NASA Astrophysics Data System (ADS)
Hu, Qing-Qing; Freier, Christian; Leykauf, Bastian; Schkolnik, Vladimir; Yang, Jun; Krutzik, Markus; Peters, Achim
2017-09-01
Precisely evaluating the systematic error induced by the quadratic Zeeman effect is important for developing atom interferometer gravimeters aiming at an accuracy in the μ Gal regime (1 μ Gal =10-8m /s2 ≈10-9g ). This paper reports on the experimental investigation of Raman spectroscopy-based magnetic field measurements and the evaluation of the systematic error in the gravimetric atom interferometer (GAIN) due to quadratic Zeeman effect. We discuss Raman duration and frequency step-size-dependent magnetic field measurement uncertainty, present vector light shift and tensor light shift induced magnetic field measurement offset, and map the absolute magnetic field inside the interferometer chamber of GAIN with an uncertainty of 0.72 nT and a spatial resolution of 12.8 mm. We evaluate the quadratic Zeeman-effect-induced gravity measurement error in GAIN as 2.04 μ Gal . The methods shown in this paper are important for precisely mapping the absolute magnetic field in vacuum and reducing the quadratic Zeeman-effect-induced systematic error in Raman transition-based precision measurements, such as atomic interferometer gravimeters.
Error reduction and parameter optimization of the TAPIR method for fast T1 mapping.
Zaitsev, M; Steinhoff, S; Shah, N J
2003-06-01
A methodology is presented for the reduction of both systematic and random errors in T(1) determination using TAPIR, a Look-Locker-based fast T(1) mapping technique. The relations between various sequence parameters were carefully investigated in order to develop recipes for choosing optimal sequence parameters. Theoretical predictions for the optimal flip angle were verified experimentally. Inversion pulse imperfections were identified as the main source of systematic errors in T(1) determination with TAPIR. An effective remedy is demonstrated which includes extension of the measurement protocol to include a special sequence for mapping the inversion efficiency itself. Copyright 2003 Wiley-Liss, Inc.
Accuracy Improvement of Multi-Axis Systems Based on Laser Correction of Volumetric Geometric Errors
NASA Astrophysics Data System (ADS)
Teleshevsky, V. I.; Sokolov, V. A.; Pimushkin, Ya I.
2018-04-01
The article describes a volumetric geometric errors correction method for CNC- controlled multi-axis systems (machine-tools, CMMs etc.). The Kalman’s concept of “Control and Observation” is used. A versatile multi-function laser interferometer is used as Observer in order to measure machine’s error functions. A systematic error map of machine’s workspace is produced based on error functions measurements. The error map results into error correction strategy. The article proposes a new method of error correction strategy forming. The method is based on error distribution within machine’s workspace and a CNC-program postprocessor. The postprocessor provides minimal error values within maximal workspace zone. The results are confirmed by error correction of precision CNC machine-tools.
Quantifying Errors in TRMM-Based Multi-Sensor QPE Products Over Land in Preparation for GPM
NASA Technical Reports Server (NTRS)
Peters-Lidard, Christa D.; Tian, Yudong
2011-01-01
Determining uncertainties in satellite-based multi-sensor quantitative precipitation estimates over land of fundamental importance to both data producers and hydro climatological applications. ,Evaluating TRMM-era products also lays the groundwork and sets the direction for algorithm and applications development for future missions including GPM. QPE uncertainties result mostly from the interplay of systematic errors and random errors. In this work, we will synthesize our recent results quantifying the error characteristics of satellite-based precipitation estimates. Both systematic errors and total uncertainties have been analyzed for six different TRMM-era precipitation products (3B42, 3B42RT, CMORPH, PERSIANN, NRL and GSMap). For systematic errors, we devised an error decomposition scheme to separate errors in precipitation estimates into three independent components, hit biases, missed precipitation and false precipitation. This decomposition scheme reveals hydroclimatologically-relevant error features and provides a better link to the error sources than conventional analysis, because in the latter these error components tend to cancel one another when aggregated or averaged in space or time. For the random errors, we calculated the measurement spread from the ensemble of these six quasi-independent products, and thus produced a global map of measurement uncertainties. The map yields a global view of the error characteristics and their regional and seasonal variations, reveals many undocumented error features over areas with no validation data available, and provides better guidance to global assimilation of satellite-based precipitation data. Insights gained from these results and how they could help with GPM will be highlighted.
NASA Technical Reports Server (NTRS)
Hinshaw, G.; Barnes, C.; Bennett, C. L.; Greason, M. R.; Halpern, M.; Hill, R. S.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S. S.
2003-01-01
We describe the calibration and data processing methods used to generate full-sky maps of the cosmic microwave background (CMB) from the first year of Wilkinson Microwave Anisotropy Probe (WMAP) observations. Detailed limits on residual systematic errors are assigned based largely on analyses of the flight data supplemented, where necessary, with results from ground tests. The data are calibrated in flight using the dipole modulation of the CMB due to the observatory's motion around the Sun. This constitutes a full-beam calibration source. An iterative algorithm simultaneously fits the time-ordered data to obtain calibration parameters and pixelized sky map temperatures. The noise properties are determined by analyzing the time-ordered data with this sky signal estimate subtracted. Based on this, we apply a pre-whitening filter to the time-ordered data to remove a low level of l/f noise. We infer and correct for a small (approx. 1 %) transmission imbalance between the two sky inputs to each differential radiometer, and we subtract a small sidelobe correction from the 23 GHz (K band) map prior to further analysis. No other systematic error corrections are applied to the data. Calibration and baseline artifacts, including the response to environmental perturbations, are negligible. Systematic uncertainties are comparable to statistical uncertainties in the characterization of the beam response. Both are accounted for in the covariance matrix of the window function and are propagated to uncertainties in the final power spectrum. We characterize the combined upper limits to residual systematic uncertainties through the pixel covariance matrix.
Validation of mesoscale models
NASA Technical Reports Server (NTRS)
Kuo, Bill; Warner, Tom; Benjamin, Stan; Koch, Steve; Staniforth, Andrew
1993-01-01
The topics discussed include the following: verification of cloud prediction from the PSU/NCAR mesoscale model; results form MAPS/NGM verification comparisons and MAPS observation sensitivity tests to ACARS and profiler data; systematic errors and mesoscale verification for a mesoscale model; and the COMPARE Project and the CME.
NASA Technical Reports Server (NTRS)
Larson, T. J.; Ehernberger, L. J.
1985-01-01
The flight test technique described uses controlled survey runs to determine horizontal atmospheric pressure variations and systematic altitude errors that result from space positioning measurements. The survey data can be used not only for improved air data calibrations, but also for studies of atmospheric structure and space positioning accuracy performance. The examples presented cover a wide range of radar tracking conditions for both subsonic and supersonic flight to an altitude of 42,000 ft.
NASA Technical Reports Server (NTRS)
Casper, Paul W.; Bent, Rodney B.
1991-01-01
The algorithm used in previous technology time-of-arrival lightning mapping systems was based on the assumption that the earth is a perfect spheroid. These systems yield highly-accurate lightning locations, which is their major strength. However, extensive analysis of tower strike data has revealed occasionally significant (one to two kilometer) systematic offset errors which are not explained by the usual error sources. It was determined that these systematic errors reduce dramatically (in some cases) when the oblate shape of the earth is taken into account. The oblate spheroid correction algorithm and a case example is presented.
Grids in topographic maps reduce distortions in the recall of learned object locations.
Edler, Dennis; Bestgen, Anne-Kathrin; Kuchinke, Lars; Dickmann, Frank
2014-01-01
To date, it has been shown that cognitive map representations based on cartographic visualisations are systematically distorted. The grid is a traditional element of map graphics that has rarely been considered in research on perception-based spatial distortions. Grids do not only support the map reader in finding coordinates or locations of objects, they also provide a systematic structure for clustering visual map information ("spatial chunks"). The aim of this study was to examine whether different cartographic kinds of grids reduce spatial distortions and improve recall memory for object locations. Recall performance was measured as both the percentage of correctly recalled objects (hit rate) and the mean distance errors of correctly recalled objects (spatial accuracy). Different kinds of grids (continuous lines, dashed lines, crosses) were applied to topographic maps. These maps were also varied in their type of characteristic areas (LANDSCAPE) and different information layer compositions (DENSITY) to examine the effects of map complexity. The study involving 144 participants shows that all experimental cartographic factors (GRID, LANDSCAPE, DENSITY) improve recall performance and spatial accuracy of learned object locations. Overlaying a topographic map with a grid significantly reduces the mean distance errors of correctly recalled map objects. The paper includes a discussion of a square grid's usefulness concerning object location memory, independent of whether the grid is clearly visible (continuous or dashed lines) or only indicated by crosses.
An investigation of condition mapping and plot proportion calculation issues
Demetrios Gatziolis
2007-01-01
A systematic examination of Forest Inventory and Analysis condition data collected under the annual inventory protocol in the Pacific Northwest region between 2000 and 2004 revealed the presence of errors both in condition topology and plot proportion computations. When plots were compiled to generate population estimates, proportion errors were found to cause...
Mapping and correcting the influence of gaze position on pupil size measurements
Petrov, Alexander A.
2015-01-01
Pupil size is correlated with a wide variety of important cognitive variables and is increasingly being used by cognitive scientists. Pupil data can be recorded inexpensively and non-invasively by many commonly used video-based eye-tracking cameras. Despite the relative ease of data collection and increasing prevalence of pupil data in the cognitive literature, researchers often underestimate the methodological challenges associated with controlling for confounds that can result in misinterpretation of their data. One serious confound that is often not properly controlled is pupil foreshortening error (PFE)—the foreshortening of the pupil image as the eye rotates away from the camera. Here we systematically map PFE using an artificial eye model and then apply a geometric model correction. Three artificial eyes with different fixed pupil sizes were used to systematically measure changes in pupil size as a function of gaze position with a desktop EyeLink 1000 tracker. A grid-based map of pupil measurements was recorded with each artificial eye across three experimental layouts of the eye-tracking camera and display. Large, systematic deviations in pupil size were observed across all nine maps. The measured PFE was corrected by a geometric model that expressed the foreshortening of the pupil area as a function of the cosine of the angle between the eye-to-camera axis and the eye-to-stimulus axis. The model reduced the root mean squared error of pupil measurements by 82.5 % when the model parameters were pre-set to the physical layout dimensions, and by 97.5 % when they were optimized to fit the empirical error surface. PMID:25953668
Integration of imagery and cartographic data through a common map base
NASA Technical Reports Server (NTRS)
Clark, J.
1983-01-01
Several disparate data types are integrated by using control points as the basis for spatially registering the data to a map base. The data are reprojected to match the coordinates of the reference UTM (Universal Transverse Mercator) map projection, as expressed in lines and samples. Control point selection is the most critical aspect of integrating the Thematic Mapper Simulator MSS imagery with the cartographic data. It is noted that control points chosen from the imagery are subject to error from mislocated points, either points that did not correlate well to the reference map or minor pixel offsets because of interactive cursorring errors. Errors are also introduced in map control points when points are improperly located and digitized, leading to inaccurate latitude and longitude coordinates. Nonsystematic aircraft platform variations, such as yawl, pitch, and roll, affect the spatial fidelity of the imagery in comparison with the quadrangles. Features in adjacent flight paths do not always correspond properly owing to the systematic panorama effect and alteration of flightline direction, as well as platform variations.
A systematic framework for Monte Carlo simulation of remote sensing errors map in carbon assessments
S. Healey; P. Patterson; S. Urbanski
2014-01-01
Remotely sensed observations can provide unique perspective on how management and natural disturbance affect carbon stocks in forests. However, integration of these observations into formal decision support will rely upon improved uncertainty accounting. Monte Carlo (MC) simulations offer a practical, empirical method of accounting for potential remote sensing errors...
NASA Technical Reports Server (NTRS)
Davis, J. L.; Herring, T. A.; Shapiro, I. I.; Rogers, A. E. E.; Elgered, G.
1985-01-01
Analysis of very long baseline interferometry data indicates that systematic errors in prior estimates of baseline length, of order 5 cm for approximately 8000-km baselines, were due primarily to mismodeling of the electrical path length of the troposphere and mesosphere ('atmospheric delay'). Here observational evidence for the existence of such errors in the previously used models for the atmospheric delay is discussed, and a new 'mapping' function for the elevation angle dependence of this delay is developed. The delay predicted by this new mapping function differs from ray trace results by less than approximately 5 mm, at all elevations down to 5 deg elevation, and introduces errors into the estimates of baseline length of less than about 1 cm, for the multistation intercontinental experiment analyzed here.
Geometric Accuracy Analysis of Worlddem in Relation to AW3D30, Srtm and Aster GDEM2
NASA Astrophysics Data System (ADS)
Bayburt, S.; Kurtak, A. B.; Büyüksalih, G.; Jacobsen, K.
2017-05-01
In a project area close to Istanbul the quality of WorldDEM, AW3D30, SRTM DSM and ASTER GDEM2 have been analyzed in relation to a reference aerial LiDAR DEM and to each other. The random and the systematic height errors have been separated. The absolute offset for all height models in X, Y and Z is within the expectation. The shifts have been respected in advance for a satisfying estimation of the random error component. All height models are influenced by some tilts, different in size. In addition systematic deformations can be seen not influencing the standard deviation too much. The delivery of WorldDEM includes information about the height error map which is based on the interferometric phase errors, and the number and location of coverage's from different orbits. A dependency of the height accuracy from the height error map information and the number of coverage's can be seen, but it is smaller as expected. WorldDEM is more accurate as the other investigated height models and with 10 m point spacing it includes more morphologic details, visible at contour lines. The morphologic details are close to the details based on the LiDAR digital surface model (DSM). As usual a dependency of the accuracy from the terrain slope can be seen. In forest areas the canopy definition of InSAR X- and C-band height models as well as for the height models based on optical satellite images is not the same as the height definition by LiDAR. In addition the interferometric phase uncertainty over forest areas is larger. Both effects lead to lower height accuracy in forest areas, also visible in the height error map.
Cosmology from Cosmic Microwave Background and large- scale structure
NASA Astrophysics Data System (ADS)
Xu, Yongzhong
2003-10-01
This dissertation consists of a series of studies, constituting four published papers, involving the Cosmic Microwave Background and the large scale structure, which help constrain Cosmological parameters and potential systematic errors. First, we present a method for comparing and combining maps with different resolutions and beam shapes, and apply it to the Saskatoon, QMAP and COBE/DMR data sets. Although the Saskatoon and QMAP maps detect signal at the 21σ and 40σ, levels, respectively, their difference is consistent with pure noise, placing strong limits on possible systematic errors. In particular, we obtain quantitative upper limits on relative calibration and pointing errors. Splitting the combined data by frequency shows similar consistency between the Ka- and Q-bands, placing limits on foreground contamination. The visual agreement between the maps is equally striking. Our combined QMAP+Saskatoon map, nicknamed QMASK, is publicly available at www.hep.upenn.edu/˜xuyz/qmask.html together with its 6495 x 6495 noise covariance matrix. This thoroughly tested data set covers a large enough area (648 square degrees—at the time, the largest degree-scale map available) to allow a statistical comparison with LOBE/DMR, showing good agreement. By band-pass-filtering the QMAP and Saskatoon maps, we are also able to spatially compare them scale-by-scale to check for beam- and pointing-related systematic errors. Using the QMASK map, we then measure the cosmic microwave background (CMB) power spectrum on angular scales ℓ ˜ 30 200 (1° 6°), and we test it for non-Gaussianity using morphological statistics known as Minkowski functionals. We conclude that the QMASK map is neither a very typical nor a very exceptional realization of a Gaussian random field. At least about 20% of the 1000 Gaussian Monte Carlo maps differ more than the QMASK map from the mean morphological parameters of the Gaussian fields. Finally, we compute the real-space power spectrum and the redshift-space distortions of galaxies in the 2dF 100k galaxy redshift survey using pseudo-Karhunen-Loève eigenmodes and the stochastic bias formalism. Our results agree well with those published by the 2dFGRS team, and have the added advantage of producing easy-to-interpret uncorrelated minimum-variance measurements of the galaxy- galaxy, galaxy-velocity and velocity-velocity power spectra in 27 k-bands, with narrow and well-behaved window functions in the range 0.01 h /Mpc < k < 0.8 h/Mpc. We find no significant detection of baryonic wiggles. We measure the galaxy-matter correlation coefficient r > 0.4 and the redshift-distortion parameter β = 0.49 ± 0.16 for r = 1.
Perils of using speed zone data to assess real-world compliance to speed limits.
Chevalier, Anna; Clarke, Elizabeth; Chevalier, Aran John; Brown, Julie; Coxon, Kristy; Ivers, Rebecca; Keay, Lisa
2017-11-17
Real-world driving studies, including those involving speeding alert devices and autonomous vehicles, can gauge an individual vehicle's speeding behavior by comparing measured speed with mapped speed zone data. However, there are complexities with developing and maintaining a database of mapped speed zones over a large geographic area that may lead to inaccuracies within the data set. When this approach is applied to large-scale real-world driving data or speeding alert device data to determine speeding behavior, these inaccuracies may result in invalid identification of speeding. We investigated speeding events based on service provider speed zone data. We compared service provider speed zone data (Speed Alert by Smart Car Technologies Pty Ltd., Ultimo, NSW, Australia) against a second set of speed zone data (Google Maps Application Programming Interface [API] mapped speed zones). We found a systematic error in the zones where speed limits of 50-60 km/h, typical of local roads, were allocated to high-speed motorways, which produced false speed limits in the speed zone database. The result was detection of false-positive high-range speeding. Through comparison of the service provider speed zone data against a second set of speed zone data, we were able to identify and eliminate data most affected by this systematic error, thereby establishing a data set of speeding events with a high level of sensitivity (a true positive rate of 92% or 6,412/6,960). Mapped speed zones can be a source of error in real-world driving when examining vehicle speed. We explored the types of inaccuracies found within speed zone data and recommend that a second set of speed zone data be utilized when investigating speeding behavior or developing mapped speed zone data to minimize inaccuracy in estimates of speeding.
Integrated Sachs-Wolfe map reconstruction in the presence of systematic errors
NASA Astrophysics Data System (ADS)
Weaverdyck, Noah; Muir, Jessica; Huterer, Dragan
2018-02-01
The decay of gravitational potentials in the presence of dark energy leads to an additional, late-time contribution to anisotropies in the cosmic microwave background (CMB) at large angular scales. The imprint of this so-called integrated Sachs-Wolfe (ISW) effect to the CMB angular power spectrum has been detected and studied in detail, but reconstructing its spatial contributions to the CMB map, which would offer the tantalizing possibility of separating the early- from the late-time contributions to CMB temperature fluctuations, is more challenging. Here, we study the technique for reconstructing the ISW map based on information from galaxy surveys and focus in particular on how its accuracy is impacted by the presence of photometric calibration errors in input galaxy maps, which were previously found to be a dominant contaminant for ISW signal estimation. We find that both including tomographic information from a single survey and using data from multiple, complementary galaxy surveys improve the reconstruction by mitigating the impact of spurious power contributions from calibration errors. A high-fidelity reconstruction further requires one to account for the contribution of calibration errors to the observed galaxy power spectrum in the model used to construct the ISW estimator. We find that if the photometric calibration errors in galaxy surveys can be independently controlled at the level required to obtain unbiased dark energy constraints, then it is possible to reconstruct ISW maps with excellent accuracy using a combination of maps from two galaxy surveys with properties similar to Euclid and SPHEREx.
Bit Error Probability for Maximum Likelihood Decoding of Linear Block Codes
NASA Technical Reports Server (NTRS)
Lin, Shu; Fossorier, Marc P. C.; Rhee, Dojun
1996-01-01
In this paper, the bit error probability P(sub b) for maximum likelihood decoding of binary linear codes is investigated. The contribution of each information bit to P(sub b) is considered. For randomly generated codes, it is shown that the conventional approximation at high SNR P(sub b) is approximately equal to (d(sub H)/N)P(sub s), where P(sub s) represents the block error probability, holds for systematic encoding only. Also systematic encoding provides the minimum P(sub b) when the inverse mapping corresponding to the generator matrix of the code is used to retrieve the information sequence. The bit error performances corresponding to other generator matrix forms are also evaluated. Although derived for codes with a generator matrix randomly generated, these results are shown to provide good approximations for codes used in practice. Finally, for decoding methods which require a generator matrix with a particular structure such as trellis decoding or algebraic-based soft decision decoding, equivalent schemes that reduce the bit error probability are discussed.
Black hole masses in active galactic nuclei
NASA Astrophysics Data System (ADS)
Denney, Kelly D.
2010-11-01
We present the complete results from two, high sampling-rate, multi-month, spectrophotometric reverberation mapping campaigns undertaken to obtain either new or improved Hbeta reverberation lag measurements for several relatively low-luminosity active galactic nuclei (AGNs). We have reliably measured the time delay between variations in the continuum and Hbeta emission line in seven local Seyfert 1 galaxies. These measurements are used to calculate the mass of the supermassive black hole at the center of each of these AGNs. We place our results in context to the most current calibration of the broad-line region (BLR) RBLR-L relationship, where our results remove many outliers and significantly reduce the scatter at the low-luminosity end of this relationship. A detailed analysis of the data from our high sampling rate, multi-month reverberation mapping campaign in 2007 reveals that the Hbeta emission region within the BLRs of several nearby AGNs exhibit a variety of kinematic behaviors. Through a velocity-resolved reverberation analysis of the broad Hbeta emission-line flux variations in our sample, we reconstruct velocity-resolved kinematic signals for our entire sample and clearly see evidence for outflowing, infalling, and virialized BLR gas motions in NGC 3227, NGC 3516, and NGC 5548, respectively. Finally, we explore the nature of systematic errors that can arise in measurements of black hole masses from single-epoch spectra of AGNs by utilizing the many epochs available for NGC 5548 and PG1229+204 from reverberation mapping databases. In particular, we examine systematics due to AGN variability, contamination due to constant spectral components (i.e., narrow lines and host galaxy flux), data quality (i.e., signal-to-noise ratio, S/N), and blending of spectral features. We investigate the effect that each of these systematics has on the precision and accuracy of single-epoch masses calculated from two commonly-used line-width measures by comparing these results to recent reverberation mapping studies. We then present an error budget which summarizes the minimum observable uncertainties as well as the amount of additional scatter and/or systematic offset that can be expected from the individual sources of error investigated.
NASA Astrophysics Data System (ADS)
de Oliveira, Cleber Gonzales; Paradella, Waldir Renato; da Silva, Arnaldo de Queiroz
The Brazilian Amazon is a vast territory with an enormous need for mapping and monitoring of renewable and non-renewable resources. Due to the adverse environmental condition (rain, cloud, dense vegetation) and difficult access, topographic information is still poor, and when available needs to be updated or re-mapped. In this paper, the feasibility of using Digital Surface Models (DSMs) extracted from TerraSAR-X Stripmap stereo-pair images for detailed topographic mapping was investigated for a mountainous area in the Carajás Mineral Province, located on the easternmost border of the Brazilian Amazon. The quality of the radargrammetric DSMs was evaluated regarding field altimetric measurements. Precise topographic field information acquired from a Global Positioning System (GPS) was used as Ground Control Points (GCPs) for the modeling of the stereoscopic DSMs and as Independent Check Points (ICPs) for the calculation of elevation accuracies. The analysis was performed following two ways: (1) the use of Root Mean Square Error (RMSE) and (2) calculations of systematic error (bias) and precision. The test for significant systematic error was based on the Student's-t distribution and the test of precision was based on the Chi-squared distribution. The investigation has shown that the accuracy of the TerraSAR-X Stripmap DSMs met the requirements for 1:50,000 map (Class A) as requested by the Brazilian Standard for Cartographic Accuracy. Thus, the use of TerraSAR-X Stripmap images can be considered a promising alternative for detailed topographic mapping in similar environments of the Amazon region, where available topographic information is rare or presents low quality.
Distortions in memory for visual displays
NASA Technical Reports Server (NTRS)
Tversky, Barbara
1989-01-01
Systematic errors in perception and memory present a challenge to theories of perception and memory and to applied psychologists interested in overcoming them as well. A number of systematic errors in memory for maps and graphs are reviewed, and they are accounted for by an analysis of the perceptual processing presumed to occur in comprehension of maps and graphs. Visual stimuli, like verbal stimuli, are organized in comprehension and memory. For visual stimuli, the organization is a consequence of perceptual processing, which is bottom-up or data-driven in its earlier stages, but top-down and affected by conceptual knowledge later on. Segregation of figure from ground is an early process, and figure recognition later; for both, symmetry is a rapidly detected and ecologically valid cue. Once isolated, figures are organized relative to one another and relative to a frame of reference. Both perceptual (e.g., salience) and conceptual factors (e.g., significance) seem likely to affect selection of a reference frame. Consistent with the analysis, subjects perceived and remembered curves in graphs and rivers in maps as more symmetric than they actually were. Symmetry, useful for detecting and recognizing figures, distorts map and graph figures alike. Top-down processes also seem to operate in that calling attention to the symmetry vs. asymmetry of a slightly asymmetric curve yielded memory errors in the direction of the description. Conceptual frame of reference effects were demonstrated in memory for lines embedded in graphs. In earlier work, the orientation of map figures was distorted in memory toward horizontal or vertical. In recent work, graph lines, but not map lines, were remembered as closer to an imaginary 45 deg line than they had been. Reference frames are determined by both perceptual and conceptual factors, leading to selection of the canonical axes as a reference frame in maps, but selection of the imaginary 45 deg as a reference frame in graphs.
Thirty Years of Improving the NCEP Global Forecast System
NASA Astrophysics Data System (ADS)
White, G. H.; Manikin, G.; Yang, F.
2014-12-01
Current eight day forecasts by the NCEP Global Forecast System are as accurate as five day forecasts 30 years ago. This revolution in weather forecasting reflects increases in computer power, improvements in the assimilation of observations, especially satellite data, improvements in model physics, improvements in observations and international cooperation and competition. One important component has been and is the diagnosis, evaluation and reduction of systematic errors. The effect of proposed improvements in the GFS on systematic errors is one component of the thorough testing of such improvements by the Global Climate and Weather Modeling Branch. Examples of reductions in systematic errors in zonal mean temperatures and winds and other fields will be presented. One challenge in evaluating systematic errors is uncertainty in what reality is. Model initial states can be regarded as the best overall depiction of the atmosphere, but can be misleading in areas of few observations or for fields not well observed such as humidity or precipitation over the oceans. Verification of model physics is particularly difficult. The Environmental Modeling Center emphasizes the evaluation of systematic biases against observations. Recently EMC has placed greater emphasis on synoptic evaluation and on precipitation, 2-meter temperatures and dew points and 10 meter winds. A weekly EMC map discussion reviews the performance of many models over the United States and has helped diagnose and alleviate significant systematic errors in the GFS, including a near surface summertime evening cold wet bias over the eastern US and a multi-week period when the GFS persistently developed bogus tropical storms off Central America. The GFS exhibits a wet bias for light rain and a dry bias for moderate to heavy rain over the continental United States. Significant changes to the GFS are scheduled to be implemented in the fall of 2014. These include higher resolution, improved physics and improvements to the assimilation. These changes significantly improve the tropospheric flow and reduce a tropical upper tropospheric warm bias. One important error remaining is the failure of the GFS to maintain deep convection over Indonesia and in the tropical west Pacific. This and other current systematic errors will be presented.
Park, S B; Kim, H; Yao, M; Ellis, R; Machtay, M; Sohn, J W
2012-06-01
To quantify the systematic error of a Deformable Image Registration (DIR) system and establish Quality Assurance (QA) procedure. To address the shortfall of landmark approach which it is only available at the significant visible feature points, we adapted a Deformation Vector Map (DVM) comparison approach. We used two CT image sets (R and T image sets) taken for the same patient at different time and generated a DVM, which includes the DIR systematic error. The DVM was calculated using fine-tuned B-Spline DIR and L-BFGS optimizer. By utilizing this DVM we generated R' image set to eliminate the systematic error in DVM,. Thus, we have truth data set, R' and T image sets, and the truth DVM. To test a DIR system, we use R' and T image sets to a DIR system. We compare the test DVM to the truth DVM. If there is no systematic error, they should be identical. We built Deformation Error Histogram (DEH) for quantitative analysis. The test registration was performed with an in-house B-Spline DIR system using a stochastic gradient descent optimizer. Our example data set was generated with a head and neck patient case. We also tested CT to CBCT deformable registration. We found skin regions which interface with the air has relatively larger errors. Also mobile joints such as shoulders had larger errors. Average error for ROIs were as follows; CTV: 0.4mm, Brain stem: 1.4mm, Shoulders: 1.6mm, and Normal tissues: 0.7mm. We succeeded to build DEH approach to quantify the DVM uncertainty. Our data sets are available for testing other systems in our web page. Utilizing DEH, users can decide how much systematic error they would accept. DEH and our data can be a tool for an AAPM task group to compose a DIR system QA guideline. This project is partially supported by the Agency for Healthcare Research and Quality (AHRQ) grant 1R18HS017424-01A2. © 2012 American Association of Physicists in Medicine.
Burns, W.J.; Coe, J.A.; Kaya, B.S.; Ma, Liwang
2010-01-01
We examined elevation changes detected from two successive sets of Light Detection and Ranging (LiDAR) data in the northern Coast Range of Oregon. The first set of LiDAR data was acquired during leafon conditions and the second set during leaf-off conditions. We were able to successfully identify and map active landslides using a differential digital elevation model (DEM) created from the two LiDAR data sets, but this required the use of thresholds (0.50 and 0.75 m) to remove noise from the differential elevation data, visual pattern recognition of landslideinduced elevation changes, and supplemental QuickBird satellite imagery. After mapping, we field-verified 88 percent of the landslides that we had mapped with high confidence, but we could not detect active landslides with elevation changes of less than 0.50 m. Volumetric calculations showed that a total of about 18,100 m3 of material was missing from landslide areas, probably as a result of systematic negative elevation errors in the differential DEM and as a result of removal of material by erosion and transport. We also examined the accuracies of 285 leaf-off LiDAR elevations at four landslide sites using Global Positioning System and total station surveys. A comparison of LiDAR and survey data indicated an overall root mean square error of 0.50 m, a maximum error of 2.21 m, and a systematic error of 0.09 m. LiDAR ground-point densities were lowest in areas with young conifer forests and deciduous vegetation, which resulted in extensive interpolations of elevations in the leaf-on, bare-earth DEM. For optimal use of multi-temporal LiDAR data in forested areas, we recommend that all data sets be flown during leaf-off seasons.
A Review of Depth and Normal Fusion Algorithms
Štolc, Svorad; Pock, Thomas
2018-01-01
Geometric surface information such as depth maps and surface normals can be acquired by various methods such as stereo light fields, shape from shading and photometric stereo techniques. We compare several algorithms which deal with the combination of depth with surface normal information in order to reconstruct a refined depth map. The reasons for performance differences are examined from the perspective of alternative formulations of surface normals for depth reconstruction. We review and analyze methods in a systematic way. Based on our findings, we introduce a new generalized fusion method, which is formulated as a least squares problem and outperforms previous methods in the depth error domain by introducing a novel normal weighting that performs closer to the geodesic distance measure. Furthermore, a novel method is introduced based on Total Generalized Variation (TGV) which further outperforms previous approaches in terms of the geodesic normal distance error and maintains comparable quality in the depth error domain. PMID:29389903
Cause-and-effect mapping of critical events.
Graves, Krisanne; Simmons, Debora; Galley, Mark D
2010-06-01
Health care errors are routinely reported in the scientific and public press and have become a major concern for most Americans. In learning to identify and analyze errors health care can develop some of the skills of a learning organization, including the concept of systems thinking. Modern experts in improving quality have been working in other high-risk industries since the 1920s making structured organizational changes through various frameworks for quality methods including continuous quality improvement and total quality management. When using these tools, it is important to understand systems thinking and the concept of processes within organization. Within these frameworks of improvement, several tools can be used in the analysis of errors. This article introduces a robust tool with a broad analytical view consistent with systems thinking, called CauseMapping (ThinkReliability, Houston, TX, USA), which can be used to systematically analyze the process and the problem at the same time. Copyright 2010 Elsevier Inc. All rights reserved.
A geometric model for initial orientation errors in pigeon navigation.
Postlethwaite, Claire M; Walker, Michael M
2011-01-21
All mobile animals respond to gradients in signals in their environment, such as light, sound, odours and magnetic and electric fields, but it remains controversial how they might use these signals to navigate over long distances. The Earth's surface is essentially two-dimensional, so two stimuli are needed to act as coordinates for navigation. However, no environmental fields are known to be simple enough to act as perpendicular coordinates on a two-dimensional grid. Here, we propose a model for navigation in which we assume that an animal has a simplified 'cognitive map' in which environmental stimuli act as perpendicular coordinates. We then investigate how systematic deviation of the contour lines of the environmental signals from a simple orthogonal arrangement can cause errors in position determination and lead to systematic patterns of directional errors in initial homing directions taken by pigeons. The model reproduces patterns of initial orientation errors seen in previously collected data from homing pigeons, predicts that errors should increase with distance from the loft, and provides a basis for efforts to identify further sources of orientation errors made by homing pigeons. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Raghunathan, Srinivasan; Patil, Sanjaykumar; Baxter, Eric J.; Bianchini, Federico; Bleem, Lindsey E.; Crawford, Thomas M.; Holder, Gilbert P.; Manzotti, Alessandro; Reichardt, Christian L.
2017-08-01
We develop a Maximum Likelihood estimator (MLE) to measure the masses of galaxy clusters through the impact of gravitational lensing on the temperature and polarization anisotropies of the cosmic microwave background (CMB). We show that, at low noise levels in temperature, this optimal estimator outperforms the standard quadratic estimator by a factor of two. For polarization, we show that the Stokes Q/U maps can be used instead of the traditional E- and B-mode maps without losing information. We test and quantify the bias in the recovered lensing mass for a comprehensive list of potential systematic errors. Using realistic simulations, we examine the cluster mass uncertainties from CMB-cluster lensing as a function of an experiment's beam size and noise level. We predict the cluster mass uncertainties will be 3 - 6% for SPT-3G, AdvACT, and Simons Array experiments with 10,000 clusters and less than 1% for the CMB-S4 experiment with a sample containing 100,000 clusters. The mass constraints from CMB polarization are very sensitive to the experimental beam size and map noise level: for a factor of three reduction in either the beam size or noise level, the lensing signal-to-noise improves by roughly a factor of two.
Uncertainty Analysis in Large Area Aboveground Biomass Mapping
NASA Astrophysics Data System (ADS)
Baccini, A.; Carvalho, L.; Dubayah, R.; Goetz, S. J.; Friedl, M. A.
2011-12-01
Satellite and aircraft-based remote sensing observations are being more frequently used to generate spatially explicit estimates of aboveground carbon stock of forest ecosystems. Because deforestation and forest degradation account for circa 10% of anthropogenic carbon emissions to the atmosphere, policy mechanisms are increasingly recognized as a low-cost mitigation option to reduce carbon emission. They are, however, contingent upon the capacity to accurately measures carbon stored in the forests. Here we examine the sources of uncertainty and error propagation in generating maps of aboveground biomass. We focus on characterizing uncertainties associated with maps at the pixel and spatially aggregated national scales. We pursue three strategies to describe the error and uncertainty properties of aboveground biomass maps, including: (1) model-based assessment using confidence intervals derived from linear regression methods; (2) data-mining algorithms such as regression trees and ensembles of these; (3) empirical assessments using independently collected data sets.. The latter effort explores error propagation using field data acquired within satellite-based lidar (GLAS) acquisitions versus alternative in situ methods that rely upon field measurements that have not been systematically collected for this purpose (e.g. from forest inventory data sets). A key goal of our effort is to provide multi-level characterizations that provide both pixel and biome-level estimates of uncertainties at different scales.
Bundle Block Adjustment of Airborne Three-Line Array Imagery Based on Rotation Angles
Zhang, Yongjun; Zheng, Maoteng; Huang, Xu; Xiong, Jinxin
2014-01-01
In the midst of the rapid developments in electronic instruments and remote sensing technologies, airborne three-line array sensors and their applications are being widely promoted and plentiful research related to data processing and high precision geo-referencing technologies is under way. The exterior orientation parameters (EOPs), which are measured by the integrated positioning and orientation system (POS) of airborne three-line sensors, however, have inevitable systematic errors, so the level of precision of direct geo-referencing is not sufficiently accurate for surveying and mapping applications. Consequently, a few ground control points are necessary to refine the exterior orientation parameters, and this paper will discuss bundle block adjustment models based on the systematic error compensation and the orientation image, considering the principle of an image sensor and the characteristics of the integrated POS. Unlike the models available in the literature, which mainly use a quaternion to represent the rotation matrix of exterior orientation, three rotation angles are directly used in order to effectively model and eliminate the systematic errors of the POS observations. Very good experimental results have been achieved with several real datasets that verify the correctness and effectiveness of the proposed adjustment models. PMID:24811075
Bundle block adjustment of airborne three-line array imagery based on rotation angles.
Zhang, Yongjun; Zheng, Maoteng; Huang, Xu; Xiong, Jinxin
2014-05-07
In the midst of the rapid developments in electronic instruments and remote sensing technologies, airborne three-line array sensors and their applications are being widely promoted and plentiful research related to data processing and high precision geo-referencing technologies is under way. The exterior orientation parameters (EOPs), which are measured by the integrated positioning and orientation system (POS) of airborne three-line sensors, however, have inevitable systematic errors, so the level of precision of direct geo-referencing is not sufficiently accurate for surveying and mapping applications. Consequently, a few ground control points are necessary to refine the exterior orientation parameters, and this paper will discuss bundle block adjustment models based on the systematic error compensation and the orientation image, considering the principle of an image sensor and the characteristics of the integrated POS. Unlike the models available in the literature, which mainly use a quaternion to represent the rotation matrix of exterior orientation, three rotation angles are directly used in order to effectively model and eliminate the systematic errors of the POS observations. Very good experimental results have been achieved with several real datasets that verify the correctness and effectiveness of the proposed adjustment models.
NASA Technical Reports Server (NTRS)
Antonille, Scott
2004-01-01
For potential use on the SHARPI mission, Eastman Kodak has delivered a 50.8cm CA f/1.25 ultra-lightweight UV parabolic mirror with a surface figure error requirement of 6nm RMS. We address the challenges involved in verifying and mapping the surface error of this large lightweight mirror to +/-3nm using a diffractive CGH null lens. Of main concern is removal of large systematic errors resulting from surface deflections of the mirror due to gravity as well as smaller contributions from system misalignment and reference optic errors. We present our efforts to characterize these errors and remove their wavefront error contribution in post-processing as well as minimizing the uncertainty these calculations introduce. Data from Kodak and preliminary measurements from NASA Goddard will be included.
A Bayesian Approach to Systematic Error Correction in Kepler Photometric Time Series
NASA Astrophysics Data System (ADS)
Jenkins, Jon Michael; VanCleve, J.; Twicken, J. D.; Smith, J. C.; Kepler Science Team
2011-01-01
In order for the Kepler mission to achieve its required 20 ppm photometric precision for 6.5 hr observations of 12th magnitude stars, the Presearch Data Conditioning (PDC) software component of the Kepler Science Processing Pipeline must reduce systematic errors in flux time series to the limit of stochastic noise for errors with time-scales less than three days, without smoothing or over-fitting away the transits that Kepler seeks. The current version of PDC co-trends against ancillary engineering data and Pipeline generated data using essentially a least squares (LS) approach. This approach is successful for quiet stars when all sources of systematic error have been identified. If the stars are intrinsically variable or some sources of systematic error are unknown, LS will nonetheless attempt to explain all of a given time series, not just the part the model can explain well. Negative consequences can include loss of astrophysically interesting signal, and injection of high-frequency noise into the result. As a remedy, we present a Bayesian Maximum A Posteriori (MAP) approach, in which a subset of intrinsically quiet and highly-correlated stars is used to establish the probability density function (PDF) of robust fit parameters in a diagonalized basis. The PDFs then determine a "reasonable” range for the fit parameters for all stars, and brake the runaway fitting that can distort signals and inject noise. We present a closed-form solution for Gaussian PDFs, and show examples using publically available Quarter 1 Kepler data. A companion poster (Van Cleve et al.) shows applications and discusses current work in more detail. Kepler was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by NASA, Science Mission Directorate.
Axisymmetric Flow Properties for Magnetic Elements of Differing Strength
NASA Technical Reports Server (NTRS)
Rightmire-Upton, Lisa; Hathaway, David H.
2012-01-01
Aspects of the structure and dynamics of the flows in the Sun's surface shear layer remain uncertain and yet are critically important for understanding the observed magnetic behavior. In our previous studies of the axisymmetric transport of magnetic elements we found systematic changes in both the differential rotation and the meridional flow over the course of Solar Cycle 23. Here we examine how those flows depend upon the strength (and presumably anchoring depth) of the magnetic elements. Line of sight magnetograms obtained by the HMI instrument aboard SDO over the course of Carrington Rotation 2097 were mapped to heliographic coordinates and averaged over 12 minutes to remove the 5-min oscillations. Data masks were constructed based on the field strength of each mapped pixel to isolate magnetic elements of differing field strength. We used Local Correlation Tracking of the unmasked data (separated in time by 1- to 8-hours) to determine the longitudinal and latitudinal motions of the magnetic elements. We then calculated average flow velocities as functions of latitude and longitude from the central meridian for approx 600 image pairs over the 27-day rotation. Variations with longitude indicate and characterize systematic errors in the flow measurements associated with changes in the signal from disk center to limb. Removing these systematic errors reveals changes in the axisymmetric flow properties that reflect changes in flow properties with depth in the surface shear layer.
Varanka, Dalia
2006-01-01
Historical topographic maps are the only systematically collected data resource covering the entire nation for long-term landscape change studies over the 20th century for geographical and environmental research. The paper discusses aspects of the historical U.S. Geological Survey topographic maps that present constraints on the design of a database for such studies. Problems involved in this approach include locating the required maps, understanding land feature classification differences between topographic vs. land use/land cover maps, the approximation of error between different map editions of the same area, and the identification of true changes on the landscape between time periods. Suggested approaches to these issues are illustrated using an example of such a study by the author.
Raghunathan, Srinivasan; Patil, Sanjaykumar; Baxter, Eric J.; ...
2017-08-25
We develop a Maximum Likelihood estimator (MLE) to measure the masses of galaxy clusters through the impact of gravitational lensing on the temperature and polarization anisotropies of the cosmic microwave background (CMB). We show that, at low noise levels in temperature, this optimal estimator outperforms the standard quadratic estimator by a factor of two. For polarization, we show that the Stokes Q/U maps can be used instead of the traditional E- and B-mode maps without losing information. We test and quantify the bias in the recovered lensing mass for a comprehensive list of potential systematic errors. Using realistic simulations, wemore » examine the cluster mass uncertainties from CMB-cluster lensing as a function of an experiment’s beam size and noise level. We predict the cluster mass uncertainties will be 3 - 6% for SPT-3G, AdvACT, and Simons Array experiments with 10,000 clusters and less than 1% for the CMB-S4 experiment with a sample containing 100,000 clusters. The mass constraints from CMB polarization are very sensitive to the experimental beam size and map noise level: for a factor of three reduction in either the beam size or noise level, the lensing signal-to-noise improves by roughly a factor of two.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raghunathan, Srinivasan; Patil, Sanjaykumar; Baxter, Eric J.
We develop a Maximum Likelihood estimator (MLE) to measure the masses of galaxy clusters through the impact of gravitational lensing on the temperature and polarization anisotropies of the cosmic microwave background (CMB). We show that, at low noise levels in temperature, this optimal estimator outperforms the standard quadratic estimator by a factor of two. For polarization, we show that the Stokes Q/U maps can be used instead of the traditional E- and B-mode maps without losing information. We test and quantify the bias in the recovered lensing mass for a comprehensive list of potential systematic errors. Using realistic simulations, wemore » examine the cluster mass uncertainties from CMB-cluster lensing as a function of an experiment’s beam size and noise level. We predict the cluster mass uncertainties will be 3 - 6% for SPT-3G, AdvACT, and Simons Array experiments with 10,000 clusters and less than 1% for the CMB-S4 experiment with a sample containing 100,000 clusters. The mass constraints from CMB polarization are very sensitive to the experimental beam size and map noise level: for a factor of three reduction in either the beam size or noise level, the lensing signal-to-noise improves by roughly a factor of two.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raghunathan, Srinivasan; Patil, Sanjaykumar; Bianchini, Federico
We develop a Maximum Likelihood estimator (MLE) to measure the masses of galaxy clusters through the impact of gravitational lensing on the temperature and polarization anisotropies of the cosmic microwave background (CMB). We show that, at low noise levels in temperature, this optimal estimator outperforms the standard quadratic estimator by a factor of two. For polarization, we show that the Stokes Q/U maps can be used instead of the traditional E- and B-mode maps without losing information. We test and quantify the bias in the recovered lensing mass for a comprehensive list of potential systematic errors. Using realistic simulations, wemore » examine the cluster mass uncertainties from CMB-cluster lensing as a function of an experiment's beam size and noise level. We predict the cluster mass uncertainties will be 3 - 6% for SPT-3G, AdvACT, and Simons Array experiments with 10,000 clusters and less than 1% for the CMB-S4 experiment with a sample containing 100,000 clusters. The mass constraints from CMB polarization are very sensitive to the experimental beam size and map noise level: for a factor of three reduction in either the beam size or noise level, the lensing signal-to-noise improves by roughly a factor of two.« less
Hasani, Mohammad; Sakieh, Yousef; Dezhkam, Sadeq; Ardakani, Tahereh; Salmanmahiny, Abdolrassoul
2017-04-01
A hierarchical intensity analysis of land-use change is applied to evaluate the dynamics of a coupled urban coastal system in Rasht County, Iran. Temporal land-use layers of 1987, 1999, and 2011 are employed, while spatial accuracy metrics are only available for 2011 data (overall accuracy of 94%). The errors in 1987 and 1999 layers are unknown, which can influence the accuracy of temporal change information. Such data were employed to examine the size and the type of errors that could justify deviations from uniform change intensities. Accordingly, errors comprising 3.31 and 7.47% of 1999 and 2011 maps, respectively, could explain all differences from uniform gains and errors including 5.21 and 1.81% of 1987 and 1999 maps, respectively, could explain all deviations from uniform losses. Additional historical information is also applied for uncertainty assessment and to separate probable map errors from actual land-use changes. In this regard, historical processes in Rasht County can explain different types of transition that are either consistent or inconsistent to known processes. The intensity analysis assisted in identification of systematic transitions and detection of competitive categories, which cannot be investigated through conventional change detection methods. Based on results, built-up area is the most active gaining category in the area and wetland category with less areal extent is more sensitive to intense land-use change processes. Uncertainty assessment results also indicated that there are no considerable classification errors in temporal land-use data and these imprecise layers can reliably provide implications for informed decision making.
NASA Astrophysics Data System (ADS)
Chevallier, Frédéric; Broquet, Grégoire; Pierangelo, Clémence; Crisp, David
2017-07-01
The column-average dry air-mole fraction of carbon dioxide in the atmosphere (XCO2) is measured by scattered satellite measurements like those from the Orbiting Carbon Observatory (OCO-2). We show that global continuous maps of XCO2 (corresponding to level 3 of the satellite data) at daily or coarser temporal resolution can be inferred from these data with a Kalman filter built on a model of persistence. Our application of this approach on 2 years of OCO-2 retrievals indicates that the filter provides better information than a climatology of XCO2 at both daily and monthly scales. Provided that the assigned observation uncertainty statistics are tuned in each grid cell of the XCO2 maps from an objective method (based on consistency diagnostics), the errors predicted by the filter at daily and monthly scales represent the true error statistics reasonably well, except for a bias in the high latitudes of the winter hemisphere and a lack of resolution (i.e., a too small discrimination skill) of the predicted error standard deviations. Due to the sparse satellite sampling, the broad-scale patterns of XCO2 described by the filter seem to lag behind the real signals by a few weeks. Finally, the filter offers interesting insights into the quality of the retrievals, both in terms of random and systematic errors.
ERRATUM: 'MAPPING THE GAS TURBULENCE IN THE COMA CLUSTER: PREDICTIONS FOR ASTRO-H'
NASA Technical Reports Server (NTRS)
Zuhone, J. A.; Markevitch, M.; Zhuravleva, I.
2016-01-01
The published version of this paper contained an error in Figure 5. This figure is intended to show the effect on the structure function of subtracting the bias induced by the statistical and systematic errors on the line shift. The filled circles show the bias-subtracted structure function. The positions of these points in the left panel of the original figure were calculated incorrectly. The figure is reproduced below (with the original caption) with the correct values for the bias-subtracted structure function. No other computations or figures in the original manuscript are affected.
Aghanim, N.; Ashdown, M.; Aumont, J.; ...
2016-12-12
This study describes the identification, modelling, and removal of previously unexplained systematic effects in the polarization data of the Planck High Frequency Instrument (HFI) on large angular scales, including new mapmaking and calibration procedures, new and more complete end-to-end simulations, and a set of robust internal consistency checks on the resulting maps. These maps, at 100, 143, 217, and 353 GHz, are early versions of those that will be released in final form later in 2016. The improvements allow us to determine the cosmic reionization optical depth τ using, for the first time, the low-multipole EE data from HFI, reducingmore » significantly the central value and uncertainty, and hence the upper limit. Two different likelihood procedures are used to constrain τ from two estimators of the CMB E- and B-mode angular power spectra at 100 and 143 GHz, after debiasing the spectra from a small remaining systematic contamination. These all give fully consistent results. A further consistency test is performed using cross-correlations derived from the Low Frequency Instrument maps of the Planck 2015 data release and the new HFI data. For this purpose, end-to-end analyses of systematic effects from the two instruments are used to demonstrate the near independence of their dominant systematic error residuals. The tightest result comes from the HFI-based τ posterior distribution using the maximum likelihood power spectrum estimator from EE data only, giving a value 0.055 ± 0.009. Finally, in a companion paper these results are discussed in the context of the best-fit PlanckΛCDM cosmological model and recent models of reionization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aghanim, N.; Ashdown, M.; Aumont, J.
This study describes the identification, modelling, and removal of previously unexplained systematic effects in the polarization data of the Planck High Frequency Instrument (HFI) on large angular scales, including new mapmaking and calibration procedures, new and more complete end-to-end simulations, and a set of robust internal consistency checks on the resulting maps. These maps, at 100, 143, 217, and 353 GHz, are early versions of those that will be released in final form later in 2016. The improvements allow us to determine the cosmic reionization optical depth τ using, for the first time, the low-multipole EE data from HFI, reducingmore » significantly the central value and uncertainty, and hence the upper limit. Two different likelihood procedures are used to constrain τ from two estimators of the CMB E- and B-mode angular power spectra at 100 and 143 GHz, after debiasing the spectra from a small remaining systematic contamination. These all give fully consistent results. A further consistency test is performed using cross-correlations derived from the Low Frequency Instrument maps of the Planck 2015 data release and the new HFI data. For this purpose, end-to-end analyses of systematic effects from the two instruments are used to demonstrate the near independence of their dominant systematic error residuals. The tightest result comes from the HFI-based τ posterior distribution using the maximum likelihood power spectrum estimator from EE data only, giving a value 0.055 ± 0.009. Finally, in a companion paper these results are discussed in the context of the best-fit PlanckΛCDM cosmological model and recent models of reionization.« less
NASA Astrophysics Data System (ADS)
Planck Collaboration; Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Battye, R.; Benabed, K.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Carron, J.; Challinor, A.; Chiang, H. C.; Colombo, L. P. L.; Combet, C.; Comis, B.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Di Valentino, E.; Dickinson, C.; Diego, J. M.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fantaye, Y.; Finelli, F.; Forastieri, F.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Gerbino, M.; Ghosh, T.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hivon, E.; Huang, Z.; Ilić, S.; Jaffe, A. H.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knox, L.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Langer, M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Leahy, J. P.; Levrier, F.; Liguori, M.; Lilje, P. B.; López-Caniego, M.; Ma, Y.-Z.; Macías-Pérez, J. F.; Maggio, G.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Matarrese, S.; Mauri, N.; McEwen, J. D.; Meinhold, P. R.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Moss, A.; Mottet, S.; Naselsky, P.; Natoli, P.; Oxborrow, C. A.; Pagano, L.; Paoletti, D.; Partridge, B.; Patanchon, G.; Patrizii, L.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Plaszczynski, S.; Polastri, L.; Polenta, G.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Rocha, G.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Ruiz-Granados, B.; Salvati, L.; Sandri, M.; Savelainen, M.; Scott, D.; Sirri, G.; Sunyaev, R.; Suur-Uski, A.-S.; Tauber, J. A.; Tenti, M.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Valiviita, J.; Van Tent, F.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; White, M.; Zacchei, A.; Zonca, A.
2016-12-01
This paper describes the identification, modelling, and removal of previously unexplained systematic effects in the polarization data of the Planck High Frequency Instrument (HFI) on large angular scales, including new mapmaking and calibration procedures, new and more complete end-to-end simulations, and a set of robust internal consistency checks on the resulting maps. These maps, at 100, 143, 217, and 353 GHz, are early versions of those that will be released in final form later in 2016. The improvements allow us to determine the cosmic reionization optical depth τ using, for the first time, the low-multipole EE data from HFI, reducing significantly the central value and uncertainty, and hence the upper limit. Two different likelihood procedures are used to constrain τ from two estimators of the CMB E- and B-mode angular power spectra at 100 and 143 GHz, after debiasing the spectra from a small remaining systematic contamination. These all give fully consistent results. A further consistency test is performed using cross-correlations derived from the Low Frequency Instrument maps of the Planck 2015 data release and the new HFI data. For this purpose, end-to-end analyses of systematic effects from the two instruments are used to demonstrate the near independence of their dominant systematic error residuals. The tightest result comes from the HFI-based τ posterior distribution using the maximum likelihood power spectrum estimator from EE data only, giving a value 0.055 ± 0.009. In a companion paper these results are discussed in the context of the best-fit PlanckΛCDM cosmological model and recent models of reionization.
Optimized tomography of continuous variable systems using excitation counting
NASA Astrophysics Data System (ADS)
Shen, Chao; Heeres, Reinier W.; Reinhold, Philip; Jiang, Luyao; Liu, Yi-Kai; Schoelkopf, Robert J.; Jiang, Liang
2016-11-01
We propose a systematic procedure to optimize quantum state tomography protocols for continuous variable systems based on excitation counting preceded by a displacement operation. Compared with conventional tomography based on Husimi or Wigner function measurement, the excitation counting approach can significantly reduce the number of measurement settings. We investigate both informational completeness and robustness, and provide a bound of reconstruction error involving the condition number of the sensing map. We also identify the measurement settings that optimize this error bound, and demonstrate that the improved reconstruction robustness can lead to an order-of-magnitude reduction of estimation error with given resources. This optimization procedure is general and can incorporate prior information of the unknown state to further simplify the protocol.
Stress in recrystallized quartz by electron backscatter diffraction mapping
NASA Astrophysics Data System (ADS)
Llana-Fúnez, S.
2017-07-01
The long-term state of stress at middle and lower crustal depths can be estimated through the study of the microstructure of exhumed rocks from active and/or ancient shear zones. Constitutive equations for deformation mechanisms in experimentally deformed rocks relate differential stress to the size of recrystallized grains. Cross et al. (2017) take advantage of electron backscatter diffraction mapping to systematically separate new recrystallized grains from host grains on the basis of the measurable lattice distorsion within the grains. They produce the first calibrated piezometer for quartz with this technique, reproducing within error a previous calibration based on optical microscopy.
Impact of the Combination of GNSS and Altimetry Data on the Derived Global Ionosphere Maps
NASA Astrophysics Data System (ADS)
Todorova, S.; Schuh, H.; Hobiger, T.; Hernandez-Pajares, M.
2007-05-01
The classical input data for development of Global Ionosphere Maps (GIM) of the Total Electron Content (TEC) is the so called "geometry free linear combination", obtained from the dual-frequency Global Navigation Satellite System (GNSS) observations. Such maps in general achieve good quality of the ionosphere representation. However, the GNSS stations are inhomogeneously distributed, with large gaps particularly over the sea surface, which lowers the precision of the GIM over these areas. On the other hand, the dual-frequency satellite altimetry missions such as Jason-1 and TOPEX/Poseidon provide information about the parameter of the ionosphere precisely above the sea surface, where the altimetry observations are preformed. Due to the limited spread of the measurements and some open issues related to systematic errors, the ionospheric data from satellite altimetry is used only for cross-validation of the GNSS GIM. It can be anticipated however, that some specifics of the ionosphere parameter derived by satellite altimetry will partly balance the inhomogeneity of the GNSS data. Such important features are complementing in the global resolution, different biasing and the absence of additional mapping, as it is the case in GNSS. In this study we create two-hourly GIM from GNSS data and additionally introduce satellite altimetry observations, which help to compensate the insufficient GNSS coverage of the oceans. The combination of the data from around 180 GNSS stations and the satellite altimetry mission Jason-1 is performed on the normal equation level. The comparison between the integrated ionosphere models and the GNSS-only maps shows a higher accuracy of the combined GIM over the seas. A further effect of the combination is that the method allows the independent estimation of daily values of the Differential Code Biases (DCB) for all GNSS satellites and receivers, and of the systematic errors affecting the altimetry measurements. Such errors should include a hardware delay similar to the GNSS DCB as well as the impact of the topside ionosphere, which is not sampled by Jason-1. At this stage, for testing purposes we estimate a constant daily value, which will be further investigated. The final aim of the study is the development of improved combined global TEC maps, which make best use of the advantages of each particular type of data and have higher accuracy and reliability than the results derived by the two methods if treated individually.
COBE - New sky maps of the early universe
NASA Technical Reports Server (NTRS)
Smoot, G. F.
1991-01-01
This paper presents early results obtained from the first six months of measurements of the cosmic microwave background (CMB) by instruments aboard NASA's Cosmic Background Explorer (COBE) satellite and discusses the implications for cosmology. The three instruments: FIRAS, DMR, and DIRBE have operated well and produced significant new results. The FIRAS measurement of the CMB spectrum supports the standard big bang nucleosynthesis model. The maps made from the DMR instrument measurements show a surprisingly smooth early universe. The measurements are sufficiently precise that we must pay careful attention to potential systematic errors. The maps of galactic and local emission produced by the DIRBE instrument will be needed to identify foregrounds from extragalactic emission and thus to interpret the terms of events in the early universe.
Large-scale mapping of mutations affecting zebrafish development.
Geisler, Robert; Rauch, Gerd-Jörg; Geiger-Rudolph, Silke; Albrecht, Andrea; van Bebber, Frauke; Berger, Andrea; Busch-Nentwich, Elisabeth; Dahm, Ralf; Dekens, Marcus P S; Dooley, Christopher; Elli, Alexandra F; Gehring, Ines; Geiger, Horst; Geisler, Maria; Glaser, Stefanie; Holley, Scott; Huber, Matthias; Kerr, Andy; Kirn, Anette; Knirsch, Martina; Konantz, Martina; Küchler, Axel M; Maderspacher, Florian; Neuhauss, Stephan C; Nicolson, Teresa; Ober, Elke A; Praeg, Elke; Ray, Russell; Rentzsch, Brit; Rick, Jens M; Rief, Eva; Schauerte, Heike E; Schepp, Carsten P; Schönberger, Ulrike; Schonthaler, Helia B; Seiler, Christoph; Sidi, Samuel; Söllner, Christian; Wehner, Anja; Weiler, Christian; Nüsslein-Volhard, Christiane
2007-01-09
Large-scale mutagenesis screens in the zebrafish employing the mutagen ENU have isolated several hundred mutant loci that represent putative developmental control genes. In order to realize the potential of such screens, systematic genetic mapping of the mutations is necessary. Here we report on a large-scale effort to map the mutations generated in mutagenesis screening at the Max Planck Institute for Developmental Biology by genome scanning with microsatellite markers. We have selected a set of microsatellite markers and developed methods and scoring criteria suitable for efficient, high-throughput genome scanning. We have used these methods to successfully obtain a rough map position for 319 mutant loci from the Tübingen I mutagenesis screen and subsequent screening of the mutant collection. For 277 of these the corresponding gene is not yet identified. Mapping was successful for 80 % of the tested loci. By comparing 21 mutation and gene positions of cloned mutations we have validated the correctness of our linkage group assignments and estimated the standard error of our map positions to be approximately 6 cM. By obtaining rough map positions for over 300 zebrafish loci with developmental phenotypes, we have generated a dataset that will be useful not only for cloning of the affected genes, but also to suggest allelism of mutations with similar phenotypes that will be identified in future screens. Furthermore this work validates the usefulness of our methodology for rapid, systematic and inexpensive microsatellite mapping of zebrafish mutations.
NASA Astrophysics Data System (ADS)
Pasteka, Roman; Zahorec, Pavol; Mikuska, Jan; Szalaiova, Viktoria; Papco, Juraj; Krajnak, Martin; Kusnirak, David; Panisova, Jaroslava; Vajda, Peter; Bielik, Miroslav
2014-05-01
In this contribution results of the running project "Bouguer anomalies of new generation and the gravimetrical model of Western Carpathians (APVV-0194-10)" are presented. The existing homogenized regional database (212478 points) was enlarged by approximately 107 500 archive detailed gravity measurements. These added gravity values were measured since the year 1976 to the present, therefore they need to be unified and reprocessed. The improved positions of more than 8500 measured points were acquired by digitizing of archive maps (we recognized some local errors within particular data sets). Besides the local errors (due to the wrong positions, heights or gravity of measured points) we have found some areas of systematic errors probably due to the gravity measurement or processing errors. Some of them were confirmed and consequently corrected by field measurements within the frame of current project. Special attention is paid to the recalculation of the terrain corrections - we have used a new developed software as well as the latest version of digital terrain model of Slovakia DMR-3. Main improvement of the new terrain corrections evaluation algorithm is the possibility to calculate it in the real gravimeter position and involving of 3D polyhedral bodies approximation (accepting the spherical approximation of Earth's curvature). We have realized several tests by means of the introduction of non-standard distant relief effects introduction. A new complete Bouguer anomalies map was constructed and transformed by means of higher derivatives operators (tilt derivatives, TDX, theta-derivatives and the new TDXAS transformation), using the regularization approach. A new interesting regional lineament of probably neotectonic character was recognized in the new map of complete Bouguer anomalies and it was confirmed also by realized in-situ field measurements.
Topographic Map of Pathfinder Landing Site
NASA Technical Reports Server (NTRS)
1997-01-01
Topographic map of the landing site, to a distance of 60 meters from the lander in the LSC coordinate system. The lander is shown schematically in the center; 2.5 meter radius circle (black) centered on the camera was not mapped. Gentle relief [root mean square (rms) elevation variation 0.5 m; rms a directional slope 4O] and organization of topography into northwest and northeast-trending ridges about 20 meters apart are apparent. Roughly 30% of the illustrated area is hidden from the camera behind these ridges. Contours (0.2 m interval) and color coding of elevations were generated from a digital terrain model, which was interpolated by kriging from approximately 700 measured points. Angular and parallax point coordinates were measured manually on a large (5 m length) anaglyphic uncontrolled mosaic and used to calculate Cartesian (LSC) coordinates. Errors in azimuth on the order of 10 are therefore likely; elevation errors were minimized by referencing elevations to the local horizon. The uncertainty in range measurements increases quadratically with range. Given a measurement error of 1/2 pixel, the expected precision in range is 0.3 meter at 10 meter range, and 10 meters at 60 meter range. Repeated measurements were made, compared, and edited for consistency to improve the range precision. Systematic errors undoubtedly remain and will be corrected in future maps compiled digitally from geometrically controlled images. Cartographic processing by U.S. Geological Survey.
NOTE: original caption as published in Science MagazineMars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).Error function attack of chaos synchronization based encryption schemes.
Wang, Xingang; Zhan, Meng; Lai, C-H; Gang, Hu
2004-03-01
Different chaos synchronization based encryption schemes are reviewed and compared from the practical point of view. As an efficient cryptanalysis tool for chaos encryption, a proposal based on the error function attack is presented systematically and used to evaluate system security. We define a quantitative measure (quality factor) of the effective applicability of a chaos encryption scheme, which takes into account the security, the encryption speed, and the robustness against channel noise. A comparison is made of several encryption schemes and it is found that a scheme based on one-way coupled chaotic map lattices performs outstandingly well, as judged from quality factor. Copyright 2004 American Institute of Physics.
Dai, Wujiao; Shi, Qiang; Cai, Changsheng
2017-01-01
The carrier phase multipath effect is one of the most significant error sources in the precise positioning of BeiDou Navigation Satellite System (BDS). We analyzed the characteristics of BDS multipath, and found the multipath errors of geostationary earth orbit (GEO) satellite signals are systematic, whereas those of inclined geosynchronous orbit (IGSO) or medium earth orbit (MEO) satellites are both systematic and random. The modified multipath mitigation methods, including sidereal filtering algorithm and multipath hemispherical map (MHM) model, were used to improve BDS dynamic deformation monitoring. The results indicate that the sidereal filtering methods can reduce the root mean square (RMS) of positioning errors in the east, north and vertical coordinate directions by 15%, 37%, 25% and 18%, 51%, 27% in the coordinate and observation domains, respectively. By contrast, the MHM method can reduce the RMS by 22%, 52% and 27% on average. In addition, the BDS multipath errors in static baseline solutions are a few centimeters in multipath-rich environments, which is different from that of Global Positioning System (GPS) multipath. Therefore, we add a parameter representing the GEO multipath error in observation equation to the adjustment model to improve the precision of BDS static baseline solutions. And the results show that the modified model can achieve an average precision improvement of 82%, 54% and 68% in the east, north and up coordinate directions, respectively. PMID:28387744
Dai, Wujiao; Shi, Qiang; Cai, Changsheng
2017-04-07
The carrier phase multipath effect is one of the most significant error sources in the precise positioning of BeiDou Navigation Satellite System (BDS). We analyzed the characteristics of BDS multipath, and found the multipath errors of geostationary earth orbit (GEO) satellite signals are systematic, whereas those of inclined geosynchronous orbit (IGSO) or medium earth orbit (MEO) satellites are both systematic and random. The modified multipath mitigation methods, including sidereal filtering algorithm and multipath hemispherical map (MHM) model, were used to improve BDS dynamic deformation monitoring. The results indicate that the sidereal filtering methods can reduce the root mean square (RMS) of positioning errors in the east, north and vertical coordinate directions by 15%, 37%, 25% and 18%, 51%, 27% in the coordinate and observation domains, respectively. By contrast, the MHM method can reduce the RMS by 22%, 52% and 27% on average. In addition, the BDS multipath errors in static baseline solutions are a few centimeters in multipath-rich environments, which is different from that of Global Positioning System (GPS) multipath. Therefore, we add a parameter representing the GEO multipath error in observation equation to the adjustment model to improve the precision of BDS static baseline solutions. And the results show that the modified model can achieve an average precision improvement of 82%, 54% and 68% in the east, north and up coordinate directions, respectively.
COBE DMR results and implications. [Differential Microwave Radiometer
NASA Technical Reports Server (NTRS)
Smoot, George F.
1992-01-01
This lecture presents early results obtained from the first six months of measurements of the Cosmic Microwave Background (CMB) by Differential Microwave Radiometers (DMR) aboard COBE and discusses significant cosmological implications. The DMR maps show the dipole anisotropy and some galactic emission but otherwise a spatially smooth early universe. The measurements are sufficiently precise that we must pay careful attention to potential systematic errors. Maps of galactic and local emission such as those produced by the FIRAS and DIRBE instruments will be needed to identify foregrounds from extragalactic emission and thus to interpret the results in terms of events in the early universe. The current DMR results are significant for Cosmology.
Planck 2015 results. IX. Diffuse component separation: CMB maps
NASA Astrophysics Data System (ADS)
Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Casaponsa, B.; Castex, G.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fantaye, Y.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-09-01
We present foreground-reduced cosmic microwave background (CMB) maps derived from the full Planck data set in both temperature and polarization. Compared to the corresponding Planck 2013 temperature sky maps, the total data volume is larger by a factor of 3.2 for frequencies between 30 and 70 GHz, and by 1.9 for frequencies between 100 and 857 GHz. In addition, systematic errors in the forms of temperature-to-polarization leakage, analogue-to-digital conversion uncertainties, and very long time constant errors have been dramatically reduced, to the extent that the cosmological polarization signal may now be robustly recovered on angular scales ℓ ≳ 40. On the very largest scales, instrumental systematic residuals are still non-negligible compared to the expected cosmological signal, and modes with ℓ< 20 are accordingly suppressed in the current polarization maps by high-pass filtering. As in 2013, four different CMB component separation algorithms are applied to these observations, providing a measure of stability with respect to algorithmic and modelling choices. The resulting polarization maps have rms instrumental noise ranging between 0.21 and 0.27μK averaged over 55' pixels, and between 4.5 and 6.1μK averaged over 3.4 parcm pixels. The cosmological parameters derived from the analysis of temperature power spectra are in agreement at the 1σ level with the Planck 2015 likelihood. Unresolved mismatches between the noise properties of the data and simulations prevent a satisfactory description of the higher-order statistical properties of the polarization maps. Thus, the primary applications of these polarization maps are those that do not require massive simulations for accurate estimation of uncertainties, for instance estimation of cross-spectra and cross-correlations, or stacking analyses. However, the amplitude of primordial non-Gaussianity is consistent with zero within 2σ for all local, equilateral, and orthogonal configurations of the bispectrum, including for polarization E-modes. Moreover, excellent agreement is found regarding the lensing B-mode power spectrum, both internally among the various component separation codes and with the best-fit Planck 2015 Λ cold dark matter model.
Planck 2015 results: IX. Diffuse component separation: CMB maps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam, R.; Ade, P. A. R.; Aghanim, N.
In this paper, we present foreground-reduced cosmic microwave background (CMB) maps derived from the full Planck data set in both temperature and polarization. Compared to the corresponding Planck 2013 temperature sky maps, the total data volume is larger by a factor of 3.2 for frequencies between 30 and 70 GHz, and by 1.9 for frequencies between 100 and 857 GHz. In addition, systematic errors in the forms of temperature-to-polarization leakage, analogue-to-digital conversion uncertainties, and very long time constant errors have been dramatically reduced, to the extent that the cosmological polarization signal may now be robustly recovered on angular scales ℓ ≳ 40. On the very largest scales, instrumental systematic residuals are still non-negligible compared to the expected cosmological signal, and modes with ℓ< 20 are accordingly suppressed in the current polarization maps by high-pass filtering. As in 2013, four different CMB component separation algorithms are applied to these observations, providing a measure of stability with respect to algorithmic and modelling choices. Additionally, the resulting polarization maps have rms instrumental noise ranging between 0.21 and 0.27μK averaged over 55' pixels, and between 4.5 and 6.1μK averaged over 3more » $$'\\atop{.}$$4 pixels. The cosmological parameters derived from the analysis of temperature power spectra are in agreement at the 1σ level with the Planck 2015 likelihood. Unresolved mismatches between the noise properties of the data and simulations prevent a satisfactory description of the higher-order statistical properties of the polarization maps. Thus, the primary applications of these polarization maps are those that do not require massive simulations for accurate estimation of uncertainties, for instance estimation of cross-spectra and cross-correlations, or stacking analyses. However, the amplitude of primordial non-Gaussianity is consistent with zero within 2σ for all local, equilateral, and orthogonal configurations of the bispectrum, including for polarization E-modes. Moreover, excellent agreement is found regarding the lensing B-mode power spectrum, both internally among the various component separation codes and with the best-fit Planck 2015 Λ cold dark matter model.« less
Planck 2015 results: IX. Diffuse component separation: CMB maps
Adam, R.; Ade, P. A. R.; Aghanim, N.; ...
2016-09-20
In this paper, we present foreground-reduced cosmic microwave background (CMB) maps derived from the full Planck data set in both temperature and polarization. Compared to the corresponding Planck 2013 temperature sky maps, the total data volume is larger by a factor of 3.2 for frequencies between 30 and 70 GHz, and by 1.9 for frequencies between 100 and 857 GHz. In addition, systematic errors in the forms of temperature-to-polarization leakage, analogue-to-digital conversion uncertainties, and very long time constant errors have been dramatically reduced, to the extent that the cosmological polarization signal may now be robustly recovered on angular scales ℓ ≳ 40. On the very largest scales, instrumental systematic residuals are still non-negligible compared to the expected cosmological signal, and modes with ℓ< 20 are accordingly suppressed in the current polarization maps by high-pass filtering. As in 2013, four different CMB component separation algorithms are applied to these observations, providing a measure of stability with respect to algorithmic and modelling choices. Additionally, the resulting polarization maps have rms instrumental noise ranging between 0.21 and 0.27μK averaged over 55' pixels, and between 4.5 and 6.1μK averaged over 3more » $$'\\atop{.}$$4 pixels. The cosmological parameters derived from the analysis of temperature power spectra are in agreement at the 1σ level with the Planck 2015 likelihood. Unresolved mismatches between the noise properties of the data and simulations prevent a satisfactory description of the higher-order statistical properties of the polarization maps. Thus, the primary applications of these polarization maps are those that do not require massive simulations for accurate estimation of uncertainties, for instance estimation of cross-spectra and cross-correlations, or stacking analyses. However, the amplitude of primordial non-Gaussianity is consistent with zero within 2σ for all local, equilateral, and orthogonal configurations of the bispectrum, including for polarization E-modes. Moreover, excellent agreement is found regarding the lensing B-mode power spectrum, both internally among the various component separation codes and with the best-fit Planck 2015 Λ cold dark matter model.« less
Exploring cosmic origins with CORE: Mitigation of systematic effects
NASA Astrophysics Data System (ADS)
Natoli, P.; Ashdown, M.; Banerji, R.; Borrill, J.; Buzzelli, A.; de Gasperis, G.; Delabrouille, J.; Hivon, E.; Molinari, D.; Patanchon, G.; Polastri, L.; Tomasi, M.; Bouchet, F. R.; Henrot-Versillé, S.; Hoang, D. T.; Keskitalo, R.; Kiiveri, K.; Kisner, T.; Lindholm, V.; McCarthy, D.; Piacentini, F.; Perdereau, O.; Polenta, G.; Tristram, M.; Achucarro, A.; Ade, P.; Allison, R.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Bartlett, J.; Bartolo, N.; Basak, S.; Baumann, D.; Bersanelli, M.; Bonaldi, A.; Bonato, M.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Burigana, C.; Cai, Z.-Y.; Calvo, M.; Carvalho, C.-S.; Castellano, M. G.; Challinor, A.; Chluba, J.; Clesse, S.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; de Bernardis, P.; De Zotti, G.; Di Valentino, E.; Diego, J.-M.; Errard, J.; Feeney, S.; Fernandez-Cobos, R.; Finelli, F.; Forastieri, F.; Galli, S.; Genova-Santos, R.; Gerbino, M.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Gruppuso, A.; Hagstotz, S.; Hanany, S.; Handley, W.; Hernandez-Monteagudo, C.; Hervías-Caimapo, C.; Hills, M.; Keihänen, E.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lamagna, L.; Lasenby, A.; Lattanzi, M.; Lesgourgues, J.; Lewis, A.; Liguori, M.; López-Caniego, M.; Luzzi, G.; Maffei, B.; Mandolesi, N.; Martinez-González, E.; Martins, C. J. A. P.; Masi, S.; Matarrese, S.; Melchiorri, A.; Melin, J.-B.; Migliaccio, M.; Monfardini, A.; Negrello, M.; Notari, A.; Pagano, L.; Paiella, A.; Paoletti, D.; Piat, M.; Pisano, G.; Pollo, A.; Poulin, V.; Quartin, M.; Remazeilles, M.; Roman, M.; Rossi, G.; Rubino-Martin, J.-A.; Salvati, L.; Signorelli, G.; Tartari, A.; Tramonte, D.; Trappe, N.; Trombetti, T.; Tucker, C.; Valiviita, J.; Van de Weijgaert, R.; van Tent, B.; Vennin, V.; Vielva, P.; Vittorio, N.; Wallis, C.; Young, K.; Zannoni, M.
2018-04-01
We present an analysis of the main systematic effects that could impact the measurement of CMB polarization with the proposed CORE space mission. We employ timeline-to-map simulations to verify that the CORE instrumental set-up and scanning strategy allow us to measure sky polarization to a level of accuracy adequate to the mission science goals. We also show how the CORE observations can be processed to mitigate the level of contamination by potentially worrying systematics, including intensity-to-polarization leakage due to bandpass mismatch, asymmetric main beams, pointing errors and correlated noise. We use analysis techniques that are well validated on data from current missions such as Planck to demonstrate how the residual contamination of the measurements by these effects can be brought to a level low enough not to hamper the scientific capability of the mission, nor significantly increase the overall error budget. We also present a prototype of the CORE photometric calibration pipeline, based on that used for Planck, and discuss its robustness to systematics, showing how CORE can achieve its calibration requirements. While a fine-grained assessment of the impact of systematics requires a level of knowledge of the system that can only be achieved in a future study phase, the analysis presented here strongly suggests that the main areas of concern for the CORE mission can be addressed using existing knowledge, techniques and algorithms.
Identification and correction of systematic error in high-throughput sequence data
2011-01-01
Background A feature common to all DNA sequencing technologies is the presence of base-call errors in the sequenced reads. The implications of such errors are application specific, ranging from minor informatics nuisances to major problems affecting biological inferences. Recently developed "next-gen" sequencing technologies have greatly reduced the cost of sequencing, but have been shown to be more error prone than previous technologies. Both position specific (depending on the location in the read) and sequence specific (depending on the sequence in the read) errors have been identified in Illumina and Life Technology sequencing platforms. We describe a new type of systematic error that manifests as statistically unlikely accumulations of errors at specific genome (or transcriptome) locations. Results We characterize and describe systematic errors using overlapping paired reads from high-coverage data. We show that such errors occur in approximately 1 in 1000 base pairs, and that they are highly replicable across experiments. We identify motifs that are frequent at systematic error sites, and describe a classifier that distinguishes heterozygous sites from systematic error. Our classifier is designed to accommodate data from experiments in which the allele frequencies at heterozygous sites are not necessarily 0.5 (such as in the case of RNA-Seq), and can be used with single-end datasets. Conclusions Systematic errors can easily be mistaken for heterozygous sites in individuals, or for SNPs in population analyses. Systematic errors are particularly problematic in low coverage experiments, or in estimates of allele-specific expression from RNA-Seq data. Our characterization of systematic error has allowed us to develop a program, called SysCall, for identifying and correcting such errors. We conclude that correction of systematic errors is important to consider in the design and interpretation of high-throughput sequencing experiments. PMID:22099972
A method to estimate the effect of deformable image registration uncertainties on daily dose mapping
Murphy, Martin J.; Salguero, Francisco J.; Siebers, Jeffrey V.; Staub, David; Vaman, Constantin
2012-01-01
Purpose: To develop a statistical sampling procedure for spatially-correlated uncertainties in deformable image registration and then use it to demonstrate their effect on daily dose mapping. Methods: Sequential daily CT studies are acquired to map anatomical variations prior to fractionated external beam radiotherapy. The CTs are deformably registered to the planning CT to obtain displacement vector fields (DVFs). The DVFs are used to accumulate the dose delivered each day onto the planning CT. Each DVF has spatially-correlated uncertainties associated with it. Principal components analysis (PCA) is applied to measured DVF error maps to produce decorrelated principal component modes of the errors. The modes are sampled independently and reconstructed to produce synthetic registration error maps. The synthetic error maps are convolved with dose mapped via deformable registration to model the resulting uncertainty in the dose mapping. The results are compared to the dose mapping uncertainty that would result from uncorrelated DVF errors that vary randomly from voxel to voxel. Results: The error sampling method is shown to produce synthetic DVF error maps that are statistically indistinguishable from the observed error maps. Spatially-correlated DVF uncertainties modeled by our procedure produce patterns of dose mapping error that are different from that due to randomly distributed uncertainties. Conclusions: Deformable image registration uncertainties have complex spatial distributions. The authors have developed and tested a method to decorrelate the spatial uncertainties and make statistical samples of highly correlated error maps. The sample error maps can be used to investigate the effect of DVF uncertainties on daily dose mapping via deformable image registration. An initial demonstration of this methodology shows that dose mapping uncertainties can be sensitive to spatial patterns in the DVF uncertainties. PMID:22320766
Improvements in GRACE Gravity Fields Using Regularization
NASA Astrophysics Data System (ADS)
Save, H.; Bettadpur, S.; Tapley, B. D.
2008-12-01
The unconstrained global gravity field models derived from GRACE are susceptible to systematic errors that show up as broad "stripes" aligned in a North-South direction on the global maps of mass flux. These errors are believed to be a consequence of both systematic and random errors in the data that are amplified by the nature of the gravity field inverse problem. These errors impede scientific exploitation of the GRACE data products, and limit the realizable spatial resolution of the GRACE global gravity fields in certain regions. We use regularization techniques to reduce these "stripe" errors in the gravity field products. The regularization criteria are designed such that there is no attenuation of the signal and that the solutions fit the observations as well as an unconstrained solution. We have used a computationally inexpensive method, normally referred to as "L-ribbon", to find the regularization parameter. This paper discusses the characteristics and statistics of a 5-year time-series of regularized gravity field solutions. The solutions show markedly reduced stripes, are of uniformly good quality over time, and leave little or no systematic observation residuals, which is a frequent consequence of signal suppression from regularization. Up to degree 14, the signal in regularized solution shows correlation greater than 0.8 with the un-regularized CSR Release-04 solutions. Signals from large-amplitude and small-spatial extent events - such as the Great Sumatra Andaman Earthquake of 2004 - are visible in the global solutions without using special post-facto error reduction techniques employed previously in the literature. Hydrological signals as small as 5 cm water-layer equivalent in the small river basins, like Indus and Nile for example, are clearly evident, in contrast to noisy estimates from RL04. The residual variability over the oceans relative to a seasonal fit is small except at higher latitudes, and is evident without the need for de-striping or spatial smoothing.
NASA Astrophysics Data System (ADS)
Kersten, T. P.; Stallmann, D.; Tschirschwitz, F.
2016-06-01
For mapping of building interiors various 2D and 3D indoor surveying systems are available today. These systems essentially differ from each other by price and accuracy as well as by the effort required for fieldwork and post-processing. The Laboratory for Photogrammetry & Laser Scanning of HafenCity University (HCU) Hamburg has developed, as part of an industrial project, a lowcost indoor mapping system, which enables systematic inventory mapping of interior facilities with low staffing requirements and reduced, measurable expenditure of time and effort. The modelling and evaluation of the recorded data take place later in the office. The indoor mapping system of HCU Hamburg consists of the following components: laser range finder, panorama head (pan-tilt-unit), single-board computer (Raspberry Pi) with digital camera and battery power supply. The camera is pre-calibrated in a photogrammetric test field under laboratory conditions. However, remaining systematic image errors are corrected simultaneously within the generation of the panorama image. Due to cost reasons the camera and laser range finder are not coaxially arranged on the panorama head. Therefore, eccentricity and alignment of the laser range finder against the camera must be determined in a system calibration. For the verification of the system accuracy and the system calibration, the laser points were determined from measurements with total stations. The differences to the reference were 4-5mm for individual coordinates.
NASA Astrophysics Data System (ADS)
Mozdzen, Thomas J.; Bowman, Judd D.; Monsalve, Raul A.; Rogers, Alan E. E.
2018-01-01
The Experiment to Detect the Global Epoch of Reionization (EoR) Signature (EDGES) is an effort to measure the sky-averaged redshifted 21 cm difference temperature, Tb, with a single wide field-of-view well-calibrated antenna placed in Western Australia. Tb is due to interactions of the hyperfine ground state of HI with the CMB and is four to five orders of magnitude dimmer than the foreground synchrotron radiation whose removal requires very low systematic errors in data collection. I analyzed two different antenna designs, a rectangular blade-shaped antenna and a fourpoint-shaped antenna, by comparing and quantifying the impact of the chromatic nature of the antenna beam directivity. Foreground removal of simulated antenna temperatures, formed by convolving a frequency scaled Haslam 408 MHz sky map with each of the antenna’s chromatic beams, resulted in a factor of 10 lower rms error for the blade antenna when using a five term polynomial for the sky foreground. The signal to noise ratio was at a maximum when five terms were used to represent the sky foreground and was superior for the blade antenna by factors between 1.35 and 1.95. These results led to the conversion of all EDGES antenna designs to the blade design. The spectral index, β, of the sky was measured, using 211 nights of data, to be ‑2.60 > β > ‑2.62 in lower LST regions, increasing to ‑2.50 near the Galactic plane. I compared our measurements with spectral index simulations derived from two published sky maps and found good agreement at the transit of the Galactic Center, but at other LST values tended to overpredict by at most by Δβ < 0.05 for one map and by Δβ < 0.12 for the other. The EDGES instrument is shown to be very stable throughout the observations as the data scatter is very low, σβ < 0.003, and the total systematic uncertainty in β is 0.02. The improved systematic error enhances our ability to detect EoR signatures. I present preliminary results that show an EoR model by Kaurov & Gnedin (2016) is inconsistent with measured EDGES data at a significance of 1.9σ.
Systematic Calibration for a Backpacked Spherical Photogrammetry Imaging System
NASA Astrophysics Data System (ADS)
Rau, J. Y.; Su, B. W.; Hsiao, K. W.; Jhan, J. P.
2016-06-01
A spherical camera can observe the environment for almost 720 degrees' field of view in one shoot, which is useful for augmented reality, environment documentation, or mobile mapping applications. This paper aims to develop a spherical photogrammetry imaging system for the purpose of 3D measurement through a backpacked mobile mapping system (MMS). The used equipment contains a Ladybug-5 spherical camera, a tactical grade positioning and orientation system (POS), i.e. SPAN-CPT, and an odometer, etc. This research aims to directly apply photogrammetric space intersection technique for 3D mapping from a spherical image stereo-pair. For this purpose, several systematic calibration procedures are required, including lens distortion calibration, relative orientation calibration, boresight calibration for direct georeferencing, and spherical image calibration. The lens distortion is serious on the ladybug-5 camera's original 6 images. Meanwhile, for spherical image mosaicking from these original 6 images, we propose the use of their relative orientation and correct their lens distortion at the same time. However, the constructed spherical image still contains systematic error, which will reduce the 3D measurement accuracy. Later for direct georeferencing purpose, we need to establish a ground control field for boresight/lever-arm calibration. Then, we can apply the calibrated parameters to obtain the exterior orientation parameters (EOPs) of all spherical images. In the end, the 3D positioning accuracy after space intersection will be evaluated, including EOPs obtained by structure from motion method.
Sollmann, Nico; Tanigawa, Noriko; Tussis, Lorena; Hauck, Theresa; Ille, Sebastian; Maurer, Stefanie; Negwer, Chiara; Zimmer, Claus; Ringel, Florian; Meyer, Bernhard; Krieg, Sandro M
2015-04-01
Knowledge about the cortical representation of semantic processing is mainly derived from functional magnetic resonance imaging (fMRI) or direct cortical stimulation (DCS) studies. Because DCS is regarded as the gold standard in terms of language mapping but can only be used during awake surgery due to its invasive character, repetitive navigated transcranial magnetic stimulation (rTMS)—a non-invasive modality that uses a similar technique as DCS—seems highly feasible for use in the investigation of semantic processing in the healthy human brain. A total number of 100 (50 left-hemispheric and 50 right-hemispheric) rTMS-based language mappings were performed in 50 purely right-handed, healthy volunteers during an object-naming task. All rTMS-induced semantic naming errors were then counted and evaluated systematically. Furthermore, since the distribution of stimulations within both hemispheres varied between individuals and cortical regions stimulated, all elicited errors were standardized and subsequently related to their cortical sites by projecting the mapping results into the cortical parcellation system (CPS). Overall, the most left-hemispheric semantic errors were observed after targeting the rTMS to the posterior middle frontal gyrus (pMFG; standardized error rate: 7.3‰), anterior supramarginal gyrus (aSMG; 5.6‰), and ventral postcentral gyrus (vPoG; 5.0‰). In contrast to that, the highest right-hemispheric error rates occurred after stimulation of the posterior superior temporal gyrus (pSTG; 12.4‰), middle superior temporal gyrus (mSTG; 6.2‰), and anterior supramarginal gyrus (aSMG; 6.2‰). Although error rates were low, the rTMS-based approach of investigating semantic processing during object naming shows convincing results compared to the current literature. Therefore, rTMS seems a valuable, safe, and reliable tool for the investigation of semantic processing within the healthy human brain. Copyright © 2015 Elsevier Ltd. All rights reserved.
Asner, Gregory P; Joseph, Shijo
2015-01-01
Conservation and monitoring of tropical forests requires accurate information on their extent and change dynamics. Cloud cover, sensor errors and technical barriers associated with satellite remote sensing data continue to prevent many national and sub-national REDD+ initiatives from developing their reference deforestation and forest degradation emission levels. Here we present a framework for large-scale historical forest cover change analysis using free multispectral satellite imagery in an extremely cloudy tropical forest region. The CLASlite approach provided highly automated mapping of tropical forest cover, deforestation and degradation from Landsat satellite imagery. Critically, the fractional cover of forest photosynthetic vegetation, non-photosynthetic vegetation, and bare substrates calculated by CLASlite provided scene-invariant quantities for forest cover, allowing for systematic mosaicking of incomplete satellite data coverage. A synthesized satellite-based data set of forest cover was thereby created, reducing image incompleteness caused by clouds, shadows or sensor errors. This approach can readily be implemented by single operators with highly constrained budgets. We test this framework on tropical forests of the Colombian Pacific Coast (Chocó) – one of the cloudiest regions on Earth, with successful comparison to the Colombian government’s deforestation map and a global deforestation map. PMID:25678933
Estes, Lyndon; Chen, Peng; Debats, Stephanie; Evans, Tom; Ferreira, Stefanus; Kuemmerle, Tobias; Ragazzo, Gabrielle; Sheffield, Justin; Wolf, Adam; Wood, Eric; Caylor, Kelly
2018-01-01
Land cover maps increasingly underlie research into socioeconomic and environmental patterns and processes, including global change. It is known that map errors impact our understanding of these phenomena, but quantifying these impacts is difficult because many areas lack adequate reference data. We used a highly accurate, high-resolution map of South African cropland to assess (1) the magnitude of error in several current generation land cover maps, and (2) how these errors propagate in downstream studies. We first quantified pixel-wise errors in the cropland classes of four widely used land cover maps at resolutions ranging from 1 to 100 km, and then calculated errors in several representative "downstream" (map-based) analyses, including assessments of vegetative carbon stocks, evapotranspiration, crop production, and household food security. We also evaluated maps' spatial accuracy based on how precisely they could be used to locate specific landscape features. We found that cropland maps can have substantial biases and poor accuracy at all resolutions (e.g., at 1 km resolution, up to ∼45% underestimates of cropland (bias) and nearly 50% mean absolute error (MAE, describing accuracy); at 100 km, up to 15% underestimates and nearly 20% MAE). National-scale maps derived from higher-resolution imagery were most accurate, followed by multi-map fusion products. Constraining mapped values to match survey statistics may be effective at minimizing bias (provided the statistics are accurate). Errors in downstream analyses could be substantially amplified or muted, depending on the values ascribed to cropland-adjacent covers (e.g., with forest as adjacent cover, carbon map error was 200%-500% greater than in input cropland maps, but ∼40% less for sparse cover types). The average locational error was 6 km (600%). These findings provide deeper insight into the causes and potential consequences of land cover map error, and suggest several recommendations for land cover map users. © 2017 John Wiley & Sons Ltd.
Zook, Justin M.; Samarov, Daniel; McDaniel, Jennifer; Sen, Shurjo K.; Salit, Marc
2012-01-01
While the importance of random sequencing errors decreases at higher DNA or RNA sequencing depths, systematic sequencing errors (SSEs) dominate at high sequencing depths and can be difficult to distinguish from biological variants. These SSEs can cause base quality scores to underestimate the probability of error at certain genomic positions, resulting in false positive variant calls, particularly in mixtures such as samples with RNA editing, tumors, circulating tumor cells, bacteria, mitochondrial heteroplasmy, or pooled DNA. Most algorithms proposed for correction of SSEs require a data set used to calculate association of SSEs with various features in the reads and sequence context. This data set is typically either from a part of the data set being “recalibrated” (Genome Analysis ToolKit, or GATK) or from a separate data set with special characteristics (SysCall). Here, we combine the advantages of these approaches by adding synthetic RNA spike-in standards to human RNA, and use GATK to recalibrate base quality scores with reads mapped to the spike-in standards. Compared to conventional GATK recalibration that uses reads mapped to the genome, spike-ins improve the accuracy of Illumina base quality scores by a mean of 5 Phred-scaled quality score units, and by as much as 13 units at CpG sites. In addition, since the spike-in data used for recalibration are independent of the genome being sequenced, our method allows run-specific recalibration even for the many species without a comprehensive and accurate SNP database. We also use GATK with the spike-in standards to demonstrate that the Illumina RNA sequencing runs overestimate quality scores for AC, CC, GC, GG, and TC dinucleotides, while SOLiD has less dinucleotide SSEs but more SSEs for certain cycles. We conclude that using these DNA and RNA spike-in standards with GATK improves base quality score recalibration. PMID:22859977
VLBI-derived troposphere parameters during CONT08
NASA Astrophysics Data System (ADS)
Heinkelmann, R.; Böhm, J.; Bolotin, S.; Engelhardt, G.; Haas, R.; Lanotte, R.; MacMillan, D. S.; Negusini, M.; Skurikhina, E.; Titov, O.; Schuh, H.
2011-07-01
Time-series of zenith wet and total troposphere delays as well as north and east gradients are compared, and zenith total delays ( ZTD) are combined on the level of parameter estimates. Input data sets are provided by ten Analysis Centers (ACs) of the International VLBI Service for Geodesy and Astrometry (IVS) for the CONT08 campaign (12-26 August 2008). The inconsistent usage of meteorological data and models, such as mapping functions, causes systematics among the ACs, and differing parameterizations and constraints add noise to the troposphere parameter estimates. The empirical standard deviation of ZTD among the ACs with regard to an unweighted mean is 4.6 mm. The ratio of the analysis noise to the observation noise assessed by the operator/software impact (OSI) model is about 2.5. These and other effects have to be accounted for to improve the intra-technique combination of VLBI-derived troposphere parameters. While the largest systematics caused by inconsistent usage of meteorological data can be avoided and the application of different mapping functions can be considered by applying empirical corrections, the noise has to be modeled in the stochastic model of intra-technique combination. The application of different stochastic models shows no significant effects on the combined parameters but results in different mean formal errors: the mean formal errors of the combined ZTD are 2.3 mm (unweighted), 4.4 mm (diagonal), 8.6 mm [variance component (VC) estimation], and 8.6 mm (operator/software impact, OSI). On the one hand, the OSI model, i.e. the inclusion of off-diagonal elements in the cofactor-matrix, considers the reapplication of observations yielding a factor of about two for mean formal errors as compared to the diagonal approach. On the other hand, the combination based on VC estimation shows large differences among the VCs and exhibits a comparable scaling of formal errors. Thus, for the combination of troposphere parameters a combination of the two extensions of the stochastic model is recommended.
A Systematic Approach to Error Free Telemetry
2017-06-28
A SYSTEMATIC APPROACH TO ERROR FREE TELEMETRY 412TW-TIM-17-03 DISTRIBUTION A: Approved for public release. Distribution is...Systematic Approach to Error-Free Telemetry) was submitted by the Commander, 412th Test Wing, Edwards AFB, California 93524. Prepared by...Technical Information Memorandum 3. DATES COVERED (From - Through) February 2016 4. TITLE AND SUBTITLE A Systematic Approach to Error-Free
Effects of urban microcellular environments on ray-tracing-based coverage predictions.
Liu, Zhongyu; Guo, Lixin; Guan, Xiaowei; Sun, Jiejing
2016-09-01
The ray-tracing (RT) algorithm, which is based on geometrical optics and the uniform theory of diffraction, has become a typical deterministic approach of studying wave-propagation characteristics. Under urban microcellular environments, the RT method highly depends on detailed environmental information. The aim of this paper is to provide help in selecting the appropriate level of accuracy required in building databases to achieve good tradeoffs between database costs and prediction accuracy. After familiarization with the operating procedures of the RT-based prediction model, this study focuses on the effect of errors in environmental information on prediction results. The environmental information consists of two parts, namely, geometric and electrical parameters. The geometric information can be obtained from a digital map of a city. To study the effects of inaccuracies in geometry information (building layout) on RT-based coverage prediction, two different artificial erroneous maps are generated based on the original digital map, and systematic analysis is performed by comparing the predictions with the erroneous maps and measurements or the predictions with the original digital map. To make the conclusion more persuasive, the influence of random errors on RMS delay spread results is investigated. Furthermore, given the electrical parameters' effect on the accuracy of the predicted results of the RT model, the dielectric constant and conductivity of building materials are set with different values. The path loss and RMS delay spread under the same circumstances are simulated by the RT prediction model.
2010-08-01
astigmatism and other sources, and stay constant from time to time (LC Technologies, 2000). Systematic errors can sometimes reach many degrees of visual angle...Taking the average of all disparities would mean treating each as equally important regardless of whether they are from correct or incorrect mappings. In...likely stop somewhere near the centroid because the large hM basically treats every point equally (or nearly equally if using the multivariate
The application of GPS precise point positioning technology in aerial triangulation
NASA Astrophysics Data System (ADS)
Yuan, Xiuxiao; Fu, Jianhong; Sun, Hongxing; Toth, Charles
In traditional GPS-supported aerotriangulation, differential GPS (DGPS) positioning technology is used to determine the 3-dimensional coordinates of the perspective centers at exposure time with an accuracy of centimeter to decimeter level. This method can significantly reduce the number of ground control points (GCPs). However, the establishment of GPS reference stations for DGPS positioning is not only labor-intensive and costly, but also increases the implementation difficulty of aerial photography. This paper proposes aerial triangulation supported with GPS precise point positioning (PPP) as a way to avoid the use of the GPS reference stations and simplify the work of aerial photography. Firstly, we present the algorithm for GPS PPP in aerial triangulation applications. Secondly, the error law of the coordinate of perspective centers determined using GPS PPP is analyzed. Thirdly, based on GPS PPP and aerial triangulation software self-developed by the authors, four sets of actual aerial images taken from surveying and mapping projects, different in both terrain and photographic scale, are given as experimental models. The four sets of actual data were taken over a flat region at a scale of 1:2500, a mountainous region at a scale of 1:3000, a high mountainous region at a scale of 1:32000 and an upland region at a scale of 1:60000 respectively. In these experiments, the GPS PPP results were compared with results obtained through DGPS positioning and traditional bundle block adjustment. In this way, the empirical positioning accuracy of GPS PPP in aerial triangulation can be estimated. Finally, the results of bundle block adjustment with airborne GPS controls from GPS PPP are analyzed in detail. The empirical results show that GPS PPP applied in aerial triangulation has a systematic error of half-meter level and a stochastic error within a few decimeters. However, if a suitable adjustment solution is adopted, the systematic error can be eliminated in GPS-supported bundle block adjustment. When four full GCPs are emplaced in the corners of the adjustment block, then the systematic error is compensated using a set of independent unknown parameters for each strip, the final result of the bundle block adjustment with airborne GPS controls from PPP is the same as that of bundle block adjustment with airborne GPS controls from DGPS. Although the accuracy of the former is a little lower than that of traditional bundle block adjustment with dense GCPs, it can still satisfy the accuracy requirement of photogrammetric point determination for topographic mapping at many scales.
A Systematic Error Correction Method for TOVS Radiances
NASA Technical Reports Server (NTRS)
Joiner, Joanna; Rokke, Laurie; Einaudi, Franco (Technical Monitor)
2000-01-01
Treatment of systematic errors is crucial for the successful use of satellite data in a data assimilation system. Systematic errors in TOVS radiance measurements and radiative transfer calculations can be as large or larger than random instrument errors. The usual assumption in data assimilation is that observational errors are unbiased. If biases are not effectively removed prior to assimilation, the impact of satellite data will be lessened and can even be detrimental. Treatment of systematic errors is important for short-term forecast skill as well as the creation of climate data sets. A systematic error correction algorithm has been developed as part of a 1D radiance assimilation. This scheme corrects for spectroscopic errors, errors in the instrument response function, and other biases in the forward radiance calculation for TOVS. Such algorithms are often referred to as tuning of the radiances. The scheme is able to account for the complex, air-mass dependent biases that are seen in the differences between TOVS radiance observations and forward model calculations. We will show results of systematic error correction applied to the NOAA 15 Advanced TOVS as well as its predecessors. We will also discuss the ramifications of inter-instrument bias with a focus on stratospheric measurements.
Evaluation of B1 inhomogeneity effect on DCE-MRI data analysis of brain tumor patients at 3T.
Sengupta, Anirban; Gupta, Rakesh Kumar; Singh, Anup
2017-12-02
Dynamic-contrast-enhanced (DCE) MRI data acquired using gradient echo based sequences is affected by errors in flip angle (FA) due to transmit B 1 inhomogeneity (B 1 inh). The purpose of the study was to evaluate the effect of B 1 inh on quantitative analysis of DCE-MRI data of human brain tumor patients and to evaluate the clinical significance of B 1 inh correction of perfusion parameters (PPs) on tumor grading. An MRI study was conducted on 35 glioma patients at 3T. The patients had histologically confirmed glioma with 23 high-grade (HG) and 12 low-grade (LG). Data for B 1 -mapping, T 1 -mapping and DCE-MRI were acquired. Relative B 1 maps (B 1rel ) were generated using the saturated-double-angle method. T 1 -maps were computed using the variable flip-angle method. Post-processing was performed for conversion of signal-intensity time (S(t)) curve to concentration-time (C(t)) curve followed by tracer kinetic analysis (K trans , Ve, Vp, Kep) and first pass analysis (CBV, CBF) using the general tracer-kinetic model. DCE-MRI data was analyzed without and with B 1 inh correction and errors in PPs were computed. Receiver-operating-characteristic (ROC) analysis was performed on HG and LG patients. Simulations were carried out to understand the effect of B 1 inhomogeneity on DCE-MRI data analysis in a systematic way. S(t) curves mimicking those in tumor tissue, were generated and FA errors were introduced followed by error analysis of PPs. Dependence of FA-based errors on the concentration of contrast agent and on the duration of DCE-MRI data was also studied. Simulations were also done to obtain K trans of glioma patients at different B 1rel values and see whether grading is affected or not. Current study shows that B 1rel value higher than nominal results in an overestimation of C(t) curves as well as derived PPs and vice versa. Moreover, at same B 1rel values, errors were large for larger values of C(t). Simulation results showed that grade of patients can change because of B 1 inh. B 1 inh in the human brain at 3T-MRI can introduce substantial errors in PPs derived from DCE-MRI data that might affect the accuracy of tumor grading, particularly for border zone cases. These errors can be mitigated using B 1 inh correction during DCE-MRI data analysis.
Jones, Kevin C; Seghal, Chandra M; Avery, Stephen
2016-03-21
The unique dose deposition of proton beams generates a distinctive thermoacoustic (protoacoustic) signal, which can be used to calculate the proton range. To identify the expected protoacoustic amplitude, frequency, and arrival time for different proton pulse characteristics encountered at hospital-based proton sources, the protoacoustic pressure emissions generated by 150 MeV, pencil-beam proton pulses were simulated in a homogeneous water medium. Proton pulses with Gaussian widths ranging up to 200 μs were considered. The protoacoustic amplitude, frequency, and time-of-flight (TOF) range accuracy were assessed. For TOF calculations, the acoustic pulse arrival time was determined based on multiple features of the wave. Based on the simulations, Gaussian proton pulses can be categorized as Dirac-delta-function-like (FWHM < 4 μs) and longer. For the δ-function-like irradiation, the protoacoustic spectrum peaks at 44.5 kHz and the systematic error in determining the Bragg peak range is <2.6 mm. For longer proton pulses, the spectrum shifts to lower frequencies, and the range calculation systematic error increases (⩽ 23 mm for FWHM of 56 μs). By mapping the protoacoustic peak arrival time to range with simulations, the residual error can be reduced. Using a proton pulse with FWHM = 2 μs results in a maximum signal-to-noise ratio per total dose. Simulations predict that a 300 nA, 150 MeV, FWHM = 4 μs Gaussian proton pulse (8.0 × 10(6) protons, 3.1 cGy dose at the Bragg peak) will generate a 146 mPa pressure wave at 5 cm beyond the Bragg peak. There is an angle dependent systematic error in the protoacoustic TOF range calculations. Placing detectors along the proton beam axis and beyond the Bragg peak minimizes this error. For clinical proton beams, protoacoustic detectors should be sensitive to <400 kHz (for -20 dB). Hospital-based synchrocyclotrons and cyclotrons are promising sources of proton pulses for generating clinically measurable protoacoustic emissions.
More on Systematic Error in a Boyle's Law Experiment
ERIC Educational Resources Information Center
McCall, Richard P.
2012-01-01
A recent article in "The Physics Teacher" describes a method for analyzing a systematic error in a Boyle's law laboratory activity. Systematic errors are important to consider in physics labs because they tend to bias the results of measurements. There are numerous laboratory examples and resources that discuss this common source of error.
Calibrating First-Order Strong Lensing Mass Estimates in Clusters of Galaxies
NASA Astrophysics Data System (ADS)
Reed, Brendan; Remolian, Juan; Sharon, Keren; Li, Nan; SPT Clusters Cooperation
2018-01-01
We investigate methods to reduce the statistical and systematic errors inherent to using the Einstein Radius as a first-order mass estimate in strong lensing galaxy clusters. By finding an empirical universal calibration function, we aim to enable a first-order mass estimate of large cluster data sets in a fraction of the time and effort of full-scale strong lensing mass modeling. We use 74 simulated cluster data from the Argonne National Laboratory in a lens redshift slice of [0.159, 0.667] with various source redshifts in the range of [1.23, 2.69]. From the simulated density maps, we calculate the exact mass enclosed within the Einstein Radius. We find that the mass inferred from the Einstein Radius alone produces an error width of ~39% with respect to the true mass. We explore an array of polynomial and exponential correction functions with dependence on cluster redshift and projected radii of the lensed images, aiming to reduce the statistical and systematic uncertainty. We find that the error on the the mass inferred from the Einstein Radius can be reduced significantly by using a universal correction function. Our study has implications for current and future large galaxy cluster surveys aiming to measure cluster mass, and the mass-concentration relation.
Sobel, Michael E; Lindquist, Martin A
2014-07-01
Functional magnetic resonance imaging (fMRI) has facilitated major advances in understanding human brain function. Neuroscientists are interested in using fMRI to study the effects of external stimuli on brain activity and causal relationships among brain regions, but have not stated what is meant by causation or defined the effects they purport to estimate. Building on Rubin's causal model, we construct a framework for causal inference using blood oxygenation level dependent (BOLD) fMRI time series data. In the usual statistical literature on causal inference, potential outcomes, assumed to be measured without systematic error, are used to define unit and average causal effects. However, in general the potential BOLD responses are measured with stimulus dependent systematic error. Thus we define unit and average causal effects that are free of systematic error. In contrast to the usual case of a randomized experiment where adjustment for intermediate outcomes leads to biased estimates of treatment effects (Rosenbaum, 1984), here the failure to adjust for task dependent systematic error leads to biased estimates. We therefore adjust for systematic error using measured "noise covariates" , using a linear mixed model to estimate the effects and the systematic error. Our results are important for neuroscientists, who typically do not adjust for systematic error. They should also prove useful to researchers in other areas where responses are measured with error and in fields where large amounts of data are collected on relatively few subjects. To illustrate our approach, we re-analyze data from a social evaluative threat task, comparing the findings with results that ignore systematic error.
NASA Astrophysics Data System (ADS)
Weijers, Jan-Willem; Derudder, Veerle; Janssens, Sven; Petré, Frederik; Bourdoux, André
2006-12-01
To assess the performance of forthcoming 4th generation wireless local area networks, the algorithmic functionality is usually modelled using a high-level mathematical software package, for instance, Matlab. In order to validate the modelling assumptions against the real physical world, the high-level functional model needs to be translated into a prototype. A systematic system design methodology proves very valuable, since it avoids, or, at least reduces, numerous design iterations. In this paper, we propose a novel Matlab-to-hardware design flow, which allows to map the algorithmic functionality onto the target prototyping platform in a systematic and reproducible way. The proposed design flow is partly manual and partly tool assisted. It is shown that the proposed design flow allows to use the same testbench throughout the whole design flow and avoids time-consuming and error-prone intermediate translation steps.
Technical Note: Introduction of variance component analysis to setup error analysis in radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuo, Yukinori, E-mail: ymatsuo@kuhp.kyoto-u.ac.
Purpose: The purpose of this technical note is to introduce variance component analysis to the estimation of systematic and random components in setup error of radiotherapy. Methods: Balanced data according to the one-factor random effect model were assumed. Results: Analysis-of-variance (ANOVA)-based computation was applied to estimate the values and their confidence intervals (CIs) for systematic and random errors and the population mean of setup errors. The conventional method overestimates systematic error, especially in hypofractionated settings. The CI for systematic error becomes much wider than that for random error. The ANOVA-based estimation can be extended to a multifactor model considering multiplemore » causes of setup errors (e.g., interpatient, interfraction, and intrafraction). Conclusions: Variance component analysis may lead to novel applications to setup error analysis in radiotherapy.« less
Comparison of spatial association approaches for landscape mapping of soil organic carbon stocks
NASA Astrophysics Data System (ADS)
Miller, B. A.; Koszinski, S.; Wehrhan, M.; Sommer, M.
2015-03-01
The distribution of soil organic carbon (SOC) can be variable at small analysis scales, but consideration of its role in regional and global issues demands the mapping of large extents. There are many different strategies for mapping SOC, among which is to model the variables needed to calculate the SOC stock indirectly or to model the SOC stock directly. The purpose of this research is to compare direct and indirect approaches to mapping SOC stocks from rule-based, multiple linear regression models applied at the landscape scale via spatial association. The final products for both strategies are high-resolution maps of SOC stocks (kg m-2), covering an area of 122 km2, with accompanying maps of estimated error. For the direct modelling approach, the estimated error map was based on the internal error estimations from the model rules. For the indirect approach, the estimated error map was produced by spatially combining the error estimates of component models via standard error propagation equations. We compared these two strategies for mapping SOC stocks on the basis of the qualities of the resulting maps as well as the magnitude and distribution of the estimated error. The direct approach produced a map with less spatial variation than the map produced by the indirect approach. The increased spatial variation represented by the indirect approach improved R2 values for the topsoil and subsoil stocks. Although the indirect approach had a lower mean estimated error for the topsoil stock, the mean estimated error for the total SOC stock (topsoil + subsoil) was lower for the direct approach. For these reasons, we recommend the direct approach to modelling SOC stocks be considered a more conservative estimate of the SOC stocks' spatial distribution.
Comparison of spatial association approaches for landscape mapping of soil organic carbon stocks
NASA Astrophysics Data System (ADS)
Miller, B. A.; Koszinski, S.; Wehrhan, M.; Sommer, M.
2014-11-01
The distribution of soil organic carbon (SOC) can be variable at small analysis scales, but consideration of its role in regional and global issues demands the mapping of large extents. There are many different strategies for mapping SOC, among which are to model the variables needed to calculate the SOC stock indirectly or to model the SOC stock directly. The purpose of this research is to compare direct and indirect approaches to mapping SOC stocks from rule-based, multiple linear regression models applied at the landscape scale via spatial association. The final products for both strategies are high-resolution maps of SOC stocks (kg m-2), covering an area of 122 km2, with accompanying maps of estimated error. For the direct modelling approach, the estimated error map was based on the internal error estimations from the model rules. For the indirect approach, the estimated error map was produced by spatially combining the error estimates of component models via standard error propagation equations. We compared these two strategies for mapping SOC stocks on the basis of the qualities of the resulting maps as well as the magnitude and distribution of the estimated error. The direct approach produced a map with less spatial variation than the map produced by the indirect approach. The increased spatial variation represented by the indirect approach improved R2 values for the topsoil and subsoil stocks. Although the indirect approach had a lower mean estimated error for the topsoil stock, the mean estimated error for the total SOC stock (topsoil + subsoil) was lower for the direct approach. For these reasons, we recommend the direct approach to modelling SOC stocks be considered a more conservative estimate of the SOC stocks' spatial distribution.
NASA Astrophysics Data System (ADS)
Cahyono, A. B.; Deviantari, U. W.
2017-12-01
According to statutory regulation issued by Ministry of Land and Spatial Planning/Head of National Land Agency (BPN) number 35/2016, Comprehensive Systematic land registration is a sequential activity of which continuously and systematically carried out by the government ranging from collecting, processing, recording and presenting, as well as maintaining the physical and juridical data in the form of map and list of land-plots and flats, including the transfer of legal title for land plots and flats with their inherent rights. Delineation is one method to identify land plots by utilizing map image or high resolution photo and defining the boundaries by drawing lines to determine the valid and recognizable boundaries. A guideline to delineate the unregistered land plots may be determined from this two methods’ accuracy result, using general boundary applied to aerial photo taken by multicopter RTF. Data taken from a height of 70 meter on an area obtained a number of 156 photos with 5 GCP resulting in an photo map with GSD 2.14 cm. The 11 samples parcels are selected in the sites of ± 7 ha. There are 11 samples of land parcels are tested. The area difference test for every parcel using a average standard deviation of 17,043 indicates that there are three land parcels which have significant area difference and 8 others do not have significant area difference. Based on the tolerance of National Land Agency, among 11 parcels studied, there are 8 parcels that fullfill the tolerances and three others do not fullfill tolerances. The percentage of area difference average between land registration map and orthophoto is 4,72%. The result shows that the differences in boundaries and areas that may be caused by a systematic error of method in describing the boundaries of the ground.
Propagation of stage measurement uncertainties to streamflow time series
NASA Astrophysics Data System (ADS)
Horner, Ivan; Le Coz, Jérôme; Renard, Benjamin; Branger, Flora; McMillan, Hilary
2016-04-01
Streamflow uncertainties due to stage measurements errors are generally overlooked in the promising probabilistic approaches that have emerged in the last decade. We introduce an original error model for propagating stage uncertainties through a stage-discharge rating curve within a Bayesian probabilistic framework. The method takes into account both rating curve (parametric errors and structural errors) and stage uncertainty (systematic and non-systematic errors). Practical ways to estimate the different types of stage errors are also presented: (1) non-systematic errors due to instrument resolution and precision and non-stationary waves and (2) systematic errors due to gauge calibration against the staff gauge. The method is illustrated at a site where the rating-curve-derived streamflow can be compared with an accurate streamflow reference. The agreement between the two time series is overall satisfying. Moreover, the quantification of uncertainty is also satisfying since the streamflow reference is compatible with the streamflow uncertainty intervals derived from the rating curve and the stage uncertainties. Illustrations from other sites are also presented. Results are much contrasted depending on the site features. In some cases, streamflow uncertainty is mainly due to stage measurement errors. The results also show the importance of discriminating systematic and non-systematic stage errors, especially for long term flow averages. Perspectives for improving and validating the streamflow uncertainty estimates are eventually discussed.
High Resolution Seamless Dom Generation Over CHANG'E-5 Landing Area Using Lroc Nac Images
NASA Astrophysics Data System (ADS)
Di, K.; Jia, M.; Xin, X.; Liu, B.; Liu, Z.; Peng, M.; Yue, Z.
2018-04-01
Chang'e-5, China's first sample return lunar mission, will be launched in 2019, and the planned landing area is near Mons Rümker in Oceanus Procellarum. High-resolution and high-precision mapping of the landing area is of great importance for supporting scientific analysis and safe landing. This paper proposes a systematic method for large area seamless digital orthophoto map (DOM) generation, and presents the mapping result of Chang'e-5 landing area using over 700 LROC NAC images. The developed method mainly consists of two stages of data processing: stage 1 includes subarea block adjustment with rational function model (RFM) and seamless subarea DOM generation; stage 2 includes whole area adjustment through registration of the subarea DOMs with thin plate spline model and seamless DOM mosaicking. The resultant seamless DOM coves a large area (20° longitude × 4° latitude) and is tied to the widely used reference DEM - SLDEM2015. As a result, the RMS errors of the tie points are all around half pixel in image space, indicating a high internal precision; the RMS errors of the control points are about one grid cell size of SLDEM2015, indicating that the resultant DOM is tied to SLDEM2015 well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Sudeep; Louis, Thibaut; Calabrese, Erminia
2014-04-01
We present the temperature power spectra of the cosmic microwave background (CMB) derived from the three seasons of data from the Atacama Cosmology Telescope (ACT) at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. We detect and correct for contamination due to the Galactic cirrus in our equatorial maps. We present the results of a number of tests for possible systematic error and conclude that any effects are not significant compared to the statistical errors we quote. Where they overlap, we cross-correlate the ACT and the South Pole Telescope (SPT) maps and showmore » they are consistent. The measurements of higher-order peaks in the CMB power spectrum provide an additional test of the ΛCDM cosmological model, and help constrain extensions beyond the standard model. The small angular scale power spectrum also provides constraining power on the Sunyaev-Zel'dovich effects and extragalactic foregrounds. We also present a measurement of the CMB gravitational lensing convergence power spectrum at 4.6σ detection significance.« less
NASA Technical Reports Server (NTRS)
Das, Sudeep; Louis, Thibaut; Nolta, Michael R.; Addison, Graeme E.; Battisetti, Elia S.; Bond, J. Richard; Calabrese, Erminia; Crichton, Devin; Devlin, Mark J.; Dicker, Simon;
2014-01-01
We present the temperature power spectra of the cosmic microwave background (CMB) derived from the three seasons of data from the Atacama Cosmology Telescope (ACT) at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. We detect and correct for contamination due to the Galactic cirrus in our equatorial maps. We present the results of a number of tests for possible systematic error and conclude that any effects are not significant compared to the statistical errors we quote. Where they overlap, we cross-correlate the ACT and the South Pole Telescope (SPT) maps and show they are consistent. The measurements of higher-order peaks in the CMB power spectrum provide an additional test of the ?CDM cosmological model, and help constrain extensions beyond the standard model. The small angular scale power spectrum also provides constraining power on the Sunyaev-Zel'dovich effects and extragalactic foregrounds. We also present a measurement of the CMB gravitational lensing convergence power spectrum at 4.6s detection significance.
NASA Astrophysics Data System (ADS)
Vile, Douglas J.
In radiation therapy, interfraction organ motion introduces a level of geometric uncertainty into the planning process. Plans, which are typically based upon a single instance of anatomy, must be robust against daily anatomical variations. For this problem, a model of the magnitude, direction, and likelihood of deformation is useful. In this thesis, principal component analysis (PCA) is used to statistically model the 3D organ motion for 19 prostate cancer patients, each with 8-13 fractional computed tomography (CT) images. Deformable image registration and the resultant displacement vector fields (DVFs) are used to quantify the interfraction systematic and random motion. By applying the PCA technique to the random DVFs, principal modes of random tissue deformation were determined for each patient, and a method for sampling synthetic random DVFs was developed. The PCA model was then extended to describe the principal modes of systematic and random organ motion for the population of patients. A leave-one-out study tested both the systematic and random motion model's ability to represent PCA training set DVFs. The random and systematic DVF PCA models allowed the reconstruction of these data with absolute mean errors between 0.5-0.9 mm and 1-2 mm, respectively. To the best of the author's knowledge, this study is the first successful effort to build a fully 3D statistical PCA model of systematic tissue deformation in a population of patients. By sampling synthetic systematic and random errors, organ occupancy maps were created for bony and prostate-centroid patient setup processes. By thresholding these maps, PCA-based planning target volume (PTV) was created and tested against conventional margin recipes (van Herk for bony alignment and 5 mm fixed [3 mm posterior] margin for centroid alignment) in a virtual clinical trial for low-risk prostate cancer. Deformably accumulated delivered dose served as a surrogate for clinical outcome. For the bony landmark setup subtrial, the PCA PTV significantly (p<0.05) reduced D30, D20, and D5 to bladder and D50 to rectum, while increasing rectal D20 and D5. For the centroid-aligned setup, the PCA PTV significantly reduced all bladder DVH metrics and trended to lower rectal toxicity metrics. All PTVs covered the prostate with the prescription dose.
Hoyo, Javier Del; Choi, Heejoo; Burge, James H; Kim, Geon-Hee; Kim, Dae Wook
2017-06-20
The control of surface errors as a function of spatial frequency is critical during the fabrication of modern optical systems. A large-scale surface figure error is controlled by a guided removal process, such as computer-controlled optical surfacing. Smaller-scale surface errors are controlled by polishing process parameters. Surface errors of only a few millimeters may degrade the performance of an optical system, causing background noise from scattered light and reducing imaging contrast for large optical systems. Conventionally, the microsurface roughness is often given by the root mean square at a high spatial frequency range, with errors within a 0.5×0.5 mm local surface map with 500×500 pixels. This surface specification is not adequate to fully describe the characteristics for advanced optical systems. The process for controlling and minimizing mid- to high-spatial frequency surface errors with periods of up to ∼2-3 mm was investigated for many optical fabrication conditions using the measured surface power spectral density (PSD) of a finished Zerodur optical surface. Then, the surface PSD was systematically related to various fabrication process parameters, such as the grinding methods, polishing interface materials, and polishing compounds. The retraceable experimental polishing conditions and processes used to produce an optimal optical surface PSD are presented.
Planck 2015 results. VI. LFI mapmaking
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chary, R.-R.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Novikov, D.; Novikov, I.; Paci, F.; Pagano, L.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Pierpaoli, E.; Pietrobon, D.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vassallo, T.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-09-01
This paper describes the mapmaking procedure applied to Planck Low Frequency Instrument (LFI) data. The mapmaking step takes as input the calibrated timelines and pointing information. The main products are sky maps of I, Q, and U Stokes components. For the first time, we present polarization maps at LFI frequencies. The mapmaking algorithm is based on a destriping technique, which is enhanced with a noise prior. The Galactic region is masked to reduce errors arising from bandpass mismatch and high signal gradients. We apply horn-uniform radiometer weights to reduce the effects of beam-shape mismatch. The algorithm is the same as used for the 2013 release, apart from small changes in parameter settings. We validate the procedure through simulations. Special emphasis is put on the control of systematics, which is particularly important for accurate polarization analysis. We also produce low-resolution versions of the maps and corresponding noise covariance matrices. These serve as input in later analysis steps and parameter estimation. The noise covariance matrices are validated through noise Monte Carlo simulations. The residual noise in the map products is characterized through analysis of half-ring maps, noise covariance matrices, and simulations.
Evaluation of new GRACE time-variable gravity data over the ocean
NASA Astrophysics Data System (ADS)
Chambers, Don P.
2006-09-01
Monthly GRACE gravity field models from the three science processing centers (CSR, GFZ, and JPL) are analyzed for the period from February 2003 to April 2005 over the ocean. The data are used to estimate maps of the mass component of sea level at smoothing radii of 500 km and 750 km. In addition to using new gravity field models, a filter has been applied to estimate and remove systematic errors in the coefficients that cause erroneous patterns in the maps of equivalent water level. The filter is described and its effects are discussed. The GRACE maps have been evaluated using a residual analysis with maps of altimeter sea level from Jason-1 corrected for steric variations using the World Ocean Atlas 2001 monthly climatology. The mean uncertainty of GRACE maps determined from an average of data from all 3 processing centers is estimated to be less than 1.8 cm RMS at 750 km smoothing and 2.4 cm at 500 km smoothing, which is better than was found previously using the first generation GRACE gravity fields.
Effect of patient setup errors on simultaneously integrated boost head and neck IMRT treatment plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siebers, Jeffrey V.; Keall, Paul J.; Wu Qiuwen
2005-10-01
Purpose: The purpose of this study is to determine dose delivery errors that could result from random and systematic setup errors for head-and-neck patients treated using the simultaneous integrated boost (SIB)-intensity-modulated radiation therapy (IMRT) technique. Methods and Materials: Twenty-four patients who participated in an intramural Phase I/II parotid-sparing IMRT dose-escalation protocol using the SIB treatment technique had their dose distributions reevaluated to assess the impact of random and systematic setup errors. The dosimetric effect of random setup error was simulated by convolving the two-dimensional fluence distribution of each beam with the random setup error probability density distribution. Random setup errorsmore » of {sigma} = 1, 3, and 5 mm were simulated. Systematic setup errors were simulated by randomly shifting the patient isocenter along each of the three Cartesian axes, with each shift selected from a normal distribution. Systematic setup error distributions with {sigma} = 1.5 and 3.0 mm along each axis were simulated. Combined systematic and random setup errors were simulated for {sigma} = {sigma} = 1.5 and 3.0 mm along each axis. For each dose calculation, the gross tumor volume (GTV) received by 98% of the volume (D{sub 98}), clinical target volume (CTV) D{sub 90}, nodes D{sub 90}, cord D{sub 2}, and parotid D{sub 50} and parotid mean dose were evaluated with respect to the plan used for treatment for the structure dose and for an effective planning target volume (PTV) with a 3-mm margin. Results: Simultaneous integrated boost-IMRT head-and-neck treatment plans were found to be less sensitive to random setup errors than to systematic setup errors. For random-only errors, errors exceeded 3% only when the random setup error {sigma} exceeded 3 mm. Simulated systematic setup errors with {sigma} = 1.5 mm resulted in approximately 10% of plan having more than a 3% dose error, whereas a {sigma} = 3.0 mm resulted in half of the plans having more than a 3% dose error and 28% with a 5% dose error. Combined random and systematic dose errors with {sigma} = {sigma} = 3.0 mm resulted in more than 50% of plans having at least a 3% dose error and 38% of the plans having at least a 5% dose error. Evaluation with respect to a 3-mm expanded PTV reduced the observed dose deviations greater than 5% for the {sigma} = {sigma} = 3.0 mm simulations to 5.4% of the plans simulated. Conclusions: Head-and-neck SIB-IMRT dosimetric accuracy would benefit from methods to reduce patient systematic setup errors. When GTV, CTV, or nodal volumes are used for dose evaluation, plans simulated including the effects of random and systematic errors deviate substantially from the nominal plan. The use of PTVs for dose evaluation in the nominal plan improves agreement with evaluated GTV, CTV, and nodal dose values under simulated setup errors. PTV concepts should be used for SIB-IMRT head-and-neck squamous cell carcinoma patients, although the size of the margins may be less than those used with three-dimensional conformal radiation therapy.« less
NASA Astrophysics Data System (ADS)
Lang, K. A.; Petrie, G.
2014-12-01
Extended field-based summer courses provide an invaluable field experience for undergraduate majors in the geosciences. These courses often utilize the construction of geological maps and structural cross sections as the primary pedagogical tool to teach basic map orientation, rock identification and structural interpretation. However, advances in the usability and ubiquity of Geographic Information Systems in these courses presents new opportunities to evaluate student work. In particular, computer-based quantification of systematic mapping errors elucidates the factors influencing student success in the field. We present a case example from a mapping exercise conducted in a summer Field Geology course at a popular field location near Dillon, Montana. We use a computer algorithm to automatically compare the placement and attribution of unit contacts with spatial variables including topographic slope, aspect, bedding attitude, ground cover and distance from starting location. We compliment analyses with anecdotal and survey data that suggest both physical factors (e.g. steep topographic slope) as well as structural nuance (e.g. low angle bedding) may dominate student frustration, particularly in courses with a high student to instructor ratio. We propose mechanisms to improve student experience by allowing students to practice skills with orientation games and broadening student background with tangential lessons (e.g. on colluvial transport processes). As well, we suggest low-cost ways to decrease the student to instructor ratio by supporting returning undergraduates from previous years or staging mapping over smaller areas. Future applications of this analysis might include a rapid and objective system for evaluation of student maps (including point-data, such as attitude measurements) and quantification of temporal trends in student work as class sizes, pedagogical approaches or environmental variables change. Long-term goals include understanding and characterizing stochasticity in geological mapping beyond the undergraduate classroom, and better quantifying uncertainty in published map products.
Comparison of Different Attitude Correction Models for ZY-3 Satellite Imagery
NASA Astrophysics Data System (ADS)
Song, Wenping; Liu, Shijie; Tong, Xiaohua; Niu, Changling; Ye, Zhen; Zhang, Han; Jin, Yanmin
2018-04-01
ZY-3 satellite, launched in 2012, is the first civilian high resolution stereo mapping satellite of China. This paper analyzed the positioning errors of ZY-3 satellite imagery and conducted compensation for geo-position accuracy improvement using different correction models, including attitude quaternion correction, attitude angle offset correction, and attitude angle linear correction. The experimental results revealed that there exist systematic errors with ZY-3 attitude observations and the positioning accuracy can be improved after attitude correction with aid of ground controls. There is no significant difference between the results of attitude quaternion correction method and the attitude angle correction method. However, the attitude angle offset correction model produced steady improvement than the linear correction model when limited ground control points are available for single scene.
NASA Astrophysics Data System (ADS)
Williamson, Jeffrey
2008-03-01
The role of medical imaging in the planning and delivery of radiation therapy (RT) is rapidly expanding. This is being driven by two developments: Image-guided radiation therapy (IGRT) and biological image-based planning (BIBP). IGRT is the systematic use of serial treatment-position imaging to improve geometric targeting accuracy and/or to refine target definition. The enabling technology is the integration of high-performance three-dimensional (3D) imaging systems, e.g., onboard kilovoltage x-ray cone-beam CT, into RT delivery systems. IGRT seeks to adapt the patient's treatment to weekly, daily, or even real-time changes in organ position and shape. BIBP uses non-anatomic imaging (PET, MR spectroscopy, functional MR, etc.) to visualize abnormal tissue biology (angiogenesis, proliferation, metabolism, etc.) leading to more accurate clinical target volume (CTV) delineation and more accurate targeting of high doses to tissue with the highest tumor cell burden. In both cases, the goal is to reduce both systematic and random tissue localization errors (2-5 mm for conventional RT) conformality so that planning target volume (PTV) margins (varying from 8 to 20 mm in conventional RT) used to ensure target volume coverage in the presence of geometric error, can be substantially reduced. Reduced PTV expansion allows more conformal treatment of the target volume, increased avoidance of normal tissue and potential for safe delivery of more aggressive dose regimens. This presentation will focus on the imaging science challenges posed by the IGRT and BIBP. These issues include: Development of robust and accurate nonrigid image-registration (NIR) tools: Extracting locally nonlinear mappings that relate, voxel-by-voxel, one 3D anatomic representation of the patient to differently deformed anatomies acquired at different time points, is essential if IGRT is to move beyond simple translational treatment plan adaptations. NIR is needed to map segmented and labeled anatomy from the pretreatment planning images to each daily treatment position image and to deformably map delivered dose distributions computed on each time instance of deformed anatomy, back to the reference 3D anatomy. Because biological imaging must be performed offline, NIR is needed to deformably map these images onto CT images acquired during treatment. Reducing target and organ contouring errors: As IGRT significantly reduces impact of differences between planning and treatment anatomy, RT targeting accuracy becomes increasingly dominated by the remaining systematic treatment-preparation errors, chiefly error in delineating the clinical target volume (CTV) and organs-at-risk. These delineation errors range from 1 mm to 5 mm. No single solution to this problem exists. For BIBP, a better understanding of tumor cell density vs. signal intensity is required. For anatomic CT imaging, improved image reconstruction techniques that improve contrast-to-noise ratio, reduce artifacts due to limited projection data, and incorporate prior information are promising. More sophisticated alternatives to the current concept fixed boundary anatomic structures are needed, e.g., probabilistic CTV representations that incorporate delineation uncertainties. Quantifying four-dimensional (4D) anatomy: For adaptive treatment planning to produce an optimal time sequence of delivery parameters, a 4D anatomic representation, the spatial trajectory through time of each tissue voxel, is needed. One approach is to use sequences of deformation vector fields derived by non-rigidly registering each treatment image to the reference planning CT. One problem to be solved is prediction of future deformed anatomies from past behavior so that time delays inherent in any adaptive replanning feedback loop can be overcome. Another unsolved problem is quantification 4D anatomy uncertainties and how to incorporate such uncertainties into the treatment planning process to avoid geometric ``miss'' of the target tissue.
Impact of cell size on inventory and mapping errors in a cellular geographic information system
NASA Technical Reports Server (NTRS)
Wehde, M. E. (Principal Investigator)
1979-01-01
The author has identified the following significant results. The effect of grid position was found insignificant for maps but highly significant for isolated mapping units. A modelable relationship between mapping error and cell size was observed for the map segment analyzed. Map data structure was also analyzed with an interboundary distance distribution approach. Map data structure and the impact of cell size on that structure were observed. The existence of a model allowing prediction of mapping error based on map structure was hypothesized and two generations of models were tested under simplifying assumptions.
Vector magnetic field observations with the Haleakala polarimeter
NASA Technical Reports Server (NTRS)
Mickey, D. L.
1985-01-01
Several enhancements were recently made to the Haleakala polarimeter. Linear array detectors provide simultaneous resolution over a 3-A wavelength range, with spectral resolution of 40 mA. Optical fibers are now used to carry the intensity-modulated light from the rotating quarter-wave plate polarimeter to the echelle spectrometer, permitting its removal from the spar to a more stable environment. These changes, together with improved quarter-wave plates, reduced systematic errors to a few parts in 10,000 for routine observations. Examples of Stokes profiles and derived magnetic field maps are presented.
Application of Monte-Carlo Analyses for the Microwave Anisotropy Probe (MAP) Mission
NASA Technical Reports Server (NTRS)
Mesarch, Michael A.; Rohrbaugh, David; Schiff, Conrad; Bauer, Frank H. (Technical Monitor)
2001-01-01
The Microwave Anisotropy Probe (MAP) is the third launch in the National Aeronautics and Space Administration's (NASA's) a Medium Class Explorers (MIDEX) program. MAP will measure, in greater detail, the cosmic microwave background radiation from an orbit about the Sun-Earth-Moon L2 Lagrangian point. Maneuvers will be required to transition MAP from it's initial highly elliptical orbit to a lunar encounter which will provide the remaining energy to send MAP out to a lissajous orbit about L2. Monte-Carlo analysis methods were used to evaluate the potential maneuver error sources and determine their effect of the fixed MAP propellant budget. This paper will discuss the results of the analyses on three separate phases of the MAP mission - recovering from launch vehicle errors, responding to phasing loop maneuver errors, and evaluating the effect of maneuver execution errors and orbit determination errors on stationkeeping maneuvers at L2.
Errors in causal inference: an organizational schema for systematic error and random error.
Suzuki, Etsuji; Tsuda, Toshihide; Mitsuhashi, Toshiharu; Mansournia, Mohammad Ali; Yamamoto, Eiji
2016-11-01
To provide an organizational schema for systematic error and random error in estimating causal measures, aimed at clarifying the concept of errors from the perspective of causal inference. We propose to divide systematic error into structural error and analytic error. With regard to random error, our schema shows its four major sources: nondeterministic counterfactuals, sampling variability, a mechanism that generates exposure events and measurement variability. Structural error is defined from the perspective of counterfactual reasoning and divided into nonexchangeability bias (which comprises confounding bias and selection bias) and measurement bias. Directed acyclic graphs are useful to illustrate this kind of error. Nonexchangeability bias implies a lack of "exchangeability" between the selected exposed and unexposed groups. A lack of exchangeability is not a primary concern of measurement bias, justifying its separation from confounding bias and selection bias. Many forms of analytic errors result from the small-sample properties of the estimator used and vanish asymptotically. Analytic error also results from wrong (misspecified) statistical models and inappropriate statistical methods. Our organizational schema is helpful for understanding the relationship between systematic error and random error from a previously less investigated aspect, enabling us to better understand the relationship between accuracy, validity, and precision. Copyright © 2016 Elsevier Inc. All rights reserved.
Cadastral Positioning Accuracy Improvement: a Case Study in Malaysia
NASA Astrophysics Data System (ADS)
Hashim, N. M.; Omar, A. H.; Omar, K. M.; Abdullah, N. M.; Yatim, M. H. M.
2016-09-01
Cadastral map is a parcel-based information which is specifically designed to define the limitation of boundaries. In Malaysia, the cadastral map is under authority of the Department of Surveying and Mapping Malaysia (DSMM). With the growth of spatial based technology especially Geographical Information System (GIS), DSMM decided to modernize and reform its cadastral legacy datasets by generating an accurate digital based representation of cadastral parcels. These legacy databases usually are derived from paper parcel maps known as certified plan. The cadastral modernization will result in the new cadastral database no longer being based on single and static parcel paper maps, but on a global digital map. Despite the strict process of the cadastral modernization, this reform has raised unexpected queries that remain essential to be addressed. The main focus of this study is to review the issues that have been generated by this transition. The transformed cadastral database should be additionally treated to minimize inherent errors and to fit them to the new satellite based coordinate system with high positional accuracy. This review result will be applied as a foundation for investigation to study the systematic and effectiveness method for Positional Accuracy Improvement (PAI) in cadastral database modernization.
Florida Error Maps. A Resource Book for Teachers of Florida Geography.
ERIC Educational Resources Information Center
Allen, Rodney F.; And Others
Fifteen maps of Florida, each containing errors to be corrected by students, are presented for use in teaching Florida geography. Among the error maps included are Florida's borders today, the rivers of Florida, cities in the Grapefruit League, and Florida's European explorers. Teachers are encouraged to reproduce the maps and students to use the…
Improving the quality of marine geophysical track line data: Along-track analysis
NASA Astrophysics Data System (ADS)
Chandler, Michael T.; Wessel, Paul
2008-02-01
We have examined 4918 track line geophysics cruises archived at the U.S. National Geophysical Data Center (NGDC) using comprehensive error checking methods. Each cruise was checked for observation outliers, excessive gradients, metadata consistency, and general agreement with satellite altimetry-derived gravity and predicted bathymetry grids. Thresholds for error checking were determined empirically through inspection of histograms for all geophysical values, gradients, and differences with gridded data sampled along ship tracks. Robust regression was used to detect systematic scale and offset errors found by comparing ship bathymetry and free-air anomalies to the corresponding values from global grids. We found many recurring error types in the NGDC archive, including poor navigation, inappropriately scaled or offset data, excessive gradients, and extended offsets in depth and gravity when compared to global grids. While ˜5-10% of bathymetry and free-air gravity records fail our conservative tests, residual magnetic errors may exceed twice this proportion. These errors hinder the effective use of the data and may lead to mistakes in interpretation. To enable the removal of gross errors without over-writing original cruise data, we developed an errata system that concisely reports all errors encountered in a cruise. With such errata files, scientists may share cruise corrections, thereby preventing redundant processing. We have implemented these quality control methods in the modified MGD77 supplement to the Generic Mapping Tools software suite.
Systematic Error Study for ALICE charged-jet v2 Measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinz, M.; Soltz, R.
We study the treatment of systematic errors in the determination of v 2 for charged jets in √ sNN = 2:76 TeV Pb-Pb collisions by the ALICE Collaboration. Working with the reported values and errors for the 0-5% centrality data we evaluate the Χ 2 according to the formulas given for the statistical and systematic errors, where the latter are separated into correlated and shape contributions. We reproduce both the Χ 2 and p-values relative to a null (zero) result. We then re-cast the systematic errors into an equivalent co-variance matrix and obtain identical results, demonstrating that the two methodsmore » are equivalent.« less
Bilton, Timothy P.; Schofield, Matthew R.; Black, Michael A.; Chagné, David; Wilcox, Phillip L.; Dodds, Ken G.
2018-01-01
Next-generation sequencing is an efficient method that allows for substantially more markers than previous technologies, providing opportunities for building high-density genetic linkage maps, which facilitate the development of nonmodel species’ genomic assemblies and the investigation of their genes. However, constructing genetic maps using data generated via high-throughput sequencing technology (e.g., genotyping-by-sequencing) is complicated by the presence of sequencing errors and genotyping errors resulting from missing parental alleles due to low sequencing depth. If unaccounted for, these errors lead to inflated genetic maps. In addition, map construction in many species is performed using full-sibling family populations derived from the outcrossing of two individuals, where unknown parental phase and varying segregation types further complicate construction. We present a new methodology for modeling low coverage sequencing data in the construction of genetic linkage maps using full-sibling populations of diploid species, implemented in a package called GUSMap. Our model is based on the Lander–Green hidden Markov model but extended to account for errors present in sequencing data. We were able to obtain accurate estimates of the recombination fractions and overall map distance using GUSMap, while most existing mapping packages produced inflated genetic maps in the presence of errors. Our results demonstrate the feasibility of using low coverage sequencing data to produce genetic maps without requiring extensive filtering of potentially erroneous genotypes, provided that the associated errors are correctly accounted for in the model. PMID:29487138
Bilton, Timothy P; Schofield, Matthew R; Black, Michael A; Chagné, David; Wilcox, Phillip L; Dodds, Ken G
2018-05-01
Next-generation sequencing is an efficient method that allows for substantially more markers than previous technologies, providing opportunities for building high-density genetic linkage maps, which facilitate the development of nonmodel species' genomic assemblies and the investigation of their genes. However, constructing genetic maps using data generated via high-throughput sequencing technology ( e.g. , genotyping-by-sequencing) is complicated by the presence of sequencing errors and genotyping errors resulting from missing parental alleles due to low sequencing depth. If unaccounted for, these errors lead to inflated genetic maps. In addition, map construction in many species is performed using full-sibling family populations derived from the outcrossing of two individuals, where unknown parental phase and varying segregation types further complicate construction. We present a new methodology for modeling low coverage sequencing data in the construction of genetic linkage maps using full-sibling populations of diploid species, implemented in a package called GUSMap. Our model is based on the Lander-Green hidden Markov model but extended to account for errors present in sequencing data. We were able to obtain accurate estimates of the recombination fractions and overall map distance using GUSMap, while most existing mapping packages produced inflated genetic maps in the presence of errors. Our results demonstrate the feasibility of using low coverage sequencing data to produce genetic maps without requiring extensive filtering of potentially erroneous genotypes, provided that the associated errors are correctly accounted for in the model. Copyright © 2018 Bilton et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Sen; Li, Guangjun; Wang, Maojie
The purpose of this study was to investigate the effect of multileaf collimator (MLC) leaf position, collimator rotation angle, and accelerator gantry rotation angle errors on intensity-modulated radiotherapy plans for nasopharyngeal carcinoma. To compare dosimetric differences between the simulating plans and the clinical plans with evaluation parameters, 6 patients with nasopharyngeal carcinoma were selected for simulation of systematic and random MLC leaf position errors, collimator rotation angle errors, and accelerator gantry rotation angle errors. There was a high sensitivity to dose distribution for systematic MLC leaf position errors in response to field size. When the systematic MLC position errors weremore » 0.5, 1, and 2 mm, respectively, the maximum values of the mean dose deviation, observed in parotid glands, were 4.63%, 8.69%, and 18.32%, respectively. The dosimetric effect was comparatively small for systematic MLC shift errors. For random MLC errors up to 2 mm and collimator and gantry rotation angle errors up to 0.5°, the dosimetric effect was negligible. We suggest that quality control be regularly conducted for MLC leaves, so as to ensure that systematic MLC leaf position errors are within 0.5 mm. Because the dosimetric effect of 0.5° collimator and gantry rotation angle errors is negligible, it can be concluded that setting a proper threshold for allowed errors of collimator and gantry rotation angle may increase treatment efficacy and reduce treatment time.« less
Flood-hazard mapping in Honduras in response to Hurricane Mitch
Mastin, M.C.
2002-01-01
The devastation in Honduras due to flooding from Hurricane Mitch in 1998 prompted the U.S. Agency for International Development, through the U.S. Geological Survey, to develop a country-wide systematic approach of flood-hazard mapping and a demonstration of the method at selected sites as part of a reconstruction effort. The design discharge chosen for flood-hazard mapping was the flood with an average return interval of 50 years, and this selection was based on discussions with the U.S. Agency for International Development and the Honduran Public Works and Transportation Ministry. A regression equation for estimating the 50-year flood discharge using drainage area and annual precipitation as the explanatory variables was developed, based on data from 34 long-term gaging sites. This equation, which has a standard error of prediction of 71.3 percent, was used in a geographic information system to estimate the 50-year flood discharge at any location for any river in the country. The flood-hazard mapping method was demonstrated at 15 selected municipalities. High-resolution digital-elevation models of the floodplain were obtained using an airborne laser-terrain mapping system. Field verification of the digital elevation models showed that the digital-elevation models had mean absolute errors ranging from -0.57 to 0.14 meter in the vertical dimension. From these models, water-surface elevation cross sections were obtained and used in a numerical, one-dimensional, steady-flow stepbackwater model to estimate water-surface profiles corresponding to the 50-year flood discharge. From these water-surface profiles, maps of area and depth of inundation were created at the 13 of the 15 selected municipalities. At La Lima only, the area and depth of inundation of the channel capacity in the city was mapped. At Santa Rose de Aguan, no numerical model was created. The 50-year flood and the maps of area and depth of inundation are based on the estimated 50-year storm tide.
Evaluation of freely available ancillary data used for detailed soil mapping in Brazil
NASA Astrophysics Data System (ADS)
Samuel-Rosa, Alessandro; Anjos, Lúcia; Vasques, Gustavo; Heuvelink, Gerard
2014-05-01
Brazil is one of the world's largest food producers, and is home of both largest rainforest and largest supply of renewable fresh water on Earth. However, it lacks detailed soil information in extensive areas of the country. The best soil map covering the entire country was published at a scale of 1:5,000,000. Termination of governmental support for systematic soil mapping in the 1980's made detailed soil mapping of the whole country a very difficult task to accomplish. Nowadays, due to new user-driven demands (e.g. precision agriculture), most detailed soil maps are produced for small size areas. Many of them rely on as is freely available ancillary data, although their accuracy is usually not reported or unknown. Results from a validation exercise that we performed using ground control points from a small hilly catchment (20 km²) in Southern Brazil (-53.7995ºE, -29.6355ºN) indicate that most freely available ancillary data needs some type of correction before use. Georeferenced and orthorectified RapidEye imagery (recently acquired by the Brazilian government) has a horizontal accuracy (root-mean-square error, RMSE) of 37 m, which is worse than the value published in the metadata (32 m). Like any remote sensing imagery, RapidEye imagery needs to be correctly registered before its use for soil mapping. Topographic maps produced by the Brazilian Army and derived geological maps (scale of 1:25,000) have a horizontal accuracy of 65 m, which is more than four times the maximum value allowed by Brazilian legislation (15 m). Worse results were found for geological maps derived from 1:50,000 topographic maps (RMSE = 147 m), for which the maximum allowed value is 30 m. In most cases positional errors are of systematic origin and can be easily corrected (e.g., affine transformation). ASTER GDEM has many holes and is very noisy, making it of little use in the studied area. TOPODATA, which is SRTM kriged from originally 3 to 1 arc-second by the Brazilian National Institute for Space Research, has a vertical accuracy of 19 m and is strongly affected by double-oblique stripes which were intensified by kriging. Many spurious sinks were created which are not easily corrected using either frequency filters or sink-filling algorithms. The exceptions are SRTM v4.1, which is the most vertically accurate DEM available (RMSE = 18.7 m), and Google Earth imagery compiled from various sources (positional accuracy of RMSE = 8 m). It is likely that most mapping efforts will continue to be employed in small size areas to fulfill local user-driven demands in the forthcoming years. Also, many new techniques and technologies will possibly be developed and employed for soil mapping. However, employing better quality ancillary data still is a challenge to be overcome to produce high-quality soil information to allow better decision making and land use policy in Brazil.
PANCHROMATIC HUBBLE ANDROMEDA TREASURY. XII. MAPPING STELLAR METALLICITY DISTRIBUTIONS IN M31
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregersen, Dylan; Seth, Anil C.; Williams, Benjamin F.
We present a study of spatial variations in the metallicity of old red giant branch stars in the Andromeda galaxy. Photometric metallicity estimates are derived by interpolating isochrones for over seven million stars in the Panchromatic Hubble Andromeda Treasury (PHAT) survey. This is the first systematic study of stellar metallicities over the inner 20 kpc of Andromeda’s galactic disk. We see a clear metallicity gradient of −0.020 ± 0.004 dex kpc{sup −1} from ∼4–20 kpc assuming a constant red giant branch age. This metallicity gradient is derived after correcting for the effects of photometric bias and completeness and dust extinction, and ismore » quite insensitive to these effects. The unknown age gradient in M31's disk creates the dominant systematic uncertainty in our derived metallicity gradient. However, spectroscopic analyses of galaxies similar to M31 show that they typically have small age gradients that make this systematic error comparable to the 1σ error on our metallicity gradient measurement. In addition to the metallicity gradient, we observe an asymmetric local enhancement in metallicity at radii of 3–6 kpc that appears to be associated with Andromeda’s elongated bar. This same region also appears to have an enhanced stellar density and velocity dispersion.« less
Pelletreau, Sonia; Barbre, Kira A.; Deming, Michael S.; Rebollo, Maria P.
2017-01-01
Endemicity mapping is required to determining whether a district requires mass drug administration (MDA). Current guidelines for mapping LF require that two sites be selected per district and within each site a convenience sample of 100 adults be tested for antigenemia or microfilaremia. One or more confirmed positive tests in either site is interpreted as an indicator of potential transmission, prompting MDA at the district-level. While this mapping strategy has worked well in high-prevalence settings, imperfect diagnostics and the transmission potential of a single positive adult have raised concerns about the strategy’s use in low-prevalence settings. In response to these limitations, a statistically rigorous confirmatory mapping strategy was designed as a complement to the current strategy when LF endemicity is uncertain. Under the new strategy, schools are selected by either systematic or cluster sampling, depending on population size, and within each selected school, children 9–14 years are sampled systematically. All selected children are tested and the number of positive results is compared against a critical value to determine, with known probabilities of error, whether the average prevalence of LF infection is likely below a threshold of 2%. This confirmatory mapping strategy was applied to 45 districts in Ethiopia and 10 in Tanzania, where initial mapping results were considered uncertain. In 42 Ethiopian districts, and all 10 of the Tanzanian districts, the number of antigenemic children was below the critical cutoff, suggesting that these districts do not require MDA. Only three Ethiopian districts exceeded the critical cutoff of positive results. Whereas the current World Health Organization guidelines would have recommended MDA in all 55 districts, the present results suggest that only three of these districts requires MDA. By avoiding unnecessary MDA in 52 districts, the confirmatory mapping strategy is estimated to have saved a total of $9,293,219. PMID:28976981
Gass, Katherine M; Sime, Heven; Mwingira, Upendo J; Nshala, Andreas; Chikawe, Maria; Pelletreau, Sonia; Barbre, Kira A; Deming, Michael S; Rebollo, Maria P
2017-10-01
Endemicity mapping is required to determining whether a district requires mass drug administration (MDA). Current guidelines for mapping LF require that two sites be selected per district and within each site a convenience sample of 100 adults be tested for antigenemia or microfilaremia. One or more confirmed positive tests in either site is interpreted as an indicator of potential transmission, prompting MDA at the district-level. While this mapping strategy has worked well in high-prevalence settings, imperfect diagnostics and the transmission potential of a single positive adult have raised concerns about the strategy's use in low-prevalence settings. In response to these limitations, a statistically rigorous confirmatory mapping strategy was designed as a complement to the current strategy when LF endemicity is uncertain. Under the new strategy, schools are selected by either systematic or cluster sampling, depending on population size, and within each selected school, children 9-14 years are sampled systematically. All selected children are tested and the number of positive results is compared against a critical value to determine, with known probabilities of error, whether the average prevalence of LF infection is likely below a threshold of 2%. This confirmatory mapping strategy was applied to 45 districts in Ethiopia and 10 in Tanzania, where initial mapping results were considered uncertain. In 42 Ethiopian districts, and all 10 of the Tanzanian districts, the number of antigenemic children was below the critical cutoff, suggesting that these districts do not require MDA. Only three Ethiopian districts exceeded the critical cutoff of positive results. Whereas the current World Health Organization guidelines would have recommended MDA in all 55 districts, the present results suggest that only three of these districts requires MDA. By avoiding unnecessary MDA in 52 districts, the confirmatory mapping strategy is estimated to have saved a total of $9,293,219.
NOAA Office of Exploration and Research > Exploration > Systematic
Exploration Systematic Exploration Marine Archaeology Ocean and Coastal Mapping Advancing Technology Overview Exploration Marine Archaeology Ocean and Coastal Mapping Exploration Systematic Exploration Home About OER Systematic Exploration Marine Archaeology Ocean and Coastal Mapping Advancing Technology Overview Technology
NASA Astrophysics Data System (ADS)
Sweeney, K.; Major, J. J.
2016-12-01
Advances in structure-from-motion (SfM) photogrammetry and point cloud comparison have fueled a proliferation of studies using modern imagery to monitor geomorphic change. These techniques also have obvious applications for reconstructing historical landscapes from vertical aerial imagery, but known challenges include insufficient photo overlap, systematic "doming" induced by photo-spacing regularity, missing metadata, and lack of ground control. Aerial imagery of landscape change in the North Fork Toutle River (NFTR) following the 1980 eruption of Mount St. Helens is a prime dataset to refine methodologies. In particular, (1) 14-μm film scans are available for 1:9600 images at 4-month intervals from 1980 - 1986, (2) the large magnitude of landscape change swamps systematic error and noise, and (3) stable areas (primary deposit features, roads, etc.) provide targets for both ground control and matching to modern lidar. Using AgiSoft PhotoScan, we create digital surface models from the NFTR imagery and examine how common steps in SfM workflows affect results. Tests of scan quality show high-resolution, professional film scans are superior to office scans of paper prints, reducing spurious points related to scan infidelity and image damage. We confirm earlier findings that cropping and rotating images improves point matching and the final surface model produced by the SfM algorithm. We demonstrate how the iterative closest point algorithm, implemented in CloudCompare and using modern lidar as a reference dataset, can serve as an adequate substitute for absolute ground control. Elevation difference maps derived from our surface models of Mount St. Helens show patterns consistent with field observations, including channel avulsion and migration, though systematic errors remain. We suggest that subtracting an empirical function fit to the long-wavelength topographic signal may be one avenue for correcting systematic error in similar datasets.
A STUDY ON REASONS OF ERRORS OF OLD SURVEY MAPS IN CADASTRAL SYSTEM
NASA Astrophysics Data System (ADS)
Yanase, Norihiko
This paper explicates sources on survey map errors which were made in 19th century. The present cadastral system stands on registers and survey maps which were compiled to change the land taxation system in the Meiji era. Many Japanese may recognize the reasons why poor survey technique by farmers, too long measure to avoid heavy tax, careless official check and other deception made such errors of acreage from several to more than ten percent of area in survey maps. The author would like to maintain that such errors, called nawa-nobi, were lawful in accordance with the then survey regulation because of results to analyze old survey regulations, history of making maps and studies of cadastral system. In addition to, a kind of survey maps' errors should be pointed out a reason why the easy subdivision system which could approve without real survey and disposal of state property with inadequate survey.
Narayan, Sreenath; Kalhan, Satish C.; Wilson, David L.
2012-01-01
I.Abstract Purpose To reduce swaps in fat-water separation methods, a particular issue on 7T small animal scanners due to field inhomogeneity, using image postprocessing innovations that detect and correct errors in the B0 field map. Materials and Methods Fat-water decompositions and B0 field maps were computed for images of mice acquired on a 7T Bruker BioSpec scanner, using a computationally efficient method for solving the Markov Random Field formulation of the multi-point Dixon model. The B0 field maps were processed with a novel hole-filling method, based on edge strength between regions, and a novel k-means method, based on field-map intensities, which were iteratively applied to automatically detect and reinitialize error regions in the B0 field maps. Errors were manually assessed in the B0 field maps and chemical parameter maps both before and after error correction. Results Partial swaps were found in 6% of images when processed with FLAWLESS. After REFINED correction, only 0.7% of images contained partial swaps, resulting in an 88% decrease in error rate. Complete swaps were not problematic. Conclusion Ex post facto error correction is a viable supplement to a priori techniques for producing globally smooth B0 field maps, without partial swaps. With our processing pipeline, it is possible to process image volumes rapidly, robustly, and almost automatically. PMID:23023815
Narayan, Sreenath; Kalhan, Satish C; Wilson, David L
2013-05-01
To reduce swaps in fat-water separation methods, a particular issue on 7 Tesla (T) small animal scanners due to field inhomogeneity, using image postprocessing innovations that detect and correct errors in the B0 field map. Fat-water decompositions and B0 field maps were computed for images of mice acquired on a 7T Bruker BioSpec scanner, using a computationally efficient method for solving the Markov Random Field formulation of the multi-point Dixon model. The B0 field maps were processed with a novel hole-filling method, based on edge strength between regions, and a novel k-means method, based on field-map intensities, which were iteratively applied to automatically detect and reinitialize error regions in the B0 field maps. Errors were manually assessed in the B0 field maps and chemical parameter maps both before and after error correction. Partial swaps were found in 6% of images when processed with FLAWLESS. After REFINED correction, only 0.7% of images contained partial swaps, resulting in an 88% decrease in error rate. Complete swaps were not problematic. Ex post facto error correction is a viable supplement to a priori techniques for producing globally smooth B0 field maps, without partial swaps. With our processing pipeline, it is possible to process image volumes rapidly, robustly, and almost automatically. Copyright © 2012 Wiley Periodicals, Inc.
Cullings, H M; Grant, E J; Egbert, S D; Watanabe, T; Oda, T; Nakamura, F; Yamashita, T; Fuchi, H; Funamoto, S; Marumo, K; Sakata, R; Kodama, Y; Ozasa, K; Kodama, K
2017-01-01
Individual dose estimates calculated by Dosimetry System 2002 (DS02) for the Life Span Study (LSS) of atomic bomb survivors are based on input data that specify location and shielding at the time of the bombing (ATB). A multi-year effort to improve information on survivors' locations ATB has recently been completed, along with comprehensive improvements in their terrain shielding input data and several improvements to computational algorithms used in combination with DS02 at RERF. Improvements began with a thorough review and prioritization of original questionnaire data on location and shielding that were taken from survivors or their proxies in the period 1949-1963. Related source documents varied in level of detail, from relatively simple lists to carefully-constructed technical drawings of structural and other shielding and surrounding neighborhoods. Systematic errors were reduced in this work by restoring the original precision of map coordinates that had been truncated due to limitations in early data processing equipment and by correcting distortions in the old (WWII-era) maps originally used to specify survivors' positions, among other improvements. Distortion errors were corrected by aligning the old maps and neighborhood drawings to orthophotographic mosaics of the cities that were newly constructed from pre-bombing aerial photographs. Random errors that were reduced included simple transcription errors and mistakes in identifying survivors' locations on the old maps. Terrain shielding input data that had been originally estimated for limited groups of survivors using older methods and data sources were completely re-estimated for all survivors using new digital terrain elevation data. Improvements to algorithms included a fix to an error in the DS02 code for coupling house and terrain shielding, a correction for elevation at the survivor's location in calculating angles to the horizon used for terrain shielding input, an improved method for truncating high dose estimates to 4 Gy to reduce the effect of dose error, and improved methods for calculating averaged shielding transmission factors that are used to calculate doses for survivors without detailed shielding input data. Input data changes are summarized and described here in some detail, along with the resulting changes in dose estimates and a simple description of changes in risk estimates for solid cancer mortality. This and future RERF publications will refer to the new dose estimates described herein as "DS02R1 doses."
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, T. S.
Meeting the science goals for many current and future ground-based optical large-area sky surveys requires that the calibrated broadband photometry is stable in time and uniform over the sky to 1% precision or better. Past surveys have achieved photometric precision of 1-2% by calibrating the survey's stellar photometry with repeated measurements of a large number of stars observed in multiple epochs. The calibration techniques employed by these surveys only consider the relative frame-by-frame photometric zeropoint offset and the focal plane position-dependent illumination corrections, which are independent of the source color. However, variations in the wavelength dependence of the atmospheric transmissionmore » and the instrumental throughput induce source color-dependent systematic errors. These systematic errors must also be considered to achieve the most precise photometric measurements. In this paper, we examine such systematic chromatic errors using photometry from the Dark Energy Survey (DES) as an example. We define a natural magnitude system for DES and calculate the systematic errors on stellar magnitudes, when the atmospheric transmission and instrumental throughput deviate from the natural system. We conclude that the systematic chromatic errors caused by the change of airmass in each exposure, the change of the precipitable water vapor and aerosol in the atmosphere over time, and the non-uniformity of instrumental throughput over the focal plane, can be up to 2% in some bandpasses. We compare the calculated systematic chromatic errors with the observed DES data. For the test sample data, we correct these errors using measurements of the atmospheric transmission and instrumental throughput. The residual after correction is less than 0.3%. We also find that the errors for non-stellar objects are redshift-dependent and can be larger than those for stars at certain redshifts.« less
Systematic Errors in an Air Track Experiment.
ERIC Educational Resources Information Center
Ramirez, Santos A.; Ham, Joe S.
1990-01-01
Errors found in a common physics experiment to measure acceleration resulting from gravity using a linear air track are investigated. Glider position at release and initial velocity are shown to be sources of systematic error. (CW)
Mayo-Wilson, Evan; Ng, Sueko Matsumura; Chuck, Roy S; Li, Tianjing
2017-09-05
Systematic reviews should inform American Academy of Ophthalmology (AAO) Preferred Practice Pattern® (PPP) guidelines. The quality of systematic reviews related to the forthcoming Preferred Practice Pattern® guideline (PPP) Refractive Errors & Refractive Surgery is unknown. We sought to identify reliable systematic reviews to assist the AAO Refractive Errors & Refractive Surgery PPP. Systematic reviews were eligible if they evaluated the effectiveness or safety of interventions included in the 2012 PPP Refractive Errors & Refractive Surgery. To identify potentially eligible systematic reviews, we searched the Cochrane Eyes and Vision United States Satellite database of systematic reviews. Two authors identified eligible reviews and abstracted information about the characteristics and quality of the reviews independently using the Systematic Review Data Repository. We classified systematic reviews as "reliable" when they (1) defined criteria for the selection of studies, (2) conducted comprehensive literature searches for eligible studies, (3) assessed the methodological quality (risk of bias) of the included studies, (4) used appropriate methods for meta-analyses (which we assessed only when meta-analyses were reported), (5) presented conclusions that were supported by the evidence provided in the review. We identified 124 systematic reviews related to refractive error; 39 met our eligibility criteria, of which we classified 11 to be reliable. Systematic reviews classified as unreliable did not define the criteria for selecting studies (5; 13%), did not assess methodological rigor (10; 26%), did not conduct comprehensive searches (17; 44%), or used inappropriate quantitative methods (3; 8%). The 11 reliable reviews were published between 2002 and 2016. They included 0 to 23 studies (median = 9) and analyzed 0 to 4696 participants (median = 666). Seven reliable reviews (64%) assessed surgical interventions. Most systematic reviews of interventions for refractive error are low methodological quality. Following widely accepted guidance, such as Cochrane or Institute of Medicine standards for conducting systematic reviews, would contribute to improved patient care and inform future research.
An analysis of the least-squares problem for the DSN systematic pointing error model
NASA Technical Reports Server (NTRS)
Alvarez, L. S.
1991-01-01
A systematic pointing error model is used to calibrate antennas in the Deep Space Network. The least squares problem is described and analyzed along with the solution methods used to determine the model's parameters. Specifically studied are the rank degeneracy problems resulting from beam pointing error measurement sets that incorporate inadequate sky coverage. A least squares parameter subset selection method is described and its applicability to the systematic error modeling process is demonstrated on Voyager 2 measurement distribution.
Sollmann, Nico; Ille, Sebastian; Boeckh-Behrens, Tobias; Ringel, Florian; Meyer, Bernhard; Krieg, Sandro M
2016-07-01
Functional magnetic resonance imaging (fMRI) is considered to be the standard method regarding non-invasive language mapping. However, repetitive navigated transcranial magnetic stimulation (rTMS) gains increasing importance with respect to that purpose. However, comparisons between both methods are sparse. We performed fMRI and rTMS language mapping of the left hemisphere in 40 healthy, right-handed subjects in combination with the tasks that are most commonly used in the neurosurgical context (fMRI: word-generation = WGEN task; rTMS: object-naming = ON task). Different rTMS error rate thresholds (ERTs) were calculated, and Cohen's kappa coefficient and the cortical parcellation system (CPS) were used for systematic comparison of the two techniques. Overall, mean kappa coefficients were low, revealing no distinct agreement. We found the highest agreement for both techniques when using the 2-out-of-3 rule (CPS region defined as language positive in terms of rTMS if at least 2 out of 3 stimulations led to a naming error). However, kappa for this threshold was only 0.24 (kappa of <0, 0.01-0.20, 0.21-0.40, 0.41-0.60, 0.61-0.80 and 0.81-0.99 indicate less than chance, slight, fair, moderate, substantial and almost perfect agreement, respectively). Because of the inherent differences in the underlying physiology of fMRI and rTMS, the different tasks used and the impossibility of verifying the results via direct cortical stimulation (DCS) in the population of healthy volunteers, one must exercise caution in drawing conclusions about the relative usefulness of each technique for language mapping. Nevertheless, this study yields valuable insights into these two mapping techniques for the most common language tasks currently used in neurosurgical practice.
Height and Biomass of Mangroves in Africa from ICEsat/GLAS and SRTM
NASA Technical Reports Server (NTRS)
Fatoyinbo, Temilola E.; Simard, Marc
2012-01-01
The accurate quantification of forest 3-D structure is of great importance for studies of the global carbon cycle and biodiversity. These studies are especially relevant in Africa, where deforestation rates are high and the lack of background data is great. Mangrove forests are ecologically significant and it is important to measure mangrove canopy heights and biomass. The objectives of this study are to estimate: 1. The total area, 2. Canopy height distributions and 3. Aboveground biomass of mangrove forests in Africa. To derive mangrove 3-D structure and biomass maps, we used a combination of mangrove maps derived from Landsat ETM+, LiDAR canopy height estimates from ICEsat/GLAS (Ice, Cloud, and land Elevation Satellite/Geoscience Laser Altimeter System) and elevation data from SRTM (Shuttle Radar Topography Mission) for the African continent. More specifically, we extracted mangrove forest areas on the SRTM DEM using Landsat based landcover maps. The LiDAR (Light Detection and Ranging) measurements from the large footprint GLAS sensor were used to derive local estimates of canopy height and calibrate the Interferometric Synthetic Aperture Radar (InSAR) data from SRTM. We then applied allometric equations relating canopy height to biomass in order to estimate above ground biomass (AGB) from the canopy height product. The total mangrove area of Africa was estimated to be 25 960 square kilometers with 83% accuracy. The largest mangrove areas and greatest total biomass was 29 found in Nigeria covering 8 573 km2 with 132 x10(exp 6) Mg AGB. Canopy height across Africa was estimated with an overall root mean square error of 3.55 m. This error also includes the impact of using sensors with different resolutions and geolocation error which make comparison between measurements sensitive to canopy heterogeneities. This study provides the first systematic estimates of mangrove area, height and biomass in Africa. Our results showed that the combination of ICEsat/GLAS and SRTM data is well suited for vegetation 3-D mapping on a continental scale.
Evolving geometrical heterogeneities of fault trace data
NASA Astrophysics Data System (ADS)
Wechsler, Neta; Ben-Zion, Yehuda; Christofferson, Shari
2010-08-01
We perform a systematic comparative analysis of geometrical fault zone heterogeneities using derived measures from digitized fault maps that are not very sensitive to mapping resolution. We employ the digital GIS map of California faults (version 2.0) and analyse the surface traces of active strike-slip fault zones with evidence of Quaternary and historic movements. Each fault zone is broken into segments that are defined as a continuous length of fault bounded by changes of angle larger than 1°. Measurements of the orientations and lengths of fault zone segments are used to calculate the mean direction and misalignment of each fault zone from the local plate motion direction, and to define several quantities that represent the fault zone disorder. These include circular standard deviation and circular standard error of segments, orientation of long and short segments with respect to the mean direction, and normal separation distances of fault segments. We examine the correlations between various calculated parameters of fault zone disorder and the following three potential controlling variables: cumulative slip, slip rate and fault zone misalignment from the plate motion direction. The analysis indicates that the circular standard deviation and circular standard error of segments decrease overall with increasing cumulative slip and increasing slip rate of the fault zones. The results imply that the circular standard deviation and error, quantifying the range or dispersion in the data, provide effective measures of the fault zone disorder, and that the cumulative slip and slip rate (or more generally slip rate normalized by healing rate) represent the fault zone maturity. The fault zone misalignment from plate motion direction does not seem to play a major role in controlling the fault trace heterogeneities. The frequency-size statistics of fault segment lengths can be fitted well by an exponential function over the entire range of observations.
Planck 2015 results: VI. LFI mapmaking
Ade, P. A. R.; Aghanim, N.; Ashdown, M.; ...
2016-09-20
This article describes the mapmaking procedure applied to Planck Low Frequency Instrument (LFI) data. The mapmaking step takes as input the calibrated timelines and pointing information. The main products are sky maps of I, Q, and U Stokes components. For the first time, we present polarization maps at LFI frequencies. The mapmaking algorithm is based on a destriping technique, which is enhanced with a noise prior. The Galactic region is masked to reduce errors arising from bandpass mismatch and high signal gradients. We apply horn-uniform radiometer weights to reduce the effects of beam-shape mismatch. The algorithm is the same asmore » used for the 2013 release, apart from small changes in parameter settings. We validate the procedure through simulations. Special emphasis is put on the control of systematics, which is particularly important for accurate polarization analysis. We also produce low-resolution versions of the maps and corresponding noise covariance matrices. These serve as input in later analysis steps and parameter estimation. The noise covariance matrices are validated through noise Monte Carlo simulations. The residual noise in the map products is characterized through analysis of half-ring maps, noise covariance matrices, and simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okura, Yuki; Futamase, Toshifumi, E-mail: yuki.okura@nao.ac.jp, E-mail: tof@astr.tohoku.ac.jp
This is the third paper on the improvement of systematic errors in weak lensing analysis using an elliptical weight function, referred to as E-HOLICs. In previous papers, we succeeded in avoiding errors that depend on the ellipticity of the background image. In this paper, we investigate the systematic error that depends on the signal-to-noise ratio of the background image. We find that the origin of this error is the random count noise that comes from the Poisson noise of sky counts. The random count noise makes additional moments and centroid shift error, and those first-order effects are canceled in averaging,more » but the second-order effects are not canceled. We derive the formulae that correct this systematic error due to the random count noise in measuring the moments and ellipticity of the background image. The correction formulae obtained are expressed as combinations of complex moments of the image, and thus can correct the systematic errors caused by each object. We test their validity using a simulated image and find that the systematic error becomes less than 1% in the measured ellipticity for objects with an IMCAT significance threshold of {nu} {approx} 11.7.« less
Generalized Skyrme model with the loosely bound potential
NASA Astrophysics Data System (ADS)
Gudnason, Sven Bjarke; Zhang, Baiyang; Ma, Nana
2016-12-01
We study a generalization of the loosely bound Skyrme model which consists of the Skyrme model with a sixth-order derivative term—motivated by its fluidlike properties—and the second-order loosely bound potential—motivated by lowering the classical binding energies of higher-charged Skyrmions. We use the rational map approximation for the Skyrmion of topological charge B =4 , calculate the binding energy of the latter, and estimate the systematic error in using this approximation. In the parameter space that we can explore within the rational map approximation, we find classical binding energies as low as 1.8%, and once taking into account the contribution from spin-isospin quantization, we obtain binding energies as low as 5.3%. We also calculate the contribution from the sixth-order derivative term to the electric charge density and axial coupling.
SU-E-T-613: Dosimetric Consequences of Systematic MLC Leaf Positioning Errors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kathuria, K; Siebers, J
2014-06-01
Purpose: The purpose of this study is to determine the dosimetric consequences of systematic MLC leaf positioning errors for clinical IMRT patient plans so as to establish detection tolerances for quality assurance programs. Materials and Methods: Dosimetric consequences were simulated by extracting mlc delivery instructions from the TPS, altering the file by the specified error, reloading the delivery instructions into the TPS, recomputing dose, and extracting dose-volume metrics for one head-andneck and one prostate patient. Machine error was simulated by offsetting MLC leaves in Pinnacle in a systematic way. Three different algorithms were followed for these systematic offsets, and aremore » as follows: a systematic sequential one-leaf offset (one leaf offset in one segment per beam), a systematic uniform one-leaf offset (same one leaf offset per segment per beam) and a systematic offset of a given number of leaves picked uniformly at random from a given number of segments (5 out of 10 total). Dose to the PTV and normal tissue was simulated. Results: A systematic 5 mm offset of 1 leaf for all delivery segments of all beams resulted in a maximum PTV D98 deviation of 1%. Results showed very low dose error in all reasonably possible machine configurations, rare or otherwise, which could be simulated. Very low error in dose to PTV and OARs was shown in all possible cases of one leaf per beam per segment being offset (<1%), or that of only one leaf per beam being offset (<.2%). The errors resulting from a high number of adjacent leaves (maximum of 5 out of 60 total leaf-pairs) being simultaneously offset in many (5) of the control points (total 10–18 in all beams) per beam, in both the PTV and the OARs analyzed, were similarly low (<2–3%). Conclusions: The above results show that patient shifts and anatomical changes are the main source of errors in dose delivered, not machine delivery. These two sources of error are “visually complementary” and uncorrelated (albeit not additive in the final error) and one can easily incorporate error resulting from machine delivery in an error model based purely on tumor motion.« less
NASA Technical Reports Server (NTRS)
Deloach, Richard; Obara, Clifford J.; Goodman, Wesley L.
2012-01-01
This paper documents a check standard wind tunnel test conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3M TCT) that was designed and analyzed using the Modern Design of Experiments (MDOE). The test designed to partition the unexplained variance of typical wind tunnel data samples into two constituent components, one attributable to ordinary random error, and one attributable to systematic error induced by covariate effects. Covariate effects in wind tunnel testing are discussed, with examples. The impact of systematic (non-random) unexplained variance on the statistical independence of sequential measurements is reviewed. The corresponding correlation among experimental errors is discussed, as is the impact of such correlation on experimental results generally. The specific experiment documented herein was organized as a formal test for the presence of unexplained variance in representative samples of wind tunnel data, in order to quantify the frequency with which such systematic error was detected, and its magnitude relative to ordinary random error. Levels of systematic and random error reported here are representative of those quantified in other facilities, as cited in the references.
Calibration and Validation of Landsat Tree Cover in the Taiga-Tundra Ecotone
NASA Technical Reports Server (NTRS)
Montesano, Paul Mannix; Neigh, Christopher S. R.; Sexton, Joseph; Feng, Min; Channan, Saurabh; Ranson, Kenneth J.; Townshend, John R.
2016-01-01
Monitoring current forest characteristics in the taiga-tundra ecotone (TTE) at multiple scales is critical for understanding its vulnerability to structural changes. A 30 m spatial resolution Landsat-based tree canopy cover map has been calibrated and validated in the TTE with reference tree cover data from airborne LiDAR and high resolution spaceborne images across the full range of boreal forest tree cover. This domain-specific calibration model used estimates of forest height to determine reference forest cover that best matched Landsat estimates. The model removed the systematic under-estimation of tree canopy cover greater than 80% and indicated that Landsat estimates of tree canopy cover more closely matched canopies at least 2 m in height rather than 5 m. The validation improved estimates of uncertainty in tree canopy cover in discontinuous TTE forests for three temporal epochs (2000, 2005, and 2010) by reducing systematic errors, leading to increases in tree canopy cover uncertainty. Average pixel-level uncertainties in tree canopy cover were 29.0%, 27.1% and 31.1% for the 2000, 2005 and 2010 epochs, respectively. Maps from these calibrated data improve the uncertainty associated with Landsat tree canopy cover estimates in the discontinuous forests of the circumpolar TTE.
Historical shoreline mapping (I): improving techniques and reducing positioning errors
Thieler, E. Robert; Danforth, William W.
1994-01-01
A critical need exists among coastal researchers and policy-makers for a precise method to obtain shoreline positions from historical maps and aerial photographs. A number of methods that vary widely in approach and accuracy have been developed to meet this need. None of the existing methods, however, address the entire range of cartographic and photogrammetric techniques required for accurate coastal mapping. Thus, their application to many typical shoreline mapping problems is limited. In addition, no shoreline mapping technique provides an adequate basis for quantifying the many errors inherent in shoreline mapping using maps and air photos. As a result, current assessments of errors in air photo mapping techniques generally (and falsely) assume that errors in shoreline positions are represented by the sum of a series of worst-case assumptions about digitizer operator resolution and ground control accuracy. These assessments also ignore altogether other errors that commonly approach ground distances of 10 m. This paper provides a conceptual and analytical framework for improved methods of extracting geographic data from maps and aerial photographs. We also present a new approach to shoreline mapping using air photos that revises and extends a number of photogrammetric techniques. These techniques include (1) developing spatially and temporally overlapping control networks for large groups of photos; (2) digitizing air photos for use in shoreline mapping; (3) preprocessing digitized photos to remove lens distortion and film deformation effects; (4) simultaneous aerotriangulation of large groups of spatially and temporally overlapping photos; and (5) using a single-ray intersection technique to determine geographic shoreline coordinates and express the horizontal and vertical error associated with a given digitized shoreline. As long as historical maps and air photos are used in studies of shoreline change, there will be a considerable amount of error (on the order of several meters) present in shoreline position and rate-of- change calculations. The techniques presented in this paper, however, provide a means to reduce and quantify these errors so that realistic assessments of the technological noise (as opposed to geological noise) in geographic shoreline positions can be made.
Modeling Errors in Daily Precipitation Measurements: Additive or Multiplicative?
NASA Technical Reports Server (NTRS)
Tian, Yudong; Huffman, George J.; Adler, Robert F.; Tang, Ling; Sapiano, Matthew; Maggioni, Viviana; Wu, Huan
2013-01-01
The definition and quantification of uncertainty depend on the error model used. For uncertainties in precipitation measurements, two types of error models have been widely adopted: the additive error model and the multiplicative error model. This leads to incompatible specifications of uncertainties and impedes intercomparison and application.In this letter, we assess the suitability of both models for satellite-based daily precipitation measurements in an effort to clarify the uncertainty representation. Three criteria were employed to evaluate the applicability of either model: (1) better separation of the systematic and random errors; (2) applicability to the large range of variability in daily precipitation; and (3) better predictive skills. It is found that the multiplicative error model is a much better choice under all three criteria. It extracted the systematic errors more cleanly, was more consistent with the large variability of precipitation measurements, and produced superior predictions of the error characteristics. The additive error model had several weaknesses, such as non constant variance resulting from systematic errors leaking into random errors, and the lack of prediction capability. Therefore, the multiplicative error model is a better choice.
Absolute color scale for improved diagnostics with wavefront error mapping.
Smolek, Michael K; Klyce, Stephen D
2007-11-01
Wavefront data are expressed in micrometers and referenced to the pupil plane, but current methods to map wavefront error lack standardization. Many use normalized or floating scales that may confuse the user by generating ambiguous, noisy, or varying information. An absolute scale that combines consistent clinical information with statistical relevance is needed for wavefront error mapping. The color contours should correspond better to current corneal topography standards to improve clinical interpretation. Retrospective analysis of wavefront error data. Historic ophthalmic medical records. Topographic modeling system topographical examinations of 120 corneas across 12 categories were used. Corneal wavefront error data in micrometers from each topography map were extracted at 8 Zernike polynomial orders and for 3 pupil diameters expressed in millimeters (3, 5, and 7 mm). Both total aberrations (orders 2 through 8) and higher-order aberrations (orders 3 through 8) were expressed in the form of frequency histograms to determine the working range of the scale across all categories. The standard deviation of the mean error of normal corneas determined the map contour resolution. Map colors were based on corneal topography color standards and on the ability to distinguish adjacent color contours through contrast. Higher-order and total wavefront error contour maps for different corneal conditions. An absolute color scale was produced that encompassed a range of +/-6.5 microm and a contour interval of 0.5 microm. All aberrations in the categorical database were plotted with no loss of clinical information necessary for classification. In the few instances where mapped information was beyond the range of the scale, the type and severity of aberration remained legible. When wavefront data are expressed in micrometers, this absolute scale facilitates the determination of the severity of aberrations present compared with a floating scale, particularly for distinguishing normal from abnormal levels of wavefront error. The new color palette makes it easier to identify disorders. The corneal mapping method can be extended to mapping whole eye wavefront errors. When refraction data are expressed in diopters, the previously published corneal topography scale is suggested.
Genetic mapping in the presence of genotyping errors.
Cartwright, Dustin A; Troggio, Michela; Velasco, Riccardo; Gutin, Alexander
2007-08-01
Genetic maps are built using the genotypes of many related individuals. Genotyping errors in these data sets can distort genetic maps, especially by inflating the distances. We have extended the traditional likelihood model used for genetic mapping to include the possibility of genotyping errors. Each individual marker is assigned an error rate, which is inferred from the data, just as the genetic distances are. We have developed a software package, called TMAP, which uses this model to find maximum-likelihood maps for phase-known pedigrees. We have tested our methods using a data set in Vitis and on simulated data and confirmed that our method dramatically reduces the inflationary effect caused by increasing the number of markers and leads to more accurate orders.
Genetic Mapping in the Presence of Genotyping Errors
Cartwright, Dustin A.; Troggio, Michela; Velasco, Riccardo; Gutin, Alexander
2007-01-01
Genetic maps are built using the genotypes of many related individuals. Genotyping errors in these data sets can distort genetic maps, especially by inflating the distances. We have extended the traditional likelihood model used for genetic mapping to include the possibility of genotyping errors. Each individual marker is assigned an error rate, which is inferred from the data, just as the genetic distances are. We have developed a software package, called TMAP, which uses this model to find maximum-likelihood maps for phase-known pedigrees. We have tested our methods using a data set in Vitis and on simulated data and confirmed that our method dramatically reduces the inflationary effect caused by increasing the number of markers and leads to more accurate orders. PMID:17277374
Li, Beiwen; Liu, Ziping; Zhang, Song
2016-10-03
We propose a hybrid computational framework to reduce motion-induced measurement error by combining the Fourier transform profilometry (FTP) and phase-shifting profilometry (PSP). The proposed method is composed of three major steps: Step 1 is to extract continuous relative phase maps for each isolated object with single-shot FTP method and spatial phase unwrapping; Step 2 is to obtain an absolute phase map of the entire scene using PSP method, albeit motion-induced errors exist on the extracted absolute phase map; and Step 3 is to shift the continuous relative phase maps from Step 1 to generate final absolute phase maps for each isolated object by referring to the absolute phase map with error from Step 2. Experiments demonstrate the success of the proposed computational framework for measuring multiple isolated rapidly moving objects.
An LPV Adaptive Observer for Updating a Map Applied to an MAF Sensor in a Diesel Engine.
Liu, Zhiyuan; Wang, Changhui
2015-10-23
In this paper, a new method for mass air flow (MAF) sensor error compensation and an online updating error map (or lookup table) due to installation and aging in a diesel engine is developed. Since the MAF sensor error is dependent on the engine operating point, the error model is represented as a two-dimensional (2D) map with two inputs, fuel mass injection quantity and engine speed. Meanwhile, the 2D map representing the MAF sensor error is described as a piecewise bilinear interpolation model, which can be written as a dot product between the regression vector and parameter vector using a membership function. With the combination of the 2D map regression model and the diesel engine air path system, an LPV adaptive observer with low computational load is designed to estimate states and parameters jointly. The convergence of the proposed algorithm is proven under the conditions of persistent excitation and given inequalities. The observer is validated against the simulation data from engine software enDYNA provided by Tesis. The results demonstrate that the operating point-dependent error of the MAF sensor can be approximated acceptably by the 2D map from the proposed method.
Error Correcting Optical Mapping Data.
Mukherjee, Kingshuk; Washimkar, Darshan; Muggli, Martin D; Salmela, Leena; Boucher, Christina
2018-05-26
Optical mapping is a unique system that is capable of producing high-resolution, high-throughput genomic map data that gives information about the structure of a genome [21]. Recently it has been used for scaffolding contigs and assembly validation for large-scale sequencing projects, including the maize [32], goat [6], and amborella [4] genomes. However, a major impediment in the use of this data is the variety and quantity of errors in the raw optical mapping data, which are called Rmaps. The challenges associated with using Rmap data are analogous to dealing with insertions and deletions in the alignment of long reads. Moreover, they are arguably harder to tackle since the data is numerical and susceptible to inaccuracy. We develop cOMET to error correct Rmap data, which to the best of our knowledge is the only optical mapping error correction method. Our experimental results demonstrate that cOMET has high prevision and corrects 82.49% of insertion errors and 77.38% of deletion errors in Rmap data generated from the E. coli K-12 reference genome. Out of the deletion errors corrected, 98.26% are true errors. Similarly, out of the insertion errors corrected, 82.19% are true errors. It also successfully scales to large genomes, improving the quality of 78% and 99% of the Rmaps in the plum and goat genomes, respectively. Lastly, we show the utility of error correction by demonstrating how it improves the assembly of Rmap data. Error corrected Rmap data results in an assembly that is more contiguous, and covers a larger fraction of the genome.
Reyes, Jeanette M; Xu, Yadong; Vizuete, William; Serre, Marc L
2017-01-01
The regulatory Community Multiscale Air Quality (CMAQ) model is a means to understanding the sources, concentrations and regulatory attainment of air pollutants within a model's domain. Substantial resources are allocated to the evaluation of model performance. The Regionalized Air quality Model Performance (RAMP) method introduced here explores novel ways of visualizing and evaluating CMAQ model performance and errors for daily Particulate Matter ≤ 2.5 micrometers (PM2.5) concentrations across the continental United States. The RAMP method performs a non-homogenous, non-linear, non-homoscedastic model performance evaluation at each CMAQ grid. This work demonstrates that CMAQ model performance, for a well-documented 2001 regulatory episode, is non-homogeneous across space/time. The RAMP correction of systematic errors outperforms other model evaluation methods as demonstrated by a 22.1% reduction in Mean Square Error compared to a constant domain wide correction. The RAMP method is able to accurately reproduce simulated performance with a correlation of r = 76.1%. Most of the error coming from CMAQ is random error with only a minority of error being systematic. Areas of high systematic error are collocated with areas of high random error, implying both error types originate from similar sources. Therefore, addressing underlying causes of systematic error will have the added benefit of also addressing underlying causes of random error.
Jiménez, Felipe; Monzón, Sergio; Naranjo, Jose Eugenio
2016-02-04
Vehicle positioning is a key factor for numerous information and assistance applications that are included in vehicles and for which satellite positioning is mainly used. However, this positioning process can result in errors and lead to measurement uncertainties. These errors come mainly from two sources: errors and simplifications of digital maps and errors in locating the vehicle. From that inaccurate data, the task of assigning the vehicle's location to a link on the digital map at every instant is carried out by map-matching algorithms. These algorithms have been developed to fulfil that need and attempt to amend these errors to offer the user a suitable positioning. In this research; an algorithm is developed that attempts to solve the errors in positioning when the Global Navigation Satellite System (GNSS) signal reception is frequently lost. The algorithm has been tested with satisfactory results in a complex urban environment of narrow streets and tall buildings where errors and signal reception losses of the GPS receiver are frequent.
Jiménez, Felipe; Monzón, Sergio; Naranjo, Jose Eugenio
2016-01-01
Vehicle positioning is a key factor for numerous information and assistance applications that are included in vehicles and for which satellite positioning is mainly used. However, this positioning process can result in errors and lead to measurement uncertainties. These errors come mainly from two sources: errors and simplifications of digital maps and errors in locating the vehicle. From that inaccurate data, the task of assigning the vehicle’s location to a link on the digital map at every instant is carried out by map-matching algorithms. These algorithms have been developed to fulfil that need and attempt to amend these errors to offer the user a suitable positioning. In this research; an algorithm is developed that attempts to solve the errors in positioning when the Global Navigation Satellite System (GNSS) signal reception is frequently lost. The algorithm has been tested with satisfactory results in a complex urban environment of narrow streets and tall buildings where errors and signal reception losses of the GPS receiver are frequent. PMID:26861320
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinski, Peter; Riplinger, Christoph; Neese, Frank, E-mail: evaleev@vt.edu, E-mail: frank.neese@cec.mpg.de
2015-07-21
In this work, a systematic infrastructure is described that formalizes concepts implicit in previous work and greatly simplifies computer implementation of reduced-scaling electronic structure methods. The key concept is sparse representation of tensors using chains of sparse maps between two index sets. Sparse map representation can be viewed as a generalization of compressed sparse row, a common representation of a sparse matrix, to tensor data. By combining few elementary operations on sparse maps (inversion, chaining, intersection, etc.), complex algorithms can be developed, illustrated here by a linear-scaling transformation of three-center Coulomb integrals based on our compact code library that implementsmore » sparse maps and operations on them. The sparsity of the three-center integrals arises from spatial locality of the basis functions and domain density fitting approximation. A novel feature of our approach is the use of differential overlap integrals computed in linear-scaling fashion for screening products of basis functions. Finally, a robust linear scaling domain based local pair natural orbital second-order Möller-Plesset (DLPNO-MP2) method is described based on the sparse map infrastructure that only depends on a minimal number of cutoff parameters that can be systematically tightened to approach 100% of the canonical MP2 correlation energy. With default truncation thresholds, DLPNO-MP2 recovers more than 99.9% of the canonical resolution of the identity MP2 (RI-MP2) energy while still showing a very early crossover with respect to the computational effort. Based on extensive benchmark calculations, relative energies are reproduced with an error of typically <0.2 kcal/mol. The efficiency of the local MP2 (LMP2) method can be drastically improved by carrying out the LMP2 iterations in a basis of pair natural orbitals. While the present work focuses on local electron correlation, it is of much broader applicability to computation with sparse tensors in quantum chemistry and beyond.« less
Pinski, Peter; Riplinger, Christoph; Valeev, Edward F; Neese, Frank
2015-07-21
In this work, a systematic infrastructure is described that formalizes concepts implicit in previous work and greatly simplifies computer implementation of reduced-scaling electronic structure methods. The key concept is sparse representation of tensors using chains of sparse maps between two index sets. Sparse map representation can be viewed as a generalization of compressed sparse row, a common representation of a sparse matrix, to tensor data. By combining few elementary operations on sparse maps (inversion, chaining, intersection, etc.), complex algorithms can be developed, illustrated here by a linear-scaling transformation of three-center Coulomb integrals based on our compact code library that implements sparse maps and operations on them. The sparsity of the three-center integrals arises from spatial locality of the basis functions and domain density fitting approximation. A novel feature of our approach is the use of differential overlap integrals computed in linear-scaling fashion for screening products of basis functions. Finally, a robust linear scaling domain based local pair natural orbital second-order Möller-Plesset (DLPNO-MP2) method is described based on the sparse map infrastructure that only depends on a minimal number of cutoff parameters that can be systematically tightened to approach 100% of the canonical MP2 correlation energy. With default truncation thresholds, DLPNO-MP2 recovers more than 99.9% of the canonical resolution of the identity MP2 (RI-MP2) energy while still showing a very early crossover with respect to the computational effort. Based on extensive benchmark calculations, relative energies are reproduced with an error of typically <0.2 kcal/mol. The efficiency of the local MP2 (LMP2) method can be drastically improved by carrying out the LMP2 iterations in a basis of pair natural orbitals. While the present work focuses on local electron correlation, it is of much broader applicability to computation with sparse tensors in quantum chemistry and beyond.
Errors in radial velocity variance from Doppler wind lidar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, H.; Barthelmie, R. J.; Doubrawa, P.
A high-fidelity lidar turbulence measurement technique relies on accurate estimates of radial velocity variance that are subject to both systematic and random errors determined by the autocorrelation function of radial velocity, the sampling rate, and the sampling duration. Our paper quantifies the effect of the volumetric averaging in lidar radial velocity measurements on the autocorrelation function and the dependence of the systematic and random errors on the sampling duration, using both statistically simulated and observed data. For current-generation scanning lidars and sampling durations of about 30 min and longer, during which the stationarity assumption is valid for atmospheric flows, themore » systematic error is negligible but the random error exceeds about 10%.« less
Errors in radial velocity variance from Doppler wind lidar
Wang, H.; Barthelmie, R. J.; Doubrawa, P.; ...
2016-08-29
A high-fidelity lidar turbulence measurement technique relies on accurate estimates of radial velocity variance that are subject to both systematic and random errors determined by the autocorrelation function of radial velocity, the sampling rate, and the sampling duration. Our paper quantifies the effect of the volumetric averaging in lidar radial velocity measurements on the autocorrelation function and the dependence of the systematic and random errors on the sampling duration, using both statistically simulated and observed data. For current-generation scanning lidars and sampling durations of about 30 min and longer, during which the stationarity assumption is valid for atmospheric flows, themore » systematic error is negligible but the random error exceeds about 10%.« less
NASA Technical Reports Server (NTRS)
Kuehn, C. E.; Himwich, W. E.; Clark, T. A.; Ma, C.
1991-01-01
The internal consistency of the baseline-length measurements derived from analysis of several independent VLBI experiments is an estimate of the measurement precision. The paper investigates whether the inclusion of water vapor radiometer (WVR) data as an absolute calibration of the propagation delay due to water vapor improves the precision of VLBI baseline-length measurements. The paper analyzes 28 International Radio Interferometric Surveying runs between June 1988 and January 1989; WVR measurements were made during each session. The addition of WVR data decreased the scatter of the length measurements of the baselines by 5-10 percent. The observed reduction in the scatter of the baseline lengths is less than what is expected from the behavior of the formal errors, which suggest that the baseline-length measurement precision should improve 10-20 percent if WVR data are included in the analysis. The discrepancy between the formal errors and the baseline-length results can be explained as the consequence of systematic errors in the dry-mapping function parameters, instrumental biases in the WVR and the barometer, or both.
A procedure for the significance testing of unmodeled errors in GNSS observations
NASA Astrophysics Data System (ADS)
Li, Bofeng; Zhang, Zhetao; Shen, Yunzhong; Yang, Ling
2018-01-01
It is a crucial task to establish a precise mathematical model for global navigation satellite system (GNSS) observations in precise positioning. Due to the spatiotemporal complexity of, and limited knowledge on, systematic errors in GNSS observations, some residual systematic errors would inevitably remain even after corrected with empirical model and parameterization. These residual systematic errors are referred to as unmodeled errors. However, most of the existing studies mainly focus on handling the systematic errors that can be properly modeled and then simply ignore the unmodeled errors that may actually exist. To further improve the accuracy and reliability of GNSS applications, such unmodeled errors must be handled especially when they are significant. Therefore, a very first question is how to statistically validate the significance of unmodeled errors. In this research, we will propose a procedure to examine the significance of these unmodeled errors by the combined use of the hypothesis tests. With this testing procedure, three components of unmodeled errors, i.e., the nonstationary signal, stationary signal and white noise, are identified. The procedure is tested by using simulated data and real BeiDou datasets with varying error sources. The results show that the unmodeled errors can be discriminated by our procedure with approximately 90% confidence. The efficiency of the proposed procedure is further reassured by applying the time-domain Allan variance analysis and frequency-domain fast Fourier transform. In summary, the spatiotemporally correlated unmodeled errors are commonly existent in GNSS observations and mainly governed by the residual atmospheric biases and multipath. Their patterns may also be impacted by the receiver.
NASA Technical Reports Server (NTRS)
Hall, D. K.; Foster, J. L.; Salomonson, V. V.; Klein, A. G.; Chien, J. Y. L.
1998-01-01
Following the launch of the Earth Observing System first morning (EOS-AM1) satellite, daily, global snow-cover mapping will be performed automatically at a spatial resolution of 500 m, cloud-cover permitting, using Moderate Resolution Imaging Spectroradiometer (MODIS) data. A technique to calculate theoretical accuracy of the MODIS-derived snow maps is presented. Field studies demonstrate that under cloud-free conditions when snow cover is complete, snow-mapping errors are small (less than 1%) in all land covers studied except forests where errors are greater and more variable. The theoretical accuracy of MODIS snow-cover maps is largely determined by percent forest cover north of the snowline. Using the 17-class International Geosphere-Biosphere Program (IGBP) land-cover maps of North America and Eurasia, the Northern Hemisphere is classified into seven land-cover classes and water. Snow-mapping errors estimated for each of the seven land-cover classes are extrapolated to the entire Northern Hemisphere for areas north of the average continental snowline for each month. Average monthly errors for the Northern Hemisphere are expected to range from 5 - 10%, and the theoretical accuracy of the future global snow-cover maps is 92% or higher. Error estimates will be refined after the first full year that MODIS data are available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, S; Chao, C; Columbia University, NY, NY
2014-06-01
Purpose: This study investigates the calibration error of detector sensitivity for MapCheck due to inaccurate positioning of the device, which is not taken into account by the current commercial iterative calibration algorithm. We hypothesize the calibration is more vulnerable to the positioning error for the flatten filter free (FFF) beams than the conventional flatten filter flattened beams. Methods: MapCheck2 was calibrated with 10MV conventional and FFF beams, with careful alignment and with 1cm positioning error during calibration, respectively. Open fields of 37cmx37cm were delivered to gauge the impact of resultant calibration errors. The local calibration error was modeled as amore » detector independent multiplication factor, with which propagation error was estimated with positioning error from 1mm to 1cm. The calibrated sensitivities, without positioning error, were compared between the conventional and FFF beams to evaluate the dependence on the beam type. Results: The 1cm positioning error leads to 0.39% and 5.24% local calibration error in the conventional and FFF beams respectively. After propagating to the edges of MapCheck, the calibration errors become 6.5% and 57.7%, respectively. The propagation error increases almost linearly with respect to the positioning error. The difference of sensitivities between the conventional and FFF beams was small (0.11 ± 0.49%). Conclusion: The results demonstrate that the positioning error is not handled by the current commercial calibration algorithm of MapCheck. Particularly, the calibration errors for the FFF beams are ~9 times greater than those for the conventional beams with identical positioning error, and a small 1mm positioning error might lead to up to 8% calibration error. Since the sensitivities are only slightly dependent of the beam type and the conventional beam is less affected by the positioning error, it is advisable to cross-check the sensitivities between the conventional and FFF beams to detect potential calibration errors due to inaccurate positioning. This work was partially supported by a DOD Grant No.; DOD W81XWH1010862.« less
NASA Astrophysics Data System (ADS)
He, Yingwei; Li, Ping; Feng, Guojin; Cheng, Li; Wang, Yu; Wu, Houping; Liu, Zilong; Zheng, Chundi; Sha, Dingguo
2010-11-01
For measuring large-aperture optical system transmittance, a novel sub-aperture scanning machine with double-rotating arms (SSMDA) was designed to obtain sub-aperture beam spot. Optical system full-aperture transmittance measurements can be achieved by applying sub-aperture beam spot scanning technology. The mathematical model of the SSMDA based on a homogeneous coordinate transformation matrix is established to develop a detailed methodology for analyzing the beam spot scanning errors. The error analysis methodology considers two fundamental sources of scanning errors, namely (1) the length systematic errors and (2) the rotational systematic errors. As the systematic errors of the parameters are given beforehand, computational results of scanning errors are between -0.007~0.028mm while scanning radius is not lager than 400.000mm. The results offer theoretical and data basis to the research on transmission characteristics of large optical system.
NASA Technical Reports Server (NTRS)
Ricks, Douglas W.
1993-01-01
There are a number of sources of scattering in binary optics: etch depth errors, line edge errors, quantization errors, roughness, and the binary approximation to the ideal surface. These sources of scattering can be systematic (deterministic) or random. In this paper, scattering formulas for both systematic and random errors are derived using Fourier optics. These formulas can be used to explain the results of scattering measurements and computer simulations.
Plans for a sensitivity analysis of bridge-scour computations
Dunn, David D.; Smith, Peter N.
1993-01-01
Plans for an analysis of the sensitivity of Level 2 bridge-scour computations are described. Cross-section data from 15 bridge sites in Texas are modified to reflect four levels of field effort ranging from no field surveys to complete surveys. Data from United States Geological Survey (USGS) topographic maps will be used to supplement incomplete field surveys. The cross sections are used to compute the water-surface profile through each bridge for several T-year recurrence-interval design discharges. The effect of determining the downstream energy grade-line slope from topographic maps is investigated by systematically varying the starting slope of each profile. The water-surface profile analyses are then used to compute potential scour resulting from each of the design discharges. The planned results will be presented in the form of exceedance-probability versus scour-depth plots with the maximum and minimum scour depths at each T-year discharge presented as error bars.
A mapping of information security in health Information Systems in Latin America and Brazil.
Pereira, Samáris Ramiro; Fernandes, João Carlos Lopes; Labrada, Luis; Bandiera-Paiva, Paulo
2013-01-01
In health, Information Systems are patient records, hospital administration or other, have advantages such as cost, availability and integration. However, for these benefits to be fully met, it is necessary to guarantee the security of information maintained and provided by the systems. The lack of security can lead to serious consequences such as lawsuits and induction to medical errors. The management of information security is complex and is used in various fields of knowledge. Often, it is left in the background for not being the ultimate goal of a computer system, causing huge financial losses to corporations. This paper by systematic review methodologies, presented a mapping in the literature, in order to identify the most relevant aspects that are addressed by security researchers of health information, as to the development of computerized systems. They conclude through the results, some important aspects, for which the managers of computerized health systems should remain alert.
Systematic errors of EIT systems determined by easily-scalable resistive phantoms.
Hahn, G; Just, A; Dittmar, J; Hellige, G
2008-06-01
We present a simple method to determine systematic errors that will occur in the measurements by EIT systems. The approach is based on very simple scalable resistive phantoms for EIT systems using a 16 electrode adjacent drive pattern. The output voltage of the phantoms is constant for all combinations of current injection and voltage measurements and the trans-impedance of each phantom is determined by only one component. It can be chosen independently from the input and output impedance, which can be set in order to simulate measurements on the human thorax. Additional serial adapters allow investigation of the influence of the contact impedance at the electrodes on resulting errors. Since real errors depend on the dynamic properties of an EIT system, the following parameters are accessible: crosstalk, the absolute error of each driving/sensing channel and the signal to noise ratio in each channel. Measurements were performed on a Goe-MF II EIT system under four different simulated operational conditions. We found that systematic measurement errors always exceeded the error level of stochastic noise since the Goe-MF II system had been optimized for a sufficient signal to noise ratio but not for accuracy. In time difference imaging and functional EIT (f-EIT) systematic errors are reduced to a minimum by dividing the raw data by reference data. This is not the case in absolute EIT (a-EIT) where the resistivity of the examined object is determined on an absolute scale. We conclude that a reduction of systematic errors has to be one major goal in future system design.
An LPV Adaptive Observer for Updating a Map Applied to an MAF Sensor in a Diesel Engine
Liu, Zhiyuan; Wang, Changhui
2015-01-01
In this paper, a new method for mass air flow (MAF) sensor error compensation and an online updating error map (or lookup table) due to installation and aging in a diesel engine is developed. Since the MAF sensor error is dependent on the engine operating point, the error model is represented as a two-dimensional (2D) map with two inputs, fuel mass injection quantity and engine speed. Meanwhile, the 2D map representing the MAF sensor error is described as a piecewise bilinear interpolation model, which can be written as a dot product between the regression vector and parameter vector using a membership function. With the combination of the 2D map regression model and the diesel engine air path system, an LPV adaptive observer with low computational load is designed to estimate states and parameters jointly. The convergence of the proposed algorithm is proven under the conditions of persistent excitation and given inequalities. The observer is validated against the simulation data from engine software enDYNA provided by Tesis. The results demonstrate that the operating point-dependent error of the MAF sensor can be approximated acceptably by the 2D map from the proposed method. PMID:26512675
Digital floodplain mapping and an analysis of errors involved
Hamblen, C.S.; Soong, D.T.; Cai, X.
2007-01-01
Mapping floodplain boundaries using geographical information system (GIS) and digital elevation models (DEMs) was completed in a recent study. However convenient this method may appear at first, the resulting maps potentially can have unaccounted errors. Mapping the floodplain using GIS is faster than mapping manually, and digital mapping is expected to be more common in the future. When mapping is done manually, the experience and judgment of the engineer or geographer completing the mapping and the contour resolution of the surface topography are critical in determining the flood-plain and floodway boundaries between cross sections. When mapping is done digitally, discrepancies can result from the use of the computing algorithm and digital topographic datasets. Understanding the possible sources of error and how the error accumulates through these processes is necessary for the validation of automated digital mapping. This study will evaluate the procedure of floodplain mapping using GIS and a 3 m by 3 m resolution DEM with a focus on the accumulated errors involved in the process. Within the GIS environment of this mapping method, the procedural steps of most interest, initially, include: (1) the accurate spatial representation of the stream centerline and cross sections, (2) properly using a triangulated irregular network (TIN) model for the flood elevations of the studied cross sections, the interpolated elevations between them and the extrapolated flood elevations beyond the cross sections, and (3) the comparison of the flood elevation TIN with the ground elevation DEM, from which the appropriate inundation boundaries are delineated. The study area involved is of relatively low topographic relief; thereby, making it representative of common suburban development and a prime setting for the need of accurately mapped floodplains. This paper emphasizes the impacts of integrating supplemental digital terrain data between cross sections on floodplain delineation. ?? 2007 ASCE.
Complete Systematic Error Model of SSR for Sensor Registration in ATC Surveillance Networks
Besada, Juan A.
2017-01-01
In this paper, a complete and rigorous mathematical model for secondary surveillance radar systematic errors (biases) is developed. The model takes into account the physical effects systematically affecting the measurement processes. The azimuth biases are calculated from the physical error of the antenna calibration and the errors of the angle determination dispositive. Distance bias is calculated from the delay of the signal produced by the refractivity index of the atmosphere, and from clock errors, while the altitude bias is calculated taking into account the atmosphere conditions (pressure and temperature). It will be shown, using simulated and real data, that adapting a classical bias estimation process to use the complete parametrized model results in improved accuracy in the bias estimation. PMID:28934157
Sources of variability and systematic error in mouse timing behavior.
Gallistel, C R; King, Adam; McDonald, Robert
2004-01-01
In the peak procedure, starts and stops in responding bracket the target time at which food is expected. The variability in start and stop times is proportional to the target time (scalar variability), as is the systematic error in the mean center (scalar error). The authors investigated the source of the error and the variability, using head poking in the mouse, with target intervals of 5 s, 15 s, and 45 s, in the standard procedure, and in a variant with 3 different target intervals at 3 different locations in a single trial. The authors conclude that the systematic error is due to the asymmetric location of start and stop decision criteria, and the scalar variability derives primarily from sources other than memory.
Evaluation of microRNA alignment techniques
Kaspi, Antony; El-Osta, Assam
2016-01-01
Genomic alignment of small RNA (smRNA) sequences such as microRNAs poses considerable challenges due to their short length (∼21 nucleotides [nt]) as well as the large size and complexity of plant and animal genomes. While several tools have been developed for high-throughput mapping of longer mRNA-seq reads (>30 nt), there are few that are specifically designed for mapping of smRNA reads including microRNAs. The accuracy of these mappers has not been systematically determined in the case of smRNA-seq. In addition, it is unknown whether these aligners accurately map smRNA reads containing sequence errors and polymorphisms. By using simulated read sets, we determine the alignment sensitivity and accuracy of 16 short-read mappers and quantify their robustness to mismatches, indels, and nontemplated nucleotide additions. These were explored in the context of a plant genome (Oryza sativa, ∼500 Mbp) and a mammalian genome (Homo sapiens, ∼3.1 Gbp). Analysis of simulated and real smRNA-seq data demonstrates that mapper selection impacts differential expression results and interpretation. These results will inform on best practice for smRNA mapping and enable more accurate smRNA detection and quantification of expression and RNA editing. PMID:27284164
Error analysis and system optimization of non-null aspheric testing system
NASA Astrophysics Data System (ADS)
Luo, Yongjie; Yang, Yongying; Liu, Dong; Tian, Chao; Zhuo, Yongmo
2010-10-01
A non-null aspheric testing system, which employs partial null lens (PNL for short) and reverse iterative optimization reconstruction (ROR for short) technique, is proposed in this paper. Based on system modeling in ray tracing software, the parameter of each optical element is optimized and this makes system modeling more precise. Systematic error of non-null aspheric testing system is analyzed and can be categorized into two types, the error due to surface parameters of PNL in the system modeling and the rest from non-null interferometer by the approach of error storage subtraction. Experimental results show that, after systematic error is removed from testing result of non-null aspheric testing system, the aspheric surface is precisely reconstructed by ROR technique and the consideration of systematic error greatly increase the test accuracy of non-null aspheric testing system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giannantonio, T.; et al.
Optical imaging surveys measure both the galaxy density and the gravitational lensing-induced shear fields across the sky. Recently, the Dark Energy Survey (DES) collaboration used a joint fit to two-point correlations between these observables to place tight constraints on cosmology (DES Collaboration et al. 2017). In this work, we develop the methodology to extend the DES Collaboration et al. (2017) analysis to include cross-correlations of the optical survey observables with gravitational lensing of the cosmic microwave background (CMB) as measured by the South Pole Telescope (SPT) and Planck. Using simulated analyses, we show how the resulting set of five two-pointmore » functions increases the robustness of the cosmological constraints to systematic errors in galaxy lensing shear calibration. Additionally, we show that contamination of the SPT+Planck CMB lensing map by the thermal Sunyaev-Zel'dovich effect is a potentially large source of systematic error for two-point function analyses, but show that it can be reduced to acceptable levels in our analysis by masking clusters of galaxies and imposing angular scale cuts on the two-point functions. The methodology developed here will be applied to the analysis of data from the DES, the SPT, and Planck in a companion work.« less
Development of a Coordinate Transformation method for direct georeferencing in map projection frames
NASA Astrophysics Data System (ADS)
Zhao, Haitao; Zhang, Bing; Wu, Changshan; Zuo, Zhengli; Chen, Zhengchao
2013-03-01
This paper develops a novel Coordinate Transformation method (CT-method), with which the orientation angles (roll, pitch, heading) of the local tangent frame of the GPS/INS system are transformed into those (omega, phi, kappa) of the map projection frame for direct georeferencing (DG). Especially, the orientation angles in the map projection frame were derived from a sequence of coordinate transformations. The effectiveness of orientation angles transformation was verified through comparing with DG results obtained from conventional methods (Legat method and POSPac method) using empirical data. Moreover, the CT-method was also validated with simulated data. One advantage of the proposed method is that the orientation angles can be acquired simultaneously while calculating position elements of exterior orientation (EO) parameters and auxiliary points coordinates by coordinate transformation. These three methods were demonstrated and compared using empirical data. Empirical results show that the CT-method is both as sound and effective as Legat method. Compared with POSPac method, the CT-method is more suitable for calculating EO parameters for DG in map projection frames. DG accuracy of the CT-method and Legat method are at the same level. DG results of all these three methods have systematic errors in height due to inconsistent length projection distortion in the vertical and horizontal components, and these errors can be significantly reduced using the EO height correction technique in Legat's approach. Similar to the results obtained with empirical data, the effectiveness of the CT-method was also proved with simulated data. POSPac method: The method is presented by Applanix POSPac software technical note (Hutton and Savina, 1997). It is implemented in the POSEO module of POSPac software.
NASA Technical Reports Server (NTRS)
Koch, S. E.; Skillman, W. C.; Kocin, P. J.; Wetzel, P. J.; Brill, K. F.
1985-01-01
The synoptic scale performance characteristics of MASS 2.0 are determined by comparing filtered 12-24 hr model forecasts to same-case forecasts made by the National Meteorological Center's synoptic-scale Limited-area Fine Mesh model. Characteristics of the two systems are contrasted, and the analysis methodology used to determine statistical skill scores and systematic errors is described. The overall relative performance of the two models in the sample is documented, and important systematic errors uncovered are presented.
Sensitivity in error detection of patient specific QA tools for IMRT plans
NASA Astrophysics Data System (ADS)
Lat, S. Z.; Suriyapee, S.; Sanghangthum, T.
2016-03-01
The high complexity of dose calculation in treatment planning and accurate delivery of IMRT plan need high precision of verification method. The purpose of this study is to investigate error detection capability of patient specific QA tools for IMRT plans. The two H&N and two prostate IMRT plans with MapCHECK2 and portal dosimetry QA tools were studied. Measurements were undertaken for original and modified plans with errors introduced. The intentional errors composed of prescribed dose (±2 to ±6%) and position shifting in X-axis and Y-axis (±1 to ±5mm). After measurement, gamma pass between original and modified plans were compared. The average gamma pass for original H&N and prostate plans were 98.3% and 100% for MapCHECK2 and 95.9% and 99.8% for portal dosimetry, respectively. In H&N plan, MapCHECK2 can detect position shift errors starting from 3mm while portal dosimetry can detect errors started from 2mm. Both devices showed similar sensitivity in detection of position shift error in prostate plan. For H&N plan, MapCHECK2 can detect dose errors starting at ±4%, whereas portal dosimetry can detect from ±2%. For prostate plan, both devices can identify dose errors starting from ±4%. Sensitivity of error detection depends on type of errors and plan complexity.
A new systematic calibration method of ring laser gyroscope inertial navigation system
NASA Astrophysics Data System (ADS)
Wei, Guo; Gao, Chunfeng; Wang, Qi; Wang, Qun; Xiong, Zhenyu; Long, Xingwu
2016-10-01
Inertial navigation system has been the core component of both military and civil navigation systems. Before the INS is put into application, it is supposed to be calibrated in the laboratory in order to compensate repeatability error caused by manufacturing. Discrete calibration method cannot fulfill requirements of high-accurate calibration of the mechanically dithered ring laser gyroscope navigation system with shock absorbers. This paper has analyzed theories of error inspiration and separation in detail and presented a new systematic calibration method for ring laser gyroscope inertial navigation system. Error models and equations of calibrated Inertial Measurement Unit are given. Then proper rotation arrangement orders are depicted in order to establish the linear relationships between the change of velocity errors and calibrated parameter errors. Experiments have been set up to compare the systematic errors calculated by filtering calibration result with those obtained by discrete calibration result. The largest position error and velocity error of filtering calibration result are only 0.18 miles and 0.26m/s compared with 2 miles and 1.46m/s of discrete calibration result. These results have validated the new systematic calibration method and proved its importance for optimal design and accuracy improvement of calibration of mechanically dithered ring laser gyroscope inertial navigation system.
A method to map errors in the deformable registration of 4DCT images1
Vaman, Constantin; Staub, David; Williamson, Jeffrey; Murphy, Martin J.
2010-01-01
Purpose: To present a new approach to the problem of estimating errors in deformable image registration (DIR) applied to sequential phases of a 4DCT data set. Methods: A set of displacement vector fields (DVFs) are made by registering a sequence of 4DCT phases. The DVFs are assumed to display anatomical movement, with the addition of errors due to the imaging and registration processes. The positions of physical landmarks in each CT phase are measured as ground truth for the physical movement in the DVF. Principal component analysis of the DVFs and the landmarks is used to identify and separate the eigenmodes of physical movement from the error eigenmodes. By subtracting the physical modes from the principal components of the DVFs, the registration errors are exposed and reconstructed as DIR error maps. The method is demonstrated via a simple numerical model of 4DCT DVFs that combines breathing movement with simulated maps of spatially correlated DIR errors. Results: The principal components of the simulated DVFs were observed to share the basic properties of principal components for actual 4DCT data. The simulated error maps were accurately recovered by the estimation method. Conclusions: Deformable image registration errors can have complex spatial distributions. Consequently, point-by-point landmark validation can give unrepresentative results that do not accurately reflect the registration uncertainties away from the landmarks. The authors are developing a method for mapping the complete spatial distribution of DIR errors using only a small number of ground truth validation landmarks. PMID:21158288
Measuring Systematic Error with Curve Fits
ERIC Educational Resources Information Center
Rupright, Mark E.
2011-01-01
Systematic errors are often unavoidable in the introductory physics laboratory. As has been demonstrated in many papers in this journal, such errors can present a fundamental problem for data analysis, particularly when comparing the data to a given model. In this paper I give three examples in which my students use popular curve-fitting software…
Systematic Error Modeling and Bias Estimation
Zhang, Feihu; Knoll, Alois
2016-01-01
This paper analyzes the statistic properties of the systematic error in terms of range and bearing during the transformation process. Furthermore, we rely on a weighted nonlinear least square method to calculate the biases based on the proposed models. The results show the high performance of the proposed approach for error modeling and bias estimation. PMID:27213386
A new discrete dipole kernel for quantitative susceptibility mapping.
Milovic, Carlos; Acosta-Cabronero, Julio; Pinto, José Miguel; Mattern, Hendrik; Andia, Marcelo; Uribe, Sergio; Tejos, Cristian
2018-09-01
Most approaches for quantitative susceptibility mapping (QSM) are based on a forward model approximation that employs a continuous Fourier transform operator to solve a differential equation system. Such formulation, however, is prone to high-frequency aliasing. The aim of this study was to reduce such errors using an alternative dipole kernel formulation based on the discrete Fourier transform and discrete operators. The impact of such an approach on forward model calculation and susceptibility inversion was evaluated in contrast to the continuous formulation both with synthetic phantoms and in vivo MRI data. The discrete kernel demonstrated systematically better fits to analytic field solutions, and showed less over-oscillations and aliasing artifacts while preserving low- and medium-frequency responses relative to those obtained with the continuous kernel. In the context of QSM estimation, the use of the proposed discrete kernel resulted in error reduction and increased sharpness. This proof-of-concept study demonstrated that discretizing the dipole kernel is advantageous for QSM. The impact on small or narrow structures such as the venous vasculature might by particularly relevant to high-resolution QSM applications with ultra-high field MRI - a topic for future investigations. The proposed dipole kernel has a straightforward implementation to existing QSM routines. Copyright © 2018 Elsevier Inc. All rights reserved.
Ly, Thomas; Pamer, Carol; Dang, Oanh; Brajovic, Sonja; Haider, Shahrukh; Botsis, Taxiarchis; Milward, David; Winter, Andrew; Lu, Susan; Ball, Robert
2018-05-31
The FDA Adverse Event Reporting System (FAERS) is a primary data source for identifying unlabeled adverse events (AEs) in a drug or biologic drug product's postmarketing phase. Many AE reports must be reviewed by drug safety experts to identify unlabeled AEs, even if the reported AEs are previously identified, labeled AEs. Integrating the labeling status of drug product AEs into FAERS could increase report triage and review efficiency. Medical Dictionary for Regulatory Activities (MedDRA) is the standard for coding AE terms in FAERS cases. However, drug manufacturers are not required to use MedDRA to describe AEs in product labels. We hypothesized that natural language processing (NLP) tools could assist in automating the extraction and MedDRA mapping of AE terms in drug product labels. We evaluated the performance of three NLP systems, (ETHER, I2E, MetaMap) for their ability to extract AE terms from drug labels and translate the terms to MedDRA Preferred Terms (PTs). Pharmacovigilance-based annotation guidelines for extracting AE terms from drug labels were developed for this study. We compared each system's output to MedDRA PT AE lists, manually mapped by FDA pharmacovigilance experts using the guidelines, for ten drug product labels known as the "gold standard AE list" (GSL) dataset. Strict time and configuration conditions were imposed in order to test each system's capabilities under conditions of no human intervention and minimal system configuration. Each NLP system's output was evaluated for precision, recall and F measure in comparison to the GSL. A qualitative error analysis (QEA) was conducted to categorize a random sample of each NLP system's false positive and false negative errors. A total of 417, 278, and 250 false positive errors occurred in the ETHER, I2E, and MetaMap outputs, respectively. A total of 100, 80, and 187 false negative errors occurred in ETHER, I2E, and MetaMap outputs, respectively. Precision ranged from 64% to 77%, recall from 64% to 83% and F measure from 67% to 79%. I2E had the highest precision (77%), recall (83%) and F measure (79%). ETHER had the lowest precision (64%). MetaMap had the lowest recall (64%). The QEA found that the most prevalent false positive errors were context errors such as "Context error/General term", "Context error/Instructions or monitoring parameters", "Context error/Medical history preexisting condition underlying condition risk factor or contraindication", and "Context error/AE manifestations or secondary complication". The most prevalent false negative errors were in the "Incomplete or missed extraction" error category. Missing AE terms were typically due to long terms, or terms containing non-contiguous words which do not correspond exactly to MedDRA synonyms. MedDRA mapping errors were a minority of errors for ETHER and I2E but were the most prevalent false positive errors for MetaMap. The results demonstrate that it may be feasible to use NLP tools to extract and map AE terms to MedDRA PTs. However, the NLP tools we tested would need to be modified or reconfigured to lower the error rates to support their use in a regulatory setting. Tools specific for extracting AE terms from drug labels and mapping the terms to MedDRA PTs may need to be developed to support pharmacovigilance. Conducting research using additional NLP systems on a larger, diverse GSL would also be informative. Copyright © 2018. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Juan; Beltran, Chris J., E-mail: beltran.chris@mayo.edu; Herman, Michael G.
Purpose: To quantitatively and systematically assess dosimetric effects induced by spot positioning error as a function of spot spacing (SS) on intensity-modulated proton therapy (IMPT) plan quality and to facilitate evaluation of safety tolerance limits on spot position. Methods: Spot position errors (PE) ranging from 1 to 2 mm were simulated. Simple plans were created on a water phantom, and IMPT plans were calculated on two pediatric patients with a brain tumor of 28 and 3 cc, respectively, using a commercial planning system. For the phantom, a uniform dose was delivered to targets located at different depths from 10 tomore » 20 cm with various field sizes from 2{sup 2} to 15{sup 2} cm{sup 2}. Two nominal spot sizes, 4.0 and 6.6 mm of 1 σ in water at isocenter, were used for treatment planning. The SS ranged from 0.5 σ to 1.5 σ, which is 2–6 mm for the small spot size and 3.3–9.9 mm for the large spot size. Various perturbation scenarios of a single spot error and systematic and random multiple spot errors were studied. To quantify the dosimetric effects, percent dose error (PDE) depth profiles and the value of percent dose error at the maximum dose difference (PDE [ΔDmax]) were used for evaluation. Results: A pair of hot and cold spots was created per spot shift. PDE[ΔDmax] is found to be a complex function of PE, SS, spot size, depth, and global spot distribution that can be well defined in simple models. For volumetric targets, the PDE [ΔDmax] is not noticeably affected by the change of field size or target volume within the studied ranges. In general, reducing SS decreased the dose error. For the facility studied, given a single spot error with a PE of 1.2 mm and for both spot sizes, a SS of 1σ resulted in a 2% maximum dose error; a SS larger than 1.25 σ substantially increased the dose error and its sensitivity to PE. A similar trend was observed in multiple spot errors (both systematic and random errors). Systematic PE can lead to noticeable hot spots along the field edges, which may be near critical structures. However, random PE showed minimal dose error. Conclusions: Dose error dependence for PE was quantitatively and systematically characterized and an analytic tool was built to simulate systematic and random errors for patient-specific IMPT. This information facilitates the determination of facility specific spot position error thresholds.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J; Research Institute of Biomedical Engineering, The Catholic University of Korea, Seoul; Park, H
Purpose: Dosimetric effect and discrepancy according to the rectum definition methods and dose perturbation by air cavity in an endo-rectal balloon (ERB) were verified using rectal-wall (Rwall) dose maps considering systematic errors in dose optimization and calculation accuracy in intensity-modulated radiation treatment (IMRT) for prostate cancer patients. Methods: When the inflated ERB having average diameter of 4.5 cm and air volume of 100 cc is used for patient, Rwall doses were predicted by pencil-beam convolution (PBC), anisotropic analytic algorithm (AAA), and AcurosXB (AXB) with material assignment function. The errors of dose optimization and calculation by separating air cavity from themore » whole rectum (Rwhole) were verified with measured rectal doses. The Rwall doses affected by the dose perturbation of air cavity were evaluated using a featured rectal phantom allowing insert of rolled-up gafchromic films and glass rod detectors placed along the rectum perimeter. Inner and outer Rwall doses were verified with reconstructed predicted rectal wall dose maps. Dose errors and extent at dose levels were evaluated with estimated rectal toxicity. Results: While AXB showed insignificant difference of target dose coverage, Rwall doses underestimated by up to 20% in dose optimization for the Rwhole than Rwall at all dose range except for the maximum dose. As dose optimization for Rwall was applied, the Rwall doses presented dose error less than 3% between dose calculation algorithm except for overestimation of maximum rectal dose up to 5% in PBC. Dose optimization for Rwhole caused dose difference of Rwall especially at intermediate doses. Conclusion: Dose optimization for Rwall could be suggested for more accurate prediction of rectal wall dose prediction and dose perturbation effect by air cavity in IMRT for prostate cancer. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (MSIP) (Grant No. 200900420)« less
Addressing Systematic Errors in Correlation Tracking on HMI Magnetograms
NASA Astrophysics Data System (ADS)
Mahajan, Sushant S.; Hathaway, David H.; Munoz-Jaramillo, Andres; Martens, Petrus C.
2017-08-01
Correlation tracking in solar magnetograms is an effective method to measure the differential rotation and meridional flow on the solar surface. However, since the tracking accuracy required to successfully measure meridional flow is very high, small systematic errors have a noticeable impact on measured meridional flow profiles. Additionally, the uncertainties of this kind of measurements have been historically underestimated, leading to controversy regarding flow profiles at high latitudes extracted from measurements which are unreliable near the solar limb.Here we present a set of systematic errors we have identified (and potential solutions), including bias caused by physical pixel sizes, center-to-limb systematics, and discrepancies between measurements performed using different time intervals. We have developed numerical techniques to get rid of these systematic errors and in the process improve the accuracy of the measurements by an order of magnitude.We also present a detailed analysis of uncertainties in these measurements using synthetic magnetograms and the quantification of an upper limit below which meridional flow measurements cannot be trusted as a function of latitude.
A Comparison of Fuzzy Models in Similarity Assessment of Misregistered Area Class Maps
NASA Astrophysics Data System (ADS)
Brown, Scott
Spatial uncertainty refers to unknown error and vagueness in geographic data. It is relevant to land change and urban growth modelers, soil and biome scientists, geological surveyors and others, who must assess thematic maps for similarity, or categorical agreement. In this paper I build upon prior map comparison research, testing the effectiveness of similarity measures on misregistered data. Though several methods compare uncertain thematic maps, few methods have been tested on misregistration. My objective is to test five map comparison methods for sensitivity to misregistration, including sub-pixel errors in both position and rotation. Methods included four fuzzy categorical models: fuzzy kappa's model, fuzzy inference, cell aggregation, and the epsilon band. The fifth method used conventional crisp classification. I applied these methods to a case study map and simulated data in two sets: a test set with misregistration error, and a control set with equivalent uniform random error. For all five methods, I used raw accuracy or the kappa statistic to measure similarity. Rough-set epsilon bands report the most similarity increase in test maps relative to control data. Conversely, the fuzzy inference model reports a decrease in test map similarity.
Planck 2015 results. X. Diffuse component separation: Foreground maps
NASA Astrophysics Data System (ADS)
Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Orlando, E.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Strong, A. W.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-09-01
Planck has mapped the microwave sky in temperature over nine frequency bands between 30 and 857 GHz and in polarization over seven frequency bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical component maps. Component separation dedicated to cosmic microwave background (CMB) reconstruction is described in a companion paper. For the temperature analysis, we combine the Planck observations with the 9-yr Wilkinson Microwave Anisotropy Probe (WMAP) sky maps and the Haslam et al. 408 MHz map, to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided for each component, with an angular resolution varying between 7.´5 and 1deg. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4μK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are internal degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these degeneracies. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100-353 GHz bands on large angular scales in the form of temperature-to-polarization leakage, uncertainties in the analogue-to-digital conversion, and corrections for the very long time constant of the bolometer detectors, all of which are expected to improve in the near future.
Planck 2015 results: X. Diffuse component separation: Foreground maps
Adam, R.; Ade, P. A. R.; Aghanim, N.; ...
2016-09-20
We report that Planck has mapped the microwave sky in temperature over nine frequency bands between 30 and 857 GHz and in polarization over seven frequency bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical component maps. Component separation dedicated to cosmic microwave background (CMB) reconstruction is described in a companion paper. For the temperature analysis, we combine the Planck observations with the 9-yr Wilkinson Microwave Anisotropy Probe (WMAP) sky maps andmore » the Haslam et al. 408 MHz map, to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided for each component, with an angular resolution varying between 7.5 and 1deg. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4μK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are internal degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these degeneracies. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100–353 GHz bands on large angular scales in the form of temperature-to-polarization leakage, uncertainties in the analogue-to-digital conversion, and corrections for the very long time constant of the bolometer detectors, all of which are expected to improve in the near future.« less
NASA Astrophysics Data System (ADS)
DeLong, S. B.; Avdievitch, N. N.
2014-12-01
As high-resolution topographic data become increasingly available, comparison of multitemporal and disparate datasets (e.g. airborne and terrestrial lidar) enable high-accuracy quantification of landscape change and detailed mapping of surface processes. However, if these data are not properly managed and aligned with maximum precision, results may be spurious. Often this is due to slight differences in coordinate systems that require complex geographic transformations and systematic error that is difficult to diagnose and correct. Here we present an analysis of four airborne and three terrestrial lidar datasets collected between 2003 and 2014 that we use to quantify change at an active earthflow in Mill Gulch, Sonoma County, California. We first identify and address systematic error internal to each dataset, such as registration offset between flight lines or scan positions. We then use a variant of an iterative closest point (ICP) algorithm to align point cloud data by maximizing use of stable portions of the landscape with minimal internal error. Using products derived from the aligned point clouds, we make our geomorphic analyses. These methods may be especially useful for change detection analyses in which accurate georeferencing is unavailable, as is often the case with some terrestrial lidar or "structure from motion" data. Our results show that the Mill Gulch earthflow has been active throughout the study period. We see continuous downslope flow, ongoing incorporation of new hillslope material into the flow, sediment loss from hillslopes, episodic fluvial erosion of the earthflow toe, and an indication of increased activity during periods of high precipitation.
Vertical Accuracy Evaluation of Aster GDEM2 Over a Mountainous Area Based on Uav Photogrammetry
NASA Astrophysics Data System (ADS)
Liang, Y.; Qu, Y.; Guo, D.; Cui, T.
2018-05-01
Global digital elevation models (GDEM) provide elementary information on heights of the Earth's surface and objects on the ground. GDEMs have become an important data source for a range of applications. The vertical accuracy of a GDEM is critical for its applications. Nowadays UAVs has been widely used for large-scale surveying and mapping. Compared with traditional surveying techniques, UAV photogrammetry are more convenient and more cost-effective. UAV photogrammetry produces the DEM of the survey area with high accuracy and high spatial resolution. As a result, DEMs resulted from UAV photogrammetry can be used for a more detailed and accurate evaluation of the GDEM product. This study investigates the vertical accuracy (in terms of elevation accuracy and systematic errors) of the ASTER GDEM Version 2 dataset over a complex terrain based on UAV photogrammetry. Experimental results show that the elevation errors of ASTER GDEM2 are in normal distribution and the systematic error is quite small. The accuracy of the ASTER GDEM2 coincides well with that reported by the ASTER validation team. The accuracy in the research area is negatively correlated to both the slope of the terrain and the number of stereo observations. This study also evaluates the vertical accuracy of the up-sampled ASTER GDEM2. Experimental results show that the accuracy of the up-sampled ASTER GDEM2 data in the research area is not significantly reduced by the complexity of the terrain. The fine-grained accuracy evaluation of the ASTER GDEM2 is informative for the GDEM-supported UAV photogrammetric applications.
Aquatic habitat mapping with an acoustic doppler current profiler: Considerations for data quality
Gaeuman, David; Jacobson, Robert B.
2005-01-01
When mounted on a boat or other moving platform, acoustic Doppler current profilers (ADCPs) can be used to map a wide range of ecologically significant phenomena, including measures of fluid shear, turbulence, vorticity, and near-bed sediment transport. However, the instrument movement necessary for mapping applications can generate significant errors, many of which have not been inadequately described. This report focuses on the mechanisms by which moving-platform errors are generated, and quantifies their magnitudes under typical habitat-mapping conditions. The potential for velocity errors caused by mis-alignment of the instrument?s internal compass are widely recognized, but has not previously been quantified for moving instruments. Numerical analyses show that even relatively minor compass mis-alignments can produce significant velocity errors, depending on the ratio of absolute instrument velocity to the target velocity and on the relative directions of instrument and target motion. A maximum absolute instrument velocity of about 1 m/s is recommended for most mapping applications. Lower velocities are appropriate when making bed velocity measurements, an emerging application that makes use of ADCP bottom-tracking to measure the velocity of sediment particles at the bed. The mechanisms by which heterogeneities in the flow velocity field generate horizontal velocities errors are also quantified, and some basic limitations in the effectiveness of standard error-detection criteria for identifying these errors are described. Bed velocity measurements may be particularly vulnerable to errors caused by spatial variability in the sediment transport field.
The Calibration and error analysis of Shallow water (less than 100m) Multibeam Echo-Sounding System
NASA Astrophysics Data System (ADS)
Lin, M.
2016-12-01
Multibeam echo-sounders(MBES) have been developed to gather bathymetric and acoustic data for more efficient and more exact mapping of the oceans. This gain in efficiency does not come without drawbacks. Indeed, the finer the resolution of remote sensing instruments, the harder they are to calibrate. This is the case for multibeam echo-sounding systems (MBES). We are no longer dealing with sounding lines where the bathymetry must be interpolated between them to engender consistent representations of the seafloor. We now need to match together strips (swaths) of totally ensonified seabed. As a consequence, misalignment and time lag problems emerge as artifacts in the bathymetry from adjacent or overlapping swaths, particularly when operating in shallow water. More importantly, one must still verify that bathymetric data meet the accuracy requirements. This paper aims to summarize the system integration involved with MBES and identify the various source of error pertaining to shallow water survey (100m and less). A systematic method for the calibration of shallow water MBES is proposed and presented as a set of field procedures. The procedures aim at detecting, quantifying and correcting systematic instrumental and installation errors. Hence, calibrating for variations of the speed of sound in the water column, which is natural in origin, is not addressed in this document. The data which used in calibration will reference International Hydrographic Organization(IHO) and other related standards to compare. This paper aims to set a model in the specific area which can calibrate the error due to instruments. We will construct a procedure in patch test and figure out all the possibilities may make sounding data with error then calculate the error value to compensate. In general, the problems which have to be solved is the patch test's 4 correction in the Hypack system 1.Roll 2.GPS Latency 3.Pitch 4.Yaw. Cause These 4 correction affect each others, we run each survey line to calibrate. GPS Latency is synchronized GPS to echo sounder. Future studies concerning any shallower portion of an area, by this procedure can be more accurate sounding value and can do more detailed research.
Casas, Francisco J; Ortiz, David; Villa, Enrique; Cano, Juan L; Cagigas, Jaime; Pérez, Ana R; Aja, Beatriz; Terán, J Vicente; de la Fuente, Luisa; Artal, Eduardo; Hoyland, Roger; Génova-Santos, Ricardo
2015-08-05
This paper presents preliminary polarization measurements and systematic-error characterization of the Thirty Gigahertz Instrument receiver developed for the QUIJOTE experiment. The instrument has been designed to measure the polarization of Cosmic Microwave Background radiation from the sky, obtaining the Q, U, and I Stokes parameters of the incoming signal simultaneously. Two kinds of linearly polarized input signals have been used as excitations in the polarimeter measurement tests in the laboratory; these show consistent results in terms of the Stokes parameters obtained. A measurement-based systematic-error characterization technique has been used in order to determine the possible sources of instrumental errors and to assist in the polarimeter calibration process.
NASA Technical Reports Server (NTRS)
Zhang, Liwei Dennis; Milman, Mark; Korechoff, Robert
2004-01-01
The current design of the Space Interferometry Mission (SIM) employs a 19 laser-metrology-beam system (also called L19 external metrology truss) to monitor changes of distances between the fiducials of the flight system's multiple baselines. The function of the external metrology truss is to aid in the determination of the time-variations of the interferometer baseline. The largest contributor to truss error occurs in SIM wide-angle observations when the articulation of the siderostat mirrors (in order to gather starlight from different sky coordinates) brings to light systematic errors due to offsets at levels of instrument components (which include comer cube retro-reflectors, etc.). This error is labeled external metrology wide-angle field-dependent error. Physics-based model of field-dependent error at single metrology gauge level is developed and linearly propagated to errors in interferometer delay. In this manner delay error sensitivity to various error parameters or their combination can be studied using eigenvalue/eigenvector analysis. Also validation of physics-based field-dependent model on SIM testbed lends support to the present approach. As a first example, dihedral error model is developed for the comer cubes (CC) attached to the siderostat mirrors. Then the delay errors due to this effect can be characterized using the eigenvectors of composite CC dihedral error. The essence of the linear error model is contained in an error-mapping matrix. A corresponding Zernike component matrix approach is developed in parallel, first for convenience of describing the RMS of errors across the field-of-regard (FOR), and second for convenience of combining with additional models. Average and worst case residual errors are computed when various orders of field-dependent terms are removed from the delay error. Results of the residual errors are important in arriving at external metrology system component requirements. Double CCs with ideally co-incident vertices reside with the siderostat. The non-common vertex error (NCVE) is treated as a second example. Finally combination of models, and various other errors are discussed.
He, Jianbo; Li, Jijie; Huang, Zhongwen; Zhao, Tuanjie; Xing, Guangnan; Gai, Junyi; Guan, Rongzhan
2015-01-01
Experimental error control is very important in quantitative trait locus (QTL) mapping. Although numerous statistical methods have been developed for QTL mapping, a QTL detection model based on an appropriate experimental design that emphasizes error control has not been developed. Lattice design is very suitable for experiments with large sample sizes, which is usually required for accurate mapping of quantitative traits. However, the lack of a QTL mapping method based on lattice design dictates that the arithmetic mean or adjusted mean of each line of observations in the lattice design had to be used as a response variable, resulting in low QTL detection power. As an improvement, we developed a QTL mapping method termed composite interval mapping based on lattice design (CIMLD). In the lattice design, experimental errors are decomposed into random errors and block-within-replication errors. Four levels of block-within-replication errors were simulated to show the power of QTL detection under different error controls. The simulation results showed that the arithmetic mean method, which is equivalent to a method under random complete block design (RCBD), was very sensitive to the size of the block variance and with the increase of block variance, the power of QTL detection decreased from 51.3% to 9.4%. In contrast to the RCBD method, the power of CIMLD and the adjusted mean method did not change for different block variances. The CIMLD method showed 1.2- to 7.6-fold higher power of QTL detection than the arithmetic or adjusted mean methods. Our proposed method was applied to real soybean (Glycine max) data as an example and 10 QTLs for biomass were identified that explained 65.87% of the phenotypic variation, while only three and two QTLs were identified by arithmetic and adjusted mean methods, respectively.
In Flight Calibration of the Magnetospheric Multiscale Mission Fast Plasma Investigation
NASA Technical Reports Server (NTRS)
Barrie, Alexander C.; Gershman, Daniel J.; Gliese, Ulrik; Dorelli, John C.; Avanov, Levon A.; Rager, Amy C.; Schiff, Conrad; Pollock, Craig J.
2015-01-01
The Fast Plasma Investigation (FPI) on the Magnetospheric Multiscale mission (MMS) combines data from eight spectrometers, each with four deflection states, into a single map of the sky. Any systematic discontinuity, artifact, noise source, etc. present in this map may be incorrectly interpreted as legitimate data and incorrect conclusions reached. For this reason it is desirable to have all spectrometers return the same output for a given input, and for this output to be low in noise sources or other errors. While many missions use statistical analyses of data to calibrate instruments in flight, this process is insufficient with FPI for two reasons: 1. Only a small fraction of high resolution data is downloaded to the ground due to bandwidth limitations and 2: The data that is downloaded is, by definition, scientifically interesting and therefore not ideal for calibration. FPI uses a suite of new tools to calibrate in flight. A new method for detection system ground calibration has been developed involving sweeping the detection threshold to fully define the pulse height distribution. This method has now been extended for use in flight as a means to calibrate MCP voltage and threshold (together forming the operating point) of the Dual Electron Spectrometers (DES) and Dual Ion Spectrometers (DIS). A method of comparing higher energy data (which has low fractional voltage error) to lower energy data (which has a higher fractional voltage error) will be used to calibrate the high voltage outputs. Finally, a comparison of pitch angle distributions will be used to find remaining discrepancies among sensors.
Assessment of Systematic Measurement Errors for Acoustic Travel-Time Tomography of the Atmosphere
2013-01-01
measurements include assess- ment of the time delays in electronic circuits and mechanical hardware (e.g., drivers and microphones) of a tomography array ...hardware and electronic circuits of the tomography array and errors in synchronization of the transmitted and recorded signals. For example, if...coordinates can be as large as 30 cm. These errors are equivalent to the systematic errors in the travel times of 0.9 ms. Third, loudspeakers which are used
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petyuk, Vladislav A.; Mayampurath, Anoop M.; Monroe, Matthew E.
2009-12-16
Hybrid two-stage mass spectrometers capable of both highly accurate mass measurement and MS/MS fragmentation have become widely available in recent years and have allowed for sig-nificantly better discrimination between true and false MS/MS pep-tide identifications by applying relatively narrow windows for maxi-mum allowable deviations for parent ion mass measurements. To fully gain the advantage of highly accurate parent ion mass meas-urements, it is important to limit systematic mass measurement errors. The DtaRefinery software tool can correct systematic errors in parent ion masses by reading a set of fragmentation spectra, searching for MS/MS peptide identifications, then fitting a model that canmore » estimate systematic errors, and removing them. This results in a new fragmentation spectrum file with updated parent ion masses.« less
Improving diagnostic accuracy of prostate carcinoma by systematic random map-biopsy.
Szabó, J; Hegedûs, G; Bartók, K; Kerényi, T; Végh, A; Romics, I; Szende, B
2000-01-01
Systematic random rectal ultrasound directed map-biopsy of the prostate was performed in 77 RDE (rectal digital examination) positive and 25 RDE negative cases, if applicable. Hypoechoic areas were found in 30% of RDE positive and in 16% of RDE negative cases. The score for carcinoma in the hypoechoic areas was 6.5% in RDE positive and 0% in RDE negative cases, whereas systematic map biopsy detected 62% carcinomas in RDE positive, and 16% carcinomas in RDE negative patients. The probability of positive diagnosis of prostate carcinoma increased in parallel with the number of biopsy samples/case. The importance of systematic map biopsy is emphasized.
Quantitative susceptibility mapping: Report from the 2016 reconstruction challenge.
Langkammer, Christian; Schweser, Ferdinand; Shmueli, Karin; Kames, Christian; Li, Xu; Guo, Li; Milovic, Carlos; Kim, Jinsuh; Wei, Hongjiang; Bredies, Kristian; Buch, Sagar; Guo, Yihao; Liu, Zhe; Meineke, Jakob; Rauscher, Alexander; Marques, José P; Bilgic, Berkin
2018-03-01
The aim of the 2016 quantitative susceptibility mapping (QSM) reconstruction challenge was to test the ability of various QSM algorithms to recover the underlying susceptibility from phase data faithfully. Gradient-echo images of a healthy volunteer acquired at 3T in a single orientation with 1.06 mm isotropic resolution. A reference susceptibility map was provided, which was computed using the susceptibility tensor imaging algorithm on data acquired at 12 head orientations. Susceptibility maps calculated from the single orientation data were compared against the reference susceptibility map. Deviations were quantified using the following metrics: root mean squared error (RMSE), structure similarity index (SSIM), high-frequency error norm (HFEN), and the error in selected white and gray matter regions. Twenty-seven submissions were evaluated. Most of the best scoring approaches estimated the spatial frequency content in the ill-conditioned domain of the dipole kernel using compressed sensing strategies. The top 10 maps in each category had similar error metrics but substantially different visual appearance. Because QSM algorithms were optimized to minimize error metrics, the resulting susceptibility maps suffered from over-smoothing and conspicuity loss in fine features such as vessels. As such, the challenge highlighted the need for better numerical image quality criteria. Magn Reson Med 79:1661-1673, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
NOAA Office of Exploration and Research > Exploration > Ocean and Coastal
Exploration Systematic Exploration Marine Archaeology Ocean and Coastal Mapping Advancing Technology Overview Exploration Marine Archaeology Ocean and Coastal Mapping Exploration Ocean and Coastal Mapping Home About OER Systematic Exploration Marine Archaeology Ocean and Coastal Mapping Advancing Technology Overview Technology
Sequence-structure mapping errors in the PDB: OB-fold domains
Venclovas, Česlovas; Ginalski, Krzysztof; Kang, Chulhee
2004-01-01
The Protein Data Bank (PDB) is the single most important repository of structural data for proteins and other biologically relevant molecules. Therefore, it is critically important to keep the PDB data, as much as possible, error-free. In this study, we have analyzed PDB crystal structures possessing oligonucleotide/oligosaccharide binding (OB)-fold, one of the highly populated folds, for the presence of sequence-structure mapping errors. Using energy-based structure quality assessment coupled with sequence analyses, we have found that there are at least five OB-structures in the PDB that have regions where sequences have been incorrectly mapped onto the structure. We have demonstrated that the combination of these computation techniques is effective not only in detecting sequence-structure mapping errors, but also in providing guidance to correct them. Namely, we have used results of computational analysis to direct a revision of X-ray data for one of the PDB entries containing a fairly inconspicuous sequence-structure mapping error. The revised structure has been deposited with the PDB. We suggest use of computational energy assessment and sequence analysis techniques to facilitate structure determination when homologs having known structure are available to use as a reference. Such computational analysis may be useful in either guiding the sequence-structure assignment process or verifying the sequence mapping within poorly defined regions. PMID:15133161
Malyarenko, Dariya I; Wilmes, Lisa J; Arlinghaus, Lori R; Jacobs, Michael A; Huang, Wei; Helmer, Karl G; Taouli, Bachir; Yankeelov, Thomas E; Newitt, David; Chenevert, Thomas L
2016-12-01
Previous research has shown that system-dependent gradient nonlinearity (GNL) introduces a significant spatial bias (nonuniformity) in apparent diffusion coefficient (ADC) maps. Here, the feasibility of centralized retrospective system-specific correction of GNL bias for quantitative diffusion-weighted imaging (DWI) in multisite clinical trials is demonstrated across diverse scanners independent of the scanned object. Using corrector maps generated from system characterization by ice-water phantom measurement completed in the previous project phase, GNL bias correction was performed for test ADC measurements from an independent DWI phantom (room temperature agar) at two offset locations in the bore. The precomputed three-dimensional GNL correctors were retrospectively applied to test DWI scans by the central analysis site. The correction was blinded to reference DWI of the agar phantom at magnet isocenter where the GNL bias is negligible. The performance was evaluated from changes in ADC region of interest histogram statistics before and after correction with respect to the unbiased reference ADC values provided by sites. Both absolute error and nonuniformity of the ADC map induced by GNL (median, 12%; range, -35% to +10%) were substantially reduced by correction (7-fold in median and 3-fold in range). The residual ADC nonuniformity errors were attributed to measurement noise and other non-GNL sources. Correction of systematic GNL bias resulted in a 2-fold decrease in technical variability across scanners (down to site temperature range). The described validation of GNL bias correction marks progress toward implementation of this technology in multicenter trials that utilize quantitative DWI.
Malyarenko, Dariya I.; Wilmes, Lisa J.; Arlinghaus, Lori R.; Jacobs, Michael A.; Huang, Wei; Helmer, Karl G.; Taouli, Bachir; Yankeelov, Thomas E.; Newitt, David; Chenevert, Thomas L.
2017-01-01
Previous research has shown that system-dependent gradient nonlinearity (GNL) introduces a significant spatial bias (nonuniformity) in apparent diffusion coefficient (ADC) maps. Here, the feasibility of centralized retrospective system-specific correction of GNL bias for quantitative diffusion-weighted imaging (DWI) in multisite clinical trials is demonstrated across diverse scanners independent of the scanned object. Using corrector maps generated from system characterization by ice-water phantom measurement completed in the previous project phase, GNL bias correction was performed for test ADC measurements from an independent DWI phantom (room temperature agar) at two offset locations in the bore. The precomputed three-dimensional GNL correctors were retrospectively applied to test DWI scans by the central analysis site. The correction was blinded to reference DWI of the agar phantom at magnet isocenter where the GNL bias is negligible. The performance was evaluated from changes in ADC region of interest histogram statistics before and after correction with respect to the unbiased reference ADC values provided by sites. Both absolute error and nonuniformity of the ADC map induced by GNL (median, 12%; range, −35% to +10%) were substantially reduced by correction (7-fold in median and 3-fold in range). The residual ADC nonuniformity errors were attributed to measurement noise and other non-GNL sources. Correction of systematic GNL bias resulted in a 2-fold decrease in technical variability across scanners (down to site temperature range). The described validation of GNL bias correction marks progress toward implementation of this technology in multicenter trials that utilize quantitative DWI. PMID:28105469
Elze, J; Liebler-Tenorio, E; Ziller, M; Köhler, H
2013-07-01
The objective of this study was to identify the most reliable approach for prevalence estimation of Mycobacterium avium ssp. paratuberculosis (MAP) infection in clinically healthy slaughtered cattle. Sampling of macroscopically suspect tissue was compared to systematic sampling. Specimens of ileum, jejunum, mesenteric and caecal lymph nodes were examined for MAP infection using bacterial microscopy, culture, histopathology and immunohistochemistry. MAP was found most frequently in caecal lymph nodes, but sampling more tissues optimized the detection rate. Examination by culture was most efficient while combination with histopathology increased the detection rate slightly. MAP was detected in 49/50 animals with macroscopic lesions representing 1.35% of the slaughtered cattle examined. Of 150 systematically sampled macroscopically non-suspect cows, 28.7% were infected with MAP. This indicates that the majority of MAP-positive cattle are slaughtered without evidence of macroscopic lesions and before clinical signs occur. For reliable prevalence estimation of MAP infection in slaughtered cattle, systematic random sampling is essential.
Design and tolerance analysis of a transmission sphere by interferometer model
NASA Astrophysics Data System (ADS)
Peng, Wei-Jei; Ho, Cheng-Fong; Lin, Wen-Lung; Yu, Zong-Ru; Huang, Chien-Yao; Hsu, Wei-Yao
2015-09-01
The design of a 6-in, f/2.2 transmission sphere for Fizeau interferometry is presented in this paper. To predict the actual performance during design phase, we build an interferometer model combined with tolerance analysis in Zemax. Evaluating focus imaging is not enough for a double pass optical system. Thus, we study the interferometer model that includes system error, wavefronts reflected from reference surface and tested surface. Firstly, we generate a deformation map of the tested surface. Because of multiple configurations in Zemax, we can get the test wavefront and the reference wavefront reflected from the tested surface and the reference surface of transmission sphere respectively. According to the theory of interferometry, we subtract both wavefronts to acquire the phase of tested surface. Zernike polynomial is applied to transfer the map from phase to sag and to remove piston, tilt and power. The restored map is the same as original map; because of no system error exists. Secondly, perturbed tolerances including fabrication of lenses and assembly are considered. The system error occurs because the test and reference beam are no longer common path perfectly. The restored map is inaccurate while the system error is added. Although the system error can be subtracted by calibration, it should be still controlled within a small range to avoid calibration error. Generally the reference wavefront error including the system error and the irregularity of the reference surface of 6-in transmission sphere is measured within peak-to-valley (PV) 0.1 λ (λ=0.6328 um), which is not easy to approach. Consequently, it is necessary to predict the value of system error before manufacture. Finally, a prototype is developed and tested by a reference surface with PV 0.1 λ irregularity.
NASA Technical Reports Server (NTRS)
Sun, Jielun
1993-01-01
Results are presented of a test of the physically based total column water vapor retrieval algorithm of Wentz (1992) for sensitivity to realistic vertical distributions of temperature and water vapor. The ECMWF monthly averaged temperature and humidity fields are used to simulate the spatial pattern of systematic retrieval error of total column water vapor due to this sensitivity. The estimated systematic error is within 0.1 g/sq cm over about 70 percent of the global ocean area; systematic errors greater than 0.3 g/sq cm are expected to exist only over a few well-defined regions, about 3 percent of the global oceans, assuming that the global mean value is unbiased.
Casas, Francisco J.; Ortiz, David; Villa, Enrique; Cano, Juan L.; Cagigas, Jaime; Pérez, Ana R.; Aja, Beatriz; Terán, J. Vicente; de la Fuente, Luisa; Artal, Eduardo; Hoyland, Roger; Génova-Santos, Ricardo
2015-01-01
This paper presents preliminary polarization measurements and systematic-error characterization of the Thirty Gigahertz Instrument receiver developed for the QUIJOTE experiment. The instrument has been designed to measure the polarization of Cosmic Microwave Background radiation from the sky, obtaining the Q, U, and I Stokes parameters of the incoming signal simultaneously. Two kinds of linearly polarized input signals have been used as excitations in the polarimeter measurement tests in the laboratory; these show consistent results in terms of the Stokes parameters obtained. A measurement-based systematic-error characterization technique has been used in order to determine the possible sources of instrumental errors and to assist in the polarimeter calibration process. PMID:26251906
NASA Astrophysics Data System (ADS)
Zeng, Lu-Chuan; Yao, Jen-Chih
2006-09-01
Recently, Agarwal, Cho, Li and Huang [R.P. Agarwal, Y.J. Cho, J. Li, N.J. Huang, Stability of iterative procedures with errors approximating common fixed points for a couple of quasi-contractive mappings in q-uniformly smooth Banach spaces, J. Math. Anal. Appl. 272 (2002) 435-447] introduced the new iterative procedures with errors for approximating the common fixed point of a couple of quasi-contractive mappings and showed the stability of these iterative procedures with errors in Banach spaces. In this paper, we introduce a new concept of a couple of q-contractive-like mappings (q>1) in a Banach space and apply these iterative procedures with errors for approximating the common fixed point of the couple of q-contractive-like mappings. The results established in this paper improve, extend and unify the corresponding ones of Agarwal, Cho, Li and Huang [R.P. Agarwal, Y.J. Cho, J. Li, N.J. Huang, Stability of iterative procedures with errors approximating common fixed points for a couple of quasi-contractive mappings in q-uniformly smooth Banach spaces, J. Math. Anal. Appl. 272 (2002) 435-447], Chidume [C.E. Chidume, Approximation of fixed points of quasi-contractive mappings in Lp spaces, Indian J. Pure Appl. Math. 22 (1991) 273-386], Chidume and Osilike [C.E. Chidume, M.O. Osilike, Fixed points iterations for quasi-contractive maps in uniformly smooth Banach spaces, Bull. Korean Math. Soc. 30 (1993) 201-212], Liu [Q.H. Liu, On Naimpally and Singh's open questions, J. Math. Anal. Appl. 124 (1987) 157-164; Q.H. Liu, A convergence theorem of the sequence of Ishikawa iterates for quasi-contractive mappings, J. Math. Anal. Appl. 146 (1990) 301-305], Osilike [M.O. Osilike, A stable iteration procedure for quasi-contractive maps, Indian J. Pure Appl. Math. 27 (1996) 25-34; M.O. Osilike, Stability of the Ishikawa iteration method for quasi-contractive maps, Indian J. Pure Appl. Math. 28 (1997) 1251-1265] and many others in the literature.
Identity-by-Descent-Based Phasing and Imputation in Founder Populations Using Graphical Models
Palin, Kimmo; Campbell, Harry; Wright, Alan F; Wilson, James F; Durbin, Richard
2011-01-01
Accurate knowledge of haplotypes, the combination of alleles co-residing on a single copy of a chromosome, enables powerful gene mapping and sequence imputation methods. Since humans are diploid, haplotypes must be derived from genotypes by a phasing process. In this study, we present a new computational model for haplotype phasing based on pairwise sharing of haplotypes inferred to be Identical-By-Descent (IBD). We apply the Bayesian network based model in a new phasing algorithm, called systematic long-range phasing (SLRP), that can capitalize on the close genetic relationships in isolated founder populations, and show with simulated and real genome-wide genotype data that SLRP substantially reduces the rate of phasing errors compared to previous phasing algorithms. Furthermore, the method accurately identifies regions of IBD, enabling linkage-like studies without pedigrees, and can be used to impute most genotypes with very low error rate. Genet. Epidemiol. 2011. © 2011 Wiley Periodicals, Inc.35:853-860, 2011 PMID:22006673
NASA Technical Reports Server (NTRS)
Barton, Jonathan S.; Hall, Dorothy K.; Sigurosson, Oddur; Williams, Richard S., Jr.; Smith, Laurence C.; Garvin, James B.
1999-01-01
Two ascending European Space Agency (ESA) Earth Resources Satellites (ERS)-1/-2 tandem-mode, synthetic aperture radar (SAR) pairs are used to calculate the surface elevation of Hofsjokull, an ice cap in central Iceland. The motion component of the interferometric phase is calculated using the 30 arc-second resolution USGS GTOPO30 global digital elevation product and one of the ERS tandem pairs. The topography is then derived by subtracting the motion component from the other tandem pair. In order to assess the accuracy of the resultant digital elevation model (DEM), a geodetic airborne laser-altimetry swath is compared with the elevations derived from the interferometry. The DEM is also compared with elevations derived from a digitized topographic map of the ice cap from the University of Iceland Science Institute. Results show that low temporal correlation is a significant problem for the application of interferometry to small, low-elevation ice caps, even over a one-day repeat interval, and especially at the higher elevations. Results also show that an uncompensated error in the phase, ramping from northwest to southeast, present after tying the DEM to ground-control points, has resulted in a systematic error across the DEM.
Barton, Jonathan S.; Hall, Dorothy K.; Sigurðsson, Oddur; Williams, Richard S.; Smith, Laurence C.; Garvin, James B.; Taylor, Susan; Hardy, Janet
1999-01-01
Two ascending European Space Agency (ESA) Earth Resources Satellites (ERS)-1/-2 tandem-mode, synthetic aperture radar (SAR) pairs are used to calculate the surface elevation of Hofsjokull, an ice cap in central Iceland. The motion component of the interferometric phase is calculated using the 30 arc-second resolution USGS GTOPO30 global digital elevation product and one of the ERS tandem pairs. The topography is then derived by subtracting the motion component from the other tandem pair. In order to assess the accuracy of the resultant digital elevation model (DEM), a geodetic airborne laser-altimetry swath is compared with the elevations derived from the interferometry. The DEM is also compared with elevations derived from a digitized topographic map of the ice cap from the University of Iceland Science Institute. Results show that low temporal correlation is a significant problem for the application of interferometry to small, low-elevation ice caps, even over a one-day repeat interval, and especially at the higher elevations. Results also show that an uncompensated error in the phase, ramping from northwest to southeast, present after tying the DEM to ground-control points, has resulted in a systematic error across the DEM.
A study for systematic errors of the GLA forecast model in tropical regions
NASA Technical Reports Server (NTRS)
Chen, Tsing-Chang; Baker, Wayman E.; Pfaendtner, James; Corrigan, Martin
1988-01-01
From the sensitivity studies performed with the Goddard Laboratory for Atmospheres (GLA) analysis/forecast system, it was revealed that the forecast errors in the tropics affect the ability to forecast midlatitude weather in some cases. Apparently, the forecast errors occurring in the tropics can propagate to midlatitudes. Therefore, the systematic error analysis of the GLA forecast system becomes a necessary step in improving the model's forecast performance. The major effort of this study is to examine the possible impact of the hydrological-cycle forecast error on dynamical fields in the GLA forecast system.
Yang, Xiao-Xing; Critchley, Lester A; Joynt, Gavin M
2011-01-01
Thermodilution cardiac output using a pulmonary artery catheter is the reference method against which all new methods of cardiac output measurement are judged. However, thermodilution lacks precision and has a quoted precision error of ± 20%. There is uncertainty about its true precision and this causes difficulty when validating new cardiac output technology. Our aim in this investigation was to determine the current precision error of thermodilution measurements. A test rig through which water circulated at different constant rates with ports to insert catheters into a flow chamber was assembled. Flow rate was measured by an externally placed transonic flowprobe and meter. The meter was calibrated by timed filling of a cylinder. Arrow and Edwards 7Fr thermodilution catheters, connected to a Siemens SC9000 cardiac output monitor, were tested. Thermodilution readings were made by injecting 5 mL of ice-cold water. Precision error was divided into random and systematic components, which were determined separately. Between-readings (random) variability was determined for each catheter by taking sets of 10 readings at different flow rates. Coefficient of variation (CV) was calculated for each set and averaged. Between-catheter systems (systematic) variability was derived by plotting calibration lines for sets of catheters. Slopes were used to estimate the systematic component. Performances of 3 cardiac output monitors were compared: Siemens SC9000, Siemens Sirecust 1261, and Philips MP50. Five Arrow and 5 Edwards catheters were tested using the Siemens SC9000 monitor. Flow rates between 0.7 and 7.0 L/min were studied. The CV (random error) for Arrow was 5.4% and for Edwards was 4.8%. The random precision error was ± 10.0% (95% confidence limits). CV (systematic error) was 5.8% and 6.0%, respectively. The systematic precision error was ± 11.6%. The total precision error of a single thermodilution reading was ± 15.3% and ± 13.0% for triplicate readings. Precision error increased by 45% when using the Sirecust monitor and 100% when using the Philips monitor. In vitro testing of pulmonary artery catheters enabled us to measure both the random and systematic error components of thermodilution cardiac output measurement, and thus calculate the precision error. Using the Siemens monitor, we established a precision error of ± 15.3% for single and ± 13.0% for triplicate reading, which was similar to the previous estimate of ± 20%. However, this precision error was significantly worsened by using the Sirecust and Philips monitors. Clinicians should recognize that the precision error of thermodilution cardiac output is dependent on the selection of catheter and monitor model.
Implementation of Concept Mapping to Novices: Reasons for Errors, a Matter of Technique or Content?
ERIC Educational Resources Information Center
Conradty, Catherine; Bogner, Franz X.
2010-01-01
Concept mapping is discussed as a means to promote meaningful learning and in particular progress in reading comprehension skills. Its increasing implementation necessitates the acquisition of adequate knowledge about frequent errors in order to make available an effective introduction to the new learning method. To analyse causes of errors, 283…
Measurement error is often neglected in medical literature: a systematic review.
Brakenhoff, Timo B; Mitroiu, Marian; Keogh, Ruth H; Moons, Karel G M; Groenwold, Rolf H H; van Smeden, Maarten
2018-06-01
In medical research, covariates (e.g., exposure and confounder variables) are often measured with error. While it is well accepted that this introduces bias and imprecision in exposure-outcome relations, it is unclear to what extent such issues are currently considered in research practice. The objective was to study common practices regarding covariate measurement error via a systematic review of general medicine and epidemiology literature. Original research published in 2016 in 12 high impact journals was full-text searched for phrases relating to measurement error. Reporting of measurement error and methods to investigate or correct for it were quantified and characterized. Two hundred and forty-seven (44%) of the 565 original research publications reported on the presence of measurement error. 83% of these 247 did so with respect to the exposure and/or confounder variables. Only 18 publications (7% of 247) used methods to investigate or correct for measurement error. Consequently, it is difficult for readers to judge the robustness of presented results to the existence of measurement error in the majority of publications in high impact journals. Our systematic review highlights the need for increased awareness about the possible impact of covariate measurement error. Additionally, guidance on the use of measurement error correction methods is necessary. Copyright © 2018 Elsevier Inc. All rights reserved.
Evaluating a medical error taxonomy.
Brixey, Juliana; Johnson, Todd R; Zhang, Jiajie
2002-01-01
Healthcare has been slow in using human factors principles to reduce medical errors. The Center for Devices and Radiological Health (CDRH) recognizes that a lack of attention to human factors during product development may lead to errors that have the potential for patient injury, or even death. In response to the need for reducing medication errors, the National Coordinating Council for Medication Errors Reporting and Prevention (NCC MERP) released the NCC MERP taxonomy that provides a standard language for reporting medication errors. This project maps the NCC MERP taxonomy of medication error to MedWatch medical errors involving infusion pumps. Of particular interest are human factors associated with medical device errors. The NCC MERP taxonomy of medication errors is limited in mapping information from MEDWATCH because of the focus on the medical device and the format of reporting.
NASA Astrophysics Data System (ADS)
Liu, Zhixiang; Xing, Tingwen; Jiang, Yadong; Lv, Baobin
2018-02-01
A two-dimensional (2-D) shearing interferometer based on an amplitude chessboard grating was designed to measure the wavefront aberration of a high numerical-aperture (NA) objective. Chessboard gratings offer better diffraction efficiencies and fewer disturbing diffraction orders than traditional cross gratings. The wavefront aberration of the tested objective was retrieved from the shearing interferogram using the Fourier transform and differential Zernike polynomial-fitting methods. Grating manufacturing errors, including the duty-cycle and pattern-deviation errors, were analyzed with the Fourier transform method. Then, according to the relation between the spherical pupil and planar detector coordinates, the influence of the distortion of the pupil coordinates was simulated. Finally, the systematic error attributable to grating alignment errors was deduced through the geometrical ray-tracing method. Experimental results indicate that the measuring repeatability (3σ) of the wavefront aberration of an objective with NA 0.4 was 3.4 mλ. The systematic-error results were consistent with previous analyses. Thus, the correct wavefront aberration can be obtained after calibration.
NASA Astrophysics Data System (ADS)
Johnson, Traci L.; Sharon, Keren
2016-11-01
Until now, systematic errors in strong gravitational lens modeling have been acknowledged but have never been fully quantified. Here, we launch an investigation into the systematics induced by constraint selection. We model the simulated cluster Ares 362 times using random selections of image systems with and without spectroscopic redshifts and quantify the systematics using several diagnostics: image predictability, accuracy of model-predicted redshifts, enclosed mass, and magnification. We find that for models with >15 image systems, the image plane rms does not decrease significantly when more systems are added; however, the rms values quoted in the literature may be misleading as to the ability of a model to predict new multiple images. The mass is well constrained near the Einstein radius in all cases, and systematic error drops to <2% for models using >10 image systems. Magnification errors are smallest along the straight portions of the critical curve, and the value of the magnification is systematically lower near curved portions. For >15 systems, the systematic error on magnification is ∼2%. We report no trend in magnification error with the fraction of spectroscopic image systems when selecting constraints at random; however, when using the same selection of constraints, increasing this fraction up to ∼0.5 will increase model accuracy. The results suggest that the selection of constraints, rather than quantity alone, determines the accuracy of the magnification. We note that spectroscopic follow-up of at least a few image systems is crucial because models without any spectroscopic redshifts are inaccurate across all of our diagnostics.
The Primordial Inflation Polarization Explorer (PIPER)
NASA Technical Reports Server (NTRS)
Kogut, Alan J.
2012-01-01
The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne instrument to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the polarization of the cosmic microwave background. PIPER combines cold (1.5 K) optics, 5120 bolometric detectors, and rapid polarization modulation using VPM grids to achieve both high sensitivity and excellent control of systematic errors. A series of flights alternating between northern and southern hemisphere launch sites will produce maps in Stokes I, Q, U, and V parameters at frequencies 200, 270, 350, and 600 GHz (wavelengths 1500, 1100, 850, and 500 microns) covering 85% of the sky. We describe the PIPER instrument and discuss the current status and expected science returns from the mission.
Registratiom of TM data to digital elevation models
NASA Technical Reports Server (NTRS)
1984-01-01
Several problems arise when attempting to register LANDSAT thematic mapper data to U.S. B Geological Survey digital elevation models (DEMs). The TM data are currently available only in a rotated variant of the Space Oblique Mercator (SOM) map projection. Geometric transforms are thus; required to access TM data in the geodetic coordinates used by the DEMs. Due to positional errors in the TM data, these transforms require some sort of external control. The spatial resolution of TM data exceeds that of the most commonly DEM data. Oversampling DEM data to TM resolution introduces systematic noise. Common terrain processing algorithms (e.g., close computation) compound this problem by acting as high-pass filters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Ke; Li Yanqiu; Wang Hai
Characterization of measurement accuracy of the phase-shifting point diffraction interferometer (PS/PDI) is usually performed by two-pinhole null test. In this procedure, the geometrical coma and detector tilt astigmatism systematic errors are almost one or two magnitude higher than the desired accuracy of PS/PDI. These errors must be accurately removed from the null test result to achieve high accuracy. Published calibration methods, which can remove the geometrical coma error successfully, have some limitations in calibrating the astigmatism error. In this paper, we propose a method to simultaneously calibrate the geometrical coma and detector tilt astigmatism errors in PS/PDI null test. Basedmore » on the measurement results obtained from two pinhole pairs in orthogonal directions, the method utilizes the orthogonal and rotational symmetry properties of Zernike polynomials over unit circle to calculate the systematic errors introduced in null test of PS/PDI. The experiment using PS/PDI operated at visible light is performed to verify the method. The results show that the method is effective in isolating the systematic errors of PS/PDI and the measurement accuracy of the calibrated PS/PDI is 0.0088{lambda} rms ({lambda}= 632.8 nm).« less
Correcting systematic errors in high-sensitivity deuteron polarization measurements
NASA Astrophysics Data System (ADS)
Brantjes, N. P. M.; Dzordzhadze, V.; Gebel, R.; Gonnella, F.; Gray, F. E.; van der Hoek, D. J.; Imig, A.; Kruithof, W. L.; Lazarus, D. M.; Lehrach, A.; Lorentz, B.; Messi, R.; Moricciani, D.; Morse, W. M.; Noid, G. A.; Onderwater, C. J. G.; Özben, C. S.; Prasuhn, D.; Levi Sandri, P.; Semertzidis, Y. K.; da Silva e Silva, M.; Stephenson, E. J.; Stockhorst, H.; Venanzoni, G.; Versolato, O. O.
2012-02-01
This paper reports deuteron vector and tensor beam polarization measurements taken to investigate the systematic variations due to geometric beam misalignments and high data rates. The experiments used the In-Beam Polarimeter at the KVI-Groningen and the EDDA detector at the Cooler Synchrotron COSY at Jülich. By measuring with very high statistical precision, the contributions that are second-order in the systematic errors become apparent. By calibrating the sensitivity of the polarimeter to such errors, it becomes possible to obtain information from the raw count rate values on the size of the errors and to use this information to correct the polarization measurements. During the experiment, it was possible to demonstrate that corrections were satisfactory at the level of 10 -5 for deliberately large errors. This may facilitate the real time observation of vector polarization changes smaller than 10 -6 in a search for an electric dipole moment using a storage ring.
NASA Technical Reports Server (NTRS)
Kimes, D. S.; Kerber, A. G.; Sellers, P. J.
1993-01-01
Spatial averaging errors which may occur when creating hemispherical reflectance maps for different cover types from direct nadir technique to estimate the hemispherical reflectance are assessed by comparing the results with those obtained with a knowledge-based system called VEG (Kimes et al., 1991, 1992). It was found that hemispherical reflectance errors provided by using VEG are much less than those using the direct nadir techniques, depending on conditions. Suggestions are made concerning sampling and averaging strategies for creating hemispherical reflectance maps for photosynthetic, carbon cycle, and climate change studies.
Monsen, Karen A; Finn, Robert S; Fleming, Thea E; Garner, Erin J; LaValla, Amy J; Riemer, Judith G
2016-01-01
Rigor in clinical knowledge representation is necessary foundation for meaningful interoperability, exchange and reuse of electronic health record (EHR) data. It is critical for clinicians to understand principles and implications of using clinical standards for knowledge representation within EHRs. To educate clinicians and students about knowledge representation and to evaluate their success of applying the manual lookups method for assigning Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) concept identifiers using formally mapped concepts from the Omaha System interface terminology. Clinicians who were students in a doctoral nursing program conducted 21 lookups for Omaha System terms in publicly available SNOMED CT browsers. Lookups were deemed successful if results matched exactly with the corresponding code from the January 2013 SNOMED CT-Omaha System terminology cross-map. Of the 21 manual lookups attempted, 12 (57.1%) were successful. Errors were due to semantic gaps differences in granularity and synonymy or partial term matching. Achieving rigor in clinical knowledge representation across settings, vendors and health systems is a globally recognized challenge. Cross-maps have potential to improve rigor in SNOMED CT encoding of clinical data. Further research is needed to evaluate outcomes of using of terminology cross-maps to encode clinical terms with SNOMED CT concept identifiers based on interface terminologies.
Verzotto, Davide; M Teo, Audrey S; Hillmer, Axel M; Nagarajan, Niranjan
2016-01-01
Resolution of complex repeat structures and rearrangements in the assembly and analysis of large eukaryotic genomes is often aided by a combination of high-throughput sequencing and genome-mapping technologies (for example, optical restriction mapping). In particular, mapping technologies can generate sparse maps of large DNA fragments (150 kilo base pairs (kbp) to 2 Mbp) and thus provide a unique source of information for disambiguating complex rearrangements in cancer genomes. Despite their utility, combining high-throughput sequencing and mapping technologies has been challenging because of the lack of efficient and sensitive map-alignment algorithms for robustly aligning error-prone maps to sequences. We introduce a novel seed-and-extend glocal (short for global-local) alignment method, OPTIMA (and a sliding-window extension for overlap alignment, OPTIMA-Overlap), which is the first to create indexes for continuous-valued mapping data while accounting for mapping errors. We also present a novel statistical model, agnostic with respect to technology-dependent error rates, for conservatively evaluating the significance of alignments without relying on expensive permutation-based tests. We show that OPTIMA and OPTIMA-Overlap outperform other state-of-the-art approaches (1.6-2 times more sensitive) and are more efficient (170-200 %) and precise in their alignments (nearly 99 % precision). These advantages are independent of the quality of the data, suggesting that our indexing approach and statistical evaluation are robust, provide improved sensitivity and guarantee high precision.
Computer aided manufacturing for complex freeform optics
NASA Astrophysics Data System (ADS)
Wolfs, Franciscus; Fess, Ed; Johns, Dustin; LePage, Gabriel; Matthews, Greg
2017-10-01
Recently, the desire to use freeform optics has been increasing. Freeform optics can be used to expand the capabilities of optical systems and reduce the number of optics needed in an assembly. The traits that increase optical performance also present challenges in manufacturing. As tolerances on freeform optics become more stringent, it is necessary to continue to improve methods for how the grinding and polishing processes interact with metrology. To create these complex shapes, OptiPro has developed a computer aided manufacturing package called PROSurf. PROSurf generates tool paths required for grinding and polishing freeform optics with multiple axes of motion. It also uses metrology feedback for deterministic corrections. ProSurf handles 2 key aspects of the manufacturing process that most other CAM systems struggle with. The first is having the ability to support several input types (equations, CAD models, point clouds) and still be able to create a uniform high-density surface map useable for generating a smooth tool path. The second is to improve the accuracy of mapping a metrology file to the part surface. To perform this OptiPro is using 3D error maps instead of traditional 2D maps. The metrology error map drives the tool path adjustment applied during processing. For grinding, the error map adjusts the tool position to compensate for repeatable system error. For polishing, the error map drives the relative dwell times of the tool across the part surface. This paper will present the challenges associated with these issues and solutions that we have created.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam, R.; Ade, P. A. R.; Aghanim, N.
We report that Planck has mapped the microwave sky in temperature over nine frequency bands between 30 and 857 GHz and in polarization over seven frequency bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical component maps. Component separation dedicated to cosmic microwave background (CMB) reconstruction is described in a companion paper. For the temperature analysis, we combine the Planck observations with the 9-yr Wilkinson Microwave Anisotropy Probe (WMAP) sky maps andmore » the Haslam et al. 408 MHz map, to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided for each component, with an angular resolution varying between 7.5 and 1deg. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4μK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are internal degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these degeneracies. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100–353 GHz bands on large angular scales in the form of temperature-to-polarization leakage, uncertainties in the analogue-to-digital conversion, and corrections for the very long time constant of the bolometer detectors, all of which are expected to improve in the near future.« less
Analyzing the Use of Concept Maps in Computer Science: A Systematic Mapping Study
ERIC Educational Resources Information Center
dos Santos, Vinicius; de Souza, Érica F.; Felizardo, Katia R; Vijaykumar, Nandamudi L.
2017-01-01
Context: concept Maps (CMs) enable the creation of a schematic representation of a domain knowledge. For this reason, CMs have been applied in different research areas, including Computer Science. Objective: the objective of this paper is to present the results of a systematic mapping study conducted to collect and evaluate existing research on…
ERIC Educational Resources Information Center
Py, Bernard
A progress report is presented of a study which applies a system of generative grammar to error analysis. The objective of the study was to reconstruct the grammar of students' interlanguage, using a systematic analysis of errors. (Interlanguage refers to the linguistic competence of a student who possesses a relatively systematic body of rules,…
ERIC Educational Resources Information Center
Walker, Grant M.; Schwartz, Myrna F.; Kimberg, Daniel Y.; Faseyitan, Olufunsho; Brecher, Adelyn; Dell, Gary S.; Coslett, H. Branch
2011-01-01
Semantic errors in aphasia (e.g., naming a horse as "dog") frequently arise from faulty mapping of concepts onto lexical items. A recent study by our group used voxel-based lesion-symptom mapping (VLSM) methods with 64 patients with chronic aphasia to identify voxels that carry an association with semantic errors. The strongest associations were…
Interferometry On Grazing Incidence Optics
NASA Astrophysics Data System (ADS)
Geary, Joseph; Maeda, Riki
1988-08-01
A preliminary interferometric procedure is described showing potential for obtaining surface figure error maps of grazing incidence optics at normal incidence. The latter are found in some laser resonator configurations, and in Wolter type X-ray optics. The procedure makes use of cylindrical wavefronts and error subtraction techniques over subapertures. The surface error maps obtained will provide critical information to opticians in the fabrication process.
Interferometry on grazing incidence optics
NASA Astrophysics Data System (ADS)
Geary, Joseph M.; Maeda, Riki
1987-12-01
An interfeormetric procedure is described that shows potential for obtaining surface figure error maps of grazing incidence optics at normal incidence. Such optics are found in some laser resonator configurations and in Wolter-type X-ray optics. The procedure makes use of cylindrical wavefronts and error subtraction techniques over subapertures. The surface error maps obtained will provide critical information to opticians for the fabrication process.
Content-based multiple bitstream image transmission over noisy channels.
Cao, Lei; Chen, Chang Wen
2002-01-01
In this paper, we propose a novel combined source and channel coding scheme for image transmission over noisy channels. The main feature of the proposed scheme is a systematic decomposition of image sources so that unequal error protection can be applied according to not only bit error sensitivity but also visual content importance. The wavelet transform is adopted to hierarchically decompose the image. The association between the wavelet coefficients and what they represent spatially in the original image is fully exploited so that wavelet blocks are classified based on their corresponding image content. The classification produces wavelet blocks in each class with similar content and statistics, therefore enables high performance source compression using the set partitioning in hierarchical trees (SPIHT) algorithm. To combat the channel noise, an unequal error protection strategy with rate-compatible punctured convolutional/cyclic redundancy check (RCPC/CRC) codes is implemented based on the bit contribution to both peak signal-to-noise ratio (PSNR) and visual quality. At the receiving end, a postprocessing method making use of the SPIHT decoding structure and the classification map is developed to restore the degradation due to the residual error after channel decoding. Experimental results show that the proposed scheme is indeed able to provide protection both for the bits that are more sensitive to errors and for the more important visual content under a noisy transmission environment. In particular, the reconstructed images illustrate consistently better visual quality than using the single-bitstream-based schemes.
NASA Astrophysics Data System (ADS)
Kadaj, Roman
2016-12-01
The adjustment problem of the so-called combined (hybrid, integrated) network created with GNSS vectors and terrestrial observations has been the subject of many theoretical and applied works. The network adjustment in various mathematical spaces was considered: in the Cartesian geocentric system on a reference ellipsoid and on a mapping plane. For practical reasons, it often takes a geodetic coordinate system associated with the reference ellipsoid. In this case, the Cartesian GNSS vectors are converted, for example, into geodesic parameters (azimuth and length) on the ellipsoid, but the simple form of converted pseudo-observations are the direct differences of the geodetic coordinates. Unfortunately, such an approach may be essentially distorted by a systematic error resulting from the position error of the GNSS vector, before its projection on the ellipsoid surface. In this paper, an analysis of the impact of this error on the determined measures of geometric ellipsoid elements, including the differences of geodetic coordinates or geodesic parameters is presented. Assuming that the adjustment of a combined network on the ellipsoid shows that the optimal functional approach in relation to the satellite observation, is to create the observational equations directly for the original GNSS Cartesian vector components, writing them directly as a function of the geodetic coordinates (in numerical applications, we use the linearized forms of observational equations with explicitly specified coefficients). While retaining the original character of the Cartesian vector, one avoids any systematic errors that may occur in the conversion of the original GNSS vectors to ellipsoid elements, for example the vector of the geodesic parameters. The problem is theoretically developed and numerically tested. An example of the adjustment of a subnet loaded from the database of reference stations of the ASG-EUPOS system was considered for the preferred functional model of the GNSS observations.
High-Throughput Nanoindentation for Statistical and Spatial Property Determination
NASA Astrophysics Data System (ADS)
Hintsala, Eric D.; Hangen, Ude; Stauffer, Douglas D.
2018-04-01
Standard nanoindentation tests are "high throughput" compared to nearly all other mechanical tests, such as tension or compression. However, the typical rates of tens of tests per hour can be significantly improved. These higher testing rates enable otherwise impractical studies requiring several thousands of indents, such as high-resolution property mapping and detailed statistical studies. However, care must be taken to avoid systematic errors in the measurement, including choosing of the indentation depth/spacing to avoid overlap of plastic zones, pileup, and influence of neighboring microstructural features in the material being tested. Furthermore, since fast loading rates are required, the strain rate sensitivity must also be considered. A review of these effects is given, with the emphasis placed on making complimentary standard nanoindentation measurements to address these issues. Experimental applications of the technique, including mapping of welds, microstructures, and composites with varying length scales, along with studying the effect of surface roughness on nominally homogeneous specimens, will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, S
2015-06-15
Purpose: To evaluate the ability of statistical process control methods to detect systematic errors when using a two dimensional (2D) detector array for routine electron beam energy verification. Methods: Electron beam energy constancy was measured using an aluminum wedge and a 2D diode array on four linear accelerators. Process control limits were established. Measurements were recorded in control charts and compared with both calculated process control limits and TG-142 recommended specification limits. The data was tested for normality, process capability and process acceptability. Additional measurements were recorded while systematic errors were intentionally introduced. Systematic errors included shifts in the alignmentmore » of the wedge, incorrect orientation of the wedge, and incorrect array calibration. Results: Control limits calculated for each beam were smaller than the recommended specification limits. Process capability and process acceptability ratios were greater than one in all cases. All data was normally distributed. Shifts in the alignment of the wedge were most apparent for low energies. The smallest shift (0.5 mm) was detectable using process control limits in some cases, while the largest shift (2 mm) was detectable using specification limits in only one case. The wedge orientation tested did not affect the measurements as this did not affect the thickness of aluminum over the detectors of interest. Array calibration dependence varied with energy and selected array calibration. 6 MeV was the least sensitive to array calibration selection while 16 MeV was the most sensitive. Conclusion: Statistical process control methods demonstrated that the data distribution was normally distributed, the process was capable of meeting specifications, and that the process was centered within the specification limits. Though not all systematic errors were distinguishable from random errors, process control limits increased the ability to detect systematic errors using routine measurement of electron beam energy constancy.« less
SPIDER OPTIMIZATION. II. OPTICAL, MAGNETIC, AND FOREGROUND EFFECTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Dea, D. T.; Clark, C. N.; Contaldi, C. R.
2011-09-01
SPIDER is a balloon-borne instrument designed to map the polarization of the cosmic microwave background (CMB) with degree-scale resolution over a large fraction of the sky. SPIDER's main goal is to measure the amplitude of primordial gravitational waves through their imprint on the polarization of the CMB if the tensor-to-scalar ratio, r, is greater than 0.03. To achieve this goal, instrumental systematic errors must be controlled with unprecedented accuracy. Here, we build on previous work to use simulations of SPIDER observations to examine the impact of several systematic effects that have been characterized through testing and modeling of various instrumentmore » components. In particular, we investigate the impact of the non-ideal spectral response of the half-wave plates, coupling between focal-plane components and Earth's magnetic field, and beam mismatches and asymmetries. We also present a model of diffuse polarized foreground emission based on a three-dimensional model of the Galactic magnetic field and dust, and study the interaction of this foreground emission with our observation strategy and instrumental effects. We find that the expected level of foreground and systematic contamination is sufficiently low for SPIDER to achieve its science goals.« less
Gill, Andrew B; Anandappa, Gayathri; Patterson, Andrew J; Priest, Andrew N; Graves, Martin J; Janowitz, Tobias; Jodrell, Duncan I; Eisen, Tim; Lomas, David J
2015-02-01
This study introduces the use of 'error-category mapping' in the interpretation of pharmacokinetic (PK) model parameter results derived from dynamic contrast-enhanced (DCE-) MRI data. Eleven patients with metastatic renal cell carcinoma were enrolled in a multiparametric study of the treatment effects of bevacizumab. For the purposes of the present analysis, DCE-MRI data from two identical pre-treatment examinations were analysed by application of the extended Tofts model (eTM), using in turn a model arterial input function (AIF), an individually-measured AIF and a sample-average AIF. PK model parameter maps were calculated. Errors in the signal-to-gadolinium concentration ([Gd]) conversion process and the model-fitting process itself were assigned to category codes on a voxel-by-voxel basis, thereby forming a colour-coded 'error-category map' for each imaged slice. These maps were found to be repeatable between patient visits and showed that the eTM converged adequately in the majority of voxels in all the tumours studied. However, the maps also clearly indicated sub-regions of low Gd uptake and of non-convergence of the model in nearly all tumours. The non-physical condition ve ≥ 1 was the most frequently indicated error category and appeared sensitive to the form of AIF used. This simple method for visualisation of errors in DCE-MRI could be used as a routine quality-control technique and also has the potential to reveal otherwise hidden patterns of failure in PK model applications. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Probabilistic change mapping from airborne LiDAR for post-disaster damage assessment
NASA Astrophysics Data System (ADS)
Jalobeanu, A.; Runyon, S. C.; Kruse, F. A.
2013-12-01
When both pre- and post-event LiDAR point clouds are available, change detection can be performed to identify areas that were most affected by a disaster event, and to obtain a map of quantitative changes in terms of height differences. In the case of earthquakes in built-up areas for instance, first responders can use a LiDAR change map to help prioritize search and recovery efforts. The main challenge consists of producing reliable change maps, robust to collection conditions, free of processing artifacts (due for instance to triangulation or gridding), and taking into account the various sources of uncertainty. Indeed, datasets acquired within a few years interval are often of different point density (sometimes an order of magnitude higher for recent data), different acquisition geometries, and very likely suffer from georeferencing errors and geometric discrepancies. All these differences might not be important for producing maps from each dataset separately, but they are crucial when performing change detection. We have developed a novel technique for the estimation of uncertainty maps from the LiDAR point clouds, using Bayesian inference, treating all variables as random. The main principle is to grid all points on a common grid before attempting any comparison, as working directly with point clouds is cumbersome and time consuming. A non-parametric approach based on local linear regression was implemented, assuming a locally linear model for the surface. This enabled us to derive error bars on gridded elevations, and then elevation differences. In this way, a map of statistically significant changes could be computed - whereas a deterministic approach would not allow testing of the significance of differences between the two datasets. This approach allowed us to take into account not only the observation noise (due to ranging, position and attitude errors) but also the intrinsic roughness of the observed surfaces occurring when scanning vegetation. As only elevation differences above a predefined noise level are accounted for (according to a specified confidence interval related to the allowable false alarm rate) the change detection is robust to all these sources of noise. To first validate the approach, we built small-scale models and scanned them using a terrestrial laser scanner to establish 'ground truth'. Changes were manually applied to the models then new scans were performed and analyzed. Additionally, two airborne datasets of the Monterey Peninsula, California, were processed and analyzed. The first one was acquired during 2010 (with relatively low point density, 1-3 pts/m2), and the second one was acquired during 2012 (with up to 30 pts/m2). To perform the comparison, a new point cloud registration technique was developed and the data were registered to a common 1 m grid. The goal was to correct systematic shifts due to GPS and INS errors, and focus on the actual height differences regardless of the absolute planimetric accuracy of the datasets. Though no major disaster event occurred between the two acquisition dates, sparse changes were detected and interpreted mostly as construction and natural landscape evolution.
Within-Tunnel Variations in Pressure Data for Three Transonic Wind Tunnels
NASA Technical Reports Server (NTRS)
DeLoach, Richard
2014-01-01
This paper compares the results of pressure measurements made on the same test article with the same test matrix in three transonic wind tunnels. A comparison is presented of the unexplained variance associated with polar replicates acquired in each tunnel. The impact of a significance component of systematic (not random) unexplained variance is reviewed, and the results of analyses of variance are presented to assess the degree of significant systematic error in these representative wind tunnel tests. Total uncertainty estimates are reported for 140 samples of pressure data, quantifying the effects of within-polar random errors and between-polar systematic bias errors.
The Origin of Systematic Errors in the GCM Simulation of ITCZ Precipitation
NASA Technical Reports Server (NTRS)
Chao, Winston C.; Suarez, M. J.; Bacmeister, J. T.; Chen, B.; Takacs, L. L.
2006-01-01
Previous GCM studies have found that the systematic errors in the GCM simulation of the seasonal mean ITCZ intensity and location could be substantially corrected by adding suitable amount of rain re-evaporation or cumulus momentum transport. However, the reason(s) for these systematic errors and solutions has remained a puzzle. In this work the knowledge gained from previous studies of the ITCZ in an aqua-planet model with zonally uniform SST is applied to solve this puzzle. The solution is supported by further aqua-planet and full model experiments using the latest version of the Goddard Earth Observing System GCM.
Wooten, H. Omar; Green, Olga; Li, Harold H.; Liu, Shi; Li, Xiaoling; Rodriguez, Vivian; Mutic, Sasa; Kashani, Rojano
2016-01-01
The aims of this study were to develop a method for automatic and immediate verification of treatment delivery after each treatment fraction in order to detect and correct errors, and to develop a comprehensive daily report which includes delivery verification results, daily image‐guided radiation therapy (IGRT) review, and information for weekly physics reviews. After systematically analyzing the requirements for treatment delivery verification and understanding the available information from a commercial MRI‐guided radiotherapy treatment machine, we designed a procedure to use 1) treatment plan files, 2) delivery log files, and 3) beam output information to verify the accuracy and completeness of each daily treatment delivery. The procedure verifies the correctness of delivered treatment plan parameters including beams, beam segments and, for each segment, the beam‐on time and MLC leaf positions. For each beam, composite primary fluence maps are calculated from the MLC leaf positions and segment beam‐on time. Error statistics are calculated on the fluence difference maps between the plan and the delivery. A daily treatment delivery report is designed to include all required information for IGRT and weekly physics reviews including the plan and treatment fraction information, daily beam output information, and the treatment delivery verification results. A computer program was developed to implement the proposed procedure of the automatic delivery verification and daily report generation for an MRI guided radiation therapy system. The program was clinically commissioned. Sensitivity was measured with simulated errors. The final version has been integrated into the commercial version of the treatment delivery system. The method automatically verifies the EBRT treatment deliveries and generates the daily treatment reports. Already in clinical use for over one year, it is useful to facilitate delivery error detection, and to expedite physician daily IGRT review and physicist weekly chart review. PACS number(s): 87.55.km PMID:27167269
Miake-Lye, Isomi M; Hempel, Susanne; Shanman, Roberta; Shekelle, Paul G
2016-02-10
The need for systematic methods for reviewing evidence is continuously increasing. Evidence mapping is one emerging method. There are no authoritative recommendations for what constitutes an evidence map or what methods should be used, and anecdotal evidence suggests heterogeneity in both. Our objectives are to identify published evidence maps and to compare and contrast the presented definitions of evidence mapping, the domains used to classify data in evidence maps, and the form the evidence map takes. We conducted a systematic review of publications that presented results with a process termed "evidence mapping" or included a figure called an "evidence map." We identified publications from searches of ten databases through 8/21/2015, reference mining, and consulting topic experts. We abstracted the research question, the unit of analysis, the search methods and search period covered, and the country of origin. Data were narratively synthesized. Thirty-nine publications met inclusion criteria. Published evidence maps varied in their definition and the form of the evidence map. Of the 31 definitions provided, 67 % described the purpose as identification of gaps and 58 % referenced a stakeholder engagement process or user-friendly product. All evidence maps explicitly used a systematic approach to evidence synthesis. Twenty-six publications referred to a figure or table explicitly called an "evidence map," eight referred to an online database as the evidence map, and five stated they used a mapping methodology but did not present a visual depiction of the evidence. The principal conclusion of our evaluation of studies that call themselves "evidence maps" is that the implied definition of what constitutes an evidence map is a systematic search of a broad field to identify gaps in knowledge and/or future research needs that presents results in a user-friendly format, often a visual figure or graph, or a searchable database. Foundational work is needed to better standardize the methods and products of an evidence map so that researchers and policymakers will know what to expect of this new type of evidence review. Although an a priori protocol was developed, no registration was completed; this review did not fit the PROSPERO format.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Traci L.; Sharon, Keren, E-mail: tljohn@umich.edu
Until now, systematic errors in strong gravitational lens modeling have been acknowledged but have never been fully quantified. Here, we launch an investigation into the systematics induced by constraint selection. We model the simulated cluster Ares 362 times using random selections of image systems with and without spectroscopic redshifts and quantify the systematics using several diagnostics: image predictability, accuracy of model-predicted redshifts, enclosed mass, and magnification. We find that for models with >15 image systems, the image plane rms does not decrease significantly when more systems are added; however, the rms values quoted in the literature may be misleading asmore » to the ability of a model to predict new multiple images. The mass is well constrained near the Einstein radius in all cases, and systematic error drops to <2% for models using >10 image systems. Magnification errors are smallest along the straight portions of the critical curve, and the value of the magnification is systematically lower near curved portions. For >15 systems, the systematic error on magnification is ∼2%. We report no trend in magnification error with the fraction of spectroscopic image systems when selecting constraints at random; however, when using the same selection of constraints, increasing this fraction up to ∼0.5 will increase model accuracy. The results suggest that the selection of constraints, rather than quantity alone, determines the accuracy of the magnification. We note that spectroscopic follow-up of at least a few image systems is crucial because models without any spectroscopic redshifts are inaccurate across all of our diagnostics.« less
NASA Astrophysics Data System (ADS)
Burcin Unlu, Mehmet; Lin, Yuting; Gulsen, Gultekin
2009-11-01
Dynamic contrast-enhanced diffuse optical tomography (DCE-DOT) can provide spatially resolved enhancement kinetics of an optical contrast agent. We undertook a systematic phantom study to evaluate the effects of the geometrical parameters such as the depth and size of the inclusion as well as the optical parameters of the background on the recovered enhancement kinetics of the most commonly used optical contrast agent, indocyanine green (ICG). For this purpose a computer-controlled dynamic phantom was constructed. An ICG-intralipid-water mixture was circulated through the inclusions while the DCE-DOT measurements were acquired with a temporal resolution of 16 s. The same dynamic study was repeated using inclusions of different sizes located at different depths. In addition to this, the effect of non-scattering regions was investigated by placing a second inclusion filled with water in the background. The phantom studies confirmed that although the peak enhancement varied substantially for each case, the recovered injection and dilution rates obtained from the percentage enhancement maps agreed within 15% independent of not only the depth and the size of the inclusion but also the presence of a non-scattering region in the background. Although no internal structural information was used in these phantom studies, it may be necessary to use it for small objects buried deep in tissue. However, the different contrast mechanisms of optical and other imaging modalities as well as imperfect co-registration between both modalities may lead to potential errors in the structural a priori. Therefore, the effect of erroneous selection of structural priors was investigated as the final step. Again, the injection and dilution rates obtained from the percentage enhancement maps were also immune to the systematic errors introduced by erroneous selection of the structural priors, e.g. choosing the diameter of the inclusion 20% smaller increased the peak enhancement 60% but changed the injection and dilution rates only less than 10%.
Systematical estimation of GPM-based global satellite mapping of precipitation products over China
NASA Astrophysics Data System (ADS)
Zhao, Haigen; Yang, Bogang; Yang, Shengtian; Huang, Yingchun; Dong, Guotao; Bai, Juan; Wang, Zhiwei
2018-03-01
As the Global Precipitation Measurement (GPM) Core Observatory satellite continues its mission, new version 6 products for Global Satellite Mapping of Precipitation (GSMaP) have been released. However, few studies have systematically evaluated the GSMaP products over mainland China. This study quantitatively evaluated three GPM-based GSMaP version 6 precipitation products for China and eight subregions referring to the Chinese daily Precipitation Analysis Product (CPAP). The GSMaP products included near-real-time (GSMaP_NRT), microwave-infrared reanalyzed (GSMaP_MVK), and gauge-adjusted (GSMaP_Gau) data. Additionally, the gauge-adjusted Integrated Multi-Satellite Retrievals for Global Precipitation Measurement Mission (IMERG_Gau) was also assessed and compared with GSMaP_Gau. The analyses of the selected daily products were carried out at spatiotemporal resolutions of 1/4° for the period of March 2014 to December 2015 in consideration of the resolution of CPAP and the consistency of the coverage periods of the satellite products. The results indicated that GSMaP_MVK and GSMaP_NRT performed comparably and underdetected light rainfall events (< 5 mm/day) in the northwest and northeast of China. All the statistical metrics of GSMaP_MVK were slightly improved compared with GSMaP_NRT in spring, autumn, and winter, whereas GSMaP_NRT demonstrated superior Pearson linear correlation coefficient (CC), fractional standard error (FSE), and root-mean-square error (RMSE) metrics during the summer. Compared with GSMaP_NRT and GSMaP_MVK, GSMaP_Gau possessed significantly improved metrics over mainland China and the eight subregions and performed better in terms of CC, RMSE, and FSE but underestimated precipitation to a greater degree than IMERG_Gau. As a quantitative assessment of the GPM-era GSMaP products, these validation results will supply helpful references for both end users and algorithm developers. However, the study findings need to be confirmed over a longer future study period when the longer-period IMERG retrospectively-processed data are available.
Asteroid approach covariance analysis for the Clementine mission
NASA Technical Reports Server (NTRS)
Ionasescu, Rodica; Sonnabend, David
1993-01-01
The Clementine mission is designed to test Strategic Defense Initiative Organization (SDIO) technology, the Brilliant Pebbles and Brilliant Eyes sensors, by mapping the moon surface and flying by the asteroid Geographos. The capability of two of the instruments available on board the spacecraft, the lidar (laser radar) and the UV/Visible camera is used in the covariance analysis to obtain the spacecraft delivery uncertainties at the asteroid. These uncertainties are due primarily to asteroid ephemeris uncertainties. On board optical navigation reduces the uncertainty in the knowledge of the spacecraft position in the direction perpendicular to the incoming asymptote to a one-sigma value of under 1 km, at the closest approach distance of 100 km. The uncertainty in the knowledge of the encounter time is about 0.1 seconds for a flyby velocity of 10.85 km/s. The magnitude of these uncertainties is due largely to Center Finding Errors (CFE). These systematic errors represent the accuracy expected in locating the center of the asteroid in the optical navigation images, in the absence of a topographic model for the asteroid. The direction of the incoming asymptote cannot be estimated accurately until minutes before the asteroid flyby, and correcting for it would require autonomous navigation. Orbit determination errors dominate over maneuver execution errors, and the final delivery accuracy attained is basically the orbit determination uncertainty before the final maneuver.
Sokolenko, Stanislav; Aucoin, Marc G
2015-09-04
The growing ubiquity of metabolomic techniques has facilitated high frequency time-course data collection for an increasing number of applications. While the concentration trends of individual metabolites can be modeled with common curve fitting techniques, a more accurate representation of the data needs to consider effects that act on more than one metabolite in a given sample. To this end, we present a simple algorithm that uses nonparametric smoothing carried out on all observed metabolites at once to identify and correct systematic error from dilution effects. In addition, we develop a simulation of metabolite concentration time-course trends to supplement available data and explore algorithm performance. Although we focus on nuclear magnetic resonance (NMR) analysis in the context of cell culture, a number of possible extensions are discussed. Realistic metabolic data was successfully simulated using a 4-step process. Starting with a set of metabolite concentration time-courses from a metabolomic experiment, each time-course was classified as either increasing, decreasing, concave, or approximately constant. Trend shapes were simulated from generic functions corresponding to each classification. The resulting shapes were then scaled to simulated compound concentrations. Finally, the scaled trends were perturbed using a combination of random and systematic errors. To detect systematic errors, a nonparametric fit was applied to each trend and percent deviations calculated at every timepoint. Systematic errors could be identified at time-points where the median percent deviation exceeded a threshold value, determined by the choice of smoothing model and the number of observed trends. Regardless of model, increasing the number of observations over a time-course resulted in more accurate error estimates, although the improvement was not particularly large between 10 and 20 samples per trend. The presented algorithm was able to identify systematic errors as small as 2.5 % under a wide range of conditions. Both the simulation framework and error correction method represent examples of time-course analysis that can be applied to further developments in (1)H-NMR methodology and the more general application of quantitative metabolomics.
AGM2015: Antineutrino Global Map 2015
Usman, S.M.; Jocher, G.R.; Dye, S.T.; McDonough, W.F.; Learned, J.G.
2015-01-01
Every second greater than 1025 antineutrinos radiate to space from Earth, shining like a faint antineutrino star. Underground antineutrino detectors have revealed the rapidly decaying fission products inside nuclear reactors, verified the long-lived radioactivity inside our planet, and informed sensitive experiments for probing fundamental physics. Mapping the anisotropic antineutrino flux and energy spectrum advance geoscience by defining the amount and distribution of radioactive power within Earth while critically evaluating competing compositional models of the planet. We present the Antineutrino Global Map 2015 (AGM2015), an experimentally informed model of Earth’s surface antineutrino flux over the 0 to 11 MeV energy spectrum, along with an assessment of systematic errors. The open source AGM2015 provides fundamental predictions for experiments, assists in strategic detector placement to determine neutrino mass hierarchy, and aids in identifying undeclared nuclear reactors. We use cosmochemically and seismologically informed models of the radiogenic lithosphere/mantle combined with the estimated antineutrino flux, as measured by KamLAND and Borexino, to determine the Earth’s total antineutrino luminosity at . We find a dominant flux of geo-neutrinos, predict sub-equal crust and mantle contributions, with ~1% of the total flux from man-made nuclear reactors. PMID:26323507
AGM2015: Antineutrino Global Map 2015.
Usman, S M; Jocher, G R; Dye, S T; McDonough, W F; Learned, J G
2015-09-01
Every second greater than 10(25) antineutrinos radiate to space from Earth, shining like a faint antineutrino star. Underground antineutrino detectors have revealed the rapidly decaying fission products inside nuclear reactors, verified the long-lived radioactivity inside our planet, and informed sensitive experiments for probing fundamental physics. Mapping the anisotropic antineutrino flux and energy spectrum advance geoscience by defining the amount and distribution of radioactive power within Earth while critically evaluating competing compositional models of the planet. We present the Antineutrino Global Map 2015 (AGM2015), an experimentally informed model of Earth's surface antineutrino flux over the 0 to 11 MeV energy spectrum, along with an assessment of systematic errors. The open source AGM2015 provides fundamental predictions for experiments, assists in strategic detector placement to determine neutrino mass hierarchy, and aids in identifying undeclared nuclear reactors. We use cosmochemically and seismologically informed models of the radiogenic lithosphere/mantle combined with the estimated antineutrino flux, as measured by KamLAND and Borexino, to determine the Earth's total antineutrino luminosity at . We find a dominant flux of geo-neutrinos, predict sub-equal crust and mantle contributions, with ~1% of the total flux from man-made nuclear reactors.
Evaluation of Bias Correction Method for Satellite-Based Rainfall Data
Bhatti, Haris Akram; Rientjes, Tom; Haile, Alemseged Tamiru; Habib, Emad; Verhoef, Wouter
2016-01-01
With the advances in remote sensing technology, satellite-based rainfall estimates are gaining attraction in the field of hydrology, particularly in rainfall-runoff modeling. Since estimates are affected by errors correction is required. In this study, we tested the high resolution National Oceanic and Atmospheric Administration’s (NOAA) Climate Prediction Centre (CPC) morphing technique (CMORPH) satellite rainfall product (CMORPH) in the Gilgel Abbey catchment, Ethiopia. CMORPH data at 8 km-30 min resolution is aggregated to daily to match in-situ observations for the period 2003–2010. Study objectives are to assess bias of the satellite estimates, to identify optimum window size for application of bias correction and to test effectiveness of bias correction. Bias correction factors are calculated for moving window (MW) sizes and for sequential windows (SW’s) of 3, 5, 7, 9, …, 31 days with the aim to assess error distribution between the in-situ observations and CMORPH estimates. We tested forward, central and backward window (FW, CW and BW) schemes to assess the effect of time integration on accumulated rainfall. Accuracy of cumulative rainfall depth is assessed by Root Mean Squared Error (RMSE). To systematically correct all CMORPH estimates, station based bias factors are spatially interpolated to yield a bias factor map. Reliability of interpolation is assessed by cross validation. The uncorrected CMORPH rainfall images are multiplied by the interpolated bias map to result in bias corrected CMORPH estimates. Findings are evaluated by RMSE, correlation coefficient (r) and standard deviation (SD). Results showed existence of bias in the CMORPH rainfall. It is found that the 7 days SW approach performs best for bias correction of CMORPH rainfall. The outcome of this study showed the efficiency of our bias correction approach. PMID:27314363
Evaluation of Bias Correction Method for Satellite-Based Rainfall Data.
Bhatti, Haris Akram; Rientjes, Tom; Haile, Alemseged Tamiru; Habib, Emad; Verhoef, Wouter
2016-06-15
With the advances in remote sensing technology, satellite-based rainfall estimates are gaining attraction in the field of hydrology, particularly in rainfall-runoff modeling. Since estimates are affected by errors correction is required. In this study, we tested the high resolution National Oceanic and Atmospheric Administration's (NOAA) Climate Prediction Centre (CPC) morphing technique (CMORPH) satellite rainfall product (CMORPH) in the Gilgel Abbey catchment, Ethiopia. CMORPH data at 8 km-30 min resolution is aggregated to daily to match in-situ observations for the period 2003-2010. Study objectives are to assess bias of the satellite estimates, to identify optimum window size for application of bias correction and to test effectiveness of bias correction. Bias correction factors are calculated for moving window (MW) sizes and for sequential windows (SW's) of 3, 5, 7, 9, …, 31 days with the aim to assess error distribution between the in-situ observations and CMORPH estimates. We tested forward, central and backward window (FW, CW and BW) schemes to assess the effect of time integration on accumulated rainfall. Accuracy of cumulative rainfall depth is assessed by Root Mean Squared Error (RMSE). To systematically correct all CMORPH estimates, station based bias factors are spatially interpolated to yield a bias factor map. Reliability of interpolation is assessed by cross validation. The uncorrected CMORPH rainfall images are multiplied by the interpolated bias map to result in bias corrected CMORPH estimates. Findings are evaluated by RMSE, correlation coefficient (r) and standard deviation (SD). Results showed existence of bias in the CMORPH rainfall. It is found that the 7 days SW approach performs best for bias correction of CMORPH rainfall. The outcome of this study showed the efficiency of our bias correction approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swift, Alicia L; Grogan, Brandon R; Mullens, James Allen
This work tests a systematic procedure for analyzing data acquired by the Nuclear Materials Identification System (NMIS) at Oak Ridge National Laboratory with fast-neutron imaging and high-purity germanium (HPGe) gamma spectrometry capabilities. NMIS has been under development by the US Department of Energy Office of Nuclear Verification since the mid-1990s, and prior to that by the National Nuclear Security Administration Y-12 National Security Complex, with NMIS having been used at Y-12 for template matching to confirm inventory and receipts. In this present work, a complete set of NMIS time coincidence, fast-neutron imaging, fission mapping, and HPGe gamma-ray spectrometry data wasmore » obtained from Monte Carlo simulations for a configuration of fissile and nonfissile materials. The data were then presented for analysis to someone who had no prior knowledge of the unknown object to accurately determine the description of the object by applying the previously-mentioned procedure to the simulated data. The best approximation indicated that the unknown object was composed of concentric cylinders: a void inside highly enriched uranium (HEU) (84.7 {+-} 1.9 wt % {sup 235}U), surrounded by depleted uranium, surrounded by polyethylene. The final estimation of the unknown object had the correct materials and geometry, with error in the radius estimates of material regions varying from 1.58% at best and 4.25% at worst; error in the height estimates varied from 2% to 12%. The error in the HEU enrichment estimate was 5.9 wt % (within 2.5{sigma} of the true value). The accuracies of the determinations could be adequate for arms control applications. Future work will apply this iterative reconstructive procedure to other unknown objects to further test and refine it.« less
Large scale Wyoming transportation data: a resource planning tool
O'Donnell, Michael S.; Fancher, Tammy S.; Freeman, Aaron T.; Ziegler, Abra E.; Bowen, Zachary H.; Aldridge, Cameron L.
2014-01-01
The U.S. Geological Survey Fort Collins Science Center created statewide roads data for the Bureau of Land Management Wyoming State Office using 2009 aerial photography from the National Agriculture Imagery Program. The updated roads data resolves known concerns of omission, commission, and inconsistent representation of map scale, attribution, and ground reference dates which were present in the original source data. To ensure a systematic and repeatable approach of capturing roads on the landscape using on-screen digitizing from true color National Agriculture Imagery Program imagery, we developed a photogrammetry key and quality assurance/quality control protocols. Therefore, the updated statewide roads data will support the Bureau of Land Management’s resource management requirements with a standardized map product representing 2009 ground conditions. The updated Geographic Information System roads data set product, represented at 1:4,000 and +/- 10 meters spatial accuracy, contains 425,275 kilometers within eight attribute classes. The quality control of these products indicated a 97.7 percent accuracy of aspatial information and 98.0 percent accuracy of spatial locations. Approximately 48 percent of the updated roads data was corrected for spatial errors of greater than 1 meter relative to the pre-existing road data. Twenty-six percent of the updated roads involved correcting spatial errors of greater than 5 meters and 17 percent of the updated roads involved correcting spatial errors of greater than 9 meters. The Bureau of Land Management, other land managers, and researchers can use these new statewide roads data set products to support important studies and management decisions regarding land use changes, transportation and planning needs, transportation safety, wildlife applications, and other studies.
Model and algorithm based on accurate realization of dwell time in magnetorheological finishing.
Song, Ci; Dai, Yifan; Peng, Xiaoqiang
2010-07-01
Classically, a dwell-time map is created with a method such as deconvolution or numerical optimization, with the input being a surface error map and influence function. This dwell-time map is the numerical optimum for minimizing residual form error, but it takes no account of machine dynamics limitations. The map is then reinterpreted as machine speeds and accelerations or decelerations in a separate operation. In this paper we consider combining the two methods in a single optimization by the use of a constrained nonlinear optimization model, which regards both the two-norm of the surface residual error and the dwell-time gradient as an objective function. This enables machine dynamic limitations to be properly considered within the scope of the optimization, reducing both residual surface error and polishing times. Further simulations are introduced to demonstrate the feasibility of the model, and the velocity map is reinterpreted from the dwell time, meeting the requirement of velocity and the limitations of accelerations or decelerations. Indeed, the model and algorithm can also apply to other computer-controlled subaperture methods.
RCSLenS: The Red Cluster Sequence Lensing Survey
NASA Astrophysics Data System (ADS)
Hildebrandt, H.; Choi, A.; Heymans, C.; Blake, C.; Erben, T.; Miller, L.; Nakajima, R.; van Waerbeke, L.; Viola, M.; Buddendiek, A.; Harnois-Déraps, J.; Hojjati, A.; Joachimi, B.; Joudaki, S.; Kitching, T. D.; Wolf, C.; Gwyn, S.; Johnson, N.; Kuijken, K.; Sheikhbahaee, Z.; Tudorica, A.; Yee, H. K. C.
2016-11-01
We present the Red Cluster Sequence Lensing Survey (RCSLenS), an application of the methods developed for the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) to the ˜785 deg2, multi-band imaging data of the Red-sequence Cluster Survey 2. This project represents the largest public, sub-arcsecond seeing, multi-band survey to date that is suited for weak gravitational lensing measurements. With a careful assessment of systematic errors in shape measurements and photometric redshifts, we extend the use of this data set to allow cross-correlation analyses between weak lensing observables and other data sets. We describe the imaging data, the data reduction, masking, multi-colour photometry, photometric redshifts, shape measurements, tests for systematic errors, and a blinding scheme to allow for more objective measurements. In total, we analyse 761 pointings with r-band coverage, which constitutes our lensing sample. Residual large-scale B-mode systematics prevent the use of this shear catalogue for cosmic shear science. The effective number density of lensing sources over an unmasked area of 571.7 deg2 and down to a magnitude limit of r ˜ 24.5 is 8.1 galaxies per arcmin2 (weighted: 5.5 arcmin-2) distributed over 14 patches on the sky. Photometric redshifts based on four-band griz data are available for 513 pointings covering an unmasked area of 383.5 deg2. We present weak lensing mass reconstructions of some example clusters as well as the full survey representing the largest areas that have been mapped in this way. All our data products are publicly available through Canadian Astronomy Data Centre at http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/community/rcslens/query.html in a format very similar to the CFHTLenS data release.
Crocce, M.
2015-12-09
We study the clustering of galaxies detected at i < 22.5 in the Science Verification observations of the Dark Energy Survey (DES). Two-point correlation functions are measured using 2.3 × 106 galaxies over a contiguous 116 deg 2 region in five bins of photometric redshift width Δz = 0.2 in the range 0.2 < z < 1.2. The impact of photometric redshift errors is assessed by comparing results using a template-based photo-zalgorithm (BPZ) to a machine-learning algorithm (TPZ). A companion paper presents maps of several observational variables (e.g. seeing, sky brightness) which could modulate the galaxy density. Here we characterizemore » and mitigate systematic errors on the measured clustering which arise from these observational variables, in addition to others such as Galactic dust and stellar contamination. After correcting for systematic effects, we then measure galaxy bias over a broad range of linear scales relative to mass clustering predicted from the Planck Λ cold dark matter model, finding agreement with the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) measurements with χ 2 of 4.0 (8.7) with 5 degrees of freedom for the TPZ (BPZ) redshifts. Furthermore, we test a ‘linear bias’ model, in which the galaxy clustering is a fixed multiple of the predicted non-linear dark matter clustering. The precision of the data allows us to determine that the linear bias model describes the observed galaxy clustering to 2.5 percent accuracy down to scales at least 4–10 times smaller than those on which linear theory is expected to be sufficient.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crocce, M.
We study the clustering of galaxies detected at i < 22.5 in the Science Verification observations of the Dark Energy Survey (DES). Two-point correlation functions are measured using 2.3 × 106 galaxies over a contiguous 116 deg 2 region in five bins of photometric redshift width Δz = 0.2 in the range 0.2 < z < 1.2. The impact of photometric redshift errors is assessed by comparing results using a template-based photo-zalgorithm (BPZ) to a machine-learning algorithm (TPZ). A companion paper presents maps of several observational variables (e.g. seeing, sky brightness) which could modulate the galaxy density. Here we characterizemore » and mitigate systematic errors on the measured clustering which arise from these observational variables, in addition to others such as Galactic dust and stellar contamination. After correcting for systematic effects, we then measure galaxy bias over a broad range of linear scales relative to mass clustering predicted from the Planck Λ cold dark matter model, finding agreement with the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) measurements with χ 2 of 4.0 (8.7) with 5 degrees of freedom for the TPZ (BPZ) redshifts. Furthermore, we test a ‘linear bias’ model, in which the galaxy clustering is a fixed multiple of the predicted non-linear dark matter clustering. The precision of the data allows us to determine that the linear bias model describes the observed galaxy clustering to 2.5 percent accuracy down to scales at least 4–10 times smaller than those on which linear theory is expected to be sufficient.« less
The Effect of Systematic Error in Forced Oscillation Testing
NASA Technical Reports Server (NTRS)
Williams, Brianne Y.; Landman, Drew; Flory, Isaac L., IV; Murphy, Patrick C.
2012-01-01
One of the fundamental problems in flight dynamics is the formulation of aerodynamic forces and moments acting on an aircraft in arbitrary motion. Classically, conventional stability derivatives are used for the representation of aerodynamic loads in the aircraft equations of motion. However, for modern aircraft with highly nonlinear and unsteady aerodynamic characteristics undergoing maneuvers at high angle of attack and/or angular rates the conventional stability derivative model is no longer valid. Attempts to formulate aerodynamic model equations with unsteady terms are based on several different wind tunnel techniques: for example, captive, wind tunnel single degree-of-freedom, and wind tunnel free-flying techniques. One of the most common techniques is forced oscillation testing. However, the forced oscillation testing method does not address the systematic and systematic correlation errors from the test apparatus that cause inconsistencies in the measured oscillatory stability derivatives. The primary objective of this study is to identify the possible sources and magnitude of systematic error in representative dynamic test apparatuses. Sensitivities of the longitudinal stability derivatives to systematic errors are computed, using a high fidelity simulation of a forced oscillation test rig, and assessed using both Design of Experiments and Monte Carlo methods.
Global Warming Estimation from MSU
NASA Technical Reports Server (NTRS)
Prabhakara, C.; Iacovazzi, Robert; Yoo, Jung-Moon
1998-01-01
Microwave Sounding Unit (MSU) radiometer observations in Ch 2 (53.74 GHz) from sequential, sun-synchronous, polar-orbiting NOAA satellites contain small systematic errors. Some of these errors are time-dependent and some are time-independent. Small errors in Ch 2 data of successive satellites arise from calibration differences. Also, successive NOAA satellites tend to have different Local Equatorial Crossing Times (LECT), which introduce differences in Ch 2 data due to the diurnal cycle. These two sources of systematic error are largely time independent. However, because of atmospheric drag, there can be a drift in the LECT of a given satellite, which introduces time-dependent systematic errors. One of these errors is due to the progressive chance in the diurnal cycle and the other is due to associated chances in instrument heating by the sun. In order to infer global temperature trend from the these MSU data, we have eliminated explicitly the time-independent systematic errors. Both of the time-dependent errors cannot be assessed from each satellite. For this reason, their cumulative effect on the global temperature trend is evaluated implicitly. Christy et al. (1998) (CSL). based on their method of analysis of the MSU Ch 2 data, infer a global temperature cooling trend (-0.046 K per decade) from 1979 to 1997, although their near nadir measurements yield near zero trend (0.003 K/decade). Utilising an independent method of analysis, we infer global temperature warmed by 0.12 +/- 0.06 C per decade from the observations of the MSU Ch 2 during the period 1980 to 1997.
NASA Astrophysics Data System (ADS)
Glover, Paul W. J.
2016-07-01
When scientists apply Archie's first law they often include an extra parameter a, which was introduced about 10 years after the equation's first publication by Winsauer et al. (1952), and which is sometimes called the "tortuosity" or "lithology" parameter. This parameter is not, however, theoretically justified. Paradoxically, the Winsauer et al. (1952) form of Archie's law often performs better than the original, more theoretically correct version. The difference in the cementation exponent calculated from these two forms of Archie's law is important, and can lead to a misestimation of reserves by at least 20 % for typical reservoir parameter values. We have examined the apparent paradox, and conclude that while the theoretical form of the law is correct, the data that we have been analysing with Archie's law have been in error. There are at least three types of systematic error that are present in most measurements: (i) a porosity error, (ii) a pore fluid salinity error, and (iii) a temperature error. Each of these systematic errors is sufficient to ensure that a non-unity value of the parameter a is required in order to fit the electrical data well. Fortunately, the inclusion of this parameter in the fit has compensated for the presence of the systematic errors in the electrical and porosity data, leading to a value of cementation exponent that is correct. The exceptions are those cementation exponents that have been calculated for individual core plugs. We make a number of recommendations for reducing the systematic errors that contribute to the problem and suggest that the value of the parameter a may now be used as an indication of data quality.
[Errors in Peruvian medical journals references].
Huamaní, Charles; Pacheco-Romero, José
2009-01-01
References are fundamental in our studies; an adequate selection is asimportant as an adequate description. To determine the number of errors in a sample of references found in Peruvian medical journals. We reviewed 515 scientific papers references selected by systematic randomized sampling and corroborated reference information with the original document or its citation in Pubmed, LILACS or SciELO-Peru. We found errors in 47,6% (245) of the references, identifying 372 types of errors; the most frequent were errors in presentation style (120), authorship (100) and title (100), mainly due to spelling mistakes (91). References error percentage was high, varied and multiple. We suggest systematic revision of references in the editorial process as well as to extend the discussion on this theme. references, periodicals, research, bibliometrics.
Two States Mapping Based Time Series Neural Network Model for Compensation Prediction Residual Error
NASA Astrophysics Data System (ADS)
Jung, Insung; Koo, Lockjo; Wang, Gi-Nam
2008-11-01
The objective of this paper was to design a model of human bio signal data prediction system for decreasing of prediction error using two states mapping based time series neural network BP (back-propagation) model. Normally, a lot of the industry has been applied neural network model by training them in a supervised manner with the error back-propagation algorithm for time series prediction systems. However, it still has got a residual error between real value and prediction result. Therefore, we designed two states of neural network model for compensation residual error which is possible to use in the prevention of sudden death and metabolic syndrome disease such as hypertension disease and obesity. We determined that most of the simulation cases were satisfied by the two states mapping based time series prediction model. In particular, small sample size of times series were more accurate than the standard MLP model.
NASA Astrophysics Data System (ADS)
Steger, Stefan; Brenning, Alexander; Bell, Rainer; Glade, Thomas
2016-12-01
There is unanimous agreement that a precise spatial representation of past landslide occurrences is a prerequisite to produce high quality statistical landslide susceptibility models. Even though perfectly accurate landslide inventories rarely exist, investigations of how landslide inventory-based errors propagate into subsequent statistical landslide susceptibility models are scarce. The main objective of this research was to systematically examine whether and how inventory-based positional inaccuracies of different magnitudes influence modelled relationships, validation results, variable importance and the visual appearance of landslide susceptibility maps. The study was conducted for a landslide-prone site located in the districts of Amstetten and Waidhofen an der Ybbs, eastern Austria, where an earth-slide point inventory was available. The methodological approach comprised an artificial introduction of inventory-based positional errors into the present landslide data set and an in-depth evaluation of subsequent modelling results. Positional errors were introduced by artificially changing the original landslide position by a mean distance of 5, 10, 20, 50 and 120 m. The resulting differently precise response variables were separately used to train logistic regression models. Odds ratios of predictor variables provided insights into modelled relationships. Cross-validation and spatial cross-validation enabled an assessment of predictive performances and permutation-based variable importance. All analyses were additionally carried out with synthetically generated data sets to further verify the findings under rather controlled conditions. The results revealed that an increasing positional inventory-based error was generally related to increasing distortions of modelling and validation results. However, the findings also highlighted that interdependencies between inventory-based spatial inaccuracies and statistical landslide susceptibility models are complex. The systematic comparisons of 12 models provided valuable evidence that the respective error-propagation was not only determined by the degree of positional inaccuracy inherent in the landslide data, but also by the spatial representation of landslides and the environment, landslide magnitude, the characteristics of the study area, the selected classification method and an interplay of predictors within multiple variable models. Based on the results, we deduced that a direct propagation of minor to moderate inventory-based positional errors into modelling results can be partly counteracted by adapting the modelling design (e.g. generalization of input data, opting for strongly generalizing classifiers). Since positional errors within landslide inventories are common and subsequent modelling and validation results are likely to be distorted, the potential existence of inventory-based positional inaccuracies should always be considered when assessing landslide susceptibility by means of empirical models.
Autism and Equine-Assisted Interventions: A Systematic Mapping Review
ERIC Educational Resources Information Center
McDaniel Peters, B. Caitlin; Wood, Wendy
2017-01-01
This systematic mapping review mapped current knowledge of equine-assisted interventions for people with autism to help guide future practice and research. Thirty-three studies including children and adolescents with autism, 3 of which confirmed diagnoses, were reviewed. Five types of equine-assisted activities were identified across 25 studies,…
Rotational wind indicator enhances control of rotated displays
NASA Technical Reports Server (NTRS)
Cunningham, H. A.; Pavel, Misha
1991-01-01
Rotation by 108 deg of the spatial mapping between a visual display and a manual input device produces large spatial errors in a discrete aiming task. These errors are not easily corrected by voluntary mental effort, but the central nervous system does adapt gradually to the new mapping. Bernotat (1970) showed that adding true hand position to a 90 deg rotated display improved performance of a compensatory tracking task, but tracking error rose again upon removal of the explicit cue. This suggests that the explicit error signal did not induce changes in the neural mapping, but rather allowed the operator to reduce tracking error using a higher mental strategy. In this report, we describe an explicit visual display enhancement applied to a 108 deg rotated discrete aiming task. A 'wind indicator' corresponding to the effect of the mapping rotation is displayed on the operator-controlled cursor. The human operator is instructed to oppose the virtual force represented by the indicator, as one would do if flying an airplane in a crosswind. This enhancement reduces spatial aiming error in the first 10 minutes of practice by an average of 70 percent when compared to a no enhancement control condition. Moreover, it produces adaptation aftereffect, which is evidence of learning by neural adaptation rather than by mental strategy. Finally, aiming error does not rise upon removal of the explicit cue.
Component Analysis of Errors on PERSIANN Precipitation Estimates over Urmia Lake Basin, IRAN
NASA Astrophysics Data System (ADS)
Ghajarnia, N.; Daneshkar Arasteh, P.; Liaghat, A. M.; Araghinejad, S.
2016-12-01
In this study, PERSIANN daily dataset is evaluated from 2000 to 2011 in 69 pixels over Urmia Lake basin in northwest of Iran. Different analytical approaches and indexes are used to examine PERSIANN precision in detection and estimation of rainfall rate. The residuals are decomposed into Hit, Miss and FA estimation biases while continues decomposition of systematic and random error components are also analyzed seasonally and categorically. New interpretation of estimation accuracy named "reliability on PERSIANN estimations" is introduced while the changing manners of existing categorical/statistical measures and error components are also seasonally analyzed over different rainfall rate categories. This study yields new insights into the nature of PERSIANN errors over Urmia lake basin as a semi-arid region in the middle-east, including the followings: - The analyzed contingency table indexes indicate better detection precision during spring and fall. - A relatively constant level of error is generally observed among different categories. The range of precipitation estimates at different rainfall rate categories is nearly invariant as a sign for the existence of systematic error. - Low level of reliability is observed on PERSIANN estimations at different categories which are mostly associated with high level of FA error. However, it is observed that as the rate of precipitation increase, the ability and precision of PERSIANN in rainfall detection also increases. - The systematic and random error decomposition in this area shows that PERSIANN has more difficulty in modeling the system and pattern of rainfall rather than to have bias due to rainfall uncertainties. The level of systematic error also considerably increases in heavier rainfalls. It is also important to note that PERSIANN error characteristics at each season varies due to the condition and rainfall patterns of that season which shows the necessity of seasonally different approach for the calibration of this product. Overall, we believe that different error component's analysis performed in this study, can substantially help any further local studies for post-calibration and bias reduction of PERSIANN estimations.
Galli, C
2001-07-01
It is well established that the use of polychromatic radiation in spectrophotometric assays leads to excursions from the Beer-Lambert limit. This Note models the resulting systematic error as a function of assay spectral width, slope of molecular extinction coefficient, and analyte concentration. The theoretical calculations are compared with recent experimental results; a parameter is introduced which can be used to estimate the magnitude of the systematic error in both chromatographic and nonchromatographic spectrophotometric assays. It is important to realize that the polychromatic radiation employed in common laboratory equipment can yield assay errors up to approximately 4%, even at absorption levels generally considered 'safe' (i.e. absorption <1). Thus careful consideration of instrumental spectral width, analyte concentration, and slope of molecular extinction coefficient is required to ensure robust analytical methods.
Navigation errors encountered using weather-mapping radar for helicopter IFR guidance to oil rigs
NASA Technical Reports Server (NTRS)
Phillips, J. D.; Bull, J. S.; Hegarty, D. M.; Dugan, D. C.
1980-01-01
In 1978 a joint NASA-FAA helicopter flight test was conducted to examine the use of weather-mapping radar for IFR guidance during landing approaches to oil rig helipads. The following navigation errors were measured: total system error, radar-range error, radar-bearing error, and flight technical error. Three problem areas were identified: (1) operational problems leading to pilot blunders, (2) poor navigation to the downwind final approach point, and (3) pure homing on final approach. Analysis of these problem areas suggests improvement in the radar equipment, approach procedure, and pilot training, and gives valuable insight into the development of future navigation aids to serve the off-shore oil industry.
Taylor, C; Parker, J; Stratford, J; Warren, M
2018-05-01
Although all systematic and random positional setup errors can be corrected for in entirety during on-line image-guided radiotherapy, the use of a specified action level, below which no correction occurs, is also an option. The following service evaluation aimed to investigate the use of this 3 mm action level for on-line image assessment and correction (online, systematic set-up error and weekly evaluation) for lower extremity sarcoma, and understand the impact on imaging frequency and patient positioning error within one cancer centre. All patients were immobilised using a thermoplastic shell attached to a plastic base and an individual moulded footrest. A retrospective analysis of 30 patients was performed. Patient setup and correctional data derived from cone beam CT analysis was retrieved. The timing, frequency and magnitude of corrections were evaluated. The population systematic and random error was derived. 20% of patients had no systematic corrections over the duration of treatment, and 47% had one. The maximum number of systematic corrections per course of radiotherapy was 4, which occurred for 2 patients. 34% of episodes occurred within the first 5 fractions. All patients had at least one observed translational error during their treatment greater than 0.3 cm, and 80% of patients had at least one observed translational error during their treatment greater than 0.5 cm. The population systematic error was 0.14 cm, 0.10 cm, 0.14 cm and random error was 0.27 cm, 0.22 cm, 0.23 cm in the lateral, caudocranial and anteroposterial directions. The required Planning Target Volume margin for the study population was 0.55 cm, 0.41 cm and 0.50 cm in the lateral, caudocranial and anteroposterial directions. The 3 mm action level for image assessment and correction prior to delivery reduced the imaging burden and focussed intervention on patients that exhibited greater positional variability. This strategy could be an efficient deployment of departmental resources if full daily correction of positional setup error is not possible. Copyright © 2017. Published by Elsevier Ltd.
Helical tomotherapy setup variations in canine nasal tumor patients immobilized with a bite block.
Kubicek, Lyndsay N; Seo, Songwon; Chappell, Richard J; Jeraj, Robert; Forrest, Lisa J
2012-01-01
The purpose of our study was to compare setup variation in four degrees of freedom (vertical, longitudinal, lateral, and roll) between canine nasal tumor patients immobilized with a mattress and bite block, versus a mattress alone. Our secondary aim was to define a clinical target volume (CTV) to planning target volume (PTV) expansion margin based on our mean systematic error values associated with nasal tumor patients immobilized by a mattress and bite block. We evaluated six parameters for setup corrections: systematic error, random error, patient-patient variation in systematic errors, the magnitude of patient-specific random errors (root mean square [RMS]), distance error, and the variation of setup corrections from zero shift. The variations in all parameters were statistically smaller in the group immobilized by a mattress and bite block. The mean setup corrections in the mattress and bite block group ranged from 0.91 mm to 1.59 mm for the translational errors and 0.5°. Although most veterinary radiation facilities do not have access to Image-guided radiotherapy (IGRT), we identified a need for more rigid fixation, established the value of adding IGRT to veterinary radiation therapy, and define the CTV-PTV setup error margin for canine nasal tumor patients immobilized in a mattress and bite block. © 2012 Veterinary Radiology & Ultrasound.
First Demonstration of ECHO: an External Calibrator for Hydrogen Observatories
NASA Astrophysics Data System (ADS)
Jacobs, Daniel C.; Burba, Jacob; Bowman, Judd D.; Neben, Abraham R.; Stinnett, Benjamin; Turner, Lauren; Johnson, Kali; Busch, Michael; Allison, Jay; Leatham, Marc; Serrano Rodriguez, Victoria; Denney, Mason; Nelson, David
2017-03-01
Multiple instruments are pursuing constraints on dark energy, observing reionization and opening a window on the dark ages through the detection and characterization of the 21 cm hydrogen line for redshifts ranging from ˜1 to 25. These instruments, including CHIME in the sub-meter and HERA in the meter bands, are wide-field arrays with multiple-degree beams, typically operating in transit mode. Accurate knowledge of their primary beams is critical for separation of bright foregrounds from the desired cosmological signals, but difficult to achieve through astronomical observations alone. Previous beam calibration work at low frequencies has focused on model verification and does not address the need of 21 cm experiments for routine beam mapping, to the horizon, of the as-built array. We describe the design and methodology of a drone-mounted calibrator, the External Calibrator for Hydrogen Observatories (ECHO), that aims to address this need. We report on a first set of trials to calibrate low-frequency dipoles at 137 MHz and compare ECHO measurements to an established beam-mapping system based on transmissions from the Orbcomm satellite constellation. We create beam maps of two dipoles at a 9° resolution and find sample noise ranging from 1% at the zenith to 100% in the far sidelobes. Assuming this sample noise represents the error in the measurement, the higher end of this range is not yet consistent with the desired requirement but is an improvement on Orbcomm. The overall performance of ECHO suggests that the desired precision and angular coverage is achievable in practice with modest improvements. We identify the main sources of systematic error and uncertainty in our measurements and describe the steps needed to overcome them.
Dynamically correcting two-qubit gates against any systematic logical error
NASA Astrophysics Data System (ADS)
Calderon Vargas, Fernando Antonio
The reliability of quantum information processing depends on the ability to deal with noise and error in an efficient way. A significant source of error in many settings is coherent, systematic gate error. This work introduces a set of composite pulse sequences that generate maximally entangling gates and correct all systematic errors within the logical subspace to arbitrary order. These sequences are applica- ble for any two-qubit interaction Hamiltonian, and make no assumptions about the underlying noise mechanism except that it is constant on the timescale of the opera- tion. The prime use for our results will be in cases where one has limited knowledge of the underlying physical noise and control mechanisms, highly constrained control, or both. In particular, we apply these composite pulse sequences to the quantum system formed by two capacitively coupled singlet-triplet qubits, which is charac- terized by having constrained control and noise sources that are low frequency and of a non-Markovian nature.
Hughes, Charmayne M L; Baber, Chris; Bienkiewicz, Marta; Worthington, Andrew; Hazell, Alexa; Hermsdörfer, Joachim
2015-01-01
Approximately 33% of stroke patients have difficulty performing activities of daily living, often committing errors during the planning and execution of such activities. The objective of this study was to evaluate the ability of the human error identification (HEI) technique SHERPA (Systematic Human Error Reduction and Prediction Approach) to predict errors during the performance of daily activities in stroke patients with left and right hemisphere lesions. Using SHERPA we successfully predicted 36 of the 38 observed errors, with analysis indicating that the proportion of predicted and observed errors was similar for all sub-tasks and severity levels. HEI results were used to develop compensatory cognitive strategies that clinicians could employ to reduce or prevent errors from occurring. This study provides evidence for the reliability and validity of SHERPA in the design of cognitive rehabilitation strategies in stroke populations.
Internal robustness: systematic search for systematic bias in SN Ia data
NASA Astrophysics Data System (ADS)
Amendola, Luca; Marra, Valerio; Quartin, Miguel
2013-04-01
A great deal of effort is currently being devoted to understanding, estimating and removing systematic errors in cosmological data. In the particular case of Type Ia supernovae, systematics are starting to dominate the error budget. Here we propose a Bayesian tool for carrying out a systematic search for systematic contamination. This serves as an extension to the standard goodness-of-fit tests and allows not only to cross-check raw or processed data for the presence of systematics but also to pin-point the data that are most likely contaminated. We successfully test our tool with mock catalogues and conclude that the Union2.1 data do not possess a significant amount of systematics. Finally, we show that if one includes in Union2.1 the supernovae that originally failed the quality cuts, our tool signals the presence of systematics at over 3.8σ confidence level.
Jiang, Jie; Yu, Wenbo; Zhang, Guangjun
2017-01-01
Navigation accuracy is one of the key performance indicators of an inertial navigation system (INS). Requirements for an accuracy assessment of an INS in a real work environment are exceedingly urgent because of enormous differences between real work and laboratory test environments. An attitude accuracy assessment of an INS based on the intensified high dynamic star tracker (IHDST) is particularly suitable for a real complex dynamic environment. However, the coupled systematic coordinate errors of an INS and the IHDST severely decrease the attitude assessment accuracy of an INS. Given that, a high-accuracy decoupling estimation method of the above systematic coordinate errors based on the constrained least squares (CLS) method is proposed in this paper. The reference frame of the IHDST is firstly converted to be consistent with that of the INS because their reference frames are completely different. Thereafter, the decoupling estimation model of the systematic coordinate errors is established and the CLS-based optimization method is utilized to estimate errors accurately. After compensating for error, the attitude accuracy of an INS can be assessed based on IHDST accurately. Both simulated experiments and real flight experiments of aircraft are conducted, and the experimental results demonstrate that the proposed method is effective and shows excellent performance for the attitude accuracy assessment of an INS in a real work environment. PMID:28991179
Evaluation of very long baseline interferometry atmospheric modeling improvements
NASA Technical Reports Server (NTRS)
Macmillan, D. S.; Ma, C.
1994-01-01
We determine the improvement in baseline length precision and accuracy using new atmospheric delay mapping functions and MTT by analyzing the NASA Crustal Dynamics Project research and development (R&D) experiments and the International Radio Interferometric Surveying (IRIS) A experiments. These mapping functions reduce baseline length scatter by about 20% below that using the CfA2.2 dry and Chao wet mapping functions. With the newer mapping functions, average station vertical scatter inferred from observed length precision (given by length repeatabilites) is 11.4 mm for the 1987-1990 monthly R&D series of experiments and 5.6 mm for the 3-week-long extended research and development experiment (ERDE) series. The inferred monthly R&D station vertical scatter is reduced by 2 mm or by 7 mm is a root-sum-square (rss) sense. Length repeatabilities are optimum when observations below a 7-8 deg elevation cutoff are removed from the geodetic solution. Analyses of IRIS-A data from 1984 through 1991 and the monthly R&D experiments both yielded a nonatmospheric unmodeled station vertical error or about 8 mm. In addition, analysis of the IRIS-A exeriments revealed systematic effects in the evolution of some baseline length measurements. The length rate of change has an apparent acceleration, and the length evolution has a quasi-annual signature. We show that the origin of these effects is unlikely to be related to atmospheric modeling errors. Rates of change of the transatlantic Westford-Wettzell and Richmond-Wettzell baseline lengths calculated from 1988 through 1991 agree with the NUVEL-1 plate motion model (Argus and Gordon, 1991) to within 1 mm/yr. Short-term (less than 90 days) variations of IRIS-A baseline length measurements contribute more than 90% of the observed scatter about a best fit line, and this short-term scatter has large variations on an annual time scale.
Soil pH Mapping with an On-The-Go Sensor
Schirrmann, Michael; Gebbers, Robin; Kramer, Eckart; Seidel, Jan
2011-01-01
Soil pH is a key parameter for crop productivity, therefore, its spatial variation should be adequately addressed to improve precision management decisions. Recently, the Veris pH Manager™, a sensor for high-resolution mapping of soil pH at the field scale, has been made commercially available in the US. While driving over the field, soil pH is measured on-the-go directly within the soil by ion selective antimony electrodes. The aim of this study was to evaluate the Veris pH Manager™ under farming conditions in Germany. Sensor readings were compared with data obtained by standard protocols of soil pH assessment. Experiments took place under different scenarios: (a) controlled tests in the lab, (b) semicontrolled test on transects in a stop-and-go mode, and (c) tests under practical conditions in the field with the sensor working in its typical on-the-go mode. Accuracy issues, problems, options, and potential benefits of the Veris pH Manager™ were addressed. The tests demonstrated a high degree of linearity between standard laboratory values and sensor readings. Under practical conditions in the field (scenario c), the measure of fit (r2) for the regression between the on-the-go measurements and the reference data was 0.71, 0.63, and 0.84, respectively. Field-specific calibration was necessary to reduce systematic errors. Accuracy of the on-the-go maps was considerably higher compared with the pH maps obtained by following the standard protocols, and the error in calculating lime requirements was reduced by about one half. However, the system showed some weaknesses due to blockage by residual straw and weed roots. If these problems were solved, the on-the-go sensor investigated here could be an efficient alternative to standard sampling protocols as a basis for liming in Germany. PMID:22346591
Soil pH mapping with an on-the-go sensor.
Schirrmann, Michael; Gebbers, Robin; Kramer, Eckart; Seidel, Jan
2011-01-01
Soil pH is a key parameter for crop productivity, therefore, its spatial variation should be adequately addressed to improve precision management decisions. Recently, the Veris pH Manager™, a sensor for high-resolution mapping of soil pH at the field scale, has been made commercially available in the US. While driving over the field, soil pH is measured on-the-go directly within the soil by ion selective antimony electrodes. The aim of this study was to evaluate the Veris pH Manager™ under farming conditions in Germany. Sensor readings were compared with data obtained by standard protocols of soil pH assessment. Experiments took place under different scenarios: (a) controlled tests in the lab, (b) semicontrolled test on transects in a stop-and-go mode, and (c) tests under practical conditions in the field with the sensor working in its typical on-the-go mode. Accuracy issues, problems, options, and potential benefits of the Veris pH Manager™ were addressed. The tests demonstrated a high degree of linearity between standard laboratory values and sensor readings. Under practical conditions in the field (scenario c), the measure of fit (r(2)) for the regression between the on-the-go measurements and the reference data was 0.71, 0.63, and 0.84, respectively. Field-specific calibration was necessary to reduce systematic errors. Accuracy of the on-the-go maps was considerably higher compared with the pH maps obtained by following the standard protocols, and the error in calculating lime requirements was reduced by about one half. However, the system showed some weaknesses due to blockage by residual straw and weed roots. If these problems were solved, the on-the-go sensor investigated here could be an efficient alternative to standard sampling protocols as a basis for liming in Germany.
NASA Technical Reports Server (NTRS)
Huang, Dong; Yang, Wenze; Tan, Bin; Rautiainen, Miina; Zhang, Ping; Hu, Jiannan; Shabanov, Nikolay V.; Linder, Sune; Knyazikhin, Yuri; Myneni, Ranga B.
2006-01-01
The validation of moderate-resolution satellite leaf area index (LAI) products such as those operationally generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor data requires reference LAI maps developed from field LAI measurements and fine-resolution satellite data. Errors in field measurements and satellite data determine the accuracy of the reference LAI maps. This paper describes a method by which reference maps of known accuracy can be generated with knowledge of errors in fine-resolution satellite data. The method is demonstrated with data from an international field campaign in a boreal coniferous forest in northern Sweden, and Enhanced Thematic Mapper Plus images. The reference LAI map thus generated is used to assess modifications to the MODIS LAI/fPAR algorithm recently implemented to derive the next generation of the MODIS LAI/fPAR product for this important biome type.
Thayer, Edward C.; Olson, Maynard V.; Karp, Richard M.
1999-01-01
Genetic and physical maps display the relative positions of objects or markers occurring within a target DNA molecule. In constructing maps, the primary objective is to determine the ordering of these objects. A further objective is to assign a coordinate to each object, indicating its distance from a reference end of the target molecule. This paper describes a computational method and a body of software for assigning coordinates to map objects, given a solution or partial solution to the ordering problem. We describe our method in the context of multiple–complete–digest (MCD) mapping, but it should be applicable to a variety of other mapping problems. Because of errors in the data or insufficient clone coverage to uniquely identify the true ordering of the map objects, a partial ordering is typically the best one can hope for. Once a partial ordering has been established, one often seeks to overlay a metric along the map to assess the distances between the map objects. This problem often proves intractable because of data errors such as erroneous local length measurements (e.g., large clone lengths on low-resolution physical maps). We present a solution to the coordinate assignment problem for MCD restriction-fragment mapping, in which a coordinated set of single-enzyme restriction maps are simultaneously constructed. We show that the coordinate assignment problem can be expressed as the solution of a system of linear constraints. If the linear system is free of inconsistencies, it can be solved using the standard Bellman–Ford algorithm. In the more typical case where the system is inconsistent, our program perturbs it to find a new consistent system of linear constraints, close to those of the given inconsistent system, using a modified Bellman–Ford algorithm. Examples are provided of simple map inconsistencies and the methods by which our program detects candidate data errors and directs the user to potential suspect regions of the map. PMID:9927487
Ronchi, Roberta; Revol, Patrice; Katayama, Masahiro; Rossetti, Yves; Farnè, Alessandro
2011-01-01
During the procedure of prism adaptation, subjects execute pointing movements to visual targets under a lateral optical displacement: As consequence of the discrepancy between visual and proprioceptive inputs, their visuo-motor activity is characterized by pointing errors. The perception of such final errors triggers error-correction processes that eventually result into sensori-motor compensation, opposite to the prismatic displacement (i.e., after-effects). Here we tested whether the mere observation of erroneous pointing movements, similar to those executed during prism adaptation, is sufficient to produce adaptation-like after-effects. Neurotypical participants observed, from a first-person perspective, the examiner's arm making incorrect pointing movements that systematically overshot visual targets location to the right, thus simulating a rightward optical deviation. Three classical after-effect measures (proprioceptive, visual and visual-proprioceptive shift) were recorded before and after first-person's perspective observation of pointing errors. Results showed that mere visual exposure to an arm that systematically points on the right-side of a target (i.e., without error correction) produces a leftward after-effect, which mostly affects the observer's proprioceptive estimation of her body midline. In addition, being exposed to such a constant visual error induced in the observer the illusion “to feel” the seen movement. These findings indicate that it is possible to elicit sensori-motor after-effects by mere observation of movement errors. PMID:21731649
Vanderhoof, Melanie; Fairaux, Nicole; Beal, Yen-Ju G.; Hawbaker, Todd J.
2017-01-01
The Landsat Burned Area Essential Climate Variable (BAECV), developed by the U.S. Geological Survey (USGS), capitalizes on the long temporal availability of Landsat imagery to identify burned areas across the conterminous United States (CONUS) (1984–2015). Adequate validation of such products is critical for their proper usage and interpretation. Validation of coarse-resolution products often relies on independent data derived from moderate-resolution sensors (e.g., Landsat). Validation of Landsat products, in turn, is challenging because there is no corresponding source of high-resolution, multispectral imagery that has been systematically collected in space and time over the entire temporal extent of the Landsat archive. Because of this, comparison between high-resolution images and Landsat science products can help increase user's confidence in the Landsat science products, but may not, alone, be adequate. In this paper, we demonstrate an approach to systematically validate the Landsat-derived BAECV product. Burned area extent was mapped for Landsat image pairs using a manually trained semi-automated algorithm that was manually edited across 28 path/rows and five different years (1988, 1993, 1998, 2003, 2008). Three datasets were independently developed by three analysts and the datasets were integrated on a pixel by pixel basis in which at least one to all three analysts were required to agree a pixel was burned. We found that errors within our Landsat reference dataset could be minimized by using the rendition of the dataset in which pixels were mapped as burned if at least two of the three analysts agreed. BAECV errors of omission and commission for the detection of burned pixels averaged 42% and 33%, respectively for CONUS across all five validation years. Errors of omission and commission were lowest across the western CONUS, for example in the shrub and scrublands of the Arid West (31% and 24%, respectively), and highest in the grasslands and agricultural lands of the Great Plains in central CONUS (62% and 57%, respectively). The BAECV product detected most (> 65%) fire events > 10 ha across the western CONUS (Arid and Mountain West ecoregions). Our approach and results demonstrate that a thorough validation of Landsat science products can be completed with independent Landsat-derived reference data, but could be strengthened by the use of complementary sources of high-resolution data.
Bartz, Daniel; Hatrick, Kerr; Hesse, Christian W; Müller, Klaus-Robert; Lemm, Steven
2013-01-01
Robust and reliable covariance estimates play a decisive role in financial and many other applications. An important class of estimators is based on factor models. Here, we show by extensive Monte Carlo simulations that covariance matrices derived from the statistical Factor Analysis model exhibit a systematic error, which is similar to the well-known systematic error of the spectrum of the sample covariance matrix. Moreover, we introduce the Directional Variance Adjustment (DVA) algorithm, which diminishes the systematic error. In a thorough empirical study for the US, European, and Hong Kong stock market we show that our proposed method leads to improved portfolio allocation.
Bartz, Daniel; Hatrick, Kerr; Hesse, Christian W.; Müller, Klaus-Robert; Lemm, Steven
2013-01-01
Robust and reliable covariance estimates play a decisive role in financial and many other applications. An important class of estimators is based on factor models. Here, we show by extensive Monte Carlo simulations that covariance matrices derived from the statistical Factor Analysis model exhibit a systematic error, which is similar to the well-known systematic error of the spectrum of the sample covariance matrix. Moreover, we introduce the Directional Variance Adjustment (DVA) algorithm, which diminishes the systematic error. In a thorough empirical study for the US, European, and Hong Kong stock market we show that our proposed method leads to improved portfolio allocation. PMID:23844016
NASA Technical Reports Server (NTRS)
Aronstein, David L.; Smith, J. Scott; Zielinski, Thomas P.; Telfer, Randal; Tournois, Severine C.; Moore, Dustin B.; Fienup, James R.
2016-01-01
The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES). In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing (also known as phase retrieval), and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) plate scale measurements made using a Pseudo-Nonredundant Mask (PNRM), and 3) pupil geometry predictions as a function of SI and field point, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse translation diversity sweeps instead of focus sweeps, in which a sub-aperture is translated andor rotated across the exit pupil of the system.Several optical-performance requirements that were verified during this ISIM-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also describes the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis of focus-sweep data, used to establish the uncertainties of the wavefront error maps.
NASA Technical Reports Server (NTRS)
Aronstein, David L.; Smith, J. Scott; Zielinski, Thomas P.; Telfer, Randal; Tournois, Severine C.; Moore, Dustin B.; Fienup, James R.
2016-01-01
The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES) test chamber. In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing, and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) F-number and pupil-distortion measurements made using a pseudo-nonredundant mask (PNRM), and 3) pupil geometry predictions as a function of SI and field point, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse translation diversity sweeps instead of focus sweeps, in which a sub-aperture is translated and/or rotated across the exit pupil of the system. Several optical-performance requirements that were verified during this ISIM-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also describes the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis of focus-sweep data, used to establish the uncertainties of the wavefront-error maps.
NASA Astrophysics Data System (ADS)
Hinton, Courtney; Punjabi, Alkesh; Ali, Halima
2008-11-01
The simple map is the simplest map that has topology of divertor tokamaks [1]. Recently, the action-angle coordinates for simple map are analytically calculated, and simple map is constructed in action-angle coordinates [2]. Action-angle coordinates for simple map can not be inverted to real space coordinates (R,Z). Because there is logarithmic singularity on the ideal separatrix, trajectories can not cross separatrix [2]. Simple map in action-angle coordinates is applied to calculate stochastic broadening due to magnetic noise and field errors. Mode numbers for noise + field errors from the DIII-D tokamak are used. Mode numbers are (m,n)=(3,1), (4,1), (6,2), (7,2), (8,2), (9,3), (10,3), (11,3), (12,3) [3]. The common amplitude δ is varied from 0.8X10-5 to 2.0X10-5. For this noise and field errors, the width of stochastic layer in simple map is calculated. This work is supported by US Department of Energy grants DE-FG02-07ER54937, DE-FG02-01ER54624 and DE-FG02-04ER54793 1. A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys. Let. A 364, 140--145 (2007). 2. O. Kerwin, A. Punjabi, and H. Ali, to appear in Physics of Plasmas. 3. A. Punjabi and H. Ali, P1.012, 35^th EPS Conference on Plasma Physics, June 9-13, 2008, Hersonissos, Crete, Greece.
Use of total electron content data to analyze ionosphere electron density gradients
NASA Astrophysics Data System (ADS)
Nava, B.; Radicella, S. M.; Leitinger, R.; Coïsson, P.
In the presence of electron density gradients the thin shell approximation for the ionosphere, used together with a simple mapping function to convert slant total electron content (TEC) to vertical TEC, could lead to TEC conversion errors. These "mapping function errors" can therefore be used to detect the electron density gradients in the ionosphere. In the present work GPS derived slant TEC data have been used to investigate the effects of the electron density gradients in the middle and low latitude ionosphere under geomagnetic quiet and disturbed conditions. In particular the data corresponding to the geographic area of the American Sector for the days 5-7 April 2000 have been used to perform a complete analysis of mapping function errors based on the "coinciding pierce point technique". The results clearly illustrate the electron density gradient effects according to the locations considered and to the actual levels of disturbance of the ionosphere. In addition, the possibility to assess an ionospheric shell height able to minimize the mapping function errors has been verified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Taoran, E-mail: taoran.li.duke@gmail.com; Wu, Qiuwen; Yang, Yun
Purpose: An important challenge facing online adaptive radiation therapy is the development of feasible and efficient quality assurance (QA). This project aimed to validate the deliverability of online adapted plans and develop a proof-of-concept online delivery monitoring system for online adaptive radiation therapy QA. Methods: The first part of this project benchmarked automatically online adapted prostate treatment plans using traditional portal dosimetry IMRT QA. The portal dosimetry QA results of online adapted plans were compared to original (unadapted) plans as well as randomly selected prostate IMRT plans from our clinic. In the second part, an online delivery monitoring system wasmore » designed and validated via a simulated treatment with intentional multileaf collimator (MLC) errors. This system was based on inputs from the dynamic machine information (DMI), which continuously reports actual MLC positions and machine monitor units (MUs) at intervals of 50 ms or less during delivery. Based on the DMI, the system performed two levels of monitoring/verification during the delivery: (1) dynamic monitoring of cumulative fluence errors resulting from leaf position deviations and visualization using fluence error maps (FEMs); and (2) verification of MLC positions against the treatment plan for potential errors in MLC motion and data transfer at each control point. Validation of the online delivery monitoring system was performed by introducing intentional systematic MLC errors (ranging from 0.5 to 2 mm) to the DMI files for both leaf banks. These DMI files were analyzed by the proposed system to evaluate the system’s performance in quantifying errors and revealing the source of errors, as well as to understand patterns in the FEMs. In addition, FEMs from 210 actual prostate IMRT beams were analyzed using the proposed system to further validate its ability to catch and identify errors, as well as establish error magnitude baselines for prostate IMRT delivery. Results: Online adapted plans were found to have similar delivery accuracy in comparison to clinical IMRT plans when validated with portal dosimetry IMRT QA. FEMs for the simulated deliveries with intentional MLC errors exhibited distinct patterns for different MLC error magnitudes and directions, indicating that the proposed delivery monitoring system is highly specific in detecting the source of errors. Implementing the proposed QA system for online adapted plans revealed excellent delivery accuracy: over 99% of leaf position differences were within 0.5 mm, and >99% of pixels in the FEMs had fluence errors within 0.5 MU. Patterns present in the FEMs and MLC control point analysis for actual patient cases agreed with the error pattern analysis results, further validating the system’s ability to reveal and differentiate MLC deviations. Calculation of the fluence map based on the DMI was performed within 2 ms after receiving each DMI input. Conclusions: The proposed online delivery monitoring system requires minimal additional resources and time commitment to the current clinical workflow while still maintaining high sensitivity to leaf position errors and specificity to error types. The presented online delivery monitoring system therefore represents a promising QA system candidate for online adaptive radiation therapy.« less
Li, Taoran; Wu, Qiuwen; Yang, Yun; Rodrigues, Anna; Yin, Fang-Fang; Jackie Wu, Q
2015-01-01
An important challenge facing online adaptive radiation therapy is the development of feasible and efficient quality assurance (QA). This project aimed to validate the deliverability of online adapted plans and develop a proof-of-concept online delivery monitoring system for online adaptive radiation therapy QA. The first part of this project benchmarked automatically online adapted prostate treatment plans using traditional portal dosimetry IMRT QA. The portal dosimetry QA results of online adapted plans were compared to original (unadapted) plans as well as randomly selected prostate IMRT plans from our clinic. In the second part, an online delivery monitoring system was designed and validated via a simulated treatment with intentional multileaf collimator (MLC) errors. This system was based on inputs from the dynamic machine information (DMI), which continuously reports actual MLC positions and machine monitor units (MUs) at intervals of 50 ms or less during delivery. Based on the DMI, the system performed two levels of monitoring/verification during the delivery: (1) dynamic monitoring of cumulative fluence errors resulting from leaf position deviations and visualization using fluence error maps (FEMs); and (2) verification of MLC positions against the treatment plan for potential errors in MLC motion and data transfer at each control point. Validation of the online delivery monitoring system was performed by introducing intentional systematic MLC errors (ranging from 0.5 to 2 mm) to the DMI files for both leaf banks. These DMI files were analyzed by the proposed system to evaluate the system's performance in quantifying errors and revealing the source of errors, as well as to understand patterns in the FEMs. In addition, FEMs from 210 actual prostate IMRT beams were analyzed using the proposed system to further validate its ability to catch and identify errors, as well as establish error magnitude baselines for prostate IMRT delivery. Online adapted plans were found to have similar delivery accuracy in comparison to clinical IMRT plans when validated with portal dosimetry IMRT QA. FEMs for the simulated deliveries with intentional MLC errors exhibited distinct patterns for different MLC error magnitudes and directions, indicating that the proposed delivery monitoring system is highly specific in detecting the source of errors. Implementing the proposed QA system for online adapted plans revealed excellent delivery accuracy: over 99% of leaf position differences were within 0.5 mm, and >99% of pixels in the FEMs had fluence errors within 0.5 MU. Patterns present in the FEMs and MLC control point analysis for actual patient cases agreed with the error pattern analysis results, further validating the system's ability to reveal and differentiate MLC deviations. Calculation of the fluence map based on the DMI was performed within 2 ms after receiving each DMI input. The proposed online delivery monitoring system requires minimal additional resources and time commitment to the current clinical workflow while still maintaining high sensitivity to leaf position errors and specificity to error types. The presented online delivery monitoring system therefore represents a promising QA system candidate for online adaptive radiation therapy.
NASA Astrophysics Data System (ADS)
Braitenberg, Carla; Sampietro, Daniele; Pivetta, Tommaso; Zuliani, David; Barbagallo, Alfio; Fabris, Paolo; Rossi, Lorenzo; Fabbri, Julius; Mansi, Ahmed Hamdi
2016-04-01
Underground caves bear a natural hazard due to their possible evolution into a sink hole. Mapping of all existing caves could be useful for general civil usages as natural deposits or tourism and sports. Natural caves exist globally and are typical in karst areas. We investigate the resolution power of modern gravity campaigns to systematically detect all void caves of a minimum size in a given area. Both aerogravity and terrestrial acquisitions are considered. Positioning of the gravity station is fastest with GNSS methods the performance of which is investigated. The estimates are based on a benchmark cave of which the geometry is known precisely through a laser-scan survey. The cave is the Grotta Gigante cave in NE Italy in the classic karst. The gravity acquisition is discussed, where heights have been acquired with dual-frequency geodetic GNSS receivers and Total Station. Height acquisitions with non-geodetic low-cost receivers are shown to be useful, although the error on the gravity field is larger. The cave produces a signal of -1.5 × 10-5 m/s2, with a clear elliptic geometry. We analyze feasibility of airborne gravity acquisitions for the purpose of systematically mapping void caves. It is found that observations from fixed wing aircraft cannot resolve the caves, but observations from slower and low-flying helicopters or drones do. In order to detect the presence of caves the size of the benchmark cave, systematic terrestrial acquisitions require a density of three stations on square 500 by 500 m2 tiles. The question has a large impact on civil and environmental purposes, since it will allow planning of urban development at a safe distance from subsurface caves. The survey shows that a systematic coverage of the karst would have the benefit to recover the position of all of the greater existing void caves.
Development of large Area Covering Height Model
NASA Astrophysics Data System (ADS)
Jacobsen, K.
2014-04-01
Height information is a basic part of topographic mapping. Only in special areas frequent update of height models is required, usually the update cycle is quite lower as for horizontal map information. Some height models are available free of charge in the internet; for commercial height models a fee has to be paid. Mostly digital surface models (DSM) with the height of the visible surface are given and not the bare ground height, as required for standard mapping. Nevertheless by filtering of DSM, digital terrain models (DTM) with the height of the bare ground can be generated with the exception of dense forest areas where no height of the bare ground is available. These height models may be better as the DTM of some survey administrations. In addition several DTM from national survey administrations are classified, so as alternative the commercial or free of charge available information from internet can be used. The widely used SRTM DSM is available also as ACE-2 GDEM corrected by altimeter data for systematic height errors caused by vegetation and orientation errors. But the ACE-2 GDEM did not respect neighbourhood information. With the worldwide covering TanDEM-X height model, distributed starting 2014 by Airbus Defence and Space (former ASTRIUM) as WorldDEM, higher level of details and accuracy is reached as with other large area covering height models. At first the raw-version of WorldDEM will be available, followed by an edited version and finally as WorldDEM-DTM a height model of the bare ground. With 12 m spacing and a relative standard deviation of 1.2 m within an area of 1° x 1° an accuracy and resolution level is reached, satisfying also for larger map scales. For limited areas with the HDEM also a height model with 6 m spacing and a relative vertical accuracy of 0.5 m can be generated on demand. By bathymetric LiDAR and stereo images also the height of the sea floor can be determined if the water has satisfying transparency. Another method of getting bathymetric height information is an analysis of the wave structure in optical and SAR-images. An overview about the absolute and relative accuracy, the consistency, error distribution and other characteristics as influence of terrain inclination and aspects is given. Partially by post processing the height models can or have to be improved.
The effect of respiratory induced density variations on non-TOF PET quantitation in the lung.
Holman, Beverley F; Cuplov, Vesna; Hutton, Brian F; Groves, Ashley M; Thielemans, Kris
2016-04-21
Accurate PET quantitation requires a matched attenuation map. Obtaining matched CT attenuation maps in the thorax is difficult due to the respiratory cycle which causes both motion and density changes. Unlike with motion, little attention has been given to the effects of density changes in the lung on PET quantitation. This work aims to explore the extent of the errors caused by pulmonary density attenuation map mismatch on dynamic and static parameter estimates. Dynamic XCAT phantoms were utilised using clinically relevant (18)F-FDG and (18)F-FMISO time activity curves for all organs within the thorax to estimate the expected parameter errors. The simulations were then validated with PET data from 5 patients suffering from idiopathic pulmonary fibrosis who underwent PET/Cine-CT. The PET data were reconstructed with three gates obtained from the Cine-CT and the average Cine-CT. The lung TACs clearly displayed differences between true and measured curves with error depending on global activity distribution at the time of measurement. The density errors from using a mismatched attenuation map were found to have a considerable impact on PET quantitative accuracy. Maximum errors due to density mismatch were found to be as high as 25% in the XCAT simulation. Differences in patient derived kinetic parameter estimates and static concentration between the extreme gates were found to be as high as 31% and 14%, respectively. Overall our results show that respiratory associated density errors in the attenuation map affect quantitation throughout the lung, not just regions near boundaries. The extent of this error is dependent on the activity distribution in the thorax and hence on the tracer and time of acquisition. Consequently there may be a significant impact on estimated kinetic parameters throughout the lung.
The effect of respiratory induced density variations on non-TOF PET quantitation in the lung
NASA Astrophysics Data System (ADS)
Holman, Beverley F.; Cuplov, Vesna; Hutton, Brian F.; Groves, Ashley M.; Thielemans, Kris
2016-04-01
Accurate PET quantitation requires a matched attenuation map. Obtaining matched CT attenuation maps in the thorax is difficult due to the respiratory cycle which causes both motion and density changes. Unlike with motion, little attention has been given to the effects of density changes in the lung on PET quantitation. This work aims to explore the extent of the errors caused by pulmonary density attenuation map mismatch on dynamic and static parameter estimates. Dynamic XCAT phantoms were utilised using clinically relevant 18F-FDG and 18F-FMISO time activity curves for all organs within the thorax to estimate the expected parameter errors. The simulations were then validated with PET data from 5 patients suffering from idiopathic pulmonary fibrosis who underwent PET/Cine-CT. The PET data were reconstructed with three gates obtained from the Cine-CT and the average Cine-CT. The lung TACs clearly displayed differences between true and measured curves with error depending on global activity distribution at the time of measurement. The density errors from using a mismatched attenuation map were found to have a considerable impact on PET quantitative accuracy. Maximum errors due to density mismatch were found to be as high as 25% in the XCAT simulation. Differences in patient derived kinetic parameter estimates and static concentration between the extreme gates were found to be as high as 31% and 14%, respectively. Overall our results show that respiratory associated density errors in the attenuation map affect quantitation throughout the lung, not just regions near boundaries. The extent of this error is dependent on the activity distribution in the thorax and hence on the tracer and time of acquisition. Consequently there may be a significant impact on estimated kinetic parameters throughout the lung.
Comparing Planck and WMAP: Maps, Spectra, and Parameters
NASA Astrophysics Data System (ADS)
Larson, D.; Weiland, J. L.; Hinshaw, G.; Bennett, C. L.
2015-03-01
We examine the consistency of the 9 yr WMAP data and the first-release Planck data. We specifically compare sky maps, power spectra, and the inferred Λ cold dark matter (ΛCDM) cosmological parameters. Residual dipoles are seen in the WMAP and Planck sky map differences, but their amplitudes are consistent within the quoted uncertainties, and they are not large enough to explain the widely noted differences in angular power spectra at higher l. We remove the residual dipoles and use templates to remove residual Galactic foregrounds; after doing so, the residual difference maps exhibit a quadrupole and other large-scale systematic structure. We identify this structure as possibly originating from Planck’s beam sidelobe pick-up, but note that it appears to have insignificant cosmological impact. We develop an extension of the internal linear combination technique to find the minimum-variance difference between the WMAP and Planck sky maps; again we find features that plausibly originate in the Planck data. Lacking access to the Planck time-ordered data we cannot further assess these features. We examine ΛCDM model fits to the angular power spectra and conclude that the ˜2.5% difference in the spectra at multipoles greater than l˜ 100 is significant at the 3-5σ level, depending on how beam uncertainties are handled in the data. We revisit the analysis of WMAP’s beam data to address the power spectrum differences and conclude that previously derived uncertainties are robust and cannot explain the power spectrum differences. In fact, any remaining WMAP errors are most likely to exacerbate the difference. Finally, we examine the consistency of the ΛCDM parameters inferred from each data set taking into account the fact that both experiments observe the same sky, but cover different multipole ranges, apply different sky masks, and have different noise. We find that, while individual parameter values agree within the uncertainties, the six parameters taken together are discrepant at the ˜6σ level, with {χ }2}=56 for 6 degrees of freedom (probability to exceed, PTE = 3× {{10}-10}). The nature of this discrepancy is explored: of the six parameters, {{χ }2} is best improved by marginalizing over {{{Ω}c}{{h}2}, giving {χ }2}=5.2 for 5 degrees of freedom. As an exercise, we find that perturbing the WMAP window function by its dominant beam error profile has little effect on {{{Ω}c}{{h}2}, while perturbing the Planck window function by its corresponding error profile has a much greater effect on {{Ω}c}{{h}2}.
Use of Intervention Mapping to Enhance Health Care Professional Practice: A Systematic Review
ERIC Educational Resources Information Center
Durks, Desire; Fernandez-Llimos, Fernando; Hossain, Lutfun N.; Franco-Trigo, Lucia; Benrimoj, Shalom I.; Sabater-Hernández, Daniel
2017-01-01
Background: Intervention Mapping is a planning protocol for developing behavior change interventions, the first three steps of which are intended to establish the foundations and rationales of such interventions. Aim: This systematic review aimed to identify programs that used Intervention Mapping to plan changes in health care professional…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carson, M; Molineu, A; Taylor, P
Purpose: To analyze the most recent results of IROC Houston’s anthropomorphic H&N phantom to determine the nature of failing irradiations and the feasibility of altering pass/fail credentialing criteria. Methods: IROC Houston’s H&N phantom, used for IMRT credentialing for NCI-sponsored clinical trials, requires that an institution’s treatment plan must agree with measurement within 7% (TLD doses) and ≥85% pixels must pass 7%/4 mm gamma analysis. 156 phantom irradiations (November 2014 – October 2015) were re-evaluated using tighter criteria: 1) 5% TLD and 5%/4 mm, 2) 5% TLD and 5%/3 mm, 3) 4% TLD and 4%/4 mm, and 4) 3% TLD andmore » 3%/3 mm. Failure/poor performance rates were evaluated with respect to individual film and TLD performance by location in the phantom. Overall poor phantom results were characterized qualitatively as systematic (dosimetric) errors, setup errors/positional shifts, global but non-systematic errors, and errors affecting only a local region. Results: The pass rate for these phantoms using current criteria is 90%. Substituting criteria 1-4 reduces the overall pass rate to 77%, 70%, 63%, and 37%, respectively. Statistical analyses indicated the probability of noise-induced TLD failure at the 5% criterion was <0.5%. Using criteria 1, TLD results were most often the cause of failure (86% failed TLD while 61% failed film), with most failures identified in the primary PTV (77% cases). Other criteria posed similar results. Irradiations that failed from film only were overwhelmingly associated with phantom shifts/setup errors (≥80% cases). Results failing criteria 1 were primarily diagnosed as systematic: 58% of cases. 11% were setup/positioning errors, 8% were global non-systematic errors, and 22% were local errors. Conclusion: This study demonstrates that 5% TLD and 5%/4 mm gamma criteria may be both practically and theoretically achievable. Further work is necessary to diagnose and resolve dosimetric inaccuracy in these trials, particularly for systematic dose errors. This work is funded by NCI Grant CA180803.« less
Results from a NIST-EPA Interagency Agreement on Understanding Systematic Measurement Error in Thermal-Optical Analysis for PM Black Carbon Using Response Surfaces and Surface Confidence Intervals will be presented at the American Association for Aerosol Research (AAAR) 24th Annu...
Richards, Emilie J; Brown, Jeremy M; Barley, Anthony J; Chong, Rebecca A; Thomson, Robert C
2018-02-19
The use of large genomic datasets in phylogenetics has highlighted extensive topological variation across genes. Much of this discordance is assumed to result from biological processes. However, variation among gene trees can also be a consequence of systematic error driven by poor model fit, and the relative importance of biological versus methodological factors in explaining gene tree variation is a major unresolved question. Using mitochondrial genomes to control for biological causes of gene tree variation, we estimate the extent of gene tree discordance driven by systematic error and employ posterior prediction to highlight the role of model fit in producing this discordance. We find that the amount of discordance among mitochondrial gene trees is similar to the amount of discordance found in other studies that assume only biological causes of variation. This similarity suggests that the role of systematic error in generating gene tree variation is underappreciated and critical evaluation of fit between assumed models and the data used for inference is important for the resolution of unresolved phylogenetic questions.
Dakin, Helen; Abel, Lucy; Burns, Richéal; Yang, Yaling
2018-02-12
The Health Economics Research Centre (HERC) Database of Mapping Studies was established in 2013, based on a systematic review of studies developing mapping algorithms predicting EQ-5D. The Mapping onto Preference-based measures reporting Standards (MAPS) statement was published in 2015 to improve reporting of mapping studies. We aimed to update the systematic review and assess the extent to which recently-published studies mapping condition-specific quality of life or clinical measures to the EQ-5D follow the guidelines published in the MAPS Reporting Statement. A published systematic review was updated using the original inclusion criteria to include studies published by December 2016. We included studies reporting novel algorithms mapping from any clinical measure or patient-reported quality of life measure to either the EQ-5D-3L or EQ-5D-5L. Titles and abstracts of all identified studies and the full text of papers published in 2016 were assessed against the MAPS checklist. The systematic review identified 144 mapping studies reporting 190 algorithms mapping from 110 different source instruments to EQ-5D. Of the 17 studies published in 2016, nine (53%) had titles that followed the MAPS statement guidance, although only two (12%) had abstracts that fully addressed all MAPS items. When the full text of these papers was assessed against the complete MAPS checklist, only two studies (12%) were found to fulfil or partly fulfil all criteria. Of the 141 papers (across all years) that included abstracts, the items on the MAPS statement checklist that were fulfilled by the largest number of studies comprised having a structured abstract (95%) and describing target instruments (91%) and source instruments (88%). The number of published mapping studies continues to increase. Our updated database provides a convenient way to identify mapping studies for use in cost-utility analysis. Most recent studies do not fully address all items on the MAPS checklist.
The accuracy of the measurements in Ulugh Beg's star catalogue
NASA Astrophysics Data System (ADS)
Krisciunas, K.
1992-12-01
The star catalogue compiled by Ulugh Beg and his collaborators in Samarkand (ca. 1437) is the only catalogue primarily based on original observations between the times of Ptolemy and Tycho Brahe. Evans (1987) has given convincing evidence that Ulugh Beg's star catalogue was based on measurements made with a zodiacal armillary sphere graduated to 15(') , with interpolation to 0.2 units. He and Shevchenko (1990) were primarily interested in the systematic errors in ecliptic longitude. Shevchenko's analysis of the random errors was limited to the twelve zodiacal constellations. We have analyzed all 843 ecliptic longitudes and latitudes attributed to Ulugh Beg by Knobel (1917). This required multiplying all the longitude errors by the respective values of the cosine of the celestial latitudes. We find a random error of +/- 17minp 7 for ecliptic longitude and +/- 16minp 5 for ecliptic latitude. On the whole, the random errors are largest near the ecliptic, decreasing towards the ecliptic poles. For all of Ulugh Beg's measurements (excluding outliers) the mean systematic error is -10minp 8 +/- 0minp 8 for ecliptic longitude and 7minp 5 +/- 0minp 7 for ecliptic latitude, with the errors in the sense ``computed minus Ulugh Beg''. For the brighter stars (those designated alpha , beta , and gamma in the respective constellations), the mean systematic errors are -11minp 3 +/- 1minp 9 for ecliptic longitude and 9minp 4 +/- 1minp 5 for ecliptic latitude. Within the errors this matches the systematic error in both coordinates for alpha Vir. With greater confidence we may conclude that alpha Vir was the principal reference star in the catalogues of Ulugh Beg and Ptolemy. Evans, J. 1987, J. Hist. Astr. 18, 155. Knobel, E. B. 1917, Ulugh Beg's Catalogue of Stars, Washington, D. C.: Carnegie Institution. Shevchenko, M. 1990, J. Hist. Astr. 21, 187.
Astrometric properties of the Tautenburg Plate Scanner
NASA Astrophysics Data System (ADS)
Brunzendorf, Jens; Meusinger, Helmut
The Tautenburg Plate Scanner (TPS) is an advanced plate-measuring machine run by the Thüringer Landessternwarte Tautenburg (Karl Schwarzschild Observatory), where the machine is housed. It is capable of digitising photographic plates up to 30 cm × 30 cm in size. In our poster, we reported on tests and preliminary results of its astrometric properties. The essential components of the TPS consist of an x-y table movable between an illumination system and a direct imaging system. A telecentric lens images the light transmitted through the photographic emulsion onto a CCD line of 6000 pixels of 10 µm square size each. All components are mounted on a massive air-bearing table. Scanning is performed in lanes of up to 55 mm width by moving the x-y table in a continuous drift-scan mode perpendicular to the CCD line. The analogue output from the CCD is digitised to 12 bit with a total signal/noise ratio of 1000 : 1, corresponding to a photographic density range of three. The pixel map is produced as a series of optionally overlapping lane scans. The pixel data are stored onto CD-ROM or DAT. A Tautenburg Schmidt plate 24 cm × 24 cm in size is digitised within 2.5 hours resulting in 1.3 GB of data. Subsequent high-level data processing is performed off-line on other computers. During the scanning process, the geometry of the optical components is kept fixed. The optimal focussing of the optics is performed prior to the scan. Due to the telecentric lens refocussing is not required. Therefore, the main source of astrometric errors (beside the emulsion itself) are mechanical imperfections in the drive system, which have to be divided into random and systematic ones. The r.m.s. repeatability over the whole plate as measured by repeated scans of the same plate is about 0.5 µm for each axis. The mean plate-to-plate accuracy of the object positions on two plates with the same epoch and the same plate centre has been determined to be about 1 µm. This accuracy is comparable to results obtained with established measuring machines used for astrometric purposes and is mainly limited by the emulsion itself. The mechanical design of the x-y table introduces low-frequency systematic errors of up to 5 µm on both axes. Because of the high stability of the machine it is expected that these deviations from a perfectly uniform coordinate system will remain systematic on a long timescale. Such systematic errors can be corrected either directly once they have been determined or in the course of the general astrometric reduction process. The TPS is well suited for accurate relative measurements like proper motions on plates with the same scale and plate centre. The systematic errors of the x-y table can be determined by interferometric means, and there are plans for this in the next future.
Method for Pre-Conditioning a Measured Surface Height Map for Model Validation
NASA Technical Reports Server (NTRS)
Sidick, Erkin
2012-01-01
This software allows one to up-sample or down-sample a measured surface map for model validation, not only without introducing any re-sampling errors, but also eliminating the existing measurement noise and measurement errors. Because the re-sampling of a surface map is accomplished based on the analytical expressions of Zernike-polynomials and a power spectral density model, such re-sampling does not introduce any aliasing and interpolation errors as is done by the conventional interpolation and FFT-based (fast-Fourier-transform-based) spatial-filtering method. Also, this new method automatically eliminates the measurement noise and other measurement errors such as artificial discontinuity. The developmental cycle of an optical system, such as a space telescope, includes, but is not limited to, the following two steps: (1) deriving requirements or specs on the optical quality of individual optics before they are fabricated through optical modeling and simulations, and (2) validating the optical model using the measured surface height maps after all optics are fabricated. There are a number of computational issues related to model validation, one of which is the "pre-conditioning" or pre-processing of the measured surface maps before using them in a model validation software tool. This software addresses the following issues: (1) up- or down-sampling a measured surface map to match it with the gridded data format of a model validation tool, and (2) eliminating the surface measurement noise or measurement errors such that the resulted surface height map is continuous or smoothly-varying. So far, the preferred method used for re-sampling a surface map is two-dimensional interpolation. The main problem of this method is that the same pixel can take different values when the method of interpolation is changed among the different methods such as the "nearest," "linear," "cubic," and "spline" fitting in Matlab. The conventional, FFT-based spatial filtering method used to eliminate the surface measurement noise or measurement errors can also suffer from aliasing effects. During re-sampling of a surface map, this software preserves the low spatial-frequency characteristic of a given surface map through the use of Zernike-polynomial fit coefficients, and maintains mid- and high-spatial-frequency characteristics of the given surface map by the use of a PSD model derived from the two-dimensional PSD data of the mid- and high-spatial-frequency components of the original surface map. Because this new method creates the new surface map in the desired sampling format from analytical expressions only, it does not encounter any aliasing effects and does not cause any discontinuity in the resultant surface map.
Unaccounted source of systematic errors in measurements of the Newtonian gravitational constant G
NASA Astrophysics Data System (ADS)
DeSalvo, Riccardo
2015-06-01
Many precision measurements of G have produced a spread of results incompatible with measurement errors. Clearly an unknown source of systematic errors is at work. It is proposed here that most of the discrepancies derive from subtle deviations from Hooke's law, caused by avalanches of entangled dislocations. The idea is supported by deviations from linearity reported by experimenters measuring G, similarly to what is observed, on a larger scale, in low-frequency spring oscillators. Some mitigating experimental apparatus modifications are suggested.
Partial Deconvolution with Inaccurate Blur Kernel.
Ren, Dongwei; Zuo, Wangmeng; Zhang, David; Xu, Jun; Zhang, Lei
2017-10-17
Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.
13Check_RNA: A tool to evaluate 13C chemical shifts assignments of RNA.
Icazatti, A A; Martin, O A; Villegas, M; Szleifer, I; Vila, J A
2018-06-19
Chemical shifts (CS) are an important source of structural information of macromolecules such as RNA. In addition to the scarce availability of CS for RNA, the observed values are prone to errors due to a wrong re-calibration or miss assignments. Different groups have dedicated their efforts to correct CS systematic errors on RNA. Despite this, there are not automated and freely available algorithms for correct assignments of RNA 13C CS before their deposition to the BMRB or re-reference already deposited CS with systematic errors. Based on an existent method we have implemented an open source python module to correct 13C CS (from here on 13Cexp) systematic errors of RNAs and then return the results in 3 formats including the nmrstar one. This software is available on GitHub at https://github.com/BIOS-IMASL/13Check_RNA under a MIT license. Supplementary data are available at Bioinformatics online.
NASA Astrophysics Data System (ADS)
Krisciunas, Kevin
2007-12-01
A gnomon, or vertical pointed stick, can be used to determine the north-south direction at a site, as well as one's latitude. If one has accurate time and knows one's time zone, it is also possible to determine one's longitude. From observations on the first day of winter and the first day of summer one can determine the obliquity of the ecliptic. Since we can obtain accurate geographical coordinates from Google Earth or a GPS device, analysis of set of shadow length measurements can be used by students to learn about astronomical coordinate systems, time systems, systematic errors, and random errors. Systematic latitude errors of student datasets are typically 30 nautical miles (0.5 degree) or more, but with care one can achieve systematic and random errors less than 8 nautical miles. One of the advantages of this experiment is that it can be carried out during the day. Also, it is possible to determine if a student has made up his data.
Direct shear mapping - a new weak lensing tool
NASA Astrophysics Data System (ADS)
de Burgh-Day, C. O.; Taylor, E. N.; Webster, R. L.; Hopkins, A. M.
2015-08-01
We have developed a new technique called direct shear mapping (DSM) to measure gravitational lensing shear directly from observations of a single background source. The technique assumes the velocity map of an unlensed, stably rotating galaxy will be rotationally symmetric. Lensing distorts the velocity map making it asymmetric. The degree of lensing can be inferred by determining the transformation required to restore axisymmetry. This technique is in contrast to traditional weak lensing methods, which require averaging an ensemble of background galaxy ellipticity measurements, to obtain a single shear measurement. We have tested the efficacy of our fitting algorithm with a suite of systematic tests on simulated data. We demonstrate that we are in principle able to measure shears as small as 0.01. In practice, we have fitted for the shear in very low redshift (and hence unlensed) velocity maps, and have obtained null result with an error of ±0.01. This high-sensitivity results from analysing spatially resolved spectroscopic images (i.e. 3D data cubes), including not just shape information (as in traditional weak lensing measurements) but velocity information as well. Spirals and rotating ellipticals are ideal targets for this new technique. Data from any large Integral Field Unit (IFU) or radio telescope is suitable, or indeed any instrument with spatially resolved spectroscopy such as the Sydney-Australian-Astronomical Observatory Multi-Object Integral Field Spectrograph (SAMI), the Atacama Large Millimeter/submillimeter Array (ALMA), the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) and the Square Kilometer Array (SKA).
NASA Astrophysics Data System (ADS)
Xu, Chong-yu; Tunemar, Liselotte; Chen, Yongqin David; Singh, V. P.
2006-06-01
Sensitivity of hydrological models to input data errors have been reported in the literature for particular models on a single or a few catchments. A more important issue, i.e. how model's response to input data error changes as the catchment conditions change has not been addressed previously. This study investigates the seasonal and spatial effects of precipitation data errors on the performance of conceptual hydrological models. For this study, a monthly conceptual water balance model, NOPEX-6, was applied to 26 catchments in the Mälaren basin in Central Sweden. Both systematic and random errors were considered. For the systematic errors, 5-15% of mean monthly precipitation values were added to the original precipitation to form the corrupted input scenarios. Random values were generated by Monte Carlo simulation and were assumed to be (1) independent between months, and (2) distributed according to a Gaussian law of zero mean and constant standard deviation that were taken as 5, 10, 15, 20, and 25% of the mean monthly standard deviation of precipitation. The results show that the response of the model parameters and model performance depends, among others, on the type of the error, the magnitude of the error, physical characteristics of the catchment, and the season of the year. In particular, the model appears less sensitive to the random error than to the systematic error. The catchments with smaller values of runoff coefficients were more influenced by input data errors than were the catchments with higher values. Dry months were more sensitive to precipitation errors than were wet months. Recalibration of the model with erroneous data compensated in part for the data errors by altering the model parameters.
Detecting and overcoming systematic errors in genome-scale phylogenies.
Rodríguez-Ezpeleta, Naiara; Brinkmann, Henner; Roure, Béatrice; Lartillot, Nicolas; Lang, B Franz; Philippe, Hervé
2007-06-01
Genome-scale data sets result in an enhanced resolution of the phylogenetic inference by reducing stochastic errors. However, there is also an increase of systematic errors due to model violations, which can lead to erroneous phylogenies. Here, we explore the impact of systematic errors on the resolution of the eukaryotic phylogeny using a data set of 143 nuclear-encoded proteins from 37 species. The initial observation was that, despite the impressive amount of data, some branches had no significant statistical support. To demonstrate that this lack of resolution is due to a mutual annihilation of phylogenetic and nonphylogenetic signals, we created a series of data sets with slightly different taxon sampling. As expected, these data sets yielded strongly supported but mutually exclusive trees, thus confirming the presence of conflicting phylogenetic and nonphylogenetic signals in the original data set. To decide on the correct tree, we applied several methods expected to reduce the impact of some kinds of systematic error. Briefly, we show that (i) removing fast-evolving positions, (ii) recoding amino acids into functional categories, and (iii) using a site-heterogeneous mixture model (CAT) are three effective means of increasing the ratio of phylogenetic to nonphylogenetic signal. Finally, our results allow us to formulate guidelines for detecting and overcoming phylogenetic artefacts in genome-scale phylogenetic analyses.
Local systematic differences in 2MASS positions
NASA Astrophysics Data System (ADS)
Bustos Fierro, I. H.; Calderón, J. H.
2018-01-01
We have found that positions in the 2MASS All-sky Catalog of Point Sources show local systematic differences with characteristic length-scales of ˜ 5 to ˜ 8 arcminutes when compared with several catalogs. We have observed that when 2MASS positions are used in the computation of proper motions, the mentioned systematic differences cause systematic errors in the resulting proper motions. We have developed a method to locally rectify 2MASS with respect to UCAC4 in order to diminish the systematic differences between these catalogs. The rectified 2MASS catalog with the proposed method can be regarded as an extension of UCAC4 for astrometry with accuracy ˜ 90 mas in its positions, with negligible systematic errors. Also we show that the use of these rectified positions removes the observed systematic pattern in proper motions derived from original 2MASS positions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keeling, V; Jin, H; Hossain, S
2014-06-15
Purpose: To evaluate setup accuracy and quantify individual systematic and random errors for the various hardware and software components of the frameless 6D-BrainLAB ExacTrac system. Methods: 35 patients with cranial lesions, some with multiple isocenters (50 total lesions treated in 1, 3, 5 fractions), were investigated. All patients were simulated with a rigid head-and-neck mask and the BrainLAB localizer. CT images were transferred to the IPLAN treatment planning system where optimized plans were generated using stereotactic reference frame based on the localizer. The patients were setup initially with infrared (IR) positioning ExacTrac system. Stereoscopic X-ray images (XC: X-ray Correction) weremore » registered to their corresponding digitally-reconstructed-radiographs, based on bony anatomy matching, to calculate 6D-translational and rotational (Lateral, Longitudinal, Vertical, Pitch, Roll, Yaw) shifts. XC combines systematic errors of the mask, localizer, image registration, frame, and IR. If shifts were below tolerance (0.7 mm translational and 1 degree rotational), treatment was initiated; otherwise corrections were applied and additional X-rays were acquired to verify patient position (XV: X-ray Verification). Statistical analysis was used to extract systematic and random errors of the different components of the 6D-ExacTrac system and evaluate the cumulative setup accuracy. Results: Mask systematic errors (translational; rotational) were the largest and varied from one patient to another in the range (−15 to 4mm; −2.5 to 2.5degree) obtained from mean of XC for each patient. Setup uncertainty in IR positioning (0.97,2.47,1.62mm;0.65,0.84,0.96degree) was extracted from standard-deviation of XC. Combined systematic errors of the frame and localizer (0.32,−0.42,−1.21mm; −0.27,0.34,0.26degree) was extracted from mean of means of XC distributions. Final patient setup uncertainty was obtained from the standard deviations of XV (0.57,0.77,0.67mm,0.39,0.35,0.30degree). Conclusion: Statistical analysis was used to calculate cumulative and individual systematic errors from the different hardware and software components of the 6D-ExacTrac-system. Patients were treated with cumulative errors (<1mm,<1degree) with XV image guidance.« less
Characterizing Protease Specificity: How Many Substrates Do We Need?
Schauperl, Michael; Fuchs, Julian E.; Waldner, Birgit J.; Huber, Roland G.; Kramer, Christian; Liedl, Klaus R.
2015-01-01
Calculation of cleavage entropies allows to quantify, map and compare protease substrate specificity by an information entropy based approach. The metric intrinsically depends on the number of experimentally determined substrates (data points). Thus a statistical analysis of its numerical stability is crucial to estimate the systematic error made by estimating specificity based on a limited number of substrates. In this contribution, we show the mathematical basis for estimating the uncertainty in cleavage entropies. Sets of cleavage entropies are calculated using experimental cleavage data and modeled extreme cases. By analyzing the underlying mathematics and applying statistical tools, a linear dependence of the metric in respect to 1/n was found. This allows us to extrapolate the values to an infinite number of samples and to estimate the errors. Analyzing the errors, a minimum number of 30 substrates was found to be necessary to characterize substrate specificity, in terms of amino acid variability, for a protease (S4-S4’) with an uncertainty of 5 percent. Therefore, we encourage experimental researchers in the protease field to record specificity profiles of novel proteases aiming to identify at least 30 peptide substrates of maximum sequence diversity. We expect a full characterization of protease specificity helpful to rationalize biological functions of proteases and to assist rational drug design. PMID:26559682
NASA Astrophysics Data System (ADS)
Brousmiche, S.; Souris, K.; Orban de Xivry, J.; Lee, J. A.; Macq, B.; Seco, J.
2017-11-01
Proton range random and systematic uncertainties are the major factors undermining the advantages of proton therapy, namely, a sharp dose falloff and a better dose conformality for lower doses in normal tissues. The influence of CT artifacts such as beam hardening or scatter can easily be understood and estimated due to their large-scale effects on the CT image, like cupping and streaks. In comparison, the effects of weakly-correlated stochastic noise are more insidious and less attention is drawn on them partly due to the common belief that they only contribute to proton range uncertainties and not to systematic errors thanks to some averaging effects. A new source of systematic errors on the range and relative stopping powers (RSP) has been highlighted and proved not to be negligible compared to the 3.5% uncertainty reference value used for safety margin design. Hence, we demonstrate that the angular points in the HU-to-RSP calibration curve are an intrinsic source of proton range systematic error for typical levels of zero-mean stochastic CT noise. Systematic errors on RSP of up to 1% have been computed for these levels. We also show that the range uncertainty does not generally vary linearly with the noise standard deviation. We define a noise-dependent effective calibration curve that better describes, for a given material, the RSP value that is actually used. The statistics of the RSP and the range continuous slowing down approximation (CSDA) have been analytically derived for the general case of a calibration curve obtained by the stoichiometric calibration procedure. These models have been validated against actual CSDA simulations for homogeneous and heterogeneous synthetical objects as well as on actual patient CTs for prostate and head-and-neck treatment planning situations.
Medication errors in the Middle East countries: a systematic review of the literature.
Alsulami, Zayed; Conroy, Sharon; Choonara, Imti
2013-04-01
Medication errors are a significant global concern and can cause serious medical consequences for patients. Little is known about medication errors in Middle Eastern countries. The objectives of this systematic review were to review studies of the incidence and types of medication errors in Middle Eastern countries and to identify the main contributory factors involved. A systematic review of the literature related to medication errors in Middle Eastern countries was conducted in October 2011 using the following databases: Embase, Medline, Pubmed, the British Nursing Index and the Cumulative Index to Nursing & Allied Health Literature. The search strategy included all ages and languages. Inclusion criteria were that the studies assessed or discussed the incidence of medication errors and contributory factors to medication errors during the medication treatment process in adults or in children. Forty-five studies from 10 of the 15 Middle Eastern countries met the inclusion criteria. Nine (20 %) studies focused on medication errors in paediatric patients. Twenty-one focused on prescribing errors, 11 measured administration errors, 12 were interventional studies and one assessed transcribing errors. Dispensing and documentation errors were inadequately evaluated. Error rates varied from 7.1 % to 90.5 % for prescribing and from 9.4 % to 80 % for administration. The most common types of prescribing errors reported were incorrect dose (with an incidence rate from 0.15 % to 34.8 % of prescriptions), wrong frequency and wrong strength. Computerised physician rder entry and clinical pharmacist input were the main interventions evaluated. Poor knowledge of medicines was identified as a contributory factor for errors by both doctors (prescribers) and nurses (when administering drugs). Most studies did not assess the clinical severity of the medication errors. Studies related to medication errors in the Middle Eastern countries were relatively few in number and of poor quality. Educational programmes on drug therapy for doctors and nurses are urgently needed.
On-board error correction improves IR earth sensor accuracy
NASA Astrophysics Data System (ADS)
Alex, T. K.; Kasturirangan, K.; Shrivastava, S. K.
1989-10-01
Infra-red earth sensors are used in satellites for attitude sensing. Their accuracy is limited by systematic and random errors. The sources of errors in a scanning infra-red earth sensor are analyzed in this paper. The systematic errors arising from seasonal variation of infra-red radiation, oblate shape of the earth, ambient temperature of sensor, changes in scan/spin rates have been analyzed. Simple relations are derived using least square curve fitting for on-board correction of these errors. Random errors arising out of noise from detector and amplifiers, instability of alignment and localized radiance anomalies are analyzed and possible correction methods are suggested. Sun and Moon interference on earth sensor performance has seriously affected a number of missions. The on-board processor detects Sun/Moon interference and corrects the errors on-board. It is possible to obtain eight times improvement in sensing accuracy, which will be comparable with ground based post facto attitude refinement.
Estimating Climatological Bias Errors for the Global Precipitation Climatology Project (GPCP)
NASA Technical Reports Server (NTRS)
Adler, Robert; Gu, Guojun; Huffman, George
2012-01-01
A procedure is described to estimate bias errors for mean precipitation by using multiple estimates from different algorithms, satellite sources, and merged products. The Global Precipitation Climatology Project (GPCP) monthly product is used as a base precipitation estimate, with other input products included when they are within +/- 50% of the GPCP estimates on a zonal-mean basis (ocean and land separately). The standard deviation s of the included products is then taken to be the estimated systematic, or bias, error. The results allow one to examine monthly climatologies and the annual climatology, producing maps of estimated bias errors, zonal-mean errors, and estimated errors over large areas such as ocean and land for both the tropics and the globe. For ocean areas, where there is the largest question as to absolute magnitude of precipitation, the analysis shows spatial variations in the estimated bias errors, indicating areas where one should have more or less confidence in the mean precipitation estimates. In the tropics, relative bias error estimates (s/m, where m is the mean precipitation) over the eastern Pacific Ocean are as large as 20%, as compared with 10%-15% in the western Pacific part of the ITCZ. An examination of latitudinal differences over ocean clearly shows an increase in estimated bias error at higher latitudes, reaching up to 50%. Over land, the error estimates also locate regions of potential problems in the tropics and larger cold-season errors at high latitudes that are due to snow. An empirical technique to area average the gridded errors (s) is described that allows one to make error estimates for arbitrary areas and for the tropics and the globe (land and ocean separately, and combined). Over the tropics this calculation leads to a relative error estimate for tropical land and ocean combined of 7%, which is considered to be an upper bound because of the lack of sign-of-the-error canceling when integrating over different areas with a different number of input products. For the globe the calculated relative error estimate from this study is about 9%, which is also probably a slight overestimate. These tropical and global estimated bias errors provide one estimate of the current state of knowledge of the planet's mean precipitation.
Multisite Parent-Centered Risk Assessment to Reduce Pediatric Oral Chemotherapy Errors
Walsh, Kathleen E.; Mazor, Kathleen M.; Roblin, Douglas; Biggins, Colleen; Wagner, Joann L.; Houlahan, Kathleen; Li, Justin W.; Keuker, Christopher; Wasilewski-Masker, Karen; Donovan, Jennifer; Kanaan, Abir; Weingart, Saul N.
2013-01-01
Purpose: Observational studies describe high rates of errors in home oral chemotherapy use in children. In hospitals, proactive risk assessment methods help front-line health care workers develop error prevention strategies. Our objective was to engage parents of children with cancer in a multisite study using proactive risk assessment methods to identify how errors occur at home and propose risk reduction strategies. Methods: We recruited parents from three outpatient pediatric oncology clinics in the northeast and southeast United States to participate in failure mode and effects analyses (FMEA). An FMEA is a systematic team-based proactive risk assessment approach in understanding ways a process can fail and develop prevention strategies. Steps included diagram the process, brainstorm and prioritize failure modes (places where things go wrong), and propose risk reduction strategies. We focused on home oral chemotherapy administration after a change in dose because prior studies identified this area as high risk. Results: Parent teams consisted of four parents at two of the sites and 10 at the third. Parents developed a 13-step process map, with two to 19 failure modes per step. The highest priority failure modes included miscommunication when receiving instructions from the clinician (caused by conflicting instructions or parent lapses) and unsafe chemotherapy handling at home. Recommended risk assessment strategies included novel uses of technology to improve parent access to information, clinicians, and other parents while at home. Conclusion: Parents of pediatric oncology patients readily participated in a proactive risk assessment method, identifying processes that pose a risk for medication errors involving home oral chemotherapy. PMID:23633976
Estimating terrestrial aboveground biomass estimation using lidar remote sensing: a meta-analysis
NASA Astrophysics Data System (ADS)
Zolkos, S. G.; Goetz, S. J.; Dubayah, R.
2012-12-01
Estimating biomass of terrestrial vegetation is a rapidly expanding research area, but also a subject of tremendous interest for reducing carbon emissions associated with deforestation and forest degradation (REDD). The accuracy of biomass estimates is important in the context carbon markets emerging under REDD, since areas with more accurate estimates command higher prices, but also for characterizing uncertainty in estimates of carbon cycling and the global carbon budget. There is particular interest in mapping biomass so that carbon stocks and stock changes can be monitored consistently across a range of scales - from relatively small projects (tens of hectares) to national or continental scales - but also so that other benefits of forest conservation can be factored into decision making (e.g. biodiversity and habitat corridors). We conducted an analysis of reported biomass accuracy estimates from more than 60 refereed articles using different remote sensing platforms (aircraft and satellite) and sensor types (optical, radar, lidar), with a particular focus on lidar since those papers reported the greatest efficacy (lowest errors) when used in the a synergistic manner with other coincident multi-sensor measurements. We show systematic differences in accuracy between different types of lidar systems flown on different platforms but, perhaps more importantly, differences between forest types (biomes) and plot sizes used for field calibration and assessment. We discuss these findings in relation to monitoring, reporting and verification under REDD, and also in the context of more systematic assessment of factors that influence accuracy and error estimation.
Patient disclosure of medical errors in paediatrics: A systematic literature review
Koller, Donna; Rummens, Anneke; Le Pouesard, Morgane; Espin, Sherry; Friedman, Jeremy; Coffey, Maitreya; Kenneally, Noah
2016-01-01
Medical errors are common within paediatrics; however, little research has examined the process of disclosing medical errors in paediatric settings. The present systematic review of current research and policy initiatives examined evidence regarding the disclosure of medical errors involving paediatric patients. Peer-reviewed research from a range of scientific journals from the past 10 years is presented, and an overview of Canadian and international policies regarding disclosure in paediatric settings are provided. The purpose of the present review was to scope the existing literature and policy, and to synthesize findings into an integrated and accessible report. Future research priorities and policy implications are then identified. PMID:27429578
System calibration method for Fourier ptychographic microscopy
NASA Astrophysics Data System (ADS)
Pan, An; Zhang, Yan; Zhao, Tianyu; Wang, Zhaojun; Dan, Dan; Lei, Ming; Yao, Baoli
2017-09-01
Fourier ptychographic microscopy (FPM) is a recently proposed computational imaging technique with both high-resolution and wide field of view. In current FPM imaging platforms, systematic error sources come from aberrations, light-emitting diode (LED) intensity fluctuation, parameter imperfections, and noise, all of which may severely corrupt the reconstruction results with similar artifacts. Therefore, it would be unlikely to distinguish the dominating error from these degraded reconstructions without any preknowledge. In addition, systematic error is generally a mixture of various error sources in the real situation, and it cannot be separated due to their mutual restriction and conversion. To this end, we report a system calibration procedure, termed SC-FPM, to calibrate the mixed systematic errors simultaneously from an overall perspective, based on the simulated annealing algorithm, the LED intensity correction method, the nonlinear regression process, and the adaptive step-size strategy, which involves the evaluation of an error metric at each iteration step, followed by the re-estimation of accurate parameters. The performance achieved both in simulations and experiments demonstrates that the proposed method outperforms other state-of-the-art algorithms. The reported system calibration scheme improves the robustness of FPM, relaxes the experiment conditions, and does not require any preknowledge, which makes the FPM more pragmatic.
Assessing the external validity of algorithms to estimate EQ-5D-3L from the WOMAC.
Kiadaliri, Aliasghar A; Englund, Martin
2016-10-04
The use of mapping algorithms have been suggested as a solution to predict health utilities when no preference-based measure is included in the study. However, validity and predictive performance of these algorithms are highly variable and hence assessing the accuracy and validity of algorithms before use them in a new setting is of importance. The aim of the current study was to assess the predictive accuracy of three mapping algorithms to estimate the EQ-5D-3L from the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) among Swedish people with knee disorders. Two of these algorithms developed using ordinary least squares (OLS) models and one developed using mixture model. The data from 1078 subjects mean (SD) age 69.4 (7.2) years with frequent knee pain and/or knee osteoarthritis from the Malmö Osteoarthritis study in Sweden were used. The algorithms' performance was assessed using mean error, mean absolute error, and root mean squared error. Two types of prediction were estimated for mixture model: weighted average (WA), and conditional on estimated component (CEC). The overall mean was overpredicted by an OLS model and underpredicted by two other algorithms (P < 0.001). All predictions but the CEC predictions of mixture model had a narrower range than the observed scores (22 to 90 %). All algorithms suffered from overprediction for severe health states and underprediction for mild health states with lesser extent for mixture model. While the mixture model outperformed OLS models at the extremes of the EQ-5D-3D distribution, it underperformed around the center of the distribution. While algorithm based on mixture model reflected the distribution of EQ-5D-3L data more accurately compared with OLS models, all algorithms suffered from systematic bias. This calls for caution in applying these mapping algorithms in a new setting particularly in samples with milder knee problems than original sample. Assessing the impact of the choice of these algorithms on cost-effectiveness studies through sensitivity analysis is recommended.
Mapping DNA polymerase errors by single-molecule sequencing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, David F.; Lu, Jenny; Chang, Seungwoo
Genomic integrity is compromised by DNA polymerase replication errors, which occur in a sequence-dependent manner across the genome. Accurate and complete quantification of a DNA polymerase's error spectrum is challenging because errors are rare and difficult to detect. We report a high-throughput sequencing assay to map in vitro DNA replication errors at the single-molecule level. Unlike previous methods, our assay is able to rapidly detect a large number of polymerase errors at base resolution over any template substrate without quantification bias. To overcome the high error rate of high-throughput sequencing, our assay uses a barcoding strategy in which each replicationmore » product is tagged with a unique nucleotide sequence before amplification. Here, this allows multiple sequencing reads of the same product to be compared so that sequencing errors can be found and removed. We demonstrate the ability of our assay to characterize the average error rate, error hotspots and lesion bypass fidelity of several DNA polymerases.« less
Synchronization Design and Error Analysis of Near-Infrared Cameras in Surgical Navigation.
Cai, Ken; Yang, Rongqian; Chen, Huazhou; Huang, Yizhou; Wen, Xiaoyan; Huang, Wenhua; Ou, Shanxing
2016-01-01
The accuracy of optical tracking systems is important to scientists. With the improvements reported in this regard, such systems have been applied to an increasing number of operations. To enhance the accuracy of these systems further and to reduce the effect of synchronization and visual field errors, this study introduces a field-programmable gate array (FPGA)-based synchronization control method, a method for measuring synchronous errors, and an error distribution map in field of view. Synchronization control maximizes the parallel processing capability of FPGA, and synchronous error measurement can effectively detect the errors caused by synchronization in an optical tracking system. The distribution of positioning errors can be detected in field of view through the aforementioned error distribution map. Therefore, doctors can perform surgeries in areas with few positioning errors, and the accuracy of optical tracking systems is considerably improved. The system is analyzed and validated in this study through experiments that involve the proposed methods, which can eliminate positioning errors attributed to asynchronous cameras and different fields of view.
Mapping DNA polymerase errors by single-molecule sequencing
Lee, David F.; Lu, Jenny; Chang, Seungwoo; ...
2016-05-16
Genomic integrity is compromised by DNA polymerase replication errors, which occur in a sequence-dependent manner across the genome. Accurate and complete quantification of a DNA polymerase's error spectrum is challenging because errors are rare and difficult to detect. We report a high-throughput sequencing assay to map in vitro DNA replication errors at the single-molecule level. Unlike previous methods, our assay is able to rapidly detect a large number of polymerase errors at base resolution over any template substrate without quantification bias. To overcome the high error rate of high-throughput sequencing, our assay uses a barcoding strategy in which each replicationmore » product is tagged with a unique nucleotide sequence before amplification. Here, this allows multiple sequencing reads of the same product to be compared so that sequencing errors can be found and removed. We demonstrate the ability of our assay to characterize the average error rate, error hotspots and lesion bypass fidelity of several DNA polymerases.« less
Li, T. S.; DePoy, D. L.; Marshall, J. L.; ...
2016-06-01
Here, we report that meeting the science goals for many current and future ground-based optical large-area sky surveys requires that the calibrated broadband photometry is both stable in time and uniform over the sky to 1% precision or better. Past and current surveys have achieved photometric precision of 1%–2% by calibrating the survey's stellar photometry with repeated measurements of a large number of stars observed in multiple epochs. The calibration techniques employed by these surveys only consider the relative frame-by-frame photometric zeropoint offset and the focal plane position-dependent illumination corrections, which are independent of the source color. However, variations inmore » the wavelength dependence of the atmospheric transmission and the instrumental throughput induce source color-dependent systematic errors. These systematic errors must also be considered to achieve the most precise photometric measurements. In this paper, we examine such systematic chromatic errors (SCEs) using photometry from the Dark Energy Survey (DES) as an example. We first define a natural magnitude system for DES and calculate the systematic errors on stellar magnitudes when the atmospheric transmission and instrumental throughput deviate from the natural system. We conclude that the SCEs caused by the change of airmass in each exposure, the change of the precipitable water vapor and aerosol in the atmosphere over time, and the non-uniformity of instrumental throughput over the focal plane can be up to 2% in some bandpasses. We then compare the calculated SCEs with the observed DES data. For the test sample data, we correct these errors using measurements of the atmospheric transmission and instrumental throughput from auxiliary calibration systems. In conclusion, the residual after correction is less than 0.3%. Moreover, we calculate such SCEs for Type Ia supernovae and elliptical galaxies and find that the chromatic errors for non-stellar objects are redshift-dependent and can be larger than those for stars at certain redshifts.« less
Systematic error of diode thermometer.
Iskrenovic, Predrag S
2009-08-01
Semiconductor diodes are often used for measuring temperatures. The forward voltage across a diode decreases, approximately linearly, with the increase in temperature. The applied method is mainly the simplest one. A constant direct current flows through the diode, and voltage is measured at diode terminals. The direct current that flows through the diode, putting it into operating mode, heats up the diode. The increase in temperature of the diode-sensor, i.e., the systematic error due to self-heating, depends on the intensity of current predominantly and also on other factors. The results of systematic error measurements due to heating up by the forward-bias current have been presented in this paper. The measurements were made at several diodes over a wide range of bias current intensity.
Hadronic Contribution to Muon g-2 with Systematic Error Correlations
NASA Astrophysics Data System (ADS)
Brown, D. H.; Worstell, W. A.
1996-05-01
We have performed a new evaluation of the hadronic contribution to a_μ=(g-2)/2 of the muon with explicit correlations of systematic errors among the experimental data on σ( e^+e^- → hadrons ). Our result for the lowest order hadronic vacuum polarization contribution is a_μ^hvp = 701.7(7.6)(13.4) × 10-10 where the total systematic error contributions from below and above √s = 1.4 GeV are (12.5) × 10-10 and (4.8) × 10-10 respectively. Therefore new measurements on σ( e^+e^- → hadrons ) below 1.4 GeV in Novosibirsk, Russia can significantly reduce the total error on a_μ^hvp. This contrasts with a previous evaluation which indicated that the dominant error is due to the energy region above 1.4 GeV. The latter analysis correlated systematic errors at each energy point separately but not across energy ranges as we have done. Combination with higher order hadronic contributions is required for a new measurement of a_μ at Brookhaven National Laboratory to be sensitive to electroweak and possibly supergravity and muon substructure effects. Our analysis may also be applied to calculations of hadronic contributions to the running of α(s) at √s= M_Z, the hyperfine structure of muonium, and the running of sin^2 θW in Møller scattering. The analysis of the new Novosibirsk data will also be given.
A comprehensive evaluation of input data-induced uncertainty in nonpoint source pollution modeling
NASA Astrophysics Data System (ADS)
Chen, L.; Gong, Y.; Shen, Z.
2015-11-01
Watershed models have been used extensively for quantifying nonpoint source (NPS) pollution, but few studies have been conducted on the error-transitivity from different input data sets to NPS modeling. In this paper, the effects of four input data, including rainfall, digital elevation models (DEMs), land use maps, and the amount of fertilizer, on NPS simulation were quantified and compared. A systematic input-induced uncertainty was investigated using watershed model for phosphorus load prediction. Based on the results, the rain gauge density resulted in the largest model uncertainty, followed by DEMs, whereas land use and fertilizer amount exhibited limited impacts. The mean coefficient of variation for errors in single rain gauges-, multiple gauges-, ASTER GDEM-, NFGIS DEM-, land use-, and fertilizer amount information was 0.390, 0.274, 0.186, 0.073, 0.033 and 0.005, respectively. The use of specific input information, such as key gauges, is also highlighted to achieve the required model accuracy. In this sense, these results provide valuable information to other model-based studies for the control of prediction uncertainty.
Small, J R
1993-01-01
This paper is a study into the effects of experimental error on the estimated values of flux control coefficients obtained using specific inhibitors. Two possible techniques for analysing the experimental data are compared: a simple extrapolation method (the so-called graph method) and a non-linear function fitting method. For these techniques, the sources of systematic errors are identified and the effects of systematic and random errors are quantified, using both statistical analysis and numerical computation. It is shown that the graph method is very sensitive to random errors and, under all conditions studied, that the fitting method, even under conditions where the assumptions underlying the fitted function do not hold, outperformed the graph method. Possible ways of designing experiments to minimize the effects of experimental errors are analysed and discussed. PMID:8257434
Mirković, Jelena; Gaskell, M. Gareth
2016-01-01
We examined the role of sleep-related memory consolidation processes in learning new form-meaning mappings. Specifically, we examined a Complementary Learning Systems account, which implies that sleep-related consolidation should be more beneficial for new hippocampally dependent arbitrary mappings (e.g. new vocabulary items) relative to new systematic mappings (e.g. grammatical regularities), which can be better encoded neocortically. The hypothesis was tested using a novel language with an artificial grammatical gender system. Stem-referent mappings implemented arbitrary aspects of the new language, and determiner/suffix+natural gender mappings implemented systematic aspects (e.g. tib scoiffesh + ballerina, tib mofeem + bride; ked jorool + cowboy, ked heefaff + priest). Importantly, the determiner-gender and the suffix-gender mappings varied in complexity and salience, thus providing a range of opportunities to detect beneficial effects of sleep for this type of mapping. Participants were trained on the new language using a word-picture matching task, and were tested after a 2-hour delay which included sleep or wakefulness. Participants in the sleep group outperformed participants in the wake group on tests assessing memory for the arbitrary aspects of the new mappings (individual vocabulary items), whereas we saw no evidence of a sleep benefit in any of the tests assessing memory for the systematic aspects of the new mappings: Participants in both groups extracted the salient determiner-natural gender mapping, but not the more complex suffix-natural gender mapping. The data support the predictions of the complementary systems account and highlight the importance of the arbitrariness/systematicity dimension in the consolidation process for declarative memories. PMID:27046022
Issues in testing the new national seismic hazard model for Italy
NASA Astrophysics Data System (ADS)
Stein, S.; Peresan, A.; Kossobokov, V. G.; Brooks, E. M.; Spencer, B. D.
2016-12-01
It is important to bear in mind that we know little about how earthquake hazard maps actually describe the shaking that will actually occur in the future, and have no agreed way of assessing how well a map performed in the past, and, thus, whether one map performs better than another. Moreover, we should not forget that different maps can be useful for different end users, who may have different cost-and-benefit strategies. Thus, regardless of the specific tests we chose to use, the adopted testing approach should have several key features: We should assess map performance using all the available instrumental, paleo seismology, and historical intensity data. Instrumental data alone span a period much too short to capture the largest earthquakes - and thus strongest shaking - expected from most faults. We should investigate what causes systematic misfit, if any, between the longest record we have - historical intensity data available for the Italian territory from 217 B.C. to 2002 A.D. - and a given hazard map. We should compare how seismic hazard maps developed over time. How do the most recent maps for Italy compare to earlier ones? It is important to understand local divergences that show how the models are developing to the most recent one. The temporal succession of maps is important: we have to learn from previous errors. We should use the many different tests that have been proposed. All are worth trying, because different metrics of performance show different aspects of how a hazard map performs and can be used. We should compare other maps to the ones we are testing. Maps can be made using a wide variety of assumptions, which will lead to different predicted shaking. It is possible that maps derived by other approaches may perform better. Although Italian current codes are based on probabilistic maps, it is important from both a scientific and societal perspective to look at all options including deterministic scenario based ones. Comparing what works better, according to different performance measures, will give valuable insight into key map parameters and assumptions. We may well find that different maps perform better in different applications.
NASA Technical Reports Server (NTRS)
Karteris, M. A. (Principal Investigator)
1980-01-01
A winter black and white band 5, a winter color, a fall color, and a diazo color composite of the fall scene were used to assess the use and potential of LANDSAT images for mapping and estimating acreage of small scattered forest tracts in Barry County, Michigan. Forests as small as 2.5 acres were mapped from each LANDSAT data source. The maps for each image were compared with an available forest-type map. Mapping errors detected were categorized as boundary and identification errors. The most frequently misclassified areas were agriculture lands, treed-bogs, brushlands and lowland and mixed hardwood stands. Stocking level affected interpretation more than stand size. The overall level of the interpretation performance was expressed through the estimation of classification, interpretation, and mapping accuracies. These accuracies ranged from 74 between 74% and 98%. Considering errors, accuracy, and cost, winter color imagery is the best LANDSAT alternative for mapping small forest tracts. However, since the availability of cloud-free winter images of the study area is significantly lower than images for other seasons, a diazo enhanced image of a fall scene is recommended as the best next best alternative.
Information analysis of a spatial database for ecological land classification
NASA Technical Reports Server (NTRS)
Davis, Frank W.; Dozier, Jeff
1990-01-01
An ecological land classification was developed for a complex region in southern California using geographic information system techniques of map overlay and contingency table analysis. Land classes were identified by mutual information analysis of vegetation pattern in relation to other mapped environmental variables. The analysis was weakened by map errors, especially errors in the digital elevation data. Nevertheless, the resulting land classification was ecologically reasonable and performed well when tested with higher quality data from the region.
NASA Astrophysics Data System (ADS)
Lima, Pedro; Steger, Stefan; Glade, Thomas
2017-04-01
Landslides can represent a significant threat for people and infrastructure in hilly and mountainous landscapes worldwide. The understanding and prediction of those geomorphic processes is crucial to avoid economic loses or even casualties to people and their properties. Statistical based landslide susceptibility models are well known for being highly reliant on the quality, representativeness and availability of input data. In this context, several studies indicate that the landslide inventory represents the most important input data. However each landslide mapping technique or data collection has its drawbacks. Consequently, biased landslide inventories may be commonly introduced into statistical models, especially at regional or even national scale. It remains to the researcher to be aware of potential limitations and design strategies to avoid or reduce the potential propagation of input data errors and biases influences on the modelling outcomes. Previous studies have proven that such erroneous landslide inventories may lead to unrealistic landslide susceptibility maps. We assume that one possibility to tackle systematic landslide inventory-based biases might be a concentration on sampling strategies that focus on the distribution of non-landslide locations. For this purpose, we test an approach for the Austrian territory that concentrates on a modified non-landslide sampling strategy, instead the traditional applied random sampling. It is expected that the way non-landslide locations are represented (e.g. equally over the area or within those areas where mapping campaigns have been conducted) is important to reduce a potential over- or underestimation of landslide susceptibility within specific areas caused by bias. As presumably each landslide inventory is known to be systematically incomplete, especially in those areas where no mapping campaign was previously conducted. This is also applicable to the one currently available for the Austrian territory, composed by 14,519 shallow landslides. Within this study, we introduce the following explanatory variables to test the effect of different non-landslide strategies: Lithological units, grouped by their geotechnical properties and topographic parameters such as aspect, elevation, slope gradient and the topographic position. Landslide susceptibility maps will be derived by applying logistic regression, while systematic comparisons will be carried out based on models created by different non-landslide sampling strategies. Models generated by the conventional random sampling are presented against models based on stratified and clustered sampling strategies. The modelling results will be compared in terms of their prediction performance measured by the AUROC (Area Under the Receiver Operating Characteristic Curve) obtained by means of a k-fold cross-validation and also by the spatial pattern of the maps. The outcomes of this study are intended to contribute to the understanding on how landslide-inventory based biases may be counteracted.
A framework for simulating map error in ecosystem models
Sean P. Healey; Shawn P. Urbanski; Paul L. Patterson; Chris Garrard
2014-01-01
The temporal depth and spatial breadth of observations from platforms such as Landsat provide unique perspective on ecosystem dynamics, but the integration of these observations into formal decision support will rely upon improved uncertainty accounting. Monte Carlo (MC) simulations offer a practical, empirical method of accounting for potential map errors in broader...
Adverse effects in dual-feed interferometry
NASA Astrophysics Data System (ADS)
Colavita, M. Mark
2009-11-01
Narrow-angle dual-star interferometric astrometry can provide very high accuracy in the presence of the Earth's turbulent atmosphere. However, to exploit the high atmospherically-limited accuracy requires control of systematic errors in measurement of the interferometer baseline, internal OPDs, and fringe phase. In addition, as high photometric SNR is required, care must be taken to maximize throughput and coherence to obtain high accuracy on faint stars. This article reviews the key aspects of the dual-star approach and implementation, the main contributors to the systematic error budget, and the coherence terms in the photometric error budget.
Correction to “New maps of California to improve tsunami preparedness”
NASA Astrophysics Data System (ADS)
Barberopoulou, Aggeliki; Borrero, Jose C.; Uslu, Burak; Kalligeris, Nikos; Goltz, James D.; Wilson, Rick I.; Synolakis, Costas E.
2009-05-01
In the 21 April issue (Eos, 90(16), 2009), the article titled “New maps of California to improve tsunami preparedness” contained an error in its Figure 2 caption. Figure 2 is a map of Goleta, a city in Santa Barbara County. Thus, the first sentence of the caption should read, “Newly created tsunami inundation maps for Goleta, a city in Santa Barbara County, Calif., show the city's ‘wet line’ in black, representing the highest probable tsunami runup modeled for the region added to average water levels at high tide.” Eos deeply regrets this error.
Efficient Solar Scene Wavefront Estimation with Reduced Systematic and RMS Errors: Summary
NASA Astrophysics Data System (ADS)
Anugu, N.; Garcia, P.
2016-04-01
Wave front sensing for solar telescopes is commonly implemented with the Shack-Hartmann sensors. Correlation algorithms are usually used to estimate the extended scene Shack-Hartmann sub-aperture image shifts or slopes. The image shift is computed by correlating a reference sub-aperture image with the target distorted sub-aperture image. The pixel position where the maximum correlation is located gives the image shift in integer pixel coordinates. Sub-pixel precision image shifts are computed by applying a peak-finding algorithm to the correlation peak Poyneer (2003); Löfdahl (2010). However, the peak-finding algorithm results are usually biased towards the integer pixels, these errors are called as systematic bias errors Sjödahl (1994). These errors are caused due to the low pixel sampling of the images. The amplitude of these errors depends on the type of correlation algorithm and the type of peak-finding algorithm being used. To study the systematic errors in detail, solar sub-aperture synthetic images are constructed by using a Swedish Solar Telescope solar granulation image1. The performance of cross-correlation algorithm in combination with different peak-finding algorithms is investigated. The studied peak-finding algorithms are: parabola Poyneer (2003); quadratic polynomial Löfdahl (2010); threshold center of gravity Bailey (2003); Gaussian Nobach & Honkanen (2005) and Pyramid Bailey (2003). The systematic error study reveals that that the pyramid fit is the most robust to pixel locking effects. The RMS error analysis study reveals that the threshold centre of gravity behaves better in low SNR, although the systematic errors in the measurement are large. It is found that no algorithm is best for both the systematic and the RMS error reduction. To overcome the above problem, a new solution is proposed. In this solution, the image sampling is increased prior to the actual correlation matching. The method is realized in two steps to improve its computational efficiency. In the first step, the cross-correlation is implemented at the original image spatial resolution grid (1 pixel). In the second step, the cross-correlation is performed using a sub-pixel level grid by limiting the field of search to 4 × 4 pixels centered at the first step delivered initial position. The generation of these sub-pixel grid based region of interest images is achieved with the bi-cubic interpolation. The correlation matching with sub-pixel grid technique was previously reported in electronic speckle photography Sjö'dahl (1994). This technique is applied here for the solar wavefront sensing. A large dynamic range and a better accuracy in the measurements are achieved with the combination of the original pixel grid based correlation matching in a large field of view and a sub-pixel interpolated image grid based correlation matching within a small field of view. The results revealed that the proposed method outperforms all the different peak-finding algorithms studied in the first approach. It reduces both the systematic error and the RMS error by a factor of 5 (i.e., 75% systematic error reduction), when 5 times improved image sampling was used. This measurement is achieved at the expense of twice the computational cost. With the 5 times improved image sampling, the wave front accuracy is increased by a factor of 5. The proposed solution is strongly recommended for wave front sensing in the solar telescopes, particularly, for measuring large dynamic image shifts involved open loop adaptive optics. Also, by choosing an appropriate increment of image sampling in trade-off between the computational speed limitation and the aimed sub-pixel image shift accuracy, it can be employed in closed loop adaptive optics. The study is extended to three other class of sub-aperture images (a point source; a laser guide star; a Galactic Center extended scene). The results are planned to submit for the Optical Express journal.
Yohay Carmel; Curtis Flather; Denis Dean
2006-01-01
This paper summarizes our efforts to investigate the nature, behavior, and implications of positional error and attribute error in spatiotemporal datasets. Estimating the combined influence of these errors on map analysis has been hindered by the fact that these two error types are traditionally expressed in different units (distance units, and categorical units,...
Shariat, Mohammad Hassan; Gazor, Saeed; Redfearn, Damian
2016-08-01
In this paper, we study the problem of the cardiac conduction velocity (CCV) estimation for the sequential intracardiac mapping. We assume that the intracardiac electrograms of several cardiac sites are sequentially recorded, their activation times (ATs) are extracted, and the corresponding wavefronts are specified. The locations of the mapping catheter's electrodes and the ATs of the wavefronts are used here for the CCV estimation. We assume that the extracted ATs include some estimation errors, which we model with zero-mean white Gaussian noise values with known variances. Assuming stable planar wavefront propagation, we derive the maximum likelihood CCV estimator, when the synchronization times between various recording sites are unknown. We analytically evaluate the performance of the CCV estimator and provide its mean square estimation error. Our simulation results confirm the accuracy of the proposed method and the error analysis of the proposed CCV estimator.
Yue, Meng; Zhang, Meng; Zhang, Chunmei; Jin, Changde
2017-05-01
As an essential skill in daily clinical nursing practice, critical thinking ability has been an important objective in nursing education. Concept mapping enables nursing students connect new information to existing knowledge and integrates interdisciplinary knowledge. However, there is a lack of evidence related to critical thinking ability and concept mapping in nursing education. The purpose of this systematic review and meta-analysis was to assess the effect of concept mapping in developing critical thinking in nursing education. This systematic review was reported in line with Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). A search was conducted in PubMed, Web of science, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), Cumulative Index to Nursing and Allied Health (CINAHL) and China National Knowledge Infrastructure (CNKI). Randomized controlled trials (RCT) comparing concept mapping and traditional teaching method were retrieved. Data were collected by two reviewers according to the data extraction tables. The methodological quality of included studies was assessed by other two reviewers. The results of meta-analysis were presented using mean difference (MD). Thirteen trials were summarized in the systematic review and eleven trials were included in the meta-analysis. The pooled effect size showed that, comparing with traditional methods, concept mapping could improve subjects' critical thinking ability measured by California Critical Thinking Disposition Inventory (CCTDI), California Critical Thinking Skill Test (CCTST) and Critical Thinking Scale (CTS). The subgroup analyses showed that concept mapping improved the score of all subscales. The result of this review indicated that concept mapping could affect the critical thinking affective dispositions and critical thinking cognitive skills. Further high quality research using uniform evaluation is required. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wells, Ray E.; Sawlan, Michael G.
2014-01-01
This digital map database and the PDF derived from the database were created from the analog geologic map: Wells, R.E. (1981), “Geologic map of the eastern Willapa Hills, Cowlitz, Lewis, and Wahkiakum Counties, Washington.” The geodatabase replicates the geologic mapping of the 1981 report with minor exceptions along water boundaries and also along the north and south map boundaries. Slight adjustments to contacts along water boundaries were made to correct differences between the topographic base map used in the 1981 compilation (analog USGS 15-minute series quadrangle maps at 1:62,500 scale) and the base map used for this digital compilation (scanned USGS 7.5-minute series quadrangle maps at 1:24,000 scale). These minor adjustments, however, did not materially alter the geologic map. No new field mapping was performed to create this digital map database, and no attempt was made to fit geologic contacts to the new 1:24,000 topographic base, except as noted above. We corrected typographical errors, formatting errors, and attribution errors (for example, the name change of Goble Volcanics to Grays River Volcanics following current State of Washington usage; Walsh and others, 1987). We also updated selected references, substituted published papers for abstracts, and cited published radiometric ages for the volcanic and plutonic rocks. The reader is referred to Magill and others (1982), Wells and Coe (1985), Walsh and others (1987), Moothart (1993), Payne (1998), Kleibacker (2001), McCutcheon (2003), Wells and others (2009), Chan and others (2012), and Wells and others (in press) for subsequent interpretations of the Willapa Hills geology.
NASA Astrophysics Data System (ADS)
Gao, Jing; Burt, James E.
2017-12-01
This study investigates the usefulness of a per-pixel bias-variance error decomposition (BVD) for understanding and improving spatially-explicit data-driven models of continuous variables in environmental remote sensing (ERS). BVD is a model evaluation method originated from machine learning and have not been examined for ERS applications. Demonstrated with a showcase regression tree model mapping land imperviousness (0-100%) using Landsat images, our results showed that BVD can reveal sources of estimation errors, map how these sources vary across space, reveal the effects of various model characteristics on estimation accuracy, and enable in-depth comparison of different error metrics. Specifically, BVD bias maps can help analysts identify and delineate model spatial non-stationarity; BVD variance maps can indicate potential effects of ensemble methods (e.g. bagging), and inform efficient training sample allocation - training samples should capture the full complexity of the modeled process, and more samples should be allocated to regions with more complex underlying processes rather than regions covering larger areas. Through examining the relationships between model characteristics and their effects on estimation accuracy revealed by BVD for both absolute and squared errors (i.e. error is the absolute or the squared value of the difference between observation and estimate), we found that the two error metrics embody different diagnostic emphases, can lead to different conclusions about the same model, and may suggest different solutions for performance improvement. We emphasize BVD's strength in revealing the connection between model characteristics and estimation accuracy, as understanding this relationship empowers analysts to effectively steer performance through model adjustments.
The current and ideal state of anatomic pathology patient safety.
Raab, Stephen Spencer
2014-01-01
An anatomic pathology diagnostic error may be secondary to a number of active and latent technical and/or cognitive components, which may occur anywhere along the total testing process in clinical and/or laboratory domains. For the pathologist interpretive steps of diagnosis, we examine Kahneman's framework of slow and fast thinking to explain different causes of error in precision (agreement) and in accuracy (truth). The pathologist cognitive diagnostic process involves image pattern recognition and a slow thinking error may be caused by the application of different rationally-constructed mental maps of image criteria/patterns by different pathologists. This type of error is partly related to a system failure in standardizing the application of these maps. A fast thinking error involves the flawed leap from image pattern to incorrect diagnosis. In the ideal state, anatomic pathology systems would target these cognitive error causes as well as the technical latent factors that lead to error.
Kurrant, Douglas; Fear, Elise; Baran, Anastasia; LoVetri, Joe
2017-12-01
The authors have developed a method to combine a patient-specific map of tissue structure and average dielectric properties with microwave tomography. The patient-specific map is acquired with radar-based techniques and serves as prior information for microwave tomography. The impact that the degree of structural detail included in this prior information has on image quality was reported in a previous investigation. The aim of the present study is to extend this previous work by identifying and quantifying the impact that errors in the prior information have on image quality, including the reconstruction of internal structures and lesions embedded in fibroglandular tissue. This study also extends the work of others reported in literature by emulating a clinical setting with a set of experiments that incorporate heterogeneity into both the breast interior and glandular region, as well as prior information related to both fat and glandular structures. Patient-specific structural information is acquired using radar-based methods that form a regional map of the breast. Errors are introduced to create a discrepancy in the geometry and electrical properties between the regional map and the model used to generate the data. This permits the impact that errors in the prior information have on image quality to be evaluated. Image quality is quantitatively assessed by measuring the ability of the algorithm to reconstruct both internal structures and lesions embedded in fibroglandular tissue. The study is conducted using both 2D and 3D numerical breast models constructed from MRI scans. The reconstruction results demonstrate robustness of the method relative to errors in the dielectric properties of the background regional map, and to misalignment errors. These errors do not significantly influence the reconstruction accuracy of the underlying structures, or the ability of the algorithm to reconstruct malignant tissue. Although misalignment errors do not significantly impact the quality of the reconstructed fat and glandular structures for the 3D scenarios, the dielectric properties are reconstructed less accurately within the glandular structure for these cases relative to the 2D cases. However, general agreement between the 2D and 3D results was found. A key contribution of this paper is the detailed analysis of the impact of prior information errors on the reconstruction accuracy and ability to detect tumors. The results support the utility of acquiring patient-specific information with radar-based techniques and incorporating this information into MWT. The method is robust to errors in the dielectric properties of the background regional map, and to misalignment errors. Completion of this analysis is an important step toward developing the method into a practical diagnostic tool. © 2017 American Association of Physicists in Medicine.
Exploring Measurement Error with Cookies: A Real and Virtual Approach via Interactive Excel
ERIC Educational Resources Information Center
Sinex, Scott A; Gage, Barbara A.; Beck, Peggy J.
2007-01-01
A simple, guided-inquiry investigation using stacked sandwich cookies is employed to develop a simple linear mathematical model and to explore measurement error by incorporating errors as part of the investigation. Both random and systematic errors are presented. The model and errors are then investigated further by engaging with an interactive…
Full-Field Calibration of Color Camera Chromatic Aberration using Absolute Phase Maps.
Liu, Xiaohong; Huang, Shujun; Zhang, Zonghua; Gao, Feng; Jiang, Xiangqian
2017-05-06
The refractive index of a lens varies for different wavelengths of light, and thus the same incident light with different wavelengths has different outgoing light. This characteristic of lenses causes images captured by a color camera to display chromatic aberration (CA), which seriously reduces image quality. Based on an analysis of the distribution of CA, a full-field calibration method based on absolute phase maps is proposed in this paper. Red, green, and blue closed sinusoidal fringe patterns are generated, consecutively displayed on an LCD (liquid crystal display), and captured by a color camera from the front viewpoint. The phase information of each color fringe is obtained using a four-step phase-shifting algorithm and optimum fringe number selection method. CA causes the unwrapped phase of the three channels to differ. These pixel deviations can be computed by comparing the unwrapped phase data of the red, blue, and green channels in polar coordinates. CA calibration is accomplished in Cartesian coordinates. The systematic errors introduced by the LCD are analyzed and corrected. Simulated results show the validity of the proposed method and experimental results demonstrate that the proposed full-field calibration method based on absolute phase maps will be useful for practical software-based CA calibration.
Verifying reddening and extinction for Gaia DR1 TGAS giants
NASA Astrophysics Data System (ADS)
Gontcharov, George A.; Mosenkov, Aleksandr V.
2018-03-01
Gaia DR1 Tycho-Gaia Astrometric Solution parallaxes, Tycho-2 photometry, and reddening/extinction estimates from nine data sources for 38 074 giants within 415 pc from the Sun are used to compare their position in the Hertzsprung-Russell diagram with theoretical estimates, which are based on the PARSEC and MIST isochrones and the TRILEGAL model of the Galaxy with its parameters being widely varied. We conclude that (1) some systematic errors of the reddening/extinction estimates are the main uncertainty in this study; (2) any emission-based 2D reddening map cannot give reliable estimates of reddening within 415 pc due to a complex distribution of dust; (3) if a TRILEGAL's set of the parameters of the Galaxy is reliable and if the solar metallicity is Z < 0.021, then the reddening at high Galactic latitudes behind the dust layer is underestimated by all 2D reddening maps based on the dust emission observations of IRAS, COBE, and Planck and by their 3D followers (we also discuss some explanations of this underestimation); (4) the reddening/extinction estimates from recent 3D reddening map by Gontcharov, including the median reddening E(B - V) = 0.06 mag at |b| > 50°, give the best fit of the empirical and theoretical data with each other.
A Demonstration of ‘Broken’ Visual Space
Gilson, Stuart
2012-01-01
It has long been assumed that there is a distorted mapping between real and ‘perceived’ space, based on demonstrations of systematic errors in judgements of slant, curvature, direction and separation. Here, we have applied a direct test to the notion of a coherent visual space. In an immersive virtual environment, participants judged the relative distance of two squares displayed in separate intervals. On some trials, the virtual scene expanded by a factor of four between intervals although, in line with recent results, participants did not report any noticeable change in the scene. We found that there was no consistent depth ordering of objects that can explain the distance matches participants made in this environment (e.g. A>B>D yet also A
TSSi--an R package for transcription start site identification from 5' mRNA tag data.
Kreutz, C; Gehring, J S; Lang, D; Reski, R; Timmer, J; Rensing, S A
2012-06-15
High-throughput sequencing has become an essential experimental approach for the investigation of transcriptional mechanisms. For some applications like ChIP-seq, several approaches for the prediction of peak locations exist. However, these methods are not designed for the identification of transcription start sites (TSSs) because such datasets contain qualitatively different noise. In this application note, the R package TSSi is presented which provides a heuristic framework for the identification of TSSs based on 5' mRNA tag data. Probabilistic assumptions for the distribution of the data, i.e. for the observed positions of the mapped reads, as well as for systematic errors, i.e. for reads which map closely but not exactly to a real TSS, are made and can be adapted by the user. The framework also comprises a regularization procedure which can be applied as a preprocessing step to decrease the noise and thereby reduce the number of false predictions. The R package TSSi is available from the Bioconductor web site: www.bioconductor.org/packages/release/bioc/html/TSSi.html.
Uncertainty Analysis of Seebeck Coefficient and Electrical Resistivity Characterization
NASA Technical Reports Server (NTRS)
Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred
2014-01-01
In order to provide a complete description of a materials thermoelectric power factor, in addition to the measured nominal value, an uncertainty interval is required. The uncertainty may contain sources of measurement error including systematic bias error and precision error of a statistical nature. The work focuses specifically on the popular ZEM-3 (Ulvac Technologies) measurement system, but the methods apply to any measurement system. The analysis accounts for sources of systematic error including sample preparation tolerance, measurement probe placement, thermocouple cold-finger effect, and measurement parameters; in addition to including uncertainty of a statistical nature. Complete uncertainty analysis of a measurement system allows for more reliable comparison of measurement data between laboratories.
NASA Astrophysics Data System (ADS)
Crimmins, T. M.; Switzer, J.; Rosemartin, A.; Marsh, L.; Gerst, K.; Crimmins, M.; Weltzin, J. F.
2016-12-01
Since 2016 the USA National Phenology Network (USA-NPN; www.usanpn.org) has produced and delivered daily maps and short-term forecasts of accumulated growing degree days and spring onset dates at fine spatial scale for the conterminous United States. Because accumulated temperature is a strong driver of phenological transitions in plants and animals, including leaf-out, flowering, fruit ripening, and migration, these data products have utility for a wide range of natural resource planning and management applications, including scheduling invasive species and pest detection and control activities, determining planting dates, anticipating allergy outbreaks and planning agricultural harvest dates. The USA-NPN is a national-scale program that supports scientific advancement and decision-making by collecting, storing, and sharing phenology data and information. We will be expanding the suite of gridded map products offered by the USA-NPN to include predictive species-specific maps of phenological transitions in plants and animals at fine spatial and temporal resolution in the future. Data products, such as the gridded maps currently produced by the USA-NPN, inherently contain uncertainty and error arising from multiple sources, including error propagated forward from underlying climate data and from the models implemented. As providing high-quality, vetted data in a transparent way is central to the USA-NPN, we aim to identify and report the sources and magnitude of uncertainty and error in gridded maps and forecast products. At present, we compare our real-time gridded products to independent, trustworthy data sources, such as the Climate Reference Network, on a daily basis and report Mean Absolute Error and bias through an interactive online dashboard.
Analyzing thematic maps and mapping for accuracy
Rosenfield, G.H.
1982-01-01
Two problems which exist while attempting to test the accuracy of thematic maps and mapping are: (1) evaluating the accuracy of thematic content, and (2) evaluating the effects of the variables on thematic mapping. Statistical analysis techniques are applicable to both these problems and include techniques for sampling the data and determining their accuracy. In addition, techniques for hypothesis testing, or inferential statistics, are used when comparing the effects of variables. A comprehensive and valid accuracy test of a classification project, such as thematic mapping from remotely sensed data, includes the following components of statistical analysis: (1) sample design, including the sample distribution, sample size, size of the sample unit, and sampling procedure; and (2) accuracy estimation, including estimation of the variance and confidence limits. Careful consideration must be given to the minimum sample size necessary to validate the accuracy of a given. classification category. The results of an accuracy test are presented in a contingency table sometimes called a classification error matrix. Usually the rows represent the interpretation, and the columns represent the verification. The diagonal elements represent the correct classifications. The remaining elements of the rows represent errors by commission, and the remaining elements of the columns represent the errors of omission. For tests of hypothesis that compare variables, the general practice has been to use only the diagonal elements from several related classification error matrices. These data are arranged in the form of another contingency table. The columns of the table represent the different variables being compared, such as different scales of mapping. The rows represent the blocking characteristics, such as the various categories of classification. The values in the cells of the tables might be the counts of correct classification or the binomial proportions of these counts divided by either the row totals or the column totals from the original classification error matrices. In hypothesis testing, when the results of tests of multiple sample cases prove to be significant, some form of statistical test must be used to separate any results that differ significantly from the others. In the past, many analyses of the data in this error matrix were made by comparing the relative magnitudes of the percentage of correct classifications, for either individual categories, the entire map or both. More rigorous analyses have used data transformations and (or) two-way classification analysis of variance. A more sophisticated step of data analysis techniques would be to use the entire classification error matrices using the methods of discrete multivariate analysis or of multiviariate analysis of variance.
Characterizing the impact of model error in hydrologic time series recovery inverse problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Scott K.; He, Jiachuan; Vesselinov, Velimir V.
Hydrologic models are commonly over-smoothed relative to reality, owing to computational limitations and to the difficulty of obtaining accurate high-resolution information. When used in an inversion context, such models may introduce systematic biases which cannot be encapsulated by an unbiased “observation noise” term of the type assumed by standard regularization theory and typical Bayesian formulations. Despite its importance, model error is difficult to encapsulate systematically and is often neglected. In this paper, model error is considered for an important class of inverse problems that includes interpretation of hydraulic transients and contaminant source history inference: reconstruction of a time series thatmore » has been convolved against a transfer function (i.e., impulse response) that is only approximately known. Using established harmonic theory along with two results established here regarding triangular Toeplitz matrices, upper and lower error bounds are derived for the effect of systematic model error on time series recovery for both well-determined and over-determined inverse problems. It is seen that use of additional measurement locations does not improve expected performance in the face of model error. A Monte Carlo study of a realistic hydraulic reconstruction problem is presented, and the lower error bound is seen informative about expected behavior. Finally, a possible diagnostic criterion for blind transfer function characterization is also uncovered.« less
Characterizing the impact of model error in hydrologic time series recovery inverse problems
Hansen, Scott K.; He, Jiachuan; Vesselinov, Velimir V.
2017-10-28
Hydrologic models are commonly over-smoothed relative to reality, owing to computational limitations and to the difficulty of obtaining accurate high-resolution information. When used in an inversion context, such models may introduce systematic biases which cannot be encapsulated by an unbiased “observation noise” term of the type assumed by standard regularization theory and typical Bayesian formulations. Despite its importance, model error is difficult to encapsulate systematically and is often neglected. In this paper, model error is considered for an important class of inverse problems that includes interpretation of hydraulic transients and contaminant source history inference: reconstruction of a time series thatmore » has been convolved against a transfer function (i.e., impulse response) that is only approximately known. Using established harmonic theory along with two results established here regarding triangular Toeplitz matrices, upper and lower error bounds are derived for the effect of systematic model error on time series recovery for both well-determined and over-determined inverse problems. It is seen that use of additional measurement locations does not improve expected performance in the face of model error. A Monte Carlo study of a realistic hydraulic reconstruction problem is presented, and the lower error bound is seen informative about expected behavior. Finally, a possible diagnostic criterion for blind transfer function characterization is also uncovered.« less
Huang, Junhui; Xue, Qi; Wang, Zhao; Gao, Jianmin
2016-09-03
While color-coding methods have improved the measuring efficiency of a structured light three-dimensional (3D) measurement system, they decreased the measuring accuracy significantly due to lateral chromatic aberration (LCA). In this study, the LCA in a structured light measurement system is analyzed, and a method is proposed to compensate the error caused by the LCA. Firstly, based on the projective transformation, a 3D error map of LCA is constructed in the projector images by using a flat board and comparing the image coordinates of red, green and blue circles with the coordinates of white circles at preselected sample points within the measurement volume. The 3D map consists of the errors, which are the equivalent errors caused by LCA of the camera and projector. Then in measurements, error values of LCA are calculated and compensated to correct the projector image coordinates through the 3D error map and a tri-linear interpolation method. Eventually, 3D coordinates with higher accuracy are re-calculated according to the compensated image coordinates. The effectiveness of the proposed method is verified in the following experiments.
Huang, Junhui; Xue, Qi; Wang, Zhao; Gao, Jianmin
2016-01-01
While color-coding methods have improved the measuring efficiency of a structured light three-dimensional (3D) measurement system, they decreased the measuring accuracy significantly due to lateral chromatic aberration (LCA). In this study, the LCA in a structured light measurement system is analyzed, and a method is proposed to compensate the error caused by the LCA. Firstly, based on the projective transformation, a 3D error map of LCA is constructed in the projector images by using a flat board and comparing the image coordinates of red, green and blue circles with the coordinates of white circles at preselected sample points within the measurement volume. The 3D map consists of the errors, which are the equivalent errors caused by LCA of the camera and projector. Then in measurements, error values of LCA are calculated and compensated to correct the projector image coordinates through the 3D error map and a tri-linear interpolation method. Eventually, 3D coordinates with higher accuracy are re-calculated according to the compensated image coordinates. The effectiveness of the proposed method is verified in the following experiments. PMID:27598174
Corporate compliance: critical to organizational success.
Cantone, L
1999-01-01
Operation Restore Trust (ORT) has focused increased governmental attention on health care fraud and abuse activities, making it more costly to be noncompliant, and thus has led to significant behavioral changes within the health care industry. Initially five states (California, Florida, Illinois, New York, & Texas) were included in the 1997 ORT pilot program. This has been expanded to include Arizona, Colorado, Georgia, Louisiana, Massachusetts, Missouri, New Jersey, Ohio, Pennsylvania, Tennessee, Virginia, and Washington. The author presents a road map for developing of a compliance program that includes suggested strategies for staff training in anticipation of heightened scrutiny of compliance standards and procedures. Effective Corporate Compliance Programs (CCPs) should include policies and procedures and monitoring systems that can provide reasonable assurance that fraud, abuse, and systematic billing errors are detected in a timely manner.
Systematic Biases in Parameter Estimation of Binary Black-Hole Mergers
NASA Technical Reports Server (NTRS)
Littenberg, Tyson B.; Baker, John G.; Buonanno, Alessandra; Kelly, Bernard J.
2012-01-01
Parameter estimation of binary-black-hole merger events in gravitational-wave data relies on matched filtering techniques, which, in turn, depend on accurate model waveforms. Here we characterize the systematic biases introduced in measuring astrophysical parameters of binary black holes by applying the currently most accurate effective-one-body templates to simulated data containing non-spinning numerical-relativity waveforms. For advanced ground-based detectors, we find that the systematic biases are well within the statistical error for realistic signal-to-noise ratios (SNR). These biases grow to be comparable to the statistical errors at high signal-to-noise ratios for ground-based instruments (SNR approximately 50) but never dominate the error budget. At the much larger signal-to-noise ratios expected for space-based detectors, these biases will become large compared to the statistical errors but are small enough (at most a few percent in the black-hole masses) that we expect they should not affect broad astrophysical conclusions that may be drawn from the data.
System calibration method for Fourier ptychographic microscopy.
Pan, An; Zhang, Yan; Zhao, Tianyu; Wang, Zhaojun; Dan, Dan; Lei, Ming; Yao, Baoli
2017-09-01
Fourier ptychographic microscopy (FPM) is a recently proposed computational imaging technique with both high-resolution and wide field of view. In current FPM imaging platforms, systematic error sources come from aberrations, light-emitting diode (LED) intensity fluctuation, parameter imperfections, and noise, all of which may severely corrupt the reconstruction results with similar artifacts. Therefore, it would be unlikely to distinguish the dominating error from these degraded reconstructions without any preknowledge. In addition, systematic error is generally a mixture of various error sources in the real situation, and it cannot be separated due to their mutual restriction and conversion. To this end, we report a system calibration procedure, termed SC-FPM, to calibrate the mixed systematic errors simultaneously from an overall perspective, based on the simulated annealing algorithm, the LED intensity correction method, the nonlinear regression process, and the adaptive step-size strategy, which involves the evaluation of an error metric at each iteration step, followed by the re-estimation of accurate parameters. The performance achieved both in simulations and experiments demonstrates that the proposed method outperforms other state-of-the-art algorithms. The reported system calibration scheme improves the robustness of FPM, relaxes the experiment conditions, and does not require any preknowledge, which makes the FPM more pragmatic. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
An Investigation of the Standard Errors of Expected A Posteriori Ability Estimates.
ERIC Educational Resources Information Center
De Ayala, R. J.; And Others
Expected a posteriori has a number of advantages over maximum likelihood estimation or maximum a posteriori (MAP) estimation methods. These include ability estimates (thetas) for all response patterns, less regression towards the mean than MAP ability estimates, and a lower average squared error. R. D. Bock and R. J. Mislevy (1982) state that the…
Techniques for Down-Sampling a Measured Surface Height Map for Model Validation
NASA Technical Reports Server (NTRS)
Sidick, Erkin
2012-01-01
This software allows one to down-sample a measured surface map for model validation, not only without introducing any re-sampling errors, but also eliminating the existing measurement noise and measurement errors. The software tool of the current two new techniques can be used in all optical model validation processes involving large space optical surfaces
NASA Astrophysics Data System (ADS)
Jeon, Chanhyung; Park, Jae-Hun; Kim, Dong Guk; Kim, Eung; Jeon, Dongchull
2018-04-01
An array of 5 pressure-recording inverted echo sounders (PIESs) was deployed along the Jason-2 214 ground track in the North Equatorial Current (NEC) region of the western Pacific Ocean for about 2 years from June 2012. Round-trip acoustic travel time from the bottom to the sea surface and bottom pressure measurements from PIES were converted to sea level anomaly (SLA). AVISO along-track mono-mission SLA (Mono-SLA), reference mapped SLA (Ref-MSLA), and up-to-date mapped SLA (Upd-MSLA) products were used for comparison with PIESderived SLA (η tot). Comparisons of η tot with Mono-SLA revealed that hump artifact errors significantly contaminate the Mono-SLA. Differences of η tot from both Ref-MSLA and Upd-MSLA decreased as the hump errors were reduced in mapped SLA products. Comparisons of Mono-SLA measurements at crossover points of ground tracks near the observation sites revealed large differences though the time differences of their measurements were only 1.53 and 4.58 days. Comparisons between Mono-SLA and mapped SLA suggested that mapped SLA smooths out the hump artifact errors by taking values between the two discrepant Mono-SLA measurements at the crossover points. Consequently, mapped SLA showed better agreement with η tot at our observation sites. AVISO mapped sea surface height (SSH) products are the preferable dataset for studying SSH variability in the NEC region of the western Pacific, though some portions of hump artifact errors seem to still remain in them.
NASA Astrophysics Data System (ADS)
Semenov, Z. V.; Labusov, V. A.
2017-11-01
Results of studying the errors of indirect monitoring by means of computer simulations are reported. The monitoring method is based on measuring spectra of reflection from additional monitoring substrates in a wide spectral range. Special software (Deposition Control Simulator) is developed, which allows one to estimate the influence of the monitoring system parameters (noise of the photodetector array, operating spectral range of the spectrometer and errors of its calibration in terms of wavelengths, drift of the radiation source intensity, and errors in the refractive index of deposited materials) on the random and systematic errors of deposited layer thickness measurements. The direct and inverse problems of multilayer coatings are solved using the OptiReOpt library. Curves of the random and systematic errors of measurements of the deposited layer thickness as functions of the layer thickness are presented for various values of the system parameters. Recommendations are given on using the indirect monitoring method for the purpose of reducing the layer thickness measurement error.
Vrijheid, Martine; Deltour, Isabelle; Krewski, Daniel; Sanchez, Marie; Cardis, Elisabeth
2006-07-01
This paper examines the effects of systematic and random errors in recall and of selection bias in case-control studies of mobile phone use and cancer. These sensitivity analyses are based on Monte-Carlo computer simulations and were carried out within the INTERPHONE Study, an international collaborative case-control study in 13 countries. Recall error scenarios simulated plausible values of random and systematic, non-differential and differential recall errors in amount of mobile phone use reported by study subjects. Plausible values for the recall error were obtained from validation studies. Selection bias scenarios assumed varying selection probabilities for cases and controls, mobile phone users, and non-users. Where possible these selection probabilities were based on existing information from non-respondents in INTERPHONE. Simulations used exposure distributions based on existing INTERPHONE data and assumed varying levels of the true risk of brain cancer related to mobile phone use. Results suggest that random recall errors of plausible levels can lead to a large underestimation in the risk of brain cancer associated with mobile phone use. Random errors were found to have larger impact than plausible systematic errors. Differential errors in recall had very little additional impact in the presence of large random errors. Selection bias resulting from underselection of unexposed controls led to J-shaped exposure-response patterns, with risk apparently decreasing at low to moderate exposure levels. The present results, in conjunction with those of the validation studies conducted within the INTERPHONE study, will play an important role in the interpretation of existing and future case-control studies of mobile phone use and cancer risk, including the INTERPHONE study.
Analyzing False Positives of Four Questions in the Force Concept Inventory
ERIC Educational Resources Information Center
Yasuda, Jun-ichro; Mae, Naohiro; Hull, Michael M.; Taniguchi, Masa-aki
2018-01-01
In this study, we analyze the systematic error from false positives of the Force Concept Inventory (FCI). We compare the systematic errors of question 6 (Q.6), Q.7, and Q.16, for which clearly erroneous reasoning has been found, with Q.5, for which clearly erroneous reasoning has not been found. We determine whether or not a correct response to a…
Error Sources in Asteroid Astrometry
NASA Technical Reports Server (NTRS)
Owen, William M., Jr.
2000-01-01
Asteroid astrometry, like any other scientific measurement process, is subject to both random and systematic errors, not all of which are under the observer's control. To design an astrometric observing program or to improve an existing one requires knowledge of the various sources of error, how different errors affect one's results, and how various errors may be minimized by careful observation or data reduction techniques.
High-fidelity national carbon mapping for resource management and REDD+
2013-01-01
Background High fidelity carbon mapping has the potential to greatly advance national resource management and to encourage international action toward climate change mitigation. However, carbon inventories based on field plots alone cannot capture the heterogeneity of carbon stocks, and thus remote sensing-assisted approaches are critically important to carbon mapping at regional to global scales. We advanced a high-resolution, national-scale carbon mapping approach applied to the Republic of Panama – one of the first UN REDD + partner countries. Results Integrating measurements of vegetation structure collected by airborne Light Detection and Ranging (LiDAR) with field inventory plots, we report LiDAR-estimated aboveground carbon stock errors of ~10% on any 1-ha land parcel across a wide range of ecological conditions. Critically, this shows that LiDAR provides a highly reliable replacement for inventory plots in areas lacking field data, both in humid tropical forests and among drier tropical vegetation types. We then scale up a systematically aligned LiDAR sampling of Panama using satellite data on topography, rainfall, and vegetation cover to model carbon stocks at 1-ha resolution with estimated average pixel-level uncertainty of 20.5 Mg C ha-1 nationwide. Conclusions The national carbon map revealed strong abiotic and human controls over Panamanian carbon stocks, and the new level of detail with estimated uncertainties for every individual hectare in the country sets Panama at the forefront in high-resolution ecosystem management. With this repeatable approach, carbon resource decision-making can be made on a geospatially explicit basis, enhancing human welfare and environmental protection. PMID:23866822
Development and Evaluation of a Cloud-Gap-Filled MODIS Daily Snow-Cover Product
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Riggs, George A.; Foster, James L.; Kumar, Sujay V.
2010-01-01
The utility of the Moderate Resolution Imaging Spectroradiometer (MODIS) snow-cover products is limited by cloud cover which causes gaps in the daily snow-cover map products. We describe a cloud-gap-filled (CGF) daily snowcover map using a simple algorithm to track cloud persistence, to account for the uncertainty created by the age of the snow observation. Developed from the 0.050 resolution climate-modeling grid daily snow-cover product, MOD10C1, each grid cell of the CGF map provides a cloud-persistence count (CPC) that tells whether the current or a prior day was used to make the snow decision. Percentage of grid cells "observable" is shown to increase dramatically when prior days are considered. The effectiveness of the CGF product is evaluated by conducting a suite of data assimilation experiments using the community Noah land surface model in the NASA Land Information System (LIS) framework. The Noah model forecasts of snow conditions, such as snow-water equivalent (SWE), are updated based on the observations of snow cover which are obtained either from the MOD1 OC1 standard product or the new CGF product. The assimilation integrations using the CGF maps provide domain averaged bias improvement of -11 %, whereas such improvement using the standard MOD1 OC1 maps is -3%. These improvements suggest that the Noah model underestimates SWE and snow depth fields, and that the assimilation integrations contribute to correcting this systematic error. We conclude that the gap-filling strategy is an effective approach for increasing cloud-free observations of snow cover.
The Accuracy of GBM GRB Localizations
NASA Astrophysics Data System (ADS)
Briggs, Michael Stephen; Connaughton, V.; Meegan, C.; Hurley, K.
2010-03-01
We report an study of the accuracy of GBM GRB localizations, analyzing three types of localizations: those produced automatically by the GBM Flight Software on board GBM, those produced automatically with ground software in near real time, and localizations produced with human guidance. The two types of automatic locations are distributed in near real-time via GCN Notices; the human-guided locations are distributed on timescale of many minutes or hours using GCN Circulars. This work uses a Bayesian analysis that models the distribution of the GBM total location error by comparing GBM locations to more accurate locations obtained with other instruments. Reference locations are obtained from Swift, Super-AGILE, the LAT, and with the IPN. We model the GBM total location errors as having systematic errors in addition to the statistical errors and use the Bayesian analysis to constrain the systematic errors.
Global land cover mapping: a review and uncertainty analysis
Congalton, Russell G.; Gu, Jianyu; Yadav, Kamini; Thenkabail, Prasad S.; Ozdogan, Mutlu
2014-01-01
Given the advances in remotely sensed imagery and associated technologies, several global land cover maps have been produced in recent times including IGBP DISCover, UMD Land Cover, Global Land Cover 2000 and GlobCover 2009. However, the utility of these maps for specific applications has often been hampered due to considerable amounts of uncertainties and inconsistencies. A thorough review of these global land cover projects including evaluating the sources of error and uncertainty is prudent and enlightening. Therefore, this paper describes our work in which we compared, summarized and conducted an uncertainty analysis of the four global land cover mapping projects using an error budget approach. The results showed that the classification scheme and the validation methodology had the highest error contribution and implementation priority. A comparison of the classification schemes showed that there are many inconsistencies between the definitions of the map classes. This is especially true for the mixed type classes for which thresholds vary for the attributes/discriminators used in the classification process. Examination of these four global mapping projects provided quite a few important lessons for the future global mapping projects including the need for clear and uniform definitions of the classification scheme and an efficient, practical, and valid design of the accuracy assessment.
A Systematic Literature Mapping of Risk Analysis of Big Data in Cloud Computing Environment
NASA Astrophysics Data System (ADS)
Bee Yusof Ali, Hazirah; Marziana Abdullah, Lili; Kartiwi, Mira; Nordin, Azlin; Salleh, Norsaremah; Sham Awang Abu Bakar, Normi
2018-05-01
This paper investigates previous literature that focusses on the three elements: risk assessment, big data and cloud. We use a systematic literature mapping method to search for journals and proceedings. The systematic literature mapping process is utilized to get a properly screened and focused literature. With the help of inclusion and exclusion criteria, the search of literature is further narrowed. Classification helps us in grouping the literature into categories. At the end of the mapping, gaps can be seen. The gap is where our focus should be in analysing risk of big data in cloud computing environment. Thus, a framework of how to assess the risk of security, privacy and trust associated with big data and cloud computing environment is highly needed.
Mathes, Tim; Klaßen, Pauline; Pieper, Dawid
2017-11-28
Our objective was to assess the frequency of data extraction errors and its potential impact on results in systematic reviews. Furthermore, we evaluated the effect of different extraction methods, reviewer characteristics and reviewer training on error rates and results. We performed a systematic review of methodological literature in PubMed, Cochrane methodological registry, and by manual searches (12/2016). Studies were selected by two reviewers independently. Data were extracted in standardized tables by one reviewer and verified by a second. The analysis included six studies; four studies on extraction error frequency, one study comparing different reviewer extraction methods and two studies comparing different reviewer characteristics. We did not find a study on reviewer training. There was a high rate of extraction errors (up to 50%). Errors often had an influence on effect estimates. Different data extraction methods and reviewer characteristics had moderate effect on extraction error rates and effect estimates. The evidence base for established standards of data extraction seems weak despite the high prevalence of extraction errors. More comparative studies are needed to get deeper insights into the influence of different extraction methods.
NASA Technical Reports Server (NTRS)
Harwit, M.
1977-01-01
Sources of noise and error correcting procedures characteristic of Hadamard transform optical systems were investigated. Reduction of spectral noise due to noise spikes in the data, the effect of random errors, the relative performance of Fourier and Hadamard transform spectrometers operated under identical detector-noise-limited conditions, and systematic means for dealing with mask defects are among the topics discussed. The distortion in Hadamard transform optical instruments caused by moving Masks, incorrect mask alignment, missing measurements, and diffraction is analyzed and techniques for reducing or eliminating this distortion are described.
Systematic reviews, systematic error and the acquisition of clinical knowledge
2010-01-01
Background Since its inception, evidence-based medicine and its application through systematic reviews, has been widely accepted. However, it has also been strongly criticised and resisted by some academic groups and clinicians. One of the main criticisms of evidence-based medicine is that it appears to claim to have unique access to absolute scientific truth and thus devalues and replaces other types of knowledge sources. Discussion The various types of clinical knowledge sources are categorised on the basis of Kant's categories of knowledge acquisition, as being either 'analytic' or 'synthetic'. It is shown that these categories do not act in opposition but rather, depend upon each other. The unity of analysis and synthesis in knowledge acquisition is demonstrated during the process of systematic reviewing of clinical trials. Systematic reviews constitute comprehensive synthesis of clinical knowledge but depend upon plausible, analytical hypothesis development for the trials reviewed. The dangers of systematic error regarding the internal validity of acquired knowledge are highlighted on the basis of empirical evidence. It has been shown that the systematic review process reduces systematic error, thus ensuring high internal validity. It is argued that this process does not exclude other types of knowledge sources. Instead, amongst these other types it functions as an integrated element during the acquisition of clinical knowledge. Conclusions The acquisition of clinical knowledge is based on interaction between analysis and synthesis. Systematic reviews provide the highest form of synthetic knowledge acquisition in terms of achieving internal validity of results. In that capacity it informs the analytic knowledge of the clinician but does not replace it. PMID:20537172
Assessment of tropospheric delay mapping function models in Egypt: Using PTD database model
NASA Astrophysics Data System (ADS)
Abdelfatah, M. A.; Mousa, Ashraf E.; El-Fiky, Gamal S.
2018-06-01
For space geodetic measurements, estimates of tropospheric delays are highly correlated with site coordinates and receiver clock biases. Thus, it is important to use the most accurate models for the tropospheric delay to reduce errors in the estimates of the other parameters. Both the zenith delay value and mapping function should be assigned correctly to reduce such errors. Several mapping function models can treat the troposphere slant delay. The recent models were not evaluated for the Egyptian local climate conditions. An assessment of these models is needed to choose the most suitable one. The goal of this paper is to test the quality of global mapping function which provides high consistency with precise troposphere delay (PTD) mapping functions. The PTD model is derived from radiosonde data using ray tracing, which consider in this paper as true value. The PTD mapping functions were compared, with three recent total mapping functions model and another three separate dry and wet mapping function model. The results of the research indicate that models are very close up to zenith angle 80°. Saastamoinen and 1/cos z model are behind accuracy. Niell model is better than VMF model. The model of Black and Eisner is a good model. The results also indicate that the geometric range error has insignificant effect on slant delay and the fluctuation of azimuth anti-symmetric is about 1%.
NASA Astrophysics Data System (ADS)
Baron, J.; Campbell, W. C.; DeMille, D.; Doyle, J. M.; Gabrielse, G.; Gurevich, Y. V.; Hess, P. W.; Hutzler, N. R.; Kirilov, E.; Kozyryev, I.; O'Leary, B. R.; Panda, C. D.; Parsons, M. F.; Spaun, B.; Vutha, A. C.; West, A. D.; West, E. P.; ACME Collaboration
2017-07-01
We recently set a new limit on the electric dipole moment of the electron (eEDM) (J Baron et al and ACME collaboration 2014 Science 343 269-272), which represented an order-of-magnitude improvement on the previous limit and placed more stringent constraints on many charge-parity-violating extensions to the standard model. In this paper we discuss the measurement in detail. The experimental method and associated apparatus are described, together with the techniques used to isolate the eEDM signal. In particular, we detail the way experimental switches were used to suppress effects that can mimic the signal of interest. The methods used to search for systematic errors, and models explaining observed systematic errors, are also described. We briefly discuss possible improvements to the experiment.
Phase-demodulation error of a fiber-optic Fabry-Perot sensor with complex reflection coefficients.
Kilpatrick, J M; MacPherson, W N; Barton, J S; Jones, J D
2000-03-20
The influence of reflector losses attracts little discussion in standard treatments of the Fabry-Perot interferometer yet may be an important factor contributing to errors in phase-stepped demodulation of fiber optic Fabry-Perot (FFP) sensors. We describe a general transfer function for FFP sensors with complex reflection coefficients and estimate systematic phase errors that arise when the asymmetry of the reflected fringe system is neglected, as is common in the literature. The measured asymmetric response of higher-finesse metal-dielectric FFP constructions corroborates a model that predicts systematic phase errors of 0.06 rad in three-step demodulation of a low-finesse FFP sensor (R = 0.05) with internal reflector losses of 25%.
Miraldi Utz, Virginia
2017-01-01
Myopia is the most common eye disorder and major cause of visual impairment worldwide. As the incidence of myopia continues to rise, the need to further understand the complex roles of molecular and environmental factors controlling variation in refractive error is of increasing importance. Tkatchenko and colleagues applied a systematic approach using a combination of gene set enrichment analysis, genome-wide association studies, and functional analysis of a murine model to identify a myopia susceptibility gene, APLP2. Differential expression of refractive error was associated with time spent reading for those with low frequency variants in this gene. This provides support for the longstanding hypothesis of gene-environment interactions in refractive error development.
Ellen M. Hines; Janet Franklin
1997-01-01
Using a Geographic Information System (GIS), a sensitivity analysis was performed on estimated mapping errors in vegetation type, forest canopy cover percentage, and tree crown size to determine the possible effects error in these data might have on delineating suitable habitat for the California Spotted Owl (Strix occidentalis occidentalis) in...
Eppenhof, Koen A J; Pluim, Josien P W
2018-04-01
Error estimation in nonlinear medical image registration is a nontrivial problem that is important for validation of registration methods. We propose a supervised method for estimation of registration errors in nonlinear registration of three-dimensional (3-D) images. The method is based on a 3-D convolutional neural network that learns to estimate registration errors from a pair of image patches. By applying the network to patches centered around every voxel, we construct registration error maps. The network is trained using a set of representative images that have been synthetically transformed to construct a set of image pairs with known deformations. The method is evaluated on deformable registrations of inhale-exhale pairs of thoracic CT scans. Using ground truth target registration errors on manually annotated landmarks, we evaluate the method's ability to estimate local registration errors. Estimation of full domain error maps is evaluated using a gold standard approach. The two evaluation approaches show that we can train the network to robustly estimate registration errors in a predetermined range, with subvoxel accuracy. We achieved a root-mean-square deviation of 0.51 mm from gold standard registration errors and of 0.66 mm from ground truth landmark registration errors.
NASA Astrophysics Data System (ADS)
Güttler, I.
2012-04-01
Systematic errors in near-surface temperature (T2m), total cloud cover (CLD), shortwave albedo (ALB) and surface net longwave (SNL) and shortwave energy flux (SNS) are detected in simulations of RegCM on 50 km resolution over the European CORDEX domain when forced with ERA-Interim reanalysis. Simulated T2m is compared to CRU 3.0 and other variables to GEWEX-SRB 3.0 dataset. Most of systematic errors found in SNL and SNS are consistent with errors in T2m, CLD and ALB: they include prevailing negative errors in T2m and positive errors in CLD present during most of the year. Errors in T2m and CLD can be associated with the overestimation of SNL and SNS in most simulations. Impact of errors in albedo are primarily confined to north Africa, where e.g. underestimation of albedo in JJA is consistent with associated surface heating and positive SNS and T2m errors. Sensitivity to the choice of the PBL scheme and various parameters in PBL schemes is examined from an ensemble of 20 simulations. The recently implemented prognostic PBL scheme performs over Europe with a mixed success when compared to standard diagnostic scheme with a general increase of errors in T2m and CLD over all of the domain. Nevertheless, the improvements in T2m can be found in e.g. north-eastern Europe during DJF and western Europe during JJA where substantial warm biases existed in simulations with the diagnostic scheme. The most detectable impact, in terms of the JJA T2m errors over western Europe, comes form the variation in the formulation of mixing length. In order to reduce the above errors an update of the RegCM albedo values and further work in customizing PBL scheme is suggested.
Interventions to reduce medication errors in neonatal care: a systematic review
Nguyen, Minh-Nha Rhylie; Mosel, Cassandra
2017-01-01
Background: Medication errors represent a significant but often preventable cause of morbidity and mortality in neonates. The objective of this systematic review was to determine the effectiveness of interventions to reduce neonatal medication errors. Methods: A systematic review was undertaken of all comparative and noncomparative studies published in any language, identified from searches of PubMed and EMBASE and reference-list checking. Eligible studies were those investigating the impact of any medication safety interventions aimed at reducing medication errors in neonates in the hospital setting. Results: A total of 102 studies were identified that met the inclusion criteria, including 86 comparative and 16 noncomparative studies. Medication safety interventions were classified into six themes: technology (n = 38; e.g. electronic prescribing), organizational (n = 16; e.g. guidelines, policies, and procedures), personnel (n = 13; e.g. staff education), pharmacy (n = 9; e.g. clinical pharmacy service), hazard and risk analysis (n = 8; e.g. error detection tools), and multifactorial (n = 18; e.g. any combination of previous interventions). Significant variability was evident across all included studies, with differences in intervention strategies, trial methods, types of medication errors evaluated, and how medication errors were identified and evaluated. Most studies demonstrated an appreciable risk of bias. The vast majority of studies (>90%) demonstrated a reduction in medication errors. A similar median reduction of 50–70% in medication errors was evident across studies included within each of the identified themes, but findings varied considerably from a 16% increase in medication errors to a 100% reduction in medication errors. Conclusion: While neonatal medication errors can be reduced through multiple interventions aimed at improving the medication use process, no single intervention appeared clearly superior. Further research is required to evaluate the relative cost-effectiveness of the various medication safety interventions to facilitate decisions regarding uptake and implementation into clinical practice. PMID:29387337
Evrendilek, Fatih
2007-12-12
This study aims at quantifying spatio-temporal dynamics of monthly mean dailyincident photosynthetically active radiation (PAR) over a vast and complex terrain such asTurkey. The spatial interpolation method of universal kriging, and the combination ofmultiple linear regression (MLR) models and map algebra techniques were implemented togenerate surface maps of PAR with a grid resolution of 500 x 500 m as a function of fivegeographical and 14 climatic variables. Performance of the geostatistical and MLR modelswas compared using mean prediction error (MPE), root-mean-square prediction error(RMSPE), average standard prediction error (ASE), mean standardized prediction error(MSPE), root-mean-square standardized prediction error (RMSSPE), and adjustedcoefficient of determination (R² adj. ). The best-fit MLR- and universal kriging-generatedmodels of monthly mean daily PAR were validated against an independent 37-year observeddataset of 35 climate stations derived from 160 stations across Turkey by the Jackknifingmethod. The spatial variability patterns of monthly mean daily incident PAR were moreaccurately reflected in the surface maps created by the MLR-based models than in thosecreated by the universal kriging method, in particular, for spring (May) and autumn(November). The MLR-based spatial interpolation algorithms of PAR described in thisstudy indicated the significance of the multifactor approach to understanding and mappingspatio-temporal dynamics of PAR for a complex terrain over meso-scales.
NASA Astrophysics Data System (ADS)
Blake, Chris; Collister, Adrian; Bridle, Sarah; Lahav, Ofer
2007-02-01
We analyse MegaZ-LRG, a photometric-redshift catalogue of luminous red galaxies (LRGs) based on the imaging data of the Sloan Digital Sky Survey (SDSS) 4th Data Release. MegaZ-LRG, presented in a companion paper, contains >106 photometric redshifts derived with ANNZ, an artificial neural network method, constrained by a spectroscopic subsample of ~13000 galaxies obtained by the 2dF-SDSS LRG and Quasar (2SLAQ) survey. The catalogue spans the redshift range 0.4 < z < 0.7 with an rms redshift error σz ~ 0.03(1 + z), covering 5914 deg2 to map out a total cosmic volume 2.5h-3Gpc3. In this study we use the most reliable 600000 photometric redshifts to measure the large-scale structure using two methods: (1) a spherical harmonic analysis in redshift slices, and (2) a direct re-construction of the spatial clustering pattern using Fourier techniques. We present the first cosmological parameter fits to galaxy angular power spectra from a photometric-redshift survey. Combining the redshift slices with appropriate covariances, we determine best-fitting values for the matter density Ωm and baryon density Ωb of Ωmh = 0.195 +/- 0.023 and Ωb/Ωm = 0.16 +/- 0.036 (with the Hubble parameter h = 0.75 and scalar index of primordial fluctuations nscalar = 1 held fixed). These results are in agreement with and independent of the latest studies of the cosmic microwave background radiation, and their precision is comparable to analyses of contemporary spectroscopic-redshift surveys. We perform an extensive series of tests which conclude that our power spectrum measurements are robust against potential systematic photometric errors in the catalogue. We conclude that photometric-redshift surveys are competitive with spectroscopic surveys for measuring cosmological parameters in the simplest `vanilla' models. Future deep imaging surveys have great potential for further improvement, provided that systematic errors can be controlled.
Empirical Analysis of Systematic Communication Errors.
1981-09-01
human o~ . .... 8 components in communication systems. (Systematic errors were defined to be those that occur regularly in human communication links...phase of the human communication process and focuses on the linkage between a specific piece of information (and the receiver) and the transmission...communication flow. (2) Exchange. Exchange is the next phase in human communication and entails a concerted effort on the part of the sender and receiver to share
Systematics errors in strong lens modeling
NASA Astrophysics Data System (ADS)
Johnson, Traci L.; Sharon, Keren; Bayliss, Matthew B.
We investigate how varying the number of multiple image constraints and the available redshift information can influence the systematic errors of strong lens models, specifically, the image predictability, mass distribution, and magnifications of background sources. This work will not only inform upon Frontier Field science, but also for work on the growing collection of strong lensing galaxy clusters, most of which are less massive and are capable of lensing a handful of galaxies.
Low-Energy Proton Testing Methodology
NASA Technical Reports Server (NTRS)
Pellish, Jonathan A.; Marshall, Paul W.; Heidel, David F.; Schwank, James R.; Shaneyfelt, Marty R.; Xapsos, M.A.; Ladbury, Raymond L.; LaBel, Kenneth A.; Berg, Melanie; Kim, Hak S.;
2009-01-01
Use of low-energy protons and high-energy light ions is becoming necessary to investigate current-generation SEU thresholds. Systematic errors can dominate measurements made with low-energy protons. Range and energy straggling contribute to systematic error. Low-energy proton testing is not a step-and-repeat process. Low-energy protons and high-energy light ions can be used to measure SEU cross section of single sensitive features; important for simulation.
Steinwand, Daniel R.; Hutchinson, John A.; Snyder, J.P.
1995-01-01
In global change studies the effects of map projection properties on data quality are apparent, and the choice of projection is significant. To aid compilers of global and continental data sets, six equal-area projections were chosen: the interrupted Goode Homolosine, the interrupted Mollweide, the Wagner IV, and the Wagner VII for global maps; the Lambert Azimuthal Equal-Area for hemisphere maps; and the Oblated Equal-Area and the Lambert Azimuthal Equal-Area for continental maps. Distortions in small-scale maps caused by reprojection, and the additional distortions incurred when reprojecting raster images, were quantified and graphically depicted. For raster images, the errors caused by the usual resampling methods (pixel brightness level interpolation) were responsible for much of the additional error where the local resolution and scale change were the greatest.
Focusing cosmic telescopes: systematics of strong lens modeling
NASA Astrophysics Data System (ADS)
Johnson, Traci Lin; Sharon, Keren q.
2018-01-01
The use of strong gravitational lensing by galaxy clusters has become a popular method for studying the high redshift universe. While diverse in computational methods, lens modeling techniques have grasped the means for determining statistical errors on cluster masses and magnifications. However, the systematic errors have yet to be quantified, arising from the number of constraints, availablity of spectroscopic redshifts, and various types of image configurations. I will be presenting my dissertation work on quantifying systematic errors in parametric strong lensing techniques. I have participated in the Hubble Frontier Fields lens model comparison project, using simulated clusters to compare the accuracy of various modeling techniques. I have extended this project to understanding how changing the quantity of constraints affects the mass and magnification. I will also present my recent work extending these studies to clusters in the Outer Rim Simulation. These clusters are typical of the clusters found in wide-field surveys, in mass and lensing cross-section. These clusters have fewer constraints than the HFF clusters and thus, are more susceptible to systematic errors. With the wealth of strong lensing clusters discovered in surveys such as SDSS, SPT, DES, and in the future, LSST, this work will be influential in guiding the lens modeling efforts and follow-up spectroscopic campaigns.
A probabilistic approach to remote compositional analysis of planetary surfaces
Lapotre, Mathieu G.A.; Ehlmann, Bethany L.; Minson, Sarah E.
2017-01-01
Reflected light from planetary surfaces provides information, including mineral/ice compositions and grain sizes, by study of albedo and absorption features as a function of wavelength. However, deconvolving the compositional signal in spectra is complicated by the nonuniqueness of the inverse problem. Trade-offs between mineral abundances and grain sizes in setting reflectance, instrument noise, and systematic errors in the forward model are potential sources of uncertainty, which are often unquantified. Here we adopt a Bayesian implementation of the Hapke model to determine sets of acceptable-fit mineral assemblages, as opposed to single best fit solutions. We quantify errors and uncertainties in mineral abundances and grain sizes that arise from instrument noise, compositional end members, optical constants, and systematic forward model errors for two suites of ternary mixtures (olivine-enstatite-anorthite and olivine-nontronite-basaltic glass) in a series of six experiments in the visible-shortwave infrared (VSWIR) wavelength range. We show that grain sizes are generally poorly constrained from VSWIR spectroscopy. Abundance and grain size trade-offs lead to typical abundance errors of ≤1 wt % (occasionally up to ~5 wt %), while ~3% noise in the data increases errors by up to ~2 wt %. Systematic errors further increase inaccuracies by a factor of 4. Finally, phases with low spectral contrast or inaccurate optical constants can further increase errors. Overall, typical errors in abundance are <10%, but sometimes significantly increase for specific mixtures, prone to abundance/grain-size trade-offs that lead to high unmixing uncertainties. These results highlight the need for probabilistic approaches to remote determination of planetary surface composition.
Saccadic adaptation to a systematically varying disturbance.
Cassanello, Carlos R; Ohl, Sven; Rolfs, Martin
2016-08-01
Saccadic adaptation maintains the correct mapping between eye movements and their targets, yet the dynamics of saccadic gain changes in the presence of systematically varying disturbances has not been extensively studied. Here we assessed changes in the gain of saccade amplitudes induced by continuous and periodic postsaccadic visual feedback. Observers made saccades following a sequence of target steps either along the horizontal meridian (Two-way adaptation) or with unconstrained saccade directions (Global adaptation). An intrasaccadic step-following a sinusoidal variation as a function of the trial number (with 3 different frequencies tested in separate blocks)-consistently displaced the target along its vector. The oculomotor system responded to the resulting feedback error by modifying saccade amplitudes in a periodic fashion with similar frequency of variation but lagging the disturbance by a few tens of trials. This periodic response was superimposed on a drift toward stronger hypometria with similar asymptotes and decay rates across stimulus conditions. The magnitude of the periodic response decreased with increasing frequency and was smaller and more delayed for Global than Two-way adaptation. These results suggest that-in addition to the well-characterized return-to-baseline response observed in protocols using constant visual feedback-the oculomotor system attempts to minimize the feedback error by integrating its variation across trials. This process resembles a convolution with an internal response function, whose structure would be determined by coefficients of the learning model. Our protocol reveals this fast learning process in single short experimental sessions, qualifying it for the study of sensorimotor learning in health and disease. Copyright © 2016 the American Physiological Society.
Saccadic adaptation to a systematically varying disturbance
Ohl, Sven; Rolfs, Martin
2016-01-01
Saccadic adaptation maintains the correct mapping between eye movements and their targets, yet the dynamics of saccadic gain changes in the presence of systematically varying disturbances has not been extensively studied. Here we assessed changes in the gain of saccade amplitudes induced by continuous and periodic postsaccadic visual feedback. Observers made saccades following a sequence of target steps either along the horizontal meridian (Two-way adaptation) or with unconstrained saccade directions (Global adaptation). An intrasaccadic step—following a sinusoidal variation as a function of the trial number (with 3 different frequencies tested in separate blocks)—consistently displaced the target along its vector. The oculomotor system responded to the resulting feedback error by modifying saccade amplitudes in a periodic fashion with similar frequency of variation but lagging the disturbance by a few tens of trials. This periodic response was superimposed on a drift toward stronger hypometria with similar asymptotes and decay rates across stimulus conditions. The magnitude of the periodic response decreased with increasing frequency and was smaller and more delayed for Global than Two-way adaptation. These results suggest that—in addition to the well-characterized return-to-baseline response observed in protocols using constant visual feedback—the oculomotor system attempts to minimize the feedback error by integrating its variation across trials. This process resembles a convolution with an internal response function, whose structure would be determined by coefficients of the learning model. Our protocol reveals this fast learning process in single short experimental sessions, qualifying it for the study of sensorimotor learning in health and disease. PMID:27098027
Quantitative susceptibility mapping of human brain at 3T: a multisite reproducibility study.
Lin, P-Y; Chao, T-C; Wu, M-L
2015-03-01
Quantitative susceptibility mapping of the human brain has demonstrated strong potential in examining iron deposition, which may help in investigating possible brain pathology. This study assesses the reproducibility of quantitative susceptibility mapping across different imaging sites. In this study, the susceptibility values of 5 regions of interest in the human brain were measured on 9 healthy subjects following calibration by using phantom experiments. Each of the subjects was imaged 5 times on 1 scanner with the same procedure repeated on 3 different 3T systems so that both within-site and cross-site quantitative susceptibility mapping precision levels could be assessed. Two quantitative susceptibility mapping algorithms, similar in principle, one by using iterative regularization (iterative quantitative susceptibility mapping) and the other with analytic optimal solutions (deterministic quantitative susceptibility mapping), were implemented, and their performances were compared. Results show that while deterministic quantitative susceptibility mapping had nearly 700 times faster computation speed, residual streaking artifacts seem to be more prominent compared with iterative quantitative susceptibility mapping. With quantitative susceptibility mapping, the putamen, globus pallidus, and caudate nucleus showed smaller imprecision on the order of 0.005 ppm, whereas the red nucleus and substantia nigra, closer to the skull base, had a somewhat larger imprecision of approximately 0.01 ppm. Cross-site errors were not significantly larger than within-site errors. Possible sources of estimation errors are discussed. The reproducibility of quantitative susceptibility mapping in the human brain in vivo is regionally dependent, and the precision levels achieved with quantitative susceptibility mapping should allow longitudinal and multisite studies such as aging-related changes in brain tissue magnetic susceptibility. © 2015 by American Journal of Neuroradiology.
Accurate Magnetometer/Gyroscope Attitudes Using a Filter with Correlated Sensor Noise
NASA Technical Reports Server (NTRS)
Sedlak, J.; Hashmall, J.
1997-01-01
Magnetometers and gyroscopes have been shown to provide very accurate attitudes for a variety of spacecraft. These results have been obtained, however, using a batch-least-squares algorithm and long periods of data. For use in onboard applications, attitudes are best determined using sequential estimators such as the Kalman filter. When a filter is used to determine attitudes using magnetometer and gyroscope data for input, the resulting accuracy is limited by both the sensor accuracies and errors inherent in the Earth magnetic field model. The Kalman filter accounts for the random component by modeling the magnetometer and gyroscope errors as white noise processes. However, even when these tuning parameters are physically realistic, the rate biases (included in the state vector) have been found to show systematic oscillations. These are attributed to the field model errors. If the gyroscope noise is sufficiently small, the tuned filter 'memory' will be long compared to the orbital period. In this case, the variations in the rate bias induced by field model errors are substantially reduced. Mistuning the filter to have a short memory time leads to strongly oscillating rate biases and increased attitude errors. To reduce the effect of the magnetic field model errors, these errors are estimated within the filter and used to correct the reference model. An exponentially-correlated noise model is used to represent the filter estimate of the systematic error. Results from several test cases using in-flight data from the Compton Gamma Ray Observatory are presented. These tests emphasize magnetometer errors, but the method is generally applicable to any sensor subject to a combination of random and systematic noise.
The Effects of Bar-coding Technology on Medication Errors: A Systematic Literature Review.
Hutton, Kevin; Ding, Qian; Wellman, Gregory
2017-02-24
The bar-coding technology adoptions have risen drastically in U.S. health systems in the past decade. However, few studies have addressed the impact of bar-coding technology with strong prospective methodologies and the research, which has been conducted from both in-pharmacy and bedside implementations. This systematic literature review is to examine the effectiveness of bar-coding technology on preventing medication errors and what types of medication errors may be prevented in the hospital setting. A systematic search of databases was performed from 1998 to December 2016. Studies measuring the effect of bar-coding technology on medication errors were included in a full-text review. Studies with the outcomes other than medication errors such as efficiency or workarounds were excluded. The outcomes were measured and findings were summarized for each retained study. A total of 2603 articles were initially identified and 10 studies, which used prospective before-and-after study design, were fully reviewed in this article. Of the 10 included studies, 9 took place in the United States, whereas the remaining was conducted in the United Kingdom. One research article focused on bar-coding implementation in a pharmacy setting, whereas the other 9 focused on bar coding within patient care areas. All 10 studies showed overall positive effects associated with bar-coding implementation. The results of this review show that bar-coding technology may reduce medication errors in hospital settings, particularly on preventing targeted wrong dose, wrong drug, wrong patient, unauthorized drug, and wrong route errors.
NASA Technical Reports Server (NTRS)
Martin, D. L.; Perry, M. J.
1994-01-01
Water-leaving radiances and phytoplankton pigment concentrations are calculated from coastal zone color scanner (CZCS) radiance measurements by removing atmospheric Rayleigh and aerosol radiances from the total radiance signal measured at the satellite. The single greatest source of error in CZCS atmospheric correction algorithms in the assumption that these Rayleigh and aerosol radiances are separable. Multiple-scattering interactions between Rayleigh and aerosol components cause systematic errors in calculated aerosol radiances, and the magnitude of these errors is dependent on aerosol type and optical depth and on satellite viewing geometry. A technique was developed which extends the results of previous radiative transfer modeling by Gordon and Castano to predict the magnitude of these systematic errors for simulated CZCS orbital passes in which the ocean is viewed through a modeled, physically realistic atmosphere. The simulated image mathematically duplicates the exact satellite, Sun, and pixel locations of an actual CZCS image. Errors in the aerosol radiance at 443 nm are calculated for a range of aerosol optical depths. When pixels in the simulated image exceed an error threshhold, the corresponding pixels in the actual CZCS image are flagged and excluded from further analysis or from use in image compositing or compilation of pigment concentration databases. Studies based on time series analyses or compositing of CZCS imagery which do not address Rayleigh-aerosol multiple scattering should be interpreted cautiously, since the fundamental assumption used in their atmospheric correction algorithm is flawed.
Calibration of limited-area ensemble precipitation forecasts for hydrological predictions
NASA Astrophysics Data System (ADS)
Diomede, Tommaso; Marsigli, Chiara; Montani, Andrea; Nerozzi, Fabrizio; Paccagnella, Tiziana
2015-04-01
The main objective of this study is to investigate the impact of calibration for limited-area ensemble precipitation forecasts, to be used for driving discharge predictions up to 5 days in advance. A reforecast dataset, which spans 30 years, based on the Consortium for Small Scale Modeling Limited-Area Ensemble Prediction System (COSMO-LEPS) was used for testing the calibration strategy. Three calibration techniques were applied: quantile-to-quantile mapping, linear regression, and analogs. The performance of these methodologies was evaluated in terms of statistical scores for the precipitation forecasts operationally provided by COSMO-LEPS in the years 2003-2007 over Germany, Switzerland, and the Emilia-Romagna region (northern Italy). The analog-based method seemed to be preferred because of its capability of correct position errors and spread deficiencies. A suitable spatial domain for the analog search can help to handle model spatial errors as systematic errors. However, the performance of the analog-based method may degrade in cases where a limited training dataset is available. A sensitivity test on the length of the training dataset over which to perform the analog search has been performed. The quantile-to-quantile mapping and linear regression methods were less effective, mainly because the forecast-analysis relation was not so strong for the available training dataset. A comparison between the calibration based on the deterministic reforecast and the calibration based on the full operational ensemble used as training dataset has been considered, with the aim to evaluate whether reforecasts are really worthy for calibration, given that their computational cost is remarkable. The verification of the calibration process was then performed by coupling ensemble precipitation forecasts with a distributed rainfall-runoff model. This test was carried out for a medium-sized catchment located in Emilia-Romagna, showing a beneficial impact of the analog-based method on the reduction of missed events for discharge predictions.
NASA Astrophysics Data System (ADS)
Barrie, A.; Gliese, U.; Gershman, D. J.; Avanov, L. A.; Rager, A. C.; Pollock, C. J.; Dorelli, J.
2015-12-01
The Fast Plasma Investigation (FPI) on the Magnetospheric Multiscale mission (MMS) combines data from eight spectrometers, each with four deflection states, into a single map of the sky. Any systematic discontinuity, artifact, noise source, etc. present in this map may be incorrectly interpreted as legitimate data and incorrect conclusions reached. For this reason it is desirable to have all spectrometers return the same output for a given input, and for this output to be low in noise sources or other errors. While many missions use statistical analyses of data to calibrate instruments in flight, this process is difficult with FPI for two reasons: 1. Only a small fraction of high resolution data is downloaded to the ground due to bandwidth limitations and 2: The data that is downloaded is, by definition, scientifically interesting and therefore not ideal for calibration. FPI uses a suite of new tools to calibrate in flight. A new method for detection system ground calibration has been developed involving sweeping the detection threshold to fully define the pulse height distribution. This method has now been extended for use in flight as a means to calibrate MCP voltage and threshold (together forming the operating point) of the Dual Electron Spectrometers (DES) and Dual Ion Spectrometers (DIS). A method of comparing higher energy data (which has low fractional voltage error) to lower energy data (which has a higher fractional voltage error) will be used to calibrate the high voltage outputs. Finally, a comparison of pitch angle distributions will be used to find remaining discrepancies among sensors. Initial flight results from the four MMS observatories will be discussed here. Specifically, data from initial commissioning, inter-instrument cross calibration and interference testing, and initial Phase1A routine calibration results. Success and performance of the in flight calibration as well as deviation from the ground calibration will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirasaki, Masato; Yoshida, Naoki, E-mail: masato.shirasaki@utap.phys.s.u-tokyo.ac.jp
2014-05-01
The measurement of cosmic shear using weak gravitational lensing is a challenging task that involves a number of complicated procedures. We study in detail the systematic errors in the measurement of weak-lensing Minkowski Functionals (MFs). Specifically, we focus on systematics associated with galaxy shape measurements, photometric redshift errors, and shear calibration correction. We first generate mock weak-lensing catalogs that directly incorporate the actual observational characteristics of the Canada-France-Hawaii Lensing Survey (CFHTLenS). We then perform a Fisher analysis using the large set of mock catalogs for various cosmological models. We find that the statistical error associated with the observational effects degradesmore » the cosmological parameter constraints by a factor of a few. The Subaru Hyper Suprime-Cam (HSC) survey with a sky coverage of ∼1400 deg{sup 2} will constrain the dark energy equation of the state parameter with an error of Δw {sub 0} ∼ 0.25 by the lensing MFs alone, but biases induced by the systematics can be comparable to the 1σ error. We conclude that the lensing MFs are powerful statistics beyond the two-point statistics only if well-calibrated measurement of both the redshifts and the shapes of source galaxies is performed. Finally, we analyze the CFHTLenS data to explore the ability of the MFs to break degeneracies between a few cosmological parameters. Using a combined analysis of the MFs and the shear correlation function, we derive the matter density Ω{sub m0}=0.256±{sub 0.046}{sup 0.054}.« less
NASA Technical Reports Server (NTRS)
Prive, Nikki C.; Errico, Ronald M.
2013-01-01
A series of experiments that explore the roles of model and initial condition error in numerical weather prediction are performed using an observing system simulation experiment (OSSE) framework developed at the National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASA/GMAO). The use of an OSSE allows the analysis and forecast errors to be explicitly calculated, and different hypothetical observing networks can be tested with ease. In these experiments, both a full global OSSE framework and an 'identical twin' OSSE setup are utilized to compare the behavior of the data assimilation system and evolution of forecast skill with and without model error. The initial condition error is manipulated by varying the distribution and quality of the observing network and the magnitude of observation errors. The results show that model error has a strong impact on both the quality of the analysis field and the evolution of forecast skill, including both systematic and unsystematic model error components. With a realistic observing network, the analysis state retains a significant quantity of error due to systematic model error. If errors of the analysis state are minimized, model error acts to rapidly degrade forecast skill during the first 24-48 hours of forward integration. In the presence of model error, the impact of observation errors on forecast skill is small, but in the absence of model error, observation errors cause a substantial degradation of the skill of medium range forecasts.
Error Analyses of the North Alabama Lightning Mapping Array (LMA)
NASA Technical Reports Server (NTRS)
Koshak, W. J.; Solokiewicz, R. J.; Blakeslee, R. J.; Goodman, S. J.; Christian, H. J.; Hall, J. M.; Bailey, J. C.; Krider, E. P.; Bateman, M. G.; Boccippio, D. J.
2003-01-01
Two approaches are used to characterize how accurately the North Alabama Lightning Mapping Array (LMA) is able to locate lightning VHF sources in space and in time. The first method uses a Monte Carlo computer simulation to estimate source retrieval errors. The simulation applies a VHF source retrieval algorithm that was recently developed at the NASA-MSFC and that is similar, but not identical to, the standard New Mexico Tech retrieval algorithm. The second method uses a purely theoretical technique (i.e., chi-squared Curvature Matrix theory) to estimate retrieval errors. Both methods assume that the LMA system has an overall rms timing error of 50ns, but all other possible errors (e.g., multiple sources per retrieval attempt) are neglected. The detailed spatial distributions of retrieval errors are provided. Given that the two methods are completely independent of one another, it is shown that they provide remarkably similar results, except that the chi-squared theory produces larger altitude error estimates than the (more realistic) Monte Carlo simulation.
Apprehensions and Expectations of the Adoption of Systematically Planned, Outcome-Oriented Practice
ERIC Educational Resources Information Center
Savaya, Riki; Altschuler, Dorit; Melamed, Sharon
2013-01-01
Objectives: The study examined social workers' apprehensions and expectations of the impending adoption of systematically planned, empirically based, outcome-oriented practice (SEOP). Method: Employing a mixed methods longitudinal design, the study used concept mapping to identify and map workers' apprehensions and expectations and a self-reported…
Applicability of New Approaches of Sensor Orientation to Micro Aerial Vehicles
NASA Astrophysics Data System (ADS)
Rehak, M.; Skaloud, J.
2016-06-01
This study highlights the benefits of precise aerial position and attitude control in the context of mapping with Micro Aerial Vehicles (MAVs). Accurate mapping with MAVs is gaining importance in applications such as corridor mapping, road and pipeline inspections or mapping of large areas with homogeneous surface structure, e.g. forests or agricultural fields. There, accurate aerial control plays a major role in successful terrain reconstruction and artifact-free ortophoto generation. The presented experiments focus on new approaches of aerial control. We confirm practically that the relative aerial position and attitude control can improve accuracy in difficult mapping scenarios. Indeed, the relative orientation method represents an attractive alternative in the context of MAVs for two reasons. First, the procedure is somewhat simplified, e.g. the angular misalignment, so called boresight, between the camera and the inertial measurement unit (IMU) does not have to be determined and, second, the effect of possible systematic errors in satellite positioning (e.g. due to multipath and/or incorrect recovery of differential carrier-phase ambiguities) is mitigated. First, we present a typical mapping project over an agricultural field and second, we perform a corridor road mapping. We evaluate the proposed methods in scenarios with and without automated image observations. We investigate a recently proposed concept where adjustment is performed using image observations limited to ground control and check points, so called fast aerial triangulation (Fast AT). In this context we show that accurate aerial control (absolute or relative) together with a few image observations can deliver accurate results comparable to classical aerial triangulation with thousands of image measurements. This procedure in turns reduces the demands on processing time and the requirements on the existence of surface texture. Finally, we compare the above mentioned procedures with direct sensor orientation (DiSO) to show its potential for rapid mapping.
An Analysis of Computational Errors in the Use of Division Algorithms by Fourth-Grade Students.
ERIC Educational Resources Information Center
Stefanich, Greg P.; Rokusek, Teri
1992-01-01
Presents a study that analyzed errors made by randomly chosen fourth grade students (25 of 57) while using the division algorithm and investigated the effect of remediation on identified systematic errors. Results affirm that error pattern diagnosis and directed remediation lead to new learning and long-term retention. (MDH)
Creating a literature database of low-calorie sweeteners and health studies: evidence mapping.
Wang, Ding Ding; Shams-White, Marissa; Bright, Oliver John M; Parrott, J Scott; Chung, Mei
2016-01-05
Evidence mapping is an emerging tool used to systematically identify, organize and summarize the quantity and focus of scientific evidence on a broad topic, but there are currently no methodological standards. Using the topic of low-calorie sweeteners (LCS) and selected health outcomes, we describe the process of creating an evidence-map database and demonstrate several example descriptive analyses using this database. The process of creating an evidence-map database is described in detail. The steps include: developing a comprehensive literature search strategy, establishing study eligibility criteria and a systematic study selection process, extracting data, developing outcome groups with input from expert stakeholders and tabulating data using descriptive analyses. The database was uploaded onto SRDR™ (Systematic Review Data Repository), an open public data repository. Our final LCS evidence-map database included 225 studies, of which 208 were interventional studies and 17 were cohort studies. An example bubble plot was produced to display the evidence-map data and visualize research gaps according to four parameters: comparison types, population baseline health status, outcome groups, and study sample size. This plot indicated a lack of studies assessing appetite and dietary intake related outcomes using LCS with a sugar intake comparison in people with diabetes. Evidence mapping is an important tool for the contextualization of in-depth systematic reviews within broader literature and identifies gaps in the evidence base, which can be used to inform future research. An open evidence-map database has the potential to promote knowledge translation from nutrition science to policy.
Muralikrishnan, B.; Blackburn, C.; Sawyer, D.; Phillips, S.; Bridges, R.
2010-01-01
We describe a method to estimate the scale errors in the horizontal angle encoder of a laser tracker in this paper. The method does not require expensive instrumentation such as a rotary stage or even a calibrated artifact. An uncalibrated but stable length is realized between two targets mounted on stands that are at tracker height. The tracker measures the distance between these two targets from different azimuthal positions (say, in intervals of 20° over 360°). Each target is measured in both front face and back face. Low order harmonic scale errors can be estimated from this data and may then be used to correct the encoder’s error map to improve the tracker’s angle measurement accuracy. We have demonstrated this for the second order harmonic in this paper. It is important to compensate for even order harmonics as their influence cannot be removed by averaging front face and back face measurements whereas odd orders can be removed by averaging. We tested six trackers from three different manufacturers. Two of those trackers are newer models introduced at the time of writing of this paper. For older trackers from two manufacturers, the length errors in a 7.75 m horizontal length placed 7 m away from a tracker were of the order of ± 65 μm before correcting the error map. They reduced to less than ± 25 μm after correcting the error map for second order scale errors. Newer trackers from the same manufacturers did not show this error. An older tracker from a third manufacturer also did not show this error. PMID:27134789
de Cordova, Pamela B; Bradford, Michelle A; Stone, Patricia W
2016-02-15
Shift workers have worse health outcomes than employees who work standard business hours. However, it is unclear how this poorer health shift may be related to employee work productivity. The purpose of this systematic review is to assess the relationship between shift work and errors and performance. Searches of MEDLINE/PubMed, EBSCOhost, and CINAHL were conducted to identify articles that examined the relationship between shift work, errors, quality, productivity, and performance. All articles were assessed for study quality. A total of 435 abstracts were screened with 13 meeting inclusion criteria. Eight studies were rated to be of strong, methodological quality. Nine studies demonstrated a positive relationship that night shift workers committed more errors and had decreased performance. Night shift workers have worse health that may contribute to errors and decreased performance in the workplace.
NASA Technical Reports Server (NTRS)
Calhoun, Philip C.; Sedlak, Joseph E.; Superfin, Emil
2011-01-01
Precision attitude determination for recent and planned space missions typically includes quaternion star trackers (ST) and a three-axis inertial reference unit (IRU). Sensor selection is based on estimates of knowledge accuracy attainable from a Kalman filter (KF), which provides the optimal solution for the case of linear dynamics with measurement and process errors characterized by random Gaussian noise with white spectrum. Non-Gaussian systematic errors in quaternion STs are often quite large and have an unpredictable time-varying nature, particularly when used in non-inertial pointing applications. Two filtering methods are proposed to reduce the attitude estimation error resulting from ST systematic errors, 1) extended Kalman filter (EKF) augmented with Markov states, 2) Unscented Kalman filter (UKF) with a periodic measurement model. Realistic assessments of the attitude estimation performance gains are demonstrated with both simulation and flight telemetry data from the Lunar Reconnaissance Orbiter.
A water-vapor radiometer error model. [for ionosphere in geodetic microwave techniques
NASA Technical Reports Server (NTRS)
Beckman, B.
1985-01-01
The water-vapor radiometer (WVR) is used to calibrate unpredictable delays in the wet component of the troposphere in geodetic microwave techniques such as very-long-baseline interferometry (VLBI) and Global Positioning System (GPS) tracking. Based on experience with Jet Propulsion Laboratory (JPL) instruments, the current level of accuracy in wet-troposphere calibration limits the accuracy of local vertical measurements to 5-10 cm. The goal for the near future is 1-3 cm. Although the WVR is currently the best calibration method, many instruments are prone to systematic error. In this paper, a treatment of WVR data is proposed and evaluated. This treatment reduces the effect of WVR systematic errors by estimating parameters that specify an assumed functional form for the error. The assumed form of the treatment is evaluated by comparing the results of two similar WVR's operating near each other. Finally, the observability of the error parameters is estimated by covariance analysis.
Rico-Olarte, Carolina; López, Diego M; Blobel, Bernd; Kepplinger, Sara
2017-01-01
In recent years, the interest in user experience (UX) evaluation methods for assessing technology solutions, especially in health systems for children with special needs like cognitive disabilities, has increased. Conduct a systematic mapping study to provide an overview in the field of UX evaluations in rehabilitation video games for children. The definition of research questions, the search for primary studies and the extraction of those studies by inclusion and exclusion criteria lead to the mapping of primary papers according to a classification scheme. Main findings from this study include the detection of the target population of the selected studies, the recognition of two different ways of evaluating UX: (i) user evaluation and (ii) system evaluation, and UX measurements and devices used. This systematic mapping specifies the research gaps identified for future research works in the area.
NASA Astrophysics Data System (ADS)
Taut, A.; Berger, L.; Drews, C.; Bower, J.; Keilbach, D.; Lee, M. A.; Moebius, E.; Wimmer-Schweingruber, R. F.
2017-12-01
Complementary to the direct neutral particle measurements performed by e.g. IBEX, the measurement of PickUp Ions (PUIs) constitutes a diagnostic tool to investigate the local interstellar medium. PUIs are former neutral particles that have been ionized in the inner heliosphere. Subsequently, they are picked up by the solar wind and its frozen-in magnetic field. Due to this process, a characteristic Velocity Distribution Function (VDF) with a sharp cutoff evolves, which carries information about the PUI's injection speed and thus the former neutral particle velocity. The symmetry of the injection speed about the interstellar flow vector is used to derive the interstellar flow longitude from PUI measurements. Using He PUI data obtained by the PLASTIC sensor on STEREO A, we investigate how this concept may be affected by systematic errors. The PUI VDF strongly depends on the orientation of the local interplanetary magnetic field. Recently injected PUIs with speeds just below the cutoff speed typically form a highly anisotropic torus distribution in velocity space, which leads to a longitudinal transport for certain magnetic field orientation. Therefore, we investigate how the selection of magnetic field configurations in the data affects the result for the interstellar flow longitude that we derive from the PUI cutoff. Indeed, we find that the results follow a systematic trend with the filtered magnetic field angles that can lead to a shift of the result up to 5°. In turn, this means that every value for the interstellar flow longitude derived from the PUI cutoff is affected by a systematic error depending on the utilized magnetic field orientations. Here, we present our observations, discuss possible reasons for the systematic trend we discovered, and indicate selections that may minimize the systematic errors.
Chiang, Kai-Wei; Duong, Thanh Trung; Liao, Jhen-Kai
2013-01-01
The integration of an Inertial Navigation System (INS) and the Global Positioning System (GPS) is common in mobile mapping and navigation applications to seamlessly determine the position, velocity, and orientation of the mobile platform. In most INS/GPS integrated architectures, the GPS is considered to be an accurate reference with which to correct for the systematic errors of the inertial sensors, which are composed of biases, scale factors and drift. However, the GPS receiver may produce abnormal pseudo-range errors mainly caused by ionospheric delay, tropospheric delay and the multipath effect. These errors degrade the overall position accuracy of an integrated system that uses conventional INS/GPS integration strategies such as loosely coupled (LC) and tightly coupled (TC) schemes. Conventional tightly coupled INS/GPS integration schemes apply the Klobuchar model and the Hopfield model to reduce pseudo-range delays caused by ionospheric delay and tropospheric delay, respectively, but do not address the multipath problem. However, the multipath effect (from reflected GPS signals) affects the position error far more significantly in a consumer-grade GPS receiver than in an expensive, geodetic-grade GPS receiver. To avoid this problem, a new integrated INS/GPS architecture is proposed. The proposed method is described and applied in a real-time integrated system with two integration strategies, namely, loosely coupled and tightly coupled schemes, respectively. To verify the effectiveness of the proposed method, field tests with various scenarios are conducted and the results are compared with a reliable reference system. PMID:23955434
NASA Astrophysics Data System (ADS)
Yuan, Haibo; Liu, Xiaowei; Xiang, Maosheng; Huang, Yang; Zhang, Huihua; Chen, Bingqiu
2015-02-01
In this paper we propose a spectroscopy-based stellar color regression (SCR) method to perform accurate color calibration for modern imaging surveys, taking advantage of millions of stellar spectra now available. The method is straightforward, insensitive to systematic errors in the spectroscopically determined stellar atmospheric parameters, applicable to regions that are effectively covered by spectroscopic surveys, and capable of delivering an accuracy of a few millimagnitudes for color calibration. As an illustration, we have applied the method to the Sloan Digital Sky Survey (SDSS) Stripe 82 data. With a total number of 23,759 spectroscopically targeted stars, we have mapped out the small but strongly correlated color zero-point errors present in the photometric catalog of Stripe 82, and we improve the color calibration by a factor of two to three. Our study also reveals some small but significant magnitude dependence errors in the z band for some charge-coupled devices (CCDs). Such errors are likely to be present in all the SDSS photometric data. Our results are compared with those from a completely independent test based on the intrinsic colors of red galaxies presented by Ivezić et al. The comparison, as well as other tests, shows that the SCR method has achieved a color calibration internally consistent at a level of about 5 mmag in u - g, 3 mmag in g - r, and 2 mmag in r - i and i - z. Given the power of the SCR method, we discuss briefly the potential benefits by applying the method to existing, ongoing, and upcoming imaging surveys.
A cognitive taxonomy of medical errors.
Zhang, Jiajie; Patel, Vimla L; Johnson, Todd R; Shortliffe, Edward H
2004-06-01
Propose a cognitive taxonomy of medical errors at the level of individuals and their interactions with technology. Use cognitive theories of human error and human action to develop the theoretical foundations of the taxonomy, develop the structure of the taxonomy, populate the taxonomy with examples of medical error cases, identify cognitive mechanisms for each category of medical error under the taxonomy, and apply the taxonomy to practical problems. Four criteria were used to evaluate the cognitive taxonomy. The taxonomy should be able (1) to categorize major types of errors at the individual level along cognitive dimensions, (2) to associate each type of error with a specific underlying cognitive mechanism, (3) to describe how and explain why a specific error occurs, and (4) to generate intervention strategies for each type of error. The proposed cognitive taxonomy largely satisfies the four criteria at a theoretical and conceptual level. Theoretically, the proposed cognitive taxonomy provides a method to systematically categorize medical errors at the individual level along cognitive dimensions, leads to a better understanding of the underlying cognitive mechanisms of medical errors, and provides a framework that can guide future studies on medical errors. Practically, it provides guidelines for the development of cognitive interventions to decrease medical errors and foundation for the development of medical error reporting system that not only categorizes errors but also identifies problems and helps to generate solutions. To validate this model empirically, we will next be performing systematic experimental studies.
Removal of batch effects using distribution-matching residual networks.
Shaham, Uri; Stanton, Kelly P; Zhao, Jun; Li, Huamin; Raddassi, Khadir; Montgomery, Ruth; Kluger, Yuval
2017-08-15
Sources of variability in experimentally derived data include measurement error in addition to the physical phenomena of interest. This measurement error is a combination of systematic components, originating from the measuring instrument and random measurement errors. Several novel biological technologies, such as mass cytometry and single-cell RNA-seq (scRNA-seq), are plagued with systematic errors that may severely affect statistical analysis if the data are not properly calibrated. We propose a novel deep learning approach for removing systematic batch effects. Our method is based on a residual neural network, trained to minimize the Maximum Mean Discrepancy between the multivariate distributions of two replicates, measured in different batches. We apply our method to mass cytometry and scRNA-seq datasets, and demonstrate that it effectively attenuates batch effects. our codes and data are publicly available at https://github.com/ushaham/BatchEffectRemoval.git. yuval.kluger@yale.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Improved methods for the measurement and analysis of stellar magnetic fields
NASA Technical Reports Server (NTRS)
Saar, Steven H.
1988-01-01
The paper presents several improved methods for the measurement of magnetic fields on cool stars which take into account simple radiative transfer effects and the exact Zeeman patterns. Using these methods, high-resolution, low-noise data can be fitted with theoretical line profiles to determine the mean magnetic field strength in stellar active regions and a model-dependent fraction of the stellar surface (filling factor) covered by these regions. Random errors in the derived field strength and filling factor are parameterized in terms of signal-to-noise ratio, wavelength, spectral resolution, stellar rotation rate, and the magnetic parameters themselves. Weak line blends, if left uncorrected, can have significant systematic effects on the derived magnetic parameters, and thus several methods are developed to compensate partially for them. The magnetic parameters determined by previous methods likely have systematic errors because of such line blends and because of line saturation effects. Other sources of systematic error are explored in detail. These sources of error currently make it difficult to determine the magnetic parameters of individual stars to better than about + or - 20 percent.
EMC: Air Quality Forecast Home page
archive NAM Verification Meteorology Error Time Series EMC NAM Spatial Maps Real Time Mesoscale Analysis Precipitation verification NAQFC VERIFICATION CMAQ Ozone & PM Error Time Series AOD Error Time Series HYSPLIT Smoke forecasts vs GASP satellite Dust and Smoke Error Time Series HYSPLIT WCOSS Upgrade (July
Local blur analysis and phase error correction method for fringe projection profilometry systems.
Rao, Li; Da, Feipeng
2018-05-20
We introduce a flexible error correction method for fringe projection profilometry (FPP) systems in the presence of local blur phenomenon. Local blur caused by global light transport such as camera defocus, projector defocus, and subsurface scattering will cause significant systematic errors in FPP systems. Previous methods, which adopt high-frequency patterns to separate the direct and global components, fail when the global light phenomenon occurs locally. In this paper, the influence of local blur on phase quality is thoroughly analyzed, and a concise error correction method is proposed to compensate the phase errors. For defocus phenomenon, this method can be directly applied. With the aid of spatially varying point spread functions and local frontal plane assumption, experiments show that the proposed method can effectively alleviate the system errors and improve the final reconstruction accuracy in various scenes. For a subsurface scattering scenario, if the translucent object is dominated by multiple scattering, the proposed method can also be applied to correct systematic errors once the bidirectional scattering-surface reflectance distribution function of the object material is measured.
Dynamically corrected gates for singlet-triplet spin qubits with control-dependent errors
NASA Astrophysics Data System (ADS)
Jacobson, N. Tobias; Witzel, Wayne M.; Nielsen, Erik; Carroll, Malcolm S.
2013-03-01
Magnetic field inhomogeneity due to random polarization of quasi-static local magnetic impurities is a major source of environmentally induced error for singlet-triplet double quantum dot (DQD) spin qubits. Moreover, for singlet-triplet qubits this error may depend on the applied controls. This effect is significant when a static magnetic field gradient is applied to enable full qubit control. Through a configuration interaction analysis, we observe that the dependence of the field inhomogeneity-induced error on the DQD bias voltage can vary systematically as a function of the controls for certain experimentally relevant operating regimes. To account for this effect, we have developed a straightforward prescription for adapting dynamically corrected gate sequences that assume control-independent errors into sequences that compensate for systematic control-dependent errors. We show that accounting for such errors may lead to a substantial increase in gate fidelities. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Y; Fullerton, G; Goins, B
Purpose: In our previous study a preclinical multi-modality quality assurance (QA) phantom that contains five tumor-simulating test objects with 2, 4, 7, 10 and 14 mm diameters was developed for accurate tumor size measurement by researchers during cancer drug development and testing. This study analyzed the errors during tumor volume measurement from preclinical magnetic resonance (MR), micro-computed tomography (micro- CT) and ultrasound (US) images acquired in a rodent tumor model using the preclinical multi-modality QA phantom. Methods: Using preclinical 7-Tesla MR, US and micro-CT scanners, images were acquired of subcutaneous SCC4 tumor xenografts in nude rats (3–4 rats per group;more » 5 groups) along with the QA phantom using the same imaging protocols. After tumors were excised, in-air micro-CT imaging was performed to determine reference tumor volume. Volumes measured for the rat tumors and phantom test objects were calculated using formula V = (π/6)*a*b*c where a, b and c are the maximum diameters in three perpendicular dimensions determined by the three imaging modalities. Then linear regression analysis was performed to compare image-based tumor volumes with the reference tumor volume and known test object volume for the rats and the phantom respectively. Results: The slopes of regression lines for in-vivo tumor volumes measured by three imaging modalities were 1.021, 1.101 and 0.862 for MRI, micro-CT and US respectively. For phantom, the slopes were 0.9485, 0.9971 and 0.9734 for MRI, micro-CT and US respectively. Conclusion: For both animal and phantom studies, random and systematic errors were observed. Random errors were observer-dependent and systematic errors were mainly due to selected imaging protocols and/or measurement method. In the animal study, there were additional systematic errors attributed to ellipsoidal assumption for tumor shape. The systematic errors measured using the QA phantom need to be taken into account to reduce measurement errors during the animal study.« less
Atmospheric Dispersion Effects in Weak Lensing Measurements
Plazas, Andrés Alejandro; Bernstein, Gary
2012-10-01
The wavelength dependence of atmospheric refraction causes elongation of finite-bandwidth images along the elevation vector, which produces spurious signals in weak gravitational lensing shear measurements unless this atmospheric dispersion is calibrated and removed to high precision. Because astrometric solutions and PSF characteristics are typically calibrated from stellar images, differences between the reference stars' spectra and the galaxies' spectra will leave residual errors in both the astrometric positions (dr) and in the second moment (width) of the wavelength-averaged PSF (dv) for galaxies.We estimate the level of dv that will induce spurious weak lensing signals in PSF-corrected galaxy shapes that exceed themore » statistical errors of the DES and the LSST cosmic-shear experiments. We also estimate the dr signals that will produce unacceptable spurious distortions after stacking of exposures taken at different airmasses and hour angles. We also calculate the errors in the griz bands, and find that dispersion systematics, uncorrected, are up to 6 and 2 times larger in g and r bands,respectively, than the requirements for the DES error budget, but can be safely ignored in i and z bands. For the LSST requirements, the factors are about 30, 10, and 3 in g, r, and i bands,respectively. We find that a simple correction linear in galaxy color is accurate enough to reduce dispersion shear systematics to insignificant levels in the r band for DES and i band for LSST,but still as much as 5 times than the requirements for LSST r-band observations. More complex corrections will likely be able to reduce the systematic cosmic-shear errors below statistical errors for LSST r band. But g-band effects remain large enough that it seems likely that induced systematics will dominate the statistical errors of both surveys, and cosmic-shear measurements should rely on the redder bands.« less
Ground state properties of 3d metals from self-consistent GW approach
Kutepov, Andrey L.
2017-10-06
The self consistent GW approach (scGW) has been applied to calculate the ground state properties (equilibrium Wigner–Seitz radius S WZ and bulk modulus B) of 3d transition metals Sc, Ti, V, Fe, Co, Ni, and Cu. The approach systematically underestimates S WZ with average relative deviation from the experimental data of about 1% and it overestimates the calculated bulk modulus with relative error of about 25%. We show that scGW is superior in accuracy as compared to the local density approximation but it is less accurate than the generalized gradient approach for the materials studied. If compared to the randommore » phase approximation, scGW is slightly less accurate, but its error for 3d metals looks more systematic. Lastly, the systematic nature of the deviation from the experimental data suggests that the next order of the perturbation theory should allow one to reduce the error.« less
Ground state properties of 3d metals from self-consistent GW approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutepov, Andrey L.
The self consistent GW approach (scGW) has been applied to calculate the ground state properties (equilibrium Wigner–Seitz radius S WZ and bulk modulus B) of 3d transition metals Sc, Ti, V, Fe, Co, Ni, and Cu. The approach systematically underestimates S WZ with average relative deviation from the experimental data of about 1% and it overestimates the calculated bulk modulus with relative error of about 25%. We show that scGW is superior in accuracy as compared to the local density approximation but it is less accurate than the generalized gradient approach for the materials studied. If compared to the randommore » phase approximation, scGW is slightly less accurate, but its error for 3d metals looks more systematic. Lastly, the systematic nature of the deviation from the experimental data suggests that the next order of the perturbation theory should allow one to reduce the error.« less
Instruments Measuring Integrated Care: A Systematic Review of Measurement Properties.
Bautista, Mary Ann C; Nurjono, Milawaty; Lim, Yee Wei; Dessers, Ezra; Vrijhoef, Hubertus Jm
2016-12-01
Policy Points: Investigations on systematic methodologies for measuring integrated care should coincide with the growing interest in this field of research. A systematic review of instruments provides insights into integrated care measurement, including setting the research agenda for validating available instruments and informing the decision to develop new ones. This study is the first systematic review of instruments measuring integrated care with an evidence synthesis of the measurement properties. We found 209 index instruments measuring different constructs related to integrated care; the strength of evidence on the adequacy of the majority of their measurement properties remained largely unassessed. Integrated care is an important strategy for increasing health system performance. Despite its growing significance, detailed evidence on the measurement properties of integrated care instruments remains vague and limited. Our systematic review aims to provide evidence on the state of the art in measuring integrated care. Our comprehensive systematic review framework builds on the Rainbow Model for Integrated Care (RMIC). We searched MEDLINE/PubMed for published articles on the measurement properties of instruments measuring integrated care and identified eligible articles using a standard set of selection criteria. We assessed the methodological quality of every validation study reported using the COSMIN checklist and extracted data on study and instrument characteristics. We also evaluated the measurement properties of each examined instrument per validation study and provided a best evidence synthesis on the adequacy of measurement properties of the index instruments. From the 300 eligible articles, we assessed the methodological quality of 379 validation studies from which we identified 209 index instruments measuring integrated care constructs. The majority of studies reported on instruments measuring constructs related to care integration (33%) and patient-centered care (49%); fewer studies measured care continuity/comprehensive care (15%) and care coordination/case management (3%). We mapped 84% of the measured constructs to the clinical integration domain of the RMIC, with fewer constructs related to the domains of professional (3.7%), organizational (3.4%), and functional (0.5%) integration. Only 8% of the instruments were mapped to a combination of domains; none were mapped exclusively to the system or normative integration domains. The majority of instruments were administered to either patients (60%) or health care providers (20%). Of the measurement properties, responsiveness (4%), measurement error (7%), and criterion (12%) and cross-cultural validity (14%) were less commonly reported. We found <50% of the validation studies to be of good or excellent quality for any of the measurement properties. Only a minority of index instruments showed strong evidence of positive findings for internal consistency (15%), content validity (19%), and structural validity (7%); with moderate evidence of positive findings for internal consistency (14%) and construct validity (14%). Our results suggest that the quality of measurement properties of instruments measuring integrated care is in need of improvement with the less-studied constructs and domains to become part of newly developed instruments. © 2016 Milbank Memorial Fund.
Instruments Measuring Integrated Care: A Systematic Review of Measurement Properties
BAUTISTA, MARY ANN C.; NURJONO, MILAWATY; DESSERS, EZRA; VRIJHOEF, HUBERTUS JM
2016-01-01
Policy Points: Investigations on systematic methodologies for measuring integrated care should coincide with the growing interest in this field of research.A systematic review of instruments provides insights into integrated care measurement, including setting the research agenda for validating available instruments and informing the decision to develop new ones.This study is the first systematic review of instruments measuring integrated care with an evidence synthesis of the measurement properties.We found 209 index instruments measuring different constructs related to integrated care; the strength of evidence on the adequacy of the majority of their measurement properties remained largely unassessed. Context Integrated care is an important strategy for increasing health system performance. Despite its growing significance, detailed evidence on the measurement properties of integrated care instruments remains vague and limited. Our systematic review aims to provide evidence on the state of the art in measuring integrated care. Methods Our comprehensive systematic review framework builds on the Rainbow Model for Integrated Care (RMIC). We searched MEDLINE/PubMed for published articles on the measurement properties of instruments measuring integrated care and identified eligible articles using a standard set of selection criteria. We assessed the methodological quality of every validation study reported using the COSMIN checklist and extracted data on study and instrument characteristics. We also evaluated the measurement properties of each examined instrument per validation study and provided a best evidence synthesis on the adequacy of measurement properties of the index instruments. Findings From the 300 eligible articles, we assessed the methodological quality of 379 validation studies from which we identified 209 index instruments measuring integrated care constructs. The majority of studies reported on instruments measuring constructs related to care integration (33%) and patient‐centered care (49%); fewer studies measured care continuity/comprehensive care (15%) and care coordination/case management (3%). We mapped 84% of the measured constructs to the clinical integration domain of the RMIC, with fewer constructs related to the domains of professional (3.7%), organizational (3.4%), and functional (0.5%) integration. Only 8% of the instruments were mapped to a combination of domains; none were mapped exclusively to the system or normative integration domains. The majority of instruments were administered to either patients (60%) or health care providers (20%). Of the measurement properties, responsiveness (4%), measurement error (7%), and criterion (12%) and cross‐cultural validity (14%) were less commonly reported. We found <50% of the validation studies to be of good or excellent quality for any of the measurement properties. Only a minority of index instruments showed strong evidence of positive findings for internal consistency (15%), content validity (19%), and structural validity (7%); with moderate evidence of positive findings for internal consistency (14%) and construct validity (14%). Conclusions Our results suggest that the quality of measurement properties of instruments measuring integrated care is in need of improvement with the less‐studied constructs and domains to become part of newly developed instruments. PMID:27995711
A systematic comparison of error correction enzymes by next-generation sequencing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lubock, Nathan B.; Zhang, Di; Sidore, Angus M.
Gene synthesis, the process of assembling genelength fragments from shorter groups of oligonucleotides (oligos), is becoming an increasingly important tool in molecular and synthetic biology. The length, quality and cost of gene synthesis are limited by errors produced during oligo synthesis and subsequent assembly. Enzymatic error correction methods are cost-effective means to ameliorate errors in gene synthesis. Previous analyses of these methods relied on cloning and Sanger sequencing to evaluate their efficiencies, limiting quantitative assessment. Here, we develop a method to quantify errors in synthetic DNA by next-generation sequencing. We analyzed errors in model gene assemblies and systematically compared sixmore » different error correction enzymes across 11 conditions. We find that ErrASE and T7 Endonuclease I are the most effective at decreasing average error rates (up to 5.8-fold relative to the input), whereas MutS is the best for increasing the number of perfect assemblies (up to 25.2-fold). We are able to quantify differential specificities such as ErrASE preferentially corrects C/G transversions whereas T7 Endonuclease I preferentially corrects A/T transversions. More generally, this experimental and computational pipeline is a fast, scalable and extensible way to analyze errors in gene assemblies, to profile error correction methods, and to benchmark DNA synthesis methods.« less
A systematic comparison of error correction enzymes by next-generation sequencing
Lubock, Nathan B.; Zhang, Di; Sidore, Angus M.; ...
2017-08-01
Gene synthesis, the process of assembling genelength fragments from shorter groups of oligonucleotides (oligos), is becoming an increasingly important tool in molecular and synthetic biology. The length, quality and cost of gene synthesis are limited by errors produced during oligo synthesis and subsequent assembly. Enzymatic error correction methods are cost-effective means to ameliorate errors in gene synthesis. Previous analyses of these methods relied on cloning and Sanger sequencing to evaluate their efficiencies, limiting quantitative assessment. Here, we develop a method to quantify errors in synthetic DNA by next-generation sequencing. We analyzed errors in model gene assemblies and systematically compared sixmore » different error correction enzymes across 11 conditions. We find that ErrASE and T7 Endonuclease I are the most effective at decreasing average error rates (up to 5.8-fold relative to the input), whereas MutS is the best for increasing the number of perfect assemblies (up to 25.2-fold). We are able to quantify differential specificities such as ErrASE preferentially corrects C/G transversions whereas T7 Endonuclease I preferentially corrects A/T transversions. More generally, this experimental and computational pipeline is a fast, scalable and extensible way to analyze errors in gene assemblies, to profile error correction methods, and to benchmark DNA synthesis methods.« less
Towards global Landsat burned area mapping: revisit time and availability of cloud free observations
NASA Astrophysics Data System (ADS)
Melchiorre, A.; Boschetti, L.
2016-12-01
Global, daily coarse resolution satellite data have been extensively used for systematic burned area mapping (Giglio et al. 2013; Mouillot et al. 2014). The adoption of similar approaches for producing moderate resolution (10 - 30 m) global burned area products would lead to very significant improvements for the wide variety of fire information users. It would meet a demand for accurate burned area perimeters needed for fire management, post-fire assessment and environmental restoration, and would lead to more accurate and precise atmospheric emission estimations, especially over heterogeneous areas (Mouillot et al. 2014; Randerson et al. 2012; van der Werf et al. 2010). The increased spatial resolution clearly benefits mapping accuracy: the reduction of mixed pixels directly translates in increased spectral separation compared to coarse resolution data. As a tradeoff, the lower temporal resolution (e.g. 16 days for Landsat), could potentially cause large omission errors in ecosystems with fast post-fire recovery. The spectral signal due to the fire effects is non-permanent, can be detected for a period ranging from a few weeks in savannas and grasslands, to over a year in forest ecosystems (Roy et al. 2010). Additionally, clouds, smoke, and other optically thick aerosols limit the number of available observations (Roy et al. 2008; Smith and Wooster 2005), exacerbating the issues related to mapping burned areas globally with moderate resolution sensors. This study presents a global analysis of the effect of cloud cover on Landsat data availability over burned areas, by analyzing the MODIS data record of burned area (MCD45) and cloud detections (MOD35), and combining it with the Landsat acquisition calendar and viewing geometry. For each pixel classified as burned in the MCD45 product, the MOD35 data are used to determine how many cloud free observations would have been available on Landsat overpass days, within the period of observability of the burned area spectral signal in the specific ecosystem. If a burned area pixel is covered by clouds on all the post-fire Landsat overpass days, we assume that it would not be detected in a hypothetical Landsat global burned area product. The resulting maps of expected omission errors are combined for the full 15-year MODIS dataset, and summarized by ecoregion and landcover class.
The dorsal stream contribution to phonological retrieval in object naming
Faseyitan, Olufunsho; Kim, Junghoon; Coslett, H. Branch
2012-01-01
Meaningful speech, as exemplified in object naming, calls on knowledge of the mappings between word meanings and phonological forms. Phonological errors in naming (e.g. GHOST named as ‘goath’) are commonly seen in persisting post-stroke aphasia and are thought to signal impairment in retrieval of phonological form information. We performed a voxel-based lesion-symptom mapping analysis of 1718 phonological naming errors collected from 106 individuals with diverse profiles of aphasia. Voxels in which lesion status correlated with phonological error rates localized to dorsal stream areas, in keeping with classical and contemporary brain-language models. Within the dorsal stream, the critical voxels were concentrated in premotor cortex, pre- and postcentral gyri and supramarginal gyrus with minimal extension into auditory-related posterior temporal and temporo-parietal cortices. This challenges the popular notion that error-free phonological retrieval requires guidance from sensory traces stored in posterior auditory regions and points instead to sensory-motor processes located further anterior in the dorsal stream. In a separate analysis, we compared the lesion maps for phonological and semantic errors and determined that there was no spatial overlap, demonstrating that the brain segregates phonological and semantic retrieval operations in word production. PMID:23171662
First measurements of error fields on W7-X using flux surface mapping
Lazerson, Samuel A.; Otte, Matthias; Bozhenkov, Sergey; ...
2016-08-03
Error fields have been detected and quantified using the flux surface mapping diagnostic system on Wendelstein 7-X (W7-X). A low-field 'more » $${\\rlap{-}\\ \\iota} =1/2$$ ' magnetic configuration ($${\\rlap{-}\\ \\iota} =\\iota /2\\pi $$ ), sensitive to error fields, was developed in order to detect their presence using the flux surface mapping diagnostic. In this configuration, a vacuum flux surface with rotational transform of n/m = 1/2 is created at the mid-radius of the vacuum flux surfaces. If no error fields are present a vanishingly small n/m = 5/10 island chain should be present. Modeling indicates that if an n = 1 perturbing field is applied by the trim coils, a large n/m = 1/2 island chain will be opened. This island chain is used to create a perturbation large enough to be imaged by the diagnostic. Phase and amplitude scans of the applied field allow the measurement of a small $$\\sim 0.04$$ m intrinsic island chain with a $${{130}^{\\circ}}$$ phase relative to the first module of the W7-X experiment. Lastly, these error fields are determined to be small and easily correctable by the trim coil system.« less
Accuracy of Gradient Reconstruction on Grids with High Aspect Ratio
NASA Technical Reports Server (NTRS)
Thomas, James
2008-01-01
Gradient approximation methods commonly used in unstructured-grid finite-volume schemes intended for solutions of high Reynolds number flow equations are studied comprehensively. The accuracy of gradients within cells and within faces is evaluated systematically for both node-centered and cell-centered formulations. Computational and analytical evaluations are made on a series of high-aspect-ratio grids with different primal elements, including quadrilateral, triangular, and mixed element grids, with and without random perturbations to the mesh. Both rectangular and cylindrical geometries are considered; the latter serves to study the effects of geometric curvature. The study shows that the accuracy of gradient reconstruction on high-aspect-ratio grids is determined by a combination of the grid and the solution. The contributors to the error are identified and approaches to reduce errors are given, including the addition of higher-order terms in the direction of larger mesh spacing. A parameter GAMMA characterizing accuracy on curved high-aspect-ratio grids is discussed and an approximate-mapped-least-square method using a commonly-available distance function is presented; the method provides accurate gradient reconstruction on general grids. The study is intended to be a reference guide accompanying the construction of accurate and efficient methods for high Reynolds number applications
Robust Parallel Motion Estimation and Mapping with Stereo Cameras in Underground Infrastructure
NASA Astrophysics Data System (ADS)
Liu, Chun; Li, Zhengning; Zhou, Yuan
2016-06-01
Presently, we developed a novel robust motion estimation method for localization and mapping in underground infrastructure using a pre-calibrated rigid stereo camera rig. Localization and mapping in underground infrastructure is important to safety. Yet it's also nontrivial since most underground infrastructures have poor lighting condition and featureless structure. Overcoming these difficulties, we discovered that parallel system is more efficient than the EKF-based SLAM approach since parallel system divides motion estimation and 3D mapping tasks into separate threads, eliminating data-association problem which is quite an issue in SLAM. Moreover, the motion estimation thread takes the advantage of state-of-art robust visual odometry algorithm which is highly functional under low illumination and provides accurate pose information. We designed and built an unmanned vehicle and used the vehicle to collect a dataset in an underground garage. The parallel system was evaluated by the actual dataset. Motion estimation results indicated a relative position error of 0.3%, and 3D mapping results showed a mean position error of 13cm. Off-line process reduced position error to 2cm. Performance evaluation by actual dataset showed that our system is capable of robust motion estimation and accurate 3D mapping in poor illumination and featureless underground environment.
Planck early results. XXV. Thermal dust in nearby molecular clouds
NASA Astrophysics Data System (ADS)
Planck Collaboration; Abergel, A.; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Cabella, P.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chiang, L.-Y.; Chiang, C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Dobashi, K.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Harrison, D.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.; Jones, A.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leonardi, R.; Leroy, C.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Mandolesi, N.; Mann, R.; Maris, M.; Marshall, D. J.; Martin, P.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Pajot, F.; Paladini, R.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, P.; Smoot, G. F.; Starck, J.-L.; Stivoli, F.; Stolyarov, V.; Sudiwala, R.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Torre, J.-P.; Tristram, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Verstraete, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.
2011-12-01
Planck allows unbiased mapping of Galactic sub-millimetre and millimetre emission from the most diffuse regions to the densest parts of molecular clouds. We present an early analysis of the Taurus molecular complex, on line-of-sight-averaged data and without component separation. The emission spectrum measured by Planck and IRAS can be fitted pixel by pixel using a single modified blackbody. Some systematic residuals are detected at 353 GHz and 143 GHz, with amplitudes around -7% and +13%, respectively, indicating that the measured spectra are likely more complex than a simple modified blackbody. Significant positive residuals are also detected in the molecular regions and in the 217 GHz and 100 GHz bands, mainly caused by the contribution of the J = 2 → 1 and J = 1 → 0 12CO and 13CO emission lines. We derive maps of the dust temperature T, the dust spectral emissivity index β, and the dust optical depth at 250 μm τ250. The temperature map illustrates the cooling of the dust particles in thermal equilibrium with the incident radiation field, from 16 - 17 K in the diffuse regions to 13 - 14 K in the dense parts. The distribution of spectral indices is centred at 1.78, with a standard deviation of 0.08 and a systematic error of 0.07. We detect a significant T - β anti-correlation. The dust optical depth map reveals the spatial distribution of the column density of the molecular complex from the densest molecular regions to the faint diffuse regions. We use near-infrared extinction and Hi data at 21-cm to perform a quantitative analysis of the spatial variations of the measured dust optical depth at 250 μm per hydrogen atom τ250/NH. We report an increase of τ250/NH by a factor of about 2 between the atomic phase and the molecular phase, which has a strong impact on the equilibrium temperature of the dust particles. Corresponding author: A. Abergel, e-mail: alain.abergel@ias.u-psud.fr
Pencil beam proton radiography using a multilayer ionization chamber
NASA Astrophysics Data System (ADS)
Farace, Paolo; Righetto, Roberto; Meijers, Arturs
2016-06-01
A pencil beam proton radiography (PR) method, using a commercial multilayer ionization chamber (MLIC) integrated with a treatment planning system (TPS) was developed. A Giraffe (IBA Dosimetry) MLIC (±0.5 mm accuracy) was used to obtain pencil beam PR by delivering spots uniformly positioned at a 5.0 mm distance in a 9 × 9 square of spots. PRs of an electron-density (with tissue-equivalent inserts) phantom and a head phantom were acquired. The integral depth dose (IDD) curves of the delivered spots were computed by the TPS in a volume of water simulating the MLIC, and virtually added to the CT at the exit side of the phantoms. For each spot, measured and calculated IDD were overlapped in order to compute a map of range errors. On the head-phantom, the maximum dose from PR acquisition was estimated. Additionally, on the head phantom the impact on the range errors map was estimated in case of a 1 mm position misalignment. In the electron-density phantom, range errors were within 1 mm in the soft-tissue rods, but greater in the dense-rod. In the head-phantom the range errors were -0.9 ± 2.7 mm on the whole map and within 1 mm in the brain area. On both phantoms greater errors were observed at inhomogeneity interfaces, due to sensitivity to small misalignment, and inaccurate TPS dose computation. The effect of the 1 mm misalignment was clearly visible on the range error map and produced an increased spread of range errors (-1.0 ± 3.8 mm on the whole map). The dose to the patient for such PR acquisitions would be acceptable as the maximum dose to the head phantom was <2cGyE. By the described 2D method, allowing to discriminate misalignments, range verification can be performed in selected areas to implement an in vivo quality assurance program.
Pencil beam proton radiography using a multilayer ionization chamber.
Farace, Paolo; Righetto, Roberto; Meijers, Arturs
2016-06-07
A pencil beam proton radiography (PR) method, using a commercial multilayer ionization chamber (MLIC) integrated with a treatment planning system (TPS) was developed. A Giraffe (IBA Dosimetry) MLIC (±0.5 mm accuracy) was used to obtain pencil beam PR by delivering spots uniformly positioned at a 5.0 mm distance in a 9 × 9 square of spots. PRs of an electron-density (with tissue-equivalent inserts) phantom and a head phantom were acquired. The integral depth dose (IDD) curves of the delivered spots were computed by the TPS in a volume of water simulating the MLIC, and virtually added to the CT at the exit side of the phantoms. For each spot, measured and calculated IDD were overlapped in order to compute a map of range errors. On the head-phantom, the maximum dose from PR acquisition was estimated. Additionally, on the head phantom the impact on the range errors map was estimated in case of a 1 mm position misalignment. In the electron-density phantom, range errors were within 1 mm in the soft-tissue rods, but greater in the dense-rod. In the head-phantom the range errors were -0.9 ± 2.7 mm on the whole map and within 1 mm in the brain area. On both phantoms greater errors were observed at inhomogeneity interfaces, due to sensitivity to small misalignment, and inaccurate TPS dose computation. The effect of the 1 mm misalignment was clearly visible on the range error map and produced an increased spread of range errors (-1.0 ± 3.8 mm on the whole map). The dose to the patient for such PR acquisitions would be acceptable as the maximum dose to the head phantom was <2cGyE. By the described 2D method, allowing to discriminate misalignments, range verification can be performed in selected areas to implement an in vivo quality assurance program.
Custom map projections for regional groundwater models
Kuniansky, Eve L.
2017-01-01
For regional groundwater flow models (areas greater than 100,000 km2), improper choice of map projection parameters can result in model error for boundary conditions dependent on area (recharge or evapotranspiration simulated by application of a rate using cell area from model discretization) and length (rivers simulated with head-dependent flux boundary). Smaller model areas can use local map coordinates, such as State Plane (United States) or Universal Transverse Mercator (correct zone) without introducing large errors. Map projections vary in order to preserve one or more of the following properties: area, shape, distance (length), or direction. Numerous map projections are developed for different purposes as all four properties cannot be preserved simultaneously. Preservation of area and length are most critical for groundwater models. The Albers equal-area conic projection with custom standard parallels, selected by dividing the length north to south by 6 and selecting standard parallels 1/6th above or below the southern and northern extent, preserves both area and length for continental areas in mid latitudes oriented east-west. Custom map projection parameters can also minimize area and length error in non-ideal projections. Additionally, one must also use consistent vertical and horizontal datums for all geographic data. The generalized polygon for the Floridan aquifer system study area (306,247.59 km2) is used to provide quantitative examples of the effect of map projections on length and area with different projections and parameter choices. Use of improper map projection is one model construction problem easily avoided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagler, Peter C.; Tucker, Gregory S.; Fixsen, Dale J.
The detection of the primordial B-mode polarization signal of the cosmic microwave background (CMB) would provide evidence for inflation. Yet as has become increasingly clear, the detection of a such a faint signal requires an instrument with both wide frequency coverage to reject foregrounds and excellent control over instrumental systematic effects. Using a polarizing Fourier transform spectrometer (FTS) for CMB observations meets both of these requirements. In this work, we present an analysis of instrumental systematic effects in polarizing FTSs, using the Primordial Inflation Explorer (PIXIE) as a worked example. We analytically solve for the most important systematic effects inherentmore » to the FTS—emissive optical components, misaligned optical components, sampling and phase errors, and spin synchronous effects—and demonstrate that residual systematic error terms after corrections will all be at the sub-nK level, well below the predicted 100 nK B-mode signal.« less
NASA Technical Reports Server (NTRS)
Skinner, J. A., Jr.; Gaddis, L. R.; Hagerty, J. J.
2010-01-01
The first systematic lunar geologic maps were completed at 1:1M scale for the lunar near side during the 1960s using telescopic and Lunar Orbiter (LO) photographs [1-3]. The program under which these maps were completed established precedents for map base, scale, projection, and boundaries in order to avoid widely discrepant products. A variety of geologic maps were subsequently produced for various purposes, including 1:5M scale global maps [4-9] and large scale maps of high scientific interest (including the Apollo landing sites) [10]. Since that time, lunar science has benefitted from an abundance of surface information, including high resolution images and diverse compositional data sets, which have yielded a host of topical planetary investigations. The existing suite of lunar geologic maps and topical studies provide exceptional context in which to unravel the geologic history of the Moon. However, there has been no systematic approach to lunar geologic mapping since the flight of post-Apollo scientific orbiters. Geologic maps provide a spatial and temporal framework wherein observations can be reliably benchmarked and compared. As such, a lack of a systematic mapping program means that modern (post- Apollo) data sets, their scientific ramifications, and the lunar scientists who investigate these data, are all marginalized in regard to geologic mapping. Marginalization weakens the overall understanding of the geologic evolution of the Moon and unnecessarily partitions lunar research. To bridge these deficiencies, we began a pilot geologic mapping project in 2005 as a means to assess the interest, relevance, and technical methods required for a renewed lunar geologic mapping program [11]. Herein, we provide a summary of the pilot geologic mapping project, which focused on the geologic materials and stratigraphic relationships within the Copernicus quadrangle (0-30degN, 0-45degW).
Harmonization of forest disturbance datasets of the conterminous USA from 1986 to 2011
Soulard, Christopher E.; Acevedo, William; Cohen, Warren B.; Yang, Zhiqiang; Stehman, Stephen V.; Taylor, Janis L.
2017-01-01
Several spatial forest disturbance datasets exist for the conterminous USA. The major problem with forest disturbance mapping is that variability between map products leads to uncertainty regarding the actual rate of disturbance. In this article, harmonized maps were produced from multiple data sources (i.e., Global Forest Change, LANDFIRE Vegetation Disturbance, National Land Cover Database, Vegetation Change Tracker, and Web-Enabled Landsat Data). The harmonization process involved fitting common class ontologies and determining spatial congruency to produce forest disturbance maps for four time intervals (1986–1992, 1992–2001, 2001–2006, and 2006–2011). Pixels mapped as disturbed for two or more datasets were labeled as disturbed in the harmonized maps. The primary advantage gained by harmonization was improvement in commission error rates relative to the individual disturbance products. Disturbance omission errors were high for both harmonized and individual forest disturbance maps due to underlying limitations in mapping subtle disturbances with Landsat classification algorithms. To enhance the value of the harmonized disturbance products, we used fire perimeter maps to add information on the cause of disturbance.
Harmonization of forest disturbance datasets of the conterminous USA from 1986 to 2011.
Soulard, Christopher E; Acevedo, William; Cohen, Warren B; Yang, Zhiqiang; Stehman, Stephen V; Taylor, Janis L
2017-04-01
Several spatial forest disturbance datasets exist for the conterminous USA. The major problem with forest disturbance mapping is that variability between map products leads to uncertainty regarding the actual rate of disturbance. In this article, harmonized maps were produced from multiple data sources (i.e., Global Forest Change, LANDFIRE Vegetation Disturbance, National Land Cover Database, Vegetation Change Tracker, and Web-Enabled Landsat Data). The harmonization process involved fitting common class ontologies and determining spatial congruency to produce forest disturbance maps for four time intervals (1986-1992, 1992-2001, 2001-2006, and 2006-2011). Pixels mapped as disturbed for two or more datasets were labeled as disturbed in the harmonized maps. The primary advantage gained by harmonization was improvement in commission error rates relative to the individual disturbance products. Disturbance omission errors were high for both harmonized and individual forest disturbance maps due to underlying limitations in mapping subtle disturbances with Landsat classification algorithms. To enhance the value of the harmonized disturbance products, we used fire perimeter maps to add information on the cause of disturbance.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Requests for map changes based on mapping or study analysis errors; (b) Requests for map changes based on... and hydraulic studies conducted by Federal, State, or local agencies to replace approximate studies... information meant to improve upon that shown on the flood map or within the flood study will be exempt from...
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Requests for map changes based on mapping or study analysis errors; (b) Requests for map changes based on... and hydraulic studies conducted by Federal, State, or local agencies to replace approximate studies... information meant to improve upon that shown on the flood map or within the flood study will be exempt from...
NASA Astrophysics Data System (ADS)
Lisson, Jerold B.; Mounts, Darryl I.; Fehniger, Michael J.
1992-08-01
Localized wavefront performance analysis (LWPA) is a system that allows the full utilization of the system optical transfer function (OTF) for the specification and acceptance of hybrid imaging systems. We show that LWPA dictates the correction of wavefront errors with the greatest impact on critical imaging spatial frequencies. This is accomplished by the generation of an imaging performance map-analogous to a map of the optic pupil error-using a local OTF. The resulting performance map a function of transfer function spatial frequency is directly relatable to the primary viewing condition of the end-user. In addition to optimizing quality for the viewer it will be seen that the system has the potential for an improved matching of the optical and electronic bandpass of the imager and for the development of more realistic acceptance specifications. 1. LOCAL WAVEFRONT PERFORMANCE ANALYSIS The LWPA system generates a local optical quality factor (LOQF) in the form of a map analogous to that used for the presentation and evaluation of wavefront errors. In conjunction with the local phase transfer function (LPTF) it can be used for maximally efficient specification and correction of imaging system pupil errors. The LOQF and LPTF are respectively equivalent to the global modulation transfer function (MTF) and phase transfer function (PTF) parts of the OTF. The LPTF is related to difference of the average of the errors in separated regions of the pupil. Figure
Errors in MR-based attenuation correction for brain imaging with PET/MR scanners
NASA Astrophysics Data System (ADS)
Rota Kops, Elena; Herzog, Hans
2013-02-01
AimAttenuation correction of PET data acquired by hybrid MR/PET scanners remains a challenge, even if several methods for brain and whole-body measurements have been developed recently. A template-based attenuation correction for brain imaging proposed by our group is easy to handle and delivers reliable attenuation maps in a short time. However, some potential error sources are analyzed in this study. We investigated the choice of template reference head among all the available data (error A), and possible skull anomalies of the specific patient, such as discontinuities due to surgery (error B). Materials and methodsAn anatomical MR measurement and a 2-bed-position transmission scan covering the whole head and neck region were performed in eight normal subjects (4 females, 4 males). Error A: Taking alternatively one of the eight heads as reference, eight different templates were created by nonlinearly registering the images to the reference and calculating the average. Eight patients (4 females, 4 males; 4 with brain lesions, 4 w/o brain lesions) were measured in the Siemens BrainPET/MR scanner. The eight templates were used to generate the patients' attenuation maps required for reconstruction. ROI and VOI atlas-based comparisons were performed employing all the reconstructed images. Error B: CT-based attenuation maps of two volunteers were manipulated by manually inserting several skull lesions and filling a nasal cavity. The corresponding attenuation coefficients were substituted with the water's coefficient (0.096/cm). ResultsError A: The mean SUVs over the eight templates pairs for all eight patients and all VOIs did not differ significantly one from each other. Standard deviations up to 1.24% were found. Error B: After reconstruction of the volunteers' BrainPET data with the CT-based attenuation maps without and with skull anomalies, a VOI-atlas analysis was performed revealing very little influence of the skull lesions (less than 3%), while the filled nasal cavity yielded an overestimation in cerebellum up to 5%. ConclusionsThe present error analysis confirms that our template-based attenuation method provides reliable attenuation corrections of PET brain imaging measured in PET/MR scanners.
Why GPS makes distances bigger than they are
Ranacher, Peter; Brunauer, Richard; Trutschnig, Wolfgang; Van der Spek, Stefan; Reich, Siegfried
2016-01-01
ABSTRACT Global navigation satellite systems such as the Global Positioning System (GPS) is one of the most important sensors for movement analysis. GPS is widely used to record the trajectories of vehicles, animals and human beings. However, all GPS movement data are affected by both measurement and interpolation errors. In this article we show that measurement error causes a systematic bias in distances recorded with a GPS; the distance between two points recorded with a GPS is – on average – bigger than the true distance between these points. This systematic ‘overestimation of distance’ becomes relevant if the influence of interpolation error can be neglected, which in practice is the case for movement sampled at high frequencies. We provide a mathematical explanation of this phenomenon and illustrate that it functionally depends on the autocorrelation of GPS measurement error (C). We argue that C can be interpreted as a quality measure for movement data recorded with a GPS. If there is a strong autocorrelation between any two consecutive position estimates, they have very similar error. This error cancels out when average speed, distance or direction is calculated along the trajectory. Based on our theoretical findings we introduce a novel approach to determine C in real-world GPS movement data sampled at high frequencies. We apply our approach to pedestrian trajectories and car trajectories. We found that the measurement error in the data was strongly spatially and temporally autocorrelated and give a quality estimate of the data. Most importantly, our findings are not limited to GPS alone. The systematic bias and its implications are bound to occur in any movement data collected with absolute positioning if interpolation error can be neglected. PMID:27019610
NASA Astrophysics Data System (ADS)
Bhargava, K.; Kalnay, E.; Carton, J.; Yang, F.
2017-12-01
Systematic forecast errors, arising from model deficiencies, form a significant portion of the total forecast error in weather prediction models like the Global Forecast System (GFS). While much effort has been expended to improve models, substantial model error remains. The aim here is to (i) estimate the model deficiencies in the GFS that lead to systematic forecast errors, (ii) implement an online correction (i.e., within the model) scheme to correct GFS following the methodology of Danforth et al. [2007] and Danforth and Kalnay [2008, GRL]. Analysis Increments represent the corrections that new observations make on, in this case, the 6-hr forecast in the analysis cycle. Model bias corrections are estimated from the time average of the analysis increments divided by 6-hr, assuming that initial model errors grow linearly and first ignoring the impact of observation bias. During 2012-2016, seasonal means of the 6-hr model bias are generally robust despite changes in model resolution and data assimilation systems, and their broad continental scales explain their insensitivity to model resolution. The daily bias dominates the sub-monthly analysis increments and consists primarily of diurnal and semidiurnal components, also requiring a low dimensional correction. Analysis increments in 2015 and 2016 are reduced over oceans, which is attributed to improvements in the specification of the SSTs. These results encourage application of online correction, as suggested by Danforth and Kalnay, for mean, seasonal and diurnal and semidiurnal model biases in GFS to reduce both systematic and random errors. As the error growth in the short-term is still linear, estimated model bias corrections can be added as a forcing term in the model tendency equation to correct online. Preliminary experiments with GFS, correcting temperature and specific humidity online show reduction in model bias in 6-hr forecast. This approach can then be used to guide and optimize the design of sub-grid scale physical parameterizations, more accurate discretization of the model dynamics, boundary conditions, radiative transfer codes, and other potential model improvements which can then replace the empirical correction scheme. The analysis increments also provide guidance in testing new physical parameterizations.
Marathe, A R; Taylor, D M
2015-08-01
Decoding algorithms for brain-machine interfacing (BMI) are typically only optimized to reduce the magnitude of decoding errors. Our goal was to systematically quantify how four characteristics of BMI command signals impact closed-loop performance: (1) error magnitude, (2) distribution of different frequency components in the decoding errors, (3) processing delays, and (4) command gain. To systematically evaluate these different command features and their interactions, we used a closed-loop BMI simulator where human subjects used their own wrist movements to command the motion of a cursor to targets on a computer screen. Random noise with three different power distributions and four different relative magnitudes was added to the ongoing cursor motion in real time to simulate imperfect decoding. These error characteristics were tested with four different visual feedback delays and two velocity gains. Participants had significantly more trouble correcting for errors with a larger proportion of low-frequency, slow-time-varying components than they did with jittery, higher-frequency errors, even when the error magnitudes were equivalent. When errors were present, a movement delay often increased the time needed to complete the movement by an order of magnitude more than the delay itself. Scaling down the overall speed of the velocity command can actually speed up target acquisition time when low-frequency errors and delays are present. This study is the first to systematically evaluate how the combination of these four key command signal features (including the relatively-unexplored error power distribution) and their interactions impact closed-loop performance independent of any specific decoding method. The equations we derive relating closed-loop movement performance to these command characteristics can provide guidance on how best to balance these different factors when designing BMI systems. The equations reported here also provide an efficient way to compare a diverse range of decoding options offline.
NASA Astrophysics Data System (ADS)
Marathe, A. R.; Taylor, D. M.
2015-08-01
Objective. Decoding algorithms for brain-machine interfacing (BMI) are typically only optimized to reduce the magnitude of decoding errors. Our goal was to systematically quantify how four characteristics of BMI command signals impact closed-loop performance: (1) error magnitude, (2) distribution of different frequency components in the decoding errors, (3) processing delays, and (4) command gain. Approach. To systematically evaluate these different command features and their interactions, we used a closed-loop BMI simulator where human subjects used their own wrist movements to command the motion of a cursor to targets on a computer screen. Random noise with three different power distributions and four different relative magnitudes was added to the ongoing cursor motion in real time to simulate imperfect decoding. These error characteristics were tested with four different visual feedback delays and two velocity gains. Main results. Participants had significantly more trouble correcting for errors with a larger proportion of low-frequency, slow-time-varying components than they did with jittery, higher-frequency errors, even when the error magnitudes were equivalent. When errors were present, a movement delay often increased the time needed to complete the movement by an order of magnitude more than the delay itself. Scaling down the overall speed of the velocity command can actually speed up target acquisition time when low-frequency errors and delays are present. Significance. This study is the first to systematically evaluate how the combination of these four key command signal features (including the relatively-unexplored error power distribution) and their interactions impact closed-loop performance independent of any specific decoding method. The equations we derive relating closed-loop movement performance to these command characteristics can provide guidance on how best to balance these different factors when designing BMI systems. The equations reported here also provide an efficient way to compare a diverse range of decoding options offline.
Kan, Hirohito; Arai, Nobuyuki; Takizawa, Masahiro; Omori, Kazuyoshi; Kasai, Harumasa; Kunitomo, Hiroshi; Hirose, Yasujiro; Shibamoto, Yuta
2018-06-11
We developed a non-regularized, variable kernel, sophisticated harmonic artifact reduction for phase data (NR-VSHARP) method to accurately estimate local tissue fields without regularization for quantitative susceptibility mapping (QSM). We then used a digital brain phantom to evaluate the accuracy of the NR-VSHARP method, and compared it with the VSHARP and iterative spherical mean value (iSMV) methods through in vivo human brain experiments. Our proposed NR-VSHARP method, which uses variable spherical mean value (SMV) kernels, minimizes L2 norms only within the volume of interest to reduce phase errors and save cortical information without regularization. In a numerical phantom study, relative local field and susceptibility map errors were determined using NR-VSHARP, VSHARP, and iSMV. Additionally, various background field elimination methods were used to image the human brain. In a numerical phantom study, the use of NR-VSHARP considerably reduced the relative local field and susceptibility map errors throughout a digital whole brain phantom, compared with VSHARP and iSMV. In the in vivo experiment, the NR-VSHARP-estimated local field could sufficiently achieve minimal boundary losses and phase error suppression throughout the brain. Moreover, the susceptibility map generated using NR-VSHARP minimized the occurrence of streaking artifacts caused by insufficient background field removal. Our proposed NR-VSHARP method yields minimal boundary losses and highly precise phase data. Our results suggest that this technique may facilitate high-quality QSM. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Zimmermann, F.; Eling, C.; Klingbeil, L.; Kuhlmann, H.
2017-08-01
For some years now, UAVs (unmanned aerial vehicles) are commonly used for different mobile mapping applications, such as in the fields of surveying, mining or archeology. To improve the efficiency of these applications an automation of the flight as well as the processing of the collected data is currently aimed at. One precondition for an automated mapping with UAVs is that the georeferencing is performed directly with cm-accuracies or better. Usually, a cm-accurate direct positioning of UAVs is based on an onboard multi-sensor system, which consists of an RTK-capable (real-time kinematic) GPS (global positioning system) receiver and additional sensors (e.g. inertial sensors). In this case, the absolute positioning accuracy essentially depends on the local GPS measurement conditions. Especially during mobile mapping applications in urban areas, these conditions can be very challenging, due to a satellite shadowing, non-line-of sight receptions, signal diffraction or multipath effects. In this paper, two straightforward and easy to implement strategies will be described and analyzed, which improve the direct positioning accuracies for UAV-based mapping and surveying applications under challenging GPS measurement conditions. Based on a 3D model of the surrounding buildings and vegetation in the area of interest, a GPS geometry map is determined, which can be integrated in the flight planning process, to avoid GPS challenging environments as far as possible. If these challenging environments cannot be avoided, the GPS positioning solution is improved by using obstruction adaptive elevation masks, to mitigate systematic GPS errors in the RTK-GPS positioning. Simulations and results of field tests demonstrate the profit of both strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashiwagi, Toshiya; Suto, Yasushi; Taruya, Atsushi
The most widely used Galactic extinction map is constructed assuming that the observed far-infrared (FIR) fluxes come entirely from Galactic dust. According to the earlier suggestion by Yahata et al., we consider how FIR emission of galaxies affects the SFD map. We first compute the surface number density of Sloan Digital Sky Survey (SDSS) DR7 galaxies as a function of the r-band extinction, A {sub r,} {sub SFD}. We confirm that the surface densities of those galaxies positively correlate with A {sub r,} {sub SFD} for A {sub r,} {sub SFD} < 0.1, as first discovered by Yahata et al.more » for SDSS DR4 galaxies. Next we construct an analytical model to compute the surface density of galaxies, taking into account the contamination of their FIR emission. We adopt a log-normal probability distribution for the ratio of 100 μm and r-band luminosities of each galaxy, y ≡ (νL){sub 100} {sub μm}/(νL) {sub r}. Then we search for the mean and rms values of y that fit the observed anomaly, using the analytical model. The required values to reproduce the anomaly are roughly consistent with those measured from the stacking analysis of SDSS galaxies. Due to the limitation of our statistical modeling, we are not yet able to remove the FIR contamination of galaxies from the extinction map. Nevertheless, the agreement with the model prediction suggests that the FIR emission of galaxies is mainly responsible for the observed anomaly. Whereas the corresponding systematic error in the Galactic extinction map is 0.1-1 mmag, it is directly correlated with galaxy clustering and thus needs to be carefully examined in precision cosmology.« less
Evaluation of algorithms for geological thermal-inertia mapping
NASA Technical Reports Server (NTRS)
Miller, S. H.; Watson, K.
1977-01-01
The errors incurred in producing a thermal inertia map are of three general types: measurement, analysis, and model simplification. To emphasize the geophysical relevance of these errors, they were expressed in terms of uncertainty in thermal inertia and compared with the thermal inertia values of geologic materials. Thus the applications and practical limitations of the technique were illustrated. All errors were calculated using the parameter values appropriate to a site at the Raft River, Id. Although these error values serve to illustrate the magnitudes that can be expected from the three general types of errors, extrapolation to other sites should be done using parameter values particular to the area. Three surface temperature algorithms were evaluated: linear Fourier series, finite difference, and Laplace transform. In terms of resulting errors in thermal inertia, the Laplace transform method is the most accurate (260 TIU), the forward finite difference method is intermediate (300 TIU), and the linear Fourier series method the least accurate (460 TIU).
NASA Technical Reports Server (NTRS)
Lin, Shu; Fossorier, Marc
1998-01-01
In a coded communication system with equiprobable signaling, MLD minimizes the word error probability and delivers the most likely codeword associated with the corresponding received sequence. This decoding has two drawbacks. First, minimization of the word error probability is not equivalent to minimization of the bit error probability. Therefore, MLD becomes suboptimum with respect to the bit error probability. Second, MLD delivers a hard-decision estimate of the received sequence, so that information is lost between the input and output of the ML decoder. This information is important in coded schemes where the decoded sequence is further processed, such as concatenated coding schemes, multi-stage and iterative decoding schemes. In this chapter, we first present a decoding algorithm which both minimizes bit error probability, and provides the corresponding soft information at the output of the decoder. This algorithm is referred to as the MAP (maximum aposteriori probability) decoding algorithm.
Edler, Dennis; Bestgen, Anne-Kathrin; Kuchinke, Lars; Dickmann, Frank
2015-01-01
Cognitive representations of learned map information are subject to systematic distortion errors. Map elements that divide a map surface into regions, such as content-related linear symbols (e.g. streets, rivers, railway systems) or additional artificial layers (coordinate grids), provide an orientation pattern that can help users to reduce distortions in their mental representations. In recent years, the television industry has started to establish True-3D (autostereoscopic) displays as mass media. These modern displays make it possible to watch dynamic and static images including depth illusions without additional devices, such as 3D glasses. In these images, visual details can be distributed over different positions along the depth axis. Some empirical studies of vision research provided first evidence that 3D stereoscopic content attracts higher attention and is processed faster. So far, the impact of True-3D accentuating has not yet been explored concerning spatial memory tasks and cartography. This paper reports the results of two empirical studies that focus on investigations whether True-3D accentuating of artificial, regular overlaying line features (i.e. grids) and content-related, irregular line features (i.e. highways and main streets) in official urban topographic maps (scale 1/10,000) further improves human object location memory performance. The memory performance is measured as both the percentage of correctly recalled object locations (hit rate) and the mean distances of correctly recalled objects (spatial accuracy). It is shown that the True-3D accentuating of grids (depth offset: 5 cm) significantly enhances the spatial accuracy of recalled map object locations, whereas the True-3D emphasis of streets significantly improves the hit rate of recalled map object locations. These results show the potential of True-3D displays for an improvement of the cognitive representation of learned cartographic information. PMID:25679208
Thieler, E. Robert; Danforth, William W.
1994-01-01
A new, state-of-the-art method for mapping historical shorelines from maps and aerial photographs, the Digital Shoreline Mapping System (DSMS), has been developed. The DSMS is a freely available, public domain software package that meets the cartographic and photogrammetric requirements of precise coastal mapping, and provides a means to quantify and analyze different sources of error in the mapping process. The DSMS is also capable of resolving imperfections in aerial photography that commonly are assumed to be nonexistent. The DSMS utilizes commonly available computer hardware and software, and permits the entire shoreline mapping process to be executed rapidly by a single person in a small lab. The DSMS generates output shoreline position data that are compatible with a variety of Geographic Information Systems (GIS). A second suite of programs, the Digital Shoreline Analysis System (DSAS) has been developed to calculate shoreline rates-of-change from a series of shoreline data residing in a GIS. Four rate-of-change statistics are calculated simultaneously (end-point rate, average of rates, linear regression and jackknife) at a user-specified interval along the shoreline using a measurement baseline approach. An example of DSMS and DSAS application using historical maps and air photos of Punta Uvero, Puerto Rico provides a basis for assessing the errors associated with the source materials as well as the accuracy of computed shoreline positions and erosion rates. The maps and photos used here represent a common situation in shoreline mapping: marginal-quality source materials. The maps and photos are near the usable upper limit of scale and accuracy, yet the shoreline positions are still accurate ±9.25 m when all sources of error are considered. This level of accuracy yields a resolution of ±0.51 m/yr for shoreline rates-of-change in this example, and is sufficient to identify the short-term trend (36 years) of shoreline change in the study area.
Leistedt, B.; Peiris, H. V.; Elsner, F.; ...
2016-10-17
Spatially-varying depth and characteristics of observing conditions, such as seeing, airmass, or sky background, are major sources of systematic uncertainties in modern galaxy survey analyses, in particular in deep multi-epoch surveys. We present a framework to extract and project these sources of systematics onto the sky, and apply it to the Dark Energy Survey (DES) to map the observing conditions of the Science Verification (SV) data. The resulting distributions and maps of sources of systematics are used in several analyses of DES SV to perform detailed null tests with the data, and also to incorporate systematics in survey simulations. Wemore » illustrate the complementarity of these two approaches by comparing the SV data with the BCC-UFig, a synthetic sky catalogue generated by forward-modelling of the DES SV images. We then analyse the BCC-UFig simulation to construct galaxy samples mimicking those used in SV galaxy clustering studies. We show that the spatially-varying survey depth imprinted in the observed galaxy densities and the redshift distributions of the SV data are successfully reproduced by the simulation and well-captured by the maps of observing conditions. The combined use of the maps, the SV data and the BCC-UFig simulation allows us to quantify the impact of spatial systematics on N(z), the redshift distributions inferred using photometric redshifts. We conclude that spatial systematics in the SV data are mainly due to seeing fluctuations and are under control in current clustering and weak lensing analyses. However, they will need to be carefully characterised in upcoming phases of DES in order to avoid biasing the inferred cosmological results. The framework presented is relevant to all multi-epoch surveys, and will be essential for exploiting future surveys such as the Large Synoptic Survey Telescope, which will require detailed null-tests and realistic end-to-end image simulations to correctly interpret the deep, high-cadence observations of the sky.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leistedt, B.; Peiris, H. V.; Elsner, F.
Spatially varying depth and the characteristics of observing conditions, such as seeing, airmass, or sky background, are major sources of systematic uncertainties in modern galaxy survey analyses, particularly in deep multi-epoch surveys. We present a framework to extract and project these sources of systematics onto the sky, and apply it to the Dark Energy Survey (DES) to map the observing conditions of the Science Verification (SV) data. The resulting distributions and maps of sources of systematics are used in several analyses of DES-SV to perform detailed null tests with the data, and also to incorporate systematics in survey simulations. Wemore » illustrate the complementary nature of these two approaches by comparing the SV data with BCC-UFig, a synthetic sky catalog generated by forward-modeling of the DES-SV images. We analyze the BCC-UFig simulation to construct galaxy samples mimicking those used in SV galaxy clustering studies. We show that the spatially varying survey depth imprinted in the observed galaxy densities and the redshift distributions of the SV data are successfully reproduced by the simulation and are well-captured by the maps of observing conditions. The combined use of the maps, the SV data, and the BCC-UFig simulation allows us to quantify the impact of spatial systematics on N(z), the redshift distributions inferred using photometric redshifts. We conclude that spatial systematics in the SV data are mainly due to seeing fluctuations and are under control in current clustering and weak-lensing analyses. However, they will need to be carefully characterized in upcoming phases of DES in order to avoid biasing the inferred cosmological results. The framework presented here is relevant to all multi-epoch surveys and will be essential for exploiting future surveys such as the Large Synoptic Survey Telescope, which will require detailed null tests and realistic end-to-end image simulations to correctly interpret the deep, high-cadence observations of the sky« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leistedt, B.; Peiris, H. V.; Elsner, F.
Spatially-varying depth and characteristics of observing conditions, such as seeing, airmass, or sky background, are major sources of systematic uncertainties in modern galaxy survey analyses, in particular in deep multi-epoch surveys. We present a framework to extract and project these sources of systematics onto the sky, and apply it to the Dark Energy Survey (DES) to map the observing conditions of the Science Verification (SV) data. The resulting distributions and maps of sources of systematics are used in several analyses of DES SV to perform detailed null tests with the data, and also to incorporate systematics in survey simulations. Wemore » illustrate the complementarity of these two approaches by comparing the SV data with the BCC-UFig, a synthetic sky catalogue generated by forward-modelling of the DES SV images. We then analyse the BCC-UFig simulation to construct galaxy samples mimicking those used in SV galaxy clustering studies. We show that the spatially-varying survey depth imprinted in the observed galaxy densities and the redshift distributions of the SV data are successfully reproduced by the simulation and well-captured by the maps of observing conditions. The combined use of the maps, the SV data and the BCC-UFig simulation allows us to quantify the impact of spatial systematics on N(z), the redshift distributions inferred using photometric redshifts. We conclude that spatial systematics in the SV data are mainly due to seeing fluctuations and are under control in current clustering and weak lensing analyses. However, they will need to be carefully characterised in upcoming phases of DES in order to avoid biasing the inferred cosmological results. The framework presented is relevant to all multi-epoch surveys, and will be essential for exploiting future surveys such as the Large Synoptic Survey Telescope, which will require detailed null-tests and realistic end-to-end image simulations to correctly interpret the deep, high-cadence observations of the sky.« less
A Multiscale Mapping Assessment of Lake Champlain Cyanobacterial Harmful Algal Blooms
Torbick, Nathan; Corbiere, Megan
2015-01-01
Lake Champlain has bays undergoing chronic cyanobacterial harmful algal blooms that pose a public health threat. Monitoring and assessment tools need to be developed to support risk decision making and to gain a thorough understanding of bloom scales and intensities. In this research application, Landsat 8 Operational Land Imager (OLI), Rapid Eye, and Proba Compact High Resolution Imaging Spectrometer (CHRIS) images were obtained while a corresponding field campaign collected in situ measurements of water quality. Models including empirical band ratio regressions were applied to map chlorophyll-a and phycocyanin concentrations; all sensors performed well with R2 and root-mean-square error (RMSE) ranging from 0.76 to 0.88 and 0.42 to 1.51, respectively. The outcomes showed spatial patterns across the lake with problematic bays having phycocyanin concentrations >25 µg/L. An alert status metric tuned to the current monitoring protocol was generated using modeled water quality to illustrate how the remote sensing tools can inform a public health monitoring system. Among the sensors utilized in this study, Landsat 8 OLI holds the most promise for providing exposure information across a wide area given the resolutions, systematic observation strategy and free cost. PMID:26389930
ACCURATE POLARIZATION CALIBRATION AT 800 MHz WITH THE GREEN BANK TELESCOPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Yu-Wei; Chang, Tzu-Ching; Kuo, Cheng-Yu
Polarization leakage of foreground synchrotron emission is a critical issue in H i intensity mapping experiments. While the sought-after H i emission is unpolarized, polarized foregrounds such as Galactic and extragalactic synchrotron radiation, if coupled with instrumental impurity, can mimic or overwhelm the H i signals. In this paper, we present the methodology for polarization calibration at 700–900 MHz, applied on data obtained from the Green Bank Telescope (GBT). We use astrophysical sources, both polarized and unpolarized sources including quasars and pulsars, as calibrators to characterize the polarization leakage and control systematic effects in our GBT H i intensity mapping project.more » The resulting fractional errors on polarization measurements on boresight are well controlled to within 0.6%–0.8% of their total intensity. The polarized beam patterns are measured by performing spider scans across both polarized quasars and pulsars. A dominant Stokes I to V leakage feature and secondary features of Stokes I to Q and I to U leakages in the 700–900 MHz frequency range are identified. These characterizations are important for separating foreground polarization leakage from the H i 21 cm signal.« less
Mass Mapping Abell 2261 with Kinematic Weak Lensing: A Pilot Study for NASAs WFIRST mission
NASA Astrophysics Data System (ADS)
Eifler, Tim
2015-02-01
We propose to investigate a new method to extract cosmological information from weak gravitational lensing in the context of the mission design and requirements of NASAs Wide-Field Infrared Survey Telescope (WFIRST). In a recent paper (Huff, Krause, Eifler, George, Schlegel 2013) we describe a new method for reducing the shape noise in weak lensing measurements by an order of magnitude. Our method relies on spectroscopic measurements of disk galaxy rotation and makes use of the well-established Tully-Fisher (TF) relation in order to control for the intrinsic orientations of galaxy disks. Whereas shape noise is one of the major limitations for current weak lensing experiments it ceases to be an important source of statistical error in our new proposed technique. Specifically, we propose a pilot study that maps the projected mass distribution in the massive cluster Abell 2261 (z=0.225) to infer whether this promising technique faces systematics that prohibit its application to WFIRST. In addition to the cosmological weak lensing prospects, these measurements will also allow us to test kinematic lensing in the context of cluster mass reconstruction with a drastically improved signal-to-noise (S/N) per galaxy.
The Observational Determination of the Primordial Helium Abundance: a Y2K Status Report
NASA Astrophysics Data System (ADS)
Skillman, Evan D.
I review observational progress and assess the current state of the determination of the primordial helium abundance, Yp. At present there are two determinations with non-overlapping errors. My impression is that the errors have been under-estimated in both studies. I review recent work on errors assessment and give suggestions for decreasing systematic errors in future studies.
Improved Quality in Aerospace Testing Through the Modern Design of Experiments
NASA Technical Reports Server (NTRS)
DeLoach, R.
2000-01-01
This paper illustrates how, in the presence of systematic error, the quality of an experimental result can be influenced by the order in which the independent variables are set. It is suggested that in typical experimental circumstances in which systematic errors are significant, the common practice of organizing the set point order of independent variables to maximize data acquisition rate results in a test matrix that fails to produce the highest quality research result. With some care to match the volume of data required to satisfy inference error risk tolerances, it is possible to accept a lower rate of data acquisition and still produce results of higher technical quality (lower experimental error) with less cost and in less time than conventional test procedures, simply by optimizing the sequence in which independent variable levels are set.
Detecting Spatial Patterns in Biological Array Experiments
ROOT, DAVID E.; KELLEY, BRIAN P.; STOCKWELL, BRENT R.
2005-01-01
Chemical genetic screening and DNA and protein microarrays are among a number of increasingly important and widely used biological research tools that involve large numbers of parallel experiments arranged in a spatial array. It is often difficult to ensure that uniform experimental conditions are present throughout the entire array, and as a result, one often observes systematic spatially correlated errors, especially when array experiments are performed using robots. Here, the authors apply techniques based on the discrete Fourier transform to identify and quantify spatially correlated errors superimposed on a spatially random background. They demonstrate that these techniques are effective in identifying common spatially systematic errors in high-throughput 384-well microplate assay data. In addition, the authors employ a statistical test to allow for automatic detection of such errors. Software tools for using this approach are provided. PMID:14567791
North Alabama Lightning Mapping Array (LMA): VHF Source Retrieval Algorithm and Error Analyses
NASA Technical Reports Server (NTRS)
Koshak, W. J.; Solakiewicz, R. J.; Blakeslee, R. J.; Goodman, S. J.; Christian, H. J.; Hall, J.; Bailey, J.; Krider, E. P.; Bateman, M. G.; Boccippio, D.
2003-01-01
Two approaches are used to characterize how accurately the North Alabama Lightning Mapping Array (LMA) is able to locate lightning VHF sources in space and in time. The first method uses a Monte Carlo computer simulation to estimate source retrieval errors. The simulation applies a VHF source retrieval algorithm that was recently developed at the NASA Marshall Space Flight Center (MSFC) and that is similar, but not identical to, the standard New Mexico Tech retrieval algorithm. The second method uses a purely theoretical technique (i.e., chi-squared Curvature Matrix Theory) to estimate retrieval errors. Both methods assume that the LMA system has an overall rms timing error of 50 ns, but all other possible errors (e.g., multiple sources per retrieval attempt) are neglected. The detailed spatial distributions of retrieval errors are provided. Given that the two methods are completely independent of one another, it is shown that they provide remarkably similar results. However, for many source locations, the Curvature Matrix Theory produces larger altitude error estimates than the (more realistic) Monte Carlo simulation.
Zhao, Qilong; Strykowski, Gabriel; Li, Jiancheng; Pan, Xiong; Xu, Xinyu
2017-05-25
Gravity data gaps in mountainous areas are nowadays often filled in with the data from airborne gravity surveys. Because of the errors caused by the airborne gravimeter sensors, and because of rough flight conditions, such errors cannot be completely eliminated. The precision of the gravity disturbances generated by the airborne gravimetry is around 3-5 mgal. A major obstacle in using airborne gravimetry are the errors caused by the downward continuation. In order to improve the results the external high-accuracy gravity information e.g., from the surface data can be used for high frequency correction, while satellite information can be applying for low frequency correction. Surface data may be used to reduce the systematic errors, while regularization methods can reduce the random errors in downward continuation. Airborne gravity surveys are sometimes conducted in mountainous areas and the most extreme area of the world for this type of survey is the Tibetan Plateau. Since there are no high-accuracy surface gravity data available for this area, the above error minimization method involving the external gravity data cannot be used. We propose a semi-parametric downward continuation method in combination with regularization to suppress the systematic error effect and the random error effect in the Tibetan Plateau; i.e., without the use of the external high-accuracy gravity data. We use a Louisiana airborne gravity dataset from the USA National Oceanic and Atmospheric Administration (NOAA) to demonstrate that the new method works effectively. Furthermore, and for the Tibetan Plateau we show that the numerical experiment is also successfully conducted using the synthetic Earth Gravitational Model 2008 (EGM08)-derived gravity data contaminated with the synthetic errors. The estimated systematic errors generated by the method are close to the simulated values. In addition, we study the relationship between the downward continuation altitudes and the error effect. The analysis results show that the proposed semi-parametric method combined with regularization is efficient to address such modelling problems.
Zhao, Qilong; Strykowski, Gabriel; Li, Jiancheng; Pan, Xiong; Xu, Xinyu
2017-01-01
Gravity data gaps in mountainous areas are nowadays often filled in with the data from airborne gravity surveys. Because of the errors caused by the airborne gravimeter sensors, and because of rough flight conditions, such errors cannot be completely eliminated. The precision of the gravity disturbances generated by the airborne gravimetry is around 3–5 mgal. A major obstacle in using airborne gravimetry are the errors caused by the downward continuation. In order to improve the results the external high-accuracy gravity information e.g., from the surface data can be used for high frequency correction, while satellite information can be applying for low frequency correction. Surface data may be used to reduce the systematic errors, while regularization methods can reduce the random errors in downward continuation. Airborne gravity surveys are sometimes conducted in mountainous areas and the most extreme area of the world for this type of survey is the Tibetan Plateau. Since there are no high-accuracy surface gravity data available for this area, the above error minimization method involving the external gravity data cannot be used. We propose a semi-parametric downward continuation method in combination with regularization to suppress the systematic error effect and the random error effect in the Tibetan Plateau; i.e., without the use of the external high-accuracy gravity data. We use a Louisiana airborne gravity dataset from the USA National Oceanic and Atmospheric Administration (NOAA) to demonstrate that the new method works effectively. Furthermore, and for the Tibetan Plateau we show that the numerical experiment is also successfully conducted using the synthetic Earth Gravitational Model 2008 (EGM08)-derived gravity data contaminated with the synthetic errors. The estimated systematic errors generated by the method are close to the simulated values. In addition, we study the relationship between the downward continuation altitudes and the error effect. The analysis results show that the proposed semi-parametric method combined with regularization is efficient to address such modelling problems. PMID:28587086
NASA Astrophysics Data System (ADS)
Zhao, Q.
2017-12-01
Gravity data gaps in mountainous areas are nowadays often filled in with the data from airborne gravity surveys. Because of the errors caused by the airborne gravimeter sensors, and because of rough flight conditions, such errors cannot be completely eliminated. The precision of the gravity disturbances generated by the airborne gravimetry is around 3-5 mgal. A major obstacle in using airborne gravimetry are the errors caused by the downward continuation. In order to improve the results the external high-accuracy gravity information e.g., from the surface data can be used for high frequency correction, while satellite information can be applying for low frequency correction. Surface data may be used to reduce the systematic errors, while regularization methods can reduce the random errors in downward continuation. Airborne gravity surveys are sometimes conducted in mountainous areas and the most extreme area of the world for this type of survey is the Tibetan Plateau. Since there are no high-accuracy surface gravity data available for this area, the above error minimization method involving the external gravity data cannot be used. We propose a semi-parametric downward continuation method in combination with regularization to suppress the systematic error effect and the random error effect in the Tibetan Plateau; i.e., without the use of the external high-accuracy gravity data. We use a Louisiana airborne gravity dataset from the USA National Oceanic and Atmospheric Administration (NOAA) to demonstrate that the new method works effectively. Furthermore, and for the Tibetan Plateau we show that the numerical experiment is also successfully conducted using the synthetic Earth Gravitational Model 2008 (EGM08)-derived gravity data contaminated with the synthetic errors. The estimated systematic errors generated by the method are close to the simulated values. In addition, we study the relationship between the downward continuation altitudes and the error effect. The analysis results show that the proposed semi-parametric method combined with regularization is efficient to address such modelling problems.
Vanderhoof, Melanie; Distler, Hayley; Mendiola, Di Ana; Lang, Megan
2017-01-01
Natural variability in surface-water extent and associated characteristics presents a challenge to gathering timely, accurate information, particularly in environments that are dominated by small and/or forested wetlands. This study mapped inundation extent across the Upper Choptank River Watershed on the Delmarva Peninsula, occurring within both Maryland and Delaware. We integrated six quad-polarized Radarsat-2 images, Worldview-3 imagery, and an enhanced topographic wetness index in a random forest model. Output maps were filtered using light detection and ranging (lidar)-derived depressions to maximize the accuracy of forested inundation extent. Overall accuracy within the integrated and filtered model was 94.3%, with 5.5% and 6.0% errors of omission and commission for inundation, respectively. Accuracy of inundation maps obtained using Radarsat-2 alone were likely detrimentally affected by less than ideal angles of incidence and recent precipitation, but were likely improved by targeting the period between snowmelt and leaf-out for imagery collection. Across the six Radarsat-2 dates, filtering inundation outputs by lidar-derived depressions slightly elevated errors of omission for water (+1.0%), but decreased errors of commission (−7.8%), resulting in an average increase of 5.4% in overall accuracy. Depressions were derived from lidar datasets collected under both dry and average wetness conditions. Although antecedent wetness conditions influenced the abundance and total area mapped as depression, the two versions of the depression datasets showed a similar ability to reduce error in the inundation maps. Accurate mapping of surface water is critical to predicting and monitoring the effect of human-induced change and interannual variability on water quantity and quality.
Rapid Crop Cover Mapping for the Conterminous United States.
Dahal, Devendra; Wylie, Bruce; Howard, Danny
2018-06-05
Timely crop cover maps with sufficient resolution are important components to various environmental planning and research applications. Through the modification and use of a previously developed crop classification model (CCM), which was originally developed to generate historical annual crop cover maps, we hypothesized that such crop cover maps could be generated rapidly during the growing season. Through a process of incrementally removing weekly and monthly independent variables from the CCM and implementing a 'two model mapping' approach, we found it viable to generate conterminous United States-wide rapid crop cover maps at a resolution of 250 m for the current year by the month of September. In this approach, we divided the CCM model into one 'crop type model' to handle the classification of nine specific crops and a second, binary model to classify the presence or absence of 'other' crops. Under the two model mapping approach, the training errors were 0.8% and 1.5% for the crop type and binary model, respectively, while test errors were 5.5% and 6.4%, respectively. With spatial mapping accuracies for annual maps reaching upwards of 70%, this approach demonstrated a strong potential for generating rapid crop cover maps by the 1 st of September.
NASA Technical Reports Server (NTRS)
Heck, M. L.; Findlay, J. T.; Compton, H. R.
1983-01-01
The Aerodynamic Coefficient Identification Package (ACIP) is an instrument consisting of body mounted linear accelerometers, rate gyros, and angular accelerometers for measuring the Space Shuttle vehicular dynamics. The high rate recorded data are utilized for postflight aerodynamic coefficient extraction studies. Although consistent with pre-mission accuracies specified by the manufacturer, the ACIP data were found to contain detectable levels of systematic error, primarily bias, as well as scale factor, static misalignment, and temperature dependent errors. This paper summarizes the technique whereby the systematic ACIP error sources were detected, identified, and calibrated with the use of recorded dynamic data from the low rate, highly accurate Inertial Measurement Units.
Making the Most of What We Already Know: A Three-Stage Approach to Systematic Reviewing.
Rebelo Da Silva, Natalie; Zaranyika, Hazel; Langer, Laurenz; Randall, Nicola; Muchiri, Evans; Stewart, Ruth
2016-09-06
Conducting a systematic review in social policy is a resource-intensive process in terms of time and funds. It is thus important to understand the scope of the evidence base of a topic area prior to conducting a synthesis of primary research in order to maximize these resources. One approach to conserving resources is to map out the available evidence prior to undertaking a traditional synthesis. A few examples of this approach exist in the form of gap maps, overviews of reviews, and systematic maps supported by social policy and systematic review agencies alike. Despite this growing call for alternative approaches to systematic reviews, it is still common for systematic review teams to embark on a traditional in-depth review only. This article describes a three-stage approach to systematic reviewing that was applied to a systematic review focusing in interventions for smallholder farmers in Africa. We argue that this approach proved useful in helping us to understand the evidence base. By applying preliminary steps as part of a three-stage approach, we were able to maximize the resources needed to conduct a traditional systematic review on a more focused research question. This enabled us to identify and fill real knowledge gaps, build on work that had already been done, and avoid wasting resources on areas of work that would have no useful outcome. It also facilitated meaningful engagement between the review team and our key policy stakeholders. © The Author(s) 2016.
Open quantum systems and error correction
NASA Astrophysics Data System (ADS)
Shabani Barzegar, Alireza
Quantum effects can be harnessed to manipulate information in a desired way. Quantum systems which are designed for this purpose are suffering from harming interaction with their surrounding environment or inaccuracy in control forces. Engineering different methods to combat errors in quantum devices are highly demanding. In this thesis, I focus on realistic formulations of quantum error correction methods. A realistic formulation is the one that incorporates experimental challenges. This thesis is presented in two sections of open quantum system and quantum error correction. Chapters 2 and 3 cover the material on open quantum system theory. It is essential to first study a noise process then to contemplate methods to cancel its effect. In the second chapter, I present the non-completely positive formulation of quantum maps. Most of these results are published in [Shabani and Lidar, 2009b,a], except a subsection on geometric characterization of positivity domain of a quantum map. The real-time formulation of the dynamics is the topic of the third chapter. After introducing the concept of Markovian regime, A new post-Markovian quantum master equation is derived, published in [Shabani and Lidar, 2005a]. The section of quantum error correction is presented in three chapters of 4, 5, 6 and 7. In chapter 4, we introduce a generalized theory of decoherence-free subspaces and subsystems (DFSs), which do not require accurate initialization (published in [Shabani and Lidar, 2005b]). In Chapter 5, we present a semidefinite program optimization approach to quantum error correction that yields codes and recovery procedures that are robust against significant variations in the noise channel. Our approach allows us to optimize the encoding, recovery, or both, and is amenable to approximations that significantly improve computational cost while retaining fidelity (see [Kosut et al., 2008] for a published version). Chapter 6 is devoted to a theory of quantum error correction (QEC) that applies to any linear map, in particular maps that are not completely positive (CP). This is a complementary to the second chapter which is published in [Shabani and Lidar, 2007]. In the last chapter 7 before the conclusion, a formulation for evaluating the performance of quantum error correcting codes for a general error model is presented, also published in [Shabani, 2005]. In this formulation, the correlation between errors is quantified by a Hamiltonian description of the noise process. In particular, we consider Calderbank-Shor-Steane codes and observe a better performance in the presence of correlated errors depending on the timing of the error recovery.
Use of Total Electron Content data to analyze ionosphere electron density gradients
NASA Astrophysics Data System (ADS)
Nava, B.; Radicella, S. M.; Leitinger, R.; Coisson, P.
In presence of electron density gradients the thin shell approximation for the ionosphere used together with a simple mapping function to convert slant Total Electron Content TEC to vertical TEC could lead to TEC conversion errors Therefore these mapping function errors can be used to identify the effects of the electron density gradients in the ionosphere In the present work high precision GPS derived slant TEC data have been used to investigate the effects of the electron density gradients in the middle and low latitude ionosphere under geomagnetic quiet and disturbed conditions In particular the data corresponding to the geographic area of the American sector for the days 5-7 April 2000 have been used to perform a complete analysis of mapping function errors based on the coinciding pierce point technique The results clearly illustrate the electron density gradient effects according to the locations considered and to the actual levels of disturbance of the ionosphere
Lau, Billy T; Ji, Hanlee P
2017-09-21
RNA-Seq measures gene expression by counting sequence reads belonging to unique cDNA fragments. Molecular barcodes commonly in the form of random nucleotides were recently introduced to improve gene expression measures by detecting amplification duplicates, but are susceptible to errors generated during PCR and sequencing. This results in false positive counts, leading to inaccurate transcriptome quantification especially at low input and single-cell RNA amounts where the total number of molecules present is minuscule. To address this issue, we demonstrated the systematic identification of molecular species using transposable error-correcting barcodes that are exponentially expanded to tens of billions of unique labels. We experimentally showed random-mer molecular barcodes suffer from substantial and persistent errors that are difficult to resolve. To assess our method's performance, we applied it to the analysis of known reference RNA standards. By including an inline random-mer molecular barcode, we systematically characterized the presence of sequence errors in random-mer molecular barcodes. We observed that such errors are extensive and become more dominant at low input amounts. We described the first study to use transposable molecular barcodes and its use for studying random-mer molecular barcode errors. Extensive errors found in random-mer molecular barcodes may warrant the use of error correcting barcodes for transcriptome analysis as input amounts decrease.
Optical System Error Analysis and Calibration Method of High-Accuracy Star Trackers
Sun, Ting; Xing, Fei; You, Zheng
2013-01-01
The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers. PMID:23567527
Seeing in the Dark: Weak Lensing from the Sloan Digital Sky Survey
NASA Astrophysics Data System (ADS)
Huff, Eric Michael
Statistical weak lensing by large-scale structure { cosmic shear { is a promising cosmological tool, which has motivated the design of several large upcoming astronomical surveys. This Thesis presents a measurement of cosmic shear using coadded Sloan Digital Sky Survey (SDSS) imaging in 168 square degrees of the equatorial region, with r < 23:5 and i < 22:5, a source number density of 2.2 per arcmin2 and median redshift of zmed = 0.52. These coadds were generated using a new rounding kernel method that was intended to minimize systematic errors in the lensing measurement due to coherent PSF anisotropies that are otherwise prevalent in the SDSS imaging data. Measurements of cosmic shear out to angular separations of 2 degrees are presented, along with systematics tests of the catalog generation and shear measurement steps that demonstrate that these results are dominated by statistical rather than systematic errors. Assuming a cosmological model corresponding to WMAP7 (Komatsu et al., 2011) and allowing only the amplitude of matter fluctuations sigma8 to vary, the best-t value of the amplitude of matter fluctuations is sigma 8=0.636+0.109-0.154 (1sigma); without systematic errors this would be sigma8=0.636+0.099 -0.137 (1sigma). Assuming a flat Λ CDM model, the combined constraints with WMAP7 are sigma8=0.784+0.028 -0.026 (1sigma). The 2sigma error range is 14 percent smaller than WMAP7 alone. Aside from the intrinsic value of such cosmological constraints from the growth of structure, some important lessons are identified for upcoming surveys that may face similar issues when combining multi-epoch data to measure cosmic shear. Motivated by the challenges faced in the cosmic shear measurement, two new lensing probes are suggested for increasing the available weak lensing signal. Both use galaxy scaling relations to control for scatter in lensing observables. The first employs a version of the well-known fundamental plane relation for early type galaxies. This modified "photometric fundamental plane" replaces velocity dispersions with photometric galaxy properties, thus obviating the need for spectroscopic data. We present the first detection of magnification using this method by applying it to photometric catalogs from the Sloan Digital Sky Survey. This analysis shows that the derived magnification signal is comparable to that available from conventional methods using gravitational shear. We suppress the dominant sources of systematic error and discuss modest improvements that may allow this method to equal or even surpass the signal-to-noise achievable with shear. Moreover, some of the dominant sources of systematic error are substantially different from those of shear-based techniques. The second outlines an idea for using the optical Tully-Fisher relation to dramatically improve the signal-to-noise and systematic error control for shear measurements. The expected error properties and potential advantages of such a measurement are proposed, and a pilot study is suggested in order to test the viability of Tully-Fisher weak lensing in the context of the forthcoming generation of large spectroscopic surveys.
Voshall, Barbara; Piscotty, Ronald; Lawrence, Jeanette; Targosz, Mary
2013-10-01
Safe medication administration is necessary to ensure quality healthcare. Barcode medication administration systems were developed to reduce drug administration errors and the related costs and improve patient safety. Work-arounds created by nurses in the execution of the required processes can lead to unintended consequences, including errors. This article provides a systematic review of the literature associated with barcoded medication administration and work-arounds and suggests interventions that should be adopted by nurse executives to ensure medication safety.
Systematic errors in long baseline oscillation experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, Deborah A.; /Fermilab
This article gives a brief overview of long baseline neutrino experiments and their goals, and then describes the different kinds of systematic errors that are encountered in these experiments. Particular attention is paid to the uncertainties that come about because of imperfect knowledge of neutrino cross sections and more generally how neutrinos interact in nuclei. Near detectors are planned for most of these experiments, and the extent to which certain uncertainties can be reduced by the presence of near detectors is also discussed.
Consistency of gene starts among Burkholderia genomes
2011-01-01
Background Evolutionary divergence in the position of the translational start site among orthologous genes can have significant functional impacts. Divergence can alter the translation rate, degradation rate, subcellular location, and function of the encoded proteins. Results Existing Genbank gene maps for Burkholderia genomes suggest that extensive divergence has occurred--53% of ortholog sets based on Genbank gene maps had inconsistent gene start sites. However, most of these inconsistencies appear to be gene-calling errors. Evolutionary divergence was the most plausible explanation for only 17% of the ortholog sets. Correcting probable errors in the Genbank gene maps decreased the percentage of ortholog sets with inconsistent starts by 68%, increased the percentage of ortholog sets with extractable upstream intergenic regions by 32%, increased the sequence similarity of intergenic regions and predicted proteins, and increased the number of proteins with identifiable signal peptides. Conclusions Our findings highlight an emerging problem in comparative genomics: single-digit percent errors in gene predictions can lead to double-digit percentages of inconsistent ortholog sets. The work demonstrates a simple approach to evaluate and improve the quality of gene maps. PMID:21342528
2013-01-01
Background Rapid development of highly saturated genetic maps aids molecular breeding, which can accelerate gain per breeding cycle in woody perennial plants such as Rubus idaeus (red raspberry). Recently, robust genotyping methods based on high-throughput sequencing were developed, which provide high marker density, but result in some genotype errors and a large number of missing genotype values. Imputation can reduce the number of missing values and can correct genotyping errors, but current methods of imputation require a reference genome and thus are not an option for most species. Results Genotyping by Sequencing (GBS) was used to produce highly saturated maps for a R. idaeus pseudo-testcross progeny. While low coverage and high variance in sequencing resulted in a large number of missing values for some individuals, a novel method of imputation based on maximum likelihood marker ordering from initial marker segregation overcame the challenge of missing values, and made map construction computationally tractable. The two resulting parental maps contained 4521 and 2391 molecular markers spanning 462.7 and 376.6 cM respectively over seven linkage groups. Detection of precise genomic regions with segregation distortion was possible because of map saturation. Microsatellites (SSRs) linked these results to published maps for cross-validation and map comparison. Conclusions GBS together with genome-independent imputation provides a rapid method for genetic map construction in any pseudo-testcross progeny. Our method of imputation estimates the correct genotype call of missing values and corrects genotyping errors that lead to inflated map size and reduced precision in marker placement. Comparison of SSRs to published R. idaeus maps showed that the linkage maps constructed with GBS and our method of imputation were robust, and marker positioning reliable. The high marker density allowed identification of genomic regions with segregation distortion in R. idaeus, which may help to identify deleterious alleles that are the basis of inbreeding depression in the species. PMID:23324311
Global Warming Estimation from MSU
NASA Technical Reports Server (NTRS)
Prabhakara, C.; Iacovazzi, Robert, Jr.
1999-01-01
In this study, we have developed time series of global temperature from 1980-97 based on the Microwave Sounding Unit (MSU) Ch 2 (53.74 GHz) observations taken from polar-orbiting NOAA operational satellites. In order to create these time series, systematic errors (approx. 0.1 K) in the Ch 2 data arising from inter-satellite differences are removed objectively. On the other hand, smaller systematic errors (approx. 0.03 K) in the data due to orbital drift of each satellite cannot be removed objectively. Such errors are expected to remain in the time series and leave an uncertainty in the inferred global temperature trend. With the help of a statistical method, the error in the MSU inferred global temperature trend resulting from orbital drifts and residual inter-satellite differences of all satellites is estimated to be 0.06 K decade. Incorporating this error, our analysis shows that the global temperature increased at a rate of 0.13 +/- 0.06 K decade during 1980-97.
NASA Astrophysics Data System (ADS)
Tedd, B. L.; Strangeways, H. J.; Jones, T. B.
1985-11-01
Systematic ionospheric tilts (SITs) at midlatitudes and the diurnal variation of bearing error for different transmission paths are examined. An explanation of diurnal variations of bearing error based on the dependence of ionospheric tilt on solar zenith angle and plasma transport processes is presented. The effect of vertical ion drift and the momentum transfer of neutral winds is investigated. During the daytime the transmissions are low and photochemical processes control SITs; however, at night transmissions are at higher heights and spatial and temporal variations of plasma transport processes influence SITs. A HF ray tracing technique which uses a three-dimensional ionospheric model based on predictions to simulate SIT-induced bearing errors is described; poor correlation with experimental data is observed and the causes for this are studied. A second model based on measured vertical-sounder data is proposed. Model two is applicable for predicting bearing error for a range of transmission paths and correlates well with experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalinin, V.A.; Tarasenko, V.L.; Tselser, L.B.
1988-09-01
Numerical values of the variation in ultrasonic velocity in constructional metal alloys and the measurement errors related to them are systematized. The systematization is based on the measurement results of the group ultrasonic velocity made in the All-Union Scientific-Research Institute for Nondestructive Testing in 1983-1984 and also on the measurement results of the group velocity made by various authors. The variations in ultrasonic velocity were systematized for carbon, low-alloy, and medium-alloy constructional steels; high-alloy iron base alloys; nickel-base heat-resistant alloys; wrought aluminum constructional alloys; titanium alloys; and cast irons and copper alloys.
High-accuracy self-calibration method for dual-axis rotation-modulating RLG-INS
NASA Astrophysics Data System (ADS)
Wei, Guo; Gao, Chunfeng; Wang, Qi; Wang, Qun; Long, Xingwu
2017-05-01
Inertial navigation system has been the core component of both military and civil navigation systems. Dual-axis rotation modulation can completely eliminate the inertial elements constant errors of the three axes to improve the system accuracy. But the error caused by the misalignment angles and the scale factor error cannot be eliminated through dual-axis rotation modulation. And discrete calibration method cannot fulfill requirements of high-accurate calibration of the mechanically dithered ring laser gyroscope navigation system with shock absorbers. This paper has analyzed the effect of calibration error during one modulated period and presented a new systematic self-calibration method for dual-axis rotation-modulating RLG-INS. Procedure for self-calibration of dual-axis rotation-modulating RLG-INS has been designed. The results of self-calibration simulation experiment proved that: this scheme can estimate all the errors in the calibration error model, the calibration precision of the inertial sensors scale factor error is less than 1ppm and the misalignment is less than 5″. These results have validated the systematic self-calibration method and proved its importance for accuracy improvement of dual -axis rotation inertial navigation system with mechanically dithered ring laser gyroscope.
Reyes, Mauricio; Zysset, Philippe
2017-01-01
Osteoporosis leads to hip fractures in aging populations and is diagnosed by modern medical imaging techniques such as quantitative computed tomography (QCT). Hip fracture sites involve trabecular bone, whose strength is determined by volume fraction and orientation, known as fabric. However, bone fabric cannot be reliably assessed in clinical QCT images of proximal femur. Accordingly, we propose a novel registration-based estimation of bone fabric designed to preserve tensor properties of bone fabric and to map bone fabric by a global and local decomposition of the gradient of a non-rigid image registration transformation. Furthermore, no comprehensive analysis on the critical components of this methodology has been previously conducted. Hence, the aim of this work was to identify the best registration-based strategy to assign bone fabric to the QCT image of a patient’s proximal femur. The normalized correlation coefficient and curvature-based regularization were used for image-based registration and the Frobenius norm of the stretch tensor of the local gradient was selected to quantify the distance among the proximal femora in the population. Based on this distance, closest, farthest and mean femora with a distinction of sex were chosen as alternative atlases to evaluate their influence on bone fabric prediction. Second, we analyzed different tensor mapping schemes for bone fabric prediction: identity, rotation-only, rotation and stretch tensor. Third, we investigated the use of a population average fabric atlas. A leave one out (LOO) evaluation study was performed with a dual QCT and HR-pQCT database of 36 pairs of human femora. The quality of the fabric prediction was assessed with three metrics, the tensor norm (TN) error, the degree of anisotropy (DA) error and the angular deviation of the principal tensor direction (PTD). The closest femur atlas (CTP) with a full rotation (CR) for fabric mapping delivered the best results with a TN error of 7.3 ± 0.9%, a DA error of 6.6 ± 1.3% and a PTD error of 25 ± 2°. The closest to the population mean femur atlas (MTP) using the same mapping scheme yielded only slightly higher errors than CTP for substantially less computing efforts. The population average fabric atlas yielded substantially higher errors than the MTP with the CR mapping scheme. Accounting for sex did not bring any significant improvements. The identified fabric mapping methodology will be exploited in patient-specific QCT-based finite element analysis of the proximal femur to improve the prediction of hip fracture risk. PMID:29176881
Selecting a restoration technique to minimize OCR error.
Cannon, M; Fugate, M; Hush, D R; Scovel, C
2003-01-01
This paper introduces a learning problem related to the task of converting printed documents to ASCII text files. The goal of the learning procedure is to produce a function that maps documents to restoration techniques in such a way that on average the restored documents have minimum optical character recognition error. We derive a general form for the optimal function and use it to motivate the development of a nonparametric method based on nearest neighbors. We also develop a direct method of solution based on empirical error minimization for which we prove a finite sample bound on estimation error that is independent of distribution. We show that this empirical error minimization problem is an extension of the empirical optimization problem for traditional M-class classification with general loss function and prove computational hardness for this problem. We then derive a simple iterative algorithm called generalized multiclass ratchet (GMR) and prove that it produces an optimal function asymptotically (with probability 1). To obtain the GMR algorithm we introduce a new data map that extends Kesler's construction for the multiclass problem and then apply an algorithm called Ratchet to this mapped data, where Ratchet is a modification of the Pocket algorithm . Finally, we apply these methods to a collection of documents and report on the experimental results.
A proteome-scale map of the human interactome network
Rolland, Thomas; Taşan, Murat; Charloteaux, Benoit; Pevzner, Samuel J.; Zhong, Quan; Sahni, Nidhi; Yi, Song; Lemmens, Irma; Fontanillo, Celia; Mosca, Roberto; Kamburov, Atanas; Ghiassian, Susan D.; Yang, Xinping; Ghamsari, Lila; Balcha, Dawit; Begg, Bridget E.; Braun, Pascal; Brehme, Marc; Broly, Martin P.; Carvunis, Anne-Ruxandra; Convery-Zupan, Dan; Corominas, Roser; Coulombe-Huntington, Jasmin; Dann, Elizabeth; Dreze, Matija; Dricot, Amélie; Fan, Changyu; Franzosa, Eric; Gebreab, Fana; Gutierrez, Bryan J.; Hardy, Madeleine F.; Jin, Mike; Kang, Shuli; Kiros, Ruth; Lin, Guan Ning; Luck, Katja; MacWilliams, Andrew; Menche, Jörg; Murray, Ryan R.; Palagi, Alexandre; Poulin, Matthew M.; Rambout, Xavier; Rasla, John; Reichert, Patrick; Romero, Viviana; Ruyssinck, Elien; Sahalie, Julie M.; Scholz, Annemarie; Shah, Akash A.; Sharma, Amitabh; Shen, Yun; Spirohn, Kerstin; Tam, Stanley; Tejeda, Alexander O.; Trigg, Shelly A.; Twizere, Jean-Claude; Vega, Kerwin; Walsh, Jennifer; Cusick, Michael E.; Xia, Yu; Barabási, Albert-László; Iakoucheva, Lilia M.; Aloy, Patrick; De Las Rivas, Javier; Tavernier, Jan; Calderwood, Michael A.; Hill, David E.; Hao, Tong; Roth, Frederick P.; Vidal, Marc
2014-01-01
SUMMARY Just as reference genome sequences revolutionized human genetics, reference maps of interactome networks will be critical to fully understand genotype-phenotype relationships. Here, we describe a systematic map of ~14,000 high-quality human binary protein-protein interactions. At equal quality, this map is ~30% larger than what is available from small-scale studies published in the literature in the last few decades. While currently available information is highly biased and only covers a relatively small portion of the proteome, our systematic map appears strikingly more homogeneous, revealing a “broader” human interactome network than currently appreciated. The map also uncovers significant inter-connectivity between known and candidate cancer gene products, providing unbiased evidence for an expanded functional cancer landscape, while demonstrating how high quality interactome models will help “connect the dots” of the genomic revolution. PMID:25416956
Quantified pH imaging with hyperpolarized (13) C-bicarbonate.
Scholz, David Johannes; Janich, Martin A; Köllisch, Ulrich; Schulte, Rolf F; Ardenkjaer-Larsen, Jan H; Frank, Annette; Haase, Axel; Schwaiger, Markus; Menzel, Marion I
2015-06-01
Because pH plays a crucial role in several diseases, it is desirable to measure pH in vivo noninvasively and in a spatially localized manner. Spatial maps of pH were quantified in vitro, with a focus on method-based errors, and applied in vivo. In vitro and in vivo (13) C mapping were performed for various flip angles for bicarbonate (BiC) and CO2 with spectral-spatial excitation and spiral readout in healthy Lewis rats in five slices. Acute subcutaneous sterile inflammation was induced with Concanavalin A in the right leg of Buffalo rats. pH and proton images were measured 2 h after induction. After optimizing the signal to noise ratio of the hyperpolarized (13) C-bicarbonate, error estimation of the spectral-spatial excited spectrum reveals that the method covers the biologically relevant pH range of 6 to 8 with low pH error (< 0.2). Quantification of pH maps shows negligible impact of the residual bicarbonate signal. pH maps reflect the induction of acute metabolic alkalosis. Inflamed, infected regions exhibit lower pH. Hyperpolarized (13) C-bicarbonate pH mapping was shown to be sensitive in the biologically relevant pH range. The mapping of pH was applied to healthy in vivo organs and interpreted within inflammation and acute metabolic alkalosis models. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
d'Oleire-Oltmanns, Sebastian; Marzolff, Irene; Tiede, Dirk; Blaschke, Thomas
2015-04-01
The need for area-wide landform mapping approaches, especially in terms of land degradation, can be ascribed to the fact that within area-wide landform mapping approaches, the (spatial) context of erosional landforms is considered by providing additional information on the physiography neighboring the distinct landform. This study presents an approach for the detection of gully-affected areas by applying object-based image analysis in the region of Taroudannt, Morocco, which is highly affected by gully erosion while simultaneously representing a major region of agro-industry with a high demand of arable land. Various sensors provide readily available high-resolution optical satellite data with a much better temporal resolution than 3D terrain data which lead to the development of an area-wide mapping approach to extract gully-affected areas using only optical satellite imagery. The classification rule-set was developed with a clear focus on virtual spatial independence within the software environment of eCognition Developer. This allows the incorporation of knowledge about the target objects under investigation. Only optical QuickBird-2 satellite data and freely-available OpenStreetMap (OSM) vector data were used as input data. The OSM vector data were incorporated in order to mask out plantations and residential areas. Optical input data are more readily available for a broad range of users compared to terrain data, which is considered to be a major advantage. The methodology additionally incorporates expert knowledge and freely-available vector data in a cyclic object-based image analysis approach. This connects the two fields of geomorphology and remote sensing. The classification results allow conclusions on the current distribution of gullies. The results of the classification were checked against manually delineated reference data incorporating expert knowledge based on several field campaigns in the area, resulting in an overall classification accuracy of 62%. The error of omission accounts for 38% and the error of commission for 16%, respectively. Additionally, a manual assessment was carried out to assess the quality of the applied classification algorithm. The limited error of omission contributes with 23% to the overall error of omission and the limited error of commission contributes with 98% to the overall error of commission. This assessment improves the results and confirms the high quality of the developed approach for area-wide mapping of gully-affected areas in larger regions. In the field of landform mapping, the overall quality of the classification results is often assessed with more than one method to incorporate all aspects adequately.
The role of the basic state in the ENSO-monsoon relationship and implications for predictability
NASA Astrophysics Data System (ADS)
Turner, A. G.; Inness, P. M.; Slingo, J. M.
2005-04-01
The impact of systematic model errors on a coupled simulation of the Asian summer monsoon and its interannual variability is studied. Although the mean monsoon climate is reasonably well captured, systematic errors in the equatorial Pacific mean that the monsoon-ENSO teleconnection is rather poorly represented in the general-circulation model. A system of ocean-surface heat flux adjustments is implemented in the tropical Pacific and Indian Oceans in order to reduce the systematic biases. In this version of the general-circulation model, the monsoon-ENSO teleconnection is better simulated, particularly the lag-lead relationships in which weak monsoons precede the peak of El Niño. In part this is related to changes in the characteristics of El Niño, which has a more realistic evolution in its developing phase. A stronger ENSO amplitude in the new model version also feeds back to further strengthen the teleconnection. These results have important implications for the use of coupled models for seasonal prediction of systems such as the monsoon, and suggest that some form of flux correction may have significant benefits where model systematic error compromises important teleconnections and modes of interannual variability.
Systematic error of the Gaia DR1 TGAS parallaxes from data for the red giant clump
NASA Astrophysics Data System (ADS)
Gontcharov, G. A.
2017-08-01
Based on the Gaia DR1 TGAS parallaxes and photometry from the Tycho-2, Gaia, 2MASS, andWISE catalogues, we have produced a sample of 100 000 clump red giants within 800 pc of the Sun. The systematic variations of the mode of their absolute magnitude as a function of the distance, magnitude, and other parameters have been analyzed. We show that these variations reach 0.7 mag and cannot be explained by variations in the interstellar extinction or intrinsic properties of stars and by selection. The only explanation seems to be a systematic error of the Gaia DR1 TGAS parallax dependent on the square of the observed distance in kpc: 0.18 R 2 mas. Allowance for this error reduces significantly the systematic dependences of the absolute magnitude mode on all parameters. This error reaches 0.1 mas within 800 pc of the Sun and allows an upper limit for the accuracy of the TGAS parallaxes to be estimated as 0.2 mas. A careful allowance for such errors is needed to use clump red giants as "standard candles." This eliminates all discrepancies between the theoretical and empirical estimates of the characteristics of these stars and allows us to obtain the first estimates of the modes of their absolute magnitudes from the Gaia parallaxes: mode( M H ) = -1.49 m ± 0.04 m , mode( M Ks ) = -1.63 m ± 0.03 m , mode( M W1) = -1.67 m ± 0.05 m mode( M W2) = -1.67 m ± 0.05 m , mode( M W3) = -1.66 m ± 0.02 m , mode( M W4) = -1.73 m ± 0.03 m , as well as the corresponding estimates of their de-reddened colors.
Lane Level Localization; Using Images and HD Maps to Mitigate the Lateral Error
NASA Astrophysics Data System (ADS)
Hosseinyalamdary, S.; Peter, M.
2017-05-01
In urban canyon where the GNSS signals are blocked by buildings, the accuracy of measured position significantly deteriorates. GIS databases have been frequently utilized to improve the accuracy of measured position using map matching approaches. In map matching, the measured position is projected to the road links (centerlines) in this approach and the lateral error of measured position is reduced. By the advancement in data acquision approaches, high definition maps which contain extra information, such as road lanes are generated. These road lanes can be utilized to mitigate the positional error and improve the accuracy in position. In this paper, the image content of a camera mounted on the platform is utilized to detect the road boundaries in the image. We apply color masks to detect the road marks, apply the Hough transform to fit lines to the left and right road boundaries, find the corresponding road segment in GIS database, estimate the homography transformation between the global and image coordinates of the road boundaries, and estimate the camera pose with respect to the global coordinate system. The proposed approach is evaluated on a benchmark. The position is measured by a smartphone's GPS receiver, images are taken from smartphone's camera and the ground truth is provided by using Real-Time Kinematic (RTK) technique. Results show the proposed approach significantly improves the accuracy of measured GPS position. The error in measured GPS position with average and standard deviation of 11.323 and 11.418 meters is reduced to the error in estimated postion with average and standard deviation of 6.725 and 5.899 meters.
Cooperstein, Robert; Young, Morgan
2014-01-01
Upright examination procedures like radiology, thermography, manual muscle testing, and spinal motion palpation may lead to spinal interventions with the patient prone. The reliability and accuracy of mapping upright examination findings to the prone position is unknown. This study had 2 primary goals: (1) investigate how erroneous spine-scapular landmark associations may lead to errors in treating and charting spine levels; and (2) study the interexaminer reliability of a novel method for mapping upright spinal sites to the prone position. Experiment 1 was a thought experiment exploring the consequences of depending on the erroneous landmark association of the inferior scapular tip with the T7 spinous process upright and T6 spinous process prone (relatively recent studies suggest these levels are T8 and T9, respectively). This allowed deduction of targeting and charting errors. In experiment 2, 10 examiners (2 experienced, 8 novice) used an index finger to maintain contact with a mid-thoracic spinous process as each of 2 participants slowly moved from the upright to the prone position. Interexaminer reliability was assessed by computing Intraclass Correlation Coefficient, standard error of the mean, root mean squared error, and the absolute value of the mean difference for each examiner from the 10 examiner mean for each of the 2 participants. The thought experiment suggesting that using the (inaccurate) scapular tip landmark rule would result in a 3 level targeting and charting error when radiological findings are mapped to the prone position. Physical upright exam procedures like motion palpation would result in a 2 level targeting error for intervention, and a 3 level error for charting. The reliability experiment showed examiners accurately maintained contact with the same thoracic spinous process as the participant went from upright to prone, ICC (2,1) = 0.83. As manual therapists, the authors have emphasized how targeting errors may impact upon manual care of the spine. Practitioners in other fields that need to accurately locate spinal levels, such as acupuncture and anesthesiology, would also be expected to draw important conclusions from these findings.
2014-01-01
Background Upright examination procedures like radiology, thermography, manual muscle testing, and spinal motion palpation may lead to spinal interventions with the patient prone. The reliability and accuracy of mapping upright examination findings to the prone position is unknown. This study had 2 primary goals: (1) investigate how erroneous spine-scapular landmark associations may lead to errors in treating and charting spine levels; and (2) study the interexaminer reliability of a novel method for mapping upright spinal sites to the prone position. Methods Experiment 1 was a thought experiment exploring the consequences of depending on the erroneous landmark association of the inferior scapular tip with the T7 spinous process upright and T6 spinous process prone (relatively recent studies suggest these levels are T8 and T9, respectively). This allowed deduction of targeting and charting errors. In experiment 2, 10 examiners (2 experienced, 8 novice) used an index finger to maintain contact with a mid-thoracic spinous process as each of 2 participants slowly moved from the upright to the prone position. Interexaminer reliability was assessed by computing Intraclass Correlation Coefficient, standard error of the mean, root mean squared error, and the absolute value of the mean difference for each examiner from the 10 examiner mean for each of the 2 participants. Results The thought experiment suggesting that using the (inaccurate) scapular tip landmark rule would result in a 3 level targeting and charting error when radiological findings are mapped to the prone position. Physical upright exam procedures like motion palpation would result in a 2 level targeting error for intervention, and a 3 level error for charting. The reliability experiment showed examiners accurately maintained contact with the same thoracic spinous process as the participant went from upright to prone, ICC (2,1) = 0.83. Conclusions As manual therapists, the authors have emphasized how targeting errors may impact upon manual care of the spine. Practitioners in other fields that need to accurately locate spinal levels, such as acupuncture and anesthesiology, would also be expected to draw important conclusions from these findings. PMID:24904747
NASA Technical Reports Server (NTRS)
Ramirez, Daniel Perez; Whiteman, David N.; Veselovskii, Igor; Kolgotin, Alexei; Korenskiy, Michael; Alados-Arboledas, Lucas
2013-01-01
In this work we study the effects of systematic and random errors on the inversion of multiwavelength (MW) lidar data using the well-known regularization technique to obtain vertically resolved aerosol microphysical properties. The software implementation used here was developed at the Physics Instrumentation Center (PIC) in Troitsk (Russia) in conjunction with the NASA/Goddard Space Flight Center. Its applicability to Raman lidar systems based on backscattering measurements at three wavelengths (355, 532 and 1064 nm) and extinction measurements at two wavelengths (355 and 532 nm) has been demonstrated widely. The systematic error sensitivity is quantified by first determining the retrieved parameters for a given set of optical input data consistent with three different sets of aerosol physical parameters. Then each optical input is perturbed by varying amounts and the inversion is repeated. Using bimodal aerosol size distributions, we find a generally linear dependence of the retrieved errors in the microphysical properties on the induced systematic errors in the optical data. For the retrievals of effective radius, number/surface/volume concentrations and fine-mode radius and volume, we find that these results are not significantly affected by the range of the constraints used in inversions. But significant sensitivity was found to the allowed range of the imaginary part of the particle refractive index. Our results also indicate that there exists an additive property for the deviations induced by the biases present in the individual optical data. This property permits the results here to be used to predict deviations in retrieved parameters when multiple input optical data are biased simultaneously as well as to study the influence of random errors on the retrievals. The above results are applied to questions regarding lidar design, in particular for the spaceborne multiwavelength lidar under consideration for the upcoming ACE mission.
NASA Astrophysics Data System (ADS)
Appleby, Graham; Rodríguez, José; Altamimi, Zuheir
2016-12-01
Satellite laser ranging (SLR) to the geodetic satellites LAGEOS and LAGEOS-2 uniquely determines the origin of the terrestrial reference frame and, jointly with very long baseline interferometry, its scale. Given such a fundamental role in satellite geodesy, it is crucial that any systematic errors in either technique are at an absolute minimum as efforts continue to realise the reference frame at millimetre levels of accuracy to meet the present and future science requirements. Here, we examine the intrinsic accuracy of SLR measurements made by tracking stations of the International Laser Ranging Service using normal point observations of the two LAGEOS satellites in the period 1993 to 2014. The approach we investigate in this paper is to compute weekly reference frame solutions solving for satellite initial state vectors, station coordinates and daily Earth orientation parameters, estimating along with these weekly average range errors for each and every one of the observing stations. Potential issues in any of the large number of SLR stations assumed to have been free of error in previous realisations of the ITRF may have been absorbed in the reference frame, primarily in station height. Likewise, systematic range errors estimated against a fixed frame that may itself suffer from accuracy issues will absorb network-wide problems into station-specific results. Our results suggest that in the past two decades, the scale of the ITRF derived from the SLR technique has been close to 0.7 ppb too small, due to systematic errors either or both in the range measurements and their treatment. We discuss these results in the context of preparations for ITRF2014 and additionally consider the impact of this work on the currently adopted value of the geocentric gravitational constant, GM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, T. S.; DePoy, D. L.; Marshall, J. L.
Here, we report that meeting the science goals for many current and future ground-based optical large-area sky surveys requires that the calibrated broadband photometry is both stable in time and uniform over the sky to 1% precision or better. Past and current surveys have achieved photometric precision of 1%–2% by calibrating the survey's stellar photometry with repeated measurements of a large number of stars observed in multiple epochs. The calibration techniques employed by these surveys only consider the relative frame-by-frame photometric zeropoint offset and the focal plane position-dependent illumination corrections, which are independent of the source color. However, variations inmore » the wavelength dependence of the atmospheric transmission and the instrumental throughput induce source color-dependent systematic errors. These systematic errors must also be considered to achieve the most precise photometric measurements. In this paper, we examine such systematic chromatic errors (SCEs) using photometry from the Dark Energy Survey (DES) as an example. We first define a natural magnitude system for DES and calculate the systematic errors on stellar magnitudes when the atmospheric transmission and instrumental throughput deviate from the natural system. We conclude that the SCEs caused by the change of airmass in each exposure, the change of the precipitable water vapor and aerosol in the atmosphere over time, and the non-uniformity of instrumental throughput over the focal plane can be up to 2% in some bandpasses. We then compare the calculated SCEs with the observed DES data. For the test sample data, we correct these errors using measurements of the atmospheric transmission and instrumental throughput from auxiliary calibration systems. In conclusion, the residual after correction is less than 0.3%. Moreover, we calculate such SCEs for Type Ia supernovae and elliptical galaxies and find that the chromatic errors for non-stellar objects are redshift-dependent and can be larger than those for stars at certain redshifts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, T. S.; DePoy, D. L.; Marshall, J. L.
Meeting the science goals for many current and future ground-based optical large-area sky surveys requires that the calibrated broadband photometry is both stable in time and uniform over the sky to 1% precision or better. Past and current surveys have achieved photometric precision of 1%–2% by calibrating the survey’s stellar photometry with repeated measurements of a large number of stars observed in multiple epochs. The calibration techniques employed by these surveys only consider the relative frame-by-frame photometric zeropoint offset and the focal plane position-dependent illumination corrections, which are independent of the source color. However, variations in the wavelength dependence ofmore » the atmospheric transmission and the instrumental throughput induce source color-dependent systematic errors. These systematic errors must also be considered to achieve the most precise photometric measurements. In this paper, we examine such systematic chromatic errors (SCEs) using photometry from the Dark Energy Survey (DES) as an example. We first define a natural magnitude system for DES and calculate the systematic errors on stellar magnitudes when the atmospheric transmission and instrumental throughput deviate from the natural system. We conclude that the SCEs caused by the change of airmass in each exposure, the change of the precipitable water vapor and aerosol in the atmosphere over time, and the non-uniformity of instrumental throughput over the focal plane can be up to 2% in some bandpasses. We then compare the calculated SCEs with the observed DES data. For the test sample data, we correct these errors using measurements of the atmospheric transmission and instrumental throughput from auxiliary calibration systems. The residual after correction is less than 0.3%. Moreover, we calculate such SCEs for Type Ia supernovae and elliptical galaxies and find that the chromatic errors for non-stellar objects are redshift-dependent and can be larger than those for stars at certain redshifts.« less
Leyland, M J; Beurskens, M N A; Flanagan, J C; Frassinetti, L; Gibson, K J; Kempenaars, M; Maslov, M; Scannell, R
2016-01-01
The Joint European Torus (JET) high resolution Thomson scattering (HRTS) system measures radial electron temperature and density profiles. One of the key capabilities of this diagnostic is measuring the steep pressure gradient, termed the pedestal, at the edge of JET plasmas. The pedestal is susceptible to limiting instabilities, such as Edge Localised Modes (ELMs), characterised by a periodic collapse of the steep gradient region. A common method to extract the pedestal width, gradient, and height, used on numerous machines, is by performing a modified hyperbolic tangent (mtanh) fit to overlaid profiles selected from the same region of the ELM cycle. This process of overlaying profiles, termed ELM synchronisation, maximises the number of data points defining the pedestal region for a given phase of the ELM cycle. When fitting to HRTS profiles, it is necessary to incorporate the diagnostic radial instrument function, particularly important when considering the pedestal width. A deconvolved fit is determined by a forward convolution method requiring knowledge of only the instrument function and profiles. The systematic error due to the deconvolution technique incorporated into the JET pedestal fitting tool has been documented by Frassinetti et al. [Rev. Sci. Instrum. 83, 013506 (2012)]. This paper seeks to understand and quantify the systematic error introduced to the pedestal width due to ELM synchronisation. Synthetic profiles, generated with error bars and point-to-point variation characteristic of real HRTS profiles, are used to evaluate the deviation from the underlying pedestal width. We find on JET that the ELM synchronisation systematic error is negligible in comparison to the statistical error when assuming ten overlaid profiles (typical for a pre-ELM fit to HRTS profiles). This confirms that fitting a mtanh to ELM synchronised profiles is a robust and practical technique for extracting the pedestal structure.
Planck 2015 results. III. LFI systematic uncertainties
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Battaglia, P.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Burigana, C.; Butler, R. C.; Calabrese, E.; Catalano, A.; Christensen, P. R.; Colombo, L. P. L.; Cruz, M.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Doré, O.; Ducout, A.; Dupac, X.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Frailis, M.; Franceschet, C.; Franceschi, E.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D. L.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Knoche, J.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Meinhold, P. R.; Mennella, A.; Migliaccio, M.; Mitra, S.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Nati, F.; Natoli, P.; Noviello, F.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Pearson, T. J.; Perdereau, O.; Pettorino, V.; Piacentini, F.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Scott, D.; Stolyarov, V.; Stompor, R.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vassallo, T.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zibin, J. P.; Zonca, A.
2016-09-01
We present the current accounting of systematic effect uncertainties for the Low Frequency Instrument (LFI) that are relevant to the 2015 release of the Planck cosmological results, showing the robustness and consistency of our data set, especially for polarization analysis. We use two complementary approaches: (I) simulations based on measured data and physical models of the known systematic effects; and (II) analysis of difference maps containing the same sky signal ("null-maps"). The LFI temperature data are limited by instrumental noise. At large angular scales the systematic effects are below the cosmic microwave background (CMB) temperature power spectrum by several orders of magnitude. In polarization the systematic uncertainties are dominated by calibration uncertainties and compete with the CMB E-modes in the multipole range 10-20. Based on our model of all known systematic effects, we show that these effects introduce a slight bias of around 0.2σ on the reionization optical depth derived from the 70GHz EE spectrum using the 30 and 353GHz channels as foreground templates. At 30GHz the systematic effects are smaller than the Galactic foreground at all scales in temperature and polarization, which allows us to consider this channel as a reliable template of synchrotron emission. We assess the residual uncertainties due to LFI effects on CMB maps and power spectra after component separation and show that these effects are smaller than the CMB amplitude at all scales. We also assess the impact on non-Gaussianity studies and find it to be negligible. Some residuals still appear in null maps from particular sky survey pairs, particularly at 30 GHz, suggesting possible straylight contamination due to an imperfect knowledge of the beam far sidelobes.
Baron, Charles A.; Awan, Musaddiq J.; Mohamed, Abdallah S. R.; Akel, Imad; Rosenthal, David I.; Gunn, G. Brandon; Garden, Adam S.; Dyer, Brandon A.; Court, Laurence; Sevak, Parag R; Kocak-Uzel, Esengul; Fuller, Clifton D.
2016-01-01
Larynx may alternatively serve as a target or organ-at-risk (OAR) in head and neck cancer (HNC) image-guided radiotherapy (IGRT). The objective of this study was to estimate IGRT parameters required for larynx positional error independent of isocentric alignment and suggest population–based compensatory margins. Ten HNC patients receiving radiotherapy (RT) with daily CT-on-rails imaging were assessed. Seven landmark points were placed on each daily scan. Taking the most superior anterior point of the C5 vertebra as a reference isocenter for each scan, residual displacement vectors to the other 6 points were calculated post-isocentric alignment. Subsequently, using the first scan as a reference, the magnitude of vector differences for all 6 points for all scans over the course of treatment were calculated. Residual systematic and random error, and the necessary compensatory CTV-to-PTV and OAR-to-PRV margins were calculated, using both observational cohort data and a bootstrap-resampled population estimator. The grand mean displacements for all anatomical points was 5.07mm, with mean systematic error of 1.1mm and mean random setup error of 2.63mm, while bootstrapped POIs grand mean displacement was 5.09mm, with mean systematic error of 1.23mm and mean random setup error of 2.61mm. Required margin for CTV-PTV expansion was 4.6mm for all cohort points, while the bootstrap estimator of the equivalent margin was 4.9mm. The calculated OAR-to-PRV expansion for the observed residual set-up error was 2.7mm, and bootstrap estimated expansion of 2.9mm. We conclude that the interfractional larynx setup error is a significant source of RT set-up/delivery error in HNC both when the larynx is considered as a CTV or OAR. We estimate the need for a uniform expansion of 5mm to compensate for set up error if the larynx is a target or 3mm if the larynx is an OAR when using a non-laryngeal bony isocenter. PMID:25679151
Baron, Charles A.; Awan, Musaddiq J.; Mohamed, Abdallah S.R.; Akel, Imad; Rosenthal, David I.; Gunn, G. Brandon; Garden, Adam S.; Dyer, Brandon A.; Court, Laurence; Sevak, Parag R.; Kocak‐Uzel, Esengul
2014-01-01
Larynx may alternatively serve as a target or organs at risk (OAR) in head and neck cancer (HNC) image‐guided radiotherapy (IGRT). The objective of this study was to estimate IGRT parameters required for larynx positional error independent of isocentric alignment and suggest population‐based compensatory margins. Ten HNC patients receiving radiotherapy (RT) with daily CT on‐rails imaging were assessed. Seven landmark points were placed on each daily scan. Taking the most superior‐anterior point of the C5 vertebra as a reference isocenter for each scan, residual displacement vectors to the other six points were calculated postisocentric alignment. Subsequently, using the first scan as a reference, the magnitude of vector differences for all six points for all scans over the course of treatment was calculated. Residual systematic and random error and the necessary compensatory CTV‐to‐PTV and OAR‐to‐PRV margins were calculated, using both observational cohort data and a bootstrap‐resampled population estimator. The grand mean displacements for all anatomical points was 5.07 mm, with mean systematic error of 1.1 mm and mean random setup error of 2.63 mm, while bootstrapped POIs grand mean displacement was 5.09 mm, with mean systematic error of 1.23 mm and mean random setup error of 2.61 mm. Required margin for CTV‐PTV expansion was 4.6 mm for all cohort points, while the bootstrap estimator of the equivalent margin was 4.9 mm. The calculated OAR‐to‐PRV expansion for the observed residual setup error was 2.7 mm and bootstrap estimated expansion of 2.9 mm. We conclude that the interfractional larynx setup error is a significant source of RT setup/delivery error in HNC, both when the larynx is considered as a CTV or OAR. We estimate the need for a uniform expansion of 5 mm to compensate for setup error if the larynx is a target, or 3 mm if the larynx is an OAR, when using a nonlaryngeal bony isocenter. PACS numbers: 87.55.D‐, 87.55.Qr
Intelligent process mapping through systematic improvement of heuristics
NASA Technical Reports Server (NTRS)
Ieumwananonthachai, Arthur; Aizawa, Akiko N.; Schwartz, Steven R.; Wah, Benjamin W.; Yan, Jerry C.
1992-01-01
The present system for automatic learning/evaluation of novel heuristic methods applicable to the mapping of communication-process sets on a computer network has its basis in the testing of a population of competing heuristic methods within a fixed time-constraint. The TEACHER 4.1 prototype learning system implemented or learning new postgame analysis heuristic methods iteratively generates and refines the mappings of a set of communicating processes on a computer network. A systematic exploration of the space of possible heuristic methods is shown to promise significant improvement.
Effect of thematic map misclassification on landscape multi-metric assessment.
Kleindl, William J; Powell, Scott L; Hauer, F Richard
2015-06-01
Advancements in remote sensing and computational tools have increased our awareness of large-scale environmental problems, thereby creating a need for monitoring, assessment, and management at these scales. Over the last decade, several watershed and regional multi-metric indices have been developed to assist decision-makers with planning actions of these scales. However, these tools use remote-sensing products that are subject to land-cover misclassification, and these errors are rarely incorporated in the assessment results. Here, we examined the sensitivity of a landscape-scale multi-metric index (MMI) to error from thematic land-cover misclassification and the implications of this uncertainty for resource management decisions. Through a case study, we used a simplified floodplain MMI assessment tool, whose metrics were derived from Landsat thematic maps, to initially provide results that were naive to thematic misclassification error. Using a Monte Carlo simulation model, we then incorporated map misclassification error into our MMI, resulting in four important conclusions: (1) each metric had a different sensitivity to error; (2) within each metric, the bias between the error-naive metric scores and simulated scores that incorporate potential error varied in magnitude and direction depending on the underlying land cover at each assessment site; (3) collectively, when the metrics were combined into a multi-metric index, the effects were attenuated; and (4) the index bias indicated that our naive assessment model may overestimate floodplain condition of sites with limited human impacts and, to a lesser extent, either over- or underestimated floodplain condition of sites with mixed land use.