The New Planetary Science Archive (PSA)
NASA Astrophysics Data System (ADS)
Docasal, R.; Barbarisi, I.; Rios, C.; Macfarlane, A. J.; Gonzalez, J.; Arviset, C.; De Marchi, G.; Martinez, S.; Grotheer, E.; Lim, T.; Besse, S.; Heather, D.; Fraga, D.; Barthelemy, M.
2015-12-01
Geographical information system (GIS) is becoming increasingly used for planetary science. GIS are computerised systems for the storage, retrieval, manipulation, analysis, and display of geographically referenced data. Some data stored in the Planetary Science Archive (PSA), for instance, a set of Mars Express/Venus Express data, have spatial metadata associated to them. To facilitate users in handling and visualising spatial data in GIS applications, the new PSA should support interoperability with interfaces implementing the standards approved by the Open Geospatial Consortium (OGC). These standards are followed in order to develop open interfaces and encodings that allow data to be exchanged with GIS Client Applications, well-known examples of which are Google Earth and NASA World Wind as well as open source tools such as Openlayers. The technology already exists within PostgreSQL databases to store searchable geometrical data in the form of the PostGIS extension. An existing open source maps server is GeoServer, an instance of which has been deployed for the new PSA, uses the OGC standards to allow, among others, the sharing, processing and editing of data and spatial data through the Web Feature Service (WFS) standard as well as serving georeferenced map images through the Web Map Service (WMS). The final goal of the new PSA, being developed by the European Space Astronomy Centre (ESAC) Science Data Centre (ESDC), is to create an archive which enables science exploitation of ESA's planetary missions datasets. This can be facilitated through the GIS framework, offering interfaces (both web GUI and scriptable APIs) that can be used more easily and scientifically by the community, and that will also enable the community to build added value services on top of the PSA.
NASA Astrophysics Data System (ADS)
Cole, M.; Bambacus, M.; Lynnes, C.; Sauer, B.; Falke, S.; Yang, W.
2007-12-01
NASA's vast array of scientific data within its Distributed Active Archive Centers (DAACs) is especially valuable to both traditional research scientists as well as the emerging market of Earth Science Information Partners. For example, the air quality science and management communities are increasingly using satellite derived observations in their analyses and decision making. The Air Quality Cluster in the Federation of Earth Science Information Partners (ESIP) uses web infrastructures of interoperability, or Service Oriented Architecture (SOA), to extend data exploration, use, and analysis and provides a user environment for DAAC products. In an effort to continually offer these NASA data to the broadest research community audience, and reusing emerging technologies, both NASA's Goddard Earth Science (GES) and Land Process (LP) DAACs have engaged in a web services pilot project. Through these projects both GES and LP have exposed data through the Open Geospatial Consortiums (OGC) Web Services standards. Reusing several different existing applications and implementation techniques, GES and LP successfully exposed a variety data, through distributed systems to be ingested into multiple end-user systems. The results of this project will enable researchers world wide to access some of NASA's GES & LP DAAC data through OGC protocols. This functionality encourages inter-disciplinary research while increasing data use through advanced technologies. This paper will concentrate on the implementation and use of OGC Web Services, specifically Web Map and Web Coverage Services (WMS, WCS) at GES and LP DAACs, and the value of these services within scientific applications, including integration with the DataFed air quality web infrastructure and in the development of data analysis web applications.
NASA Astrophysics Data System (ADS)
Cody, R. P.; Kassin, A.; Gaylord, A.; Brown, J.; Tweedie, C. E.
2012-12-01
The Barrow area of northern Alaska is one of the most intensely researched locations in the Arctic. The Barrow Area Information Database (BAID, www.baidims.org) is a cyberinfrastructure (CI) that details much of the historic and extant research undertaken within in the Barrow region in a suite of interactive web-based mapping and information portals (geobrowsers). The BAID user community and target audience for BAID is diverse and includes research scientists, science logisticians, land managers, educators, students, and the general public. BAID contains information on more than 9,600 Barrow area research sites that extend back to the 1940's and more than 640 remote sensing images and geospatial datasets. In a web-based setting, users can zoom, pan, query, measure distance, and save or print maps and query results. Data are described with metadata that meet Federal Geographic Data Committee standards and are archived at the University Corporation for Atmospheric Research Earth Observing Laboratory (EOL) where non-proprietary BAID data can be freely downloaded. BAID has been used to: Optimize research site choice; Reduce duplication of science effort; Discover complementary and potentially detrimental research activities in an area of scientific interest; Re-establish historical research sites for resampling efforts assessing change in ecosystem structure and function over time; Exchange knowledge across disciplines and generations; Facilitate communication between western science and traditional ecological knowledge; Provide local residents access to science data that facilitates adaptation to arctic change; (and) Educate the next generation of environmental and computer scientists. This poster describes key activities that will be undertaken over the next three years to provide BAID users with novel software tools to interact with a current and diverse selection of information and data about the Barrow area. Key activities include: 1. Collecting data on research activities, generating geospatial data, and providing mapping support. 2. Maintaining, updating and innovating the existing suite of BAID geobrowsers. 3. Maintaining and updating aging server hardware supporting BAID. 4. Adding interoperability with other CI using workflows, controlled vocabularies and web services. 5. Linking BAID to data archives at the National Snow and Ice Data Center (NSIDC). 6. Developing a wireless sensor network that provides web based interaction with near-real time climate and other data. 7. Training next generation of environmental and computer scientists and conducting outreach.
An Open Source Web Map Server Implementation For California and the Digital Earth: Lessons Learned
NASA Technical Reports Server (NTRS)
Sullivan, D. V.; Sheffner, E. J.; Skiles, J. W.; Brass, J. A.; Condon, Estelle (Technical Monitor)
2000-01-01
This paper describes an Open Source implementation of the Open GIS Consortium's Web Map interface. It is based on the very popular Apache WWW Server, the Sun Microsystems Java ServIet Development Kit, and a C language shared library interface to a spatial datastore. This server was initially written as a proof of concept, to support a National Aeronautics and Space Administration (NASA) Digital Earth test bed demonstration. It will also find use in the California Land Science Information Partnership (CaLSIP), a joint program between NASA and the state of California. At least one WebMap enabled server will be installed in every one of the state's 58 counties. This server will form a basis for a simple, easily maintained installation for those entities that do not yet require one of the larger, more expensive, commercial offerings.
Giovanni: The Bridge between Data and Science
NASA Technical Reports Server (NTRS)
Shen, Suhung; Lynnes, Christopher; Kempler, Steven J.
2012-01-01
NASA Giovanni (Goddard Interactive Online Visualization ANd aNalysis Infrastructure) is a web-based remote sensing and model data visualization and analysis system developed by the Goddard Earth Sciences Data and Information Services Center (GES DISC). This web-based tool facilitates data discovery, exploration and analysis of large amount of global and regional data sets, covering atmospheric dynamics, atmospheric chemistry, hydrology, oceanographic, and land surface. Data analysis functions include Lat-Lon map, time series, scatter plot, correlation map, difference, cross-section, vertical profile, and animation etc. Visualization options enable comparisons of multiple variables and easier refinement. Recently, new features have been developed, such as interactive scatter plots and maps. The performance is also being improved, in some cases by an order of magnitude for certain analysis functions with optimized software. We are working toward merging current Giovanni portals into a single omnibus portal with all variables in one (virtual) location to help users find a variable easily and enhance the intercomparison capability
NASA Astrophysics Data System (ADS)
Anderson, O. Roger; Contino, Julie
2010-10-01
Current research indicates that students with enhanced knowledge networks are more effective in learning science content and applying higher order thinking skills in open-ended inquiry learning. This research examined teacher implementation of a novel teaching strategy called “web diagramming,” a form of network mapping, in a secondary school earth science class. We report evidence for student improvement in knowledge networking, questionnaire-based reports by the students on the merits of web diagramming in terms of interest and usefulness, and information on the collaborating teacher’s perceptions of the process of implementation, including implications for teacher education. This is among the first reports that teachers can be provided with strategies to enhance student knowledge networking capacity, especially for those students whose initial networking scores are among the lowest.
NASA Astrophysics Data System (ADS)
Escarzaga, S. M.; Cody, R. P.; Gaylord, A. G.; Kassin, A.; Barba, M.; Aiken, Q.; Nelson, L.; Mazza Ramsay, F. D.; Tweedie, C. E.
2016-12-01
The Barrow area of northern Alaska is one of the most intensely researched locations in the Arctic and the Barrow Area Information Database (BAID, www.barrowmapped.org) tracks and facilitates a gamut of research, management, and educational activities in the area. BAID is a cyberinfrastructure (CI) that details much of the historic and extant research undertaken within in the Barrow region in a suite of interactive web-based mapping and information portals (geobrowsers). The BAID user community and target audience for BAID is diverse and includes research scientists, science logisticians, land managers, educators, students, and the general public. BAID contains information on more than 16,000 Barrow area research sites that extend back to the 1940's and more than 640 remote sensing images and geospatial datasets. In a web-based setting, users can zoom, pan, query, measure distance, save or print maps and query results, and filter or view information by space, time, and/or other tags. Recent advances include provision of differential global positioning (dGPS) system and high resolution aerial imagery support to visiting scientists, analysis and multitemporal mapping of over 120 km of coastline for erosion monitoring; maintenance of a wireless micrometeorological sensor network; links to Barrow area datasets housed at national data archives; and substantial upgrades to the BAID website. Web mapping applications that have launched to the public include: an Imagery Time Viewer that allows users to compare imagery of the Barrow area between 1949 and the present; a Coastal Erosion Viewer that allows users to view long-term (1955-2015) and recent (2013-2015) rates of erosion for the Barrow area; and a Community Planning Tool that allows users to view and print dynamic reports based on an array of basemaps including a new 0.5m resolution wetlands map designed to enhance decision making for development and land management.
Progress of Interoperability in Planetary Research for Geospatial Data Analysis
NASA Astrophysics Data System (ADS)
Hare, T. M.; Gaddis, L. R.
2015-12-01
For nearly a decade there has been a push in the planetary science community to support interoperable methods of accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (i.e., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized image formats that retain geographic information (e.g., GeoTiff, GeoJpeg2000), digital geologic mapping conventions, planetary extensions for symbols that comply with U.S. Federal Geographic Data Committee cartographic and geospatial metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they have been modified to support the planetary domain. The motivation to support common, interoperable data format and delivery standards is not only to improve access for higher-level products but also to address the increasingly distributed nature of the rapidly growing volumes of data. The strength of using an OGC approach is that it provides consistent access to data that are distributed across many facilities. While data-steaming standards are well-supported by both the more sophisticated tools used in Geographic Information System (GIS) and remote sensing industries, they are also supported by many light-weight browsers which facilitates large and small focused science applications and public use. Here we provide an overview of the interoperability initiatives that are currently ongoing in the planetary research community, examples of their successful application, and challenges that remain.
Data Visualization of Lunar Orbiter KAGUYA (SELENE) using web-based GIS
NASA Astrophysics Data System (ADS)
Okumura, H.; Sobue, S.; Yamamoto, A.; Fujita, T.
2008-12-01
The Japanese Lunar Orbiter KAGUYA (SELENE) was launched on Sep.14 2007, and started nominal observation from Dec. 21 2007. KAGUYA has 15 ongoing observation missions and is obtaining various physical quantity data of the moon such as elemental abundance, mineralogical composition, geological feature, magnetic field and gravity field. We are working on the visualization of these data and the application of them to web-based GIS. Our purpose of data visualization is the promotion of science and education and public outreach (EPO). As for scientific usage and public outreach, we already constructed KAGUYA Web Map Server (WMS) at JAXA Sagamihara Campus and began to test it among internal KAGUYA project. KAGUYA science team plans the integrated science using the data of multiple instruments with the aim of obtaining the new findings of the origin and the evolution of the moon. In the study of the integrated science, scientists have to access, compare and analyze various types of data with different resolution. Web-based GIS will allow users to map, overlay and share the data and information easily. So it will be the best way to progress such a study and we are developing the KAGUYA WMS as a platform of the KAGUYA integrated science. For the purpose of EPO, we are customizing NASA World Wind (NWW) JAVA for KAGUYA supported by NWW project. Users will be able to search and view many images and movies of KAGUYA on NWW JAVA in the easy and attractive way. In addition, we are considering applying KAGUYA images to Google Moon with KML format and adding KAGUYA movies to Google/YouTube.
Common Web Mapping and Mobile Device Framework for Display of NASA Real-time Data
NASA Astrophysics Data System (ADS)
Burks, J. E.
2013-12-01
Scientists have strategic goals to deliver their unique datasets and research to both collaborative partners and more broadly to the public. These datasets can have a significant impact locally and globally as has been shown by the success of the NASA Short-term Prediction Research and Transition (SPoRT) Center and SERVIR programs at Marshall Space Flight Center. Each of these respective organizations provides near real-time data at the best resolution possible to address concerns of the operational weather forecasting community (SPoRT) and to support environmental monitoring and disaster assessment (SERVIR). However, one of the biggest struggles to delivering the data to these and other Earth science community partners is formatting the product to fit into an end user's Decision Support System (DSS). The problem of delivering the data to the end-user's DSS can be a significant impediment to transitioning research to operational environments especially for disaster response where the deliver time is critical. The decision makers, in addition to the DSS, need seamless access to these same datasets from a web browser or a mobile phone for support when they are away from their DSS or for personnel out in the field. A framework has been developed for MSFC Earth Science program that can be used to easily enable seamless delivery of scientific data to end users in multiple formats. The first format is an open geospatial format, Web Mapping Service (WMS), which is easily integrated into most DSSs. The second format is a web browser display, which can be embedded within any MSFC Science web page with just a few lines of web page coding. The third format is accessible in the form of iOS and Android native mobile applications that could be downloaded from an 'app store'. The framework developed has reduced the level of effort needed to bring new and existing NASA datasets to each of these end user platforms and help extend the reach of science data.
Common Web Mapping and Mobile Device Framework for Display of NASA Real-time Data
NASA Technical Reports Server (NTRS)
Burks, Jason
2013-01-01
Scientists have strategic goals to deliver their unique datasets and research to both collaborative partners and more broadly to the public. These datasets can have a significant impact locally and globally as has been shown by the success of the NASA Short-term Prediction Research and Transition (SPoRT) Center and SERVIR programs at Marshall Space Flight Center. Each of these respective organizations provides near real-time data at the best resolution possible to address concerns of the operational weather forecasting community (SPoRT) and to support environmental monitoring and disaster assessment (SERVIR). However, one of the biggest struggles to delivering the data to these and other Earth science community partners is formatting the product to fit into an end user's Decision Support System (DSS). The problem of delivering the data to the end-user's DSS can be a significant impediment to transitioning research to operational environments especially for disaster response where the deliver time is critical. The decision makers, in addition to the DSS, need seamless access to these same datasets from a web browser or a mobile phone for support when they are away from their DSS or for personnel out in the field. A framework has been developed for MSFC Earth Science program that can be used to easily enable seamless delivery of scientific data to end users in multiple formats. The first format is an open geospatial format, Web Mapping Service (WMS), which is easily integrated into most DSSs. The second format is a web browser display, which can be embedded within any MSFC Science web page with just a few lines of web page coding. The third format is accessible in the form of iOS and Android native mobile applications that could be downloaded from an "app store". The framework developed has reduced the level of effort needed to bring new and existing NASA datasets to each of these end user platforms and help extend the reach of science data.
Poreau, Brice
2016-01-01
Neurodegenerative disorders are involved in mortality and morbidity of every country. A high prevalence is estimated in Africa. Neurodegenerative disorders are defined by a progressive or self-limiting alteration of neurons implied in specific functional and anatomical functions. It encompasses a various range of clinical disorders from self-limiting to progressive. Focus on public health policies and scientific research is needed to understand the mechanisms to reduce this high prevalence. We use bibliometrics and mapping tools to explore the area studies and countries involved in scientific research on neurodegenerative disorders in Africa. We used two databases: Web of Science and Pubmed. We analyzed the journals, most cited articles, authors, publication years, organizations, funding agencies, countries and keywords in Web of Science Core collection database and publication years and Medical Subject Headings in Pubmed database. We mapped the data using VOSviewer. We accessed 44 articles published between 1975 and 2014 in Web of Science Core collection Database and 669 from Pubmed database. The majority of which were after 2006. The main countries involved in research on neurodegenerative disorders in Africa the USA, the United Kingdom, France and South Africa representing the main network collaboration. Clinical neurology and Genetics hereditary are the main Web of Science categories whereas Neurosciences and Biochemistry and Molecular Biology are the main Web of Science categories for the general search "neurodegenerative disorders" not restrained to Africa. This is confirmed by Medical Subject Headings analysis from Pubmed with one more area study: Treatment. Neurodegenerative disorders research is leaded by South Africa with a network involving the USA, the UK, as well as African countries such Zambia. The chief field that emerged was on patient and hereditary as well as treatment. Public health policies were lacking fields in research whereas prevalence is estimated to be important in every country. New 17 sustainable development goals of the United Nations could help in this way.
Design and update of a classification system: the UCSD map of science.
Börner, Katy; Klavans, Richard; Patek, Michael; Zoss, Angela M; Biberstine, Joseph R; Light, Robert P; Larivière, Vincent; Boyack, Kevin W
2012-01-01
Global maps of science can be used as a reference system to chart career trajectories, the location of emerging research frontiers, or the expertise profiles of institutes or nations. This paper details data preparation, analysis, and layout performed when designing and subsequently updating the UCSD map of science and classification system. The original classification and map use 7.2 million papers and their references from Elsevier's Scopus (about 15,000 source titles, 2001-2005) and Thomson Reuters' Web of Science (WoS) Science, Social Science, Arts & Humanities Citation Indexes (about 9,000 source titles, 2001-2004)-about 16,000 unique source titles. The updated map and classification adds six years (2005-2010) of WoS data and three years (2006-2008) from Scopus to the existing category structure-increasing the number of source titles to about 25,000. To our knowledge, this is the first time that a widely used map of science was updated. A comparison of the original 5-year and the new 10-year maps and classification system show (i) an increase in the total number of journals that can be mapped by 9,409 journals (social sciences had a 80% increase, humanities a 119% increase, medical (32%) and natural science (74%)), (ii) a simplification of the map by assigning all but five highly interdisciplinary journals to exactly one discipline, (iii) a more even distribution of journals over the 554 subdisciplines and 13 disciplines when calculating the coefficient of variation, and (iv) a better reflection of journal clusters when compared with paper-level citation data. When evaluating the map with a listing of desirable features for maps of science, the updated map is shown to have higher mapping accuracy, easier understandability as fewer journals are multiply classified, and higher usability for the generation of data overlays, among others.
Design and Update of a Classification System: The UCSD Map of Science
Börner, Katy; Klavans, Richard; Patek, Michael; Zoss, Angela M.; Biberstine, Joseph R.; Light, Robert P.; Larivière, Vincent; Boyack, Kevin W.
2012-01-01
Global maps of science can be used as a reference system to chart career trajectories, the location of emerging research frontiers, or the expertise profiles of institutes or nations. This paper details data preparation, analysis, and layout performed when designing and subsequently updating the UCSD map of science and classification system. The original classification and map use 7.2 million papers and their references from Elsevier’s Scopus (about 15,000 source titles, 2001–2005) and Thomson Reuters’ Web of Science (WoS) Science, Social Science, Arts & Humanities Citation Indexes (about 9,000 source titles, 2001–2004)–about 16,000 unique source titles. The updated map and classification adds six years (2005–2010) of WoS data and three years (2006–2008) from Scopus to the existing category structure–increasing the number of source titles to about 25,000. To our knowledge, this is the first time that a widely used map of science was updated. A comparison of the original 5-year and the new 10-year maps and classification system show (i) an increase in the total number of journals that can be mapped by 9,409 journals (social sciences had a 80% increase, humanities a 119% increase, medical (32%) and natural science (74%)), (ii) a simplification of the map by assigning all but five highly interdisciplinary journals to exactly one discipline, (iii) a more even distribution of journals over the 554 subdisciplines and 13 disciplines when calculating the coefficient of variation, and (iv) a better reflection of journal clusters when compared with paper-level citation data. When evaluating the map with a listing of desirable features for maps of science, the updated map is shown to have higher mapping accuracy, easier understandability as fewer journals are multiply classified, and higher usability for the generation of data overlays, among others. PMID:22808037
Documentation for the 2008 Update of the United States National Seismic Hazard Maps
Petersen, Mark D.; Frankel, Arthur D.; Harmsen, Stephen C.; Mueller, Charles S.; Haller, Kathleen M.; Wheeler, Russell L.; Wesson, Robert L.; Zeng, Yuehua; Boyd, Oliver S.; Perkins, David M.; Luco, Nicolas; Field, Edward H.; Wills, Chris J.; Rukstales, Kenneth S.
2008-01-01
The 2008 U.S. Geological Survey (USGS) National Seismic Hazard Maps display earthquake ground motions for various probability levels across the United States and are applied in seismic provisions of building codes, insurance rate structures, risk assessments, and other public policy. This update of the maps incorporates new findings on earthquake ground shaking, faults, seismicity, and geodesy. The resulting maps are derived from seismic hazard curves calculated on a grid of sites across the United States that describe the frequency of exceeding a set of ground motions. The USGS National Seismic Hazard Mapping Project developed these maps by incorporating information on potential earthquakes and associated ground shaking obtained from interaction in science and engineering workshops involving hundreds of participants, review by several science organizations and State surveys, and advice from two expert panels. The National Seismic Hazard Maps represent our assessment of the 'best available science' in earthquake hazards estimation for the United States (maps of Alaska and Hawaii as well as further information on hazard across the United States are available on our Web site at http://earthquake.usgs.gov/research/hazmaps/).
NASA Astrophysics Data System (ADS)
Siarto, J.
2014-12-01
As more Earth science software tools and services move to the web--the design and usability of those tools become ever more important. A good user interface is becoming expected and users are becoming increasingly intolerant of websites and web applications that work against them. The Earthdata UI Pattern Library attempts to give these scientists and developers the design tools they need to make usable, compelling user interfaces without the associated overhead of using a full design team. Patterns are tested and functional user interface elements targeted specifically at the Earth science community and will include web layouts, buttons, tables, typography, iconography, mapping and visualization/graphing widgets. These UI elements have emerged as the result of extensive user testing, research and software development within the NASA Earthdata team over the past year.
Citizen Science in the Classroom: Perils and Promise of the New Web
NASA Astrophysics Data System (ADS)
Loughran, T.; Dirksen, R.
2010-12-01
Classroom citizen science projects invite students to generate, curate, post, query, and analyze data, publishing and discussing results in potentially large collaborative contexts. The new web offers a rich palette of such projects for any STEM educator to select from or create. This easy access to citizen science in the classroom is full of both promise and peril for science education. By offering examples of classroom citizen science projects in particle physics, earth and environmental sciences, each supported by a common mashup of technologies available to ordinary users, we will illustrate something of the promise of these projects for science education, and point to some of the challenges and failure modes--the peril--raised by easy access and particularly easy publication of data. How one sensibly responds to this promise and peril depends on how one views the goals of science (or more broadly, STEM) education: either as the equipping of individual students with STEM knowledge and skills so as to empower them for future options, or as the issuing of effective invitations into STEM communities. Building on the claim that these are complementary perspectives, both of value, we will provide an example of a classroom citizen science project analyzed from both perspectives. The BOSCO classroom-to-classroom water source mapping project provides students both in Northern Uganda and in South Dakota a collaborative platform for analyzing and responding to local water quality concerns. Students gather water quality data, use Google Forms embedded in a project wiki to enter data in a spreadsheet, which then automatically (through Mapalist, a free web service) gets posted to a Google Map, itself embedded in the project wiki. Using these technologies, data is thus collected and posted for analysis in a collaborative environment: the stage is set for classroom citizen science. In the context of this project we will address the question of how teachers can take advantage of the new web to encourage students to become creative problem-solvers in online collaborative contexts without looking past the foundation of careful preparation and the standards of reliability associated with publication in the STEM disciplines.
NASA Astrophysics Data System (ADS)
Cody, R. P.; Kassin, A.; Kofoed, K. B.; Copenhaver, W.; Laney, C. M.; Gaylord, A. G.; Collins, J. A.; Tweedie, C. E.
2014-12-01
The Barrow area of northern Alaska is one of the most intensely researched locations in the Arctic and the Barrow Area Information Database (BAID, www.barrowmapped.org) tracks and facilitates a gamut of research, management, and educational activities in the area. BAID is a cyberinfrastructure (CI) that details much of the historic and extant research undertaken within in the Barrow region in a suite of interactive web-based mapping and information portals (geobrowsers). The BAID user community and target audience for BAID is diverse and includes research scientists, science logisticians, land managers, educators, students, and the general public. BAID contains information on more than 12,000 Barrow area research sites that extend back to the 1940's and more than 640 remote sensing images and geospatial datasets. In a web-based setting, users can zoom, pan, query, measure distance, save or print maps and query results, and filter or view information by space, time, and/or other tags. Data are described with metadata that meet Federal Geographic Data Committee standards and are archived at the University Corporation for Atmospheric Research Earth Observing Laboratory (EOL) where non-proprietary BAID data can be freely downloaded. Recent advances include the addition of more than 2000 new research sites, provision of differential global position system (dGPS) and Unmanned Aerial Vehicle (UAV) support to visiting scientists, surveying over 80 miles of coastline to document rates of erosion, training of local GIS personal to better make use of science in local decision making, deployment and near real time connectivity to a wireless micrometeorological sensor network, links to Barrow area datasets housed at national data archives and substantial upgrades to the BAID website and web mapping applications.
Geovisualization in the HydroProg web map service
NASA Astrophysics Data System (ADS)
Spallek, Waldemar; Wieczorek, Malgorzata; Szymanowski, Mariusz; Niedzielski, Tomasz; Swierczynska, Malgorzata
2016-04-01
The HydroProg system, built at the University of Wroclaw (Poland) in frame of the research project no. 2011/01/D/ST10/04171 financed by the National Science Centre of Poland, has been designed for computing predictions of river stages in real time on a basis of multimodelling. This experimental system works on the upper Nysa Klodzka basin (SW Poland) above the gauge in the town of Bardo, with the catchment area of 1744 square kilometres. The system operates in association with the Local System for Flood Monitoring of Klodzko County (LSOP), and produces hydrograph prognoses as well as inundation predictions. For presenting the up-to-date predictions and their statistics in the online mode, the dedicated real-time web map service has been designed. Geovisualisation in the HydroProg map service concerns: interactive maps of study area, interactive spaghetti hydrograms of water level forecasts along with observed river stages, animated images of inundation. The LSOP network offers a high spatial and temporal resolution of observations, as the length of the sampling interval is equal to 15 minutes. The main environmental elements related to hydrological modelling are shown on the main map. This includes elevation data (hillshading and hypsometric tints), rivers and reservoirs as well as catchment boundaries. Furthermore, we added main towns, roads as well as political and administrative boundaries for better map understanding. The web map was designed as a multi-scale representation, with levels of detail and zooming according to scales: 1:100 000, 1:250 000 and 1:500 000. Observations of water level in LSOP are shown on interactive hydrographs for each gauge. Additionally, predictions and some of their statistical characteristics (like prediction errors and Nash-Sutcliffe efficiency) are shown for selected gauges. Finally, predictions of inundation are presented on animated maps which have been added for four experimental sites. The HydroProg system is a strictly scientific project, but the web map service has been designed for all web users. The main objective of the paper is to present the design process of the web map service, following the cartographic and graphic principles.
Collaboration spotting for dental science.
Leonardi, E; Agocs, A; Fragkiskos, S; Kasfikis, N; Le Goff, J M; Cristalli, M P; Luzzi, V; Polimeni, A
2014-10-06
The goal of the Collaboration Spotting project is to create an automatic system to collect information about publications and patents related to a given technology, to identify the key players involved, and to highlight collaborations and related technologies. The collected information can be visualized in a web browser as interactive graphical maps showing in an intuitive way the players and their collaborations (Sociogram) and the relations among the technologies (Technogram). We propose to use the system to study technologies related to Dental Science. In order to create a Sociogram, we create a logical filter based on a set of keywords related to the technology under study. This filter is used to extract a list of publications from the Web of Science™ database. The list is validated by an expert in the technology and sent to CERN where it is inserted in the Collaboration Spotting database. Here, an automatic software system uses the data to generate the final maps. We studied a set of recent technologies related to bone regeneration procedures of oro--maxillo--facial critical size defects, namely the use of Porous HydroxyApatite (HA) as a bone substitute alone (bone graft) or as a tridimensional support (scaffold) for insemination and differentiation ex--vivo of Mesenchymal Stem Cells. We produced the Sociograms for these technologies and the resulting maps are now accessible on--line. The Collaboration Spotting system allows the automatic creation of interactive maps to show the current and historical state of research on a specific technology. These maps are an ideal tool both for researchers who want to assess the state--of--the--art in a given technology, and for research organizations who want to evaluate their contribution to the technological development in a given field. We demonstrated that the system can be used for Dental Science and produced the maps for an initial set of technologies in this field. We now plan to enlarge the set of mapped technologies in order to make the Collaboration Spotting system a useful reference tool for Dental Science research.
Mainstream web standards now support science data too
NASA Astrophysics Data System (ADS)
Richard, S. M.; Cox, S. J. D.; Janowicz, K.; Fox, P. A.
2017-12-01
The science community has developed many models and ontologies for representation of scientific data and knowledge. In some cases these have been built as part of coordinated frameworks. For example, the biomedical communities OBO Foundry federates applications covering various aspects of life sciences, which are united through reference to a common foundational ontology (BFO). The SWEET ontology, originally developed at NASA and now governed through ESIP, is a single large unified ontology for earth and environmental sciences. On a smaller scale, GeoSciML provides a UML and corresponding XML representation of geological mapping and observation data. Some of the key concepts related to scientific data and observations have recently been incorporated into domain-neutral mainstream ontologies developed by the World Wide Web consortium through their Spatial Data on the Web working group (SDWWG). OWL-Time has been enhanced to support temporal reference systems needed for science, and has been deployed in a linked data representation of the International Chronostratigraphic Chart. The Semantic Sensor Network ontology has been extended to cover samples and sampling, including relationships between samples. Gridded data and time-series is supported by applications of the statistical data-cube ontology (QB) for earth observations (the EO-QB profile) and spatio-temporal data (QB4ST). These standard ontologies and encodings can be used directly for science data, or can provide a bridge to specialized domain ontologies. There are a number of advantages in alignment with the W3C standards. The W3C vocabularies use discipline-neutral language and thus support cross-disciplinary applications directly without complex mappings. The W3C vocabularies are already aligned with the core ontologies that are the building blocks of the semantic web. The W3C vocabularies are each tightly scoped thus encouraging good practices in the combination of complementary small ontologies. The W3C vocabularies are hosted on well known, reliable infrastructure. The W3C SDWWG outputs are being selectively adopted by the general schema.org discovery framework.
Semantic Integration for Marine Science Interoperability Using Web Technologies
NASA Astrophysics Data System (ADS)
Rueda, C.; Bermudez, L.; Graybeal, J.; Isenor, A. W.
2008-12-01
The Marine Metadata Interoperability Project, MMI (http://marinemetadata.org) promotes the exchange, integration, and use of marine data through enhanced data publishing, discovery, documentation, and accessibility. A key effort is the definition of an Architectural Framework and Operational Concept for Semantic Interoperability (http://marinemetadata.org/sfc), which is complemented with the development of tools that realize critical use cases in semantic interoperability. In this presentation, we describe a set of such Semantic Web tools that allow performing important interoperability tasks, ranging from the creation of controlled vocabularies and the mapping of terms across multiple ontologies, to the online registration, storage, and search services needed to work with the ontologies (http://mmisw.org). This set of services uses Web standards and technologies, including Resource Description Framework (RDF), Web Ontology language (OWL), Web services, and toolkits for Rich Internet Application development. We will describe the following components: MMI Ontology Registry: The MMI Ontology Registry and Repository provides registry and storage services for ontologies. Entries in the registry are associated with projects defined by the registered users. Also, sophisticated search functions, for example according to metadata items and vocabulary terms, are provided. Client applications can submit search requests using the WC3 SPARQL Query Language for RDF. Voc2RDF: This component converts an ASCII comma-delimited set of terms and definitions into an RDF file. Voc2RDF facilitates the creation of controlled vocabularies by using a simple form-based user interface. Created vocabularies and their descriptive metadata can be submitted to the MMI Ontology Registry for versioning and community access. VINE: The Vocabulary Integration Environment component allows the user to map vocabulary terms across multiple ontologies. Various relationships can be established, for example exactMatch, narrowerThan, and subClassOf. VINE can compute inferred mappings based on the given associations. Attributes about each mapping, like comments and a confidence level, can also be included. VINE also supports registering and storing resulting mapping files in the Ontology Registry. The presentation will describe the application of semantic technologies in general, and our planned applications in particular, to solve data management problems in the marine and environmental sciences.
NASA Astrophysics Data System (ADS)
Girvetz, E. H.; Zganjar, C.; Raber, G. T.; Hoekstra, J.; Lawler, J. J.; Kareiva, P.
2008-12-01
Now that there is overwhelming evidence of global climate change, scientists, managers and planners (i.e. practitioners) need to assess the potential impacts of climate change on particular ecological systems, within specific geographic areas, and at spatial scales they care about, in order to make better land management, planning, and policy decisions. Unfortunately, this application of climate science to real world decisions and planning has proceeded too slowly because we lack tools for translating cutting-edge climate science and climate-model outputs into something managers and planners can work with at local or regional scales (CCSP 2008). To help increase the accessibility of climate information, we have developed a freely-available, easy-to-use, web-based climate-change analysis toolbox, called ClimateWizard, for assessing how climate has and is projected to change at specific geographic locations throughout the world. The ClimateWizard uses geographic information systems (GIS), web-services (SOAP/XML), statistical analysis platforms (e.g. R- project), and web-based mapping services (e.g. Google Earth/Maps, KML/GML) to provide a variety of different analyses (e.g. trends and departures) and outputs (e.g. maps, graphs, tables, GIS layers). Because ClimateWizard analyzes large climate datasets stored remotely on powerful computers, users of the tool do not need to have fast computers or expensive software, but simply need access to the internet. The analysis results are then provided to users in a Google Maps webpage tailored to the specific climate-change question being asked. The ClimateWizard is not a static product, but rather a framework to be built upon and modified to suit the purposes of specific scientific, management, and policy questions. For example, it can be expanded to include bioclimatic variables (e.g. evapotranspiration) and marine data (e.g. sea surface temperature), as well as improved future climate projections, and climate-change impact analyses involving hydrology, vegetation, wildfire, disease, and food security. By harnessing the power of computer and web- based technologies, the ClimateWizard puts local, regional, and global climate-change analyses in the hands of a wider array of managers, planners, and scientists.
NASA Astrophysics Data System (ADS)
Albeke, S. E.; Perkins, D. G.; Ewers, S. L.; Ewers, B. E.; Holbrook, W. S.; Miller, S. N.
2015-12-01
The sharing of data and results is paramount for advancing scientific research. The Wyoming Center for Environmental Hydrology and Geophysics (WyCEHG) is a multidisciplinary group that is driving scientific breakthroughs to help manage water resources in the Western United States. WyCEHG is mandated by the National Science Foundation (NSF) to share their data. However, the infrastructure from which to share such diverse, complex and massive amounts of data did not exist within the University of Wyoming. We developed an innovative framework to meet the data organization, sharing, and discovery requirements of WyCEHG by integrating both open and closed source software, embedded metadata tags, semantic web technologies, and a web-mapping application. The infrastructure uses a Relational Database Management System as the foundation, providing a versatile platform to store, organize, and query myriad datasets, taking advantage of both structured and unstructured formats. Detailed metadata are fundamental to the utility of datasets. We tag data with Uniform Resource Identifiers (URI's) to specify concepts with formal descriptions (i.e. semantic ontologies), thus allowing users the ability to search metadata based on the intended context rather than conventional keyword searches. Additionally, WyCEHG data are geographically referenced. Using the ArcGIS API for Javascript, we developed a web mapping application leveraging database-linked spatial data services, providing a means to visualize and spatially query available data in an intuitive map environment. Using server-side scripting (PHP), the mapping application, in conjunction with semantic search modules, dynamically communicates with the database and file system, providing access to available datasets. Our approach provides a flexible, comprehensive infrastructure from which to store and serve WyCEHG's highly diverse research-based data. This framework has not only allowed WyCEHG to meet its data stewardship requirements, but can provide a template for others to follow.
NASA Astrophysics Data System (ADS)
Minnett, R. C.; Koppers, A. A.; Staudigel, D.; Staudigel, H.
2008-12-01
EarthRef.org is comprehensive and convenient resource for Earth Science reference data and models. It encompasses four main portals: the Geochemical Earth Reference Model (GERM), the Magnetics Information Consortium (MagIC), the Seamount Biogeosciences Network (SBN), and the Enduring Resources for Earth Science Education (ERESE). Their underlying databases are publically available and the scientific community has contributed widely and is urged to continue to do so. However, the net result is a vast and largely heterogeneous warehouse of geospatial data ranging from carefully prepared maps of seamounts to geochemical data/metadata, daily reports from seagoing expeditions, large volumes of raw and processed multibeam data, images of paleomagnetic sampling sites, etc. This presents a considerable obstacle for integrating other rich media content, such as videos, images, data files, cruise tracks, and interoperable database results, without overwhelming the web user. The four EarthRef.org portals clearly lend themselves to a more intuitive user interface and has, therefore, been an invaluable test bed for the design and implementation of FlashMap, a versatile KML-driven geospatial browser written for reliability and speed in Adobe Flash. FlashMap allows layers of content to be loaded and displayed over a streaming high-resolution map which can be zoomed and panned similarly to Google Maps and Google Earth. Many organizations, from National Geographic to the USGS, have begun using Google Earth software to display geospatial content. However, Google Earth, as a desktop application, does not integrate cleanly with existing websites requiring the user to navigate away from the browser and focus on a separate application and Google Maps, written in Java Script, does not scale up reliably to large datasets. FlashMap remedies these problems as a web-based application that allows for seamless integration of the real-time display power of Google Earth and the flexibility of the web without losing scalability and control of the base maps. Our Flash-based application is fully compatible with KML (Keyhole Markup Language) 2.2, the most recent iteration of KML, allowing users with existing Google Earth KML files to effortlessly display their geospatial content embedded in a web page. As a test case for FlashMap, the annual Iron-Oxidizing Microbial Observatory (FeMO) dive cruise to the Loihi Seamount, in conjunction with data available from ongoing and published FeMO laboratory studies, showcases the flexibility of this single web-based application. With a KML 2.2 compatible web-service providing the content, any database can display results in FlashMap. The user can then hide and show multiple layers of content, potentially from several data sources, and rapidly digest a vast quantity of information to narrow the search results. This flexibility gives experienced users the ability to drill down to exactly the record they are looking for (SERC at Carleton College's educational application of FlashMap at http://serc.carleton.edu/sp/erese/activities/22223.html) and allows users familiar with Google Earth the ability to load and view geospatial data content within a browser from any computer with an internet connection.
NASA Astrophysics Data System (ADS)
Tisdale, M.
2017-12-01
NASA's Atmospheric Science Data Center (ASDC) is operationally using the Esri ArcGIS Platform to improve data discoverability, accessibility and interoperability to meet the diversifying user requirements from government, private, public and academic communities. The ASDC is actively working to provide their mission essential datasets as ArcGIS Image Services, Open Geospatial Consortium (OGC) Web Mapping Services (WMS), and OGC Web Coverage Services (WCS) while leveraging the ArcGIS multidimensional mosaic dataset structure. Science teams at ASDC are utilizing these services through the development of applications using the Web AppBuilder for ArcGIS and the ArcGIS API for Javascript. These services provide greater exposure of ASDC data holdings to the GIS community and allow for broader sharing and distribution to various end users. These capabilities provide interactive visualization tools and improved geospatial analytical tools for a mission critical understanding in the areas of the earth's radiation budget, clouds, aerosols, and tropospheric chemistry. The presentation will cover how the ASDC is developing geospatial web services and applications to improve data discoverability, accessibility, and interoperability.
ShakeMap manual: technical manual, user's guide, and software guide
Wald, David J.; Worden, Bruce C.; Quitoriano, Vincent; Pankow, Kris L.
2005-01-01
ShakeMap (http://earthquake.usgs.gov/shakemap) --rapidly, automatically generated shaking and intensity maps--combines instrumental measurements of shaking with information about local geology and earthquake location and magnitude to estimate shaking variations throughout a geographic area. The results are rapidly available via the Web through a variety of map formats, including Geographic Information System (GIS) coverages. These maps have become a valuable tool for emergency response, public information, loss estimation, earthquake planning, and post-earthquake engineering and scientific analyses. With the adoption of ShakeMap as a standard tool for a wide array of users and uses came an impressive demand for up-to-date technical documentation and more general guidelines for users and software developers. This manual is meant to address this need. ShakeMap, and associated Web and data products, are rapidly evolving as new advances in communications, earthquake science, and user needs drive improvements. As such, this documentation is organic in nature. We will make every effort to keep it current, but undoubtedly necessary changes in operational systems take precedence over producing and making documentation publishable.
Poppenga, Sandra K.; Evans, Gayla; Gesch, Dean; Stoker, Jason M.; Queija, Vivian R.; Worstell, Bruce; Tyler, Dean J.; Danielson, Jeff; Bliss, Norman; Greenlee, Susan
2010-01-01
The mission of U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center Topographic Science is to establish partnerships and conduct research and applications that facilitate the development and use of integrated national and global topographic datasets. Topographic Science includes a wide range of research and applications that result in improved seamless topographic datasets, advanced elevation technology, data integration and terrain visualization, new and improved elevation derivatives, and development of Web-based tools. In cooperation with our partners, Topographic Science is developing integrated-science applications for mapping, national natural resource initiatives, hazards, and global change science. http://topotools.cr.usgs.gov/.
STEM Engagement with NASA's Solar System Treks Portals for Lunar and Planetary Mapping and Modeling
NASA Technical Reports Server (NTRS)
Law, E. S.; Day, B. H.
2018-01-01
This presentation will provide an overview of the uses and capabilities of NASA's Solar System Treks family of online mapping and modeling portals. While also designed to support mission planning and scientific research, this presentation will focus on the Science, Technology, Engineering, and Math (STEM) engagement and public outreach capabilities of these web based suites of data visualization and analysis tools.
From field data collection to earth sciences dissemination: mobile examples in the digital era
NASA Astrophysics Data System (ADS)
Giardino, Marco; Ghiraldi, Luca; Palomba, Mauro; Perotti, Luigi
2015-04-01
In the framework of the technological and cultural revolution related to the massive diffusion of mobile devices, as smartphones and tablets, the information management and accessibility is changing, and many software houses and developer communities realized applications that can meet various people's needs. Modern collection, storing and sharing of data have radically changed, and advances in ICT increasingly involve field-based activities. Progresses in these researches and applications depend on three main components: hardware, software and web system. Since 2008 the geoSITLab multidisciplinary group (Earth Sciences Department and NatRisk Centre of the University of Torino and the Natural Sciences Museum of the Piemonte Region) is active in defining and testing methods for collecting, managing and sharing field information using mobile devices. Key issues include: Geomorphological Digital Mapping, Natural Hazards monitoring, Geoheritage assessment and applications for the teaching of Earth Sciences. An overview of the application studies is offered here, including the use of Mobile tools for data collection, the construction of relational databases for inventory activities and the test of Web-Mapping tools and mobile apps for data dissemination. The fil rouge of connection is a standardized digital approach allowing the use of mobile devices in each step of the process, which will be analysed within different projects set up by the research group (Geonathaz, EgeoFieldwork, Progeo Piemonte, GeomediaWeb). The hardware component mainly consists of the availability of handheld mobile devices (e.g. smartphones, PDAs and Tablets). The software component corresponds to applications for spatial data visualization on mobile devices, such as composite mobile GIS or simple location-based apps. The web component allows the integration of collected data into geodatabase based on client-server architecture, where the information can be easily loaded, uploaded and shared between field staff and data management team, in order to disseminate collected information to media or to inform the decision makers. Results demonstrated the possibility to record field observations in a fast and reliable way, using standardized formats that can improve the precision of collected information and lower the possibility of errors and data omission. Dedicated forms have been set up for gathering different thematic data (geologic/geomorphologic, faunal and floristic, path system…etc.). Field data allowed to arrange maps and SDI useful for many application purposes: from country-planning to disaster risk management, from Geoheritage management to Earth Science concepts dissemination.
Network of nanomedicine researches: impact of Iranian scientists.
Biglu, Mohammad-Hossein; Riazi, Shukuh
2015-01-01
We may define the nanomedicine as the use of nanotechnology in the health care, disease diagnoses and treatment in order to maintain and increase the health status of a population through improve pharmacotherapy. The main objective of the current study is to analyze and visualize the co-authorship network of all papers in the field of nanomedicine published throughout 2002-2014 in journals and indexed in the Web of Science database. The Web of Science database was used to extract all papers indexed as a topic of nanomedicine through 2002-2014. The Science of Science Tool was used to map the co-authorship network of papers. Total number of papers extracted from the Web of Science in the field of nanomedicine was 3092 through 2002-2014. Analysis of data showed that the research activities in the field of nanomedicine increased steadily through the period of study. USA, China, and India were the most prolific countries in the field. The dominant language of publications was English. The co-authorship connection revealed a network with a density of 0.0006. Nanomedicine researches have markedly been increased in Iran. Ninety-five percent of Iranian papers were cooperated with multi-authors. The collaboration coefficient degree was 0.731.
NASA Technical Reports Server (NTRS)
Perez Guerrero, Geraldo A.; Armstrong, Duane; Underwood, Lauren
2015-01-01
This project is creating a cloud-enabled, HTML 5 web application to help oyster fishermen and state agencies apply Earth science to improve the management of this important natural and economic resource. The Oyster Fisheries app gathers and analyzes environmental and water quality information, and alerts fishermen and resources managers about problems in oyster fishing waters. An intuitive interface based on Google Maps displays the geospatial information and provides familiar interactive controls to the users. Alerts can be tailored to notify users when conditions in specific leases or public fishing areas require attention. The app is hosted on the Amazon Web Services cloud. It is being developed and tested using some of the latest web development tools such as web components and Polymer.
JournalMap: Geo-semantic searching for relevant knowledge
USDA-ARS?s Scientific Manuscript database
Ecologists struggling to understand rapidly changing environments and evolving ecosystem threats need quick access to relevant research and documentation of natural systems. The advent of semantic and aggregation searching (e.g., Google Scholar, Web of Science) has made it easier to find useful lite...
A journey to Semantic Web query federation in the life sciences.
Cheung, Kei-Hoi; Frost, H Robert; Marshall, M Scott; Prud'hommeaux, Eric; Samwald, Matthias; Zhao, Jun; Paschke, Adrian
2009-10-01
As interest in adopting the Semantic Web in the biomedical domain continues to grow, Semantic Web technology has been evolving and maturing. A variety of technological approaches including triplestore technologies, SPARQL endpoints, Linked Data, and Vocabulary of Interlinked Datasets have emerged in recent years. In addition to the data warehouse construction, these technological approaches can be used to support dynamic query federation. As a community effort, the BioRDF task force, within the Semantic Web for Health Care and Life Sciences Interest Group, is exploring how these emerging approaches can be utilized to execute distributed queries across different neuroscience data sources. We have created two health care and life science knowledge bases. We have explored a variety of Semantic Web approaches to describe, map, and dynamically query multiple datasets. We have demonstrated several federation approaches that integrate diverse types of information about neurons and receptors that play an important role in basic, clinical, and translational neuroscience research. Particularly, we have created a prototype receptor explorer which uses OWL mappings to provide an integrated list of receptors and executes individual queries against different SPARQL endpoints. We have also employed the AIDA Toolkit, which is directed at groups of knowledge workers who cooperatively search, annotate, interpret, and enrich large collections of heterogeneous documents from diverse locations. We have explored a tool called "FeDeRate", which enables a global SPARQL query to be decomposed into subqueries against the remote databases offering either SPARQL or SQL query interfaces. Finally, we have explored how to use the vocabulary of interlinked Datasets (voiD) to create metadata for describing datasets exposed as Linked Data URIs or SPARQL endpoints. We have demonstrated the use of a set of novel and state-of-the-art Semantic Web technologies in support of a neuroscience query federation scenario. We have identified both the strengths and weaknesses of these technologies. While Semantic Web offers a global data model including the use of Uniform Resource Identifiers (URI's), the proliferation of semantically-equivalent URI's hinders large scale data integration. Our work helps direct research and tool development, which will be of benefit to this community.
A journey to Semantic Web query federation in the life sciences
Cheung, Kei-Hoi; Frost, H Robert; Marshall, M Scott; Prud'hommeaux, Eric; Samwald, Matthias; Zhao, Jun; Paschke, Adrian
2009-01-01
Background As interest in adopting the Semantic Web in the biomedical domain continues to grow, Semantic Web technology has been evolving and maturing. A variety of technological approaches including triplestore technologies, SPARQL endpoints, Linked Data, and Vocabulary of Interlinked Datasets have emerged in recent years. In addition to the data warehouse construction, these technological approaches can be used to support dynamic query federation. As a community effort, the BioRDF task force, within the Semantic Web for Health Care and Life Sciences Interest Group, is exploring how these emerging approaches can be utilized to execute distributed queries across different neuroscience data sources. Methods and results We have created two health care and life science knowledge bases. We have explored a variety of Semantic Web approaches to describe, map, and dynamically query multiple datasets. We have demonstrated several federation approaches that integrate diverse types of information about neurons and receptors that play an important role in basic, clinical, and translational neuroscience research. Particularly, we have created a prototype receptor explorer which uses OWL mappings to provide an integrated list of receptors and executes individual queries against different SPARQL endpoints. We have also employed the AIDA Toolkit, which is directed at groups of knowledge workers who cooperatively search, annotate, interpret, and enrich large collections of heterogeneous documents from diverse locations. We have explored a tool called "FeDeRate", which enables a global SPARQL query to be decomposed into subqueries against the remote databases offering either SPARQL or SQL query interfaces. Finally, we have explored how to use the vocabulary of interlinked Datasets (voiD) to create metadata for describing datasets exposed as Linked Data URIs or SPARQL endpoints. Conclusion We have demonstrated the use of a set of novel and state-of-the-art Semantic Web technologies in support of a neuroscience query federation scenario. We have identified both the strengths and weaknesses of these technologies. While Semantic Web offers a global data model including the use of Uniform Resource Identifiers (URI's), the proliferation of semantically-equivalent URI's hinders large scale data integration. Our work helps direct research and tool development, which will be of benefit to this community. PMID:19796394
2008-09-01
about the region includes maps and links to related Web sites. Notes: Named Corp: Mekong River Commission. Genre/Form: Article/ Paper /Report. Map...unequalled in its coverage of international literature of the core scientific and technical periodicals. Papers are selected, read, and classified...includes refereed scientific papers ; trade journal and magazine articles, product reviews, directories and any other relevant material. GEOBASE has a
Evaluating HDR photos using Web 2.0 technology
NASA Astrophysics Data System (ADS)
Qiu, Guoping; Mei, Yujie; Duan, Jiang
2011-01-01
High dynamic range (HDR) photography is an emerging technology that has the potential to dramatically enhance the visual quality and realism of digital photos. One of the key technical challenges of HDR photography is displaying HDR photos on conventional devices through tone mapping or dynamic range compression. Although many different tone mapping techniques have been developed in recent years, evaluating tone mapping operators prove to be extremely difficult. Web2.0, social media and crowd-sourcing are emerging Internet technologies which can be harnessed to harvest the brain power of the mass to solve difficult problems in science, engineering and businesses. Paired comparison is used in the scientific study of preferences and attitudes and has been shown to be capable of obtaining an interval-scale ordering of items along a psychometric dimension such as preference or importance. In this paper, we exploit these technologies for evaluating HDR tone mapping algorithms. We have developed a Web2.0 style system that enables Internet users from anywhere to evaluate tone mapped HDR photos at any time. We adopt a simple paired comparison protocol, Internet users are presented a pair of tone mapped images and are simply asked to select the one that they think is better or click a "no difference" button. These user inputs are collected in the web server and analyzed by a rank aggregation algorithm which ranks the tone mapped photos according to the votes they received. We present experimental results which demonstrate that the emerging Internet technologies can be exploited as a new paradigm for evaluating HDR tone mapping algorithms. The advantages of this approach include the potential of collecting large user inputs under a variety of viewing environments rather than limited user participation under controlled laboratory environments thus enabling more robust and reliable quality assessment. We also present data analysis to correlate user generated qualitative indices with quantitative image statistics which may provide useful guidance for developing better tone mapping operators.
NASA's Lunar and Planetary Mapping and Modeling Program
NASA Astrophysics Data System (ADS)
Law, E.; Day, B. H.; Kim, R. M.; Bui, B.; Malhotra, S.; Chang, G.; Sadaqathullah, S.; Arevalo, E.; Vu, Q. A.
2016-12-01
NASA's Lunar and Planetary Mapping and Modeling Program produces a suite of online visualization and analysis tools. Originally designed for mission planning and science, these portals offer great benefits for education and public outreach (EPO), providing access to data from a wide range of instruments aboard a variety of past and current missions. As a component of NASA's Science EPO Infrastructure, they are available as resources for NASA STEM EPO programs, and to the greater EPO community. As new missions are planned to a variety of planetary bodies, these tools are facilitating the public's understanding of the missions and engaging the public in the process of identifying and selecting where these missions will land. There are currently three web portals in the program: the Lunar Mapping and Modeling Portal or LMMP (http://lmmp.nasa.gov), Vesta Trek (http://vestatrek.jpl.nasa.gov), and Mars Trek (http://marstrek.jpl.nasa.gov). Portals for additional planetary bodies are planned. As web-based toolsets, the portals do not require users to purchase or install any software beyond current web browsers. The portals provide analysis tools for measurement and study of planetary terrain. They allow data to be layered and adjusted to optimize visualization. Visualizations are easily stored and shared. The portals provide 3D visualization and give users the ability to mark terrain for generation of STL files that can be directed to 3D printers. Such 3D prints are valuable tools in museums, public exhibits, and classrooms - especially for the visually impaired. Along with the web portals, the program supports additional clients, web services, and APIs that facilitate dissemination of planetary data to a range of external applications and venues. NASA challenges and hackathons are also providing members of the software development community opportunities to participate in tool development and leverage data from the portals.
Project outputs will include: 1) the sustainability network and associated web pages; 2) sustainability indicators and associated maps representing the current values of the metrics; 3) an integrated assessment model of the impacts of electricity generation alternatives on a ...
NASA Astrophysics Data System (ADS)
Passow, M. J.; Kastens, K. A.; Goodwillie, A. M.; Brenner, C.
2009-12-01
The Lamont-Doherty Earth Observatory of Columbia University (LDEO) continues its long history of contributions to public understanding of Science. Highlights of current efforts are described in paired posters. Part 2 focuses on web-based activities that foster access to LDEO cutting-edge research for worldwide audiences. “Geoscience Data Puzzles" are activities that purposefully present a high ratio of insight-to-effort for students. Each Puzzle uses selected authentic data to illuminate fundamental Earth processes typically taught in Earth Science curricula. Data may be in the form of a graph, table, map, image or combination of the above. Some Puzzles involve downloading a simple Excel file, but most can be worked from paper copies. Questions guide students through the process of data interpretion. Most Puzzles involve calculations, with emphasis on the too-seldom-taught skill of figuring out what math process is useful to answer an unfamiliar question or solve a problem. Every Puzzle offers "Aha" insights, when the connection between data and process or data and problem comes clear in a rewarding burst of illumination. Time needed to solve a Puzzle is between 15 minutes and an hour. “GeoMapApp” is a free, map-based data exploration and visualization application from the LDEO Marine Geoscience Data System group. GeoMapApp provides direct access to hundreds of data sets useful to geoscience educators, including continuously-updated Global Multi-Resolution Topography compilations that incorporates high-resolution bathymetry in the oceans and Space Shuttle elevations over land. A new User Guide, multi-media tutorials and webinar offer follow-along help and examples. “Virtual Ocean” integrates GeoMapApp functionality with NASA World Wind code to provide a powerful new 3-D platform for interdisciplinary geoscience research and education. Both GeoMapApp and Virtual Ocean foster scientific understanding and provide training in new data visualization technologies. LDEO scientists have contributed to the extensive collection of education resources developed by the Consortium for Ocean Leadership’s Deep Earth Academy). As part of the international research effort to interpret Earth's history by retrieving seafloor samples and monitoring subseafloor environments, LDEO's Borehole Research Group deploys downhole tools to acquire a wide variety of situ geophysical measurements. LDEO scientists contribute significantly to the web portal that facilitates communication between the drillship and the public. It features blogs, games, a graphic novel, teacher resources, and integration with Facebook and Twitter social networking sites Participants in LDEO's monthly "Earth2Class Workshops for Teachers" have created one of the most extensive collections of resources available in Earth Science education. These include curriculum units; teacher-developed lessons, activities, and power points; peer-provided tips for effective teaching; review guides to help prepare for standardized tests; selected web links, and more. Thousands of teachers and students around the world access these LDEO-developed resources every month during the school year.
NASA Astrophysics Data System (ADS)
Cowie, B. R.; Lim, D. S.; Pendery, R.; Laval, B.; Slater, G. F.; Brady, A. L.; Dearing, W. L.; Downs, M.; Forrest, A.; Lees, D. S.; Lind, R. A.; Marinova, M.; Reid, D.; Seibert, M. A.; Shepard, R.; Williams, D.
2009-12-01
The Pavilion Lake Research Project (PLRP) is an international multi-disciplinary science and exploration effort to explain the origin and preservation potential of freshwater microbialites in Pavilion Lake, British Columbia, Canada. Using multiple exploration platforms including one person DeepWorker submersibles, Autonomous Underwater Vehicles, and SCUBA divers, the PLRP acts as an analogue research site for conducting science in extreme environments, such as the Moon or Mars. In 2009, the PLRP integrated several Web 2.0 technologies to provide a pilot-scale Education and Public Outreach (EPO) program targeting the internet savvy generation. The seamless integration of multiple technologies including Google Earth, Wordpress, Youtube, Twitter and Facebook, facilitated the rapid distribution of exciting and accessible science and exploration information over multiple channels. Field updates, science reports, and multimedia including videos, interactive maps, and immersive visualization were rapidly available through multiple social media channels, partly due to the ease of integration of these multiple technologies. Additionally, the successful application of videoconferencing via a readily available technology (Skype) has greatly increased the capacity of our team to conduct real-time education and public outreach from remote locations. The improved communication afforded by Web 2.0 has increased the quality of EPO provided by the PLRP, and has enabled a higher level of interaction between the science team and the community at large. Feedback from these online interactions suggest that remote communication via Web 2.0 technologies were effective tools for increasing public discourse and awareness of the science and exploration activity at Pavilion Lake.
NASA Astrophysics Data System (ADS)
Veenendaal, B.; Brovelli, M. A.; Li, S.; Ivánová, I.
2017-09-01
Although maps have been around for a very long time, web maps are yet very young in their origin. Despite their relatively short history, web maps have been developing very rapidly over the past few decades. The use, users and usability of web maps have rapidly expanded along with developments in web technologies and new ways of mapping. In the process of these developments, the terms and terminology surrounding web mapping have also changed and evolved, often relating to the new technologies or new uses. Examples include web mapping, web GIS, cloud mapping, internet mapping, internet GIS, geoweb, map mashup, online mapping etc., not to mention those with prefixes such as "web-based" and "internet-based". So, how do we keep track of these terms, relate them to each other and have common understandings of their meanings so that references to them are not ambiguous, misunderstood or even different? This paper explores the terms surrounding web mapping and web GIS, and the development of their meaning over time. The paper then suggests the current context in which these terms are used and provides meanings that may assist in better understanding and communicating using these terms in the future.
Bringing Terra Science to the People: 10 years of education and public outreach
NASA Astrophysics Data System (ADS)
Riebeek, H.; Chambers, L. H.; Yuen, K.; Herring, D.
2009-12-01
The default image on Apple's iPhone is a blue, white, green and tan globe: the Blue Marble. The iconic image was produced using Terra data as part of the mission's education and public outreach efforts. As far-reaching and innovative as Terra science has been over the past decade, Terra education and public outreach efforts have been equally successful. This talk will provide an overview of Terra's crosscutting education and public outreach projects, which have reached into educational facilities—classrooms, museums, and science centers, across the Internet, and into everyday life. The Earth Observatory web site was the first web site designed for the public that told the unified story of what we can learn about our planet from all space-based platforms. Initially conceived as part of Terra mission outreach in 1999, the web site has won five Webby awards, the highest recognition a web site can receive. The Visible Earth image gallery is a catalogue of NASA Earth imagery that receives more than one million page views per month. The NEO (NASA Earth Observations) web site and WMS (web mapping service) tool serves global data sets to museums and science centers across the world. Terra educational products, including the My NASA Data web service and the Students' Cloud Observations Online (S'COOL) project, bring Terra data into the classroom. Both projects target multiple grade levels, ranging from elementary school to graduate school. S'COOL uses student observations of clouds to help validate Terra data. Students and their parents have puzzled over weekly "Where on Earth" geography quizzes published on line. Perhaps the most difficult group to reach is the large segment of the public that does not seek out science information online or in a science museum or classroom. To reach these people, EarthSky produced a series of podcasts and radio broadcasts that brought Terra science to more than 30 million people in 2009. Terra imagery, including the Blue Marble, have seen wide distribution in books like Our Changing Planet and films like An Inconvenient Truth. The Blue Marble, courtesy Reto Stockli and Rob Simmon, NASA's Earth Observatory.
A simple method for serving Web hypermaps with dynamic database drill-down
Boulos, Maged N Kamel; Roudsari, Abdul V; Carson, Ewart R
2002-01-01
Background HealthCyberMap aims at mapping parts of health information cyberspace in novel ways to deliver a semantically superior user experience. This is achieved through "intelligent" categorisation and interactive hypermedia visualisation of health resources using metadata, clinical codes and GIS. HealthCyberMap is an ArcView 3.1 project. WebView, the Internet extension to ArcView, publishes HealthCyberMap ArcView Views as Web client-side imagemaps. The basic WebView set-up does not support any GIS database connection, and published Web maps become disconnected from the original project. A dedicated Internet map server would be the best way to serve HealthCyberMap database-driven interactive Web maps, but is an expensive and complex solution to acquire, run and maintain. This paper describes HealthCyberMap simple, low-cost method for "patching" WebView to serve hypermaps with dynamic database drill-down functionality on the Web. Results The proposed solution is currently used for publishing HealthCyberMap GIS-generated navigational information maps on the Web while maintaining their links with the underlying resource metadata base. Conclusion The authors believe their map serving approach as adopted in HealthCyberMap has been very successful, especially in cases when only map attribute data change without a corresponding effect on map appearance. It should be also possible to use the same solution to publish other interactive GIS-driven maps on the Web, e.g., maps of real world health problems. PMID:12437788
Transformative Sharing with Instant Messaging, Wikis, Interactive Maps, and Flickr
ERIC Educational Resources Information Center
Chase, Darren
2007-01-01
Smart librarians have always valued their relationships with users and other librarians. The creative force of those relationships is empowered via Web-based social networking, collaboration, and sharing. At Stony Brook University Health Sciences Library in New York, students, faculty, clinicians, and residents expect the latest refinements in…
Developing an educational curriculum for EnviroAtlas ...
EnviroAtlas is a web-based tool developed by the EPA and its partners, which provides interactive tools and resources for users to explore the benefits that people receive from nature, often referred to as ecosystem goods and services.Ecosystem goods and services are important to human health and well-being. Using EnviroAtlas, users can access, view, and analyze diverse information to better understand the potential impacts of decisions. EnviroAtlas provides two primary tools, the Interactive Map and the Eco-Health Relationship Browser. EnviroAtlas integrates geospatial data from a variety of sources so that users can visualize the impacts of decision-making on ecosystems. The Interactive Map allows users to investigate various ecosystem elements (i.e. land cover, pollution, and community development) and compare them across localities in the United States. The best part of the Interactive Map is that it does not require specialized software for map application; rather, it requires only a computer and an internet connection. As such, it can be used as a powerful educational tool. The Eco-Health Relationship Browser is also a web-based, highly interactive tool that uses existing scientific literature to visually demonstrate the connections between the environment and human health.As an ASPPH/EPA Fellow with a background in environmental science and secondary science education, I am currently developing an educational curriculum to support the EnviroAtlas to
NASA Astrophysics Data System (ADS)
Cody, R. P.; Kassin, A.; Gaylord, A. G.; Tweedie, C. E.
2013-12-01
In 2013, the Barrow Area Information Database (BAID, www.baid.utep.edu) project resumed field operations in Barrow, AK. The Barrow area of northern Alaska is one of the most intensely researched locations in the Arctic. BAID is a cyberinfrastructure (CI) that details much of the historic and extant research undertaken within in the Barrow region in a suite of interactive web-based mapping and information portals (geobrowsers). The BAID user community and target audience for BAID is diverse and includes research scientists, science logisticians, land managers, educators, students, and the general public. BAID contains information on more than 11,000 Barrow area research sites that extend back to the 1940's and more than 640 remote sensing images and geospatial datasets. In a web-based setting, users can zoom, pan, query, measure distance, and save or print maps and query results. Data are described with metadata that meet Federal Geographic Data Committee standards and are archived at the University Corporation for Atmospheric Research Earth Observing Laboratory (EOL) where non-proprietary BAID data can be freely downloaded. Highlights for the 2013 season include the addition of more than 2000 additional research sites, providing differential global position system (dGPS) support to visiting scientists, surveying over 80 miles of coastline to document rates of erosion, training of local GIS personal, deployment of a wireless sensor network, and substantial upgrades to the BAID website and web mapping applications.
Boulos, Maged N Kamel; Honda, Kiyoshi
2006-01-01
Open Source Web GIS software systems have reached a stage of maturity, sophistication, robustness and stability, and usability and user friendliness rivalling that of commercial, proprietary GIS and Web GIS server products. The Open Source Web GIS community is also actively embracing OGC (Open Geospatial Consortium) standards, including WMS (Web Map Service). WMS enables the creation of Web maps that have layers coming from multiple different remote servers/sources. In this article we present one easy to implement Web GIS server solution that is based on the Open Source University of Minnesota (UMN) MapServer. By following the accompanying step-by-step tutorial instructions, interested readers running mainstream Microsoft® Windows machines and with no prior technical experience in Web GIS or Internet map servers will be able to publish their own health maps on the Web and add to those maps additional layers retrieved from remote WMS servers. The 'digital Asia' and 2004 Indian Ocean tsunami experiences in using free Open Source Web GIS software are also briefly described. PMID:16420699
Publications of the Western Geologic Mapping Team 1997-1998
Stone, Paul; Powell, C.L.
1999-01-01
The Western Geologic Mapping Team (WGMT) of the U.S. Geological Survey, Geologic Division (USGS, GD), conducts geologic mapping and related topical earth-science studies in the western United States. This work is focused on areas where modern geologic maps and associated earth-science data are needed to address key societal and environmental issues such as ground-water quality, potential geologic hazards, and land-use decisions. Areas of primary emphasis currently include southern California, the San Francisco Bay region, the Pacific Northwest, the Las Vegas urban corridor, and selected National Park lands. The team has its headquarters in Menlo Park, California, and maintains smaller field offices at several other locations in the western United States. The results of research conducted by the WGMT are released to the public as a variety of databases, maps, text reports, and abstracts, both through the internal publication system of the USGS and in diverse external publications such as scientific journals and books. This report lists publications of the WGMT released in calendar years 1997 and 1998. Most of the publications listed were authored or coauthored by WGMT staff. However, the list also includes some publications authored by formal non-USGS cooperators with the WGMT, as well as some authored by USGS staff outside the WGMT in cooperation with WGMT projects. Several of the publications listed are available on the World Wide Web; for these, URL addresses are provided. Most of these Web publications are USGS open-file reports that contain large digital databases of geologic map and related information. For these, the bibliographic citation refers specifically to an explanatory pamphlet containing information about the content and accessibility of the database, not to the actual map or related information comprising the database itself.
NASA Astrophysics Data System (ADS)
Tisdale, M.
2016-12-01
NASA's Atmospheric Science Data Center (ASDC) is operationally using the Esri ArcGIS Platform to improve data discoverability, accessibility and interoperability to meet the diversifying government, private, public and academic communities' driven requirements. The ASDC is actively working to provide their mission essential datasets as ArcGIS Image Services, Open Geospatial Consortium (OGC) Web Mapping Services (WMS), OGC Web Coverage Services (WCS) and leveraging the ArcGIS multidimensional mosaic dataset structure. Science teams and ASDC are utilizing these services, developing applications using the Web AppBuilder for ArcGIS and ArcGIS API for Javascript, and evaluating restructuring their data production and access scripts within the ArcGIS Python Toolbox framework and Geoprocessing service environment. These capabilities yield a greater usage and exposure of ASDC data holdings and provide improved geospatial analytical tools for a mission critical understanding in the areas of the earth's radiation budget, clouds, aerosols, and tropospheric chemistry.
NASA Astrophysics Data System (ADS)
Changyong, Dou; Huadong, Guo; Chunming, Han; Ming, Liu
2014-03-01
With more and more Earth observation data available to the community, how to manage and sharing these valuable remote sensing datasets is becoming an urgent issue to be solved. The web based Geographical Information Systems (GIS) technology provides a convenient way for the users in different locations to share and make use of the same dataset. In order to efficiently use the airborne Synthetic Aperture Radar (SAR) remote sensing data acquired in the Airborne Remote Sensing Center of the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS), a Web-GIS based platform for airborne SAR data management, distribution and sharing was designed and developed. The major features of the system include map based navigation search interface, full resolution imagery shown overlaid the map, and all the software adopted in the platform are Open Source Software (OSS). The functions of the platform include browsing the imagery on the map navigation based interface, ordering and downloading data online, image dataset and user management, etc. At present, the system is under testing in RADI and will come to regular operation soon.
Multigraph: Interactive Data Graphs on the Web
NASA Astrophysics Data System (ADS)
Phillips, M. B.
2010-12-01
Many aspects of geophysical science involve time dependent data that is often presented in the form of a graph. Considering that the web has become a primary means of communication, there are surprisingly few good tools and techniques available for presenting time-series data on the web. The most common solution is to use a desktop tool such as Excel or Matlab to create a graph which is saved as an image and then included in a web page like any other image. This technique is straightforward, but it limits the user to one particular view of the data, and disconnects the graph from the data in a way that makes updating a graph with new data an often cumbersome manual process. This situation is somewhat analogous to the state of mapping before the advent of GIS. Maps existed only in printed form, and creating a map was a laborious process. In the last several years, however, the world of mapping has experienced a revolution in the form of web-based and other interactive computer technologies, so that it is now commonplace for anyone to easily browse through gigabytes of geographic data. Multigraph seeks to bring a similar ease of access to time series data. Multigraph is a program for displaying interactive time-series data graphs in web pages that includes a simple way of configuring the appearance of the graph and the data to be included. It allows multiple data sources to be combined into a single graph, and allows the user to explore the data interactively. Multigraph lets users explore and visualize "data space" in the same way that interactive mapping applications such as Google Maps facilitate exploring and visualizing geography. Viewing a Multigraph graph is extremely simple and intuitive, and requires no instructions. Creating a new graph for inclusion in a web page involves writing a simple XML configuration file and requires no programming. Multigraph can read data in a variety of formats, and can display data from a web service, allowing users to "surf" through large data sets, downloading only those the parts of the data that are needed for display. Multigraph is currently in use on several web sites including the US Drought Portal (www.drought.gov), the NOAA Climate Services Portal (www.climate.gov), the Climate Reference Network (www.ncdc.noaa.gov/crn), NCDC's State of the Climate Report (www.ncdc.noaa.gov/sotc), and the US Forest Service's Forest Change Assessment Viewer (ews.forestthreats.org/NPDE/NPDE.html). More information about Multigraph is available from the web site www.multigraph.org. Interactive Graph of Global Temperature Anomalies from ClimateWatch Magazine (http://www.climatewatch.noaa.gov/2009/articles/climate-change-global-temperature)
Interoperability In The New Planetary Science Archive (PSA)
NASA Astrophysics Data System (ADS)
Rios, C.; Barbarisi, I.; Docasal, R.; Macfarlane, A. J.; Gonzalez, J.; Arviset, C.; Grotheer, E.; Besse, S.; Martinez, S.; Heather, D.; De Marchi, G.; Lim, T.; Fraga, D.; Barthelemy, M.
2015-12-01
As the world becomes increasingly interconnected, there is a greater need to provide interoperability with software and applications that are commonly being used globally. For this purpose, the development of the new Planetary Science Archive (PSA), by the European Space Astronomy Centre (ESAC) Science Data Centre (ESDC), is focused on building a modern science archive that takes into account internationally recognised standards in order to provide access to the archive through tools from third parties, for example by the NASA Planetary Data System (PDS), the VESPA project from the Virtual Observatory of Paris as well as other international institutions. The protocols and standards currently being supported by the new Planetary Science Archive at this time are the Planetary Data Access Protocol (PDAP), the EuroPlanet-Table Access Protocol (EPN-TAP) and Open Geospatial Consortium (OGC) standards. The architecture of the PSA consists of a Geoserver (an open-source map server), the goal of which is to support use cases such as the distribution of search results, sharing and processing data through a OGC Web Feature Service (WFS) and a Web Map Service (WMS). This server also allows the retrieval of requested information in several standard output formats like Keyhole Markup Language (KML), Geography Markup Language (GML), shapefile, JavaScript Object Notation (JSON) and Comma Separated Values (CSV), among others. The provision of these various output formats enables end-users to be able to transfer retrieved data into popular applications such as Google Mars and NASA World Wind.
The MAP Autonomous Mission Control System
NASA Technical Reports Server (NTRS)
Breed, Juile; Coyle, Steven; Blahut, Kevin; Dent, Carolyn; Shendock, Robert; Rowe, Roger
2000-01-01
The Microwave Anisotropy Probe (MAP) mission is the second mission in NASA's Office of Space Science low-cost, Medium-class Explorers (MIDEX) program. The Explorers Program is designed to accomplish frequent, low cost, high quality space science investigations utilizing innovative, streamlined, efficient management, design and operations approaches. The MAP spacecraft will produce an accurate full-sky map of the cosmic microwave background temperature fluctuations with high sensitivity and angular resolution. The MAP spacecraft is planned for launch in early 2001, and will be staffed by only single-shift operations. During the rest of the time the spacecraft must be operated autonomously, with personnel available only on an on-call basis. Four (4) innovations will work cooperatively to enable a significant reduction in operations costs for the MAP spacecraft. First, the use of a common ground system for Spacecraft Integration and Test (I&T) as well as Operations. Second, the use of Finite State Modeling for intelligent autonomy. Third, the integration of a graphical planning engine to drive the autonomous systems without an intermediate manual step. And fourth, the ability for distributed operations via Web and pager access.
An introduction to the Semantic Web for health sciences librarians.
Robu, Ioana; Robu, Valentin; Thirion, Benoit
2006-04-01
The paper (1) introduces health sciences librarians to the main concepts and principles of the Semantic Web (SW) and (2) briefly reviews a number of projects on the handling of biomedical information that uses SW technology. The paper is structured into two main parts. "Semantic Web Technology" provides a high-level description, with examples, of the main standards and concepts: extensible markup language (XML), Resource Description Framework (RDF), RDF Schema (RDFS), ontologies, and their utility in information retrieval, concluding with mention of more advanced SW languages and their characteristics. "Semantic Web Applications and Research Projects in the Biomedical Field" is a brief review of the Unified Medical Language System (UMLS), Generalised Architecture for Languages, Encyclopedias and Nomenclatures in Medicine (GALEN), HealthCyberMap, LinkBase, and the thesaurus of the National Cancer Institute (NCI). The paper also mentions other benefits and by-products of the SW, citing projects related to them. Some of the problems facing the SW vision are presented, especially the ways in which the librarians' expertise in organizing knowledge and in structuring information may contribute to SW projects.
NASA Astrophysics Data System (ADS)
Girvetz, E. H.; Zganjar, C.; Raber, G. T.; Maurer, E. P.; Duffy, P.
2009-12-01
Virtually all fields of study and parts of society—from ecological science and nature conservation, to global development, multinational corporations, and government bodies—need to know how climate change has and may impact specific locations of interest. Our ability to respond to climate change depends on having convenient tools that make past and projected climate trends available to planners, managers, scientists and the general public, at scales ranging from global to local scales. Web-mapping applications provide an effective platform for communicating climate change impacts in specific geographic areas of interest to the public. Here, we present one such application, the ClimateWizard, that allows users to analyze, visualize and explore climate change maps for specific geographic areas of interest throughout the world (http://ClimateWizard.org). Built on Web 2.0 web-services (SOAP), Google Maps mash-up, and cloud computing technologies, the ClimateWizard analyzes large databases of climate information located on remote servers to create synthesized information and useful products tailored to geographic areas of interest (e.g. maps, graphs, tables, GIS layers). We demonstrate how the ClimateWizard can be used to assess projected changes to temperature and precipitation across all states in the contiguous United States and all countries of the world using statistically downscaled general circulation models from the CMIP3 dataset. We then go on to show how ClimateWizard can be used to analyze changes to other climate related variables, such as moisture stress and water production. Finally, we discuss how this tool can be adapted to develop a wide range of web-based tools that are targeted at informing specific audiences—from scientific research and natural resource management, to K-12 and higher education—about how climate change may affect different aspects of human and natural systems.
Using Maps in Web Analytics to Evaluate the Impact of Web-Based Extension Programs
ERIC Educational Resources Information Center
Veregin, Howard
2015-01-01
Maps can be a valuable addition to the Web analytics toolbox for Extension programs that use the Web to disseminate information. Extension professionals use Web analytics tools to evaluate program impacts. Maps add a unique perspective through visualization and analysis of geographic patterns and their relationships to other variables. Maps can…
Using the Geospatial Web to Deliver and Teach Giscience Education Programs
NASA Astrophysics Data System (ADS)
Veenendaal, B.
2015-05-01
Geographic information science (GIScience) education has undergone enormous changes over the past years. One major factor influencing this change is the role of the geospatial web in GIScience. In addition to the use of the web for enabling and enhancing GIScience education, it is also used as the infrastructure for communicating and collaborating among geospatial data and users. The web becomes both the means and the content for a geospatial education program. However, the web does not replace the traditional face-to-face environment, but rather is a means to enhance it, expand it and enable an authentic and real world learning environment. This paper outlines the use of the web in both the delivery and content of the GIScience program at Curtin University. The teaching of the geospatial web, web and cloud based mapping, and geospatial web services are key components of the program, and the use of the web and online learning are important to deliver this program. Some examples of authentic and real world learning environments are provided including joint learning activities with partner universities.
Concept Mapping as a Support for Mars Landing-Site Selection
NASA Technical Reports Server (NTRS)
Cabrol, Nathalie A.; Briggs, Geoffrey A.
1999-01-01
The NASA Ames' Center for Mars Exploration (CMEX) serves to coordinate Mars programmatic research at ARC in the sciences, in information technology and in aero-assist and other technologies. Most recently, CMEX has been working with the Institute for Human and Machine Cognition at the University of West Florida to develop a new kind of web browser based on the application of concept maps. These Cmaps, which are demonstrably effective in science teaching, can be used to provide a new kind of information navigation tool that can make web or CD based information more meaningful and more easily navigable. CMEX expects that its 1999 CD-ROM will have this new user interface. CMEX is also engaged with the Mars Surveyor Project Office at JPL in developing an Internet-based source of materials to support the process of selecting landing sites for the next series of Mars landers. This activity -- identifying the most promising sites from which to return samples relevant to the search for evidence of life -- is one that is expected to engage the general public as well as the science community. To make the landing site data easily accessible and meaningful to the public, CMEX is planning to use the IHMC Cmap browser as its user interface.
NASA Astrophysics Data System (ADS)
Kassin, A.; Cody, R. P.; Barba, M.; Gaylord, A. G.; Manley, W. F.; Score, R.; Escarzaga, S. M.; Tweedie, C. E.
2016-12-01
The Arctic Research Mapping Application (ARMAP; http://armap.org/) is a suite of online applications and data services that support Arctic science by providing project tracking information (who's doing what, when and where in the region) for United States Government funded projects. In collaboration with 17 research agencies, project locations are displayed in a visually enhanced web mapping application. Key information about each project is presented along with links to web pages that provide additional information, including links to data where possible. The latest ARMAP iteration has i) reworked the search user interface (UI) to enable multiple filters to be applied in user-driven queries and ii) implemented ArcGIS Javascript API 4.0 to allow for deployment of 3D maps directly into a users web-browser and enhanced customization of popups. Module additions include i) a dashboard UI powered by a back-end Apache SOLR engine to visualize data in intuitive and interactive charts; and ii) a printing module that allows users to customize maps and export these to different formats (pdf, ppt, gif and jpg). New reference layers and an updated ship tracks layer have also been added. These improvements have been made to improve discoverability, enhance logistics coordination, identify geographic gaps in research/observation effort, and foster enhanced collaboration among the research community. Additionally, ARMAP can be used to demonstrate past, present, and future research effort supported by the U.S. Government.
Experiments using Semantic Web technologies to connect IUGONET, ESPAS and GFZ ISDC data portals
NASA Astrophysics Data System (ADS)
Ritschel, Bernd; Borchert, Friederike; Kneitschel, Gregor; Neher, Günther; Schildbach, Susanne; Iyemori, Toshihiko; Koyama, Yukinobu; Yatagai, Akiyo; Hori, Tomoaki; Hapgood, Mike; Belehaki, Anna; Galkin, Ivan; King, Todd
2016-11-01
E-science on the Web plays an important role and offers the most advanced technology for the integration of data systems. It also makes available data for the research of more and more complex aspects of the system earth and beyond. The great number of e-science projects founded by the European Union (EU), university-driven Japanese efforts in the field of data services and institutional anchored developments for the enhancement of a sustainable data management in Germany are proof of the relevance and acceptance of e-science or cyberspace-based applications as a significant tool for successful scientific work. The collaboration activities related to near-earth space science data systems and first results in the field of information science between the EU-funded project ESPAS, the Japanese IUGONET project and the GFZ ISDC-based research and development activities are the focus of this paper. The main objective of the collaboration is the use of a Semantic Web approach for the mashup of the project related and so far inoperable data systems. Both the development and use of mapped and/or merged geo and space science controlled vocabularies and the connection of entities in ontology-based domain data model are addressed. The developed controlled vocabularies for the description of geo and space science data and related context information as well as the domain ontologies itself with their domain and cross-domain relationships will be published in Linked Open Data.[Figure not available: see fulltext.
Publications of the Western Earth Surfaces Processes Team 2005
Powell, Charles; Stone, Paul
2007-01-01
Introduction The Western Earth Surface Processes Team (WESPT) of the U.S. Geological Survey (USGS) conducts geologic mapping, earth-surface process investigations, and related topical earth science studies in the western United States. This work is focused on areas where modern geologic maps and associated earth-science data are needed to address key societal and environmental issues such as ground-water quality, landslides and other potential geologic hazards, and land-use decisions. Areas of primary emphasis in 2005 included southern California, the San Francisco Bay region, the Mojave Desert, the Colorado Plateau region of northern Arizona, and the Pacific Northwest. The team has its headquarters in Menlo Park, California, and maintains smaller field offices at several other locations in the western United States. The results of research conducted by the WESPT are released to the public as a variety of databases, maps, text reports, and abstracts, both through the internal publication system of the USGS and in diverse external publications such as scientific journals and books. This report lists publications of the WESPT released in 2005 as well as additional 2002, 2003, and 2004 publications that were not included in the previous lists (USGS Open-File Reports 03-363, 2004- 1267, 2005-1362). Most of the publications listed were authored or coauthored by WESPT staff. The list also includes some publications authored by non-USGS cooperators with the WESPT, as well as some authored by USGS staff outside the WESPT in cooperation with WESPT projects. Several of the publications listed are available on the World Wide Web; for these, URL addresses are provided. Many of these web publications are USGS Open-File reports that contain large digital databases of geologic map and related information. Information on ordering USGS publications can be found on the World Wide Web at http://www.usgs.gov/pubprod/, or by calling 1-888-ASK-USGS. The U.S. Geological Survey's web server for geologic information in the western United States is located at http://geology.wr.usgs.gov/. More information is available about the WESPT is available on-line at http://geology.wr.usgs.gov/wgmt.
Publications of the Western Earth Surface Processes Team 2002
Powell, Charles; Graymer, R.W.
2003-01-01
The Western Earth Surface Processes Team (WESPT) of the U.S. Geological Survey (USGS) conducts geologic mapping and related topical earth science studies in the western United States. This work is focused on areas where modern geologic maps and associated earth-science data are needed to address key societal and environmental issues such as ground-water quality, landslides and other potential geologic hazards, and land-use decisions. Areas of primary emphasis in 2001 included southern California, the San Francisco Bay region, the Pacific Northwest, and the Las Vegas urban corridor. The team has its headquarters in Menlo Park, California, and maintains smaller field offices at several other locations in the western United States. The results of research conducted by the WESPT are released to the public as a variety of databases, maps, text reports, and abstracts, both through the internal publication system of the USGS and in diverse external publications such as scientific journals and books. This report lists publications of the WESPT released in 2002 as well as additional 1998 and 2001 publications that were not included in the previous list (USGS Open-File Report 00-215, USGS Open-File Report 01-198, and USGS Open-File Report 02-269). Most of the publications listed were authored or coauthored by WESPT staff. The list also includes some publications authored by non-USGS cooperators with the WESPT, as well as some authored by USGS staff outside the WESPT in cooperation with WESPT projects. Several of the publications listed are available on the World Wide Web; for these, URL addresses are provided. Many of these web publications are USGS open-file reports that contain large digital databases of geologic map and related information. Information on ordering USGS publications can be found on the World Wide Web or by calling 1-888-ASK-USGS. The U.S. Geological Survey’s web server for geologic information in the western United States is located at http://geology.wr.usgs.gov. More information is available about the WESPT is available on-line at the team website.
Charting Our Path with a Web Literacy Map
ERIC Educational Resources Information Center
Dalton, Bridget
2015-01-01
Being a literacy teacher today means being a teacher of Web literacies. This article features the "Web Literacy Map", an open source tool from Mozilla's Webmaker project. The map focuses on Exploring (Navigating the Web); Building (creating for the Web), and Connecting (Participating on the Web). Readers are invited to use resources,…
NASA Technical Reports Server (NTRS)
Burks, Jason E.; Molthan, Andrew L.; McGrath, Kevin M.
2014-01-01
During the last year several significant disasters have occurred such as Superstorm Sandy on the East coast of the United States, and Typhoon Bopha in the Phillipines, along with several others. In support of these disasters NASA's Short-term Prediction Research and Transition (SPoRT) Center delivered various products derived from satellite imagery to help in the assessment of damage and recovery of the affected areas. To better support the decision makers responding to the disasters SPoRT quickly developed several solutions to provide the data using open Geographical Information Service (GIS) formats. Providing the data in open GIS standard formats allowed the end user to easily integrate the data into existing Decision Support Systems (DSS). Both Tile Mapping Service (TMS) and Web Mapping Service (WMS) were leveraged to quickly provide the data to the end-user. Development of the deliver methodology allowed quick response to rapidly developing disasters and enabled NASA SPoRT to bring science data to decision makers in a successful research to operations transition.
NASA Technical Reports Server (NTRS)
Burks, Jason E.; Molthan, Andrew L.; McGrath, Kevin M.
2014-01-01
During the last year several significant disasters have occurred such as Superstorm Sandy on the East coast of the United States, and Typhoon Bopha in the Phillipines, along with several others. In support of these disasters NASA's Short-term Prediction Research and Transition (SPoRT) Center delivered various products derived from satellite imagery to help in the assessment of damage and recovery of the affected areas. To better support the decision makers responding to the disasters SPoRT quickly developed several solutions to provide the data using open Geographical Information Service (GIS) formats. Providing the data in open GIS standard formats allowed the end user to easily integrate the data into existing Decision Support Systems (DSS). Both Tile Mapping Service (TMS) and Web Mapping Service (WMS) were leveraged to quickly provide the data to the end-user. Development of the deliver methodology allowed quick response to rapidly developing disasters and enabled NASA SPoRT to bring science data to decision makers in a successful research to operations transition.
U.S. Geological Survey science for the Wyoming Landscape Conservation Initiative—2014 annual report
Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Assal, Timothy J.; Bartos, Timothy T.; Biewick, Laura R; Boughton, Gregory K.; Chalfoun, Anna D.; Chong, Geneva W.; Dematatis, Marie K.; Eddy-Miller, Cheryl A.; Garman, Steven L.; Germaine, Stephen S.; Homer, Collin G.; Huber, Christopher; Kauffman, Matthew J.; Latysh, Natalie; Manier, Daniel; Melcher, Cynthia P.; Miller, Alexander; Miller, Kirk A.; Olexa, Edward M.; Schell, Spencer; Walters, Annika W.; Wilson, Anna B.; Wyckoff, Teal B.
2015-01-01
Finally, capabilities of the WLCI Web site and the USGS ScienceBase infrastructure were maintained and upgraded to help ensure access to and efficient use of all the WLCI data, products, assessment tools, and outreach materials that have been developed. Of particular note is the completion of three Web applications developed for mapping (1) the 1900−2008 progression of oil and gas development;(2) the predicted distributions of Wyoming’s Species of Greatest Conservation Need; and (3) the locations of coal and wind energy production, sage-grouse distribution and core management areas, and alternative routes for transmission lines within the WLCI region. Collectively, these applications tools provide WLCI planners and managers with powerful tools for better understanding the distributions of wildlife species and potential alternatives for energy development.
Documentation of Heritage Structures Through Geo-Crowdsourcing and Web-Mapping
NASA Astrophysics Data System (ADS)
Dhonju, H. K.; Xiao, W.; Shakya, B.; Mills, J. P.; Sarhosis, V.
2017-09-01
Heritage documentation has become increasingly urgent due to both natural impacts and human influences. The documentation of countless heritage sites around the globe is a massive project that requires significant amounts of financial and labour resources. With the concepts of volunteered geographic information (VGI) and citizen science, heritage data such as digital photographs can be collected through online crowd participation. Whilst photographs are not strictly geographic data, they can be geo-tagged by the participants. They can also be automatically geo-referenced into a global coordinate system if collected via mobile phones which are now ubiquitous. With the assistance of web-mapping, an online geo-crowdsourcing platform has been developed to collect and display heritage structure photographs. Details of platform development are presented in this paper. The prototype is demonstrated with several heritage examples. Potential applications and advancements are discussed.
Web-based CERES Clouds QC Property Viewing Tool
NASA Astrophysics Data System (ADS)
Smith, R. A.
2015-12-01
Churngwei Chu1, Rita Smith1, Sunny Sun-Mack1, Yan Chen1, Elizabeth Heckert1, Patrick Minnis21 Science Systems and Applications, Inc., Hampton, Virginia2 NASA Langley Research Center, Hampton, Virginia This presentation will display the capabilities of a web-based CERES cloud property viewer. Aqua/Terra/NPP data will be chosen for examples. It will demonstrate viewing of cloud properties in gridded global maps, histograms, time series displays, latitudinal zonal images, binned data charts, data frequency graphs, and ISCCP plots. Images can be manipulated by the user to narrow boundaries of the map as well as color bars and value ranges, compare datasets, view data values, and more. Other atmospheric studies groups will be encouraged to put their data into the underlying NetCDF data format and view their data with the tool.
Marx, Sabrina; Phalkey, Revati; Aranda-Jan, Clara B; Profe, Jörn; Sauerborn, Rainer; Höfle, Bernhard
2014-11-20
Childhood malnutrition is a serious challenge in Sub-Saharan Africa (SSA) and a major underlying cause of death. It is the result of a dynamic and complex interaction between political, social, economic, environmental and other factors. As spatially oriented research has been established in health sciences in recent years, developments in Geographic Information Science (GIScience) provide beneficial tools to get an improved understanding of malnutrition. In order to assess the current state of knowledge regarding the use of geoinformation analyses for exploring malnutrition in SSA, a systematic literature review of peer-reviewed literature is conducted using Scopus, ISI Web of Science and PubMed. As a supplement to the review, we carry on to investigate the establishment of web-based geoportals for providing freely accessible malnutrition geodata to a broad community. Based on these findings, we identify current limitations and discuss how new developments in GIScience might help to overcome impending barriers. 563 articles are identified from the searches, from which a total of nine articles and eight geoportals meet inclusion criteria. The review suggests that the spatial dimension of malnutrition is analyzed most often at the regional and national level using geostatistical analysis methods. Therefore, heterogeneous geographic information at different spatial scales and from multiple sources is combined by applying geoinformation analysis methods such as spatial interpolation, aggregation and downscaling techniques. Geocoded malnutrition data from the Demographic and Health Survey Program are the most common information source to quantify the prevalence of malnutrition on a local scale and are frequently combined with regional data on climate, population, agriculture and/or infrastructure. Only aggregated geoinformation about malnutrition prevalence is freely accessible, mostly displayed via web map visualizations or downloadable map images. The lack of detailed geographic data at household and local level is a major limitation for an in-depth assessment of malnutrition and links to potential impact factors. We propose that the combination of malnutrition-related studies with most recent GIScience developments such as crowd-sourced geodata collection, (web-based) interoperable spatial health data infrastructures as well as (dynamic) information fusion approaches are beneficial to deepen the understanding of this complex phenomenon.
NASA Astrophysics Data System (ADS)
2007-09-01
WE RECOMMEND Energy Foresight Valuable and original GCSE curriculum support on DVD Developing Scientific Literacy: Using News Media in the Classroom This book helpfully evaluates science stories in today's media Radioactivity Explained and Electricity Explained Interactive software ideal for classroom use TEP Generator Wind-up generator specially designed for schools SEP Energymeter A joule meter with more uses than its appearance suggests Into the Cool: Energy Flow, Thermodynamics and Life This book explores the physics behind biology CmapTools Handy software for mapping knowledge and resources LogIT Black Box This hub contains multiple sensors for endless experimental fun WEB WATCH Water Web 2.0
Linked data and provenance in biological data webs.
Zhao, Jun; Miles, Alistair; Klyne, Graham; Shotton, David
2009-03-01
The Web is now being used as a platform for publishing and linking life science data. The Web's linking architecture can be exploited to join heterogeneous data from multiple sources. However, as data are frequently being updated in a decentralized environment, provenance information becomes critical to providing reliable and trustworthy services to scientists. This article presents design patterns for representing and querying provenance information relating to mapping links between heterogeneous data from sources in the domain of functional genomics. We illustrate the use of named resource description framework (RDF) graphs at different levels of granularity to make provenance assertions about linked data, and demonstrate that these assertions are sufficient to support requirements including data currency, integrity, evidential support and historical queries.
NASA Technical Reports Server (NTRS)
Flores, Sarah L.; Chapman, Bruce D.; Tung, Waye W.; Zheng, Yang
2011-01-01
This new interface will enable Principal Investigators (PIs), as well as UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) members to do their own flight planning and time estimation without having to request flight lines through the science coordinator. It uses an all-in-one Google Maps interface, a JPL hosted database, and PI flight requirements to design an airborne flight plan. The application will enable users to see their own flight plan being constructed interactively through a map interface, and then the flight planning software will generate all the files necessary for the flight. Afterward, the UAVSAR team can then complete the flight request, including calendaring and supplying requisite flight request files in the expected format for processing by NASA s airborne science program. Some of the main features of the interface include drawing flight lines on the map, nudging them, adding them to the current flight plan, and reordering them. The user can also search and select takeoff, landing, and intermediate airports. As the flight plan is constructed, all of its components are constantly being saved to the database, and the estimated flight times are updated. Another feature is the ability to import flight lines from previously saved flight plans. One of the main motivations was to make this Web application as simple and intuitive as possible, while also being dynamic and robust. This Web application can easily be extended to support other airborne instruments.
ERIC Educational Resources Information Center
Wang, Kening; Mulvenon, Sean W.; Stegman, Charles; Anderson, Travis
2008-01-01
Google Maps API (Application Programming Interface), released in late June 2005 by Google, is an amazing technology that allows users to embed Google Maps in their own Web pages with JavaScript. Google Maps API has accelerated the development of new Google Maps based applications. This article reports a Web-based interactive mapping system…
NASA Astrophysics Data System (ADS)
Miller, Cory D.
The purpose of this study was to discover the student experiences of using the Frayer model map as a Tier 2 intervention in science. As a response to the criticized discrepancy model and the mandates contained in NCLB and the IDEA, response to intervention (RtI) has been implemented in education to increase achievement for all students and to discover what students need further interventions. Based on Cronbach's (1957) aptitude X treatment interaction theory, RtI assumes that progress over time can be measured when interventions are applied. While RtI has been actively implemented in reading and math, it has not been implemented in science. Therefore, it was not known what the experiences of students are using the Frayer model map as a Tier 2 intervention to impact science achievement. The multiple case study used a qualitative methodology that included pre-intervention and post-intervention web-based surveys, field notes during observations, and student work that were collected during the course of the study. The population that was studied was seventh- and eighth-grade students considered at-risk and attend a Title I school in Florida. The sample of the studied population was purposively selected according to a set of criteria similar to Tier 2 selection in RtI. The research question was, "What are the experiences of middle grades students using the Frayer model map as an instructional intervention in science?" The answer to the research question was that the experiences of students using the Frayer model map as a Tier 2 intervention in secondary science can be described as participants perceived the Frayer model map as use as a tool to organize tasks and create meaning while they completed the work independently and with accuracy. Even though there were limitations to quantity of data, the research question was adequately answered. Overall, the study fills a gap in the literature related to RtI and science education.
An introduction to the Semantic Web for health sciences librarians*
Robu, Ioana; Robu, Valentin; Thirion, Benoit
2006-01-01
Objectives: The paper (1) introduces health sciences librarians to the main concepts and principles of the Semantic Web (SW) and (2) briefly reviews a number of projects on the handling of biomedical information that uses SW technology. Methodology: The paper is structured into two main parts. “Semantic Web Technology” provides a high-level description, with examples, of the main standards and concepts: extensible markup language (XML), Resource Description Framework (RDF), RDF Schema (RDFS), ontologies, and their utility in information retrieval, concluding with mention of more advanced SW languages and their characteristics. “Semantic Web Applications and Research Projects in the Biomedical Field” is a brief review of the Unified Medical Language System (UMLS), Generalised Architecture for Languages, Encyclopedias and Nomenclatures in Medicine (GALEN), HealthCyberMap, LinkBase, and the thesaurus of the National Cancer Institute (NCI). The paper also mentions other benefits and by-products of the SW, citing projects related to them. Discussion and Conclusions: Some of the problems facing the SW vision are presented, especially the ways in which the librarians' expertise in organizing knowledge and in structuring information may contribute to SW projects. PMID:16636713
OneGeology Web Services and Portal as a global geological SDI - latest standards and technology
NASA Astrophysics Data System (ADS)
Duffy, Tim; Tellez-Arenas, Agnes
2014-05-01
The global coverage of OneGeology Web Services (www.onegeology.org and portal.onegeology.org) achieved since 2007 from the 120 participating geological surveys will be reviewed and issues arising discussed. Recent enhancements to the OneGeology Web Services capabilities will be covered including new up to 5 star service accreditation scheme utilising the ISO/OGC Web Mapping Service standard version 1.3, core ISO 19115 metadata additions and Version 2.0 Web Feature Services (WFS) serving the new IUGS-CGI GeoSciML V3.2 geological web data exchange language standard (http://www.geosciml.org/) with its associated 30+ IUGS-CGI available vocabularies (http://resource.geosciml.org/ and http://srvgeosciml.brgm.fr/eXist2010/brgm/client.html). Use of the CGI simpelithology and timescale dictionaries now allow those who wish to do so to offer data harmonisation to query their GeoSciML 3.2 based Web Feature Services and their GeoSciML_Portrayal V2.0.1 (http://www.geosciml.org/) Web Map Services in the OneGeology portal (http://portal.onegeology.org). Contributing to OneGeology involves offering to serve ideally 1:1000,000 scale geological data (in practice any scale now is warmly welcomed) as an OGC (Open Geospatial Consortium) standard based WMS (Web Mapping Service) service from an available WWW server. This may either be hosted within the Geological Survey or a neighbouring, regional or elsewhere institution that offers to serve that data for them i.e. offers to help technically by providing the web serving IT infrastructure as a 'buddy'. OneGeology is a standards focussed Spatial Data Infrastructure (SDI) and works to ensure that these standards work together and it is now possible for European Geological Surveys to register their INSPIRE web services within the OneGeology SDI (e.g. see http://www.geosciml.org/geosciml/3.2/documentation/cookbook/INSPIRE_GeoSciML_Cookbook%20_1.0.pdf). The Onegeology portal (http://portal.onegeology.org) is the first port of call for anyone wishing to discover the availability of global geological web services and has new functionality to view and use such services including multiple projection support. KEYWORDS : OneGeology; GeoSciML V 3.2; Data exchange; Portal; INSPIRE; Standards; OGC; Interoperability; GeoScience information; WMS; WFS; Cookbook.
NEON Citizen Science: Planning and Prototyping (Invited)
NASA Astrophysics Data System (ADS)
Gram, W.
2010-12-01
The National Ecological Observatory Network (NEON) will be a national resource for ecological research and education. NEON citizen science projects are being designed to increase awareness and educate citizen scientists about the impacts of climate change, land-use change, and invasive species on continental-scale ecological processes as well as expand NEON data collection capacity by enabling laypersons to collect geographically distributed data. The citizen science area of the NEON web portal will enable citizen scientists to collect, contribute, interpret, and visualize scientific data, as well as access training modules, collection protocols and targeted learning experiences related to citizen science project topics. For NEON, citizen science projects are a means for interested people to interact with and contribute to NEON science. Investigations at vast spatial and temporal scales often require rapid acquisition of large amounts of data from a geographically distributed population of “human sensors.” As a continental-scale ecological observatory, NEON is uniquely positioned to develop strategies to effectively integrate data collected by non-scientists into scientific databases. Ultimately, we plan to work collaboratively to transform the practice of science to include “citizens” or non-scientists in the process. Doing science is not limited to scientists, and breaking down the barriers between scientists and citizens will help people better understand the power of using science in their own decision making. In preparation for fully developing the NEON citizen science program, we are partnering with Project BudBurst (PBB), a citizen science project focused on monitoring plant phenology. The educational goals of PBB are to: (1) increase awareness of climate change, (2) educate citizen scientists about the impacts of climate change on plants and the environment, and (3) increase science literacy by engaging participants in the scientific process. Phenology was chosen as the focus of this citizen science campaign because it is a visible and comprehensible way of demonstrating the effects of climate change. In addition, plants are readily accessible in nearly every neighborhood and park, and wild areas across the continent, so people can make observations whether they live near an inner city park or in the rural countryside. Recently, NEON built 3 web tools that enable users to visualize PBB data. The tools include a mapping function that displays selected PBB distributional data on a map, an animated map that shows “green up” through time and space, and a graphing tool that compares number of species flowering or leafing out with day length. This prototyping will help NEON better understand how to engage citizen science participants in “doing science” beyond data collection.
A Bibliometric Analysis of Picture Book Research between 1993 and 2015
ERIC Educational Resources Information Center
Wu, Jia-Fen
2018-01-01
This study makes an effort to map the development of previous academic studies on picturebooks in order to provide an overview of contemporary picturebook research utilizing the HistCite (ver. 12.03.17) software. The findings are based on an analysis of 9,763 references to 286 articles from 175 journals indexed by the Web of Science (WoS)…
Visualization Case Study: Eyjafjallajökull Ash (Invited)
NASA Astrophysics Data System (ADS)
Simmon, R.
2010-12-01
Although data visualization is a powerful tool in Earth science, the resulting imagery is often complex and difficult to interpret for non-experts. Students, journalists, web site visitors, or museum attendees often have difficulty understanding some of the imagery scientists create, particularly false-color imagery and data-driven maps. Many visualizations are designed for data exploration or peer communication, and often follow discipline conventions or are constrained by software defaults. Different techniques are necessary for communication with a broad audience. Data visualization combines ideas from cognitive science, graphic design, and cartography, and applies them to the challenge of presenting data clearly. Visualizers at NASA's Earth Observatory web site (earthobservatory.nasa.gov) use these techniques to craft remote sensing imagery for interested but non-expert readers. Images range from natural-color satellite images and multivariate maps to illustrations of abstract concepts. I will use imagery of the eruption of Iceland's Eyjafjallajökull volcano as a case study, showing specific applications of general design techniques. By using color carefully (including contextual data), precisely aligning disparate data sets, and highlighting important features, we crafted an image that clearly conveys the complex vertical and horizontal distribution of airborne ash.
Teaching And Learning Tectonics With Web-GIS
NASA Astrophysics Data System (ADS)
Anastasio, D. J.; Sahagian, D. L.; Bodzin, A.; Teletzke, A. L.; Rutzmoser, S.; Cirucci, L.; Bressler, D.; Burrows, J. E.
2012-12-01
Tectonics is a new curriculum enhancement consisting of six Web GIS investigations designed to augment a traditional middle school Earth science curriculum. The investigations are aligned to Disciplinary Core Ideas: Earth and Space Science from the National Research Council's (2012) Framework for K-12 Science Education and to tectonics benchmark ideas articulated in the AAAS Project 2061 (2007) Atlas of Science Literacy. The curriculum emphasizes geospatial thinking and scientific inquiry and consists of the following modules: Geohazards, which plate boundary is closest to me? How do we recognize plate boundaries? How does thermal energy move around the Earth? What happens when plates diverge? What happens when plate move sideways past each other? What happens when plates collide? The Web GIS interface uses JavaScript for simplicity, intuition, and convenience for implementation on a variety of platforms making it easier for diverse middle school learners and their teachers to conduct authentic Earth science investigations, including multidisciplinary visualization, analysis, and synthesis of data. Instructional adaptations allow students who are English language learners, have disabilities, or are reluctant readers to perform advanced desktop GIS functions including spatial analysis, map visualization and query. The Web GIS interface integrates graphics, multimedia, and animation in addition to newly developed features, which allow users to explore and discover geospatial patterns that would not be easily visible using typical classroom instructional materials. The Tectonics curriculum uses a spatial learning design model that incorporates a related set of frameworks and design principles. The framework builds on the work of other successful technology-integrated curriculum projects and includes, alignment of materials and assessments with learning goals, casting key ideas in real-world problems, engaging students in scientific practices that foster the use of key ideas, uses geospatial technology, and supports for teachers in adopting and implementing GIS and inquiry-based activities.
NASA Astrophysics Data System (ADS)
2013-05-01
WE RECOMMEND BioLite CampStove Robust and multifaceted stove illuminates physics concepts 850 Universal interface and Capstone software Powerful data-acquisition system offers many options for student experiments and demonstrations xllogger Obtaining results is far from an uphill struggle with this easy-to-use datalogger Science Magic Tricks and Puzzles Small but perfectly formed and inexpensive book packed with 'magic-of-science' demonstrations Spinthariscope Kit for older students to have the memorable experience of 'seeing' radioactivity WORTH A LOOK DC Power Supply HY5002 Solid and effective, but noisy and lacks portability HANDLE WITH CARE Burnout Paradise Car computer game may be quick off the mark, but goes nowhere fast when it comes to lab use WEB WATCH 'Live' tube map and free apps would be a useful addition to school physics, but maths-questions website of no more use than a textbook
The Westfield River Watershed Interactive Atlas: mapping recreation data on the web
Robert S. Bristow; Steven Riberdy
2002-01-01
Imagine searching the web to create a map to your house. You could use one of the many Internet mapping sites like MapBlast or MapQuest to create such a map. But maybe you wish to get a map of trails for the Grand Canyon. The National Park Service web site could serve that need. Or you may wish to get a map to show you the way from the Orlando...
SSE-GIS v1.03 Web Mapping Application Now Available
Atmospheric Science Data Center
2018-03-16
SSE-GIS v1.03 Web Mapping Application Now Available Wednesday, July 6, 2016 ... you haven’t already noticed the link to the new SSE-GIS web application on the SSE homepage entitled “GIS Web Mapping Applications and Services”, we invite you to visit the site. ...
Publications of the Western Earth Surface Processes Team 2000
Powell, Charles L.; Stone, Paul
2001-01-01
The Western Earth Surface Processes Team (WESP) of the U.S. Geological Survey (USGS) conducts geologic mapping and related topical earth science studies in the western United States. This work is focused on areas where modern geologic maps and associated earth-science data are needed to address key societal and environmental issues such as ground-water quality, potential geologic hazards, and land-use decisions. Areas of primary emphasis in 2000 included southern California, the San Francisco Bay region, the Pacific Northwest, the Las Vegas urban corridor, and selected National Park lands. The team has its headquarters in Menlo Park, California, and maintains smaller field offices at several other locations in the western United States. The results of research conducted by the WESPT are released to the public as a variety of databases, maps, text reports, and abstracts, both through the internal publication system of the USGS and in diverse external publications such as scientific journals and books. This report lists publications of the WESPT released in 2000 as well as additional 1999 publications that were not included in the previous list (USGS Open-file Report 00-215). Most of the publications listed were authored or coauthored by WESPT staff. The list also includes some publications authored by non-USGS cooperators with the WESPT, as well as some authored by USGS staff outside the WESPT in cooperation with WESPT projects. Several of the publications listed are available on the World Wide Web; for these, URL addresses are provided. Many of these Web publications are USGS open-file reports that contain large digital databases of geologic map and related information.
NASA Astrophysics Data System (ADS)
Vincent, T.; Zetterlind, V.; Tougher, B.
2016-12-01
Marine Protected and Managed Areas (MPAs) are a cornerstone of coastal and ocean conservation efforts and reflect years of dedicated effort to protect species and habitats through science-based regulation. When they are effective, biomass increases dramatically, and up to 14 fold and play a significant role in conserving biodiversity. Effective MPAs have enforcement. Enforcement cannot occur without awareness of their location among ocean stakeholders and the general public. The Anthropocene Institute, in partnership with the NOAA Marine Protected Area Center, is creating an actively managed, free and open, worldwide database of MPAs, including normalized metadata and regulation summaries, full GIS boundaries, revision history, and public facing interactive web maps. This project employs 2 full-time lawyers that first comb the relevant regulation; 2 full-time geographers and a full-time GIS database/web engineer.
Data Mining Web Services for Science Data Repositories
NASA Astrophysics Data System (ADS)
Graves, S.; Ramachandran, R.; Keiser, K.; Maskey, M.; Lynnes, C.; Pham, L.
2006-12-01
The maturation of web services standards and technologies sets the stage for a distributed "Service-Oriented Architecture" (SOA) for NASA's next generation science data processing. This architecture will allow members of the scientific community to create and combine persistent distributed data processing services and make them available to other users over the Internet. NASA has initiated a project to create a suite of specialized data mining web services designed specifically for science data. The project leverages the Algorithm Development and Mining (ADaM) toolkit as its basis. The ADaM toolkit is a robust, mature and freely available science data mining toolkit that is being used by several research organizations and educational institutions worldwide. These mining services will give the scientific community a powerful and versatile data mining capability that can be used to create higher order products such as thematic maps from current and future NASA satellite data records with methods that are not currently available. The package of mining and related services are being developed using Web Services standards so that community-based measurement processing systems can access and interoperate with them. These standards-based services allow users different options for utilizing them, from direct remote invocation by a client application to deployment of a Business Process Execution Language (BPEL) solutions package where a complex data mining workflow is exposed to others as a single service. The ability to deploy and operate these services at a data archive allows the data mining algorithms to be run where the data are stored, a more efficient scenario than moving large amounts of data over the network. This will be demonstrated in a scenario in which a user uses a remote Web-Service-enabled clustering algorithm to create cloud masks from satellite imagery at the Goddard Earth Sciences Data and Information Services Center (GES DISC).
International Map Year: Results and Implications
NASA Astrophysics Data System (ADS)
Rystedt, Bengt; Ormeling, Ferjan; Buckley, Aileen; Coetzee, Serena; Voženilek, Vit; Fairbairn, David; Kagawa, Ayako
2018-05-01
IMY was a worldwide celebration of maps and their unique role in our world. Supported by the United Nations, IMY provides opportunities to demonstrate, follow, and get involved in the art, science, and technology of making and using maps and geographic information. International Map Year (IMY) started in Paris 2011 when the General Assembly of the International Cartographic Association (ICA) asked the ICA Executive Committee (EC) to follow up on the proposal given in a motion from the Swedish Cartographic Society. An IMY Working Group (WG) was constituted - it defined the IMY goals and the activities required to reach them, and it proposed a suitable time period for the IMY to the ICA EC. IMY commenced in August 2015 and ended in December 2016. The success of IMY was dependent on all member nations of the ICA participating in an effort to broaden the knowledge of cartography and geographic information in society in general, especially among citizens and school children. Member nations of the ICA were responsible for organizing IMY activities, such as a national Map Day, through national IMY committees tasked to engage national organizations and spearheading collaboration. The IMY WG set up an IMY web site with general information on IMY, guidelines for how to organize Map Days, suggestions relating to activities aimed at general map awareness, and more. The web site also provides access to the electronic book The World of Maps, which has been translated from English into five other languages.
Resource Needs and Pedagogical Value of Web Mapping for Spatial Thinking
ERIC Educational Resources Information Center
Manson, Steven; Shannon, Jerry; Eria, Sami; Kne, Len; Dyke, Kevin; Nelson, Sara; Batra, Lalit; Bonsal, Dudley; Kernik, Melinda; Immich, Jennifer; Matson, Laura
2014-01-01
Web mapping involves publishing and using maps via the Internet, and can range from presenting static maps to offering dynamic data querying and spatial analysis. Web mapping is seen as a promising way to support development of spatial thinking in the classroom but there are unanswered questions about how this promise plays out in reality. This…
Usability Evaluation of Public Web Mapping Sites
NASA Astrophysics Data System (ADS)
Wang, C.
2014-04-01
Web mapping sites are interactive maps that are accessed via Webpages. With the rapid development of Internet and Geographic Information System (GIS) field, public web mapping sites are not foreign to people. Nowadays, people use these web mapping sites for various reasons, in that increasing maps and related map services of web mapping sites are freely available for end users. Thus, increased users of web mapping sites led to more usability studies. Usability Engineering (UE), for instance, is an approach for analyzing and improving the usability of websites through examining and evaluating an interface. In this research, UE method was employed to explore usability problems of four public web mapping sites, analyze the problems quantitatively and provide guidelines for future design based on the test results. Firstly, the development progress for usability studies were described, and simultaneously several usability evaluation methods such as Usability Engineering (UE), User-Centered Design (UCD) and Human-Computer Interaction (HCI) were generally introduced. Then the method and procedure of experiments for the usability test were presented in detail. In this usability evaluation experiment, four public web mapping sites (Google Maps, Bing maps, Mapquest, Yahoo Maps) were chosen as the testing websites. And 42 people, who having different GIS skills (test users or experts), gender (male or female), age and nationality, participated in this test to complete the several test tasks in different teams. The test comprised three parts: a pretest background information questionnaire, several test tasks for quantitative statistics and progress analysis, and a posttest questionnaire. The pretest and posttest questionnaires focused on gaining the verbal explanation of their actions qualitatively. And the design for test tasks targeted at gathering quantitative data for the errors and problems of the websites. Then, the results mainly from the test part were analyzed. The success rate from different public web mapping sites was calculated and compared, and displayed by the means of diagram. And the answers from questionnaires were also classified and organized in this part. Moreover, based on the analysis, this paper expands the discussion about the layout, map visualization, map tools, search logic and etc. Finally, this paper closed with some valuable guidelines and suggestions for the design of public web mapping sites. Also, limitations for this research stated in the end.
Flood-inundation maps for the West Branch Delaware River, Delhi, New York, 2012
Coon, William F.; Breaker, Brian K.
2012-01-01
Digital flood-inundation maps for a 5-mile reach of the West Branch Delaware River through the Village and part of the Town of Delhi, New York, were created by the U.S. Geological Survey (USGS) in cooperation with the Village of Delhi, the Delaware County Soil and Water Conservation District, and the Delaware County Planning Department. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ and the Federal Flood Inundation Mapper Web site at http://wim.usgs.gov/FIMI/FloodInundationMapper.html, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) referenced to the USGS streamgage at West Branch Delaware River upstream from Delhi, N.Y. (station number 01421900). In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model that had been used to produce the flood insurance rate maps for the most recent flood insurance study for the Town and Village of Delhi. This hydraulic model was used to compute 10 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from 7 ft or near bankfull to 16 ft, which exceeds the stages that correspond to both the estimated 0.2-percent annual-exceedance-probability flood (500-year recurrence interval flood) and the maximum recorded peak flow. The simulated water-surface profiles were then combined with a geographic information system (GIS) digital elevation model, which was derived from Light Detection and Ranging (LiDAR) data with a 1.2-ft (0.61-ft root mean squared error) vertical accuracy and 3.3-ft (1-meter) horizontal resolution, to delineate the area flooded at each water level. A map that was produced using this method to delineate the inundated area for the flood that occurred on August 28, 2011, agreed well with highwater marks that had been located in the field using a global positioning system. The availability of the 10 flood-inundation maps on the USGS Flood Inundation Mapping Science Web site, along with Internet information regarding current stage from the USGS streamgage, will provide emergency management personnel and residents with information that is critical for flood-response activities, such as evacuations and road closures, as well as for post-flood recovery efforts.
NASA Astrophysics Data System (ADS)
Hanzalová, K.; Pavelka, K.
2013-07-01
The Czech Technical University in Prague in the cooperation with the University of Applied Sciences in Dresden (Germany) work on the Nasca Project. The cooperation started in 2004 and much work has been done since then. All work is connected with Nasca lines in southern Peru. The Nasca project started in 1995 and its main target is documentation and conservation of the Nasca lines. Most of the project results are presented as WebGIS application via Internet. In the face of the impending destruction of the soil drawings, it is possible to preserve this world cultural heritage for the posterity at least in a digital form. Creating of Nasca lines map is very useful. The map is in a digital form and it is also available as a paper map. The map contains planimetric component of the map, map lettering and altimetry. Thematic folder in this map is a vector layer of the geoglyphs in Nasca/Peru. Basis for planimetry are georeferenced satellite images, altimetry is created from digital elevation model. This map was created in ArcGis software.
NASA Astrophysics Data System (ADS)
Yang, Z.; Han, W.; di, L.
2010-12-01
The National Agricultural Statistics Service (NASS) of the USDA produces the Cropland Data Layer (CDL) product, which is a raster-formatted, geo-referenced, U.S. crop specific land cover classification. These digital data layers are widely used for a variety of applications by universities, research institutions, government agencies, and private industry in climate change studies, environmental ecosystem studies, bioenergy production & transportation planning, environmental health research and agricultural production decision making. The CDL is also used internally by NASS for crop acreage and yield estimation. Like most geospatial data products, the CDL product is only available by CD/DVD delivery or online bulk file downloading via the National Research Conservation Research (NRCS) Geospatial Data Gateway (external users) or in a printed paper map format. There is no online geospatial information access and dissemination, no crop visualization & browsing, no geospatial query capability, nor online analytics. To facilitate the application of this data layer and to help disseminating the data, a web-service based CDL interactive map visualization, dissemination, querying system is proposed. It uses Web service based service oriented architecture, adopts open standard geospatial information science technology and OGC specifications and standards, and re-uses functions/algorithms from GeoBrain Technology (George Mason University developed). This system provides capabilities of on-line geospatial crop information access, query and on-line analytics via interactive maps. It disseminates all data to the decision makers and users via real time retrieval, processing and publishing over the web through standards-based geospatial web services. A CDL region of interest can also be exported directly to Google Earth for mashup or downloaded for use with other desktop application. This web service based system greatly improves equal-accessibility, interoperability, usability, and data visualization, facilitates crop geospatial information usage, and enables US cropland online exploring capability without any client-side software installation. It also greatly reduces the need for paper map and analysis report printing and media usages, and thus enhances low-carbon Agro-geoinformation dissemination for decision support.
NASA Astrophysics Data System (ADS)
Aufdenkampe, A. K.; Mayorga, E.; Tarboton, D. G.; Sazib, N. S.; Horsburgh, J. S.; Cheetham, R.
2016-12-01
The Model My Watershed Web app (http://wikiwatershed.org/model/) was designed to enable citizens, conservation practitioners, municipal decision-makers, educators, and students to interactively select any area of interest anywhere in the continental USA to: (1) analyze real land use and soil data for that area; (2) model stormwater runoff and water-quality outcomes; and (3) compare how different conservation or development scenarios could modify runoff and water quality. The BiG CZ Data Portal is a web application for scientists for intuitive, high-performance map-based discovery, visualization, access and publication of diverse earth and environmental science data via a map-based interface that simultaneously performs geospatial analysis of selected GIS and satellite raster data for a selected area of interest. The two web applications share a common codebase (https://github.com/WikiWatershed and https://github.com/big-cz), high performance geospatial analysis engine (http://geotrellis.io/ and https://github.com/geotrellis) and deployment on the Amazon Web Services (AWS) cloud cyberinfrastructure. Users can use "on-the-fly" rapid watershed delineation over the national elevation model to select their watershed or catchment of interest. The two web applications also share the goal of enabling the scientists, resource managers and students alike to share data, analyses and model results. We will present these functioning web applications and their potential to substantially lower the bar for studying and understanding our water resources. We will also present work in progress, including a prototype system for enabling citizen-scientists to register open-source sensor stations (http://envirodiy.org/mayfly/) to stream data into these systems, so that they can be reshared using Water One Flow web services.
GIS Tool for Real-time Decision Making and Analysis of Multidisciplinary Cryosphere Datasets.
NASA Astrophysics Data System (ADS)
Roberts, S. D.; Moore, J. A.
2004-12-01
In support of the Western Arctic Shelf-Basin Interaction Project(SBI) a web-based interactive mapping server was installed on the USCGC Healy's on-board science computer network during its 2004 spring(HLY-04-02) and summer cruises (HLY-04-03) in the Chukchi and Beaufort Seas. SBI is a National Science Foundation sponsored multi-year and multidisciplinary project studying the biological productivity in the region. The mapping server was developed by the UCAR Joint Office of Science Support(JOSS) using OpenSource GIS tools(University of Minnesota Mapserver and USGS MapSurfer). Additional OpenSource tools such as GMT and MB-Systems were also utilized. The key layers in this system are the current ship track, station locations, multibeam bottom bathymetry, IBCAO bathymetry, DMSP satellite imagery , NOAA AVHRR Sea Surface temperature and all past SBI Project ship tracks and station locations. The ship track and multibeam layers are updated in real-time and the satellite layers are updated daily only during clear weather. In addition to using current high resolution multibeam bathymetry data, a composite high resolution bathymetry layer was created using multibeam data from past cruises in the SBI region. The server provides click-and-drag zooms, pan, feature query, distance measure and lat/lon/depth querys on a polar projection map of the arctic ocean. The main use of the system on the ship was for cruise track and station position planning by the scientists utilizing all available historical data and high resolution bathymetry. It was also the main source of information to all the scientist on board as to the cruise progress and plans. The system permitted on-board scientists to integrate historical cruise information for comparative purposes. A mirror web site was set up on land and the current ship track/station information was copied once a day to this site via a satellite link so people interested SBI research could follow the cruise progress.
1964 Great Alaska Earthquake: a photographic tour of Anchorage, Alaska
Thoms, Evan E.; Haeussler, Peter J.; Anderson, Rebecca D.; McGimsey, Robert G.
2014-01-01
On March 27, 1964, at 5:36 p.m., a magnitude 9.2 earthquake, the largest recorded earthquake in U.S. history, struck southcentral Alaska (fig. 1). The Great Alaska Earthquake (also known as the Good Friday Earthquake) occurred at a pivotal time in the history of earth science, and helped lead to the acceptance of plate tectonic theory (Cox, 1973; Brocher and others, 2014). All large subduction zone earthquakes are understood through insights learned from the 1964 event, and observations and interpretations of the earthquake have influenced the design of infrastructure and seismic monitoring systems now in place. The earthquake caused extensive damage across the State, and triggered local tsunamis that devastated the Alaskan towns of Whittier, Valdez, and Seward. In Anchorage, the main cause of damage was ground shaking, which lasted approximately 4.5 minutes. Many buildings could not withstand this motion and were damaged or collapsed even though their foundations remained intact. More significantly, ground shaking triggered a number of landslides along coastal and drainage valley bluffs underlain by the Bootlegger Cove Formation, a composite of facies containing variably mixed gravel, sand, silt, and clay which were deposited over much of upper Cook Inlet during the Late Pleistocene (Ulery and others, 1983). Cyclic (or strain) softening of the more sensitive clay facies caused overlying blocks of soil to slide sideways along surfaces dipping by only a few degrees. This guide is the document version of an interactive web map that was created as part of the commemoration events for the 50th anniversary of the 1964 Great Alaska Earthquake. It is accessible at the U.S. Geological Survey (USGS) Alaska Science Center website: http://alaska.usgs.gov/announcements/news/1964Earthquake/. The website features a map display with suggested tour stops in Anchorage, historical photographs taken shortly after the earthquake, repeat photography of selected sites, scanned documents, and small-scale maps, as well as links to slideshows of additional photographs and Google Street View™ scenes. Buildings in Anchorage that were severely damaged, sites of major landslides, and locations of post-earthquake engineering responses are highlighted. The web map can be used online as a virtual tour or in a physical self-guided tour using a web-enabled Global Positioning System (GPS) device. This publication serves the purpose of committing most of the content of the web map to a single distributable document. As such, some of the content differs from the online version.
Using Web Maps to Analyze the Construction of Global Scale Cognitive Maps
ERIC Educational Resources Information Center
Pingel, Thomas J.
2018-01-01
Game-based Web sites and applications are changing the ways in which students learn the world map. In this study, a Web map-based digital learning tool was used as a study aid for a university-level geography course in order to examine the way in which global scale cognitive maps are constructed. A network analysis revealed that clicks were…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chain, Patrick
Genomics — the genetic mapping and DNA sequencing of sets of genes or the complete genomes of organisms, along with related genome analysis and database work — is emerging as one of the transformative sciences of the 21st century. But current bioinformatics tools are not accessible to most biological researchers. Now, a new computational and web-based tool called EDGE Bioinformatics is working to fulfill the promise of democratizing genomics.
Prototype of Partial Cutting Tool of Geological Map Images Distributed by Geological Web Map Service
NASA Astrophysics Data System (ADS)
Nonogaki, S.; Nemoto, T.
2014-12-01
Geological maps and topographical maps play an important role in disaster assessment, resource management, and environmental preservation. These map information have been distributed in accordance with Web services standards such as Web Map Service (WMS) and Web Map Tile Service (WMTS) recently. In this study, a partial cutting tool of geological map images distributed by geological WMTS was implemented with Free and Open Source Software. The tool mainly consists of two functions: display function and cutting function. The former function was implemented using OpenLayers. The latter function was implemented using Geospatial Data Abstraction Library (GDAL). All other small functions were implemented by PHP and Python. As a result, this tool allows not only displaying WMTS layer on web browser but also generating a geological map image of intended area and zoom level. At this moment, available WTMS layers are limited to the ones distributed by WMTS for the Seamless Digital Geological Map of Japan. The geological map image can be saved as GeoTIFF format and WebGL format. GeoTIFF is one of the georeferenced raster formats that is available in many kinds of Geographical Information System. WebGL is useful for confirming a relationship between geology and geography in 3D. In conclusion, the partial cutting tool developed in this study would contribute to create better conditions for promoting utilization of geological information. Future work is to increase the number of available WMTS layers and the types of output file format.
Spatial data available on the web at http://mrdata.usgs.gov/
Johnson, Bruce
2002-01-01
Earth science information is important to decisionmakers who formulate public policy related to mineral resource sustainability, land stewardship, environmental hazards, the economy, and public health. To meet the growing demand for easily accessible data, the Mineral Resources Program has developed, in cooperation with other Federal and State agencies, an Internet-based, data-delivery system that allows interested customers worldwide to download accurate, up-to-date mineral resource-related data at any time. All data in the system are spatially located and customers with Internet access and a modern Web browser can easily produce maps having user-defined overlays for any region of interest.
Mars Trek: An Interactive Web Portal for Current and Future Missions to Mars
NASA Technical Reports Server (NTRS)
Law, E.; Day, B.
2017-01-01
NASA's Mars Trek (https://marstrek.jpl.nasa.gov) provides a web-based Portal and a suite of interactive visualization and analysis tools to enable mission planners, lunar scientists, and engineers to access mapped data products from past and current missions to Mars. During the past year, the capabilities and data served by Mars Trek have been significantly expanded beyond its original design as a public outreach tool. At the request of NASA's Science Mission Directorate and Human Exploration Operations Mission Directorate, Mars Trek's technology and capabilities are now being extended to support site selection and analysis activities for the first human missions to Mars.
Mars Trek: An Interactive Web Portal for Current and Future Missions to Mars
NASA Astrophysics Data System (ADS)
Law, E.; Day, B.
2017-09-01
NASA's Mars Trek (https://marstrek.jpl.nasa.gov) provides a web-based Portal and a suite of interactive visualization and analysis tools to enable mission planners, lunar scientists, and engineers to access mapped data products from past and current missions to Mars. During the past year, the capabilities and data served by Mars Trek have been significantly expanded beyond its original design as a public outreach tool. At the request of NASA's Science Mission Directorate and Human Exploration Operations Mission Directorate, Mars Trek's technology and capabilities are now being extended to support site selection and analysis activities for the first human missions to Mars.
NASA Astrophysics Data System (ADS)
Baldock, C.
2017-05-01
John Gore’s seminal 1984 paper on gel dosimetry spawned a vibrant research field ranging from fundamental science through to clinical applications. A preliminary bibliometric study was undertaken of the gel dosimetry family of publications inspired by, and resulting from, Gore’s original 1984 paper to determine active growth areas, research trends and hot topics from Gore’s paper up to and including 2016. Themes and trends of the gel dosimetry research field were bibliometrically explored by way of co-occurrence term maps using the titles and abstracts text corpora from the Web of Science database for all relevant papers from 1984 to 2016. Visualisation of similarities was used by way of the VOSviewer visualisation tool to generate cluster maps of gel dosimetry knowledge domains and the associated citation impact of topics within the domains. Heat maps were then generated to assist in the understanding of active growth areas, research trends, and emerging and hot topics in gel dosimetry.
The Future of Web Maps in Next Generation Textbooks
NASA Astrophysics Data System (ADS)
DiBiase, D.; Prasad, S.
2014-12-01
The reformation of the "Object Formerly Known as Textbook" (coined by the Chronicle of Higher Education) toward a digital future is underway. Emerging nextgen texts look less like electronic books ("ebooks") and more like online courseware. In addition to text and illustrations, nextgen textbooks for STEM subjects are likely to combine quizzes, grade management tools, support for social learning, and interactive media including web maps. Web maps are interactive, multi-scale, online maps that enable teachers and learners to explore, interrogate, and mash up the wide variety of map layers available in the cloud. This presentation will show how web maps coupled with interactive quizzes enable students' purposeful explorations and interpretations of spatial patterns related to humankind's interactions with the earth. Attendees will also learn about Esri's offer to donate ArcGIS Online web mapping subscriptions to every U.S. school as part of the President Obama's ConnectED initiative.
Mapping and Modeling Web Portal to Advance Global Monitoring and Climate Research
NASA Astrophysics Data System (ADS)
Chang, G.; Malhotra, S.; Bui, B.; Sadaqathulla, S.; Goodale, C. E.; Ramirez, P.; Kim, R. M.; Rodriguez, L.; Law, E.
2011-12-01
Today, the principal investigators of NASA Earth Science missions develop their own software to manipulate, visualize, and analyze the data collected from Earth, space, and airborne observation instruments. There is very little, if any, collaboration among these principal investigators due to the lack of collaborative tools, which would allow these scientists to share data and results. At NASA's Jet Propulsion Laboratory (JPL), under the Lunar Mapping and Modeling Project (LMMP), we have built a web portal that exposes a set of common services to users to allow search, visualization, subset, and download lunar science data. Users also have access to a set of tools that visualize, analyze and annotate the data. These services are developed according to industry standards for data access and manipulation, such REST and Open Geospatial Consortium (OGC) web services. As a result, users can access the datasets through custom written applications or off-the-shelf applications such as Google Earth. Even though it's currently used to store and process lunar data, this web portal infrastructure has been designed to support other solar system bodies such as asteroids and planets, including Earth. The infrastructure uses a combination of custom, commercial, and open-source software as well as off-the-shelf hardware and pay-by-use cloud computing services. The use of standardized web service interfaces facilitates platform and application-independent access to the services and data. For instance, we have software clients for the LMMP portal that provide a rich browsing and analysis experience from a variety of platforms including iOS and Android mobile platforms and large screen multi-touch displays with 3-D terrain viewing functions. The service-oriented architecture and design principles utilized in the implementation of the portal lends itself to be reusable and scalable and could naturally be extended to include a collaborative environment that enables scientists and principal investigators to share their research and analysis seamlessly. In addition, this extension will allow users to easily share their tools and data, and to enrich their mapping and analysis experiences. In this talk, we will describe the advanced data management and portal technologies used to power this collaborative environment. We will further illustrate how this environment can enable, enhance and advance global monitoring and climate research.
Displaying R spatial statistics on Google dynamic maps with web applications created by Rwui
2012-01-01
Background The R project includes a large variety of packages designed for spatial statistics. Google dynamic maps provide web based access to global maps and satellite imagery. We describe a method for displaying directly the spatial output from an R script on to a Google dynamic map. Methods This is achieved by creating a Java based web application which runs the R script and then displays the results on the dynamic map. In order to make this method easy to implement by those unfamiliar with programming Java based web applications, we have added the method to the options available in the R Web User Interface (Rwui) application. Rwui is an established web application for creating web applications for running R scripts. A feature of Rwui is that all the code for the web application being created is generated automatically so that someone with no knowledge of web programming can make a fully functional web application for running an R script in a matter of minutes. Results Rwui can now be used to create web applications that will display the results from an R script on a Google dynamic map. Results may be displayed as discrete markers and/or as continuous overlays. In addition, users of the web application may select regions of interest on the dynamic map with mouse clicks and the coordinates of the region of interest will automatically be made available for use by the R script. Conclusions This method of displaying R output on dynamic maps is designed to be of use in a number of areas. Firstly it allows statisticians, working in R and developing methods in spatial statistics, to easily visualise the results of applying their methods to real world data. Secondly, it allows researchers who are using R to study health geographics data, to display their results directly onto dynamic maps. Thirdly, by creating a web application for running an R script, a statistician can enable users entirely unfamiliar with R to run R coded statistical analyses of health geographics data. Fourthly, we envisage an educational role for such applications. PMID:22998945
Displaying R spatial statistics on Google dynamic maps with web applications created by Rwui.
Newton, Richard; Deonarine, Andrew; Wernisch, Lorenz
2012-09-24
The R project includes a large variety of packages designed for spatial statistics. Google dynamic maps provide web based access to global maps and satellite imagery. We describe a method for displaying directly the spatial output from an R script on to a Google dynamic map. This is achieved by creating a Java based web application which runs the R script and then displays the results on the dynamic map. In order to make this method easy to implement by those unfamiliar with programming Java based web applications, we have added the method to the options available in the R Web User Interface (Rwui) application. Rwui is an established web application for creating web applications for running R scripts. A feature of Rwui is that all the code for the web application being created is generated automatically so that someone with no knowledge of web programming can make a fully functional web application for running an R script in a matter of minutes. Rwui can now be used to create web applications that will display the results from an R script on a Google dynamic map. Results may be displayed as discrete markers and/or as continuous overlays. In addition, users of the web application may select regions of interest on the dynamic map with mouse clicks and the coordinates of the region of interest will automatically be made available for use by the R script. This method of displaying R output on dynamic maps is designed to be of use in a number of areas. Firstly it allows statisticians, working in R and developing methods in spatial statistics, to easily visualise the results of applying their methods to real world data. Secondly, it allows researchers who are using R to study health geographics data, to display their results directly onto dynamic maps. Thirdly, by creating a web application for running an R script, a statistician can enable users entirely unfamiliar with R to run R coded statistical analyses of health geographics data. Fourthly, we envisage an educational role for such applications.
NASA Astrophysics Data System (ADS)
French, N. H.; Erickson, T.; McKenzie, D.
2008-12-01
A major goal of the North American Carbon Program is to resolve uncertainties in understanding and managing the carbon cycle of North America. As carbon modeling tools become more comprehensive and spatially oriented, accurate datasets to spatially quantify carbon emissions from fire are needed, and these data resources need to be accessible to users for decision-making. Under a new NASA Carbon Cycle Science project, Drs. Nancy French and Tyler Erickson, of the Michigan Technological University, Michigan Tech Research Institute (MTRI), are teaming with specialists with the USDA Forest Service Fire and Environmental Research Applications (FERA) team to provide information for mapping fire-derived carbon emissions to users. The project focus includes development of a web-based system to provide spatially resolved fire emissions estimates for North America in a user-friendly environment. The web-based Decision Support System will be based on a variety of open source technologies. The Fuel Characteristic Classification System (FCCS) raster map of fuels and MODIS-derived burned area vector maps will be processed using the Geographic Data Abstraction Library (GDAL) and OGR Simple Features Library. Tabular and spatial project data will be stored in a PostgreSQL/PostGIS, a spatially enabled relational database server. The browser-based user interface will be created using the Django web page framework to allow user input for the decision support system. The OpenLayers mapping framework will be used to provide users with interactive maps within the browser. In addition, the data products will be made available in standard open data formats such as KML, to allow for easy integration into other spatial models and data systems.
The use of interactive graphical maps for browsing medical/health Internet information resources
Boulos, Maged N Kamel
2003-01-01
As online information portals accumulate metadata descriptions of Web resources, it becomes necessary to develop effective ways for visualising and navigating the resultant huge metadata repositories as well as the different semantic relationships and attributes of described Web resources. Graphical maps provide a good method to visualise, understand and navigate a world that is too large and complex to be seen directly like the Web. Several examples of maps designed as a navigational aid for Web resources are presented in this review with an emphasis on maps of medical and health-related resources. The latter include HealthCyberMap maps , which can be classified as conceptual information space maps, and the very abstract and geometric Visual Net maps of PubMed (for demos). Information resources can be also organised and navigated based on their geographic attributes. Some of the maps presented in this review use a Kohonen Self-Organising Map algorithm, and only HealthCyberMap uses a Geographic Information System to classify Web resource data and render the maps. Maps based on familiar metaphors taken from users' everyday life are much easier to understand. Associative and pictorial map icons that enable instant recognition and comprehension are preferred to geometric ones and are key to successful maps for browsing medical/health Internet information resources. PMID:12556244
Design, Development and Testing of Web Services for Multi-Sensor Snow Cover Mapping
NASA Astrophysics Data System (ADS)
Kadlec, Jiri
This dissertation presents the design, development and validation of new data integration methods for mapping the extent of snow cover based on open access ground station measurements, remote sensing images, volunteer observer snow reports, and cross country ski track recordings from location-enabled mobile devices. The first step of the data integration procedure includes data discovery, data retrieval, and data quality control of snow observations at ground stations. The WaterML R package developed in this work enables hydrologists to retrieve and analyze data from multiple organizations that are listed in the Consortium of Universities for the Advancement of Hydrologic Sciences Inc (CUAHSI) Water Data Center catalog directly within the R statistical software environment. Using the WaterML R package is demonstrated by running an energy balance snowpack model in R with data inputs from CUAHSI, and by automating uploads of real time sensor observations to CUAHSI HydroServer. The second step of the procedure requires efficient access to multi-temporal remote sensing snow images. The Snow Inspector web application developed in this research enables the users to retrieve a time series of fractional snow cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) for any point on Earth. The time series retrieval method is based on automated data extraction from tile images provided by a Web Map Tile Service (WMTS). The average required time for retrieving 100 days of data using this technique is 5.4 seconds, which is significantly faster than other methods that require the download of large satellite image files. The presented data extraction technique and space-time visualization user interface can be used as a model for working with other multi-temporal hydrologic or climate data WMTS services. The third, final step of the data integration procedure is generating continuous daily snow cover maps. A custom inverse distance weighting method has been developed to combine volunteer snow reports, cross-country ski track reports and station measurements to fill cloud gaps in the MODIS snow cover product. The method is demonstrated by producing a continuous daily time step snow presence probability map dataset for the Czech Republic region. The ability of the presented methodology to reconstruct MODIS snow cover under cloud is validated by simulating cloud cover datasets and comparing estimated snow cover to actual MODIS snow cover. The percent correctly classified indicator showed accuracy between 80 and 90% using this method. Using crowdsourcing data (volunteer snow reports and ski tracks) improves the map accuracy by 0.7--1.2%. The output snow probability map data sets are published online using web applications and web services. Keywords: crowdsourcing, image analysis, interpolation, MODIS, R statistical software, snow cover, snowpack probability, Tethys platform, time series, WaterML, web services, winter sports.
Implications of Web Mercator and its Use in Online Mapping
Battersby, Sarah E.; Finn, Michael P.; Usery, E. Lynn; Yamamoto, Kristina H.
2014-01-01
Online interactive maps have become a popular means of communicating with spatial data. In most online mapping systems, Web Mercator has become the dominant projection. While the Mercator projection has a long history of discussion about its inappropriateness for general-purpose mapping, particularly at the global scale, and seems to have been virtually phased out for general-purpose global-scale print maps, it has seen a resurgence in popularity in Web Mercator form. This article theorizes on how Web Mercator came to be widely used for online maps and what this might mean in terms of data display, technical aspects of map generation and distribution, design, and cognition of spatial patterns. The authors emphasize details of where the projection excels and where it does not, as well as some of its advantages and disadvantages for cartographic communication, and conclude with some research directions that may help to develop better solutions to the problem of projections for general-purpose, multi-scale Web mapping.
IntegratedMap: a Web interface for integrating genetic map data.
Yang, Hongyu; Wang, Hongyu; Gingle, Alan R
2005-05-01
IntegratedMap is a Web application and database schema for storing and interactively displaying genetic map data. Its Web interface includes a menu for direct chromosome/linkage group selection, a search form for selection based on mapped object location and linkage group displays. An overview display provides convenient access to the full range of mapped and anchored object types with genetic locus details, such as numbers, types and names of mapped/anchored objects displayed in a compact scrollable list box that automatically updates based on selected map location and object type. Also, multilinkage group and localized map views are available along with links that can be configured for integration with other Web resources. IntegratedMap is implemented in C#/ASP.NET and the package, including a MySQL schema creation script, is available from http://cggc.agtec.uga.edu/Data/download.asp
Morioka, Yusuke; Everroad, R. Craig; Shino, Amiu; Matsushima, Akihiro; Haruna, Hideaki; Moriya, Shigeharu; Toyoda, Tetsuro; Kikuchi, Jun
2012-01-01
Ecosystems can be conceptually thought of as interconnected environmental and metabolic systems, in which small molecules to macro-molecules interact through diverse networks. State-of-the-art technologies in post-genomic science offer ways to inspect and analyze this biomolecular web using omics-based approaches. Exploring useful genes and enzymes, as well as biomass resources responsible for anabolism and catabolism within ecosystems will contribute to a better understanding of environmental functions and their application to biotechnology. Here we present ECOMICS, a suite of web-based tools for ECosystem trans-OMICS investigation that target metagenomic, metatranscriptomic, and meta-metabolomic systems, including biomacromolecular mixtures derived from biomass. ECOMICS is made of four integrated webtools. E-class allows for the sequence-based taxonomic classification of eukaryotic and prokaryotic ribosomal data and the functional classification of selected enzymes. FT2B allows for the digital processing of NMR spectra for downstream metabolic or chemical phenotyping. Bm-Char allows for statistical assignment of specific compounds found in lignocellulose-based biomass, and HetMap is a data matrix generator and correlation calculator that can be applied to trans-omics datasets as analyzed by these and other web tools. This web suite is unique in that it allows for the monitoring of biomass metabolism in a particular environment, i.e., from macromolecular complexes (FT2DB and Bm-Char) to microbial composition and degradation (E-class), and makes possible the understanding of relationships between molecular and microbial elements (HetMap). This website is available to the public domain at: https://database.riken.jp/ecomics/. PMID:22319563
Analyzing the research in Integrative & Complementary Medicine by means of science mapping.
Moral-Muñoz, J A; Cobo, M J; Peis, E; Arroyo-Morales, M; Herrera-Viedma, E
2014-04-01
The research in the Complementary and Alternative Medicine (CAM) field is analyzed according to the journals indexed in ISI Web of Science. Science Mapping Analysis (SMA) is used to provide and overview of the conceptual evolution of the CAM field. The software SciMAT is used to detect and visualize the hidden themes and their evolution over a consecutive span of years. It combines SMA and performance analysis. Twenty one journals related to CAM were analyzed, in four consecutive periods from 1974 to 2011. Strategic diagrams and the thematic evolution of CAM, together with performance indicators (h-index), were obtained. The results show that CAM research has focused on seven main thematic areas: MEDICINAL-PLANTS, CHIROPRACTIC-AND-LOW-BACK-PAIN, ACUPUNCTURE-AND-PAIN, CELL-PROCESSES-AND-DISEASES, LIPID-PEROXIDATION and DIABETES-AND-INSULIN. The research output could be used by the scientific community to identify thematic areas on which interest is focused. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Sargassum Early Advisory System (SEAS)
NASA Astrophysics Data System (ADS)
Armstrong, D.; Gallegos, S. C.
2016-02-01
The Sargassum Early Advisory System (SEAS) web-app was designed to automatically detect Sargassum at sea, forecast movement of the seaweed, and alert users of potential landings. Inspired to help address the economic hardships caused by large landings of Sargassum, the web app automates and enhances the manual tasks conducted by the SEAS group of Texas A&M University at Galveston. The SEAS web app is a modular, mobile-friendly tool that automates the entire workflow from data acquisition to user management. The modules include: 1) an Imagery Retrieval Module to automatically download Landsat-8 Operational Land Imagery (OLI) from the United States Geological Survey (USGS), 2) a Processing Module for automatic detection of Sargassum in the OLI imagery, and subsequent mapping of theses patches in the HYCOM grid, producing maps that show Sargassum clusters; 3) a Forecasting engine fed by the HYbrid Coordinate Ocean Model (HYCOM) model currents and winds from weather buoys; and 4) a mobile phone optimized geospatial user interface. The user can view the last known position of Sargassum clusters, trajectory and location projections for the next 24, 72 and 168 hrs. Users can also subscribe to alerts generated for particular areas. Currently, the SEAS web app produces advisories for Texas beaches. The forecasted Sargassum landing locations are validated by reports from Texas beach managers. However, the SEAS web app was designed to easily expand to other areas, and future plans call for extending the SEAS web app to Mexico and the Caribbean islands. The SEAS web app development is led by NASA, with participation by ASRC Federal/Computer Science Corporation, and the Naval Research Laboratory, all at Stennis Space Center, and Texas A&M University at Galveston.
NASA Astrophysics Data System (ADS)
Wood, J. H.; Natali, S.; Schade, J. D.; Fiske, G. J.; Linder, C.; Ramos, E.; Weber, L. R.; Kuhn, M. A.
2014-12-01
The Polaris Project is a unique undergraduate education, research, and outreach initiative that examines global climate change in the Siberian Arctic. The program focuses on permafrost and carbon processes in the boreal and tundra ecosystems of the Kolyma Watershed, the largest watershed underlain by continuous permafrost. Each summer, a diverse group of undergraduate students and faculty mentors spends one month living on the Kolyma River, developing independent projects that engage the students directly in the biogeosciences through authentic scientific research experiences in remote field sites. In all cases the student projects contribute to the overall goal of the Polaris Project to investigate the transport and transformations of carbon and nutrients as they move among terrestrial and aquatic ecosystems and the atmosphere. Through the use of online interactive ArcGIS maps the students share their experiences and learning, while posing questions in a format that can be used to engage K-12 learners in the classroom. By embedding information; including databases, photographs and video, informational text, and geospatial data; into user-friendly maps the Polaris Project students will "tell the story" of studying climate change in the Siberian tundra in a way that allows the users to explore climate science through inquiry and web-map based investigation. Through performance expectation topics including Weather and Climate, Interactions, Earth's Systems, and Human impacts, this investigation uses consideration of the vast amounts of ancient organic matter locked up in permafrost in the region, and concerns about the fate of this ancient organic carbon as temperatures warm and permafrost thaws, to make K-12 climate change connections with the Next Generation Science Standards (NGSS).
Publications of Western Earth Surface Processes Team 2001
Powell, II; Graymer, R.W.
2002-01-01
The Western Earth Surface Processes Team (WESPT) of the U.S. Geological Survey (USGS) conducts geologic mapping and related topical earth-science studies in the Western United States. This work is focused on areas where modern geologic maps and associated earth-science data are needed to address key societal and environmental issues, such as ground-water quality, landslides and other potential geologic hazards, and land-use decisions. Areas of primary emphasis in 2001 included southern California, the San Francisco Bay region, the Pacific Northwest, and the Las Vegas urban corridor. The team has its headquarters in Menlo Park, California, and maintains smaller field offices at several other locations in the Western United States. The results of research conducted by the WESPT are released to the public as a variety of databases, maps, text reports, and abstracts, both through the internal publication system of the USGS and in diverse external publications such as scientific journals and books. This report lists publications of the WESPT released in 2001, as well as additional 1999 and 2000 publications that were not included in the previous list (USGS Open-File Report 00–215 and USGS Open-File Report 01–198). Most of the publications listed were authored or coauthored by WESPT staff. The list also includes some publications authored by non-USGS cooperators with the WESPT, as well as some authored by USGS staff outside the WESPT in cooperation with WESPT projects. Several of the publications listed are available on the World Wide Web; for these, URL addresses are provided. Many of these web publications are USGS Open-File Reports that contain large digital databases of geologic map and related information.
Exploring NASA OMI Level 2 Data With Visualization
NASA Technical Reports Server (NTRS)
Wei, Jennifer; Yang, Wenli; Johnson, James; Zhao, Peisheng; Gerasimov, Irina; Pham, Long; Vicente, Gilberto
2014-01-01
Satellite data products are important for a wide variety of applications that can bring far-reaching benefits to the science community and the broader society. These benefits can best be achieved if the satellite data are well utilized and interpreted, such as model inputs from satellite, or extreme events (such as volcano eruptions, dust storms,... etc.). Unfortunately, this is not always the case, despite the abundance and relative maturity of numerous satellite data products provided by NASA and other organizations. Such obstacles may be avoided by allowing users to visualize satellite data as "images", with accurate pixel-level (Level-2) information, including pixel coverage area delineation and science team recommended quality screening for individual geophysical parameters. We present a prototype service from the Goddard Earth Sciences Data and Information Services Center (GES DISC) supporting Aura OMI Level-2 Data with GIS-like capabilities. Functionality includes selecting data sources (e.g., multiple parameters under the same scene, like NO2 and SO2, or the same parameter with different aggregation methods, like NO2 in OMNO2G and OMNO2D products), user-defined area-of-interest and temporal extents, zooming, panning, overlaying, sliding, and data subsetting, reformatting, and reprojection. The system will allow any user-defined portal interface (front-end) to connect to our backend server with OGC standard-compliant Web Mapping Service (WMS) and Web Coverage Service (WCS) calls. This back-end service should greatly enhance its expandability to integrate additional outside data/map sources.
Exploring NASA OMI Level 2 Data With Visualization
NASA Technical Reports Server (NTRS)
Wei, Jennifer C.; Yang, Wenli; Johnson, James; Zhao, Peisheng; Gerasimov, Irina; Pham, Long; Vincente, Gilbert
2014-01-01
Satellite data products are important for a wide variety of applications that can bring far-reaching benefits to the science community and the broader society. These benefits can best be achieved if the satellite data are well utilized and interpreted, such as model inputs from satellite, or extreme events (such as volcano eruptions, dust storms, etc.).Unfortunately, this is not always the case, despite the abundance and relative maturity of numerous satellite data products provided by NASA and other organizations. Such obstacles may be avoided by allowing users to visualize satellite data as images, with accurate pixel-level (Level-2) information, including pixel coverage area delineation and science team recommended quality screening for individual geophysical parameters. We present a prototype service from the Goddard Earth Sciences Data and Information Services Center (GES DISC) supporting Aura OMI Level-2 Data with GIS-like capabilities. Functionality includes selecting data sources (e.g., multiple parameters under the same scene, like NO2 and SO2, or the same parameter with different aggregation methods, like NO2 in OMNO2G and OMNO2D products), user-defined area-of-interest and temporal extents, zooming, panning, overlaying, sliding, and data subsetting, reformatting, and reprojection. The system will allow any user-defined portal interface (front-end) to connect to our backend server with OGC standard-compliant Web Mapping Service (WMS) and Web Coverage Service (WCS) calls. This back-end service should greatly enhance its expandability to integrate additional outside data-map sources.
Integration of Problem-Based Learning and Web-Based Multimedia to Enhance Soil Management Course
NASA Astrophysics Data System (ADS)
Strivelli, R.; Krzic, M.; Crowley, C.; Dyanatkar, S.; Bomke, A.; Simard, S.; Grand, S.
2012-04-01
In an attempt to address declining enrolment in soil science programs and the changing learning needs of 21st century students, several universities in North America and around the world have re-organized their soil science curriculum and adopted innovative educational approaches and web-based teaching resources. At the University of British Columbia, Canada, an interdisciplinary team set out to integrate teaching approaches to address this trend. The objective of this project was to develop an interactive web-based teaching resource, which combined a face-to-face problem-based learning (PBL) case study with multimedia to illustrate the impacts of three land-uses on soil transformation and quality. The Land Use Impacts (LUI) tool (http://soilweb.landfood.ubc.ca/luitool/) was a collaborative and concentrated effort to maximize the advantages of two educational approaches: (1) the web's interactivity, flexibility, adaptability and accessibility, and (2) PBL's ability to foster an authentic learning environment, encourage group work and promote the application of core concepts. The design of the LUI case study was guided by Herrington's development principles for web-based authentic learning. The LUI tool presented students with rich multimedia (streaming videos, text, data, photographs, maps, and weblinks) and real world tasks (site assessment and soil analysis) to encourage students to utilize knowledge of soil science in collaborative problem-solving. Preliminary student feedback indicated that the LUI tool effectively conveyed case study objectives and was appealing to students. The resource is intended primarily for students enrolled in an upper level undergraduate/graduate university course titled Sustainable Soil Management but it is flexible enough to be adapted to other natural resource courses. Project planning and an interactive overview of the tool will be given during the presentation.
Chain, Patrick
2018-05-31
Genomics â the genetic mapping and DNA sequencing of sets of genes or the complete genomes of organisms, along with related genome analysis and database work â is emerging as one of the transformative sciences of the 21st century. But current bioinformatics tools are not accessible to most biological researchers. Now, a new computational and web-based tool called EDGE Bioinformatics is working to fulfill the promise of democratizing genomics.
Global trends in research related to social media in psychology: mapping and bibliometric analysis.
Zyoud, Sa'ed H; Sweileh, Waleed M; Awang, Rahmat; Al-Jabi, Samah W
2018-01-01
Social media, defined as interactive Web applications, have been on the rise globally, particularly among adults. The objective of this study was to investigate the trend of the literature related to the most used social network worldwide (i.e. Facebook, Twitter, LinkedIn, Snapchat, and Instagram) in the field of psychology. Specifically, this study will assess the growth in publications, citation analysis, international collaboration, author productivity, emerging topics and the mapping of frequent terms in publications pertaining to social media in the field of psychology. Publications related to social media in the field of psychology published between 2004 and 2014 were obtained from the Web of Science. The records extracted were analysed for bibliometric characteristics such as the growth in publications, citation analysis, international collaboration, emerging topics and the mapping of frequent terms in publications pertaining to social media in the field of psychology. VOSviewer v.1.6.5 was used to construct scientific maps. Overall, 959 publications were retrieved during the period between 2004 and 2015. The number of research publications in social media in the field of psychology showed a steady upward growth. Publications from the USA accounted for 57.14% of the total publications and the highest h -index (48).The most common document type was research articles (873; 91.03%). Over 99.06% of the publications were published in English. Computers in Human Behavior was the most prolific journal. The University of Wisconsin - Madison ranked first in terms of the total publications (n = 39). A visualisation analysis showed that personality psychology, experimental psychology, psychological risk factors, and developmental psychology were continual concerns of the research. This is the first study reporting the global trends in the research related to social media in the psychology field. Based on the raw data from the Web of Science, publication characteristics such as quality and quantity were assessed using bibliometric techniques over 12 years. The USA and its institutions play a dominant role in this topic. The most preferred topics related to social media in psychology are personality psychology, experimental psychology, psychological risk factors, and developmental psychology.
NASA Astrophysics Data System (ADS)
Lebec, Michael Thomas
Due to discipline specific shortages, web-based learning has been proposed as a convenient way to upgrade the content knowledge of instructors interested in learning to teach science. Despite quantitative evidence that web-based instruction is equivalent to traditional methods, questions remain regarding its use. The efficiency and practicality of this approach with teachers in particular has not been extensively studied. This investigation examines learning in an online biology course designed to help teachers prepare for science certification exams. Research questions concern flow teachers learn biology in the online environment and how this setting influences the learning process. Quantitative and qualitative methodologies are employed in an attempt to provide a more complete perspective than typical studies of online learning. Concept maps, tests, and online discussion transcripts are compared as measures of assimilated knowledge, while interviews reflect participants' views on the course. Findings indicate that participants experienced gains in declarative knowledge, but little improvement with respect to conditional knowledge. Qualitative examination of concept maps demonstrates gaps in participants' understandings of key course ideas. Engagement in the use of online resources varied according to participants' attitudes towards online learning. Subjects also reported a lack of motivation to fully engage in the course due to busy teaching schedules and the absence of accountability.
Mapping the knowledge utilization field in nursing from 1945 to 2004: a bibliometric analysis.
Scott, Shannon D; Profetto-McGrath, Joanne; Estabrooks, Carole A; Winther, Connie; Wallin, Lars; Lavis, John N
2010-12-01
The field of knowledge utilization has been hampered by several issues including: the synonymous use of multiple terms with little attempt at definition precision; an overexamination of knowledge utilization as product, rather than a process; and a lack of progress to cross disciplinary boundaries to advance knowledge development. In order to address the challenges and current knowledge gaps in the knowledge utilization field in nursing, a comprehensive picture of the current state of the field is required. Bibliometric analyses were used to map knowledge utilization literature in nursing as an international field of study, and to identify the structure of its scientific community. Analyses of bibliographic data for 433 articles from the period 1945-2004 demonstrated three trends: (1) there has been significant recent growth and interest in this field, (2) the structure of the scientific knowledge utilization community is evolving, and (3) the Web of Science does not index the majority of journals where this literature is published. In order to enhance the accessibility and profile of this literature, and nursing's scientific literature at large, we encourage the International Academy of Nursing Editors to work collaboratively to increase the number of journals indexed in the Web of Science. ©2010 Sigma Theta Tau International.
Dominkovics, Pau; Granell, Carlos; Pérez-Navarro, Antoni; Casals, Martí; Orcau, Angels; Caylà, Joan A
2011-11-29
Health professionals and authorities strive to cope with heterogeneous data, services, and statistical models to support decision making on public health. Sophisticated analysis and distributed processing capabilities over geocoded epidemiological data are seen as driving factors to speed up control and decision making in these health risk situations. In this context, recent Web technologies and standards-based web services deployed on geospatial information infrastructures have rapidly become an efficient way to access, share, process, and visualize geocoded health-related information. Data used on this study is based on Tuberculosis (TB) cases registered in Barcelona city during 2009. Residential addresses are geocoded and loaded into a spatial database that acts as a backend database. The web-based application architecture and geoprocessing web services are designed according to the Representational State Transfer (REST) principles. These web processing services produce spatial density maps against the backend database. The results are focused on the use of the proposed web-based application to the analysis of TB cases in Barcelona. The application produces spatial density maps to ease the monitoring and decision making process by health professionals. We also include a discussion of how spatial density maps may be useful for health practitioners in such contexts. In this paper, we developed web-based client application and a set of geoprocessing web services to support specific health-spatial requirements. Spatial density maps of TB incidence were generated to help health professionals in analysis and decision-making tasks. The combined use of geographic information tools, map viewers, and geoprocessing services leads to interesting possibilities in handling health data in a spatial manner. In particular, the use of spatial density maps has been effective to identify the most affected areas and its spatial impact. This study is an attempt to demonstrate how web processing services together with web-based mapping capabilities suit the needs of health practitioners in epidemiological analysis scenarios.
2011-01-01
Background Health professionals and authorities strive to cope with heterogeneous data, services, and statistical models to support decision making on public health. Sophisticated analysis and distributed processing capabilities over geocoded epidemiological data are seen as driving factors to speed up control and decision making in these health risk situations. In this context, recent Web technologies and standards-based web services deployed on geospatial information infrastructures have rapidly become an efficient way to access, share, process, and visualize geocoded health-related information. Methods Data used on this study is based on Tuberculosis (TB) cases registered in Barcelona city during 2009. Residential addresses are geocoded and loaded into a spatial database that acts as a backend database. The web-based application architecture and geoprocessing web services are designed according to the Representational State Transfer (REST) principles. These web processing services produce spatial density maps against the backend database. Results The results are focused on the use of the proposed web-based application to the analysis of TB cases in Barcelona. The application produces spatial density maps to ease the monitoring and decision making process by health professionals. We also include a discussion of how spatial density maps may be useful for health practitioners in such contexts. Conclusions In this paper, we developed web-based client application and a set of geoprocessing web services to support specific health-spatial requirements. Spatial density maps of TB incidence were generated to help health professionals in analysis and decision-making tasks. The combined use of geographic information tools, map viewers, and geoprocessing services leads to interesting possibilities in handling health data in a spatial manner. In particular, the use of spatial density maps has been effective to identify the most affected areas and its spatial impact. This study is an attempt to demonstrate how web processing services together with web-based mapping capabilities suit the needs of health practitioners in epidemiological analysis scenarios. PMID:22126392
Participating in the Geospatial Web: Collaborative Mapping, Social Networks and Participatory GIS
NASA Astrophysics Data System (ADS)
Rouse, L. Jesse; Bergeron, Susan J.; Harris, Trevor M.
In 2005, Google, Microsoft and Yahoo! released free Web mapping applications that opened up digital mapping to mainstream Internet users. Importantly, these companies also released free APIs for their platforms, allowing users to geo-locate and map their own data. These initiatives have spurred the growth of the Geospatial Web and represent spatially aware online communities and new ways of enabling communities to share information from the bottom up. This chapter explores how the emerging Geospatial Web can meet some of the fundamental needs of Participatory GIS projects to incorporate local knowledge into GIS, as well as promote public access and collaborative mapping.
Physical Webbing: Collaborative Kinesthetic Three-Dimensional Mind Maps[R
ERIC Educational Resources Information Center
Williams, Marian H.
2012-01-01
Mind Mapping has predominantly been used by individuals or collaboratively in groups as a paper-based or computer-generated learning strategy. In an effort to make Mind Mapping kinesthetic, collaborative, and three-dimensional, an innovative pedagogical strategy, termed Physical Webbing, was devised. In the Physical Web activity, groups…
EarthCube GeoLink: Semantics and Linked Data for the Geosciences
NASA Astrophysics Data System (ADS)
Arko, R. A.; Carbotte, S. M.; Chandler, C. L.; Cheatham, M.; Fils, D.; Hitzler, P.; Janowicz, K.; Ji, P.; Jones, M. B.; Krisnadhi, A.; Lehnert, K. A.; Mickle, A.; Narock, T.; O'Brien, M.; Raymond, L. M.; Schildhauer, M.; Shepherd, A.; Wiebe, P. H.
2015-12-01
The NSF EarthCube initiative is building next-generation cyberinfrastructure to aid geoscientists in collecting, accessing, analyzing, sharing, and visualizing their data and knowledge. The EarthCube GeoLink Building Block project focuses on a specific set of software protocols and vocabularies, often characterized as the Semantic Web and "Linked Data", to publish data online in a way that is easily discoverable, accessible, and interoperable. GeoLink brings together specialists from the computer science, geoscience, and library science domains, and includes data from a network of NSF-funded repositories that support scientific studies in marine geology, marine ecosystems, biogeochemistry, and paleoclimatology. We are working collaboratively with closely-related Building Block projects including EarthCollab and CINERGI, and solicit feedback from RCN projects including Cyberinfrastructure for Paleogeosciences (C4P) and iSamples. GeoLink has developed a modular ontology that describes essential geoscience research concepts; published data from seven collections (to date) on the Web as geospatially-enabled Linked Data using this ontology; matched and mapped data between collections using shared identifiers for investigators, repositories, datasets, funding awards, platforms, research cruises, physical specimens, and gazetteer features; and aggregated the results in a shared knowledgebase that can be queried via a standard SPARQL endpoint. Client applications have been built around the knowledgebase, including a Web/map-based data browser using the Leaflet JavaScript library and a simple query service using the OpenSearch format. Future development will include extending and refining the GeoLink ontology, adding content from additional repositories, developing semi-automated algorithms to enhance metadata, and further work on client applications.
Towards an EO-based Landslide Web Mapping and Monitoring Service
NASA Astrophysics Data System (ADS)
Hölbling, Daniel; Weinke, Elisabeth; Albrecht, Florian; Eisank, Clemens; Vecchiotti, Filippo; Friedl, Barbara; Kociu, Arben
2017-04-01
National and regional authorities and infrastructure maintainers in mountainous regions require accurate knowledge of the location and spatial extent of landslides for hazard and risk management. Information on landslides is often collected by a combination of ground surveying and manual image interpretation following landslide triggering events. However, the high workload and limited time for data acquisition result in a trade-off between completeness, accuracy and detail. Remote sensing data offers great potential for mapping and monitoring landslides in a fast and efficient manner. While facing an increased availability of high-quality Earth Observation (EO) data and new computational methods, there is still a lack in science-policy interaction and in providing innovative tools and methods that can easily be used by stakeholders and users to support their daily work. Taking up this issue, we introduce an innovative and user-oriented EO-based web service for landslide mapping and monitoring. Three central design components of the service are presented: (1) the user requirements definition, (2) the semi-automated image analysis methods implemented in the service, and (3) the web mapping application with its responsive user interface. User requirements were gathered during semi-structured interviews with regional authorities. The potential users were asked if and how they employ remote sensing data for landslide investigation and what their expectations to a landslide web mapping service regarding reliability and usability are. The interviews revealed the capability of our service for landslide documentation and mapping as well as monitoring of selected landslide sites, for example to complete and update landslide inventory maps. In addition, the users see a considerable potential for landslide rapid mapping. The user requirements analysis served as basis for the service concept definition. Optical satellite imagery from different high resolution (HR) and very high resolution (VHR) sensors, e.g. Landsat, Sentinel-2, SPOT-5, WorldView-2/3, was acquired for different study areas in the Alps. Object-based image analysis (OBIA) methods were used for semi-automated mapping of landslides. Selected mapping routines and results, including a step-by-step guidance, are integrated in the service by means of a web processing chain. This allows the user to gain insights into the service idea, the potential of semi-automated mapping methods, and the applicability of various satellite data for specific landslide mapping tasks. Moreover, an easy-to use and guided classification workflow, which includes image segmentation, statistical classification and manual editing options, enables the user to perform his/her own analyses. For validation, the classification results can be downloaded or compared against uploaded reference data using the implemented tools. Furthermore, users can compare the classification results to freely available data such as OpenStreetMap to identify landslide-affected infrastructure (e.g. roads, buildings). They also can upload infrastructure data available at their organization for specific assessments or monitor the evolution of selected landslides over time. Further actions will include the validation of the service in collaboration with stakeholders, decision makers and experts, which is essential to produce landslide information products that can assist the targeted management of natural hazards, and the evaluation of the potential towards the development of an operational Copernicus downstream service.
BioPortal: An Open-Source Community-Based Ontology Repository
NASA Astrophysics Data System (ADS)
Noy, N.; NCBO Team
2011-12-01
Advances in computing power and new computational techniques have changed the way researchers approach science. In many fields, one of the most fruitful approaches has been to use semantically aware software to break down the barriers among disparate domains, systems, data sources, and technologies. Such software facilitates data aggregation, improves search, and ultimately allows the detection of new associations that were previously not detectable. Achieving these analyses requires software systems that take advantage of the semantics and that can intelligently negotiate domains and knowledge sources, identifying commonality across systems that use different and conflicting vocabularies, while understanding apparent differences that may be concealed by the use of superficially similar terms. An ontology, a semantically rich vocabulary for a domain of interest, is the cornerstone of software for bridging systems, domains, and resources. However, as ontologies become the foundation of all semantic technologies in e-science, we must develop an infrastructure for sharing ontologies, finding and evaluating them, integrating and mapping among them, and using ontologies in applications that help scientists process their data. BioPortal [1] is an open-source on-line community-based ontology repository that has been used as a critical component of semantic infrastructure in several domains, including biomedicine and bio-geochemical data. BioPortal, uses the social approaches in the Web 2.0 style to bring structure and order to the collection of biomedical ontologies. It enables users to provide and discuss a wide array of knowledge components, from submitting the ontologies themselves, to commenting on and discussing classes in the ontologies, to reviewing ontologies in the context of their own ontology-based projects, to creating mappings between overlapping ontologies and discussing and critiquing the mappings. Critically, it provides web-service access to all its content, enabling its integration in semantically enriched applications. [1] Noy, N.F., Shah, N.H., et al., BioPortal: ontologies and integrated data resources at the click of a mouse. Nucleic Acids Res, 2009. 37(Web Server issue): p. W170-3.
Boyd, Andrew D; Li, Jianrong ‘John’; Burton, Mike D; Jonen, Michael; Gardeux, Vincent; Achour, Ikbel; Luo, Roger Q; Zenku, Ilir; Bahroos, Neil; Brown, Stephen B; Vanden Hoek, Terry; Lussier, Yves A
2013-01-01
Objective Applying the science of networks to quantify the discriminatory impact of the ICD-9-CM to ICD-10-CM transition between clinical specialties. Materials and Methods Datasets were the Center for Medicaid and Medicare Services ICD-9-CM to ICD-10-CM mapping files, general equivalence mappings, and statewide Medicaid emergency department billing. Diagnoses were represented as nodes and their mappings as directional relationships. The complex network was synthesized as an aggregate of simpler motifs and tabulation per clinical specialty. Results We identified five mapping motif categories: identity, class-to-subclass, subclass-to-class, convoluted, and no mapping. Convoluted mappings indicate that multiple ICD-9-CM and ICD-10-CM codes share complex, entangled, and non-reciprocal mappings. The proportions of convoluted diagnoses mappings (36% overall) range from 5% (hematology) to 60% (obstetrics and injuries). In a case study of 24 008 patient visits in 217 emergency departments, 27% of the costs are associated with convoluted diagnoses, with ‘abdominal pain’ and ‘gastroenteritis’ accounting for approximately 3.5%. Discussion Previous qualitative studies report that administrators and clinicians are likely to be challenged in understanding and managing their practice because of the ICD-10-CM transition. We substantiate the complexity of this transition with a thorough quantitative summary per clinical specialty, a case study, and the tools to apply this methodology easily to any clinical practice in the form of a web portal and analytic tables. Conclusions Post-transition, successful management of frequent diseases with convoluted mapping network patterns is critical. The http://lussierlab.org/transition-to-ICD10CM web portal provides insight in linking onerous diseases to the ICD-10 transition. PMID:23645552
GES DAAC HDF Data Processing and Visualization Tools
NASA Astrophysics Data System (ADS)
Ouzounov, D.; Cho, S.; Johnson, J.; Li, J.; Liu, Z.; Lu, L.; Pollack, N.; Qin, J.; Savtchenko, A.; Teng, B.
2002-12-01
The Goddard Earth Sciences (GES) Distributed Active Archive Center (DAAC) plays a major role in enabling basic scientific research and providing access to scientific data to the general user community. Several GES DAAC Data Support Teams provide expert assistance to users in accessing data, including information on visualization tools and documentation for data products. To provide easy access to the science data, the data support teams have additionally developed many online and desktop tools for data processing and visualization. This presentation is an overview of major HDF tools implemented at the GES DAAC and aimed at optimizing access to EOS data for the Earth Sciences community. GES DAAC ONLINE TOOLS: MODIS and AIRS on-demand Channel/Variable Subsetter are web-based, on-the-fly/on-demand subsetters that perform channel/variable subsetting and restructuring for Level1B and Level 2 data products. Users can specify criteria to subset data files with desired channels and variables and then download the subsetted file. AIRS QuickLook is a CGI/IDL combo package that allows users to view AIRS/HSB/AMSU Level-1B data online by specifying a channel prior to obtaining data. A global map is also provided along with the image to show geographic coverage of the granule and flight direction of the spacecraft. OASIS (Online data AnalySIS) is an IDL-based HTML/CGI interface for search, selection, and simple analysis of earth science data. It supports binary and GRIB formatted data, such as TOVS, Data Assimilation products, and some NCEP operational products. TRMM Online Analysis System is designed for quick exploration, analyses, and visualization of TRMM Level-3 and other precipitation products. The products consist of the daily (3B42), monthly(3B43), near-real-time (3B42RT), and Willmott's climate data. The system is also designed to be simple and easy to use - users can plot the average or accumulated rainfall over their region of interest for a given time period, or plot the time series of regional rainfall average. WebGIS is an online web software that implements the Open GIS Consortium (OGC) standards for mapping requests and rendering. It allows users access to TRMM, MODIS, SeaWiFS, and AVHRR data from several DAAC map servers, as well as externally served data such as political boundaries, population centers, lakes, rivers, and elevation. GES DAAC DESKTOP TOOLS: HDFLook-MODIS is a new, multifunctional, data processing and visualization tool for Radiometric and Geolocation, Atmosphere, Ocean, and Land MODIS HDF-EOS data. Features include (1) accessing and visualization of all swath (Levels l and 2) MODIS and AIRS products, and gridded (Levels 3 and 4) MODIS products; (2) re-mapping of swath data to world map; (3) geo-projection conversion; (4) interactive and batch mode capabilities; (5) subsetting and multi-granule processing; and (6) data conversion. SIMAP is an IDL-based script that is designed to read and map MODIS Level 1B (L1B) and Level 2 (L2) Ocean and Atmosphere products. It is a non-interactive, command line executed tool. The resulting maps are scaled to physical units (e.g., radiances, concentrations, brightness temperatures) and saved in binary files. TRMM HDF (in C and Fortran), reads in TRMM HDF data files and writes out user-selected SDS arrays and Vdata tables as separate flat binary files.
Modern Data Center Services Supporting Science
NASA Astrophysics Data System (ADS)
Varner, J. D.; Cartwright, J.; McLean, S. J.; Boucher, J.; Neufeld, D.; LaRocque, J.; Fischman, D.; McQuinn, E.; Fugett, C.
2011-12-01
The National Oceanic and Atmospheric Administration's National Geophysical Data Center (NGDC) World Data Center for Geophysics and Marine Geology provides scientific stewardship, products and services for geophysical data, including bathymetry, gravity, magnetics, seismic reflection, data derived from sediment and rock samples, as well as historical natural hazards data (tsunamis, earthquakes, and volcanoes). Although NGDC has long made many of its datasets available through map and other web services, it has now developed a second generation of services to improve the discovery and access to data. These new services use off-the-shelf commercial and open source software, and take advantage of modern JavaScript and web application frameworks. Services are accessible using both RESTful and SOAP queries as well as Open Geospatial Consortium (OGC) standard protocols such as WMS, WFS, WCS, and KML. These new map services (implemented using ESRI ArcGIS Server) are finer-grained than their predecessors, feature improved cartography, and offer dramatic speed improvements through the use of map caches. Using standards-based interfaces allows customers to incorporate the services without having to coordinate with the provider. Providing fine-grained services increases flexibility for customers building custom applications. The Integrated Ocean and Coastal Mapping program and Coastal and Marine Spatial Planning program are two examples of national initiatives that require common data inventories from multiple sources and benefit from these modern data services. NGDC is also consuming its own services, providing a set of new browser-based mapping applications which allow the user to quickly visualize and search for data. One example is a new interactive mapping application to search and display information about historical natural hazards. NGDC continues to increase the amount of its data holdings that are accessible and is augmenting the capabilities with modern web application frameworks such as Groovy and Grails. Data discovery is being improved and simplified by leveraging ISO metadata standards along with ESRI Geoportal Server.
YouGenMap: a web platform for dynamic multi-comparative mapping and visualization of genetic maps
Keith Batesole; Kokulapalan Wimalanathan; Lin Liu; Fan Zhang; Craig S. Echt; Chun Liang
2014-01-01
Comparative genetic maps are used in examination of genome organization, detection of conserved gene order, and exploration of marker order variations. YouGenMap is an open-source web tool that offers dynamic comparative mapping capability of users' own genetic mapping between 2 or more map sets. Users' genetic map data and optional gene annotations are...
Electrical and Structural Characterization of Web Dendrite Crystals
NASA Technical Reports Server (NTRS)
Schwuttke, G. H.; Koliwad, K.; Dumas, K. A.
1985-01-01
Minority carrier lifetime distributions in silicon web dendrites are measured. Emphasis is placed on measuring areal homogeneity of lifetime, show its dependency on structural defects, and its unique change during hot processing. The internal gettering action of defect layers present in web crystals and their relation to minority carrier lifetime distributions is discussed. Minority carrier lifetime maps of web dendrites obtained before and after high temperature heat treatment are compared to similar maps obtained from 100 mm diameter Czochralski silicon wafers. Such maps indicate similar or superior areal homogeneity of minority carrier lifetime in webs.
Data Access System for Hydrology
NASA Astrophysics Data System (ADS)
Whitenack, T.; Zaslavsky, I.; Valentine, D.; Djokic, D.
2007-12-01
As part of the CUAHSI HIS (Consortium of Universities for the Advancement of Hydrologic Science, Inc., Hydrologic Information System), the CUAHSI HIS team has developed Data Access System for Hydrology or DASH. DASH is based on commercial off the shelf technology, which has been developed in conjunction with a commercial partner, ESRI. DASH is a web-based user interface, developed in ASP.NET developed using ESRI ArcGIS Server 9.2 that represents a mapping, querying and data retrieval interface over observation and GIS databases, and web services. This is the front end application for the CUAHSI Hydrologic Information System Server. The HIS Server is a software stack that organizes observation databases, geographic data layers, data importing and management tools, and online user interfaces such as the DASH application, into a flexible multi- tier application for serving both national-level and locally-maintained observation data. The user interface of the DASH web application allows online users to query observation networks by location and attributes, selecting stations in a user-specified area where a particular variable was measured during a given time interval. Once one or more stations and variables are selected, the user can retrieve and download the observation data for further off-line analysis. The DASH application is highly configurable. The mapping interface can be configured to display map services from multiple sources in multiple formats, including ArcGIS Server, ArcIMS, and WMS. The observation network data is configured in an XML file where you specify the network's web service location and its corresponding map layer. Upon initial deployment, two national level observation networks (USGS NWIS daily values and USGS NWIS Instantaneous values) are already pre-configured. There is also an optional login page which can be used to restrict access as well as providing a alternative to immediate downloads. For large request, users would be notified via email with a link to their data when it is ready.
NASA Astrophysics Data System (ADS)
York, A.; Blocksome, C.; Cheng, T.; Creighton, J.; Edwards, G.; Frederick, S.; Giardina, C. P.; Goebel, P. C.; Gucker, C.; Kobziar, L.; Lane, E.; Leis, S.; Long, A.; Maier, C.; Marschall, J.; McGowan-Stinski, J.; Mohr, H.; MontBlanc, E.; Pellant, M.; Pickett, E.; Seesholtz, D.; Skowronski, N.; Stambaugh, M. C.; Stephens, S.; Thode, A.; Trainor, S. F.; Waldrop, T.; Wolfson, B.; Wright, V.; Zedler, P.
2014-12-01
The Joint Fire Science Program's (JFSP) Fire Exchange Network is actively working to accelerate the awareness, understanding, and adoption of wildland fire science information by federal, tribal, state, local, and private stakeholders within ecologically similar regions. Our network of 15 regional exchanges provides timely, accurate, and regionally relevant science-based information to assist with fire management challenges. Regional activities, through which we engage fire and resource managers, scientists, and private landowners, include online newsletters and announcements, social media, regionally focused web-based clearinghouses of relevant science, field trips and demonstration sites, workshops and conferences, webinars and online training, and syntheses and fact sheets. Exchanges also help investigators design research that is relevant to regional management needs and assist with technology transfer to management audiences. This poster provides an introduction to and map of the regional exchanges.
Exploiting Aura OMI Level 2 Data with High Resolution Visualization
NASA Astrophysics Data System (ADS)
Wei, J. C.; Yang, W.; Johnson, J. E.; Zhao, P.; Gerasimov, I. V.; Pham, L.; Vicente, G. A.; Shen, S.
2014-12-01
Satellite data products are important for a wide variety of applications that can bring far-reaching benefits to the science community and the broader society. These benefits can best be achieved if the satellite data are well utilized and interpreted, such as model inputs from satellite, or extreme event (such as volcano eruption, dust storm, …etc) interpretation from satellite. Unfortunately, this is not always the case, despite the abundance and relative maturity of numerous satellite data products provided by NASA and other organizations. One way to help users better understand the satellite data is to provide data along with 'Images', including accurate pixel-level (Level 2) information, pixel coverage area delineation, and science team recommended quality screening for individual geophysical parameters. Goddard Earth Sciences Data and Information Services Center (GES DISC) always strives to best support (i.e., Software-as-a-service, SaaS) the user-community for NASA Earth Science Data. In this case, we will present a new visualization tool that helps users exploiting Aura Ozone Monitoring Instrument (OMI) Level 2 data. This new visualization service utilizes Open Geospatial Consortium (OGC) standard-compliant Web Mapping Service (WMS) and Web Coverage Service (WCS) calls in the backend infrastructure. The functionality of the service allows users to select data sources (e.g., multiple parameters under the same measurement, like NO2 and SO2 from OMI Level 2 or same parameter with different methods of aggregation, like NO2 in OMNO2G and OMNO2D products), defining area-of-interest and temporal extents, zooming, panning, overlaying, sliding, and data subsetting and reformatting. The interface will also be able to connect to other OGC WMS and WCS servers, which will greatly enhance its expandability to integrate additional outside data/map sources (such as Global Imagery Browse Services (GIBS)).
The AIRS Applications Pipeline, from Identification to Visualization to Distribution
NASA Astrophysics Data System (ADS)
Ray, S. E.; Pagano, T. S.; Fetzer, E. J.; Lambrigtsen, B.; Teixeira, J.
2014-12-01
The Atmospheric Infrared Sounder (AIRS) on NASA's Aqua spacecraft has been returning daily global observations of Earth's atmospheric constituents and properties since 2002. AIRS provides observations of temperature and water vapor along the atmospheric column and is sensitive to many atmospheric constituents in the mid-troposphere, including carbon monoxide, carbon dioxide and ozone. With a 12-year data record and daily, global observations in near real-time, we are finding that AIRS data can play a role in applications that fall under most of the NASA Applied Sciences focus areas. Currently in development are temperature inversion maps that can potentially correlate to respiratory health problems, dengue fever and West Nile virus outbreak prediction maps, maps that can be used to make assessments of air quality, and maps of volcanic ash burden. This poster will communicate the Project's approach and efforts to date of its applications pipeline, which includes identifying applications, utilizing science expertise, hiring outside experts to assist with development and dissemination, visualization along application themes, and leveraging existing NASA data frameworks and organizations to facilitate archiving and distribution. In addition, a new web-based browse tool being developed by the AIRS Project for easy access to application product imagery will also be described.
MyGeoHub: A Collaborative Geospatial Research and Education Platform
NASA Astrophysics Data System (ADS)
Kalyanam, R.; Zhao, L.; Biehl, L. L.; Song, C. X.; Merwade, V.; Villoria, N.
2017-12-01
Scientific research is increasingly collaborative and globally distributed; research groups now rely on web-based scientific tools and data management systems to simplify their day-to-day collaborative workflows. However, such tools often lack seamless interfaces, requiring researchers to contend with manual data transfers, annotation and sharing. MyGeoHub is a web platform that supports out-of-the-box, seamless workflows involving data ingestion, metadata extraction, analysis, sharing and publication. MyGeoHub is built on the HUBzero cyberinfrastructure platform and adds general-purpose software building blocks (GABBs), for geospatial data management, visualization and analysis. A data management building block iData, processes geospatial files, extracting metadata for keyword and map-based search while enabling quick previews. iData is pervasive, allowing access through a web interface, scientific tools on MyGeoHub or even mobile field devices via a data service API. GABBs includes a Python map library as well as map widgets that in a few lines of code, generate complete geospatial visualization web interfaces for scientific tools. GABBs also includes powerful tools that can be used with no programming effort. The GeoBuilder tool provides an intuitive wizard for importing multi-variable, geo-located time series data (typical of sensor readings, GPS trackers) to build visualizations supporting data filtering and plotting. MyGeoHub has been used in tutorials at scientific conferences and educational activities for K-12 students. MyGeoHub is also constantly evolving; the recent addition of Jupyter and R Shiny notebook environments enable reproducible, richly interactive geospatial analyses and applications ranging from simple pre-processing to published tools. MyGeoHub is not a monolithic geospatial science gateway, instead it supports diverse needs ranging from just a feature-rich data management system, to complex scientific tools and workflows.
Simple webs of natural environment theme as a result of sharing in science teacher training
NASA Astrophysics Data System (ADS)
Tapilouw, M. C.; Firman, H.; Redjeki, S.; Chandra, D. T.
2018-03-01
Thematic learning is one type of integrated science (Biology, Physics, Chemistry and Earth Science) in Science Education. This study is concerning about simple webs of natural environment theme in science learning, as one of training material in science teacher training program. Making simple web is a goal of first step in teacher training program. Every group explain their web illustration to other group. Twenty Junior High School science teacher above one education foundation participate in science teacher training program. In order to gather simple webs, sharing method was used in this first step of science teacher training. The result of this study is five different simple web of natural environment themes. These webs represent science learning in class VII/Semester I, class VII/Semester II, Class VIII, Class IX/Semester I, Class IX/Semester II based on basic competency in National Curriculum 2013. Each group discussed web of natural environment theme based on their learning experience in real class which basic competency and subject matters are linked with natural environment theme. As a conclusion, simple webs are potential to develop in the next step of science teacher training program and to be implemented in real class.
Hydrological models as web services: Experiences from the Environmental Virtual Observatory project
NASA Astrophysics Data System (ADS)
Buytaert, W.; Vitolo, C.; Reaney, S. M.; Beven, K.
2012-12-01
Data availability in environmental sciences is expanding at a rapid pace. From the constant stream of high-resolution satellite images to the local efforts of citizen scientists, there is an increasing need to process the growing stream of heterogeneous data and turn it into useful information for decision-making. Environmental models, ranging from simple rainfall - runoff relations to complex climate models, can be very useful tools to process data, identify patterns, and help predict the potential impact of management scenarios. Recent technological innovations in networking, computing and standardization may bring a new generation of interactive models plugged into virtual environments closer to the end-user. They are the driver of major funding initiatives such as the UK's Virtual Observatory program, and the U.S. National Science Foundation's Earth Cube. In this study we explore how hydrological models, being an important subset of environmental models, have to be adapted in order to function within a broader environment of web-services and user interactions. Historically, hydrological models have been developed for very different purposes. Typically they have a rigid model structure, requiring a very specific set of input data and parameters. As such, the process of implementing a model for a specific catchment requires careful collection and preparation of the input data, extensive calibration and subsequent validation. This procedure seems incompatible with a web-environment, where data availability is highly variable, heterogeneous and constantly changing in time, and where the requirements of end-users may be not necessarily align with the original intention of the model developer. We present prototypes of models that are web-enabled using the web standards of the Open Geospatial Consortium, and implemented in online decision-support systems. We identify issues related to (1) optimal use of available data; (2) the need for flexible and adaptive structures; (3) quantification and communication of uncertainties. Lastly, we present some road maps to address these issues and discuss them in the broader context of web-based data processing and "big data" science.
2016-06-01
of technology and near-global Internet accessibility, a web -based program incorporating interactive maps to record personal combat experiences does...not exist. The Combat Stories Map addresses this deficiency. The Combat Stories Map is a web -based Geographic Information System specifically designed...iv THIS PAGE INTENTIONALLY LEFT BLANK v ABSTRACT Despite the proliferation of technology and near-global Internet accessibility, a web
Distributed spatial information integration based on web service
NASA Astrophysics Data System (ADS)
Tong, Hengjian; Zhang, Yun; Shao, Zhenfeng
2008-10-01
Spatial information systems and spatial information in different geographic locations usually belong to different organizations. They are distributed and often heterogeneous and independent from each other. This leads to the fact that many isolated spatial information islands are formed, reducing the efficiency of information utilization. In order to address this issue, we present a method for effective spatial information integration based on web service. The method applies asynchronous invocation of web service and dynamic invocation of web service to implement distributed, parallel execution of web map services. All isolated information islands are connected by the dispatcher of web service and its registration database to form a uniform collaborative system. According to the web service registration database, the dispatcher of web services can dynamically invoke each web map service through an asynchronous delegating mechanism. All of the web map services can be executed at the same time. When each web map service is done, an image will be returned to the dispatcher. After all of the web services are done, all images are transparently overlaid together in the dispatcher. Thus, users can browse and analyze the integrated spatial information. Experiments demonstrate that the utilization rate of spatial information resources is significantly raised thought the proposed method of distributed spatial information integration.
Distributed spatial information integration based on web service
NASA Astrophysics Data System (ADS)
Tong, Hengjian; Zhang, Yun; Shao, Zhenfeng
2009-10-01
Spatial information systems and spatial information in different geographic locations usually belong to different organizations. They are distributed and often heterogeneous and independent from each other. This leads to the fact that many isolated spatial information islands are formed, reducing the efficiency of information utilization. In order to address this issue, we present a method for effective spatial information integration based on web service. The method applies asynchronous invocation of web service and dynamic invocation of web service to implement distributed, parallel execution of web map services. All isolated information islands are connected by the dispatcher of web service and its registration database to form a uniform collaborative system. According to the web service registration database, the dispatcher of web services can dynamically invoke each web map service through an asynchronous delegating mechanism. All of the web map services can be executed at the same time. When each web map service is done, an image will be returned to the dispatcher. After all of the web services are done, all images are transparently overlaid together in the dispatcher. Thus, users can browse and analyze the integrated spatial information. Experiments demonstrate that the utilization rate of spatial information resources is significantly raised thought the proposed method of distributed spatial information integration.
Global Agricultural Monitoring (GLAM) using MODAPS and LANCE Data Products
NASA Astrophysics Data System (ADS)
Anyamba, A.; Pak, E. E.; Majedi, A. H.; Small, J. L.; Tucker, C. J.; Reynolds, C. A.; Pinzon, J. E.; Smith, M. M.
2012-12-01
The Global Inventory Modeling and Mapping Studies / Global Agricultural Monitoring (GIMMS GLAM) system is a web-based geographic application that offers Moderate Resolution Imaging Spectroradiometer (MODIS) imagery and user interface tools to data query and plot MODIS NDVI time series. The system processes near real-time and science quality Terra and Aqua MODIS 8-day composited datasets. These datasets are derived from the MOD09 and MYD09 surface reflectance products which are generated and provided by NASA/GSFC Land and Atmosphere Near Real-time Capability for EOS (LANCE) and NASA/GSFC MODIS Adaptive Processing System (MODAPS). The GIMMS GLAM system is developed and provided by the NASA/GSFC GIMMS group for the U.S. Department of Agriculture / Foreign Agricultural Service / International Production Assessment Division (USDA/FAS/IPAD) Global Agricultural Monitoring project (GLAM). The USDA/FAS/IPAD mission is to provide objective, timely, and regular assessment of the global agricultural production outlook and conditions affecting global food security. This system was developed to improve USDA/FAS/IPAD capabilities for making operational quantitative estimates for crop production and yield estimates based on satellite-derived data. The GIMMS GLAM system offers 1) web map imagery including Terra & Aqua MODIS 8-day composited NDVI, NDVI percent anomaly, and SWIR-NIR-Red band combinations, 2) web map overlays including administrative and 0.25 degree Land Information System (LIS) shape boundaries, and crop land cover masks, and 3) user interface tools to select features, data query, plot, and download MODIS NDVI time series.
Web Mapping for Promoting Interaction and Collaboration in Community Land Planning
NASA Astrophysics Data System (ADS)
Veenendaal, B.; Dhliwayo, M.
2013-10-01
There is an inherent advantage of geographic information Systems (GIS) and mapping in facilitating dialogue between experts and non-experts during land use plan development. Combining visual mapping information and effective user interaction can result in considerable benefits for developing countries like Botswana. Although the adoption of information and communication technologies has lagged behind that for developed countries, initiatives by the Botswana government in providing suitable information infrastructures, including internet and web based communications, are enabling multiple users to interact and collaborate in community land planning. A web mapping application was developed for the Maun Development Plan (MDP) in the Okavango Delta region in Botswana. It was designed according to requirements of land planners and managers and implemented using ArcGIS Viewer for Flex. Land planners and managers from two organisations in Maun involved in the development of the MDP were asked to evaluate the web mapping tools. This paper describes the results of implementation and some preliminary results of the web mapping evaluation.
FAST Mapping of Diffuse HI Gas in the Local Universe
NASA Astrophysics Data System (ADS)
Zhu, M.; Pisano, D. J.; Ai, M.; Jiao, Q.
2016-02-01
We propose to use the Five hundred meter Aperture Spherical radio Telescope (FAST) to map the diffuse intergalactic HI gas in the local universe at column densities of NHI=1018 cm-2 and below. The major science goal is to study gas accretion during galaxy evolution, and trace cosmic web features in the local universe. We disuss the technical feasibilty of such a deep survey, and have conducted test observations with the Arecibo 305 m telescope. Our preliminary results shows that, with about a few thousand hours of observing time, FAST will be able to map several hundred square degree regions at 1 σ of NHI=2×1017 cm-2 level out to a distance of 5-10 Mpc, and with a volume 1000 larger than that of the Local Group.
A Web-based Visualization System for Three Dimensional Geological Model using Open GIS
NASA Astrophysics Data System (ADS)
Nemoto, T.; Masumoto, S.; Nonogaki, S.
2017-12-01
A three dimensional geological model is an important information in various fields such as environmental assessment, urban planning, resource development, waste management and disaster mitigation. In this study, we have developed a web-based visualization system for 3D geological model using free and open source software. The system has been successfully implemented by integrating web mapping engine MapServer and geographic information system GRASS. MapServer plays a role of mapping horizontal cross sections of 3D geological model and a topographic map. GRASS provides the core components for management, analysis and image processing of the geological model. Online access to GRASS functions has been enabled using PyWPS that is an implementation of WPS (Web Processing Service) Open Geospatial Consortium (OGC) standard. The system has two main functions. Two dimensional visualization function allows users to generate horizontal and vertical cross sections of 3D geological model. These images are delivered via WMS (Web Map Service) and WPS OGC standards. Horizontal cross sections are overlaid on the topographic map. A vertical cross section is generated by clicking a start point and an end point on the map. Three dimensional visualization function allows users to visualize geological boundary surfaces and a panel diagram. The user can visualize them from various angles by mouse operation. WebGL is utilized for 3D visualization. WebGL is a web technology that brings hardware-accelerated 3D graphics to the browser without installing additional software. The geological boundary surfaces can be downloaded to incorporate the geologic structure in a design on CAD and model for various simulations. This study was supported by JSPS KAKENHI Grant Number JP16K00158.
A Web-Based Earth-Systems Knowledge Portal and Collaboration Platform
NASA Astrophysics Data System (ADS)
D'Agnese, F. A.; Turner, A. K.
2010-12-01
In support of complex water-resource sustainability projects in the Great Basin region of the United States, Earth Knowledge, Inc. has developed several web-based data management and analysis platforms that have been used by its scientists, clients, and public to facilitate information exchanges, collaborations, and decision making. These platforms support accurate water-resource decision-making by combining second-generation internet (Web 2.0) technologies with traditional 2D GIS and web-based 2D and 3D mapping systems such as Google Maps, and Google Earth. Most data management and analysis systems use traditional software systems to address the data needs and usage behavior of the scientific community. In contrast, these platforms employ more accessible open-source and “off-the-shelf” consumer-oriented, hosted web-services. They exploit familiar software tools using industry standard protocols, formats, and APIs to discover, process, fuse, and visualize earth, engineering, and social science datasets. Thus, they respond to the information needs and web-interface expectations of both subject-matter experts and the public. Because the platforms continue to gather and store all the contributions of their broad-spectrum of users, each new assessment leverages the data, information, and expertise derived from previous investigations. In the last year, Earth Knowledge completed a conceptual system design and feasibility study for a platform, which has a Knowledge Portal providing access to users wishing to retrieve information or knowledge developed by the science enterprise and a Collaboration Environment Module, a framework that links the user-access functions to a Technical Core supporting technical and scientific analyses including Data Management, Analysis and Modeling, and Decision Management, and to essential system administrative functions within an Administrative Module. The over-riding technical challenge is the design and development of a single technical platform that is accessed through a flexible series of knowledge portal and collaboration environment styles reflecting the information needs and user expectations of a diverse community of users. Recent investigations have defined the information needs and expectations of the major end-users and also have reviewed and assessed a wide variety of modern web-based technologies. Combining these efforts produced design specifications and recommendations for the selection and integration of web- and client-based tools. When fully developed, the resulting platform will: -Support new, advanced information systems and decision environments that take full advantage of multiple data sources and platforms; -Provide a distribution network tailored to the timely delivery of products to a broad range of users that are needed to support applications in disaster management, resource management, energy, and urban sustainability; -Establish new integrated multiple-user requirements and knowledge databases that support researchers and promote infusion of successful technologies into existing processes; and -Develop new decision support strategies and presentation methodologies for applied earth science applications to reduce risk, cost, and time.
Cooperation in health: mapping collaborative networks on the web.
Lang, Pamela Barreto; Gouveia, Fábio Castro; Leta, Jacqueline
2013-01-01
To map and investigate the relationships established on the web between leading health-research institutions around the world. Sample selection was based on the World Health Organization (WHO) Collaborating Centres (CCs). Data on the 768 active CCs in 89 countries were retrieved from the WHO's database. The final sample consisted of 190 institutions devoted to health sciences in 42 countries. Data on each institution's website were retrieved using webometric techniques (interlinking), and an asymmetric matrix was generated for social network analysis. The results showed that American and European institutions, such as the Centers for Disease Control and Prevention (CDC), the National Institutes of Health (NIH) and the National Institute of Health and Medical Research (INSERM), are the most highly connected on the web and have a higher capacity to attract hyperlinks. The Karolinska Institute (KI-SE) in Sweden is well placed as an articulation point between several integrants of the network and the component's core but lacks general recognition on the web by hyperlinks. Regarding the north-south divide, Mexico and Brazil appear to be key southern players on the web. The results showed that the hyperlinks exchanged between northern and southern countries present an abysmal gap: 99.49% of the hyperlinks provided by the North are directed toward the North itself, in contrast to 0.51% that are directed toward the South. Regarding the South, its institutions are more connected to its northern partners, with 98.46% of its hyperlinks directed toward the North, and mainly toward the United States, compared with 1.54% toward southern neighbors. It is advisable to strengthen integration policies on the web and to increase web networking through hyperlink exchange. In this way, the web could actually reflect international cooperation in health and help to legitimize and enhance the visibility of the many existing south-south collaboration networks.
Using a Metro Map Metaphor for Organizing Web-Based Learning Resources.
ERIC Educational Resources Information Center
Bang, Tove; Gronbaek, Kaj; Hansen, Per Steen
This paper briefly describes the WebNize system and how it applies a Metro Map metaphor for organizing guided tours in Web based resources. Then, experiences in using the Metro Map based tours in a Knowledge Sharing project at the library at Aarhus School of Business (ASB) in Denmark, are discussed. The Library has been involved in establishing a…
Tiled vector data model for the geographical features of symbolized maps.
Li, Lin; Hu, Wei; Zhu, Haihong; Li, You; Zhang, Hang
2017-01-01
Electronic maps (E-maps) provide people with convenience in real-world space. Although web map services can display maps on screens, a more important function is their ability to access geographical features. An E-map that is based on raster tiles is inferior to vector tiles in terms of interactive ability because vector maps provide a convenient and effective method to access and manipulate web map features. However, the critical issue regarding rendering tiled vector maps is that geographical features that are rendered in the form of map symbols via vector tiles may cause visual discontinuities, such as graphic conflicts and losses of data around the borders of tiles, which likely represent the main obstacles to exploring vector map tiles on the web. This paper proposes a tiled vector data model for geographical features in symbolized maps that considers the relationships among geographical features, symbol representations and map renderings. This model presents a method to tailor geographical features in terms of map symbols and 'addition' (join) operations on the following two levels: geographical features and map features. Thus, these maps can resolve the visual discontinuity problem based on the proposed model without weakening the interactivity of vector maps. The proposed model is validated by two map data sets, and the results demonstrate that the rendered (symbolized) web maps present smooth visual continuity.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-13
... of National Environmental Policy Act Categorical Exclusion Survey Posted on DOT/FHWA Web Site AGENCY... review is now available on the FHWA Web site, http://www.fhwa.dot.gov/map21 , and FTA Web site, http://www.fta.dot.gov/map21 . DATES: These reports were posted on the Web site on December 7, 2012...
Encoding of Geological knowledge in the GeoPiemonte Map Data Base
NASA Astrophysics Data System (ADS)
Piana, Fabrizio; Lombardo, Vincenzo; Mimmo, Dario; Barale, Luca; Irace, Andrea; Mulazzano, Elia
2017-04-01
In modern digital geological maps and geo-database, namely those devoted to interactive WebGIS services, there is the need to make explicit the geological assumptions in the process of the design and compilation of the Map Geodatabase. The Geodatabase of the Piemonte Geological Map, which consists of several thousands of Geologic Units and Geologic Structures, was designed in a way suitable for linking the knowledge of the geological domain at hand to more general levels of knowledge, represented in existing Earth Sciences ontologies and in a domain ontology (OntoGeonous), specifically designed for the project, though with a wide applicability in mind. The Geologic Units and Geologic Structures of the GeoPiemonte Map have been spatially correlated through the whole region, referring to a non-formal hierarchical scheme, which gives the parental relations between several orders of Geologic Units, putting them in relations with some main Geologic Events. The scheme reports the subdivisions we did on the Alps-Apennines orogenic belt (which constitutes the Piemonte geological framework) on which the architecture of the GeoDB relied. This contribution describes how the two different knowledge levels (specific domain vs. general knowledge) are assimilated within the GeoPiemonte informative system, providing relations between the contents of the geodatabase and the encoded concepts of the reference ontologies. Initiatives such as GeoScience Markup Language (GeoSciML 4.01, 2016 (1) and INSPIRE "Data Specification on Geology" (an operative simplification of GeoSciML, last version is 3.0, 2013) (2), as well as the recent terminological shepherding of the Geoscience Terminology Working Group (GTWG), provided us the authoritative standard geological source for knowledge encoding. Consistency and interoperability of geological data were thus sought, by classifying geologic features in an ontology-driven Data Model, while objects were described using GeoSciML controlled vocabularies and concepts derived from NASA SWEET ontology (3) (4) (5). At the state of the art the GeoPiemonte Map informative system is thus suitable for integration in trans-national Data Infrastructures and/or WebMap Services that require interoperability and harmonised semantic approaches. References (1)http://www.geosciml.org/geosciml/4.0/documentation/html/ - GeoSciML Data Model - (2)http://inspire.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_GE_v3.0.pdf - INSPIRE DS Technical Guidelines (3)http://resource.geosciml.org/vocabulary/cgi/201211/simplelithology.html (4)http://resource.geosciml.org/vocabulary/cgi/ - CGI GTWG controlled vocabularies repository (5) SWEET (Semantic Web for Earth and Environmental Terminology), http://www.sweet.jpl.nasa.govAppel Piana et al., 2017a. Geology of Piemonte Region (NW Italy, Alps-Apennines junction zone). Journal of Maps, in press. Piana et al., 2017b. The Geodatabase of the Piemonte Geological Map: conceptual design for knowledge encoding. ROL Soc. Geol. It., in press.
Exploring NASA Satellite Data with High Resolution Visualization
NASA Astrophysics Data System (ADS)
Wei, J. C.; Yang, W.; Johnson, J. E.; Shen, S.; Zhao, P.; Gerasimov, I. V.; Vollmer, B.; Vicente, G. A.; Pham, L.
2013-12-01
Satellite data products are important for a wide variety of applications that can bring far-reaching benefits to the science community and the broader society. These benefits can best be achieved if the satellite data are well utilized and interpreted, such as model inputs from satellite, or extreme event (such as volcano eruption, dust storm, ...etc) interpretation from satellite. Unfortunately, this is not always the case, despite the abundance and relative maturity of numerous satellite data products provided by NASA and other organizations. Such obstacles may be avoided by providing satellite data as ';Images' with accurate pixel-level (Level 2) information, including pixel coverage area delineation and science team recommended quality screening for individual geophysical parameters. We will present a prototype service from the Goddard Earth Sciences Data and Information Services Center (GES DISC) supporting various visualization and data accessing capabilities from satellite Level 2 data (non-aggregated and un-gridded) at high spatial resolution. Functionality will include selecting data sources (e.g., multiple parameters under the same measurement, like NO2 and SO2 from Ozone Monitoring Instrument (OMI), or same parameter with different methods of aggregation, like NO2 in OMNO2G and OMNO2D products), defining area-of-interest and temporal extents, zooming, panning, overlaying, sliding, and data subsetting and reformatting. The portal interface will connect to the backend services with OGC standard-compliant Web Mapping Service (WMS) and Web Coverage Service (WCS) calls. The interface will also be able to connect to other OGC WMS and WCS servers, which will greatly enhance its expandability to integrate additional outside data/map sources.
eWaterCycle visualisation. combining the strength of NetCDF and Web Map Service: ncWMS
NASA Astrophysics Data System (ADS)
Hut, R.; van Meersbergen, M.; Drost, N.; Van De Giesen, N.
2016-12-01
As a result of the eWatercycle global hydrological forecast we have created Cesium-ncWMS, a web application based on ncWMS and Cesium. ncWMS is a server side application capable of reading any NetCDF file written using the Climate and Forecasting (CF) conventions, and making the data available as a Web Map Service(WMS). ncWMS automatically determines available variables in a file, and creates maps colored according to map data and a user selected color scale. Cesium is a Javascript 3D virtual Globe library. It uses WebGL for rendering, which makes it very fast, and it is capable of displaying a wide variety of data types such as vectors, 3D models, and 2D maps. The forecast results are automatically uploaded to our web server running ncWMS. In turn, the web application can be used to change the settings for color maps and displayed data. The server uses the settings provided by the web application, together with the data in NetCDF to provide WMS image tiles, time series data and legend graphics to the Cesium-NcWMS web application. The user can simultaneously zoom in to the very high resolution forecast results anywhere on the world, and get time series data for any point on the globe. The Cesium-ncWMS visualisation combines a global overview with local relevant information in any browser. See the visualisation live at forecast.ewatercycle.org
NASA Astrophysics Data System (ADS)
Schmaltz, J. E.; Ilavajhala, S.; Plesea, L.; Hall, J. R.; Boller, R. A.; Chang, G.; Sadaqathullah, S.; Kim, R.; Murphy, K. J.; Thompson, C. K.
2012-12-01
Expedited processing of imagery from NASA satellites for near-real time use by non-science applications users has a long history, especially since the beginning of the Terra and Aqua missions. Several years ago, the Land Atmosphere Near-real-time Capability for EOS (LANCE) was created to greatly expand the range of near-real time data products from a variety of Earth Observing System (EOS) instruments. NASA's Earth Observing System Data and Information System (EOSDIS) began exploring methods to distribute these data as imagery in an intuitive, geo-referenced format, which would be available within three hours of acquisition. Toward this end, EOSDIS has developed the Global Imagery Browse Services (GIBS, http://earthdata.nasa.gov/gibs) to provide highly responsive, scalable, and expandable imagery services. The baseline technology chosen for GIBS was a Tiled Web Mapping Service (TWMS) developed at the Jet Propulsion Laboratory. Using this, global images and mosaics are divided into tiles with fixed bounding boxes for a pyramid of fixed resolutions. Initially, the satellite imagery is created at the existing data systems for each sensor, ensuring the oversight of those most knowledgeable about the science. There, the satellite data is geolocated and converted to an image format such as JPEG, TIFF, or PNG. The GIBS ingest server retrieves imagery from the various data systems and converts them into image tiles, which are stored in a highly-optimized raster format named Meta Raster Format (MRF). The image tiles are then served to users via HTTP by means of an Apache module. Services are available for the entire globe (lat-long projection) and for both polar regions (polar stereographic projection). Requests to the services can be made with the non-standard, but widely known, TWMS format or via the well-known OGC Web Map Tile Service (WMTS) standard format. Standard OGC Web Map Service (WMS) access to the GIBS server is also available. In addition, users may request a KML pyramid. This variety of access methods allows stakeholders to develop visualization/browse clients for a diverse variety of specific audiences. Currently, EOSDIS is providing an OpenLayers web client, Worldview (http://earthdata.nasa.gov/worldview), as an interface to GIBS. A variety of other existing clients can also be developed using such tools as Google Earth, Google Earth browser Plugin, ESRI's Adobe Flash/Flex Client Library, NASA World Wind, Perceptive Pixel Client, Esri's iOS Client Library, and OpenLayers for Mobile. The imagery browse capabilities from GIBS can be combined with other EOSDIS services (i.e. ECHO OpenSearch) via a client that ties them both together to provide an interface that enables data download from the onscreen imagery. Future plans for GIBS include providing imagery based on science quality data from the entire data record of these EOS instruments.
An Interactive Web System for Field Data Sharing and Collaboration
NASA Astrophysics Data System (ADS)
Weng, Y.; Sun, F.; Grigsby, J. D.
2010-12-01
A Web 2.0 system is designed and developed to facilitate data collection for the field studies in the Geological Sciences department at Ball State University. The system provides a student-centered learning platform that enables the users to first upload their collected data in various formats, interact and collaborate dynamically online, and ultimately create a shared digital repository of field experiences. The data types considered for the system and their corresponding format and requirements are listed in the table below. The system has six main functionalities as follows. (1) Only the registered users can access the system with confidential identification and password. (2) Each user can upload/revise/delete data in various formats such as image, audio, video, and text files to the system. (3) Interested users are allowed to co-edit the contents and join the collaboration whiteboard for further discussion. (4) The system integrates with Google, Yahoo, or Flickr to search for similar photos with same tags. (5) Users can search the web system according to the specific key words. (6) Photos with recorded GPS readings can be mashed and mapped to Google Maps/Earth for visualization. Application of the system to geology field trips at Ball State University will be demonstrated to assess the usability of the system.Data Requirements
An Interactive Map Viewer for the Urban Geology of Ottawa (Canada): an Example of Web Publishing
NASA Astrophysics Data System (ADS)
Giroux, D.; Bélanger, R.
2003-04-01
Developed by the Terrain Sciences Division (TSD) of the Geological Survey of Canada (GSC), an interactive map viewer, called GEOSERV (www.geoserv.org), is now available on the Internet. The purpose of this viewer is to provide engineers, planners, decision makers, and the general public with the geoscience information required for sound regional planning in densely populated areas, such as Canada's national capital, Ottawa (Ontario). Urban geology studies rely on diverse branches of earth sciences such as hydrology, engineering geology, geochemistry, stratigraphy, and geomorphology in order to build a three-dimensional model of the character of the land and to explain the geological processes involved in the dynamic equilibrium of the local environment. Over the past few years, TSD has compiled geoscientific information derived from various sources such as borehole logs, geological maps, hydrological reports and digital elevation models, compiled it in digital format and stored it in georeferenced databases in the form of point, linear, and polygonal data. This information constitutes the geoscience knowledge base which is then processed by Geographic Information Systems (GIS) to integrate the various sources of information and produce derived graphics, maps and models describing the geological infrastructure and response of the geological environment to human activities. Urban Geology of Canada's National Capital Area is a pilot project aiming at developing approaches, methodologies and standards that can be applied to other major urban centres of the country, while providing the geoscience knowledge required for sound regional planning and environmental protection of the National Capital Area. Based on an application developed by ESRI (Environmental System Research Institute), namely ArcIMS, the TSD has customized this web application to give free access to geoscience information of the Ottawa/Outaouais (Ontario/Québec) area including geological history, subsurface database, stratigraphy, bedrock, surficial and hydrogeology maps, and a few others. At present, each layer of geospatial information in TSD's interactive map viewer is connected to simple independent flat files (i.e. shapefiles), but it is also possible to connect GEOSERV to other types of (relational) databases (e.g. Microsoft SQL Server, Oracle). Frequent updating of shapefiles could be a cumbersome task, when new records are added, since we have to completely rebuild the updated shapefiles. However, new attributes can be added to existing shapefiles easily. At present, the updating process can not be done on-the-fly; we must stop and restart the updated MapService if one of its shapefiles is changed. The public can access seventeen MapServices that provide interactive tools that users can use to query, zoom, pan, select, and so on, or print the map displayed on their monitor. The map viewer is light-weight as it uses HTML and Javascript, so end users do not have to download and install any plug-ins. A free CD and a companion web site were also developed to give access to complementary information, like high resolution raster maps and reports. Some of the datasets are available free of charge, on-line.
Bayless, E. Randall; Arihood, Leslie D.; Reeves, Howard W.; Sperl, Benjamin J.S.; Qi, Sharon L.; Stipe, Valerie E.; Bunch, Aubrey R.
2017-01-18
As part of the National Water Availability and Use Program established by the U.S. Geological Survey (USGS) in 2005, this study took advantage of about 14 million records from State-managed collections of water-well drillers’ records and created a database of hydrogeologic properties for the glaciated United States. The water-well drillers’ records were standardized to be relatively complete and error-free and to provide consistent variables and naming conventions that span all State boundaries.Maps and geospatial grids were developed for (1) total thickness of glacial deposits, (2) total thickness of coarse-grained deposits, (3) specific-capacity based transmissivity and hydraulic conductivity, and (4) texture-based estimated equivalent horizontal and vertical hydraulic conductivity and transmissivity. The information included in these maps and grids is required for most assessments of groundwater availability, in addition to having applications to studies of groundwater flow and transport. The texture-based estimated equivalent horizontal and vertical hydraulic conductivity and transmissivity were based on an assumed range of hydraulic conductivity values for coarse- and fine-grained deposits and should only be used with complete awareness of the methods used to create them. However, the maps and grids of texture-based estimated equivalent hydraulic conductivity and transmissivity may be useful for application to areas where a range of measured values is available for re-scaling.Maps of hydrogeologic information for some States are presented as examples in this report but maps and grids for all States are available electronically at the project Web site (USGS Glacial Aquifer System Groundwater Availability Study, http://mi.water.usgs.gov/projects/WaterSmart/Map-SIR2015-5105.html) and the Science Base Web site, https://www.sciencebase.gov/catalog/item/58756c7ee4b0a829a3276352.
Web-based network analysis and visualization using CellMaps
Salavert, Francisco; García-Alonso, Luz; Sánchez, Rubén; Alonso, Roberto; Bleda, Marta; Medina, Ignacio; Dopazo, Joaquín
2016-01-01
Summary: CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them. Computations and analyses are remotely executed in high-end servers, and all the functionalities are available through RESTful web services. CellMaps can easily be integrated in any web page by using an available JavaScript API. Availability and Implementation: The application is available at: http://cellmaps.babelomics.org/ and the code can be found in: https://github.com/opencb/cell-maps. The client is implemented in JavaScript and the server in C and Java. Contact: jdopazo@cipf.es Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27296979
Web-based network analysis and visualization using CellMaps.
Salavert, Francisco; García-Alonso, Luz; Sánchez, Rubén; Alonso, Roberto; Bleda, Marta; Medina, Ignacio; Dopazo, Joaquín
2016-10-01
: CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them. Computations and analyses are remotely executed in high-end servers, and all the functionalities are available through RESTful web services. CellMaps can easily be integrated in any web page by using an available JavaScript API. The application is available at: http://cellmaps.babelomics.org/ and the code can be found in: https://github.com/opencb/cell-maps The client is implemented in JavaScript and the server in C and Java. jdopazo@cipf.es Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
NASA Astrophysics Data System (ADS)
Hagemeier-Klose, M.; Wagner, K.
2009-04-01
Flood risk communication with the general public and the population at risk is getting increasingly important for flood risk management, especially as a precautionary measure. This is also underlined by the EU Flood Directive. The flood related authorities therefore have to develop adjusted information tools which meet the demands of different user groups. This article presents the formative evaluation of flood hazard maps and web mapping services according to the specific requirements and needs of the general public using the dynamic-transactional approach as a theoretical framework. The evaluation was done by a mixture of different methods; an analysis of existing tools, a creative workshop with experts and laymen and an online survey. The currently existing flood hazard maps or web mapping services or web GIS still lack a good balance between simplicity and complexity with adequate readability and usability for the public. Well designed and associative maps (e.g. using blue colours for water depths) which can be compared with past local flood events and which can create empathy in viewers, can help to raise awareness, to heighten the activity and knowledge level or can lead to further information seeking. Concerning web mapping services, a linkage between general flood information like flood extents of different scenarios and corresponding water depths and real time information like gauge levels is an important demand by users. Gauge levels of these scenarios are easier to understand than the scientifically correct return periods or annualities. The recently developed Bavarian web mapping service tries to integrate these requirements.
SSE Announcement - New GIS Web Mapping Applications and Services
Atmospheric Science Data Center
2016-06-30
Dear SSE Users, We are excited to announce SSE-GIS v1.0.3 is now available! If you haven’t already noticed the link to the new SSE-GIS web application on the SSE homepage entitled “GIS Web Mapping ...
A bibliometric and visual analysis of global geo-ontology research
NASA Astrophysics Data System (ADS)
Li, Lin; Liu, Yu; Zhu, Haihong; Ying, Shen; Luo, Qinyao; Luo, Heng; Kuai, Xi; Xia, Hui; Shen, Hang
2017-02-01
In this paper, the results of a bibliometric and visual analysis of geo-ontology research articles collected from the Web of Science (WOS) database between 1999 and 2014 are presented. The numbers of national institutions and published papers are visualized and a global research heat map is drawn, illustrating an overview of global geo-ontology research. In addition, we present a chord diagram of countries and perform a visual cluster analysis of a knowledge co-citation network of references, disclosing potential academic communities and identifying key points, main research areas, and future research trends. The International Journal of Geographical Information Science, Progress in Human Geography, and Computers & Geosciences are the most active journals. The USA makes the largest contributions to geo-ontology research by virtue of its highest numbers of independent and collaborative papers, and its dominance was also confirmed in the country chord diagram. The majority of institutions are in the USA, Western Europe, and Eastern Asia. Wuhan University, University of Munster, and the Chinese Academy of Sciences are notable geo-ontology institutions. Keywords such as "Semantic Web," "GIS," and "space" have attracted a great deal of attention. "Semantic granularity in ontology-driven geographic information systems, "Ontologies in support of activities in geographical space" and "A translation approach to portable ontology specifications" have the highest cited centrality. Geographical space, computer-human interaction, and ontology cognition are the three main research areas of geo-ontology. The semantic mismatch between the producers and users of ontology data as well as error propagation in interdisciplinary and cross-linguistic data reuse needs to be solved. In addition, the development of geo-ontology modeling primitives based on OWL (Web Ontology Language)and finding methods to automatically rework data in Semantic Web are needed. Furthermore, the topological relations between geographical entities still require further study.
Extending the Lunar Mapping and Modeling Portal - New Capabilities and New Worlds
NASA Technical Reports Server (NTRS)
Day, B.; Law, E.; Arevalo, E.; Bui, B.; Chang, G.; Dodge, K.; Kim, R.; Malhotra, S.; Sadaqathullah, S.; Schmidt, G.;
2015-01-01
NASA's Lunar Mapping and Modeling Portal (LMMP) provides a web-based Portal and a suite of interactive visualization and analysis tools to enable mission planners, lunar scientists, and engineers to access mapped lunar data products from past and current lunar missions (http://lmmp.nasa.gov). During the past year, the capabilities and data served by LMMP have been significantly expanded. New interfaces are providing improved ways to access and visualize data. At the request of NASA's Science Mission Directorate, LMMP's technology and capabilities are now being extended to additional planetary bodies. New portals for Vesta and Mars are the first of these new products to be released. This presentation will provide an overview of LMMP, Vesta Trek, and Mars Trek, demonstrate their uses and capabilities, highlight new features, and preview coming enhancements.
Extending the Lunar Mapping and Modeling Portal - New Capabilities and New Worlds
NASA Astrophysics Data System (ADS)
Day, B.; Law, E.; Arevalo, E.; Bui, B.; Chang, G.; Dodge, K.; Kim, R.; Malhotra, S.; Sadaqathullah, S.; Schmidt, G.; Bailey, B.
2015-10-01
NASA's Lunar Mapping and Modeling Portal (LMMP) provides a web-based Portal and a suite of interactive visualization and analysis tools to enable mission planners, lunar scientists, and engineers to access mapped lunar data products from past and current lunar missions (http://lmmp.nasa.gov). During the past year, the capabilities and data served by LMMP have been significantly expanded. New interfaces are providing improved ways to access and visualize data. At the request of NASA's Science Mission Directorate, LMMP's technology and capabilities are now being extended to additional planetary bodies. New portals for Vesta and Mars are the first of these new products to be released. This presentation will provide an overview of LMMP, Vesta Trek, and Mars Trek, demonstrate their uses and capabilities, highlight new features, and preview coming enhancements.
Providing a virtual tour of a glacial watershed
NASA Astrophysics Data System (ADS)
Berner, L.; Habermann, M.; Hood, E.; Fatland, R.; Heavner, M.; Knuth, E.
2007-12-01
SEAMONSTER, a NASA funded sensor web project, is the SouthEast Alaska MOnitoring Network for Science, Telecommunications, Education, and Research. Seamonster is leveraging existing open-source software and is an implementation of existing sensor web technologies intended to act as a sensor web testbed, an educational tool, a scientific resource, and a public resource. The primary focus area of initial SEAMONSTER deployment is the Lemon Creek watershed, which includes the Lemon Creek Glacier studied as part of the 1957-58 IPY. This presentation describes our year one efforts to maximize education and public outreach activities of SEAMONSTER. During the first summer, 37 sensors were deployed throughout two partially glaciated watersheds and facilitated data acquisition in temperate rain forest, alpine, lacustrine, and glacial environments. Understanding these environments are important for public understanding of climate change. These environments are geographically isolated, limiting public access to, and understanding of, such locales. In an effort to inform the general public and primary educators about the basic processes occurring in these unique natural systems, we are developing an interactive website. This web portal will supplement and enhance environmental science primary education by providing educators and students with interactive access to basic information from the glaciological, hydrological, and meteorological systems we are studying. In addition, we are developing an interactive virtual tour of the Lemon Glacier and its watershed. This effort will include Google Earth as a means of real-time data visualization and will take advantage of time-lapse movies, photographs, maps, and satellite imagery to promote an understanding of these unique natural systems and the role of sensor webs in education.
Architecture of the local spatial data infrastructure for regional climate change research
NASA Astrophysics Data System (ADS)
Titov, Alexander; Gordov, Evgeny
2013-04-01
Georeferenced datasets (meteorological databases, modeling and reanalysis results, etc.) are actively used in modeling and analysis of climate change for various spatial and temporal scales. Due to inherent heterogeneity of environmental datasets as well as their size which might constitute up to tens terabytes for a single dataset studies in the area of climate and environmental change require a special software support based on SDI approach. A dedicated architecture of the local spatial data infrastructure aiming at regional climate change analysis using modern web mapping technologies is presented. Geoportal is a key element of any SDI, allowing searching of geoinformation resources (datasets and services) using metadata catalogs, producing geospatial data selections by their parameters (data access functionality) as well as managing services and applications of cartographical visualization. It should be noted that due to objective reasons such as big dataset volume, complexity of data models used, syntactic and semantic differences of various datasets, the development of environmental geodata access, processing and visualization services turns out to be quite a complex task. Those circumstances were taken into account while developing architecture of the local spatial data infrastructure as a universal framework providing geodata services. So that, the architecture presented includes: 1. Effective in terms of search, access, retrieval and subsequent statistical processing, model of storing big sets of regional georeferenced data, allowing in particular to store frequently used values (like monthly and annual climate change indices, etc.), thus providing different temporal views of the datasets 2. General architecture of the corresponding software components handling geospatial datasets within the storage model 3. Metadata catalog describing in detail using ISO 19115 and CF-convention standards datasets used in climate researches as a basic element of the spatial data infrastructure as well as its publication according to OGC CSW (Catalog Service Web) specification 4. Computational and mapping web services to work with geospatial datasets based on OWS (OGC Web Services) standards: WMS, WFS, WPS 5. Geoportal as a key element of thematic regional spatial data infrastructure providing also software framework for dedicated web applications development To realize web mapping services Geoserver software is used since it provides natural WPS implementation as a separate software module. To provide geospatial metadata services GeoNetwork Opensource (http://geonetwork-opensource.org) product is planned to be used for it supports ISO 19115/ISO 19119/ISO 19139 metadata standards as well as ISO CSW 2.0 profile for both client and server. To implement thematic applications based on geospatial web services within the framework of local SDI geoportal the following open source software have been selected: 1. OpenLayers JavaScript library, providing basic web mapping functionality for the thin client such as web browser 2. GeoExt/ExtJS JavaScript libraries for building client-side web applications working with geodata services. The web interface developed will be similar to the interface of such popular desktop GIS applications, as uDIG, QuantumGIS etc. The work is partially supported by RF Ministry of Education and Science grant 8345, SB RAS Program VIII.80.2.1 and IP 131.
Interactive Mapping of the Planets: An Online Activity Using the Google Earth Platform
NASA Astrophysics Data System (ADS)
Osinski, G. R.; Gilbert, A.; Harrison, T. N.; Mader, M. M.; Shankar, B.; Tornabene, L. L.
2013-12-01
With funding from the Natural Sciences and Engineering Research Council of Canada's PromoScience program and support from the Department of Earth Sciences at The University of Western Ontario, the Centre for Planetary Science and Exploration (CPSX) has developed a new web-based initiative called Interactive Mapping of the Planets (IMAPS). Additional components include in person school visits to deliver inquiry-based workshops, week-long summer camps, and pre-prepared impact rock lending kits, all framed around the IMAPS activity. IMAPS will is now in beta testing mode and will be demonstrated in this session. The general objective of the online activity is for participants to plan and design a rover mission to Mars based on a given mission goal - e.g., to find evidence for past water flow. The activity begins with participants receiving image-analysis training to learn about the different landforms on Mars and which ones are potentially caused by water flow. They then need to pass a short test to show they can consistently identify Martian landforms. From there, the participants choose a landing site and plan a traverse - utilizing the free Google Earth plug-in - and taking into account factors such as hazards and their sites of interest. A mission control blog will provide updates on the status of their mission and a 'choose your rover' option provides the opportunity to unlock more advanced rovers by collaborating with other scientists and rating their missions. Indeed, evaluation of missions will be done using a crowd-sourcing method. In addition to being fully accessible online, CPSX will also target primary- and secondary-school grades in which astronomy and space science is taught. Teachers in K-12 classrooms will be able to sign-up for the activity ahead of time in order to receive a workshop package, which will guide them on how to use the IMAPS online activity with their class. Teachers will be able to set up groups for their classroom so that they can evaluate their students based on pre-determined criteria. The IMAPS activities are developed in partnerships with the Department of Earth Sciences at Western University, Sports Western, the Thames Valley District School Board, and Dimentians Web Marketing and Design. We are continually looking for new collaborators to help design or test our inquiry- and web-based activities, provide feedback on our programs, or volunteer with us. Please contact cpsxoutreach@uwo.ca if you are interested.
EnviroAtlas National Layers Master Web Service
This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). This web service includes layers depicting EnviroAtlas national metrics mapped at the 12-digit HUC within the conterminous United States. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
ActionMap: A web-based software that automates loci assignments to framework maps.
Albini, Guillaume; Falque, Matthieu; Joets, Johann
2003-07-01
Genetic linkage computation may be a repetitive and time consuming task, especially when numerous loci are assigned to a framework map. We thus developed ActionMap, a web-based software that automates genetic mapping on a fixed framework map without adding the new markers to the map. Using this tool, hundreds of loci may be automatically assigned to the framework in a single process. ActionMap was initially developed to map numerous ESTs with a small plant mapping population and is limited to inbred lines and backcrosses. ActionMap is highly configurable and consists of Perl and PHP scripts that automate command steps for the MapMaker program. A set of web forms were designed for data import and mapping settings. Results of automatic mapping can be displayed as tables or drawings of maps and may be exported. The user may create personal access-restricted projects to store raw data, settings and mapping results. All data may be edited, updated or deleted. ActionMap may be used either online or downloaded for free (http://moulon.inra.fr/~bioinfo/).
ActionMap: a web-based software that automates loci assignments to framework maps
Albini, Guillaume; Falque, Matthieu; Joets, Johann
2003-01-01
Genetic linkage computation may be a repetitive and time consuming task, especially when numerous loci are assigned to a framework map. We thus developed ActionMap, a web-based software that automates genetic mapping on a fixed framework map without adding the new markers to the map. Using this tool, hundreds of loci may be automatically assigned to the framework in a single process. ActionMap was initially developed to map numerous ESTs with a small plant mapping population and is limited to inbred lines and backcrosses. ActionMap is highly configurable and consists of Perl and PHP scripts that automate command steps for the MapMaker program. A set of web forms were designed for data import and mapping settings. Results of automatic mapping can be displayed as tables or drawings of maps and may be exported. The user may create personal access-restricted projects to store raw data, settings and mapping results. All data may be edited, updated or deleted. ActionMap may be used either online or downloaded for free (http://moulon.inra.fr/~bioinfo/). PMID:12824426
Smart "geomorphological" map browsing - a tale about geomorphological maps and the internet
NASA Astrophysics Data System (ADS)
Geilhausen, M.; Otto, J.-C.
2012-04-01
With the digital production of geomorphological maps, the dissemination of research outputs now extends beyond simple paper products. Internet technologies can contribute to both, the dissemination of geomorphological maps and access to geomorphologic data and help to make geomorphological knowledge available to a greater public. Indeed, many national geological surveys employ end-to-end digital workflows from data capture in the field to final map production and dissemination. This paper deals with the potential of web mapping applications and interactive, portable georeferenced PDF maps for the distribution of geomorphological information. Web mapping applications such as Google Maps have become very popular and widespread and increased the interest and access to mapping. They link the Internet with GIS technology and are a common way of presenting dynamic maps online. The GIS processing is performed online and maps are visualised in interactive web viewers characterised by different capabilities such as zooming, panning or adding further thematic layers, with the map refreshed after each task. Depending on the system architecture and the components used, advanced symbology, map overlays from different applications and sources and their integration into a Desktop GIS are possible. This interoperability is achieved through the use of international open standards that include mechanisms for the integration and visualisation of information from multiple sources. The portable document format (PDF) is commonly used for printing and is a standard format that can be processed by many graphic software and printers without loss of information. A GeoPDF enables the sharing of geospatial maps and data in PDF documents. Multiple, independent map frames with individual spatial reference systems are possible within a GeoPDF, for example, for map overlays or insets. Geospatial functionality of a GeoPDF includes scalable map display, layer visibility control, access to attribute data, coordinate queries and spatial measurements. The full functionality of GeoPDFs requires free and user-friendly plug-ins for PDF readers and GIS software. A GeoPDF enables fundamental GIS functionality turning the formerly static PDF map into an interactive, portable georeferenced PDF map. GeoPDFs are easy to create and provide an interesting and valuable way to disseminate geomorphological maps. Our motivation to engage with the online distribution of geomorphological maps originates in the increasing number of web mapping applications available today indicating that the Internet has become a medium for displaying geographical information in rich forms and user-friendly interfaces. So, why not use the Internet to distribute geomorphological maps and enhance their practical application? Web mapping and dynamic PDF maps can play a key role in the movement towards a global dissemination of geomorphological information. This will be exemplified by live demonstrations of i.) existing geomorphological WebGIS applications, ii.) data merging from various sources using web map services, and iii.) free to download GeoPDF maps during the presentations.
The Fermi Science Support Center Data Servers and Archive
NASA Astrophysics Data System (ADS)
Reustle, Alexander; Fermi Science Support Center
2018-01-01
The Fermi Science Support Center (FSSC) provides the scientific community with access to Fermi data and other products. The Gamma-Ray Burst Monitor (GBM) data is stored at NASA's High Energy Astrophysics Science Archive Research Center (HEASARC) and is accessible through their searchable Browse web interface. The Large Area Telescope (LAT) data is distributed through a custom FSSC interface where users can request all photons detected from a region on the sky over a specified time and energy range. Through its website the FSSC also provides planning and scheduling products, such as long and short term observing timelines, spacecraft position and attitude histories, and exposure maps. We present an overview of the different data products provided by the FSSC, how they can be accessed, and statistics on the archive usage since launch.
High Spatial Resolution Europa Coverage by the Galileo Near Infrared Mapping Spectrometer (NIMS)
NASA Technical Reports Server (NTRS)
1997-01-01
The NIMS instrument on the Galileo spacecraft, which is being used to map the mineral and ice properties over the surfaces of the Jovian moons, produces global spectral images at modest spatial resolution and high resolution spectral images for small selected regions on the satellites. This map illustrates the high resolution coverage of Europa obtained by NIMS through the April 1997 G7 orbit.
The areas covered are displayed on a Voyager-derived map. A good sampling of the dark trailing-side material (180 to 360 degrees) has been obtained, with less coverage of Europa's leading side.The false-color composites use red, green and blue to represent the infrared brightnesses at 0.7, 1.51 and 1.82 microns respectively. Considerable variations are evident and are related to the composition and sizes of the surface grains.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.Interacting Science through Web Quests
ERIC Educational Resources Information Center
Unal, Ahmet; Karakus, Melek Altiparmak
2016-01-01
The purpose of this paper is to examine the effects of WebQuests on elementary students' science achievement, attitude towards science and attitude towards web supported education in teaching 7th grade subjects (Ecosystems, Solar System). With regard to this research, "Science Achievement Test," "Attitude towards Science Scale"…
NASA Astrophysics Data System (ADS)
Knörchen, Achim; Ketzler, Gunnar; Schneider, Christoph
2015-01-01
Although Europe has been growing together for the past decades, cross-border information platforms on environmental issues are still scarce. With regard to the establishment of a web-mapping tool on airborne particulate matter (PM) concentration for the Euregio Meuse-Rhine located in the border region of Belgium, Germany and the Netherlands, this article describes the research on methodical and technical backgrounds implementing such a platform. An open-source solution was selected for presenting the data in a Web GIS (OpenLayers/GeoExt; both JavaScript-based), applying other free tools for data handling (Python), data management (PostgreSQL), geo-statistical modelling (Octave), geoprocessing (GRASS GIS/GDAL) and web mapping (MapServer). The multilingual, made-to-order online platform provides access to near-real time data on PM concentration as well as additional background information. In an open data section, commented configuration files for the Web GIS client are being made available for download. Furthermore, all geodata generated by the project is being published under public domain and can be retrieved in various formats or integrated into Desktop GIS as Web Map Services (WMS).
NASA Astrophysics Data System (ADS)
Raup, B. H.; Khalsa, S. S.; Armstrong, R.
2007-12-01
The Global Land Ice Measurements from Space (GLIMS) project has built a geospatial and temporal database of glacier data, composed of glacier outlines and various scalar attributes. These data are being derived primarily from satellite imagery, such as from ASTER and Landsat. Each "snapshot" of a glacier is from a specific time, and the database is designed to store multiple snapshots representative of different times. We have implemented two web-based interfaces to the database; one enables exploration of the data via interactive maps (web map server), while the other allows searches based on text-field constraints. The web map server is an Open Geospatial Consortium (OGC) compliant Web Map Server (WMS) and Web Feature Server (WFS). This means that other web sites can display glacier layers from our site over the Internet, or retrieve glacier features in vector format. All components of the system are implemented using Open Source software: Linux, PostgreSQL, PostGIS (geospatial extensions to the database), MapServer (WMS and WFS), and several supporting components such as Proj.4 (a geographic projection library) and PHP. These tools are robust and provide a flexible and powerful framework for web mapping applications. As a service to the GLIMS community, the database contains metadata on all ASTER imagery acquired over glacierized terrain. Reduced-resolution of the images (browse imagery) can be viewed either as a layer in the MapServer application, or overlaid on the virtual globe within Google Earth. The interactive map application allows the user to constrain by time what data appear on the map. For example, ASTER or glacier outlines from 2002 only, or from Autumn in any year, can be displayed. The system allows users to download their selected glacier data in a choice of formats. The results of a query based on spatial selection (using a mouse) or text-field constraints can be downloaded in any of these formats: ESRI shapefiles, KML (Google Earth), MapInfo, GML (Geography Markup Language) and GMT (Generic Mapping Tools). This "clip-and-ship" function allows users to download only the data they are interested in. Our flexible web interfaces to the database, which includes various support layers (e.g. a layer to help collaborators identify satellite imagery over their region of expertise) will facilitate enhanced analysis to be undertaken on glacier systems, their distribution, and their impacts on other Earth systems.
FragFit: a web-application for interactive modeling of protein segments into cryo-EM density maps.
Tiemann, Johanna K S; Rose, Alexander S; Ismer, Jochen; Darvish, Mitra D; Hilal, Tarek; Spahn, Christian M T; Hildebrand, Peter W
2018-05-21
Cryo-electron microscopy (cryo-EM) is a standard method to determine the three-dimensional structures of molecular complexes. However, easy to use tools for modeling of protein segments into cryo-EM maps are sparse. Here, we present the FragFit web-application, a web server for interactive modeling of segments of up to 35 amino acids length into cryo-EM density maps. The fragments are provided by a regularly updated database containing at the moment about 1 billion entries extracted from PDB structures and can be readily integrated into a protein structure. Fragments are selected based on geometric criteria, sequence similarity and fit into a given cryo-EM density map. Web-based molecular visualization with the NGL Viewer allows interactive selection of fragments. The FragFit web-application, accessible at http://proteinformatics.de/FragFit, is free and open to all users, without any login requirements.
Collaborative Science Using Web Services and the SciFlo Grid Dataflow Engine
NASA Astrophysics Data System (ADS)
Wilson, B. D.; Manipon, G.; Xing, Z.; Yunck, T.
2006-12-01
The General Earth Science Investigation Suite (GENESIS) project is a NASA-sponsored partnership between the Jet Propulsion Laboratory, academia, and NASA data centers to develop a new suite of Web Services tools to facilitate multi-sensor investigations in Earth System Science. The goal of GENESIS is to enable large-scale, multi-instrument atmospheric science using combined datasets from the AIRS, MODIS, MISR, and GPS sensors. Investigations include cross-comparison of spaceborne climate sensors, cloud spectral analysis, study of upper troposphere-stratosphere water transport, study of the aerosol indirect cloud effect, and global climate model validation. The challenges are to bring together very large datasets, reformat and understand the individual instrument retrievals, co-register or re-grid the retrieved physical parameters, perform computationally-intensive data fusion and data mining operations, and accumulate complex statistics over months to years of data. To meet these challenges, we have developed a Grid computing and dataflow framework, named SciFlo, in which we are deploying a set of versatile and reusable operators for data access, subsetting, registration, mining, fusion, compression, and advanced statistical analysis. SciFlo leverages remote Web Services, called via Simple Object Access Protocol (SOAP) or REST (one-line) URLs, and the Grid Computing standards (WS-* &Globus Alliance toolkits), and enables scientists to do multi-instrument Earth Science by assembling reusable Web Services and native executables into a distributed computing flow (tree of operators). The SciFlo client &server engines optimize the execution of such distributed data flows and allow the user to transparently find and use datasets and operators without worrying about the actual location of the Grid resources. In particular, SciFlo exploits the wealth of datasets accessible by OpenGIS Consortium (OGC) Web Mapping Servers & Web Coverage Servers (WMS/WCS), and by Open Data Access Protocol (OpenDAP) servers. The scientist injects a distributed computation into the Grid by simply filling out an HTML form or directly authoring the underlying XML dataflow document, and results are returned directly to the scientist's desktop. Once an analysis has been specified for a chunk or day of data, it can be easily repeated with different control parameters or over months of data. Recently, the Earth Science Information Partners (ESIP) Federation sponsored a collaborative activity in which several ESIP members advertised their respective WMS/WCS and SOAP services, developed some collaborative science scenarios for atmospheric and aerosol science, and then choreographed services from multiple groups into demonstration workflows using the SciFlo engine and a Business Process Execution Language (BPEL) workflow engine. For several scenarios, the same collaborative workflow was executed in three ways: using hand-coded scripts, by executing a SciFlo document, and by executing a BPEL workflow document. We will discuss the lessons learned from this activity, the need for standardized interfaces (like WMS/WCS), the difficulty in agreeing on even simple XML formats and interfaces, and further collaborations that are being pursued.
Image Maps in the World-Wide Web: The Uses and Limitations.
ERIC Educational Resources Information Center
Cochenour, John J.; And Others
A study of nine different image maps from World Wide Web home pages was conducted to evaluate their effectiveness in information display and access, relative to visual, navigational, and practical characteristics. Nine independent viewers completed 20-question surveys on the image maps, in which they evaluated the characteristics of the maps on a…
Effects of Multidimensional Concept Maps on Fourth Graders' Learning in Web-Based Computer Course
ERIC Educational Resources Information Center
Huang, Hwa-Shan; Chiou, Chei-Chang; Chiang, Heien-Kun; Lai, Sung-Hsi; Huang, Chiun-Yen; Chou, Yin-Yu
2012-01-01
This study explores the effect of multidimensional concept mapping instruction on students' learning performance in a web-based computer course. The subjects consisted of 103 fourth graders from an elementary school in central Taiwan. They were divided into three groups: multidimensional concept map (MCM) instruction group, Novak concept map (NCM)…
Teachers' Perceptions of Esri Story Maps as Effective Teaching Tools
ERIC Educational Resources Information Center
Strachan, Caitlin; Mitchell, Jerry
2014-01-01
The current study explores teachers' perceptions of Esri Story Maps as effective teaching tools. Story Maps are a relatively new web application created using Esri's cloud-based GIS platform, ArcGIS Online. They combine digitized, dynamic web maps with other story elements to help the creator effectively convey a message. The relative ease…
Semantic Web technologies for the big data in life sciences.
Wu, Hongyan; Yamaguchi, Atsuko
2014-08-01
The life sciences field is entering an era of big data with the breakthroughs of science and technology. More and more big data-related projects and activities are being performed in the world. Life sciences data generated by new technologies are continuing to grow in not only size but also variety and complexity, with great speed. To ensure that big data has a major influence in the life sciences, comprehensive data analysis across multiple data sources and even across disciplines is indispensable. The increasing volume of data and the heterogeneous, complex varieties of data are two principal issues mainly discussed in life science informatics. The ever-evolving next-generation Web, characterized as the Semantic Web, is an extension of the current Web, aiming to provide information for not only humans but also computers to semantically process large-scale data. The paper presents a survey of big data in life sciences, big data related projects and Semantic Web technologies. The paper introduces the main Semantic Web technologies and their current situation, and provides a detailed analysis of how Semantic Web technologies address the heterogeneous variety of life sciences big data. The paper helps to understand the role of Semantic Web technologies in the big data era and how they provide a promising solution for the big data in life sciences.
Research on ecological function zoning information system based on WebGIS
NASA Astrophysics Data System (ADS)
Zhang, Jianxiong; Zhang, Gang
2007-06-01
With the development of information technology, application of WebGIS will make it possible to realize digitization and intellectualization in issuing and managing information of ecological function zoning. Firstly, this paper introduces the fundamental principles, basic methods and current situation of development and various support techniques about WebGIS. Secondly, the paper not only compares and analyzes the above methods but also discusses their applied prospect and feasibility in Web management. Finally, exemplified by Jiaozuo City, the paper puts forward an idea of design and a project of realization about the information system. In this research, the digital map and establishment of map database have been finished by MapInfo. Combining with some technical data of ecological environment of Jiaozuo City, the information of ecological environment resources is collected, stored, analyzed, calculated and displayed in the form of pictures and graphs on the WebGIS platform, which makes use of secondary development flat-MapXtreme for Java and some tools such as Java, JSP and JavaScript. Serve mode is adopted in the system which has realized the operating, inquiring of basic map and working out thematic map. By the finished system, it brings some references.
Atlas Basemaps in Web 2.0 Epoch
NASA Astrophysics Data System (ADS)
Chabaniuk, V.; Dyshlyk, O.
2016-06-01
The authors have analyzed their experience of the production of various Electronic Atlases (EA) and Atlas Information Systems (AtIS) of so-called "classical type". These EA/AtIS have been implemented in the past decade in the Web 1.0 architecture (e.g., National Atlas of Ukraine, Atlas of radioactive contamination of Ukraine, and others). One of the main distinguishing features of these atlases was their static nature - the end user could not change the content of EA/AtIS. Base maps are very important element of any EA/AtIS. In classical type EA/AtIS they were static datasets, which consisted of two parts: the topographic data of a fixed scale and data of the administrative-territorial division of Ukraine. It is important to note that the technique of topographic data production was based on the use of direct channels of topographic entity observation (such as aerial photography) for the selected scale. Changes in the information technology of the past half-decade are characterized by the advent of the "Web 2.0 epoch". Due to this, in cartography appeared such phenomena as, for example, "neo-cartography" and various mapping platforms like OpenStreetMap. These changes have forced developers of EA/AtIS to use new atlas basemaps. Our approach is described in the article. The phenomenon of neo-cartography and/or Web 2.0 cartography are analysed by authors using previously developed Conceptual framework of EA/AtIS. This framework logically explains the cartographic phenomena relations of three formations: Web 1.0, Web 1.0x1.0 and Web 2.0. Atlas basemaps of the Web 2.0 epoch are integrated information systems. We use several ways to integrate separate atlas basemaps into the information system - by building: weak integrated information system, structured system and meta-system. This integrated information system consists of several basemaps and falls under the definition of "big data". In real projects it is already used the basemaps of three strata: Conceptual, Application and Operational. It is possible to use several variants of the basemap for each stratum. Furthermore, the developed methods of integration allow logically coordinate the application of different types of basemaps into a specific EA/AtIS. For example, such variants of the Conceptual strata basemap as the National map of Ukraine of our production and external resources such as OpenStreetMap are used with the help of meta-system replacement procedures. The authors propose a Conceptual framework of the basemap, which consists of the Conceptual solutions framework of the basemap and few Application solutions frameworks of the basemap. Conceptual framework is intended to be reused in many projects and significantly reduce the resources. We differentiate Application frameworks for mobile and non-mobile environments. The results of the research are applied in few EA produced in 2014-2015 at the Institute of Geography of the National Academy of Sciences of Ukraine. One of them is the Atlas of emergency situations. It includes elements that work on mobile devices. At its core it is "ubiquitous" subset of the Atlas.
The structure and emerging trends of construction safety management research: a bibliometric review.
Liang, Huakang; Zhang, Shoujian; Su, Yikun
2018-03-29
Recently, construction safety management (CSM) practices and systems have become important topics for stakeholders to take care of human resources. However, few studies have attempted to map the global research on CSM. A comprehensive bibliometric review was conducted in this study based on multiple methods. In total, 1172 CSM-related papers from the Web of Science Core Collection database were examined. The analyses focused on publication year, country-institute, publication source, author and research topics. The results indicated that the USA, China, Australia and the UK took leading positions in CSM research. Two branches of journals were identified, namely the branch of engineering science and that of safety science and social science. Additionally, seven themes together with 28 specific topics were detected to allow researchers to track the main structure and temporal evolution of CSM research. Finally, the main research trends and potential research directions were discussed to guide the future research.
Connecting geoscience systems and data using Linked Open Data in the Web of Data
NASA Astrophysics Data System (ADS)
Ritschel, Bernd; Neher, Günther; Iyemori, Toshihiko; Koyama, Yukinobu; Yatagai, Akiyo; Murayama, Yasuhiro; Galkin, Ivan; King, Todd; Fung, Shing F.; Hughes, Steve; Habermann, Ted; Hapgood, Mike; Belehaki, Anna
2014-05-01
Linked Data or Linked Open Data (LOD) in the realm of free and publically accessible data is one of the most promising and most used semantic Web frameworks connecting various types of data and vocabularies including geoscience and related domains. The semantic Web extension to the commonly existing and used World Wide Web is based on the meaning of entities and relationships or in different words classes and properties used for data in a global data and information space, the Web of Data. LOD data is referenced and mash-uped by URIs and is retrievable using simple parameter controlled HTTP-requests leading to a result which is human-understandable or machine-readable. Furthermore the publishing and mash-up of data in the semantic Web realm is realized by specific Web standards, such as RDF, RDFS, OWL and SPARQL defined for the Web of Data. Semantic Web based mash-up is the Web method to aggregate and reuse various contents from different sources, such as e.g. using FOAF as a model and vocabulary for the description of persons and organizations -in our case- related to geoscience projects, instruments, observations, data and so on. On the example of three different geoscience data and information management systems, such as ESPAS, IUGONET and GFZ ISDC and the associated science data and related metadata or better called context data, the concept of the mash-up of systems and data using the semantic Web approach and the Linked Open Data framework is described in this publication. Because the three systems are based on different data models, data storage structures and technical implementations an extra semantic Web layer upon the existing interfaces is used for mash-up solutions. In order to satisfy the semantic Web standards, data transition processes, such as the transfer of content stored in relational databases or mapped in XML documents into SPARQL capable databases or endpoints using D2R or XSLT is necessary. In addition, the use of mapped and/or merged domain specific and cross-domain vocabularies in the sense of terminological ontologies are the foundation for a virtually unified data retrieval and access in IUGONET, ESPAS and GFZ ISDC data management systems. SPARQL endpoints realized either by originally RDF databases, e.g. Virtuoso or by virtual SPARQL endpoints, e.g. D2R services enable an only upon Web standard-based mash-up of domain-specific systems and data, such as in this case the space weather and geomagnetic domain but also cross-domain connection to data and vocabularies, e.g. related to NASA's VxOs, particularly VWO or NASA's PDS data system within LOD. LOD - Linked Open Data RDF - Resource Description Framework RDFS - RDF Schema OWL - Ontology Web Language SPARQL - SPARQL Protocol and RDF Query Language FOAF - Friends of a Friend ontology ESPAS - Near Earth Space Data Infrastructure for e-Science (Project) IUGONET - Inter-university Upper Atmosphere Global Observation Network (Project) GFZ ISDC - German Research Centre for Geosciences Information System and Data Center XML - Extensible Mark-up Language D2R - (Relational) Database to RDF (Transformation) XSLT - Extensible Stylesheet Language Transformation Virtuoso - OpenLink Virtuoso Universal Server (including RDF data management) NASA - National Aeronautics and Space Administration VOx - Virtual Observatories VWO - Virtual Wave Observatory PDS - Planetary Data System
Oh What a Tangled Biofilm Web Bacteria Weave
... What a Tangled Biofilm Web Bacteria Weave Inside Life Science View All Articles | Inside Life Science Home Page Oh What a Tangled Biofilm Web ... Cellular Conversations Learning from Bacterial Chatter This Inside Life Science article also appears on LiveScience . Learn about related ...
Software for Generating Troposphere Corrections for InSAR Using GPS and Weather Model Data
NASA Technical Reports Server (NTRS)
Moore, Angelyn W.; Webb, Frank H.; Fishbein, Evan F.; Fielding, Eric J.; Owen, Susan E.; Granger, Stephanie L.; Bjoerndahl, Fredrik; Loefgren, Johan; Fang, Peng; Means, James D.;
2013-01-01
Atmospheric errors due to the troposphere are a limiting error source for spaceborne interferometric synthetic aperture radar (InSAR) imaging. This software generates tropospheric delay maps that can be used to correct atmospheric artifacts in InSAR data. The software automatically acquires all needed GPS (Global Positioning System), weather, and Digital Elevation Map data, and generates a tropospheric correction map using a novel algorithm for combining GPS and weather information while accounting for terrain. Existing JPL software was prototypical in nature, required a MATLAB license, required additional steps to acquire and ingest needed GPS and weather data, and did not account for topography in interpolation. Previous software did not achieve a level of automation suitable for integration in a Web portal. This software overcomes these issues. GPS estimates of tropospheric delay are a source of corrections that can be used to form correction maps to be applied to InSAR data, but the spacing of GPS stations is insufficient to remove short-wavelength tropospheric artifacts. This software combines interpolated GPS delay with weather model precipitable water vapor (PWV) and a digital elevation model to account for terrain, increasing the spatial resolution of the tropospheric correction maps and thus removing short wavelength tropospheric artifacts to a greater extent. It will be integrated into a Web portal request system, allowing use in a future L-band SAR Earth radar mission data system. This will be a significant contribution to its technology readiness, building on existing investments in in situ space geodetic networks, and improving timeliness, quality, and science value of the collected data
ERIC Educational Resources Information Center
Manoj, T. I.; Devanathan, S.
2010-01-01
This research study is the report of an experiment conducted to find out the effects of web based inquiry science environment on cognitive outcomes in Biological science in correlation to Emotional intelligence. Web based inquiry science environment (WISE) provides a platform for creating inquiry-based science projects for students to work…
2009-11-01
relevance feedback algo- rithm. Four methods, εMap [1], MapA , P10A, and StatAP [2], were used in the track to measure the performance of Phase 2 runs...εMap and StatAP were applied to the runs us- ing the testing set of only ClueWeb09 Category-B, whereas MapA and P10A were applied to those using the...whole ClueWeb09 English set. Because our experiments were based on only ClueWeb09 Category-B, measuring our per- formance by MapA and P10A might not
NASA Astrophysics Data System (ADS)
Escarzaga, S. M.; Cody, R. P.; Kassin, A.; Barba, M.; Gaylord, A. G.; Manley, W. F.; Mazza Ramsay, F. D.; Vargas, S. A., Jr.; Tarin, G.; Laney, C. M.; Villarreal, S.; Aiken, Q.; Collins, J. A.; Green, E.; Nelson, L.; Tweedie, C. E.
2015-12-01
The Barrow area of northern Alaska is one of the most intensely researched locations in the Arctic and the Barrow Area Information Database (BAID, www.barrowmapped.org) tracks and facilitates a gamut of research, management, and educational activities in the area. BAID is a cyberinfrastructure (CI) that details much of the historic and extant research undertaken within in the Barrow region in a suite of interactive web-based mapping and information portals (geobrowsers). The BAID user community and target audience for BAID is diverse and includes research scientists, science logisticians, land managers, educators, students, and the general public. BAID contains information on more than 12,000 Barrow area research sites that extend back to the 1940's and more than 640 remote sensing images and geospatial datasets. In a web-based setting, users can zoom, pan, query, measure distance, save or print maps and query results, and filter or view information by space, time, and/or other tags. Additionally, data are described with metadata that meet Federal Geographic Data Committee standards. Recent advances include the addition of more than 2000 new research sites, the addition of a query builder user interface allowing rich and complex queries, and provision of differential global position system (dGPS) and high-resolution aerial imagery support to visiting scientists. Recent field surveys include over 80 miles of coastline to document rates of erosion and the collection of high-resolution sonar data for bathymetric mapping of Elson Lagoon and near shore region of the Chukchi Sea. A network of five climate stations has been deployed across the peninsula to serve as a wireless net for the research community and to deliver near real time climatic data to the user community. Local GIS personal have also been trained to better make use of scientific data for local decision making. Links to Barrow area datasets are housed at national data archives and substantial upgrades have been made to the BAID website and web mapping applications to include the public release of a new multi-temporal Imagery Viewer that allow users to interact with and compare imagery of the Barrow area from 1949 to present.
Distributed Hydrologic Modeling Apps for Decision Support in the Cloud
NASA Astrophysics Data System (ADS)
Swain, N. R.; Latu, K.; Christiensen, S.; Jones, N.; Nelson, J.
2013-12-01
Advances in computation resources and greater availability of water resources data represent an untapped resource for addressing hydrologic uncertainties in water resources decision-making. The current practice of water authorities relies on empirical, lumped hydrologic models to estimate watershed response. These models are not capable of taking advantage of many of the spatial datasets that are now available. Physically-based, distributed hydrologic models are capable of using these data resources and providing better predictions through stochastic analysis. However, there exists a digital divide that discourages many science-minded decision makers from using distributed models. This divide can be spanned using a combination of existing web technologies. The purpose of this presentation is to present a cloud-based environment that will offer hydrologic modeling tools or 'apps' for decision support and the web technologies that have been selected to aid in its implementation. Compared to the more commonly used lumped-parameter models, distributed models, while being more intuitive, are still data intensive, computationally expensive, and difficult to modify for scenario exploration. However, web technologies such as web GIS, web services, and cloud computing have made the data more accessible, provided an inexpensive means of high-performance computing, and created an environment for developing user-friendly apps for distributed modeling. Since many water authorities are primarily interested in the scenario exploration exercises with hydrologic models, we are creating a toolkit that facilitates the development of a series of apps for manipulating existing distributed models. There are a number of hurdles that cloud-based hydrologic modeling developers face. One of these is how to work with the geospatial data inherent with this class of models in a web environment. Supporting geospatial data in a website is beyond the capabilities of standard web frameworks and it requires the use of additional software. In particular, there are at least three elements that are needed: a geospatially enabled database, a map server, and geoprocessing toolbox. We recommend a software stack for geospatial web application development comprising: MapServer, PostGIS, and 52 North with Python as the scripting language to tie them together. Another hurdle that must be cleared is managing the cloud-computing load. We are using HTCondor as a solution to this end. Finally, we are creating a scripting environment wherein developers will be able to create apps that use existing hydrologic models in our system with minimal effort. This capability will be accomplished by creating a plugin for a Python content management system called CKAN. We are currently developing cyberinfrastructure that utilizes this stack and greatly lowers the investment required to deploy cloud-based modeling apps. This material is based upon work supported by the National Science Foundation under Grant No. 1135482
Improving Land Cover Mapping: a Mobile Application Based on ESA Sentinel 2 Imagery
NASA Astrophysics Data System (ADS)
Melis, M. T.; Dessì, F.; Loddo, P.; La Mantia, C.; Da Pelo, S.; Deflorio, A. M.; Ghiglieri, G.; Hailu, B. T.; Kalegele, K.; Mwasi, B. N.
2018-04-01
The increasing availability of satellite data is a real value for the enhancement of environmental knowledge and land management. Possibilities to integrate different source of geo-data are growing and methodologies to create thematic database are becoming very sophisticated. Moreover, the access to internet services and, in particular, to web mapping services is well developed and spread either between expert users than the citizens. Web map services, like Google Maps or Open Street Maps, give the access to updated optical imagery or topographic maps but information on land cover/use - are not still provided. Therefore, there are many failings in the general utilization -non-specialized users- and access to those maps. This issue is particularly felt where the digital (web) maps could form the basis for land use management as they are more economic and accessible than the paper maps. These conditions are well known in many African countries where, while the internet access is becoming open to all, the local map agencies and their products are not widespread.
An Intelligent Web-Based System for Diagnosing Student Learning Problems Using Concept Maps
ERIC Educational Resources Information Center
Acharya, Anal; Sinha, Devadatta
2017-01-01
The aim of this article is to propose a method for development of concept map in web-based environment for identifying concepts a student is deficient in after learning using traditional methods. Direct Hashing and Pruning algorithm was used to construct concept map. Redundancies within the concept map were removed to generate a learning sequence.…
NASA Astrophysics Data System (ADS)
Kassin, A.; Cody, R. P.; Barba, M.; Escarzaga, S. M.; Score, R.; Dover, M.; Gaylord, A. G.; Manley, W. F.; Habermann, T.; Tweedie, C. E.
2015-12-01
The Arctic Research Mapping Application (ARMAP; http://armap.org/) is a suite of online applications and data services that support Arctic science by providing project tracking information (who's doing what, when and where in the region) for United States Government funded projects. In collaboration with 17 research agencies, project locations are displayed in a visually enhanced web mapping application. Key information about each project is presented along with links to web pages that provide additional information. The mapping application includes new reference data layers and an updated ship tracks layer. Visual enhancements are achieved by redeveloping the front-end from FLEX to HTML5 and JavaScript, which now provide access to mobile users utilizing tablets and cell phone devices. New tools have been added that allow users to navigate, select, draw, measure, print, use a time slider, and more. Other module additions include a back-end Apache SOLR search platform that provides users with the capability to perform advance searches throughout the ARMAP database. Furthermore, a new query builder interface has been developed in order to provide more intuitive controls to generate complex queries. These improvements have been made to increase awareness of projects funded by numerous entities in the Arctic, enhance coordination for logistics support, help identify geographic gaps in research efforts and potentially foster more collaboration amongst researchers working in the region. Additionally, ARMAP can be used to demonstrate past, present, and future research efforts supported by the U.S. Government.
NASA Astrophysics Data System (ADS)
Dupac, X.; Arviset, C.; Fernandez Barreiro, M.; Lopez-Caniego, M.; Tauber, J.
2015-12-01
The Planck Collaboration has released in 2015 their second major dataset through the Planck Legacy Archive (PLA). It includes cosmological, Extragalactic and Galactic science data in temperature (intensity) and polarization. Full-sky maps are provided with unprecedented angular resolution and sensitivity, together with a large number of ancillary maps, catalogues (generic, SZ clusters and Galactic cold clumps), time-ordered data and other information. The extensive cosmological likelihood package allows cosmologists to fully explore the plausible parameters of the Universe. A new web-based PLA user interface is made public since Dec. 2014, allowing easier and faster access to all Planck data, and replacing the previous Java-based software. Numerous additional improvements to the PLA are also being developed through the so-called PLA Added-Value Interface, making use of an external contract with the Planetek Hellas and Expert Analytics software companies. This will allow users to process time-ordered data into sky maps, separate astrophysical components in existing maps, simulate the microwave and infrared sky through the Planck Sky Model, and use a number of other functionalities.
Cool Apps: Building Cryospheric Data Applications with Standards-Based Service Oriented Architecture
NASA Astrophysics Data System (ADS)
Oldenburg, J.; Truslove, I.; Collins, J. A.; Liu, M.; Lewis, S.; Brodzik, M.
2012-12-01
The National Snow and Ice Data Center (NSIDC) holds a large collection of cryospheric data, and is involved in a number of informatics research and development projects aimed at improving the discoverability and accessibility of these data. To develop high- quality software in a timely manner, we have adopted a Service- Oriented Architecture (SOA) approach for our core technical infrastructure development. Data services at NSIDC are internally exposed to other tools and applications through standards-based service interfaces. These standards include OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting), various OGC (Open Geospatial Consortium) standards including WMS (Web Map Service) and WFS (Web Feature Service), ESIP (Federation of Earth Sciences Information Partners) OpenSearch, and NSIDC-defined service endpoints which follow a RESTful architecture. By taking a standards-based approach, we are able to use off-the-shelf tools and libraries to consume, translate and broker these data services, and thus develop applications faster. Additionally, by exposing public interfaces to these services we provide valuable data services to technical collaborators; for example, NASA Reverb (http://reverb.echo.nasa.gov) uses NSIDC's WMS services. Our latest generation of web applications consume these data services directly. The most complete example of this is the Operation IceBridge Data Portal (http://nsidc.org/icebridge/ portal) which depends on many of the aforementioned services, retrieving data in several ways. The maps it displays are obtained through the use of WMS and WFS protocols from a MapServer instance hosted at NSIDC. Links to the scientific data collected on Operation IceBridge campaigns are obtained through ESIP OpenSearch requests service providers that encapsulate our metadata databases. These standards-based web services are also developed at NSIDC and are designed to be used independently of the Portal. This poster provides a visual representation of the relationships described above, with additional details and examples, and more generally outlines the benefits and challenges of this SOA approach.
Integrating Mathematics, Science, and Language Arts Instruction Using the World Wide Web.
ERIC Educational Resources Information Center
Clark, Kenneth; Hosticka, Alice; Kent, Judi; Browne, Ron
1998-01-01
Addresses issues of access to World Wide Web sites, mathematics and science content-resources available on the Web, and methods for integrating mathematics, science, and language arts instruction. (Author/ASK)
Planning and Management of Real-Time Geospatialuas Missions Within a Virtual Globe Environment
NASA Astrophysics Data System (ADS)
Nebiker, S.; Eugster, H.; Flückiger, K.; Christen, M.
2011-09-01
This paper presents the design and development of a hardware and software framework supporting all phases of typical monitoring and mapping missions with mini and micro UAVs (unmanned aerial vehicles). The developed solution combines state-of-the art collaborative virtual globe technologies with advanced geospatial imaging techniques and wireless data link technologies supporting the combined and highly reliable transmission of digital video, high-resolution still imagery and mission control data over extended operational ranges. The framework enables the planning, simulation, control and real-time monitoring of UAS missions in application areas such as monitoring of forest fires, agronomical research, border patrol or pipeline inspection. The geospatial components of the project are based on the Virtual Globe Technology i3D OpenWebGlobe of the Institute of Geomatics Engineering at the University of Applied Sciences Northwestern Switzerland (FHNW). i3D OpenWebGlobe is a high-performance 3D geovisualisation engine supporting the web-based streaming of very large amounts of terrain and POI data.
Reinventing Image Detective: An Evidence-Based Approach to Citizen Science Online
NASA Astrophysics Data System (ADS)
Romano, C.; Graff, P. V.; Runco, S.
2017-12-01
Usability studies demonstrate that web users are notoriously impatient, spending as little as 15 seconds on a home page. How do you get users to stay long enough to understand a citizen science project? How do you get users to complete complex citizen science tasks online?Image Detective, a citizen science project originally developed by scientists and science engagement specialists at the NASA Johnson Space center to engage the public in the analysis of images taken from space by astronauts to help enhance NASA's online database of astronaut imagery, partnered with the CosmoQuest citizen science platform to modernize, offering new and improved options for participation in Image Detective. The challenge: to create a web interface that builds users' skills and knowledge, creating engagement while learning complex concepts essential to the accurate completion of tasks. The project team turned to usability testing for an objective understanding of how users perceived Image Detective and the steps required to complete required tasks. A group of six users was recruited online for unmoderated and initial testing. The users followed a think-aloud protocol while attempting tasks, and were recorded on video and audio. The usability test examined users' perception of four broad areas: the purpose of and context for Image Detective; the steps required to successfully complete the analysis (differentiating images of Earth's surface from those showing outer space and identifying common surface features); locating the image center point on a map of Earth; and finally, naming geographic locations or natural events seen in the image.Usability test findings demonstrated that the following best practices can increase participation in Image Detective and can be applied to the successful implementation of any citizen science project:• Concise explanation of the project, its context, and its purpose;• Including a mention of the funding agency (in this case, NASA);• A preview of the specific tasks required of participants;• A dedicated user interface for the actual citizen science interaction.In addition, testing revealed that users may require additional context when a task is complex, difficult, or unusual (locating a specific image and its center point on a map of Earth). Video evidence will be made available with this presentation.
Reinventing Image Detective: An Evidence-Based Approach to Citizen Science Online
NASA Technical Reports Server (NTRS)
Romano, Cia; Graff, Paige V.; Runco, Susan
2017-01-01
Usability studies demonstrate that web users are notoriously impatient, spending as little as 15 seconds on a home page. How do you get users to stay long enough to understand a citizen science project? How do you get users to complete complex citizen science tasks online? Image Detective, a citizen science project originally developed by scientists and science engagement specialists at the NASA Johnson Space center to engage the public in the analysis of images taken from space by astronauts to help enhance NASA's online database of astronaut imagery, partnered with the CosmoQuest citizen science platform to modernize, offering new and improved options for participation in Image Detective. The challenge: to create a web interface that builds users' skills and knowledge, creating engagement while learning complex concepts essential to the accurate completion of tasks. The project team turned to usability testing for an objective understanding of how users perceived Image Detective and the steps required to complete required tasks. A group of six users was recruited online for unmoderated and initial testing. The users followed a think-aloud protocol while attempting tasks, and were recorded on video and audio. The usability test examined users' perception of four broad areas: the purpose of and context for Image Detective; the steps required to successfully complete the analysis (differentiating images of Earth's surface from those showing outer space and identifying common surface features); locating the image center point on a map of Earth; and finally, naming geographic locations or natural events seen in the image. Usability test findings demonstrated that the following best practices can increase participation in Image Detective and can be applied to the successful implementation of any citizen science project: (1) Concise explanation of the project, its context, and its purpose; (2) Including a mention of the funding agency (in this case, NASA); (3) A preview of the specific tasks required of participants; (4) A dedicated user interface for the actual citizen science interaction. In addition, testing revealed that users may require additional context when a task is complex, difficult, or unusual (locating a specific image and its center point on a map of Earth). Video evidence will be made available with this presentation.
Comparison of three web-scale discovery services for health sciences research.
Hanneke, Rosie; O'Brien, Kelly K
2016-04-01
The purpose of this study was to investigate the relative effectiveness of three web-scale discovery (WSD) tools in answering health sciences search queries. Simple keyword searches, based on topics from six health sciences disciplines, were run at multiple real-world implementations of EBSCO Discovery Service (EDS), Ex Libris's Primo, and ProQuest's Summon. Each WSD tool was evaluated in its ability to retrieve relevant results and in its coverage of MEDLINE content. All WSD tools returned between 50%-60% relevant results. Primo returned a higher number of duplicate results than the other 2 WSD products. Summon results were more relevant when search terms were automatically mapped to controlled vocabulary. EDS indexed the largest number of MEDLINE citations, followed closely by Summon. Additionally, keyword searches in all 3 WSD tools retrieved relevant material that was not found with precision (Medical Subject Headings) searches in MEDLINE. None of the 3 WSD products studied was overwhelmingly more effective in returning relevant results. While difficult to place the figure of 50%-60% relevance in context, it implies a strong likelihood that the average user would be able to find satisfactory sources on the first page of search results using a rudimentary keyword search. The discovery of additional relevant material beyond that retrieved from MEDLINE indicates WSD tools' value as a supplement to traditional resources for health sciences researchers.
Comparison of three web-scale discovery services for health sciences research*
Hanneke, Rosie; O'Brien, Kelly K.
2016-01-01
Objective The purpose of this study was to investigate the relative effectiveness of three web-scale discovery (WSD) tools in answering health sciences search queries. Methods Simple keyword searches, based on topics from six health sciences disciplines, were run at multiple real-world implementations of EBSCO Discovery Service (EDS), Ex Libris's Primo, and ProQuest's Summon. Each WSD tool was evaluated in its ability to retrieve relevant results and in its coverage of MEDLINE content. Results All WSD tools returned between 50%–60% relevant results. Primo returned a higher number of duplicate results than the other 2 WSD products. Summon results were more relevant when search terms were automatically mapped to controlled vocabulary. EDS indexed the largest number of MEDLINE citations, followed closely by Summon. Additionally, keyword searches in all 3 WSD tools retrieved relevant material that was not found with precision (Medical Subject Headings) searches in MEDLINE. Conclusions None of the 3 WSD products studied was overwhelmingly more effective in returning relevant results. While difficult to place the figure of 50%–60% relevance in context, it implies a strong likelihood that the average user would be able to find satisfactory sources on the first page of search results using a rudimentary keyword search. The discovery of additional relevant material beyond that retrieved from MEDLINE indicates WSD tools' value as a supplement to traditional resources for health sciences researchers. PMID:27076797
Mapping of drinking water research: a bibliometric analysis of research output during 1992-2011.
Fu, Hui-Zhen; Wang, Ming-Huang; Ho, Yuh-Shan
2013-01-15
A bibliometric analysis based on the Science Citation Index Expanded from the Web of Science was carried out to provide insights into research activities and tendencies of the global drinking water from 1992 to 2011. Study emphases included performance of publication covering annual outputs, mainstream journals, Web of Science categories, leading countries, institutions, research tendencies and hotspots. The results indicated that annual output of the related scientific articles increased steadily. Water Research, Environmental Science & Technology, and Journal American Water Works Association were the three most common journals in drinking water research. The USA took a leading position out of 168 countries/territories, followed by Japan and Germany. A summary of the most frequently used keywords obtained from words in paper title analysis, author keyword analysis and KeyWords Plus analysis provided the clues to discover the current research emphases. The mainstream research related to drinking water was water treatment methods and the related contaminants. Disinfection process and consequent disinfection by-products attracted much attention. Ozonation and chlorination in disinfection, and adsorption were common techniques and are getting popular. Commonly researched drinking water contaminants concerned arsenic, nitrate, fluoride, lead, and cadmium, and pharmaceuticals emerged as the frequently studied contaminants in recent years. Disease caused by contaminants strongly promoted the development of related research. Copyright © 2012 Elsevier B.V. All rights reserved.
Ridge 2000 Data Management System
NASA Astrophysics Data System (ADS)
Goodwillie, A. M.; Carbotte, S. M.; Arko, R. A.; Haxby, W. F.; Ryan, W. B.; Chayes, D. N.; Lehnert, K. A.; Shank, T. M.
2005-12-01
Hosted at Lamont by the marine geoscience Data Management group, mgDMS, the NSF-funded Ridge 2000 electronic database, http://www.marine-geo.org/ridge2000/, is a key component of the Ridge 2000 multi-disciplinary program. The database covers each of the three Ridge 2000 Integrated Study Sites: Endeavour Segment, Lau Basin, and 8-11N Segment. It promotes the sharing of information to the broader community, facilitates integration of the suite of information collected at each study site, and enables comparisons between sites. The Ridge 2000 data system provides easy web access to a relational database that is built around a catalogue of cruise metadata. Any web browser can be used to perform a versatile text-based search which returns basic cruise and submersible dive information, sample and data inventories, navigation, and other relevant metadata such as shipboard personnel and links to NSF program awards. In addition, non-proprietary data files, images, and derived products which are hosted locally or in national repositories, as well as science and technical reports, can be freely downloaded. On the Ridge 2000 database page, our Data Link allows users to search the database using a broad range of parameters including data type, cruise ID, chief scientist, geographical location. The first Ridge 2000 field programs sailed in 2004 and, in addition to numerous data sets collected prior to the Ridge 2000 program, the database currently contains information on fifteen Ridge 2000-funded cruises and almost sixty Alvin dives. Track lines can be viewed using a recently- implemented Web Map Service button labelled Map View. The Ridge 2000 database is fully integrated with databases hosted by the mgDMS group for MARGINS and the Antarctic multibeam and seismic reflection data initiatives. Links are provided to partner databases including PetDB, SIOExplorer, and the ODP Janus system. Improved inter-operability with existing and new partner repositories continues to be strengthened. One major effort involves the gradual unification of the metadata across these partner databases. Standardised electronic metadata forms that can be filled in at sea are available from our web site. Interactive map-based exploration and visualisation of the Ridge 2000 database is provided by GeoMapApp, a freely-available Java(tm) application being developed within the mgDMS group. GeoMapApp includes high-resolution bathymetric grids for the 8-11N EPR segment and allows customised maps and grids for any of the Ridge 2000 ISS to be created. Vent and instrument locations can be plotted and saved as images, and Alvin dive photos are also available.
Kooistra, Lammert; Bergsma, Aldo; Chuma, Beatus; de Bruin, Sytze
2009-01-01
This paper describes the development of a sensor web based approach which combines earth observation and in situ sensor data to derive typical information offered by a dynamic web mapping service (WMS). A prototype has been developed which provides daily maps of vegetation productivity for the Netherlands with a spatial resolution of 250 m. Daily available MODIS surface reflectance products and meteorological parameters obtained through a Sensor Observation Service (SOS) were used as input for a vegetation productivity model. This paper presents the vegetation productivity model, the sensor data sources and the implementation of the automated processing facility. Finally, an evaluation is made of the opportunities and limitations of sensor web based approaches for the development of web services which combine both satellite and in situ sensor sources. PMID:22574019
Optimizing Crawler4j using MapReduce Programming Model
NASA Astrophysics Data System (ADS)
Siddesh, G. M.; Suresh, Kavya; Madhuri, K. Y.; Nijagal, Madhushree; Rakshitha, B. R.; Srinivasa, K. G.
2017-06-01
World wide web is a decentralized system that consists of a repository of information on the basis of web pages. These web pages act as a source of information or data in the present analytics world. Web crawlers are used for extracting useful information from web pages for different purposes. Firstly, it is used in web search engines where the web pages are indexed to form a corpus of information and allows the users to query on the web pages. Secondly, it is used for web archiving where the web pages are stored for later analysis phases. Thirdly, it can be used for web mining where the web pages are monitored for copyright purposes. The amount of information processed by the web crawler needs to be improved by using the capabilities of modern parallel processing technologies. In order to solve the problem of parallelism and the throughput of crawling this work proposes to optimize the Crawler4j using the Hadoop MapReduce programming model by parallelizing the processing of large input data. Crawler4j is a web crawler that retrieves useful information about the pages that it visits. The crawler Crawler4j coupled with data and computational parallelism of Hadoop MapReduce programming model improves the throughput and accuracy of web crawling. The experimental results demonstrate that the proposed solution achieves significant improvements with respect to performance and throughput. Hence the proposed approach intends to carve out a new methodology towards optimizing web crawling by achieving significant performance gain.
Comparing Unique Title Coverage of Web of Science and Scopus in Earth and Atmospheric Sciences
ERIC Educational Resources Information Center
Barnett, Philip; Lascar, Claudia
2012-01-01
The current journal titles in earth and atmospheric sciences, that are unique to each of two databases, Web of Science and Scopus, were identified using different methods. Comparing by subject category shows that Scopus has hundreds of unique titles, and Web of Science just 16. The titles unique to each database have low SCImago Journal Rank…
Vision science literature of Nepal in the database "Web of Science".
Risal, S; Prasad, H N
2012-01-01
Vision Science is considered to be a quite developed discipline in Nepal, with much research currently in progress. Though the results of these endeavors are published in scientific journals, formal citation analyses have not been performed on works contributed by Nepalese vision scientists. To study Nepal's contribution to vision science literature in the database "Web of Science". The primary data source of this paper was Web of Science, a citation database of Thomas Reuters. All bibliometric analyses were performed with the help of Web of Science analysis service. In the current database of vision science literature, Nepalese authors contributed 112 publications to Web of Science, 95 of which were original articles. Pokharel GP had the highest number of citations among contributing authors of Nepal. Hennig A contributed the highest number of article as a first author. The Nepal Eye Hospital contributed the highest number of articles as an institution to the field of Vision Science. Currently, only two journals from Nepal including Journal of Nepal Medical Association (JAMA) are indexed in the Web of Science database (Sieving, 2012). To evaluate the total productivity of vision science literature from Nepal, total publication counts from national journals and articles indexed in other databases such as PubMed and Scopus must also be considered. © NEPjOPH.
Flood-inundation maps for the Scioto River at La Rue, Ohio
Whitehead, Matthew
2015-08-26
Digital flood-inundation maps for a 3-mile (mi) reach of the Scioto River that extends about 1/2 mi upstream and 1/2 mi downstream of the corporate boundary for La Rue, Ohio, were created by the U.S. Geological Survey (USGS) in cooperation with the Village of La Rue, Marion County Commissioners, Montgomery Township, and Marion County Scioto River Conservancy. The flood-inundation maps show estimates of the areal extent and depth of flooding correspond ing to selected water levels (stages) at the USGS streamgage on the Scioto River at La Rue (station number 03217500). The maps can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_ inundation/ . Near-real-time stages at this streamgage can be obtained from the USGS National Water Information System at http://waterdata.usgs.gov/oh/nwis/uv/?site_no=03217500 or the National Weather Service (NWS) Advanced Hydro - logic Prediction Service at http://water.weather.gov/ahps2/ hydrograph.php?wfo=cle&gage=LARO1 , which also forecasts flood hydrographs at this site.
Quantitative Analysis of the Usage of the COSMOS Science Education Portal
NASA Astrophysics Data System (ADS)
Sotiriou, Sofoklis; Bogner, Franz X.; Neofotistos, George
2011-08-01
A quantitative method of mapping the web usage of an innovative educational portal is applied to analyze the behaviour of users of the COSMOS Science Education Portal. The COSMOS Portal contains user-generated resources (that are uploaded by its users). It has been designed to support a science teacher's search, retrieval and access to both, scientific and educational resources. It also aims to introduce in and familiarize teachers with an innovative methodology for designing, expressing and representing educational practices in a commonly understandable way through the use of user-friendly authoring tools that are available through the portal. As a new science education portal that includes user-generated content, the COSMOS Portal encounters the well-known "new product/service challenge": to convince the users to use its tools, which facilitate quite fast lesson planning and lesson preparation activities. To respond to this challenge, the COSMOS Portal operators implemented a validation process by analyzing the usage data of the portal in a 10 month time-period. The data analyzed comprised: (a) the temporal evolution of the number of contributors and the amount of content uploaded to the COSMOS Portal; (b) the number of portal visitors (categorized as all-visitors, new-visitors, and returning-visitors) and (c) visitor loyalty parameters (such as page-views; pages/visit; average time on site; depth of visit; length of visit). The data is augmented with data associated with the usage context (e.g. the time of day when most of the activities in the portal take place). The quantitative results indicate that the exponential growth of the contributors to the COSMOS Portal is followed by an exponential growth of the uploaded content. Furthermore, the web usage statistics demonstrate significant changes in users' behaviour during the period under study, with returning visitors using the COSMOS Portal more frequently, mainly for lesson planning and preparation (in the afternoon hours). The findings demonstrate that the new COSMOS users follow the "law of surfing" behaviour, a common pattern of surfing behaviour in portals. However, users return to the COSMOS Portal: returning users comprise more than 50% of all COSMOS visits, stay longer on site and visit more pages. Returning visitors are benchmarked against the "law of surfing" and outperform it substantially. These quantitative results benchmark the web usage of a portal and provide its operators with maps of value-added patterns of the portal's offering to its users in the science education community.
The UAH GeoIntegrator: A Web Mapping System for On-site Data Insertion and Viewing
NASA Astrophysics Data System (ADS)
He, M.; Hardin, D.; Sever, T.; Irwin, D.
2005-12-01
There is a growing need in the scientific community to combine data colleted in the field with maps, imagery and other layered sources. For example, a biologist, who has collected pollination data during a field study, may want to see his data presented on a regional map. There are many commercial web mapping tools available, but they are expensive, and may require advanced computer knowledge to operate. Researchers from the Information Technology and Systems Center at the University of Alabama in Huntsville are developing a web mapping system that will allow scientists to map their data in an easy way. This system is called the UAH GeoIntegrator. The UAH GeoIntegrator is built on top of three open-source components: the Apache web server, MapServer, and the Chameleon viewer. Chameleon allows developers to customize its map viewer interface by adding widgets. These widgets provide unique functionality focused to the specific needs of the researcher. The UAH GeoIntegrator utilizes a suite of widgets that bring new functionality focused on specific needs, to a typical web map viewer. Specifically, a common input text file format was defined and widgets developed to convert user's field collections into web map layers. These layers can then laid on top of other map layers to produce data products that are versatile, informative and easy to distribute via web services. The UAH GeoIntegrator is being developed as part of the SERVIR project. SERVIR (a Spanish acronym meaning to serve) is part of an international effort to preserve the remaining forested regions of Mesoamerica and to help establish sustainable development in the region. The National Aeronautics and Space Administration along with the World Bank, the United States Agency for International Development and the Central American Commission for Environment and Development are cooperating in this effort. The UAH GeoIntegrator is part of an advanced decision support system that will provide scientists, educators, and policy makers the capabilities needed to monitor and forecast ecological changes, respond to natural disasters, and better understand both natural and human induced effects in Mesoamerica. In this paper, the architecture of the system, data input format, and details of the suite of will be presented.
Appropriating Invention through Concept Maps in Writing for Multimedia and the Web
ERIC Educational Resources Information Center
Bacabac, Florence Elizabeth
2015-01-01
As an alternative approach to web preproduction, I propose the use of concept maps for invention of website projects in business and professional writing courses. This mapping device approximates our students' initial site plans since rough ideas are formed based on a substantial exploratory technique. Incorporated in various disciplines, the…
Ontology Research and Development. Part 2 - A Review of Ontology Mapping and Evolving.
ERIC Educational Resources Information Center
Ding, Ying; Foo, Schubert
2002-01-01
Reviews ontology research and development, specifically ontology mapping and evolving. Highlights include an overview of ontology mapping projects; maintaining existing ontologies and extending them as appropriate when new information or knowledge is acquired; and ontology's role and the future of the World Wide Web, or Semantic Web. (Contains 55…
NaviCell Web Service for network-based data visualization.
Bonnet, Eric; Viara, Eric; Kuperstein, Inna; Calzone, Laurence; Cohen, David P A; Barillot, Emmanuel; Zinovyev, Andrei
2015-07-01
Data visualization is an essential element of biological research, required for obtaining insights and formulating new hypotheses on mechanisms of health and disease. NaviCell Web Service is a tool for network-based visualization of 'omics' data which implements several data visual representation methods and utilities for combining them together. NaviCell Web Service uses Google Maps and semantic zooming to browse large biological network maps, represented in various formats, together with different types of the molecular data mapped on top of them. For achieving this, the tool provides standard heatmaps, barplots and glyphs as well as the novel map staining technique for grasping large-scale trends in numerical values (such as whole transcriptome) projected onto a pathway map. The web service provides a server mode, which allows automating visualization tasks and retrieving data from maps via RESTful (standard HTTP) calls. Bindings to different programming languages are provided (Python and R). We illustrate the purpose of the tool with several case studies using pathway maps created by different research groups, in which data visualization provides new insights into molecular mechanisms involved in systemic diseases such as cancer and neurodegenerative diseases. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
NaviCell Web Service for network-based data visualization
Bonnet, Eric; Viara, Eric; Kuperstein, Inna; Calzone, Laurence; Cohen, David P. A.; Barillot, Emmanuel; Zinovyev, Andrei
2015-01-01
Data visualization is an essential element of biological research, required for obtaining insights and formulating new hypotheses on mechanisms of health and disease. NaviCell Web Service is a tool for network-based visualization of ‘omics’ data which implements several data visual representation methods and utilities for combining them together. NaviCell Web Service uses Google Maps and semantic zooming to browse large biological network maps, represented in various formats, together with different types of the molecular data mapped on top of them. For achieving this, the tool provides standard heatmaps, barplots and glyphs as well as the novel map staining technique for grasping large-scale trends in numerical values (such as whole transcriptome) projected onto a pathway map. The web service provides a server mode, which allows automating visualization tasks and retrieving data from maps via RESTful (standard HTTP) calls. Bindings to different programming languages are provided (Python and R). We illustrate the purpose of the tool with several case studies using pathway maps created by different research groups, in which data visualization provides new insights into molecular mechanisms involved in systemic diseases such as cancer and neurodegenerative diseases. PMID:25958393
NASA Astrophysics Data System (ADS)
Ryan, J. G.; McIlrath, J. A.
2008-12-01
Web-accessible geospatial information system (GIS) technologies have advanced in concert with an expansion of data resources that can be accessed and used by researchers, educators and students. These resources facilitate the development of data-rich instructional resources and activities that can be used to transition seamlessly into undergraduate research projects. MARGINS Data in the Classroom (http://serc.carleton.edu/ margins/index.html) seeks to engage MARGINS researchers and educators in using the images, datasets, and visualizations produced by NSF-MARGINS Program-funded research and related efforts to create Web-deliverable instructional materials for use in undergraduate-level geoscience courses (MARGINS Mini-Lessons). MARGINS science data is managed by the Marine Geosciences Data System (MGDS), and these and all other MGDS-hosted data can be accessed, manipulated and visualized using GeoMapApp (www.geomapapp.org; Carbotte et al, 2004), a freely available geographic information system focused on the marine environment. Both "packaged" MGDS datasets (i.e., global earthquake foci, volcanoes, bathymetry) and "raw" data (seismic surveys, magnetics, gravity) are accessible via GeoMapApp, with WFS linkages to other resources (geodesy from UNAVCO; seismic profiles from IRIS; geochemical and drillsite data from EarthChem, IODP, and others), permitting the comprehensive characterization of many regions of the ocean basins. Geospatially controlled datasets can be imported into GeoMapApp visualizations, and these visualizations can be exported into Google Earth as .kmz image files. Many of the MARGINS Mini-Lessons thus far produced use (or have studentss use the varied capabilities of GeoMapApp (i.e., constructing topographic profiles, overlaying varied geophysical and bathymetric datasets, characterizing geochemical data). These materials are available for use and testing from the project webpage (http://serc.carleton.edu/margins/). Classroom testing and assessment of the Mini- Lessons begins this Fall.
The Geogenomic Mutational Atlas of Pathogens (GoMAP) Web System
Sargeant, David P.; Hedden, Michael W.; Deverasetty, Sandeep; Strong, Christy L.; Alaniz, Izua J.; Bartlett, Alexandria N.; Brandon, Nicholas R.; Brooks, Steven B.; Brown, Frederick A.; Bufi, Flaviona; Chakarova, Monika; David, Roxanne P.; Dobritch, Karlyn M.; Guerra, Horacio P.; Levit, Kelvy S.; Mathew, Kiran R.; Matti, Ray; Maza, Dorothea Q.; Mistry, Sabyasachy; Novakovic, Nemanja; Pomerantz, Austin; Rafalski, Timothy F.; Rathnayake, Viraj; Rezapour, Noura; Ross, Christian A.; Schooler, Steve G.; Songao, Sarah; Tuggle, Sean L.; Wing, Helen J.; Yousif, Sandy; Schiller, Martin R.
2014-01-01
We present a new approach for pathogen surveillance we call Geogenomics. Geogenomics examines the geographic distribution of the genomes of pathogens, with a particular emphasis on those mutations that give rise to drug resistance. We engineered a new web system called Geogenomic Mutational Atlas of Pathogens (GoMAP) that enables investigation of the global distribution of individual drug resistance mutations. As a test case we examined mutations associated with HIV resistance to FDA-approved antiretroviral drugs. GoMAP-HIV makes use of existing public drug resistance and HIV protein sequence data to examine the distribution of 872 drug resistance mutations in ∼502,000 sequences for many countries in the world. We also implemented a broadened classification scheme for HIV drug resistance mutations. Several patterns for geographic distributions of resistance mutations were identified by visual mining using this web tool. GoMAP-HIV is an open access web application available at http://www.bio-toolkit.com/GoMap/project/ PMID:24675726
The Geogenomic Mutational Atlas of Pathogens (GoMAP) web system.
Sargeant, David P; Hedden, Michael W; Deverasetty, Sandeep; Strong, Christy L; Alaniz, Izua J; Bartlett, Alexandria N; Brandon, Nicholas R; Brooks, Steven B; Brown, Frederick A; Bufi, Flaviona; Chakarova, Monika; David, Roxanne P; Dobritch, Karlyn M; Guerra, Horacio P; Levit, Kelvy S; Mathew, Kiran R; Matti, Ray; Maza, Dorothea Q; Mistry, Sabyasachy; Novakovic, Nemanja; Pomerantz, Austin; Rafalski, Timothy F; Rathnayake, Viraj; Rezapour, Noura; Ross, Christian A; Schooler, Steve G; Songao, Sarah; Tuggle, Sean L; Wing, Helen J; Yousif, Sandy; Schiller, Martin R
2014-01-01
We present a new approach for pathogen surveillance we call Geogenomics. Geogenomics examines the geographic distribution of the genomes of pathogens, with a particular emphasis on those mutations that give rise to drug resistance. We engineered a new web system called Geogenomic Mutational Atlas of Pathogens (GoMAP) that enables investigation of the global distribution of individual drug resistance mutations. As a test case we examined mutations associated with HIV resistance to FDA-approved antiretroviral drugs. GoMAP-HIV makes use of existing public drug resistance and HIV protein sequence data to examine the distribution of 872 drug resistance mutations in ∼ 502,000 sequences for many countries in the world. We also implemented a broadened classification scheme for HIV drug resistance mutations. Several patterns for geographic distributions of resistance mutations were identified by visual mining using this web tool. GoMAP-HIV is an open access web application available at http://www.bio-toolkit.com/GoMap/project/
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hulme, Diana; Hamerlinck, Jeffrey; Bergman, Harold
Energy development is expanding across the United States, particularly in western states like Wyoming. Federal and state land management agencies, local governments, industry and non-governmental organizations have realized the need to access spatially-referenced data and other non-spatial information to determine the geographical extent and cumulative impacts of expanding energy development. The Wyoming Energy Resources Information Clearinghouse (WERIC) is a web-based portal which centralizes access to news, data, maps, reports and other information related to the development, management and conservation of Wyoming's diverse energy resources. WERIC was established in 2006 by the University of Wyoming's Ruckelshaus Institute of Environment and Naturalmore » Resources (ENR) and the Wyoming Geographic Information Science Center (WyGISC) with funding from the US Department of Energy (DOE) and the US Bureau of Land Management (BLM). The WERIC web portal originated in concept from a more specifically focused website, the Coalbed Methane (CBM) Clearinghouse. The CBM Clearinghouse effort focused only on coalbed methane production within the Powder River Basin of northeast Wyoming. The CBM Clearinghouse demonstrated a need to expand the effort statewide with a comprehensive energy focus, including fossil fuels and renewable and alternative energy resources produced and/or developed in Wyoming. WERIC serves spatial data to the greater Wyoming geospatial community through the Wyoming GeoLibrary, the WyGISC Data Server and the Wyoming Energy Map. These applications are critical components that support the Wyoming Energy Resources Information Clearinghouse (WERIC). The Wyoming GeoLibrary is a tool for searching and browsing a central repository for metadata. It provides the ability to publish and maintain metadata and geospatial data in a distributed environment. The WyGISC Data Server is an internet mapping application that provides traditional GIS mapping and analysis functionality via the web. It is linked into various state and federal agency spatial data servers allowing users to visualize multiple themes, such as well locations and core sage grouse areas, in one domain. Additionally, this application gives users the ability to download any of the data being displayed within the web map. The Wyoming Energy Map is the newest mapping application developed directly from this effort. With over a 100 different layers accessible via this mapping application, it is the most comprehensive Wyoming energy mapping application available. This application also provides the public with the ability to create cultural and wildlife reports based on any location throughout Wyoming and at multiple scales. The WERIC website also allows users to access links to federal, state, and local natural resource agency websites and map servers; research documents about energy; and educational information, including information on upcoming energy-relate conferences. The WERIC website has seen significant use by energy industry consultants, land management agencies, state and local decision-makers, non-governmental organizations and the public. Continued service to these sectors is desirable but some challenges remain in keeping the WERIC site viable. The most pressing issue is finding the human and financial resources to keep the site continually updated. Initially, the concept included offering users the ability to maintain the site themselves; however, this has proven not to be a viable option since very few people contributed. Without user contributions, the web page relied on already committed university staff to publish and link to the appropriate documents and web-pages. An option that is currently being explored to address this issue is development of a partnership with the University of Wyoming, School of Energy Resources (SER). As part of their outreach program, SER may be able to contribute funding for a full-time position dedicated to maintenance of WERIC.« less
NASA Astrophysics Data System (ADS)
Wilson, B. D.; Manipon, G.; Xing, Z.
2007-12-01
The General Earth Science Investigation Suite (GENESIS) project is a NASA-sponsored partnership between the Jet Propulsion Laboratory, academia, and NASA data centers to develop a new suite of Web Services tools to facilitate multi-sensor investigations in Earth System Science. The goal of GENESIS is to enable large-scale, multi-instrument atmospheric science using combined datasets from the AIRS, MODIS, MISR, and GPS sensors. Investigations include cross-comparison of spaceborne climate sensors, cloud spectral analysis, study of upper troposphere-stratosphere water transport, study of the aerosol indirect cloud effect, and global climate model validation. The challenges are to bring together very large datasets, reformat and understand the individual instrument retrievals, co-register or re-grid the retrieved physical parameters, perform computationally-intensive data fusion and data mining operations, and accumulate complex statistics over months to years of data. To meet these challenges, we have developed a Grid computing and dataflow framework, named SciFlo, in which we are deploying a set of versatile and reusable operators for data access, subsetting, registration, mining, fusion, compression, and advanced statistical analysis. SciFlo leverages remote Web Services, called via Simple Object Access Protocol (SOAP) or REST (one-line) URLs, and the Grid Computing standards (WS-* & Globus Alliance toolkits), and enables scientists to do multi- instrument Earth Science by assembling reusable Web Services and native executables into a distributed computing flow (tree of operators). The SciFlo client & server engines optimize the execution of such distributed data flows and allow the user to transparently find and use datasets and operators without worrying about the actual location of the Grid resources. In particular, SciFlo exploits the wealth of datasets accessible by OpenGIS Consortium (OGC) Web Mapping Servers & Web Coverage Servers (WMS/WCS), and by Open Data Access Protocol (OpenDAP) servers. SciFlo also publishes its own SOAP services for space/time query and subsetting of Earth Science datasets, and automated access to large datasets via lists of (FTP, HTTP, or DAP) URLs which point to on-line HDF or netCDF files. Typical distributed workflows obtain datasets by calling standard WMS/WCS servers or discovering and fetching data granules from ftp sites; invoke remote analysis operators available as SOAP services (interface described by a WSDL document); and merge results into binary containers (netCDF or HDF files) for further analysis using local executable operators. Naming conventions (HDFEOS and CF-1.0 for netCDF) are exploited to automatically understand and read on-line datasets. More interoperable conventions, and broader adoption of existing converntions, are vital if we are to "scale up" automated choreography of Web Services beyond toy applications. Recently, the ESIP Federation sponsored a collaborative activity in which several ESIP members developed some collaborative science scenarios for atmospheric and aerosol science, and then choreographed services from multiple groups into demonstration workflows using the SciFlo engine and a Business Process Execution Language (BPEL) workflow engine. We will discuss the lessons learned from this activity, the need for standardized interfaces (like WMS/WCS), the difficulty in agreeing on even simple XML formats and interfaces, the benefits of doing collaborative science analysis at the "touch of a button" once services are connected, and further collaborations that are being pursued.
Real-time shipboard displays for science operation and planning on CGC Healy
NASA Astrophysics Data System (ADS)
Roberts, S.; Chayes, D.; Arko, R.
2007-12-01
To facilitate effective science planning and decision making, we have developed a real-time geospatial browser and other displays widely used by many if not all members of USCGC Healy's science cruises and some officers and crew since 2004. In order to enable a 'zero-configuration' experience to the end user with nearly any modern browser, on any platform, anywhere on the ship with wired (or wireless) network access, we chose a Web-based/server-centric approach that provides a very low barrier to access in an environment where we have many participants constantly coming and going, often with their own computers. The principle interface for planning and operational decision making is a georeferenced, Web-based user interface built on the MapServer Web GIS platform developed at the University of Minnesota (http://mapserver.gis.umn.edu/), using the PostGIS spatial database extensions (http://postgis.refractions.net/) to enable live database connectivity. Data available include current ship position and orientation, historical ship tracks and data, seafloor bathymetry, station locations, RADARSAT, and subbottom profiles among others. In addition to the user interfaces that are part of individual instrumentation (such as the sonars and navigation systems), custom interfaces have been developed to centralize data with high update rates such as sea surface temperature, vessel attitude, position, etc. Underlying data acquisition and storage is provided by the Lamont Data System (LDS) and the NOAA SCS system. All data are stored on RAIDed disk systems and shared across a switched network with a gigabit fiber backbone. The real-time displays access data in a number of ways including real-time UDP datagrams from LDS, accessing files on disk, and querying a PostgreSQL relational backend. This work is supported by grants from the U.S. National Science Foundation, Office of Polar Programs, Arctic Science section.
Exploring biomedical ontology mappings with graph theory methods.
Kocbek, Simon; Kim, Jin-Dong
2017-01-01
In the era of semantic web, life science ontologies play an important role in tasks such as annotating biological objects, linking relevant data pieces, and verifying data consistency. Understanding ontology structures and overlapping ontologies is essential for tasks such as ontology reuse and development. We present an exploratory study where we examine structure and look for patterns in BioPortal, a comprehensive publicly available repository of live science ontologies. We report an analysis of biomedical ontology mapping data over time. We apply graph theory methods such as Modularity Analysis and Betweenness Centrality to analyse data gathered at five different time points. We identify communities, i.e., sets of overlapping ontologies, and define similar and closest communities. We demonstrate evolution of identified communities over time and identify core ontologies of the closest communities. We use BioPortal project and category data to measure community coherence. We also validate identified communities with their mutual mentions in scientific literature. With comparing mapping data gathered at five different time points, we identified similar and closest communities of overlapping ontologies, and demonstrated evolution of communities over time. Results showed that anatomy and health ontologies tend to form more isolated communities compared to other categories. We also showed that communities contain all or the majority of ontologies being used in narrower projects. In addition, we identified major changes in mapping data after migration to BioPortal Version 4.
The Use of Web Search Engines in Information Science Research.
ERIC Educational Resources Information Center
Bar-Ilan, Judit
2004-01-01
Reviews the literature on the use of Web search engines in information science research, including: ways users interact with Web search engines; social aspects of searching; structure and dynamic nature of the Web; link analysis; other bibliometric applications; characterizing information on the Web; search engine evaluation and improvement; and…
Teaching with Web-Based Videos: Helping Students Grasp the Science in Popular Online Resources
ERIC Educational Resources Information Center
Pace, Barbara G.; Jones, Linda Cronin
2009-01-01
Today, the use of web-based videos in science classrooms is becoming more and more commonplace. However, these videos are often fast-paced and information rich--science concepts can be fragmented and embedded within larger cultural issues. This article addresses the cognitive difficulties posed by many web-based science videos. Drawing on concepts…
Teaching Tectonics to Undergraduates with Web GIS
NASA Astrophysics Data System (ADS)
Anastasio, D. J.; Bodzin, A.; Sahagian, D. L.; Rutzmoser, S.
2013-12-01
Geospatial reasoning skills provide a means for manipulating, interpreting, and explaining structured information and are involved in higher-order cognitive processes that include problem solving and decision-making. Appropriately designed tools, technologies, and curriculum can support spatial learning. We present Web-based visualization and analysis tools developed with Javascript APIs to enhance tectonic curricula while promoting geospatial thinking and scientific inquiry. The Web GIS interface integrates graphics, multimedia, and animations that allow users to explore and discover geospatial patterns that are not easily recognized. Features include a swipe tool that enables users to see underneath layers, query tools useful in exploration of earthquake and volcano data sets, a subduction and elevation profile tool which facilitates visualization between map and cross-sectional views, drafting tools, a location function, and interactive image dragging functionality on the Web GIS. The Web GIS platform is independent and can be implemented on tablets or computers. The GIS tool set enables learners to view, manipulate, and analyze rich data sets from local to global scales, including such data as geology, population, heat flow, land cover, seismic hazards, fault zones, continental boundaries, and elevation using two- and three- dimensional visualization and analytical software. Coverages which allow users to explore plate boundaries and global heat flow processes aided learning in a Lehigh University Earth and environmental science Structural Geology and Tectonics class and are freely available on the Web.
Q.U.E.S.T. An Interactive Earth Science Study Tool: Connecting Real Students to Digital Libraries
NASA Astrophysics Data System (ADS)
Moore, A.; Danowski, D.; Brindisi, C.; Sandvol, C.; Seber, D.
2001-05-01
Quick Use Earth Study Tool (QUEST) is an experimental educational interface to the Cornell University's Geoscience Information System (http://atlas.geo.cornell.edu). The information system currently includes more than 100 geographic, geologic, and geophysical data sets along with World Wide Web based interactive mapping tools for data display and analysis. The system is GIS based and accessible via any web browser that support Java applets. QUEST is the companion module that has been developed to assist educators who wish to use these data to their fullest potential, providing tutorials, sample exercises, and suggested projects. Clearly, students learn best when they engage in the practice of science. One means to accomplish this is to have students access primary scientific data. Our experience suggests that a structured exploration of original data sets enhances student learning. For this reason we have selected a subset of Cornell's available geoscience data, and have designed a series of activities that allow students to explore dynamic Earth processes. Currently, these data include the ISC seismicity catalog, volcanism data from the Smithsonian Institution, and digital topography from the USGS and NOAA. The QUEST interface allows students to query the data sets based on a variety of criteria (e.g., earthquakes can be sorted by date, magnitude, depth, and location), or perform computations on data (e.g., sea level can be interactively mapped at any elevation on the DEM). Because the system is GIS-based, multiple data sets can be displayed simultaneously in order for users to examine the spatial relationships between geological features. Users can zoom in to regions of interest, and a map history window keeps track of student work so that comparisons are easily made. QUEST is accompanied by a Teacher's Manual to assist teachers in extracting the most information from the available data and tools. Through these efforts we hope to provide teachers and students with access to a wide variety of data applicable to problems in Earth science, along with the ability to easily display and analyze multiple data types--thus providing all users with access to state-of-the-art information.
a Map Mash-Up Application: Investigation the Temporal Effects of Climate Change on Salt Lake Basin
NASA Astrophysics Data System (ADS)
Kirtiloglu, O. S.; Orhan, O.; Ekercin, S.
2016-06-01
The main purpose of this paper is to investigate climate change effects that have been occurred at the beginning of the twenty-first century at the Konya Closed Basin (KCB) located in the semi-arid central Anatolian region of Turkey and particularly in Salt Lake region where many major wetlands located in and situated in KCB and to share the analysis results online in a Web Geographical Information System (GIS) environment. 71 Landsat 5-TM, 7-ETM+ and 8-OLI images and meteorological data obtained from 10 meteorological stations have been used at the scope of this work. 56 of Landsat images have been used for extraction of Salt Lake surface area through multi-temporal Landsat imagery collected from 2000 to 2014 in Salt lake basin. 15 of Landsat images have been used to make thematic maps of Normalised Difference Vegetation Index (NDVI) in KCB, and 10 meteorological stations data has been used to generate the Standardized Precipitation Index (SPI), which was used in drought studies. For the purpose of visualizing and sharing the results, a Web GIS-like environment has been established by using Google Maps and its useful data storage and manipulating product Fusion Tables which are all Google's free of charge Web service elements. The infrastructure of web application includes HTML5, CSS3, JavaScript, Google Maps API V3 and Google Fusion Tables API technologies. These technologies make it possible to make effective "Map Mash-Ups" involving an embedded Google Map in a Web page, storing the spatial or tabular data in Fusion Tables and add this data as a map layer on embedded map. The analysing process and map mash-up application have been discussed in detail as the main sections of this paper.
Macroscopic characterisations of Web accessibility
NASA Astrophysics Data System (ADS)
Lopes, Rui; Carriço, Luis
2010-12-01
The Web Science framework poses fundamental questions on the analysis of the Web, by focusing on how microscopic properties (e.g. at the level of a Web page or Web site) emerge into macroscopic properties and phenomena. One research topic on the analysis of the Web is Web accessibility evaluation, which centres on understanding how accessible a Web page is for people with disabilities. However, when framing Web accessibility evaluation on Web Science, we have found that existing research stays at the microscopic level. This article presents an experimental study on framing Web accessibility evaluation into Web Science's goals. This study resulted in novel accessibility properties of the Web not found at microscopic levels, as well as of Web accessibility evaluation processes themselves. We observed at large scale some of the empirical knowledge on how accessibility is perceived by designers and developers, such as the disparity of interpretations of accessibility evaluation tools warnings. We also found a direct relation between accessibility quality and Web page complexity. We provide a set of guidelines for designing Web pages, education on Web accessibility, as well as on the computational limits of large-scale Web accessibility evaluations.
OxfordGrid: a web interface for pairwise comparative map views.
Yang, Hongyu; Gingle, Alan R
2005-12-01
OxfordGrid is a web application and database schema for storing and interactively displaying genetic map data in a comparative, dot-plot, fashion. Its display is composed of a matrix of cells, each representing a pairwise comparison of mapped probe data for two linkage groups or chromosomes. These are arranged along the axes with one forming grid columns and the other grid rows with the degree and pattern of synteny/colinearity between the two linkage groups manifested in the cell's dot density and structure. A mouse click over the selected grid cell launches an image map-based display for the selected cell. Both individual and linear groups of mapped probes can be selected and displayed. Also, configurable links can be used to access other web resources for mapped probe information. OxfordGrid is implemented in C#/ASP.NET and the package, including MySQL schema creation scripts, is available at ftp://cggc.agtec.uga.edu/OxfordGrid/.
Ohio River backwater flood-inundation maps for the Saline and Wabash Rivers in southern Illinois
Murphy, Elizabeth A.; Sharpe, Jennifer B.; Soong, David T.
2012-01-01
Digital flood-inundation maps for the Saline and Wabash Rivers referenced to elevations on the Ohio River in southern Illinois were created by the U.S. Geological Survey (USGS). The inundation maps, accessible through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water levels (gage heights) at the USGS streamgage at Ohio River at Old Shawneetown, Illinois-Kentucky (station number 03381700). Current gage height and flow conditions at this USGS streamgage may be obtained on the Internet at http://waterdata.usgs.gov/usa/nwis/uv?03381700. In addition, this streamgage is incorporated into the Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/) by the National Weather Service (NWS). The NWS forecasts flood hydrographs at many places that are often co-located at USGS streamgages. That NWS forecasted peak-stage information, also shown on the Ohio River at Old Shawneetown inundation Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, eight water-surface elevations were mapped at 5-foot (ft) intervals referenced to the streamgage datum ranging from just above the NWS Action Stage (31 ft) to above the maximum historical gage height (66 ft). The elevations of the water surfaces were compared to a Digital Elevation Model (DEM) by using a Geographic Information System (GIS) in order to delineate the area flooded at each water level. These maps, along with information on the Internet regarding current gage heights from USGS streamgages and forecasted stream stages from the NWS, provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.
Mapping Japanese medical terms to UMLS Metathesaurus.
Onogi, Yuzo; Ohe, Kazuhiko; Tanaka, Masaaki; Nozoe, Atsutake; Sasaki, Tetsuro; Sato, Megumi; Kikuchi, Yuko; Shinohara, Tsuneki; Suzuki, Hiromichi; Kaihara, Shigekoto; Seyama, Yousuke
2004-01-01
This paper introduces and reports the results for a project to map Japanese medical terms to the UMLS Metathesaurus. The "Thesaurus for Medical and Health related Terms version 5" published in 2003 by the Japan Medical Abstracts Society and UMLS version 2002AC provided by NLM were used in this study. The goal was to judge the validity of the correlation between the Japanese and English terms that belong to the same MeSH concept. Fifteen medicine, nursing, and library science professionals, excluding JAMAS, used a custom designed Web interface to perform this task. About 10% of the concepts were judged as invalid, and the reasoning behind these failures were analyzed. Experience from this project can be used to estimate the manpower required to revise the Japanese thesaurus after future revisions to UMLS or MeSH.
Visualizing Mars data and imagery with Google Earth
NASA Astrophysics Data System (ADS)
Beyer, R. A.; Broxton, M.; Gorelick, N.; Hancher, M.; Lundy, M.; Kolb, E.; Moratto, Z.; Nefian, A.; Scharff, T.; Weiss-Malik, M.
2009-12-01
There is a vast store of planetary geospatial data that has been collected by NASA but is difficult to access and visualize. Virtual globes have revolutionized the way we visualize and understand the Earth, but other planetary bodies including Mars and the Moon can be visualized in similar ways. Extraterrestrial virtual globes are poised to revolutionize planetary science, bring an exciting new dimension to science education, and allow ordinary users to explore imagery being sent back to Earth by planetary science satellites. The original Google Mars Web site allowed users to view base maps of Mars via the Web, but it did not have the full features of the 3D Google Earth client. We have previously demonstrated the use of Google Earth to display Mars imagery, but now with the launch of Mars in Google Earth, there is a base set of Mars data available for anyone to work from and add to. There are a variety of global maps to choose from and display. The Terrain layer has the MOLA gridded data topography, and where available, HRSC terrain models are mosaicked into the topography. In some locations there is also meter-scale terrain derived from HiRISE stereo imagery. There is rich information in the form of the IAU nomenclature database, data for the rovers and landers on the surface, and a Spacecraft Imagery layer which contains the image outlines for all HiRISE, CTX, CRISM, HRSC, and MOC image data released to the PDS and links back to their science data. There are also features like the Traveler's Guide to Mars, Historic Maps, Guided Tours, as well as the 'Live from Mars' feature, which shows the orbital tracks of both the Mars Odyssey and Mars Reconnaissance Orbiter for a few days in the recent past. It shows where they have acquired imagery, and also some preview image data. These capabilities have obvious public outreach and education benefits, but the potential benefits of allowing planetary scientists to rapidly explore these large and varied data collections—in geological context and within a single user interface—are also becoming evident. Because anyone can produce additional KML content for use in Google Earth, scientists can customize the environment to their needs as well as publish their own processed data and results for others to use. Many scientists and organizations have begun to do this already, resulting in a useful and growing collection of planetary-science-oriented Google Earth layers.
ERIC Educational Resources Information Center
Carpi, Anthony
2001-01-01
Explains the advantages of using the World Wide Web as an educational tool and describes the Natural Science Pages project which is a teaching module involving Internet access and Web use and aiming to improve student achievement. (Contains 13 references.) (YDS)
Real-Time Lunar Prospector Data Visualization Using Web-Based Java
NASA Technical Reports Server (NTRS)
Deardorff, D. Glenn; Green, Bryan D.; Gerald-Yamasaki, Michael (Technical Monitor)
1998-01-01
The Lunar Prospector was co-developed by NASA Ames Research Center and Lockheed Martin, and was launched on January 6th, 1998. Its mission is to search for water ice and various elements in the Moon's surface, map its magnetic and gravity fields, and detect volcanic activity. For the first time, the World Wide Web is being used to graphically display near-real-time data from a planetary exploration mission to the global public. Science data from the craft's instruments, as well as engineering data for the spacecraft subsystems, are continuously displayed in time-varying XY plots. The craft's current location is displayed relative to the whole Moon, and as an off-craft observer would see in the reference frame of the craft, with the lunar terrain scrolling underneath. These features are implemented as Java applets. Analyzed data (element and mass distribution) is presented as 3D lunar maps using VRML and Javascript. During the development phase, implementations of the Java Virtual Machine were just beginning to mature enough to adequately accommodate our target featureset; incomplete and varying implementations were the biggest bottleneck to our ideal of ubiquitous browser access. Bottlenecks notwithstanding, the reaction from the Internet community was overwhelmingly enthusiastic.
ERIC Educational Resources Information Center
Hung, Yen-Chu
2011-01-01
This study investigates the different effects of web-based and face-to-face discussion on computer engineering majors' performance using the Karnaugh map in digital logic design. Pretest and posttest scores for two treatment groups (web-based discussion and face-to-face discussion) and a control group were compared and subjected to covariance…
Students using visual thinking to learn science in a Web-based environment
NASA Astrophysics Data System (ADS)
Plough, Jean Margaret
United States students' science test scores are low, especially in problem solving, and traditional science instruction could be improved. Consequently, visual thinking, constructing science structures, and problem solving in a web-based environment may be valuable strategies for improving science learning. This ethnographic study examined the science learning of fifteen fourth grade students in an after school computer club involving diverse students at an inner city school. The investigation was done from the perspective of the students, and it described the processes of visual thinking, web page construction, and problem solving in a web-based environment. The study utilized informal group interviews, field notes, Visual Learning Logs, and student web pages, and incorporated a Standards-Based Rubric which evaluated students' performance on eight science and technology standards. The Visual Learning Logs were drawings done on the computer to represent science concepts related to the Food Chain. Students used the internet to search for information on a plant or animal of their choice. Next, students used this internet information, with the information from their Visual Learning Logs, to make web pages on their plant or animal. Later, students linked their web pages to form Science Structures. Finally, students linked their Science Structures with the structures of other students, and used these linked structures as models for solving problems. Further, during informal group interviews, students answered questions about visual thinking, problem solving, and science concepts. The results of this study showed clearly that (1) making visual representations helped students understand science knowledge, (2) making links between web pages helped students construct Science Knowledge Structures, and (3) students themselves said that visual thinking helped them learn science. In addition, this study found that when using Visual Learning Logs, the main overall ideas of the science concepts were usually represented accurately. Further, looking for information on the internet may cause new problems in learning. Likewise, being absent, starting late, and/or dropping out all may negatively influence students' proficiency on the standards. Finally, the way Science Structures are constructed and linked may provide insights into the way individual students think and process information.
Online Exhibits & Concept Maps
NASA Astrophysics Data System (ADS)
Douma, M.
2009-12-01
Presenting the complexity of geosciences to the public via the Internet poses a number of challenges. For example, utilizing various - and sometimes redundant - Web 2.0 tools can quickly devour limited time. Do you tweet? Do you write press releases? Do you create an exhibit or concept map? The presentation will provide participants with a context for utilizing Web 2.0 tools by briefly highlighting methods of online scientific communication across several dimensions. It will address issues of: * breadth and depth (e.g. from narrow topics to well-rounded views), * presentation methods (e.g. from text to multimedia, from momentary to enduring), * sources and audiences (e.g. for experts or for the public, content developed by producers to that developed by users), * content display (e.g. from linear to non-linear, from instructive to entertaining), * barriers to entry (e.g. from an incumbent advantage to neophyte accessible, from amateur to professional), * cost and reach (e.g. from cheap to expensive), and * impact (e.g. the amount learned, from anonymity to brand awareness). Against this backdrop, the presentation will provide an overview of two methods of online information dissemination, exhibits and concept maps, using the WebExhibits online museum (www.webexhibits.org) and SpicyNodes information visualization tool (www.spicynodes.org) as examples, with tips on how geoscientists can use either to communicate their science. Richly interactive online exhibits can serve to engage a large audience, appeal to visitors with multiple learning styles, prompt exploration and discovery, and present a topic’s breadth and depth. WebExhibits, which was among the first online museums, delivers interactive information, virtual experiments, and hands-on activities to the public. While large, multidisciplinary exhibits on topics like “Color Vision and Art” or “Calendars Through the Ages” require teams of scholars, user interface experts, professional writers and editors, teachers, artists, and web designers, a smaller scale collaborative effort can result in an effective mini-exhibit. Online concept maps can present a large quantity of information in bite-size chunks, demonstrating interrelationships between pieces of information without inundating visitors. SpicyNodes uses radial mapping technology to enable visitors to learn about a topic or search for information in intuitive and organic ways. This online concept mapping tool can be used as a portal to invite exploration into topics, or as a means of displaying hierarchies of information. With nodes that contain text, audio, video, and links, interactive online concept maps especially engage visual, kinesthetic, and nonlinear learners. SpicyNodes is also useful for scientists who wish to complement papers, chapters, and books with an online interface that is especially appealing to nonlinear learners. Essentially, SpicyNodes shifts the burden of discovery from the reader to the author. For example, the author may create a nodemap on climate change with hundreds of nodes, but as visitors drill through the nodemap for information (e.g. from climate change to atmospheric gases to carbon dioxide), they see only a few nodes at a time and are not overwhelmed.
ERIC Educational Resources Information Center
Kumar, David Devraj; Dunn, Jessica
2018-01-01
Analysis of self-reflections of undergraduate education students in a project involving web-supported counterintuitive science demonstrations is reported in this paper. Participating students (N = 19) taught science with counterintuitive demonstrations in local elementary school classrooms and used web-based resources accessed via wireless USB…
NASA Astrophysics Data System (ADS)
Herrera, Francisco Javier, Jr.
This study set out to examine how a web-based tool embedded with vocabulary strategies, as part of the science curriculum in a third grade two-way immersion classroom, would aid students' academic vocabulary development. Fourteen students (seven boys, seven girls; ten of which were English learners) participated in this study. Students utilized web pages as part of their science curriculum on the topic of ecology. The study documented students' use of the web pages as a data-gathering tool on the topic of ecology during science instruction. Students were video and audio taped as they explored the web pages. Results indicated that through the use of the intervention web pages students significantly improved their knowledge of academic English target words.
Agricultural Census 2012: Publishing Mashable GIS Big Data Services
NASA Astrophysics Data System (ADS)
Mueller, R.
2014-12-01
The 2012 Agricultural Census was released by the US Department of Agriculture (USDA) on May 2nd 2014; published on a quinquennial basis covering all facets of American production agriculture. The Agricultural Census is a comprehensive source of uniform published agricultural data for every state and county in the US. This is the first Agricultural Census that is disseminated with web mapping services using REST APIs. USDA developed an open GIS mashable web portal that depicts over 250 maps on Crops and Plants, Economics, Farms, Livestock and Animals, and Operators. These mapping services written in JavaScript replace the traditional static maps published as the Ag Atlas. Web users can now visualize, interact, query, and download the Agricultural Census data in a means not previously discoverable. Stakeholders will now be able to leverage this data for activities such as community planning, agribusiness location suitability analytics, availability of loans/funds, service center locations and staffing, and farm programs and policies. Additional sites serving compatible mashable USDA Big Data web services are as follows: The Food Environment Atlas, The Atlas of Rural and Small-Town America, The Farm Program Atlas, SNAP Data System, CropScape, and VegScape. All portals use a similar data organization scheme of "Categories" and "Maps" providing interactive mashable web services for agricultural stakeholders to exploit.
Autonomy and Sensor Webs: The Evolution of Mission Operations
NASA Technical Reports Server (NTRS)
Sherwood, Rob
2008-01-01
Demonstration of these sensor web capabilities will enable fast responding science campaigns that combine spaceborne, airborne, and ground assets. Sensor webs will also require new operations paradigms. These sensor webs will be operated directly by scientists using science goals to control their instruments. We will explore these new operations architectures through a study of existing sensor web prototypes.
NASA Astrophysics Data System (ADS)
Karno, Donna; Glassman, Michael
2013-12-01
Science education has experienced significant changes since the mid-20th century, most recently with the creation of STEM curricula (DeBoer 1991; Yager 2000). The emergence of the World Wide Web as a tool in research and discovery offers Pre-K-12 science education an opportunity to share information and perspectives which engage students with the scientific community (Zoller 2011). Students are able to access open, transparent sites creating common resources pools and autonomous working groups which can be used for shared problem solving. Science teachers should carefully build web 2.0 technology into their practice based on a changing pedagogy. Instead of focusing on teaching rule-based concepts and processes in which the teacher's role is that of expert, education should be focusing on possibilities of the web both in scientific research and understanding. In addition, web-focused education can also help remake scientific product as a public good in the lives of both science researchers and science consumers.
Using Mobile App Development Tools to Build a GIS Application
NASA Astrophysics Data System (ADS)
Mital, A.; Catchen, M.; Mital, K.
2014-12-01
Our group designed and built working web, android, and IOS applications using different mapping libraries as bases on which to overlay fire data from NASA. The group originally planned to make app versions for Google Maps, Leaflet, and OpenLayers. However, because the Leaflet library did not properly load on Android, the group focused efforts on the other two mapping libraries. For Google Maps, the group first designed a UI for the web app and made a working version of the app. After updating the source of fire data to one which also provided historical fire data, the design had to be modified to include the extra data. After completing a working version of the web app, the group used webview in android, a built in resource which allowed porting the web app to android without rewriting the code for android. Upon completing this, the group found Apple IOS devices had a similar capability, and so decided to add an IOS app to the project using a function similar to webview. Alongside this effort, the group began implementing an OpenLayers fire map using a simpler UI. This web app was completed fairly quickly relative to Google Maps; however, it did not include functionality such as satellite imagery or searchable locations. The group finished the project with a working android version of the Google Maps based app supporting API levels 14-19 and an OpenLayers based app supporting API levels 8-19, as well as a Google Maps based IOS app supporting both old and new screen formats. This project was implemented by high school and college students under an SGT Inc. STEM internship program
Innovation and design of a web-based pain education interprofessional resource.
Lax, Leila; Watt-Watson, Judy; Lui, Michelle; Dubrowski, Adam; McGillion, Michael; Hunter, Judith; Maclennan, Cameron; Knickle, Kerry; Robb, Anja; Lapeyre, Jaime
2011-01-01
The present article describes educational innovation processes and design of a web-based pain interprofessional resource for prelicensure health science students in universities across Canada. Operationalization of educational theory in design coupled with formative evaluation of design are discussed, along with strategies that support collaborative innovation. Educational design was driven by content, theory and evaluation. Pain misbeliefs and teaching points along the continuum from acute to persistent pain were identified. Knowledge-building theory, situated learning, reflection and novel designs for cognitive scaffolding were then employed. Design research principles were incorporated to inform iterative and ongoing design. An authentic patient case was constructed, situated in interprofessional complex care to highlight learning objectives related to pre-operative, postoperative and treatment up to one year, for a surgical cancer patient. Pain mechanisms, assessment and management framed content creation. Knowledge building scaffolds were used, which included video simulations, embedded resources, concurrent feedback, practice-based reflective exercises and commentaries. Scaffolds were refined to specifically support knowledge translation. Illustrative commentaries were designed to explicate pain misbeliefs and best practices. Architecture of the resource was mapped; a multimedia, interactive prototype was created. This pain education resource was developed primarily for individual use, with extensions for interprofessional collective discourse. Translation of curricular content scripts into representation maps supported the collaborative design process by establishing a common visual language. The web-based prototype will be formatively and summatively evaluated to assess pedagogic design, knowledge-translation scaffolds, pain knowledge gains, relevance, feasibility and fidelity of this educational innovation.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-07
... use of a Web-based mapping tool, such as MapQuest, as part of documenting that the hospital meets the... only through the Internet on the CMS Web site at http://www.cms.hhs.gov/AcuteInpatientPPS/01_overview...)'' hospitals with claims in the March 2012 update of the FY 2011 MedPAR file, is also available on the CMS Web...
The Acquisition of Integrated Science Process Skills in a Web-Based Learning Environment
ERIC Educational Resources Information Center
Saat, Rohaida Mohd
2004-01-01
Web-based learning is becoming prevalent in science learning. Some use specially designed programs, while others use materials available on the Internet. This qualitative case study examined the process of acquisition of integrated science process skills, particularly the skill of controlling variables, in a web-based learning environment among…
Semantic Web-based Vocabulary Broker for Open Science
NASA Astrophysics Data System (ADS)
Ritschel, B.; Neher, G.; Iyemori, T.; Murayama, Y.; Kondo, Y.; Koyama, Y.; King, T. A.; Galkin, I. A.; Fung, S. F.; Wharton, S.; Cecconi, B.
2016-12-01
Keyword vocabularies are used to tag and to identify data of science data repositories. Such vocabularies consist of controlled terms and the appropriate concepts, such as GCMD1 keywords or the ESPAS2 keyword ontology. The Semantic Web-based mash-up of domain-specific, cross- or even trans-domain vocabularies provides unique capabilities in the network of appropriate data resources. Based on a collaboration between GFZ3, the FHP4, the WDC for Geomagnetism5 and the NICT6 we developed the concept of a vocabulary broker for inter- and trans-disciplinary data detection and integration. Our prototype of the Semantic Web-based vocabulary broker uses OSF7 for the mash-up of geo and space research vocabularies, such as GCMD keywords, ESPAS keyword ontology and SPASE8 keyword vocabulary. The vocabulary broker starts the search with "free" keywords or terms of a specific vocabulary scheme. The vocabulary broker almost automatically connects the different science data repositories which are tagged by terms of the aforementioned vocabularies. Therefore the mash-up of the SKOS9 based vocabularies with appropriate metadata from different domains can be realized by addressing LOD10 resources or virtual SPARQL11 endpoints which maps relational structures into the RDF format12. In order to demonstrate such a mash-up approach in real life, we installed and use a D2RQ13 server for the integration of IUGONET14 data which are managed by a relational database. The OSF based vocabulary broker and the D2RQ platform are installed at virtual LINUX machines at the Kyoto University. The vocabulary broker meets the standard of a main component of the WDS15 knowledge network. The Web address of the vocabulary broker is http://wdcosf.kugi.kyoto-u.ac.jp 1 Global Change Master Directory2 Near earth space data infrastructure for e-science3 German Research Centre for Geosciences4 University of Applied Sciences Potsdam5 World Data Center for Geomagnetism Kyoto6 National Institute of Information and Communications Technology Tokyo7 Open Semantic Framework8 Space Physics Archive Search and Extract9 Simple Knowledge Organization System10 Linked Open Data11 SPARQL Protocol And RDF Query12 Resource Description Framework13 Database to RDF Query14 Inter-university Upper atmosphere Global Observation NETwork15 World Data System
NASA Astrophysics Data System (ADS)
Davis, L.; Weatherley, J.; Bhushan, S.; Khan, H.; de La Chica, S.; Deardorff, R.
2004-12-01
An exciting pilot program took place this summer, pioneering the development of Digital Library for Earth System Education (DLESE) Teaching Boxes with the Univ. of CA. Berkeley Museum of Paleontology, SF State Univ., USGS and 7 middle/high school teachers from the San Francisco area. This session will share the DLESE Teaching Box concept, explain the pilot program, and explore the tremendous opportunities for expanding this notion to embrace interdisciplinary approaches to learning about the Earth in the undergraduate science and pre-service teaching arenas. A Teaching Box is a metaphor for an online assembly of interrelated learning concepts, digital resources, and cohesive narration that bridges the gap between discrete resources and understanding. Within a Teaching Box, an instructor or student can pick a topic and see the concepts that build an understanding of that topic, explore online resources that support learning of those concepts, and benefit from the narration (the glue) that weaves concepts, activities, and background information together into a complete teaching/learning story. In this session, we will demonstrate the emerging Teaching Box prototypes and explore how this platform may promote STEM learning by utilizing DLESE tools and services in ways that begin to blur traditional disciplinary boundaries, overcome limitations of discipline-specific vocabularies, and foster collaboration. We will show ways in which new DLESE Web Services could support learning in this highly contextualized environment. We will see glimpses of how learners and educators will be able to modify or create their own Teaching Boxes specific to a unit of study or course, and perhaps share them with the Earth Science Education community. We will see ways to stay abreast of current Earth events, emerging research, and real-time data and incorporate such dynamic information into one learning environment. Services will be described and demonstrated in the context of Teaching Boxes: - DLESE Web Services provide a programmatic interface that allows the Teaching Box (or any web page) to have the same DLESE search, bookmarking features, and data management that are found at the DLESE web site. - DLESE Smart Links are hyperlinks that can be created by anyone and implemented as easily as defining a specific query. Clicking a Smart Link displays a list of resources that corresponds to the specific query. We'll talk about how this service can help to bridge the gap between vocabularies and disciplines and the interesting possibilities it presents for contextualizing searches and building custom topical menus. - The Really Simple Syndication (RSS) service delivers online information immediately, and allows end-users to subscribe to receive regular news, events, and data on a given Teaching Box topic. This opens the door to event-based learning. - Strand Maps, developed by the AAAS, are diagrams of interconnected learning concepts across a range of science, technology, engineering, and mathematics disciplines. The University of Colorado and its project partners are developing the Strand Map Service (SMS) to provide an interactive interface to interrelated learning goals, content knowledge, (including student misconceptions) and educational resources in the National Science Digital Library and DLESE.
Valorisation of Como Historical Cadastral Maps Through Modern Web Geoservices
NASA Astrophysics Data System (ADS)
Brovelli, M. A.; Minghini, M.; Zamboni, G.
2012-07-01
Cartographic cultural heritage preserved in worldwide archives is often stored in the original paper version only, thus restricting both the chances of utilization and the range of possible users. The Web C.A.R.T.E. system addressed this issue with regard to the precious cadastral maps preserved at the State Archive of Como. Aim of the project was to improve the visibility and accessibility of this heritage using the latest free and open source tools for processing, cataloguing and web publishing the maps. The resulting architecture should therefore assist the State Archive of Como in managing its cartographic contents. After a pre-processing consisting of digitization and georeferencing steps, maps were provided with metadata, compiled according to the current Italian standards and managed through an ad hoc version of the GeoNetwork Opensource geocatalog software. A dedicated MapFish-based webGIS client, with an optimized version also for mobile platforms, was built for maps publication and 2D navigation. A module for 3D visualization of cadastral maps was finally developed using the NASA World Wind Virtual Globe. Thanks to a temporal slidebar, time was also included in the system producing a 4D Graphical User Interface. The overall architecture was totally built with free and open source software and allows a direct and intuitive consultation of historical maps. Besides the notable advantage of keeping original paper maps intact, the system greatly simplifies the work of the State Archive of Como common users and together widens the same range of users thanks to the modernization of map consultation tools.
The Knowledge of Web 2.0 by Library and Information Science Academics
ERIC Educational Resources Information Center
Al-Daihani, Sultan
2009-01-01
This research paper reports the results of a Web-based survey designed to explore the attitude of Library and Information Science (LIS) academics to Web 2.0. It investigates their familiarity with Web 2.0 concepts, tools and services and applications as these relate to LIS education, and the barriers to their use. A Web-based questionnaire was…
NASA Astrophysics Data System (ADS)
Nelson, J.; Ames, D. P.; Jones, N.; Tarboton, D. G.; Li, Z.; Qiao, X.; Crawley, S.
2016-12-01
As water resources data continue to move to the web in the form of well-defined, open access, machine readable web services provided by government, academic, and private institutions, there is increased opportunity to move additional parts of the water science workflow to the web (e.g. analysis, modeling, decision support, and collaboration.) Creating such web-based functionality can be extremely time-consuming and resource-intensive and can lead the erstwhile water scientist down a veritable cyberinfrastructure rabbit hole, through an unintended tunnel of transformation to become a Cyber-Wonderland software engineer. We posit that such transformations were never the intention of the research programs that fund earth science cyberinfrastructure, nor is it in the best interest of water researchers to spend exorbitant effort developing and deploying such technologies. This presentation will introduce a relatively simple and ready-to-use water science web app environment funded by the National Science Foundation that couples the new HydroShare data publishing system with the Tethys Platform web app development toolkit. The coupled system has already been shown to greatly lower the barrier to deploying of web based visualization and analysis tools for the CUAHSI Water Data Center and for the National Weather Service's National Water Model. The design and implementation of the developed web app architecture will be presented together key examples of existing apps created using this system. In each of the cases presented, water resources students with basic programming skills were able to develop and deploy highly functional web apps in a relatively short period of time (days to weeks) - allowing the focus to remain on water science rather on cyberinfrastructure. This presentation is accompanied by an open invitation for new collaborations that use the HydroShare-Tethys web app environment.
WikiPEATia - a web based platform for assembling peatland data through ‘crowd sourcing’
NASA Astrophysics Data System (ADS)
Wisser, D.; Glidden, S.; Fieseher, C.; Treat, C. C.; Routhier, M.; Frolking, S. E.
2009-12-01
The Earth System Science community is realizing that peatlands are an important and unique terrestrial ecosystem that has not yet been well-integrated into large-scale earth system analyses. A major hurdle is the lack of accessible, geospatial data of peatland distribution, coupled with data on peatland properties (e.g., vegetation composition, peat depth, basal dates, soil chemistry, peatland class) at the global scale. This data, however, is available at the local scale. Although a comprehensive global database on peatlands probably lags similar data on more economically important ecosystems such as forests, grasslands, croplands, a large amount of field data have been collected over the past several decades. A few efforts have been made to map peatlands at large scales but existing data have not been assembled into a single geospatial database that is publicly accessible or do not depict data with a level of detail that is needed in the Earth System Science Community. A global peatland database would contribute to advances in a number of research fields such as hydrology, vegetation and ecosystem modeling, permafrost modeling, and earth system modeling. We present a Web 2.0 approach that uses state-of-the-art webserver and innovative online mapping technologies and is designed to create such a global database through ‘crowd-sourcing’. Primary functions of the online system include form-driven textual user input of peatland research metadata, spatial data input of peatland areas via a mapping interface, database editing and querying editing capabilities, as well as advanced visualization and data analysis tools. WikiPEATia provides an integrated information technology platform for assembling, integrating, and posting peatland-related geospatial datasets facilitates and encourages research community involvement. A successful effort will make existing peatland data much more useful to the research community, and will help to identify significant data gaps.
NASA Astrophysics Data System (ADS)
Carbone, Gianluca; Cosentino, Giuseppe; Pennica, Francesco; Moscatelli, Massimiliano; Stigliano, Francesco
2017-04-01
After the strong earthquakes that hit central Italy in recent months, the Center for Seismic Microzonation and its applications (CentroMS) was commissioned by the Italian Department of Civil Protection to conduct the study of seismic microzonation of the territories affected by the earthquake of August 24, 2016. As part of the activities of microzonation, IGAG CNR has created WebEQ, a management tool of the data that have been acquired by all participants (i.e., more than twenty research institutes and university departments). The data collection was organized and divided into sub-areas, assigned to working groups with multidisciplinary expertise in geology, geophysics and engineering. WebEQ is a web-GIS System that helps all the subjects involved in the data collection activities, through tools aimed at data uploading and validation, and with a simple GIS interface to display, query and download geographic data. WebEQ is contributing to the creation of a large database containing geographical data, both vector and raster, from various sources and types: - Regional Technical Map em Geological and geomorphological maps em Data location maps em Maps of microzones homogeneous in seismic perspective and seismic microzonation maps em National strong motion network location. Data loading is done through simple input masks that ensure consistency with the database structure, avoiding possible errors and helping users to interact with the map through user-friendly tools. All the data are thematized through standardized symbologies and colors (Gruppo di lavoro MS 2008), in order to allow the easy interpretation by all users. The data download tools allow data exchange between working groups and the scientific community to benefit from the activities. The seismic microzonation activities are still ongoing. WebEQ is enabling easy management of large amounts of data and will form a basis for the development of tools for the management of the upcoming seismic emergencies.
Catch the A-Train from the NASA GIBS/Worldview Platform
NASA Astrophysics Data System (ADS)
Schmaltz, J. E.; Alarcon, C.; Baynes, K.; Boller, R. A.; Cechini, M. F.; De Cesare, C.; De Luca, A. P.; Gunnoe, T.; King, B. A.; King, J.; Pressley, N. N.; Roberts, J. T.; Rodriguez, J.; Thompson, C. K.; Wong, M. M.
2016-12-01
The satellites and instruments of the Afternoon Train are providing an unprecedented combination of nearly simultaneous measurements. One of the challenges for researchers and applications users is to sift through these combinations to find particular sets of data that correspond to their interests. Using visualization of the data is one way to explore these combinations. NASA's Worldview tool is designed to do just that - to interactively browse full-resolution satellite imagery. Worldview (https://worldview.earthdata.nasa.gov/) is web-based and developed using open libraries and standards (OpenLayers, JavaScript, CSS, HTML) for cross-platform compatibility. It addresses growing user demands for access to full-resolution imagery by providing a responsive, interactive interface with global coverage and no artificial boundaries. In addition to science data imagery, Worldview provides ancillary datasets such as coastlines and borders, socio-economic layers, and satellite orbit tracks. Worldview interacts with the Earthdata Search Client to provide download of the data files associated with the imagery being viewed. The imagery used by Worldview is provided NASA's Global Imagery Browse Services (GIBS - https://earthdata.nasa.gov/gibs) which provide highly responsive, highly scalable imagery services. Requests are made via the OGC Web Map Tile Service (WMTS) standard. In addition to Worldview, other clients can be developed using a variety of web-based libraries, desktop and mobile app libraries, and GDAL script-based access. GIBS currently includes more than 106 science data sets from seven instruments aboard three of the A-Train satellites and new data sets are being added as part of the President's Big Earth Data Initiative (BEDI). Efforts are underway to include new imagery types, such as vectors and curtains, into Worldview/GIBS which will be used to visualize additional A-Train science parameters.
NASA Astrophysics Data System (ADS)
Gray, A. J. G.; Gray, N.; Ounis, I.
2009-09-01
There are multiple vocabularies and thesauri within astronomy, of which the best known are the 1993 IAU Thesaurus and the keyword list maintained by A&A, ApJ and MNRAS. The IVOA has agreed on a standard for publishing vocabularies, based on the W3C skos standard, to allow greater automated interaction with them, in particular on the Web. This allows links with the Semantic Web and looks forward to richer applications using the technologies of that domain. Vocabulary-aware applications can benefit from improvements in both precision and recall when searching for bibliographic or science data, and lightweight intelligent filtering for services such as VOEvent streams. In this paper we present two applications, the Vocabulary Explorer and its companion the Mapping Editor, which have been developed to support the use of vocabularies in the Virtual Observatory. These combine Semantic Web and Information Retrieval technologies to illustrate the way in which formal vocabularies might be used in a practical application, provide an online service which will allow astronomers to explore and relate existing vocabularies, and provide a service which translates free text user queries into vocabulary terms.
Investigating Methods for Serving Visualizations of Vertical Profiles
NASA Astrophysics Data System (ADS)
Roberts, J. T.; Cechini, M. F.; Lanjewar, K.; Rodriguez, J.; Boller, R. A.; Baynes, K.
2017-12-01
Several geospatial web servers, web service standards, and mapping clients exist for the visualization of two-dimensional raster and vector-based Earth science data products. However, data products with a vertical component (i.e., vertical profiles) do not have the same mature set of technologies and pose a greater technical challenge when it comes to visualizations. There are a variety of tools and proposed standards, but no obvious solution that can handle the variety of visualizations found with vertical profiles. An effort is being led by members of the NASA Global Imagery Browse Services (GIBS) team to gather a list of technologies relevant to existing vertical profile data products and user stories. The goal is to find a subset of technologies, standards, and tools that can be used to build publicly accessible web services that can handle the greatest number of use cases for the widest audience possible. This presentation will describe results of the investigation and offer directions for moving forward with building a system that is capable of effectively and efficiently serving visualizations of vertical profiles.
Supporting Inquiry in Science Classrooms with the Web
ERIC Educational Resources Information Center
Simons, Krista; Clark, Doug
2005-01-01
This paper focuses on Web-based science inquiry and five representative science learning environments. The discussion centers around features that sustain science inquiry, namely, data-driven investigation, modeling, collaboration, and scaffolding. From the perspective of these features five science learning environments are detailed: Whyville,…
PUBLISHING SPILL IMPACT MAPS OVER THE WEB
This paper discusses the implementaiton of a web-based map publishing technology within a USEPA GIS laboratory. A sophisticated spill travel prediction model for the Ohio River has been installed within the GIS laboratory, and is used by personnel from the NRMRL. The spill simul...
Concept Mapping Your Web Searches: A Design Rationale and Web-Enabled Application
ERIC Educational Resources Information Center
Lee, Y.-J.
2004-01-01
Although it has become very common to use World Wide Web-based information in many educational settings, there has been little research on how to better search and organize Web-based information. This paper discusses the shortcomings of Web search engines and Web browsers as learning environments and describes an alternative Web search environment…
Reddy, Vinod; Swanson, Stanley M; Segelke, Brent; Kantardjieff, Katherine A; Sacchettini, James C; Rupp, Bernhard
2003-12-01
Anticipating a continuing increase in the number of structures solved by molecular replacement in high-throughput crystallography and drug-discovery programs, a user-friendly web service for automated molecular replacement, map improvement, bias removal and real-space correlation structure validation has been implemented. The service is based on an efficient bias-removal protocol, Shake&wARP, and implemented using EPMR and the CCP4 suite of programs, combined with various shell scripts and Fortran90 routines. The service returns improved maps, converted data files and real-space correlation and B-factor plots. User data are uploaded through a web interface and the CPU-intensive iteration cycles are executed on a low-cost Linux multi-CPU cluster using the Condor job-queuing package. Examples of map improvement at various resolutions are provided and include model completion and reconstruction of absent parts, sequence correction, and ligand validation in drug-target structures.
G2S: a web-service for annotating genomic variants on 3D protein structures.
Wang, Juexin; Sheridan, Robert; Sumer, S Onur; Schultz, Nikolaus; Xu, Dong; Gao, Jianjiong
2018-06-01
Accurately mapping and annotating genomic locations on 3D protein structures is a key step in structure-based analysis of genomic variants detected by recent large-scale sequencing efforts. There are several mapping resources currently available, but none of them provides a web API (Application Programming Interface) that supports programmatic access. We present G2S, a real-time web API that provides automated mapping of genomic variants on 3D protein structures. G2S can align genomic locations of variants, protein locations, or protein sequences to protein structures and retrieve the mapped residues from structures. G2S API uses REST-inspired design and it can be used by various clients such as web browsers, command terminals, programming languages and other bioinformatics tools for bringing 3D structures into genomic variant analysis. The webserver and source codes are freely available at https://g2s.genomenexus.org. g2s@genomenexus.org. Supplementary data are available at Bioinformatics online.
OneGeology-Europe: architecture, portal and web services to provide a European geological map
NASA Astrophysics Data System (ADS)
Tellez-Arenas, Agnès.; Serrano, Jean-Jacques; Tertre, François; Laxton, John
2010-05-01
OneGeology-Europe is a large ambitious project to make geological spatial data further known and accessible. The OneGeology-Europe project develops an integrated system of data to create and make accessible for the first time through the internet the geological map of the whole of Europe. The architecture implemented by the project is web services oriented, based on the OGC standards: the geological map is not a centralized database but is composed by several web services, each of them hosted by a European country involved in the project. Since geological data are elaborated differently from country to country, they are difficult to share. OneGeology-Europe, while providing more detailed and complete information, will foster even beyond the geological community an easier exchange of data within Europe and globally. This implies an important work regarding the harmonization of the data, both model and the content. OneGeology-Europe is characterised by the high technological capacity of the EU Member States, and has the final goal to achieve the harmonisation of European geological survey data according to common standards. As a direct consequence Europe will make a further step in terms of innovation and information dissemination, continuing to play a world leading role in the development of geosciences information. The scope of the common harmonized data model was defined primarily by the requirements of the geological map of Europe, but in addition users were consulted and the requirements of both INSPIRE and ‘high-resolution' geological maps were considered. The data model is based on GeoSciML, developed since 2006 by a group of Geological Surveys. The data providers involved in the project implemented a new component that allows the web services to deliver the geological map expressed into GeoSciML. In order to capture the information describing the geological units of the map of Europe the scope of the data model needs to include lithology; age; genesis and metamorphic character. For high resolution maps physical properties, bedding characteristics and weathering also need to be added. Furthermore, Geological data held by national geological surveys is generally described in national language of the country. The project has to deal with the multilingual issue, an important requirement of the INSPIRE directive. The project provides a list of harmonized vocabularies, a set of web services to deal with them, and a web site for helping the geoscientists while mapping the terms used into the national datasets into these vocabularies. The web services provided by each data provider, with the particular component that allows them to deliver the harmonised data model and to handle the multilingualism, are the first part of the architecture. The project also implements a web portal that provides several functionalities. Thanks to the common data model implemented by each web service delivering a part of the geological map, and using OGC SLD standards, the client offers the following option. A user can request for a sub-selection of the map, for instance searching on a particular attribute such as "age is quaternary", and display only the parts of the map according to the filter. Using the web services on the common vocabularies, the data displayed are translated. The project started September 2008 for two years, with 29 partners from 20 countries (20 partners are Geological Surveys). The budget is 3.25 M€, with a European Commission contribution of 2.6 M€. The paper will describe the technical solutions to implement OneGeology-Europe components: the profile of the common data model to exchange geological data, the web services to view and access geological data; and a geoportal to provide the user with a user-friendly way to discover, view and access geological data.
EAARL Topography-Padre Island National Seashore
Brock, John C.; Wright, C. Wayne; Nayegandhi, Amar; Patterson, Matt; Wilson, Iris; Travers, Laurinda J.
2007-01-01
This Web site contains 116 Lidar-derived bare earth topography maps and GIS files for Padre Island National Seashore-Texas. These Lidar-derived topography maps were produced as a collaborative effort between the U.S. Geological Survey (USGS) Florida Integrated Science Center (FISC) St. Petersburg, Florida, the National Park Service (NPS) Gulf Coast Network, Inventory and Monitoring Program, and the National Aeronautics and Space Administration (NASA) Wallops Flight Facility. One objective of this research is to create techniques to survey coral reefs and barrier islands for the purposes of geomorphic change studies, habitat mapping, ecological monitoring, change detection, and event assessment. As part of this project, data from an innovative instrument under development at the NASA Wallops Flight Facility, the NASA Experimental Airborne Advanced Research Lidar (EAARL) are being used. This sensor has the potential to make significant contributions in this realm for measuring subaerial and submarine topography wthin cross-environment surveys. High spectral resolution, water-column correction, and low costs were found to be key factors in providing accurate and affordable imagery to costal resource managers.
The landsat image mosaic of the Antarctica Web Portal
Rusanowski, C.J.
2007-01-01
People believe what they can see. The Poles exist as a frozen dream to most people. The International Polar Year wants to break the ice (so to speak), open up the Poles to the general public, support current polar research, and encourage new research projects. The IPY officially begins in March, 2007. As part of this effort, the U.S. Geological Survey (USGS) and the British Antarctic Survey (BAS), with funding from the National Science Foundation (NSF), are developing three Landsat mosaics of Antarctica and an Antarctic Web Portal with a Community site and an online map viewer. When scientists are able to view the entire scope of polar research, they will be better able to collaborate and locate the resources they need. When the general public more readily sees what is happening in the polar environments, they will understand how changes to the polar areas affect everyone.
Learning about the Human Genome. Part 2: Resources for Science Educators. ERIC Digest.
ERIC Educational Resources Information Center
Haury, David L.
This ERIC Digest identifies how the human genome project fits into the "National Science Education Standards" and lists Human Genome Project Web sites found on the World Wide Web. It is a resource companion to "Learning about the Human Genome. Part 1: Challenge to Science Educators" (Haury 2001). The Web resources and…
ERIC Educational Resources Information Center
Young, Shelley Shwu-Ching; Huang, Yi-Long; Jang, Jyh-Shing Roger
2000-01-01
Describes the development and implementation process of a Web-based science museum in Taiwan. Topics include use of the Internet; lifelong distance learning; museums and the Internet; objectives of the science museum; funding; categories of exhibitions; analysis of Web users; homepage characteristics; graphics and the effect on speed; and future…
NASA Astrophysics Data System (ADS)
2004-01-01
BOOK REVIEWS (99) Complete A-Z Physics Handbook Science Magic in the Kitchen The Science of Cooking Science Experiments You Can Eat WEB WATCH (101) These journal themes are pasta joke Microwave oven Web links CD REVIEW (104) Electricity and Magnetism, KS3 Big Science Comics
Telling Stories about the Changing Landscape: One Center's Evolution
NASA Astrophysics Data System (ADS)
Arnold, C. L., Jr.; Wilson, E. H.; Chadwick, C.; Dickson, D.
2016-12-01
Since its inception, the Center for Land Use Education and Research (CLEAR) at the University of Connecticut has had a strong applied research and public outreach focus. As a center that focuses on topics that virtually all have a geographic component, the intersection of Web and mapping technologies over the past decade has been an invaluable tool for communicating information. The primary target audience of this information is land use decision makers, who in New England are almost exclusively at the local (municipal) level and are often unpaid volunteers with little or no science background. Data-driven science communication focusing on this very worthy - and very needy - sector of the populace poses problems different from communicating with academic peers at one end of the spectrum, or the general public on the other end. The information must be understandable and accessible to non-technical users, yet specific and authoritative enough to inform decisions. CLEAR's approach to reaching this audience has evolved over the years in response to new internet and GIS technologies on the one hand, and internal deliberations on the other. A critical point was the 2004 public debut of the Center's Changing Landscape project, comprised of complex remotely-sensed land cover data: CLEAR principals decided to make the data publicly available via the Center website, but also to design a website to make the information accessible in as many ways, and for as many different audiences, as possible. This approach has had considerable success, as evidenced in the widespread use of the land cover information by communities, NGOs, federal and state agencies, and academia. Over the past several years, CLEAR has embraced the ESRI story map as a technological tool that embodies the Center's goal of "democratization" of science-based information through multifaceted accessibility. CLEAR's Story Map Gallery currently has six maps, covering a wide range of topics including the Changing Landscape project, black bear behavior and distribution, historical coastline changes, and social science research on the adoption of green infrastructure practices. More will be coming as both the story map format and the Center's projects grow and evolve.
Web Map Services (WMS) Global Mosaic
NASA Technical Reports Server (NTRS)
Percivall, George; Plesea, Lucian
2003-01-01
The WMS Global Mosaic provides access to imagery of the global landmass using an open standard for web mapping. The seamless image is a mosaic of Landsat 7 scenes; geographically-accurate with 30 and 15 meter resolutions. By using the OpenGIS Web Map Service (WMS) interface, any organization can use the global mosaic as a layer in their geospatial applications. Based on a trade study, an implementation approach was chosen that extends a previously developed WMS hosting a Landsat 5 CONUS mosaic developed by JPL. The WMS Global Mosaic supports the NASA Geospatial Interoperability Office goal of providing an integrated digital representation of the Earth, widely accessible for humanity's critical decisions.
NASA Astrophysics Data System (ADS)
Hu, H.; Ge, Y. J.
2013-11-01
With the social networking and network socialisation have brought more text information and social relationships into our daily lives, the question of whether big data can be fully used to study the phenomenon and discipline of natural sciences has prompted many specialists and scholars to innovate their research. Though politics were integrally involved in the hyperlinked word issues since 1990s, automatic assembly of different geospatial web and distributed geospatial information systems utilizing service chaining have explored and built recently, the information collection and data visualisation of geo-events have always faced the bottleneck of traditional manual analysis because of the sensibility, complexity, relativity, timeliness and unexpected characteristics of political events. Based on the framework of Heritrix and the analysis of web-based text, word frequency, sentiment tendency and dissemination path of the Huangyan Island incident is studied here by combining web crawler technology and the text analysis method. The results indicate that tag cloud, frequency map, attitudes pie, individual mention ratios and dissemination flow graph based on the data collection and processing not only highlight the subject and theme vocabularies of related topics but also certain issues and problems behind it. Being able to express the time-space relationship of text information and to disseminate the information regarding geo-events, the text analysis of network information based on focused web crawler technology can be a tool for understanding the formation and diffusion of web-based public opinions in political events.
Official crime data versus collaborative crime mapping at a Brazilian city
NASA Astrophysics Data System (ADS)
Brito, P. L.; Jesus, E. G. V.; Sant'Ana, R. M. S.; Martins, C.; Delgado, J. P. M.; Fernandes, V. O.
2014-11-01
In July of 2013 a group of undergraduate students from the Federal University of Bahia, Brazil, published a collaborative web map called "Where I Was Robbed". Their initial efforts in publicizing their web map were restricted to announce it at a local radio as a tool of social interest. In two months the map had almost 10.000 reports, 155 reports per day and people from more the 350 cities had already reported a crime. The present study consists in an investigation about this collaborative web map spatial correlation to official robbery data registered at the Secretary of Public Safety database, for the city of Salvador, Bahia. Kernel density estimator combined with map algebra was used to the investigation. Spatial correlations with official robbery data for the city of Salvador were not found initially, but after standardizing collaborative data and mining official registers, both data pointed at very similar areas as the main hot spots for pedestrian robbery. Both areas are located at two of the most economical active areas of the city, although web map crimes reports were more concentrated in an area with higher income population. This results and discussions indicates that this collaborative application is been used mainly by mid class and upper class parcel of the city population, but can still provide significant information on public safety priority areas. Therefore, extended divulgation, on local papers, radio and TV, of the collaborative crime map application and partnership with official agencies are strongly recommended.
Dorel, Mathurin; Viara, Eric; Barillot, Emmanuel; Zinovyev, Andrei; Kuperstein, Inna
2017-01-01
Human diseases such as cancer are routinely characterized by high-throughput molecular technologies, and multi-level omics data are accumulated in public databases at increasing rate. Retrieval and visualization of these data in the context of molecular network maps can provide insights into the pattern of regulation of molecular functions reflected by an omics profile. In order to make this task easy, we developed NaviCom, a Python package and web platform for visualization of multi-level omics data on top of biological network maps. NaviCom is bridging the gap between cBioPortal, the most used resource of large-scale cancer omics data and NaviCell, a data visualization web service that contains several molecular network map collections. NaviCom proposes several standardized modes of data display on top of molecular network maps, allowing addressing specific biological questions. We illustrate how users can easily create interactive network-based cancer molecular portraits via NaviCom web interface using the maps of Atlas of Cancer Signalling Network (ACSN) and other maps. Analysis of these molecular portraits can help in formulating a scientific hypothesis on the molecular mechanisms deregulated in the studied disease. NaviCom is available at https://navicom.curie.fr. © The Author(s) 2017. Published by Oxford University Press.
Gálvez, Carmen
2016-12-01
Identifying research lines is essential to understand the knowledge structure of a scientific domain. The aim of this study was to identify the main research topics of within the domain of public health, in the Revista Española de Saslud Pública during 2006-2015. Original articles included in the Social Sciences Citation Index (SSCI) database, available online through the Web of Science (WoS), were selected. The analysis units used were the keywords, KeyWords Plus (KW+), extracted automatically by SSCI. With KW+ obtained bibliometric, maps were created using a methodology based on the combination of co-word analysis, co-word analysis, clustering techniques and visualization techniques. We analyzed 512 documents, of which 176 KW+ were obtained with a frequency greater than or equal to 3. The results were bidimensional bibliometric maps with thematic groupings of KW+, representing the main research fronts: i) epidemiology, risk control programs disease and, in general, service organization and health policies; ii) infectious diseases, principally HIV; iii) a progressive increase in several lines interrelated with cardiovascular diseases (CVD); iv) a line multidimensional dedicated to different aspects associated to the quality of life related to health (HRQoL); and v) an emerging line linked to binge drinking. For the multidisciplinary and multidimensional nature of public health, the construction of bibliometric maps is an appropriate methodology to understand the knowledge structure of this scientific domain.
Croatian Medical Journal citation score in Web of Science, Scopus, and Google Scholar.
Sember, Marijan; Utrobicić, Ana; Petrak, Jelka
2010-04-01
To analyze the 2007 citation count of articles published by the Croatian Medical Journal in 2005-2006 based on data from the Web of Science, Scopus, and Google Scholar. Web of Science and Scopus were searched for the articles published in 2005-2006. As all articles returned by Scopus were included in Web of Science, the latter list was the sample for further analysis. Total citation counts for each article on the list were retrieved from Web of Science, Scopus, and Google Scholar. The overlap and unique citations were compared and analyzed. Proportions were compared using chi(2)-test. Google Scholar returned the greatest proportion of articles with citations (45%), followed by Scopus (42%), and Web of Science (38%). Almost a half (49%) of articles had no citations and 11% had an equal number of identical citations in all 3 databases. The greatest overlap was found between Web of Science and Scopus (54%), followed by Scopus and Google Scholar (51%), and Web of Science and Google Scholar (44%). The greatest number of unique citations was found by Google Scholar (n=86). The majority of these citations (64%) came from journals, followed by books and PhD theses. Approximately 55% of all citing documents were full-text resources in open access. The language of citing documents was mostly English, but as many as 25 citing documents (29%) were in Chinese. Google Scholar shares a total of 42% citations returned by two others, more influential, bibliographic resources. The list of unique citations in Google Scholar is predominantly journal based, but these journals are mainly of local character. Citations received by internationally recognized medical journals are crucial for increasing the visibility of small medical journals but Google Scholar may serve as an alternative bibliometric tool for an orientational citation insight.
NASA Astrophysics Data System (ADS)
Tarr, A.; Benz, H.; Earle, P.; Wald, D. J.
2003-12-01
Earthquake Summary Posters (ESP's), a new product of the U.S. Geological Survey's Earthquake Program, are produced at the National Earthquake Information Center (NEIC) in Golden. The posters consist of rapidly-generated, GIS-based maps made following significant earthquakes worldwide (typically M>7.0, or events of significant media/public interest). ESP's consolidate, in an attractive map format, a large-scale epicentral map, several auxiliary regional overviews (showing tectonic and geographical setting, seismic history, seismic hazard, and earthquake effects), depth sections (as appropriate), a table of regional earthquakes, and a summary of the reional seismic history and tectonics. The immediate availability of the latter text summaries has been facilitated by the availability of Rapid, Accurate Tectonic Summaries (RATS) produced at NEIC and posted on the web following significant events. The rapid production of ESP's has been facilitated by generating, during the past two years, regional templates for tectonic areas around the world by organizing the necessary spatially-referenced data for the map base and the thematic layers that overlay the base. These GIS databases enable scripted Arc Macro Language (AML) production of routine elements of the maps (for example background seismicity, tectonic features, and probabilistic hazard maps). However, other elements of the maps are earthquake-specific and are produced manually to reflect new data, earthquake effects, and special characteristics. By the end of this year, approximately 85% of the Earth's seismic zones will be covered for generating future ESP's. During the past year, 13 posters were completed, comparable to the yearly average expected for significant earthquakes. Each year, all ESPs will be published on a CD in PDF format as an Open-File Report. In addition, each is linked to the special event earthquake pages on the USGS Earthquake Program web site (http://earthquake.usgs.gov). Although three formats are generated, the poster-size format is the most popular for display, outreach, and use as a working map for project scientists (JPEG format for web; PDF for download, editing, and printing) whereas the other (smaller) formats are suitable for briefing packages. We will soon make both GIS and PDF files of individual elements of the posters available online. ESP's provide an unprecedented opportunity for college earth-science faculty to take advantage of current events for timely lessons in global tectonics. They are also invaluable to communicate with the media and with government officials. ESP's will be used as a vehicle to present other products now under development under the auspices of NEIC and the ANSS, including rapid finite-fault models, global predictive ShakeMaps, "Did You Feel It?", and Rapid Assessments of Global Earthquakes (RAGE, Earle and others, this meeting).
Towards Web-based representation and processing of health information
Gao, Sheng; Mioc, Darka; Yi, Xiaolun; Anton, Francois; Oldfield, Eddie; Coleman, David J
2009-01-01
Background There is great concern within health surveillance, on how to grapple with environmental degradation, rapid urbanization, population mobility and growth. The Internet has emerged as an efficient way to share health information, enabling users to access and understand data at their fingertips. Increasingly complex problems in the health field require increasingly sophisticated computer software, distributed computing power, and standardized data sharing. To address this need, Web-based mapping is now emerging as an important tool to enable health practitioners, policy makers, and the public to understand spatial health risks, population health trends and vulnerabilities. Today several web-based health applications generate dynamic maps; however, for people to fully interpret the maps they need data source description and the method used in the data analysis or statistical modeling. For the representation of health information through Web-mapping applications, there still lacks a standard format to accommodate all fixed (such as location) and variable (such as age, gender, health outcome, etc) indicators in the representation of health information. Furthermore, net-centric computing has not been adequately applied to support flexible health data processing and mapping online. Results The authors of this study designed a HEalth Representation XML (HERXML) schema that consists of the semantic (e.g., health activity description, the data sources description, the statistical methodology used for analysis), geometric, and cartographical representations of health data. A case study has been carried on the development of web application and services within the Canadian Geospatial Data Infrastructure (CGDI) framework for community health programs of the New Brunswick Lung Association. This study facilitated the online processing, mapping and sharing of health information, with the use of HERXML and Open Geospatial Consortium (OGC) services. It brought a new solution in better health data representation and initial exploration of the Web-based processing of health information. Conclusion The designed HERXML has been proven to be an appropriate solution in supporting the Web representation of health information. It can be used by health practitioners, policy makers, and the public in disease etiology, health planning, health resource management, health promotion and health education. The utilization of Web-based processing services in this study provides a flexible way for users to select and use certain processing functions for health data processing and mapping via the Web. This research provides easy access to geospatial and health data in understanding the trends of diseases, and promotes the growth and enrichment of the CGDI in the public health sector. PMID:19159445
Caching strategies for improving performance of web-based Geographic applications
NASA Astrophysics Data System (ADS)
Liu, M.; Brodzik, M.; Collins, J. A.; Lewis, S.; Oldenburg, J.
2012-12-01
The NASA Operation IceBridge mission collects airborne remote sensing measurements to bridge the gap between NASA's Ice, Cloud and Land Elevation Satellite (ICESat) mission and the upcoming ICESat-2 mission. The IceBridge Data Portal from the National Snow and Ice Data Center provides an intuitive web interface for accessing IceBridge mission observations and measurements. Scientists and users usually do not have knowledge about the individual campaigns but are interested in data collected in a specific place. We have developed a high-performance map interface to allow users to quickly zoom to an area of interest and see any Operation IceBridge overflights. The map interface consists of two layers: the user can pan and zoom on the base map layer; the flight line layer that overlays the base layer provides all the campaign missions that intersect with the current map view. The user can click on the flight campaigns and download the data as needed. The OpenGIS® Web Map Service Interface Standard (WMS) provides a simple HTTP interface for requesting geo-registered map images from one or more distributed geospatial databases. Web Feature Service (WFS) provides an interface allowing requests for geographical features across the web using platform-independent calls. OpenLayers provides vector support (points, polylines and polygons) to build a WMS/WFS client for displaying both layers on the screen. Map Server, an open source development environment for building spatially enabled internet applications, is serving the WMS and WFS spatial data to OpenLayers. Early releases of the portal displayed unacceptably poor load time performance for flight lines and the base map tiles. This issue was caused by long response times from the map server in generating all map tiles and flight line vectors. We resolved the issue by implementing various caching strategies on top of the WMS and WFS services, including the use of Squid (www.squid-cache.org) to cache frequently-used content. Our presentation includes the architectural design of the application, and how we use OpenLayers, WMS and WFS with Squid to build a responsive web application capable of efficiently displaying geospatial data to allow the user to quickly interact with the displayed information. We describe the design, implementation and performance improvement of our caching strategies, and the tools and techniques developed to assist our data caching strategies.
USA National Phenology Network gridded products documentation
Crimmins, Theresa M.; Marsh, R. Lee; Switzer, Jeff R.; Crimmins, Michael A.; Gerst, Katharine L.; Rosemartin, Alyssa H.; Weltzin, Jake F.
2017-02-23
The goals of the USA National Phenology Network (USA-NPN, www.usanpn.org) are to advance science, inform decisions, and communicate and connect with the public regarding phenology and species’ responses to environmental variation and climate change. The USA-NPN seeks to facilitate informed ecosystem stewardship and management by providing phenological information freely and openly. One way the USA-NPN is endeavoring to accomplish these goals is by providing data and data products in a wide range of formats, including gridded real-time, short-term forecasted, and historical maps of phenological events, patterns and trends. This document describes the suite of gridded phenologically relevant data products produced and provided by the USA National Phenology Network, which can be accessed at www.usanpn.org/data/phenology_maps and also through web services at geoserver.usanpn.org/geoserver/wms?request=GetCapabilities.
The World Wide Web Has Arrived--Science Educators Must All Get Aboard It.
ERIC Educational Resources Information Center
Didion, Catherine Jay
1997-01-01
Discusses the importance of science educators becoming familiar with electronic resources. Highlights the publication Science Teaching Reconsidered: A Handbook, which is designed to help undergraduate science educators. Addresses gender concerns regarding the use of educational resources. Lists science education and career resources on the web.…
NASA Astrophysics Data System (ADS)
Robinson, E.; Meyer, C. B.; Benedict, K. K.
2013-12-01
A critical part of effective Earth science data and information system interoperability involves collaboration across geographically and temporally distributed communities. The Federation of Earth Science Information Partners (ESIP) is a broad-based, distributed community of science, data and information technology practitioners from across science domains, economic sectors and the data lifecycle. ESIP's open, participatory structure provides a melting pot for coordinating around common areas of interest, experimenting on innovative ideas and capturing and finding best practices and lessons learned from across the network. Since much of ESIP's work is distributed, the Foundation for Earth Science was established as a non-profit home for its supportive collaboration infrastructure. The infrastructure leverages the Internet and recent advances in collaboration web services. ESIP provides neutral space for self-governed groups to emerge around common Earth science data and information issues, ebbing and flowing as the need for them arises. As a group emerges, the Foundation quickly equips the virtual workgroup with a set of ';commodity services'. These services include: web meeting technology (Webex), a wiki and an email listserv. WebEx allows the group to work synchronously, dynamically viewing and discussing shared information in real time. The wiki is the group's primary workspace and over time creates organizational memory. The listserv provides an inclusive way to email the group and archive all messages for future reference. These three services lower the startup barrier for collaboration and enable automatic content preservation to allow for future work. While many of ESIP's consensus-building activities are discussion-based, the Foundation supports an ESIP testbed environment for exploring and evaluating prototype standards, services, protocols, and best practices. After community review of testbed proposals, the Foundation provides small seed funding and a toolbox of collaborative development resources including Amazon Web Services to quickly spin-up the testbed instance and a GitHub account for maintaining testbed project code enabling reuse. Recently, the Foundation supported development of the ESIP Commons (http://commons.esipfed.org), a Drupal-based knowledge repository for non-traditional publications to preserve community products and outcomes like white papers, posters and proceedings. The ESIP Commons adds additional structured metadata, provides attribution to contributors and allows those unfamiliar with ESIP a straightforward way to find information. The success of ESIP Federation activities is difficult to measure. The ESIP Commons is a step toward quantifying sponsor return on investment and is one dataset used in network map analysis of the ESIP community network, another success metric. Over the last 15 years, ESIP has continually grown and attracted experts in the Earth science data and informatics field becoming a primary locus of research and development on the application and evolution of Earth science data standards and conventions. As funding agencies push toward a more collaborative approach, the lessons learned from ESIP and the collaboration services themselves are a crucial component of supporting science research.
Using Web Logs in the Science Classroom
ERIC Educational Resources Information Center
Duplichan, Staycle C.
2009-01-01
As educators we must ask ourselves if we are meeting the needs of today's students. The science world is adapting to our ever-changing society; are the methodology and philosophy of our educational system keeping up? In this article, you'll learn why web logs (also called blogs) are an important Web 2.0 tool in your science classroom and how they…
The Adversarial Route Analysis Tool: A Web Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casson, William H. Jr.
2012-08-02
The Adversarial Route Analysis Tool is a type of Google maps for adversaries. It's a web-based Geospatial application similar to Google Maps. It helps the U.S. government plan operations that predict where an adversary might be. It's easily accessible and maintainble and it's simple to use without much training.
Effects of Web-Based Support for the Construction of Competence Maps
ERIC Educational Resources Information Center
Stoof, Angela; Martens, Rob L.; van Merrienboer, Jeroen J. G.
2006-01-01
Educationalists experience difficulties with the construction of competence maps that describe final attainment levels of educational programs. Web-based support was developed with three supportive aids: A construction kit, a phenomenarium, and an information bank. Each supportive aid was expected to improve perceived process and product quality…
NASA Astrophysics Data System (ADS)
Albrecht, Florian; Weinke, Elisabeth; Eisank, Clemens; Vecchiotti, Filippo; Hölbling, Daniel; Friedl, Barbara; Kociu, Arben
2017-04-01
Regional authorities and infrastructure maintainers in almost all mountainous regions of the Earth need detailed and up-to-date landslide inventories for hazard and risk management. Landslide inventories usually are compiled through ground surveys and manual image interpretation following landslide triggering events. We developed a web service that uses Earth Observation (EO) data to support the mapping and monitoring tasks for improving the collection of landslide information. The planned validation of the EO-based web service does not only cover the analysis of the achievable landslide information quality but also the usability and user friendliness of the user interface. The underlying validation criteria are based on the user requirements and the defined tasks and aims in the work description of the FFG project Land@Slide (EO-based landslide mapping: from methodological developments to automated web-based information delivery). The service will be validated in collaboration with stakeholders, decision makers and experts. Users are requested to test the web service functionality and give feedback with a web-based questionnaire by following the subsequently described workflow. The users will operate the web-service via the responsive user interface and can extract landslide information from EO data. They compare it to reference data for quality assessment, for monitoring changes and for assessing landslide-affected infrastructure. An overview page lets the user explore a list of example projects with resulting landslide maps and mapping workflow descriptions. The example projects include mapped landslides in several test areas in Austria and Northern Italy. Landslides were extracted from high resolution (HR) and very high resolution (VHR) satellite imagery, such as Landsat, Sentinel-2, SPOT-5, WorldView-2/3 or Pléiades. The user can create his/her own project by selecting available satellite imagery or by uploading new data. Subsequently, a new landslide extraction workflow can be initiated through the functionality that the web service provides: (1) a segmentation of the image into spectrally homogeneous objects, (2) a classification of the objects into landslide and non-landslide areas and (3) an editing tool for the manual refinement of extracted landslide boundaries. In addition, the user interface of the web service provides tools that enable the user (4) to perform a monitoring that identifies changes between landslide maps of different points in time, (5) to perform a validation of the landslide maps by comparing them to reference data, and (6) to perform an assessment of affected infrastructure by comparing the landslide maps to respective infrastructure data. After exploring the web service functionality, the users are asked to fill in the online validation protocol in form of a questionnaire in order to provide their feedback. Concerning usability, we evaluate how intuitive the web service functionality can be operated, how well the integrated help information guides the users, and what kind of background information, e.g. remote sensing concepts and theory, is necessary for a practitioner to fully exploit the value of EO data. The feedback will be used for improving the user interface and for the implementation of additional functionality.
Discovery in a World of Mashups
NASA Astrophysics Data System (ADS)
King, T. A.; Ritschel, B.; Hourcle, J. A.; Moon, I. S.
2014-12-01
When the first digital information was stored electronically, discovery of what existed was through file names and the organization of the file system. With the advent of networks, digital information was shared on a wider scale, but discovery remained based on file and folder names. With a growing number of information sources, named based discovery quickly became ineffective. The keyword based search engine was one of the first types of a mashup in the world of Web 1.0. Embedded links from one document to another with prescribed relationships between files and the world of Web 2.0 was formed. Search engines like Google used the links to improve search results and a worldwide mashup was formed. While a vast improvement, the need for semantic (meaning rich) discovery was clear, especially for the discovery of scientific data. In response, every science discipline defined schemas to describe their type of data. Some core schemas where shared, but most schemas are custom tailored even though they share many common concepts. As with the networking of information sources, science increasingly relies on data from multiple disciplines. So there is a need to bring together multiple sources of semantically rich information. We explore how harvesting, conceptual mapping, facet based search engines, search term promotion, and style sheets can be combined to create the next generation of mashups in the emerging world of Web 3.0. We use NASA's Planetary Data System and NASA's Heliophysics Data Environment to illustrate how to create a multi-discipline mash-up.
Proteus - A Free and Open Source Sensor Observation Service (SOS) Client
NASA Astrophysics Data System (ADS)
Henriksson, J.; Satapathy, G.; Bermudez, L. E.
2013-12-01
The Earth's 'electronic skin' is becoming ever more sophisticated with a growing number of sensors measuring everything from seawater salinity levels to atmospheric pressure. To further the scientific application of this data collection effort, it is important to make the data easily available to anyone who wants to use it. Making Earth Science data readily available will allow the data to be used in new and potentially groundbreaking ways. The US National Science and Technology Council made this clear in its most recent National Strategy for Civil Earth Observations report, when it remarked that Earth observations 'are often found to be useful for additional purposes not foreseen during the development of the observation system'. On the road to this goal the Open Geospatial Consortium (OGC) is defining uniform data formats and service interfaces to facilitate the discovery and access of sensor data. This is being done through the Sensor Web Enablement (SWE) stack of standards, which include the Sensor Observation Service (SOS), Sensor Model Language (SensorML), Observations & Measurements (O&M) and Catalog Service for the Web (CSW). End-users do not have to use these standards directly, but can use smart tools that leverage and implement them. We have developed such a tool named Proteus. Proteus is an open-source sensor data discovery client. The goal of Proteus is to be a general-purpose client that can be used by anyone for discovering and accessing sensor data via OGC-based services. Proteus is a desktop client and supports a straightforward workflow for finding sensor data. The workflow takes the user through the process of selecting appropriate services, bounding boxes, observed properties, time periods and other search facets. NASA World Wind is used to display the matching sensor offerings on a map. Data from any sensor offering can be previewed in a time series. The user can download data from a single sensor offering, or download data in bulk from all matching sensor offerings. Proteus leverages NASA World Wind's WMS capabilities and allow overlaying sensor offerings on top of any map. Specific search criteria (i.e. user discoveries) can be saved and later restored. Proteus is supports two user types: 1) the researcher/scientist interested in discovering and downloading specific sensor data as input to research processes, and 2) the data manager responsible for maintaining sensor data services (e.g. SOSs) and wants to ensure proper data and metadata delivery, verify sensor data, and receive sensor data alerts. Proteus has a Web-based companion product named the Community Hub that is used to generate sensor data alerts. Alerts can be received via an RSS feed, viewed in a Web browser or displayed directly in Proteus via a Web-based API. To advance the vision of making Earth Science data easily discoverable and accessible to end-users, professional or laymen, Proteus is available as open-source on GitHub (https://github.com/intelligentautomation/proteus).
NASA Astrophysics Data System (ADS)
Erickson, T. A.; Granger, B.; Grout, J.; Corlay, S.
2017-12-01
The volume of Earth science data gathered from satellites, aircraft, drones, and field instruments continues to increase. For many scientific questions in the Earth sciences, managing this large volume of data is a barrier to progress, as it is difficult to explore and analyze large volumes of data using the traditional paradigm of downloading datasets to a local computer for analysis. Furthermore, methods for communicating Earth science algorithms that operate on large datasets in an easily understandable and reproducible way are needed. Here we describe a system for developing, interacting, and sharing well-documented Earth Science algorithms that combines existing software components: Jupyter Notebook: An open-source, web-based environment that supports documents that combine code and computational results with text narrative, mathematics, images, and other media. These notebooks provide an environment for interactive exploration of data and development of well documented algorithms. Jupyter Widgets / ipyleaflet: An architecture for creating interactive user interface controls (such as sliders, text boxes, etc.) in Jupyter Notebooks that communicate with Python code. This architecture includes a default set of UI controls (sliders, dropboxes, etc.) as well as APIs for building custom UI controls. The ipyleaflet project is one example that offers a custom interactive map control that allows a user to display and manipulate geographic data within the Jupyter Notebook. Google Earth Engine: A cloud-based geospatial analysis platform that provides access to petabytes of Earth science data via a Python API. The combination of Jupyter Notebooks, Jupyter Widgets, ipyleaflet, and Google Earth Engine makes it possible to explore and analyze massive Earth science datasets via a web browser, in an environment suitable for interactive exploration, teaching, and sharing. Using these environments can make Earth science analyses easier to understand and reproducible, which may increase the rate of scientific discoveries and the transition of discoveries into real-world impacts.
Science on the Web: Web Activities Using Scientific Data.
ERIC Educational Resources Information Center
Poppe, Barbara; McAlister, Deborah; Richardson, Lisa
This guide is intended to help teachers learn about using special software tools for the World Wide Web. It makes use of the scientific data produced by the National Oceanic and Atmospheric Administration (NOAA) and other government agencies. Activities in this booklet include: (1) "Finding People in Cyberspace"; (2) "Finding Science on the Web";…
The EarthServer Geology Service: web coverage services for geosciences
NASA Astrophysics Data System (ADS)
Laxton, John; Sen, Marcus; Passmore, James
2014-05-01
The EarthServer FP7 project is implementing web coverage services using the OGC WCS and WCPS standards for a range of earth science domains: cryospheric; atmospheric; oceanographic; planetary; and geological. BGS is providing the geological service (http://earthserver.bgs.ac.uk/). Geoscience has used remote sensed data from satellites and planes for some considerable time, but other areas of geosciences are less familiar with the use of coverage data. This is rapidly changing with the development of new sensor networks and the move from geological maps to geological spatial models. The BGS geology service is designed initially to address two coverage data use cases and three levels of data access restriction. Databases of remote sensed data are typically very large and commonly held offline, making it time-consuming for users to assess and then download data. The service is designed to allow the spatial selection, editing and display of Landsat and aerial photographic imagery, including band selection and contrast stretching. This enables users to rapidly view data, assess is usefulness for their purposes, and then enhance and download it if it is suitable. At present the service contains six band Landsat 7 (Blue, Green, Red, NIR 1, NIR 2, MIR) and three band false colour aerial photography (NIR, green, blue), totalling around 1Tb. Increasingly 3D spatial models are being produced in place of traditional geological maps. Models make explicit spatial information implicit on maps and thus are seen as a better way of delivering geosciences information to non-geoscientists. However web delivery of models, including the provision of suitable visualisation clients, has proved more challenging than delivering maps. The EarthServer geology service is delivering 35 surfaces as coverages, comprising the modelled superficial deposits of the Glasgow area. These can be viewed using a 3D web client developed in the EarthServer project by Fraunhofer. As well as remote sensed imagery and 3D models, the geology service is also delivering DTM coverages which can be viewed in the 3D client in conjunction with both imagery and models. The service is accessible through a web GUI which allows the imagery to be viewed against a range of background maps and DTMs, and in the 3D client; spatial selection to be carried out graphically; the results of image enhancement to be displayed; and selected data to be downloaded. The GUI also provides access to the Glasgow model in the 3D client, as well as tutorial material. In the final year of the project it is intended to increase the volume of data to 20Tb and enhance the WCPS processing, including depth and thickness querying of 3D models. We have also investigated the use of GeoSciML, developed to describe and interchange the information on geological maps, to describe model surface coverages. EarthServer is developing a combined WCPS and xQuery query language, and we will investigate applying this to the GeoSciML described surfaces to answer questions such as 'find all units with a predominant sand lithology within 25m of the surface'.
Effects of Web based inquiry on physical science teachers and students in an urban school district
NASA Astrophysics Data System (ADS)
Stephens, Joanne
An inquiry approach in teaching science has been advocated by many science educators for the past few decades. Due to insufficient district funding for science teaching, inadequate science laboratory facilities, and outdated science materials, inquiry teaching has been difficult for many science teachers, particularly science teachers in urban settings. However, research shows that the availability of computers with high speed Internet access has increased in all school districts. This study focused on the effects of inservice training on teachers and using web based science inquiry activities with ninth grade physical science students. Participants were 16 science teachers and 474 physical science students in an urban school district of a large southern U.S. city. Students were divided into control and experimental groups. The students in the experimental group participated in web based inquiry activities. Students in the control group were taught using similar methods, but not web based science activities. Qualitative and quantitative data were collected over a nine-week period using instruments and focus group interviews of students' and teachers' perceptions of the classroom learning environment, students' achievement, lesson design and classroom implementation, science content of lesson, and classroom culture. The findings reported that there were no significant differences in teachers' perception of the learning environment before and after implementing web based inquiry activities. The findings also reported that there were no overall significant differences in students' perceptions of the learning environment and achievement, pre-survey to post-survey, pre-test to post-test, between the control group and experimental group. Additional findings disclosed that students in the experimental group learned in a collaborative environment. The students confirmed that collaborating with others contributed to a deeper understanding of the science content. This study provides insights about utilizing technology to promote science inquiry teaching and learning. This study describes students' and teachers' perceptions of using web based inquiry to support scientific inquiry.
A Prototype Flood Early Warning SensorWeb System for Namibia
NASA Astrophysics Data System (ADS)
Sohlberg, R. A.; Mandl, D.; Frye, S. W.; Cappelaere, P. G.; Szarzynski, J.; Policelli, F.; van Langenhove, G.
2010-12-01
During the past two years, there have been extensive floods in the country of Namibia, Africa which have affected up to a quarter of the population. Via a collaboration between a group funded by the Earth Science Technology Office (ESTO) at NASA that has been performing various SensorWeb prototyping activities for disasters, the Department of Hydrology in Namibia and the United Nations Space-based Information for Disaster and Emergency Response (UN-SPIDER) , experiments were conducted on how to apply various satellite resources integrated into a SensorWeb architecture along with in-situ sensors such as river gauges and rain gauges into a flood early warning system. The SensorWeb includes a global flood model and a higher resolution basin specific flood model. Furthermore, flood extent and status is monitored by optical and radar types of satellites and integrated via some automation. We have taken a practical approach to find out how to create a working system by selectively using the components that provide good results. The vision for the future is to combine this with the country side dwelling unit data base to create risk maps that provide specific warnings to houses within high risk areas based on near term predictions. This presentation will show some of the highlights of the effort thus far plus our future plans.
Interacting With A Near Real-Time Urban Digital Watershed Using Emerging Geospatial Web Technologies
NASA Astrophysics Data System (ADS)
Liu, Y.; Fazio, D. J.; Abdelzaher, T.; Minsker, B.
2007-12-01
The value of real-time hydrologic data dissemination including river stage, streamflow, and precipitation for operational stormwater management efforts is particularly high for communities where flash flooding is common and costly. Ideally, such data would be presented within a watershed-scale geospatial context to portray a holistic view of the watershed. Local hydrologic sensor networks usually lack comprehensive integration with sensor networks managed by other agencies sharing the same watershed due to administrative, political, but mostly technical barriers. Recent efforts on providing unified access to hydrological data have concentrated on creating new SOAP-based web services and common data format (e.g. WaterML and Observation Data Model) for users to access the data (e.g. HIS and HydroSeek). Geospatial Web technology including OGC sensor web enablement (SWE), GeoRSS, Geo tags, Geospatial browsers such as Google Earth and Microsoft Virtual Earth and other location-based service tools provides possibilities for us to interact with a digital watershed in near-real-time. OGC SWE proposes a revolutionary concept towards a web-connected/controllable sensor networks. However, these efforts have not provided the capability to allow dynamic data integration/fusion among heterogeneous sources, data filtering and support for workflows or domain specific applications where both push and pull mode of retrieving data may be needed. We propose a light weight integration framework by extending SWE with open source Enterprise Service Bus (e.g., mule) as a backbone component to dynamically transform, transport, and integrate both heterogeneous sensor data sources and simulation model outputs. We will report our progress on building such framework where multi-agencies" sensor data and hydro-model outputs (with map layers) will be integrated and disseminated in a geospatial browser (e.g. Microsoft Virtual Earth). This is a collaborative project among NCSA, USGS Illinois Water Science Center, Computer Science Department at UIUC funded by the Adaptive Environmental Infrastructure Sensing and Information Systems initiative at UIUC.
Comparing cosmic web classifiers using information theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leclercq, Florent; Lavaux, Guilhem; Wandelt, Benjamin
We introduce a decision scheme for optimally choosing a classifier, which segments the cosmic web into different structure types (voids, sheets, filaments, and clusters). Our framework, based on information theory, accounts for the design aims of different classes of possible applications: (i) parameter inference, (ii) model selection, and (iii) prediction of new observations. As an illustration, we use cosmographic maps of web-types in the Sloan Digital Sky Survey to assess the relative performance of the classifiers T-WEB, DIVA and ORIGAMI for: (i) analyzing the morphology of the cosmic web, (ii) discriminating dark energy models, and (iii) predicting galaxy colors. Ourmore » study substantiates a data-supported connection between cosmic web analysis and information theory, and paves the path towards principled design of analysis procedures for the next generation of galaxy surveys. We have made the cosmic web maps, galaxy catalog, and analysis scripts used in this work publicly available.« less
NASA Astrophysics Data System (ADS)
Lombardo, Vincenzo; Piana, Fabrizio; Mimmo, Dario; Fubelli, Giandomenico; Giardino, Marco
2016-04-01
Encoding of geologic knowledge in formal languages is an ambitious task, aiming at the interoperability and organic representation of geological data, and semantic characterization of geologic maps. Initiatives such as GeoScience Markup Language (last version is GeoSciML 4, 2015[1]) and INSPIRE "Data Specification on Geology" (an operative simplification of GeoSciML, last version is 3.0 rc3, 2013[2]), as well as the recent terminological shepherding of the Geoscience Terminology Working Group (GTWG[3]) have been promoting information exchange of the geologic knowledge. There have also been limited attempts to encode the knowledge in a machine-readable format, especially in the lithology domain (see e.g. the CGI_Lithology ontology[4]), but a comprehensive ontological model that connect the several knowledge sources is still lacking. This presentation concerns the "OntoGeonous" initiative, which aims at encoding the geologic knowledge, as expressed through the standard vocabularies, schemas and data models mentioned above, through a number of interlinked computational ontologies, based on the languages of the Semantic Web and the paradigm of Linked Open Data. The initiative proceeds in parallel with a concrete case study, concerning the setting up of a synthetic digital geological map of the Piemonte region (NW Italy), named "GEOPiemonteMap" (developed by the CNR Institute of Geosciences and Earth Resources, CNR IGG, Torino), where the description and classification of GeologicUnits has been supported by the modeling and implementation of the ontologies. We have devised a tripartite ontological model called OntoGeonous that consists of: 1) an ontology of the geologic features (in particular, GeologicUnit, GeomorphologicFeature, and GeologicStructure[5], modeled from the definitions and UML schemata of CGI vocabularies[6], GeoScienceML and INSPIRE, and aligned with the Planetary realm of NASA SWEET ontology[7]), 2) an ontology of the Earth materials (as defined by the SimpleLithology CGI vocabulary and aligned as a subclass of the Substance class in NASA SWEET ontology), and 3) an ontology of the MappedFeatures (as defined in the Representation sub-taxonomy of the NASA SWEET ontology). The latter correspond to the concrete elements of the map, with their geometry (polygons, lines) and geographical coordinates. The ontology model has been developed by taking into account applications primarily concerning the needs of geological mapping; nevertheless, the model is general enough to be applied to other contexts. In particular, we show how the automatic reasoning capabilities of the ontology system can be employed in tasks of unit definition and input filling of the map database and for supporting geologists in thematic re-classification of the map instances (e.g. for coloring tasks). ---------------------------------------- [1] http://www.geosciml.org [2] http://inspire.jrc.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_GE_v3.0rc3.pdf [3] http://www.cgi-iugs.org/tech_collaboration/geoscience_terminology_working_group.html [4] https://www.seegrid.csiro.au/subversion/CGI_CDTGVocabulary/trunk/OwlWork/CGI_Lithology.owl [5] We are currently neglecting the encoding of the geologic events, left as a future work. [6] http://resource.geosciml.org/vocabulary/cgi/201211/ [7] Web site: https://sweet.jpl.nasa.gov, Di Giuseppe et al., 2013, SWEET ontology coverage for earth system sciences, http://www.ics.uci.edu/~ndigiuse/Nicholas_DiGiuseppe/Research_files/digiuseppe14.pdf; S. Barahmand et al. 2009, A Survey on SWEET Ontologies and their Applications, http://www-scf.usc.edu/~taheriya/reports/csci586-report.pdf
Usability evaluation of cloud-based mapping tools for the display of very large datasets
NASA Astrophysics Data System (ADS)
Stotz, Nicole Marie
The elasticity and on-demand nature of cloud services have made it easier to create web maps. Users only need access to a web browser and the Internet to utilize cloud based web maps, eliminating the need for specialized software. To encourage a wide variety of users, a map must be well designed; usability is a very important concept in designing a web map. Fusion Tables, a new product from Google, is one example of newer cloud-based distributed GIS services. It allows for easy spatial data manipulation and visualization, within the Google Maps framework. ESRI has also introduced a cloud based version of their software, called ArcGIS Online, built on Amazon's EC2 cloud. Utilizing a user-centered design framework, two prototype maps were created with data from the San Diego East County Economic Development Council. One map was built on Fusion Tables, and another on ESRI's ArcGIS Online. A usability analysis was conducted and used to compare both map prototypes in term so of design and functionality. Load tests were also ran, and performance metrics gathered on both map prototypes. The usability analysis was taken by 25 geography students, and consisted of time based tasks and questions on map design and functionality. Survey participants completed the time based tasks for the Fusion Tables map prototype quicker than those of the ArcGIS Online map prototype. While response was generally positive towards the design and functionality of both prototypes, overall the Fusion Tables map prototype was preferred. For the load tests, the data set was broken into 22 groups for a total of 44 tests. While the Fusion Tables map prototype performed more efficiently than the ArcGIS Online prototype, differences are almost unnoticeable. A SWOT analysis was conducted for each prototype. The results from this research point to the Fusion Tables map prototype. A redesign of this prototype would incorporate design suggestions from the usability survey, while some functionality would need to be dropped. This is a free product and would therefore be the best option if cost is an issue, but this map may not be supported in the future.
Science gateways for semantic-web-based life science applications.
Ardizzone, Valeria; Bruno, Riccardo; Calanducci, Antonio; Carrubba, Carla; Fargetta, Marco; Ingrà, Elisa; Inserra, Giuseppina; La Rocca, Giuseppe; Monforte, Salvatore; Pistagna, Fabrizio; Ricceri, Rita; Rotondo, Riccardo; Scardaci, Diego; Barbera, Roberto
2012-01-01
In this paper we present the architecture of a framework for building Science Gateways supporting official standards both for user authentication and authorization and for middleware-independent job and data management. Two use cases of the customization of the Science Gateway framework for Semantic-Web-based life science applications are also described.
Web GIS in practice VIII: HTML5 and the canvas element for interactive online mapping.
Boulos, Maged N Kamel; Warren, Jeffrey; Gong, Jianya; Yue, Peng
2010-03-03
HTML5 is being developed as the next major revision of HTML (Hypertext Markup Language), the core markup language of the World Wide Web. It aims at reducing the need for proprietary, plug-in-based rich Internet application (RIA) technologies such as Adobe Flash. The canvas element is part of HTML5 and is used to draw graphics using scripting (e.g., JavaScript). This paper introduces Cartagen, an open-source, vector-based, client-side framework for rendering plug-in-free, offline-capable, interactive maps in native HTML5 on a wide range of Web browsers and mobile phones. Cartagen was developed at MIT Media Lab's Design Ecology group. Potential applications of the technology as an enabler for participatory online mapping include mapping real-time air pollution, citizen reporting, and disaster response, among many other possibilities.
EnviroAtlas - Austin, TX - Demographics by Block Group Web Service
This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://enviroatlas.epa.gov/EnviroAtlas). This EnviroAtlas dataset is a summary of key demographic groups for the EnviroAtlas community. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
Ionospheric research for space weather service support
NASA Astrophysics Data System (ADS)
Stanislawska, Iwona; Gulyaeva, Tamara; Dziak-Jankowska, Beata
2016-07-01
Knowledge of the behavior of the ionosphere is very important for space weather services. A wide variety of ground based and satellite existing and future systems (communications, radar, surveillance, intelligence gathering, satellite operation, etc) is affected by the ionosphere. There are the needs for reliable and efficient support for such systems against natural hazard and minimalization of the risk failure. The joint research Project on the 'Ionospheric Weather' of IZMIRAN and SRC PAS is aimed to provide on-line the ionospheric parameters characterizing the space weather in the ionosphere. It is devoted to science, techniques and to more application oriented areas of ionospheric investigation in order to support space weather services. The studies based on data mining philosophy increasing the knowledge of ionospheric physical properties, modelling capabilities and gain applications of various procedures in ionospheric monitoring and forecasting were concerned. In the framework of the joint Project the novel techniques for data analysis, the original system of the ionospheric disturbance indices and their implementation for the ionosphere and the ionospheric radio wave propagation are developed since 1997. Data of ionosonde measurements and results of their forecasting for the ionospheric observatories network, the regional maps and global ionospheric maps of total electron content from the navigational satellite system (GNSS) observations, the global maps of the F2 layer peak parameters (foF2, hmF2) and W-index of the ionospheric variability are provided at the web pages of SRC PAS and IZMIRAN. The data processing systems include analysis and forecast of geomagnetic indices ap and kp and new eta index applied for the ionosphere forecasting. For the first time in the world the new products of the W-index maps analysis are provided in Catalogues of the ionospheric storms and sub-storms and their association with the global geomagnetic Dst storms is investigated. The products of the Project web sites at http://www.cbk.waw.pl/rwc and http://www.izmiran.ru/services/iweather are widely used in scientific investigations and numerous applications by the telecommunication and navigation operators and users whose number at the web sites is growing substantially from month to month.
ERIC Educational Resources Information Center
Abouserie, Hossam Eldin Mohamed Refaat
2010-01-01
The study investigated and analyzed the state of academic web-based job announcements in Library and Information Science Field. The purpose of study was to get in depth understanding about main characteristics and trends of academic job market in Library and Information science field. The study focused on web-based version announcement as it was…
Why Can't I Find Newton's Third Law? Case Studies of Students' Use of the Web as a Science Resource.
ERIC Educational Resources Information Center
MaKinster, James G.; Beghetto, Ronald A.; Plucker, Jonathan A.
2002-01-01
Examines searching patterns of students using the Web as science information resources. Attempts to provide detailed accounts of how students use the Web as a science resource and illuminate how the different levels of domain knowledge and expertise, and situational interest impact students' ability to find useful and relevant information on the…
EnviroAtlas - Metrics for Austin, TX
This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://enviroatlas.epa.gov/EnviroAtlas). The layers in this web service depict ecosystem services at the census block group level for the community of Austin, Texas. These layers illustrate the ecosystems and natural resources that are associated with clean air (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_CleanAir/MapServer); clean and plentiful water (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_CleanPlentifulWater/MapServer); natural hazard mitigation (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_NaturalHazardMitigation/MapServer); climate stabilization (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_ClimateStabilization/MapServer); food, fuel, and materials (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_FoodFuelMaterials/MapServer); recreation, culture, and aesthetics (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_RecreationCultureAesthetics/MapServer); and biodiversity conservation (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_BiodiversityConservation/MapServer), and factors that place stress on those resources. EnviroAtlas allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the conterminous United States as well as de
GDR (Genome Database for Rosaceae): integrated web-database for Rosaceae genomics and genetics data
Jung, Sook; Staton, Margaret; Lee, Taein; Blenda, Anna; Svancara, Randall; Abbott, Albert; Main, Dorrie
2008-01-01
The Genome Database for Rosaceae (GDR) is a central repository of curated and integrated genetics and genomics data of Rosaceae, an economically important family which includes apple, cherry, peach, pear, raspberry, rose and strawberry. GDR contains annotated databases of all publicly available Rosaceae ESTs, the genetically anchored peach physical map, Rosaceae genetic maps and comprehensively annotated markers and traits. The ESTs are assembled to produce unigene sets of each genus and the entire Rosaceae. Other annotations include putative function, microsatellites, open reading frames, single nucleotide polymorphisms, gene ontology terms and anchored map position where applicable. Most of the published Rosaceae genetic maps can be viewed and compared through CMap, the comparative map viewer. The peach physical map can be viewed using WebFPC/WebChrom, and also through our integrated GDR map viewer, which serves as a portal to the combined genetic, transcriptome and physical mapping information. ESTs, BACs, markers and traits can be queried by various categories and the search result sites are linked to the mapping visualization tools. GDR also provides online analysis tools such as a batch BLAST/FASTA server for the GDR datasets, a sequence assembly server and microsatellite and primer detection tools. GDR is available at http://www.rosaceae.org. PMID:17932055
NASA's Earth Science Data Systems Standards Process Experiences
NASA Technical Reports Server (NTRS)
Ullman, Richard E.; Enloe, Yonsook
2007-01-01
NASA has impaneled several internal working groups to provide recommendations to NASA management on ways to evolve and improve Earth Science Data Systems. One of these working groups is the Standards Process Group (SPC). The SPG is drawn from NASA-funded Earth Science Data Systems stakeholders, and it directs a process of community review and evaluation of proposed NASA standards. The working group's goal is to promote interoperability and interuse of NASA Earth Science data through broader use of standards that have proven implementation and operational benefit to NASA Earth science by facilitating the NASA management endorsement of proposed standards. The SPC now has two years of experience with this approach to identification of standards. We will discuss real examples of the different types of candidate standards that have been proposed to NASA's Standards Process Group such as OPeNDAP's Data Access Protocol, the Hierarchical Data Format, and Open Geospatial Consortium's Web Map Server. Each of the three types of proposals requires a different sort of criteria for understanding the broad concepts of "proven implementation" and "operational benefit" in the context of NASA Earth Science data systems. We will discuss how our Standards Process has evolved with our experiences with the three candidate standards.
ESA Science Archives, VO tools and remote Scientific Data reduction in Grid Architectures
NASA Astrophysics Data System (ADS)
Arviset, C.; Barbarisi, I.; de La Calle, I.; Fajersztejn, N.; Freschi, M.; Gabriel, C.; Gomez, P.; Guainazzi, M.; Ibarra, A.; Laruelo, A.; Leon, I.; Micol, A.; Parrilla, E.; Ortiz, I.; Osuna, P.; Salgado, J.; Stebe, A.; Tapiador, D.
2008-08-01
This paper presents the latest functionalities of the ESA Science Archives located at ESAC, Spain, in particular, the following archives : the ISO Data Archive (IDA {http://iso.esac.esa.int/ida}), the XMM-Newton Science Archive (XSA {http://xmm.esac.esa.int/xsa}), the Integral SOC Science Data Archive (ISDA {http://integral.esac.esa.int/isda}) and the Planetary Science Archive (PSA {http://www.rssd.esa.int/psa}), both the classical and the map-based Mars Express interfaces. Furthermore, the ESA VOSpec {http://esavo.esac.esa.int/vospecapp} spectra analysis tool is described, which allows to access and display spectral information from VO resources (both real observational and theoretical spectra), including access to Lines database and recent analysis functionalities. In addition, we detail the first implementation of RISA (Remote Interface for Science Analysis), a web service providing remote users the ability to create fully configurable XMM-Newton data analysis workflows, and to deploy and run them on the ESAC Grid. RISA makes fully use of the inter-operability provided by the SIAP (Simple Image Access Protocol) services as data input, and at the same time its VO-compatible output can directly be used by general VO-tools.
The Development of Interactive World Wide Web Based Teaching Material in Forensic Science.
ERIC Educational Resources Information Center
Daeid, Niamh Nic
2001-01-01
Describes the development of a Web-based tutorial in the forensic science teaching program at the University of Strathclyde (Scotland). Highlights include the theoretical basis for course development; objectives; Web site design; student feedback; and staff feedback. (LRW)
Interoperability And Value Added To Earth Observation Data
NASA Astrophysics Data System (ADS)
Gasperi, J.
2012-04-01
Geospatial web services technology has provided a new means for geospatial data interoperability. Open Geospatial Consortium (OGC) services such as Web Map Service (WMS) to request maps on the Internet, Web Feature Service (WFS) to exchange vectors or Catalog Service for the Web (CSW) to search for geospatialized data have been widely adopted in the Geosciences community in general and in the remote sensing community in particular. These services make Earth Observation data available to a wider range of public users than ever before. The mapshup web client offers an innovative and efficient user interface that takes advantage of the power of interoperability. This presentation will demonstrate how mapshup can be effectively used in the context of natural disasters management.
Publishing Platform for Aerial Orthophoto Maps, the Complete Stack
NASA Astrophysics Data System (ADS)
Čepický, J.; Čapek, L.
2016-06-01
When creating set of orthophoto maps from mosaic compositions, using airborne systems, such as popular drones, we need to publish results of the work to users. Several steps need to be performed in order get large scale raster data published. As first step, data have to be shared as service (OGC WMS as view service, OGC WCS as download service). But for some applications, OGC WMTS is handy as well, for faster view of the data. Finally the data have to become a part of web mapping application, so that they can be used and evaluated by non-technical users. In this talk, we would like to present automated line of those steps, where user puts in orthophoto image and as a result, OGC Open Web Services are published as well as web mapping application with the data. The web mapping application can be used as standard presentation platform for such type of big raster data to generic user. The publishing platform - Geosense online map information system - can be also used for combination of data from various resources and for creating of unique map compositions and as input for better interpretations of photographed phenomenons. The whole process is successfully tested with eBee drone with raster data resolution 1.5-4 cm/px on many areas and result is also used for creation of derived datasets, usually suited for property management - the records of roads, pavements, traffic signs, public lighting, sewage system, grave locations, and others.
Developing a GIS for CO2 analysis using lightweight, open source components
NASA Astrophysics Data System (ADS)
Verma, R.; Goodale, C. E.; Hart, A. F.; Kulawik, S. S.; Law, E.; Osterman, G. B.; Braverman, A.; Nguyen, H. M.; Mattmann, C. A.; Crichton, D. J.; Eldering, A.; Castano, R.; Gunson, M. R.
2012-12-01
There are advantages to approaching the realm of geographic information systems (GIS) using lightweight, open source components in place of a more traditional web map service (WMS) solution. Rapid prototyping, schema-less data storage, the flexible interchange of components, and open source community support are just some of the benefits. In our effort to develop an application supporting the geospatial and temporal rendering of remote sensing carbon-dioxide (CO2) data for the CO2 Virtual Science Data Environment project, we have connected heterogeneous open source components together to form a GIS. Utilizing widely popular open source components including the schema-less database MongoDB, Leaflet interactive maps, the HighCharts JavaScript graphing library, and Python Bottle web-services, we have constructed a system for rapidly visualizing CO2 data with reduced up-front development costs. These components can be aggregated together, resulting in a configurable stack capable of replicating features provided by more standard GIS technologies. The approach we have taken is not meant to replace the more established GIS solutions, but to instead offer a rapid way to provide GIS features early in the development of an application and to offer a path towards utilizing more capable GIS technology in the future.
NASA Astrophysics Data System (ADS)
Castleton, J.; Erickson, B.; Bowman, S. D.; Unger, C. D.
2014-12-01
The Utah Geological Survey's (UGS) Geologic Hazards Program has partnered with the U.S. Army Corps of Engineers to create geologically derived web-based flood hazard maps. Flooding in Utah communities has historically been one of the most damaging geologic hazards. The most serious floods in Utah have generally occurred in the Great Salt Lake basin, particularly in the Weber River drainage on the western slopes of the Wasatch Range, in areas of high population density. With a growing population of 2.9 million, the state of Utah is motivated to raise awareness about the potential for flooding. The process of increasing community resiliency to flooding begins with identification and characterization of flood hazards. Many small communities in areas experiencing rapid growth have not been mapped completely by the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps (FIRM). Existing FIRM maps typically only consider drainage areas that are greater than one square mile in determining flood zones and do not incorporate geologic data, such as the presence of young, geologically active alluvial fans that indicate a high potential for debris flows and sheet flooding. Our new flood hazard mapping combines and expands on FEMA data by incorporating mapping derived from 1:24,000-scale UGS geologic maps, LiDAR data, digital elevation models, and historical aerial photography. Our flood hazard maps are intended to supplement the FIRM maps to provide local governments and the public with additional flood hazard information so they may make informed decisions, ultimately reducing the risk to life and property from flooding hazards. Flooding information must be widely available and easily accessed. One of the most effective ways to inform the public is through web-based maps. Web-based flood hazard maps will not only supply the public with the flood information they need, but also provides a platform to add additional geologic hazards to an easily accessible format.
Use of Web Resources in the Journal Literature 2001 and 2007: A Cross-Disciplinary Study
ERIC Educational Resources Information Center
Zhang, Li
2011-01-01
This article examines Web resources in research articles from 30 scholarly journals in disciplines across the sciences, social sciences, and humanities. The purpose of the study is to report the degree to which scholars make use of Web-based resources in the journal literature and to identify Web citation characteristics within different subject…
Using a Web Site in an Elementary Science Methods Class: Are We Opening a Pandora's Box?
ERIC Educational Resources Information Center
Lewis, Scott P.; O'Brien, George E.
This paper describes the introduction and use of the World Wide Web (WWW) in an elementary science methods course at Florida International University (FIU). The goals of creating a web site include engaging conversations among educators, providing access to local resources for students, and examining student use of web sites and the Internet. The…
QTIMaps: A Model to Enable Web Maps in Assessment
ERIC Educational Resources Information Center
Navarrete, Toni; Santos, Patricia; Hernandez-Leo, Davinia; Blat, Josep
2011-01-01
Test-based e-Assessment approaches are mostly focused on the assessment of knowledge and not on that of other skills, which could be supported by multimedia interactive services. This paper presents the QTIMaps model, which combines the IMS QTI standard with web maps services enabling the computational assessment of geographical skills. We…
Using Web-Based GIS in Introductory Human Geography
ERIC Educational Resources Information Center
Songer, Lynn C.
2010-01-01
Advocates for using a geographic information system (GIS) in education assert that GIS improves student learning. However, studies to clarify the relationship between learning and using GIS are still needed. This study examines the effects of using Web-based GIS maps in place of paper maps on students' geography content knowledge and motivation…
Biomedical semantics in the Semantic Web
2011-01-01
The Semantic Web offers an ideal platform for representing and linking biomedical information, which is a prerequisite for the development and application of analytical tools to address problems in data-intensive areas such as systems biology and translational medicine. As for any new paradigm, the adoption of the Semantic Web offers opportunities and poses questions and challenges to the life sciences scientific community: which technologies in the Semantic Web stack will be more beneficial for the life sciences? Is biomedical information too complex to benefit from simple interlinked representations? What are the implications of adopting a new paradigm for knowledge representation? What are the incentives for the adoption of the Semantic Web, and who are the facilitators? Is there going to be a Semantic Web revolution in the life sciences? We report here a few reflections on these questions, following discussions at the SWAT4LS (Semantic Web Applications and Tools for Life Sciences) workshop series, of which this Journal of Biomedical Semantics special issue presents selected papers from the 2009 edition, held in Amsterdam on November 20th. PMID:21388570
Biomedical semantics in the Semantic Web.
Splendiani, Andrea; Burger, Albert; Paschke, Adrian; Romano, Paolo; Marshall, M Scott
2011-03-07
The Semantic Web offers an ideal platform for representing and linking biomedical information, which is a prerequisite for the development and application of analytical tools to address problems in data-intensive areas such as systems biology and translational medicine. As for any new paradigm, the adoption of the Semantic Web offers opportunities and poses questions and challenges to the life sciences scientific community: which technologies in the Semantic Web stack will be more beneficial for the life sciences? Is biomedical information too complex to benefit from simple interlinked representations? What are the implications of adopting a new paradigm for knowledge representation? What are the incentives for the adoption of the Semantic Web, and who are the facilitators? Is there going to be a Semantic Web revolution in the life sciences?We report here a few reflections on these questions, following discussions at the SWAT4LS (Semantic Web Applications and Tools for Life Sciences) workshop series, of which this Journal of Biomedical Semantics special issue presents selected papers from the 2009 edition, held in Amsterdam on November 20th.
Lessons from Communicating Space Science Over the Web
NASA Technical Reports Server (NTRS)
Dooling, David, Jr.; Triese, D.
2000-01-01
The Science Directorate at NASA's Marshall Space Flight Center uses the web in an aggressive manner to expand communications beyond the traditional "public affairs" or "media relations" routines. The key to success has been developing a balanced process that A) involves laboratory personnel and the NASA center community through a weekly Science Communications Roundtable, B) vests ownership and development of the product (i.e., the story) in the scientist a writer resident in the laboratory, and C) seeks taps the talents of the outside communications community through the Research/Roadmap Communications activity. The process is flexible and responsive, allowing Science@NASA to provide daily coverage for events, such as two materials science missions managed by NASA/Marshall. In addition to developing materials for the web, Science@NASA has conducted extensive research to determine what subjects people seek on the web, and the best methods to position stories so they will be found and read.
CRESST Human Performance Knowledge Mapping System
2002-12-01
link subcategories. Semantica Evaluation copy unavailable Visual Mind M H No Cannot add relation labels. Smart Ideas H H No Easy to use. Linking in...Screen Users can access all top-level functions from the main screen shown in Figure 4. The design of the Web favored breadth over depth, which allows...based on whether their propositions match propositions in the expert map. LifeMap PC on the Web /Mac 0 http:/ /www2.ucsc.edu/-mlrg/mlrgtools.html This
Evolution of System Architectures: Where Do We Need to Fail Next?
NASA Astrophysics Data System (ADS)
Bermudez, Luis; Alameh, Nadine; Percivall, George
2013-04-01
Innovation requires testing and failing. Thomas Edison was right when he said "I have not failed. I've just found 10,000 ways that won't work". For innovation and improvement of standards to happen, service Architectures have to be tested and tested. Within the Open Geospatial Consortium (OGC), testing of service architectures has occurred for the last 15 years. This talk will present an evolution of these service architectures and a possible future path. OGC is a global forum for the collaboration of developers and users of spatial data products and services, and for the advancement and development of international standards for geospatial interoperability. The OGC Interoperability Program is a series of hands-on, fast paced, engineering initiatives to accelerate the development and acceptance of OGC standards. Each initiative is organized in threads that provide focus under a particular theme. The first testbed, OGC Web Services phase 1, completed in 2003 had four threads: Common Architecture, Web Mapping, Sensor Web and Web Imagery Enablement. The Common Architecture was a cross-thread theme, to ensure that the Web Mapping and Sensor Web experiments built on a base common architecture. The architecture was based on the three main SOA components: Broker, Requestor and Provider. It proposed a general service model defining service interactions and dependencies; categorization of service types; registries to allow discovery and access of services; data models and encodings; and common services (WMS, WFS, WCS). For the latter, there was a clear distinction on the different services: Data Services (e.g. WMS), Application services (e.g. Coordinate transformation) and server-side client applications (e.g. image exploitation). The latest testbed, OGC Web Service phase 9, completed in 2012 had 5 threads: Aviation, Cross-Community Interoperability (CCI), Security and Services Interoperability (SSI), OWS Innovations and Compliance & Interoperability Testing & Evaluation (CITE). Compared to the first testbed, OWS-9 did not have a separate common architecture thread. Instead the emphasis was on brokering information models, securing them and making data available efficiently on mobile devices. The outcome is an architecture based on usability and non-intrusiveness while leveraging mediation of information models from different communities. This talk will use lessons learned from the evolution from OGC Testbed phase 1 to phase 9 to better understand how global and complex infrastructures evolve to support many communities including the Earth System Science Community.
Delivering integrated HAZUS-MH flood loss analyses and flood inundation maps over the Web.
Hearn, Paul P; Longenecker, Herbert E; Aguinaldo, John J; Rahav, Ami N
2013-01-01
Catastrophic flooding is responsible for more loss of life and damages to property than any other natural hazard. Recently developed flood inundation mapping technologies make it possible to view the extent and depth of flooding on the land surface over the Internet; however, by themselves these technologies are unable to provide estimates of losses to property and infrastructure. The Federal Emergency Management Agency's (FEMA's) HAZUS-MH software is extensively used to conduct flood loss analyses in the United States, providing a nationwide database of population and infrastructure at risk. Unfortunately, HAZUS-MH requires a dedicated Geographic Information System (GIS) workstation and a trained operator, and analyses are not adapted for convenient delivery over the Web. This article describes a cooperative effort by the US Geological Survey (USGS) and FEMA to make HAZUS-MH output GIS and Web compatible and to integrate these data with digital flood inundation maps in USGS's newly developed Inundation Mapping Web Portal. By running the computationally intensive HAZUS-MH flood analyses offline and converting the output to a Web-GIS compatible format, detailed estimates of flood losses can now be delivered to anyone with Internet access, thus dramatically increasing the availability of these forecasts to local emergency planners and first responders.
Delivering integrated HAZUS-MH flood loss analyses and flood inundation maps over the Web
Hearn,, Paul P.; Longenecker, Herbert E.; Aguinaldo, John J.; Rahav, Ami N.
2013-01-01
Catastrophic flooding is responsible for more loss of life and damages to property than any other natural hazard. Recently developed flood inundation mapping technologies make it possible to view the extent and depth of flooding on the land surface over the Internet; however, by themselves these technologies are unable to provide estimates of losses to property and infrastructure. The Federal Emergency Management Agency’s (FEMA's) HAZUS-MH software is extensively used to conduct flood loss analyses in the United States, providing a nationwide database of population and infrastructure at risk. Unfortunately, HAZUS-MH requires a dedicated Geographic Information System (GIS) workstation and a trained operator, and analyses are not adapted for convenient delivery over the Web. This article describes a cooperative effort by the US Geological Survey (USGS) and FEMA to make HAZUS-MH output GIS and Web compatible and to integrate these data with digital flood inundation maps in USGS’s newly developed Inundation Mapping Web Portal. By running the computationally intensive HAZUS-MH flood analyses offline and converting the output to a Web-GIS compatible format, detailed estimates of flood losses can now be delivered to anyone with Internet access, thus dramatically increasing the availability of these forecasts to local emergency planners and first responders.
NASA Astrophysics Data System (ADS)
Wright, D. J.; Lassoued, Y.; Dwyer, N.; Haddad, T.; Bermudez, L. E.; Dunne, D.
2009-12-01
Coastal mapping plays an important role in informing marine spatial planning, resource management, maritime safety, hazard assessment and even national sovereignty. As such, there is now a plethora of data/metadata catalogs, pre-made maps, tabular and text information on resource availability and exploitation, and decision-making tools. A recent trend has been to encapsulate these in a special class of web-enabled geographic information systems called a coastal web atlas (CWA). While multiple benefits are derived from tailor-made atlases, there is great value added from the integration of disparate CWAs. CWAs linked to one another can query more successfully to optimize planning and decision-making. If a dataset is missing in one atlas, it may be immediately located in another. Similar datasets in two atlases may be combined to enhance study in either region. *But how best to achieve semantic interoperability to mitigate vague data queries, concepts or natural language semantics when retrieving and integrating data and information?* We report on the development of a new prototype seeking to interoperate between two initial CWAs: the Marine Irish Digital Atlas (MIDA) and the Oregon Coastal Atlas (OCA). These two mature atlases are used as a testbed for more regional connections, with the intent for the OCA to use lessons learned to develop a regional network of CWAs along the west coast, and for MIDA to do the same in building and strengthening atlas networks with the UK, Belgium, and other parts of Europe. Our prototype uses semantic interoperability via services harmonization and ontology mediation, allowing local atlases to use their own data structures, and vocabularies (ontologies). We use standard technologies such as OGC Web Map Services (WMS) for delivering maps, and OGC Catalogue Service for the Web (CSW) for delivering and querying ISO-19139 metadata. The metadata records of a given CWA use a given ontology of terms called local ontology. Human or machine users formulate their requests using a common ontology of metadata terms, called global ontology. A CSW mediator rewrites the user’s request into CSW requests over local CSWs using their own (local) ontologies, collects the results and sends them back to the user. To extend the system, we have recently added global maritime boundaries and are also considering nearshore ocean observing system data. Ongoing work includes adding WFS, error management, and exception handling, enabling Smart Searches, and writing full documentation. This prototype is a central research project of the new International Coastal Atlas Network (ICAN), a group of 30+ organizations from 14 nations (and growing) dedicated to seeking interoperability approaches to CWAs in support of coastal zone management and the translation of coastal science to coastal decision-making.
Page, William R.; Berry, Margaret E.; VanSistine, D. Paco; Snyders, Scott R.
2009-01-01
The purpose of this map is to provide an integrated, bi-national geologic map dataset for display and analyses on an Arc Internet Map Service (IMS) dedicated to environmental health studies in the United States-Mexico border region. The IMS web site was designed by the US-Mexico Border Environmental Health Initiative project and collaborators, and the IMS and project web site address is http://borderhealth.cr.usgs.gov/. The objective of the project is to acquire, evaluate, analyze, and provide earth, biologic, and human health resources data within a GIS framework (IMS) to further our understanding of possible linkages between the physical environment and public health issues. The geologic map dataset is just one of many datasets included in the web site; other datasets include biologic, hydrologic, geographic, and human health themes.
ODISEES: A New Paradigm in Data Access
NASA Astrophysics Data System (ADS)
Huffer, E.; Little, M. M.; Kusterer, J.
2013-12-01
As part of its ongoing efforts to improve access to data, the Atmospheric Science Data Center has developed a high-precision Earth Science domain ontology (the 'ES Ontology') implemented in a graph database ('the Semantic Metadata Repository') that is used to store detailed, semantically-enhanced, parameter-level metadata for ASDC data products. The ES Ontology provides the semantic infrastructure needed to drive the ASDC's Ontology-Driven Interactive Search Environment for Earth Science ('ODISEES'), a data discovery and access tool, and will support additional data services such as analytics and visualization. The ES ontology is designed on the premise that naming conventions alone are not adequate to provide the information needed by prospective data consumers to assess the suitability of a given dataset for their research requirements; nor are current metadata conventions adequate to support seamless machine-to-machine interactions between file servers and end-user applications. Data consumers need information not only about what two data elements have in common, but also about how they are different. End-user applications need consistent, detailed metadata to support real-time data interoperability. The ES ontology is a highly precise, bottom-up, queriable model of the Earth Science domain that focuses on critical details about the measurable phenomena, instrument techniques, data processing methods, and data file structures. Earth Science parameters are described in detail in the ES Ontology and mapped to the corresponding variables that occur in ASDC datasets. Variables are in turn mapped to well-annotated representations of the datasets that they occur in, the instrument(s) used to create them, the instrument platforms, the processing methods, etc., creating a linked-data structure that allows both human and machine users to access a wealth of information critical to understanding and manipulating the data. The mappings are recorded in the Semantic Metadata Repository as RDF-triples. An off-the-shelf Ontology Development Environment and a custom Metadata Conversion Tool comprise a human-machine/machine-machine hybrid tool that partially automates the creation of metadata as RDF-triples by interfacing with existing metadata repositories and providing a user interface that solicits input from a human user, when needed. RDF-triples are pushed to the Ontology Development Environment, where a reasoning engine executes a series of inference rules whose antecedent conditions can be satisfied by the initial set of RDF-triples, thereby generating the additional detailed metadata that is missing in existing repositories. A SPARQL Endpoint, a web-based query service and a Graphical User Interface allow prospective data consumers - even those with no familiarity with NASA data products - to search the metadata repository to find and order data products that meet their exact specifications. A web-based API will provide an interface for machine-to-machine transactions.
Innovation and design of a web-based pain education interprofessional resource
Lax, Leila; Watt-Watson, Judy; Lui, Michelle; Dubrowski, Adam; McGillion, Michael; Hunter, Judith; MacLennan, Cameron; Knickle, Kerry; Robb, Anja; Lapeyre, Jaime
2011-01-01
INTRODUCTION: The present article describes educational innovation processes and design of a web-based pain interprofessional resource for prelicensure health science students in universities across Canada. Operationalization of educational theory in design coupled with formative evaluation of design are discussed, along with strategies that support collaborative innovation. METHODS: Educational design was driven by content, theory and evaluation. Pain misbeliefs and teaching points along the continuum from acute to persistent pain were identified. Knowledge-building theory, situated learning, reflection and novel designs for cognitive scaffolding were then employed. Design research principles were incorporated to inform iterative and ongoing design. RESULTS: An authentic patient case was constructed, situated in inter-professional complex care to highlight learning objectives related to pre-operative, postoperative and treatment up to one year, for a surgical cancer patient. Pain mechanisms, assessment and management framed content creation. Knowledge building scaffolds were used, which included video simulations, embedded resources, concurrent feedback, practice-based reflective exercises and commentaries. Scaffolds were refined to specifically support knowledge translation. Illustrative commentaries were designed to explicate pain misbeliefs and best practices. Architecture of the resource was mapped; a multimedia, interactive prototype was created. This pain education resource was developed primarily for individual use, with extensions for interprofessional collective discourse. DISCUSSION: Translation of curricular content scripts into representation maps supported the collaborative design process by establishing a common visual language. The web-based prototype will be formatively and summatively evaluated to assess pedagogic design, knowledge-translation scaffolds, pain knowledge gains, relevance, feasibility and fidelity of this educational innovation. PMID:22184552
Designing a Web-Based Learning Portal for Geographic Visualization and Analysis in Public Health
Robinson, Anthony C.; Roth, Robert E.; MacEachren, Alan M.
2011-01-01
Interactive mapping and spatial analysis tools are underutilized by health researchers and decision-makers due to scarce training materials, few examples demonstrating the successful use of geographic visualization, and poor mechanisms for sharing results generated by geovisualization. We report here on the development of the Geovisual EXplication (G-EX) Portal, a web-based application designed to connect researchers in geovisualization and related mapping sciences to users who are working in public health and epidemiology. This paper focuses on the design and development of the G-EX Portal Learn module, a set of tools intended to disseminate learning artifacts. Initial design and development of the G-EX Portal has been guided by our past research on use and usability of geovisualization in public health. As part of the iterative design and development process, we conducted a needs assessment survey with targeted end-users that we report on here. The survey focused on users’ current learning habits, their preferred kind of learning artifacts, and issues they may have with contributing learning artifacts to web portals. Survey results showed that users desire a diverse set of learning artifacts in terms of both formats and topics covered. Results also revealed a willingness of users to contribute both learning artifacts and personal information that would help other users to evaluate the credibility of the learning artifact source. We include a detailed description of the G-EX Portal Learn module and focus on modifications to the design of the Learn module as a result from feedback we received from our survey. PMID:21937462
Mining twitter: a source for psychological wisdom of the crowds.
Reips, Ulf-Dietrich; Garaizar, Pablo
2011-09-01
Over the last few years, microblogging has gained prominence as a form of personal broadcasting media where information and opinion are mixed together without an established order, usually tightly linked with current reality. Location awareness and promptness provide researchers using the Internet with the opportunity to create "psychological landscapes"--that is, to detect differences and changes in voiced (twittered) emotions, cognitions, and behaviors. In our article, we present iScience Maps, a free Web service for researchers, available from http://maps.iscience.deusto.es/ and http://tweetminer.eu/ . Technologically, the service is based on Twitter's streaming and search application programming interfaces (APIs), accessed through several PHP libraries, and a JavaScript frontend. This service allows researchers to assess via Twitter the effect of specific events in different places as they are happening and to make comparisons between cities, regions, or countries regarding psychological states and their evolution in the course of an event. In a step-by-step example, it is shown how to replicate a study on affective and personality characteristics inferred from first names (Mehrabian & Piercy, Personality and Social Psychology Bulletin, 19, 755-758 1993) by mining Twitter data with iScience Maps.Results from the original study are replicated in both world regions we tested (the western U.S. and the U.K./Ireland); we also discover base rate of names to be a confound that needs to be controlled for in future research.
Enhancement of Elementary School Students' Science Learning by Web-Quest Supported Science Writing
ERIC Educational Resources Information Center
Min-Hsiung, Chuang; Jeng-Fung, Hung; Quo-Cheng, Sung
2011-01-01
This study aimed to probe into the influence of implementing Web-quest supported science writing instruction on students' science learning and science writing. The subjects were 34 students in one class of grade six in an elementary school in Taiwan. The students participated in the instruction, which lasted for eight weeks. Data collection…
Kokol, Peter; Vošner, Helena Blažun
2018-01-01
The overall aim of the present study was to compare the coverage of existing research funding information for articles indexed in Scopus, Web of Science, and PubMed databases. The numbers of articles with funding information published in 2015 were identified in the three selected databases and compared using bibliometric analysis of a sample of twenty-eight prestigious medical journals. Frequency analysis of the number of articles with funding information showed statistically significant differences between Scopus, Web of Science, and PubMed databases. The largest proportion of articles with funding information was found in Web of Science (29.0%), followed by PubMed (14.6%) and Scopus (7.7%). The results show that coverage of funding information differs significantly among Scopus, Web of Science, and PubMed databases in a sample of the same medical journals. Moreover, we found that, currently, funding data in PubMed is more difficult to obtain and analyze compared with that in the other two databases.
NASA Astrophysics Data System (ADS)
Reed, D. L.; Moore, G. F.; Bangs, N. L.; Tobin, H.
2007-12-01
The results of major research initiatives, such as NSF-MARGINS, IODP and its predecessors DSDP and ODP, Ridge 2000, and NOAA's Ocean Explorer and Vents Programs provide a rich library of resources for inquiry-based learning in undergraduate classes in the geosciences. These materials are scalable for use in general education courses for the non-science major to upper division major and graduate courses, which are both content-rich and research-based. Examples of these materials include images and animations drawn from computer presentations at research workshops and audio/video clips from web sites, as well as data repositories, which can be accessed through GeoMapApp, a data exploration and visualization tool developed as part of the Marine Geoscience Data System by researchers at the LDEO (http://www.geomapapp.org/). Past efforts have focused on recreating sea-going research experiences by integrating and repurposing these data in web-based virtual environments to stimulate active student participation in laboratory settings and at a distance over the WWW. Virtual expeditions have been created based on multibeam mapping of the seafloor near the Golden Gate, bathymetric transects of the major ocean basins, subduction zone seismicity and related tsunamis, water column mapping and submersible dives at hydrothermal vents, and ocean drilling of deep-sea sediments to explore climate change. Students also make use of multichannel seismic data provided through the Marine Seismic Data Center of UTIG to study subduction zone processes at convergent plate boundaries. We will present the initial stages of development of a web-based virtual expedition for use in undergraduate classes, based on a recent 3-D seismic survey associated with the NanTroSEIZE program of NSF-MARGINS and IODP to study the properties of the plate boundary fault system in the upper limit of the seismogenic zone off Japan.
VegScape: U.S. Crop Condition Monitoring Service
NASA Astrophysics Data System (ADS)
mueller, R.; Yang, Z.; Di, L.
2013-12-01
Since 1995, the US Department of Agriculture (USDA)/National Agricultural Statistics Service (NASS) has provided qualitative biweekly vegetation condition indices to USDA policymakers and the public on a weekly basis during the growing season. Vegetation indices have proven useful for assessing crop condition and identifying the areal extent of floods, drought, major weather anomalies, and vulnerabilities of early/late season crops. With growing emphasis on more extreme weather events and food security issues rising to the forefront of national interest, a new vegetation condition monitoring system was developed. The new vegetation condition portal named VegScape was initiated at the start of the 2013 growing season. VegScape delivers web mapping service based interactive vegetation indices. Users can use an interactive map to explore, query and disseminate current crop conditions. Vegetation indices like Normal Difference Vegetation Index (NDVI), Vegetation Condition Index (VCI), and mean, median, and ratio comparisons to prior years can be constructed for analytical purposes and on-demand crop statistics. The NASA MODIS satellite with 250 meter (15 acres) resolution and thirteen years of data history provides improved spatial and temporal resolutions and delivers improved detailed timely (i.e., daily) crop specific condition and dynamics. VegScape thus provides supplemental information to support NASS' weekly crop reports. VegScape delivers an agricultural cultivated crop mask and the most recent Cropland Data Layer (CDL) product to exploit the agricultural domain and visualize prior years' planted crops. Additionally, the data can be directly exported to Google Earth for web mashups or delivered via web mapping services for uses in other applications. VegScape supports the ethos of data democracy by providing free and open access to digital geospatial data layers using open geospatial standards, thereby supporting transparent and collaborative government initiatives. NASS developed VegScape in cooperation with the Center for Spatial Information Science and Systems, George Mason University, Fairfax, VA. VegScape Ratio to Median NDVI
Analogies: Explanatory Tools in Web-Based Science Instruction
ERIC Educational Resources Information Center
Glynn, Shawn M.; Taasoobshirazi, Gita; Fowler, Shawn
2007-01-01
This article helps designers of Web-based science instruction construct analogies that are as effective as those used in classrooms by exemplary science teachers. First, the authors explain what analogies are, how analogies foster learning, and what form analogies should take. Second, they discuss science teachers' use of analogies. Third, they…
NASA Astrophysics Data System (ADS)
Jackson, I.; Robida, F.
2012-12-01
OneGeology is a global initiative which is trying to improve the accessibility of a fundamental geoscience dataset - geological map data. It is attempting to improve the interoperability of that data and last, but not least, accelerate the transfer and exchange of know-how and experience to achieve these things through state-of-the-art web services. Since its inception in 2006 OneGeology has evolved considerably. 117 nations are now participating, serving more than 250 datasets to a dynamic web map portal. Its websites are used by researchers, teachers, industry and the public. It has spawned national and regional initiatives and even been cloned in other environmental domains. But how does its progress really measure up against its original goals and aspirations? What have been its achievements actually been, and perhaps more instructive, what have been its real challenges? They were not technical - the capabilities of the software and applications. They were organisational, political, and human. On reflection it is obvious that while initiating a global scientific project is far from easy, the challenges are nothing compared to those related to sustaining the project as a service, and establishing the governance and resources to do that. The sharing concept at the core of OneGeology pervades all of its components - the science the informatics sure, but also the people. Finding a way to ensure scientists and their managers can share in harmony and without discord is central to the future of multi-disciplinary science. This presentation will provide a candid appraisal of OneGeology's performance over the last 6 years and describe the lessons learned from that.
The Way Point Planning Tool: Real Time Flight Planning for Airborne Science
NASA Technical Reports Server (NTRS)
He, Yubin; Blakeslee, Richard; Goodman, Michael; Hall, John
2012-01-01
Airborne real time observation are a major component of NASA's Earth Science research and satellite ground validation studies. For mission scientist, planning a research aircraft mission within the context of meeting the science objective is a complex task because it requires real time situational awareness of the weather conditions that affect the aircraft track. Multiple aircraft are often involved in the NASA field campaigns the coordination of the aircraft with satellite overpasses, other airplanes and the constantly evolving dynamic weather conditions often determine the success of the campaign. A flight planning tool is needed to provide situational awareness information to the mission scientist and help them plan and modify the flight tracks successfully. Scientists at the University of Alabama Huntsville and the NASA Marshal Space Flight Center developed the Waypoint Planning Tool (WPT), an interactive software tool that enables scientist to develop their own flight plans (also known as waypoints), with point and click mouse capabilities on a digital map filled with time raster and vector data. The development of this Waypoint Planning Tool demonstrates the significance of mission support in responding to the challenges presented during NASA field campaigns. Analyses during and after each campaign helped identify both issues and new requirements, initiating the next wave of development. Currently the Waypoint Planning Tool has gone through three rounds of development and analysis processes. The development of this waypoint tool is directly affected by the technology advances on GIS/Mapping technologies. From the standalone Google Earth application and simple KML functionalities to the Google Earth Plugin and Java Web Start/Applet on web platform, as well as to the rising open source GIS tools with new JavaScript frameworks, the Waypoint planning Tool has entered its third phase of technology advancement. The newly innovated, cross-platform, modular designed JavaScript-controled Waypoint tool is planned to be integrated with the NASA Airborne Science Mission Tool Suite. Adapting new technologies for the Waypoint Planning Tool ensures its success in helping scientist reach their mission objectives. This presentation will discuss the development process of the Waypoint Planning Tool in responding to field campaign challenges, identifying new information technologies, and describing the capabilities and features of the Waypoint Planning Tool with the real time aspect, interactive nature, and the resultant benefits to the airborne science community.
iAnn: an event sharing platform for the life sciences.
Jimenez, Rafael C; Albar, Juan P; Bhak, Jong; Blatter, Marie-Claude; Blicher, Thomas; Brazas, Michelle D; Brooksbank, Cath; Budd, Aidan; De Las Rivas, Javier; Dreyer, Jacqueline; van Driel, Marc A; Dunn, Michael J; Fernandes, Pedro L; van Gelder, Celia W G; Hermjakob, Henning; Ioannidis, Vassilios; Judge, David P; Kahlem, Pascal; Korpelainen, Eija; Kraus, Hans-Joachim; Loveland, Jane; Mayer, Christine; McDowall, Jennifer; Moran, Federico; Mulder, Nicola; Nyronen, Tommi; Rother, Kristian; Salazar, Gustavo A; Schneider, Reinhard; Via, Allegra; Villaveces, Jose M; Yu, Ping; Schneider, Maria V; Attwood, Teresa K; Corpas, Manuel
2013-08-01
We present iAnn, an open source community-driven platform for dissemination of life science events, such as courses, conferences and workshops. iAnn allows automatic visualisation and integration of customised event reports. A central repository lies at the core of the platform: curators add submitted events, and these are subsequently accessed via web services. Thus, once an iAnn widget is incorporated into a website, it permanently shows timely relevant information as if it were native to the remote site. At the same time, announcements submitted to the repository are automatically disseminated to all portals that query the system. To facilitate the visualization of announcements, iAnn provides powerful filtering options and views, integrated in Google Maps and Google Calendar. All iAnn widgets are freely available. http://iann.pro/iannviewer manuel.corpas@tgac.ac.uk.
Surfing the Web for Science: Early Data on the Users and Uses of The Why Files.
ERIC Educational Resources Information Center
Eveland, William P., Jr.; Dunwoody, Sharon
1998-01-01
This brief offers an initial look at one science site on the World Wide Web (The Why Files: http://whyfiles.news.wise.edu) in order to consider the educational potential of this technology. The long-term goal of the studies of this site is to understand how the World Wide Web can be used to enhance science, mathematics, engineering, and technology…
Using the World Wide WEB to promote science education in nuclear energy and RWM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, M.
1996-12-31
A priority of government and business in the United States and other first tier industrial countries continues to be the improvement of science, mathematics and technology (SMT) instruction in pre university level education. The U.S. federal government has made SMT instruction an educational priority and set goals for improving it in the belief that science, math and technology education are tied to our economic well being and standard of living. The new national standards in mathematics education, science education and the proposed standards in technology education are all aimed at improving knowledge and skills in the essential areas that themore » federal government considers important for protecting our technological advantage in the world economy. This paper will discuss a pilot project for establishing graphical Web capability in a limited number of rural Nevada schools (six) with support from the US Department of Energy (DOE) and the state of Nevada. The general goals of the pilot project are as follows: (1) to give rural teachers and students access to up to date science information on the Web; (2) to determine whether Web access can improve science teaching and student attitudes toward science in rural Nevada schools; and (3) to identify science content on the Web that supports the National Science Standards and Benchmarks. A specific objective that this paper will address is stated as the following question: What potential do nuclear energy information office web sites offer for changing student attitudes about nuclear energy and creating greater nuclear literacy.« less
NASA Astrophysics Data System (ADS)
Johnson, S. Y.; Cochrane, G. R.; Golden, N. E.; Dartnell, P.; Hartwell, S. R.; Cochran, S. A.; Watt, J. T.
2017-12-01
The California Seafloor Mapping Program (CSMP) is a collaborative effort to develop comprehensive bathymetric, geologic, and habitat maps and data for California's State Waters, which extend for 1,350 km from the shoreline to 5.6 km offshore. CSMP began in 2007 when the California Ocean Protection Council and NOAA allocated funding for high-resolution bathymetric mapping to support the California Marine Life Protection Act and update nautical charts. Collaboration and support from the USGS and other partners has led to development and dissemination of one of the world's largest seafloor-mapping datasets. CSMP data collection includes: (1) High-resolution bathymetric and backscatter mapping using swath sonar sensors; (2) "Ground-truth" imaging from a sled mounted with video and still cameras; (3) High-resolution seismic-reflection profiling at 1 km line spacing. Processed data are all publicly available. Additionally, 25 USGS map and datasets covering one third of California's coast have been published. Each publication contains 9 to 12 pdf map sheets (1:24,000 scale), an explanatory pamphlet, and a catalog of digital geospatial data layers (about 15 to 25 per map area) with web services. Map sheets display bathymetry, backscatter, perspective views, habitats, groundtruth imagery, seismic profiles, sediment distribution and thickness, and onshore-offshore geology. The CSMP goal is to serve a large constituency, ranging from senior GIS analysts in large agencies, to local governments with limited resources, to non-governmental organizations, the private sector, and concerned citizens. CSMP data and publications provide essential science and data for ocean and coastal management, stimulate and enable research, and raise public education and awareness of coastal and ocean issues. Specific applications include: Delineation and designation of marine protected areas Characterization and modeling of benthic habitats and ecosystems Updating nautical charts Earthquake hazard assessments Tsunami hazard assessments Planning and developing offshore infrastructure Providing baselines for monitoring change Input to models of sediment transport, coastal erosion, and coastal flooding Regional sediment management Understanding coastal aquifers Emergency (e.g., oil spill) response
ERIC Educational Resources Information Center
Rappolt-Schlichtmann, Gabrielle; Daley, Samantha G.; Lim, Seoin; Lapinski, Scott; Robinson, Kristin H.; Johnson, Mindy
2013-01-01
Science notebooks can play a critical role in activity-based science learning, but the tasks of recording, organizing, analyzing, and interpreting data create barriers that impede science learning for many students. This study (a) assessed in a randomized controlled trial the potential for a web-based science notebook designed using the Universal…
Croatian Medical Journal Citation Score in Web of Science, Scopus, and Google Scholar
Šember, Marijan; Utrobičić, Ana; Petrak, Jelka
2010-01-01
Aim To analyze the 2007 citation count of articles published by the Croatian Medical Journal in 2005-2006 based on data from the Web of Science, Scopus, and Google Scholar. Methods Web of Science and Scopus were searched for the articles published in 2005-2006. As all articles returned by Scopus were included in Web of Science, the latter list was the sample for further analysis. Total citation counts for each article on the list were retrieved from Web of Science, Scopus, and Google Scholar. The overlap and unique citations were compared and analyzed. Proportions were compared using χ2-test. Results Google Scholar returned the greatest proportion of articles with citations (45%), followed by Scopus (42%), and Web of Science (38%). Almost a half (49%) of articles had no citations and 11% had an equal number of identical citations in all 3 databases. The greatest overlap was found between Web of Science and Scopus (54%), followed by Scopus and Google Scholar (51%), and Web of Science and Google Scholar (44%). The greatest number of unique citations was found by Google Scholar (n = 86). The majority of these citations (64%) came from journals, followed by books and PhD theses. Approximately 55% of all citing documents were full-text resources in open access. The language of citing documents was mostly English, but as many as 25 citing documents (29%) were in Chinese. Conclusion Google Scholar shares a total of 42% citations returned by two others, more influential, bibliographic resources. The list of unique citations in Google Scholar is predominantly journal based, but these journals are mainly of local character. Citations received by internationally recognized medical journals are crucial for increasing the visibility of small medical journals but Google Scholar may serve as an alternative bibliometric tool for an orientational citation insight. PMID:20401951
Design and Evaluation of an Open Web Platform Cartography Lab Curriculum
ERIC Educational Resources Information Center
Sack, Carl M.; Roth, Robert E.
2017-01-01
Recent shifts in web map technology away from proprietary software and toward development on the Open Web Platform have increased the number and complexity of technical skills needed to do cartography on the Web. Web-based cartography curricula likewise must be adapted to prepare geography, cartography, and GIS students with the skills needed to…
PepMapper: a collaborative web tool for mapping epitopes from affinity-selected peptides.
Chen, Wenhan; Guo, William W; Huang, Yanxin; Ma, Zhiqiang
2012-01-01
Epitope mapping from affinity-selected peptides has become popular in epitope prediction, and correspondingly many Web-based tools have been developed in recent years. However, the performance of these tools varies in different circumstances. To address this problem, we employed an ensemble approach to incorporate two popular Web tools, MimoPro and Pep-3D-Search, together for taking advantages offered by both methods so as to give users more options for their specific purposes of epitope-peptide mapping. The combined operation of Union finds as many associated peptides as possible from both methods, which increases sensitivity in finding potential epitopic regions on a given antigen surface. The combined operation of Intersection achieves to some extent the mutual verification by the two methods and hence increases the likelihood of locating the genuine epitopic region on a given antigen in relation to the interacting peptides. The Consistency between Intersection and Union is an indirect sufficient condition to assess the likelihood of successful peptide-epitope mapping. On average from 27 tests, the combined operations of PepMapper outperformed either MimoPro or Pep-3D-Search alone. Therefore, PepMapper is another multipurpose mapping tool for epitope prediction from affinity-selected peptides. The Web server can be freely accessed at: http://informatics.nenu.edu.cn/PepMapper/
Web GIS in practice VIII: HTML5 and the canvas element for interactive online mapping
2010-01-01
HTML5 is being developed as the next major revision of HTML (Hypertext Markup Language), the core markup language of the World Wide Web. It aims at reducing the need for proprietary, plug-in-based rich Internet application (RIA) technologies such as Adobe Flash. The canvas element is part of HTML5 and is used to draw graphics using scripting (e.g., JavaScript). This paper introduces Cartagen, an open-source, vector-based, client-side framework for rendering plug-in-free, offline-capable, interactive maps in native HTML5 on a wide range of Web browsers and mobile phones. Cartagen was developed at MIT Media Lab's Design Ecology group. Potential applications of the technology as an enabler for participatory online mapping include mapping real-time air pollution, citizen reporting, and disaster response, among many other possibilities. PMID:20199681
Neuhaus, Philipp; Doods, Justin; Dugas, Martin
2015-01-01
Automatic coding of medical terms is an important, but highly complicated and laborious task. To compare and evaluate different strategies a framework with a standardized web-interface was created. Two UMLS mapping strategies are compared to demonstrate the interface. The framework is a Java Spring application running on a Tomcat application server. It accepts different parameters and returns results in JSON format. To demonstrate the framework, a list of medical data items was mapped by two different methods: similarity search in a large table of terminology codes versus search in a manually curated repository. These mappings were reviewed by a specialist. The evaluation shows that the framework is flexible (due to standardized interfaces like HTTP and JSON), performant and reliable. Accuracy of automatically assigned codes is limited (up to 40%). Combining different semantic mappers into a standardized Web-API is feasible. This framework can be easily enhanced due to its modular design.
Web mapping system for complex processing and visualization of environmental geospatial datasets
NASA Astrophysics Data System (ADS)
Titov, Alexander; Gordov, Evgeny; Okladnikov, Igor
2016-04-01
Environmental geospatial datasets (meteorological observations, modeling and reanalysis results, etc.) are used in numerous research applications. Due to a number of objective reasons such as inherent heterogeneity of environmental datasets, big dataset volume, complexity of data models used, syntactic and semantic differences that complicate creation and use of unified terminology, the development of environmental geodata access, processing and visualization services as well as client applications turns out to be quite a sophisticated task. According to general INSPIRE requirements to data visualization geoportal web applications have to provide such standard functionality as data overview, image navigation, scrolling, scaling and graphical overlay, displaying map legends and corresponding metadata information. It should be noted that modern web mapping systems as integrated geoportal applications are developed based on the SOA and might be considered as complexes of interconnected software tools for working with geospatial data. In the report a complex web mapping system including GIS web client and corresponding OGC services for working with geospatial (NetCDF, PostGIS) dataset archive is presented. There are three basic tiers of the GIS web client in it: 1. Tier of geospatial metadata retrieved from central MySQL repository and represented in JSON format 2. Tier of JavaScript objects implementing methods handling: --- NetCDF metadata --- Task XML object for configuring user calculations, input and output formats --- OGC WMS/WFS cartographical services 3. Graphical user interface (GUI) tier representing JavaScript objects realizing web application business logic Metadata tier consists of a number of JSON objects containing technical information describing geospatial datasets (such as spatio-temporal resolution, meteorological parameters, valid processing methods, etc). The middleware tier of JavaScript objects implementing methods for handling geospatial metadata, task XML object, and WMS/WFS cartographical services interconnects metadata and GUI tiers. The methods include such procedures as JSON metadata downloading and update, launching and tracking of the calculation task running on the remote servers as well as working with WMS/WFS cartographical services including: obtaining the list of available layers, visualizing layers on the map, exporting layers in graphical (PNG, JPG, GeoTIFF), vector (KML, GML, Shape) and digital (NetCDF) formats. Graphical user interface tier is based on the bundle of JavaScript libraries (OpenLayers, GeoExt and ExtJS) and represents a set of software components implementing web mapping application business logic (complex menus, toolbars, wizards, event handlers, etc.). GUI provides two basic capabilities for the end user: configuring the task XML object functionality and cartographical information visualizing. The web interface developed is similar to the interface of such popular desktop GIS applications, as uDIG, QuantumGIS etc. Web mapping system developed has shown its effectiveness in the process of solving real climate change research problems and disseminating investigation results in cartographical form. The work is supported by SB RAS Basic Program Projects VIII.80.2.1 and IV.38.1.7.
NASA Astrophysics Data System (ADS)
Cole, S.; Goldman, J.; West, P.
2008-12-01
The International Polar Year (IPY) provided U.S. agencies involved in polar research with a major outreach challenge: how to portray a unified view of the wealth of federal activity through a communications network dominated by agency-focused channels. To meet this challenge, 16 federal agencies joined together in an ongoing interagency working group, lead by the National Science Foundation's Office of Polar Programs, resulting in a series of successful media and public outreach endeavors. These included a unique interagency U.S. IPY web site (www.ipy.gov) that allowed participating agencies to independently upload relevant information every day; a major IPY kickoff event at the National Academies of Science; and a joint NASA/NSF/USGS televised press conference unveiling a new satellite map of Antarctica. Key to these successes was the interagency working group, which facilitated in-depth and sustained interaction between the agencies in coordinating development of outreach strategies both at the agency and federal level.
The MIND PALACE: A Multi-Spectral Imaging and Spectroscopy Database for Planetary Science
NASA Astrophysics Data System (ADS)
Eshelman, E.; Doloboff, I.; Hara, E. K.; Uckert, K.; Sapers, H. M.; Abbey, W.; Beegle, L. W.; Bhartia, R.
2017-12-01
The Multi-Instrument Database (MIND) is the web-based home to a well-characterized set of analytical data collected by a suite of deep-UV fluorescence/Raman instruments built at the Jet Propulsion Laboratory (JPL). Samples derive from a growing body of planetary surface analogs, mineral and microbial standards, meteorites, spacecraft materials, and other astrobiologically relevant materials. In addition to deep-UV spectroscopy, datasets stored in MIND are obtained from a variety of analytical techniques obtained over multiple spatial and spectral scales including electron microscopy, optical microscopy, infrared spectroscopy, X-ray fluorescence, and direct fluorescence imaging. Multivariate statistical analysis techniques, primarily Principal Component Analysis (PCA), are used to guide interpretation of these large multi-analytical spectral datasets. Spatial co-referencing of integrated spectral/visual maps is performed using QGIS (geographic information system software). Georeferencing techniques transform individual instrument data maps into a layered co-registered data cube for analysis across spectral and spatial scales. The body of data in MIND is intended to serve as a permanent, reliable, and expanding database of deep-UV spectroscopy datasets generated by this unique suite of JPL-based instruments on samples of broad planetary science interest.
High-Performance Tiled WMS and KML Web Server
NASA Technical Reports Server (NTRS)
Plesea, Lucian
2007-01-01
This software is an Apache 2.0 module implementing a high-performance map server to support interactive map viewers and virtual planet client software. It can be used in applications that require access to very-high-resolution geolocated images, such as GIS, virtual planet applications, and flight simulators. It serves Web Map Service (WMS) requests that comply with a given request grid from an existing tile dataset. It also generates the KML super-overlay configuration files required to access the WMS image tiles.
Benedict, Stephen T.; Caldwell, Andral W.; Clark, Jimmy M.
2013-01-01
Digital flood-inundation maps for a 3.95-mile reach of the Saluda River from approximately 815 feet downstream from Old Easley Bridge Road to approximately 150 feet downstream from Saluda Lake Dam near Greenville, South Carolina, were developed by the U.S. Geological Survey (USGS). The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Saluda River near Greenville, South Carolina (station 02162500). Current conditions at the USGS streamgage may be obtained through the National Water Information System Web site at http://waterdata.usgs.gov/sc/nwis/uv/?site_no=02162500&PARAmeter_cd=00065,00060,00062. The National Weather Service (NWS) forecasts flood hydrographs at many places that are often collocated with USGS streamgages. Forecasted peak-stage information is available on the Internet at the NWS Advanced Hydrologic Prediction Service (AHPS) flood-warning system Web site (http://water.weather.gov/ahps/) and may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation.In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated using the most current stage-streamflow relations at USGS streamgage station 02162500, Saluda River near Greenville, South Carolina. The hydraulic model was then used to determine water-surface profiles for flood stages at 1.0-foot intervals referenced to the streamgage datum and ranging from approximately bankfull to 2 feet higher than the highest recorded water level at the streamgage. The simulated water-surface profiles were then exported to a geographic information system, ArcGIS, and combined with a digital elevation model (derived from Light Detection and Ranging [LiDAR] data with a 0.6-foot vertical Root Mean Square Error [RMSE] and a 3.0-foot horizontal RMSE), using HEC-GeoRAS tools in order to delineate the area flooded at each water level. The availability of these maps, along with real-time stage data from the USGS streamgage station 02162500 and forecasted stream stages from the NWS, can provide emergency management personnel and residents with information that is critical during flood-response and flood-recovery activities, such as evacuations, road closures, and disaster declarations.
Tracking the fate of watershed nitrogen: The “N-Sink” Web Tool and Two Case Studies
This product describes the application of a web-based decision support tool, N-Sink, in two case study watersheds. N-Sink is a customized ArcMap© program that provides maps of N sourcesand sinks within a watershed, and estimates the delivery efficiency of N movement from sou...
Visual Links in the World-Wide Web: The Uses and Limitations of Image Maps.
ERIC Educational Resources Information Center
Cochenour, John J.; And Others
As information delivery systems on the Internet increasingly evolve into World Wide Web browsers, understanding key graphical elements of the browser interface is critical to the design of effective information display and access tools. Image maps are one such element, and this document describes a pilot study that collected, reviewed, and…
The Geospatial Web and Local Geographical Education
ERIC Educational Resources Information Center
Harris, Trevor M.; Rouse, L. Jesse; Bergeron, Susan J.
2010-01-01
Recent innovations in the Geospatial Web represent a paradigm shift in Web mapping by enabling educators to explore geography in the classroom by dynamically using a rapidly growing suite of impressive online geospatial tools. Coupled with access to spatial data repositories and User-Generated Content, the Geospatial Web provides a powerful…
Engineering web maps with gradual content zoom based on streaming vector data
NASA Astrophysics Data System (ADS)
Huang, Lina; Meijers, Martijn; Šuba, Radan; van Oosterom, Peter
2016-04-01
Vario-scale data structures have been designed to support gradual content zoom and the progressive transfer of vector data, for use with arbitrary map scales. The focus to date has been on the server side, especially on how to convert geographic data into the proposed vario-scale structures by means of automated generalisation. This paper contributes to the ongoing vario-scale research by focusing on the client side and communication, particularly on how this works in a web-services setting. It is claimed that these functionalities are urgently needed, as many web-based applications, both desktop and mobile, require gradual content zoom, progressive transfer and a high performance level. The web-client prototypes developed in this paper make it possible to assess the behaviour of vario-scale data and to determine how users will actually see the interactions. Several different options of web-services communication architectures are possible in a vario-scale setting. These options are analysed and tested with various web-client prototypes, with respect to functionality, ease of implementation and performance (amount of transmitted data and response times). We show that the vario-scale data structure can fit in with current web-based architectures and efforts to standardise map distribution on the internet. However, to maximise the benefits of vario-scale data, a client needs to be aware of this structure. When a client needs a map to be refined (by means of a gradual content zoom operation), only the 'missing' data will be requested. This data will be sent incrementally to the client from a server. In this way, the amount of data transferred at one time is reduced, shortening the transmission time. In addition to these conceptual architecture aspects, there are many implementation and tooling design decisions at play. These will also be elaborated on in this paper. Based on the experiments conducted, we conclude that the vario-scale approach indeed supports gradual content zoom and the progressive web transfer of vector data. This is a big step forward in making vector data at arbitrary map scales available to larger user groups.
Technology Integration in Science Classrooms: Framework, Principles, and Examples
ERIC Educational Resources Information Center
Kim, Minchi C.; Freemyer, Sarah
2011-01-01
A great number of technologies and tools have been developed to support science learning and teaching. However, science teachers and researchers point out numerous challenges to implementing such tools in science classrooms. For instance, guidelines, lesson plans, Web links, and tools teachers can easily find through Web-based search engines often…
GeoInquiries: Addressing a Grand Challenge for Teaching with GIS in Schools
NASA Astrophysics Data System (ADS)
DiBiase, D.; Baker, T.
2016-12-01
According to the National Research Council (2006), geographic information systems (GIS) is a powerful tool for expanding students' abilities to think spatially, a critical skill for future STEM professionals. However, educators in mainstream subjects in U.S. education have struggled for decades to use GIS effectively in classrooms. GeoInquiries are no cost, standards-based (NGSS or AP), Creative Commons-licensed instructional activities that guide inquiry around map-based concepts found in key subjects like Earth and environmental science. Web maps developed for GeoInquiries expand upon printed maps in leading textbooks by taking advantage of 21st GIS capabilities. GeoInquiry collections consist of 15 activities, each chosen to offer a map-based activity every few weeks throughout the school year. GeoInquiries use a common inquiry instructional framework, learned by many educators during their teacher preparation coursework. GeoInquiries are instructionally flexible - acting as much like building blocks for crafting custom activities as finished instructional materials. Over a half million geoinquiries will be accessed in the next twelve months - serving an anticipated 15 million students. After a generation of outreach to the educators, GIS is finally finding its way the mainstream.
The Montage Image Mosaic Toolkit As A Visualization Engine.
NASA Astrophysics Data System (ADS)
Berriman, G. Bruce; Lerias, Angela; Good, John; Mandel, Eric; Pepper, Joshua
2018-01-01
The Montage toolkit has since 2003 been used to aggregate FITS images into mosaics for science analysis. It is now finding application as an engine for image visualization. One important reason is that the functionality developed for creating mosaics is also valuable in image visualization. An equally important (though perhaps less obvious) reason is that Montage is portable and is built on standard astrophysics toolkits, making it very easy to integrate into new environments. Montage models and rectifies the sky background to a common level and thus reveals faint, diffuse features; it offers an adaptive image stretching method that preserves the dynamic range of a FITS image when represented in PNG format; it provides utilities for creating cutouts of large images and downsampled versions of large images that can then be visualized on desktops or in browsers; it contains a fast reprojection algorithm intended for visualization; and it resamples and reprojects images to a common grid for subsequent multi-color visualization.This poster will highlight these visualization capabilities with the following examples:1. Creation of down-sampled multi-color images of a 16-wavelength Infrared Atlas of the Galactic Plane, sampled at 1 arcsec when created2. Integration into web-based image processing environment: JS9 is an interactive image display service for web browsers, desktops and mobile devices. It exploits the flux-preserving reprojection algorithms in Montage to transform diverse images to common image parameters for display. Select Montage programs have been compiled to Javascript/WebAssembly using the Emscripten compiler, which allows our reprojection algorithms to run in browsers at close to native speed.3. Creation of complex sky coverage maps: an multicolor all-sky map that shows the sky coverage of the Kepler and K2, KELT and TESS projects, overlaid on an all-sky 2MASS image.Montage is funded by the National Science Foundation under Grant Number ACI-1642453. JS9 is funded by the Chandra X-ray Center (NAS8-03060) and NASA's Universe of Learning (STScI-509913).
Data Basin: Expanding Access to Conservation Data, Tools, and People
NASA Astrophysics Data System (ADS)
Comendant, T.; Strittholt, J.; Frost, P.; Ward, B. C.; Bachelet, D. M.; Osborne-Gowey, J.
2009-12-01
Mapping and spatial analysis are a fundamental part of problem solving in conservation science, yet spatial data are widely scattered, difficult to locate, and often unavailable. Valuable time and resources are wasted locating and gaining access to important biological, cultural, and economic datasets, scientific analysis, and experts. As conservation problems become more serious and the demand to solve them grows more urgent, a new way to connect science and practice is needed. To meet this need, an open-access, web tool called Data Basin (www.databasin.org) has been created by the Conservation Biology Institute in partnership with ESRI and the Wilburforce Foundation. Users of Data Basin can gain quick access to datasets, experts, groups, and tools to help solve real-world problems. Individuals and organizations can perform essential tasks such as exploring and downloading from a vast library of conservation datasets, uploading existing datasets, connecting to other external data sources, create groups, and produce customized maps that can be easily shared. Data Basin encourages sharing and publishing, but also provides privacy and security for sensitive information when needed. Users can publish projects within Data Basin to tell more complete and rich stories of discovery and solutions. Projects are an ideal way to publish collections of datasets, maps and other information on the internet to reach wider audiences. Data Basin also houses individual centers that provide direct access to data, maps, and experts focused on specific geographic areas or conservation topics. Current centers being developed include the Boreal Information Centre, the Data Basin Climate Center, and proposed Aquatic and Forest Conservation Centers.
Access to dialysis services: A systematic mapping review based on geographical information systems.
Hoseini, Benyamin; Bagheri, Nasser; Kiani, Behzad; Azizi, Amirabbas; Tabesh, Hamed; Tara, Mahmood
2018-05-07
Equitable access to healthcare services constitutes one of the leading priorities of healthcare provision and access to dialysis services (ADS) has an essential impact on patients depending on renal dialysis. The many existing GIS-based ADS evaluations include various spatial and non-spatial factors affecting ADS. We systematically mapped and reviewed the available literature with reference to this area identifying gaps in current GIS-based ADS measurements and developing recommendations for future studies. A threestep, systematic mapping review of the available GIS-related evidence in PubMed, Embase, Web of science, Scopus, Science Direct and IEEE Xplore was performed in May 2016 and the information collected updated October 2017 by two independent selection processes. The quality of the studies was assessed using an informal, mixed-approach scoring system. Out of 1119 literature references identified, 36 were identified and used for final review after removal of duplicates, study screenings and applying inclusion/exclusion criteria. Given the contents of the selected studies, three study groups were identified and 41 factors with potential effects on ADS determined. These studies mainly addressed the potential and/or spatial aspects of ADS. Our systematic mapping review of the evidence revealed that current GIS-based measures of ADS tend to calculate potential ADS instead of a realized one. It was also noted that listed factors affecting ADS were mainly nonspatial bringing forth the hypothesis that designing an integrated ADS index could possibly produce better ADS score than those currently advocated. Some primary and secondary research suggestions are made and a list of recommendations offered.
Uncertainty visualisation in the Model Web
NASA Astrophysics Data System (ADS)
Gerharz, L. E.; Autermann, C.; Hopmann, H.; Stasch, C.; Pebesma, E.
2012-04-01
Visualisation of geospatial data as maps is a common way to communicate spatially distributed information. If temporal and furthermore uncertainty information are included in the data, efficient visualisation methods are required. For uncertain spatial and spatio-temporal data, numerous visualisation methods have been developed and proposed, but only few tools for visualisation of data in a standardised way exist. Furthermore, usually they are realised as thick clients, and lack functionality of handling data coming from web services as it is envisaged in the Model Web. We present an interactive web tool for visualisation of uncertain spatio-temporal data developed in the UncertWeb project. The client is based on the OpenLayers JavaScript library. OpenLayers provides standard map windows and navigation tools, i.e. pan, zoom in/out, to allow interactive control for the user. Further interactive methods are implemented using jStat, a JavaScript library for statistics plots developed in UncertWeb, and flot. To integrate the uncertainty information into existing standards for geospatial data, the Uncertainty Markup Language (UncertML) was applied in combination with OGC Observations&Measurements 2.0 and JavaScript Object Notation (JSON) encodings for vector and NetCDF for raster data. The client offers methods to visualise uncertain vector and raster data with temporal information. Uncertainty information considered for the tool are probabilistic and quantified attribute uncertainties which can be provided as realisations or samples, full probability distributions functions and statistics. Visualisation is supported for uncertain continuous and categorical data. In the client, the visualisation is realised using a combination of different methods. Based on previously conducted usability studies, a differentiation between expert (in statistics or mapping) and non-expert users has been indicated as useful. Therefore, two different modes are realised together in the tool: (i) adjacent maps showing data and uncertainty separately, and (ii) multidimensional mapping providing different visualisation methods in combination to explore the spatial, temporal and uncertainty distribution of the data. Adjacent maps allow a simpler visualisation by separating value and uncertainty maps for non-experts and a first overview. The multidimensional approach allows a more complex exploration of the data for experts by browsing through the different dimensions. It offers the visualisation of maps, statistic plots and time series in different windows and sliders to interactively move through time, space and uncertainty (thresholds).
Sensor Webs with a Service-Oriented Architecture for On-demand Science Products
NASA Technical Reports Server (NTRS)
Mandl, Daniel; Ungar, Stephen; Ames, Troy; Justice, Chris; Frye, Stuart; Chien, Steve; Tran, Daniel; Cappelaere, Patrice; Derezinsfi, Linda; Paules, Granville;
2007-01-01
This paper describes the work being managed by the NASA Goddard Space Flight Center (GSFC) Information System Division (ISD) under a NASA Earth Science Technology Ofice (ESTO) Advanced Information System Technology (AIST) grant to develop a modular sensor web architecture which enables discovery of sensors and workflows that can create customized science via a high-level service-oriented architecture based on Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) web service standards. These capabilities serve as a prototype to a user-centric architecture for Global Earth Observing System of Systems (GEOSS). This work builds and extends previous sensor web efforts conducted at NASA/GSFC using the Earth Observing 1 (EO-1) satellite and other low-earth orbiting satellites.
Acquiring geographical data with web harvesting
NASA Astrophysics Data System (ADS)
Dramowicz, K.
2016-04-01
Many websites contain very attractive and up to date geographical information. This information can be extracted, stored, analyzed and mapped using web harvesting techniques. Poorly organized data from websites are transformed with web harvesting into a more structured format, which can be stored in a database and analyzed. Almost 25% of web traffic is related to web harvesting, mostly while using search engines. This paper presents how to harvest geographic information from web documents using the free tool called the Beautiful Soup, one of the most commonly used Python libraries for pulling data from HTML and XML files. It is a relatively easy task to process one static HTML table. The more challenging task is to extract and save information from tables located in multiple and poorly organized websites. Legal and ethical aspects of web harvesting are discussed as well. The paper demonstrates two case studies. The first one shows how to extract various types of information about the Good Country Index from the multiple web pages, load it into one attribute table and map the results. The second case study shows how script tools and GIS can be used to extract information from one hundred thirty six websites about Nova Scotia wines. In a little more than three minutes a database containing one hundred and six liquor stores selling these wines is created. Then the availability and spatial distribution of various types of wines (by grape types, by wineries, and by liquor stores) are mapped and analyzed.
An Offline-Online Android Application for Hazard Event Mapping Using WebGIS Open Source Technologies
NASA Astrophysics Data System (ADS)
Olyazadeh, Roya; Jaboyedoff, Michel; Sudmeier-Rieux, Karen; Derron, Marc-Henri; Devkota, Sanjaya
2016-04-01
Nowadays, Free and Open Source Software (FOSS) plays an important role in better understanding and managing disaster risk reduction around the world. National and local government, NGOs and other stakeholders are increasingly seeking and producing data on hazards. Most of the hazard event inventories and land use mapping are based on remote sensing data, with little ground truthing, creating difficulties depending on the terrain and accessibility. Open Source WebGIS tools offer an opportunity for quicker and easier ground truthing of critical areas in order to analyse hazard patterns and triggering factors. This study presents a secure mobile-map application for hazard event mapping using Open Source WebGIS technologies such as Postgres database, Postgis, Leaflet, Cordova and Phonegap. The objectives of this prototype are: 1. An Offline-Online android mobile application with advanced Geospatial visualisation; 2. Easy Collection and storage of events information applied services; 3. Centralized data storage with accessibility by all the service (smartphone, standard web browser); 4. Improving data management by using active participation in hazard event mapping and storage. This application has been implemented as a low-cost, rapid and participatory method for recording impacts from hazard events and includes geolocation (GPS data and Internet), visualizing maps with overlay of satellite images, viewing uploaded images and events as cluster points, drawing and adding event information. The data can be recorded in offline (Android device) or online version (all browsers) and consequently uploaded through the server whenever internet is available. All the events and records can be visualized by an administrator and made public after approval. Different user levels can be defined to access the data for communicating the information. This application was tested for landslides in post-earthquake Nepal but can be used for any other type of hazards such as flood, avalanche, etc. Keywords: Offline, Online, WebGIS Open source, Android, Hazard Event Mapping
NASA Astrophysics Data System (ADS)
Bandibas, J. C.; Takarada, S.
2013-12-01
Timely identification of areas affected by natural disasters is very important for a successful rescue and effective emergency relief efforts. This research focuses on the development of a cost effective and efficient system of identifying areas affected by natural disasters, and the efficient distribution of the information. The developed system is composed of 3 modules which are the Web Processing Service (WPS), Web Map Service (WMS) and the user interface provided by J-iView (fig. 1). WPS is an online system that provides computation, storage and data access services. In this study, the WPS module provides online access of the software implementing the developed frequency based change detection algorithm for the identification of areas affected by natural disasters. It also sends requests to WMS servers to get the remotely sensed data to be used in the computation. WMS is a standard protocol that provides a simple HTTP interface for requesting geo-registered map images from one or more geospatial databases. In this research, the WMS component provides remote access of the satellite images which are used as inputs for land cover change detection. The user interface in this system is provided by J-iView, which is an online mapping system developed at the Geological Survey of Japan (GSJ). The 3 modules are seamlessly integrated into a single package using J-iView, which could rapidly generate a map of disaster areas that is instantaneously viewable online. The developed system was tested using ASTER images covering the areas damaged by the March 11, 2011 tsunami in northeastern Japan. The developed system efficiently generated a map showing areas devastated by the tsunami. Based on the initial results of the study, the developed system proved to be a useful tool for emergency workers to quickly identify areas affected by natural disasters.
A Forest Fire Sensor Web Concept with UAVSAR
NASA Astrophysics Data System (ADS)
Lou, Y.; Chien, S.; Clark, D.; Doubleday, J.; Muellerschoen, R.; Zheng, Y.
2008-12-01
We developed a forest fire sensor web concept with a UAVSAR-based smart sensor and onboard automated response capability that will allow us to monitor fire progression based on coarse initial information provided by an external source. This autonomous disturbance detection and monitoring system combines the unique capabilities of imaging radar with high throughput onboard processing technology and onboard automated response capability based on specific science algorithms. In this forest fire sensor web scenario, a fire is initially located by MODIS/RapidFire or a ground-based fire observer. This information is transmitted to the UAVSAR onboard automated response system (CASPER). CASPER generates a flight plan to cover the alerted fire area and executes the flight plan. The onboard processor generates the fuel load map from raw radar data, used with wind and elevation information, predicts the likely fire progression. CASPER then autonomously alters the flight plan to track the fire progression, providing this information to the fire fighting team on the ground. We can also relay the precise fire location to other remote sensing assets with autonomous response capability such as Earth Observation-1 (EO-1)'s hyper-spectral imager to acquire the fire data.
NASA/MSFC/NSSTC Science Communication Roundtable
NASA Technical Reports Server (NTRS)
Adams, M. L.; Gallagher, D. L.; Koczor, R.; Six, N. Frank (Technical Monitor)
2002-01-01
The Science Directorate at Marshall Space Flight Center (MSFC) conducts a diverse program of Internet-based science communication through a Science Roundtable process. The Roundtable includes active researchers, writers, NASA public relations staff, educators, and administrators. The Science@NASA award-winning family of Web sites features science, mathematics, and space news to inform, involve, and inspire students and the public about science. We describe here the process of producing stories, results from research to understand the science communication process, and we highlight each member of our Web family.
The emergent discipline of health web science.
Luciano, Joanne S; Cumming, Grant P; Wilkinson, Mark D; Kahana, Eva
2013-08-22
The transformative power of the Internet on all aspects of daily life, including health care, has been widely recognized both in the scientific literature and in public discourse. Viewed through the various lenses of diverse academic disciplines, these transformations reveal opportunities realized, the promise of future advances, and even potential problems created by the penetration of the World Wide Web for both individuals and for society at large. Discussions about the clinical and health research implications of the widespread adoption of information technologies, including the Internet, have been subsumed under the disciplinary label of Medicine 2.0. More recently, however, multi-disciplinary research has emerged that is focused on the achievement and promise of the Web itself, as it relates to healthcare issues. In this paper, we explore and interrogate the contributions of the burgeoning field of Web Science in relation to health maintenance, health care, and health policy. From this, we introduce Health Web Science as a subdiscipline of Web Science, distinct from but overlapping with Medicine 2.0. This paper builds on the presentations and subsequent interdisciplinary dialogue that developed among Web-oriented investigators present at the 2012 Medicine 2.0 Conference in Boston, Massachusetts.
The Emergent Discipline of Health Web Science
2013-01-01
The transformative power of the Internet on all aspects of daily life, including health care, has been widely recognized both in the scientific literature and in public discourse. Viewed through the various lenses of diverse academic disciplines, these transformations reveal opportunities realized, the promise of future advances, and even potential problems created by the penetration of the World Wide Web for both individuals and for society at large. Discussions about the clinical and health research implications of the widespread adoption of information technologies, including the Internet, have been subsumed under the disciplinary label of Medicine 2.0. More recently, however, multi-disciplinary research has emerged that is focused on the achievement and promise of the Web itself, as it relates to healthcare issues. In this paper, we explore and interrogate the contributions of the burgeoning field of Web Science in relation to health maintenance, health care, and health policy. From this, we introduce Health Web Science as a subdiscipline of Web Science, distinct from but overlapping with Medicine 2.0. This paper builds on the presentations and subsequent interdisciplinary dialogue that developed among Web-oriented investigators present at the 2012 Medicine 2.0 Conference in Boston, Massachusetts. PMID:23968998
A Virtual Tour of the Radio Astronomy Process
NASA Astrophysics Data System (ADS)
Conrad, S. B.; Finley, D. G.; Claussen, M. J.; Ulvestad, J. S.
2000-12-01
In the summer of 2000, two teachers working on a Masters of Science Teaching Degree at New Mexico Tech and participating in the Research Experience for Teachers (RET) program sponsored by the National Science Foundation, spent eight weeks as interns researching and working on projects at the National Radio Astronomy Observatory (NRAO) which will directly benefit students in their classrooms and also impact other science educators. One of the products of the interships is a set of web pages for NRAO's web page educational section. The purpose of these web pages is to familiarize students, teachers, and other people with the process that a radio astronomer goes through to do radio astronomy science. A virtual web tour was created of this process. This required interviewing radio astronomers and other professionals involved with this process at the NRAO (e.g. engineers, data analysts, and operations people), and synthesizing the interviews into a descriptive, visual-based set of web pages. These pages do meet the National as well as New Mexico Standards and Benchmarks for Science Education. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The NSF's RET program is gratefully acknowledged.
Application of OpenStreetMap (OSM) to Support the Mapping Village in Indonesia
NASA Astrophysics Data System (ADS)
Swasti Kanthi, Nurin; Hery Purwanto, Taufik
2016-11-01
Geospatial Information is a important thing in this era, because the need for location information is needed to know the condition of a region. In 2015 the Indonesian government release detailed mapping in village level and their Parent maps Indonesian state regulatory standards set forth in Rule form Norm Standards, Procedures and Criteria for Mapping Village (NSPK). Over time Web and Mobile GIS was developed with a wide range of applications. The merger between detailed mapping and Web GIS is still rarely performed and not used optimally. OpenStreetMap (OSM) is a WebGIS which can be utilized as Mobile GIS providing sufficient information to the representative levels of the building and can be used for mapping the village.Mapping Village using OSM was conducted using remote sensing approach and Geographical Information Systems (GIS), which's to interpret remote sensing imagery from OSM. The study was conducted to analyzed how far the role of OSM to support the mapping of the village, it's done by entering the house number data, administrative boundaries, public facilities and land use into OSM with reference data and data image Village Plan. The results of the mapping portion villages in OSM as a reference map-making village and analyzed in accordance with NSPK for detailed mapping Rukun Warga (RW) is part of the village mapping. The use of OSM greatly assists the process of mapping the details of the region with data sources in the form of images and can be accessed for Open Source. But still need their care and updating the data source to maintain the validity of the data.
Innovation in stem cell advocacy: you only get what you can measure.
Jakimo, Alan L; Fernandez, Alan C
2011-11-01
We propose that stem cell advocacy must engage in self-analysis to determine how to be maximally effective. For this analysis, eight advocacy elements can be measured: agitation, legislation, regulation, litigation, policy development, collaboration, education and innovation. For several of these elements, we show that stem cell advocates, particularly advocates for human embryonic stem cell research, have been matched by their opponents. This demonstrates the need for combining innovation and collaboration with advocacy-oriented education. To pursue innovative and collaborative education, we propose a 'bench-to-public knowledge' model and present some preliminary observations made with this model for different stem cell types. We also propose development of a semantic web information system to be operated within Internet Cloud/Apps/Social Media. We call this system the 'Stem Cell Information Technology Accelerator Platform'. Toward its construction, we propose formation of a working group to conceive semantic web ontology for stem cell science and its clinical translation into medicine. This ontology would function as a map of the relationships between and among the various informational components comprising discourse on stem cell research and its clinical translation, and would allow various stakeholders to contribute to evolving models of that science and translation. These models could, in turn, support an innovative and collaborative approach to education in furtherance of stem cell advocacy.
A Knowledge Portal and Collaboration Environment for the Earth Sciences
NASA Astrophysics Data System (ADS)
D'Agnese, F. A.
2008-12-01
Earth Knowledge is developing a web-based 'Knowledge Portal and Collaboration Environment' that will serve as the information-technology-based foundation of a modular Internet-based Earth-Systems Monitoring, Analysis, and Management Tool. This 'Knowledge Portal' is essentially a 'mash- up' of web-based and client-based tools and services that support on-line collaboration, community discussion, and broad public dissemination of earth and environmental science information in a wide-area distributed network. In contrast to specialized knowledge-management or geographic-information systems developed for long- term and incremental scientific analysis, this system will exploit familiar software tools using industry standard protocols, formats, and APIs to discover, process, fuse, and visualize existing environmental datasets using Google Earth and Google Maps. An early form of these tools and services is being used by Earth Knowledge to facilitate the investigations and conversations of scientists, resource managers, and citizen-stakeholders addressing water resource sustainability issues in the Great Basin region of the desert southwestern United States. These ongoing projects will serve as use cases for the further development of this information-technology infrastructure. This 'Knowledge Portal' will accelerate the deployment of Earth- system data and information into an operational knowledge management system that may be used by decision-makers concerned with stewardship of water resources in the American Desert Southwest.
The Number of Scholarly Documents on the Public Web
Khabsa, Madian; Giles, C. Lee
2014-01-01
The number of scholarly documents available on the web is estimated using capture/recapture methods by studying the coverage of two major academic search engines: Google Scholar and Microsoft Academic Search. Our estimates show that at least 114 million English-language scholarly documents are accessible on the web, of which Google Scholar has nearly 100 million. Of these, we estimate that at least 27 million (24%) are freely available since they do not require a subscription or payment of any kind. In addition, at a finer scale, we also estimate the number of scholarly documents on the web for fifteen fields: Agricultural Science, Arts and Humanities, Biology, Chemistry, Computer Science, Economics and Business, Engineering, Environmental Sciences, Geosciences, Material Science, Mathematics, Medicine, Physics, Social Sciences, and Multidisciplinary, as defined by Microsoft Academic Search. In addition, we show that among these fields the percentage of documents defined as freely available varies significantly, i.e., from 12 to 50%. PMID:24817403
Starodubtsev, V I; Kuznetsov, S L; Kurakova, N G; Tsvetkova, L A
2012-01-01
The contribution scientific publications of Russian Academy of Medical Sciences (RAMS) in the national publication stream, indexed by Web of Science over the past thirty years, was estimated. The indicators of publication activity that are necessary for the institutions of RAMS to achieve in short-term period the conformity with bibliometric indicators, established by Presidential Decree of May 7, 2012 (to increase the share of Russian publications in Web of Science to 2.44% in 2015) were calculated. It is shown that the current structure of global science, where publications in medicine make up for approximately one third of scientific publications in the world, set for RAMS scientists particularly difficult task: to double in three years the number of publications in Web of Sci. In the article are proposed the priorities and the necessary steps to fulfill this task.
The number of scholarly documents on the public web.
Khabsa, Madian; Giles, C Lee
2014-01-01
The number of scholarly documents available on the web is estimated using capture/recapture methods by studying the coverage of two major academic search engines: Google Scholar and Microsoft Academic Search. Our estimates show that at least 114 million English-language scholarly documents are accessible on the web, of which Google Scholar has nearly 100 million. Of these, we estimate that at least 27 million (24%) are freely available since they do not require a subscription or payment of any kind. In addition, at a finer scale, we also estimate the number of scholarly documents on the web for fifteen fields: Agricultural Science, Arts and Humanities, Biology, Chemistry, Computer Science, Economics and Business, Engineering, Environmental Sciences, Geosciences, Material Science, Mathematics, Medicine, Physics, Social Sciences, and Multidisciplinary, as defined by Microsoft Academic Search. In addition, we show that among these fields the percentage of documents defined as freely available varies significantly, i.e., from 12 to 50%.
DOORS to the semantic web and grid with a PORTAL for biomedical computing.
Taswell, Carl
2008-03-01
The semantic web remains in the early stages of development. It has not yet achieved the goals envisioned by its founders as a pervasive web of distributed knowledge and intelligence. Success will be attained when a dynamic synergism can be created between people and a sufficient number of infrastructure systems and tools for the semantic web in analogy with those for the original web. The domain name system (DNS), web browsers, and the benefits of publishing web pages motivated many people to register domain names and publish web sites on the original web. An analogous resource label system, semantic search applications, and the benefits of collaborative semantic networks will motivate people to register resource labels and publish resource descriptions on the semantic web. The Domain Ontology Oriented Resource System (DOORS) and Problem Oriented Registry of Tags and Labels (PORTAL) are proposed as infrastructure systems for resource metadata within a paradigm that can serve as a bridge between the original web and the semantic web. The Internet Registry Information Service (IRIS) registers [corrected] domain names while DNS publishes domain addresses with mapping of names to addresses for the original web. Analogously, PORTAL registers resource labels and tags while DOORS publishes resource locations and descriptions with mapping of labels to locations for the semantic web. BioPORT is proposed as a prototype PORTAL registry specific for the problem domain of biomedical computing.
ERIC Educational Resources Information Center
Corder, Greg
2005-01-01
Science teachers face challenges that affect the quality of instruction. Tight budgets, limited resources, school schedules, and other obstacles limit students' opportunities to experience science that is visual and interactive. Incorporating web-based Java applets into science instruction offers a practical solution to these challenges. The…
ERIC Educational Resources Information Center
Yurick, Karla Anne
2011-01-01
This study explored the effects of Problem-Based Leaning (PBL) with web-anchored instruction in nanotechnology on the science conceptual understanding, the attitude towards science, and the perception of science in society of elementary students. A mixed-methods approach was used. Subjects (N=46) participated in the study for approximately two…
Integrating Databases with Maps: The Delivery of Cultural Data through TimeMap.
ERIC Educational Resources Information Center
Johnson, Ian
TimeMap is a unique integration of database management, metadata and interactive maps, designed to contextualise and deliver cultural data through maps. TimeMap extends conventional maps with the time dimension, creating and animating maps "on-the-fly"; delivers them as a kiosk application or embedded in Web pages; links flexibly to…
Introductory Soil Science Exercises Using USDA Web Soil Survey
ERIC Educational Resources Information Center
Post, Christopher J.; Mikhailova, Elena; McWhorter, Christopher M.
2007-01-01
The USDA, Natural Resource Conservation Service (NRCS) Web Soil Survey is a valuable teaching tool for soil science education. By incorporating the Web Soil Survey into an undergraduate-level course, students are able to use the most detailed digital soil survey information without the steep learning curve associated with geographic information…
MendelWeb: An Electronic Science/Math/History Resource for the WWW.
ERIC Educational Resources Information Center
Blumberg, Roger B.
This paper describes a hypermedia resource, called MendelWeb that integrates elementary biology, discrete mathematics, and the history of science. MendelWeb is constructed from Gregor Menders 1865 paper, "Experiments in Plant Hybridization". An English translation of Mendel's paper, which is considered to mark the birth of classical and…
Amira: Multi-Dimensional Scientific Visualization for the GeoSciences in the 21st Century
NASA Astrophysics Data System (ADS)
Bartsch, H.; Erlebacher, G.
2003-12-01
amira (www.amiravis.com) is a general purpose framework for 3D scientific visualization that meets the needs of the non-programmer, the script writer, and the advanced programmer alike. Provided modules may be visually assembled in an interactive manner to create complex visual displays. These modules and their associated user interfaces are controlled either through a mouse, or via an interactive scripting mechanism based on Tcl. We provide interactive demonstrations of the various features of Amira and explain how these may be used to enhance the comprehension of datasets in use in the Earth Sciences community. Its features will be illustrated on scalar and vector fields on grid types ranging from Cartesian to fully unstructured. Specialized extension modules developed by some of our collaborators will be illustrated [1]. These include a module to automatically choose values for salient isosurface identification and extraction, and color maps suitable for volume rendering. During the session, we will present several demonstrations of remote networking, processing of very large spatio-temporal datasets, and various other projects that are underway. In particular, we will demonstrate WEB-IS, a java-applet interface to Amira that allows script editing via the web, and selected data analysis [2]. [1] G. Erlebacher, D. A. Yuen, F. Dubuffet, "Case Study: Visualization and Analysis of High Rayleigh Number -- 3D Convection in the Earth's Mantle", Proceedings of Visualization 2002, pp. 529--532. [2] Y. Wang, G. Erlebacher, Z. A. Garbow, D. A. Yuen, "Web-Based Service of a Visualization Package 'amira' for the Geosciences", Visual Geosciences, 2003.
An Earthquake Information Service with Free and Open Source Tools
NASA Astrophysics Data System (ADS)
Schroeder, M.; Stender, V.; Jüngling, S.
2015-12-01
At the GFZ German Research Centre for Geosciences in Potsdam, the working group Earthquakes and Volcano Physics examines the spatiotemporal behavior of earthquakes. In this context also the hazards of volcanic eruptions and tsunamis are explored. The aim is to collect related information after the occurrence of such extreme event and make them available for science and partly to the public as quickly as possible. However, the overall objective of this research is to reduce the geological risks that emanate from such natural hazards. In order to meet the stated objectives and to get a quick overview about the seismicity of a particular region and to compare the situation to historical events, a comprehensive visualization was desired. Based on the web-accessible data from the famous GFZ GEOFON network a user-friendly web mapping application was realized. Further, this web service integrates historical and current earthquake information from the USGS earthquake database, and more historical events from various other catalogues like Pacheco, International Seismological Centre (ISC) and more. This compilation of sources is unique in Earth sciences. Additionally, information about historical and current occurrences of volcanic eruptions and tsunamis are also retrievable. Another special feature in the application is the containment of times via a time shifting tool. Users can interactively vary the visualization by moving the time slider. Furthermore, the application was realized by using the newest JavaScript libraries which enables the application to run in all sizes of displays and devices. Our contribution will present the making of, the architecture behind, and few examples of the look and feel of this application.
Operational Use of OGC Web Services at the Met Office
NASA Astrophysics Data System (ADS)
Wright, Bruce
2010-05-01
The Met Office has adopted the Service-Orientated Architecture paradigm to deliver services to a range of customers through Rich Internet Applications (RIAs). The approach uses standard Open Geospatial Consortium (OGC) web services to provide information to web-based applications through a range of generic data services. "Invent", the Met Office beta site, is used to showcase Met Office future plans for presenting web-based weather forecasts, product and information to the public. This currently hosts a freely accessible Weather Map Viewer, written in JavaScript, which accesses a Web Map Service (WMS), to deliver innovative web-based visualizations of weather and its potential impacts to the public. The intention is to engage the public in the development of new web-based services that more accurately meet their needs. As the service is intended for public use within the UK, it has been designed to support a user base of 5 million, the analysed level of UK web traffic reaching the Met Office's public weather information site. The required scalability has been realised through the use of multi-tier tile caching: - WMS requests are made for 256x256 tiles for fixed areas and zoom levels; - a Tile Cache, developed in house, efficiently serves tiles on demand, managing WMS request for the new tiles; - Edge Servers, externally hosted by Akamai, provide a highly scalable (UK-centric) service for pre-cached tiles, passing new requests to the Tile Cache; - the Invent Weather Map Viewer uses the Google Maps API to request tiles from Edge Servers. (We would expect to make use of the Web Map Tiling Service, when it becomes an OGC standard.) The Met Office delivers specialist commercial products to market sectors such as transport, utilities and defence, which exploit a Web Feature Service (WFS) for data relating forecasts and observations to specific geographic features, and a Web Coverage Service (WCS) for sub-selections of gridded data. These are locally rendered as maps or graphs, and combined with the WMS pre-rendered images and text, in a FLEX application, to provide sophisticated, user impact-based view of the weather. The OGC web services supporting these applications have been developed in collaboration with commercial companies. Visual Weather was originally a desktop application for forecasters, but IBL have developed it to expose the full range of forecast and observation data through standard web services (WCS and WMS). Forecasts and observations relating to specific locations and geographic features are held in an Oracle Database, and exposed as a WFS using Snowflake Software's GO-Publisher application. The Met Office has worked closely with both IBL and Snowflake Software to ensure that the web services provided strike a balance between conformance to the standards and performance in an operational environment. This has proved challenging in areas where the standards are rapidly evolving (e.g. WCS) or do not allow adequate description of the Met-Ocean domain (e.g. multiple time coordinates and parametric vertical coordinates). It has also become clear that careful selection of the features to expose, based on the way in which you expect users to query those features, in necessary in order to deliver adequate performance. These experiences are providing useful 'real-world' input in to the recently launched OGC MetOcean Domain Working Group and World Meteorological Organisation (WMO) initiatives in this area.
Nano Mapper: an Internet knowledge mapping system for nanotechnology development
NASA Astrophysics Data System (ADS)
Li, Xin; Hu, Daning; Dang, Yan; Chen, Hsinchun; Roco, Mihail C.; Larson, Catherine A.; Chan, Joyce
2009-04-01
Nanotechnology research has experienced rapid growth in recent years. Advances in information technology enable efficient investigation of publications, their contents, and relationships for large sets of nanotechnology-related documents in order to assess the status of the field. This paper presents the development of a new knowledge mapping system, called Nano Mapper (http://nanomapper.eller.arizona.edu), which integrates the analysis of nanotechnology patents and research grants into a Web-based platform. The Nano Mapper system currently contains nanotechnology-related patents for 1976-2006 from the United States Patent and Trademark Office (USPTO), European Patent Office (EPO), and Japan Patent Office (JPO), as well as grant documents from the U.S. National Science Foundation (NSF) for the same time period. The system provides complex search functionalities, and makes available a set of analysis and visualization tools (statistics, trend graphs, citation networks, and content maps) that can be applied to different levels of analytical units (countries, institutions, technical fields) and for different time intervals. The paper shows important nanotechnology patenting activities at USPTO for 2005-2006 identified through the Nano Mapper system.
EAARL topography: Cape Cod National Seashore
Brock, John C.; Wright, C. Wayne; Patterson, Matt; Nayegandhi, Amar; Travers, Laurinda J.
2007-01-01
This Web site contains 90 Lidar-derived bare earth topography maps and GIS files for the Cape Cod National Seashore. These Lidar-derived topography maps were produced as a collaborative effort between the U.S. Geological Survey (USGS) Florida Integrated Science Center (FISC) St. Petersburg, Florida, the National Park Service (NPS), Northeast Coastal and Barrier Network, Inventory and Monitoring Program, and the National Aeronautics and Space Administration (NASA) Wallops Flight Facility. One objective of this research is to create techniques to survey coral reefs and barrier islands for the purposes of geomorphic change studies, habitat mapping, ecological monitoring, change detection, and event assessment. As part of this project, data from an innovative instrument under development at the NASA Wallops Flight Facility, the NASA Experimental Airborne Advanced Research Lidar (EAARL) are being used. This sensor has the potential to make significant contributions in this realm for measuring subaerial and submarine topography wthin cross-environment surveys. High spectral resolution, water-column correction, and low costs were found to be key factors in providing accurate and affordable imagery to coastal resource managers.
Nano Mapper: an Internet knowledge mapping system for nanotechnology development
Hu, Daning; Dang, Yan; Chen, Hsinchun; Roco, Mihail C.; Larson, Catherine A.; Chan, Joyce
2008-01-01
Nanotechnology research has experienced rapid growth in recent years. Advances in information technology enable efficient investigation of publications, their contents, and relationships for large sets of nanotechnology-related documents in order to assess the status of the field. This paper presents the development of a new knowledge mapping system, called Nano Mapper (http://nanomapper.eller.arizona.edu), which integrates the analysis of nanotechnology patents and research grants into a Web-based platform. The Nano Mapper system currently contains nanotechnology-related patents for 1976–2006 from the United States Patent and Trademark Office (USPTO), European Patent Office (EPO), and Japan Patent Office (JPO), as well as grant documents from the U.S. National Science Foundation (NSF) for the same time period. The system provides complex search functionalities, and makes available a set of analysis and visualization tools (statistics, trend graphs, citation networks, and content maps) that can be applied to different levels of analytical units (countries, institutions, technical fields) and for different time intervals. The paper shows important nanotechnology patenting activities at USPTO for 2005–2006 identified through the Nano Mapper system. PMID:21170121
NOAA Miami Regional Library > Home
Services & Education Social Networking & Other Web Tools for Earth Science Library Catalog AOML ; Education|Social Networking & Other Web Tools for Earth Science 4301 Rickenbacker Causeway, Miami, Fl
AMP: a science-driven web-based application for the TeraGrid
NASA Astrophysics Data System (ADS)
Woitaszek, M.; Metcalfe, T.; Shorrock, I.
The Asteroseismic Modeling Portal (AMP) provides a web-based interface for astronomers to run and view simulations that derive the properties of Sun-like stars from observations of their pulsation frequencies. In this paper, we describe the architecture and implementation of AMP, highlighting the lightweight design principles and tools used to produce a functional fully-custom web-based science application in less than a year. Targeted as a TeraGrid science gateway, AMP's architecture and implementation are intended to simplify its orchestration of TeraGrid computational resources. AMP's web-based interface was developed as a traditional standalone database-backed web application using the Python-based Django web development framework, allowing us to leverage the Django framework's capabilities while cleanly separating the user interface development from the grid interface development. We have found this combination of tools flexible and effective for rapid gateway development and deployment.
Displaying Planetary and Geophysical Datasets on NOAAs Science On a Sphere (TM)
NASA Astrophysics Data System (ADS)
Albers, S. C.; MacDonald, A. E.; Himes, D.
2005-12-01
NOAAs Science On a Sphere(TM)(SOS)was developed to educate current and future generations about the changing Earth and its processes. This system presents NOAAs global science through a 3D representation of our planet as if the viewer were looking at the Earth from outer space. In our presentation, we will describe the preparation of various global datasets for display on Science On a Sphere(TM), a 1.7-m diameter spherical projection system developed and patented at the Forecast Systems Laboratory (FSL) in Boulder, Colorado. Four projectors cast rotating images onto a spherical projection screen to create the effect of Earth, planet, or satellite floating in space. A static dataset can be prepared for display using popular image formats such as JPEG, usually sized at 1024x2048 or 2048x4096 pixels. A set of static images in a directory will comprise a movie. Imagery and data for SOS are obtained from a variety of government organizations, sometimes post-processed by various individuals, including the authors. Some datasets are already available in the required cylindrical projection. Readily available planetary maps can often be improved in coverage and/or appearance by reprojecting and combining additional images and mosaics obtained by various spacecraft, such as Voyager, Galileo, and Cassini. A map of Mercury was produced by blending some Mariner 10 photo-mosaics with a USGS shaded-relief map. An improved high-resolution map of Venus was produced by combining several Magellan mosaics, supplied by The Planetary Society, along with other spacecraft data. We now have a full set of Jupiter's Galilean satellite imagery that we can display on Science On a Sphere(TM). Photo-mosaics of several Saturnian satellites were updated by reprojecting and overlaying recently taken Cassini flyby images. Maps of imagery from five Uranian satellites were added, as well as one for Neptune. More image processing was needed to add a high-resolution Voyager mosaic to a pre-existing map of Neptune's moon Triton. A map of the cosmic background radiation was produced that shows the early universe from an external perspective. Full details and credits for these maps may be viewed online at http://laps.fsl.noaa.gov/albers/sos/sos.html. Geophysical imagery recently added to SOS includes a real-time global infrared weather satellite animation of Earth. This is a 15-minute, quality controlled animation spanning the most recent month, which draws on a number of geosynchronous and polar-orbiting weather satellites for data. Other meteorological and oceanographic datasets can be displayed, such as animations depicting the three-dimensional drifting of the ARGO buoy network through the oceans. Oceanic buoy observations were overlaid on the "Blue Marble" Earth imagery displayed on Science On a Sphere(TM). A static image shows locations for five different global buoy networks. We also produced two movies that show the drift of >1000 ARGO buoys over a period of several months. The first movie shows only the horizontal buoy drift, and the second modulates the intensities to represent the timing of each buoy dive cycle. Animations in real time are also being produced for sea surface temperatures (and anomalies). These analyses are obtained from web displays provided by the DOD Fleet Numerical Operations Center. With advanced technologies, the possibilities are limitless for displaying additional global datasets on Science On a Sphere(TM) and other spherical projection screens.
Werts, Joshua D; Mikhailova, Elena A; Post, Christopher J; Sharp, Julia L
2012-04-01
Volunteered geographic information and social networking in a WebGIS has the potential to increase public participation in soil and water conservation, promote environmental awareness and change, and provide timely data that may be otherwise unavailable to policymakers in soil and water conservation management. The objectives of this study were: (1) to develop a framework for combining current technologies, computing advances, data sources, and social media; and (2) develop and test an online web mapping interface. The mapping interface integrates Microsoft Silverlight, Bing Maps, ArcGIS Server, Google Picasa Web Albums Data API, RSS, Google Analytics, and Facebook to create a rich user experience. The website allows the public to upload photos and attributes of their own subdivisions or sites they have identified and explore other submissions. The website was made available to the public in early February 2011 at http://www.AbandonedDevelopments.com and evaluated for its potential long-term success in a pilot study.
NASA Astrophysics Data System (ADS)
Werts, Joshua D.; Mikhailova, Elena A.; Post, Christopher J.; Sharp, Julia L.
2012-04-01
Volunteered geographic information and social networking in a WebGIS has the potential to increase public participation in soil and water conservation, promote environmental awareness and change, and provide timely data that may be otherwise unavailable to policymakers in soil and water conservation management. The objectives of this study were: (1) to develop a framework for combining current technologies, computing advances, data sources, and social media; and (2) develop and test an online web mapping interface. The mapping interface integrates Microsoft Silverlight, Bing Maps, ArcGIS Server, Google Picasa Web Albums Data API, RSS, Google Analytics, and Facebook to create a rich user experience. The website allows the public to upload photos and attributes of their own subdivisions or sites they have identified and explore other submissions. The website was made available to the public in early February 2011 at http://www.AbandonedDevelopments.com and evaluated for its potential long-term success in a pilot study.
Sarkar, Subhra; Witham, Shawn; Zhang, Jie; Zhenirovskyy, Maxim; Rocchia, Walter; Alexov, Emil
2011-01-01
Here we report a web server, the DelPhi web server, which utilizes DelPhi program to calculate electrostatic energies and the corresponding electrostatic potential and ionic distributions, and dielectric map. The server provides extra services to fix structural defects, as missing atoms in the structural file and allows for generation of missing hydrogen atoms. The hydrogen placement and the corresponding DelPhi calculations can be done with user selected force field parameters being either Charmm22, Amber98 or OPLS. Upon completion of the calculations, the user is given option to download fixed and protonated structural file, together with the parameter and Delphi output files for further analysis. Utilizing Jmol viewer, the user can see the corresponding structural file, to manipulate it and to change the presentation. In addition, if the potential map is requested to be calculated, the potential can be mapped onto the molecule surface. The DelPhi web server is available from http://compbio.clemson.edu/delphi_webserver. PMID:24683424
Gorgolewski, Krzysztof J; Varoquaux, Gael; Rivera, Gabriel; Schwartz, Yannick; Sochat, Vanessa V; Ghosh, Satrajit S; Maumet, Camille; Nichols, Thomas E; Poline, Jean-Baptiste; Yarkoni, Tal; Margulies, Daniel S; Poldrack, Russell A
2016-01-01
NeuroVault.org is dedicated to storing outputs of analyses in the form of statistical maps, parcellations and atlases, a unique strategy that contrasts with most neuroimaging repositories that store raw acquisition data or stereotaxic coordinates. Such maps are indispensable for performing meta-analyses, validating novel methodology, and deciding on precise outlines for regions of interest (ROIs). NeuroVault is open to maps derived from both healthy and clinical populations, as well as from various imaging modalities (sMRI, fMRI, EEG, MEG, PET, etc.). The repository uses modern web technologies such as interactive web-based visualization, cognitive decoding, and comparison with other maps to provide researchers with efficient, intuitive tools to improve the understanding of their results. Each dataset and map is assigned a permanent Universal Resource Locator (URL), and all of the data is accessible through a REST Application Programming Interface (API). Additionally, the repository supports the NIDM-Results standard and has the ability to parse outputs from popular FSL and SPM software packages to automatically extract relevant metadata. This ease of use, modern web-integration, and pioneering functionality holds promise to improve the workflow for making inferences about and sharing whole-brain statistical maps. Copyright © 2015 Elsevier Inc. All rights reserved.
WebViz:A Web-based Collaborative Interactive Visualization System for large-Scale Data Sets
NASA Astrophysics Data System (ADS)
Yuen, D. A.; McArthur, E.; Weiss, R. M.; Zhou, J.; Yao, B.
2010-12-01
WebViz is a web-based application designed to conduct collaborative, interactive visualizations of large data sets for multiple users, allowing researchers situated all over the world to utilize the visualization services offered by the University of Minnesota’s Laboratory for Computational Sciences and Engineering (LCSE). This ongoing project has been built upon over the last 3 1/2 years .The motivation behind WebViz lies primarily with the need to parse through an increasing amount of data produced by the scientific community as a result of larger and faster multicore and massively parallel computers coming to the market, including the use of general purpose GPU computing. WebViz allows these large data sets to be visualized online by anyone with an account. The application allows users to save time and resources by visualizing data ‘on the fly’, wherever he or she may be located. By leveraging AJAX via the Google Web Toolkit (http://code.google.com/webtoolkit/), we are able to provide users with a remote, web portal to LCSE's (http://www.lcse.umn.edu) large-scale interactive visualization system already in place at the University of Minnesota. LCSE’s custom hierarchical volume rendering software provides high resolution visualizations on the order of 15 million pixels and has been employed for visualizing data primarily from simulations in astrophysics to geophysical fluid dynamics . In the current version of WebViz, we have implemented a highly extensible back-end framework built around HTTP "server push" technology. The web application is accessible via a variety of devices including netbooks, iPhones, and other web and javascript-enabled cell phones. Features in the current version include the ability for users to (1) securely login (2) launch multiple visualizations (3) conduct collaborative visualization sessions (4) delegate control aspects of a visualization to others and (5) engage in collaborative chats with other users within the user interface of the web application. These features are all in addition to a full range of essential visualization functions including 3-D camera and object orientation, position manipulation, time-stepping control, and custom color/alpha mapping.
A World of Discovery Online: Science Fairs.
ERIC Educational Resources Information Center
Joseph, Linda C.
1996-01-01
K-12 students and teachers can use the Internet for planning science fair activities--for project ideas, resources, and interactive Web sites. Lists 26 science Web sites specializing in question answering, activities, experiments, optics, math, dissection, inventions, physics, space, genetics, cockroaches and worms, and Twinkies (sponge cakes).…
Overcoming Terminology Barrier Using Web Resources for Cross-Language Medical Information Retrieval
Lu, Wen-Hsiang; Lin, Ray Shih-Jui; Chan, Yi-Che; Chen, Kuan-Hsi
2006-01-01
A number of authoritative medical websites, such as PubMed and MedlinePlus, provide consumers with the most up-to-date health information. However, non-English speakers often encounter not only language barriers (from other languages to English) but also terminology barriers (from laypersons’ terms to professional medical terms) when retrieving information from these websites. Our previous work addresses language barriers by developing a multilingual medical thesaurus, Chinese-English MeSH, while this study presents an approach to overcome terminology barriers based on Web resources. Two techniques were utilized in our approach: monolingual concept mapping using approximate string matching and crosslingual concept mapping using Web resources. The evaluation shows that our approach can significantly improve the performance on MeSH concept mapping and cross-language medical information retrieval. PMID:17238395
A study of Web-based instructional strategies in post-secondary sciences
NASA Astrophysics Data System (ADS)
Stanley, Scott A.
There is a large demand for web-based instruction offered by post secondary institutions (U.S. Department of Education, 2003), but only recently have post secondary science faculty begun to develop courses for this medium (Carr, 2000). Research evaluating the effectiveness of this type of instruction suggests that there is no significant difference in the grades between students in traditional and online courses (Russell, 1999; Spooner, Jordan, Agozzine, & Spooner, 1999; Verduin & Clark, 1991; Wideman & Owston, 1999). It is important to note that while grades may be similar in face-to-face (FTF) and web-based science courses, it cannot be implied that student learning is identical in both environments. Experts in web-based instruction claim that teaching practices for web-based instruction are similar to those used in a FTF environment (Bronack & Riedl, 1998; Ragan, 1999). This is troublesome when viewed in context with the data on instructional strategies used in FTF post-secondary science courses. It is well documented that undergraduate students perceive science pedagogy as ineffective (NSF, 1996; Seymour & Hewitt, 1997; Tobias, 1990). This research examined web-based instructional strategies in post secondary science courses. Using a web-based questionnaire, this study collected data in order to examine the frequency of use of previously identified effective FTF instructional strategies, and the difference in use of instructional strategies in the different fields of science. One hundred and thirty respondents completed the web-based questionnaire. Data from faculty (N=122) who teach more than 75% of their course online were analyzed. Data analyses revealed the frequency of use of effective face-to-face instructional strategies is variable. Science faculty do not regularly assess students' conceptual understandings prior to the presentation of new concepts. Faculty frequently made connections to the real-world and incorporated problem solving using real-life problems. Emphasis on discovering things and devising an investigation tended to be conducted individually and not as part of a collaborative group. Instructor-student interaction tended to be asynchronous in nature. Course discussions frequently centered on course concepts and conceptual problems. There was no significant difference in the use of instructional strategies in online science courses for the different fields of science. The results of this study indicate post secondary science faculty utilization of previously identified effective face-to-face instructional strategies in online science courses was variable. Specific recommendations for faculty development and future research are included in the study.
WebVR: an interactive web browser for virtual environments
NASA Astrophysics Data System (ADS)
Barsoum, Emad; Kuester, Falko
2005-03-01
The pervasive nature of web-based content has lead to the development of applications and user interfaces that port between a broad range of operating systems and databases, while providing intuitive access to static and time-varying information. However, the integration of this vast resource into virtual environments has remained elusive. In this paper we present an implementation of a 3D Web Browser (WebVR) that enables the user to search the internet for arbitrary information and to seamlessly augment this information into virtual environments. WebVR provides access to the standard data input and query mechanisms offered by conventional web browsers, with the difference that it generates active texture-skins of the web contents that can be mapped onto arbitrary surfaces within the environment. Once mapped, the corresponding texture functions as a fully integrated web-browser that will respond to traditional events such as the selection of links or text input. As a result, any surface within the environment can be turned into a web-enabled resource that provides access to user-definable data. In order to leverage from the continuous advancement of browser technology and to support both static as well as streamed content, WebVR uses ActiveX controls to extract the desired texture skin from industry strength browsers, providing a unique mechanism for data fusion and extensibility.
A comparison of student characteristics in traditional and Web-based college science courses
NASA Astrophysics Data System (ADS)
Andrikanich, Meghan
Distance learning options at colleges and universities are increasing dramatically (e.g. National Center for Educational Statistics [NCES], 1998; NCES, 2001). Web-based courses create an interesting learning environment for study (e.g., Dupin-Bryant, 2004; Maki & Maki, 2003). Because science is a topic that induces anxiety for many students (e.g., Brownlow, et al., 2000; Greenburg & Mallow, 1982), and test anxiety has been linked to reduced academic performance (e.g., Bruch, 1981; Spielberger, 1979), the intersection of course format, science, and test anxiety is an area in need of research. This study used an explanatory mixed method design. One hundred and seven web-based science students and 110 students enrolled in traditional courses completed a questionnaire regarding demographic and personal factors, the Reduced Reaction to Tests (RTT) (Benson & Bandalos, 1992) and the Locus of Control of Behavior Scale (Craig, Franklin, & Andrews, 1984). Ten students participated in a follow-up interview. Quantitative results found no significant difference between age, racial/ethnic background, student status (full-time or part-time), or degree program being pursued between traditional and web-based science courses. Significantly more females, more students employed full-time, and with an external locus of control enrolled in web-based courses. Students in traditional courses experienced more test anxiety due to test-irrelevant thoughts. Traditional students experienced more anxiety in traditional science courses, while nontraditional students experienced more anxiety in web-based science courses. Expected course grade and locus of control predicted test anxiety in traditional courses, and previous web experience, expected grade, and locus of control predicted test anxiety for web-based courses. Qualitative data indicated that students in both formats expressed opinions regarding course format, studying and test preparation methods, test-taking, communication with instructors in general, and specifically related to testing. Opinions indicated students prefer a comfortable course environment, whether that involves technology or not. Several recommendations can be made. A continued increase in the type and variety of web-based courses will allow students continued flexibility in course scheduling. Multiple-choice tests should be considered to reduce student anxiety. Instructors should strive towards creating comfortable classroom environments and communicate clearly with their students.
Sensor Web Technology Challenges and Advancements for the Earth Science Decadal Survey Era
NASA Technical Reports Server (NTRS)
Norton, Charles D.; Moe, Karen
2011-01-01
This paper examines the Earth science decadal survey era and the role ESTO developed sensor web technologies can contribute to the scientific observations. This includes hardware and software technology advances for in-situ and in-space measurements. Also discussed are emerging areas of importance such as the potential of small satellites for sensor web based observations as well as advances in data fusion critical to the science and societal benefits of future missions, and the challenges ahead.
Design Virtual Reality Scene Roam for Tour Animations Base on VRML and Java
NASA Astrophysics Data System (ADS)
Cao, Zaihui; hu, Zhongyan
Virtual reality has been involved in a wide range of academic and commercial applications. It can give users a natural feeling of the environment by creating realistic virtual worlds. Implementing a virtual tour through a model of a tourist area on the web has become fashionable. In this paper, we present a web-based application that allows a user to, walk through, see, and interact with a fully three-dimensional model of the tourist area. Issues regarding navigation and disorientation areaddressed and we suggest a combination of the metro map and an intuitive navigation system. Finally we present a prototype which implements our ideas. The application of VR techniques integrates the visualization and animation of the three dimensional modelling to landscape analysis. The use of the VRML format produces the possibility to obtain some views of the 3D model and to explore it in real time. It is an important goal for the spatial information sciences.
Database of extended radiation maps and its access system
NASA Astrophysics Data System (ADS)
Verkhodanov, O. V.; Naiden, Ya. V.; Chernenkov, V. N.; Verkhodanova, N. V.
2014-01-01
We describe the architecture of the developed computing web server http://cmb.sao.ru allowing to synthesize the maps of extended radiation on the full sphere from the spherical harmonics in the GLESP pixelization grid, smooth them with the power beam pattern with various angular resolutions in the multipole space, and identify regions of the sky with given coordinates. We describe the server access and administration systems as well as the technique constructing the sky region maps, organized in Python in the Django web-application development framework.
Dupree, Jean A.; Crowfoot, Richard M.
2012-01-01
The drainage basin is a fundamental hydrologic entity used for studies of surface-water resources and during planning of water-related projects. Numeric drainage areas published by the U.S. Geological Survey water science centers in Annual Water Data Reports and on the National Water Information Systems (NWIS) Web site are still primarily derived from hard-copy sources and by manual delineation of polygonal basin areas on paper topographic map sheets. To expedite numeric drainage area determinations, the Colorado Water Science Center developed a digital database structure and a delineation methodology based on the hydrologic unit boundaries in the National Watershed Boundary Dataset. This report describes the digital database architecture and delineation methodology and also presents the results of a comparison of the numeric drainage areas derived using this digital methodology with those derived using traditional, non-digital methods. (Please see report for full Abstract)
Kulkarni, Abhaya V; Aziz, Brittany; Shams, Iffat; Busse, Jason W
2009-09-09
Until recently, Web of Science was the only database available to track citation counts for published articles. Other databases are now available, but their relative performance has not been established. To compare the citation count profiles of articles published in general medical journals among the citation databases of Web of Science, Scopus, and Google Scholar. Cohort study of 328 articles published in JAMA, Lancet, or the New England Journal of Medicine between October 1, 1999, and March 31, 2000. Total citation counts for each article up to June 2008 were retrieved from Web of Science, Scopus, and Google Scholar. Article characteristics were analyzed in linear regression models to determine interaction with the databases. Number of citations received by an article since publication and article characteristics associated with citation in databases. Google Scholar and Scopus retrieved more citations per article with a median of 160 (interquartile range [IQR], 83 to 324) and 149 (IQR, 78 to 289), respectively, than Web of Science (median, 122; IQR, 66 to 241) (P < .001 for both comparisons). Compared with Web of Science, Scopus retrieved more citations from non-English-language sources (median, 10.2% vs 4.1%) and reviews (30.8% vs 18.2%), and fewer citations from articles (57.2% vs 70.5%), editorials (2.1% vs 5.9%), and letters (0.8% vs 2.6%) (all P < .001). On a log(10)-transformed scale, fewer citations were found in Google Scholar to articles with declared industry funding (nonstandardized regression coefficient, -0.09; 95% confidence interval [CI], -0.15 to -0.03), reporting a study of a drug or medical device (-0.05; 95% CI, -0.11 to 0.01), or with group authorship (-0.29; 95% CI, -0.35 to -0.23). In multivariable analysis, group authorship was the only characteristic that differed among the databases; Google Scholar had significantly fewer citations to group-authored articles (-0.30; 95% CI, -0.36 to -0.23) compared with Web of Science. Web of Science, Scopus, and Google Scholar produced quantitatively and qualitatively different citation counts for articles published in 3 general medical journals.
Emerging Geospatial Sharing Technologies in Earth and Space Science Informatics
NASA Astrophysics Data System (ADS)
Singh, R.; Bermudez, L. E.
2013-12-01
Emerging Geospatial Sharing Technologies in Earth and Space Science Informatics The Open Geospatial Consortium (OGC) mission is to serve as a global forum for the collaboration of developers and users of spatial data products and services, and to advance the development of international standards for geospatial interoperability. The OGC coordinates with over 400 institutions in the development of geospatial standards. In the last years two main trends are making disruptions in geospatial applications: mobile and context sharing. People now have more and more mobile devices to support their work and personal life. Mobile devices are intermittently connected to the internet and have smaller computing capacity than a desktop computer. Based on this trend a new OGC file format standard called GeoPackage will enable greater geospatial data sharing on mobile devices. GeoPackage is perhaps best understood as the natural evolution of Shapefiles, which have been the predominant lightweight geodata sharing format for two decades. However the format is extremely limited. Four major shortcomings are that only vector points, lines, and polygons are supported; property names are constrained by the dBASE format; multiple files are required to encode a single data set; and multiple Shapefiles are required to encode multiple data sets. A more modern lingua franca for geospatial data is long overdue. GeoPackage fills this need with support for vector data, image tile matrices, and raster data. And it builds upon a database container - SQLite - that's self-contained, single-file, cross-platform, serverless, transactional, and open source. A GeoPackage, in essence, is a set of SQLite database tables whose content and layout is described in the candidate GeoPackage Implementation Specification available at https://portal.opengeospatial.org/files/?artifact_id=54838&version=1. The second trend is sharing client 'contexts'. When a user is looking into an article or a product on the web, they can easily share this information with colleagues or friends via an email that includes URLs (links to web resources) and attachments (inline data). In the case of geospatial information, a user would like to share a map created from different OGC sources, which may include for example, WMS and WFS links, and GML and KML annotations. The emerging OGC file format is called the OGC Web Services Context Document (OWS Context), which allows clients to reproduce a map previously created by someone else. Context sharing is important in a variety of domains, from emergency response, where fire, police and emergency medical personnel need to work off a common map, to multi-national military operations, where coalition forces need to share common data sources, but have cartographic displays in different languages and symbology sets. OWS Contexts can be written in XML (building upon the Atom Syndication Format) or JSON. This presentation will provide an introduction of GeoPackage and OWS Context and how they can be used to advance sharing of Earth and Space Science information.
Supporting NEESPI with Data Services - The SIB-ESS-C e-Infrastructure
NASA Astrophysics Data System (ADS)
Gerlach, R.; Schmullius, C.; Frotscher, K.
2009-04-01
Data discovery and retrieval is commonly among the first steps performed for any Earth science study. The way scientific data is searched and accessed has changed significantly over the past two decades. Especially the development of the World Wide Web and the technologies that evolved along shortened the data discovery and data exchange process. On the other hand the amount of data collected and distributed by earth scientists has increased exponentially requiring new concepts for data management and sharing. One such concept to meet the demand is to build up Spatial Data Infrastructures (SDI) or e-Infrastructures. These infrastructures usually contain components for data discovery allowing users (or other systems) to query a catalogue or registry and retrieve metadata information on available data holdings and services. Data access is typically granted using FTP/HTTP protocols or, more advanced, through Web Services. A Service Oriented Architecture (SOA) approach based on standardized services enables users to benefit from interoperability among different systems and to integrate distributed services into their application. The Siberian Earth System Science Cluster (SIB-ESS-C) being established at the University of Jena (Germany) is such a spatial data infrastructure following these principles and implementing standards published by the Open Geospatial Consortium (OGC) and the International Organization for Standardization (ISO). The prime objective is to provide researchers with focus on Siberia with the technical means for data discovery, data access, data publication and data analysis. The region of interest covers the entire Asian part of the Russian Federation from the Ural to the Pacific Ocean including the Ob-, Lena- and Yenissey river catchments. The aim of SIB-ESS-C is to provide a comprehensive set of data products for Earth system science in this region. Although SIB-ESS-C will be equipped with processing capabilities for in-house data generation (mainly from Earth Observation), current data holdings of SIB-ESS-C have been created in collaboration with a number of partners in previous and ongoing research projects (e.g. SIBERIA-II, SibFORD, IRIS). At the current development stage the SIB-ESS-C system comprises a federated metadata catalogue accessible through the SIB-ESS-C Web Portal or from any OGC-CSW compliant client. Due to full interoperability with other metadata catalogues users of the SIB-ESS-C Web Portal are able to search external metadata repositories. The Web Portal contains also a simple visualization component which will be extended to a comprehensive visualization and analysis tool in the near future. All data products are already accessible as a Web Mapping Service and will be made available as Web Feature and Web Coverage Services soon allowing users to directly incorporate the data into their application. The SIB-ESS-C infrastructure will be further developed as one node in a network of similar systems (e.g. NASA GIOVANNI) in the NEESPI region.
ERIC Educational Resources Information Center
Kaya, Osman Nafiz; Dogan, Alev; Kilic, Ziya; Ebenezer, Jazlin
2004-01-01
In this study, Pre-service Science Teachers' (PSTs) views about the potential benefits and existing barriers of their argumentation on the World Wide Web about what is happening in middle school science classrooms during two semesters of their practicum experiences were investigated. "Special Web Group" called the "Collaborative…
ERIC Educational Resources Information Center
Karam, Rita; Straus, Susan G.; Byers, Albert; Kase, Courtney A.; Cefalu, Matthew
2018-01-01
This study explores the diffusion of Web 2.0 technologies among science educators and the ways that these technologies are used to build teacher professional communities of practice (CoP) in life sciences and physical sciences. We used surveys and web analytics collected over a 21-month period to examine factors that motivate teachers to…
Murphy, Elizabeth A.; Soong, David T.; Sharpe, Jennifer B.
2012-01-01
Digital flood-inundation maps for a 9-mile reach of the Des Plaines River from Riverwoods to Mettawa, Illinois, were created by the U.S. Geological Survey (USGS) in cooperation with the Lake County Stormwater Management Commission and the Villages of Lincolnshire and Riverwoods. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water levels (gage heights) at the USGS streamgage at Des Plaines River at Lincolnshire, Illinois (station no. 05528100). Current conditions at the USGS streamgage may be obtained on the Internet at http://waterdata.usgs.gov/usa/nwis/uv?05528100. In addition, this streamgage is incorporated into the Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/) by the National Weather Service (NWS). The NWS forecasts flood hydrographs at many places that are often co-located at USGS streamgages. The NWS forecasted peak-stage information, also shown on the Des Plaines River at Lincolnshire inundation Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was then used to determine seven water-surface profiles for flood stages at roughly 1-ft intervals referenced to the streamgage datum and ranging from the 50- to 0.2-percent annual exceedance probability flows. The simulated water-surface profiles were then combined with a Geographic Information System (GIS) Digital Elevation Model (DEM) (derived from Light Detection And Ranging (LiDAR) data) in order to delineate the area flooded at each water level. These maps, along with information on the Internet regarding current gage height from USGS streamgages and forecasted stream stages from the NWS, provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.
Flood-inundation maps for the DuPage River from Plainfield to Shorewood, Illinois, 2013
Murphy, Elizabeth A.; Sharpe, Jennifer B.
2013-01-01
Digital flood-inundation maps for a 15.5-mi reach of the DuPage River from Plainfield to Shorewood, Illinois, were created by the U.S. Geological Survey (USGS) in cooperation with the Will County Stormwater Management Planning Committee. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent of flooding corresponding to selected water levels (gage heights or stages) at the USGS streamgage at DuPage River at Shorewood, Illinois (sta. no. 05540500). Current conditions at the USGS streamgage may be obtained on the Internet at http://waterdata.usgs.gov/usa/nwis/uv?05540500. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often colocated with USGS streamgages. The NWS-forecasted peak-stage information, also shown on the DuPage River at Shorewood inundation Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was then used to determine nine water-surface profiles for flood stages at 1-ft intervals referenced to the streamgage datum and ranging from NWS Action stage of 6 ft to the historic crest of 14.0 ft. The simulated water-surface profiles were then combined with a Digital Elevation Model (DEM) (derived from Light Detection And Ranging (LiDAR) data) by using a Geographic Information System (GIS) in order to delineate the area flooded at each water level. These maps, along with information on the Internet regarding current gage height from USGS streamgages and forecasted stream stages from the NWS, provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for postflood recovery efforts.
Flood-inundation maps for the St. Marys River at Fort Wayne, Indiana
Menke, Chad D.; Kim, Moon H.; Fowler, Kathleen K.
2012-01-01
Digital flood-inundation maps for a 9-mile reach of the St. Marys River that extends from South Anthony Boulevard to Main Street at Fort Wayne, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the City of Fort Wayne. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site, depict estimates of the areal extent of flooding corresponding to selected water levels (stages) at the USGS streamgage 04182000 St. Marys River near Fort Wayne, Ind. Current conditions at the USGS streamgages in Indiana may be obtained from the National Water Information System: Web Interface. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system. The NWS forecasts flood hydrographs at many places that are often collocated at USGS streamgages. That forecasted peak-stage information, also available on the Internet, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, water-surface profiles were simulated for the stream reach by means of a hydraulic one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relation at the USGS streamgage 04182000 St. Marys River near Fort Wayne, Ind. The hydraulic model was then used to simulate 11 water-surface profiles for flood stages at 1-ft intervals referenced to the streamgage datum and ranging from bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the area flooded at each water level. A flood inundation map was generated for each water-surface profile stage (11 maps in all) so that for any given flood stage users will be able to view the estimated area of inundation. The availability of these maps along with current stage from USGS streamgages and forecasted stream stages from the NWS provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for post flood recovery efforts.
Problem-Based Learning in Web-Based Science Classroom.
ERIC Educational Resources Information Center
Kim, Heeyoung; Chung, Ji-Sook; Kim, Younghoon
The purpose of this paper is to discuss how general problem-based learning (PBL) models and social-constructivist perspectives are applied to the design and development of a Web-based science program, which emphasizes inquiry-based learning for fifth grade students. The paper also deals with the general features and learning process of a Web-based…
ERIC Educational Resources Information Center
Chin-Fei, Huang; Chia-Ju, Liu
2012-01-01
The purpose of this study is to explore the influences of students' learning motivation on Web-based collaborative learning. This study conducted learning materials of Web pages about science and collaborative learning, a motivation questionnaire and interviews were used for data collection. Eighty Grade 5 students and a science teacher were…
Improving the User Experience of Finding and Visualizing Oceanographic Data
NASA Astrophysics Data System (ADS)
Rauch, S.; Allison, M. D.; Groman, R. C.; Chandler, C. L.; Galvarino, C.; Gegg, S. R.; Kinkade, D.; Shepherd, A.; Wiebe, P. H.; Glover, D. M.
2013-12-01
Searching for and locating data of interest can be a challenge to researchers as increasing volumes of data are made available online through various data centers, repositories, and archives. The Biological and Chemical Oceanography Data Management Office (BCO-DMO) is keenly aware of this challenge and, as a result, has implemented features and technologies aimed at improving data discovery and enhancing the user experience. BCO-DMO was created in 2006 to manage and publish data from research projects funded by the Division of Ocean Sciences (OCE) Biological and Chemical Oceanography Sections and the Division of Polar Programs (PLR) Antarctic Sciences Organisms and Ecosystems Program (ANT) of the US National Science Foundation (NSF). The BCO-DMO text-based and geospatial-based data access systems provide users with tools to search, filter, and visualize data in order to efficiently find data of interest. The geospatial interface, developed using a suite of open-source software (including MapServer [1], OpenLayers [2], ExtJS [3], and MySQL [4]), allows users to search and filter/subset metadata based on program, project, or deployment, or by using a simple word search. The map responds based on user selections, presents options that allow the user to choose specific data parameters (e.g., a species or an individual drifter), and presents further options for visualizing those data on the map or in "quick-view" plots. The data managed and made available by BCO-DMO are very heterogeneous in nature, from in-situ biogeochemical, ecological, and physical data, to controlled laboratory experiments. Due to the heterogeneity of the data types, a 'one size fits all' approach to visualization cannot be applied. Datasets are visualized in a way that will best allow users to assess fitness for purpose. An advanced geospatial interface, which contains a semantically-enabled faceted search [5], is also available. These search facets are highly interactive and responsive, allowing users to construct their own custom searches by applying multiple filters. New filtering and visualization tools are continually being added to the BCO-DMO system as new data types are encountered and as we receive feedback from our data contributors and users. As our system becomes more complex, teaching users about the many interactive features becomes increasingly important. Tutorials and videos are made available online. Recent in-person classroom-style tutorials have proven useful for both demonstrating our system to users and for obtaining feedback to further improve the user experience. References: [1] University of Minnesota. MapServer: Open source web mapping. http://www.mapserver.org [2] OpenLayers: Free Maps for the Web. http://www.openlayers.org [3] Sencha. ExtJS. http://www.sencha.com/products/extjs [4] MySQL. http://www.mysql.com/ [5] Maffei, A. R., Rozell, E. A., West, P., Zednik, S., and Fox, P. A. 2011. Open Standards and Technologies in the S2S Framework. Abstract IN31A-1435 presented at American Geophysical Union 2011 Fall Meeting, San Francisco, CA, 7 December 2011.
ERIC Educational Resources Information Center
Wood, Pamela L.; Quitadamo, Ian J.; DePaepe, James L.; Loverro, Ian
2007-01-01
The WebQuest is a four-step process integrated at appropriate points in the Animal Studies unit. Through the WebQuest, students create a series of habitat maps that build on the knowledge gained from conducting the various activities of the unit. The quest concludes with an evaluation using the WebQuest rubric and an oral presentation of a final…
Development of web-GIS system for analysis of georeferenced geophysical data
NASA Astrophysics Data System (ADS)
Okladnikov, I.; Gordov, E. P.; Titov, A. G.; Bogomolov, V. Y.; Genina, E.; Martynova, Y.; Shulgina, T. M.
2012-12-01
Georeferenced datasets (meteorological databases, modeling and reanalysis results, remote sensing products, etc.) are currently actively used in numerous applications including modeling, interpretation and forecast of climatic and ecosystem changes for various spatial and temporal scales. Due to inherent heterogeneity of environmental datasets as well as their huge size which might constitute up to tens terabytes for a single dataset at present studies in the area of climate and environmental change require a special software support. A dedicated web-GIS information-computational system for analysis of georeferenced climatological and meteorological data has been created. The information-computational system consists of 4 basic parts: computational kernel developed using GNU Data Language (GDL), a set of PHP-controllers run within specialized web-portal, JavaScript class libraries for development of typical components of web mapping application graphical user interface (GUI) based on AJAX technology, and an archive of geophysical datasets. Computational kernel comprises of a number of dedicated modules for querying and extraction of data, mathematical and statistical data analysis, visualization, and preparing output files in geoTIFF and netCDF format containing processing results. Specialized web-portal consists of a web-server Apache, complying OGC standards Geoserver software which is used as a base for presenting cartographical information over the Web, and a set of PHP-controllers implementing web-mapping application logic and governing computational kernel. JavaScript libraries aiming at graphical user interface development are based on GeoExt library combining ExtJS Framework and OpenLayers software. The archive of geophysical data consists of a number of structured environmental datasets represented by data files in netCDF, HDF, GRIB, ESRI Shapefile formats. For processing by the system are available: two editions of NCEP/NCAR Reanalysis, JMA/CRIEPI JRA-25 Reanalysis, ECMWF ERA-40 Reanalysis, ECMWF ERA Interim Reanalysis, MRI/JMA APHRODITE's Water Resources Project Reanalysis, DWD Global Precipitation Climatology Centre's data, GMAO Modern Era-Retrospective analysis for Research and Applications, meteorological observational data for the territory of the former USSR for the 20th century, results of modeling by global and regional climatological models, and others. The system is already involved into a scientific research process. Particularly, recently the system was successfully used for analysis of Siberia climate changes and its impact in the region. The Web-GIS information-computational system for geophysical data analysis provides specialists involved into multidisciplinary research projects with reliable and practical instruments for complex analysis of climate and ecosystems changes on global and regional scales. Using it even unskilled user without specific knowledge can perform computational processing and visualization of large meteorological, climatological and satellite monitoring datasets through unified web-interface in a common graphical web-browser. This work is partially supported by the Ministry of education and science of the Russian Federation (contract #07.514.114044), projects IV.31.1.5, IV.31.2.7, RFBR grants #10-07-00547a, #11-05-01190a, and integrated project SB RAS #131.
CPC - Monitoring & Data: Regional Climate Maps
Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Site Map News Information CPC Web Team HOME > Monitoring and Data > Global Climate Data & Maps > Global Regional Climate Maps Regional Climate Maps Banner The Monthly regional analyses products are usually
From Tattoos to Paintings: An Overview of Where Art and Science Intersect in the Anthropocene
NASA Astrophysics Data System (ADS)
Kahn, B.
2017-12-01
The relationship between art and science spans centuries from daVinci's Vitruvian Man to the pointilism of Suerat's "A Sunday Afternoon on the Island of La Grande Jatte." The connection is so strong because both art and science help us make sense of the world. Climate change is a global problem and art and science are playing a role in making it more personal and local. Artists in particular have transformed climate science from data into a universal language, playing on themes of loss, change and spectacle. This presentation will cover climate-related art in a variety of mediums from pastels to oil paints to digital graphics to apps to music to objects made to survive the anthropocene. As a journalist, I've had the chance to engage with both scientists and artists and will explain how these projects came about and concrete steps both sides can take to foster more science and art collaborations. In addition, I'll specifically highlight how Climate Central has worked with artists to translate our sea level rise data from maps into artwork on the web to reach audiences beyond gallery walls. This collaboration has helped make climate change more tangible for tens of millions of viewers.
EnviroAtlas -Durham, NC- One Meter Resolution Urban Area Land Cover Map (2010) Web Service
This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas ). The EnviroAtlas Durham, NC land cover map was generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near infrared) aerial photography from July 2010 at 1 m spatial resolution. Five land cover classes were mapped: impervious surface, soil and barren, grass and herbaceous, trees and forest, and water. An accuracy assessment using a stratified random sampling of 500 samples yielded an overall accuracy of 83 percent using a minimum mapping unit of 9 pixels (3x3 pixel window). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Durham, and includes the cities of Durham, Chapel Hill, Carrboro and Hillsborough, NC. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).
Land User and Land Cover Maps of Europe: a Webgis Platform
NASA Astrophysics Data System (ADS)
Brovelli, M. A.; Fahl, F. C.; Minghini, M.; Molinari, M. E.
2016-06-01
This paper presents the methods and implementation processes of a WebGIS platform designed to publish the available land use and land cover maps of Europe at continental scale. The system is built completely on open source infrastructure and open standards. The proposed architecture is based on a server-client model having GeoServer as the map server, Leaflet as the client-side mapping library and the Bootstrap framework at the core of the front-end user interface. The web user interface is designed to have typical features of a desktop GIS (e.g. activate/deactivate layers and order layers by drag and drop actions) and to show specific information on the activated layers (e.g. legend and simplified metadata). Users have the possibility to change the base map from a given list of map providers (e.g. OpenStreetMap and Microsoft Bing) and to control the opacity of each layer to facilitate the comparison with both other land cover layers and the underlying base map. In addition, users can add to the platform any custom layer available through a Web Map Service (WMS) and activate the visualization of photos from popular photo sharing services. This last functionality is provided in order to have a visual assessment of the available land coverages based on other user-generated contents available on the Internet. It is supposed to be a first step towards a calibration/validation service that will be made available in the future.
NASA Technical Reports Server (NTRS)
Pliutau, Denis; Prasad, Narashimha S.
2013-01-01
Current approaches to satellite observation data storage and distribution implement separate visualization and data access methodologies which often leads to the need in time consuming data ordering and coding for applications requiring both visual representation as well as data handling and modeling capabilities. We describe an approach we implemented for a data-encoded web map service based on storing numerical data within server map tiles and subsequent client side data manipulation and map color rendering. The approach relies on storing data using the lossless compression Portable Network Graphics (PNG) image data format which is natively supported by web-browsers allowing on-the-fly browser rendering and modification of the map tiles. The method is easy to implement using existing software libraries and has the advantage of easy client side map color modifications, as well as spatial subsetting with physical parameter range filtering. This method is demonstrated for the ASTER-GDEM elevation model and selected MODIS data products and represents an alternative to the currently used storage and data access methods. One additional benefit includes providing multiple levels of averaging due to the need in generating map tiles at varying resolutions for various map magnification levels. We suggest that such merged data and mapping approach may be a viable alternative to existing static storage and data access methods for a wide array of combined simulation, data access and visualization purposes.
NASA Astrophysics Data System (ADS)
Kumar, David Devraj; Dunn, Jessica
2018-03-01
Analysis of self-reflections of undergraduate education students in a project involving web-supported counterintuitive science demonstrations is reported in this paper. Participating students (N = 19) taught science with counterintuitive demonstrations in local elementary school classrooms and used web-based resources accessed via wireless USB adapters. Student reflections to seven questions were analyzed qualitatively using four components of reflection (meeting objectives/perception of learning, dynamics of pedagogy, special needs accommodations, improving teaching) deriving 27 initial data categories and 12 emergent themes. Overall the undergraduates reported meeting objectives, engaging students in pedagogically relevant learning tasks including, providing accommodations to students with special needs, and gaining practice and insight to improve their own teaching. Additional research is needed to arrive at generalizable findings concerning teaching with web-supported counterintuitive science demonstrations in elementary classrooms.
NASA Astrophysics Data System (ADS)
Lenhardt, W. C.
2015-12-01
Global Mapping Project, Web-enabled Landsat Data (WELD), International Satellite Land Surface Climatology Project (ISLSCP), hydrology, solid earth dynamics, sedimentary geology, climate modeling, integrated assessments and so on all have needs for or have worked to develop consistently integrated data layers for Earth and environmental science. This paper will present an overview of an abstract notion of data layers of this types, what we are referring to as reference data layers for Earth and environmental science, highlight some historical examples, and delve into new approaches. The concept of reference data layers in this context combines data availability, cyberinfrastructure and data science, as well as domain science drivers. We argue that current advances in cyberinfrastructure such as iPython notebooks and integrated science processing environments such as iPlant's Discovery Environment coupled with vast arrays of new data sources warrant another look at the how to create, maintain, and provide reference data layers. The goal is to provide a context for understanding science needs for reference data layers to conduct their research. In addition, to the topics described above this presentation will also outline some of the challenges to and present some ideas for new approaches to addressing these needs. Promoting the idea of reference data layers is relevant to a number of existing related activities such as EarthCube, RDA, ESIP, the nascent NSF Regional Big Data Innovation Hubs and others.
Methods of analysis and resources available for genetic trait mapping.
Ott, J
1999-01-01
Methods of genetic linkage analysis are reviewed and put in context with other mapping techniques. Sources of information are outlined (books, web sites, computer programs). Special consideration is given to statistical problems in canine genetic mapping (heterozygosity, inbreeding, marker maps).
Exploring and Analyzing Climate Variations Online by Using MERRA-2 data at GES DISC
NASA Astrophysics Data System (ADS)
Shen, S.; Ostrenga, D.; Vollmer, B.; Kempler, S.
2016-12-01
NASA Giovanni (Geospatial Interactive Online Visualization ANd aNalysis Infrastructure) (http://giovanni.sci.gsfc.nasa.gov/giovanni/) is a web-based data visualization and analysis system developed by the Goddard Earth Sciences Data and Information Services Center (GES DISC). Current data analysis functions include Lat-Lon map, time series, scatter plot, correlation map, difference, cross-section, vertical profile, and animation etc. The system enables basic statistical analysis and comparisons of multiple variables. This web-based tool facilitates data discovery, exploration and analysis of large amount of global and regional remote sensing and model data sets from a number of NASA data centers. Recently, long term global assimilated atmospheric, land, and ocean data have been integrated into the system that enables quick exploration and analysis of climate data without downloading, and preprocessing the data. Example data include climate reanalysis from NASA Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) which provides data beginning 1980 to present; land data from NASA Global Land Data Assimilation System (GLDAS) which assimilates data from 1948 to 2012; as well as ocean biological data from NASA Ocean Biogeochemical Model (NOBM) which assimilates data from 1998 to 2012. This presentation, using surface air temperature, precipitation, ozone, and aerosol, etc. from MERRA-2, demonstrates climate variation analysis with Giovanni at selected regions.
Exploring and Analyzing Climate Variations Online by Using NASA MERRA-2 Data at GES DISC
NASA Technical Reports Server (NTRS)
Shen, Suhung; Ostrenga, Dana M.; Vollmer, Bruce E.; Kempler, Steven J.
2016-01-01
NASA Giovanni (Goddard Interactive Online Visualization ANd aNalysis Infrastructure) (http:giovanni.sci.gsfc.nasa.govgiovanni) is a web-based data visualization and analysis system developed by the Goddard Earth Sciences Data and Information Services Center (GES DISC). Current data analysis functions include Lat-Lon map, time series, scatter plot, correlation map, difference, cross-section, vertical profile, and animation etc. The system enables basic statistical analysis and comparisons of multiple variables. This web-based tool facilitates data discovery, exploration and analysis of large amount of global and regional remote sensing and model data sets from a number of NASA data centers. Long term global assimilated atmospheric, land, and ocean data have been integrated into the system that enables quick exploration and analysis of climate data without downloading, preprocessing, and learning data. Example data include climate reanalysis data from NASA Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) which provides data beginning in 1980 to present; land data from NASA Global Land Data Assimilation System (GLDAS), which assimilates data from 1948 to 2012; as well as ocean biological data from NASA Ocean Biogeochemical Model (NOBM), which provides data from 1998 to 2012. This presentation, using surface air temperature, precipitation, ozone, and aerosol, etc. from MERRA-2, demonstrates climate variation analysis with Giovanni at selected regions.
Paterson, Trevor; Law, Andy
2009-08-14
Genomic analysis, particularly for less well-characterized organisms, is greatly assisted by performing comparative analyses between different types of genome maps and across species boundaries. Various providers publish a plethora of on-line resources collating genome mapping data from a multitude of species. Datasources range in scale and scope from small bespoke resources for particular organisms, through larger web-resources containing data from multiple species, to large-scale bioinformatics resources providing access to data derived from genome projects for model and non-model organisms. The heterogeneity of information held in these resources reflects both the technologies used to generate the data and the target users of each resource. Currently there is no common information exchange standard or protocol to enable access and integration of these disparate resources. Consequently data integration and comparison must be performed in an ad hoc manner. We have developed a simple generic XML schema (GenomicMappingData.xsd - GMD) to allow export and exchange of mapping data in a common lightweight XML document format. This schema represents the various types of data objects commonly described across mapping datasources and provides a mechanism for recording relationships between data objects. The schema is sufficiently generic to allow representation of any map type (for example genetic linkage maps, radiation hybrid maps, sequence maps and physical maps). It also provides mechanisms for recording data provenance and for cross referencing external datasources (including for example ENSEMBL, PubMed and Genbank.). The schema is extensible via the inclusion of additional datatypes, which can be achieved by importing further schemas, e.g. a schema defining relationship types. We have built demonstration web services that export data from our ArkDB database according to the GMD schema, facilitating the integration of data retrieval into Taverna workflows. The data exchange standard we present here provides a useful generic format for transfer and integration of genomic and genetic mapping data. The extensibility of our schema allows for inclusion of additional data and provides a mechanism for typing mapping objects via third party standards. Web services retrieving GMD-compliant mapping data demonstrate that use of this exchange standard provides a practical mechanism for achieving data integration, by facilitating syntactically and semantically-controlled access to the data.
Paterson, Trevor; Law, Andy
2009-01-01
Background Genomic analysis, particularly for less well-characterized organisms, is greatly assisted by performing comparative analyses between different types of genome maps and across species boundaries. Various providers publish a plethora of on-line resources collating genome mapping data from a multitude of species. Datasources range in scale and scope from small bespoke resources for particular organisms, through larger web-resources containing data from multiple species, to large-scale bioinformatics resources providing access to data derived from genome projects for model and non-model organisms. The heterogeneity of information held in these resources reflects both the technologies used to generate the data and the target users of each resource. Currently there is no common information exchange standard or protocol to enable access and integration of these disparate resources. Consequently data integration and comparison must be performed in an ad hoc manner. Results We have developed a simple generic XML schema (GenomicMappingData.xsd – GMD) to allow export and exchange of mapping data in a common lightweight XML document format. This schema represents the various types of data objects commonly described across mapping datasources and provides a mechanism for recording relationships between data objects. The schema is sufficiently generic to allow representation of any map type (for example genetic linkage maps, radiation hybrid maps, sequence maps and physical maps). It also provides mechanisms for recording data provenance and for cross referencing external datasources (including for example ENSEMBL, PubMed and Genbank.). The schema is extensible via the inclusion of additional datatypes, which can be achieved by importing further schemas, e.g. a schema defining relationship types. We have built demonstration web services that export data from our ArkDB database according to the GMD schema, facilitating the integration of data retrieval into Taverna workflows. Conclusion The data exchange standard we present here provides a useful generic format for transfer and integration of genomic and genetic mapping data. The extensibility of our schema allows for inclusion of additional data and provides a mechanism for typing mapping objects via third party standards. Web services retrieving GMD-compliant mapping data demonstrate that use of this exchange standard provides a practical mechanism for achieving data integration, by facilitating syntactically and semantically-controlled access to the data. PMID:19682365
Forget the hype or reality. Big data presents new opportunities in Earth Science.
NASA Astrophysics Data System (ADS)
Lee, T. J.
2015-12-01
Earth science is arguably one of the most mature science discipline which constantly acquires, curates, and utilizes a large volume of data with diverse variety. We deal with big data before there is big data. For example, while developing the EOS program in the 1980s, the EOS data and information system (EOSDIS) was developed to manage the vast amount of data acquired by the EOS fleet of satellites. EOSDIS continues to be a shining example of modern science data systems in the past two decades. With the explosion of internet, the usage of social media, and the provision of sensors everywhere, the big data era has bring new challenges. First, Goggle developed the search algorithm and a distributed data management system. The open source communities quickly followed up and developed Hadoop file system to facility the map reduce workloads. The internet continues to generate tens of petabytes of data every day. There is a significant shortage of algorithms and knowledgeable manpower to mine the data. In response, the federal government developed the big data programs that fund research and development projects and training programs to tackle these new challenges. Meanwhile, comparatively to the internet data explosion, Earth science big data problem has become quite small. Nevertheless, the big data era presents an opportunity for Earth science to evolve. We learned about the MapReduce algorithms, in memory data mining, machine learning, graph analysis, and semantic web technologies. How do we apply these new technologies to our discipline and bring the hype to Earth? In this talk, I will discuss how we might want to apply some of the big data technologies to our discipline and solve many of our challenging problems. More importantly, I will propose new Earth science data system architecture to enable new type of scientific inquires.
Science Resulting from U.S. Geological Survey's "Did You Feel It?" Citizen Science Portal
NASA Astrophysics Data System (ADS)
Wald, D. J.; Dewey, J. W.; Atkinson, G. M.; Worden, C. B.; Quitoriano, V. P. R.
2016-12-01
The U.S. Geological Survey (USGS) "Did You Feel It?" (DYFI) system, in operation since 1999, is an automated approach for rapidly collecting macroseismic intensity data from internet users' shaking and damage reports and generating intensity maps immediately following earthquakes felt around the globe. As with any citizen science project, a significant component of the DYFI system is public awareness and participation in the immediate aftermath of any widely felt earthquake, allowing the public and the USGS to exchange valuable post-earthquake information. The data collected are remarkably robust and useful, as indicated by the range of peer-reviewed literature that rely on these citizen-science intensity reports. A Google Scholar search results in 14,700 articles citing DYFI, a number of which rely exclusively on these data. Though focused on topics of earthquake seismology (including shaking attenuation and relationships with damage), other studies cover social media use in disasters, human risk perception, earthquake-induced landslides, rapid impact assessment, emergency response, and science education. DYFI data have also been analyzed for non-earthquake events, including explosions, aircraft sonic booms, and even bolides and DYFI is now one of the best data sources from which to study induced earthquakes. Yet, DYFI was designed primarily as an operational system to rapidly assess the effects of earthquakes for situational awareness. Oftentimes, DYFI data are the only data available pertaining to shaking levels for much of the United States. As such, DYFI provides site-specific constraints of the shaking levels that feed directly into ShakeMap; thus, these data are readily available to emergency managers and responders, the media, and the general public. As an early adopter of web-based citizen science and having worked out many kinks in the process, DYFI developers have provided guidance on many other citizen-science endeavors across a wide range of disciplines.
Teaching children the structure of science
NASA Astrophysics Data System (ADS)
Börner, Katy; Palmer, Fileve; Davis, Julie M.; Hardy, Elisha; Uzzo, Stephen M.; Hook, Bryan J.
2009-01-01
Maps of the world are common in classroom settings. They are used to teach the juxtaposition of natural and political functions, mineral resources, political, cultural and geographical boundaries; occurrences of processes such as tectonic drift; spreading of epidemics; and weather forecasts, among others. Recent work in scientometrics aims to create a map of science encompassing our collective scholarly knowledge. Maps of science can be used to see disciplinary boundaries; the origin of ideas, expertise, techniques, or tools; the birth, evolution, merging, splitting, and death of scientific disciplines; the spreading of ideas and technology; emerging research frontiers and bursts of activity; etc. Just like the first maps of our planet, the first maps of science are neither perfect nor correct. Today's science maps are predominantly generated based on English scholarly data: Techniques and procedures to achieve local and global accuracy of these maps are still being refined, and a visual language to communicate something as abstract and complex as science is still being developed. Yet, the maps are successfully used by institutions or individuals who can afford them to guide science policy decision making, economic decision making, or as visual interfaces to digital libraries. This paper presents the process and results of creating hands-on science maps for kids that teaches children ages 4-14 about the structure of scientific disciplines. The maps were tested in both formal and informal science education environments. The results show that children can easily transfer their (world) map and concept map reading skills to utilize maps of science in interesting ways.
EnviroAtlas - Recreation, Culture, and Aesthetics Metrics for Conterminous United States
This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The Recreation, Culture, and Aesthetics category in this web service includes layers illustrating the ecosystems and natural resources that provide inherent cultural and aesthetic value or recreation opportunity, the need or demand for these amenities, the impacts associated with their presence and accessibility, and factors that place stress on the natural environment's capability to provide these benefits. EnviroAtlas allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the conterminous United States. Additional descriptive information about each attribute in this web service is located within each web service layer (see Full Metadata hyperlink) or can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
Using WebQuests to Successfully Engage Students in Learning Science
ERIC Educational Resources Information Center
Simpson, Gary
2003-01-01
WebQuests are a powerful teaching and learning device that have developed rapidly in recent years, especially in the Humanities. In Australia, the use of WebQuests in Science has become popular. The multimedia product of students' investigations can be shared with a variety of audiences. In this article, I will explain what I understand to be a…
ERIC Educational Resources Information Center
Jang, Syh-Jong
2006-01-01
Due to the implementation of a 9-year integrated curriculum scheme in Taiwan, research on team teaching and web-based technology appears to be urgent. The purpose of this study was incorporated web-assisted learning with team teaching in seventh-grade science classes. The specific research question concerned student performance and attitudes about…
WISE Science: Web-based Inquiry in the Classroom. Technology, Education--Connections
ERIC Educational Resources Information Center
Slotta, James D.; Linn, Marcia C.
2009-01-01
This book shares the lessons learned by a large community of educational researchers and science teachers as they designed, developed, and investigated a new technology-enhanced learning environment known as WISE: The Web-Based Inquiry Science Environment. WISE offers a collection of free, customizable curriculum projects on topics central to the…
Chat Widgets for Science Libraries
ERIC Educational Resources Information Center
Meier, John J.
2008-01-01
This paper describes chat widgets, chunks of code that can be embedded on a web site to appear as an instant messaging system, and how they can be used on a science library web site to better serve library users. Interviews were conducted concerning experiences at science and humanities libraries and more similarities than differences were…
How WebQuests Can Enhance Science Learning Principles in the Classroom
ERIC Educational Resources Information Center
Subramaniam, Karthigeyan
2012-01-01
This article examines the merits of WebQuests in facilitating students' in-depth understanding of science concepts using the four principles of learning gathered from the National Research Council reports "How People Learn: Brain, Mind, Experience, and School" (1999) and the "How Students Learn: Science in the Classroom" (2005) as an analytic…
Teaching Lab Science Courses Online: Resources for Best Practices, Tools, and Technology
ERIC Educational Resources Information Center
Jeschofnig, Linda; Jeschofnig, Peter
2011-01-01
"Teaching Lab Science Courses Online" is a practical resource for educators developing and teaching fully online lab science courses. First, it provides guidance for using learning management systems and other web 2.0 technologies such as video presentations, discussion boards, Google apps, Skype, video/web conferencing, and social media…
Teaching Science Methods Courses with Web-Enhanced Activities.
ERIC Educational Resources Information Center
Bodzin, Alec M.
Learning science in today's classroom does not have to be restricted to text-based curricular resources. Web sites present learners with a wide range of science activities in various formats ranging from text-only information to providing authentic real-time data sets and interactive simulations. This paper discusses reasons for using the Internet…
Developing a WebGIS for Geo-Visualization of Cancer.
Khoshabi, Mostafa; Taleai, Mohammad; Motlagh, Ali; Hosseini Kamal, Farnaz
2016-04-01
Considering the hygiene facilities and sharing the data of diseases, considerable attempts to promote the public awareness have been made by various media; however, most of the provided information is based on numerical and verbal statistics, and may not provide suitable understanding for people in regard with the situation of diseases. The main aim of this study is to design an interactive WebGIS system in which people could simply produce and observe their favorite maps of different cancers and environmental parameters. They can use this tools to produce their personalized maps and explore various aspects of the cancer. A system has been developed by using WebGIS for convenience of ordinary users without any knowledge about geospatial information system (GIS) to observe the situation of the diseases and environmental conditions in terms of static and user-produced interactive maps. It has also provided the possibility of spatial comparison of the arbitrary parameters in the framework of bar and pie diagrams. This system has been designed and launched on cancer database of Iran where information of meteorological stations has been embedded as environmental parameters. The innovative idea in this study has received less attention in previous works including possibility of producing web-based Choropleth map so that users could easily select the parameters and algorithms for classification and interactive coloring in the system to produce their personalized maps. Development of WebGIS tools and increased cooperation of people in terms of inserting the spatial labels on the map to report a disease or using their views about reasons of occurring a specific cancer in a specific region may cause turning the process of mono-direction flow of information to users to a bi-directional flow of information. As a result, cancer specialists could use the knowledge of local people and residents of different regions of the country to better analyze the situation of various kinds of cancers.
NASA Astrophysics Data System (ADS)
Imholt, Timothy; Roberts, Jim
2001-10-01
A new effort is being undertaken by the Regional Collaborative for Excellence in Science Teaching UNT, under the direction of Dr. James A. Roberts is underway. This effort includes the utilization of the multi-media capabilities of the world wide web, and a little ingenuity to attempt to pass on information to students that not only attempts to capture their attention, but perhaps spark an interest in them about the broad realm of science. Science to students is occasionally a frightening subject. This web based approach attempts to remove the fear and anxiety, while still passing on interesting, and useful information. The website will be regularly previewed and requests for contributions of exercises that might be added and shared will be solicited. Area teachers are invited to make contributions to the effort that will enhance the learning of science and mathematics by their students through the use of the web distribution.
Sarkozy, Alexandra; Slyman, Alison; Wu, Wendy
2015-01-01
Scopus and Web of Science are the two major citation databases that collect and disseminate bibliometric statistics about research articles, journals, institutions, and individual authors. Liaison librarians are now regularly called upon to utilize these databases to assist faculty in finding citation activity on their published works for tenure and promotion, grant applications, and more. But questions about the accuracy, scope, and coverage of these tools deserve closer scrutiny. Discrepancies in citation capture led to a systematic study on how Scopus and Web of Science compared in a real-life situation encountered by liaisons: comparing three different disciplines at a medical school and nursing program. How many articles would each database retrieve for each faculty member using the author-searching tools provided? How many cited references for each faculty member would each tool generate? Results demonstrated troubling differences in publication and citation activity capture between Scopus and Web of Science. Implications for librarians are discussed.
Development of Waypoint Planning Tool in Response to NASA Field Campaign Challenges
NASA Technical Reports Server (NTRS)
He, Matt; Hardin, Danny; Conover, Helen; Graves, Sara; Meyer, Paul; Blakeslee, Richard; Goodman, Michael
2012-01-01
Airborne real time observations are a major component of NASA's Earth Science research and satellite ground validation studies. For mission scientists, planning a research aircraft mission within the context of meeting the science objectives is a complex task because it requires real time situational awareness of the weather conditions that affect the aircraft track. Multiple aircrafts are often involved in NASA field campaigns. The coordination of the aircrafts with satellite overpasses, other airplanes and the constantly evolving, dynamic weather conditions often determines the success of the campaign. A flight planning tool is needed to provide situational awareness information to the mission scientists, and help them plan and modify the flight tracks. Scientists at the University of Alabama-Huntsville and the NASA Marshall Space Flight Center developed the Waypoint Planning Tool, an interactive software tool that enables scientists to develop their own flight plans (also known as waypoints) with point -and-click mouse capabilities on a digital map filled with real time raster and vector data. The development of this Waypoint Planning Tool demonstrates the significance of mission support in responding to the challenges presented during NASA field campaigns. Analysis during and after each campaign helped identify both issues and new requirements, and initiated the next wave of development. Currently the Waypoint Planning Tool has gone through three rounds of development and analysis processes. The development of this waypoint tool is directly affected by the technology advances on GIS/Mapping technologies. From the standalone Google Earth application and simple KML functionalities, to Google Earth Plugin and Java Web Start/Applet on web platform, and to the rising open source GIS tools with new JavaScript frameworks, the Waypoint Planning Tool has entered its third phase of technology advancement. The newly innovated, cross ]platform, modular designed JavaScript ]controlled Way Point Tool is planned to be integrated with NASA Airborne Science Mission Tool Suite. Adapting new technologies for the Waypoint Planning Tool ensures its success in helping scientists reach their mission objectives. This presentation will discuss the development processes of the Waypoint Planning Tool in responding to field campaign challenges, identify new information technologies, and describe the capabilities and features of the Waypoint Planning Tool with the real time aspect, interactive nature, and the resultant benefits to the airborne science community.
Development of Way Point Planning Tool in Response to NASA Field Campaign Challenges
NASA Astrophysics Data System (ADS)
He, M.; Hardin, D. M.; Conover, H.; Graves, S. J.; Meyer, P.; Blakeslee, R. J.; Goodman, M. L.
2012-12-01
Airborne real time observations are a major component of NASA's Earth Science research and satellite ground validation studies. For mission scientists, planning a research aircraft mission within the context of meeting the science objectives is a complex task because it requires real time situational awareness of the weather conditions that affect the aircraft track. Multiple aircrafts are often involved in NASA field campaigns. The coordination of the aircrafts with satellite overpasses, other airplanes and the constantly evolving, dynamic weather conditions often determines the success of the campaign. A flight planning tool is needed to provide situational awareness information to the mission scientists, and help them plan and modify the flight tracks. Scientists at the University of Alabama-Huntsville and the NASA Marshall Space Flight Center developed the Waypoint Planning Tool, an interactive software tool that enables scientists to develop their own flight plans (also known as waypoints) with point-and-click mouse capabilities on a digital map filled with real time raster and vector data. The development of this Waypoint Planning Tool demonstrates the significance of mission support in responding to the challenges presented during NASA field campaigns. Analysis during and after each campaign helped identify both issues and new requirements, and initiated the next wave of development. Currently the Waypoint Planning Tool has gone through three rounds of development and analysis processes. The development of this waypoint tool is directly affected by the technology advances on GIS/Mapping technologies. From the standalone Google Earth application and simple KML functionalities, to Google Earth Plugin and Java Web Start/Applet on web platform, and to the rising open source GIS tools with new JavaScript frameworks, the Waypoint Planning Tool has entered its third phase of technology advancement. The newly innovated, cross-platform, modular designed JavaScript-controlled Way Point Tool is planned to be integrated with NASA Airborne Science Mission Tool Suite. Adapting new technologies for the Waypoint Planning Tool ensures its success in helping scientists reach their mission objectives. This presentation will discuss the development processes of the Waypoint Planning Tool in responding to field campaign challenges, identify new information technologies, and describe the capabilities and features of the Waypoint Planning Tool with the real time aspect, interactive nature, and the resultant benefits to the airborne science community.
24 CFR 200.1545 - Appeals of MAP Lender Review Board decisions.
Code of Federal Regulations, 2011 CFR
2011-04-01
...): MAP Lender Quality Assurance Enforcement § 200.1545 Appeals of MAP Lender Review Board decisions. (a... information included in the administrative record and any new information presented at the appeal conference... to overturn will be posted on HUD's MAP Web site. ...
24 CFR 200.1545 - Appeals of MAP Lender Review Board decisions.
Code of Federal Regulations, 2012 CFR
2012-04-01
...): MAP Lender Quality Assurance Enforcement § 200.1545 Appeals of MAP Lender Review Board decisions. (a... information included in the administrative record and any new information presented at the appeal conference... to overturn will be posted on HUD's MAP Web site. ...
24 CFR 200.1545 - Appeals of MAP Lender Review Board decisions.
Code of Federal Regulations, 2014 CFR
2014-04-01
...): MAP Lender Quality Assurance Enforcement § 200.1545 Appeals of MAP Lender Review Board decisions. (a... information included in the administrative record and any new information presented at the appeal conference... to overturn will be posted on HUD's MAP Web site. ...
24 CFR 200.1545 - Appeals of MAP Lender Review Board decisions.
Code of Federal Regulations, 2013 CFR
2013-04-01
...): MAP Lender Quality Assurance Enforcement § 200.1545 Appeals of MAP Lender Review Board decisions. (a... information included in the administrative record and any new information presented at the appeal conference... to overturn will be posted on HUD's MAP Web site. ...
The Generation of Near-Real Time Data Products for MODIS
NASA Astrophysics Data System (ADS)
Teague, M.; Schmaltz, J. E.; Ilavajhala, S.; Ye, G.; Masuoka, E.; Murphy, K. J.; Michael, K.
2010-12-01
The GSFC Terrestrial Information Systems Branch (614.5) operate the Land and Atmospheres Near-real-time Capability for EOS (LANCE-MODIS) system. Other LANCE elements include -AIRS, -MLS, -OMI, and -AMSR-E. LANCE-MODIS incorporates the former Rapid Response system and will, in early 2011, include the Fire Information for Resource Management System (FIRMS). The purpose of LANCE is to provide applications users with a variety of products on a near-real time basis. The LANCE-MODIS data products include Level 1 (L1), L2 fire, snow, sea ice, cloud mask/profiles, aerosols, clouds, land surface reflectance, land surface temperature, and L2G and L3 gridded, daily, land surface reflectance products. Data are available either by ftp access (pull) or by subscription (push) and the L1 and L2 data products are available within an average of 2.5 hours of the observation time. The use of ancillary data products input to the standard science algorithms has been modified in order to obtain these latencies. The resulting products have been approved for applications use by the MODIS Science Team. The http://lance.nasa.gov site provides registration information and extensive information concerning the MODIS data products and imagery including a comparison between the LANCE-MODIS and the standard science-quality products generated by the MODAPS system. The LANCE-MODIS system includes a variety of tools that enable users to manipulate the data products including: parameter, band, and geographic subsetting, re-projection, mosaicing, and generation of data in the GeoTIFF format. In most instances the data resulting from use of these tools has a latency of less than 3 hours. Access to these tools is available through a Web Coverage Service. A Google Earth/Web Mapping Service is available to access image products. LANCE-MODIS supports a wide variety of applications users in civilian, military, and foreign agencies as well as universities and the private sector. Examples of applications are: Flood Mapping, Famine relief, Food and Agriculture, Hazards and Disasters, and Weather.
2013-01-01
Background Molecular biology knowledge can be formalized and systematically represented in a computer-readable form as a comprehensive map of molecular interactions. There exist an increasing number of maps of molecular interactions containing detailed and step-wise description of various cell mechanisms. It is difficult to explore these large maps, to organize discussion of their content and to maintain them. Several efforts were recently made to combine these capabilities together in one environment, and NaviCell is one of them. Results NaviCell is a web-based environment for exploiting large maps of molecular interactions, created in CellDesigner, allowing their easy exploration, curation and maintenance. It is characterized by a combination of three essential features: (1) efficient map browsing based on Google Maps; (2) semantic zooming for viewing different levels of details or of abstraction of the map and (3) integrated web-based blog for collecting community feedback. NaviCell can be easily used by experts in the field of molecular biology for studying molecular entities of interest in the context of signaling pathways and crosstalk between pathways within a global signaling network. NaviCell allows both exploration of detailed molecular mechanisms represented on the map and a more abstract view of the map up to a top-level modular representation. NaviCell greatly facilitates curation, maintenance and updating the comprehensive maps of molecular interactions in an interactive and user-friendly fashion due to an imbedded blogging system. Conclusions NaviCell provides user-friendly exploration of large-scale maps of molecular interactions, thanks to Google Maps and WordPress interfaces, with which many users are already familiar. Semantic zooming which is used for navigating geographical maps is adopted for molecular maps in NaviCell, making any level of visualization readable. In addition, NaviCell provides a framework for community-based curation of maps. PMID:24099179
Kuperstein, Inna; Cohen, David P A; Pook, Stuart; Viara, Eric; Calzone, Laurence; Barillot, Emmanuel; Zinovyev, Andrei
2013-10-07
Molecular biology knowledge can be formalized and systematically represented in a computer-readable form as a comprehensive map of molecular interactions. There exist an increasing number of maps of molecular interactions containing detailed and step-wise description of various cell mechanisms. It is difficult to explore these large maps, to organize discussion of their content and to maintain them. Several efforts were recently made to combine these capabilities together in one environment, and NaviCell is one of them. NaviCell is a web-based environment for exploiting large maps of molecular interactions, created in CellDesigner, allowing their easy exploration, curation and maintenance. It is characterized by a combination of three essential features: (1) efficient map browsing based on Google Maps; (2) semantic zooming for viewing different levels of details or of abstraction of the map and (3) integrated web-based blog for collecting community feedback. NaviCell can be easily used by experts in the field of molecular biology for studying molecular entities of interest in the context of signaling pathways and crosstalk between pathways within a global signaling network. NaviCell allows both exploration of detailed molecular mechanisms represented on the map and a more abstract view of the map up to a top-level modular representation. NaviCell greatly facilitates curation, maintenance and updating the comprehensive maps of molecular interactions in an interactive and user-friendly fashion due to an imbedded blogging system. NaviCell provides user-friendly exploration of large-scale maps of molecular interactions, thanks to Google Maps and WordPress interfaces, with which many users are already familiar. Semantic zooming which is used for navigating geographical maps is adopted for molecular maps in NaviCell, making any level of visualization readable. In addition, NaviCell provides a framework for community-based curation of maps.
77 FR 70454 - Proposed Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-26
... which included a Web page address through which the Preliminary Flood Insurance Rate Map (FIRM), and... be accessed. The information available through the Web page address has subsequently been updated... through the web page address listed in the table has been updated to reflect the Revised Preliminary...
ERIC Educational Resources Information Center
Hou, Huei-Tse; Yu, Tsai-Fang; Wu, Yi-Xuan; Sung, Yao-Ting; Chang, Kuo-En
2016-01-01
The theory of spatial thinking is relevant to the learning and teaching of many academic domains. One promising method to facilitate learners' higher-order thinking is to utilize a web map mind tool to assist learners in applying spatial thinking to cooperative problem solving. In this study, an environment is designed based on the theory of…
Carnegie Science Academy Web Site
NASA Astrophysics Data System (ADS)
Kotwicki, John; Atzinger, Joe; Turso, Denise
1997-11-01
The Carnegie Science Academy is a professional society "For Teens...By Teens" at the Carnegie Science Center in Pittsburgh. The CSA Web Site [ http://csa.clpgh.org ] is designed for teens who have an interest in science and technology. This online or virtual science academy provides resources for teens in high school science classes. The Web site also allows students around the world to participate and communicate with other students, discuss current events in science, share opinions, find answers to questions, or make online friends. Visitors can enjoy the main components of the site or sign up for a free membership which allows access to our chat room for monthly meeting, online newsletter, members forum, and much more. Main components to the site include a spot for cool links and downloads, available for any visitor to download or view. Online exhibits are created by students to examine and publish an area of study and also allow teachers to easily post classroom activities as exhibits by submitting pictures and text. Random Access, the interactive part of the academy, allows users to share ideas and opinions. Planet CSA focuses on current events in science and the academy. In the future the CSA Web site will become a major resource for teens and science teachers providing materials that will allow students to further enhance their interest and experiences in science.
The Live Access Server Scientific Product Generation Through Workflow Orchestration
NASA Astrophysics Data System (ADS)
Hankin, S.; Calahan, J.; Li, J.; Manke, A.; O'Brien, K.; Schweitzer, R.
2006-12-01
The Live Access Server (LAS) is a well-established Web-application for display and analysis of geo-science data sets. The software, which can be downloaded and installed by anyone, gives data providers an easy way to establish services for their on-line data holdings, so their users can make plots; create and download data sub-sets; compare (difference) fields; and perform simple analyses. Now at version 7.0, LAS has been in operation since 1994. The current "Armstrong" release of LAS V7 consists of three components in a tiered architecture: user interface, workflow orchestration and Web Services. The LAS user interface (UI) communicates with the LAS Product Server via an XML protocol embedded in an HTTP "get" URL. Libraries (APIs) have been developed in Java, JavaScript and perl that can readily generate this URL. As a result of this flexibility it is common to find LAS user interfaces of radically different character, tailored to the nature of specific datasets or the mindset of specific users. When a request is received by the LAS Product Server (LPS -- the workflow orchestration component), business logic converts this request into a series of Web Service requests invoked via SOAP. These "back- end" Web services perform data access and generate products (visualizations, data subsets, analyses, etc.). LPS then packages these outputs into final products (typically HTML pages) via Jakarta Velocity templates for delivery to the end user. "Fine grained" data access is performed by back-end services that may utilize JDBC for data base access; the OPeNDAP "DAPPER" protocol; or (in principle) the OGC WFS protocol. Back-end visualization services are commonly legacy science applications wrapped in Java or Python (or perl) classes and deployed as Web Services accessible via SOAP. Ferret is the default visualization application used by LAS, though other applications such as Matlab, CDAT, and GrADS can also be used. Other back-end services may include generation of Google Earth layers using KML; generation of maps via WMS or ArcIMS protocols; and data manipulation with Unix utilities.
Integrating Radar Image Data with Google Maps
NASA Technical Reports Server (NTRS)
Chapman, Bruce D.; Gibas, Sarah
2010-01-01
A public Web site has been developed as a method for displaying the multitude of radar imagery collected by NASA s Airborne Synthetic Aperture Radar (AIRSAR) instrument during its 16-year mission. Utilizing NASA s internal AIRSAR site, the new Web site features more sophisticated visualization tools that enable the general public to have access to these images. The site was originally maintained at NASA on six computers: one that held the Oracle database, two that took care of the software for the interactive map, and three that were for the Web site itself. Several tasks were involved in moving this complicated setup to just one computer. First, the AIRSAR database was migrated from Oracle to MySQL. Then the back-end of the AIRSAR Web site was updated in order to access the MySQL database. To do this, a few of the scripts needed to be modified; specifically three Perl scripts that query that database. The database connections were then updated from Oracle to MySQL, numerous syntax errors were corrected, and a query was implemented that replaced one of the stored Oracle procedures. Lastly, the interactive map was designed, implemented, and tested so that users could easily browse and access the radar imagery through the Google Maps interface.
NASA Astrophysics Data System (ADS)
Arias Muñoz, C.; Brovelli, M. A.; Kilsedar, C. E.; Moreno-Sanchez, R.; Oxoli, D.
2017-09-01
The availability of water-related data and information across different geographical and jurisdictional scales is of critical importance for the conservation and management of water resources in the 21st century. Today information assets are often found fragmented across multiple agencies that use incompatible data formats and procedures for data collection, storage, maintenance, analysis, and distribution. The growing adoption of Web mapping systems in the water domain is reducing the gap between data availability and its practical use and accessibility. Nevertheless, more attention must be given to the design and development of these systems to achieve high levels of interoperability and usability while fulfilling different end user informational needs. This paper first presents a brief overview of technologies used in the water domain, and then presents three examples of Web mapping architectures based on free and open source software (FOSS) and the use of open specifications (OS) that address different users' needs for data sharing, visualization, manipulation, scenario simulations, and map production. The purpose of the paper is to illustrate how the latest developments in OS for geospatial and water-related data collection, storage, and sharing, combined with the use of mature FOSS projects facilitate the creation of sophisticated interoperable Web-based information systems in the water domain.