Target surface finding using 3D SAR data
NASA Astrophysics Data System (ADS)
Ruiter, Jason R.; Burns, Joseph W.; Subotic, Nikola S.
2005-05-01
Methods of generating more literal, easily interpretable imagery from 3-D SAR data are being studied to provide all weather, near-visual target identification and/or scene interpretation. One method of approaching this problem is to automatically generate shape-based geometric renderings from the SAR data. In this paper we describe the application of the Marching Tetrahedrons surface finding algorithm to 3-D SAR data. The Marching Tetrahedrons algorithm finds a surface through the 3-D data cube, which provides a recognizable representation of the target surface. This algorithm was applied to the public-release X-patch simulations of a backhoe, which provided densely sampled 3-D SAR data sets. The performance of the algorithm to noise and spatial resolution were explored. Surface renderings were readily recognizable over a range of spatial resolution, and maintained their fidelity even under relatively low Signal-to-Noise Ratio (SNR) conditions.
The Center for Nonlinear Phenomena and Magnetic Materials
1992-09-30
ORGANIZATION Howard University REPORT NUMBER ComSERCIWashington DC 20059 AFOSR- ,, ? 9 v 5 4 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10... University . Visualization - Improved Marching Cubes. January 27, 1992: Dr. Gerald Chachere, Math Dept., Howard University . "An algorithm for box...James Gates, Physics Department, Howard University . "Introduction to Strings Part I". February 5, 1992: Dr. James Gates, Physics Department, Howard
3-D Image Encryption Based on Rubik's Cube and RC6 Algorithm
NASA Astrophysics Data System (ADS)
Helmy, Mai; El-Rabaie, El-Sayed M.; Eldokany, Ibrahim M.; El-Samie, Fathi E. Abd
2017-12-01
A novel encryption algorithm based on the 3-D Rubik's cube is proposed in this paper to achieve 3D encryption of a group of images. This proposed encryption algorithm begins with RC6 as a first step for encrypting multiple images, separately. After that, the obtained encrypted images are further encrypted with the 3-D Rubik's cube. The RC6 encrypted images are used as the faces of the Rubik's cube. From the concepts of image encryption, the RC6 algorithm adds a degree of diffusion, while the Rubik's cube algorithm adds a degree of permutation. The simulation results demonstrate that the proposed encryption algorithm is efficient, and it exhibits strong robustness and security. The encrypted images are further transmitted over wireless Orthogonal Frequency Division Multiplexing (OFDM) system and decrypted at the receiver side. Evaluation of the quality of the decrypted images at the receiver side reveals good results.
Random sequential adsorption of cubes
NASA Astrophysics Data System (ADS)
Cieśla, Michał; Kubala, Piotr
2018-01-01
Random packings built of cubes are studied numerically using a random sequential adsorption algorithm. To compare the obtained results with previous reports, three different models of cube orientation sampling were used. Also, three different cube-cube intersection algorithms were tested to find the most efficient one. The study focuses on the mean saturated packing fraction as well as kinetics of packing growth. Microstructural properties of packings were analyzed using density autocorrelation function.
Molecular surface mesh generation by filtering electron density map.
Giard, Joachim; Macq, Benoît
2010-01-01
Bioinformatics applied to macromolecules are now widely spread and in continuous expansion. In this context, representing external molecular surface such as the Van der Waals Surface or the Solvent Excluded Surface can be useful for several applications. We propose a fast and parameterizable algorithm giving good visual quality meshes representing molecular surfaces. It is obtained by isosurfacing a filtered electron density map. The density map is the result of the maximum of Gaussian functions placed around atom centers. This map is filtered by an ideal low-pass filter applied on the Fourier Transform of the density map. Applying the marching cubes algorithm on the inverse transform provides a mesh representation of the molecular surface.
NASA Astrophysics Data System (ADS)
Khachaturov, R. V.
2015-01-01
The basic properties of a new type of lattices—a lattice of cubes—are described. It is shown that, with a suitable choice of union and intersection operations, the set of all subcubes of an N-cube forms a lattice, which is called a lattice of cubes. Algorithms for constructing such lattices are described, and the results produced by these algorithms in the case of lattices of various dimensions are illustrated. It is proved that a lattice of cubes is a lattice with supplements, which makes it possible to minimize and maximize supermodular functions on it. Examples of such functions are given. The possibility of applying previously developed efficient optimization algorithms to the formulation and solution of new classes of problems on lattices of cubes.
NASA Astrophysics Data System (ADS)
Youn, J.; Kim, T.
2016-06-01
Visualization of disaster dispersion prediction enables decision makers and civilian to prepare disaster and to reduce the damage by showing the realistic simulation results. With advances of GIS technology and the theory of volcanic disaster prediction algorithm, the predicted disaster dispersions are displayed in spatial information. However, most of volcanic ash dispersion predictions are displayed in 2D. 2D visualization has a limitation to understand the realistic dispersion prediction since its height could be presented only by colour. Especially for volcanic ash, 3D visualization of dispersion prediction is essential since it could bring out big aircraft accident. In this paper, we deals with 3D visualization techniques of volcanic ash dispersion prediction with spatial information open platform in Korea. First, time-series volcanic ash 3D position and concentrations are calculated with WRF (Weather Research and Forecasting) model and Modified Fall3D algorithm. For 3D visualization, we propose three techniques; those are 'Cube in the air', 'Cube in the cube', and 'Semi-transparent plane in the air' methods. In the 'Cube in the Air', which locates the semitransparent cubes having different color depends on its particle concentration. Big cube is not realistic when it is zoomed. Therefore, cube is divided into small cube with Octree algorithm. That is 'Cube in the Cube' algorithm. For more realistic visualization, we apply 'Semi-transparent Volcanic Ash Plane' which shows the ash as fog. The results are displayed in the 'V-world' which is a spatial information open platform implemented by Korean government. Proposed techniques were adopted in Volcanic Disaster Response System implemented by Korean Ministry of Public Safety and Security.
Shrink-wrapped isosurface from cross sectional images
Choi, Y. K.; Hahn, J. K.
2010-01-01
Summary This paper addresses a new surface reconstruction scheme for approximating the isosurface from a set of tomographic cross sectional images. Differently from the novel Marching Cubes (MC) algorithm, our method does not extract the iso-density surface (isosurface) directly from the voxel data but calculates the iso-density point (isopoint) first. After building a coarse initial mesh approximating the ideal isosurface by the cell-boundary representation, it metamorphoses the mesh into the final isosurface by a relaxation scheme, called shrink-wrapping process. Compared with the MC algorithm, our method is robust and does not make any cracks on surface. Furthermore, since it is possible to utilize lots of additional isopoints during the surface reconstruction process by extending the adjacency definition, theoretically the resulting surface can be better in quality than the MC algorithm. According to experiments, it is proved to be very robust and efficient for isosurface reconstruction from cross sectional images. PMID:20703361
2016-01-20
Engineers for NASA's MarCO (Mars Cube One) technology demonstration inspect one of the two MarCO CubeSats. Cody Colley, MarCO integration and test deputy, left, and Andy Klesh, MarCO chief engineer, are on the team at NASA's Jet Propulsion Laboratory, Pasadena, California, preparing twin MarCO CubeSats. The briefcase-size MarCO twins were designed to ride along with NASA's next Mars lander, InSight. Its planned March 2016 launch was suspended. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA20342
2016-01-20
Engineers for NASA's MarCO (Mars Cube One) technology demonstration inspect one of the two MarCO CubeSats. Joel Steinkraus, MarCO lead mechanical engineer, left, and Andy Klesh, MarCO chief engineer, are on the team at NASA's Jet Propulsion Laboratory, Pasadena, California, preparing twin MarCO CubeSats. The briefcase-size MarCO twins were designed to ride along with NASA's next Mars lander, InSight. Its planned March 2016 launch was suspended. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA20343
Energy-driven scheduling algorithm for nanosatellite energy harvesting maximization
NASA Astrophysics Data System (ADS)
Slongo, L. K.; Martínez, S. V.; Eiterer, B. V. B.; Pereira, T. G.; Bezerra, E. A.; Paiva, K. V.
2018-06-01
The number of tasks that a satellite may execute in orbit is strongly related to the amount of energy its Electrical Power System (EPS) is able to harvest and to store. The manner the stored energy is distributed within the satellite has also a great impact on the CubeSat's overall efficiency. Most CubeSat's EPS do not prioritize energy constraints in their formulation. Unlike that, this work proposes an innovative energy-driven scheduling algorithm based on energy harvesting maximization policy. The energy harvesting circuit is mathematically modeled and the solar panel I-V curves are presented for different temperature and irradiance levels. Considering the models and simulations, the scheduling algorithm is designed to keep solar panels working close to their maximum power point by triggering tasks in the appropriate form. Tasks execution affects battery voltage, which is coupled to the solar panels through a protection circuit. A software based Perturb and Observe strategy allows defining the tasks to be triggered. The scheduling algorithm is tested in FloripaSat, which is an 1U CubeSat. A test apparatus is proposed to emulate solar irradiance variation, considering the satellite movement around the Earth. Tests have been conducted to show that the scheduling algorithm improves the CubeSat energy harvesting capability by 4.48% in a three orbit experiment and up to 8.46% in a single orbit cycle in comparison with the CubeSat operating without the scheduling algorithm.
Wide-Field Imaging Interferometry Spatial-Spectral Image Synthesis Algorithms
NASA Technical Reports Server (NTRS)
Lyon, Richard G.; Leisawitz, David T.; Rinehart, Stephen A.; Memarsadeghi, Nargess; Sinukoff, Evan J.
2012-01-01
Developed is an algorithmic approach for wide field of view interferometric spatial-spectral image synthesis. The data collected from the interferometer consists of a set of double-Fourier image data cubes, one cube per baseline. These cubes are each three-dimensional consisting of arrays of two-dimensional detector counts versus delay line position. For each baseline a moving delay line allows collection of a large set of interferograms over the 2D wide field detector grid; one sampled interferogram per detector pixel per baseline. This aggregate set of interferograms, is algorithmically processed to construct a single spatial-spectral cube with angular resolution approaching the ratio of the wavelength to longest baseline. The wide field imaging is accomplished by insuring that the range of motion of the delay line encompasses the zero optical path difference fringe for each detector pixel in the desired field-of-view. Each baseline cube is incoherent relative to all other baseline cubes and thus has only phase information relative to itself. This lost phase information is recovered by having point, or otherwise known, sources within the field-of-view. The reference source phase is known and utilized as a constraint to recover the coherent phase relation between the baseline cubes and is key to the image synthesis. Described will be the mathematical formalism, with phase referencing and results will be shown using data collected from NASA/GSFC Wide-Field Imaging Interferometry Testbed (WIIT).
Optical polarimetry of TXS 0506+056 (possible counterpart of IceCube-170922A)
NASA Astrophysics Data System (ADS)
Steele, I. A.; Jermak, H.; Copperwheat, C.
2018-03-01
ATel #11419 reports enhanced Gamma Ray Activity of TXS 0506+056 detected by Fermi-LAT on 2018 March 13. A previous Fermi-LAT high state of this source in the period 2017 Sept 15-27 was potentially associated with the Ice Cube Neutrino detection 170922A (ATel #10791).
NASA Astrophysics Data System (ADS)
Chamakuri, Nagaiah; Engwer, Christian; Kunisch, Karl
2014-09-01
Optimal control for cardiac electrophysiology based on the bidomain equations in conjunction with the Fenton-Karma ionic model is considered. This generic ventricular model approximates well the restitution properties and spiral wave behavior of more complex ionic models of cardiac action potentials. However, it is challenging due to the appearance of state-dependent discontinuities in the source terms. A computational framework for the numerical realization of optimal control problems is presented. Essential ingredients are a shape calculus based treatment of the sensitivities of the discontinuous source terms and a marching cubes algorithm to track iso-surface of excitation wavefronts. Numerical results exhibit successful defibrillation by applying an optimally controlled extracellular stimulus.
High-fidelity meshes from tissue samples for diffusion MRI simulations.
Panagiotaki, Eleftheria; Hall, Matt G; Zhang, Hui; Siow, Bernard; Lythgoe, Mark F; Alexander, Daniel C
2010-01-01
This paper presents a method for constructing detailed geometric models of tissue microstructure for synthesizing realistic diffusion MRI data. We construct three-dimensional mesh models from confocal microscopy image stacks using the marching cubes algorithm. Random-walk simulations within the resulting meshes provide synthetic diffusion MRI measurements. Experiments optimise simulation parameters and complexity of the meshes to achieve accuracy and reproducibility while minimizing computation time. Finally we assess the quality of the synthesized data from the mesh models by comparison with scanner data as well as synthetic data from simple geometric models and simplified meshes that vary only in two dimensions. The results support the extra complexity of the three-dimensional mesh compared to simpler models although sensitivity to the mesh resolution is quite robust.
Analyzing Molecular Clouds with the Spectral Correlation Function
NASA Astrophysics Data System (ADS)
Rosolowsky, E. W.; Goodman, A. A.; Williams, J. P.; Wilner, D. J.
1997-12-01
The Spectral Correlation Function (SCF) is a new data analysis algorithm that measures how the properites of spectra vary from position to position in a spectral-line map. For each spectrum in a data cube, the SCF measures the ``difference" between that spectrum and a specified subset of its neighbors. This algorithm is intended for use on both simulated and observed position-position-velocity data cubes. In initial tests of the SCF, we have shown that a histogram of the SCF for a map is a good descriptor of the spatial-velocity distribution of material. In one test, we compare the SCF distributions for: 1) a real data cube; 2) a cube made from the real cube's spectra with randomized positions; and 3) the results of a preliminary MHD simulation by Gammie, Ostriker, and Stone. The results of the test show that the real cloud and the simulation are much closer to each other in their SCF distributions than is either to the randomized cube. We are now in the process of applying the SCF to a larger set of observed and simulated data cubes. Our ultimate aim is to use the SCF both on its own, as a descriptor of the spatial-kinetic properties of interstellar gas, and also as a tool for evaluating how well simulations resemble observations. Our expectation is that the SCF will be more discriminatory (less likely to produce a false match) than the data cube descriptors currently available.
NASA Astrophysics Data System (ADS)
Gedalin, Daniel; Oiknine, Yaniv; August, Isaac; Blumberg, Dan G.; Rotman, Stanley R.; Stern, Adrian
2017-04-01
Compressive sensing theory was proposed to deal with the high quantity of measurements demanded by traditional hyperspectral systems. Recently, a compressive spectral imaging technique dubbed compressive sensing miniature ultraspectral imaging (CS-MUSI) was presented. This system uses a voltage controlled liquid crystal device to create multiplexed hyperspectral cubes. We evaluate the utility of the data captured using the CS-MUSI system for the task of target detection. Specifically, we compare the performance of the matched filter target detection algorithm in traditional hyperspectral systems and in CS-MUSI multiplexed hyperspectral cubes. We found that the target detection algorithm performs similarly in both cases, despite the fact that the CS-MUSI data is up to an order of magnitude less than that in conventional hyperspectral cubes. Moreover, the target detection is approximately an order of magnitude faster in CS-MUSI data.
NASA Astrophysics Data System (ADS)
Heald, George
2017-08-01
RM-CLEAN reads in dirty Q and U cubes, generates rmtf based on the frequencies given in an ASCII file, and cleans the RM spectra following the algorithm given by Brentjens (2007). The output cubes contain the clean model components and the CLEANed RM spectra. The input cubes must be reordered with mode=312, and the output cubes will have the same ordering and thus must be reordered after being written to disk. RM-CLEAN runs as a MIRIAD (ascl:1106.007) task and a Python wrapper is included with the code.
NASA Astrophysics Data System (ADS)
Bog, Tino; Zander, Nils; Kollmannsberger, Stefan; Rank, Ernst
2018-04-01
The finite cell method (FCM) is a fictitious domain approach that greatly simplifies simulations involving complex structures. Recently, the FCM has been applied to contact problems. The current study continues in this field by extending the concept of weakly enforced boundary conditions to inequality constraints for frictionless contact. Furthermore, it formalizes an approach that automatically recovers high-order contact surfaces of (implicitly defined) embedded geometries by means of an extended Marching Cubes algorithm. To further improve the accuracy of the discretization, irregularities at the boundary of contact zones are treated with multi-level hp-refinements. Numerical results and a systematic study of h-, p- and hp-refinements show that the FCM can efficiently provide accurate results for problems involving contact.
2016-01-20
Engineers for NASA's MarCO (Mars Cube One) technology demonstration inspect the MarCO test bed, which contains components that are identical to those built for a flight to Mars. Cody Colley, left, MarCO integration and test deputy, and Shannon Statham, MarCO integration and test lead, are on the team at NASA's Jet Propulsion Laboratory, Pasadena, California, preparing twin MarCO CubeSats. The briefcase-size MarCO twins were designed to ride along with NASA's next Mars lander, InSight. Its planned March 2016 launch was suspended. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA20341
2016-01-20
One of the two MarCO (Mars Cube One) CubeSat spacecraft is seen at NASA's Jet Propulsion Laboratory, Pasadena, California. The briefcase-size MarCO twins were designed to ride along with NASA's next Mars lander, InSight. Its planned March 2016 launch was suspended. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA20346
NASA Astrophysics Data System (ADS)
Molon, Michelle; Boyce, Joseph I.; Arain, M. Altaf
2017-01-01
Coarse root biomass was estimated in a temperate pine forest using high-resolution (1 GHz) 3-D ground-penetrating radar (GPR). GPR survey grids were acquired across a 400 m2 area with varying line spacing (12.5 and 25 cm). Root volume and biomass were estimated directly from the 3-D radar volume by using isometric surfaces calculated with the marching cubes algorithm. Empirical relations between GPR reflection amplitude and root diameter were determined for 14 root segments (0.1-10 cm diameter) reburied in a 6 m2 experimental test plot and surveyed at 5-25 cm line spacing under dry and wet soil conditions. Reburied roots >1.4 cm diameter were detectable as continuous root structures with 5 cm line separation. Reflection amplitudes were strongly controlled by soil moisture and decreased by 40% with a twofold increase in soil moisture. GPR line intervals of 12.5 and 25 cm produced discontinuous mapping of roots, and GPR coarse root biomass estimates (0.92 kgC m-2) were lower than those obtained previously with a site-specific allometric equation due to nondetection of vertical roots and roots <1.5 cm diameter. The results show that coarse root volume and biomass can be estimated directly from interpolated 3-D GPR volumes by using a marching cubes approach, but mapping of roots as continuous structures requires high inline sampling and line density (<5 cm). The results demonstrate that 3-D GPR is viable approach for estimating belowground carbon and for mapping tree root architecture. This methodology can be applied more broadly in other disciplines (e.g., archaeology and civil engineering) for imaging buried structures.
NASA Astrophysics Data System (ADS)
Mary, D.; Ferrari, A.; Ferrari, C.; Deguignet, J.; Vannier, M.
2016-12-01
With millions of receivers leading to TerraByte data cubes, the story of the giant SKA telescope is also that of collaborative efforts from radioastronomy, signal processing, optimization and computer sciences. Reconstructing SKA cubes poses two challenges. First, the majority of existing algorithms work in 2D and cannot be directly translated into 3D. Second, the reconstruction implies solving an inverse problem and it is not clear what ultimate limit we can expect on the error of this solution. This study addresses (of course partially) both challenges. We consider an extremely simple data acquisition model, and we focus on strategies making it possible to implement 3D reconstruction algorithms that use state-of-the-art image/spectral regularization. The proposed approach has two main features: (i) reduced memory storage with respect to a previous approach; (ii) efficient parallelization and ventilation of the computational load over the spectral bands. This work will allow to implement and compare various 3D reconstruction approaches in a large scale framework.
On k-ary n-cubes: Theory and applications
NASA Technical Reports Server (NTRS)
Mao, Weizhen; Nicol, David M.
1994-01-01
Many parallel processing networks can be viewed as graphs called k-ary n-cubes, whose special cases include rings, hypercubes and toruses. In this paper, combinatorial properties of k-ary n-cubes are explored. In particular, the problem of characterizing the subgraph of a given number of nodes with the maximum edge count is studied. These theoretical results are then used to compute a lower bounding function in branch-and-bound partitioning algorithms and to establish the optimality of some irregular partitions.
A validated methodology for the 3D reconstruction of cochlea geometries using human microCT images
NASA Astrophysics Data System (ADS)
Sakellarios, A. I.; Tachos, N. S.; Rigas, G.; Bibas, T.; Ni, G.; Böhnke, F.; Fotiadis, D. I.
2017-05-01
Accurate reconstruction of the inner ear is a prerequisite for the modelling and understanding of the inner ear mechanics. In this study, we present a semi-automated methodology for accurate reconstruction of the major inner ear structures (scalae, basilar membrane, stapes and semicircular canals). For this purpose, high resolution microCT images of a human specimen were used. The segmentation methodology is based on an iterative level set algorithm which provides the borders of the structures of interest. An enhanced coupled level set method which allows the simultaneous multiple image labeling without any overlapping regions has been developed for this purpose. The marching cube algorithm was applied in order to extract the surface from the segmented volume. The reconstructed geometries are then post-processed to improve the basilar membrane geometry to realistically represent physiologic dimensions. The final reconstructed model is compared to the available data from the literature. The results show that our generated inner ear structures are in good agreement with the published ones, while our approach is the most realistic in terms of the basilar membrane thickness and width reconstruction.
NASA Astrophysics Data System (ADS)
He, An; Gong, Jiaming; Shikazono, Naoki
2018-05-01
In the present study, a model is introduced to correlate the electrochemical performance of solid oxide fuel cell (SOFC) with the 3D microstructure reconstructed by focused ion beam scanning electron microscopy (FIB-SEM) in which the solid surface is modeled by the marching cubes (MC) method. Lattice Boltzmann method (LBM) is used to solve the governing equations. In order to maintain the geometries reconstructed by the MC method, local effective diffusivities and conductivities computed based on the MC geometries are applied in each grid, and partial bounce-back scheme is applied according to the boundary predicted by the MC method. From the tortuosity factor and overpotential calculation results, it is concluded that the MC geometry drastically improves the computational accuracy by giving more precise topology information.
2016-01-20
One of the two MarCO (Mars Cube One) CubeSat spacecraft, with its insides displayed, is seen at NASA's Jet Propulsion Laboratory, Pasadena, California. The briefcase-size MarCO twins were designed to ride along with NASA's next Mars lander, InSight. Its planned March 2016 launch was suspended. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA20345
2016-01-20
Joel Steinkraus, lead mechanical engineer for the MarCO (Mars Cube One) CubeSat spacecraft, adjusts a model of one of the two spacecraft. The mock-up in the photo is in a configuration to show the deployed position of components that correspond to MarCO's two solar panels and two antennas. During launch, those components will be stowed for a total vehicle size of about 14.4 inches (36.6 centimeters) by 9.5 inches (24.3 centimeters) by 4.6 inches (11.8 centimeters). The briefcase-size MarCO twins were designed to ride along with NASA's next Mars lander, InSight. Its planned March 2016 launch was suspended. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA20344
A robustness test of the braided device foreshortening algorithm
NASA Astrophysics Data System (ADS)
Moyano, Raquel Kale; Fernandez, Hector; Macho, Juan M.; Blasco, Jordi; San Roman, Luis; Narata, Ana Paula; Larrabide, Ignacio
2017-11-01
Different computational methods have been recently proposed to simulate the virtual deployment of a braided stent inside a patient vasculature. Those methods are primarily based on the segmentation of the region of interest to obtain the local vessel morphology descriptors. The goal of this work is to evaluate the influence of the segmentation quality on the method named "Braided Device Foreshortening" (BDF). METHODS: We used the 3DRA images of 10 aneurysmatic patients (cases). The cases were segmented by applying a marching cubes algorithm with a broad range of thresholds in order to generate 10 surface models each. We selected a braided device to apply the BDF algorithm to each surface model. The range of the computed flow diverter lengths for each case was obtained to calculate the variability of the method against the threshold segmentation values. RESULTS: An evaluation study over 10 clinical cases indicates that the final length of the deployed flow diverter in each vessel model is stable, shielding maximum difference of 11.19% in vessel diameter and maximum of 9.14% in the simulated stent length for the threshold values. The average coefficient of variation was found to be 4.08 %. CONCLUSION: A study evaluating how the threshold segmentation affects the simulated length of the deployed FD, was presented. The segmentation algorithm used to segment intracranial aneurysm 3D angiography images presents small variation in the resulting stent simulation.
2013-01-01
In vivo quantitative assessment of skin lesions is an important step in the evaluation of skin condition. An objective measurement device can help as a valuable tool for skin analysis. We propose an explorative new multispectral camera specifically developed for dermatology/cosmetology applications. The multispectral imaging system provides images of skin reflectance at different wavebands covering visible and near-infrared domain. It is coupled with a neural network-based algorithm for the reconstruction of reflectance cube of cutaneous data. This cube contains only skin optical reflectance spectrum in each pixel of the bidimensional spatial information. The reflectance cube is analyzed by an algorithm based on a Kubelka-Munk model combined with evolutionary algorithm. The technique allows quantitative measure of cutaneous tissue and retrieves five skin parameter maps: melanin concentration, epidermis/dermis thickness, haemoglobin concentration, and the oxygenated hemoglobin. The results retrieved on healthy participants by the algorithm are in good accordance with the data from the literature. The usefulness of the developed technique was proved during two experiments: a clinical study based on vitiligo and melasma skin lesions and a skin oxygenation experiment (induced ischemia) with healthy participant where normal tissues are recorded at normal state and when temporary ischemia is induced. PMID:24159326
NASA Technical Reports Server (NTRS)
Sims, William H.
2015-01-01
This paper will discuss a proposed CubeSat size (3 Units / 6 Units) telemetry system concept being developed at Marshall Space Flight Center (MSFC) in cooperation with Auburn University. The telemetry system incorporates efficient, high-bandwidth communications by developing flight-ready, low-cost, PROTOFLIGHT software defined radio (SDR) payload for use on CubeSats. The current telemetry system is slightly larger in dimension of footprint than required to fit within a 0.75 Unit CubeSat volume. Extensible and modular communications for CubeSat technologies will provide high data rates for science experiments performed by two CubeSats flying in formation in Low Earth Orbit. The project is a collaboration between the University of Alabama in Huntsville and Auburn University to study high energy phenomena in the upper atmosphere. Higher bandwidth capacity will enable high-volume, low error-rate data transfer to and from the CubeSats, while also providing additional bandwidth and error correction margin to accommodate more complex encryption algorithms and higher user volume.
Automatic Modelling of Rubble Mound Breakwaters from LIDAR Data
NASA Astrophysics Data System (ADS)
Bueno, M.; Díaz-Vilariño, L.; González-Jorge, H.; Martínez-Sánchez, J.; Arias, P.
2015-08-01
Rubble mound breakwaters maintenance is critical to the protection of beaches and ports. LiDAR systems provide accurate point clouds from the emerged part of the structure that can be modelled to make it more useful and easy to handle. This work introduces a methodology for the automatic modelling of breakwaters with armour units of cube shape. The algorithm is divided in three main steps: normal vector computation, plane segmentation, and cube reconstruction. Plane segmentation uses the normal orientation of the points and the edge length of the cube. Cube reconstruction uses the intersection of three perpendicular planes and the edge length. Three point clouds cropped from the main point cloud of the structure are used for the tests. The number of cubes detected is around 56 % for two of the point clouds and 32 % for the third one over the total physical cubes. Accuracy assessment is done by comparison with manually drawn cubes calculating the differences between the vertexes. It ranges between 6.4 cm and 15 cm. Computing time ranges between 578.5 s and 8018.2 s. The computing time increases with the number of cubes and the requirements of collision detection.
High Energy Neutrinos from the Cold: Status and Prospects of the IceCube Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
IceCube Collaboration; Portello-Roucelle, Cecile; Collaboration, IceCube
2008-02-29
The primary motivation for building neutrino telescopes is to open the road for neutrino astronomy, and to offer another observational window for the study of cosmic ray origins. Other physics topics, such as the search for WIMPs, can also be developed with neutrino telescope. As of March 2008, the IceCube detector, with half of its strings deployed, is the world largest neutrino telescope taking data to date and it will reach its completion in 2011. Data taken with the growing detector are being analyzed. The results of some of these works are summarized here. AMANDA has been successfully integrated intomore » IceCube data acquisition system and continues to accumulate data. Results obtained using only AMANDA data taken between the years 2000 and 2006 are also presented. The future of IceCube and the extensions in both low and high energy regions will finally be discussed in the last section.« less
Method for hyperspectral imagery exploitation and pixel spectral unmixing
NASA Technical Reports Server (NTRS)
Lin, Ching-Fang (Inventor)
2003-01-01
An efficiently hybrid approach to exploit hyperspectral imagery and unmix spectral pixels. This hybrid approach uses a genetic algorithm to solve the abundance vector for the first pixel of a hyperspectral image cube. This abundance vector is used as initial state in a robust filter to derive the abundance estimate for the next pixel. By using Kalman filter, the abundance estimate for a pixel can be obtained in one iteration procedure which is much fast than genetic algorithm. The output of the robust filter is fed to genetic algorithm again to derive accurate abundance estimate for the current pixel. The using of robust filter solution as starting point of the genetic algorithm speeds up the evolution of the genetic algorithm. After obtaining the accurate abundance estimate, the procedure goes to next pixel, and uses the output of genetic algorithm as the previous state estimate to derive abundance estimate for this pixel using robust filter. And again use the genetic algorithm to derive accurate abundance estimate efficiently based on the robust filter solution. This iteration continues until pixels in a hyperspectral image cube end.
Interplanetary CubeSat for Technology Demonstration at Mars Artist Concept
2015-06-12
NASA's two MarCO CubeSats will be flying past Mars in September 2016 just as NASA's next Mars lander, InSight, is descending through the Martian atmosphere and landing on the surface. MarCO, for Mars Cube One, will provide an experimental communications relay to inform Earth quickly about the landing. This illustration depicts a moment during the lander's descent when it is transmitting data in the UHF radio band, and the twin MarCO craft are receiving those transmissions while simultaneously relaying the data to Earth in a different radio band. Each of the MarCO twins carries two solar panels for power, and both UHF-band and X-band radio antennas. As a technology demonstration, MarCO could lead to other "bring-your-own-relay" mission designs and also to use of miniature spacecraft for a wide diversity of interplanetary missions. MarCO is the first interplanetary use of CubeSat technologies for small spacecraft. CubeSats are a class of spacecraft based on a standardized small size and modular use of off-the-shelf technologies to streamline development. Many have been made by university students, and dozens have been launched into Earth orbit using extra payload mass available on launches of larger spacecraft. The two briefcase-size MarCO CubeSats will ride along with InSight on an Atlas V launch vehicle lifting off in March 2016 from Vandenberg Air Force Base, California. MarCO is a technology demonstration aspect of the InSight mission and not needed for that mission's success. InSight, an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, will investigate the deep interior of Mars to advance understanding of how rocky planets, including Earth, formed and evolved. After launch, the MarCO twins and InSight will be navigated separately to Mars. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA19388
Gemini-Titan (GT)-4 Foods - Documentary Use
1965-01-07
S65-10971 (March 1965 ) --- Food packets for use on the Gemini-3 flight including dehydrated beef pot roast, bacon and egg bites, toasted bread cubes, orange juice and a wet wipe. Water is being inserted into the pouch of dehydrated food.
Model predictive and reallocation problem for CubeSat fault recovery and attitude control
NASA Astrophysics Data System (ADS)
Franchi, Loris; Feruglio, Lorenzo; Mozzillo, Raffaele; Corpino, Sabrina
2018-01-01
In recent years, thanks to the increase of the know-how on machine-learning techniques and the advance of the computational capabilities of on-board processing, expensive computing algorithms, such as Model Predictive Control, have begun to spread in space applications even on small on-board processor. The paper presents an algorithm for an optimal fault recovery of a 3U CubeSat, developed in MathWorks Matlab & Simulink environment. This algorithm involves optimization techniques aiming at obtaining the optimal recovery solution, and involves a Model Predictive Control approach for the attitude control. The simulated system is a CubeSat in Low Earth Orbit: the attitude control is performed with three magnetic torquers and a single reaction wheel. The simulation neglects the errors in the attitude determination of the satellite, and focuses on the recovery approach and control method. The optimal recovery approach takes advantage of the properties of magnetic actuation, which gives the possibility of the redistribution of the control action when a fault occurs on a single magnetic torquer, even in absence of redundant actuators. In addition, the paper presents the results of the implementation of Model Predictive approach to control the attitude of the satellite.
2015-02-27
ISS042E290579 (02/27/2015) --- On Feb. 27 2015, a series of CubeSats, small experimental satellites, were deployed via a special device mounted on the Japanese Experiment Module (JEM) Remote Manipulator System (JEMRMS). Deployed satellites included twelve Dove sats, one TechEdSat-4, one GEARRSat, one LambdaSat, one MicroMas. These satellites perform a variety of functions from capturing new Earth imagery, to using microwave scanners to create 3D images of hurricanes, to even developing new methods for returning science samples back to Earth from space. The small satellites were deployed through the first week in March.
A fast 3D region growing approach for CT angiography applications
NASA Astrophysics Data System (ADS)
Ye, Zhen; Lin, Zhongmin; Lu, Cheng-chang
2004-05-01
Region growing is one of the most popular methods for low-level image segmentation. Many researches on region growing have focused on the definition of the homogeneity criterion or growing and merging criterion. However, one disadvantage of conventional region growing is redundancy. It requires a large memory usage, and the computation-efficiency is very low especially for 3D images. To overcome this problem, a non-recursive single-pass 3D region growing algorithm named SymRG is implemented and successfully applied to 3D CT angiography (CTA) applications for vessel segmentation and bone removal. The method consists of three steps: segmenting one-dimensional regions of each row; doing region merging to adjacent rows to obtain the region segmentation of each slice; and doing region merging to adjacent slices to obtain the final region segmentation of 3D images. To improve the segmentation speed for very large volume 3D CTA images, this algorithm is applied repeatedly to newly updated local cubes. The next new cube can be estimated by checking isolated segmented regions on all 6 faces of the current local cube. This local non-recursive 3D region-growing algorithm is memory-efficient and computation-efficient. Clinical testings of this algorithm on Brain CTA show this technique could effectively remove whole skull, most of the bones on the skull base, and reveal the cerebral vascular structures clearly.
Impact Detection for Characterization of Complex Multiphase Flows
NASA Astrophysics Data System (ADS)
Chan, Wai Hong Ronald; Urzay, Javier; Mani, Ali; Moin, Parviz
2016-11-01
Multiphase flows often involve a wide range of impact events, such as liquid droplets impinging on a liquid pool or gas bubbles coalescing in a liquid medium. These events contribute to a myriad of large-scale phenomena, including breaking waves on ocean surfaces. As impacts between surfaces necessarily occur at isolated points, numerical simulations of impact events will require the resolution of molecular scales near the impact points for accurate modeling. This can be prohibitively expensive unless subgrid impact and breakup models are formulated to capture the effects of the interactions. The first step in a large-eddy simulation (LES) based computational methodology for complex multiphase flows like air-sea interactions requires effective detection of these impact events. The starting point of this work is a collision detection algorithm for structured grids on a coupled level set / volume of fluid (CLSVOF) solver adapted from an earlier algorithm for cloth animations that triangulates the interface with the marching cubes method. We explore the extension of collision detection to a geometric VOF solver and to unstructured grids. Supported by ONR/A*STAR. Agency of Science, Technology and Research, Singapore; Office of Naval Research, USA.
Niu, Qiang; Chi, Xiaoyi; Leu, Ming C; Ochoa, Jorge
2008-01-01
This paper describes image processing, geometric modeling and data management techniques for the development of a virtual bone surgery system. Image segmentation is used to divide CT scan data into different segments representing various regions of the bone. A region-growing algorithm is used to extract cortical bone and trabecular bone structures systematically and efficiently. Volume modeling is then used to represent the bone geometry based on the CT scan data. Material removal simulation is achieved by continuously performing Boolean subtraction of the surgical tool model from the bone model. A quadtree-based adaptive subdivision technique is developed to handle the large set of data in order to achieve the real-time simulation and visualization required for virtual bone surgery. A Marching Cubes algorithm is used to generate polygonal faces from the volumetric data. Rendering of the generated polygons is performed with the publicly available VTK (Visualization Tool Kit) software. Implementation of the developed techniques consists of developing a virtual bone-drilling software program, which allows the user to manipulate a virtual drill to make holes with the use of a PHANToM device on a bone model derived from real CT scan data.
2018-04-19
Joel Steinkraus, MarCO lead mechanical engineer from JPL, makes an adjustment on the CubeSat prior to integration in a deployment box as seen inside the cleanroom lab at Cal Poly San Luis Obispo on Monday, March 12, 2018. https://photojournal.jpl.nasa.gov/catalog/PIA22321
Cubic map algebra functions for spatio-temporal analysis
Mennis, J.; Viger, R.; Tomlin, C.D.
2005-01-01
We propose an extension of map algebra to three dimensions for spatio-temporal data handling. This approach yields a new class of map algebra functions that we call "cube functions." Whereas conventional map algebra functions operate on data layers representing two-dimensional space, cube functions operate on data cubes representing two-dimensional space over a third-dimensional period of time. We describe the prototype implementation of a spatio-temporal data structure and selected cube function versions of conventional local, focal, and zonal map algebra functions. The utility of cube functions is demonstrated through a case study analyzing the spatio-temporal variability of remotely sensed, southeastern U.S. vegetation character over various land covers and during different El Nin??o/Southern Oscillation (ENSO) phases. Like conventional map algebra, the application of cube functions may demand significant data preprocessing when integrating diverse data sets, and are subject to limitations related to data storage and algorithm performance. Solutions to these issues include extending data compression and computing strategies for calculations on very large data volumes to spatio-temporal data handling.
Measurement of the Anisotropy of Cosmic-ray Arrival Directions with IceCube
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Böser, S.; Botner, O.; Bradley, L.; Braun, J.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Davis, J. C.; De Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Knops, S.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Lauer, R.; Lehmann, R.; Lennarz, D.; Lünemann, J.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Matusik, M.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schlenstedt, S.; Schmidt, T.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; van Santen, J.; Voge, M.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; IceCube Collaboration
2010-08-01
We report the first observation of an anisotropy in the arrival direction of cosmic rays with energies in the multi-TeV region in the Southern sky using data from the IceCube detector. Between 2007 June and 2008 March, the partially deployed IceCube detector was operated in a configuration with 1320 digital optical sensors distributed over 22 strings at depths between 1450 and 2450 m inside the Antarctic ice. IceCube is a neutrino detector, but the data are dominated by a large background of cosmic-ray muons. Therefore, the background data are suitable for high-statistics studies of cosmic rays in the southern sky. The data include 4.3 billion muons produced by downward-going cosmic-ray interactions in the atmosphere; these events were reconstructed with a median angular resolution of 3° and a median energy of ~20 TeV. Their arrival direction distribution exhibits an anisotropy in right ascension with a first-harmonic amplitude of (6.4 ± 0.2 stat. ± 0.8 syst.) × 10-4.
Very high-energy gamma-ray follow-up program using neutrino triggers from IceCube
NASA Astrophysics Data System (ADS)
IceCube Collaboration; Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Bron, S.; Burgman, A.; Carver, T.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Franckowiak, A.; Franke, R.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Gladstone, L.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Mandelartz, M.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Mohrmann, L.; Montaruli, T.; Moulai, M.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sabbatini, L.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Weiss, M. J.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; MAGIC Collaboration; Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Buson, S.; Carosi, A.; Chatterjee, A.; Clavero, R.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Godinović, N.; González Muñoz, A.; Góra, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hanabata, Y.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Overkemping, A.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Rodriguez Garcia, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schultz, C.; Schweizer, T.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Steinbring, T.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Torres, D. F.; Toyama, T.; Treves, A.; Vanzo, G.; Verguilov, V.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, .; VERITAS Collaboration; Abeysekara, A. U.; Archambault, S.; Archer, A.; Benbow, W.; Bird, R.; Bourbeau, E.; Buchovecky, M.; Bugaev, V.; Byrum, K.; Cardenzana, J. V.; Cerruti, M.; Ciupik, L.; Connolly, M. P.; Cui, W.; Dickinson, H. J.; Dumm, J.; Eisch, J. D.; Errando, M.; Falcone, A.; Feng, Q.; Finley, J. P.; Fleischhack, H.; Flinders, A.; Fortson, L.; Furniss, A.; Gillanders, G. H.; Griffin, S.; Hütten, J. Grube M.; Håkansson, N.; Hervet, O.; Holder, J.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kelley-Hoskins, N.; Kertzman, M.; Kieda, D.; Krause, M.; Krennrich, F.; Kumar, S.; Lang, M. J.; Maier, G.; McArthur, S.; McCann, A.; Moriarty, P.; Mukherjee, R.; Nguyen, T.; Nieto, D.; O'Brien, S.; Ong, R. A.; Otte, A. N.; Park, N.; Pohl, M.; Popkow, A.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Rulten, C.; Sadeh, I.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Staszak, D.; Telezhinsky, I.; Tucci, J. V.; Tyler, J.; Wakely, S. P.; Weinstein, A.; Wilcox, P.; Wilhelm, A.; Williams, D. A.; Zitzer, B.
2016-11-01
We describe and report the status of a neutrino-triggered program in IceCube that generates real-time alerts for gamma-ray follow-up observations by atmospheric-Cherenkov telescopes (MAGIC and VERITAS). While IceCube is capable of monitoring the whole sky continuously, high-energy gamma-ray telescopes have restricted fields of view and in general are unlikely to be observing a potential neutrino-flaring source at the time such neutrinos are recorded. The use of neutrino-triggered alerts thus aims at increasing the availability of simultaneous multi-messenger data during potential neutrino flaring activity, which can increase the discovery potential and constrain the phenomenological interpretation of the high-energy emission of selected source classes (e.g. blazars). The requirements of a fast and stable online analysis of potential neutrino signals and its operation are presented, along with first results of the program operating between 14 March 2012 and 31 December 2015.
NASA Astrophysics Data System (ADS)
Meillier, Céline; Chatelain, Florent; Michel, Olivier; Bacon, Roland; Piqueras, Laure; Bacher, Raphael; Ayasso, Hacheme
2016-04-01
We present SELFI, the Source Emission Line FInder, a new Bayesian method optimized for detection of faint galaxies in Multi Unit Spectroscopic Explorer (MUSE) deep fields. MUSE is the new panoramic integral field spectrograph at the Very Large Telescope (VLT) that has unique capabilities for spectroscopic investigation of the deep sky. It has provided data cubes with 324 million voxels over a single 1 arcmin2 field of view. To address the challenge of faint-galaxy detection in these large data cubes, we developed a new method that processes 3D data either for modeling or for estimation and extraction of source configurations. This object-based approach yields a natural sparse representation of the sources in massive data fields, such as MUSE data cubes. In the Bayesian framework, the parameters that describe the observed sources are considered random variables. The Bayesian model leads to a general and robust algorithm where the parameters are estimated in a fully data-driven way. This detection algorithm was applied to the MUSE observation of Hubble Deep Field-South. With 27 h total integration time, these observations provide a catalog of 189 sources of various categories and with secured redshift. The algorithm retrieved 91% of the galaxies with only 9% false detection. This method also allowed the discovery of three new Lyα emitters and one [OII] emitter, all without any Hubble Space Telescope counterpart. We analyzed the reasons for failure for some targets, and found that the most important limitation of the method is when faint sources are located in the vicinity of bright spatially resolved galaxies that cannot be approximated by the Sérsic elliptical profile. The software and its documentation are available on the MUSE science web service (muse-vlt.eu/science).
Categorization of hyperspectral information (HSI) based on the distribution of spectra in hyperspace
NASA Astrophysics Data System (ADS)
Resmini, Ronald G.
2003-09-01
Hyperspectral information (HSI) data are commonly categorized by a description of the dominant physical geographic background captured in the image cube. In other words, HSI categorization is commonly based on a cursory, visual assessment of whether the data are of desert, forest, urban, littoral, jungle, alpine, etc., terrains. Additionally, often the design of HSI collection experiments is based on the acquisition of data of the various backgrounds or of objects of interest within the various terrain types. These data are for assessing and quantifying algorithm performance as well as for algorithm development activities. Here, results of an investigation into the validity of the backgrounds-driven mode of characterizing the diversity of hyperspectral data are presented. HSI data are described quantitatively, in the space where most algorithms operate: n-dimensional (n-D) hyperspace, where n is the number of bands in an HSI data cube. Nineteen metrics designed to probe hyperspace are applied to 14 HYDICE HSI data cubes that represent nine different backgrounds. Each of the 14 sets (one for each HYDICE cube) of 19 metric values was analyzed for clustering. With the present set of data and metrics, there is no clear, unambiguous break-out of metrics based on the nine different geographic backgrounds. The break-outs clump seemingly unrelated data types together; e.g., littoral and urban/residential. Most metrics are normally distributed and indicate no clustering; one metric is one outlier away from normal (i.e., two clusters); and five are comprised of two distributions (i.e., two clusters). Overall, there are three different break-outs that do not correspond to conventional background categories. Implications of these preliminary results are discussed as are recommendations for future work.
NASA Astrophysics Data System (ADS)
Wu, Huiqun; Zhou, Gangping; Geng, Xingyun; Zhang, Xiaofeng; Jiang, Kui; Tang, Lemin; Zhou, Guomin; Dong, Jiancheng
2013-10-01
With the development of computer aided navigation system, more and more tissues shall be reconstructed to provide more useful information for surgical pathway planning. In this study, we aimed to propose a registration framework for different reconstructed tissues from multi-modalities based on some fiducial points on lateral ventricles. A male patient with brain lesion was admitted and his brain scans were performed by different modalities. Then, the different brain tissues were segmented in different modality with relevant suitable algorithms. Marching cubes were calculated for three dimensional reconstructions, and then the rendered tissues were imported to a common coordinate system for registration. Four pairs of fiducial markers were selected to calculate the rotation and translation matrix using least-square measure method. The registration results were satisfied in a glioblastoma surgery planning as it provides the spatial relationship between tumors and surrounding fibers as well as vessels. Hence, our framework is of potential value for clinicians to plan surgery.
Boulanger, Pierre; Flores-Mir, Carlos; Ramirez, Juan F; Mesa, Elizabeth; Branch, John W
2009-01-01
The measurements from registered images obtained from Cone Beam Computed Tomography (CBCT) and a photogrammetric sensor are used to track three-dimensional shape variations of orthodontic patients before and after their treatments. The methodology consists of five main steps: (1) the patient's bone and skin shapes are measured in 3D using the fusion of images from a CBCT and a photogrammetric sensor. (2) The bone shape is extracted from the CBCT data using a standard marching cube algorithm. (3) The bone and skin shape measurements are registered using titanium targets located on the head of the patient. (4) Using a manual segmentation technique the head and lower jaw geometry are extracted separately to deal with jaw motion at the different record visits. (5) Using natural features of the upper head the two datasets are then registered with each other and then compared to evaluate bone, teeth, and skin displacements before and after treatments. This procedure is now used at the University of Alberta orthodontic clinic.
Simulation of arthroscopic surgery using MRI data
NASA Technical Reports Server (NTRS)
Heller, Geoffrey; Genetti, Jon
1994-01-01
With the availability of Magnetic Resonance Imaging (MRI) technology in the medical field and the development of powerful graphics engines in the computer world the possibility now exists for the simulation of surgery using data obtained from an actual patient. This paper describes a surgical simulation system which will allow a physician or a medical student to practice surgery on a patient without ever entering an operating room. This could substantially lower the cost of medial training by providing an alternative to the use of cadavers. This project involves the use of volume data acquired by MRI which are converted to polygonal form using a corrected marching cubes algorithm. The data are then colored and a simulation of surface response based on springy structures is performed in real time. Control for the system is obtained through the use of an attached analog-to-digital unit. A remote electronic device is described which simulates an imaginary tool having features in common with both arthroscope and laparoscope.
A novel approach to segmentation and measurement of medical image using level set methods.
Chen, Yao-Tien
2017-06-01
The study proposes a novel approach for segmentation and visualization plus value-added surface area and volume measurements for brain medical image analysis. The proposed method contains edge detection and Bayesian based level set segmentation, surface and volume rendering, and surface area and volume measurements for 3D objects of interest (i.e., brain tumor, brain tissue, or whole brain). Two extensions based on edge detection and Bayesian level set are first used to segment 3D objects. Ray casting and a modified marching cubes algorithm are then adopted to facilitate volume and surface visualization of medical-image dataset. To provide physicians with more useful information for diagnosis, the surface area and volume of an examined 3D object are calculated by the techniques of linear algebra and surface integration. Experiment results are finally reported in terms of 3D object extraction, surface and volume rendering, and surface area and volume measurements for medical image analysis. Copyright © 2017 Elsevier Inc. All rights reserved.
Multiscale registration algorithm for alignment of meshes
NASA Astrophysics Data System (ADS)
Vadde, Srikanth; Kamarthi, Sagar V.; Gupta, Surendra M.
2004-03-01
Taking a multi-resolution approach, this research work proposes an effective algorithm for aligning a pair of scans obtained by scanning an object's surface from two adjacent views. This algorithm first encases each scan in the pair with an array of cubes of equal and fixed size. For each scan in the pair a surrogate scan is created by the centroids of the cubes that encase the scan. The Gaussian curvatures of points across the surrogate scan pair are compared to find the surrogate corresponding points. If the difference between the Gaussian curvatures of any two points on the surrogate scan pair is less than a predetermined threshold, then those two points are accepted as a pair of surrogate corresponding points. The rotation and translation values between the surrogate scan pair are determined by using a set of surrogate corresponding points. Using the same rotation and translation values the original scan pairs are aligned. The resulting registration (or alignment) error is computed to check the accuracy of the scan alignment. When the registration error becomes acceptably small, the algorithm is terminated. Otherwise the above process is continued with cubes of smaller and smaller sizes until the algorithm is terminated. However at each finer resolution the search space for finding the surrogate corresponding points is restricted to the regions in the neighborhood of the surrogate points that were at found at the preceding coarser level. The surrogate corresponding points, as the resolution becomes finer and finer, converge to the true corresponding points on the original scans. This approach offers three main benefits: it improves the chances of finding the true corresponding points on the scans, minimize the adverse effects of noise in the scans, and reduce the computational load for finding the corresponding points.
Model of Mars-Bound MarCO CubeSat
2015-06-12
Engineers for NASA's MarCO technology demonstration display a full-scale mechanical mock-up of the small craft in development as part of NASA's next mission to Mars. Mechanical engineer Joel Steinkraus and systems engineer Farah Alibay are on the team at NASA's Jet Propulsion Laboratory, Pasadena, California, preparing twin MarCO (Mars Cube One) CubeSats for a March 2016 launch. MarCO is the first interplanetary mission using CubeSat technologies for small spacecraft. The briefcase-size MarCO twins will ride along on an Atlas V launch vehicle lifting off from Vandenberg Air Force Base, California, with NASA's next Mars lander, InSight. The mock-up in the photo is in a configuration to show the deployed position of components that correspond to MarCO's two solar panels and two antennas. During launch, those components will be stowed for a total vehicle size of about 14.4 inches (36.6 centimeters) by 9.5 inches (24.3 centimeters) by 4.6 inches (11.8 centimeters). After launch, the two MarCO CubeSats and InSight will be navigated separately to Mars. The MarCO twins will fly past the planet in September 2016 just as InSight is descending through the atmosphere and landing on the surface. MarCO is a technology demonstration mission to relay communications from InSight to Earth during InSight's descent and landing. InSight communications during that critical period will also be recorded by NASA's Mars Reconnaissance Orbiter for delayed transmission to Earth. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. After launch, the MarCO twins and InSight will be navigated separately to Mars. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA19389
Size Contrast for Mars CubeSat
2015-06-12
The full-scale mock-up of NASA's MarCO CubeSat held by Farah Alibay, a systems engineer at NASA's Jet Propulsion Laboratory, is dwarfed by the one-half-scale model of NASA's Mars Reconnaissance Orbiter behind her. MarCO, short for Mars Cube One, is the first interplanetary use of CubeSat technologies for small spacecraft. JPL is preparing two MarCO twins for launch in March 2016. They will ride along on an Atlas V launch vehicle lifting off from Vandenberg Air Force Base, California, with NASA's next Mars lander, InSight. MarCO is a technology demonstration aspect of the InSight mission. The mock-up in the photo is in a configuration to show the deployed position of components that correspond to MarCO's two solar panels and two antennas. During launch, those components will be stowed for a total vehicle size of about 14.4 inches (36.6 centimeters) by 9.5 inches (24.3 centimeters) by 4.6 inches (11.8 centimeters). After launch, the two MarCO CubeSats and InSight will be navigated separately to Mars. The MarCO twins will fly past the planet in September 2016 just as InSight is descending through the atmosphere and landing on the surface. MarCO is a technology demonstration to relay communications from InSight to Earth during InSight's descent and landing. InSight communications during that critical period will also be recorded by NASA's Mars Reconnaissance Orbiter for delayed transmission to Earth. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA19671
Preliminary design of the HARMONI science software
NASA Astrophysics Data System (ADS)
Piqueras, Laure; Jarno, Aurelien; Pécontal-Rousset, Arlette; Loupias, Magali; Richard, Johan; Schwartz, Noah; Fusco, Thierry; Sauvage, Jean-François; Neichel, Benoît; Correia, Carlos M.
2016-08-01
This paper introduces the science software of HARMONI. The Instrument Numerical Model simulates the instrument from the optical point of view and provides synthetic exposures simulating detector readouts from data-cubes containing astrophysical scenes. The Data Reduction Software converts raw-data frames into a fully calibrated, scientifically usable data cube. We present the functionalities and the preliminary design of this software, describe some of the methods and algorithms used and highlight the challenges that we will have to face.
SpaceCube 2.0: An Advanced Hybrid Onboard Data Processor
NASA Technical Reports Server (NTRS)
Lin, Michael; Flatley, Thomas; Godfrey, John; Geist, Alessandro; Espinosa, Daniel; Petrick, David
2011-01-01
The SpaceCube 2.0 is a compact, high performance, low-power onboard processing system that takes advantage of cutting-edge hybrid (CPU/FPGA/DSP) processing elements. The SpaceCube 2.0 design concept includes two commercial Virtex-5 field-programmable gate array (FPGA) parts protected by gradiation hardened by software" technology, and possesses exceptional size, weight, and power characteristics [5x5x7 in., 3.5 lb (approximately equal to 12.7 x 12.7 x 17.8 cm, 1.6 kg) 5-25 W, depending on the application fs required clock rate]. The two Virtex-5 FPGA parts are implemented in a unique back-toback configuration to maximize data transfer and computing performance. Draft computing power specifications for the SpaceCube 2.0 unit include four PowerPC 440s (1100 DMIPS each), 500+ DSP48Es (2x580 GMACS), 100+ LVDS high-speed serial I/Os (1.25 Gbps each), and 2x190 GFLOPS single-precision (65 GFLOPS double-precision) floating point performance. The SpaceCube 2.0 includes PROM memory for CPU boot, health and safety, and basic command and telemetry functionality; RAM memory for program execution; and FLASH/EEPROM memory to store algorithms and application code for the CPU, FPGA, and DSP processing elements. Program execution can be reconfigured in real time and algorithms can be updated, modified, and/or replaced at any point during the mission. Gigabit Ethernet, Spacewire, SATA and highspeed LVDS serial/parallel I/O channels are available for instrument/sensor data ingest, and mission-unique instrument interfaces can be accommodated using a compact PCI (cPCI) expansion card interface. The SpaceCube 2.0 can be utilized in NASA Earth Science, Helio/Astrophysics and Exploration missions, and Department of Defense satellites for onboard data processing. It can also be used in commercial communication and mapping satellites.
NASA Technical Reports Server (NTRS)
Guglielmo, David; Omar, Sanny R.; Bevilacqua, Riccardo
2017-01-01
The increasing number of CubeSats being launched has raised concerns about orbital debris since most of these satellites have no means of active orbit control. Some technologies exist to increase the surface area of a CubeSat and expedite de-orbit due to aerodynamic drag in low Earth orbit, but most of these devices cannot be retracted and hence cannot be used for orbital maneuvering. This paper discusses the De-Orbit Drag Device (D3) module that is capable of de-orbiting a 12U, 15kg CubeSat from a 700 km circular orbit in under 25 years and can be deployed and retracted to modulate the aerodynamic drag force experienced by the satellite. This facilitates orbital maneuvering using aerodynamic drag and the active targeting of a de-orbit location. In addition, the geometry of this drag device provides 3-axis attitude stabilization of the host CubeSat using aerodynamic and gravity gradient torques which is useful for many missions and provides a predictable aerodynamic profile for use in orbital maneuvering algorithms.
Unsupervised learning of structure in spectroscopic cubes
NASA Astrophysics Data System (ADS)
Araya, M.; Mendoza, M.; Solar, M.; Mardones, D.; Bayo, A.
2018-07-01
We consider the problem of analyzing the structure of spectroscopic cubes using unsupervised machine learning techniques. We propose representing the target's signal as a homogeneous set of volumes through an iterative algorithm that separates the structured emission from the background while not overestimating the flux. Besides verifying some basic theoretical properties, the algorithm is designed to be tuned by domain experts, because its parameters have meaningful values in the astronomical context. Nevertheless, we propose a heuristic to automatically estimate the signal-to-noise ratio parameter of the algorithm directly from data. The resulting light-weighted set of samples (≤ 1% compared to the original data) offer several advantages. For instance, it is statistically correct and computationally inexpensive to apply well-established techniques of the pattern recognition and machine learning domains; such as clustering and dimensionality reduction algorithms. We use ALMA science verification data to validate our method, and present examples of the operations that can be performed by using the proposed representation. Even though this approach is focused on providing faster and better analysis tools for the end-user astronomer, it also opens the possibility of content-aware data discovery by applying our algorithm to big data.
Two methods of Haustral fold detection from computed tomographic virtual colonoscopy images
NASA Astrophysics Data System (ADS)
Chowdhury, Ananda S.; Tan, Sovira; Yao, Jianhua; Linguraru, Marius G.; Summers, Ronald M.
2009-02-01
Virtual colonoscopy (VC) has gained popularity as a new colon diagnostic method over the last decade. VC is a new, less invasive alternative to the usually practiced optical colonoscopy for colorectal polyp and cancer screening, the second major cause of cancer related deaths in industrial nations. Haustral (colonic) folds serve as important landmarks for virtual endoscopic navigation in the existing computer-aided-diagnosis (CAD) system. In this paper, we propose and compare two different methods of haustral fold detection from volumetric computed tomographic virtual colonoscopy images. The colon lumen is segmented from the input using modified region growing and fuzzy connectedness. The first method for fold detection uses a level set that evolves on a mesh representation of the colon surface. The colon surface is obtained from the segmented colon lumen using the Marching Cubes algorithm. The second method for fold detection, based on a combination of heat diffusion and fuzzy c-means algorithm, is employed on the segmented colon volume. Folds obtained on the colon volume using this method are then transferred to the corresponding colon surface. After experimentation with different datasets, results are found to be promising. The results also demonstrate that the first method has a tendency of slight under-segmentation while the second method tends to slightly over-segment the folds.
Soft bilateral filtering volumetric shadows using cube shadow maps
Ali, Hatam H.; Sunar, Mohd Shahrizal; Kolivand, Hoshang
2017-01-01
Volumetric shadows often increase the realism of rendered scenes in computer graphics. Typical volumetric shadows techniques do not provide a smooth transition effect in real-time with conservation on crispness of boundaries. This research presents a new technique for generating high quality volumetric shadows by sampling and interpolation. Contrary to conventional ray marching method, which requires extensive time, this proposed technique adopts downsampling in calculating ray marching. Furthermore, light scattering is computed in High Dynamic Range buffer to generate tone mapping. The bilateral interpolation is used along a view rays to smooth transition of volumetric shadows with respect to preserving-edges. In addition, this technique applied a cube shadow map to create multiple shadows. The contribution of this technique isreducing the number of sample points in evaluating light scattering and then introducing bilateral interpolation to improve volumetric shadows. This contribution is done by removing the inherent deficiencies significantly in shadow maps. This technique allows obtaining soft marvelous volumetric shadows, having a good performance and high quality, which show its potential for interactive applications. PMID:28632740
Exorcising the Ghost in the Machine: Synthetic Spectral Data Cubes for Assessing Big Data Algorithms
NASA Astrophysics Data System (ADS)
Araya, M.; Solar, M.; Mardones, D.; Hochfärber, T.
2015-09-01
The size and quantity of the data that is being generated by large astronomical projects like ALMA, requires a paradigm change in astronomical data analysis. Complex data, such as highly sensitive spectroscopic data in the form of large data cubes, are not only difficult to manage, transfer and visualize, but they make traditional data analysis techniques unfeasible. Consequently, the attention has been placed on machine learning and artificial intelligence techniques, to develop approximate and adaptive methods for astronomical data analysis within a reasonable computational time. Unfortunately, these techniques are usually sub optimal, stochastic and strongly dependent of the parameters, which could easily turn into “a ghost in the machine” for astronomers and practitioners. Therefore, a proper assessment of these methods is not only desirable but mandatory for trusting them in large-scale usage. The problem is that positively verifiable results are scarce in astronomy, and moreover, science using bleeding-edge instrumentation naturally lacks of reference values. We propose an Astronomical SYnthetic Data Observations (ASYDO), a virtual service that generates synthetic spectroscopic data in the form of data cubes. The objective of the tool is not to produce accurate astrophysical simulations, but to generate a large number of labelled synthetic data, to assess advanced computing algorithms for astronomy and to develop novel Big Data algorithms. The synthetic data is generated using a set of spectral lines, template functions for spatial and spectral distributions, and simple models that produce reasonable synthetic observations. Emission lines are obtained automatically using IVOA's SLAP protocol (or from a relational database) and their spectral profiles correspond to distributions in the exponential family. The spatial distributions correspond to simple functions (e.g., 2D Gaussian), or to scalable template objects. The intensity, broadening and radial velocity of each line is given by very simple and naive physical models, yet ASYDO's generic implementation supports new user-made models, which potentially allows adding more realistic simulations. The resulting data cube is saved as a FITS file, also including all the tables and images used for generating the cube. We expect to implement ASYDO as a virtual observatory service in the near future.
Adaptive mesh refinement and load balancing based on multi-level block-structured Cartesian mesh
NASA Astrophysics Data System (ADS)
Misaka, Takashi; Sasaki, Daisuke; Obayashi, Shigeru
2017-11-01
We developed a framework for a distributed-memory parallel computer that enables dynamic data management for adaptive mesh refinement and load balancing. We employed simple data structure of the building cube method (BCM) where a computational domain is divided into multi-level cubic domains and each cube has the same number of grid points inside, realising a multi-level block-structured Cartesian mesh. Solution adaptive mesh refinement, which works efficiently with the help of the dynamic load balancing, was implemented by dividing cubes based on mesh refinement criteria. The framework was investigated with the Laplace equation in terms of adaptive mesh refinement, load balancing and the parallel efficiency. It was then applied to the incompressible Navier-Stokes equations to simulate a turbulent flow around a sphere. We considered wall-adaptive cube refinement where a non-dimensional wall distance y+ near the sphere is used for a criterion of mesh refinement. The result showed the load imbalance due to y+ adaptive mesh refinement was corrected by the present approach. To utilise the BCM framework more effectively, we also tested a cube-wise algorithm switching where an explicit and implicit time integration schemes are switched depending on the local Courant-Friedrichs-Lewy (CFL) condition in each cube.
NASA Technical Reports Server (NTRS)
Pei, Jing; Murchison, Luke; BenShabat, Adam; Stewart, Victor; Rosenthal, James; Follman, Jacob; Branchy, Mark; Sellers, Drew; Elandt, Ryan; Elliott, Sawyer;
2017-01-01
Small spacecraft autonomous rendezvous and docking is an essential technology for future space structure assembly missions. A novel magnetic capture and latching mechanism is analyzed that allows for docking of two CubeSats without precise sensors and actuators. The proposed magnetic docking hardware not only provides the means to latch the CubeSats but it also significantly increases the likelihood of successful docking in the presence of relative attitude and position errors. The simplicity of the design allows it to be implemented on many CubeSat rendezvous missions. A CubeSat 3-DOF ground demonstration effort is on-going at NASA Langley Research Center that enables hardware-in-the loop testing of the autonomous approach and docking of a follower CubeSat to an identical leader CubeSat. The test setup consists of a 3 meter by 4 meter granite table and two nearly frictionless air bearing systems that support the two CubeSats. Four cold-gas on-off thrusters are used to translate the follower towards the leader, while a single reaction wheel is used to control the attitude of each CubeSat. An innovative modified pseudo inverse control allocation scheme was developed to address interactions between control effectors. The docking procedure requires relatively high actuator precision, a novel minimal impulse bit mitigation algorithm was developed to minimize the undesirable deadzone effects of the thrusters. Simulation of the ground demonstration shows that the Guidance, Navigation, and Control system along with the docking subsystem leads to successful docking under 3-sigma dispersions for all key system parameters. Extensive simulation and ground testing will provide sufficient confidence that the proposed docking mechanism along with the choosen suite of sensors and actuators will perform successful docking in the space environment.
A “loop” shape descriptor and its application to automated segmentation of airways from CT scans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pu, Jiantao; Jin, Chenwang, E-mail: jcw76@163.com; Yu, Nan
2015-06-15
Purpose: A novel shape descriptor is presented to aid an automated identification of the airways depicted on computed tomography (CT) images. Methods: Instead of simplifying the tubular characteristic of the airways as an ideal mathematical cylindrical or circular shape, the proposed “loop” shape descriptor exploits the fact that the cross sections of any tubular structure (regardless of its regularity) always appear as a loop. In implementation, the authors first reconstruct the anatomical structures in volumetric CT as a three-dimensional surface model using the classical marching cubes algorithm. Then, the loop descriptor is applied to locate the airways with a concavemore » loop cross section. To deal with the variation of the airway walls in density as depicted on CT images, a multiple threshold strategy is proposed. A publicly available chest CT database consisting of 20 CT scans, which was designed specifically for evaluating an airway segmentation algorithm, was used for quantitative performance assessment. Measures, including length, branch count, and generations, were computed under the aid of a skeletonization operation. Results: For the test dataset, the airway length ranged from 64.6 to 429.8 cm, the generation ranged from 7 to 11, and the branch number ranged from 48 to 312. These results were comparable to the performance of the state-of-the-art algorithms validated on the same dataset. Conclusions: The authors’ quantitative experiment demonstrated the feasibility and reliability of the developed shape descriptor in identifying lung airways.« less
Visual attitude propagation for small satellites
NASA Astrophysics Data System (ADS)
Rawashdeh, Samir A.
As electronics become smaller and more capable, it has become possible to conduct meaningful and sophisticated satellite missions in a small form factor. However, the capability of small satellites and the range of possible applications are limited by the capabilities of several technologies, including attitude determination and control systems. This dissertation evaluates the use of image-based visual attitude propagation as a compliment or alternative to other attitude determination technologies that are suitable for miniature satellites. The concept lies in using miniature cameras to track image features across frames and extracting the underlying rotation. The problem of visual attitude propagation as a small satellite attitude determination system is addressed from several aspects: related work, algorithm design, hardware and performance evaluation, possible applications, and on-orbit experimentation. These areas of consideration reflect the organization of this dissertation. A "stellar gyroscope" is developed, which is a visual star-based attitude propagator that uses relative motion of stars in an imager's field of view to infer the attitude changes. The device generates spacecraft relative attitude estimates in three degrees of freedom. Algorithms to perform the star detection, correspondence, and attitude propagation are presented. The Random Sample Consensus (RANSAC) approach is applied to the correspondence problem to successfully pair stars across frames while mitigating falsepositive and false-negative star detections. This approach provides tolerance to the noise levels expected in using miniature optics and no baffling, and the noise caused by radiation dose on orbit. The hardware design and algorithms are validated using test images of the night sky. The application of the stellar gyroscope as part of a CubeSat attitude determination and control system is described. The stellar gyroscope is used to augment a MEMS gyroscope attitude propagation algorithm to minimize drift in the absence of an absolute attitude sensor. The stellar gyroscope is a technology demonstration experiment on KySat-2, a 1-Unit CubeSat being developed in Kentucky that is in line to launch with the NASA ELaNa CubeSat Launch Initiative. It has also been adopted by industry as a sensor for CubeSat Attitude Determination and Control Systems (ADCS). KEYWORDS: Small Satellites, Attitude Determination, Egomotion Estimation, RANSAC, Image Processing.
A fast recursive algorithm for molecular dynamics simulation
NASA Technical Reports Server (NTRS)
Jain, A.; Vaidehi, N.; Rodriguez, G.
1993-01-01
The present recursive algorithm for solving molecular systems' dynamical equations of motion employs internal variable models that reduce such simulations' computation time by an order of magnitude, relative to Cartesian models. Extensive use is made of spatial operator methods recently developed for analysis and simulation of the dynamics of multibody systems. A factor-of-450 speedup over the conventional O(N-cubed) algorithm is demonstrated for the case of a polypeptide molecule with 400 residues.
On-Orbit Ephemeris Determination with Radio Doppler Validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dallmann, Nicholas; Proicou, Michael Chris; Seitz, Daniel Nathan
2016-02-09
Multiple CubeSats are often released from the same host spacecraft into virtually the same orbit at nearly the same time. A satellite team needs the ability to identify and track its own satellites as soon as possible. However, this can be a difficult and confusing task with a large number of satellites. Los Alamos National Laboratory encountered this issue during a launch of LANL-designed CubeSats that were released with more than 20 other objects. A simple radio Doppler method used shortly after launch by the Los Alamos team to select its satellites of interest from the list of available trackedmore » ephemerides is described. This method can also be used for automated real time ephemeris validation. For future efforts, each LANL-designed CubeSat will automatically perform orbit determination from the position, velocity, and covariance estimates provided by an added on-board GPS receiver. This self-determined ephemeris will be automatically downlinked by ground stations for mission planning, antenna tracking, Doppler-pre-correction, etc. A simple algorithm based on established theory and well suited for embedded on-board processing is presented. The trades examined in selecting the algorithm components and data formats are briefly discussed, as is the expected performance.« less
NASA Astrophysics Data System (ADS)
Ding, Wan; Wu, Jianxu; Yao, Yan'an
2015-07-01
Lattice modular robots possess diversity actuation methods, such as electric telescopic rod, gear rack, magnet, robot arm, etc. The researches on lattice modular robots mainly focus on their hardware descriptions and reconfiguration algorithms. Meanwhile, their design architectures and actuation methods perform slow telescopic and moving speeds, relative low actuation force verse weight ratio, and without internal space to carry objects. To improve the mechanical performance and reveal the locomotion and reconfiguration binary essences of the lattice modular robots, a novel cube-shaped, frame-like, pneumatic-based reconfigurable robot module called pneumatic expandable cube(PE-Cube) is proposed. The three-dimensional(3D) expanding construction and omni-directional rolling analysis of the constructed robots are the main focuses. The PE-Cube with three degrees of freedom(DoFs) is assembled by replacing the twelve edges of a cube with pneumatic cylinders. The proposed symmetric construction condition makes the constructed robots possess the same properties in each supporting state, and a binary control strategy cooperated with binary actuator(pneumatic cylinder) is directly adopted to control the PE-Cube. Taking an eight PE-Cube modules' construction as example, its dynamic rolling simulation, static rolling condition, and turning gait are illustrated and discussed. To testify telescopic synchronization, respond speed, locomotion feasibility, and repeatability and reliability of hardware system, an experimental pneumatic-based robotic system is built and the rolling and turning experiments of the eight PE-Cube modules' construction are carried out. As an extension, the locomotion feasibility of a thirty-two PE-Cube modules' construction is analyzed and proved, including dynamic rolling simulation, static rolling condition, and dynamic analysis in free tipping process. The proposed PE-Cube module, construction method, and locomotion analysis enrich the family of the lattice modular robot and provide the instruction to design the lattice modular robot.
Novel Technique for Hepatic Fiducial Marker Placement for Stereotactic Body Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarraya, Hajer, E-mail: h-jarraya@o-lambret.fr; Chalayer, Chloé; Tresch, Emmanuelle
2014-09-01
Purpose: To report experience with fiducial marker insertion and describe an advantageous, novel technique for fiducial placement in the liver for stereotactic body radiation therapy with respiratory tracking. Methods and Materials: We implanted 1444 fiducials (single: 834; linked: 610) in 328 patients with 424 hepatic lesions. Two methods of implantation were compared: the standard method (631 single fiducials) performed on 153 patients from May 2007 to May 2010, and the cube method (813 fiducials: 610 linked/203 single) applied to 175 patients from April 2010 to March 2013. The standard method involved implanting a single marker at a time. The novel techniquemore » entailed implanting 2 pairs of linked markers when possible in a way to occupy the perpendicular edges of a cube containing the tumor inside. Results: Mean duration of the cube method was shorter than the standard method (46 vs 61 minutes; P<.0001). Median numbers of skin and subcapsular entries were significantly smaller with the cube method (2 vs 4, P<.0001, and 2 vs 4, P<.0001, respectively). The rate of overall complications (total, major, and minor) was significantly lower in the cube method group compared with the standard method group (5.7% vs 13.7%; P=.013). Major complications occurred while using single markers only. The success rate was 98.9% for the cube method and 99.3% for the standard method. Conclusions: We propose a new technique of hepatic fiducial implantation that makes use of linked fiducials and involves fewer skin entries and shorter time of implantation. The technique is less complication-prone and is migration-resistant.« less
NASA Technical Reports Server (NTRS)
Groff, Tyler; Rizzo, Maxime; Greco, Johnny P.; Loomis, Craig; Mede, Kyle; Kasdin, N. Jeremy; Knapp, Gillian; Tamura, Motohide; Hayashi, Masahiko; Galvin, Michael;
2017-01-01
We present the data reduction pipeline for CHARIS, a high-contrast integral-field spectrograph for the Subaru Telescope. The pipeline constructs a ramp from the raw reads using the measured nonlinear pixel response and reconstructs the data cube using one of three extraction algorithms: aperture photometry, optimal extraction, or chi-squared fitting. We measure and apply both a detector flatfield and a lenslet flatfield and reconstruct the wavelength- and position-dependent lenslet point-spread function (PSF) from images taken with a tunable laser. We use these measured PSFs to implement a chi-squared-based extraction of the data cube, with typical residuals of approximately 5 percent due to imperfect models of the under-sampled lenslet PSFs. The full two-dimensional residual of the chi-squared extraction allows us to model and remove correlated read noise, dramatically improving CHARIS's performance. The chi-squared extraction produces a data cube that has been deconvolved with the line-spread function and never performs any interpolations of either the data or the individual lenslet spectra. The extracted data cube also includes uncertainties for each spatial and spectral measurement. CHARIS's software is parallelized, written in Python and Cython, and freely available on github with a separate documentation page. Astrometric and spectrophotometric calibrations of the data cubes and PSF subtraction will be treated in a forthcoming paper.
NASA Astrophysics Data System (ADS)
Brandt, Timothy D.; Rizzo, Maxime; Groff, Tyler; Chilcote, Jeffrey; Greco, Johnny P.; Kasdin, N. Jeremy; Limbach, Mary Anne; Galvin, Michael; Loomis, Craig; Knapp, Gillian; McElwain, Michael W.; Jovanovic, Nemanja; Currie, Thayne; Mede, Kyle; Tamura, Motohide; Takato, Naruhisa; Hayashi, Masahiko
2017-10-01
We present the data reduction pipeline for CHARIS, a high-contrast integral-field spectrograph for the Subaru Telescope. The pipeline constructs a ramp from the raw reads using the measured nonlinear pixel response and reconstructs the data cube using one of three extraction algorithms: aperture photometry, optimal extraction, or χ2 fitting. We measure and apply both a detector flatfield and a lenslet flatfield and reconstruct the wavelength- and position-dependent lenslet point-spread function (PSF) from images taken with a tunable laser. We use these measured PSFs to implement a χ2-based extraction of the data cube, with typical residuals of ˜5% due to imperfect models of the undersampled lenslet PSFs. The full two-dimensional residual of the χ2 extraction allows us to model and remove correlated read noise, dramatically improving CHARIS's performance. The χ2 extraction produces a data cube that has been deconvolved with the line-spread function and never performs any interpolations of either the data or the individual lenslet spectra. The extracted data cube also includes uncertainties for each spatial and spectral measurement. CHARIS's software is parallelized, written in Python and Cython, and freely available on github with a separate documentation page. Astrometric and spectrophotometric calibrations of the data cubes and PSF subtraction will be treated in a forthcoming paper.
Kao, Tzu-Jen; Isaacson, David; Saulnier, Gary J.; Newell, Jonathan C.
2009-01-01
The conductivity and permittivity of breast tumors are known to differ significantly from those of normal breast tissues, and electrical impedance tomography (EIT) is being studied as a modality for breast cancer imaging to exploit these differences. At present, X-ray mammography is the primary standard imaging modality used for breast cancer screening in clinical practice, so it is desirable to study EIT in the geometry of mammography. This paper presents a forward model of a simplified mammography geometry and a reconstruction algorithm for breast tumor imaging using EIT techniques. The mammography geometry is modeled as a rectangular box with electrode arrays on the top and bottom planes. A forward model for the electrical impedance imaging problem is derived for a homogeneous conductivity distribution and is validated by experiment using a phantom tank. A reconstruction algorithm for breast tumor imaging based on a linearization approach and the proposed forward model is presented. It is found that the proposed reconstruction algorithm performs well in the phantom experiment, and that the locations of a 5-mm-cube metal target and a 6-mm-cube agar target could be recovered at a target depth of 15 mm using a 32 electrode system. PMID:17405377
NPS-SCAT: A CubeSat Communications System Design, Test, and Integration
2009-06-01
used two patch antennas for the S-Band transceiver and a quad-canted turnstile antenna for the downlink in the 70-centimeter band ( Tuli , Orr, & Zee...Service. Retrieved March 08, 2009, from Cute-1.7 + APD II Project: http://lss.mes.titech.ac.jp/ssp/cute1.7/amateur_servic e_e.html Tuli , T.S., Orr
Benchmarking Memory Performance with the Data Cube Operator
NASA Technical Reports Server (NTRS)
Frumkin, Michael A.; Shabanov, Leonid V.
2004-01-01
Data movement across a computer memory hierarchy and across computational grids is known to be a limiting factor for applications processing large data sets. We use the Data Cube Operator on an Arithmetic Data Set, called ADC, to benchmark capabilities of computers and of computational grids to handle large distributed data sets. We present a prototype implementation of a parallel algorithm for computation of the operatol: The algorithm follows a known approach for computing views from the smallest parent. The ADC stresses all levels of grid memory and storage by producing some of 2d views of an Arithmetic Data Set of d-tuples described by a small number of integers. We control data intensity of the ADC by selecting the tuple parameters, the sizes of the views, and the number of realized views. Benchmarking results of memory performance of a number of computer architectures and of a small computational grid are presented.
Method and apparatus for eliminating unsuccessful tries in a search tree
NASA Technical Reports Server (NTRS)
Peterson, John C. (Inventor); Chow, Edward (Inventor); Madan, Herb S. (Inventor)
1991-01-01
A circuit switching system in an M-ary, n-cube connected network completes a best-first path from an originating node to a destination node by latching valid legs of the path as the path is being sought out. Each network node is provided with a routing hyperswitch sub-network, (HSN) connected between that node and bidirectional high capacity communication channels of the n-cube network. The sub-networks are all controlled by routing algorithms which respond to message identification headings (headers) on messages to be routed along one or more routing legs. The header includes information embedded therein which is interpreted by each sub-network to route and historically update the header. A logic circuit, available at every node, implements the algorithm and automatically forwards or back-tracks the header in the network legs of various paths until a completed path is latched.
Optimal cube-connected cube multiprocessors
NASA Technical Reports Server (NTRS)
Sun, Xian-He; Wu, Jie
1993-01-01
Many CFD (computational fluid dynamics) and other scientific applications can be partitioned into subproblems. However, in general the partitioned subproblems are very large. They demand high performance computing power themselves, and the solutions of the subproblems have to be combined at each time step. The cube-connect cube (CCCube) architecture is studied. The CCCube architecture is an extended hypercube structure with each node represented as a cube. It requires fewer physical links between nodes than the hypercube, and provides the same communication support as the hypercube does on many applications. The reduced physical links can be used to enhance the bandwidth of the remaining links and, therefore, enhance the overall performance. The concept and the method to obtain optimal CCCubes, which are the CCCubes with a minimum number of links under a given total number of nodes, are proposed. The superiority of optimal CCCubes over standard hypercubes was also shown in terms of the link usage in the embedding of a binomial tree. A useful computation structure based on a semi-binomial tree for divide-and-conquer type of parallel algorithms was identified. It was shown that this structure can be implemented in optimal CCCubes without performance degradation compared with regular hypercubes. The result presented should provide a useful approach to design of scientific parallel computers.
Tactically Extensible and Modular Communications - X-Band TEMCOM-X
NASA Technical Reports Server (NTRS)
Sims, William Herbert; Varnavas, Kosta A.; Casas, Joseph; Spehn, Stephen L.; Kendrick, Neal; Cross, Stephen; Sanderson, Paul; Booth, Janet C.
2015-01-01
This paper will discuss a proposed CubeSat size (3U) telemetry system concept being developed at Marshall Space Flight Center (MSFC) in cooperation with the U.S. Department of the Army and Dynetics Corporation. This telemetry system incorporates efficient, high-bandwidth communications by developing flight-ready, low-cost, Protoflight software defined radio (SDR) and Electronically Steerable Patch Array (ESPA) antenna subsystems for use on platforms as small as CubeSats and unmanned aircraft systems (UASs). The current telemetry system is slightly larger in dimension of footprint than required to fit within a 0.5U CubeSat volume. Extensible and modular communications for CubeSat technologies will partially mitigate current capability gaps between traditional strategic space platforms and lower-cost small satellite solutions. Higher bandwidth capacity will enable high-volume, low error-rate data transfer to and from tactical forces or sensors operating in austere locations (e.g., direct imagery download, unattended ground sensor data exfiltration, interlink communications), while also providing additional bandwidth and error correction margin to accommodate more complex encryption algorithms and higher user volume.
Reconstructing Buildings with Discontinuities and Roof Overhangs from Oblique Aerial Imagery
NASA Astrophysics Data System (ADS)
Frommholz, D.; Linkiewicz, M.; Meissner, H.; Dahlke, D.
2017-05-01
This paper proposes a two-stage method for the reconstruction of city buildings with discontinuities and roof overhangs from oriented nadir and oblique aerial images. To model the structures the input data is transformed into a dense point cloud, segmented and filtered with a modified marching cubes algorithm to reduce the positional noise. Assuming a monolithic building the remaining vertices are initially projected onto a 2D grid and passed to RANSAC-based regression and topology analysis to geometrically determine finite wall, ground and roof planes. If this should fail due to the presence of discontinuities the regression will be repeated on a 3D level by traversing voxels within the regularly subdivided bounding box of the building point set. For each cube a planar piece of the current surface is approximated and expanded. The resulting segments get mutually intersected yielding both topological and geometrical nodes and edges. These entities will be eliminated if their distance-based affiliation to the defining point sets is violated leaving a consistent building hull including its structural breaks. To add the roof overhangs the computed polygonal meshes are projected onto the digital surface model derived from the point cloud. Their shapes are offset equally along the edge normals with subpixel accuracy by detecting the zero-crossings of the second-order directional derivative in the gradient direction of the height bitmap and translated back into world space to become a component of the building. As soon as the reconstructed objects are finished the aerial images are further used to generate a compact texture atlas for visualization purposes. An optimized atlas bitmap is generated that allows perspectivecorrect multi-source texture mapping without prior rectification involving a partially parallel placement algorithm. Moreover, the texture atlases undergo object-based image analysis (OBIA) to detect window areas which get reintegrated into the building models. To evaluate the performance of the proposed method a proof-of-concept test on sample structures obtained from real-world data of Heligoland/Germany has been conducted. It revealed good reconstruction accuracy in comparison to the cadastral map, a speed-up in texture atlas optimization and visually attractive render results.
Quantitative image processing in fluid mechanics
NASA Technical Reports Server (NTRS)
Hesselink, Lambertus; Helman, James; Ning, Paul
1992-01-01
The current status of digital image processing in fluid flow research is reviewed. In particular, attention is given to a comprehensive approach to the extraction of quantitative data from multivariate databases and examples of recent developments. The discussion covers numerical simulations and experiments, data processing, generation and dissemination of knowledge, traditional image processing, hybrid processing, fluid flow vector field topology, and isosurface analysis using Marching Cubes.
Quantum computation in the analysis of hyperspectral data
NASA Astrophysics Data System (ADS)
Gomez, Richard B.; Ghoshal, Debabrata; Jayanna, Anil
2004-08-01
Recent research on the topic of quantum computation provides us with some quantum algorithms with higher efficiency and speedup compared to their classical counterparts. In this paper, it is our intent to provide the results of our investigation of several applications of such quantum algorithms - especially the Grover's Search algorithm - in the analysis of Hyperspectral Data. We found many parallels with Grover's method in existing data processing work that make use of classical spectral matching algorithms. Our efforts also included the study of several methods dealing with hyperspectral image analysis work where classical computation methods involving large data sets could be replaced with quantum computation methods. The crux of the problem in computation involving a hyperspectral image data cube is to convert the large amount of data in high dimensional space to real information. Currently, using the classical model, different time consuming methods and steps are necessary to analyze these data including: Animation, Minimum Noise Fraction Transform, Pixel Purity Index algorithm, N-dimensional scatter plot, Identification of Endmember spectra - are such steps. If a quantum model of computation involving hyperspectral image data can be developed and formalized - it is highly likely that information retrieval from hyperspectral image data cubes would be a much easier process and the final information content would be much more meaningful and timely. In this case, dimensionality would not be a curse, but a blessing.
Exploiting Artificial Intelligence for Analysis and Data Selection on-board the Puerto Rico CubeSat
NASA Astrophysics Data System (ADS)
Bergman, J. E. S.; Bruhn, F.; Funk, P.; Isham, B.; Rincón-Charris, A. A.; Capo-Lugo, P.; Åhlén, L.
2015-10-01
CubeSat missions are constrained by the limited resources provided by the platform. Many payload providers have learned to cope with the low mass and power but the poor telemetry allocation remains a bottleneck. In the end, it is the data delivered to ground which determines the value of the mission. However, transmitting more data does not necessarily guarantee high value, since the value also depends on the data quality. By exploiting fast on-board computing and efficient artificial intelligence (AI) algorithms for analysis and data selection one could optimize the usage of the telemetry link and so increase the value of the mission. In a pilot project, we attempt to do this on the Puerto Rico CubeSat, where science objectives include the acquisition of space weather data to aid better understanding of the Sun to Earth connection.
NASA Astrophysics Data System (ADS)
Buttazzoni, G.; Comisso, M.; Cuttin, A.; Fragiacomo, M.; Vescovo, R.; Vincenti Gatti, R.
2017-08-01
Started as educational tools, CubeSats have immediately encountered the favor of the scientific community, subsequently becoming viable platforms for research and commercial applications. To ensure competitive data rates, some pioneers have started to explore the usage of the Ka-band beside the conventional amateur radio frequencies. In this context, this study proposes a phased antenna array design for Ka-band downlink operations consisting of 8×8 circularly polarized subarrays of microstrip patches filling one face of a single CubeSat unit. The conceived structure is developed to support 1.5 GHz bandwidth and dual-task missions, whose feasibility is verified by proper link budgets. The dual-task operations are enabled by a low-complexity phase-only control algorithm that provides pattern reconfigurability in order to satisfy both orbiting and intersatellite missions, while remaining adherent to the cost-effective CubeSat paradigm.
NASA Astrophysics Data System (ADS)
Grulich, M.; Koop, A.; Ludewig, P.; Gutsmiedl, J.; Kugele, J.; Ruck, T.; Mayer, I.; Schmid, A.; Dietmann, K.
2015-09-01
SMARD (Shape Memory Alloy Reusable Deployment Mechanism) is an experiment for a sounding rocket developed by students at Technische Universität MUnchen (TUM). It was launched in March 2015 on REXUS 18 (Rocket Experiments for University Students). The goal of SMARD was to develop a solar panel holddown and release mechanism (HDRM) for a CubeSat using shape memory alloys (SMA) for repeatable actuation and the ability to be quickly resettable. This paper describes the technical approach as well as the technological development and design of the experiment platform, which is capable of proving the functionality of the deployment mechanism. Furthermore, the realization of the experiment as well as the results of the flight campaign are presented. Finally, the future applications of the developed HDRM and its possible further developments are discussed.
Center for Nonlinear Phenomena and Magnetic Materials
1992-12-04
S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION Howard University /ComSERC REPORT NUMBER 2216 6th St., N.W. Suite 205 NA Washington, D.C. 20059 9...contract on the research environment at Howard University 14. SUBJECT TERMS 15. NUMBER OF PAGES 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY...October 25, 1991: Dr. Gerald Chachere, Math Dept., Howard University . Visualization - Improved Marching Cubes. January 27, 1992: Dr. Gerald Chachere, Math
NASA Astrophysics Data System (ADS)
Purss, M. B. J.; Mueller, N. R.; Killough, B.; Oliver, S. A.
2016-12-01
In 2014 Geoscience Australia launched Water Observations from Space (WOfS) providing a continental-scale water product that shows how often surface water has been observed across Australia by the Landsat satellites since 1987. WOfS is a 23-step band-based decision tree that classifies pixels as water or non-water with 97% overall accuracy. The enabling infrastructure for WOfS is the Australian Geoscience Data Cube (AGDC), a high performance computing system organising Australian earth observation data into a systematic, consistently corrected analysis engine. The Committee on Earth Observation Satellites (CEOS) has adopted the AGDC methodology to create a series of international Data Cubes to provide the same capability to areas that would otherwise not be able to undertake time series analysis of the environment at these scales. The CEOS Systems Engineering Office (SEO) recently completed testing of WOfS using Data Cubes based on the AGDC version 2 over Kenya and Colombia. The results show how Data Cubes can provide water management information at large scales, and provide information in remote locations where other sources of water information are unavailable. The results also show an improvement in water detection capability over the Landsat CFmask. This water management product provides critical insight into the behavior of surface water over time and in particular, the extent of flooding.
Resolution Study of a Hyperspectral Sensor using Computed Tomography in the Presence of Noise
2012-06-14
diffraction efficiency is dependent on wavelength. Compared to techniques developed by later work, simple algebraic reconstruction techniques were used...spectral di- mension, using computed tomography (CT) techniques with only a finite number of diverse images. CTHIS require a reconstruction algorithm in...many frames are needed to reconstruct the spectral cube of a simple object using a theoretical lower bound. In this research a new algorithm is derived
Analysis of the multigroup model for muon tomography based threat detection
NASA Astrophysics Data System (ADS)
Perry, J. O.; Bacon, J. D.; Borozdin, K. N.; Fabritius, J. M.; Morris, C. L.
2014-02-01
We compare different algorithms for detecting a 5 cm tungsten cube using cosmic ray muon technology. In each case, a simple tomographic technique was used for position reconstruction, but the scattering angles were used differently to obtain a density signal. Receiver operating characteristic curves were used to compare images made using average angle squared, median angle squared, average of the squared angle, and a multi-energy group fit of the angular distributions for scenes with and without a 5 cm tungsten cube. The receiver operating characteristic curves show that the multi-energy group treatment of the scattering angle distributions is the superior method for image reconstruction.
NASA Astrophysics Data System (ADS)
Thuburn, J.; Cotter, C. J.; Dubos, T.
2013-12-01
A new algorithm is presented for the solution of the shallow water equations on quasi-uniform spherical grids. It combines a mimetic finite volume spatial discretization with a Crank-Nicolson time discretization of fast waves and an accurate and conservative forward-in-time advection scheme for mass and potential vorticity (PV). The algorithm is implemented and tested on two families of grids: hexagonal-icosahedral Voronoi grids, and modified equiangular cubed-sphere grids. Results of a variety of tests are presented, including convergence of the discrete scalar Laplacian and Coriolis operators, advection, solid body rotation, flow over an isolated mountain, and a barotropically unstable jet. The results confirm a number of desirable properties for which the scheme was designed: exact mass conservation, very good available energy and potential enstrophy conservation, consistent mass, PV and tracer transport, and good preservation of balance including vanishing ∇ × ∇, steady geostrophic modes, and accurate PV advection. The scheme is stable for large wave Courant numbers and advective Courant numbers up to about 1. In the most idealized tests the overall accuracy of the scheme appears to be limited by the accuracy of the Coriolis and other mimetic spatial operators, particularly on the cubed sphere grid. On the hexagonal grid there is no evidence for damaging effects of computational Rossby modes, despite attempts to force them explicitly.
NASA Astrophysics Data System (ADS)
Thuburn, J.; Cotter, C. J.; Dubos, T.
2014-05-01
A new algorithm is presented for the solution of the shallow water equations on quasi-uniform spherical grids. It combines a mimetic finite volume spatial discretization with a Crank-Nicolson time discretization of fast waves and an accurate and conservative forward-in-time advection scheme for mass and potential vorticity (PV). The algorithm is implemented and tested on two families of grids: hexagonal-icosahedral Voronoi grids, and modified equiangular cubed-sphere grids. Results of a variety of tests are presented, including convergence of the discrete scalar Laplacian and Coriolis operators, advection, solid body rotation, flow over an isolated mountain, and a barotropically unstable jet. The results confirm a number of desirable properties for which the scheme was designed: exact mass conservation, very good available energy and potential enstrophy conservation, consistent mass, PV and tracer transport, and good preservation of balance including vanishing ∇ × ∇, steady geostrophic modes, and accurate PV advection. The scheme is stable for large wave Courant numbers and advective Courant numbers up to about 1. In the most idealized tests the overall accuracy of the scheme appears to be limited by the accuracy of the Coriolis and other mimetic spatial operators, particularly on the cubed-sphere grid. On the hexagonal grid there is no evidence for damaging effects of computational Rossby modes, despite attempts to force them explicitly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aartsen, M. G.; Ackermann, M.; Adams, J.
Here we present the development and application of a generic analysis scheme for the measurement of neutrino spectra with the IceCube detector. This scheme is based on regularized unfolding, preceded by an event selection which uses a Minimum Redundancy Maximum Relevance algorithm to select the relevant variables and a random forest for the classification of events. The analysis has been developed using IceCube data from the 59-string configuration of the detector. 27,771 neutrino candidates were detected in 346 days of livetime. A rejection of 99.9999 % of the atmospheric muon background is achieved. The energy spectrum of the atmospheric neutrinomore » flux is obtained using the TRUEE unfolding program. The unfolded spectrum of atmospheric muon neutrinos covers an energy range from 100 GeV to 1 PeV. Compared to the previous measurement using the detector in the 40-string configuration, the analysis presented here, extends the upper end of the atmospheric neutrino spectrum by more than a factor of two, reaching an energy region that has not been previously accessed by spectral measurements.« less
Aartsen, M. G.; Ackermann, M.; Adams, J.; ...
2015-03-11
Here we present the development and application of a generic analysis scheme for the measurement of neutrino spectra with the IceCube detector. This scheme is based on regularized unfolding, preceded by an event selection which uses a Minimum Redundancy Maximum Relevance algorithm to select the relevant variables and a random forest for the classification of events. The analysis has been developed using IceCube data from the 59-string configuration of the detector. 27,771 neutrino candidates were detected in 346 days of livetime. A rejection of 99.9999 % of the atmospheric muon background is achieved. The energy spectrum of the atmospheric neutrinomore » flux is obtained using the TRUEE unfolding program. The unfolded spectrum of atmospheric muon neutrinos covers an energy range from 100 GeV to 1 PeV. Compared to the previous measurement using the detector in the 40-string configuration, the analysis presented here, extends the upper end of the atmospheric neutrino spectrum by more than a factor of two, reaching an energy region that has not been previously accessed by spectral measurements.« less
Neutrino oscillation parameter sampling with MonteCUBES
NASA Astrophysics Data System (ADS)
Blennow, Mattias; Fernandez-Martinez, Enrique
2010-01-01
We present MonteCUBES ("Monte Carlo Utility Based Experiment Simulator"), a software package designed to sample the neutrino oscillation parameter space through Markov Chain Monte Carlo algorithms. MonteCUBES makes use of the GLoBES software so that the existing experiment definitions for GLoBES, describing long baseline and reactor experiments, can be used with MonteCUBES. MonteCUBES consists of two main parts: The first is a C library, written as a plug-in for GLoBES, implementing the Markov Chain Monte Carlo algorithm to sample the parameter space. The second part is a user-friendly graphical Matlab interface to easily read, analyze, plot and export the results of the parameter space sampling. Program summaryProgram title: MonteCUBES (Monte Carlo Utility Based Experiment Simulator) Catalogue identifier: AEFJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFJ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public Licence No. of lines in distributed program, including test data, etc.: 69 634 No. of bytes in distributed program, including test data, etc.: 3 980 776 Distribution format: tar.gz Programming language: C Computer: MonteCUBES builds and installs on 32 bit and 64 bit Linux systems where GLoBES is installed Operating system: 32 bit and 64 bit Linux RAM: Typically a few MBs Classification: 11.1 External routines: GLoBES [1,2] and routines/libraries used by GLoBES Subprograms used:Cat Id ADZI_v1_0, Title GLoBES, Reference CPC 177 (2007) 439 Nature of problem: Since neutrino masses do not appear in the standard model of particle physics, many models of neutrino masses also induce other types of new physics, which could affect the outcome of neutrino oscillation experiments. In general, these new physics imply high-dimensional parameter spaces that are difficult to explore using classical methods such as multi-dimensional projections and minimizations, such as those used in GLoBES [1,2]. Solution method: MonteCUBES is written as a plug-in to the GLoBES software [1,2] and provides the necessary methods to perform Markov Chain Monte Carlo sampling of the parameter space. This allows an efficient sampling of the parameter space and has a complexity which does not grow exponentially with the parameter space dimension. The integration of the MonteCUBES package with the GLoBES software makes sure that the experimental definitions already in use by the community can also be used with MonteCUBES, while also lowering the learning threshold for users who already know GLoBES. Additional comments: A Matlab GUI for interpretation of results is included in the distribution. Running time: The typical running time varies depending on the dimensionality of the parameter space, the complexity of the experiment, and how well the parameter space should be sampled. The running time for our simulations [3] with 15 free parameters at a Neutrino Factory with O(10) samples varied from a few hours to tens of hours. References:P. Huber, M. Lindner, W. Winter, Comput. Phys. Comm. 167 (2005) 195, hep-ph/0407333. P. Huber, J. Kopp, M. Lindner, M. Rolinec, W. Winter, Comput. Phys. Comm. 177 (2007) 432, hep-ph/0701187. S. Antusch, M. Blennow, E. Fernandez-Martinez, J. Lopez-Pavon, arXiv:0903.3986 [hep-ph].
Calculation of grain boundary normals directly from 3D microstructure images
Lieberman, E. J.; Rollett, A. D.; Lebensohn, R. A.; ...
2015-03-11
The determination of grain boundary normals is an integral part of the characterization of grain boundaries in polycrystalline materials. These normal vectors are difficult to quantify due to the discretized nature of available microstructure characterization techniques. The most common method to determine grain boundary normals is by generating a surface mesh from an image of the microstructure, but this process can be slow, and is subject to smoothing issues. A new technique is proposed, utilizing first order Cartesian moments of binary indicator functions, to determine grain boundary normals directly from a voxelized microstructure image. In order to validate the accuracymore » of this technique, the surface normals obtained by the proposed method are compared to those generated by a surface meshing algorithm. Specifically, the local divergence between the surface normals obtained by different variants of the proposed technique and those generated from a surface mesh of a synthetic microstructure constructed using a marching cubes algorithm followed by Laplacian smoothing is quantified. Next, surface normals obtained with the proposed method from a measured 3D microstructure image of a Ni polycrystal are used to generate grain boundary character distributions (GBCD) for Σ3 and Σ9 boundaries, and compared to the GBCD generated using a surface mesh obtained from the same image. Finally, the results show that the proposed technique is an efficient and accurate method to determine voxelized fields of grain boundary normals.« less
Numerical simulation of steady supersonic flow. [spatial marching
NASA Technical Reports Server (NTRS)
Schiff, L. B.; Steger, J. L.
1981-01-01
A noniterative, implicit, space-marching, finite-difference algorithm was developed for the steady thin-layer Navier-Stokes equations in conservation-law form. The numerical algorithm is applicable to steady supersonic viscous flow over bodies of arbitrary shape. In addition, the same code can be used to compute supersonic inviscid flow or three-dimensional boundary layers. Computed results from two-dimensional and three-dimensional versions of the numerical algorithm are in good agreement with those obtained from more costly time-marching techniques.
Ophthalmologic diagnostic tool using MR images for biomechanically-based muscle volume deformation
NASA Astrophysics Data System (ADS)
Buchberger, Michael; Kaltofen, Thomas
2003-05-01
We would like to give a work-in-progress report on our ophthalmologic diagnostic software system which performs biomechanically-based muscle volume deformations using MR images. For reconstructing a three-dimensional representation of an extraocular eye muscle, a sufficient amount of high resolution MR images is used, each representing a slice of the muscle. In addition, threshold values are given, which restrict the amount of data used from the MR images. The Marching Cube algorithm is applied to the polygons, resulting in a 3D representation of the muscle, which can efficiently be rendered. A transformation to a dynamic, deformable model is applied by calculating the center of gravity of each muscle slice, approximating the muscle path and subsequently adding Hermite splines through the centers of gravity of all slices. Then, a radius function is defined for each slice, completing the transformation of the static 3D polygon model. Finally, this paper describes future extensions to our system. One of these extensions is the support for additional calculations and measurements within the reconstructed 3D muscle representation. Globe translation, localization of muscle pulleys by analyzing the 3D reconstruction in two different gaze positions and other diagnostic measurements will be available.
Robust feature detection and local classification for surfaces based on moment analysis.
Clarenz, Ulrich; Rumpf, Martin; Telea, Alexandru
2004-01-01
The stable local classification of discrete surfaces with respect to features such as edges and corners or concave and convex regions, respectively, is as quite difficult as well as indispensable for many surface processing applications. Usually, the feature detection is done via a local curvature analysis. If concerned with large triangular and irregular grids, e.g., generated via a marching cube algorithm, the detectors are tedious to treat and a robust classification is hard to achieve. Here, a local classification method on surfaces is presented which avoids the evaluation of discretized curvature quantities. Moreover, it provides an indicator for smoothness of a given discrete surface and comes together with a built-in multiscale. The proposed classification tool is based on local zero and first moments on the discrete surface. The corresponding integral quantities are stable to compute and they give less noisy results compared to discrete curvature quantities. The stencil width for the integration of the moments turns out to be the scale parameter. Prospective surface processing applications are the segmentation on surfaces, surface comparison, and matching and surface modeling. Here, a method for feature preserving fairing of surfaces is discussed to underline the applicability of the presented approach.
Vortex Analysis of Intra-Aneurismal Flow in Cerebral Aneurysms
Sunderland, Kevin; Haferman, Christopher; Chintalapani, Gouthami
2016-01-01
This study aims to develop an alternative vortex analysis method by measuring structure ofIntracranial aneurysm (IA) flow vortexes across the cardiac cycle, to quantify temporal stability of aneurismal flow. Hemodynamics were modeled in “patient-specific” geometries, using computational fluid dynamics (CFD) simulations. Modified versions of known λ 2 and Q-criterion methods identified vortex regions; then regions were segmented out using the classical marching cube algorithm. Temporal stability was measured by the degree of vortex overlap (DVO) at each step of a cardiac cycle against a cycle-averaged vortex and by the change in number of cores over the cycle. No statistical differences exist in DVO or number of vortex cores between 5 terminal IAs and 5 sidewall IAs. No strong correlation exists between vortex core characteristics and geometric or hemodynamic characteristics of IAs. Statistical independence suggests this proposed method may provide novel IA information. However, threshold values used to determine the vortex core regions and resolution of velocity data influenced analysis outcomes and have to be addressed in future studies. In conclusions, preliminary results show that the proposed methodology may help give novel insight toward aneurismal flow characteristic and help in future risk assessment given more developments. PMID:27891172
Vortex Analysis of Intra-Aneurismal Flow in Cerebral Aneurysms.
Sunderland, Kevin; Haferman, Christopher; Chintalapani, Gouthami; Jiang, Jingfeng
2016-01-01
This study aims to develop an alternative vortex analysis method by measuring structure ofIntracranial aneurysm (IA) flow vortexes across the cardiac cycle, to quantify temporal stability of aneurismal flow. Hemodynamics were modeled in "patient-specific" geometries, using computational fluid dynamics (CFD) simulations. Modified versions of known λ 2 and Q -criterion methods identified vortex regions; then regions were segmented out using the classical marching cube algorithm. Temporal stability was measured by the degree of vortex overlap (DVO) at each step of a cardiac cycle against a cycle-averaged vortex and by the change in number of cores over the cycle. No statistical differences exist in DVO or number of vortex cores between 5 terminal IAs and 5 sidewall IAs. No strong correlation exists between vortex core characteristics and geometric or hemodynamic characteristics of IAs. Statistical independence suggests this proposed method may provide novel IA information. However, threshold values used to determine the vortex core regions and resolution of velocity data influenced analysis outcomes and have to be addressed in future studies. In conclusions, preliminary results show that the proposed methodology may help give novel insight toward aneurismal flow characteristic and help in future risk assessment given more developments.
The SpaceCube Family of Hybrid On-Board Science Data Processors: An Update
NASA Astrophysics Data System (ADS)
Flatley, T.
2012-12-01
SpaceCube is an FPGA based on-board hybrid science data processing system developed at the NASA Goddard Space Flight Center (GSFC). The goal of the SpaceCube program is to provide 10x to 100x improvements in on-board computing power while lowering relative power consumption and cost. The SpaceCube design strategy incorporates commercial rad-tolerant FPGA technology and couples it with an upset mitigation software architecture to provide "order of magnitude" improvements in computing power over traditional rad-hard flight systems. Many of the missions proposed in the Earth Science Decadal Survey (ESDS) will require "next generation" on-board processing capabilities to meet their specified mission goals. Advanced laser altimeter, radar, lidar and hyper-spectral instruments are proposed for at least ten of the ESDS missions, and all of these instrument systems will require advanced on-board processing capabilities to facilitate the timely conversion of Earth Science data into Earth Science information. Both an "order of magnitude" increase in processing power and the ability to "reconfigure on the fly" are required to implement algorithms that detect and react to events, to produce data products on-board for applications such as direct downlink, quick look, and "first responder" real-time awareness, to enable "sensor web" multi-platform collaboration, and to perform on-board "lossless" data reduction by migrating typical ground-based processing functions on-board, thus reducing on-board storage and downlink requirements. This presentation will highlight a number of SpaceCube technology developments to date and describe current and future efforts, including the collaboration with the U.S. Department of Defense - Space Test Program (DoD/STP) on the STP-H4 ISS experiment pallet (launch June 2013) that will demonstrate SpaceCube 2.0 technology on-orbit.; ;
Spacecube: A Family of Reconfigurable Hybrid On-Board Science Data Processors
NASA Technical Reports Server (NTRS)
Flatley, Thomas P.
2015-01-01
SpaceCube is a family of Field Programmable Gate Array (FPGA) based on-board science data processing systems developed at the NASA Goddard Space Flight Center (GSFC). The goal of the SpaceCube program is to provide 10x to 100x improvements in on-board computing power while lowering relative power consumption and cost. SpaceCube is based on the Xilinx Virtex family of FPGAs, which include processor, FPGA logic and digital signal processing (DSP) resources. These processing elements are leveraged to produce a hybrid science data processing platform that accelerates the execution of algorithms by distributing computational functions to the most suitable elements. This approach enables the implementation of complex on-board functions that were previously limited to ground based systems, such as on-board product generation, data reduction, calibration, classification, eventfeature detection, data mining and real-time autonomous operations. The system is fully reconfigurable in flight, including data parameters, software and FPGA logic, through either ground commanding or autonomously in response to detected eventsfeatures in the instrument data stream.
Efficient computation of optimal oligo-RNA binding.
Hodas, Nathan O; Aalberts, Daniel P
2004-01-01
We present an algorithm that calculates the optimal binding conformation and free energy of two RNA molecules, one or both oligomeric. This algorithm has applications to modeling DNA microarrays, RNA splice-site recognitions and other antisense problems. Although other recent algorithms perform the same calculation in time proportional to the sum of the lengths cubed, O((N1 + N2)3), our oligomer binding algorithm, called bindigo, scales as the product of the sequence lengths, O(N1*N2). The algorithm performs well in practice with the aid of a heuristic for large asymmetric loops. To demonstrate its speed and utility, we use bindigo to investigate the binding proclivities of U1 snRNA to mRNA donor splice sites.
A Compressed Sensing-based Image Reconstruction Algorithm for Solar Flare X-Ray Observations
NASA Astrophysics Data System (ADS)
Felix, Simon; Bolzern, Roman; Battaglia, Marina
2017-11-01
One way of imaging X-ray emission from solar flares is to measure Fourier components of the spatial X-ray source distribution. We present a new compressed sensing-based algorithm named VIS_CS, which reconstructs the spatial distribution from such Fourier components. We demonstrate the application of the algorithm on synthetic and observed solar flare X-ray data from the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite and compare its performance with existing algorithms. VIS_CS produces competitive results with accurate photometry and morphology, without requiring any algorithm- and X-ray-source-specific parameter tuning. Its robustness and performance make this algorithm ideally suited for the generation of quicklook images or large image cubes without user intervention, such as for imaging spectroscopy analysis.
A Compressed Sensing-based Image Reconstruction Algorithm for Solar Flare X-Ray Observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felix, Simon; Bolzern, Roman; Battaglia, Marina, E-mail: simon.felix@fhnw.ch, E-mail: roman.bolzern@fhnw.ch, E-mail: marina.battaglia@fhnw.ch
One way of imaging X-ray emission from solar flares is to measure Fourier components of the spatial X-ray source distribution. We present a new compressed sensing-based algorithm named VIS-CS, which reconstructs the spatial distribution from such Fourier components. We demonstrate the application of the algorithm on synthetic and observed solar flare X-ray data from the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite and compare its performance with existing algorithms. VIS-CS produces competitive results with accurate photometry and morphology, without requiring any algorithm- and X-ray-source-specific parameter tuning. Its robustness and performance make this algorithm ideally suited for the generation ofmore » quicklook images or large image cubes without user intervention, such as for imaging spectroscopy analysis.« less
Midwave Infrared Imaging Fourier Transform Spectrometry of Combustion Plumes
2009-09-01
nonuniformity by spatially-smoothing the image cube. The algorithm was applied to a LWIR hyperspectral image of simultaneous release of CHF3 (trifluo...99 43. A series of LWIR thermal images of the explosive detonation release of MeS...Abbreviation Page IEDs Improvised Explosive Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 LWIR longwave infrared
A sparse matrix algorithm on the Boolean vector machine
NASA Technical Reports Server (NTRS)
Wagner, Robert A.; Patrick, Merrell L.
1988-01-01
VLSI technology is being used to implement a prototype Boolean Vector Machine (BVM), which is a large network of very small processors with equally small memories that operate in SIMD mode; these use bit-serial arithmetic, and communicate via cube-connected cycles network. The BVM's bit-serial arithmetic and the small memories of individual processors are noted to compromise the system's effectiveness in large numerical problem applications. Attention is presently given to the implementation of a basic matrix-vector iteration algorithm for space matrices of the BVM, in order to generate over 1 billion useful floating-point operations/sec for this iteration algorithm. The algorithm is expressed in a novel language designated 'BVM'.
NASA Technical Reports Server (NTRS)
Lin, Michael; Petrick, David; Geist, Alessandro; Flatley, Thomas
2012-01-01
This version of the SpaceCube will be a full-fledged, onboard space processing system capable of 2500+ MIPS, and featuring a number of plug-andplay gigabit and standard interfaces, all in a condensed 3x3x3 form factor [less than 10 watts and less than 3 lb (approximately equal to 1.4 kg)]. The main processing engine is the Xilinx SIRF radiation- hardened-by-design Virtex-5 FX-130T field-programmable gate array (FPGA). Even as the SpaceCube 2.0 version (currently under test) is being targeted as the platform of choice for a number of the upcoming Earth Science Decadal Survey missions, GSFC has been contacted by customers who wish to see a system that incorporates key features of the version 2.0 architecture in an even smaller form factor. In order to fulfill that need, the SpaceCube Mini is being designed, and will be a very compact and low-power system. A similar flight system with this combination of small size, low power, low cost, adaptability, and extremely high processing power does not otherwise exist, and the SpaceCube Mini will be of tremendous benefit to GSFC and its partners. The SpaceCube Mini will utilize space-grade components. The primary processing engine of the Mini is the Xilinx Virtex-5 SIRF FX-130T radiation-hardened-by-design FPGA for critical flight applications in high-radiation environments. The Mini can also be equipped with a commercial Xilinx Virtex-5 FPGA with integrated PowerPCs for a low-cost, high-power computing platform for use in the relatively radiation- benign LEOs (low-Earth orbits). In either case, this version of the Space-Cube will weigh less than 3 pounds (.1.4 kg), conform to the CubeSat form-factor (10x10x10 cm), and will be low power (less than 10 watts for typical applications). The SpaceCube Mini will have a radiation-hardened Aeroflex FPGA for configuring and scrubbing the Xilinx FPGA by utilizing the onboard FLASH memory to store the configuration files. The FLASH memory will also be used for storing algorithm and application code for the PowerPCs and the Xilinx FPGA. In addition, it will feature highspeed DDR SDRAM (double data rate synchronous dynamic random-access memory) to store the instructions and data of active applications. This version will also feature SATA-II and Gigabit Ethernet interfaces. Furthermore, there will also be general-purpose, multi-gigabit interfaces. In addition, the system will have dozens of transceivers that can support LVDS (low-voltage differential signaling), RS-422, or SpaceWire. The SpaceCube Mini includes an I/O card that can be customized to meet the needs of each mission. This version of the SpaceCube will be designed so that multiple Minis can be networked together using SpaceWire, Ethernet, or even a custom protocol. Scalability can be provided by networking multiple SpaceCube Minis together. Rigid-Flex technology is being targeted for the construction of the SpaceCube Mini, which will make the extremely compact and low-weight design feasible. The SpaceCube Mini is designed to fit in the compact CubeSat form factor, thus allowing deployment in a new class of missions that the previous SpaceCube versions were not suited for. At the time of this reporting, engineering units should be available in the summer 2012.
Feasibility for Orbital Life Extension of a CubeSat in the Lower Thermosphere
NASA Technical Reports Server (NTRS)
Blandino, John J.; Martinez-Baquero, Nicolas; Demetriou, Michael A.; Gatsonis, Nikolaos A.; Paschalidis, Nicholas
2016-01-01
Orbital flight of CubeSats at altitudes between 150 and 250 km has the potential to enable a new class of scientific, commercial, and defense-related missions. A study is presented to demonstrate the feasibility of extending the orbital lifetime of a CubeSat in a 210 km orbit. Propulsion consists of an electrospray thruster operating at a 2 W, 0.175 mN thrust, and an specific impulse (Isp) of 500 s. The mission consists of two phases. In phase 1, the CubeSat is deployed from a 414 km orbit and uses the thruster to deorbit to the target altitude of 210 km. In phase 2, the propulsion system is used to extend the mission lifetime until propellant is fully expended. A control algorithm based on maintaining a target orbital energy is presented that uses an extended Kalman filter to generate estimates of the orbital dynamic state, which are periodically updated by Global Positioning System measurements. For phase 1, the spacecraft requires 25.21 days to descend from 414 to 210 km, corresponding to a delta V = 96.25 m/s and a propellant consumption of 77.8 g. Phase 2 lasts 57.83 days, corresponding to a delta V = 119.15 m/s, during which the remaining 94.2 g of propellant are consumed.
Exploring Our Solar System with CubeSats and NanoSats
NASA Technical Reports Server (NTRS)
Freeman, Anthony; Norton, Charles
2015-01-01
The Jet Propulsion Laboratory (JPL) is NASA's lead center for robotic exploration of our solar system. We are known for our large, flagship missions, such as Voyager, which gave humanity its first close look at Jupiter and Saturn; and the Mars Rovers, which have excited millions worldwide with their daring landing exploits. Less familiar to those outside NASA may be our role in developing the Kepler mission, which has discovered more than 2000 planets around other stars; or the recently launched Soil Moisture Active Passive (SMAP) mission, one of many JPL Earth Science missions. A recent JPL initiative has emphasized low cost missions that use rapidly evolving technology developed for CubeSats and NanoSat s to explore our solar system. Costs are significantly lower (by one or two orders of magnitude) than for conventional JPL missions, and development time is also significantly shorter. At present 21 such CubeSat flight projects are under way at the laboratory with various partners : some in flight, some in development, some in advanced formulation. Four are planned as deep space missions. To succeed in exploring deep space CubeSat/NanoSat missions have to address several challenges: the more severe radiation environment, communications and navigation at a distance, propulsion, and packaging of instruments that can return valuable science into a compact volume/mass envelope. Instrument technologies, including cameras, magnetometers, spectrometers, radiometers, and even radars are undergoing miniaturization to fit on these smaller platforms. Other key technologies are being matured for smallsats and NanoSats in deep space, including micro -electric propulsion, compact radio (and optical) communications, and onboard data reduction. This paper will describe missions that utilize these developments including the first two deep space CubeSats (INSPIRE), planned for launch in 2017; the first pair of CubeSats to be sent to another planet (MARCO), manifested with the InSight Mars lander launch in March of 2016; a helicopter "drone" on Mars to extend the reach of future rovers; plans for a Lunar Flashlight mission to shine a light on the permanently shadowed craters of the Moon's poles; a Near Earth Asteroid CubeSat missio n; and a CubeSat constellation to demonstrate time series measurements of storm systems on Earth. From these beginnings, the potential for CubeSats and NanoSats to add to our knowledge of the solar system could easily grow exponentially. Imagine if every deep space mission carried one or more CubeSats that could operate independently (even for a brief period) on arrival at their target body. At only incremental additional cost, such spacecraft could go closer, probe deeper, and provide science measurements that we would not risk with the host spacecraft. This paper will describe examples including a NanoSat to probe the composition of Venus' atmosphere, impactors and close flybys of Europa, lunar probes, and soft landers for the moons of Mars. Low cost access to deep space also offers the potential for independent CubeSat/NanoSat missions - allowing us to characterize the population of near Earth asteroids for example, deploy a constellation around Venus, or take closer looks at the asteroid belt.
Xie, Zhengwei; Zhang, Tianyu; Ouyang, Qi
2018-02-01
One of the long-expected goals of genome-scale metabolic modelling is to evaluate the influence of the perturbed enzymes on flux distribution. Both ordinary differential equation (ODE) models and constraint-based models, like Flux balance analysis (FBA), lack the capacity to perform metabolic control analysis (MCA) for large-scale networks. In this study, we developed a hyper-cube shrink algorithm (HCSA) to incorporate the enzymatic properties into the FBA model by introducing a pseudo reaction V constrained by enzymatic parameters. Our algorithm uses the enzymatic information quantitatively rather than qualitatively. We first demonstrate the concept by applying HCSA to a simple three-node network, whereby we obtained a good correlation between flux and enzyme abundance. We then validate its prediction by comparison with ODE and with a synthetic network producing voilacein and analogues in Saccharomyces cerevisiae. We show that HCSA can mimic the state-state results of ODE. Finally, we show its capability of predicting the flux distribution in genome-scale networks by applying it to sporulation in yeast. We show the ability of HCSA to operate without biomass flux and perform MCA to determine rate-limiting reactions. Algorithm was implemented by Matlab and C ++. The code is available at https://github.com/kekegg/HCSA. xiezhengwei@hsc.pku.edu.cn or qi@pku.edu.cn. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
INSPIRE and MarCO - Technology Development for the First Deep Space CubeSats
NASA Astrophysics Data System (ADS)
Klesh, Andrew
2016-07-01
INSPIRE (Interplanetary NanoSpacecraft Pathfinder In a Relevant Environment) and MarCO (Mars Cube One) will open the door for tiny spacecraft to explore the solar system. INSPIRE serves as a trailblazer, designed to demonstrate new technology needed for deep space. MarCO will open the door for NanoSpacecraft to serve in support roles for much larger primary missions - in this case, providing a real-time relay of for the InSight project and will likely be the first CubeSats to reach deep space. Together, these four spacecraft (two for each mission) enable fundamental science objectives to be met with tiny vehicles. Originally designed for a March, 2016 launch with the InSight mission to Mars, the MarCO spacecraft are now complete and in storage. When launched with the InSight lander from Vandenberg Air Force Base, the spacecraft will begin a 6.5 month cruise to Mars. Soon after InSight itself separates from the upper stage of the launch vehicle, the two MarCO CubeSats will deploy and independently fly to Mars to support telecommunications relay for InSight's entry, descent, and landing sequence. These spacecraft will have onboard capability for deep space trajectory correction maneuvers; high-speed direct-to-Earth & DSN-compatible communications; an advanced navigation transponder; a large deployable reflect-array high gain antenna; and a robust software suite. This talk will present an overview of the INSPIRE and MarCO projects, including a concept of operations, details of the spacecraft and subsystem design, and lessons learned from integration and test. Finally, the talk will outline how lessons from these spacecraft are already being utilized in the next generation of interplanetary CubeSats, as well as a brief vision of their applicability for solar system exploration. The research described here was carried out at the Jet Propulsion Laboratory, Caltech, under a contract with the National Aeronautics and Space Administration (NASA).
2017-04-19
A cube identified with an AprilTag, similar to a barcode, is delivered to a "home" square in the middle of a competition arena during the Swarmathon competition. At the Kennedy Space Center Visitor Complex, student teams developed search algorithms for the Swarmies to operate autonomously, communicating and interacting as a collective swarm similar to ants foraging for food.
Adapting the Reconfigurable SpaceCube Processing System for Multiple Mission Applications
NASA Technical Reports Server (NTRS)
Petrick, Dave
2014-01-01
This paper will detail the use of SpaceCube in multiple space flight applications including the Hubble Space Telescope Servicing Mission 4 (HST-SM4), an International Space Station (ISS) radiation test bed experiment, and the main avionics subsystem for two separate ISS attached payloads. Each mission has had varying degrees of data processing complexities, performance requirements, and external interfaces. We will show the methodology used to minimize the changes required to the physical hardware, FPGA designs, embedded software interfaces, and testing.This paper will summarize significant results as they apply to each mission application. In the HST-SM4 application we utilized the FPGA resources to accelerate portions of the image processing algorithms more than 25 times faster than a standard space processor in order to meet computational speed requirements. For the ISS radiation on-orbit demonstration, the main goal is to show that we can rely on the commercial FPGAs and processors in a space environment. We describe our FPGA and processor radiation mitigation strategies that have resulted in our eight PowerPCs being available and error free for more than 99.99 of the time over the period of four years. This positive data and proven reliability of the SpaceCube on ISS resulted in the Department of Defense (DoD) selecting SpaceCube, which is replacing an older and slower computer currently used on ISS, as the main avionics for two upcoming ISS experiment campaigns. This paper will show how we quickly reconfigured the SpaceCube system to meet the more stringent reliability requirements
Dynamic programming on a shared-memory multiprocessor
NASA Technical Reports Server (NTRS)
Edmonds, Phil; Chu, Eleanor; George, Alan
1993-01-01
Three new algorithms for solving dynamic programming problems on a shared-memory parallel computer are described. All three algorithms attempt to balance work load, while keeping synchronization cost low. In particular, for a multiprocessor having p processors, an analysis of the best algorithm shows that the arithmetic cost is O(n-cubed/6p) and that the synchronization cost is O(absolute value of log sub C n) if p much less than n, where C = (2p-1)/(2p + 1) and n is the size of the problem. The low synchronization cost is important for machines where synchronization is expensive. Analysis and experiments show that the best algorithm is effective in balancing the work load and producing high efficiency.
NASA Advancing Aviation Technology on This Week @NASA – March 3, 2017
2017-03-03
On March 2, NASA’s acting Administrator, Robert Lightfoot spoke at the U.S. Chamber of Commerce’s Aviation Summit in Washington, about how the agency’s technology advancements have helped transform the aviation industry. Lightfoot was then joined by Canadian Minister of Transport Marc Garneau, who is a former astronaut and Canadian Space Agency president, and Carol Hallett, counselor to the chamber, for a discussion with NASA’s Shane Kimbrough and Peggy Whitson, via satellite from the International Space Station. The two talked about the vast array of research and technology development conducted aboard the station. Also, Anniversary of One-Year Crew’s Return, IceCube SmallSat Ready for Launch, Orion Propulsion Qualification Module Installed, Small Business Industry Awards, and African American Pioneers in Aviation and Space!
Nutrient Stress Detection in Corn Using Neural Networks and AVIRIS Hyperspectral Imagery
NASA Technical Reports Server (NTRS)
Estep, Lee
2001-01-01
AVIRIS image cube data has been processed for the detection of nutrient stress in corn by both known, ratio-type algorithms and by trained neural networks. The USDA Shelton, NE, ARS Variable Rate Nitrogen Application (VRAT) experimental farm was the site used in the study. Upon application of ANOVA and Dunnett multiple comparsion tests on the outcome of both the neural network processing and the ratio-type algorithm results, it was found that the neural network methodology provides a better overall capability to separate nutrient stressed crops from in-field controls.
Micropulsed Plasma Thrusters for Attitude Control of a Low-Earth-Orbiting CubeSat
NASA Technical Reports Server (NTRS)
Gatsonis, Nikolaos A.; Lu, Ye; Blandino, John; Demetriou, Michael A.; Paschalidis, Nicholas
2016-01-01
This study presents a 3-Unit CubeSat design with commercial-off-the-shelf hardware, Teflon-fueled micropulsed plasma thrusters, and an attitude determination and control approach. The micropulsed plasma thruster is sized by the impulse bit and pulse frequency required for continuous compensation of expected maximum disturbance torques at altitudes between 400 and 1000 km, as well as to perform stabilization of up to 20 deg /s and slew maneuvers of up to 180 deg. The study involves realistic power constraints anticipated on the 3-Unit CubeSat. Attitude estimation is implemented using the q method for static attitude determination of the quaternion using pairs of the spacecraft-sun and magnetic-field vectors. The quaternion estimate and the gyroscope measurements are used with an extended Kalman filter to obtain the attitude estimates. Proportional-derivative control algorithms use the static attitude estimates in order to calculate the torque required to compensate for the disturbance torques and to achieve specified stabilization and slewing maneuvers or combinations. The controller includes a thruster-allocation method, which determines the optimal utilization of the available thrusters and introduces redundancy in case of failure. Simulation results are presented for a 3-Unit CubeSat under detumbling, pointing, and pointing and spinning scenarios, as well as comparisons between the thruster-allocation and the paired-firing methods under thruster failure.
2017-04-20
In the Swarmathon competition at the Kennedy Space Center Visitor Complex, students were asked to develop computer code for the small robots, programming them to look for "resources" in the form of cubes with AprilTags, similar to barcodes. Teams developed search algorithms for the Swarmies to operate autonomously, communicating and interacting as a collective swarm similar to ants foraging for food.
SOFIA: a flexible source finder for 3D spectral line data
NASA Astrophysics Data System (ADS)
Serra, Paolo; Westmeier, Tobias; Giese, Nadine; Jurek, Russell; Flöer, Lars; Popping, Attila; Winkel, Benjamin; van der Hulst, Thijs; Meyer, Martin; Koribalski, Bärbel S.; Staveley-Smith, Lister; Courtois, Hélène
2015-04-01
We introduce SOFIA, a flexible software application for the detection and parametrization of sources in 3D spectral line data sets. SOFIA combines for the first time in a single piece of software a set of new source-finding and parametrization algorithms developed on the way to future H I surveys with ASKAP (WALLABY, DINGO) and APERTIF. It is designed to enable the general use of these new algorithms by the community on a broad range of data sets. The key advantages of SOFIA are the ability to: search for line emission on multiple scales to detect 3D sources in a complete and reliable way, taking into account noise level variations and the presence of artefacts in a data cube; estimate the reliability of individual detections; look for signal in arbitrarily large data cubes using a catalogue of 3D coordinates as a prior; provide a wide range of source parameters and output products which facilitate further analysis by the user. We highlight the modularity of SOFIA, which makes it a flexible package allowing users to select and apply only the algorithms useful for their data and science questions. This modularity makes it also possible to easily expand SOFIA in order to include additional methods as they become available. The full SOFIA distribution, including a dedicated graphical user interface, is publicly available for download.
Development of a computer-aided design software for dental splint in orthognathic surgery
NASA Astrophysics Data System (ADS)
Chen, Xiaojun; Li, Xing; Xu, Lu; Sun, Yi; Politis, Constantinus; Egger, Jan
2016-12-01
In the orthognathic surgery, dental splints are important and necessary to help the surgeon reposition the maxilla or mandible. However, the traditional methods of manual design of dental splints are difficult and time-consuming. The research on computer-aided design software for dental splints is rarely reported. Our purpose is to develop a novel special software named EasySplint to design the dental splints conveniently and efficiently. The design can be divided into two steps, which are the generation of initial splint base and the Boolean operation between it and the maxilla-mandibular model. The initial splint base is formed by ruled surfaces reconstructed using the manually picked points. Then, a method to accomplish Boolean operation based on the distance filed of two meshes is proposed. The interference elimination can be conducted on the basis of marching cubes algorithm and Boolean operation. The accuracy of the dental splint can be guaranteed since the original mesh is utilized to form the result surface. Using EasySplint, the dental splints can be designed in about 10 minutes and saved as a stereo lithography (STL) file for 3D printing in clinical applications. Three phantom experiments were conducted and the efficiency of our method was demonstrated.
Development of a computer-aided design software for dental splint in orthognathic surgery
Chen, Xiaojun; Li, Xing; Xu, Lu; Sun, Yi; Politis, Constantinus; Egger, Jan
2016-01-01
In the orthognathic surgery, dental splints are important and necessary to help the surgeon reposition the maxilla or mandible. However, the traditional methods of manual design of dental splints are difficult and time-consuming. The research on computer-aided design software for dental splints is rarely reported. Our purpose is to develop a novel special software named EasySplint to design the dental splints conveniently and efficiently. The design can be divided into two steps, which are the generation of initial splint base and the Boolean operation between it and the maxilla-mandibular model. The initial splint base is formed by ruled surfaces reconstructed using the manually picked points. Then, a method to accomplish Boolean operation based on the distance filed of two meshes is proposed. The interference elimination can be conducted on the basis of marching cubes algorithm and Boolean operation. The accuracy of the dental splint can be guaranteed since the original mesh is utilized to form the result surface. Using EasySplint, the dental splints can be designed in about 10 minutes and saved as a stereo lithography (STL) file for 3D printing in clinical applications. Three phantom experiments were conducted and the efficiency of our method was demonstrated. PMID:27966601
Development of a computer-aided design software for dental splint in orthognathic surgery.
Chen, Xiaojun; Li, Xing; Xu, Lu; Sun, Yi; Politis, Constantinus; Egger, Jan
2016-12-14
In the orthognathic surgery, dental splints are important and necessary to help the surgeon reposition the maxilla or mandible. However, the traditional methods of manual design of dental splints are difficult and time-consuming. The research on computer-aided design software for dental splints is rarely reported. Our purpose is to develop a novel special software named EasySplint to design the dental splints conveniently and efficiently. The design can be divided into two steps, which are the generation of initial splint base and the Boolean operation between it and the maxilla-mandibular model. The initial splint base is formed by ruled surfaces reconstructed using the manually picked points. Then, a method to accomplish Boolean operation based on the distance filed of two meshes is proposed. The interference elimination can be conducted on the basis of marching cubes algorithm and Boolean operation. The accuracy of the dental splint can be guaranteed since the original mesh is utilized to form the result surface. Using EasySplint, the dental splints can be designed in about 10 minutes and saved as a stereo lithography (STL) file for 3D printing in clinical applications. Three phantom experiments were conducted and the efficiency of our method was demonstrated.
Ji-Wook Jeong; Seung-Hoon Chae; Eun Young Chae; Hak Hee Kim; Young Wook Choi; Sooyeul Lee
2016-08-01
A computer-aided detection (CADe) algorithm for clustered microcalcifications (MCs) in reconstructed digital breast tomosynthesis (DBT) images is suggested. The MC-like objects were enhanced by a Hessian-based 3D calcification response function, and a signal-to-noise ratio (SNR) enhanced image was also generated to screen the MC clustering seed objects. A connected component segmentation method was used to detect the cluster seed objects, which were considered as potential clustering centers of MCs. Bounding cubes for the accepted clustering seed candidate were generated and the overlapping cubes were combined and examined. After the MC clustering and false-positive (FP) reduction step, the average number of FPs was estimated to be 0.87 per DBT volume with a sensitivity of 90.5%.
Maximum Principles and Application to the Analysis of An Explicit Time Marching Algorithm
NASA Technical Reports Server (NTRS)
LeTallec, Patrick; Tidriri, Moulay D.
1996-01-01
In this paper we develop local and global estimates for the solution of convection-diffusion problems. We then study the convergence properties of a Time Marching Algorithm solving Advection-Diffusion problems on two domains using incompatible discretizations. This study is based on a De-Giorgi-Nash maximum principle.
Retinal layer segmentation of macular OCT images using boundary classification
Lang, Andrew; Carass, Aaron; Hauser, Matthew; Sotirchos, Elias S.; Calabresi, Peter A.; Ying, Howard S.; Prince, Jerry L.
2013-01-01
Optical coherence tomography (OCT) has proven to be an essential imaging modality for ophthalmology and is proving to be very important in neurology. OCT enables high resolution imaging of the retina, both at the optic nerve head and the macula. Macular retinal layer thicknesses provide useful diagnostic information and have been shown to correlate well with measures of disease severity in several diseases. Since manual segmentation of these layers is time consuming and prone to bias, automatic segmentation methods are critical for full utilization of this technology. In this work, we build a random forest classifier to segment eight retinal layers in macular cube images acquired by OCT. The random forest classifier learns the boundary pixels between layers, producing an accurate probability map for each boundary, which is then processed to finalize the boundaries. Using this algorithm, we can accurately segment the entire retina contained in the macular cube to an accuracy of at least 4.3 microns for any of the nine boundaries. Experiments were carried out on both healthy and multiple sclerosis subjects, with no difference in the accuracy of our algorithm found between the groups. PMID:23847738
The Wide-Field Imaging Interferometry Testbed: Recent Results
NASA Technical Reports Server (NTRS)
Rinehart, Stephen
2006-01-01
We present recent results from the Wide-Field Imaging Interferometry Testbed (WIIT). The data acquired with the WIIT is "double Fourier" data, including both spatial and spectral information within each data cube. We have been working with this data, and starting to develop algorithms, implementations, and techniques for reducing this data. Such algorithms and tools are of great importance for a number of proposed future missions, including the Space Infrared Interferometric Telescope (SPIRIT), the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS), and the Terrestrial Planet Finder Interferometer (TPF-I)/Darwin. Recent results are discussed and future study directions are described.
SpecOp: Optimal Extraction Software for Integral Field Unit Spectrographs
NASA Astrophysics Data System (ADS)
McCarron, Adam; Ciardullo, Robin; Eracleous, Michael
2018-01-01
The Hobby-Eberly Telescope’s new low resolution integral field spectrographs, LRS2-B and LRS2-R, each cover a 12”x6” area on the sky with 280 fibers and generate spectra with resolutions between R=1100 and R=1900. To extract 1-D spectra from the instrument’s 3D data cubes, a program is needed that is flexible enough to work for a wide variety of targets, including continuum point sources, emission line sources, and compact sources embedded in complex backgrounds. We therefore introduce SpecOp, a user-friendly python program for optimally extracting spectra from integral-field unit spectrographs. As input, SpecOp takes a sky-subtracted data cube consisting of images at each wavelength increment set by the instrument’s spectral resolution, and an error file for each count measurement. All of these files are generated by the current LRS2 reduction pipeline. The program then collapses the cube in the image plane using the optimal extraction algorithm detailed by Keith Horne (1986). The various user-selected options include the fraction of the total signal enclosed in a contour-defined region, the wavelength range to analyze, and the precision of the spatial profile calculation. SpecOp can output the weighted counts and errors at each wavelength in various table formats using python’s astropy package. We outline the algorithm used for extraction and explain how the software can be used to easily obtain high-quality 1-D spectra. We demonstrate the utility of the program by applying it to spectra of a variety of quasars and AGNs. In some of these targets, we extract the spectrum of a nuclear point source that is superposed on a spatially extended galaxy.
Very fast motion planning for highly dexterous-articulated robots
NASA Technical Reports Server (NTRS)
Challou, Daniel J.; Gini, Maria; Kumar, Vipin
1994-01-01
Due to the inherent danger of space exploration, the need for greater use of teleoperated and autonomous robotic systems in space-based applications has long been apparent. Autonomous and semi-autonomous robotic devices have been proposed for carrying out routine functions associated with scientific experiments aboard the shuttle and space station. Finally, research into the use of such devices for planetary exploration continues. To accomplish their assigned tasks, all such autonomous and semi-autonomous devices will require the ability to move themselves through space without hitting themselves or the objects which surround them. In space it is important to execute the necessary motions correctly when they are first attempted because repositioning is expensive in terms of both time and resources (e.g., fuel). Finally, such devices will have to function in a variety of different environments. Given these constraints, a means for fast motion planning to insure the correct movement of robotic devices would be ideal. Unfortunately, motion planning algorithms are rarely used in practice because of their computational complexity. Fast methods have been developed for detecting imminent collisions, but the more general problem of motion planning remains computationally intractable. However, in this paper we show how the use of multicomputers and appropriate parallel algorithms can substantially reduce the time required to synthesize paths for dexterous articulated robots with a large number of joints. We have developed a parallel formulation of the Randomized Path Planner proposed by Barraquand and Latombe. We have shown that our parallel formulation is capable of formulating plans in a few seconds or less on various parallel architectures including: the nCUBE2 multicomputer with up to 1024 processors (nCUBE2 is a registered trademark of the nCUBE corporation), and a network of workstations.
NASA Technical Reports Server (NTRS)
Zhao, Bo; Lin, Cindy X.; Srivastava, Ashok N.; Oza, Nikunj C.; Han, Jiawei
2010-01-01
As world-wide air traffic continues to grow even at a modest pace, the overall complexity of the system will increase significantly. This increased complexity can lead to a larger number of fatalities per year even if the extremely low fatality rate that we currently enjoy is maintained. One important source of information about the safety of the aviation system is in Aviation Safety Text Reports which are written by members of the flight crew, air traffic controllers, and other parties involved with the aviation system. These anonymized narrative reports contain fixed-field contextual information about the flight but also contain free-form narratives that describe, in the author s own words, the nature of the safety incident and, in many cases, the contributing factors that led to the safety incident. Several thousand such reports are filed each month, each of which is read and analyzed by highly trained experts. However, it is possible that there are emerging safety issues due to the fact that they may be reported very infrequently and in different contexts with different descriptions. The goal of this research paper is to develop correlated topic models which uncover correlations in the subspaces defined by the intersection of numerous fixed fields and discovered correlated topics. This task requires the discovery of latent topics in the text reports and the creation of a topic cube. Furthermore, because the number of potential cells in the topic cube is very large, we discuss novel methods of pruning the search space in the topic cells, thereby making the analysis feasible. We demonstrate the new algorithms on an analysis of pilot fatigue and its contributing factors, as well as the safety incidents that are correlated with this phenomenon.
Three-dimensional volume containing multiple two-dimensional information patterns
NASA Astrophysics Data System (ADS)
Nakayama, Hirotaka; Shiraki, Atsushi; Hirayama, Ryuji; Masuda, Nobuyuki; Shimobaba, Tomoyoshi; Ito, Tomoyoshi
2013-06-01
We have developed an algorithm for recording multiple gradated two-dimensional projection patterns in a single three-dimensional object. When a single pattern is observed, information from the other patterns can be treated as background noise. The proposed algorithm has two important features: the number of patterns that can be recorded is theoretically infinite and no meaningful information can be seen outside of the projection directions. We confirmed the effectiveness of the proposed algorithm by performing numerical simulations of two laser crystals: an octagonal prism that contained four patterns in four projection directions and a dodecahedron that contained six patterns in six directions. We also fabricated and demonstrated an actual prototype laser crystal from a glass cube engraved by a laser beam. This algorithm has applications in various fields, including media art, digital signage, and encryption technology.
System and Method for an Integrated Satellite Platform
NASA Technical Reports Server (NTRS)
Starin, Scott R. (Inventor); Sheikh, Salman I. (Inventor); Hesse, Michael (Inventor); Clagett, Charles E. (Inventor); Santos Soto, Luis H. (Inventor); Hesh, Scott V. (Inventor); Paschalidis, Nikolaos (Inventor); Ericsson, Aprille J. (Inventor); Johnson, Michael A. (Inventor)
2018-01-01
A system, method, and computer-readable storage devices for a 6U CubeSat with a magnetometer boom. The example 6U CubeSat can include an on-board computing device connected to an electrical power system, wherein the electrical power system receives power from at least one of a battery and at least one solar panel, a first fluxgate sensor attached to an extendable boom, a release mechanism for extending the extendable boom, at least one second fluxgate sensor fixed within the satellite, an ion neutral mass spectrometer, and a relativistic electron/proton telescope. The on-board computing device can receive data from the first fluxgate sensor, the at least one second fluxgate sensor, the ion neutral mass spectrometer, and the relativistic electron/proton telescope via the bus, and can then process the data via an algorithm to deduce a geophysical signal.
Radiometry simulation within the end-to-end simulation tool SENSOR
NASA Astrophysics Data System (ADS)
Wiest, Lorenz; Boerner, Anko
2001-02-01
12 An end-to-end simulation is a valuable tool for sensor system design, development, optimization, testing, and calibration. This contribution describes the radiometry module of the end-to-end simulation tool SENSOR. It features MODTRAN 4.0-based look up tables in conjunction with a cache-based multilinear interpolation algorithm to speed up radiometry calculations. It employs a linear reflectance parameterization to reduce look up table size, considers effects due to the topology of a digital elevation model (surface slope, sky view factor) and uses a reflectance class feature map to assign Lambertian and BRDF reflectance properties to the digital elevation model. The overall consistency of the radiometry part is demonstrated by good agreement between ATCOR 4-retrieved reflectance spectra of a simulated digital image cube and the original reflectance spectra used to simulate this image data cube.
Chow, J; Leung, M; Van Dyk, J
2008-07-01
This study provides new information on the evaluation of the lung dose calculation algorithms as a function of the relative electron density of lung, ρ e,lung . Doses calculated using the collapsed cone convolution (CCC) and adaptive convolution (AC) algorithm in lung with the Pinnacle 3 system were compared to those calculated using the Monte Carlo (MC) simulation (EGSnrc-based code). Three groups of lung phantoms, namely, "Slab", "Column" and "Cube" with different ρ e,lung (0.05-0.7), positions, volumes and shapes of lung in water were used. 6 and 18MV photon beams with 4×4 and 10×10cm 2 field sizes produced by a Varian 21EX Linac were used in the MC dose calculations. Results show that the CCC algorithm agrees well with AC to within ±1% for doses calculated in the lung phantoms, indicating that the AC, with 3-4 times less computing time required than CCC, is a good substitute for the CCC method. Comparing the CCC and AC with MC, dose deviations are found when ρ e,lung are ⩽0.1-0.3. The degree of deviation depends on the photon beam energy and field size, and is relatively large when high-energy photon beams with small field are used. For the penumbra widths (20%-80%), the CCC and AC agree well with MC for the "Slab" and "Cube" phantoms with the lung volumes at the central beam axis (CAX). However, deviations >2mm occur in the "Column" phantoms, with two lung volumes separated by a water column along the CAX, using the 18MV (4×4cm 2 ) photon beams with ρ e,lung ⩽0.1. © 2008 American Association of Physicists in Medicine.
Development of iterative techniques for the solution of unsteady compressible viscous flows
NASA Technical Reports Server (NTRS)
Sankar, Lakshmi N.; Hixon, Duane
1992-01-01
The development of efficient iterative solution methods for the numerical solution of two- and three-dimensional compressible Navier-Stokes equations is discussed. Iterative time marching methods have several advantages over classical multi-step explicit time marching schemes, and non-iterative implicit time marching schemes. Iterative schemes have better stability characteristics than non-iterative explicit and implicit schemes. In this work, another approach based on the classical conjugate gradient method, known as the Generalized Minimum Residual (GMRES) algorithm is investigated. The GMRES algorithm has been used in the past by a number of researchers for solving steady viscous and inviscid flow problems. Here, we investigate the suitability of this algorithm for solving the system of non-linear equations that arise in unsteady Navier-Stokes solvers at each time step.
Layer-oriented multigrid wavefront reconstruction algorithms for multi-conjugate adaptive optics
NASA Astrophysics Data System (ADS)
Gilles, Luc; Ellerbroek, Brent L.; Vogel, Curtis R.
2003-02-01
Multi-conjugate adaptive optics (MCAO) systems with 104-105 degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wavefront control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of AO degrees of freedom. In this paper, we develop an iterative sparse matrix implementation of minimum variance wavefront reconstruction for telescope diameters up to 32m with more than 104 actuators. The basic approach is the preconditioned conjugate gradient method, using a multigrid preconditioner incorporating a layer-oriented (block) symmetric Gauss-Seidel iterative smoothing operator. We present open-loop numerical simulation results to illustrate algorithm convergence.
A color gamut description algorithm for liquid crystal displays in CIELAB space.
Sun, Bangyong; Liu, Han; Li, Wenli; Zhou, Shisheng
2014-01-01
Because the accuracy of gamut boundary description is significant for gamut mapping process, a gamut boundary calculating method for LCD monitors is proposed in this paper. Within most of the previous gamut boundary calculation algorithms, the gamut boundary is calculated in CIELAB space directly, and part of inside-gamut points are mistaken for the boundary points. While, in the new proposed algorithm, the points on the surface of RGB cube are selected as the boundary points, and then converted and described in CIELAB color space. Thus, in our algorithm, the true gamut boundary points are found and a more accurate gamut boundary is described. In experiment, a Toshiba LCD monitor's 3D CIELAB gamut for evaluation is firstly described which has regular-shaped outer surface, and then two 2D gamut boundaries ( CIE-a*b* boundary and CIE-C*L* boundary) are calculated which are often used in gamut mapping process. When our algorithm is compared with several famous gamut calculating algorithms, the gamut volumes are very close, which indicates that our algorithm's accuracy is precise and acceptable.
A Color Gamut Description Algorithm for Liquid Crystal Displays in CIELAB Space
Sun, Bangyong; Liu, Han; Li, Wenli; Zhou, Shisheng
2014-01-01
Because the accuracy of gamut boundary description is significant for gamut mapping process, a gamut boundary calculating method for LCD monitors is proposed in this paper. Within most of the previous gamut boundary calculation algorithms, the gamut boundary is calculated in CIELAB space directly, and part of inside-gamut points are mistaken for the boundary points. While, in the new proposed algorithm, the points on the surface of RGB cube are selected as the boundary points, and then converted and described in CIELAB color space. Thus, in our algorithm, the true gamut boundary points are found and a more accurate gamut boundary is described. In experiment, a Toshiba LCD monitor's 3D CIELAB gamut for evaluation is firstly described which has regular-shaped outer surface, and then two 2D gamut boundaries ( CIE-a*b* boundary and CIE-C*L* boundary) are calculated which are often used in gamut mapping process. When our algorithm is compared with several famous gamut calculating algorithms, the gamut volumes are very close, which indicates that our algorithm's accuracy is precise and acceptable. PMID:24892068
Tang, X; Liu, H; Chen, L; Wang, Q; Luo, B; Xiang, N; He, Y; Zhu, W; Zhang, J
2018-05-24
To investigate the accuracy of two semi-automatic segmentation measurements based on magnetic resonance imaging (MRI) three-dimensional (3D) Cube fast spin echo (FSE)-flex sequence in phantoms, and to evaluate the feasibility of determining the volumetric alterations of orbital fat (OF) and total extraocular muscles (TEM) in patients with thyroid-associated ophthalmopathy (TAO) by semi-automatic segmentation. Forty-four fatty (n=22) and lean (n=22) phantoms were scanned by using Cube FSE-flex sequence with a 3 T MRI system. Their volumes were measured by manual segmentation (MS) and two semi-automatic segmentation algorithms (regional growing [RG], multi-dimensional threshold [MDT]). Pearson correlation and Bland-Altman analysis were used to evaluate the measuring accuracy of MS, RG, and MDT in phantoms as compared with the true volume. Then, OF and TEM volumes of 15 TAO patients and 15 normal controls were measured using MDT. Paired-sample t-tests were used to compare the volumes and volume ratios of different orbital tissues between TAO patients and controls. Each segmentation (MS RG, MDT) has a significant correlation (p<0.01) with true volume. There was a minimal bias for MS, and a stronger agreement between MDT and the true volume than RG and the true volume both in fatty and lean phantoms. The reproducibility of Cube FSE-flex determined MDT was adequate. The volumetric ratios of OF/globe (p<0.01), TEM/globe (p<0.01), whole orbit/globe (p<0.01) and bone orbit/globe (p<0.01) were significantly greater in TAO patients than those in healthy controls. MRI Cube FSE-flex determined MDT is a relatively accurate semi-automatic segmentation that can be used to evaluate OF and TEM volumes in clinic. Copyright © 2018 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Demonstration of a Data Distribution System for ALMA Data Cubes
NASA Astrophysics Data System (ADS)
Eguchi, S.; Kawasaki, W.; Shirasaki, Y.; Komiya, Y.; Kosugi, G.; Ohishi, M.; Mizumoto, Y.; Kobayashi, T.
2014-05-01
The Atacama Large Millimeter / submillimeter Array (ALMA) is the world's largest radio telescope in Chile. As a part of Japanese Virtual Observatory (JVO) system, we have been constructing a prototype of data service to distribute ALMA data, which are three or four dimensional cubes and expected to exceed 2 TB in total size, corresponding to 75 days at world-averaged Internet bandwidth of 2.6 Mbps, in the next three years. To utilize the limited bandwidth, our system adopts a higher dimensional version of so-called "deep zoom": the system generates and stores lower resolution FITS data cubes with various binning parameters in directions of both space and frequency. Users of our portal site can easily visualize and cut out those data cubes by using ALMAWebQL, which is a web application built on customized GWT. Once the FITS files are downloaded via ALMAWebQL, one can visualize them in more detail using Vissage, a Java-based FITS cube browser. We exhibited our web and desktop viewer “fresh from the oven” at the last ADASS conference (Shirasaki et al. 2013). Improvement of their performance and functionality after that made the system nearly to a practical level. The performance problem of ALMAWebQL reported last year (Eguchi et al. 2013) was overcome by optimizing the network topology and applying the just-in-time endian conversion algorithm; the latest ALMAWebQL can follow up any user actions almost in real time for files smaller than 5 GB. It also enables users to define either a sub-region or sub-frequency range and move it freely on the graphical user interface, providing more detailed information of the FITS file. In addition, the latest Vissage now supports data from other telescopes including HST, Subaru, Chandra, etc. and overlaying two images. In this paper, we introduce the latest version of our VO system.
Xue, Zhong; Li, Hai; Guo, Lei; Wong, Stephen T.C.
2010-01-01
It is a key step to spatially align diffusion tensor images (DTI) to quantitatively compare neural images obtained from different subjects or the same subject at different timepoints. Different from traditional scalar or multi-channel image registration methods, tensor orientation should be considered in DTI registration. Recently, several DTI registration methods have been proposed in the literature, but deformation fields are purely dependent on the tensor features not the whole tensor information. Other methods, such as the piece-wise affine transformation and the diffeomorphic non-linear registration algorithms, use analytical gradients of the registration objective functions by simultaneously considering the reorientation and deformation of tensors during the registration. However, only relatively local tensor information such as voxel-wise tensor-similarity, is utilized. This paper proposes a new DTI image registration algorithm, called local fast marching (FM)-based simultaneous registration. The algorithm not only considers the orientation of tensors during registration but also utilizes the neighborhood tensor information of each voxel to drive the deformation, and such neighborhood tensor information is extracted from a local fast marching algorithm around the voxels of interest. These local fast marching-based tensor features efficiently reflect the diffusion patterns around each voxel within a spherical neighborhood and can capture relatively distinctive features of the anatomical structures. Using simulated and real DTI human brain data the experimental results show that the proposed algorithm is more accurate compared with the FA-based registration and is more efficient than its counterpart, the neighborhood tensor similarity-based registration. PMID:20382233
NASA Astrophysics Data System (ADS)
Isham, Brett; Bergman, Jan; Krause, Linda; Rincon-Charris, Amilcar; Bruhn, Fredrik; Funk, Peter; Stramkals, Arturs
2016-07-01
CubeSat missions are intentionally constrained by the limitations of their small platform. Mission payloads designed for low volume, mass, and power, may however be disproportionally limited by available telemetry allocations. In many cases, it is the data delivered to the ground which determines the value of the mission. However, transmitting more data does not necessarily guarantee high value, since the value also depends on data quality. By exploiting fast on-board computing and efficient artificial intelligence (AI) algorithms for analysis and data selection, the usage of the telemetry link can be optimized and value added to the mission. This concept is being implemented on the Puerto Rico CubeSat, which will make measurements of ambient ionospheric radio waves and ion irregularities and turbulence. Principle project goals include providing aerospace and systems engineering experiences to students. Science objectives include the study of natural space plasma processes to aid in better understanding of space weather and the Sun to Earth connection, and in-situ diagnostics of ionospheric modification experiments using high-power ground-based radio transmitters. We hope that this project might point the way to the productive use of AI in space and other remote, low-data-bandwidth environments.
NASA Astrophysics Data System (ADS)
Sych, Robert; Nakariakov, Valery; Anfinogentov, Sergey
Wavelet analysis is suitable for investigating waves and oscillating in solar atmosphere, which are limited in both time and frequency. We have developed an algorithms to detect this waves by use the Pixelize Wavelet Filtration (PWF-method). This method allows to obtain information about the presence of propagating and non-propagating waves in the data observation (cube images), and localize them precisely in time as well in space. We tested the algorithm and found that the results of coronal waves detection are consistent with those obtained by visual inspection. For fast exploration of the data cube, in addition, we applied early-developed Period- Map analysis. This method based on the Fast Fourier Transform and allows on initial stage quickly to look for "hot" regions with the peak harmonic oscillations and determine spatial distribution at the significant harmonics. We propose the detection procedure of coronal waves separate on two parts: at the first part, we apply the PeriodMap analysis (fast preparation) and than, at the second part, use information about spatial distribution of oscillation sources to apply the PWF-method (slow preparation). There are two possible algorithms working with the data: in automatic and hands-on operation mode. Firstly we use multiply PWF analysis as a preparation narrowband maps at frequency subbands multiply two and/or harmonic PWF analysis for separate harmonics in a spectrum. Secondly we manually select necessary spectral subband and temporal interval and than construct narrowband maps. For practical implementation of the proposed methods, we have developed the remote data processing system at Institute of Solar-Terrestrial Physics, Irkutsk. The system based on the data processing server - http://pwf.iszf.irk.ru. The main aim of this resource is calculation in remote access through the local and/or global network (Internet) narrowband maps of wave's sources both in whole spectral band and at significant harmonics. In addition, we can obtain temporal dynamics (mpeg- files) of the main oscillation characteristics: amplitude, power and phase as a spatial-temporal coordinates. For periodogram mapping of data cubes as a method for the pre-analysis, we developed preparation of the color maps where the pixel's colour corresponds to the frequency of the power spectrum maximum. The computer system based on applications ION-scripts, algorithmic languages IDL and PHP, and Apache WEB server. The IDL ION-scripts use for preparation and configuration of network requests at the central data server with subsequent connection to IDL run-unit software and graphic output on FTP-server and screen. Web page is constructed using PHP language.
Developing an EarthCube Governance Structure for Big Data Preservation and Access
NASA Astrophysics Data System (ADS)
Leetaru, H. E.; Leetaru, K. H.
2012-12-01
The underlying vision of the NSF EarthCube initiative is of an enduring resource serving the needs of the earth sciences for today and the future. We must therefore view this effort through the lens of what the earth sciences will need tomorrow and on how the underlying processes of data compilation, preservation, and access interplay with the scientific processes within the communities EarthCube will serve. Key issues that must be incorporated into the EarthCube governance structure include authentication, retrieval, and unintended use cases, the emerging role of whole-corpus data mining, and how inventory, citation, and archive practices will impact the ability of scientists to use EarthCube's collections into the future. According to the National Academies, the US federal government spends over $140 billion dollars a year in support of the nation's research base. Yet, a critical issue confronting all of the major scientific disciplines in building upon this investment is the lack of processes that guide how data are preserved for the long-term, ensuring that studies can be replicated and that experimental data remains accessible as new analytic methods become available or theories evolve. As datasets are used years or even decades after their creation, far richer metadata is needed to describe the underlying simulation, smoothing algorithms or bounding parameters of the data collection process. This is even truer as data are increasingly used outside their intended disciplines, as geoscience researchers apply algorithms from one discipline to datasets from another, where their analytical techniques may make extensive assumptions about the data. As science becomes increasingly interdisciplinary and emerging computational approaches begin applying whole-corpus methodologies and blending multiple archives together, we are facing new data access modalities distinct from the needs of the past, drawing into focus the question of centralized versus distributed architectures. In the past geoscience data have been distributed, with each site maintaining its own collections and centralized inventory metadata supporting discovery. This was based on the historical search-browse-download modality where access was primarily to download a copy to a researcher's own machine and datasets were measured in gigabytes. New "big data" approaches to the geosciences are already demonstrating the need to analyze the entirety of multiple collections from multiple sites totaling hundreds of terabytes in size. Yet, datasets are outpacing the ability of networks to share them, forcing a new paradigm in high-performance computing where computation must migrate to centralized data stores. The next generation of geoscientists are going to need a system designed for exploring and understanding data from multiple scientific domains and vantages where data are preserved for decades. We are not alone in this endeavor and there are many lessons we can learn from similar initiatives such as more than 40 years of governance policies for data warehouses and 15 years of open web archives, all of which face the same challenges. The entire EarthCube project will fail if the new governance structure does not account for the needs of integrated cyberinfrastructure that allows big data to stored, archived, analyzed, and made accessible to large numbers of scientists.
The Modeling, Simulation and Comparison of Interconnection Networks for Parallel Processing.
1987-12-01
performs better at a lower hardware cost than do the single stage cube and mesh networks. As a result, the designer of a paralll pro- cessing system is...attempted, and in most cases succeeded, in designing and implementing faster. more powerful systems. Due to design innovations and technological advances...largely to the computational complexity of the algorithms executed. In the von Neumann machine, instructions must be executed in a sequential manner. Design
Auroux, Didier; Cohen, Laurent D.; Masmoudi, Mohamed
2011-01-01
We combine in this paper the topological gradient, which is a powerful method for edge detection in image processing, and a variant of the minimal path method in order to find connected contours. The topological gradient provides a more global analysis of the image than the standard gradient and identifies the main edges of an image. Several image processing problems (e.g., inpainting and segmentation) require continuous contours. For this purpose, we consider the fast marching algorithm in order to find minimal paths in the topological gradient image. This coupled algorithm quickly provides accurate and connected contours. We present then two numerical applications, to image inpainting and segmentation, of this hybrid algorithm. PMID:22194734
Technique for Solving Electrically Small to Large Structures for Broadband Applications
NASA Technical Reports Server (NTRS)
Jandhyala, Vikram; Chowdhury, Indranil
2011-01-01
Fast iterative algorithms are often used for solving Method of Moments (MoM) systems, having a large number of unknowns, to determine current distribution and other parameters. The most commonly used fast methods include the fast multipole method (FMM), the precorrected fast Fourier transform (PFFT), and low-rank QR compression methods. These methods reduce the O(N) memory and time requirements to O(N log N) by compressing the dense MoM system so as to exploit the physics of Green s Function interactions. FFT-based techniques for solving such problems are efficient for spacefilling and uniform structures, but their performance substantially degrades for non-uniformly distributed structures due to the inherent need to employ a uniform global grid. FMM or QR techniques are better suited than FFT techniques; however, neither the FMM nor the QR technique can be used at all frequencies. This method has been developed to efficiently solve for a desired parameter of a system or device that can include both electrically large FMM elements, and electrically small QR elements. The system or device is set up as an oct-tree structure that can include regions of both the FMM type and the QR type. The system is enclosed with a cube at a 0- th level, splitting the cube at the 0-th level into eight child cubes. This forms cubes at a 1st level, recursively repeating the splitting process for cubes at successive levels until a desired number of levels is created. For each cube that is thus formed, neighbor lists and interaction lists are maintained. An iterative solver is then used to determine a first matrix vector product for any electrically large elements as well as a second matrix vector product for any electrically small elements that are included in the structure. These matrix vector products for the electrically large and small elements are combined, and a net delta for a combination of the matrix vector products is determined. The iteration continues until a net delta is obtained that is within the predefined limits. The matrix vector products that were last obtained are used to solve for the desired parameter. The solution for the desired parameter is then presented to a user in a tangible form; for example, on a display.
Janson, Lucas; Schmerling, Edward; Clark, Ashley; Pavone, Marco
2015-01-01
In this paper we present a novel probabilistic sampling-based motion planning algorithm called the Fast Marching Tree algorithm (FMT*). The algorithm is specifically aimed at solving complex motion planning problems in high-dimensional configuration spaces. This algorithm is proven to be asymptotically optimal and is shown to converge to an optimal solution faster than its state-of-the-art counterparts, chiefly PRM* and RRT*. The FMT* algorithm performs a “lazy” dynamic programming recursion on a predetermined number of probabilistically-drawn samples to grow a tree of paths, which moves steadily outward in cost-to-arrive space. As such, this algorithm combines features of both single-query algorithms (chiefly RRT) and multiple-query algorithms (chiefly PRM), and is reminiscent of the Fast Marching Method for the solution of Eikonal equations. As a departure from previous analysis approaches that are based on the notion of almost sure convergence, the FMT* algorithm is analyzed under the notion of convergence in probability: the extra mathematical flexibility of this approach allows for convergence rate bounds—the first in the field of optimal sampling-based motion planning. Specifically, for a certain selection of tuning parameters and configuration spaces, we obtain a convergence rate bound of order O(n−1/d+ρ), where n is the number of sampled points, d is the dimension of the configuration space, and ρ is an arbitrarily small constant. We go on to demonstrate asymptotic optimality for a number of variations on FMT*, namely when the configuration space is sampled non-uniformly, when the cost is not arc length, and when connections are made based on the number of nearest neighbors instead of a fixed connection radius. Numerical experiments over a range of dimensions and obstacle configurations confirm our the-oretical and heuristic arguments by showing that FMT*, for a given execution time, returns substantially better solutions than either PRM* or RRT*, especially in high-dimensional configuration spaces and in scenarios where collision-checking is expensive. PMID:27003958
NASA Technical Reports Server (NTRS)
Jentz, R. R.; Wackerman, C. C.; Shuchman, R. A.; Onstott, R. G.; Gloersen, Per; Cavalieri, Don; Ramseier, Rene; Rubinstein, Irene; Comiso, Joey; Hollinger, James
1991-01-01
Previous research studies have focused on producing algorithms for extracting geophysical information from passive microwave data regarding ice floe size, sea ice concentration, open water lead locations, and sea ice extent. These studies have resulted in four separate algorithms for extracting these geophysical parameters. Sea ice concentration estimates generated from each of these algorithms (i.e., NASA/Team, NASA/Comiso, AES/York, and Navy) are compared to ice concentration estimates produced from coincident high-resolution synthetic aperture radar (SAR) data. The SAR concentration estimates are produced from data collected in both the Beaufort Sea and the Greenland Sea in March 1988 and March 1989, respectively. The SAR data are coincident to the passive microwave data generated by the Special Sensor Microwave/Imager (SSM/I).
ecode - Electron Transport Algorithm Testing v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franke, Brian C.; Olson, Aaron J.; Bruss, Donald Eugene
2016-10-05
ecode is a Monte Carlo code used for testing algorithms related to electron transport. The code can read basic physics parameters, such as energy-dependent stopping powers and screening parameters. The code permits simple planar geometries of slabs or cubes. Parallelization consists of domain replication, with work distributed at the start of the calculation and statistical results gathered at the end of the calculation. Some basic routines (such as input parsing, random number generation, and statistics processing) are shared with the Integrated Tiger Series codes. A variety of algorithms for uncertainty propagation are incorporated based on the stochastic collocation and stochasticmore » Galerkin methods. These permit uncertainty only in the total and angular scattering cross sections. The code contains algorithms for simulating stochastic mixtures of two materials. The physics is approximate, ranging from mono-energetic and isotropic scattering to screened Rutherford angular scattering and Rutherford energy-loss scattering (simple electron transport models). No production of secondary particles is implemented, and no photon physics is implemented.« less
Nanocubes for real-time exploration of spatiotemporal datasets.
Lins, Lauro; Klosowski, James T; Scheidegger, Carlos
2013-12-01
Consider real-time exploration of large multidimensional spatiotemporal datasets with billions of entries, each defined by a location, a time, and other attributes. Are certain attributes correlated spatially or temporally? Are there trends or outliers in the data? Answering these questions requires aggregation over arbitrary regions of the domain and attributes of the data. Many relational databases implement the well-known data cube aggregation operation, which in a sense precomputes every possible aggregate query over the database. Data cubes are sometimes assumed to take a prohibitively large amount of space, and to consequently require disk storage. In contrast, we show how to construct a data cube that fits in a modern laptop's main memory, even for billions of entries; we call this data structure a nanocube. We present algorithms to compute and query a nanocube, and show how it can be used to generate well-known visual encodings such as heatmaps, histograms, and parallel coordinate plots. When compared to exact visualizations created by scanning an entire dataset, nanocube plots have bounded screen error across a variety of scales, thanks to a hierarchical structure in space and time. We demonstrate the effectiveness of our technique on a variety of real-world datasets, and present memory, timing, and network bandwidth measurements. We find that the timings for the queries in our examples are dominated by network and user-interaction latencies.
Bio-inspired multi-mode optic flow sensors for micro air vehicles
NASA Astrophysics Data System (ADS)
Park, Seokjun; Choi, Jaehyuk; Cho, Jihyun; Yoon, Euisik
2013-06-01
Monitoring wide-field surrounding information is essential for vision-based autonomous navigation in micro-air-vehicles (MAV). Our image-cube (iCube) module, which consists of multiple sensors that are facing different angles in 3-D space, can be applied to the wide-field of view optic flows estimation (μ-Compound eyes) and to attitude control (μ- Ocelli) in the Micro Autonomous Systems and Technology (MAST) platforms. In this paper, we report an analog/digital (A/D) mixed-mode optic-flow sensor, which generates both optic flows and normal images in different modes for μ- Compound eyes and μ-Ocelli applications. The sensor employs a time-stamp based optic flow algorithm which is modified from the conventional EMD (Elementary Motion Detector) algorithm to give an optimum partitioning of hardware blocks in analog and digital domains as well as adequate allocation of pixel-level, column-parallel, and chip-level signal processing. Temporal filtering, which may require huge hardware resources if implemented in digital domain, is remained in a pixel-level analog processing unit. The rest of the blocks, including feature detection and timestamp latching, are implemented using digital circuits in a column-parallel processing unit. Finally, time-stamp information is decoded into velocity from look-up tables, multiplications, and simple subtraction circuits in a chip-level processing unit, thus significantly reducing core digital processing power consumption. In the normal image mode, the sensor generates 8-b digital images using single slope ADCs in the column unit. In the optic flow mode, the sensor estimates 8-b 1-D optic flows from the integrated mixed-mode algorithm core and 2-D optic flows with an external timestamp processing, respectively.
What's the Cube Quest Challenge?
NASA Technical Reports Server (NTRS)
Cockrell, Jim
2016-01-01
Cube Quest Challenge, sponsored by Space Technology Mission Directorates Centennial Challenges program, is NASAs first in-space prize competition. Cube Quest is open to any U.S.-based, non-government CubeSat developer. Entrants will compete for one of three available 6U CubeSat dispenser slots on the EM-1 mission the first un-crewed lunar flyby of the Orion spacecraft launched by the Space Launch System in early 2018. The Cube Quest Challenge will award up to $5M in prizes. The advanced CubeSat technologies demonstrated by Cube Quest winners will enable NASA, universities, and industry to more quickly and affordably accomplish science and exploration objectives. This paper describes the teams, their novel CubeSat designs, and the emerging technologies for CubeSat operations in deep space environment.
A Pseudo-Temporal Multi-Grid Relaxation Scheme for Solving the Parabolized Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
White, J. A.; Morrison, J. H.
1999-01-01
A multi-grid, flux-difference-split, finite-volume code, VULCAN, is presented for solving the elliptic and parabolized form of the equations governing three-dimensional, turbulent, calorically perfect and non-equilibrium chemically reacting flows. The space marching algorithms developed to improve convergence rate and or reduce computational cost are emphasized. The algorithms presented are extensions to the class of implicit pseudo-time iterative, upwind space-marching schemes. A full approximate storage, full multi-grid scheme is also described which is used to accelerate the convergence of a Gauss-Seidel relaxation method. The multi-grid algorithm is shown to significantly improve convergence on high aspect ratio grids.
Photogrammetry Tool for Forensic Analysis
NASA Technical Reports Server (NTRS)
Lane, John
2012-01-01
A system allows crime scene and accident scene investigators the ability to acquire visual scene data using cameras for processing at a later time. This system uses a COTS digital camera, a photogrammetry calibration cube, and 3D photogrammetry processing software. In a previous instrument developed by NASA, the laser scaling device made use of parallel laser beams to provide a photogrammetry solution in 2D. This device and associated software work well under certain conditions. In order to make use of a full 3D photogrammetry system, a different approach was needed. When using multiple cubes, whose locations relative to each other are unknown, a procedure that would merge the data from each cube would be as follows: 1. One marks a reference point on cube 1, then marks points on cube 2 as unknowns. This locates cube 2 in cube 1 s coordinate system. 2. One marks reference points on cube 2, then marks points on cube 1 as unknowns. This locates cube 1 in cube 2 s coordinate system. 3. This procedure is continued for all combinations of cubes. 4. The coordinate of all of the found coordinate systems is then merged into a single global coordinate system. In order to achieve maximum accuracy, measurements are done in one of two ways, depending on scale: when measuring the size of objects, the coordinate system corresponding to the nearest cube is used, or when measuring the location of objects relative to a global coordinate system, a merged coordinate system is used. Presently, traffic accident analysis is time-consuming and not very accurate. Using cubes with differential GPS would give absolute positions of cubes in the accident area, so that individual cubes would provide local photogrammetry calibration to objects near a cube.
THE DETECTION OF A SN IIn IN OPTICAL FOLLOW-UP OBSERVATIONS OF ICECUBE NEUTRINO EVENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aartsen, M. G.; Abraham, K.; Ackermann, M.
2015-09-20
The IceCube neutrino observatory pursues a follow-up program selecting interesting neutrino events in real-time and issuing alerts for electromagnetic follow-up observations. In 2012 March, the most significant neutrino alert during the first three years of operation was issued by IceCube. In the follow-up observations performed by the Palomar Transient Factory (PTF), a Type IIn supernova (SN IIn) PTF12csy was found 0.°2 away from the neutrino alert direction, with an error radius of 0.°54. It has a redshift of z = 0.0684, corresponding to a luminosity distance of about 300 Mpc and the Pan-STARRS1 survey shows that its explosion time wasmore » at least 158 days (in host galaxy rest frame) before the neutrino alert, so that a causal connection is unlikely. The a posteriori significance of the chance detection of both the neutrinos and the SN at any epoch is 2.2σ within IceCube's 2011/12 data acquisition season. Also, a complementary neutrino analysis reveals no long-term signal over the course of one year. Therefore, we consider the SN detection coincidental and the neutrinos uncorrelated to the SN. However, the SN is unusual and interesting by itself: it is luminous and energetic, bearing strong resemblance to the SN IIn 2010jl, and shows signs of interaction of the SN ejecta with a dense circumstellar medium. High-energy neutrino emission is expected in models of diffusive shock acceleration, but at a low, non-detectable level for this specific SN. In this paper, we describe the SN PTF12csy and present both the neutrino and electromagnetic data, as well as their analysis.« less
Automated Reconstruction of Neural Trees Using Front Re-initialization
Mukherjee, Amit; Stepanyants, Armen
2013-01-01
This paper proposes a greedy algorithm for automated reconstruction of neural arbors from light microscopy stacks of images. The algorithm is based on the minimum cost path method. While the minimum cost path, obtained using the Fast Marching Method, results in a trace with the least cumulative cost between the start and the end points, it is not sufficient for the reconstruction of neural trees. This is because sections of the minimum cost path can erroneously travel through the image background with undetectable detriment to the cumulative cost. To circumvent this problem we propose an algorithm that grows a neural tree from a specified root by iteratively re-initializing the Fast Marching fronts. The speed image used in the Fast Marching Method is generated by computing the average outward flux of the gradient vector flow field. Each iteration of the algorithm produces a candidate extension by allowing the front to travel a specified distance and then tracking from the farthest point of the front back to the tree. Robust likelihood ratio test is used to evaluate the quality of the candidate extension by comparing voxel intensities along the extension to those in the foreground and the background. The qualified extensions are appended to the current tree, the front is re-initialized, and Fast Marching is continued until the stopping criterion is met. To evaluate the performance of the algorithm we reconstructed 6 stacks of two-photon microscopy images and compared the results to the ground truth reconstructions by using the DIADEM metric. The average comparison score was 0.82 out of 1.0, which is on par with the performance achieved by expert manual tracers. PMID:24386539
Learning-based 3D surface optimization from medical image reconstruction
NASA Astrophysics Data System (ADS)
Wei, Mingqiang; Wang, Jun; Guo, Xianglin; Wu, Huisi; Xie, Haoran; Wang, Fu Lee; Qin, Jing
2018-04-01
Mesh optimization has been studied from the graphical point of view: It often focuses on 3D surfaces obtained by optical and laser scanners. This is despite the fact that isosurfaced meshes of medical image reconstruction suffer from both staircases and noise: Isotropic filters lead to shape distortion, while anisotropic ones maintain pseudo-features. We present a data-driven method for automatically removing these medical artifacts while not introducing additional ones. We consider mesh optimization as a combination of vertex filtering and facet filtering in two stages: Offline training and runtime optimization. In specific, we first detect staircases based on the scanning direction of CT/MRI scanners, and design a staircase-sensitive Laplacian filter (vertex-based) to remove them; and then design a unilateral filtered facet normal descriptor (uFND) for measuring the geometry features around each facet of a given mesh, and learn the regression functions from a set of medical meshes and their high-resolution reference counterparts for mapping the uFNDs to the facet normals of the reference meshes (facet-based). At runtime, we first perform staircase-sensitive Laplacian filter on an input MC (Marching Cubes) mesh, and then filter the mesh facet normal field using the learned regression functions, and finally deform it to match the new normal field for obtaining a compact approximation of the high-resolution reference model. Tests show that our algorithm achieves higher quality results than previous approaches regarding surface smoothness and surface accuracy.
NASA Technical Reports Server (NTRS)
Wong, Yen F.; Kegege, Obadiah; Schaire, Scott H.; Bussey, George; Altunc, Serhat; Zhang, Yuwen; Patel Chitra
2016-01-01
National Aeronautics and Space Administration (NASA) CubeSat missions are expected to grow rapidly in the next decade. Higher data rate CubeSats are transitioning away from Amateur Radio bands to higher frequency bands. A high-level communication architecture for future space-to-ground CubeSat communication was proposed within NASA Goddard Space Flight Center. This architecture addresses CubeSat direct-to-ground communication, CubeSat to Tracking Data Relay Satellite System (TDRSS) communication, CubeSat constellation with Mothership direct-to-ground communication, and CubeSat Constellation with Mothership communication through K-Band Single Access (KSA). A study has been performed to explore this communication architecture, through simulations, analyses, and identifying technologies, to develop the optimum communication concepts for CubeSat communications. This paper presents details of the simulation and analysis that include CubeSat swarm, daughter ship/mother ship constellation, Near Earth Network (NEN) S and X-band direct to ground link, TDRSS Multiple Access (MA) array vs Single Access mode, notional transceiver/antenna configurations, ground asset configurations and Code Division Multiple Access (CDMA) signal trades for daughter ship/mother ship CubeSat constellation inter-satellite cross link. Results of space science X-band 10 MHz maximum achievable data rate study are summarized. CubeSat NEN Ka-Band end-to-end communication analysis is provided. Current CubeSat communication technologies capabilities are presented. Compatibility test of the CubeSat transceiver through NEN and SN is discussed. Based on the analyses, signal trade studies and technology assessments, the desired CubeSat transceiver features and operation concepts for future CubeSat end-to-end communications are derived.
2018-05-17
The RainCube 6U CubeSat with fully-deployed antenna. RainCube, CubeRRT and TEMPEST-D are currently integrated aboard Orbital ATKs Cygnus spacecraft and are awaiting launch on an Antares rocket. After the CubeSats have arrived at the station, they will be deployed into low-Earth orbit and will begin their missions to test these new technologies useful for predicting weather, ensuring data quality, and helping researchers better understand storms. https://photojournal.jpl.nasa.gov/catalog/PIA22457
NASA Astrophysics Data System (ADS)
Rajon, D. A.; Shah, A. P.; Watchman, C. J.; Brindle, J. M.; Bolch, W. E.
2003-06-01
Recent advances in physical models of skeletal dosimetry utilize high-resolution NMR microscopy images of trabecular bone. These images are coupled to radiation transport codes to assess energy deposition within active bone marrow irradiated by bone- or marrow-incorporated radionuclides. Recent studies have demonstrated that the rectangular shape of image voxels is responsible for cross-region (bone-to-marrow) absorbed fraction errors of up to 50% for very low-energy electrons (<50 keV). In this study, a new hyperboloid adaptation of the marching cube (MC) image-visualization algorithm is implemented within 3D digital images of trabecular bone to better define the bone-marrow interface, and thus reduce voxel effects in the assessment of cross-region absorbed fractions. To test the method, a mathematical sample of trabecular bone was constructed, composed of a random distribution of spherical marrow cavities, and subsequently coupled to the EGSnrc radiation code to generate reference values for the energy deposition in marrow or bone. Next, digital images of the bone model were constructed over a range of simulated image resolutions, and coupled to EGSnrc using the hyperboloid MC (HMC) algorithm. For the radionuclides 33P, 117mSn, 131I and 153Sm, values of S(marrow←bone) estimated using voxel models of trabecular bone were shown to have relative errors of 10%, 9%, <1% and <1% at a voxel size of 150 µm. At a voxel size of 60 µm, these errors were 6%, 5%, <1% and <1%, respectively. When the HMC model was applied during particle transport, the relative errors on S(marrow←bone) for these same radionuclides were reduced to 7%, 6%, <1% and <1% at a voxel size of 150 µm, and to 2%, 2%, <1% and <1% at a voxel size of 60 µm. The technique was also applied to a real NMR image of human trabecular bone with a similar demonstration of reductions in dosimetry errors.
CubeSat Artist Rendering and NASA M-Cubed/COVE
2012-02-14
The image on the left is an artist rendering of Montana State University Explorer 1 CubeSat; at right is a CubeSat created by the University of Michigan designated the Michigan Mulitpurpose Mini-satellite, or M-Cubed.
Effect of contact angle on the orientation, stability, and assembly of dense floating cubes.
Daniello, Robert; Khan, Kashan; Donnell, Michael; Rothstein, Jonathan P
2014-02-01
In this paper, the effect of contact angle, density, and size on the orientation, stability, and assembly of floating cubes was investigated. All the cubes tested were more dense than water. Floatation occurred as a result of capillary stresses induced by deformation of the air-water interface. The advancing contact angle of the bare acrylic cubes was measured to be 85°. The contact angle of the cubes was increased by painting the cubes with a commercially available superhydrophobic paint to reach an advancing contact angle of 150°. Depending on their size, density, and contact angle, the cubes were observed to float in one of three primary orientations: edge up, vertex up, and face up. An experimental apparatus was built such that the sum of the gravitational force, buoyancy force, and capillary forces could be measured using a force transducer as a function of cube position as it was lowered through the air-water interface. Measurements showed that the maximum capillary forces were always experienced for the face up orientation. However, when floatation was possible in the vertex up orientation, it was found to be the most stable cube orientation because it had the lowest center of gravity. A series of theoretical predictions were performed for the cubes floating in each of the three primary orientations to calculate the net force on the cube. The theoretical predictions were found to match the experimental measurements well. A cube stability diagram of cube orientation as a function of cube contact angle and size was prepared from the predictions of theory and found to match the experimental observations quite well. The assembly of cubes floating face up and vertex up were also studied for assemblies of two, three, and many cubes. Cubes floating face up were found to assemble face-to-face and form regular square lattice patterns with no free interface between cubes. Cubes floating vertex up were found to assemble in a variety of different arrangements including edge-to-edge, vertex-to-vertex, face-to-face, and vertex-to-face with the most probably assembly being edge-to-edge. Large numbers of vertex up cubes were found to pack with a distribution of orientations and alignments.
Lunar and Lagrangian Point L1 L2 CubeSat Communication and Navigation Considerations
NASA Technical Reports Server (NTRS)
Schaire, Scott; Wong, Yen F.; Altunc, Serhat; Bussey, George D.; Shelton, Marta; Folta, Dave; Gramling, Cheryl; Celeste, Peter; Anderson, Mike; Perrotto, Trish;
2017-01-01
CubeSats have grown in sophistication to the point that relatively low-cost mission solutions could be undertaken for planetary exploration. There are unique considerations for Lunar and L1L2 CubeSat communication and navigation compared with low earth orbit CubeSats. This paper explores those considerations as they relate to the MoreheadGSFC Lunar IceCube Mission. The Lunar IceCube is a CubeSat mission led by Morehead State University with participation from NASA Goddard Space Flight Center, JPL, the Busek Company and Vermont Tech. It will search for surface water ice and other resources from a high inclination lunar orbit. Lunar IceCube is one of a select group of CubeSats designed to explore beyond low-earth orbit that will fly on NASAs Space Launch System (SLS) as secondary payloads for Exploration Mission (EM) 1. Lunar IceCube and the EM-1 CubeSats will lay the groundwork for future lunar and L1L2 CubeSat missions. This paper discusses communication and navigation needs for the Lunar IceCube mission and navigation and radiation tolerance requirements related to lunar and L1L2 orbits. Potential CubeSat radio and antennas for such missions are investigated and compared. Ground station coverage, link analysis, and ground station solutions are also discussed. There are currently modifications in process for the Morehead ground station. Further enhancement of the Morehead ground station and the NASA Near Earth Network (NEN) are being examined. This paper describes how the NEN may support Lunar and L1L2 CubeSats without any enhancements and potential expansion of NEN to better support such missions in the future. The potential NEN enhancements include upgrading current NEN Cortex receiver with Forward Error Correction (FEC) Turbo Code, providing X-band Uplink capability, and adding ranging options. The benefits of ground station enhancements for CubeSats flown on NASA Exploration Missions (EM) are presented. The paper also discusses other initiatives that the NEN is studying to better support the CubeSat community, including streamlining the compatibility test, planning and scheduling associated with CubeSat missions.
NASA Astrophysics Data System (ADS)
Afanasyev, A. P.; Bazhenov, R. I.; Luchaninov, D. V.
2018-05-01
The main purpose of the research is to develop techniques for defining the best technical and economic trajectories of cables in urban power systems. The proposed algorithms of calculation of the routes for laying cables take into consideration topological, technical and economic features of the cabling. The discrete option of an algorithm Fast marching method is applied as a calculating tool. It has certain advantages compared to other approaches. In particular, this algorithm is cost-effective to compute, therefore, it is not iterative. Trajectories of received laying cables are considered as optimal ones from the point of view of technical and economic criteria. They correspond to the present rules of modern urban development.
Alarm systems detect volcanic tremor and earthquake swarms during Redoubt eruption, 2009
NASA Astrophysics Data System (ADS)
Thompson, G.; West, M. E.
2009-12-01
We ran two alarm algorithms on real-time data from Redoubt volcano during the 2009 crisis. The first algorithm was designed to detect escalations in continuous seismicity (tremor). This is implemented within an application called IceWeb which computes reduced displacement, and produces plots of reduced displacement and spectrograms linked to the Alaska Volcano Observatory internal webpage every 10 minutes. Reduced displacement is a measure of the amplitude of volcanic tremor, and is computed by applying a geometrical spreading correction to a displacement seismogram. When the reduced displacement at multiple stations exceeds pre-defined thresholds and there has been a factor of 3 increase in reduced displacement over the previous hour, a tremor alarm is declared. The second algorithm was to designed to detect earthquake swarms. The mean and median event rates are computed every 5 minutes based on the last hour of data from a real-time event catalog. By comparing these with thresholds, three swarm alarm conditions can be declared: a new swarm, an escalation in a swarm, and the end of a swarm. The end of swarm alarm is important as it may mark a transition from swarm to continuous tremor. Alarms from both systems were dispatched using a generic alarm management system which implements a call-down list, allowing observatory scientists to be called in sequence until someone acknowledged the alarm via a confirmation web page. The results of this simple approach are encouraging. The tremor alarm algorithm detected 26 of the 27 explosive eruptions that occurred from 23 March - 4 April. The swarm alarm algorithm detected all five of the main volcanic earthquake swarm episodes which occurred during the Redoubt crisis on 26-27 February, 21-23 March, 26 March, 2-4 April and 3-7 May. The end-of-swarm alarms on 23 March and 4 April were particularly helpful as they were caused by transitions from swarm to tremor shortly preceding explosive eruptions; transitions which were detected much earlier by the swarm algorithm than they were by the tremor algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Wei; Helbert, Anne-Laure, E-mail: anne-laure.helbert@u-psud.fr; Baudin, Thierry
In high purity Aluminum, very strong {l_brace}100{r_brace}<001> recrystallization texture is developed after 98% cold rolling and annealing at 500 Degree-Sign C. On the contrary, in Aluminum alloys of commercial purity, the Cube component hardly exceeds 30% after complete recrystallization. Parameters controlling Cube orientation development are mainly the solute dragging due to impurities in solid solution and the stored deformation energy. In the present study, besides the 85% cold rolling, two extra annealings and a slight cold rolling are introduced in the processing route to increase the Cube volume fraction. The Cube development was analyzed by X-ray diffraction and Electron BackScatteredmore » Diffraction (EBSD). The nucleation and growth mechanisms responsible for the large Cube growth were investigated using FEG/EBSD in-situ heating experiments. Continuous recrystallization was observed in Cube oriented grains and competed with SIBM (Strain Induced Boundary Migration) mechanism. This latter was favored by the stored energy gap introduced during the additional cold-rolling between the Cube grains and their neighbors. Finally, a Cube volume fraction of 65% was reached after final recrystallization. - Highlights: Black-Right-Pointing-Pointer EBSD in-situ heating experiments of aluminum alloy of commercial purity. Black-Right-Pointing-Pointer A 10% cold-rolling after a partial recrystallization improved Cube nucleation and growth. Black-Right-Pointing-Pointer Annealing before cold-rolling limited the solute drag effect and permitted a large Cube growth. Black-Right-Pointing-Pointer Cube development is enhanced by continuous recrystallization of Cube sub-grains. Black-Right-Pointing-Pointer The preferential Cube growth occurs by SIBM of small Cube grains.« less
Psychophysical Comparisons in Image Compression Algorithms.
1999-03-01
Leister, M., "Lossy Lempel - Ziv Algorithm for Large Alphabet Sources and Applications to Image Compression ," IEEE Proceedings, v.I, pp. 225-228, September...1623-1642, September 1990. Sanford, M.A., An Analysis of Data Compression Algorithms used in the Transmission of Imagery, Master’s Thesis, Naval...NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS PSYCHOPHYSICAL COMPARISONS IN IMAGE COMPRESSION ALGORITHMS by % Christopher J. Bodine • March
NASA Astrophysics Data System (ADS)
Morita, Shogo; Ito, Shusei; Yamamoto, Hirotsugu
2017-02-01
Aerial display can form transparent floating screen in the mid-air and expected to provide aerial floating signage. We have proposed aerial imaging by retro-reflection (AIRR) to form a large aerial LED screen. However, luminance of aerial image is not sufficiently high so as to be used for signage under broad daylight. The purpose of this paper is to propose a novel aerial display scheme that features hybrid display of two different types of images. Under daylight, signs made of cubes are visible. At night, or under dark lighting situation, aerial LED signs become visible. Our proposed hybrid display is composed of an LED sign, a beam splitter, retro-reflectors, and transparent acrylic cubes. Aerial LED sign is formed with AIRR. Furthermore, we place transparent acrylic cubes on the beam splitter. Light from the LED sign enters transparent acrylic cubes, reflects twice in the transparent acrylic cubes, exit and converge to planesymmetrical position with light source regarding the cube array. Thus, transparent acrylic cubes also form the real image of the source LED sign. Now, we form a sign with the transparent acrylic cubes so that this cube-based sign is apparent under daylight. We have developed a proto-type display by use of 1-cm transparent cubes and retro-reflective sheeting and successfully confirmed aerial image forming with AIRR and transparent cubes as well as cube-based sign under daylight.
Optimal control of multiplicative control systems arising from cancer therapy
NASA Technical Reports Server (NTRS)
Bahrami, K.; Kim, M.
1975-01-01
This study deals with ways of curtailing the rapid growth of cancer cell populations. The performance functional that measures the size of the population at the terminal time as well as the control effort is devised. With use of the discrete maximum principle, the Hamiltonian for this problem is determined and the condition for optimal solutions are developed. The optimal strategy is shown to be a bang-bang control. It is shown that the optimal control for this problem must be on the vertices of an N-dimensional cube contained in the N-dimensional Euclidean space. An algorithm for obtaining a local minimum of the performance function in an orderly fashion is developed. Application of the algorithm to the design of antitumor drug and X-irradiation schedule is discussed.
A High Performance Image Data Compression Technique for Space Applications
NASA Technical Reports Server (NTRS)
Yeh, Pen-Shu; Venbrux, Jack
2003-01-01
A highly performing image data compression technique is currently being developed for space science applications under the requirement of high-speed and pushbroom scanning. The technique is also applicable to frame based imaging data. The algorithm combines a two-dimensional transform with a bitplane encoding; this results in an embedded bit string with exact desirable compression rate specified by the user. The compression scheme performs well on a suite of test images acquired from spacecraft instruments. It can also be applied to three-dimensional data cube resulting from hyper-spectral imaging instrument. Flight qualifiable hardware implementations are in development. The implementation is being designed to compress data in excess of 20 Msampledsec and support quantization from 2 to 16 bits. This paper presents the algorithm, its applications and status of development.
Flight Results from the HST SM4 Relative Navigation Sensor System
NASA Technical Reports Server (NTRS)
Naasz, Bo; Eepoel, John Van; Queen, Steve; Southward, C. Michael; Hannah, Joel
2010-01-01
On May 11, 2009, Space Shuttle Atlantis roared off of Launch Pad 39A enroute to the Hubble Space Telescope (HST) to undertake its final servicing of HST, Servicing Mission 4. Onboard Atlantis was a small payload called the Relative Navigation Sensor experiment, which included three cameras of varying focal ranges, avionics to record images and estimate, in real time, the relative position and attitude (aka "pose") of the telescope during rendezvous and deploy. The avionics package, known as SpaceCube and developed at the Goddard Space Flight Center, performed image processing using field programmable gate arrays to accelerate this process, and in addition executed two different pose algorithms in parallel, the Goddard Natural Feature Image Recognition and the ULTOR Passive Pose and Position Engine (P3E) algorithms
Derivative Analysis of AVIRIS Hyperspectral Data for the Detection of Plant Stress
NASA Technical Reports Server (NTRS)
Estep, Lee; Berglund, Judith
2001-01-01
A remote sensing campaign was conducted over a U.S. Department of Agriculture test site at Shelton, Nebraska. The test field was set off in blocks that were differentially treated with nitrogen. Four replicates of 0-kg/ha to 200-kg/ha, in 50-kg/ha increments, were present. Low-altitude AVIRIS hyperspectral data were collected over the site in 224 spectral bands. Simultaneously, ground data were collected to support the airborne imagery. In an effort to evaluate published, derivative-based algorithms for the detection of plant stress, different derivative-based approaches were applied to the collected AVIRIS image cube. The results indicate that, given good quality hyperspectral imagery, derivative techniques compare favorably with simple, well known band ratio algorithms for detection of plant stress.
NASA Technical Reports Server (NTRS)
Wong, Yen F.; Kegege, Obadiah; Schaire, Scott H.; Bussey, George; Altunc, Serhat; Zhang, Yuwen; Patel, Chitra
2016-01-01
National Aeronautics and Space Administration (NASA) CubeSat missions are expected to grow rapidly in the next decade. Higher data rate CubeSats are transitioning away from Amateur Radio bands to higher frequency bands. A high-level communication architecture for future space-to-ground CubeSat communication was proposed within NASA Goddard Space Flight Center. This architecture addresses CubeSat direct-to-ground communication, CubeSat to Tracking Data Relay Satellite System (TDRSS) communication, CubeSat constellation with Mothership direct-to-ground communication, and CubeSat Constellation with Mothership communication through K-Band Single Access (KSA).A Study has been performed to explore this communication architecture, through simulations, analyses, and identifying technologies, to develop the optimum communication concepts for CubeSat communications. This paper will present details of the simulation and analysis that include CubeSat swarm, daughter shipmother ship constellation, Near Earth Network (NEN) S and X-band direct to ground link, TDRS Multiple Access (MA) array vs Single Access mode, notional transceiverantenna configurations, ground asset configurations and Code Division Multiple Access (CDMA) signal trades for daughter mother CubeSat constellation inter-satellite crosslink. Results of Space Science X-band 10 MHz maximum achievable data rate study will be summarized. Assessment of Technology Readiness Level (TRL) of current CubeSat communication technologies capabilities will be presented. Compatibility test of the CubeSat transceiver through NEN and Space Network (SN) will be discussed. Based on the analyses, signal trade studies and technology assessments, the functional design and performance requirements as well as operation concepts for future CubeSat end-to-end communications will be derived.
Validation of SMAP Radar Vegetation Data Cubes from Agricultural Field Measurements
NASA Astrophysics Data System (ADS)
Tsang, L.; Xu, X.; Liao, T.; Kim, S.; Njoku, E. G.
2012-12-01
The NASA Soil Moisture Active/Passive (SMAP) Mission will be launched in October 2014. The objective of the SMAP mission is to provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. In the active algorithm, the retrieval is performed based on the backscattering data cube, which are characterized by two surface parameters, which are soil moisture and soil surface rms height, and one vegetation parameter, the vegetation water content. We have developed a physical-based forward scattering model to generate the data cube for agricultural fields. To represent the agricultural crops, we include a layer of cylinders and disks on top of the rough surface. The scattering cross section of the vegetation layer and its interaction with the underground soil surface were calculated by the distorted Born approximation, which give explicitly three scattering mechanisms. A) The direct volume scattering B) The double bounce effect as, and C) The double bouncing effects. The direct volume scattering is calculated by using the Body of Revolution code. The double bounce effects, exhibited by the interaction of rough surface with the vegetation layer is considered by modifying the rough surface reflectivity using the coherent wave as computed by Numerical solution of Maxwell equations of 3 Dimensional simulations (NMM3D) of bare soil scattering. The rough surface scattering of the soil was calculated by NMM3D. We have compared the physical scattering models with field measurements. In the field campaign, the measurements were made on soil moisture, rough surface rms heights and vegetation water content as well as geometric parameters of vegetation. The three main crops lands are grassland, cornfield and soybean fields. The corresponding data cubes are validated using SGP99, SMEX02 and SMEX 08 field experiments.
NASA Astrophysics Data System (ADS)
Golsanami, Naser; Kadkhodaie-Ilkhchi, Ali; Erfani, Amir
2015-01-01
Capillary pressure curves are important data for reservoir rock typing, analyzing pore throat distribution, determining height above free water level, and reservoir simulation. Laboratory experiments provide accurate data, however they are expensive, time-consuming and discontinuous through the reservoir intervals. The current study focuses on synthesizing artificial capillary pressure (Pc) curves from seismic attributes with the use of artificial intelligent systems including Artificial Neural Networks (ANNs), Fuzzy logic (FL) and Adaptive Neuro-Fuzzy Inference Systems (ANFISs). The synthetic capillary pressure curves were achieved by estimating pressure values at six mercury saturation points. These points correspond to mercury filled pore volumes of core samples (Hg-saturation) at 5%, 20%, 35%, 65%, 80%, and 90% saturations. To predict the synthetic Pc curve at each saturation point, various FL, ANFIS and ANN models were constructed. The varying neural network models differ in their training algorithm. Based on the performance function, the most accurately functioning models were selected as the final solvers to do the prediction process at each of the above-mentioned mercury saturation points. The constructed models were then tested at six depth points of the studied well which were already unforeseen by the models. The results show that the Fuzzy logic and neuro-fuzzy models were not capable of making reliable estimations, while the predictions from the ANN models were satisfyingly trustworthy. The obtained results showed a good agreement between the laboratory derived and synthetic capillary pressure curves. Finally, a 3D seismic cube was captured for which the required attributes were extracted and the capillary pressure cube was estimated by using the developed models. In the next step, the synthesized Pc cube was compared with the seismic cube and an acceptable correspondence was observed.
CubeIndexer: Indexer for regions of interest in data cubes
NASA Astrophysics Data System (ADS)
Chilean Virtual Observatory; Araya, Mauricio; Candia, Gabriel; Gregorio, Rodrigo; Mendoza, Marcelo; Solar, Mauricio
2015-12-01
CubeIndexer indexes regions of interest (ROIs) in data cubes reducing the necessary storage space. The software can process data cubes containing megabytes of data in fractions of a second without human supervision, thus allowing it to be incorporated into a production line for displaying objects in a virtual observatory. The software forms part of the Chilean Virtual Observatory (ChiVO) and provides the capability of content-based searches on data cubes to the astronomical community.
de Lasarte, Marta; Pujol, Jaume; Arjona, Montserrat; Vilaseca, Meritxell
2007-01-10
We present an optimized linear algorithm for the spatial nonuniformity correction of a CCD color camera's imaging system and the experimental methodology developed for its implementation. We assess the influence of the algorithm's variables on the quality of the correction, that is, the dark image, the base correction image, and the reference level, and the range of application of the correction using a uniform radiance field provided by an integrator cube. The best spatial nonuniformity correction is achieved by having a nonzero dark image, by using an image with a mean digital level placed in the linear response range of the camera as the base correction image and taking the mean digital level of the image as the reference digital level. The response of the CCD color camera's imaging system to the uniform radiance field shows a high level of spatial uniformity after the optimized algorithm has been applied, which also allows us to achieve a high-quality spatial nonuniformity correction of captured images under different exposure conditions.
Lunar and Lagrangian Point L1 L2 CubeSat Communication and Navigation Considerations
NASA Technical Reports Server (NTRS)
Schaire, Scott; Wong, Yen F.; Altunc, Serhat; Bussey, George; Shelton, Marta; Folta, Dave; Gramling, Cheryl; Celeste, Peter; Anderson, Mile; Perrotto, Trish;
2017-01-01
CubeSats have grown in sophistication to the point that relatively low-cost mission solutions could be undertaken for planetary exploration. There are unique considerations for lunar and L1/L2 CubeSat communication and navigation compared with low earth orbit CubeSats. This paper explores those considerations as they relate to the Lunar IceCube Mission. The Lunar IceCube is a CubeSat mission led by Morehead State University with participation from NASA Goddard Space Flight Center, Jet Propulsion Laboratory, the Busek Company and Vermont Tech. It will search for surface water ice and other resources from a high inclination lunar orbit. Lunar IceCube is one of a select group of CubeSats designed to explore beyond low-earth orbit that will fly on NASA’s Space Launch System (SLS) as secondary payloads for Exploration Mission (EM) 1. Lunar IceCube and the EM-1 CubeSats will lay the groundwork for future lunar and L1/L2 CubeSat missions. This paper discusses communication and navigation needs for the Lunar IceCube mission and navigation and radiation tolerance requirements related to lunar and L1/L2 orbits. Potential CubeSat radios and antennas for such missions are investigated and compared. Ground station coverage, link analysis, and ground station solutions are also discussed. This paper will describe modifications in process for the Morehead ground station, as well as further enhancements of the Morehead ground station and NASA Near Earth Network (NEN) that are being considered. The potential NEN enhancements include upgrading current NEN Cortex receiver with Forward Error Correction (FEC) Turbo Code, providing X-band uplink capability, and adding ranging options. The benefits of ground station enhancements for CubeSats flown on NASA Exploration Missions (EM) are presented. This paper also describes how the NEN may support lunar and L1/L2 CubeSats without any enhancements. In addition, NEN is studying other initiatives to better support the CubeSat community, including streamlining the compatibility testing, planning and scheduling associated with CubeSat missions. Because of the lower cost, opportunity for simultaneous multipoint observations, it is inevitable that CubeSats will continue to increase in popularity for not only LEO missions, but for lunar and L1/L2 missions as well. The challenges for lunar and L1/L2 missions for communication and navigation are much greater than for LEO missions, but are not insurmountable. Advancements in flight hardware and ground infrastructure will ease the burden.
2009-06-01
2 3. Space Access Challenges to the CubeSat Community........ 3 B. NPSCUL/NPSCUL-LITE PROGRAM HISTORY TO DATE...Astronautics, AIAA Space 2008 Conference and Exhibition, 2008. 3 3. Space Access Challenges to the CubeSat Community In less than ten years since... challenges to space access for CubeSats.5 Launch of a CubeSat aboard US launch vehicles from US launch facilities would allow CubeSats of a sensitive nature
NASA Technical Reports Server (NTRS)
O'Hara, Charles G. (Inventor); Shrestha, Bijay (Inventor); Vijayaraj, Veeraraghavan (Inventor); Mali, Preeti (Inventor)
2011-01-01
A compositing process for selecting spatial data collected over a period of time, creating temporal data cubes from the spatial data, and processing and/or analyzing the data using temporal mapping algebra functions. In some embodiments, the temporal data cube is creating a masked cube using the data cubes, and computing a composite from the masked cube by using temporal mapping algebra.
EarthCube's Assessment Framework: Ensuring Return on Investment
NASA Astrophysics Data System (ADS)
Lehnert, K.
2016-12-01
EarthCube is a community-governed, NSF-funded initiative to transform geoscience research by developing cyberinfrastructure that improves access, sharing, visualization, and analysis of all forms of geosciences data and related resources. EarthCube's goal is to enable geoscientists to tackle the challenges of understanding and predicting a complex and evolving solid Earth, hydrosphere, atmosphere, and space environment systems. EarthCube's infrastructure needs capabilities around data, software, and systems. It is essential for EarthCube to determine the value of new capabilities for the community and the progress of the overall effort to demonstrate its value to the science community and Return on Investment for the NSF. EarthCube is therefore developing an assessment framework for research proposals, projects funded by EarthCube, and the overall EarthCube program. As a first step, a software assessment framework has been developed that addresses the EarthCube Strategic Vision by promoting best practices in software development, complete and useful documentation, interoperability, standards adherence, open science, and education and training opportunities for research developers.
NASA Technical Reports Server (NTRS)
Swenson, Charles
2016-01-01
The Active CryoCubeSat project will demonstrate an advanced thermal control system for a 6-Unit (6U) CubeSat platform. A miniature, active thermal control system, in which a fluid is circulated in a closed loop from thermal loads to radiators, will be developed. A miniature cryogenic cooler will be integrated with this system to form a two-stage thermal control system. Key components will be miniaturized by using advanced additive manufacturing techniques resulting in a thermal testbed for proving out these technologies. Previous CubeSat missions have not tackled the problem of active thermal control systems nor have any past or current CubeSat missions included cryogenic instrumentation. This Active CryoCubeSat development effort will provide completely new capacities for CubeSats and constitutes a major advancement over the state-of-the-art in CubeSat thermal control.
CubeSat Launch Initiative Overview and CubeSat 101
NASA Technical Reports Server (NTRS)
Higginbotham, Scott
2017-01-01
The National Aeronautics and Space Administration (NASA) recognizes the tremendous potential that CubeSats (very small satellites) have to inexpensively demonstrate advanced technologies, collect scientific data, and enhance student engagement in Science, Technology, Engineering, and Mathematics (STEM). The CubeSat Launch Initiative (CSLI) was created to provide launch opportunities for CubeSats developed by academic institutions, non-profit entities, and NASA centers. This presentation will provide an overview of the CSLI, its benefits, and its results. This presentation will also provide high level CubeSat 101 information for prospective CubeSat developers, describing the development process from concept through mission operations while highlighting key points that developers need to be mindful of.
Albert, A; André, M; Anghinolfi, M; Anton, G; Ardid, M; Aubert, J-J; Avgitas, T; Baret, B; Barrios-Martí, J; Basa, S; Bertin, V; Biagi, S; Bormuth, R; Bourret, S; Bouwhuis, M C; Bruijn, R; Brunner, J; Busto, J; Capone, A; Caramete, L; Carr, J; Celli, S; Chiarusi, T; Circella, M; Coelho, J A B; Coleiro, A; Coniglione, R; Costantini, H; Coyle, P; Creusot, A; Deschamps, A; De Bonis, G; Distefano, C; Di Palma, I; Domi, A; Donzaud, C; Dornic, D; Drouhin, D; Eberl, T; El Bojaddaini, I; Elsässer, D; Enzenhöfer, A; Felis, I; Folger, F; Fusco, L A; Galatà, S; Gay, P; Giordano, V; Glotin, H; Grégoire, T; Gracia Ruiz, R; Graf, K; Hallmann, S; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Hößl, J; Hofestädt, J; Hugon, C; Illuminati, G; James, C W; de Jong, M; Jongen, M; Kadler, M; Kalekin, O; Katz, U; Kießling, D; Kouchner, A; Kreter, M; Kreykenbohm, I; Kulikovskiy, V; Lachaud, C; Lahmann, R; Lefèvre, D; Leonora, E; Lotze, M; Loucatos, S; Marcelin, M; Margiotta, A; Marinelli, A; Martínez-Mora, J A; Mele, R; Melis, K; Michael, T; Migliozzi, P; Moussa, A; Nezri, E; Organokov, M; Păvălaş, G E; Pellegrino, C; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Quinn, L; Racca, C; Riccobene, G; Sánchez-Losa, A; Saldaña, M; Salvadori, I; Samtleben, D F E; Sanguineti, M; Sapienza, P; Schüssler, F; Sieger, C; Spurio, M; Stolarczyk, Th; Taiuti, M; Tayalati, Y; Trovato, A; Turpin, D; Tönnis, C; Vallage, B; Van Elewyck, V; Versari, F; Vivolo, D; Vizzoca, A; Wilms, J; Zornoza, J D; Zúñiga, J
2017-01-01
A novel algorithm to reconstruct neutrino-induced particle showers within the ANTARES neutrino telescope is presented. The method achieves a median angular resolution of [Formula: see text] for shower energies below 100 TeV. Applying this algorithm to 6 years of data taken with the ANTARES detector, 8 events with reconstructed shower energies above 10 TeV are observed. This is consistent with the expectation of about 5 events from atmospheric backgrounds, but also compatible with diffuse astrophysical flux measurements by the IceCube collaboration, from which 2-4 additional events are expected. A [Formula: see text] C.L. upper limit on the diffuse astrophysical neutrino flux with a value per neutrino flavour of [Formula: see text] is set, applicable to the energy range from 23 TeV to 7.8 PeV, assuming an unbroken [Formula: see text] spectrum and neutrino flavour equipartition at Earth.
Navarro, Pedro J.; Fernández, Carlos; Borraz, Raúl; Alonso, Diego
2016-01-01
This article describes an automated sensor-based system to detect pedestrians in an autonomous vehicle application. Although the vehicle is equipped with a broad set of sensors, the article focuses on the processing of the information generated by a Velodyne HDL-64E LIDAR sensor. The cloud of points generated by the sensor (more than 1 million points per revolution) is processed to detect pedestrians, by selecting cubic shapes and applying machine vision and machine learning algorithms to the XY, XZ, and YZ projections of the points contained in the cube. The work relates an exhaustive analysis of the performance of three different machine learning algorithms: k-Nearest Neighbours (kNN), Naïve Bayes classifier (NBC), and Support Vector Machine (SVM). These algorithms have been trained with 1931 samples. The final performance of the method, measured a real traffic scenery, which contained 16 pedestrians and 469 samples of non-pedestrians, shows sensitivity (81.2%), accuracy (96.2%) and specificity (96.8%). PMID:28025565
Navarro, Pedro J; Fernández, Carlos; Borraz, Raúl; Alonso, Diego
2016-12-23
This article describes an automated sensor-based system to detect pedestrians in an autonomous vehicle application. Although the vehicle is equipped with a broad set of sensors, the article focuses on the processing of the information generated by a Velodyne HDL-64E LIDAR sensor. The cloud of points generated by the sensor (more than 1 million points per revolution) is processed to detect pedestrians, by selecting cubic shapes and applying machine vision and machine learning algorithms to the XY, XZ, and YZ projections of the points contained in the cube. The work relates an exhaustive analysis of the performance of three different machine learning algorithms: k-Nearest Neighbours (kNN), Naïve Bayes classifier (NBC), and Support Vector Machine (SVM). These algorithms have been trained with 1931 samples. The final performance of the method, measured a real traffic scenery, which contained 16 pedestrians and 469 samples of non-pedestrians, shows sensitivity (81.2%), accuracy (96.2%) and specificity (96.8%).
A second-order accurate parabolized Navier-Stokes algorithm for internal flows
NASA Technical Reports Server (NTRS)
Chitsomboon, T.; Tiwari, S. N.
1984-01-01
A parabolized implicit Navier-Stokes algorithm which is of second-order accuracy in both the cross flow and marching directions is presented. The algorithm is used to analyze three model supersonic flow problems (the flow over a 10-degree edge). The results are found to be in good agreement with the results of other techniques available in the literature.
CubeRovers for Lunar Exploration
NASA Astrophysics Data System (ADS)
Tallaksen, A. P.; Horchler, A. D.; Boirum, C.; Arnett, D.; Jones, H. L.; Fang, E.; Amoroso, E.; Chomas, L.; Papincak, L.; Sapunkov, O. B.; Whittaker, W. L.
2017-10-01
CubeRover is a 2-kg class of lunar rover that seeks to standardize and democratize surface mobility and science, analogous to CubeSats. This CubeRover will study in-situ lunar surface trafficability and descent engine blast ejecta phenomena.
Chemistry Cube Game - Exploring Basic Principles of Chemistry by Turning Cubes.
Müller, Markus T
2018-02-01
The Chemistry Cube Game invites students at secondary school level 1 and 2 to explore basic concepts of chemistry in a playful way, either as individuals or in teams. It consists of 15 different cubes, 9 cubes for different acids, their corresponding bases and precursors, and 6 cubes for different reducing and oxidising agents. The cubes can be rotated in those directions indicated. Each 'allowed' vertical or horizontal rotation of 90° stands for a chemical reaction or a physical transition. Two different games and playing modes are presented here: First, redox chemistry is introduced for the formation of salts from elementary metals and non-metals. Second, the speciation of acids and bases at different pH-values is shown. The cubes can be also used for games about environmental chemistry such as the carbon and sulphur cycle, covering the topic of acid rain, or the nitrogen cycle including ammoniac synthesis, nitrification and de-nitrification.
Methods for gas detection using stationary hyperspectral imaging sensors
Conger, James L [San Ramon, CA; Henderson, John R [Castro Valley, CA
2012-04-24
According to one embodiment, a method comprises producing a first hyperspectral imaging (HSI) data cube of a location at a first time using data from a HSI sensor; producing a second HSI data cube of the same location at a second time using data from the HSI sensor; subtracting on a pixel-by-pixel basis the second HSI data cube from the first HSI data cube to produce a raw difference cube; calibrating the raw difference cube to produce a calibrated raw difference cube; selecting at least one desired spectral band based on a gas of interest; producing a detection image based on the at least one selected spectral band and the calibrated raw difference cube; examining the detection image to determine presence of the gas of interest; and outputting a result of the examination. Other methods, systems, and computer program products for detecting the presence of a gas are also described.
Detection of anomaly in human retina using Laplacian Eigenmaps and vectorized matched filtering
NASA Astrophysics Data System (ADS)
Yacoubou Djima, Karamatou A.; Simonelli, Lucia D.; Cunningham, Denise; Czaja, Wojciech
2015-03-01
We present a novel method for automated anomaly detection on auto fluorescent data provided by the National Institute of Health (NIH). This is motivated by the need for new tools to improve the capability of diagnosing macular degeneration in its early stages, track the progression over time, and test the effectiveness of new treatment methods. In previous work, macular anomalies have been detected automatically through multiscale analysis procedures such as wavelet analysis or dimensionality reduction algorithms followed by a classification algorithm, e.g., Support Vector Machine. The method that we propose is a Vectorized Matched Filtering (VMF) algorithm combined with Laplacian Eigenmaps (LE), a nonlinear dimensionality reduction algorithm with locality preserving properties. By applying LE, we are able to represent the data in the form of eigenimages, some of which accentuate the visibility of anomalies. We pick significant eigenimages and proceed with the VMF algorithm that classifies anomalies across all of these eigenimages simultaneously. To evaluate our performance, we compare our method to two other schemes: a matched filtering algorithm based on anomaly detection on single images and a combination of PCA and VMF. LE combined with VMF algorithm performs best, yielding a high rate of accurate anomaly detection. This shows the advantage of using a nonlinear approach to represent the data and the effectiveness of VMF, which operates on the images as a data cube rather than individual images.
TWO-LEVEL TIME MARCHING SCHEME USING SPLINES FOR SOLVING THE ADVECTION EQUATION. (R826371C004)
A new numerical algorithm using quintic splines is developed and analyzed: quintic spline Taylor-series expansion (QSTSE). QSTSE is an Eulerian flux-based scheme that uses quintic splines to compute space derivatives and Taylor series expansion to march in time. The new scheme...
Ionita, Ciprian N; Mokin, Maxim; Varble, Nicole; Bednarek, Daniel R; Xiang, Jianping; Snyder, Kenneth V; Siddiqui, Adnan H; Levy, Elad I; Meng, Hui; Rudin, Stephen
2014-03-13
Additive manufacturing (3D printing) technology offers a great opportunity towards development of patient-specific vascular anatomic models, for medical device testing and physiological condition evaluation. However, the development process is not yet well established and there are various limitations depending on the printing materials, the technology and the printer resolution. Patient-specific neuro-vascular anatomy was acquired from computed tomography angiography and rotational digital subtraction angiography (DSA). The volumes were imported into a Vitrea 3D workstation (Vital Images Inc.) and the vascular lumen of various vessels and pathologies were segmented using a "marching cubes" algorithm. The results were exported as Stereo Lithographic (STL) files and were further processed by smoothing, trimming, and wall extrusion (to add a custom wall to the model). The models were printed using a Polyjet printer, Eden 260V (Objet-Stratasys). To verify the phantom geometry accuracy, the phantom was reimaged using rotational DSA, and the new data was compared with the initial patient data. The most challenging part of the phantom manufacturing was removal of support material. This aspect could be a serious hurdle in building very tortuous phantoms or small vessels. The accuracy of the printed models was very good: distance analysis showed average differences of 120 μm between the patient and the phantom reconstructed volume dimensions. Most errors were due to residual support material left in the lumen of the phantom. Despite the post-printing challenges experienced during the support cleaning, this technology could be a tremendous benefit to medical research such as in device development and testing.
Web based 3-D medical image visualization on the PC.
Kim, N; Lee, D H; Kim, J H; Kim, Y; Cho, H J
1998-01-01
With the recent advance of Web and its associated technologies, information sharing on distribute computing environments has gained a great amount of attention from many researchers in many application areas, such as medicine, engineering, and business. One basic requirement of distributed medical consultation systems is that geographically dispersed, disparate participants are allowed to exchange information readily with each other. Such software also needs to be supported on a broad range of computer platforms to increase the softwares accessibility. In this paper, the development of world-wide-web based medical consultation system for radiology imaging is addressed to provide platform independence and greater accessibility. The system supports sharing of 3-dimensional objects. We use VRML (Virtual Reality Modeling Language), which is the defacto standard in 3-D modeling on the Web. 3-D objects are reconstructed from CT or MRI volume data using a VRML format, which can be viewed and manipulated easily in Web-browsers with a VRML plug-in. A Marching cubes method is used in the transformation of scanned volume data sets to polygonal surfaces of VRML. A decimation algorithm is adopted to reduce the number of meshes in the resulting VRML file. 3-D volume data are often very large in size, hence loading the data on PC level computers requires a significant reduction of the size of the data, while minimizing the loss of the original shape information. This is also important to decrease network delays. A prototype system has been implemented (http://cybernet5.snu.ac.kr/-cyber/mrivrml .html), and several sessions of experiments are carried out.
NASA Astrophysics Data System (ADS)
Ionita, Ciprian N.; Mokin, Maxim; Varble, Nicole; Bednarek, Daniel R.; Xiang, Jianping; Snyder, Kenneth V.; Siddiqui, Adnan H.; Levy, Elad I.; Meng, Hui; Rudin, Stephen
2014-03-01
Additive manufacturing (3D printing) technology offers a great opportunity towards development of patient-specific vascular anatomic models, for medical device testing and physiological condition evaluation. However, the development process is not yet well established and there are various limitations depending on the printing materials, the technology and the printer resolution. Patient-specific neuro-vascular anatomy was acquired from computed tomography angiography and rotational digital subtraction angiography (DSA). The volumes were imported into a Vitrea 3D workstation (Vital Images Inc.) and the vascular lumen of various vessels and pathologies were segmented using a "marching cubes" algorithm. The results were exported as Stereo Lithographic (STL) files and were further processed by smoothing, trimming, and wall extrusion (to add a custom wall to the model). The models were printed using a Polyjet printer, Eden 260V (Objet-Stratasys). To verify the phantom geometry accuracy, the phantom was reimaged using rotational DSA, and the new data was compared with the initial patient data. The most challenging part of the phantom manufacturing was removal of support material. This aspect could be a serious hurdle in building very tortuous phantoms or small vessels. The accuracy of the printed models was very good: distance analysis showed average differences of 120 μm between the patient and the phantom reconstructed volume dimensions. Most errors were due to residual support material left in the lumen of the phantom. Despite the post-printing challenges experienced during the support cleaning, this technology could be a tremendous benefit to medical research such as in device development and testing.
Development of an upwind, finite-volume code with finite-rate chemistry
NASA Technical Reports Server (NTRS)
Molvik, Gregory A.
1994-01-01
Under this grant, two numerical algorithms were developed to predict the flow of viscous, hypersonic, chemically reacting gases over three-dimensional bodies. Both algorithms take advantage of the benefits of upwind differencing, total variation diminishing techniques, and a finite-volume framework, but obtain their solution in two separate manners. The first algorithm is a zonal, time-marching scheme, and is generally used to obtain solutions in the subsonic portions of the flow field. The second algorithm is a much less expensive, space-marching scheme and can be used for the computation of the larger, supersonic portion of the flow field. Both codes compute their interface fluxes with a temporal Riemann solver and the resulting schemes are made fully implicit including the chemical source terms and boundary conditions. Strong coupling is used between the fluid dynamic, chemical, and turbulence equations. These codes have been validated on numerous hypersonic test cases and have provided excellent comparison with existing data.
BurstCube: A CubeSat for Gravitational Wave Counterparts
NASA Astrophysics Data System (ADS)
Perkins, Jeremy S.; Racusin, Judith; Briggs, Michael; de Nolfo, Georgia; Caputo, Regina; Krizmanic, John; McEnery, Julie E.; Shawhan, Peter; Morris, David; Connaughton, Valerie; Kocevski, Dan; Wilson-Hodge, Colleen A.; Hui, Michelle; Mitchell, Lee; McBreen, Sheila
2018-01-01
We present BurstCube, a novel CubeSat that will detect and localize Gamma-ray Bursts (GRBs). BurstCube is a selected mission that will detect long GRBs, attributed to the collapse of massive stars, short GRBs (sGRBs), resulting from binary neutron star mergers, as well as other gamma-ray transients in the energy range 10-1000 keV. sGRBs are of particular interest because they are predicted to be the counterparts of gravitational wave (GW) sources soon to be detectable by LIGO/Virgo. BurstCube contains 4 CsI scintillators coupled with arrays of compact low-power Silicon photomultipliers (SiPMs) on a 6U Dellingr bus, a flagship modular platform that is easily modifiable for a variety of 6U CubeSat architectures. BurstCube will complement existing facilities such as Swift and Fermi in the short term, and provide a means for GRB detection, localization, and characterization in the interim time before the next generation future gamma-ray mission flies, as well as space-qualify SiPMs and test technologies for future use on larger gamma-ray missions. The ultimate configuration of BurstCube is to have a set of ~10 BurstCubes to provide all-sky coverage to GRBs for substantially lower cost than a full-scale mission.
NASA Technical Reports Server (NTRS)
Jenkins, Kenneth T., Jr.
2012-01-01
CUBES stands for Creating Understanding and Broadening Education through Satellites. The goal of the project is to allow high school students to build a small satellite, or CubeSat. Merritt Island High School (MIHS) was selected to partner with NASA, and California Polytechnic State University (Cal-Poly}, to build a CubeSat. The objective of the mission is to collect flight data to better characterize maximum predicted environments inside the CubeSat launcher, Poly-Picosatellite Orbital Deplorer (P-POD), while attached to the launch vehicle. The MIHS CubeSat team will apply to the NASA CubeSat Launch Initiative, which provides opportunities for small satellite development teams to secure launch slots on upcoming expendable launch vehicle missions. The MIHS team is working to achieve a test launch, or proof of concept flight aboard a suborbital launch vehicle in early 2013.
A modified dodge algorithm for the parabolized Navier-Stokes equations and compressible duct flows
NASA Technical Reports Server (NTRS)
Cooke, C. H.
1981-01-01
A revised version of a split-velocity method for numerical calculation of compressible duct flow was developed. The revision incorporates balancing of mass flow rates on each marching step in order to maintain front-to-back continuity during the calculation. The (checkerboard) zebra algorithm is applied to solution of the three-dimensional continuity equation in conservative form. A second-order A-stable linear multistep method is employed in effecting a marching solution of the parabolized momentum equations. A checkerboard successive overrelaxation iteration is used to solve the resulting implicit nonlinear systems of finite-difference equations which govern stepwise transition.
NASA Astrophysics Data System (ADS)
Hashemi, Seyyedhossein; Javaherian, Abdolrahim; Ataee-pour, Majid; Tahmasebi, Pejman; Khoshdel, Hossein
2014-12-01
In facies modeling, the ideal objective is to integrate different sources of data to generate a model that has the highest consistency to reality with respect to geological shapes and their facies architectures. Multiple-point (geo)statistics (MPS) is a tool that gives the opportunity of reaching this goal via defining a training image (TI). A facies modeling workflow was conducted on a carbonate reservoir located southwest Iran. Through a sequence stratigraphic correlation among the wells, it was revealed that the interval under a modeling process was deposited in a tidal flat environment. Bahamas tidal flat environment which is one of the most well studied modern carbonate tidal flats was considered to be the source of required information for modeling a TI. In parallel, a neural network probability cube was generated based on a set of attributes derived from 3D seismic cube to be applied into the MPS algorithm as a soft conditioning data. Moreover, extracted channel bodies and drilled well log facies came to the modeling as hard data. Combination of these constraints resulted to a facies model which was greatly consistent to the geological scenarios. This study showed how analogy of modern occurrences can be set as the foundation for generating a training image. Channel morphology and facies types currently being deposited, which are crucial for modeling a training image, was inferred from modern occurrences. However, there were some practical considerations concerning the MPS algorithm used for facies simulation. The main limitation was the huge amount of RAM and CPU-time needed to perform simulations.
Hyperspectral image compressing using wavelet-based method
NASA Astrophysics Data System (ADS)
Yu, Hui; Zhang, Zhi-jie; Lei, Bo; Wang, Chen-sheng
2017-10-01
Hyperspectral imaging sensors can acquire images in hundreds of continuous narrow spectral bands. Therefore each object presented in the image can be identified from their spectral response. However, such kind of imaging brings a huge amount of data, which requires transmission, processing, and storage resources for both airborne and space borne imaging. Due to the high volume of hyperspectral image data, the exploration of compression strategies has received a lot of attention in recent years. Compression of hyperspectral data cubes is an effective solution for these problems. Lossless compression of the hyperspectral data usually results in low compression ratio, which may not meet the available resources; on the other hand, lossy compression may give the desired ratio, but with a significant degradation effect on object identification performance of the hyperspectral data. Moreover, most hyperspectral data compression techniques exploits the similarities in spectral dimensions; which requires bands reordering or regrouping, to make use of the spectral redundancy. In this paper, we explored the spectral cross correlation between different bands, and proposed an adaptive band selection method to obtain the spectral bands which contain most of the information of the acquired hyperspectral data cube. The proposed method mainly consist three steps: First, the algorithm decomposes the original hyperspectral imagery into a series of subspaces based on the hyper correlation matrix of the hyperspectral images between different bands. And then the Wavelet-based algorithm is applied to the each subspaces. At last the PCA method is applied to the wavelet coefficients to produce the chosen number of components. The performance of the proposed method was tested by using ISODATA classification method.
Intercomparison of general circulation models for hot extrasolar planets
NASA Astrophysics Data System (ADS)
Polichtchouk, I.; Cho, J. Y.-K.; Watkins, C.; Thrastarson, H. Th.; Umurhan, O. M.; de la Torre Juárez, M.
2014-02-01
We compare five general circulation models (GCMs) which have been recently used to study hot extrasolar planet atmospheres (BOB, CAM, IGCM, MITgcm, and PEQMOD), under three test cases useful for assessing model convergence and accuracy. Such a broad, detailed intercomparison has not been performed thus far for extrasolar planets study. The models considered all solve the traditional primitive equations, but employ different numerical algorithms or grids (e.g., pseudospectral and finite volume, with the latter separately in longitude-latitude and ‘cubed-sphere’ grids). The test cases are chosen to cleanly address specific aspects of the behaviors typically reported in hot extrasolar planet simulations: (1) steady-state, (2) nonlinearly evolving baroclinic wave, and (3) response to fast timescale thermal relaxation. When initialized with a steady jet, all models maintain the steadiness, as they should-except MITgcm in cubed-sphere grid. A very good agreement is obtained for a baroclinic wave evolving from an initial instability in pseudospectral models (only). However, exact numerical convergence is still not achieved across the pseudospectral models: amplitudes and phases are observably different. When subject to a typical ‘hot-Jupiter’-like forcing, all five models show quantitatively different behavior-although qualitatively similar, time-variable, quadrupole-dominated flows are produced. Hence, as have been advocated in several past studies, specific quantitative predictions (such as the location of large vortices and hot regions) by GCMs should be viewed with caution. Overall, in the tests considered here, pseudospectral models in pressure coordinate (PEBOB and PEQMOD) perform the best and MITgcm in cubed-sphere grid performs the worst.
EarthCube GeoLink: Semantics and Linked Data for the Geosciences
NASA Astrophysics Data System (ADS)
Arko, R. A.; Carbotte, S. M.; Chandler, C. L.; Cheatham, M.; Fils, D.; Hitzler, P.; Janowicz, K.; Ji, P.; Jones, M. B.; Krisnadhi, A.; Lehnert, K. A.; Mickle, A.; Narock, T.; O'Brien, M.; Raymond, L. M.; Schildhauer, M.; Shepherd, A.; Wiebe, P. H.
2015-12-01
The NSF EarthCube initiative is building next-generation cyberinfrastructure to aid geoscientists in collecting, accessing, analyzing, sharing, and visualizing their data and knowledge. The EarthCube GeoLink Building Block project focuses on a specific set of software protocols and vocabularies, often characterized as the Semantic Web and "Linked Data", to publish data online in a way that is easily discoverable, accessible, and interoperable. GeoLink brings together specialists from the computer science, geoscience, and library science domains, and includes data from a network of NSF-funded repositories that support scientific studies in marine geology, marine ecosystems, biogeochemistry, and paleoclimatology. We are working collaboratively with closely-related Building Block projects including EarthCollab and CINERGI, and solicit feedback from RCN projects including Cyberinfrastructure for Paleogeosciences (C4P) and iSamples. GeoLink has developed a modular ontology that describes essential geoscience research concepts; published data from seven collections (to date) on the Web as geospatially-enabled Linked Data using this ontology; matched and mapped data between collections using shared identifiers for investigators, repositories, datasets, funding awards, platforms, research cruises, physical specimens, and gazetteer features; and aggregated the results in a shared knowledgebase that can be queried via a standard SPARQL endpoint. Client applications have been built around the knowledgebase, including a Web/map-based data browser using the Leaflet JavaScript library and a simple query service using the OpenSearch format. Future development will include extending and refining the GeoLink ontology, adding content from additional repositories, developing semi-automated algorithms to enhance metadata, and further work on client applications.
EarthCube - A Community-led, Interdisciplinary Collaboration for Geoscience Cyberinfrastructure
NASA Astrophysics Data System (ADS)
Allison, M. L.; Keane, C. M.; Robinson, E.
2015-12-01
The EarthCube Test Enterprise Governance Project completed its initial two-year long process to engage the community and test a demonstration governing organization with the goal of facilitating a community-led process on designing and developing a geoscience cyberinfrastructure. Conclusions are that EarthCube is viable, has engaged a broad spectrum of end-users and contributors, and has begun to foster a sense of urgency around the importance of open and shared data. Levels of trust among participants are growing. At the same time, the active participants in EarthCube represent a very small sub-set of the larger population of geoscientists. Results from Stage I of this project have impacted NSF decisions on the direction of the EarthCube program. The overall tone of EarthCube events has had a constructive, problem-solving orientation. The technical and organizational elements of EarthCube are poised to support a functional infrastructure for the geosciences community. The process for establishing shared technological standards has notable progress but there is a continuing need to expand technological and cultural alignment. Increasing emphasis is being given to the interdependencies among EarthCube funded projects. The newly developed EarthCube Technology Plan highlights important progress in this area by five working groups focusing on: 1. Use cases; 2. Funded project gap analysis; 3. Testbed development; 4. Standards; and 5. Architecture. There is ample justification to continue running a community-led governance framework that facilitates agreement on a system architecture, guides EarthCube activities, and plays an increasing role in making the EarthCube vision of cyberinfrastructure for the geosciences operational. There is widespread community expectation for support of a multiyear EarthCube governing effort to put into practice the science, technical, and organizational plans that have and are continuing to emerge.
Distributed Pheromone-Based Swarming Control of Unmanned Air and Ground Vehicles for RSTA
2008-03-20
Forthcoming in Proceedings of SPIE Defense & Security Conference, March 2008, Orlando, FL Distributed Pheromone -Based Swarming Control of Unmanned...describes recent advances in a fully distributed digital pheromone algorithm that has demonstrated its effectiveness in managing the complexity of...onboard digital pheromone responding to the needs of the automatic target recognition algorithms. UAVs and UGVs controlled by the same pheromone algorithm
Feasibility of the MUSIC Algorithm for the Active Protection System
2001-03-01
Feasibility of the MUSIC Algorithm for the Active Protection System ARL-MR-501 March 2001 Canh Ly Approved for public release; distribution... MUSIC Algorithm for the Active Protection System Canh Ly Sensors and Electron Devices Directorate Approved for public release; distribution unlimited...This report compares the accuracy of the doppler frequency of an incoming projectile with the use of the MUSIC (multiple signal classification
Parallel CE/SE Computations via Domain Decomposition
NASA Technical Reports Server (NTRS)
Himansu, Ananda; Jorgenson, Philip C. E.; Wang, Xiao-Yen; Chang, Sin-Chung
2000-01-01
This paper describes the parallelization strategy and achieved parallel efficiency of an explicit time-marching algorithm for solving conservation laws. The Space-Time Conservation Element and Solution Element (CE/SE) algorithm for solving the 2D and 3D Euler equations is parallelized with the aid of domain decomposition. The parallel efficiency of the resultant algorithm on a Silicon Graphics Origin 2000 parallel computer is checked.
Build an Earthquake City! Grades 6-8.
ERIC Educational Resources Information Center
Rushton, Erik; Ryan, Emily; Swift, Charles
In this activity, students build a city out of sugar cubes, bouillon cubes, and gelatin cubes. The city is then put through simulated earthquakes to see which cube structures withstand the shaking the best. This activity requires a 50-minute time period for completion. (Author/SOE)
Corner-Cube Retroreflector Instrument for Advanced Lunar Laser Ranging
NASA Technical Reports Server (NTRS)
Turyshev, Slava G.; Folkner, William M.; Gutt, Gary M.; Williams, James G.; Somawardhana, Ruwan P.; Baran, Richard T.
2012-01-01
A paper describes how, based on a structural-thermal-optical-performance analysis, it has been determined that a single, large, hollow corner cube (170- mm outer diameter) with custom dihedral angles offers a return signal comparable to the Apollo 11 and 14 solid-corner-cube arrays (each consisting of 100 small, solid corner cubes), with negligible pulse spread and much lower mass. The design of the corner cube, and its surrounding mounting and casing, is driven by the thermal environment on the lunar surface, which is subject to significant temperature variations (in the range between 70 and 390 K). Therefore, the corner cube is enclosed in an insulated container open at one end; a narrow-bandpass solar filter is used to reduce the solar energy that enters the open end during the lunar day, achieving a nearly uniform temperature inside the container. Also, the materials and adhesive techniques that will be used for this corner-cube reflector must have appropriate thermal and mechanical characteristics (e.g., silica or beryllium for the cube and aluminum for the casing) to further reduce the impact of the thermal environment on the instrument's performance. The instrument would consist of a single, open corner cube protected by a separate solar filter, and mounted in a cylindrical or spherical case. A major goal in the design of a new lunar ranging system is a measurement accuracy improvement to better than 1 mm by reducing the pulse spread due to orientation. While achieving this goal, it was desired to keep the intensity of the return beam at least as bright as the Apollo 100-corner-cube arrays. These goals are met in this design by increasing the optical aperture of a single corner cube to approximately 170 mm outer diameter. This use of an "open" corner cube allows the selection of corner cube materials to be based primarily on thermal considerations, with no requirements on optical transparency. Such a corner cube also allows for easier pointing requirements, because there is no dependence on total internal reflection, which can fail off-axis.
3D Buried Utility Location Using A Marching-Cross-Section Algorithm for Multi-Sensor Data Fusion
Dou, Qingxu; Wei, Lijun; Magee, Derek R.; Atkins, Phil R.; Chapman, David N.; Curioni, Giulio; Goddard, Kevin F.; Hayati, Farzad; Jenks, Hugo; Metje, Nicole; Muggleton, Jennifer; Pennock, Steve R.; Rustighi, Emiliano; Swingler, Steven G.; Rogers, Christopher D. F.; Cohn, Anthony G.
2016-01-01
We address the problem of accurately locating buried utility segments by fusing data from multiple sensors using a novel Marching-Cross-Section (MCS) algorithm. Five types of sensors are used in this work: Ground Penetrating Radar (GPR), Passive Magnetic Fields (PMF), Magnetic Gradiometer (MG), Low Frequency Electromagnetic Fields (LFEM) and Vibro-Acoustics (VA). As part of the MCS algorithm, a novel formulation of the extended Kalman Filter (EKF) is proposed for marching existing utility tracks from a scan cross-section (scs) to the next one; novel rules for initializing utilities based on hypothesized detections on the first scs and for associating predicted utility tracks with hypothesized detections in the following scss are introduced. Algorithms are proposed for generating virtual scan lines based on given hypothesized detections when different sensors do not share common scan lines, or when only the coordinates of the hypothesized detections are provided without any information of the actual survey scan lines. The performance of the proposed system is evaluated with both synthetic data and real data. The experimental results in this work demonstrate that the proposed MCS algorithm can locate multiple buried utility segments simultaneously, including both straight and curved utilities, and can separate intersecting segments. By using the probabilities of a hypothesized detection being a pipe or a cable together with its 3D coordinates, the MCS algorithm is able to discriminate a pipe and a cable close to each other. The MCS algorithm can be used for both post- and on-site processing. When it is used on site, the detected tracks on the current scs can help to determine the location and direction of the next scan line. The proposed “multi-utility multi-sensor” system has no limit to the number of buried utilities or the number of sensors, and the more sensor data used, the more buried utility segments can be detected with more accurate location and orientation. PMID:27827836
3D Buried Utility Location Using A Marching-Cross-Section Algorithm for Multi-Sensor Data Fusion.
Dou, Qingxu; Wei, Lijun; Magee, Derek R; Atkins, Phil R; Chapman, David N; Curioni, Giulio; Goddard, Kevin F; Hayati, Farzad; Jenks, Hugo; Metje, Nicole; Muggleton, Jennifer; Pennock, Steve R; Rustighi, Emiliano; Swingler, Steven G; Rogers, Christopher D F; Cohn, Anthony G
2016-11-02
We address the problem of accurately locating buried utility segments by fusing data from multiple sensors using a novel Marching-Cross-Section (MCS) algorithm. Five types of sensors are used in this work: Ground Penetrating Radar (GPR), Passive Magnetic Fields (PMF), Magnetic Gradiometer (MG), Low Frequency Electromagnetic Fields (LFEM) and Vibro-Acoustics (VA). As part of the MCS algorithm, a novel formulation of the extended Kalman Filter (EKF) is proposed for marching existing utility tracks from a scan cross-section (scs) to the next one; novel rules for initializing utilities based on hypothesized detections on the first scs and for associating predicted utility tracks with hypothesized detections in the following scss are introduced. Algorithms are proposed for generating virtual scan lines based on given hypothesized detections when different sensors do not share common scan lines, or when only the coordinates of the hypothesized detections are provided without any information of the actual survey scan lines. The performance of the proposed system is evaluated with both synthetic data and real data. The experimental results in this work demonstrate that the proposed MCS algorithm can locate multiple buried utility segments simultaneously, including both straight and curved utilities, and can separate intersecting segments. By using the probabilities of a hypothesized detection being a pipe or a cable together with its 3D coordinates, the MCS algorithm is able to discriminate a pipe and a cable close to each other. The MCS algorithm can be used for both post- and on-site processing. When it is used on site, the detected tracks on the current scs can help to determine the location and direction of the next scan line. The proposed "multi-utility multi-sensor" system has no limit to the number of buried utilities or the number of sensors, and the more sensor data used, the more buried utility segments can be detected with more accurate location and orientation.
NASA Technical Reports Server (NTRS)
Berg, Jared J.
2014-01-01
Even though the Small PayLoad Integrated Testing Services or SPLITS line of business is newly established, KSC has been involved in a variety of CubeSat projects and programs. CubeSat development projects have been initiated through educational outreach partnerships with schools and universities, commercial partnerships and internal training initiatives. KSC has also been involved in CubeSat deployment through programs to find launch opportunities to fly CubeSats as auxiliary payloads on previously planned missions and involvement in the development of new launch capabilities for small satellites. This overview will highlight the CubeSat accomplishments at KSC and discuss planning for future projects and opportunities.
NASA Astrophysics Data System (ADS)
Pchelintseva, Svetlana V.; Runnova, Anastasia E.; Musatov, Vyacheslav Yu.; Hramov, Alexander E.
2017-03-01
In the paper we study the problem of recognition type of the observed object, depending on the generated pattern and the registered EEG data. EEG recorded at the time of displaying cube Necker characterizes appropriate state of brain activity. As an image we use bistable image Necker cube. Subject selects the type of cube and interpret it either as aleft cube or as the right cube. To solve the problem of recognition, we use artificial neural networks. In our paper to create a classifier we have considered a multilayer perceptron. We examine the structure of the artificial neural network and define cubes recognition accuracy.
Interplanetary CubeSat Navigational Challenges
NASA Technical Reports Server (NTRS)
Martin-Mur, Tomas J.; Gustafson, Eric D.; Young, Brian T.
2015-01-01
CubeSats are miniaturized spacecraft of small mass that comply with a form specification so they can be launched using standardized deployers. Since the launch of the first CubeSat into Earth orbit in June of 2003, hundreds have been placed into orbit. There are currently a number of proposals to launch and operate CubeSats in deep space, including MarCO, a technology demonstration that will launch two CubeSats towards Mars using the same launch vehicle as NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) Mars lander mission. The MarCO CubeSats are designed to relay the information transmitted by the InSight UHF radio during Entry, Descent, and Landing (EDL) in real time to the antennas of the Deep Space Network (DSN) on Earth. Other CubeSatts proposals intend to demonstrate the operation of small probes in deep space, investigate the lunar South Pole, and visit a near Earth object, among others. Placing a CubeSat into an interplanetary trajectory makes it even more challenging to pack the necessary power, communications, and navigation capabilities into such a small spacecraft. This paper presents some of the challenges and approaches for successfully navigating CubeSats and other small spacecraft in deep space.
Preliminary PCA/TT Results on MRO CRISM Multispectral Images
NASA Astrophysics Data System (ADS)
Klassen, David R.; Smith, M. D.
2010-10-01
Mars Reconnaissance Orbiter arrived at Mars in March 2006 and by September had achieved its science-phase orbit with the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) beginning its visible to near-infrared (VIS/NIR) spectral imaging shortly thereafter. One goal of CRISM is to fill in the spatial gaps between the various targeted observations, eventually mapping the entire surface. Due to the large volume of data this would create, the instrument works in a reduced spectral sampling mode creating "multispectral” images. From these data we can create image cubes using 64 wavelengths from 0.410 to 3.923 µm. We present here our analysis of these multispectral mode data products using Principal Components Analysis (PCA) and Target Transformation (TT) [1]. Previous work with ground-based images [2-5] has shown that over an entire visible hemisphere, there are only three to four meaningful components using 32-105 wavelengths over 1.5-4.1 µm the first two are consistent over all temporal scales. The TT retrieved spectral endmembers show nearly the same level of consistency [5]. The preliminary work on the CRISM images cubes implies similar results; three to four significant principal components that are fairly consistent over time. These components are then used in TT to find spectral endmembers which can be used to characterize the surface reflectance for future use in radiative transfer cloud optical depth retrievals. We present here the PCA/TT results comparing the principal components and recovered endmembers from six reconstructed CRISM multi-spectral image cubes. References: [1] Bandfield, J. L., et al. (2000) JGR, 105, 9573. [2] Klassen, D. R. and Bell III, J. F. (2001) BAAS 33, 1069. [3] Klassen, D. R. and Bell III, J. F. (2003) BAAS, 35, 936. [4] Klassen, D. R., Wark, T. J., Cugliotta, C. G. (2005) BAAS, 37, 693. [5] Klassen, D. R. (2009) Icarus, 204, 32.
How CubeSats contribute to Science and Technology in Astronomy and Astrophysics
NASA Astrophysics Data System (ADS)
Cahoy, Kerri Lynn; Douglas, Ewan; Carlton, Ashley; Clark, James; Haughwout, Christian
2017-01-01
CubeSats are nanosatellites, spacecraft typically the size of a shoebox or backpack. CubeSats are made up of one or more 10 cm x 10 cm x 10 cm units weighing 1.33 kg (each cube is called a “U”). CubeSats benefit from relatively easy and inexpensive access to space because they are designed to slide into fully enclosed spring-loaded deployer pods before being attached as an auxiliary payload to a larger vehicle, without adding risk to the vehicle or its primary payload(s). Even though CubeSats have inherent resource and aperture limitations due to their small size, over the past fifteen years, researchers and engineers have miniaturized components and subsystems, greatly increasing the capabilities of CubeSats. We discuss how state of the art CubeSats can address both science objectives and technology objectives in Astronomy and Astrophysics. CubeSats can contribute toward science objectives such as cosmic dawn, galactic evolution, stellar evolution, extrasolar planets and interstellar exploration.CubeSats can contribute to understanding how key technologies for larger missions, like detectors, microelectromechanical systems, and integrated optical elements, can not only survive launch and operational environments (which can often be simulated on the ground), but also meet performance specifications over long periods of time in environments that are harder to simulate properly, such as ionizing radiation, the plasma environment, spacecraft charging, and microgravity. CubeSats can also contribute to both science and technology advancements as multi-element space-based platforms that coordinate distributed measurements and use formation flying and large separation baselines to counter their restricted individual apertures.
Achieving Science with CubeSats: Thinking Inside the Box
NASA Astrophysics Data System (ADS)
Zurbuchen, Thomas H.; Lal, Bhavya
2017-01-01
We present the results of a study conducted by the National Academies of Sciences, Engineering, and Medicine. The study focused on the scientific potential and technological promise of CubeSats. We will first review the growth of the CubeSat platform from an education-focused technology toward a platform of importance for technology development, science, and commercial use, both in the United States and internationally. The use has especially exploded in recent years. For example, of the over 400 CubeSats launched since 2000, more than 80% of all science-focused ones have been launched just in the past four years. Similarly, more than 80% of peer-reviewed papers describing new science based on CubeSat data have been published in the past five years.We will then assess the technological and science promise of CubeSats across space science disciplines, and discuss a subset of priority science goals that can be achieved given the current state of CubeSat capabilities. Many of these goals address targeted science, often in coordination with other spacecraft, or by using sacrificial or high-risk orbits that lead to the demise of the satellite after critical data have been collected. Other goals relate to the use of CubeSats as constellations or swarms, deploying tens to hundreds of CubeSats that function as one distributed array of measurements.Finally, we will summarize our conclusions and recommendations from this study; especially those focused on nearterm investment that could improve the capabilities of CubeSats toward increased science and technological return and enable the science communities’ use of CubeSats.
Achieving Science with CubeSats: Thinking Inside the Box
NASA Astrophysics Data System (ADS)
Lal, B.; Zurbuchen, T.
2016-12-01
In this paper, we present a study conducted by the National Academies of Sciences, Engineering, and Medicine. The study focused on the scientific potential and technological promise of CubeSats. We will first review the growth of the CubeSat platform from an education-focused technology toward a platform of importance for technology development, science, and commercial use, both in the United States and internationally. The use has especially exploded in recent years. For example, of the over 400 CubeSats launched since 2000, more than 80% of all science-focused ones have been launched just in the past four years. Similarly, more than 80% of peer-reviewed papers describing new science based on CubeSat data have been published in the past five years. We will then assess the technological and science promise of CubeSats across space science disciplines, and discuss a subset of priority science goals that can be achieved given the current state of CubeSat capabilities. Many of these goals address targeted science, often in coordination with other spacecraft, or by using sacrificial or high-risk orbits that lead to the demise of the satellite after critical data have been collected. Other goals relate to the use of CubeSats as constellations or swarms, deploying tens to hundreds of CubeSats that function as one distributed array of measurements. Finally, we will summarize our conclusions and recommendations from this study; especially those focused on near-term investment that could improve the capabilities of CubeSats toward increased science and technological return and enable the science communities' use of CubeSats.
. PDF file High pT muons in Cosmic-Ray Air Showers with IceCube. PDF file IceCube Performance with Artificial Light Sources: the road to a Cascade Analyses + Energy scale calibration for EHE. PDF file , 2006. PDF file Thorsten Stetzelberger "IceCube DAQ Design & Performance" Nov 2005 PPT
2014-05-01
UNCLASSIFIED UNCLASSIFIED Structural Stability Assessment of the High Frequency Antenna for Use on the Buccaneer CubeSat in Low Earth...DSTO-TN-1295 ABSTRACT The Buccaneer CubeSat will be fitted with a high frequency antenna made from spring steel measuring tape. The geometry...High Frequency Antenna for Use on the Buccaneer CubeSat in Low Earth Orbit Executive Summary The Buccaneer CubeSat will be fitted with a
Ghiasi, Mohammad Sadegh; Arjmand, Navid; Boroushaki, Mehrdad; Farahmand, Farzam
2016-03-01
A six-degree-of-freedom musculoskeletal model of the lumbar spine was developed to predict the activity of trunk muscles during light, moderate and heavy lifting tasks in standing posture. The model was formulated into a multi-objective optimization problem, minimizing the sum of the cubed muscle stresses and maximizing the spinal stability index. Two intelligent optimization algorithms, i.e., the vector evaluated particle swarm optimization (VEPSO) and nondominated sorting genetic algorithm (NSGA), were employed to solve the optimization problem. The optimal solution for each task was then found in the way that the corresponding in vivo intradiscal pressure could be reproduced. Results indicated that both algorithms predicted co-activity in the antagonistic abdominal muscles, as well as an increase in the stability index when going from the light to the heavy task. For all of the light, moderate and heavy tasks, the muscles' activities predictions of the VEPSO and the NSGA were generally consistent and in the same order of the in vivo electromyography data. The proposed methodology is thought to provide improved estimations for muscle activities by considering the spinal stability and incorporating the in vivo intradiscal pressure data.
Lim, Jun-Wei; Seng, Chye-Eng; Lim, Poh-Eng; Ng, Si-Ling; Sujari, Amat-Ngilmi Ahmad
2011-11-01
The performance of moving bed sequencing batch reactors (MBSBRs) added with 8 % (v/v) of polyurethane (PU) foam cubes as carrier media in nitrogen removal was investigated in treating low COD/N wastewater. The results indicate that MBSBR with 8-mL cubes achieved the highest total nitrogen (TN) removal efficiency of 37% during the aeration period, followed by 31%, 24% and 19 % for MBSBRs with 27-, 64- and 125-mL cubes, respectively. The increased TN removal in MBSBRs was mainly due to simultaneous nitrification and denitrification (SND) process which was verified by batch studies. The relatively lower TN removal in MBSBR with larger PU foam cubes was attributed to the observation that larger PU foam cubes were not fully attached by biomass. Higher concentrations of 8-mL PU foam cubes in batch reactors yielded higher TN removal. Copyright © 2011 Elsevier Ltd. All rights reserved.
Prototype for Meta-Algorithmic, Content-Aware Image Analysis
2015-03-01
PROTOTYPE FOR META-ALGORITHMIC, CONTENT-AWARE IMAGE ANALYSIS UNIVERSITY OF VIRGINIA MARCH 2015 FINAL TECHNICAL REPORT...ALGORITHMIC, CONTENT-AWARE IMAGE ANALYSIS 5a. CONTRACT NUMBER FA8750-12-C-0181 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER 62305E 6. AUTHOR(S) S...approaches were studied in detail and their results on a sample dataset are presented. 15. SUBJECT TERMS Image Analysis , Computer Vision, Content
JPL-20180416-INSIGHf-0001-Marco Media Reel 1
2018-04-16
Mars Cube One is a Mars flyby mission consisting of two CubeSats that is planned for launch alongside NASA's InSight Mars lander mission. This will be the first interplanetary CubeSat mission. If successful, the CubeSats will relay entry, descent, and landing (EDL) data to Earth during InSight's landing.
2017-04-19
In the Swarmathon competition at the Kennedy Space Center Visitor Complex, students were asked to develop computer code for the small robots, programming them to look for "resources" in the form of AprilTag cubes, similar to barcodes. Teams developed search algorithms for the Swarmies to operate autonomously, communicating and interacting as a collective swarm similar to ants foraging for food. In the spaceport's second annual Swarmathon, 20 teams representing 22 minority serving universities and community colleges were invited to develop software code to operate these innovative robots known as "Swarmies" to help find resources when astronauts explore distant locations, such as the moon or Mars.
2017-04-20
In the Swarmathon competition at the Kennedy Space Center Visitor Complex, students were asked to develop computer code for the small robots, programming them to look for "resources" in the form of cubes with AprilTags, similar to barcodes. Teams developed search algorithms for innovative robots known as "Swarmies" to operate autonomously, communicating and interacting as a collective swarm similar to ants foraging for food. In the spaceport's second annual Swarmathon, 20 teams representing 22 minority serving universities and community colleges were invited to participate. Similar robots could help find resources when astronauts explore distant locations, such as the moon or Mars.
2018-04-18
In the Swarmathon competition at the Kennedy Space Center Visitor Complex, students were asked to develop computer code for the small robots, programming them to look for "resources" in the form of AprilTag cubes, similar to barcodes. Teams developed search algorithms for the Swarmies to operate autonomously, communicating and interacting as a collective swarm similar to ants foraging for food. In the spaceport's third annual Swarmathon, 23 teams represented 24 minority serving universities and community colleges were invited to develop software code to operate these innovative robots known as "Swarmies" to help find resources when astronauts explore distant locations, such as the Moon or Mars.
2018-04-17
In the Swarmathon competition at the Kennedy Space Center Visitor Complex, students were asked to develop computer code for the small robots, programming them to look for "resources" in the form of AprilTag cubes, similar to barcodes. Teams developed search algorithms for the Swarmies to operate autonomously, communicating and interacting as a collective swarm similar to ants foraging for food. In the spaceport's third annual Swarmathon, 23 teams represented 24 minority serving universities and community colleges were invited to develop software code to operate these innovative robots known as "Swarmies" to help find resources when astronauts explore distant locations, such as the Moon or Mars.
Detecting brain tumor in pathological slides using hyperspectral imaging
Ortega, Samuel; Fabelo, Himar; Camacho, Rafael; de la Luz Plaza, María; Callicó, Gustavo M.; Sarmiento, Roberto
2018-01-01
Hyperspectral imaging (HSI) is an emerging technology for medical diagnosis. This research work presents a proof-of-concept on the use of HSI data to automatically detect human brain tumor tissue in pathological slides. The samples, consisting of hyperspectral cubes collected from 400 nm to 1000 nm, were acquired from ten different patients diagnosed with high-grade glioma. Based on the diagnosis provided by pathologists, a spectral library of normal and tumor tissues was created and processed using three different supervised classification algorithms. Results prove that HSI is a suitable technique to automatically detect high-grade tumors from pathological slides. PMID:29552415
Detecting brain tumor in pathological slides using hyperspectral imaging.
Ortega, Samuel; Fabelo, Himar; Camacho, Rafael; de la Luz Plaza, María; Callicó, Gustavo M; Sarmiento, Roberto
2018-02-01
Hyperspectral imaging (HSI) is an emerging technology for medical diagnosis. This research work presents a proof-of-concept on the use of HSI data to automatically detect human brain tumor tissue in pathological slides. The samples, consisting of hyperspectral cubes collected from 400 nm to 1000 nm, were acquired from ten different patients diagnosed with high-grade glioma. Based on the diagnosis provided by pathologists, a spectral library of normal and tumor tissues was created and processed using three different supervised classification algorithms. Results prove that HSI is a suitable technique to automatically detect high-grade tumors from pathological slides.
Automatic processing of high-rate, high-density multibeam echosounder data
NASA Astrophysics Data System (ADS)
Calder, B. R.; Mayer, L. A.
2003-06-01
Multibeam echosounders (MBES) are currently the best way to determine the bathymetry of large regions of the seabed with high accuracy. They are becoming the standard instrument for hydrographic surveying and are also used in geological studies, mineral exploration and scientific investigation of the earth's crustal deformations and life cycle. The significantly increased data density provided by an MBES has significant advantages in accurately delineating the morphology of the seabed, but comes with the attendant disadvantage of having to handle and process a much greater volume of data. Current data processing approaches typically involve (computer aided) human inspection of all data, with time-consuming and subjective assessment of all data points. As data rates increase with each new generation of instrument and required turn-around times decrease, manual approaches become unwieldy and automatic methods of processing essential. We propose a new method for automatically processing MBES data that attempts to address concerns of efficiency, objectivity, robustness and accuracy. The method attributes each sounding with an estimate of vertical and horizontal error, and then uses a model of information propagation to transfer information about the depth from each sounding to its local neighborhood. Embedded in the survey area are estimation nodes that aim to determine the true depth at an absolutely defined location, along with its associated uncertainty. As soon as soundings are made available, the nodes independently assimilate propagated information to form depth hypotheses which are then tracked and updated on-line as more data is gathered. Consequently, we can extract at any time a "current-best" estimate for all nodes, plus co-located uncertainties and other metrics. The method can assimilate data from multiple surveys, multiple instruments or repeated passes of the same instrument in real-time as data is being gathered. The data assimilation scheme is sufficiently robust to deal with typical survey echosounder errors. Robustness is improved by pre-conditioning the data, and allowing the depth model to be incrementally defined. A model monitoring scheme ensures that inconsistent data are maintained as separate but internally consistent depth hypotheses. A disambiguation of these competing hypotheses is only carried out when required by the user. The algorithm has a low memory footprint, runs faster than data can currently be gathered, and is suitable for real-time use. We call this algorithm CUBE (Combined Uncertainty and Bathymetry Estimator). We illustrate CUBE on two data sets gathered in shallow water with different instruments and for different purposes. We show that the algorithm is robust to even gross failure modes, and reliably processes the vast majority of the data. In both cases, we confirm that the estimates made by CUBE are statistically similar to those generated by hand.
Massively Clustered CubeSats NCPS Demo Mission
NASA Technical Reports Server (NTRS)
Robertson, Glen A.; Young, David; Kim, Tony; Houts, Mike
2013-01-01
Technologies under development for the proposed Nuclear Cryogenic Propulsion Stage (NCPS) will require an un-crewed demonstration mission before they can be flight qualified over distances and time frames representative of a crewed Mars mission. In this paper, we describe a Massively Clustered CubeSats platform, possibly comprising hundreds of CubeSats, as the main payload of the NCPS demo mission. This platform would enable a mechanism for cost savings for the demo mission through shared support between NASA and other government agencies as well as leveraged commercial aerospace and academic community involvement. We believe a Massively Clustered CubeSats platform should be an obvious first choice for the NCPS demo mission when one considers that cost and risk of the payload can be spread across many CubeSat customers and that the NCPS demo mission can capitalize on using CubeSats developed by others for its own instrumentation needs. Moreover, a demo mission of the NCPS offers an unprecedented opportunity to invigorate the public on a global scale through direct individual participation coordinated through a web-based collaboration engine. The platform we describe would be capable of delivering CubeSats at various locations along a trajectory toward the primary mission destination, in this case Mars, permitting a variety of potential CubeSat-specific missions. Cameras on various CubeSats can also be used to provide multiple views of the space environment and the NCPS vehicle for video monitoring as well as allow the public to "ride along" as virtual passengers on the mission. This collaborative approach could even initiate a brand new Science, Technology, Engineering and Math (STEM) program for launching student developed CubeSat payloads beyond Low Earth Orbit (LEO) on future deep space technology qualification missions. Keywords: Nuclear Propulsion, NCPS, SLS, Mars, CubeSat.
NASA Near Earth Network (NEN) Support for Lunar and L1/L2 CubeSats
NASA Technical Reports Server (NTRS)
Schaire, Scott; Altunc, Serhat; Wong, Yen; Shelton, Marta; Celeste, Peter; Anderson, Michael; Perrotto, Trish
2017-01-01
The NASA Near Earth Network (NEN) consists of globally distributed tracking stations, including NASA, commercial, and partner ground stations, that are strategically located to maximize the coverage provided to a variety of orbital and suborbital missions, including those in LEO, GEO, HEO, lunar and L1/L2 orbits. The NENs future mission set includes and will continue to include CubeSat missions. The majority of the CubeSat missions destined to fly on EM-1, launching in late 2018, many in a lunar orbit, will communicate with ground based stations via X-band and will utilize the NASA Jet Propulsion Laboratory (JPL) developed IRIS radio. The NEN recognizes the important role CubeSats are beginning to play in carrying out NASAs mission and is therefore investigating the modifications needed to provide IRIS radio compatibility. With modification, the NEN could potentially expand support to the EM-1 lunar CubeSats.The NEN could begin providing significant coverage to lunar CubeSat missions utilizing three to four of the NENs mid-latitude sites. This coverage would supplement coverage provided by the JPL Deep Space Network (DSN). The NEN, with smaller apertures than DSN, provides the benefit of a larger beamwidth that could be beneficial in the event of uncertain ephemeris data. In order to realize these benefits the NEN would need to upgrade stations targeted based on coverage ability and current configuration/ease of upgrade, to ensure compatibility with the IRIS radio. In addition, the NEN is working with CubeSat radio developers to ensure NEN compatibility with alternative CubeSat radios for Lunar and L1/L2 CubeSats. The NEN has provided NEN compatibility requirements to several radio developers who are developing radios that offer lower cost and, in some cases, more capabilities with fewer constraints. The NEN is ready to begin supporting CubeSat missions. The NEN is considering network upgrades to broaden the types of CubeSat missions that can be supported and is supporting both the CubeSat community and radio developers to ensure future CubeSat missions have multiple options when choosing a network for their communications support.
CubeSats for Astrophysics: The Current Perspective
NASA Astrophysics Data System (ADS)
Ardila, David R.; Shkolnik, Evgenya; Gorjian, Varoujan
2017-01-01
Cubesats are small satellites built to multiples of 1U (1000 cm3). The 2016 NRC Report “Achieving Science with CubeSats” indicates that between 2013 and 2018 NASA and NSF sponsored 104 CubeSats. Of those, only one is devoted to astrophysics: HaloSat (PI: P. Kaaret), a 6U CubeSat with an X-ray payload to study the hot galactic halo.Despite this paucity of missions, CubeSats have a lot of potential for astrophysics. To assess the science landscape that a CubeSat astrophysics mission may occupy, we consider the following parameters:1-Wavelength: CubeSats are not competitive in the visible, unless the application (e.g. high precision photometry) is difficult to do from the ground. Thermal IR science is limited by the lack of low-power miniaturized cryocoolers and by the large number of infrared astrophysical missions launched or planned. In the UV, advances in δ-doping processes result in larger sensitivity with smaller apertures. Commercial X-ray detectors also allow for competitive science.2-Survey vs. Pointed observations: All-sky surveys have been done at most wavelengths from X-rays to Far-IR and CubeSats will not be able to compete in sensitivity with them. CubeSat science should then center on specific objects or object classes. Due to poor attitude control, unresolved photometry is scientifically more promising that extended imaging.3-Single-epoch vs. time domain: CubeSat apertures cannot compete in sensitivity with big satellites when doing single-epoch observations. However, time-domain astrophysics is an area in which CubeSats can provide very valuable science return.Technologically, CubeSat astrophysics is limited by:1-Lack of large apertures: The largest aperture CubeSat launched is ~10 cm, although deployable apertures as large as 20 cm could be fitted to 6U buses.2-Poor attitude control: State-of-the-art systems have demonstrated jitter of ~10” on timescales of seconds. Jitter imposes limits on image quality and, coupled with detector errors, limits the S/N.Other technology limitations include the lack of high-bandwidth communication and low-power miniaturized cryocoolers. However, even with today’s technological limitations, astrophysics applications of CubeSats are only limited by our imagination.
Near Earth Network (NEN) CubeSat Communications
NASA Technical Reports Server (NTRS)
Schaire, Scott
2017-01-01
The NASA Near Earth Network (NEN) consists of globally distributed tracking stations, including NASA, commercial, and partner ground stations, that are strategically located to maximize the coverage provided to a variety of orbital and suborbital missions, including those in LEO (Low Earth Orbit), GEO (Geosynchronous Earth Orbit), HEO (Highly Elliptical Orbit), lunar and L1-L2 orbits. The NEN's future mission set includes and will continue to include CubeSat missions. The first NEN-supported CubeSat mission will be the Cubesat Proximity Operations Demonstration (CPOD) launching into LEO in 2017. The majority of the CubeSat missions destined to fly on EM-1, launching in late 2018, many in a lunar orbit, will communicate with ground-based stations via X-band and will utilize the NASA Jet Propulsion Laboratory (JPL)-developed IRIS (Satellite Communication for Air Traffic Management) radio. The NEN recognizes the important role CubeSats are beginning to play in carrying out NASAs mission and is therefore investigating the modifications needed to provide IRIS radio compatibility. With modification, the NEN could potentially expand support to the EM-1 (Exploration Mission-1) lunar CubeSats. The NEN could begin providing significant coverage to lunar CubeSat missions utilizing three to four of the NEN's mid-latitude sites. This coverage would supplement coverage provided by the JPL Deep Space Network (DSN). The NEN, with smaller apertures than DSN, provides the benefit of a larger beamwidth that could be beneficial in the event of uncertain ephemeris data. In order to realize these benefits the NEN would need to upgrade stations targeted based on coverage ability and current configuration ease of upgrade, to ensure compatibility with the IRIS radio. In addition, the NEN is working with CubeSat radio developers to ensure NEN compatibility with alternative CubeSat radios for Lunar and L1-L2 CubeSats. The NEN has provided NEN compatibility requirements to several radio developers who are developing radios that offer lower cost and, in some cases, more capabilities with fewer constraints. The NEN is ready to begin supporting CubeSat missions. The NEN is considering network upgrades to broaden the types of CubeSat missions that can be supported and is supporting both the CubeSat community and radio developers to ensure future CubeSat missions have multiple options when choosing a network for their communications support.
NASA Near Earth Network (NEN) Support for Lunar and L1/L2 CubeSats
NASA Technical Reports Server (NTRS)
Schaire, Scott H.
2017-01-01
The NASA Near Earth Network (NEN) consists of globally distributed tracking stations, including NASA, commercial, and partner ground stations, that are strategically located to maximize the coverage provided to a variety of orbital and suborbital missions, including those in LEO, GEO, HEO, lunar and L1/L2 orbits. The NENs future mission set includes and will continue to include CubeSat missions. The first NEN supported CubeSat mission will be the Cubesat Proximity Operations Demonstration (CPOD) launching into low earth orbit (LEO) in early 2017. The majority of the CubeSat missions destined to fly on EM-1, launching in late 2018, many in a lunar orbit, will communicate with ground based stations via X-band and will utilize the NASA Jet Propulsion Laboratory (JPL) developed IRIS radio. The NEN recognizes the important role CubeSats are beginning to play in carrying out NASAs mission and is therefore investigating the modifications needed to provide IRIS radio compatibility. With modification, the NEN could potentially expand support to the EM-1 lunar CubeSats. The NEN could begin providing significant coverage to lunar CubeSat missions utilizing three to four of the NENs mid-latitude sites. This coverage would supplement coverage provided by the JPL Deep Space Network (DSN). The NEN, with smaller apertures than DSN, provides the benefit of a larger beamwidth that could be beneficial in the event of uncertain ephemeris data. In order to realize these benefits the NEN would need to upgrade stations targeted based on coverage ability and current configurationease of upgrade, to ensure compatibility with the IRIS radio.In addition, the NEN is working with CubeSat radio developers to ensure NEN compatibility with alternative CubeSat radios for Lunar and L1/L2 CubeSats. The NEN has provided NEN compatibility requirements to several radio developers who are developing radios that offer lower cost and, in some cases, more capabilities with fewer constraints. The NEN is ready to begin supporting CubeSat missions. The NEN is considering network upgrades to broaden the types of CubeSat missions that can be supported and is supporting both the CubeSat community and radio developers to ensure future CubeSat missions have multiple options when choosing a network for their communications support.
Privacy-preserving data cube for electronic medical records: An experimental evaluation.
Kim, Soohyung; Lee, Hyukki; Chung, Yon Dohn
2017-01-01
The aim of this study is to evaluate the effectiveness and efficiency of privacy-preserving data cubes of electronic medical records (EMRs). An EMR data cube is a complex of EMR statistics that are summarized or aggregated by all possible combinations of attributes. Data cubes are widely utilized for efficient big data analysis and also have great potential for EMR analysis. For safe data analysis without privacy breaches, we must consider the privacy preservation characteristics of the EMR data cube. In this paper, we introduce a design for a privacy-preserving EMR data cube and the anonymization methods needed to achieve data privacy. We further focus on changes in efficiency and effectiveness that are caused by the anonymization process for privacy preservation. Thus, we experimentally evaluate various types of privacy-preserving EMR data cubes using several practical metrics and discuss the applicability of each anonymization method with consideration for the EMR analysis environment. We construct privacy-preserving EMR data cubes from anonymized EMR datasets. A real EMR dataset and demographic dataset are used for the evaluation. There are a large number of anonymization methods to preserve EMR privacy, and the methods are classified into three categories (i.e., global generalization, local generalization, and bucketization) by anonymization rules. According to this classification, three types of privacy-preserving EMR data cubes were constructed for the evaluation. We perform a comparative analysis by measuring the data size, cell overlap, and information loss of the EMR data cubes. Global generalization considerably reduced the size of the EMR data cube and did not cause the data cube cells to overlap, but incurred a large amount of information loss. Local generalization maintained the data size and generated only moderate information loss, but there were cell overlaps that could decrease the search performance. Bucketization did not cause cells to overlap and generated little information loss; however, the method considerably inflated the size of the EMR data cubes. The utility of anonymized EMR data cubes varies widely according to the anonymization method, and the applicability of the anonymization method depends on the features of the EMR analysis environment. The findings help to adopt the optimal anonymization method considering the EMR analysis environment and goal of the EMR analysis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
CubeSat Integration into the Space Situational Awareness Architecture
NASA Astrophysics Data System (ADS)
Morris, K.; Wolfson, M.; Brown, J.
2013-09-01
Lockheed Martin Space Systems Company has recently been involved in developing GEO Space Situational Awareness architectures, which allows insights into how cubesats can augment the current national systems. One hole that was identified in the current architecture is the need for timelier metric track observations to aid in the chain of custody. Obtaining observations of objects at GEO can be supported by CubeSats. These types of small satellites are increasing being built and flown by government agencies like NASA and SMDC. CubeSats are generally mass and power constrained allowing for only small payloads that cannot typically mimic traditional flight capability. CubeSats do not have a high reliability and care must be taken when choosing mission orbits to prevent creating more debris. However, due to the low costs, short development timelines, and available hardware, CubeSats can supply very valuable benefits to these complex missions, affordably. For example, utilizing CubeSats for advanced focal plane demonstrations to support technology insertion into the next generation situational awareness sensors can help to lower risks before the complex sensors are developed. CubeSats can augment the planned ground and space based assets by creating larger constellations with more access to areas of interest. To aid in maintaining custody of objects, a CubeSat constellation at 500 km above GEO would provide increased point of light tracking that can augment the ground SSA assets. Key features of the Cubesat include a small visible camera looking along the GEO belt, a small propulsion system that allows phasing between CubeSats, and an image processor to reduce the data sent to the ground. An elegant communications network will also be used to provide commands to and data from multiple CubeSats. Additional CubeSats can be deployed on GSO launches or through ride shares to GEO, replenishing or adding to the constellation with each launch. Each CubeSat would take images of the GEO belt, process out the stars, and then downlink the data to the ground. This data can then be combined with the existing metric track data to enhance the coverage and timeliness. With the current capability of CubeSats and their payloads, along with the launch constraints, the near term focus is to integrate into existing architectures by reducing technology risks, understanding unique phenomenology, and augment mission collection capability. Understanding the near term benefits of utilizing CubeSats will better inform the SSA mission developers how to integrate CubeSats into the next generation of architectures from the start.
Development of Novel Integrated Antennas for CubeSats
NASA Technical Reports Server (NTRS)
Jackson, David; Fink, Patrick W.; Martinez, Andres; Petro, Andrew
2015-01-01
The Development of Novel Integrated Antennas for CubeSats project is directed at the development of novel antennas for CubeSats to replace the bulky and obtrusive antennas (e.g., whip antennas) that are typically used. The integrated antennas will not require mechanical deployment and thus will allow future CubeSats to avoid potential mechanical problems and therefore improve mission reliability. Furthermore, the integrated antennas will have improved functionality and performance, such as circular polarization for improved link performance, compared with the conventional antennas currently used on CubeSats.
NASA Astrophysics Data System (ADS)
Martin, T. B.; Drissen, L.
2016-12-01
Installed at the Canada-France-Hawaii Telescope (CFHT) since August 2015, SITELLE is an Imaging Fourier Transform Spectrometer (IFTS) with an 11×11 field of view. After its prototype SpIOMM, installed at Mont Mégantic (Québec, Canada), it is the second IFTS in the world operating in the visible band (350-1000 nm). It delivers hyperspectral data cubes of 4 million spectra at R˜1500-5000 with a spatial sampling of 0.32" and a filling factor of 100 %. A suite of softwares has been designed to reduce (ORBS) and analyze (ORCS) the data. Based on commissioning data obtained in August 2015, a first stable version has been released in March 2016 which is capable of reducing all the data. In this paper the quality of the calibration is discussed.
A fast marching algorithm for the factored eikonal equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Treister, Eran, E-mail: erantreister@gmail.com; Haber, Eldad, E-mail: haber@math.ubc.ca; Department of Mathematics, The University of British Columbia, Vancouver, BC
The eikonal equation is instrumental in many applications in several fields ranging from computer vision to geoscience. This equation can be efficiently solved using the iterative Fast Sweeping (FS) methods and the direct Fast Marching (FM) methods. However, when used for a point source, the original eikonal equation is known to yield inaccurate numerical solutions, because of a singularity at the source. In this case, the factored eikonal equation is often preferred, and is known to yield a more accurate numerical solution. One application that requires the solution of the eikonal equation for point sources is travel time tomography. Thismore » inverse problem may be formulated using the eikonal equation as a forward problem. While this problem has been solved using FS in the past, the more recent choice for applying it involves FM methods because of the efficiency in which sensitivities can be obtained using them. However, while several FS methods are available for solving the factored equation, the FM method is available only for the original eikonal equation. In this paper we develop a Fast Marching algorithm for the factored eikonal equation, using both first and second order finite-difference schemes. Our algorithm follows the same lines as the original FM algorithm and requires the same computational effort. In addition, we show how to obtain sensitivities using this FM method and apply travel time tomography, formulated as an inverse factored eikonal equation. Numerical results in two and three dimensions show that our algorithm solves the factored eikonal equation efficiently, and demonstrate the achieved accuracy for computing the travel time. We also demonstrate a recovery of a 2D and 3D heterogeneous medium by travel time tomography using the eikonal equation for forward modeling and inversion by Gauss–Newton.« less
NASA Astrophysics Data System (ADS)
Jenness, Tim; Currie, Malcolm J.; Tilanus, Remo P. J.; Cavanagh, Brad; Berry, David S.; Leech, Jamie; Rizzi, Luca
2015-10-01
With the advent of modern multidetector heterodyne instruments that can result in observations generating thousands of spectra per minute it is no longer feasible to reduce these data as individual spectra. We describe the automated data reduction procedure used to generate baselined data cubes from heterodyne data obtained at the James Clerk Maxwell Telescope (JCMT). The system can automatically detect baseline regions in spectra and automatically determine regridding parameters, all without input from a user. Additionally, it can detect and remove spectra suffering from transient interference effects or anomalous baselines. The pipeline is written as a set of recipes using the ORAC-DR pipeline environment with the algorithmic code using Starlink software packages and infrastructure. The algorithms presented here can be applied to other heterodyne array instruments and have been applied to data from historical JCMT heterodyne instrumentation.
Development of an upwind, finite-volume code with finite-rate chemistry
NASA Technical Reports Server (NTRS)
Molvik, Gregory A.
1995-01-01
Under this grant, two numerical algorithms were developed to predict the flow of viscous, hypersonic, chemically reacting gases over three-dimensional bodies. Both algorithms take advantage of the benefits of upwind differencing, total variation diminishing techniques and of a finite-volume framework, but obtain their solution in two separate manners. The first algorithm is a zonal, time-marching scheme, and is generally used to obtain solutions in the subsonic portions of the flow field. The second algorithm is a much less expensive, space-marching scheme and can be used for the computation of the larger, supersonic portion of the flow field. Both codes compute their interface fluxes with a temporal Riemann solver and the resulting schemes are made fully implicit including the chemical source terms and boundary conditions. Strong coupling is used between the fluid dynamic, chemical and turbulence equations. These codes have been validated on numerous hypersonic test cases and have provided excellent comparison with existing data. This report summarizes the research that took place from August 1,1994 to January 1, 1995.
EarthCube - A Community-led, Interdisciplinary Collaboration for Geoscience Cyberinfrastructure
NASA Astrophysics Data System (ADS)
Dick, Cindy; Allison, Lee
2016-04-01
The US NSF EarthCube Test Enterprise Governance Project completed its initial two-year long process to engage the community and test a demonstration governing organization with the goal of facilitating a community-led process on designing and developing a geoscience cyberinfrastructure. Conclusions are that EarthCube is viable, has engaged a broad spectrum of end-users and contributors, and has begun to foster a sense of urgency around the importance of open and shared data. Levels of trust among participants are growing. At the same time, the active participants in EarthCube represent a very small sub-set of the larger population of geoscientists. Results from Stage I of this project have impacted NSF decisions on the direction of the EarthCube program. The overall tone of EarthCube events has had a constructive, problem-solving orientation. The technical and organizational elements of EarthCube are poised to support a functional infrastructure for the geosciences community. The process for establishing shared technological standards has notable progress but there is a continuing need to expand technological and cultural alignment. Increasing emphasis is being given to the interdependencies among EarthCube funded projects. The newly developed EarthCube Technology Plan highlights important progress in this area by five working groups focusing on: 1. Use cases; 2. Funded project gap analysis; 3. Testbed development; 4. Standards; and 5. Architecture. The EarthCube governance implementing processes to facilitate community convergence on a system architecture, which is expected to emerge naturally from a set of data principles, user requirements, science drivers, technology capabilities, and domain needs.
Linking Humans to Data: Designing an Enterprise Architecture for EarthCube
NASA Astrophysics Data System (ADS)
Xu, C.; Yang, C.; Meyer, C. B.
2013-12-01
National Science Foundation (NSF)'s EarthCube is a strategic initiative towards a grand enterprise that holistically incorporates different geoscience research domains. The EarthCube as envisioned by NSF is a community-guided cyberinfrastructure (NSF 2011). The design of EarthCube enterprise architecture (EA) offers a vision to harmonize processes between the operations of EarthCube and its information technology foundation, the geospatial cyberinfrastructure. (Yang et al. 2010). We envision these processes as linking humans to data. We report here on fundamental ideas that would ultimately materialize as a conceptual design of EarthCube EA. EarthCube can be viewed as a meta-science that seeks to advance knowledge of the Earth through cross-disciplinary connections made using conventional domain-based earth science research. In order to build capacity that enables crossing disciplinary chasms, a key step would be to identify the cornerstones of the envisioned enterprise architecture. Human and data inputs are the two key factors to the success of EarthCube (NSF 2011), based upon which three hypotheses have been made: 1) cross disciplinary collaboration has to be achieved through data sharing; 2) disciplinary differences need to be articulated and captured in both computer and human understandable formats; 3) human intervention is crucial for crossing the disciplinary chasms. We have selected the Federal Enterprise Architecture Framework (FEAF, CIO Council 2013) as the baseline for the envisioned EarthCube EA, noting that the FEAF's deficiencies can be improved upon with inputs from three other popular EA frameworks. This presentation reports the latest on the conceptual design of an enterprise architecture in support of EarthCube.
An evaluation of space time cube representation of spatiotemporal patterns.
Kristensson, Per Ola; Dahlbäck, Nils; Anundi, Daniel; Björnstad, Marius; Gillberg, Hanna; Haraldsson, Jonas; Mårtensson, Ingrid; Nordvall, Mathias; Ståhl, Josefine
2009-01-01
Space time cube representation is an information visualization technique where spatiotemporal data points are mapped into a cube. Information visualization researchers have previously argued that space time cube representation is beneficial in revealing complex spatiotemporal patterns in a data set to users. The argument is based on the fact that both time and spatial information are displayed simultaneously to users, an effect difficult to achieve in other representations. However, to our knowledge the actual usefulness of space time cube representation in conveying complex spatiotemporal patterns to users has not been empirically validated. To fill this gap, we report on a between-subjects experiment comparing novice users' error rates and response times when answering a set of questions using either space time cube or a baseline 2D representation. For some simple questions, the error rates were lower when using the baseline representation. For complex questions where the participants needed an overall understanding of the spatiotemporal structure of the data set, the space time cube representation resulted in on average twice as fast response times with no difference in error rates compared to the baseline. These results provide an empirical foundation for the hypothesis that space time cube representation benefits users analyzing complex spatiotemporal patterns.
NASA Astrophysics Data System (ADS)
Ashby, Neil
2018-06-01
The comment (Nagornyi 2018 Metrologia) claims that, notwithstanding the conclusions stated in the paper Relativistic theory of the falling cube gravimeter (Ashby 2008 Metrologia 55 1–10), there is no need to consider the dimensions or refractive index of the cube in fitting data from falling cube absolute gravimeters; additional questions are raised about matching quartic polynomials while determining only three quantities. The comment also suggests errors were made in Ashby (2008 Metrologia 55 1–10) while implementing the fitting routines on which the conclusions were based. The main contention of the comment is shown to be invalid because retarded time was not properly used in constructing a fictitious cube position. Such a fictitious position, fixed relative to the falling cube, is derived and shown to be dependent on cube dimensions and refractive index. An example is given showing how in the present context, polynomials of fourth order can be effectively matched by determining only three quantities, and a new compact characterization of the interference signal arriving at the detector is given. Work of the U.S. government, not subject to copyright.
Survey on the implementation and reliability of CubeSat electrical bus interfaces
NASA Astrophysics Data System (ADS)
Bouwmeester, Jasper; Langer, Martin; Gill, Eberhard
2017-06-01
This paper provides results and conclusions on a survey on the implementation and reliability aspects of CubeSat bus interfaces, with an emphasis on the data bus and power distribution. It provides recommendations for a future CubeSat bus standard. The survey is based on a literature study and a questionnaire representing 60 launched CubeSats and 44 to be launched CubeSats. It is found that the bus interfaces are not the main driver for mission failures. However, it is concluded that the Inter Integrated Circuit (I2C) data bus, as implemented in a great majority of the CubeSats, caused some catastrophic satellite failures and a vast amount of bus lockups. The power distribution may lead to catastrophic failures if the power lines are not protected against overcurrent. A connector and wiring standard widely implemented in CubeSats is based on the PC/104 standard. Most participants find the 104 pin connector of this standard too large. For a future CubeSat bus interface standard, it is recommended to implement a reliable data bus, a power distribution with overcurrent protection and a wiring harness with smaller connectors compared with PC/104.
Ternary alloy material prediction using genetic algorithm and cluster expansion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chong
2015-12-01
This thesis summarizes our study on the crystal structures prediction of Fe-V-Si system using genetic algorithm and cluster expansion. Our goal is to explore and look for new stable compounds. We started from the current ten known experimental phases, and calculated formation energies of those compounds using density functional theory (DFT) package, namely, VASP. The convex hull was generated based on the DFT calculations of the experimental known phases. Then we did random search on some metal rich (Fe and V) compositions and found that the lowest energy structures were body centered cube (bcc) underlying lattice, under which we didmore » our computational systematic searches using genetic algorithm and cluster expansion. Among hundreds of the searched compositions, thirteen were selected and DFT formation energies were obtained by VASP. The stability checking of those thirteen compounds was done in reference to the experimental convex hull. We found that the composition, 24-8-16, i.e., Fe 3VSi 2 is a new stable phase and it can be very inspiring to the future experiments.« less
GreenCube and RocketCube: Low-Resource Sensorcraft for Atmospheric and Ionospheric Science
NASA Astrophysics Data System (ADS)
Bracikowski, P. J.; Lynch, K. A.; Slagle, A. K.; Fagin, M. H.; Currey, S. R.; Siddiqui, M. U.
2009-12-01
In situ atmospheric and ionospheric studies benefit greatly from the ability to separate variations in space from variations in time. Arrays of many probes are a method of doing this, but because of the technical character and expense of developing large arrays, so far probe arrays have been the domain of well-funded science missions. CubeSats and low-resource craft (``Picosats") are an avenue for bringing array-based studies of the atmosphere and ionosphere into the mainstream. The Lynch Rocket Lab at Dartmouth College is attempting to develop the instruments, experience, and heritage to implement arrays of many low-resource sensorcraft while doing worthwhile science in the development process. We are working on two CubeSat projects to reach this goal: GreenCube for atmospheric studies and RocketCube for ionospheric studies. GreenCube is an undergraduate student-directed high-altitude balloon-borne 3U CubeSat. GreenCube I was a bus, telemetry, and mechanical system development project. GreenCube I flew in the fall of 2008. The flight was successfully recovered and tracked over the 97km range and through the 29km altitude rise. GreenCube I carried six thermal housekeeping sensors, a GPS, a magnetometer, and a HAM radio telemetry system with a reporting rate of once every 30 seconds. The velocity profile obtained from the GPS data implies the presence of atmospheric gravity waves during the flight. GreenCube II flew in August 2009 with the science goal of detecting atmospheric gravity waves over the White Mountains of New Hampshire. Two balloons with identical payloads were released 90 seconds apart to make 2-point observations. Each payload carried a magnetometer, 5 thermistors for ambient temperature readings, a GPS, and an amateur radio telemetry system with a 7 second reporting cadence. A vertically oriented video camera on one payload and a horizontally oriented video camera on the other recorded the characteristics of gravity waves in the nearby clouds. We expect to be able to detect atmospheric gravity waves from the GPS-derived position and velocity of the two balloons and the ambient temperature profiles. Preliminary analysis of the temperature data shows indications of atmospheric gravity waves. RocketCube is a graduate student-designed low-resource sensorcraft development project being designed for future ionospheric multi-point missions. The FPGA-based bus system, based on GreenCube’s systems, will be able to control and digitize analog data from any low voltage instrument and telemeter that data. RocketCube contains a GPS and high-resolution magnetometer for position and orientation information. The Lynch Rocket Lab's initial interest in developing RocketCube is to investigate the k-spectrum of density irregularities in the auroral ionosphere. To this end, RocketCube will test a new Petite retarding potential analyzer Ion Probe (PIP) for examining subsonic and supersonic thermal ion populations in the ionosphere. The tentatively planned launch will be from a Wallops Flight Facility sounding rocket test flight in 2011. RocketCube serves as a step toward a scientific auroral sounding rocket mission that will feature an array of subpayloads to study the auroral ionosphere.
An augmented reality tool for learning spatial anatomy on mobile devices.
Jain, Nishant; Youngblood, Patricia; Hasel, Matthew; Srivastava, Sakti
2017-09-01
Augmented Realty (AR) offers a novel method of blending virtual and real anatomy for intuitive spatial learning. Our first aim in the study was to create a prototype AR tool for mobile devices. Our second aim was to complete a technical evaluation of our prototype AR tool focused on measuring the system's ability to accurately render digital content in the real world. We imported Computed Tomography (CT) data derived virtual surface models into a 3D Unity engine environment and implemented an AR algorithm to display these on mobile devices. We investigated the accuracy of the virtual renderings by comparing a physical cube with an identical virtual cube for dimensional accuracy. Our comparative study confirms that our AR tool renders 3D virtual objects with a high level of accuracy as evidenced by the degree of similarity between measurements of the dimensions of a virtual object (a cube) and the corresponding physical object. We developed an inexpensive and user-friendly prototype AR tool for mobile devices that creates highly accurate renderings. This prototype demonstrates an intuitive, portable, and integrated interface for spatial interaction with virtual anatomical specimens. Integrating this AR tool with a library of CT derived surface models provides a platform for spatial learning in the anatomy curriculum. The segmentation methodology implemented to optimize human CT data for mobile viewing can be extended to include anatomical variations and pathologies. The ability of this inexpensive educational platform to deliver a library of interactive, 3D models to students worldwide demonstrates its utility as a supplemental teaching tool that could greatly benefit anatomical instruction. Clin. Anat. 30:736-741, 2017. © 2017Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Cluster analysis in systems of magnetic spheres and cubes
NASA Astrophysics Data System (ADS)
Pyanzina, E. S.; Gudkova, A. V.; Donaldson, J. G.; Kantorovich, S. S.
2017-06-01
In the present work we use molecular dynamics simulations and graph-theory based cluster analysis to compare self-assembly in systems of magnetic spheres, and cubes where the dipole moment is oriented along the side of the cube in the [001] crystallographic direction. We show that under the same conditions cubes aggregate far less than their spherical counterparts. This difference can be explained in terms of the volume of phase space in which the formation of the bond is thermodynamically advantageous. It follows that this volume is much larger for a dipolar sphere than for a dipolar cube.
ELaNa - Educational Launch of Nanosatellite Providing Routine RideShare Opportunities
NASA Technical Reports Server (NTRS)
Skrobot, Garrett Lee; Coelho, Roland
2012-01-01
Since the creation of the NASA CubeSat Launch Initiative (NCSLI), the need for CubeSat rideshares has dramatically increased. After only three releases of the initiative, a total of 66 CubeSats now await launch opportunities. So, how is this challenge being resolved? NASA's Launch Services Program (LSP) has studied how to integrate PPODs on Athena, Atlas V, and Delta IV launch vehicles and has been instrumental in developing several carrier systems to support CubeSats as rideshares on NASA missions. In support of the first two ELaNa missions the Poly-Picosatellite Orbital Deployer (P-POD) was adapted for use on a Taurus XL (ELaNa I) and a Delta n (ELaNa III). Four P-PODs, which contained a total eight CubeSats, were used on these first ELaNa missions. Next up is ELaNa VI, which will launch on an Atlas V in August 2012. The four ELaNa VI CubeSats, in three P-PODs, are awaiting launch, having been integrated in the NPSCuLite. To increase rideshare capabilities, the Launch Services Program (LSP) is working to integrate P-PODs on Falcon 9 missions. The proposed Falcon 9 manifest will provide greater opportunities for the CubeSat community. For years, the standard CubeSat size was 1 U to 3U. As the desire to include more science in each cube grows, so does the standard CubeSat size. No longer is a 1 U, 1.5U, 2U or 3U CubeSat the only option available; the new CubeSat standard will include 6U and possibly even 12U. With each increase in CubeSat size, the CubeSat community is pushing the capability of the current P-POD design. Not only is the carrier system affected, but integration to the Launch Vehicle is also a concern. The development of a system to accommodate not only the 3U P-POD but also carriers for larger CubeSats is ongoing. LSP considers payloads in the lkg to 180 kg range rideshare or small/secondary payloads. As new and emerging small payloads are developed, rideshare opportunities and carrier systems need to be identified and secured. The development of a rideshare carrier system is not always cost effective. Sometimes a launch vehicle with an excellent performance record appears to be a great rideshare candidate however, after completing a feasibility study, LSP may determine that the cost of the rideshare carrier system is too great and, due to budget constraints, the development cannot go forward. With the current budget environment, one cost effective way to secure rideshare opportunities is to look for synergy with other government organizations that share the same interest.
NASA Technical Reports Server (NTRS)
Geist, Alessandro; Lin, Michael; Flatley, Tom; Petrick, David
2013-01-01
SpaceCube 1.5 is a high-performance and low-power system in a compact form factor. It is a hybrid processing system consisting of CPU (central processing unit), FPGA (field-programmable gate array), and DSP (digital signal processor) processing elements. The primary processing engine is the Virtex- 5 FX100T FPGA, which has two embedded processors. The SpaceCube 1.5 System was a bridge to the SpaceCube 2.0 and SpaceCube 2.0 Mini processing systems. The SpaceCube 1.5 system was the primary avionics in the successful SMART (Small Rocket/Spacecraft Technology) Sounding Rocket mission that was launched in the summer of 2011. For SMART and similar missions, an avionics processor is required that is reconfigurable, has high processing capability, has multi-gigabit interfaces, is low power, and comes in a rugged/compact form factor. The original SpaceCube 1.0 met a number of the criteria, but did not possess the multi-gigabit interfaces that were required and is a higher-cost system. The SpaceCube 1.5 was designed with those mission requirements in mind. The SpaceCube 1.5 features one Xilinx Virtex-5 FX100T FPGA and has excellent size, weight, and power characteristics [4×4×3 in. (approx. = 10×10×8 cm), 3 lb (approx. = 1.4 kg), and 5 to 15 W depending on the application]. The estimated computing power of the two PowerPC 440s in the Virtex-5 FPGA is 1100 DMIPS each. The SpaceCube 1.5 includes two Gigabit Ethernet (1 Gbps) interfaces as well as two SATA-I/II interfaces (1.5 to 3.0 Gbps) for recording to data drives. The SpaceCube 1.5 also features DDR2 SDRAM (double data rate synchronous dynamic random access memory); 4- Gbit Flash for storing application code for the CPU, FPGA, and DSP processing elements; and a Xilinx Platform Flash XL to store FPGA configuration files or application code. The system also incorporates a 12 bit analog to digital converter with the ability to read 32 discrete analog sensor inputs. The SpaceCube 1.5 design also has a built-in accelerometer. In addition, the system has 12 receive and transmit RS- 422 interfaces for legacy support. The SpaceCube 1.5 processor card represents the first NASA Goddard design in a compact form factor featuring the Xilinx Virtex- 5. The SpaceCube 1.5 incorporates backward compatibility with the Space- Cube 1.0 form factor and stackable architecture. It also makes use of low-cost commercial parts, but is designed for operation in harsh environments.
Heller, Monika D; Roots, Kurt; Srivastava, Sanjana; Schumann, Jennifer; Srivastava, Jaideep; Hale, T Sigi
2013-10-01
Attention deficit hyperactivity disorder (ADHD) is found in 9.5 percent of the U.S. population and poses lifelong challenges. Current diagnostic approaches rely on evaluation forms completed by teachers and/or parents, although they are not specifically trained to recognize cognitive disorders. The most accurate diagnosis is by a psychiatrist, often only available to children with severe symptoms. Development of a tool that is engaging and objective and aids medical providers is needed in the diagnosis of ADHD. The goal of this research is to work toward the development of such a tool. The proposed approach takes advantage of two trends: The rapid adoption of tangible user interface devices and the popularity of interactive videogames. CogCubed Inc. (Minneapolis, MN) has created "Groundskeeper," a game on the Sifteo Cubes (Sifteo, Inc., San Francisco, CA) game system with elements that exercise skills affected by ADHD. "Groundskeeper" was evaluated for 52 patients, with and without ADHD. Gameplay data were mathematically transformed into ADHD-indicative feature variables and subjected to machine learning algorithms to develop diagnostic models to aid psychiatric clinical assessments of ADHD. The effectiveness of the developed model was evaluated against the diagnostic impressions of two licensed child/adolescent psychiatrists using semistructured interviews. Our predictive algorithms were highly accurate in correctly predicting diagnoses based on gameplay of "Groundskeeper." The F-measure, a measure of diagnosis accuracy, from the predictive models gave values as follows: ADHD, inattentive type, 78 percent (P>0.05); ADHD, combined type, 75 percent (P<0.05); anxiety disorders, 71%; and depressive disorders, 76%. This represents a promising new approach to screening tools for ADHD.
NASA Astrophysics Data System (ADS)
Burgin, M. S.; van Zyl, J. J.
2017-12-01
Traditionally, substantial ancillary data is needed to parametrize complex electromagnetic models to estimate soil moisture from polarimetric radar data. The Soil Moisture Active Passive (SMAP) baseline radar soil moisture retrieval algorithm uses a data cube approach, where a cube of radar backscatter values is calculated using sophisticated models. In this work, we utilize the empirical approach by Kim and van Zyl (2009) which is an optional SMAP radar soil moisture retrieval algorithm; it expresses radar backscatter of a vegetated scene as a linear function of soil moisture, hence eliminating the need for ancillary data. We use 2.5 years of L-band Aquarius radar and radiometer derived soil moisture data to determine two coefficients of a linear model function on a global scale. These coefficients are used to estimate soil moisture with 2.5 months of L-band SMAP and L-band PALSAR-2 data. The estimated soil moisture is compared with the SMAP Level 2 radiometer-only soil moisture product; the global unbiased RMSE of the SMAP derived soil moisture corresponds to 0.06-0.07 cm3/cm3. In this study, we leverage the three diverse L-band radar data sets to investigate the impact of pixel size and pixel heterogeneity on soil moisture estimation performance. Pixel sizes range from 100 km for Aquarius, over 3, 9, 36 km for SMAP, to 10m for PALSAR-2. Furthermore, we observe seasonal variation in the radar sensitivity to soil moisture which allows the identification and quantification of seasonally changing vegetation. Utilizing this information, we further improve the estimation performance. The research described in this paper is supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2017. All rights reserved.
A software tool of digital tomosynthesis application for patient positioning in radiotherapy.
Yan, Hui; Dai, Jian-Rong
2016-03-08
Digital Tomosynthesis (DTS) is an image modality in reconstructing tomographic images from two-dimensional kV projections covering a narrow scan angles. Comparing with conventional cone-beam CT (CBCT), it requires less time and radiation dose in data acquisition. It is feasible to apply this technique in patient positioning in radiotherapy. To facilitate its clinical application, a software tool was developed and the reconstruction processes were accelerated by graphic process-ing unit (GPU). Two reconstruction and two registration processes are required for DTS application which is different from conventional CBCT application which requires one image reconstruction process and one image registration process. The reconstruction stage consists of productions of two types of DTS. One type of DTS is reconstructed from cone-beam (CB) projections covering a narrow scan angle and is named onboard DTS (ODTS), which represents the real patient position in treatment room. Another type of DTS is reconstructed from digitally reconstructed radiography (DRR) and is named reference DTS (RDTS), which represents the ideal patient position in treatment room. Prior to the reconstruction of RDTS, The DRRs are reconstructed from planning CT using the same acquisition setting of CB projections. The registration stage consists of two matching processes between ODTS and RDTS. The target shift in lateral and longitudinal axes are obtained from the matching between ODTS and RDTS in coronal view, while the target shift in longitudinal and vertical axes are obtained from the matching between ODTS and RDTS in sagittal view. In this software, both DRR and DTS reconstruction algorithms were implemented on GPU environments for acceleration purpose. The comprehensive evaluation of this software tool was performed including geometric accuracy, image quality, registration accuracy, and reconstruction efficiency. The average correlation coefficient between DRR/DTS generated by GPU-based algorithm and CPU-based algorithm is 0.99. Based on the measurements of cube phantom on DTS, the geometric errors are within 0.5 mm in three axes. For both cube phantom and pelvic phantom, the registration errors are within 0.5 mm in three axes. Compared with reconstruction performance of CPU-based algorithms, the performances of DRR and DTS reconstructions are improved by a factor of 15 to 20. A GPU-based software tool was developed for DTS application for patient positioning of radiotherapy. The geometric and registration accuracy met the clinical requirement in patient setup of radiotherapy. The high performance of DRR and DTS reconstruction algorithms was achieved by the GPU-based computation environments. It is a useful software tool for researcher and clinician in evaluating DTS application in patient positioning of radiotherapy.
Press and Public Interest IceCube Acronym Dictionary Articles about IceCube "Inside Story the End of the Earth" LBNL CRD Report Education/ Public Interest A New Window on the Universe Ice
CubeSat evolution: Analyzing CubeSat capabilities for conducting science missions
NASA Astrophysics Data System (ADS)
Poghosyan, Armen; Golkar, Alessandro
2017-01-01
Traditionally, the space industry produced large and sophisticated spacecraft handcrafted by large teams of engineers and budgets within the reach of only a few large government-backed institutions. However, over the last decade, the space industry experienced an increased interest towards smaller missions and recent advances in commercial-off-the-shelf (COTS) technology miniaturization spurred the development of small spacecraft missions based on the CubeSat standard. CubeSats were initially envisioned primarily as educational tools or low cost technology demonstration platforms that could be developed and launched within one or two years. Recently, however, more advanced CubeSat missions have been developed and proposed, indicating that CubeSats clearly started to transition from being solely educational and technology demonstration platforms to offer opportunities for low-cost real science missions with potential high value in terms of science return and commercial revenue. Despite the significant progress made in CubeSat research and development over the last decade, some fundamental questions still habitually arise about the CubeSat capabilities, limitations, and ultimately about their scientific and commercial value. The main objective of this review is to evaluate the state of the art CubeSat capabilities with a special focus on advanced scientific missions and a goal of assessing the potential of CubeSat platforms as capable spacecraft. A total of over 1200 launched and proposed missions have been analyzed from various sources including peer-reviewed journal publications, conference proceedings, mission webpages as well as other publicly available satellite databases and about 130 relatively high performance missions were downselected and categorized into six groups based on the primary mission objectives including "Earth Science and Spaceborne Applications", "Deep Space Exploration", "Heliophysics: Space Weather", "Astrophysics", "Spaceborne In Situ Laboratory", and "Technology Demonstration" for in-detail analysis. Additionally, the evolution of CubeSat enabling technologies are surveyed for evaluating the current technology state of the art as well as identifying potential areas that will benefit the most from further technology developments for enabling high performance science missions based on CubeSat platforms.
Bibliography of In-House and Contract Reports, Supplement 18
1992-10-01
Transparent Conforming Overlays 46 TITLE REPORT NO. YEAR Development, Service Tests, and Production Model 1307 -TR 1953 Tests, Autofocusing Rectifier...Development, Test, Preparation, Delivery, and ETL- 1307 1982 Installation of Algorithms for Optimal Adjustment of Inertial Survey Data Developmental Optical...B: Terrain ETL- 0428 1986 and Object Modeling Recognition (March 13, 1985 - March 13, 1986) Knowledge-Based Vision Techniques - Task B: Terrain ETL
NASA Astrophysics Data System (ADS)
Averkin, Sergey N.; Gatsonis, Nikolaos A.
2018-06-01
An unstructured electrostatic Particle-In-Cell (EUPIC) method is developed on arbitrary tetrahedral grids for simulation of plasmas bounded by arbitrary geometries. The electric potential in EUPIC is obtained on cell vertices from a finite volume Multi-Point Flux Approximation of Gauss' law using the indirect dual cell with Dirichlet, Neumann and external circuit boundary conditions. The resulting matrix equation for the nodal potential is solved with a restarted generalized minimal residual method (GMRES) and an ILU(0) preconditioner algorithm, parallelized using a combination of node coloring and level scheduling approaches. The electric field on vertices is obtained using the gradient theorem applied to the indirect dual cell. The algorithms for injection, particle loading, particle motion, and particle tracking are parallelized for unstructured tetrahedral grids. The algorithms for the potential solver, electric field evaluation, loading, scatter-gather algorithms are verified using analytic solutions for test cases subject to Laplace and Poisson equations. Grid sensitivity analysis examines the L2 and L∞ norms of the relative error in potential, field, and charge density as a function of edge-averaged and volume-averaged cell size. Analysis shows second order of convergence for the potential and first order of convergence for the electric field and charge density. Temporal sensitivity analysis is performed and the momentum and energy conservation properties of the particle integrators in EUPIC are examined. The effects of cell size and timestep on heating, slowing-down and the deflection times are quantified. The heating, slowing-down and the deflection times are found to be almost linearly dependent on number of particles per cell. EUPIC simulations of current collection by cylindrical Langmuir probes in collisionless plasmas show good comparison with previous experimentally validated numerical results. These simulations were also used in a parallelization efficiency investigation. Results show that the EUPIC has efficiency of more than 80% when the simulation is performed on a single CPU from a non-uniform memory access node and the efficiency is decreasing as the number of threads further increases. The EUPIC is applied to the simulation of the multi-species plasma flow over a geometrically complex CubeSat in Low Earth Orbit. The EUPIC potential and flowfield distribution around the CubeSat exhibit features that are consistent with previous simulations over simpler geometrical bodies.
EarthCube - Results of Test Governance in Geoscience Cyberinfrastructure
NASA Astrophysics Data System (ADS)
Davis, R.; Allison, M. L.; Keane, C. M.; Robinson, E.
2016-12-01
In September 2016, the EarthCube Test Enterprise Governance Project completed its three-year long process to engage the community and test a demonstration governing organization with the goal of facilitating a community-led process on designing and developing a geoscience cyberinfrastructure to transform geoscience research. The EarthCube initiative is making an important transition from creating a coherent community towards adoption and implemention of technologies that can serve scientists working in and across many domains. The emerging concept of a "system of systems" approach to cyberinfrastructure architecture is a critical concept in the EarthCube program, but has not been fully defined. Recommendations from an NSF-appointed Advisory Committee include: a. developing a succinct definition of EarthCube; b. changing the community-elected governance approach towards structured rather than consensus-driven decision-making; c. restructuring the process to articulate program solicitations; and d. producing an effective implementation roadmap. These are seen as prerequisites to adoption of best practices, system concepts, and evolving to a production track. The EarthCube governing body is preparing responses to the Advisory Committee findings and recommendations with a target delivery date of late 2016 but broader involvement may be warranted. We conclude that there is ample justification to continue evolving to a governance framework that facilitates convergence on a system architecture that guides EarthCube activities and plays an influential role in making operational the EarthCube vision of cyberinfrastructure for the geosciences. There is widespread community expectation for support of a multiyear EarthCube governing effort to put into practice the science, technical, and organizational plans that are continuing to emerge. However, the active participants in EarthCube represent a small sub-set of the larger population of geoscientists.
NASA Astrophysics Data System (ADS)
Bhattacharjee, Pinaki P.; Ray, Ranjit K.; Tsuji, Nobuhiro
2010-11-01
An attempt has been made to study the evolution of texture in high-purity Ni and Ni-5 at. pct W alloy prepared by the powder metallurgy route followed by heavy cold rolling ( 95 pct deformation) and recrystallization. The deformation textures of the two materials are of typical pure metal or Cu-type texture. Cube-oriented ( left\\{ {00 1} right\\}left< { 100} rightrangle ) regions are present in the deformed state as long thin bands, elongated in the rolling direction (RD). These bands are characterized by a high orientation gradient inside, which is a result of the rotation of the cube-oriented cells around the RD toward the RD-rotated cube ( left\\{ {0 1 3} right\\}left< { 100} rightrangle ). Low-temperature annealing produces a weak cube texture along with the left\\{ {0 1 3} right\\}left< { 100} rightrangle component, with the latter being much stronger in high-purity Ni than in the Ni-W alloy. At higher temperatures, the cube texture is strengthened considerably in the Ni-W alloy; however, the cube volume fraction in high-purity Ni is significantly lower because of the retention of the left\\{ {0 1 3} right\\}left< { 100} rightrangle component. The difference in the relative strengths of the cube, and the left\\{ {0 1 3} right\\}left< { 100} rightrangle components in the two materials is evident from the beginning of recrystallization in which more left\\{ {0 1 3} right\\}left< { 100} rightrangle -oriented grains than near cube grains form in high-purity Ni. The preferential nucleation of the near cube and the left\\{ {0 1 3} right\\}left< { 100} rightrangle grains in these materials seems to be a result of the high orientation gradients associated with the cube bands that offer a favorable environment for early nucleation.
DAsHER CD: Developing a Data-Oriented Human-Centric Enterprise Architecture for EarthCube
NASA Astrophysics Data System (ADS)
Yang, C. P.; Yu, M.; Sun, M.; Qin, H.; Robinson, E.
2015-12-01
One of the biggest challenges that face Earth scientists is the resource discovery, access, and sharing in a desired fashion. EarthCube is targeted to enable geoscientists to address the challenges by fostering community-governed efforts that develop a common cyberinfrastructure for the purpose of collecting, accessing, analyzing, sharing and visualizing all forms of data and related resources, through the use of advanced technological and computational capabilities. Here we design an Enterprise Architecture (EA) for EarthCube to facilitate the knowledge management, communication and human collaboration in pursuit of the unprecedented data sharing across the geosciences. The design results will provide EarthCube a reference framework for developing geoscience cyberinfrastructure collaborated by different stakeholders, and identifying topics which should invoke high interest in the community. The development of this EarthCube EA framework leverages popular frameworks, such as Zachman, Gartner, DoDAF, and FEAF. The science driver of this design is the needs from EarthCube community, including the analyzed user requirements from EarthCube End User Workshop reports and EarthCube working group roadmaps, and feedbacks or comments from scientists obtained by organizing workshops. The final product of this Enterprise Architecture is a four-volume reference document: 1) Volume one is this document and comprises an executive summary of the EarthCube architecture, serving as an overview in the initial phases of architecture development; 2) Volume two is the major body of the design product. It outlines all the architectural design components or viewpoints; 3) Volume three provides taxonomy of the EarthCube enterprise augmented with semantics relations; 4) Volume four describes an example of utilizing this architecture for a geoscience project.
NASA Technical Reports Server (NTRS)
Hudson, Jennifer; Martinez, Andres; Petro, Andrew
2015-01-01
The Propulsion System and Orbit Maneuver Integration in CubeSats project aims to solve the challenges of integrating a micro electric propulsion system on a CubeSat in order to perform orbital maneuvers and control attitude. This represents a fundamentally new capability for CubeSats, which typically do not contain propulsion systems and cannot maneuver far beyond their initial orbits.
ERIC Educational Resources Information Center
Lutke, Nikolay; Lange-Kuttner, Christiane
2015-01-01
This study introduces the new Rotated Colour Cube Test (RCCT) as a measure of object identification and mental rotation using single 3D colour cube images in a matching-to-sample procedure. One hundred 7- to 11-year-old children were tested with aligned or rotated cube models, distracters and targets. While different orientations of distracters…
Zhang, Xuetao; Huang, Jie; Yigit-Elliott, Serap; Rosenholtz, Ruth
2015-03-16
Observers can quickly search among shaded cubes for one lit from a unique direction. However, replace the cubes with similar 2-D patterns that do not appear to have a 3-D shape, and search difficulty increases. These results have challenged models of visual search and attention. We demonstrate that cube search displays differ from those with "equivalent" 2-D search items in terms of the informativeness of fairly low-level image statistics. This informativeness predicts peripheral discriminability of target-present from target-absent patches, which in turn predicts visual search performance, across a wide range of conditions. Comparing model performance on a number of classic search tasks, cube search does not appear unexpectedly easy. Easy cube search, per se, does not provide evidence for preattentive computation of 3-D scene properties. However, search asymmetries derived from rotating and/or flipping the cube search displays cannot be explained by the information in our current set of image statistics. This may merely suggest a need to modify the model's set of 2-D image statistics. Alternatively, it may be difficult cube search that provides evidence for preattentive computation of 3-D scene properties. By attributing 2-D luminance variations to a shaded 3-D shape, 3-D scene understanding may slow search for 2-D features of the target. © 2015 ARVO.
Zhang, Xuetao; Huang, Jie; Yigit-Elliott, Serap; Rosenholtz, Ruth
2015-01-01
Observers can quickly search among shaded cubes for one lit from a unique direction. However, replace the cubes with similar 2-D patterns that do not appear to have a 3-D shape, and search difficulty increases. These results have challenged models of visual search and attention. We demonstrate that cube search displays differ from those with “equivalent” 2-D search items in terms of the informativeness of fairly low-level image statistics. This informativeness predicts peripheral discriminability of target-present from target-absent patches, which in turn predicts visual search performance, across a wide range of conditions. Comparing model performance on a number of classic search tasks, cube search does not appear unexpectedly easy. Easy cube search, per se, does not provide evidence for preattentive computation of 3-D scene properties. However, search asymmetries derived from rotating and/or flipping the cube search displays cannot be explained by the information in our current set of image statistics. This may merely suggest a need to modify the model's set of 2-D image statistics. Alternatively, it may be difficult cube search that provides evidence for preattentive computation of 3-D scene properties. By attributing 2-D luminance variations to a shaded 3-D shape, 3-D scene understanding may slow search for 2-D features of the target. PMID:25780063
Thales SESO's hollow and massive corner cube solutions
NASA Astrophysics Data System (ADS)
Fappani, Denis; Dahan, Déborah; Costes, Vincent; Luitot, Clément
2017-11-01
For Space Activities, more and more Corner Cubes, used as solution for retro reflection of light (telemetry and positioning), are emerging worldwide in different projects. Depending on the application, they can be massive or hollow Corner Cubes. For corners as well as for any kind of space optics, it usual that use of light/lightened components is always a baseline for purpose of mass reduction payloads. But other parameters, such as the system stability under severe environment, are also major issues, especially for the corner cube systems which require generally very tight angular accuracies. For the particular case of the hollow corner cube, an alternative solution to the usual cementing of the 3 reflective surfaces, has been developed with success in collaboration with CNES to guarantee a better stability and fulfill the weight requirements.. Another important parameter is the dihedral angles that have a great influence on the wavefront error. Two technologies can be considered, either a Corner Cubes array assembled in a very stable housing, or the irreversible adherence technology used for assembling the three parts of a cube. This latter technology enables in particular not having to use cement. The poster will point out the conceptual design, the manufacturing and control key-aspects of such corner cube assemblies as well as the technologies used for their assembling.
A modified Dodge algorithm for the parabolized Navier-Stokes equation and compressible duct flows
NASA Technical Reports Server (NTRS)
Cooke, C. H.
1981-01-01
A revised version of Dodge's split-velocity method for numerical calculation of compressible duct flow was developed. The revision incorporates balancing of mass flow rates on each marching step in order to maintain front-to-back continuity during the calculation. The (checkerboard) zebra algorithm is applied to solution of the three dimensional continuity equation in conservative form. A second-order A-stable linear multistep method is employed in effecting a marching solution of the parabolized momentum equations. A checkerboard iteration is used to solve the resulting implicit nonlinear systems of finite-difference equations which govern stepwise transition. Qualitive agreement with analytical predictions and experimental results was obtained for some flows with well-known solutions.
Chen, Lih-Shyang; Hsu, Ta-Wen; Chang, Shu-Han; Lin, Chih-Wen; Chen, Yu-Ruei; Hsieh, Chin-Chiang; Han, Shu-Chen; Chang, Ku-Yaw; Hou, Chun-Ju
2017-01-01
Objective: In traditional surface rendering (SR) computed tomographic endoscopy, only the shape of endoluminal lesion is depicted without gray-level information unless the volume rendering technique is used. However, volume rendering technique is relatively slow and complex in terms of computation time and parameter setting. We use computed tomographic colonography (CTC) images as examples and report a new visualization technique by three-dimensional gray level mapping (GM) to better identify and differentiate endoluminal lesions. Methods: There are 33 various endoluminal cases from 30 patients evaluated in this clinical study. These cases were segmented using gray-level threshold. The marching cube algorithm was used to detect isosurfaces in volumetric data sets. GM is applied using the surface gray level of CTC. Radiologists conducted the clinical evaluation of the SR and GM images. The Wilcoxon signed-rank test was used for data analysis. Results: Clinical evaluation confirms GM is significantly superior to SR in terms of gray-level pattern and spatial shape presentation of endoluminal cases (p < 0.01) and improves the confidence of identification and clinical classification of endoluminal lesions significantly (p < 0.01). The specificity and diagnostic accuracy of GM is significantly better than those of SR in diagnostic performance evaluation (p < 0.01). Conclusion: GM can reduce confusion in three-dimensional CTC and well correlate CTC with sectional images by the location as well as gray-level value. Hence, GM increases identification and differentiation of endoluminal lesions, and facilitates diagnostic process. Advances in knowledge: GM significantly improves the traditional SR method by providing reliable gray-level information for the surface points and is helpful in identification and differentiation of endoluminal lesions according to their shape and density. PMID:27925483
NASA Astrophysics Data System (ADS)
Ning, Nannan; Tian, Jie; Liu, Xia; Deng, Kexin; Wu, Ping; Wang, Bo; Wang, Kun; Ma, Xibo
2014-02-01
In mathematics, optical molecular imaging including bioluminescence tomography (BLT), fluorescence tomography (FMT) and Cerenkov luminescence tomography (CLT) are concerned with a similar inverse source problem. They all involve the reconstruction of the 3D location of a single/multiple internal luminescent/fluorescent sources based on 3D surface flux distribution. To achieve that, an accurate fusion between 2D luminescent/fluorescent images and 3D structural images that may be acquired form micro-CT, MRI or beam scanning is extremely critical. However, the absence of a universal method that can effectively convert 2D optical information into 3D makes the accurate fusion challengeable. In this study, to improve the fusion accuracy, a new fusion method for dual-modality tomography (luminescence/fluorescence and micro-CT) based on natural light surface reconstruction (NLSR) and iterated closest point (ICP) was presented. It consisted of Octree structure, exact visual hull from marching cubes and ICP. Different from conventional limited projection methods, it is 360° free-space registration, and utilizes more luminescence/fluorescence distribution information from unlimited multi-orientation 2D optical images. A mouse mimicking phantom (one XPM-2 Phantom Light Source, XENOGEN Corporation) and an in-vivo BALB/C mouse with implanted one luminescent light source were used to evaluate the performance of the new fusion method. Compared with conventional fusion methods, the average error of preset markers was improved by 0.3 and 0.2 pixels from the new method, respectively. After running the same 3D internal light source reconstruction algorithm of the BALB/C mouse, the distance error between the actual and reconstructed internal source was decreased by 0.19 mm.
Working RideShare for the U Class Payload
NASA Technical Reports Server (NTRS)
Skrobot, Garrett L.
2014-01-01
Presentation to describe current status of the Launch Services Program's (LSP) education launch of nano satellite project. U class are payloads that are of a form factor of the 1U CubeSats - 10cm Cubed. Over the past three years these small spacecraft have grown in popularity in both the Government and the Commercial market. There is an increase in the number of NASA CubeSats selected and yet a very low launch rate. Why the low launch rate? - Funding, more money = more launches - CubeSat being selective about the orbit - CubeSats not being ready. This trend is expected to continue with current manifesting practices.
NASA Astrophysics Data System (ADS)
Bosanac, Natasha; Cox, Andrew D.; Howell, Kathleen C.; Folta, David C.
2018-03-01
Lunar IceCube is a 6U CubeSat that is designed to detect and observe lunar volatiles from a highly inclined orbit. This spacecraft, equipped with a low-thrust engine, is expected to be deployed from the upcoming Exploration Mission-1 vehicle. However, significant uncertainty in the deployment conditions for secondary payloads impacts both the availability and geometry of transfers that deliver the spacecraft to the lunar vicinity. A framework that leverages dynamical systems techniques is applied to a recently updated set of deployment conditions and spacecraft parameter values for the Lunar IceCube mission, demonstrating the capability for rapid trajectory design.
2013-11-17
CAPE CANAVERAL, Fla. -- At the News Center at NASA's Kennedy Space Center in Florida, Andrew Petro, the agency's acting director of the Early Stage Innovation Division of the Office of the Chief Technologist, discusses the agency’s CubeSat Launch initiative. CubeSats provide opportunities for small satellite payloads to fly on rockets planned for upcoming launches. CubeSats, a class of research spacecraft called nanosatellites, are flown as auxiliary payloads on previously planned missions. The cube-shaped satellites are approximately four inches long, have a volume of about one quart and weigh about three pounds. For more information, visit: http://www.nasa.gov/directorates/heo/home/CubeSats_initiative.html Photo credit: NASA/Kim Shiflett
2013-11-17
CAPE CANAVERAL, Fla. -- At the News Center at NASA's Kennedy Space Center in Florida, Andrew Petro, the agency's acting director of the Early Stage Innovation Division of the Office of the Chief Technologist, discusses the agency’s CubeSat Launch initiative. CubeSats provide opportunities for small satellite payloads to fly on rockets planned for upcoming launches. CubeSats, a class of research spacecraft called nanosatellites, are flown as auxiliary payloads on previously planned missions. The cube-shaped satellites are approximately four inches long, have a volume of about one quart and weigh about three pounds. For more information, visit: http://www.nasa.gov/directorates/heo/home/CubeSats_initiative.html Photo credit: NASA/Kim Shiflett
2013-11-17
CAPE CANAVERAL, Fla. -- At the News Center at NASA's Kennedy Space Center in Florida, Andrew Petro, the agency's acting director of the Early Stage Innovation Division of the Office of the Chief Technologist, discusses the agency’s CubeSat Launch initiative. CubeSats provide opportunities for small satellite payloads to fly on rockets planned for upcoming launches. CubeSats, a class of research spacecraft called nanosatellites, are flown as auxiliary payloads on previously planned missions. The cube-shaped satellites are approximately four inches long, have a volume of about one quart and weigh about three pounds. For more information, visit: http://www.nasa.gov/directorates/heo/home/CubeSats_initiative.html Photo credit: NASA/Kim Shiflett
2013-11-17
CAPE CANAVERAL, Fla. -- At the News Center at NASA's Kennedy Space Center in Florida, Andrew Petro, the agency's acting director of the Early Stage Innovation Division of the Office of the Chief Technologist, discusses the agency’s CubeSat Launch initiative. CubeSats provide opportunities for small satellite payloads to fly on rockets planned for upcoming launches. CubeSats, a class of research spacecraft called nanosatellites, are flown as auxiliary payloads on previously planned missions. The cube-shaped satellites are approximately four inches long, have a volume of about one quart and weigh about three pounds. For more information, visit: http://www.nasa.gov/directorates/heo/home/CubeSats_initiative.html Photo credit: NASA/Kim Shiflett
Collapsible Cubes and Other Curiosities.
ERIC Educational Resources Information Center
Johnson, Scott; Walser, Hans
1997-01-01
Describes some general techniques for making collapsible models, including spiral models, for all the Platonic solids except the cube. Discusses the nature of the dissections of the faces necessary for the construction of the spiral cube. (ASK)
Using Additive Manufacturing to Print a CubeSat Propulsion System
NASA Technical Reports Server (NTRS)
Marshall, William M.
2015-01-01
CubeSats are increasingly being utilized for missions traditionally ascribed to larger satellites CubeSat unit (1U) defined as 10 cm x 10 cm x 11 cm. Have been built up to 6U sizes. CubeSats are typically built up from commercially available off-the-shelf components, but have limited capabilities. By using additive manufacturing, mission specific capabilities (such as propulsion), can be built into a system. This effort is part of STMD Small Satellite program Printing the Complete CubeSat. Interest in propulsion concepts for CubeSats is rapidly gaining interest-Numerous concepts exist for CubeSat scale propulsion concepts. The focus of this effort is how to incorporate into structure using additive manufacturing. End-use of propulsion system dictates which type of system to develop-Pulse-mode RCS would require different system than a delta-V orbital maneuvering system. Team chose an RCS system based on available propulsion systems and feasibility of printing using a materials extrusion process. Initially investigated a cold-gas propulsion system for RCS applications-Materials extrusion process did not permit adequate sealing of part to make this a functional approach.
Girls in detail, boys in shape: gender differences when drawing cubes in depth.
Lange-Küttner, C; Ebersbach, M
2013-08-01
The current study tested gender differences in the developmental transition from drawing cubes in two- versus three dimensions (3D), and investigated the underlying spatial abilities. Six- to nine-year-old children (N = 97) drew two occluding model cubes and solved several other spatial tasks. Girls more often unfolded the various sides of the cubes into a layout, also called diagrammatic cube drawing (object design detail). In girls, the best predictor for drawing the cubes was Mental Rotation Test (MRT) accuracy. In contrast, boys were more likely to preserve the optical appearance of the cube array. Their drawing in 3D was best predicted by MRT reaction time and the Embedded Figures Test (EFT). This confirmed boys' stronger focus on the contours of an object silhouette (object shape). It is discussed whether the two gender-specific approaches to drawing in three dimensions reflect two sides of the appearance-reality distinction in drawing, that is graphic syntax of object design features versus visual perception of projective space. © 2012 The British Psychological Society.
Kopp, Bruno; Rösser, Nina; Tabeling, Sandra; Stürenburg, Hans Jörg; de Haan, Bianca; Karnath, Hans-Otto; Wessel, Karl
2014-01-01
One of Luria's favorite neuropsychological tasks for challenging frontal lobe functions was Link's cube test (LCT). The LCT is a cube construction task in which the subject must assemble 27 small cubes into one large cube in such a manner that only the painted surfaces of the small cubes are visible. We computed two new LCT composite scores, the constructive plan composite score, reflecting the capability to envisage a cubical-shaped volume, and the behavioral (dis-) organization composite score, reflecting the goal-directedness of cube construction. Voxel-based lesion-behavior mapping (VLBM) was used to test the relationship between performance on the LCT and brain injury in a sample of stroke patients with right hemisphere damage (N = 32), concentrated in the frontal lobe. We observed a relationship between the measure of behavioral (dis-) organization on the LCT and right frontal lesions. Further work in a larger sample, including left frontal lobe damage and with more power to detect effects of right posterior brain injury, is necessary to determine whether this observation is specific for right frontal lesions. PMID:24596552
Software Requirements Specification for Lunar IceCube
NASA Astrophysics Data System (ADS)
Glaser-Garbrick, Michael R.
Lunar IceCube is a 6U satellite that will orbit the moon to measure water volatiles as a function of position, altitude, and time, and measure in its various phases. Lunar IceCube, is a collaboration between Morehead State University, Vermont Technical University, Busek, and NASA. The Software Requirements Specification will serve as contract between the overall team and the developers of the flight software. It will provide a system's overview of the software that will be developed for Lunar IceCube, in that it will detail all of the interconnects and protocols for each subsystem's that Lunar IceCube will utilize. The flight software will be written in SPARK to the fullest extent, due to SPARK's unique ability to make software free of any errors. The LIC flight software does make use of a general purpose, reusable application framework called CubedOS. This framework imposes some structuring requirements on the architecture and design of the flight software, but it does not impose any high level requirements. It will also detail the tools that we will be using for Lunar IceCube, such as why we will be utilizing VxWorks.
NASA Astrophysics Data System (ADS)
Brajard, J.; Moulin, C.; Thiria, S.
2008-10-01
This paper presents a comparison of the atmospheric correction accuracy between the standard sea-viewing wide field-of-view sensor (SeaWiFS) algorithm and the NeuroVaria algorithm for the ocean off the Indian coast in March 1999. NeuroVaria is a general method developed to retrieve aerosol optical properties and water-leaving reflectances for all types of aerosols, including absorbing ones. It has been applied to SeaWiFS images of March 1999, during an episode of transport of absorbing aerosols coming from pollutant sources in India. Water-leaving reflectances and aerosol optical thickness estimated by the two methods were extracted along a transect across the aerosol plume for three days. The comparison showed that NeuroVaria allows the retrieval of oceanic properties in the presence of absorbing aerosols with a better spatial and temporal stability than the standard SeaWiFS algorithm. NeuroVaria was then applied to the available SeaWiFS images over a two-week period. NeuroVaria algorithm retrieves ocean products for a larger number of pixels than the standard one and eliminates most of the discontinuities and artifacts associated with the standard algorithm in presence of absorbing aerosols.
Linearized Aeroelastic Solver Applied to the Flutter Prediction of Real Configurations
NASA Technical Reports Server (NTRS)
Reddy, Tondapu S.; Bakhle, Milind A.
2004-01-01
A fast-running unsteady aerodynamics code, LINFLUX, was previously developed for predicting turbomachinery flutter. This linearized code, based on a frequency domain method, models the effects of steady blade loading through a nonlinear steady flow field. The LINFLUX code, which is 6 to 7 times faster than the corresponding nonlinear time domain code, is suitable for use in the initial design phase. Earlier, this code was verified through application to a research fan, and it was shown that the predictions of work per cycle and flutter compared well with those from a nonlinear time-marching aeroelastic code, TURBO-AE. Now, the LINFLUX code has been applied to real configurations: fans developed under the Energy Efficient Engine (E-cubed) Program and the Quiet Aircraft Technology (QAT) project. The LINFLUX code starts with a steady nonlinear aerodynamic flow field and solves the unsteady linearized Euler equations to calculate the unsteady aerodynamic forces on the turbomachinery blades. First, a steady aerodynamic solution is computed for given operating conditions using the nonlinear unsteady aerodynamic code TURBO-AE. A blade vibration analysis is done to determine the frequencies and mode shapes of the vibrating blades, and an interface code is used to convert the steady aerodynamic solution to a form required by LINFLUX. A preprocessor is used to interpolate the mode shapes from the structural dynamics mesh onto the computational fluid dynamics mesh. Then, LINFLUX is used to calculate the unsteady aerodynamic pressure distribution for a given vibration mode, frequency, and interblade phase angle. Finally, a post-processor uses the unsteady pressures to calculate the generalized aerodynamic forces, eigenvalues, an esponse amplitudes. The eigenvalues determine the flutter frequency and damping. Results of flutter calculations from the LINFLUX code are presented for (1) the E-cubed fan developed under the E-cubed program and (2) the Quiet High Speed Fan (QHSF) developed under the Quiet Aircraft Technology project. The results are compared with those obtained from the TURBO-AE code. A graph of the work done per vibration cycle for the first vibration mode of the E-cubed fan is shown. It can be seen that the LINFLUX results show a very good comparison with TURBO-AE results over the entire range of interblade phase angle. The work done per vibration cycle for the first vibration mode of the QHSF fan is shown. Once again, the LINFLUX results compare very well with the results from the TURBOAE code.
NASA Technical Reports Server (NTRS)
Higginbotham, Scott
2016-01-01
The National Aeronautics and Space Administration (NASA) recognizes the tremendous potential that CubeSats (very small satellites) have to inexpensively demonstrate advanced technologies, collect scientific data, and enhance student engagement in Science, Technology, Engineering, and Mathematics (STEM). The CubeSat Launch Initiative (CSLI) was created to provide launch opportunities for CubeSats developed by academic institutions, non-profit entities, and NASA centers. This presentation will provide an overview of the CSLI, its benefits, and its results.
Power generation and solar panels for an MSU CubeSat
NASA Astrophysics Data System (ADS)
Sassi, Soundouss
This thesis is a power generation study of a proposed CubeSat at Mississippi State University (MSU). CubeSats are miniaturized satellites of 10 x 10 x 10 cm in dimension. Their power source once in orbit is the sun during daylight and the batteries during eclipse. MSU CubeSat is equipped with solar panels. This effort will discuss two types of cells: Gallium Arsenide and Silicon; and which one will suit MSU CubeSat best. Once the cell type is chosen, another decision regarding the electrical power subsystem will be made. Solar array design can only be done once the choice of the electrical power subsystem and the solar cells is made. Then the power calculation for different mission durations will start along with the sizing of the solar arrays. In the last part the batteries are introduced and discussed in order to choose one type of batteries for MSU CubeSat.
Teaching group theory using Rubik's cubes
NASA Astrophysics Data System (ADS)
Cornock, Claire
2015-10-01
Being situated within a course at the applied end of the spectrum of maths degrees, the pure mathematics modules at Sheffield Hallam University have an applied spin. Pure topics are taught through consideration of practical examples such as knots, cryptography and automata. Rubik's cubes are used to teach group theory within a final year pure elective based on physical examples. Abstract concepts, such as subgroups, homomorphisms and equivalence relations are explored with the cubes first. In addition to this, conclusions about the cubes can be made through the consideration of algebraic approaches through a process of discovery. The teaching, learning and assessment methods are explored in this paper, along with the challenges and limitations of the methods. The physical use of Rubik's cubes within the classroom and examination will be presented, along with the use of peer support groups in this process. The students generally respond positively to the teaching methods and the use of the cubes.
NASA Astrophysics Data System (ADS)
Graves, S. J.; Keiser, K.; Law, E.; Yang, C. P.; Djorgovski, S. G.
2016-12-01
ECITE (EarthCube Integration and Testing Environment) is providing both cloud-based computational testing resources and an Assessment Framework for Technology Interoperability and Integration. NSF's EarthCube program is funding the development of cyberinfrastructure building block components as technologies to address Earth science research problems. These EarthCube building blocks need to support integration and interoperability objectives to work towards a coherent cyberinfrastructure architecture for the program. ECITE is being developed to provide capabilities to test and assess the interoperability and integration across funded EarthCube technology projects. EarthCube defined criteria for interoperability and integration are applied to use cases coordinating science problems with technology solutions. The Assessment Framework facilitates planning, execution and documentation of the technology assessments for review by the EarthCube community. This presentation will describe the components of ECITE and examine the methodology of cross walking between science and technology use cases.
EarthCube: A Community-Driven Cyberinfrastructure for the Geosciences
NASA Astrophysics Data System (ADS)
Koskela, Rebecca; Ramamurthy, Mohan; Pearlman, Jay; Lehnert, Kerstin; Ahern, Tim; Fredericks, Janet; Goring, Simon; Peckham, Scott; Powers, Lindsay; Kamalabdi, Farzad; Rubin, Ken; Yarmey, Lynn
2017-04-01
EarthCube is creating a dynamic, System of Systems (SoS) infrastructure and data tools to collect, access, analyze, share, and visualize all forms of geoscience data and resources, using advanced collaboration, technological, and computational capabilities. EarthCube, as a joint effort between the U.S. National Science Foundation Directorate for Geosciences and the Division of Advanced Cyberinfrastructure, is a quickly growing community of scientists across all geoscience domains, as well as geoinformatics researchers and data scientists. EarthCube has attracted an evolving, dynamic virtual community of more than 2,500 contributors, including earth, ocean, polar, planetary, atmospheric, geospace, computer and social scientists, educators, and data and information professionals. During 2017, EarthCube will transition to the implementation phase. The implementation will balance "innovation" and "production" to advance cross-disciplinary science goals as well as the development of future data scientists. This presentation will describe the current architecture design for the EarthCube cyberinfrastructure and implementation plan.
Miniature Radioisotope Thermoelectric Power Cubes
NASA Technical Reports Server (NTRS)
Patel, Jagdish U.; Fleurial, Jean-Pierre; Snyder, G. Jeffrey; Caillat, Thierry
2004-01-01
Cube-shaped thermoelectric devices energized by a particles from radioactive decay of Cm-244 have been proposed as long-lived sources of power. These power cubes are intended especially for incorporation into electronic circuits that must operate in dark, extremely cold locations (e.g., polar locations or deep underwater on Earth, or in deep interplanetary space). Unlike conventional radioisotope thermoelectric generators used heretofore as central power sources in some spacecraft, the proposed power cubes would be small enough (volumes would range between 0.1 and 0.2 cm3) to play the roles of batteries that are parts of, and dedicated to, individual electronic-circuit packages. Unlike electrochemical batteries, these power cubes would perform well at low temperatures. They would also last much longer: given that the half-life of Cm-244 is 18 years, a power cube could remain adequate as a power source for years, depending on the power demand in its particular application.
VizieR Online Data Catalog: RESOLVE survey: 21cm obs. with GBT & Arecibo (Stark+, 2016)
NASA Astrophysics Data System (ADS)
Stark, D. V.; Kannappan, S. J.; Eckert, K. D.; Florez, J.; Hall, K. R.; Watson, L. C.; Hoversten, E. A.; Burchett, J. N.; Guynn, D. T.; Baker, A. D.; Moffett, A. J.; Berlind, A. A.; Norris, M. A.; Haynes, M. P.; Giovanelli, R.; Leroy, A. K.; Pisano, D. J.; Wei, L. H.; Gonzalez, R. E.; Calderon, V. F.
2017-02-01
The REsolved Spectroscopy Of a Local VolumE (RESOLVE) survey is a volume-limited census of galaxies in the local universe with the goal of accounting for baryonic and dark matter mass within a statistically complete subset of the z=0 galaxy population. A complete description of the survey design will be presented in S. J. Kannappan et al. (2016, in preparation). This paper presents new 21cm observations, but an optical spectroscopic survey is under way, primarily with the SOAR 4.1m telescope, and also using SALT, Gemini, and the AAT. The blindly detected 21cm sources in the standard ALFALFA catalog (Giovanelli+ 2005AJ....130.2598G) are cross-matched with RESOLVE using a match radius of 2', corresponding to the spatial resolution of the final ALFALFA data cubes. Additionally, we search the ALFALFA data cubes at the positions of all galaxies that lack counterparts within the standard ALFALFA catalogs. To complete the RESOLVE HI census, new 21cm observations were carried out with the Robert C. Byrd New Green Bank Telescope (GBT, programs 11B-056, 13A-276, 13B-246, 14A-441) and Arecibo Observatory (programs a2671, a2812, a2852). GBT data were acquired over a total of 738hr between 2011 August and 2014 July. Arecibo data were acquired over a total of 554hr in 2012 March and again between 2013 July and 2016 May. (2 data files).
Computation of multi-dimensional viscous supersonic jet flow
NASA Technical Reports Server (NTRS)
Kim, Y. N.; Buggeln, R. C.; Mcdonald, H.
1986-01-01
A new method has been developed for two- and three-dimensional computations of viscous supersonic flows with embedded subsonic regions adjacent to solid boundaries. The approach employs a reduced form of the Navier-Stokes equations which allows solution as an initial-boundary value problem in space, using an efficient noniterative forward marching algorithm. Numerical instability associated with forward marching algorithms for flows with embedded subsonic regions is avoided by approximation of the reduced form of the Navier-Stokes equations in the subsonic regions of the boundary layers. Supersonic and subsonic portions of the flow field are simultaneously calculated by a consistently split linearized block implicit computational algorithm. The results of computations for a series of test cases relevant to internal supersonic flow is presented and compared with data. Comparison between data and computation are in general excellent thus indicating that the computational technique has great promise as a tool for calculating supersonic flow with embedded subsonic regions. Finally, a User's Manual is presented for the computer code used to perform the calculations.
Computation of multi-dimensional viscous supersonic flow
NASA Technical Reports Server (NTRS)
Buggeln, R. C.; Kim, Y. N.; Mcdonald, H.
1986-01-01
A method has been developed for two- and three-dimensional computations of viscous supersonic jet flows interacting with an external flow. The approach employs a reduced form of the Navier-Stokes equations which allows solution as an initial-boundary value problem in space, using an efficient noniterative forward marching algorithm. Numerical instability associated with forward marching algorithms for flows with embedded subsonic regions is avoided by approximation of the reduced form of the Navier-Stokes equations in the subsonic regions of the boundary layers. Supersonic and subsonic portions of the flow field are simultaneously calculated by a consistently split linearized block implicit computational algorithm. The results of computations for a series of test cases associated with supersonic jet flow is presented and compared with other calculations for axisymmetric cases. Demonstration calculations indicate that the computational technique has great promise as a tool for calculating a wide range of supersonic flow problems including jet flow. Finally, a User's Manual is presented for the computer code used to perform the calculations.
2017-04-19
A sign at the Kennedy Space Center Visitor Complex announces the second annual Swarmathon competition. Students were asked to develop computer code for the small robots, programming them to look for "resources" in the form of cubes with AprilTags, similar to barcodes. Teams developed search algorithms for the Swarmies to operate autonomously, communicating and interacting as a collective swarm similar to ants foraging for food. In the spaceport's second annual Swarmathon, 20 teams representing 22 minority serving universities and community colleges were invited to develop software code to operate these innovative robots known as "Swarmies" to help find resources when astronauts explore distant locations, such as the moon or Mars.
Effects of preprocessing Landsat MSS data on derived features
NASA Technical Reports Server (NTRS)
Parris, T. M.; Cicone, R. C.
1983-01-01
Important to the use of multitemporal Landsat MSS data for earth resources monitoring, such as agricultural inventories, is the ability to minimize the effects of varying atmospheric and satellite viewing conditions, while extracting physically meaningful features from the data. In general, the approaches to the preprocessing problem have been derived from either physical or statistical models. This paper compares three proposed algorithms; XSTAR haze correction, Color Normalization, and Multiple Acquisition Mean Level Adjustment. These techniques represent physical, statistical, and hybrid physical-statistical models, respectively. The comparisons are made in the context of three feature extraction techniques; the Tasseled Cap, the Cate Color Cube. and Normalized Difference.
Quantum Algorithms Based on Physical Processes
2013-12-03
quantum walks with hard-core bosons and the graph isomorphism problem,” American Physical Society March meeting, March 2011 Kenneth Rudinger, John...King Gamble, Mark Wellons, Mark Friesen, Dong Zhou, Eric Bach, Robert Joynt, and S.N. Coppersmith, “Quantum random walks of non-interacting bosons on...and noninteracting Bosons to distinguish nonisomorphic graphs. 1) We showed that quantum walks of two hard-core Bosons can distinguish all pairs of
Quantum Algorithms Based on Physical Processes
2013-12-02
quantum walks with hard-core bosons and the graph isomorphism problem,” American Physical Society March meeting, March 2011 Kenneth Rudinger, John...King Gamble, Mark Wellons, Mark Friesen, Dong Zhou, Eric Bach, Robert Joynt, and S.N. Coppersmith, “Quantum random walks of non-interacting bosons on...and noninteracting Bosons to distinguish nonisomorphic graphs. 1) We showed that quantum walks of two hard-core Bosons can distinguish all pairs of
Complete exchange on the iPSC-860
NASA Technical Reports Server (NTRS)
Bokhari, Shahid H.
1991-01-01
The implementation of complete exchange on the circuit switched Intel iPSC-860 hypercube is described. This pattern, also known as all-to-all personalized communication, is the densest requirement that can be imposed on a network. On the iPSC-860, care needs to be taken to avoid edge contention, which can have a disastrous impact on communication time. There are basically two classes of algorithms that achieve contention-free complete exchange. The first contains the classical standard exchange algorithm that is generally useful for small message sizes. The second includes a number of optimal or near-optimal algorithms that are best for large messages. Measurement of communication overhead on the iPSC-860 are given and a notation for analyzing communication link usage is developed. It is shown that for the two classes of algorithms, there is substantial variation in performance with synchronization technique and choice of message protocol. Timings of six implementations are given; each of these is useful over a particular range of message size and cube dimension. Since the complete exchange is a superset of communication patterns, these timings represent upper bounds on the time required by an arbitrary communication requirement. These results indicate that the programmer needs to evaluate several possibilities before finalizing an implementation - a careful choice can lead to very significant savings in time.
A software package for evaluating the performance of a star sensor operation
NASA Astrophysics Data System (ADS)
Sarpotdar, Mayuresh; Mathew, Joice; Sreejith, A. G.; Nirmal, K.; Ambily, S.; Prakash, Ajin; Safonova, Margarita; Murthy, Jayant
2017-02-01
We have developed a low-cost off-the-shelf component star sensor ( StarSense) for use in minisatellites and CubeSats to determine the attitude of a satellite in orbit. StarSense is an imaging camera with a limiting magnitude of 6.5, which extracts information from star patterns it records in the images. The star sensor implements a centroiding algorithm to find centroids of the stars in the image, a Geometric Voting algorithm for star pattern identification, and a QUEST algorithm for attitude quaternion calculation. Here, we describe the software package to evaluate the performance of these algorithms as a star sensor single operating system. We simulate the ideal case where sky background and instrument errors are omitted, and a more realistic case where noise and camera parameters are added to the simulated images. We evaluate such performance parameters of the algorithms as attitude accuracy, calculation time, required memory, star catalog size, sky coverage, etc., and estimate the errors introduced by each algorithm. This software package is written for use in MATLAB. The testing is parametrized for different hardware parameters, such as the focal length of the imaging setup, the field of view (FOV) of the camera, angle measurement accuracy, distortion effects, etc., and therefore, can be applied to evaluate the performance of such algorithms in any star sensor. For its hardware implementation on our StarSense, we are currently porting the codes in form of functions written in C. This is done keeping in view its easy implementation on any star sensor electronics hardware.
AGILE confirmation of gamma-ray activity from the IceCube-170922A error region
NASA Astrophysics Data System (ADS)
Lucarelli, F.; Piano, G.; Pittori, C.; Verrecchia, F.; Tavani, M.; Bulgarelli, A.; Munar-Adrover, P.; Minervini, G.; Ursi, A.; Vercellone, S.; Donnarumma, I.; Fioretti, V.; Zoli, A.; Striani, E.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Parmiggiani, N.; Ferrari, A.; Paoletti, F.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.
2017-09-01
Following the IceCube observation of a high-energy neutrino candidate event, IceCube-170922A, at T0 = 17/09/22 20:54:30.43 UT (https://gcn.gsfc.nasa.gov/gcn3/21916.gcn3), and the detection of increased gamma-ray activity from a previously known Fermi-LAT gamma-ray source (3FGL J0509.4+0541) in the IceCube-170922A error region (ATel #10791), we have analysed the AGILE-GRID data acquired in the days before and after the neutrino event T0, searching for significant gamma-ray excess above 100 MeV from a position compatible with the IceCube and Fermi-LAT error regions.
Expanding Access: An Evaluation of ReadCube Access as an ILL Alternative.
Grabowsky, Adelia
2016-01-01
ReadCube Access is a patron-driven, document delivery system that provides immediate access to articles from journals owned by Nature Publishing Group. The purpose of this study was to evaluate the use of ReadCube Access as an interlibrary loan (ILL) alternative for nonsubscribed Nature journals at Auburn University, a research university with a School of Pharmacy and a School of Veterinary Medicine. An analysis of ten months' usage and costs are presented along with the results of a user satisfaction survey. Auburn University Libraries found ReadCube to be an acceptable alternative to ILL for unsubscribed Nature journals and at current levels of use and cost, consider ReadCube to be financially sustainable.
Constraining sterile neutrinos with AMANDA and IceCube atmospheric neutrino data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esmaili, Arman; Peres, O.L.G.; Halzen, Francis, E-mail: aesmaili@ifi.unicamp.br, E-mail: halzen@icecube.wisc.edu, E-mail: orlando@ifi.unicamp.br
2012-11-01
We demonstrate that atmospheric neutrino data accumulated with the AMANDA and the partially deployed IceCube experiments constrain the allowed parameter space for a hypothesized fourth sterile neutrino beyond the reach of a combined analysis of all other experiments, for Δm{sup 2}{sub 41}∼<1 eV{sup 2}. Although the IceCube data wins the statistics in the analysis, the advantage of a combined analysis of AMANDA and IceCube data is the partial remedy of yet unknown instrumental systematic uncertainties. We also illustrate the sensitivity of the completed IceCube detector, that is now taking data, to the parameter space of 3+1 model.
NASA Technical Reports Server (NTRS)
Slettebo, Christian; Jonsson, Lars Jonas
2016-01-01
This presentation introduces and discusses the development of the CubeSub submersible concept, an Autonomous Underwater Vehicle (AUV) designed around the CubeSat satellite form factor. The presented work is part of the author's MSc thesis in Aerospace Engineering at the Royal Institute of Technology, Stockholm, Sweden, and was performed during an internship at the Mission Design Division of the NASA Ames Research Center, Moffett Field, CA. Still in the early stages of its development, the CubeSub is to become a submersible test-bed for technology qualified for underwater and space environments. With the long-term goal of exploring the underwater environments in outer space, such as the alleged subsurface ocean of Jupiter's moon Europa, a number of technology and operational procedures must be developed and matured. To assist in this, the CubeSub platform is introduced as a tool to allow engineers and scientists to easily test qualified technology underwater. A CubeSat is a class of miniaturized satellite built to a standardized size. The base size is 1U (U for unit), corresponding to a 100 x 100 x 113.5 cu mm cube. A 1U CubeSat can in other words easily be held in one hand. Stacking units give larger satellite sizes such as the also commonly used 1.5U, 2U and 3U. The CubeSat standard is in itself already well established and hundreds of CubeSats have to date been launched into space. Compatible technology is readily available and the know-how exists in the space industry, all of which makes it a firm ground to stand on for the CubeSub. The rationale behind using the CubeSat form factor is to make use of this pre-existing foundation, making the CubeSub easy to develop, modular and readily available. It will thereby aid in the process of maturing the concept of a fully space qualified submersible headed for outer space. As a further clarification, the CubeSub is itself not meant for outer space, but to facilitate development of such a vessel. Along with its uses as a testbed, the CubeSub also holds the potential to become a useful tool for exploration and experimentation here on Earth. A highly standardized system utilizing well-known hardware can reduce the cost and required work load for researchers wishing to perform experiments and exploration. Users could design sensors and experiments to comply with the already well established CubeSat standard, which are then carried by the CubeSub to the region of interest. This in turn means that the end users can focus more on formulating the experiment itself and less about how to get it where they want it. The CubeSub is designed to be built up by modules, which can be assembled in different configurations to fulfill different needs. Each module will be powered individually and intermodular communication will be wireless, removing the need for wiring. The inside of the cylindrical hull will be flooded with ambient water to enhance the interaction between payloads and surrounding environment. The overall torpedo-like shape is similar to that of a conventional AUV, slender and smooth. This is to make for a low drag, reduce the risk of snagging on surrounding objects and make it possible to deploy through an ice sheet via a narrow borehole or navigate in tight areas. To keep costs low and further accelerate development, rapid prototyping is utilized wherever possible. Full-scale prototypes are being constructed through 3D-printing and using COTS (Commercial Off-The-Shelf) components. 3D-printing is used both for the largest hull components and the relatively small and delicate propellers. Arduino boards are used for control and internal communication
NPS CubeSat Launcher Design, Process and Requirements
2009-06-01
Soviet era ICBM. The first Dnepr launch in July 2006 consisted of fourteen CubeSats in five P-PODs, while the second in April 2007 consisted of...Regulations (ITAR). ITAR restricts the export of defense-related products and technology on the United States Munitions List. Although one might not...think that CubeSat technology would fall under ITAR, in fact a large amount of Aerospace technology , including some that could be used on CubeSats is
The design and performance of IceCube DeepCore
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Allen, M. M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; Cruz Silva, A. H.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; Degner, T.; Demirörs, L.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, B.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kroll, G.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schönwald, A.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Stüer, M.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.
2012-05-01
The IceCube neutrino observatory in operation at the South Pole, Antarctica, comprises three distinct components: a large buried array for ultrahigh energy neutrino detection, a surface air shower array, and a new buried component called DeepCore. DeepCore was designed to lower the IceCube neutrino energy threshold by over an order of magnitude, to energies as low as about 10 GeV. DeepCore is situated primarily 2100 m below the surface of the icecap at the South Pole, at the bottom center of the existing IceCube array, and began taking physics data in May 2010. Its location takes advantage of the exceptionally clear ice at those depths and allows it to use the surrounding IceCube detector as a highly efficient active veto against the principal background of downward-going muons produced in cosmic-ray air showers. DeepCore has a module density roughly five times higher than that of the standard IceCube array, and uses photomultiplier tubes with a new photocathode featuring a quantum efficiency about 35% higher than standard IceCube PMTs. Taken together, these features of DeepCore will increase IceCube's sensitivity to neutrinos from WIMP dark matter annihilations, atmospheric neutrino oscillations, galactic supernova neutrinos, and point sources of neutrinos in the northern and southern skies. In this paper we describe the design and initial performance of DeepCore.
The Design and Performance of IceCube DeepCore
NASA Technical Reports Server (NTRS)
Stamatikos, M.
2012-01-01
The IceCube neutrino observatory in operation at the South Pole, Antarctica, comprises three distinct components: a large buried array for ultrahigh energy neutrino detection, a surface air shower array, and a new buried component called DeepCore. DeepCore was designed to lower the IceCube neutrino energy threshold by over an order of magnitude, to energies as low as about 10 GeV. DeepCore is situated primarily 2100 m below the surface of the icecap at the South Pole, at the bottom center of the existing IceCube array, and began taking pbysics data in May 2010. Its location takes advantage of the exceptionally clear ice at those depths and allows it to use the surrounding IceCube detector as a highly efficient active veto against the principal background of downward-going muons produced in cosmic-ray air showers. DeepCore has a module density roughly five times higher than that of the standard IceCube array, and uses photomultiplier tubes with a new photocathode featuring a quantum efficiency about 35% higher than standard IceCube PMTs. Taken together, these features of DeepCore will increase IceCube's sensitivity to neutrinos from WIMP dark matter annihilations, atmospheric neutrino oscillations, galactic supernova neutrinos, and point sources of neutrinos in the northern and southern skies. In this paper we describe the design and initial performance of DeepCore.
EarthCube: A Community Organization for Geoscience Cyberinfrastructure
NASA Astrophysics Data System (ADS)
Patten, K.; Allison, M. L.
2014-12-01
The National Science Foundation's (NSF) EarthCube initiative is a community-driven approach to building cyberinfrastructure for managing, sharing, and exploring geoscience data and information to better address today's grand-challenge science questions. The EarthCube Test Enterprise Governance project is a two-year effort seeking to engage diverse geo- and cyber-science communities in applying a responsive approach to the development of a governing system for EarthCube. During Year 1, an Assembly of seven stakeholder groups representing the broad EarthCube community developed a draft Governance Framework. Finalized at the June 2014 EarthCube All Hands Meeting, this framework will be tested during the demonstration phase in Year 2, beginning October 2014. A brief overview of the framework: Community-elected members of the EarthCube Leadership Council will be responsible for managing strategic direction and identifying the scope of EarthCube. Three Standing Committees will also be established to oversee the development of technology and architecture, to coordinate among new and existing data facilities, and to represent the academic geosciences community in driving development of EarthCube cyberinfrastructure. An Engagement Team and a Liaison Team will support communication and partnerships with internal and external stakeholders, and a central Office will serve a logistical support function to the governance as a whole. Finally, ad hoc Working Groups and Special Interest Groups will take on other issues related to EarthCube's goals. The Year 2 demonstration phase will test the effectiveness of the proposed framework and allow for elements to be changed to better meet community needs. It will begin by populating committees and teams, and finalizing leadership and decision-making processes to move forward on community-selected priorities including identifying science drivers, coordinating emerging technical elements, and coming to convergence on system architecture. A January mid-year review will assemble these groups to analyze the effectiveness of the framework and make adjustments as necessary. If successful, this framework will move EarthCube forward as a collaborative platform and potentially act as a model for future NSF investments in geoscience cyberinfrastructure.
ELaNa - Educational Launch of Nanosatellite Enhance Education Through Space Flight
NASA Technical Reports Server (NTRS)
Skrobot, Garrett Lee
2011-01-01
One of NASA's missions is to attract and retain students in the science, technology, engineering and mathematics (STEM) disciplines. Creating missions or programs to achieve this important goal helps strengthen NASA and the nation's future work force as well as engage and inspire Americans and the rest of the world. During the last three years, in an attempt to revitalize educational space flight, NASA generated a new and exciting initiative. This initiative, NASA's Educational Launch of Nanosatellite (ELaNa), is now fully operational and producing exciting results. Nanosatellites are small secondary satellite payloads called CubeSats. One of the challenges that the CubeSat community faced over the past few years was the lack of rides into space. Students were building CubeSats but they just sat on the shelf until an opportunity arose. In some cases, these opportunities never developed and so the CubeSat never made it to orbit. The ELaNa initiative is changing this by providing sustainable launch opportunities for educational CubeSats. Across America, these CubeSats are currently being built by students in high school all the way through graduate school. Now students know that if they build their CubeSat, submit their proposal and are selected for an ELaNa mission, they will have the opportunity to fly their satellite. ELaNa missions are the first educational cargo to be carried on expendable launch vehicles (ELY) for NASA's Launch Services Program (LSP). The first ELaNa CubeSats were slated to begin their journey to orbit in February 2011 with NASA's Glory mission. Due to an anomaly with the launch vehicle, ELaNa II and Glory failed to reach orbit. This first ELaNa mission was comprised of three IU CubeSats built by students at Montana State University (Explorer Prime Flight 1), the University of Colorado (HERMES), and Kentucky Space, a consortium of state universities (KySat). The interface between the launch vehicle and the CubeSat, the Poly-Picosatellite Orbital Deployer (P-POD), was developed and built by students at California Polytechnic State University (Cal Poly). Integrating a P-POD on a NASA ELV was not an easy task. The creation of new processes and requirements as well as numerous reviews and approvals were necessary within NASA before the first ELaNa mission could be attached to a NASA launch vehicle (LV). One of the key objectives placed on an ELaNa mission is that the CubeSat and PPOD does not increase the baseline risk to the primary mission and launch vehicle. The ELaNa missions achieve this objective by placing a rigorous management and engineering process on both the LV and CubeSat teams. So, what is the future of ELaNa? Currently there are 16 P-POD missions manifested across four launch vehicles to support educational CubeSats selected under the NASA CubeSat Initiative. From this initiative, a rigorous selection process produced 22-student CubeSat missions that are scheduled to fly before the end of 2012. For the initiative to continue, organizations need to submit proposals to the annual CubeSat initiative call so they have the opportunity to be manifested and launched.
PolarCube: A High Resolution Passive Microwave Satellite for Sounding and Imaging at 118 GHz
NASA Astrophysics Data System (ADS)
Weaver, R. L.; Gallaher, D. W.; Gasiewski, A. J.; Sanders, B.; Periasamy, L.; Hwang, K.; Alvarenga, G.; Hickey, A. M.
2013-12-01
PolarCube is a 3U CubeSat hosting an eight-channel passive microwave spectrometer operating at the 118.7503 GHz oxygen resonance that is currently in development. The project has an anticipated launch date in early 2015. It is currently being designed to operate for approximately12 months on orbit to provide the first global 118-GHz spectral imagery of the Earth over full seasonal cycle and to sound Arctic vertical temperature structure. The principles used by PolarCube for temperature sounding are well established in number of peer-reviewed papers going back more than two decades, although the potential for sounding from a CubeSat has never before been demonstrated in space. The PolarCube channels are selected to probe atmospheric emission over a range of vertical levels from the surface to lower stratosphere. This capability has been available operationally for over three decades, but at lower frequencies and higher altitudes that do not provide the spatial resolution that will be achieved by PolarCube. While the NASA JPSS ATMS satellite sensor provides global coverage at ~32 km resolution, the PolarCube will improve on this resolution by a factor of two, thus facilitating the primary science goal of determining sea ice concentration and extent while at the same time collecting profile data on atmospheric temperature. Additionally, we seek to correlate freeze-thaw line data from SMAP with our near simultaneously collected atmospheric temperature data. In addition to polar science, PolarCube will provide a first demonstration of a very low cost passive microwave sounder that if operated in a fleet configuration would have the potential to fulfill the goals of the Precipitation Atmospheric Temperature and Humidity (PATH) mission, as defined in the NRC Decadal Survey. PolarCube 118-GHz passive microwave spectrometer in deployed configuration
Neutrino Astronomy with IceCube
NASA Astrophysics Data System (ADS)
Meagher, Kevin J.
The IceCube Neutrino Observatory is a cubic kilometer neutrino telescope located at the Geographic South Pole. Cherenkov radiation emitted by charged secondary particles from neutrino interactions is observed by IceCube using an array of 5160 photomultiplier tubes embedded between a depth of 1.5 km to 2.5 km in the Antarctic glacial ice. The detection of astrophysical neutrinos is a primary goal of IceCube and has now been realized with the discovery of a diffuse, high-energy flux consisting of neutrino events from tens of TeV up to several PeV. Many analyses have been performed to identify the source of these neutrinos: correlations with active galactic nuclei, gamma-ray bursts, and the galactic plane. IceCube also conducts multi-messenger campaigns to alert other observatories of possible neutrino transients in real-time. However, the source of these neutrinos remains elusive as no corresponding electromagnetic counterparts have been identified. This proceeding will give an overview of the detection principles of IceCube, the properties of the observed astrophysical neutrinos, the search for corresponding sources (including real-time searches), and plans for a next-generation neutrino detector, IceCube-Gen2.
NASA Technical Reports Server (NTRS)
1975-01-01
The main tasks described involved an interferometric evaluation of several cubes, a prediction of their dihedral angles, a comparison of these predictions with independent measurements, a prediction and comparison of far field performance, recommendations as to revised dihedral angles and a subsequent analysis of cubes which were reworked to confirm the recommendations. A tolerance study and theoretical evaluation of several cubes was also performed to aid in understanding the results. The far field characteristics evaluated included polarization effects and treated both intensity distribution and encircled energy data. The energy in the 13.2 - 16.9 arc-sec annular region was tabulated as an indicator of performance sensitivity. The results are provided in viewgraph form, and show the average dihedral angle of an original set of test cubes to have been 1.8 arc-sec with an average far field annulus diameter of 18 arc-sec. Since the peak energy in the 13.2 - 16.9 arc-sec annulus was found to occur for a 1.35 arc-sec cube, and since cube tolerances were shown to increase the annulus diameter slightly, a nominal dihedral angle of 1.25 arc-sec was recommended.
CUBE: Information-optimized parallel cosmological N-body simulation code
NASA Astrophysics Data System (ADS)
Yu, Hao-Ran; Pen, Ue-Li; Wang, Xin
2018-05-01
CUBE, written in Coarray Fortran, is a particle-mesh based parallel cosmological N-body simulation code. The memory usage of CUBE can approach as low as 6 bytes per particle. Particle pairwise (PP) force, cosmological neutrinos, spherical overdensity (SO) halofinder are included.
2016-09-15
Investigative Questions This research will quantitatively address the impact of proposed benefits of a 3D printed satellite architecture on the...subsystems of a CubeSat. The objective of this research is to bring a quantitative analysis to the discussion of whether a fully 3D printed satellite...manufacturers to quantitatively address what impact the architecture would have on the subsystems of a CubeSat. Summary of Research Gap, Research Questions, and
2014-06-01
release is controlled by a non-explosive actuator (NEA). Once the NEA is actuated, it releases the P-POD door, which springs open due to torsion ...deemed to be undesirable to OSL as it limited flexibility in final CubeSat position choices on NPSCuL. 24 Building on the lessons learned from the...OUTSat mission that included maintaining flexibility of CubeSat positions on NPSCuL, it was decided that the option to proto-qualify a CubeSat on the
A modified Dodge algorithm for the parabolized Navier-Stokes equations and compressible duct flows
NASA Technical Reports Server (NTRS)
Cooke, C. H.; Dwoyer, D. M.
1983-01-01
A revised version of Dodge's split-velocity method for numerical calculation of compressible duct flow was developed. The revision incorporates balancing of mass flow rates on each marching step in order to maintain front-to-back continuity during the calculation. The (checkerboard) zebra algorithm is applied to solution of the three dimensional continuity equation in conservative form. A second-order A-stable linear multistep method is employed in effecting a marching solution of the parabolized momentum equations. A checkerboard iteration is used to solve the resulting implicit nonlinear systems of finite-difference equations which govern stepwise transition. Qualitative agreement with analytical predictions and experimental results was obtained for some flows with well-known solutions. Previously announced in STAR as N82-16363
Ye, Sheng-Hua; He, Xu-Jun; Ding, Liang-Xin; Pan, Zheng-Wei; Tong, Ye-Xiang; Wu, Mingmei; Li, Gao-Ren
2014-10-21
Novel PtCu alloy yolk-shell cubes were fabricated via the disproportionation and displacement reactions in Cu2O yolk-shell cubes, and they exhibit significantly improved catalytic activity and durability for methanol electrooxidation.
2018-05-15
The first image captured by one of NASA's Mars Cube One (MarCO) CubeSats. The image, which shows both the CubeSat's unfolded high-gain antenna at right and the Earth and its moon in the center, was acquired by MarCO-B on May 9. MarCO is a pair of small spacecraft accompanying NASA's InSight (Interior Investigations Using Seismic Investigations, Geodesy and Heat Transport) lander. Together, MarCO-A and MarCO-B are the first CubeSats ever sent to deep space. InSight is the first mission to ever explore Mars' deep interior. If the MarCO CubeSats make the entire journey to Mars, they will attempt to relay data about InSight back to Earth as the lander enters the Martian atmosphere and lands. MarCO will not collect any science, but are intended purely as a technology demonstration. They could serve as a pathfinder for future CubeSat missions. An annotated version is available at https://photojournal.jpl.nasa.gov/catalog/PIA22323
An Asymmetric Image Encryption Based on Phase Truncated Hybrid Transform
NASA Astrophysics Data System (ADS)
Khurana, Mehak; Singh, Hukum
2017-09-01
To enhance the security of the system and to protect it from the attacker, this paper proposes a new asymmetric cryptosystem based on hybrid approach of Phase Truncated Fourier and Discrete Cosine Transform (PTFDCT) which adds non linearity by including cube and cube root operation in the encryption and decryption path respectively. In this cryptosystem random phase masks are used as encryption keys and phase masks generated after the cube operation in encryption process are reserved as decryption keys and cube root operation is required to decrypt image in decryption process. The cube and cube root operation introduced in the encryption and decryption path makes system resistant against standard attacks. The robustness of the proposed cryptosystem has been analysed and verified on the basis of various parameters by simulating on MATLAB 7.9.0 (R2008a). The experimental results are provided to highlight the effectiveness and suitability of the proposed cryptosystem and prove the system is secure.
Monosodium glutamate in chicken and beef stock cubes using high-performance liquid chromatography.
Demirhan, Buket Er; Demirhan, Burak; Sönmez, Ceren; Torul, Hilal; Tamer, Uğur; Yentür, Gülderen
2015-01-01
In this survey monosodium glutamate (MSG) levels in chicken and beef stock cube samples were determined. A total number of 122 stock cube samples (from brands A, B, C, D) were collected from local markets in Ankara, Turkey. High-performance liquid chromatography with diode array detection (HPLC-DAD) was used for quantitative MSG determination. Mean MSG levels (±SE) in samples of A, B, C and D brands were 14.6 ± 0.2 g kg⁻¹, 11.9 ± 0.3 g kg⁻¹, 9.7 ± 0.1 g kg⁻¹ and 7.2 ± 0.1 g kg⁻¹, respectively. Differences between mean levels of brands were significant. Also, mean levels of chicken stock cube samples were lower than in beef stock cubes. Maximum limits for MSG in stock cubes are not specified in the Turkish Food Codex (TFC). Generally the limit for MSG in foods (except some foods) is established as 10 g kg⁻¹ (individually or in combination).
Ka-Band Parabolic Deployable Antenna (KaPDA) Enabling High Speed Data Communication for CubeSats
NASA Technical Reports Server (NTRS)
Sauder, Jonathan F.; Chahat, Nacer; Hodges, Richard; Thomson, Mark W.; Rahmat-Samii, Yahya
2015-01-01
CubeSats are at a very exciting point as their mission capabilities and launch opportunities are increasing. But as instruments become more advanced and operational distances between CubeSats and earth increase communication data rate becomes a mission-limiting factor. Improving data rate has become critical enough for NASA to sponsor the Cube Quest Centennial Challenge when: one of the key metrics is transmitting as much data as possible from the moon and beyond Currently, many CubeSats communicate on UHF bands and those that have high data rate abilities use S-band or X-band patch antennas. The CubeSat Aneas, which was launched in September 2012, pushed the envelope with a half-meter S-band dish which could achieve 100x the data rate of patch antennas. A half-meter parabolic antenna operating at Ka-band would increase data rates by over 100x that of the AMOS antenM and 10,000 that of X-band patch antennas.
NASA Astrophysics Data System (ADS)
Toscano, S.; IceCube Collaboration
2017-12-01
The IceCube Neutrino Observatory is a cubic-kilometer neutrino telescope located at the geographic South Pole. Buried deep under the Antarctic ice sheet, an array of 5160 Digital Optical Modules (DOMs) is used to capture the Cherenkov light emitted by relativistic particles generated from neutrino interactions. The main goal of IceCube is the detection of astrophysical neutrinos. In 2013 the IceCube neutrino telescope discovered a high-energy diffuse flux of neutrino events with energy ranging from tens of TeV up to few PeV of cosmic origin. Meanwhile, different analyses confirm the discovery and search for possible correlations with astrophysical sources. However, the source of these neutrinos remains a mystery, since no counterparts have been identified yet. In this contribution we give an overview of the detection principles of IceCube, the most recent results, and the plans for a next-generation neutrino detector, dubbed IceCube-Gen2.
Two-colour chewing gum mixing ability: digitalisation and spatial heterogeneity analysis.
Weijenberg, R A F; Scherder, E J A; Visscher, C M; Gorissen, T; Yoshida, E; Lobbezoo, F
2013-10-01
Many techniques are available to assess masticatory performance, but not all are appropriate for every population. A proxy suitable for elderly persons suffering from dementia was lacking, and a two-colour chewing gum mixing ability test was investigated for this purpose. A fully automated digital analysis algorithm was applied to a mixing ability test using two-coloured gum samples in a stepwise increased number of chewing cycles protocol (Experiment 1: n = 14; seven men, 19-63 years), a test-retest assessment (Experiment 2: n = 10; four men, 20-49 years) and compared to an established wax cubes mixing ability test (Experiment 3: n = 13; 0 men, 21-31 years). Data were analysed with repeated measures anova (Experiment 1), the calculation of the intraclass correlation coefficient (ICC; Experiment 2) and Spearman's rho correlation coefficient (Experiment 3). The method was sensitive to increasing numbers of chewing cycles (F5,65 = 57·270, P = 0·000) and reliable in the test-retest (ICC value of 0·714, P = 0·004). There was no significant correlation between the two-coloured gum test and the wax cubes test. The two-coloured gum mixing ability test was able to adequately assess masticatory function and is recommended for use in a population of elderly persons with dementia. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Zollweg, J. A.
2017-10-01
Numerous ground-based, airborne, and orbiting platforms provide remotely-sensed data of remarkable spatial resolution at short time intervals. However, this spatiotemporal data is most valuable if it can be processed into information, thereby creating meaning. We live in a world of objects: cars, buildings, farms, etc. On a stormy day, we don't see millions of cubes of atmosphere; we see a thunderstorm `object'. Temporally, we don't see the properties of those individual cubes changing, we see the thunderstorm as a whole evolving and moving. There is a need to represent the bulky, raw spatiotemporal data from remote sensors as a small number of relevant spatiotemporal objects, thereby matching the human brain's perception of the world. This presentation reveals an efficient algorithm and system to extract the objects/features from raster-formatted remotely-sensed data. The system makes use of the Python object-oriented programming language, SciPy/NumPy for matrix manipulation and scientific computation, and export/import to the GeoJSON standard geographic object data format. The example presented will show how thunderstorms can be identified and characterized in a spatiotemporal continuum using a Python program to process raster data from NOAA's High-Resolution Rapid Refresh v2 (HRRRv2) data stream.
Real-time colouring and filtering with graphics shaders
NASA Astrophysics Data System (ADS)
Vohl, D.; Fluke, C. J.; Barnes, D. G.; Hassan, A. H.
2017-11-01
Despite the popularity of the Graphics Processing Unit (GPU) for general purpose computing, one should not forget about the practicality of the GPU for fast scientific visualization. As astronomers have increasing access to three-dimensional (3D) data from instruments and facilities like integral field units and radio interferometers, visualization techniques such as volume rendering offer means to quickly explore spectral cubes as a whole. As most 3D visualization techniques have been developed in fields of research like medical imaging and fluid dynamics, many transfer functions are not optimal for astronomical data. We demonstrate how transfer functions and graphics shaders can be exploited to provide new astronomy-specific explorative colouring methods. We present 12 shaders, including four novel transfer functions specifically designed to produce intuitive and informative 3D visualizations of spectral cube data. We compare their utility to classic colour mapping. The remaining shaders highlight how common computation like filtering, smoothing and line ratio algorithms can be integrated as part of the graphics pipeline. We discuss how this can be achieved by utilizing the parallelism of modern GPUs along with a shading language, letting astronomers apply these new techniques at interactive frame rates. All shaders investigated in this work are included in the open source software shwirl (Vohl 2017).
NASA Technical Reports Server (NTRS)
Miner, R. V.
1997-01-01
Prototypical single-crystal NiAlCrX superalloys were studied to examine the effects of the common major alloying elements, Co, Mo, Nb, Ta, Ti, and W, on yielding behavior. The alloys contained about 10 at. pct Cr, 60 vol pct of the gamma' phase, and about 3 at. pct of X in the gamma'. The critical resolved shear stresses (CRSSs) for octahedral and primary cube slip were measured at 760 C, which is about the peak strength temperature. The CRSS(sub oct) and CRSS(sub cube) are discussed in relation to those of Ni, (Al, X) gamma' alloys taken from the literature and the gamma'/gamma lattice mismatch. The CRSS(sub oct) of the gamma + gamma' alloys reflected a similar compositional dependence to that of both the CRSS(sub cube) of the gamma' phase and the gamma'/gamma lattice parameter mismatch. The CRSS(sub cube) of the gamma + gamma' alloys also reflected the compositional dependence of the gamma'/gamma mismatch, but bore no similarity to that of CRSS(sub cube) for gamma' alloys since it is controlled by the gamma matrix. The ratio of CRSS(sub cube)/CRSS(sub oct) was decreased by all alloying elements except Co, which increased the ratio. The decrease in CRSS(sub cube)/CRSS(sub oct) was related to the degree in which elements partition to the gamma' rather than the gamma phase.
NASA Astrophysics Data System (ADS)
Ramamurthy, M. K.; Lehnert, K.; Zanzerkia, E. E.
2017-12-01
The United States National Science Foundation's EarthCube program is a community-driven activity aimed at transforming the conduct of geosciences research and education by creating a well-connected cyberinfrastructure for sharing and integrating data and knowledge across all geoscience disciplines in an open, transparent, and inclusive manner and to accelerate our ability to understand and predict the Earth system. After five years of community engagement, governance, and development activities, EarthCube is now transitioning into an implementation phase. In the first phase of implementing the EarthCube architecture, the project leadership has identified the following architectural components as the top three priorities, focused on technologies, interfaces and interoperability elements that will address: a) Resource Discovery; b) Resource Registry; and c) Resource Distribution and Access. Simultaneously, EarthCube is exploring international partnerships to leverage synergies with other e-infrastructure programs and projects in Europe, Australia, and other regions and discuss potential partnerships and mutually beneficial collaborations to increase interoperability of systems for advancing EarthCube's goals in an efficient and effective manner. In this session, we will present the progress of EarthCube on a number of fronts and engage geoscientists and data scientists in the future steps toward the development of EarthCube for advancing research and discovery in the geosciences. The talk will underscore the importance of strategic partnerships with other like eScience projects and programs across the globe.
2014-02-11
ISS038-E-044916 (11 Feb. 2014) --- A set of NanoRacks CubeSats is photographed by an Expedition 38 crew member after the deployment by the Small Satellite Orbital Deployer (SSOD). The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.
SpaceCube Technology Brief Hybrid Data Processing System
NASA Technical Reports Server (NTRS)
Petrick, Dave
2016-01-01
The intent of this presentation is to give status to multiple audience types on the SpaceCube data processing technology at GSFC. SpaceCube has grown to support multiple missions inside and outside of NASA, and we are being requested to give technology overviews in various forums.
Applications of Nano-Satellites and Cube-Satellites in Microwave and RF Domain
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Goverdhanam, Kavita
2015-01-01
This paper presents an overview of microwave technologies for Small Satellites including NanoSats and CubeSats. In addition, examples of space communication technology demonstration projects using CubeSats are presented. Furthermore, examples of miniature instruments for Earth science measurements are discussed.
Applications of Nano-satellites and Cube-satellites in Microwave and RF Domain
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Goverdhanam, Kavita
2015-01-01
This paper presents an overview of microwave technologies for Small Satellites including NanoSats and CubeSats. In addition, examples of space communication technology demonstration projects using CubeSats are presented. Furthermore, examples of miniature instruments for Earth science measurements are discussed.
Exploiting spectral content for image segmentation in GPR data
NASA Astrophysics Data System (ADS)
Wang, Patrick K.; Morton, Kenneth D., Jr.; Collins, Leslie M.; Torrione, Peter A.
2011-06-01
Ground-penetrating radar (GPR) sensors provide an effective means for detecting changes in the sub-surface electrical properties of soils, such as changes indicative of landmines or other buried threats. However, most GPR-based pre-screening algorithms only localize target responses along the surface of the earth, and do not provide information regarding an object's position in depth. As a result, feature extraction algorithms are forced to process data from entire cubes of data around pre-screener alarms, which can reduce feature fidelity and hamper performance. In this work, spectral analysis is investigated as a method for locating subsurface anomalies in GPR data. In particular, a 2-D spatial/frequency decomposition is applied to pre-screener flagged GPR B-scans. Analysis of these spatial/frequency regions suggests that aspects (e.g. moments, maxima, mode) of the frequency distribution of GPR energy can be indicative of the presence of target responses. After translating a GPR image to a function of the spatial/frequency distributions at each pixel, several image segmentation approaches can be applied to perform segmentation in this new transformed feature space. To illustrate the efficacy of the approach, a performance comparison between feature processing with and without the image segmentation algorithm is provided.
Development of iterative techniques for the solution of unsteady compressible viscous flows
NASA Technical Reports Server (NTRS)
Sankar, Lakshmi N.; Hixon, Duane
1991-01-01
Efficient iterative solution methods are being developed for the numerical solution of two- and three-dimensional compressible Navier-Stokes equations. Iterative time marching methods have several advantages over classical multi-step explicit time marching schemes, and non-iterative implicit time marching schemes. Iterative schemes have better stability characteristics than non-iterative explicit and implicit schemes. Thus, the extra work required by iterative schemes can also be designed to perform efficiently on current and future generation scalable, missively parallel machines. An obvious candidate for iteratively solving the system of coupled nonlinear algebraic equations arising in CFD applications is the Newton method. Newton's method was implemented in existing finite difference and finite volume methods. Depending on the complexity of the problem, the number of Newton iterations needed per step to solve the discretized system of equations can, however, vary dramatically from a few to several hundred. Another popular approach based on the classical conjugate gradient method, known as the GMRES (Generalized Minimum Residual) algorithm is investigated. The GMRES algorithm was used in the past by a number of researchers for solving steady viscous and inviscid flow problems with considerable success. Here, the suitability of this algorithm is investigated for solving the system of nonlinear equations that arise in unsteady Navier-Stokes solvers at each time step. Unlike the Newton method which attempts to drive the error in the solution at each and every node down to zero, the GMRES algorithm only seeks to minimize the L2 norm of the error. In the GMRES algorithm the changes in the flow properties from one time step to the next are assumed to be the sum of a set of orthogonal vectors. By choosing the number of vectors to a reasonably small value N (between 5 and 20) the work required for advancing the solution from one time step to the next may be kept to (N+1) times that of a noniterative scheme. Many of the operations required by the GMRES algorithm such as matrix-vector multiplies, matrix additions and subtractions can all be vectorized and parallelized efficiently.
Learning Experiences in a Giant Interactive Environment: Insights from The Cube
ERIC Educational Resources Information Center
Stoodley, Ian; Sayyad Abdi, Elham; Bruce, Christine; Hughes, Hilary
2018-01-01
In November 2012, Queensland University of Technology in Australia launched a giant interactive learning environment known as "The Cube". This article reports a phenomenographic investigation into visitors' different experiences of learning in The Cube. At present very little is known about people's learning experience in spaces…
Search for counterpart to IceCube-171015A with ANTARES
NASA Astrophysics Data System (ADS)
Dornic, Damien; Colei, Alexis
2017-10-01
Damien Dornic (CPPM/CNRS) and Alexis Coleiro (IFIC/APC) report on behalf of the ANTARES Collaboration. Using online data from the ANTARES detector, we have performed a follow-up analysis of the recently reported high-energy starting event (HESE) neutrino IceCube-171015 (AMON IceCube HESE 56068624_130126).
Kim, Hwi; Min, Sung-Wook; Lee, Byoungho
2008-12-01
Geometrical optics analysis of the structural imperfection of retroreflection corner cubes is described. In the analysis, a geometrical optics model of six-beam reflection patterns generated by an imperfect retroreflection corner cube is developed, and its structural error extraction is formulated as a nonlinear optimization problem. The nonlinear conjugate gradient method is employed for solving the nonlinear optimization problem, and its detailed implementation is described. The proposed method of analysis is a mathematical basis for the nondestructive optical inspection of imperfectly fabricated retroreflection corner cubes.
NASA Astrophysics Data System (ADS)
Liu, Hongwei; Liu, Jiangwen; Su, Guangcai; Li, Weizhou; Zeng, Jianmin; Hu, Zhiliu
2012-10-01
The crystallography of body-centered-cube to face-centered cube (bcc-to-fcc) diffusion phase transformations in a duplex stainless steel and a Cu-Zn alloy, including long axis, orientation relationship (OR), habit plane (HP), and dislocation spacing, is successfully interpreted with one-step rotation from the Bain lattice relationship by applying a simplified invariant line (IL) analysis. It is proposed that the dislocation slipping direction in the matrix plays an important role in controlling the crystallography of precipitation.
Design, Analysis and Testing of a PRSEUS Pressure Cube to Investigate Assembly Joints
NASA Technical Reports Server (NTRS)
Yovanof, Nicolette; Lovejoy, Andrew E.; Baraja, Jaime; Gould, Kevin
2012-01-01
Due to its potential to significantly increase fuel efficiency, the current focus of NASA's Environmentally Responsible Aviation Program is the hybrid wing body (HWB) aircraft. Due to the complex load condition that exists in HWB structure, as compared to traditional aircraft configurations, light-weight, cost-effective and manufacturable structural concepts are required to enable the HWB. The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept is one such structural concept. A building block approach for technology development of the PRSEUS concept is being conducted. As part of this approach, a PRSEUS pressure cube was developed as a risk reduction test article to examine a new integral cap joint concept. This paper describes the design, analysis and testing of the PRSEUS pressure cube test article. The pressure cube was required to withstand a 2P, 18.4 psi, overpressure load requirement. The pristine pressure cube was tested to 2.2P with no catastrophic failure. After the addition of barely visible impact damage, the cube was pressure loaded to 48 psi where catastrophic failure occurred, meeting the scale-up requirement. Comparison of pretest and posttest analyses with the cube test response agree well, and indicate that current analysis methods can be used to accurately analyze PRSEUS structure for initial failure response.
NASA Astrophysics Data System (ADS)
Miszczyk, M. M.; Paul, H.
2015-08-01
The cube texture formation during primary recrystallization was analysed in plane strain deformed samples of a commercial AA1050 alloy and an Al-1%wt.Mn model alloy single crystal of the Goss{110}<001> orientation. The textures were measured with the use of X-ray diffraction and scanning electron microscopy equipped with an electron backscattered diffraction facility. After recrystallization of the Al-1%wt.Mn single crystal, the texture of the recrystallized grains was dominated by four variants of the S{123}<634> orientation. The cube grains were only sporadically detected by the SEM/EBSD system. Nevertheless, an increased density of <111> poles corresponding to the cube orientation was observed. The latter was connected with the superposition of four variants of the S{123}<634> orientation. This indicates that the cube texture after the recrystallization was a ‘compromise texture’. In the case of the recrystallized AA1050 alloy, the strong cube texture results from both the increased density of the particular <111> poles of the four variants of the S orientation and the ∼40°(∼< 111>)-type rotation. The first mechanism transforms the Sdef-oriented areas into Srex ones, whereas the second the near S-oriented, as-deformed areas into near cube-oriented grains.
Jeong, Ji-Wook; Chae, Seung-Hoon; Chae, Eun Young; Kim, Hak Hee; Choi, Young-Wook; Lee, Sooyeul
2016-01-01
We propose computer-aided detection (CADe) algorithm for microcalcification (MC) clusters in reconstructed digital breast tomosynthesis (DBT) images. The algorithm consists of prescreening, MC detection, clustering, and false-positive (FP) reduction steps. The DBT images containing the MC-like objects were enhanced by a multiscale Hessian-based three-dimensional (3D) objectness response function and a connected-component segmentation method was applied to extract the cluster seed objects as potential clustering centers of MCs. Secondly, a signal-to-noise ratio (SNR) enhanced image was also generated to detect the individual MC candidates and prescreen the MC-like objects. Each cluster seed candidate was prescreened by counting neighboring individual MC candidates nearby the cluster seed object according to several microcalcification clustering criteria. As a second step, we introduced bounding boxes for the accepted seed candidate, clustered all the overlapping cubes, and examined. After the FP reduction step, the average number of FPs per case was estimated to be 2.47 per DBT volume with a sensitivity of 83.3%.
[Simulation and data analysis of stereological modeling based on virtual slices].
Wang, Hao; Shen, Hong; Bai, Xiao-yan
2008-05-01
To establish a computer-assisted stereological model for simulating the process of slice section and evaluate the relationship between section surface and estimated three-dimensional structure. The model was designed by mathematic method as a win32 software based on the MFC using Microsoft visual studio as IDE for simulating the infinite process of sections and analysis of the data derived from the model. The linearity of the fitting of the model was evaluated by comparison with the traditional formula. The win32 software based on this algorithm allowed random sectioning of the particles distributed randomly in an ideal virtual cube. The stereological parameters showed very high throughput (>94.5% and 92%) in homogeneity and independence tests. The data of density, shape and size of the section were tested to conform to normal distribution. The output of the model and that from the image analysis system showed statistical correlation and consistency. The algorithm we described can be used for evaluating the stereologic parameters of the structure of tissue slices.
LayTracks3D: A new approach for meshing general solids using medial axis transform
Quadros, William Roshan
2015-08-22
This study presents an extension of the all-quad meshing algorithm called LayTracks to generate high quality hex-dominant meshes of general solids. LayTracks3D uses the mapping between the Medial Axis (MA) and the boundary of the 3D domain to decompose complex 3D domains into simpler domains called Tracks. Tracks in 3D have no branches and are symmetric, non-intersecting, orthogonal to the boundary, and the shortest path from the MA to the boundary. These properties of tracks result in desired meshes with near cube shape elements at the boundary, structured mesh along the boundary normal with any irregular nodes restricted to themore » MA, and sharp boundary feature preservation. The algorithm has been tested on a few industrial CAD models and hex-dominant meshes are shown in the Results section. Work is underway to extend LayTracks3D to generate all-hex meshes.« less
NASA Astrophysics Data System (ADS)
Du, Xiaoping; Wang, Yang; Liu, Hao
2018-04-01
The space object in highly elliptical orbit is always presented as an image point on the ground-based imaging equipment so that it is difficult to resolve and identify the shape and attitude directly. In this paper a novel algorithm is presented for the estimation of spacecraft shape. The apparent magnitude model suitable for the inversion of object information such as shape and attitude is established based on the analysis of photometric characteristics. A parallel adaptive shape inversion algorithm based on UKF was designed after the achievement of dynamic equation of the nonlinear, Gaussian system involved with the influence of various dragging forces. The result of a simulation study demonstrate the viability and robustness of the new filter and its fast convergence rate. It realizes the inversion of combination shape with high accuracy, especially for the bus of cube and cylinder. Even though with sparse photometric data, it still can maintain a higher success rate of inversion.
A multifunctional solar panel antenna for cube satellites
NASA Astrophysics Data System (ADS)
Fawole, Olutosin C.
The basic cube satellite (CubeSat) is a modern small satellite that has a standard size of about one liter (the 1U CubeSat). Three 1U CubeSats could be stacked to form a 3U CubeSat. Their low-cost, short development time, and ease of deployment make CubeSats popular for space research, geographical information gathering, and communication applications. An antenna is a key part of the CubeSat communication subsystem. Traditionally, antennas used on CubeSats are wrapped-up wire dipole antennas, which are deployed after satellite launch. Another antenna type used on CubeSats is the patch antenna. In addition to their low gain and efficiency, deployable dipole antennas may also fail to deploy on satellite launch. On the other hand, a solid patch antenna will compete for space with solar cells when placed on a CubeSat face, interfering with satellite power generation. Slot antennas are promising alternatives to dipole and patch antennas on CubeSats. When excited, a thin slot aperture etched on a conductive sheet (ground plane) is an efficient bidirectional radiator. This open slot antenna can be backed by a reflector or cavity for unidirectional radiation, and solar cells can be placed in spaces on the ground plane not occupied by the slot. The large surface areas of 3U CubeSats can be exploited for a multifunctional antenna by integrating multiple thin slot radiators, which are backed by a thin cavity on the CubeSat surfaces. Solar cells can then be integrated on the antenna surface. Polarization diversity and frequency diversity improve the overall performance of a communication system. Having a single radiating structure that could provide these diversities is desired. It has been demonstrated that when a probe excites a square cavity with two unequal length crossed-slots, the differential radiation from the two slots combines in the far-field to yield circular polarization. In addition, it has been shown that two equal-length proximal slots, when both fed with a stripline, resonate at a frequency due to their original lengths, and also resonate at a lower frequency due to mutual coupling between the slots, leading to a dual-band operation. The multifunctional antenna designs presented are harmonizations and extensions of these two independent works. In the multifunctional antenna designs presented, multiple slots were etched on a 83 mm x 340 mm two-layer shallow cavity. The slots were laid out on the cavity such when the cavity was excited by a probe at a particular point, the differential radiation from the slots would combine in the far-field to yield Left-Handed Circular Polarization (LHCP). Furthermore, when the cavity was excited by another probe at an opposite point, the slots would produce Right-Handed Circular Polarization (RHCP). In addition, as forethought, these slots were laid out on the cavity such that some slots were close together enough to give Linearly Polarized (LP) dual-band operation when fed with a stripline. This antenna was designed and optimized via computer simulations, fabricated using Printed Circuit Board (PCB) technology, and characterized using a Vector Network Analyzer (VNA) and NSI Far Field Systems.
2009-09-01
and could be used to compensate for high frequency distortions to the LOS caused by platform jitter and the effects of the optical turbulence . In...engineer an unknown detector based on few experimental interactions. For watermarking algorithms in particular, we seek to identify specific distortions ...of a watermarked image that clearly identify or rule out one particular class of embedding. These experimental distortions surgical test for rapid
CubeSat Material Limits For Design for Demise
NASA Technical Reports Server (NTRS)
Kelley, R. L.; Jarkey, D. R.
2014-01-01
The CubeSat form factor of nano-satellite (a satellite with a mass between one and ten kilograms) has grown in popularity due to their ease of construction and low development and launch costs. In particular, their use as student led payload design projects has increased due to the growing number of launch opportunities. CubeSats are often deployed as secondary or tertiary payloads on most US launch vehicles or they may be deployed from the ISS. The focus of this study will be on CubeSats launched from the ISS. From a space safety standpoint, the development and deployment processes for CubeSats differ significantly from that of most satellites. For large satellites, extensive design reviews and documentation are completed, including assessing requirements associated with reentry survivability. Typical CubeSat missions selected for ISS deployment have a less rigorous review process that may not evaluate aspects beyond overall design feasibility. CubeSat design teams often do not have the resources to ensure their design is compliant with reentry risk requirements. A study was conducted to examine methods to easily identify the maximum amount of a given material that can be used in the construction of a CubeSats without posing harm to persons on the ground. The results demonstrate that there is not a general equation or relationship that can be used for all materials; instead a limiting value must be defined for each unique material. In addition, the specific limits found for a number of generic materials that have been previously used as benchmarking materials for reentry survivability analysis tool comparison will be discussed.
CubeSat Material Limits for Design for Demise
NASA Technical Reports Server (NTRS)
Kelley, R. L.; Jarkey, D. R.
2014-01-01
The CubeSat form factor of nano-satellite (a satellite with a mass between one and ten kilograms) has grown in popularity due to their ease of construction and low development and launch costs. In particular, their use as student led payload design projects has increased due to the growing number of launch opportunities. CubeSats are often deployed as secondary or tertiary payloads on most US launch vehicles or they may be deployed from the ISS. The focus of this study will be on CubeSats launched from the ISS. From a space safety standpoint, the development and deployment processes for CubeSats differ significantly from that of most satellites. For large satellites, extensive design reviews and documentation are completed, including assessing requirements associated with re-entry survivability. Typical CubeSat missions selected for ISS deployment have a less rigorous review process that may not evaluate aspects beyond overall design feasibility. CubeSat design teams often do not have the resources to ensure their design is compliant with re-entry risk requirements. A study was conducted to examine methods to easily identify the maximum amount of a given material that can be used in the construction of a CubeSats without posing harm to persons on the ground. The results demonstrate that there is not a general equation or relationship that can be used for all materials; instead a limiting value must be defined for each unique material. In addition, the specific limits found for a number of generic materials that have been previously used as benchmarking materials for re-entry survivability analysis tool comparison will be discussed.
A software tool of digital tomosynthesis application for patient positioning in radiotherapy
Dai, Jian‐Rong
2016-01-01
Digital Tomosynthesis (DTS) is an image modality in reconstructing tomographic images from two‐dimensional kV projections covering a narrow scan angles. Comparing with conventional cone‐beam CT (CBCT), it requires less time and radiation dose in data acquisition. It is feasible to apply this technique in patient positioning in radiotherapy. To facilitate its clinical application, a software tool was developed and the reconstruction processes were accelerated by graphic processing unit (GPU). Two reconstruction and two registration processes are required for DTS application which is different from conventional CBCT application which requires one image reconstruction process and one image registration process. The reconstruction stage consists of productions of two types of DTS. One type of DTS is reconstructed from cone‐beam (CB) projections covering a narrow scan angle and is named onboard DTS (ODTS), which represents the real patient position in treatment room. Another type of DTS is reconstructed from digitally reconstructed radiography (DRR) and is named reference DTS (RDTS), which represents the ideal patient position in treatment room. Prior to the reconstruction of RDTS, The DRRs are reconstructed from planning CT using the same acquisition setting of CB projections. The registration stage consists of two matching processes between ODTS and RDTS. The target shift in lateral and longitudinal axes are obtained from the matching between ODTS and RDTS in coronal view, while the target shift in longitudinal and vertical axes are obtained from the matching between ODTS and RDTS in sagittal view. In this software, both DRR and DTS reconstruction algorithms were implemented on GPU environments for acceleration purpose. The comprehensive evaluation of this software tool was performed including geometric accuracy, image quality, registration accuracy, and reconstruction efficiency. The average correlation coefficient between DRR/DTS generated by GPU‐based algorithm and CPU‐based algorithm is 0.99. Based on the measurements of cube phantom on DTS, the geometric errors are within 0.5 mm in three axes. For both cube phantom and pelvic phantom, the registration errors are within 0.5 mm in three axes. Compared with reconstruction performance of CPU‐based algorithms, the performances of DRR and DTS reconstructions are improved by a factor of 15 to 20. A GPU‐based software tool was developed for DTS application for patient positioning of radiotherapy. The geometric and registration accuracy met the clinical requirement in patient setup of radiotherapy. The high performance of DRR and DTS reconstruction algorithms was achieved by the GPU‐based computation environments. It is a useful software tool for researcher and clinician in evaluating DTS application in patient positioning of radiotherapy. PACS number(s): 87.57.nf PMID:27074482
the IEEE Spectrum reflects on the deployment of IceCube's last string. (February 2011). From the Daily Californian (January 26, 2011) includes current group photo. From the Guardian and Observer (UK) (January 23 , 2011) NSF Press Release (December 2010) Major Milestone - Completion of the IceCube Detector December
2014-02-13
ISS038-E-046586 (13 Feb. 2014) --- A set of NanoRacks CubeSats is photographed by an Expedition 38 crew member after the deployment by the NanoRacks Launcher attached to the end of the Japanese robotic arm. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.
2014-02-13
ISS038-E-046579 (13 Feb. 2014) --- A set of NanoRacks CubeSats is photographed by an Expedition 38 crew member after the deployment by the NanoRacks Launcher attached to the end of the Japanese robotic arm. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.
On the verge of an astronomy CubeSat revolution
NASA Astrophysics Data System (ADS)
Shkolnik, Evgenya L.
2018-05-01
CubeSats are small satellites built in standard sizes and form factors, which have been growing in popularity but have thus far been largely ignored within the field of astronomy. When deployed as space-based telescopes, they enable science experiments not possible with existing or planned large space missions, filling several key gaps in astronomical research. Unlike expensive and highly sought after space telescopes such as the Hubble Space Telescope, whose time must be shared among many instruments and science programs, CubeSats can monitor sources for weeks or months at time, and at wavelengths not accessible from the ground such as the ultraviolet, far-infrared and low-frequency radio. Science cases for CubeSats being developed now include a wide variety of astrophysical experiments, including exoplanets, stars, black holes and radio transients. Achieving high-impact astronomical research with CubeSats is becoming increasingly feasible with advances in technologies such as precision pointing, compact sensitive detectors and the miniaturization of propulsion systems. CubeSats may also pair with the large space- and ground-based telescopes to provide complementary data to better explain the physical processes observed.
NASA Astrophysics Data System (ADS)
Mertsch, Philipp; Rameez, Mohamed; Tamborra, Irene
2017-03-01
Constraints on the number and luminosity of the sources of the cosmic neutrinos detected by IceCube have been set by targeted searches for point sources. We set complementary constraints by using the 2MASS Redshift Survey (2MRS) catalogue, which maps the matter distribution of the local Universe. Assuming that the distribution of the neutrino sources follows that of matter, we look for correlations between ``warm'' spots on the IceCube skymap and the 2MRS matter distribution. Through Monte Carlo simulations of the expected number of neutrino multiplets and careful modelling of the detector performance (including that of IceCube-Gen2), we demonstrate that sources with local density exceeding 10-6 Mpc-3 and neutrino luminosity Lν lesssim 1042 erg s-1 (1041 erg s-1) will be efficiently revealed by our method using IceCube (IceCube-Gen2). At low luminosities such as will be probed by IceCube-Gen2, the sensitivity of this analysis is superior to requiring statistically significant direct observation of a point source.
Structural and chemical orders in N i64.5Z r35.5 metallic glass by molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Tang, L.; Wen, T. Q.; Wang, N.; Sun, Y.; Zhang, F.; Yang, Z. J.; Ho, K. M.; Wang, C. Z.
2018-03-01
The atomic structure of N i64.5Z r35.5 metallic glass has been investigated by molecular dynamics (MD) simulations. The calculated structure factors from the MD glassy sample at room temperature agree well with the x-ray diffraction (XRD) and neutron diffraction (ND) experimental data. Using the pairwise cluster alignment and clique analysis methods, we show that there are three types of dominant short-range order (SRO) motifs around Ni atoms in the glass sample of N i64.5Z r35.5 , i.e., mixed-icosahedron(ICO)-cube, intertwined-cube, and icosahedronlike clusters. Furthermore, chemical order and medium-range order (MRO) analysis show that the mixed-ICO-cube and intertwined-cube clusters exhibit the characteristics of the crystalline B2 phase. Our simulation results suggest that the weak glass-forming ability (GFA) of N i64.5Z r35.5 can be attributed to the competition between the glass forming ICO SRO and the crystalline mixed-ICO-cube and intertwined-cube motifs.
2018-04-17
Students from Montgomery College in Rockville in Maryland, follow the progress of their Swarmie robots during the Swarmathon competition at the Kennedy Space Center Visitor Complex. Students were asked to develop computer code for the small robots, programming them to look for "resources" in the form of AprilTag cubes, similar to barcodes. Teams developed search algorithms for the Swarmies to operate autonomously, communicating and interacting as a collective swarm similar to ants foraging for food. In the spaceport's third annual Swarmathon, 23 teams represented 24 minority serving universities and community colleges were invited to develop software code to operate these innovative robots known as "Swarmies" to help find resources when astronauts explore distant locations, such as the Moon or Mars.
2018-04-18
In the Swarmathon competition at the Kennedy Space Center Visitor Complex, students were asked to develop computer code for the small robots, programming them to look for "resources" in the form of AprilTag cubes, similar to barcodes. To add to the challenge, obstacles in the form of simulated rocks were placed in the completion arena. Teams developed search algorithms for the Swarmies to operate autonomously, communicating and interacting as a collective swarm similar to ants foraging for food. In the spaceport's third annual Swarmathon, 23 teams represented 24 minority serving universities and community colleges were invited to develop software code to operate these innovative robots known as "Swarmies" to help find resources when astronauts explore distant locations, such as the Moon or Mars.
Advances in the theory of box integrals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, David H.; Borwein, J.M.; Crandall, R.E.
2009-06-25
Box integrals - expectations <|{rvec r}|{sup s}> or <|{rvec r}-{rvec q}|{sup s}> over the unit n-cube (or n-box) - have over three decades been occasionally given closed forms for isolated n,s. By employing experimental mathematics together with a new, global analytic strategy, we prove that for n {le} 4 dimensions the box integrals are for any integer s hypergeometrically closed in a sense we clarify herein. For n = 5 dimensions, we show that a single unresolved integral we call K{sub 5} stands in the way of such hyperclosure proofs. We supply a compendium of exemplary closed forms that naturallymore » arise algorithmically from this theory.« less
Active-passive data fusion algorithms for seafloor imaging and classification from CZMIL data
NASA Astrophysics Data System (ADS)
Park, Joong Yong; Ramnath, Vinod; Feygels, Viktor; Kim, Minsu; Mathur, Abhinav; Aitken, Jennifer; Tuell, Grady
2010-04-01
CZMIL will simultaneously acquire lidar and passive spectral data. These data will be fused to produce enhanced seafloor reflectance images from each sensor, and combined at a higher level to achieve seafloor classification. In the DPS software, the lidar data will first be processed to solve for depth, attenuation, and reflectance. The depth measurements will then be used to constrain the spectral optimization of the passive spectral data, and the resulting water column estimates will be used recursively to improve the estimates of seafloor reflectance from the lidar. Finally, the resulting seafloor reflectance cube will be combined with texture metrics estimated from the seafloor topography to produce classifications of the seafloor.
Enhanced backscatter of optical beams reflected in atmospheric turbulence
NASA Astrophysics Data System (ADS)
Nelson, W.; Palastro, J. P.; Wu, C.; Davis, C. C.
2014-10-01
Optical beams propagating through the atmosphere acquire phase distortions from turbulent fluctuations in the refractive index. While these distortions are usually deleterious to propagation, beams reflected in a turbulent medium can undergo a local recovery of spatial coherence and intensity enhancement referred to as enhanced backscatter (EBS). Using simulations, we investigate the EBS of optical beams reflected from mirrors, corner cubes, and rough surfaces, and identify the regimes in which EBS is most distinctly observed. Standard EBS detection requires averaging the reflected intensity over many passes through uncorrelated turbulence. Here we present an algorithm called the "tilt-shift method" which allows detection of EBS in static turbulence, improving its suitability for potential applications.
Segmentation of hand radiographs using fast marching methods
NASA Astrophysics Data System (ADS)
Chen, Hong; Novak, Carol L.
2006-03-01
Rheumatoid Arthritis is one of the most common chronic diseases. Joint space width in hand radiographs is evaluated to assess joint damage in order to monitor progression of disease and response to treatment. Manual measurement of joint space width is time-consuming and highly prone to inter- and intra-observer variation. We propose a method for automatic extraction of finger bone boundaries using fast marching methods for quantitative evaluation of joint space width. The proposed algorithm includes two stages: location of hand joints followed by extraction of bone boundaries. By setting the propagation speed of the wave front as a function of image intensity values, the fast marching algorithm extracts the skeleton of the hands, in which each branch corresponds to a finger. The finger joint locations are then determined by using the image gradients along the skeletal branches. In order to extract bone boundaries at joints, the gradient magnitudes are utilized for setting the propagation speed, and the gradient phases are used for discriminating the boundaries of adjacent bones. The bone boundaries are detected by searching for the fastest paths from one side of each joint to the other side. Finally, joint space width is computed based on the extracted upper and lower bone boundaries. The algorithm was evaluated on a test set of 8 two-hand radiographs, including images from healthy patients and from patients suffering from arthritis, gout and psoriasis. Using our method, 97% of 208 joints were accurately located and 89% of 416 bone boundaries were correctly extracted.
IceCube results from point-like source searches using 6 years of through-going muon data
NASA Astrophysics Data System (ADS)
Coenders, Stefan
2016-04-01
The IceCube Neutrino Observatory located at the geographic South Pole was designed to study and discover high energy neutrinos coming from both galactic and extra-galactic astrophysical sources. Track-like events induced by charged-current muon-neutrino interactions close to the IceCube detector give an angular resolution better than 1∘ above TeV energies. We present here the results of searches for point-like astrophysical neutrino sources on the full sky using 6 years of detector livetime, of which three years use the complete IceCube detector. Within 2000 days of detector livetime, IceCube is sensitive to a steady flux substantially below E2∂ϕ/∂E = 10-12 TeV cm-2 s-1 in the northern sky for neutrino energies above 10 TeV.
Interplay between spherical confinement and particle shape on the self-assembly of rounded cubes.
Wang, Da; Hermes, Michiel; Kotni, Ramakrishna; Wu, Yaoting; Tasios, Nikos; Liu, Yang; de Nijs, Bart; van der Wee, Ernest B; Murray, Christopher B; Dijkstra, Marjolein; van Blaaderen, Alfons
2018-06-08
Self-assembly of nanoparticles (NPs) inside drying emulsion droplets provides a general strategy for hierarchical structuring of matter at different length scales. The local orientation of neighboring crystalline NPs can be crucial to optimize for instance the optical and electronic properties of the self-assembled superstructures. By integrating experiments and computer simulations, we demonstrate that the orientational correlations of cubic NPs inside drying emulsion droplets are significantly determined by their flat faces. We analyze the rich interplay of positional and orientational order as the particle shape changes from a sharp cube to a rounded cube. Sharp cubes strongly align to form simple-cubic superstructures whereas rounded cubes assemble into icosahedral clusters with additionally strong local orientational correlations. This demonstrates that the interplay between packing, confinement and shape can be utilized to develop new materials with novel properties.
Seid-Karbasi, Puya; Ye, Xin C; Zhang, Allen W; Gladish, Nicole; Cheng, Suzanne Y S; Rothe, Katharina; Pilsworth, Jessica A; Kang, Min A; Doolittle, Natalie; Jiang, Xiaoyan; Stirling, Peter C; Wasserman, Wyeth W
2017-03-01
Student creation of educational materials has the capacity both to enhance learning and to decrease costs. Three successive honors-style classes of undergraduate students in a cancer genetics class worked with a new software system, CuboCube, to create an e-textbook. CuboCube is an open-source learning materials creation system designed to facilitate e-textbook development, with an ultimate goal of improving the social learning experience for students. Equipped with crowdsourcing capabilities, CuboCube provides intuitive tools for nontechnical and technical authors alike to create content together in a structured manner. The process of e-textbook development revealed both strengths and challenges of the approach, which can inform future efforts. Both the CuboCube platform and the Cancer Genetics E-textbook are freely available to the community.
Seid-Karbasi, Puya; Ye, Xin C.; Zhang, Allen W.; Gladish, Nicole; Cheng, Suzanne Y. S.; Rothe, Katharina; Pilsworth, Jessica A.; Kang, Min A.; Doolittle, Natalie; Jiang, Xiaoyan; Stirling, Peter C.; Wasserman, Wyeth W.
2017-01-01
Student creation of educational materials has the capacity both to enhance learning and to decrease costs. Three successive honors-style classes of undergraduate students in a cancer genetics class worked with a new software system, CuboCube, to create an e-textbook. CuboCube is an open-source learning materials creation system designed to facilitate e-textbook development, with an ultimate goal of improving the social learning experience for students. Equipped with crowdsourcing capabilities, CuboCube provides intuitive tools for nontechnical and technical authors alike to create content together in a structured manner. The process of e-textbook development revealed both strengths and challenges of the approach, which can inform future efforts. Both the CuboCube platform and the Cancer Genetics E-textbook are freely available to the community. PMID:28267757
A ’Multiple Pivoting’ Algorithm for Goal-Interval Programming Formulations.
1980-03-01
jotso _P- ,- Research Report CCS 355 A "MULTIPLE PIVOTING" ALGORITHM FOR GOAL-INTERVAL PROGRAMMING FORMULATIONS by R. Armstrong* A. Charnes*W. Cook...J. Godfrey*** March 1980 *The University of Texas at Austin **York University, Downsview, Ontario, Canada ***Washington, DC This research was partly...areas. However, the main direction of goal programing research has been in formulating models instead of seeking procedures that would provide
Algorithms for Data Intensive Applications on Intelligent and Smart Memories
2003-03-01
editors). Parallel Algorithms and Architectures. North Holland, 1986. [8] P. Diniz . USC ISI, Personal Communication, March, 2001. [9] M. Frigo, C. E ...hierarchy as well as the Translation Lookaside Buer TLB aect the e ectiveness of cache friendly optimizations These penalties vary among...processors and cause large variations in the e ectiveness of cache performance optimizations The area of graph problems is fundamental in a wide variety of
3D Printing the Complete CubeSat
NASA Technical Reports Server (NTRS)
Kief, Craig
2015-01-01
The 3D Printing the Complete CubeSat project is designed to advance the state-of-the-art in 3D printing for CubeSat applications. Printing in 3D has the potential to increase reliability, reduce design iteration time and provide greater design flexibility in the areas of radiation mitigation, communications, propulsion, and wiring, among others. This project is investigating the possibility of including propulsion systems into the design of printed CubeSat components. One such concept, an embedded micro pulsed plasma thruster (mPPT), could provide auxiliary reaction control propulsion for a spacecraft as a means to desaturate momentum wheels.
NASA Technical Reports Server (NTRS)
Smith, Harrison Brodsky; Hu, Steven Hung Kee; Cockrell, James J.
2013-01-01
Operators of a constellation of CubeSats have to confront a number of daunting challenges that can be cost prohibitive, or operationally prohibitive, to missions that could otherwise be enabled by a satellite constellation. Challenges including operations complexity, intersatellite communication, intersatellite navigation, and time sharing tasks between satellites are all complicated by operating with the usual CubeSat size, power, and budget constraints. EDSN pioneers innovative solutions to these problems as they are presented on the nano-scale satellite platform.
NASA Astrophysics Data System (ADS)
Jiang, Xinya; Wang, Huijun; Wang, Haijun; Zhuo, Ying; Yuan, Ruo; Chai, Yaqin
2016-04-01
Herein, a self-enhanced N-(aminobutyl)-N-(ethylisoluminol) (ABEI) derivative-based electrochemiluminescence (ECL) immunosensor was constructed for the determination of laminin (LN) using PdIr cubes as a mimic peroxidase for signal amplification. Initially, PdIr cubes with efficient peroxidase mimicking properties, large specific surface areas, and good stability and uniformity were synthesized. Then, l-cysteine (l-Cys) and ABEI were immobilized on the PdIr cubes to form the self-enhanced ECL nanocomplex (PdIr-l-Cys-ABEI). In this nanocomplex, PdIr cubes, whose catalytic constant is higher than that of horseradish peroxidase (HRP), could effectively catalyze H2O2 decomposition and thus enhance the ECL intensity of ABEI. Moreover, PdIr cubes can be easily modified with functional groups, which make them adaptable to desired supported platforms. On the other hand, l-Cys as a coreactant of ABEI could effectively enhance the luminous efficiency due to the intramolecular ECL reaction which could reduce the energy loss between l-Cys and ABEI by giving a shorter electron transfer distance. The developed strategy combined an ABEI derivative as a self-enhanced ECL luminophore and PdIr cubes as a mimic peroxidase, resulting in a significantly enhanced ECL signal output. Also, the strategy showed high sensitivity and selectivity for LN, which suggested that our new approach could be potentially applied in monitoring different proteins.
NASA Astrophysics Data System (ADS)
Stephen, Diggs; Lee, Allison
2014-05-01
The National Science Foundation's EarthCube initiative aims to create a community-driven data and knowledge management system that will allow for unprecedented data sharing across the geosciences. More than 2,500 participants through forums, work groups, EarthCube events, and virtual and in-person meetings have participated. The individuals that have engaged represent the core earth-system sciences of solid Earth, Atmosphere, Oceans, and Polar Sciences. EarthCube is a cornerstone of NSF's Cyberinfrastructure for the 21st Century (CIF21) initiative, whose chief objective is to develop a U.S. nationwide, sustainable, and community-based cyberinfrastructure for researchers and educators. Increasingly effective community-driven cyberinfrastructure allows global data discovery and knowledge management and achieves interoperability and data integration across scientific disciplines. There is growing convergence across scientific and technical communities on creating a networked, knowledge management system and scientific data cyberinfrastructure that integrates Earth system and human dimensions data in an open, transparent, and inclusive manner. EarthCube does not intend to replicate these efforts, but build upon them. An agile development process is underway for the development and governance of EarthCube. The agile approach was deliberately selected due to its iterative and incremental nature while promoting adaptive planning and rapid and flexible response. Such iterative deployment across a variety of EarthCube stakeholders encourages transparency, consensus, accountability, and inclusiveness.
Breaking Wave Impact on a Partially Submerged Rigid Cube in Deep Water
NASA Astrophysics Data System (ADS)
Ikeda, C. M.; Choquette, M.; Duncan, J. H.
2011-11-01
The impact of a plunging breaking wave on a partially submerged cube is studied experimentally. The experiments are performed in a wave tank that is 14.8 m long, 1.15 m wide and 2.2 m high with a water depth of 0.91 m. A single repeatable plunging breaker is generated from a dispersively focused wave packet (average frequency of 1.4 Hz) that is created with a programmable wave maker. The rigid (L = 30 . 5 cm) cube is centered in the width of the tank and mounted from above with one face oriented normal to the oncoming wave. The position of the center of the front face of the cube is varied from the breaker location (xb ~ 6 . 35 m) to xb + 0 . 05 m in the streamwise direction and from - 0 . 25 L to 0 . 25 L vertically relative to the mean water level. A high-speed digital camera is used to record both white-light and laser-induced fluorescence (LIF) movies of the free surface shape in front of the cube before and after the wave impact. When the wave hits the cube just as the plunging jet is formed, a high-velocity vertical jet is created and the trajectory and maximum height of the jet are strongly influenced by the vertical position of the cube. Supported by the Office of Naval Research, Contract Monitor R. D. Joslin.
NASA Astrophysics Data System (ADS)
Agarwal, Karuna; Gao, Jian; Katz, Joseph
2017-11-01
The shape, size, and spacing between roughness elements in turbulent boundary layers affect the associated drag and noise. Understanding them require data on the flow structure around these elements. Dual-view tomographic holography is used to study the 3D 3-component velocity field around a pair of cubic roughness elements immersed in a turbulent boundary layer at Reτ = 2500 . These a = 1 mm high cubes correspond to 4% of the half channel height and 90 wall units (δν = 11 μ m). Tests are performed for spanwise spacings of a, 1.5 a and 2.5 a. The sample volume is 385δν × 250δν × 190δν and the vector spacing is 5.4δν. Conversed statistics is obtained by recording 1500 realizations in volumes centered upstream, downstream and around a cube. The boundary layer separating upstream of the cube does not reattach until the wake region, resulting in formation of a vortical ``canopy'' that engulfs each cube. It is dominated by spanwise vorticity above the cube and separated region, bounded by vertical vorticity on the sides. Flow channeling in the space between cubes causes asymmetry in the vorticity distributions along the inner and outer walls. The legs of horseshoe vortices remain near the wall between cubes, but grow and expand in the wake region. Funded by NSF and ONR.
Aartsen, M. G.; Abraham, K.; Ackermann, M.; ...
2016-09-28
We present the first IceCube search for a signal of dark matter annihilations in the Milky Way using all-flavour neutrino-induced particle cascades. The analysis focuses on the DeepCore sub-detector of IceCube, and uses the surrounding IceCube strings as a veto region in order to select starting events in the DeepCore volume. We use 329 live-days of data from IceCube operating in its 86-string configuration during 2011–2012. No neutrino excess is found, the final result being compatible with the background-only hypothesis. From this null result, we derive upper limits on the velocity-averaged self-annihilation cross-section, < σ A v > , formore » dark matter candidate masses ranging from 30 GeV up to 10 TeV, assuming both a cuspy and a flat-cored dark matter halo profile. For dark matter masses between 200 GeV and 10 TeV, the results improve on all previous IceCube results on < σ A v > , reaching a level of 10 - 23 cm 3 s - 1 , depending on the annihilation channel assumed, for a cusped NFW profile. The analysis demonstrates that all-flavour searches are competitive with muon channel searches despite the intrinsically worse angular resolution of cascades compared to muon tracks in IceCube.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aartsen, M. G.; Abraham, K.; Ackermann, M.
We present the first IceCube search for a signal of dark matter annihilations in the Milky Way using all-flavour neutrino-induced particle cascades. The analysis focuses on the DeepCore sub-detector of IceCube, and uses the surrounding IceCube strings as a veto region in order to select starting events in the DeepCore volume. We use 329 live-days of data from IceCube operating in its 86-string configuration during 2011–2012. No neutrino excess is found, the final result being compatible with the background-only hypothesis. From this null result, we derive upper limits on the velocity-averaged self-annihilation cross-section, < σ A v > , formore » dark matter candidate masses ranging from 30 GeV up to 10 TeV, assuming both a cuspy and a flat-cored dark matter halo profile. For dark matter masses between 200 GeV and 10 TeV, the results improve on all previous IceCube results on < σ A v > , reaching a level of 10 - 23 cm 3 s - 1 , depending on the annihilation channel assumed, for a cusped NFW profile. The analysis demonstrates that all-flavour searches are competitive with muon channel searches despite the intrinsically worse angular resolution of cascades compared to muon tracks in IceCube.« less
2014-02-11
ISS038-E-044887 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station as it deploys a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.
2014-02-11
ISS038-E-044889 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station as it deploys a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.
2014-02-11
ISS038-E-044890 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station as it deploys a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.
Intercomparison of General Circulation Models for Hot Extrasolar Planet Atmospheres
NASA Astrophysics Data System (ADS)
Cho, James
2013-11-01
In this collaborative work with I. Polichtchouk, C. Watkins, H. Th. Thrastarson, O. M. Umurhan, and M. de la Torre-Juárez, we compare five general circulation models (GCMs) which have been recently used to study hot extrasolar planet atmospheres (BOB, CAM, IGCM, MITgcm, and PEQMOD), under three test cases useful for assessing model convergence and accuracy. Such a broad, detailed intercomparison has not been performed thus far for extrasolar planets study. The models considered all solve the traditional primitive equations, but employ different numerical algorithms or grids (e.g., pseudospectral and finite volume, with the latter separately in longitude-latitude and ``cubed-sphere'' grids). The test cases are chosen to cleanly address specific aspects of the behaviors typically reported in hot extrasolar planet simulations: 1) steady-state, 2) nonlinearly evolving baroclinic wave, and 3) response to fast timescale thermal relaxation. When initialized with a steady jet, all models maintain the steadiness, as they should--except MITgcm in cubed-sphere grid. A very good agreement is obtained for a baroclinic wave evolving from an initial instability in spectral models (only). However, exact numerical convergence is still not achieved across the spectral models: amplitudes and phases are observably different. When subject to a typical ``hot-Jupiter''-like forcing, all five models show quantitatively different behavior--although qualitatively similar, time-variable, quadrupole-dominated flows are produced. Hence, as have been advocated in several past studies, specific quantitative predictions (such as the location of large vortices and hot regions) by GCMs should be viewed with caution. Overall, in the tests considered here, spectral models in pressure coordinate (PEBOB and PEQMOD) perform the best and MITgcm in cubed-sphere grid performs the worst. This work has been supported by the Science and Technology Facilities Council, Westfield Small Grant, NASA Postdoctoral Program, and Institute for Theory and Computation, Harvard College Observatory.
CubeSub - A CubeSat Based Submersible Testbed for Space Technology
NASA Technical Reports Server (NTRS)
Slettebo, Christian
2016-01-01
This report is a Master's Thesis in Aerospace Engineering, performed at the NASA Ames Research Center. It describes the development of the CubeSub, a submersible testbed compatible with the CubeSat form factor. The CubeSub will be used to mature technology and operational procedures to be used in space exploration, and possibly also as a tool for exploration of Earthly environments. CubeSats are carried as payloads, either containing technology to be tested or experiments and sensors for scientific use. The CubeSub is designed to be built up by modules, which can be assembled in different configurations to fulfill different needs. Each module is powered individually and intermodular communication is wireless, reducing the need for wiring. The inside of the hull is flooded with ambient water to simplify the interaction between payloads and surrounding environment. The overall shape is similar to that of a conventional AUV, slender and smooth. This is to make for a low drag, reduce the risk of snagging on surrounding objects and make it possible to deploy through an ice sheet via a narrow borehole. Rapid prototyping is utilized to a large extent, with full-scale prototypes being constructed through 3D-printing and with COTS (Commercial Off-The-Shelf) components. Arduino boards are used for control and internal communication. Modules required for basic operation have been designed, manufactured and tested. Each module is described with regards to its function, design and manufacturability. By performing tests in a pool it was found that the basic concept is sound and that future improvements include better controllability, course stability and waterproofing of electrical components. Further development is needed to make the CubeSub usable for its intended purposes. The largest gains are expected to be found by developing the software and improving controllability.
Expanding CubeSat Capabilities with a Low Cost Transceiver
NASA Technical Reports Server (NTRS)
Palo, Scott; O'Connor, Darren; DeVito, Elizabeth; Kohnert, Rick; Schaire, Scott H.; Bundick, Steve; Crum, Gary; Altunc, Serhat; Winkert, Thomas
2014-01-01
CubeSats have developed rapidly over the past decade with the advent of a containerized deployer system and ever increasing launch opportunities. These satellites have moved from an educational tool to teach students about engineering challenges associated with satellite design, to systems that are conducting cutting edge earth, space and solar science. Early variants of the CubeSat had limited functionality and lacked sophisticated attitude control, deployable solar arrays and propulsion. This is no longer the case and as CubeSats mature, such systems are becoming commercially available. The result is a small satellite with sufficient power and pointing capabilities to support a high rate communication system. Communications systems have matured along with other CubeSat subsystems. Originally developed from amateur radio systems, CubeSats have generally operated in the VHF and UHF bands at data rates below 10 kbps (kilobits per second). More recently higher rate UHF systems have been developed, however these systems require a large collecting area on the ground to close the communications link at 3 Mbps (megabits per second). Efforts to develop systems that operate with similar throughput at S-Band (2-4 GHz (gigaherz)) and C-Band (4-8 GHz (gigaherz)) have also recently evolved. In this paper we outline an effort to develop a high rate CubeSat communication system that is compatible with the NASA Near Earth Network and can be accommodated by a CubeSat. The system will include a 200 kbps (kilobits per second) S-Band receiver and a 12.5 Mbps (megabits per second).X-Band transmitter. This paper will focus on our design approach and initial results associated with the 12.5 Mbps (megabits per second) X-band transmitter.
Yoshida, Eiji; Tashima, Hideaki; Inadama, Naoko; Nishikido, Fumihiko; Moriya, Takahiro; Omura, Tomohide; Watanabe, Mitsuo; Murayama, Hideo; Yamaya, Taiga
2013-01-01
The X'tal cube is a depth-of-interaction (DOI)-PET detector which is aimed at obtaining isotropic resolution by effective readout of scintillation photons from the six sides of a crystal block. The X'tal cube is composed of the 3D crystal block with isotropic resolution and arrays of multi-pixel photon counters (MPPCs). In this study, to fabricate the 3D crystal block efficiently and precisely, we applied a sub-surface laser engraving (SSLE) technique to a monolithic crystal block instead of gluing segmented small crystals. The SSLE technique provided micro-crack walls which carve a groove into a monolithic scintillator block. Using the fabricated X'tal cube, we evaluated its intrinsic spatial resolution to show a proof of concept of isotropic resolution. The 3D grids of 2 mm pitch were fabricated into an 18 × 18 × 18 mm(3) monolithic lutetium yttrium orthosilicate (LYSO) crystal by the SSLE technique. 4 × 4 MPPCs were optically coupled to each surface of the crystal block. The X'tal cube was uniformly irradiated by (22)Na gamma rays, and all of the 3D grids on the 3D position histogram were separated clearly by an Anger-type calculation from the 96-channel MPPC signals. Response functions of the X'tal cube were measured by scanning with a (22)Na point source. The gamma-ray beam with a 1.0 mm slit was scanned in 0.25 mm steps by positioning of the X'tal cube at vertical and 45° incident angles. The average FWHM resolution at both incident angles was 2.1 mm. Therefore, we confirmed the isotropic spatial resolution performance of the X'tal cube.
Print-and-play: a new paradigm for the nearly-instant aerospace system
NASA Astrophysics Data System (ADS)
Church, Kenneth H.; Newton, C. Michael; Marsh, Albert J.; MacDonald, Eric W.; Soto, Cassandra D.; Lyke, James C.
2010-04-01
Nanosatellites, in particular the sub-class of CubeSATs, will provide an ability to place multiple small satellites in space more efficiently than larger satellites, with the eventual expectation that they will compete against some of the roles played by traditional large satellites that are expensive to launch. In order to do this, it is necessary to decrease the weight and volume without decreasing the capabilities. At the same time, it is desirable to create systems extremely rapidly, less than a week from concept to orbit. The Air Force has been working on a concept termed "CubeFlow" which will be a web-based design flow for rapidly constructible CubeSAT systems. In CubeFlow, distributed suppliers create offerings (modules, software functions, for satellite bus and payloads) meeting standard size and interface specifications, which are registered as a living catalog to a design community within the web-based CubeFlow environment. The idea of allowing any interested parties to make circuits and sensors that simply and compatibly connect to a modular satellite carrier is going to change how satellites are developed and launched, promoting creative exploitation and reduced development time and costs. We extend the power of the CubeFlow framework by a concept we call "print-and-play." "Print-and-play" enriches the CubeFlow concept dramatically. Whereas the CubeFlow system is oriented to the brokering of pre-created offerings from a "plug-and-play" vendor community, the idea of "print-andplay" allows similar offerings to be created "from scratch," using web-based plug-ins to capture design requirements, which are communicated to rapid prototyping tools.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, F. Sloan; Kuhl, Kendra P.; Nilsson, Anders
The activity and selectivity for CO 2/CO reduction over copper electrodes is strongly dependent on the local surface structure of the catalyst and the pH of the electrolyte. Here we investigate a unique, copper nanocube surface (CuCube) as a CO reduction electrode under neutral and basic pH, using online electrochemical mass spectroscopy (OLEMS) to determine the onset potentials and relative intensities of methane and ethylene production. To relate the unique selectivity to the surface structure, the CuCube surface reactivity is compared to polycrystalline copper and three single crystals under the same reaction conditions. Here, we find that the high selectivitymore » for ethylene over the CuCube surface is most comparable to the Cu(100) surface, which has the cubic unit cell. However, the suppression of methane production over CuCube is unique to that particular surface. Basic pH is also shown to enhance ethylene selectivity on all surfaces, again with the CuCube surface being unique.« less
Pulsed Plasma Propulsion - Making CubeSat Missions Beyond Low Earth Orbit Possible
NASA Astrophysics Data System (ADS)
Northway, P.
2015-12-01
As CubeSat missions become more and more popular means of scientific exploration of space, the current direction of interest is to utilize them in areas beyond low earth orbit. The University of Washington CubeSat program focuses on examining possible mission scenarios in addition to technology development and integration. Specifically, we are developing an inert CubeSat propulsion system in the form of a pulsed plasma thruster (PPT) capable of orbit maneuvers. Such a system would allow for missions at the Earth beyond LEO, extended missions at the Moon, and even missions at Europa, when assisted to the Jovian system. We will discuss how starting with a CubeSat design using PPTs for orbital maneuvers, other developing compact technology can be adapted to create a full suite of systems that would meet the requirements for a mission traveling outside low earth orbit.
NASA Astrophysics Data System (ADS)
Vannitsen, J.; Segret, B.; Miau, J. J.; Juang, J.-C.
2013-09-01
In order to prepare the Human Mission to Mars, few aspects of the mission still have to be known. During a transit to the Red Planet, future crews will be exposed to potentially hazardous radiations [1]. By using a CubeSat, we can then have a relatively cheap and easy way to improve the radiations environment knowledge for a Mars manned mission. A 1 Unit CubeSat is a type of miniaturized satellite for space research that usually has a volume of exactly one litre (10 cm cube), has a mass of no more than 1.33 kilograms and typically uses commercial off-the-shelf components for its electronics [2]. In this project, it is planned to use a 3 Unit CubeSat having the following dimensions: 10 cm x 10 cm x 30 cm and a maximum mass of 4kg.
The IceCube Neutrino Observatory: instrumentation and online systems
NASA Astrophysics Data System (ADS)
Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Argüelles, C.; Auer, R.; Auffenberg, J.; Axani, S.; Baccus, J.; Bai, X.; Barnet, S.; Barwick, S. W.; Baum, V.; Bay, R.; Beattie, K.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Bendfelt, T.; BenZvi, S.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blot, S.; Boersma, D.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Bouchta, A.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Bron, S.; Burgman, A.; Burreson, C.; Carver, T.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Descamps, F.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Edwards, W. R.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Franckowiak, A.; Frère, M.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Gladstone, L.; Glauch, T.; Glowacki, D.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Gustafsson, L.; Haack, C.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, T.; Hanson, K.; Haugen, J.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Heller, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hoshina, K.; Huang, F.; Huber, M.; Hulth, P. O.; Hultqvist, K.; In, S.; Inaba, M.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, A.; Jones, B. J. P.; Joseph, J.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kitamura, N.; Kittler, T.; Klein, S. R.; Kleinfelder, S.; Kleist, M.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Laundrie, A.; Lennarz, D.; Leich, H.; Lesiak-Bzdak, M.; Leuermann, M.; Lu, L.; Ludwig, J.; Lünemann, J.; Mackenzie, C.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H.; Maunu, R.; McNally, F.; McParland, C. P.; Meade, P.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Minor, R. H.; Montaruli, T.; Moulai, M.; Murray, T.; Nahnhauer, R.; Naumann, U.; Neer, G.; Newcomb, M.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Patton, S.; Peiffer, P.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pettersen, C.; Pieloth, D.; Pinat, E.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rongen, M.; Roucelle, C.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sabbatini, L.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sandstrom, P.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schukraft, A.; Schumacher, L.; Seckel, D.; Seunarine, S.; Solarz, M.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sulanke, K.-H.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Thollander, L.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Vehring, M.; Voge, M.; Vogel, E.; Vraeghe, M.; Wahl, D.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Weiss, M. J.; Wendt, C.; Westerhoff, S.; Wharton, D.; Whelan, B. J.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wisniewski, P.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.
2017-03-01
The IceCube Neutrino Observatory is a cubic-kilometer-scale high-energy neutrino detector built into the ice at the South Pole. Construction of IceCube, the largest neutrino detector built to date, was completed in 2011 and enabled the discovery of high-energy astrophysical neutrinos. We describe here the design, production, and calibration of the IceCube digital optical module (DOM), the cable systems, computing hardware, and our methodology for drilling and deployment. We also describe the online triggering and data filtering systems that select candidate neutrino and cosmic ray events for analysis. Due to a rigorous pre-deployment protocol, 98.4% of the DOMs in the deep ice are operating and collecting data. IceCube routinely achieves a detector uptime of 99% by emphasizing software stability and monitoring. Detector operations have been stable since construction was completed, and the detector is expected to operate at least until the end of the next decade.
VizieR Online Data Catalog: Jekyll & Hyde galaxies ALMA cube & spectrum (Schreiber+, 2018)
NASA Astrophysics Data System (ADS)
Schreiber, C.; Labbe, I.; Glazebrook, K.; Bekiaris, G.; Papovich, C.; Costa, T.; Elbaz, D.; Kacprzak, G. G.; Nanayakkara, T.; Oesch, P.; Pannella, M.; Spitler, L.; Straatman, C.; Tran, K.-V.; Wang, T.
2017-11-01
These files consist of the full ALMA data cube for the galaxies Jekyll and Hyde, together with the extracted continuum image and the spectrum of Hyde. The data cube was produced by CASA (v4.7.0), the continuum image was constructed as the weighted average in line-free channels, and the spectrum was extracted at the peak flux position of Hyde. The data cube and spectrum files contain two extensions, one for the flux, and another for the uncertainty. This uncertainty was determined from the RMS of the cube data between 2 and 8" away from the center. All fluxes are in units of Jansky, and the spectral axis is given in observed frequency (GHz). The images were not CLEANed, therefore the dirty beam (which is also provided here) is the correct point-spread function to use when analyzing these images. (2 data files).
2014-02-11
ISS038-E-044883 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station as it begins the deployment of a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.
2014-02-11
ISS038-E-044994 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station prior to the deployment of a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.
Everyday Engineering: Should Ice Be Cubed?
ERIC Educational Resources Information Center
Moyer, Richard H.; Everett, Susan A.
2012-01-01
While ice is usually referred to as ice cubes, indeed, most are not really cubes at all. In this 5E learning-cycle lesson, students will investigate different shapes of ice and how shape affects the speed of melting and the rate of cooling a glass of water. Students will compare three different shapes of ice with the same volume but different…
Creating Cube Nets by Using Educational Tools in Pre-School
ERIC Educational Resources Information Center
Shiakalli, Maria Angela; Zacharos, Konstantinos; Markopoulos, Christos
2015-01-01
Our research programme, a part of which is presented in this paper, looked at four year old children's ability to use manipulatives in the construction of cube models. We looked at how pre-school children managed the creation of cube nets as a mathematical problem and whether graphical representations of solutions could become a useful tool in a…
NPS CubeSat Launcher Program Management
2009-09-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited NPS CUBESAT LAUNCHER ...CubeSat Launcher Program Management 6. AUTHOR(S) Christina M. Hicks 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...article in support of the NPS CubeSat Launcher (NPSCuL) project. This thesis will describe the process, experience, and results of managing the NPSCuL
From AMANDA to IceCube: Neutrino Astronomy at the South Pole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filimonov, Kirill
2006-11-17
AMANDA at the South Pole has been the world's largest high-energy neutrino telescope. It is now an integral part of the IceCube neutrino observatory presently under construction at the same location. A summary of the recent results from AMANDA is presented and a report on the first two construction seasons of the IceCube telescope is given.
Why Is the Tetrahedral Bond Angle 109 Degrees? The Tetrahedron-in-a-Cube
ERIC Educational Resources Information Center
Lim, Kieran F.
2012-01-01
The common question of why the tetrahedral angle is 109.471 degrees can be answered using a tetrahedron-in-a-cube, along with some Year 10 level mathematics. The tetrahedron-in-a-cube can also be used to demonstrate the non-polarity of tetrahedral molecules, the relationship between different types of lattice structures, and to demonstrate that…
Nanosatellite Launch Adapter System (NLAS)
NASA Technical Reports Server (NTRS)
Chartres, James; Cappuccio, Gelsomina
2015-01-01
The Nanosatellite Launch Adapter System (NLAS) was developed to increase access to space while simplifying the integration process of miniature satellites, called nanosats or CubeSats, onto launch vehicles. A standard CubeSat measures about 10 cm square, and is referred to as a 1-unit (1U) CubeSat. A single NLAS provides the capability to deploy 24U of CubeSats. The system is designed to accommodate satellites measuring 1U, 1.5U, 2U, 3U and 6U sizes for deployment into orbit. The NLAS may be configured for use on different launch vehicles. The system also enables flight demonstrations of new technologies in the space environment.
VizieR Online Data Catalog: Faraday tomography of foreground towards IC342 (Van Eck+, 2017)
NASA Astrophysics Data System (ADS)
van Eck, C. L.; Haverkorn, M.; Alves, M. I. R.; Beck, R.; de Bruyn, A. G.; Ensslin, T.; Farnes, J. S.; Ferriere, K.; Heald, G.; Horellou, C.; Horneffer, A.; Iacobelli, M.; Jelic, V.; Marti-Vidal, I.; Mulcahy, D. D.; Reich, W.; Rottgering, H. J. A.; Scaife, A. M. M.; Schnitzeler, D. H. F. M.; Sobey, C.; Sridhar, S. S.
2016-11-01
The Faraday depth cube of the IC342 field in polarized intensity, produced from LOFAR HBA observations as part of LOFAR proposal LC0_043. The cube is approximately 5x5 degrees in size, with 4-arcmin resolution, and covers Faraday depths from -25 to +25rad/m2. The detailed specifications are given in the table and in the FITS header. Selected frames from this cubes are shown in the paper in Figures 2 through 5. An extended description of the data processing leading to this cube is included in the paper. (2 data files).
Yan, Wei-qiang; Zhang, Min; Huang, Lue-lue; Tang, Juming; Mujumdar, Arun S; Sun, Jin-cai
2010-06-01
In commercial deep-fat frying of potato chips, the oil content of the final products ranges from 35 to 45 g 100 g(-1) (wet basis). High-temperature frying may cause the formation of acrylamide, making the products unhealthy to the consumer. The aim of this research was to explore a new method, spouted bed microwave drying, to produce healthier puffed snack potato cubes as possible alternatives to oil-fried potato chips. The influence of drying conditions of the spouted bed microwave drying on puffing characteristics of potato cubes were studied and compared with the direct microwave and hot air drying method. Tandem combination drying of microwave-enhanced spouted bed drying (MWSB) could achieve a good expansion ratio, breaking force and rehydration ratio. The puffing characteristics of potato cubes were significantly affected (P < 0.05) by moisture content before starting microwave power in spouted bed microwave drying, by microwave (MW) power, and by the original size of potato cubes. The optimum processing parameters were the moisture content at the start of microwave power (60%), the size of potato cubes (10-12 mm), and microwave power (2-2.5 W g(-1)) Copyright (c) 2010 Society of Chemical Industry.
Relativistic theory of the falling retroreflector gravimeter
NASA Astrophysics Data System (ADS)
Ashby, Neil
2018-02-01
We develop a relativistic treatment of interference between light reflected from a falling cube retroreflector in the vertical arm of an interferometer, and light in a reference beam in the horizontal arm. Coordinates that are nearly Minkowskian, attached to the falling cube, are used to describe the propagation of light within the cube. Relativistic effects such as the dependence of the coordinate speed of light on gravitational potential, propagation of light along null geodesics, relativity of simultaneity, and Lorentz contraction of the moving cube, are accounted for. The calculation is carried to first order in the gradient of the acceleration of gravity. Analysis of data from a falling cube gravimeter shows that the propagation time of light within the cube itself causes a significant reduction in the value of the acceleration of gravity obtained from measurements, compared to assuming reflection occurs at the face. An expression for the correction to g is derived and found to agree with experiment. Depending on the instrument, the correction can be several microgals, comparable to commonly applied corrections such as those due to polar motion and earth tides. The controversial ‘speed of light’ correction is discussed. Work of the US government, not subject to copyright.
NASA Astrophysics Data System (ADS)
Song, Young-Joo; Ho, Jin; Kim, Bang-Yeop
2015-09-01
Characteristics of delta-V requirements for deploying an impactor from a mother-ship at different orbital altitudes are analyzed in order to prepare for a future lunar CubeSat impactor mission. A mother-ship is assumed to be orbiting the moon with a circular orbit at a 90 deg inclination and having 50, 100, 150, 200 km altitudes. Critical design parameters that are directly related to the success of the impactor mission are also analyzed including deploy directions, CubeSat flight time, impact velocity, and associated impact angles. Based on derived delta-V requirements, required thruster burn time and fuel mass are analyzed by adapting four different miniaturized commercial onboard thrusters currently developed for CubeSat applications. As a result, CubeSat impact trajectories as well as thruster burn characteristics deployed at different orbital altitudes are found to satisfy the mission objectives. It is concluded that thrust burn time should considered as the more critical design parameter than the required fuel mass when deducing the onboard propulsion system requirements. Results provided through this work will be helpful in further detailed system definition and design activities for future lunar missions with a CubeSat-based payload.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mertsch, Philipp; Rameez, Mohamed; Tamborra, Irene, E-mail: mertsch@nbi.ku.dk, E-mail: mohamed.rameez@nbi.ku.dk, E-mail: tamborra@nbi.ku.dk
Constraints on the number and luminosity of the sources of the cosmic neutrinos detected by IceCube have been set by targeted searches for point sources. We set complementary constraints by using the 2MASS Redshift Survey (2MRS) catalogue, which maps the matter distribution of the local Universe. Assuming that the distribution of the neutrino sources follows that of matter, we look for correlations between ''warm'' spots on the IceCube skymap and the 2MRS matter distribution. Through Monte Carlo simulations of the expected number of neutrino multiplets and careful modelling of the detector performance (including that of IceCube-Gen2), we demonstrate that sourcesmore » with local density exceeding 10{sup −6} Mpc{sup −3} and neutrino luminosity L {sub ν} ∼< 10{sup 42} erg s{sup −1} (10{sup 41} erg s{sup −1}) will be efficiently revealed by our method using IceCube (IceCube-Gen2). At low luminosities such as will be probed by IceCube-Gen2, the sensitivity of this analysis is superior to requiring statistically significant direct observation of a point source.« less
Moving Towards a Science-Driven Workbench for Earth Science Solutions
NASA Astrophysics Data System (ADS)
Graves, S. J.; Djorgovski, S. G.; Law, E.; Yang, C. P.; Keiser, K.
2017-12-01
The NSF-funded EarthCube Integration and Test Environment (ECITE) prototype was proposed as a 2015 Integrated Activities project and resulted in the prototyping of an EarthCube federated cloud environment and the Integration and Testing Framework. The ECITE team has worked with EarthCube science and technology governance committees to define the types of integration, testing and evaluation necessary to achieve and demonstrate interoperability and functionality that benefit and support the objectives of the EarthCube cyber-infrastructure. The scope of ECITE also includes reaching beyond NSF and EarthCube to work with the broader Earth science community, such as the Earth Science Information Partners (ESIP) to incorporate lessons learned from other testbed activities, and ultimately provide broader community benefits. This presentation will discuss evolving ECITE ideas for a science-driven workbench that will start with documented science use cases, map the use cases to solution scenarios that identify the available technology and data resources that match the use case, the generation of solution workflows and test plans, the testing and evaluation of the solutions in a cloud environment, and finally the documentation of identified technology and data gaps that will assist with driving the development of additional EarthCube resources.
Development of a Solar Array Drive Assembly for CubeSat
NASA Technical Reports Server (NTRS)
Passaretti, Mike; Hayes, Ron
2010-01-01
Small satellites and in particular CubeSats, have increasingly become more viable as platforms for payloads typically requiring much larger bus structures. As advances in technology make payloads and instruments for space missions smaller, lighter and more power efficient, a niche market is emerging from the university community to perform rapidly developed, low-cost missions on very small spacecraft - micro, nano, and picosatellites. In just the last few years, imaging, biological and new technology demonstration missions have been either proposed or have flown using variations of the CubeSat structure as a basis. As these missions have become more complex, and the CubeSat standard has increased in both size (number of cubes) and mass, available power has become an issue. Body-mounted solar cells provide a minimal amount of power; deployable arrays improve on that baseline but are still limited. To truly achieve maximum power, deployed tracked arrays are necessary. To this end, Honeybee Robotics Spacecraft Mechanisms Corporation, along with MMA of Nederland Colorado, has developed a solar array drive assembly (SADA) and deployable solar arrays specifically for CubeSat missions. In this paper, we discuss the development of the SADA.
RaInCube: a proposed constellation of precipitation profiling Radars In Cubesat
NASA Astrophysics Data System (ADS)
Peral, E.; Tanelli, S.; Haddad, Z. S.; Stephens, G. L.; Im, E.
2014-12-01
Precipitation radars in Low-Earth-Orbit provide vertically resolved profiles of rain and snow on a global scale. With the recent advances in miniaturized radar and CubeSat/SmallSat technologies, it would now be feasible to launch multiple copies of the same radar instrument in desirable formations to allow measurements of short time scale evolution of atmospheric processes. One such concept is the novel radar architecture compatible with the 6U CubeSat class that is being developed at JPL by exploiting simplification and miniaturization of the radar subsystems. The RaInCube architecture would significantly reduce the number of components, power consumption and mass with respect to existing spaceborne radars. The baseline RaInCube instrument configuration would be a fixed nadir-pointing profiler at Ka-band with a minimum detectable reflectivity better than +10 dBZ at 250m range resolution and 5 km horizontal resolution. The low cost nature of the RaInCube platform would enable deployment of a constellation of identical copies of the same instrument in various relative positions in LEO to address specific observational gaps left open by the current missions that require high-resolution vertical profiling capability. A constellation of only four RaInCubes would populate the precipitation statistics in a distributed fashion across the globe and across the times of day, and therefore, would enable substantially better sampling of the diurnal cycle statistics. One could extend this scheme by adding more RaInCubes in each of the orbital planes, and phase them once in orbit so that they would be separated by an arbitrary amount of time among them. Wide separations (say 20-30 min) would further extend the sampling of the diurnal cycle to sub-hourly scales. Narrower time separations between RaInCubes would allow studying the evolution of convective systems at the convective time scale in each region of interest and would reveal the dominant modes of evolution of each corresponding climatological regime. A constellation of RaInCubes would also be a natural complement to other resources aiming at monitoring the evolution of weather systems, for example the Geostationary IR/VIS imagers, the NEXRAD network, and the GPM constellation.
NASA Astrophysics Data System (ADS)
Cheng, Wai-Chi; Porté-Agel, Fernando
2015-05-01
Large-eddy simulations (LES) are performed to simulate the atmospheric boundary-layer (ABL) flow through idealized urban canopies represented by uniform arrays of cubes in order to better understand atmospheric flow over rural-to-urban surface transitions. The LES framework is first validated with wind-tunnel experimental data. Good agreement between the simulation results and the experimental data are found for the vertical and spanwise profiles of the mean velocities and velocity standard deviations at different streamwise locations. Next, the model is used to simulate ABL flows over surface transitions from a flat homogeneous terrain to aligned and staggered arrays of cubes with height . For both configurations, five different frontal area densities , equal to 0.028, 0.063, 0.111, 0.174 and 0.250, are considered. Within the arrays, the flow is found to adjust quickly and shows similar structure to the wake of the cubes after the second row of cubes. An internal boundary layer is identified above the cube arrays and found to have a similar depth in all different cases. At a downstream location where the flow immediately above the cube array is already adjusted to the surface, the spatially-averaged velocity is found to have a logarithmic profile in the vertical. The values of the displacement height are found to be quite insensitive to the canopy layout (aligned vs. staggered) and increase roughly from to as increases from 0.028 to 0.25. Relatively larger values of the aerodynamic roughness length are obtained for the staggered arrays, compared with the aligned cases, and a maximum value of is found at for both configurations. By explicitly calculating the drag exerted by the cubes on the flow and the drag coefficients of the cubes using our LES results, and comparing the results with existing theoretical expressions, we show that the larger values of for the staggered arrays are related to the relatively larger drag coefficients of the cubes for that configuration compared with the aligned one. The effective mixing length within and above different cube arrays is also calculated and a local maximum of within the canopy is found in all the cases, with values ranging from to . These patterns of are different from those used in existing urban canopy models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
IceCube Collaboration; Ackermann, M.
2007-11-02
This paper bundles 40 contributions by the IceCube collaboration that were submitted to the 30th International Cosmic Ray Conference ICRC 2007. The articles cover studies on cosmic rays and atmospheric neutrinos, searches for non-localized, extraterrestrial {nu}{sub e}, {nu}{sub {mu}} and {nu}{sub {tau}} signals, scans for steady and intermittent neutrino point sources, searches for dark matter candidates, magnetic monopoles and other exotic particles, improvements in analysis techniques, as well as future detector extensions. The IceCube observatory will be finalized in 2011 to form a cubic-kilometer ice-Cherenkov detector at the location of the geographic South Pole. At the present state of construction,more » IceCube consists of 52 paired IceTop surface tanks and 22 IceCube strings with a total of 1426 Digital Optical Modules deployed at depths up to 2350 m. The observatory also integrates the 19 string AMANDA subdetector, that was completed in 2000 and extends IceCube's reach to lower energies. Before the deployment of IceTop, cosmic air showers were registered with the 30 station SPASE-2 surface array. IceCube's low noise Digital Optical Modules are very reliable, show a uniform response and record waveforms of arriving photons that are resolvable with nanosecond precision over a large dynamic range. Data acquisition, reconstruction and simulation software are running in production mode and the analyses, profiting from the improved data quality and increased overall sensitivity, are well under way.« less
2018-04-10
A host of CubeSats, or small satellites, are undergoing the final stages of processing at Rocket Lab USA’s facility in Huntington Beach, California, for NASA’s first mission dedicated solely to spacecraft of their size. This will be the first launch under the agency’s new Venture Class Launch Services. Scientists, including those from NASA and various universities, began arriving at the facility in early April with spacecraft small enough to be a carry-on to be prepared for launch. A team from NASA’s Goddard Spaceflight Center in Greenbelt, Maryland, completed final checkouts of a CubeSat called the Compact Radiation Belt Explorer (CeREs), before placing the satellite into a dispenser to hold the spacecraft during launch inside the payload fairing. Among its missions, the satellite will examine the radiation belt and how electrons are energized and lost, particularly during events called microbursts — when sudden swarms of electrons stream into the atmosphere. This facility is the final stop for designers and builders of the CubeSats, but the journey will continue for the spacecraft. Rocket Lab will soon ship the satellites to New Zealand for launch aboard the company’s Electron orbital rocket on the Mahia Peninsula this summer. The CubeSats will be flown on an Educational Launch of Nanosatellites (ELaNa) mission to space through NASA’s CubeSat Launch Initiative. CeREs is one of the 10 ELaNa CubeSats scheduled to be a part of this mission.
Botondi, Rinaldo; Moscetti, Roberto; Massantini, Riccardo
2016-05-01
Ozonated water and peracetic acid were tested as sanitizers to enhance the storability of fresh-cut melon cubes. Sanitizers were also combined with suitable packaging materials (polypropylene and polylactic acid based plastic films). Fresh-cut melon cubes were stored at 4 °C for up to 7 days. Ozonated water and peracetic acid treatments were given by dipping cubes into 0.8 ppm O3 and 100 ppm Tsunami 100™ solutions, respectively, for 3 min. Both sanitizers exhibited efficiency in reducing the total microbial counts on melon cubes (< 2 log CFU g(-1)). Respiratory activity and ethylene production were both affected by the interaction between the sanitizer and the packaging used. Carbon dioxide and oxygen reached 9.89 kPa and 12.20 kPa partial pressures, respectively, using peracetic acid treatment in combination with polypropylene film packaging, consequently developing off-odors starting from day 3. Strong color changes were noted in cubes stored in polylactic acid packaging after 7 days of storage, affecting the sensory quality of the melon cubes. Sensory evaluation (overall visual quality) indicated loss in flavor in the polypropylene packaging. The overall visual quality started to decline on 3rd day because of the development of translucency.Overall, the use of ozone in combination with polypropylene packaging provided the best solution to maintain the quality of melon cubes for up to 5 days of storage at 4 °C.
Tagliafico, A; Succio, G; Neumaier, C E; Baio, G; Serafini, G; Ghidara, M; Calabrese, M; Martinoli, C
2012-01-01
Objective The purpose of our study was to determine whether a three-dimensional (3D) isotropic resolution fast spin echo sequence (FSE-cube) has similar image quality and diagnostic performance to a routine MRI protocol for brachial plexus evaluation in volunteers and symptomatic patients at 3.0 T. Institutional review board approval and written informed consent were guaranteed. Methods In this prospective study FSE-cube was added to the standard brachial plexus examination protocol in eight patients (mean age, 50.2 years) with brachial plexus pathologies and in six volunteers (mean age, 54 years). Nerve visibility, tissue contrast, edge sharpness, image blurring, motion artefact and acquisition time were calculated for FSE-cube sequences and for the standard protocol on a standardised five-point scale. The visibility of brachial plexus nerve and surrounding tissues at four levels (roots, interscalene area, costoclavicular space and axillary level) was assessed. Results Image quality and nerve visibility did not significantly differ between FSE-cube and the standard protocol (p>0.05). Acquisition time was statistically and clinically significantly shorter with FSE-cube (p<0.05). Pathological findings were seen equally well with FSE-cube and the standard protocol. Conclusion 3D FSE-cube provided similar image quality in a shorter acquisition time and enabled excellent visualisation of brachial plexus anatomy and pathology in any orientation, regardless of the original scanning plane. PMID:21343321
SOSPEX, an interactive tool to explore SOFIA spectral cubes
NASA Astrophysics Data System (ADS)
Fadda, Dario; Chambers, Edward T.
2018-01-01
We present SOSPEX (SOFIA SPectral EXplorer), an interactive tool to visualize and analyze spectral cubes obtained with the FIFI-LS and GREAT instruments onboard the SOFIA Infrared Observatory. This software package is written in Python 3 and it is available either through Github or Anaconda.Through this GUI it is possible to explore directly the spectral cubes produced by the SOFIA pipeline and archived in the SOFIA Science Archive. Spectral cubes are visualized showing their spatial and spectral dimensions in two different windows. By selecting a part of the spectrum, the flux from the corresponding slice of the cube is visualized in the spatial window. On the other hand, it is possible to define apertures on the spatial window to show the corresponding spectral energy distribution in the spectral window.Flux isocontours can be overlapped to external images in the spatial window while line names, atmospheric transmission, or external spectra can be overplotted on the spectral window. Atmospheric models with specific parameters can be retrieved, compared to the spectra and applied to the uncorrected FIFI-LS cubes in the cases where the standard values give unsatisfactory results. Subcubes can be selected and saved as FITS files by cropping or cutting the original cubes. Lines and continuum can be fitted in the spectral window saving the results in Jyson files which can be reloaded later. Finally, in the case of spatially extended observations, it is possible to compute spectral momenta as a function of the position to obtain velocity dispersion maps or velocity diagrams.
NASA Technical Reports Server (NTRS)
Toomarian, N.; Fijany, A.; Barhen, J.
1993-01-01
Evolutionary partial differential equations are usually solved by decretization in time and space, and by applying a marching in time procedure to data and algorithms potentially parallelized in the spatial domain.
Embodied Spatial Transformations: "Body Analogy" for the Mental Rotation of Objects
ERIC Educational Resources Information Center
Amorim, Michel-Ange; Isableu, Brice; Jarraya, Mohamed
2006-01-01
The cognitive advantage of imagined spatial transformations of the human body over that of more unfamiliar objects (e.g., Shepard-Metzler [S-M] cubes) is an issue for validating motor theories of visual perception. In 6 experiments, the authors show that providing S-M cubes with body characteristics (e.g., by adding a head to S-M cubes to evoke a…
2014-02-14
ISS038-E-047232 (14 Feb. 2014) --- A set of NanoRacks CubeSats is photographed by an Expedition 38 crew member after the deployment by the NanoRacks Launcher attached to the end of the Japanese robotic arm. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing. International Space Station solar array panels provide the backdrop for the scene.
Vertical discretization with finite elements for a global hydrostatic model on the cubed sphere
NASA Astrophysics Data System (ADS)
Yi, Tae-Hyeong; Park, Ja-Rin
2017-06-01
A formulation of Galerkin finite element with basis-spline functions on a hybrid sigma-pressure coordinate is presented to discretize the vertical terms of global Eulerian hydrostatic equations employed in a numerical weather prediction system, which is horizontally discretized with high-order spectral elements on a cubed sphere grid. This replaces the vertical discretization of conventional central finite difference that is first-order accurate in non-uniform grids and causes numerical instability in advection-dominant flows. Therefore, a model remains in the framework of Galerkin finite elements for both the horizontal and vertical spatial terms. The basis-spline functions, obtained from the de-Boor algorithm, are employed to derive both the vertical derivative and integral operators, since Eulerian advection terms are involved. These operators are used to discretize the vertical terms of the prognostic and diagnostic equations. To verify the vertical discretization schemes and compare their performance, various two- and three-dimensional idealized cases and a hindcast case with full physics are performed in terms of accuracy and stability. It was shown that the vertical finite element with the cubic basis-spline function is more accurate and stable than that of the vertical finite difference, as indicated by faster residual convergence, fewer statistical errors, and reduction in computational mode. This leads to the general conclusion that the overall performance of a global hydrostatic model might be significantly improved with the vertical finite element.
NASA Astrophysics Data System (ADS)
Li, Zhengji; Teng, Qizhi; He, Xiaohai; Yue, Guihua; Wang, Zhengyong
2017-09-01
The parameter evaluation of reservoir rocks can help us to identify components and calculate the permeability and other parameters, and it plays an important role in the petroleum industry. Until now, computed tomography (CT) has remained an irreplaceable way to acquire the microstructure of reservoir rocks. During the evaluation and analysis, large samples and high-resolution images are required in order to obtain accurate results. Owing to the inherent limitations of CT, however, a large field of view results in low-resolution images, and high-resolution images entail a smaller field of view. Our method is a promising solution to these data collection limitations. In this study, a framework for sparse representation-based 3D volumetric super-resolution is proposed to enhance the resolution of 3D voxel images of reservoirs scanned with CT. A single reservoir structure and its downgraded model are divided into a large number of 3D cubes of voxel pairs and these cube pairs are used to calculate two overcomplete dictionaries and the sparse-representation coefficients in order to estimate the high frequency component. Future more, to better result, a new feature extract method with combine BM4D together with Laplacian filter are introduced. In addition, we conducted a visual evaluation of the method, and used the PSNR and FSIM to evaluate it qualitatively.
TEM in situ cube-corner indentation analysis using ViBe motion detection algorithm
NASA Astrophysics Data System (ADS)
Yano, K. H.; Thomas, S.; Swenson, M. J.; Lu, Y.; Wharry, J. P.
2018-04-01
Transmission electron microscopic (TEM) in situ mechanical testing is a promising method for understanding plasticity in shallow ion irradiated layers and other volume-limited materials. One of the simplest TEM in situ experiments is cube-corner indentation of a lamella, but the subsequent analysis and interpretation of the experiment is challenging, especially in engineering materials with complex microstructures. In this work, we: (a) develop MicroViBE, a motion detection and background subtraction-based post-processing approach, and (b) demonstrate the ability of MicroViBe, in combination with post-mortem TEM imaging, to carry out an unbiased qualitative interpretation of TEM indentation videos. We focus this work around a Fe-9%Cr oxide dispersion strengthened (ODS) alloy, irradiated with Fe2+ ions to 3 dpa at 500 °C. MicroViBe identifies changes in Laue contrast that are induced by the indentation; these changes accumulate throughout the mechanical loading to generate a "heatmap" of features in the original TEM video that change the most during the loading. Dislocation loops with b = ½ <111> identified by post-mortem scanning TEM (STEM) imaging correspond to hotspots on the heatmap, whereas positions of dislocation loops with b = <100> do not correspond to hotspots. Further, MicroViBe enables consistent, objective quantitative approximation of the b = ½ <111> dislocation loop number density.
The distribution of near-axis seamounts at intermediate spreading ridges
NASA Astrophysics Data System (ADS)
Howell, J. K.; Bohnenstiehl, D. R.; White, S. M.; Supak, S. K.
2008-12-01
The ridge axes along the intermediate-spreading rate Galapagos Spreading Center (GSC, 46-56 mm/yr) and South East Indian Ridge (SEIR, 72-76 mm/yr) vary from rifted axial valleys to inflated axial highs independent of spreading rate. The delivery and storage of melt is believed to control axial morphology, with axial highs typically observed in areas underlain by a shallow melt lens and axial valleys in areas without a significant melt lens [e.g., Baran et al., 2005 G-cubed; Detrick et al. 2002 G-cubed]. To investigate a possible correlation between the style of seafloor volcanism and axial morphology, a closed contour algorithm is used to identify near axis (2.5km off axis) semi-circular seamounts of heights greater than 20m from shipboard multibeam bathymetry. In areas characterized by an axial high, more seamounts are formed at the ends of the segments than in the center. This is consistent with observations at fast-spreading ridges and suggests a tendency of lavas to erupt at lower effusion rates near second-order segment boundaries. Segments with a rift valley along the GSC show the opposite trend, with more seamounts at the center of second-order segments. Both patterns however are observed along SEIR segments with rift valleys where magma supply may be reflected in size and not their abundance.
Semi-automatic sparse preconditioners for high-order finite element methods on non-uniform meshes
NASA Astrophysics Data System (ADS)
Austin, Travis M.; Brezina, Marian; Jamroz, Ben; Jhurani, Chetan; Manteuffel, Thomas A.; Ruge, John
2012-05-01
High-order finite elements often have a higher accuracy per degree of freedom than the classical low-order finite elements. However, in the context of implicit time-stepping methods, high-order finite elements present challenges to the construction of efficient simulations due to the high cost of inverting the denser finite element matrix. There are many cases where simulations are limited by the memory required to store the matrix and/or the algorithmic components of the linear solver. We are particularly interested in preconditioned Krylov methods for linear systems generated by discretization of elliptic partial differential equations with high-order finite elements. Using a preconditioner like Algebraic Multigrid can be costly in terms of memory due to the need to store matrix information at the various levels. We present a novel method for defining a preconditioner for systems generated by high-order finite elements that is based on a much sparser system than the original high-order finite element system. We investigate the performance for non-uniform meshes on a cube and a cubed sphere mesh, showing that the sparser preconditioner is more efficient and uses significantly less memory. Finally, we explore new methods to construct the sparse preconditioner and examine their effectiveness for non-uniform meshes. We compare results to a direct use of Algebraic Multigrid as a preconditioner and to a two-level additive Schwarz method.
NASA Astrophysics Data System (ADS)
Nittler, L. R.; Hong, J.; Kenter, A.; Romaine, S.; Allen, B.; Kraft, R.; Masterson, R.; Elvis, M.; Gendreau, K.; Crawford, I.; Binzel, R.; Boynton, W. V.; Grindlay, J.; Ramsey, B.
2017-12-01
The surface elemental composition of a planetary body provides crucial information about its origin, geological evolution, and surface processing, all of which can in turn provide information about solar system evolution as a whole. Remote sensing X-ray fluorescence (XRF) spectroscopy has been used successfully to probe the major-element compositions of airless bodies in the inner solar system, including the Moon, near-Earth asteroids, and Mercury. The CubeSAT X-ray Telescope (CubeX) is a concept for a 6U planetary X-ray telescope (36U with S/C), which utilizes Miniature Wolter-I X-ray optics (MiXO), monolithic CMOS and SDD X-ray sensors for the focal plane, and a Solar X-ray Monitor (heritage from the REXIS XRF instrument on NASA's OSIRIS-REx mission). CubeX will map the surface elemental composition of diverse airless bodies by spectral measurement of XRF excited by solar X-rays. The lightweight ( 1 kg) MiXO optics provide sub-arcminute resolution with low background, while the inherently rad-hard CMOS detectors provide improved spectral resolution ( 150 eV) at 0 °C. CubeX will also demonstrate X-ray pulsar timing based deep space navigation (XNAV). Successful XNAV will enable autonomous deep navigation with little to no support from the Deep Space Network, hence lowering the operation cost for many more planetary missions. Recently selected by NASA Planetary Science Deep Space SmallSat Studies, the first CubeX concept, designed to rideshare to the Moon as a secondary spacecraft on a primary mission, is under study in collaboration with the Mission Design Center at NASA Ames Research Center. From high altitude ( 6,000 km) frozen polar circular orbits, CubeX will study > 8 regions ( 110 km) of geological interest on the Moon over one year to produce a high resolution ( 2-3 km) elemental abundance map of each region. The novel focal plane design of CubeX also allows us to evaluate the performance of absolute navigation by sequential observations of several millisecond pulsars without moving parts.
The QBito CubeSat: Applications in Space Engineering Education at Technical University of Madrid
NASA Astrophysics Data System (ADS)
Fernandez Fraile, Jose Javier; Laverón-Simavilla, Ana; Calvo, Daniel; Moreno Benavides, Efren
The QBito CubeSat is one of the 50 CubeSats that is being developed for the QB50 project. The project is funded by the 7 (th) Frame Program to launch 50 CubeSats in a ‘string-of-pearls’ configuration for multi-point, in-situ measurements in the lower thermosphere and re-entry research. The 50 CubeSats, developed by an international network of universities and research institutions, will comprise 40 double CubeSats with atmospheric sensors and 10 double or triple CubeSats for science and technology demonstration. It will be the first large-scale CubeSat constellation in orbit; a concept that has been under discussion for several years but not implemented up to now. This project has a high educational interest for universities; beyond the scientific and technological results, being part of an international group of over 90 universities all over the world working and sharing knowledge to achieve a successful mission represents an exciting opportunity. The QBito project main educational motivation is to educate students in space technologies and in space systems engineering. The Universidad Politécnica de Madrid (UPM) is designing, developing, building and testing one of the double CubeSats carrying as payload a kit of atmospheric sensors from the consortium, and other payloads developed by the team such as an IR non-refrigerated sensor, a Phase Change Material (PCM) for thermal control applications, a Fuzzy Logic Attitude Control System and other technological developments such as an optimized antenna deployment mechanism, a lightweight multi-mission configurable structure, and an efficient Electric Power System (EPS) with a Maximum Peak Power Tracker (MPPT). This project has been integrated in the training of the Aerospatiale Engineering, Master and PhD degree students by involving them in the complete engineering process, from its conceptual design to the post-flight conclusions. Three subsystems have been selected for being developed from the conceptual design stage to the flight device: structure, electrical power system and antenna deployment mechanism. In this work, the main characteristics adopted for structure are presented. The project has already provided very interesting lessons to all the people involved, not only students.
X-Band CubeSat Communication System Demonstration
NASA Technical Reports Server (NTRS)
Altunc, Serhat; Kegege, Obadiah; Bundick, Steve; Shaw, Harry; Schaire, Scott; Bussey, George; Crum, Gary; Burke, Jacob C.; Palo, Scott; O'Conor, Darren
2015-01-01
Today's CubeSats mostly operate their communications at UHF- and S-band frequencies. UHF band is presently crowded, thus downlink communications are at lower data rates due to bandwidth limitations and are unreliable due to interference. This research presents an end-to-end robust, innovative, compact, efficient and low cost S-band uplink and X-band downlink CubeSat communication system demonstration between a balloon and a Near Earth Network (NEN) ground system. Since communication systems serve as umbilical cords for space missions, demonstration of this X-band communication system is critical for successfully supporting current and future CubeSat communication needs. This research has three main objectives. The first objective is to design, simulate, and test a CubeSat S- and X-band communication system. Satellite Tool Kit (STK) dynamic link budget calculations and HFSS Simulations and modeling results have been used to trade the merit of various designs for small satellite applications. S- and X-band antennas have been tested in the compact antenna test range at Goddard Space Flight Center (GSFC) to gather radiation pattern data. The second objective is simulate and test a CubeSat compatible X-band communication system at 12.5Mbps including S-band antennas, X-band antennas, Laboratory for Atmospheric and Space Physics (LASP) /GSFC transmitter and an S-band receiver from TRL-5 to TRL-8 by the end of this effort. Different X-band communication system components (antennas, diplexers, etc.) from GSFC, other NASA centers, universities, and private companies have been investigated and traded, and a complete component list for the communication system baseline has been developed by performing analytical and numerical analysis. This objective also includes running simulations and performing trades between different X-band antenna systems to optimize communication system performance. The final objective is to perform an end-to-end X-band CubeSat communication system demonstration between a balloon and/or a sounding rocket and a Near Earth Network (NEN) ground system. This paper presents CubeSat communication systems simulation results, analysis of X-band and S-band antennas and RF front-end components, transceiver design, analysis and optimization of space-to-ground communication performance, subsystem development, as well as the test results for an end-to-end X-band CubeSat communication system demonstration. The outcome of this work will be used to pave the way for next generation NEN-compatible X-band CubeSat communication systems to support higher data rates with more advanced modulation and forward error correction (FEC) coding schemes, and to support and attract new science missions at lower cost. It also includes an abbreviated concept of operations for CubeSat users to utilize the NEN, starting from first contact with NASA's communication network and continuing through on-orbit operations.
Centroid stabilization for laser alignment to corner cubes: designing a matched filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Awwal, Abdul A. S.; Bliss, Erlan; Brunton, Gordon
2016-11-08
Automation of image-based alignment of National Ignition Facility high energy laser beams is providing the capability of executing multiple target shots per day. One important alignment is beam centration through the second and third harmonic generating crystals in the final optics assembly (FOA), which employs two retroreflecting corner cubes as centering references for each beam. Beam-to-beam variations and systematic beam changes over time in the FOA corner cube images can lead to a reduction in accuracy as well as increased convergence durations for the template-based position detector. A systematic approach is described that maintains FOA corner cube templates and guaranteesmore » stable position estimation.« less
Centroid stabilization for laser alignment to corner cubes: designing a matched filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Awwal, Abdul A. S.; Bliss, Erlan; Brunton, Gordon
2016-11-08
Automation of image-based alignment of NIF high energy laser beams is providing the capability of executing multiple target shots per day. One important alignment is beam centration through the second and third harmonic generating crystals in the final optics assembly (FOA), which employs two retro-reflecting corner cubes as centering references for each beam. Beam-to-beam variations and systematic beam changes over time in the FOA corner cube images can lead to a reduction in accuracy as well as increased convergence durations for the template-based position detector. A systematic approach is described that maintains FOA corner cube templates and guarantees stable positionmore » estimation.« less
Web and Desktop Applications for ALMA Science Verification Data
NASA Astrophysics Data System (ADS)
Shirasaki, Y.; Kawasaki, W.; Eguchi, S.; Komiya, Y.; Kosugi, G.; Ohishi, M.; Mizumoto, Y.
2013-10-01
ALMA is the largest radio telescope operating in Chile, and it is expected to produce 200 TB of data every year. Even a data cube obtained for a single source can exceed 1 TB. It is, therefore, crucial to reduce the size of data transmitted through the Internet by doing a cutout of a part of a data cube and/or reducing the spatial/frequency resolution before transferring the data. To specify the cutout region or required resolution, one needs to overview the whole of the data without transferring the large data cube. For this purpose, we developed two applications for quick-looking ALMA data cube, ALMA Web QL and Desktop Viewer (Vissage).
NASA Technical Reports Server (NTRS)
Kuan, Gary M.; Dekens, Frank G.
2006-01-01
The Space Interferometry Mission (SIM) is a microarcsecond interferometric space telescope that requires picometer level precision measurements of its truss and interferometer baselines. Single-gauge metrology errors due to non-ideal physical characteristics of corner cubes reduce the angular measurement capability of the science instrument. Specifically, the non-common vertex error (NCVE) of a shared vertex, double corner cube introduces micrometer level single-gauge errors in addition to errors due to dihedral angles and reflection phase shifts. A modified SIM Kite Testbed containing an articulating double corner cube is modeled and the results are compared to the experimental testbed data. The results confirm modeling capability and viability of calibration techniques.
Accurate reconstruction of hyperspectral images from compressive sensing measurements
NASA Astrophysics Data System (ADS)
Greer, John B.; Flake, J. C.
2013-05-01
The emerging field of Compressive Sensing (CS) provides a new way to capture data by shifting the heaviest burden of data collection from the sensor to the computer on the user-end. This new means of sensing requires fewer measurements for a given amount of information than traditional sensors. We investigate the efficacy of CS for capturing HyperSpectral Imagery (HSI) remotely. We also introduce a new family of algorithms for constructing HSI from CS measurements with Split Bregman Iteration [Goldstein and Osher,2009]. These algorithms combine spatial Total Variation (TV) with smoothing in the spectral dimension. We examine models for three different CS sensors: the Coded Aperture Snapshot Spectral Imager-Single Disperser (CASSI-SD) [Wagadarikar et al.,2008] and Dual Disperser (CASSI-DD) [Gehm et al.,2007] cameras, and a hypothetical random sensing model closer to CS theory, but not necessarily implementable with existing technology. We simulate the capture of remotely sensed images by applying the sensor forward models to well-known HSI scenes - an AVIRIS image of Cuprite, Nevada and the HYMAP Urban image. To measure accuracy of the CS models, we compare the scenes constructed with our new algorithm to the original AVIRIS and HYMAP cubes. The results demonstrate the possibility of accurately sensing HSI remotely with significantly fewer measurements than standard hyperspectral cameras.
Resolution of the 1D regularized Burgers equation using a spatial wavelet approximation
NASA Technical Reports Server (NTRS)
Liandrat, J.; Tchamitchian, PH.
1990-01-01
The Burgers equation with a small viscosity term, initial and periodic boundary conditions is resolved using a spatial approximation constructed from an orthonormal basis of wavelets. The algorithm is directly derived from the notions of multiresolution analysis and tree algorithms. Before the numerical algorithm is described these notions are first recalled. The method uses extensively the localization properties of the wavelets in the physical and Fourier spaces. Moreover, the authors take advantage of the fact that the involved linear operators have constant coefficients. Finally, the algorithm can be considered as a time marching version of the tree algorithm. The most important point is that an adaptive version of the algorithm exists: it allows one to reduce in a significant way the number of degrees of freedom required for a good computation of the solution. Numerical results and description of the different elements of the algorithm are provided in combination with different mathematical comments on the method and some comparison with more classical numerical algorithms.
Propulsion Technology Demonstrator. [Demonstrating Novel CubeSat Technologies in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Marmie, John; Martinez, Andres; Petro, Andrew
2015-01-01
NASA's Pathfinder Technology Demonstrator (PTD) project will test the operation of a variety of novel CubeSat technologies in low- Earth orbit, providing significant enhancements to the performance of these small and effective spacecraft. Each Pathfinder Technology Demonstrator mission consists of a 6-unit (6U) CubeSat weighing approximately 26 pounds (12 kilograms) and measuring 12 inches x 10 inches x 4 inches (30 centimeters x 25 centimeters x 10 centimeters), comparable in size to a common shoebox. CubeSats are a class of nanosatellites that use a standard size and form factor. The standard Cube- Sat size uses a "one unit" or "1U" measuring 4 inches x 4 inches x 4 inches (10x10x10 centimeters) and is extendable to larger sizes by "stacking" a number of the 1U blocks to form a larger spacecraft. Each PTD spacecraft will also be equipped with deployable solar arrays that provide an average of 44 watts of power while in orbit.
2010-11-16
San Luis Obispo, Calif. -- 101116-F-8290C-045 -- Students at California Polytechnic State University Cal Poly prepare to integrate miniature research satellites called CubeSats into a Poly Picosatellite Orbital Deployer PPOD container. The PPOD and CubeSat Project were developed by Cal Poly and Stanford University’s Space Systems Development Lab for use on NASA’s Educational Launch of Nanosatellite ELaNa missions. Each CubeSat measures about 4-inches cubed and is about the same volume as a quart. The CubeSats weigh about 2.2 pounds, must conform to standard aerospace materials and must operate without propulsion. The satellites are being prepared to launch with NASA's Glory spacecraft aboard an Orbital Sciences Corp. Taurus XL rocket, targeted to lift off Feb. 23, 2011, from Vandenberg's Space Launch Complex 576-E. Glory is scheduled to collect data on the properties of aerosols and black carbon from its place in low Earth orbit. It also will help scientists understand how the sun's irradiance affects Earth's climate. Photo credit: U.S. Air Force/Jerry E. Clemens Jr.
Ligand-Mediated Ring → Cube Transformation in a Catalytic Subnanocluster: Co4O4(MeCN)n with n = 1-6.
Luo, Sijie; Dibble, Collin J; Duncan, Michael A; Truhlar, Donald G
2014-08-07
We studied the Co4O4 subnanocluster and its MeCN-coated species using density functional theory, and we found that the Co4O4 core presents distinctive structures in bare and ligand-coated species. We propose a possible ligand-mediated ring → cube transformation mechanism during the ligand-coating process of the Co4O4 core due to the stronger binding energies of the MeCN ligands to the 3D distorted cube structure than to the 2D ring and ladder structures; theory indicates that three ligands are sufficient to stabilize the cube structure. Both ring and cube structures are ferromagnetic. Our finding is potentially useful for understanding the catalysis mechanism of Co4O4 species, which have important applications in solar energy conversion and water splitting; these catalysis reactions usually involve frequent addition and subtraction of various ligands and thus possibly involve core rearrangement processes similar to our findings.
NASA's CubeQuest Challenge - From Ground Tournaments to Lunar and Deep Space Derby
NASA Technical Reports Server (NTRS)
Hyde, Elizabeth Lee; Cockrell, James J.
2017-01-01
The First Flight of NASA's Space Launch System will feature 13 CubeSats that will launch into cis-lunar space. Three of these CubeSats are winners of the CubeQuest Challenge, part of NASA's Space Technology Mission Directorate (STMD) Centennial Challenge Program. In order to qualify for launch on EM-1, the winning teams needed to win a series of Ground Tournaments, periodically held since 2015. The final Ground Tournament, GT-4, was held in May 2017, and resulted in the Top 3 selection for the EM-1 launch opportunity. The Challenge now proceeds to the in-space Derbies, where teams must build and test their spacecraft before launch on EM-1. Once in space, they will compete for a variety of Communications and Propulsion-based challenges. This is the first Centennial Challenge to compete in space and is a springboard for future in-space Challenges. In addition, the technologies gained from this challenge will also propel development of deep space CubeSats.
NASA Astrophysics Data System (ADS)
Lockman, Z.; Goldacker, W.; Nast, R.; deBoer, B.; MacManus-Driscoll, J. L.
2002-08-01
Thermal oxidation of cube textured, pure Ni and Ni-Cr tapes was undertaken under different oxidation conditions to form cube textured NiO for the use as a first component of buffer layer for the coated conductor. Cube textured NiO was formed on pure Ni after oxidising for more than 130 min in O 2 at 1250 °C. The oxide thickness was >30 μm. Much shorter oxidation times (20-40 min, NiO thickness of ∼5 μm) and lower temperature (1050 °C) were required to form a similar texture on Ni-Cr foils. In addition, NiO formed on Ni-13%Cr was more highly textured than Ni-10%Cr. A Cr 2O 3 inner layer and NiO outer layer was formed on the Ni-Cr alloys.
HyspIRI Intelligent Payload Module(IPM) and Benchmarking Algorithms for Upload
NASA Technical Reports Server (NTRS)
Mandl, Daniel
2010-01-01
Features: Hardware: a) Xilinx Virtex-5 (GSFC Space Cube 2); b) 2 x 400MHz PPC; c) 100MHz Bus; d) 2 x 512MB SDRAM; e) Dual Gigabit Ethernet. Support Linux kernel 2.6.31 (gcc version 4.2.2). Support software running in stand alone mode for better performance. Can stream raw data up to 800 Mbps. Ready for operations. Software Application Examples: Band-stripping Algiotrhmsl:cloud, sulfur, flood, thermal, SWIL, NDVI, NDWI, SIWI, oil spills, algae blooms, etc. Corrections: geometric, radiometric, atmospheric. Core Flight System/dynamic software bus. CCSDS File Delivery Protocol. Delay Tolerant Network. CASPER /onboard planning. Fault monitoring/recovery software. S/C command and telemetry software. Data compression. Sensor Web for Autonomous Mission Operations.
Floating shock fitting via Lagrangian adaptive meshes
NASA Technical Reports Server (NTRS)
Vanrosendale, John
1995-01-01
In recent work we have formulated a new approach to compressible flow simulation, combining the advantages of shock-fitting and shock-capturing. Using a cell-centered on Roe scheme discretization on unstructured meshes, we warp the mesh while marching to steady state, so that mesh edges align with shocks and other discontinuities. This new algorithm, the Shock-fitting Lagrangian Adaptive Method (SLAM), is, in effect, a reliable shock-capturing algorithm which yields shock-fitted accuracy at convergence.
1992-08-26
the following three categories, de- pending where the nonlinear transformation is being applied on the data : (i) the Bussgang algorithms, where the...algorithms belong to one of the following three categories, depending where the nonlinear transformation is being applied on the data : "* The Bussgang...communication systems usually require an initial training period, during which a known data sequence (i.e., training sequence) is transmitted [43], [45]. An
Computational Fluid Dynamics. [numerical methods and algorithm development
NASA Technical Reports Server (NTRS)
1992-01-01
This collection of papers was presented at the Computational Fluid Dynamics (CFD) Conference held at Ames Research Center in California on March 12 through 14, 1991. It is an overview of CFD activities at NASA Lewis Research Center. The main thrust of computational work at Lewis is aimed at propulsion systems. Specific issues related to propulsion CFD and associated modeling will also be presented. Examples of results obtained with the most recent algorithm development will also be presented.
The Surface-to-Volume Ratio in Thermal Physics: From Cheese Cube Physics to Animal Metabolism
ERIC Educational Resources Information Center
Planinsic, Gorazd; Vollmer, Michael
2008-01-01
The surface-to-volume ratio is an important quantity in thermal physics. For example it governs the behaviour of heating or cooling of physical objects as a function of size like, e.g. cubes or spheres made of different material. The starting point in our paper is the simple physics problem of how cheese cubes of different sizes behave if heated…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eftink, Benjamin P.; Mara, Nathan Allan; Kingstedt, Owen T.
For this research, Split-Hopkinson pressure bar dynamic compression experiments were conducted to determine the defect/interface interaction dependence on interface type, bilayer thickness and interface orientation with respect to the loading direction in the Ag-Cu eutectic system. Specifically, the deformation microstructure in alloys with either a cube-on-cube orientation relationship with {111} Ag||{111} Cu interface habit planes or a twin orientation relationship with {more » $$\\overline{3}13$$} Ag||{$$\\overline{1}12$$} Cu interface habit planes and with bilayer thicknesses of 500 nm, 1.1 µm and 2.2 µm were probed using TEM. The deformation was carried by dislocation slip and in certain conditions, deformation twinning. The twinning response was dependent on loading orientation with respect to the interface plane, bilayer thickness, and interface type. Twinning was only observed when loading at orientations away from the growth direction and decreased in prevalence with decreasing bilayer thickness. Twinning in Cu was dependent on twinning partial dislocations being transmitted from Ag, which only occurred for cube-on-cube interfaces. Lastly, dislocation slip and deformation twin transfer across the interfaces is discussed in terms of the slip transfer conditions developed for grain boundaries in FCC alloys.« less
Eftink, Benjamin P.; Mara, Nathan Allan; Kingstedt, Owen T.; ...
2017-12-02
For this research, Split-Hopkinson pressure bar dynamic compression experiments were conducted to determine the defect/interface interaction dependence on interface type, bilayer thickness and interface orientation with respect to the loading direction in the Ag-Cu eutectic system. Specifically, the deformation microstructure in alloys with either a cube-on-cube orientation relationship with {111} Ag||{111} Cu interface habit planes or a twin orientation relationship with {more » $$\\overline{3}13$$} Ag||{$$\\overline{1}12$$} Cu interface habit planes and with bilayer thicknesses of 500 nm, 1.1 µm and 2.2 µm were probed using TEM. The deformation was carried by dislocation slip and in certain conditions, deformation twinning. The twinning response was dependent on loading orientation with respect to the interface plane, bilayer thickness, and interface type. Twinning was only observed when loading at orientations away from the growth direction and decreased in prevalence with decreasing bilayer thickness. Twinning in Cu was dependent on twinning partial dislocations being transmitted from Ag, which only occurred for cube-on-cube interfaces. Lastly, dislocation slip and deformation twin transfer across the interfaces is discussed in terms of the slip transfer conditions developed for grain boundaries in FCC alloys.« less
Zhu, Mingshan; Chen, Penglei; Ma, Wanhong; Lei, Bin; Liu, Minghua
2012-11-01
In this paper, we report that cube-like Ag/AgCl nanostructures could be facilely fabricated in a one-pot manner through a direct-precipitation protocol under ambient conditions, wherein no additional issues such as external energy (e.g., high temperature or high pressure), surfactants, or reducing agents are required. In terms of using sodium chloride (NaCl) as chlorine source and silver acetate (CH₃COOAg) as silver source, it is disclosed that simply by adding an aqueous solution of NaCl into an aqueous solution of CH₃COOAg, Ag/AgCl nanostructures with a cube-like geometry, could be successfully formulated. We show that thus-formulated cube-like Ag/AgCl nanospecies could be used as high-performance yet durable visible-light-driven or sunlight-driven plasmonic photocatalysts for the photodegradation of methyl orange (MO) and 4-chlorophenol (4-CP) pollutants. Compared with the commercially available P25-TiO₂, and the Ag/AgCl nanospheres previously fabricated via a surfactant-assisted method, our current cube-like Ag/AgCl nanostructures could exhibit much higher photocatalytic performance. Our template free protocol might open up new and varied opportunities for an easy synthesis of cube-like Ag/AgCl-based high-performance sunlight-driven plasmonic photocatalysts for organic pollutant elimination.
CubeSat mission design software tool for risk estimating relationships
NASA Astrophysics Data System (ADS)
Gamble, Katharine Brumbaugh; Lightsey, E. Glenn
2014-09-01
In an effort to make the CubeSat risk estimation and management process more scientific, a software tool has been created that enables mission designers to estimate mission risks. CubeSat mission designers are able to input mission characteristics, such as form factor, mass, development cycle, and launch information, in order to determine the mission risk root causes which historically present the highest risk for their mission. Historical data was collected from the CubeSat community and analyzed to provide a statistical background to characterize these Risk Estimating Relationships (RERs). This paper develops and validates the mathematical model based on the same cost estimating relationship methodology used by the Unmanned Spacecraft Cost Model (USCM) and the Small Satellite Cost Model (SSCM). The RER development uses general error regression models to determine the best fit relationship between root cause consequence and likelihood values and the input factors of interest. These root causes are combined into seven overall CubeSat mission risks which are then graphed on the industry-standard 5×5 Likelihood-Consequence (L-C) chart to help mission designers quickly identify areas of concern within their mission. This paper is the first to document not only the creation of a historical database of CubeSat mission risks, but, more importantly, the scientific representation of Risk Estimating Relationships.
Paul, Prodyut Kumar; Ghosh, Swapan Kumar; Singh, Dhananjay Kumar; Bhowmick, Nilesh
2014-08-01
The quality and stability of osmotically pre-treated and subsequently vacuum dried pineapple cubes using three different solutes and packed in three different types of packaging materials on storage was evaluated. The experiment was laid out in completely randomized block design with two factors and three replications for each treatment. Treatment combinations were considered as one factor and storage interval as another factor. Pineapple cubes stored in glass bottle showed very little percentage variation in moisture content due to its high moisture barrier properties. In all treatment combination, acidity values were invariably found to increase as the storage progressed. For all three different osmotic treatments, HDPE pouch packet always showed highest acidity followed by PVDC pouch. Again among three solutes under consideration, invert sugar recorded a rapid increase in acidity than other solutes. In pineapple cubes osmotically treated with sucrose solution, the rates of decrease of total sugar content were lower than that of invert sugar and sorbitol treated pineapple cubes. The percentage decrease of total sugar content was highest when the osmotically dehydrated pineapple cubes were packed in HDPE pouch and it was least in glass bottles. There was a gradual decrease in ascorbic acid content with the extension of storage period and this decrease was statistically significant at all storage intervals up to six-month. Lowest value of ascorbic acid content (15.210 mg per 100 g initial solid) was recorded in invert sugar treated pineapple cube packed in HDPE pouch after 6 months of storage.
NASA Astrophysics Data System (ADS)
Miles, D. M.; Mann, I. R.; Ciurzynski, M.; Barona, D.; Narod, B. B.; Bennest, J. R.; Pakhotin, I. P.; Kale, A.; Bruner, B.; Nokes, C. D. A.; Cupido, C.; Haluza-DeLay, T.; Elliott, D. G.; Milling, D. K.
2016-12-01
Difficulty in making low noise magnetic measurements is a significant challenge to the use of cube-satellite (CubeSat) platforms for scientific constellation class missions to study the magnetosphere. Sufficient resolution is required to resolve three-dimensional spatiotemporal structures of the magnetic field variations accompanying both waves and current systems of the nonuniform plasmas controlling dynamic magnetosphere-ionosphere coupling. This paper describes the design, validation, and test of a flight-ready, miniature, low-mass, low-power, and low-magnetic noise boom-mounted fluxgate magnetometer for CubeSat applications. The miniature instrument achieves a magnetic noise floor of 150-200 pT/√Hz at 1 Hz, consumes 400 mW of power, has a mass of 121 g (sensor and boom), stows on the hull, and deploys on a 60 cm boom from a three-unit CubeSat reducing the noise from the onboard reaction wheel to less than 1.5 nT at the sensor. The instrument's capabilities will be demonstrated and validated in space in late 2016 following the launch of the University of Alberta Ex-Alta 1 CubeSat, part of the QB50 constellation mission. We illustrate the potential scientific returns and utility of using a CubeSats carrying such fluxgate magnetometers to constitute a magnetospheric constellation using example data from the low-Earth orbit European Space Agency Swarm mission. Swarm data reveal significant changes in the spatiotemporal characteristics of the magnetic fields in the coupled magnetosphere-ionosphere system, even when the spacecraft are separated by only approximately 10 s along track and approximately 1.4° in longitude.
NASA Technical Reports Server (NTRS)
2008-01-01
We can determine distances between objects and points of interest in 3-D space to a useful degree of accuracy from a set of camera images by using multiple camera views and reference targets in the camera s field of view (FOV). The core of the software processing is based on the previously developed foreign-object debris vision trajectory software (see KSC Research and Technology 2004 Annual Report, pp. 2 5). The current version of this photogrammetry software includes the ability to calculate distances between any specified point pairs, the ability to process any number of reference targets and any number of camera images, user-friendly editing features, including zoom in/out, translate, and load/unload, routines to help mark reference points with a Find function, while comparing them with the reference point database file, and a comprehensive output report in HTML format. In this system, scene reference targets are replaced by a photogrammetry cube whose exterior surface contains multiple predetermined precision 2-D targets. Precise measurement of the cube s 2-D targets during the fabrication phase eliminates the need for measuring 3-D coordinates of reference target positions in the camera's FOV, using for example a survey theodolite or a Faroarm. Placing the 2-D targets on the cube s surface required the development of precise machining methods. In response, 2-D targets were embedded into the surface of the cube and then painted black for high contrast. A 12-inch collapsible cube was developed for room-size scenes. A 3-inch, solid, stainless-steel photogrammetry cube was also fabricated for photogrammetry analysis of small objects.
Mission Use of the SpaceCube Hybrid Data Processing System
NASA Technical Reports Server (NTRS)
Petrick, Dave
2017-01-01
The award-winning SpaceCube v2.0 system is a high performance, reconfigurable, hybrid data processing system that can be used in a multitude of applications including those that require a radiation hardened and reliable solution. This presentation provides an overview of the design architecture, flexibility, and the advantages of the modular SpaceCube v2.0 high performance data processing system for space applications. The current state of the proven SpaceCube technology is based on 11 years of engineering and operations. Eight systems have been successfully operated in space starting in 2008 with eight more to be delivered for payload integration in 2018 in support of various missions. This presentation will highlight how this multipurpose system is currently being used to solve design challenges of a variety of independent applications. The SpaceCube hardware adapts to new system requirements by allowing for application-unique interface cards that are utilized by reconfiguring the underlying programmable elements on the core processor card. We will show how this system is being used to improve on a heritage NASA GPS technology, enable a cutting-edge LiDAR instrument, and serve as a typical command and data handling (CDH) computer for a space robotics technology demonstration.Finally, this presentation will highlight the use of the SpaceCube v2.0 system on the Restore-L robotic satellite servicing mission. SpaceCube v2.0 is the central avionics responsible for the real-time vision system and autonomous robotic control necessary to find, capture, and service a national asset weather satellite.
IceCube sensitivity for low-energy neutrinos from nearby supernovae
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Allen, M. M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K. H.; Benabderrahmane, M. L.; Benzvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; Cruz Silva, A. H.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; de Clercq, C.; Degner, T.; Demirörs, L.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, B.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jakobi, E.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kroll, G.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richard, A. S.; Richman, M.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Singh, K.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Stüer, M.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.; IceCube Collaboration
2011-11-01
This paper describes the response of the IceCube neutrino telescope located at the geographic south pole to outbursts of MeV neutrinos from the core collapse of nearby massive stars. IceCube was completed in December 2010 forming a lattice of 5160 photomultiplier tubes that monitor a volume of ~1 km3 in the deep Antarctic ice for particle induced photons. The telescope was designed to detect neutrinos with energies greater than 100 GeV. Owing to subfreezing ice temperatures, the photomultiplier dark noise rates are particularly low. Hence IceCube can also detect large numbers of MeV neutrinos by observing a collective rise in all photomultiplier rates on top of the dark noise. With 2 ms timing resolution, IceCube can detect subtle features in the temporal development of the supernova neutrino burst. For a supernova at the galactic center, its sensitivity matches that of a background-free megaton-scale supernova search experiment. The sensitivity decreases to 20 standard deviations at the galactic edge (30 kpc) and 6 standard deviations at the Large Magellanic Cloud (50 kpc). IceCube is sending triggers from potential supernovae to the Supernova Early Warning System. The sensitivity to neutrino properties such as the neutrino hierarchy is discussed, as well as the possibility to detect the neutronization burst, a short outbreak of \\barνe's released by electron capture on protons soon after collapse. Tantalizing signatures, such as the formation of a quark star or a black hole as well as the characteristics of shock waves, are investigated to illustrate IceCube's capability for supernova detection.
IceCube Sensitivity for Low-Energy Neutrinos from Nearby Supernovae
NASA Technical Reports Server (NTRS)
Stamatikos, M.; Abbasi, R.; Berghaus, P.; Chirkin, D.; Desiati, P.; Diaz-Velez, J.; Dumm, J. P.; Eisch, J.; Feintzeig, J.; Hanson, K.;
2012-01-01
This paper describes the response of the IceCube neutrino telescope located at the geographic South Pole to outbursts of MeV neutrinos from the core collapse of nearby massive stars. IceCube was completed in December 2010 forming a lattice of 5160 photomultiplier tubes that monitor a volume of approx. 1 cu km in the deep Antarctic ice for particle induced photons. The telescope was designed to detect neutrinos with energies greater than 100 GeV. Owing to subfreezing ice temperatures, the photomultiplier dark noise rates are particularly low. Hence IceCube can also detect large numbers of MeV neutrinos by observing a collective rise in all photomultiplier rates on top of the dark noise. With 2 ms timing resolution, IceCube can detect subtle features in the temporal development of the supernova neutrino burst. For a supernova at the galactic center, its sensitivity matches that of a background-free megaton-scale supernova search experiment. The sensitivity decreases to 20 standard deviations at the galactic edge (30 kpc) and 6 standard deviations at the Large Magellanic Cloud (50 kpc). IceCube is sending triggers from potential supernovae to the Supernova Early Warning System. The sensitivity to neutrino properties such as the neutrino hierarchy is discussed, as well as the possibility to detect the neutronization burst, a short outbreak's released by electron capture on protons soon after collapse. Tantalizing signatures, such as the formation of a quark star or a black hole as well as the characteristics of shock waves, are investigated to illustrate IceCube's capability for supernova detection.
Ohkawara, H; Kitagawa, T; Fukushima, N; Ito, T; Sawa, Y; Yoshimine, T
2012-05-01
As there is only one skin procurement organization in Japan the Japan Skin Bank Network (JSBN), all skin grafts procured in Japan are sent by a commercialized delivery system. Preliminarily, bottles containing saline were transported in a cardboard box using a so-called "cooled home delivery service" using a truck with a refrigerated cargo container. During transportation the temperature in the cardboard box increased to 18°C in summer and decreased to -5°C in winter. For these reasons, we investigated whether a newly developed container "Medi Cube" would be useful to transport skin grafts. Four bottles with a capacity of 300 mL containing 150 mL of saline in a Medi Cube container were transported from Osaka to the JSBN in Tokyo between 4 PM and 10 AM using a commercialized cooled home delivery service. Two bottles were transported in a Medi Cube container without phase change materials (PCM) in winter and summer, respectively. Another two bottles were transported in the Medi Cube with PCMs in winter. The temperatures inside saline, inside a transportation container, and outside the container, and air temperature were monitored continuously with a recordable thermometer. The temperatures inside saline and inside a Medi Cube container were maintained between 3 and 6°C, even when the temperature outside the container increased during parking. The temperature inside a Medi Cube container without PCM decreased to -3°C when the inside of the cargo container was overcooled in winter. However, the temperatures inside saline and inside a Medi Cube container with PCM were between 3 and 6°C, even when the temperature outside the container decreased to below 0°C in winter. A Medi Cube container with PCM provided a safe, easy, and cost-effective method for overnight transportation of skin grafts. Copyright © 2012 Elsevier Inc. All rights reserved.
Backus, Benjamin T.; Jain, Anshul
2011-01-01
The apparent direction of rotation of perceptually bistable wire-frame (Necker) cubes can be conditioned to depend on retinal location by interleaving their presentation with cubes that are disambiguated by depth cues (Haijiang, Saunders, Stone & Backus, 2006; Harrison & Backus, 2010a). The long-term nature of the learned bias is demonstrated by resistance to counter-conditioning on a consecutive day. In previous work, either binocular disparity and occlusion, or a combination of monocular depth cues that included occlusion, internal occlusion, haze, and depth-from-shading, were used to control the rotation direction of disambiguated cubes. Here, we test the relative effectiveness of these two sets of depth cues in establishing the retinal location bias. Both cue sets were highly effective in establishing a perceptual bias on Day 1 as measured by the perceived rotation direction of ambiguous cubes. The effect of counter-conditioning on Day 2, on perceptual outcome for ambiguous cubes, was independent of whether the cue set was the same or different as Day 1. This invariance suggests that a common neural population instantiates the bias for rotation direction, regardless of the cue-set used. However, in a further experiment where only disambiguated cubes were presented on Day 1, perceptual outcome of ambiguous cubes during Day 2 counter-conditioning showed that the monocular-only cue set was in fact more effective than disparity-plus-occlusion for causing long-term learning of the bias. These results can be reconciled if the conditioning effect of Day 1 ambiguous trials in the first experiment is taken into account (Harrison & Backus, 2010b). We suggest that monocular disambiguation leads to stronger bias either because it more strongly activates a single neural population that is necessary for perceiving rotation, or because ambiguous stimuli engage cortical areas that are also engaged by monocularly disambiguated stimuli but not by disparity-disambiguated stimuli. PMID:21335023
Harrison, Sarah J; Backus, Benjamin T; Jain, Anshul
2011-05-11
The apparent direction of rotation of perceptually bistable wire-frame (Necker) cubes can be conditioned to depend on retinal location by interleaving their presentation with cubes that are disambiguated by depth cues (Haijiang, Saunders, Stone, & Backus, 2006; Harrison & Backus, 2010a). The long-term nature of the learned bias is demonstrated by resistance to counter-conditioning on a consecutive day. In previous work, either binocular disparity and occlusion, or a combination of monocular depth cues that included occlusion, internal occlusion, haze, and depth-from-shading, were used to control the rotation direction of disambiguated cubes. Here, we test the relative effectiveness of these two sets of depth cues in establishing the retinal location bias. Both cue sets were highly effective in establishing a perceptual bias on Day 1 as measured by the perceived rotation direction of ambiguous cubes. The effect of counter-conditioning on Day 2, on perceptual outcome for ambiguous cubes, was independent of whether the cue set was the same or different as Day 1. This invariance suggests that a common neural population instantiates the bias for rotation direction, regardless of the cue set used. However, in a further experiment where only disambiguated cubes were presented on Day 1, perceptual outcome of ambiguous cubes during Day 2 counter-conditioning showed that the monocular-only cue set was in fact more effective than disparity-plus-occlusion for causing long-term learning of the bias. These results can be reconciled if the conditioning effect of Day 1 ambiguous trials in the first experiment is taken into account (Harrison & Backus, 2010b). We suggest that monocular disambiguation leads to stronger bias either because it more strongly activates a single neural population that is necessary for perceiving rotation, or because ambiguous stimuli engage cortical areas that are also engaged by monocularly disambiguated stimuli but not by disparity-disambiguated stimuli. Copyright © 2011 Elsevier Ltd. All rights reserved.
Towards developing robust algorithms for solving partial differential equations on MIMD machines
NASA Technical Reports Server (NTRS)
Saltz, Joel H.; Naik, Vijay K.
1988-01-01
Methods for efficient computation of numerical algorithms on a wide variety of MIMD machines are proposed. These techniques reorganize the data dependency patterns to improve the processor utilization. The model problem finds the time-accurate solution to a parabolic partial differential equation discretized in space and implicitly marched forward in time. The algorithms are extensions of Jacobi and SOR. The extensions consist of iterating over a window of several timesteps, allowing efficient overlap of computation with communication. The methods increase the degree to which work can be performed while data are communicated between processors. The effect of the window size and of domain partitioning on the system performance is examined both by implementing the algorithm on a simulated multiprocessor system.
Towards developing robust algorithms for solving partial differential equations on MIMD machines
NASA Technical Reports Server (NTRS)
Saltz, J. H.; Naik, V. K.
1985-01-01
Methods for efficient computation of numerical algorithms on a wide variety of MIMD machines are proposed. These techniques reorganize the data dependency patterns to improve the processor utilization. The model problem finds the time-accurate solution to a parabolic partial differential equation discretized in space and implicitly marched forward in time. The algorithms are extensions of Jacobi and SOR. The extensions consist of iterating over a window of several timesteps, allowing efficient overlap of computation with communication. The methods increase the degree to which work can be performed while data are communicated between processors. The effect of the window size and of domain partitioning on the system performance is examined both by implementing the algorithm on a simulated multiprocessor system.
NASA Astrophysics Data System (ADS)
Cha, Don J.; Cha, Soyoung S.
1995-09-01
A computational tomographic technique, termed the variable grid method (VGM), has been developed for improving interferometric reconstruction of flow fields under ill-posed data conditions of restricted scanning and incomplete projection. The technique is based on natural pixel decomposition, that is, division of a field into variable grid elements. The performances of two algorithms, that is, original and revised versions, are compared to investigate the effects of the data redundancy criteria and seed element forming schemes. Tests of the VGMs are conducted through computer simulation of experiments and reconstruction of fields with a limited view angel of 90 degree(s). The temperature fields at two horizontal sections of a thermal plume of two interacting isothermal cubes, produced by a finite numerical code, are analyzed as test fields. The computer simulation demonstrates the superiority of the revised VGM to either the conventional fixed grid method or the original VGM. Both the maximum and average reconstruction errors are reduced appreciably. The reconstruction shows substantial improvement in the regions with dense scanning by probing rays. These regions are usually of interest in engineering applications.
3D brain tumor localization and parameter estimation using thermographic approach on GPU.
Bousselham, Abdelmajid; Bouattane, Omar; Youssfi, Mohamed; Raihani, Abdelhadi
2018-01-01
The aim of this paper is to present a GPU parallel algorithm for brain tumor detection to estimate its size and location from surface temperature distribution obtained by thermography. The normal brain tissue is modeled as a rectangular cube including spherical tumor. The temperature distribution is calculated using forward three dimensional Pennes bioheat transfer equation, it's solved using massively parallel Finite Difference Method (FDM) and implemented on Graphics Processing Unit (GPU). Genetic Algorithm (GA) was used to solve the inverse problem and estimate the tumor size and location by minimizing an objective function involving measured temperature on the surface to those obtained by numerical simulation. The parallel implementation of Finite Difference Method reduces significantly the time of bioheat transfer and greatly accelerates the inverse identification of brain tumor thermophysical and geometrical properties. Experimental results show significant gains in the computational speed on GPU and achieve a speedup of around 41 compared to the CPU. The analysis performance of the estimation based on tumor size inside brain tissue also presented. Copyright © 2017 Elsevier Ltd. All rights reserved.
VizieR Online Data Catalog: The central black hole in NGC 4414 (Thater+, 2017)
NASA Astrophysics Data System (ADS)
Thater, S.; Krajnovic, D.; Bourne, M. A.; Cappellari, M.; de Zeeuw, T.; Emsellem, E.; Magorrian, J.; McDermid, R. M.; Sarzi, M.; van de Ven, G.
2016-10-01
The FITS files contain the reduced co-added Gemini North NIFS and GMOS flux data cubes for NGC 4414. The observations and data reduction are described in Section 2 of the paper. The data cubes were used to extract the central kinematics of NGC 4414. Both data cubes have 3 extensions: the primary, an E3DDATA table and an E3DGRP table. (2 data files).
Effects of pictorially-defined surfaces on visual search.
Morita, Hiromi; Kumada, Takatsune
2003-08-01
Three experiments of visual search for a cube (for a square pillar in Experiment 3) with an odd conjunction of orientation of faces and color (a cube with a red top face and a green right face among cubes with a green top face and a red right face, for example) showed that the search is made more efficient by arranging cubes (or square pillars) so that their top faces lie in a horizontal surface defined by pictorial cues. This effect shows the same asymmetry as that of the surface defined by the disparity cue did [Perception and Psychophysics, 62 (2000) 540], implying that the effect is independent of the three-dimensional cue and the global surface structure influences the control of attention during the search.
Fluidics cube for biosensor miniaturization
NASA Technical Reports Server (NTRS)
Dodson, J. M.; Feldstein, M. J.; Leatzow, D. M.; Flack, L. K.; Golden, J. P.; Ligler, F. S.
2001-01-01
To create a small, portable, fully automated biosensor, a compact means of fluid handling is required. We designed, manufactured, and tested a "fluidics cube" for such a purpose. This cube, made of thermoplastic, contains reservoirs and channels for liquid samples and reagents and operates without the use of any internal valves or meters; it is a passive fluid circuit that relies on pressure relief vents to control fluid movement. We demonstrate the ability of pressure relief vents to control fluid movement and show how to simply manufacture or modify the cube. Combined with the planar array biosensor developed at the Naval Research Laboratory, it brings us one step closer to realizing our goal of a handheld biosensor capable of analyzing multiple samples for multiple analytes.
NASA Astrophysics Data System (ADS)
Zhang, Xing; Wen, Gongjian
2015-10-01
Anomaly detection (AD) becomes increasingly important in hyperspectral imagery analysis with many practical applications. Local orthogonal subspace projection (LOSP) detector is a popular anomaly detector which exploits local endmembers/eigenvectors around the pixel under test (PUT) to construct background subspace. However, this subspace only takes advantage of the spectral information, but the spatial correlat ion of the background clutter is neglected, which leads to the anomaly detection result sensitive to the accuracy of the estimated subspace. In this paper, a local three dimensional orthogonal subspace projection (3D-LOSP) algorithm is proposed. Firstly, under the jointly use of both spectral and spatial information, three directional background subspaces are created along the image height direction, the image width direction and the spectral direction, respectively. Then, the three corresponding orthogonal subspaces are calculated. After that, each vector along three direction of the local cube is projected onto the corresponding orthogonal subspace. Finally, a composite score is given through the three direction operators. In 3D-LOSP, the anomalies are redefined as the target not only spectrally different to the background, but also spatially distinct. Thanks to the addition of the spatial information, the robustness of the anomaly detection result has been improved greatly by the proposed 3D-LOSP algorithm. It is noteworthy that the proposed algorithm is an expansion of LOSP and this ideology can inspire many other spectral-based anomaly detection methods. Experiments with real hyperspectral images have proved the stability of the detection result.
RUSHMAPS: Real-Time Uploadable Spherical Harmonic Moment Analysis for Particle Spectrometers
NASA Technical Reports Server (NTRS)
Figueroa-Vinas, Adolfo
2013-01-01
RUSHMAPS is a new onboard data reduction scheme that gives real-time access to key science parameters (e.g. moments) of a class of heliophysics science and/or solar system exploration investigation that includes plasma particle spectrometers (PPS), but requires moments reporting (density, bulk-velocity, temperature, pressure, etc.) of higher-level quality, and tolerates a lowpass (variable quality) spectral representation of the corresponding particle velocity distributions, such that telemetry use is minimized. The proposed methodology trades access to the full-resolution velocity distribution data, saving on telemetry, for real-time access to both the moments and an adjustable-quality (increasing quality increases volume) spectral representation of distribution functions. Traditional onboard data storage and downlink bandwidth constraints severely limit PPS system functionality and drive cost, which, as a consequence, drives a limited data collection and lower angular energy and time resolution. This prototypical system exploit, using high-performance processing technology at GSFC (Goddard Space Flight Center), uses a SpaceCube and/or Maestro-type platform for processing. These processing platforms are currently being used on the International Space Station as a technology demonstration, and work is currently ongoing in a new onboard computation system for the Earth Science missions, but they have never been implemented in heliospheric science or solar system exploration missions. Preliminary analysis confirms that the targeted processor platforms possess the processing resources required for realtime application of these algorithms to the spectrometer data. SpaceCube platforms demonstrate that the target architecture possesses the sort of compact, low-mass/power, radiation-tolerant characteristics needed for flight. These high-performing hybrid systems embed unprecedented amounts of onboard processing power in the CPU (central processing unit), FPGAs (field programmable gate arrays), and DSP (digital signal processing) elements. The fundamental computational algorithm de constructs 3D velocity distributions in terms of spherical harmonic spectral coefficients (which are analogous to a Fourier sine-cosine decomposition), but uses instead spherical harmonics Legendre polynomial orthogonal functions as a basis for the expansion, portraying each 2D angular distribution at every energy or, geometrically, spherical speed-shell swept by the particle spectrometer. Optionally, these spherical harmonic spectral coefficients may be telemetered to the ground. These will provide a smoothed description of the velocity distribution function whose quality will depend on the number of coefficients determined. Successfully implemented on the GSFC-developed processor, the capability to integrate the proposed methodology with both heritage and anticipated future plasma particle spectrometer designs is demonstrated (with sufficiently detailed design analysis to advance TRL) to show specific science relevancy with future HSD (Heliophysics Science Division) solar-interplanetary, planetary missions, sounding rockets and/or CubeSat missions.
Preliminary Results Of PCA On MRO CRISM Multispectral Images
NASA Astrophysics Data System (ADS)
Klassen, David R.; Smith, M. D.
2008-09-01
Mars Reconnaissance Orbiter arrived at Mars in March 2006 and by September had achieved its science-phase orbit with the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) beginning its visible to near-infrared (VIS/NIR) spectral imaging shortly thereafter. One of the goals of CRISM is to fill in the spatial gaps between the various targeted observations, eventually mapping the entire surface. Due to the large volume of data this would create, the instrument works in a reduced spectral sampling mode creating "multispectral” images. From this data we can create image cubes using 70 wavelengths from 0.410 to 3.504 µm. We present here a preliminary analysis of these multispectral mode data products using the technique of Principal Components Analysis. Previous work with ground-based images has shown that over an entire visible hemisphere, there are only three to four meaningful components out of 32-105 wavelengths over 1.5-4.1 µm. The first two of these components are fairly consistent over all time intervals from day-to-day and season-to-season. [1-4] The preliminary work on the CRISM images cubes implies similar results_three to four significant principal components that are fairly consistent over time. We will show these components and a rough linear mixture modeling based on in-data spectral endmembers derived from the extrema of the principal components [5]. References: [1] Klassen, D. R. and Bell III, J. F. (2001) BAAS 33, 1069. [2] Klassen, D. R. and Bell III, J. F. (2003) BAAS, 35, 936. [3] Klassen, D. R., Wark, T. J., Cugliotta, C. G. (2005) BAAS, 37, 693. [4] Klassen, D. R. and Bell III, J. F. (2007) in preparation. [5] Klassen, D. R. and Bell III, J. F. (2000) BAAS, 32, 1105.
A comparison of upwind schemes for computation of three-dimensional hypersonic real-gas flows
NASA Technical Reports Server (NTRS)
Gerbsch, R. A.; Agarwal, R. K.
1992-01-01
The method of Suresh and Liou (1992) is extended, and the resulting explicit noniterative upwind finite-volume algorithm is applied to the integration of 3D parabolized Navier-Stokes equations to model 3D hypersonic real-gas flowfields. The solver is second-order accurate in the marching direction and employs flux-limiters to make the algorithm second-order accurate, with total variation diminishing in the cross-flow direction. The algorithm is used to compute hypersonic flow over a yawed cone and over the Ames All-Body Hypersonic Vehicle. The solutions obtained agree well with other computational results and with experimental data.
ERIC Educational Resources Information Center
Tapson, Frank
1985-01-01
Flow diagrams developing cube roots and formulas for the square, sphere, cube, circle and sector, oblong, and cylinder are presented. Some comments on their use, along with calculators, are included. (MNS)
E-st@r-I experience: Valuable knowledge for improving the e-st@r-II design
NASA Astrophysics Data System (ADS)
Corpino, S.; Obiols-Rabasa, G.; Mozzillo, R.; Nichele, F.
2016-04-01
Many universities all over the world have now established hands-on education programs based on CubeSats. These small and cheap platforms are becoming more and more attractive also for other-than-educational missions, such as technology demonstration, science applications, and Earth observation. This new paradigm requires the development of adequate technology to increase CubeSat performance and mission reliability, because educationally-driven missions have often failed. In 2013 the ESA Education Office launched the Fly Your Satellite! Programme which aims at increasing CubeSat mission reliability through several actions: to improve design implementation, to define best practices for conducting the verification process, and to make the CubeSat community aware of the importance of verification. Within this framework, the CubeSat team at Politecnico di Torino developed the e-st@r-II CubeSat as follow-on of the e-st@r-I satellite, launched in 2012 on the VEGA Maiden Flight. E-st@r-I and e-st@r-II are both 1U satellites with educational and technology demonstration objectives: to give hands-on experience to university students and to test an active attitude determination and control system based on inertial and magnetic measurements with magnetic actuation. This paper describes the know-how gained thanks to the e-st@r-I mission, and how this heritage has been translated into the improvement of the new CubeSat in several areas and lifecycle phases. The CubeSat design has been reviewed to reduce the complexity of the assembly procedure and to deal with possible failures of the on-board computer, for example re-coding the software in the communications subsystem. New procedures have been designed and assessed for the verification campaign accordingly to ECSS rules and with the support of ESA specialists. Different operative modes have been implemented to handle some anomalies observed during the operations of the first satellite. A new version of the on-board software is one of the main modifications. In particular, the activation sequence of the satellite has been modified to have a stepwise switch-on of the satellite. In conclusion, the e-st@r-I experience has provided valuable lessons during its development, verification and on-orbit operations. This know-how has become crucial for the development of the e-st@r-II CubeSat as illustrated in this article.
Making every gram count - Big measurements from tiny platforms (Invited)
NASA Astrophysics Data System (ADS)
Fish, C. S.; Neilsen, T. L.; Stromberg, E. M.
2013-12-01
The most significant advances in Earth, solar, and space physics over the next decades will originate from new, system-level observational techniques. The most promising technique to still be fully developed and exploited requires conducting multi-point or distributed constellation-based observations. This system-level observational approach is required to understand the 'big picture' coupling between disparate regions such as the solar-wind, magnetosphere, ionosphere, upper atmosphere, land, and ocean. The national research council, NASA science mission directorate, and the larger heliophysics community have repeatedly identified the pressing need for multipoint scientific investigations to be implemented via satellite constellations. The NASA Solar Terrestrial Probes Magnetospheric Multiscale (MMS) mission and NASA Earth Science Division's 'A-train', consisting of the AQUA, CloudSat, CALIPSO and AURA satellites, are examples of such constellations. However, the costs to date of these and other similar proposed constellations have been prohibitive given the 'large satellite' architectures and the multiple launch vehicles required for implementing the constellations. Financially sustainable development and deployment of multi-spacecraft constellations can only be achieved through the use of small spacecraft that allow for multiple hostings per launch vehicle. The revolution in commercial mobile and other battery powered consumer technology has helped enable researchers in recent years to build and fly very small yet capable satellites, principally CubeSats. A majority of the CubeSat activity and development to date has come from international academia and the amateur radio satellite community, but several of the typical large-satellite vendors have developed CubeSats as well. Recent government-sponsored CubeSat initiatives, such as the NRO Colony, NSF CubeSat Space Weather, NASA Office of Chief Technologist Edison and CubeSat Launch Initiative (CSLI) Educational Launch of Nanosatellites Educational Launch of Nano-satellites (ELaNa), the Air Force Space Environmental NanoSat Experiment (SENSE), and the ESA QB50 programs have spurred the development of very proficient miniature space sensors and technologies that enable technology demonstration, space and earth science research, and operational CubeSat based missions. In this paper we will review many of the small, low cost sensor and instrumentation technologies that have been developed to date as part of the CubeSat movement and examine how these new CubeSat based technologies are helping us do more with less.
Achievements and Future Plan of Interplanetary CubeSats and Micro-Sats in Japan
NASA Astrophysics Data System (ADS)
Funase, Ryu
2016-07-01
This paper introduces Japanese achievements and future plans of CubeSats and Micro-Sats for deep space exploration. As the first step toward deep space mission by such tiny spacecraft, University of Tokyo and Japan Aerospace Exploration Agency (JAXA) developed the world's first deep space micro-spacecraft PROCYON (Proximate Object Close flYby with Optical Navigation). Its mission objective is to demonstrate a micro-spacecraft bus technology for deep space exploration and proximity flyby to asteroids performing optical measurements. PROCYON was launched into the Earth departure trajectory on December 3, 2014 together with Japanese asteroid sample return mission Hayabusa-2. PROCYON successfully completed the bus system demonstration mission in its interplanetary flight. Currently, Japan is not only pursuing the improvement and utilization of the demonstrated micro-sat deep space bus system with a weight of tens of kg or more for more practical scientific deep space missions, but also trying to develop smaller spacecraft with a weight of less than tens of kg, namely CubeSats, for deep space exploration. We are proposing a self-contained 6U CubeSat mission for the rideshare opportunity on the USA's SLS EM-1 mission, which will fly to a libration orbit around Earth-Moon L2 point and perform scientific observations of the Earth and the Moon. We are also seeking the possibility of CubeSats which is carried by a larger spacecraft to the destination and supports the mission by taking advantage of its low-cost and risk-tolerable feature. As an example of such style of CubeSat missions, we are studying a CubeSat for close observations of an asteroid, which will be carried to the target asteroid by a larger mother spacecraft. This CubeSat is released from the mother spacecraft to make a close flyby for scientific observations, which is difficult to be performed by the mother spacecraft if we consider the risk of the collision to the target asteroid or dust particles ejected from the asteroid. In order to utilize the large deep space maneuverability of the mother spacecraft, the CubeSat is retrieved by the mother spacecraft after the close flyby observation and it is carried to the next target asteroid to realize multiple asteroids flyby exploration.
A Governance Roadmap and Framework for EarthCube
NASA Astrophysics Data System (ADS)
Allison, M. L.
2012-12-01
EarthCube is a process and an outcome, established to transform the conduct of research through the development of community-guided cyberinfrastructure for the Geosciences as the prototype for potential deployment across all domain sciences. EarthCube aims to create a knowledge management system and infrastructure that integrates all Earth system and human dimensions data in an open transparent, and inclusive manner. EarthCube requires broad community participation in concept, framework, and implementation and must not be hindered by rigid preconceptions. We discovered widely varying interpretations, expectations, and assumptions about governance among EarthCube participants. Our definition of governance refers to the processes, structure and organizational elements that determine, within an organization or system of organizations, how power is exercised, how stakeholders have their say, how decisions are made, and how decision makers are held accountable. We have learned, from historic infrastructure case studies, background research on governance and from community feedback during this roadmap process, that other types of large-scale, complex infrastructures, including the Internet, have no central control, administration, or management. No national infrastructure that we examined is governed by a single entity, let alone a single governance archetype. Thus we feel the roadmap process must accommodate a governance system or system of systems that may have a single governing entity, particularly at the start, but can evolve into a collective of governing bodies as warranted, in order to be successful. A fast-track process during Spring, 2012 culminated in a Governance Roadmap delivered to an NSF-sponsored charrette in June with an aggressive timetable to define and implement a governance structure to enable the elements of EarthCube to become operational expeditiously. Our goal is to help ensure the realization of this infrastructure sooner, more efficiently, and more effectively, by providing a community endorsed Governance Framework. The Framework, and corresponding community outreach, will maximize engagement of the broader EarthCube community, which in turn will minimize the risks that the community will not adopt EarthCube in its development and final states. The target community includes academia, government, and the private-sector, both nationally and internationally. Based on community feedback to-date, we compiled and synthesized system-wide governance requirements to draft an initial set of EarthCube Governance functions. These functions will permit us to produce a Governance Framework based on an aggressive community outreach and engagement plan.
Applications and Benefits for Big Data Sets Using Tree Distances and The T-SNE Algorithm
2016-03-01
BENEFITS FOR BIG DATA SETS USING TREE DISTANCES AND THE T-SNE ALGORITHM by Suyoung Lee March 2016 Thesis Advisor: Samuel E. Buttrey...REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE APPLICATIONS AND BENEFITS FOR BIG DATA SETS USING TREE DISTANCES AND THE T-SNE...this work we use tree distance computed using Buttrey’s treeClust package in R, as discussed by Buttrey and Whitaker in 2015, to process mixed data
Preliminary study of the dosimetric characteristics of 3D-printed materials with megavoltage photons
NASA Astrophysics Data System (ADS)
Jeong, Seonghoon; Yoon, Myonggeun; Chung, Weon Kuu; Kim, Dong Wook
2015-07-01
These days, 3D-printers are on the rise in various fields including radiation therapy. This preliminary study aimed to estimate the dose characteristics of 3D-printer materials that could be used as compensators or immobilizers in radiation treatment. The cubes with length of 5 cm and different densities of 50%, 75% and 100% were printed by using a 3D-printer. Planning CT scans of the cubes were performed by using a CT simulator (Brilliance CT, Philips Medical System, Netherlands). Dose distributions behind the cube were calculated after a 6 MV photon beam had passed through the cube. The dose responses for the 3D-printed cube, air and water were measured by using EBT3 film and a 2D array detector. When the results of air case were normalized to 100, the dose calculated by the TPS and the measured doses to 50% and 75% cube were of the 96 ~ 99. The measured and the calculated doses to water and to 100% of the cube were 82 ~ 84. The HU values for the 50%, 75% and 100% density cases were -910, -860 and -10, respectively. The dose characteristics of the 50% and the 75% products were similar to that of air while the 100% product seemed to be similar to that of water. This information will provide guidelines for making an immobilization tool that can play the role of a compensator and for making a real human phantom that can exactly describe the inside of the human body. This study was necessary for Poly Lactic Acid (PLA) based 3D-printer users who are planning to make something related to radiation therapy.
Integration of CubeSat Systems with Europa Surface Exploration Missions
NASA Astrophysics Data System (ADS)
Erdoǧan, Enes; Inalhan, Gokhan; Kemal Üre, Nazım
2016-07-01
Recent studies show that there is a high probability that a liquid ocean exists under thick icy surface of Jupiter's Moon Europa. The findings also show that Europa has features that are similar to Earth, such as geological activities. As a result of these studies, Europa has promising environment of being habitable and currently there are many missions in both planning and execution level that target Europa. However, these missions usually involve extremely high budgets over extended periods of time. The objective of this talk is to argue that the mission costs can be reduced significantly by integrating CubeSat systems within Europa exploration missions. In particular, we introduce an integrated CubeSat-micro probe system, which can be used for measuring the size and depth of the hypothetical liquid ocean under the icy surface of Europa. The systems consist of an entry module that houses a CubeSat combined with driller measurement probes. Driller measurement probes deploy before the system hits the surface and penetrate the surface layers of Europa. Moreover, a micro laser probe could be used to examine the layers. This process enables investigation of the properties of the icy layer and the environment beneath the surface. Through examination of different scenarios and cost analysis of the components, we show that the proposed CubeSat systems has a significant potential to reduce the cost of the overall mission. Both subsystem requirements and launch prices of CubeSats are dramatically cheaper than currently used satellites. In addition, multiple CubeSats may be used to dominate wider area in space and they are expandable in face of potential failures. In this talk we discuss both the mission design and cost reduction aspects.
NASA Astrophysics Data System (ADS)
Fulker, D. W.; Pearlman, F.; Pearlman, J.; Arctur, D. K.; Signell, R. P.
2016-12-01
A major challenge for geoscientists—and a key motivation for the National Science Foundation's EarchCube initiative—is to integrate data across disciplines, as is necessary for complex Earth-system studies such as climate change. The attendant technical and social complexities have led EarthCube participants to devise a system-of-systems architectural concept. Its centerpiece is a (virtual) interoperability workbench, around which a learning community can coalesce, supported in their evolving quests to join data from diverse sources, to synthesize new forms of data depicting Earth phenomena, and to overcome immense obstacles that arise, for example, from mismatched nomenclatures, projections, mesh geometries and spatial-temporal scales. The full architectural concept will require significant time and resources to implement, but this presentation describes a (minimal) starter kit. With a keep-it-simple mantra this workbench starter kit can fulfill the following four objectives: 1) demonstrate the feasibility of an interoperability workbench by mid-2017; 2) showcase scientifically useful examples of cross-domain interoperability, drawn, e.g., from funded EarthCube projects; 3) highlight selected aspects of EarthCube's architectural concept, such as a system of systems (SoS) linked via service interfaces; 4) demonstrate how workflows can be designed and used in a manner that enables sharing, promotes collaboration and fosters learning. The outcome, despite its simplicity, will embody service interfaces sufficient to construct—from extant components—data-integration and data-synthesis workflows involving multiple geoscience domains. Tentatively, the starter kit will build on the Jupyter Notebook web application, augmented with libraries for interfacing current services (at data centers involved in EarthCube's Council of Data Facilities, e.g.) and services developed specifically for EarthCube and spanning most geoscience domains.
Influence of olfactory enrichment on the exploratory behaviour of captive-housed domestic cats.
Machado, J C; Genaro, G
2014-12-01
To evaluate the influence of olfactory stimulation on the exploratory activity of captive-housed domestic cats. To evaluate the cats' exploratory behaviour, we devised three treatments. We placed a wooden cube (0.027 m(3)) covered with a cloth treated with rat scent on the floor of each cat enclosure (T3). We also used a cloth-covered cube that did not have rat scent (T2) and observed the cats' behaviours in the same area without any object (T1). All cats participated in T1, T2, and T3. All treatments were performed equally and at the same time in two identical enclosures with 11 and 10 cats, respectively. The cats had lived in the enclosures since entering the permanent animal house. We used a continuous recording method associated with focal sampling to analyse the recordings. Exploration was induced in the presence of a novel object, the cube, irrespective of whether the object was associated with the scent. In T3, we observed sex differences in exploration time: females spent more time exploring the scent-impregnated cube than males. Female cats also spent more time exploring the scent-impregnated cube than the scent-free cube. Cats in T3 had shorter latency for exploration, spent more time sniffing the ground and rubbing the cube, and had a higher frequency of urine spraying than those in T2. Although exploratory behaviour was induced by novelty in the form of a new object, significant effects were observed in the presence of the scent, mainly regarding latency to explore, sex differences and sniffing, rubbing and urine spraying. © 2014 Australian Veterinary Association.
A Flexible Method for Producing F.E.M. Analysis of Bone Using Open-Source Software
NASA Technical Reports Server (NTRS)
Boppana, Abhishektha; Sefcik, Ryan; Meyers, Jerry G.; Lewandowski, Beth E.
2016-01-01
This project, performed in support of the NASA GRC Space Academy summer program, sought to develop an open-source workflow methodology that segmented medical image data, created a 3D model from the segmented data, and prepared the model for finite-element analysis. In an initial step, a technological survey evaluated the performance of various existing open-source software that claim to perform these tasks. However, the survey concluded that no single software exhibited the wide array of functionality required for the potential NASA application in the area of bone, muscle and bio fluidic studies. As a result, development of a series of Python scripts provided the bridging mechanism to address the shortcomings of the available open source tools. The implementation of the VTK library provided the most quick and effective means of segmenting regions of interest from the medical images; it allowed for the export of a 3D model by using the marching cubes algorithm to build a surface mesh. To facilitate the development of the model domain from this extracted information required a surface mesh to be processed in the open-source software packages Blender and Gmsh. The Preview program of the FEBio suite proved to be sufficient for volume filling the model with an unstructured mesh and preparing boundaries specifications for finite element analysis. To fully allow FEM modeling, an in house developed Python script allowed assignment of material properties on an element by element basis by performing a weighted interpolation of voxel intensity of the parent medical image correlated to published information of image intensity to material properties, such as ash density. A graphical user interface combined the Python scripts and other software into a user friendly interface. The work using Python scripts provides a potential alternative to expensive commercial software and inadequate, limited open-source freeware programs for the creation of 3D computational models. More work will be needed to validate this approach in creating finite-element models.
A Computational Geometry Approach to Automated Pulmonary Fissure Segmentation in CT Examinations
Pu, Jiantao; Leader, Joseph K; Zheng, Bin; Knollmann, Friedrich; Fuhrman, Carl; Sciurba, Frank C; Gur, David
2010-01-01
Identification of pulmonary fissures, which form the boundaries between the lobes in the lungs, may be useful during clinical interpretation of CT examinations to assess the early presence and characterization of manifestation of several lung diseases. Motivated by the unique nature of the surface shape of pulmonary fissures in three-dimensional space, we developed a new automated scheme using computational geometry methods to detect and segment fissures depicted on CT images. After a geometric modeling of the lung volume using the Marching Cube Algorithm, Laplacian smoothing is applied iteratively to enhance pulmonary fissures by depressing non-fissure structures while smoothing the surfaces of lung fissures. Next, an Extended Gaussian Image based procedure is used to locate the fissures in a statistical manner that approximates the fissures using a set of plane “patches.” This approach has several advantages such as independence of anatomic knowledge of the lung structure except the surface shape of fissures, limited sensitivity to other lung structures, and ease of implementation. The scheme performance was evaluated by two experienced thoracic radiologists using a set of 100 images (slices) randomly selected from 10 screening CT examinations. In this preliminary evaluation 98.7% and 94.9% of scheme segmented fissure voxels are within 2 mm of the fissures marked independently by two radiologists in the testing image dataset. Using the scheme detected fissures as reference, 89.4% and 90.1% of manually marked fissure points have distance ≤ 2 mm to the reference suggesting a possible under-segmentation of the scheme. The case-based RMS (root-mean-square) distances (“errors”) between our scheme and the radiologist ranged from 1.48±0.92 to 2.04±3.88 mm. The discrepancy of fissure detection results between the automated scheme and either radiologist is smaller in this dataset than the inter-reader variability. PMID:19272987
CubeSat Attitude Determination and Helmholtz Cage Design
2012-03-01
4.2.2. 3.6 CubeSat Components The CubeSat used in this experiment is commanded and controlled via the Arduino Mega board that is based on the ATmel...UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base , Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED The views...ENY/12-M03 Abstract A method of 3-axis satellite attitude determination utilizing six body-fixed light sensors and a 3-axis magnetometer is analyzed. A
Recent highlights from IceCube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kappes, A.; Collaboration: IceCube Collaboration
2014-11-18
The IceCube Neutrino Observatory, completed in December 2010, is located at the geographic South Pole and incorporates a one cubic kilometer neutrino detector buried in the deep ice and a one square kilometer air shower array, IceTop, sitting atop the glacial ice. This unique combination of neutrino and cosmic-ray detectors allows to investigate a wide variety of physics topics both in astrophysics and particle physics. Here, we discuss latest results from IceCube concentrating on astrophysical aspects.
2012-03-28
Scintillation 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Comberiate, Joseph M. 5e. TASK NUMBER 5f. WORK...bubble climatology. A tomographic reconstruction technique was modified and applied to SSUSI data to reconstruct three-dimensional cubes of ionospheric... modified and applied to SSUSI data to reconstruct three-dimensional cubes of ionospheric electron density. These data cubes allowed for 3-D imaging of
2014-02-11
ISS038-E-045009 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station as it deploys a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing. Station solar array panels, Earth's horizon and the blackness of space provide the backdrop for the scene.
2014-08-04
Resident Space Object Proximity Analysis and IMAging) mission is carried out by a 6U Cube Sat class satellite equipped with a warm gas propulsion system... mission . The ARAPAIMA (Application for Resident Space Object Proximity Analysis and IMAging) mission is carried out by a 6 U CubeSat class satellite...attitude determination and control subsystem (ADCS) (or a proximity operation and imaging satellite mission . The ARAP AI MA (Application for
NASA Technical Reports Server (NTRS)
Johnston, Patrick H.
2013-01-01
The PRSEUS Pressure Cube Test was a joint development effort between the Boeing Company and NASA Langley Research Center, sponsored in part by the Environmentally Responsible Aviation Project and Boeing internal R&D. This Technical Memorandum presents the results of ultrasonic inspections in support of the PRSEUS Pressure Cube Test, and is a companion document with the NASA test report and a report on the acoustic emission measurements made during the test.
2018-05-17
The complete TEMPEST-D spacecraft shown with the solar panels deployed. RainCube, CubeRRT and TEMPEST-D are currently integrated aboard Orbital ATKs Cygnus spacecraft and are awaiting launch on an Antares rocket. After the CubeSats have arrived at the station, they will be deployed into low-Earth orbit and will begin their missions to test these new technologies useful for predicting weather, ensuring data quality, and helping researchers better understand storms. https://photojournal.jpl.nasa.gov/catalog/PIA22458
NASA Astrophysics Data System (ADS)
Stromberg, E. M.; Shaw, H.; Estabrook, P.; Neilsen, T. L.; Gunther, J.; Swenson, C.; Fish, C. S.; Schaire, S. H.
2014-12-01
Space Situational Awareness (SSA) is an area where spaceflight activities and missions can directly influence the quality of life on earth. The combination of space weather, near earth orbiting objects, atmospheric conditions at the space boundary, and other phenomena can have significant short-term and long-term implications for the inhabitants of this planet. The importance of SSA has led to increased activity in this area from both space and ground based platforms. The emerging capability of CubeSats and SmallSats provides an opportunity for these low-cost, versatile platforms to augment the SSA infrastructure. The CubeSats and SmallSats can be launched opportunistically with shorter lead times than larger missions. They can be organized both as constellations or individual sensor elements. Combining CubeSats and SmallSats with the existing NASA communications networks (TDRS Space Network, Deep Space Network and the Near Earth Network) provide a backbone structure for SSA which can be tied to a SSA portal for data distribution and management. In this poster we will describe the instruments and sensors needed for CubeSat and SmallSat SSA missions. We will describe the architecture and concept of operations for a set of opportunistic, periodically launched, SSA CubeSats and SmallSats. We will also describe the integrated communications infrastructure to support end-to-end data delivery and management to a SSA portal.
Impact of plunging breaking waves on a partially submerged cube
NASA Astrophysics Data System (ADS)
Wang, A.; Ikeda, C.; Duncan, J. H.
2013-11-01
The impact of a deep-water plunging breaking wave on a partially submerged cube is studied experimentally in a tank that is 14.8 m long and 1.2 m wide with a water depth of 0.91 m. The breakers are created from dispersively focused wave packets generated by a programmable wave maker. The water surface profile in the vertical center plane of the cube is measured using a cinematic laser-induced fluorescence technique with movie frame rates ranging from 300 to 4,500 Hz. The pressure distribution on the front face of the cube is measured with 24 fast-response sensors simultaneously with the wave profile measurements. The cube is positioned vertically at three heights relative to the mean water level and horizontally at a distance from the wave maker where a strong vertical water jet is formed. The portion of the water surface between the contact point on the front face of the cube and the wave crest is fitted with a circular arc and the radius and vertical position of the fitted circle is tracked during the impact. The vertical acceleration of the contact point reaches more than 50 times the acceleration of gravity and the pressure distribution just below the free surface shows a localized high-pressure region with a very high vertical pressure gradient. This work is supported by the Office of Naval Research under grant N000141110095.
NASA Astrophysics Data System (ADS)
Yu, Xiaozhou; Zhou, Jun; Zhu, Peijie; Guo, Jian
2018-06-01
Most of the CubeSats have a volume range from 1U to 3U, which limits their applications due to the difficulty of miniaturizing payloads. To facilitate the needs on a larger but low-cost satellite platform, the AOXiang (AOX) project has been developed by Northwestern Polytechnical University (NPU). The primary objectives of AOX project are four-folds: 1) To demonstrate the world first 12U CubeSat Star of AOXiang and 12U orbit deployer which uses an innovative electromagnetic unlocking technology. 2) To investigate the feasibility of using polarized sunlight for spacecraft attitude determination and navigation, and perform microgravity research using a miniaturized gravimeter. 3) To test a fault tolerant on-board computer using the System On the Programmable Chip (SOPC) technology, and 4) To gain the experience from developing the CubeSat and the subsystems. The CubeSat was launched in June 2016. Now, the mission has achieved all the goals. This paper provides the detail information of the AOX project, with a focus on the introduction of the subsystems of the 12U CubeSat, the orbit deployer and the payloads. The recent in-orbit results of the first NPU are also presented. In addition to the educational objective that has been reached with more than 50 young scholars and students participated in the project.
NASA Near Earth Network (NEN) and Space Network (SN) CubeSat Communications
NASA Technical Reports Server (NTRS)
Schaire, Scott H.; Shaw, Harry; Altunc, Serhat; Bussey, George; Celeste, Peter; Kegege, Obadiah; Wong, Yen; Zhang, Yuwen; Patel, Chitra; Raphael, David;
2016-01-01
There has been a recent trend to increase capability and drive down the Size, Weight and Power (SWAP) of satellites. NASA scientists and engineers across many of NASA's Mission Directorates and Centers are developing exciting CubeSat concepts and welcome potential partnerships for CubeSat endeavors. From a "Telemetry, Tracking and Command (TT&C) Systems and Flight Operations for Small Satellites" point of view, small satellites including CubeSats are a challenge to coordinate because of existing small spacecraft constraints, such as limited SWAP and attitude control, and the potential for high numbers of operational spacecraft. The NASA Space Communications and Navigation (SCaN) Program's Near Earth Network (NEN) and Space Network (SN) are customer driven organizations that provide comprehensive communications services for space assets including data transport between a mission's orbiting satellite and its Mission Operations Center (MOC). This paper presents how well the SCaN networks, SN and NEN, are currently positioned to support the emerging small small satellite and CubeSat market as well as planned enhancements for future support.
Roberts, F. Sloan; Kuhl, Kendra P.; Nilsson, Anders
2016-02-16
The activity and selectivity for CO 2/CO reduction over copper electrodes is strongly dependent on the local surface structure of the catalyst and the pH of the electrolyte. Here we investigate a unique, copper nanocube surface (CuCube) as a CO reduction electrode under neutral and basic pH, using online electrochemical mass spectroscopy (OLEMS) to determine the onset potentials and relative intensities of methane and ethylene production. To relate the unique selectivity to the surface structure, the CuCube surface reactivity is compared to polycrystalline copper and three single crystals under the same reaction conditions. Here, we find that the high selectivitymore » for ethylene over the CuCube surface is most comparable to the Cu(100) surface, which has the cubic unit cell. However, the suppression of methane production over CuCube is unique to that particular surface. Basic pH is also shown to enhance ethylene selectivity on all surfaces, again with the CuCube surface being unique.« less
Cosmic-ray anisotropy studies with IceCube
NASA Astrophysics Data System (ADS)
McNally, Frank
2014-03-01
The IceCube neutrino observatory detects tens of billions of energetic muons per year produced by cosmic-ray interactions with the atmosphere. The size of this sample has allowed IceCube to observe a significant anisotropy in arrival direction for cosmic rays with median energies between 20 and 400 TeV. This anisotropy is characterized by a large scale structure of per-mille amplitude accompanied by structures with smaller amplitudes and with typical angular sizes between 10° and 20°. IceTop, the surface component of IceCube, has observed a similar anisotropy in the arrival direction distribution of cosmic rays, extending the study to PeV energies. The better energy resolution of IceTop allows for additional studies of the anisotropy, for example a comparison of the energy spectrum in regions of a cosmic-ray excess or deficit to the rest of the sky. We present an update on the cosmic-ray anisotropy observed with IceCube and IceTop and the results of first studies of the energy spectrum at locations of cosmic-ray excess or deficit.
2010-11-16
San Luis Obispo, Calif. -- 101116-F-8290C-059 -- Roland Coelho and Ryan Nugent, students at California Polytechnic State University Cal Poly, integrate miniature research satellites called CubeSats into a Poly Picosatellite Orbital Deployer PPOD container. The PPOD and CubeSat Project were developed by Cal Poly and Stanford University’s Space Systems Development Lab for use on NASA’s Educational Launch of Nanosatellite ELaNa missions. Each CubeSat measures about 4-inches cubed and is about the same volume as a quart. The CubeSats weigh about 2.2 pounds, must conform to standard aerospace materials and must operate without propulsion. The satellites are being prepared to launch with NASA's Glory spacecraft aboard an Orbital Sciences Corp. Taurus XL rocket, targeted to lift off Feb. 23, 2011, from Vandenberg's Space Launch Complex 576-E. Glory is scheduled to collect data on the properties of aerosols and black carbon from its place in low Earth orbit. It also will help scientists understand how the sun's irradiance affects Earth's climate. Photo credit: U.S. Air Force/Jerry E. Clemens Jr.
2010-11-16
San Luis Obispo, Calif. -- 101116-F-8290C-060 -- Roland Coelho, a student at California Polytechnic State University Cal Poly, inspects the integration alignment of miniature research satellites called a CubeSats into a Poly Picosatellite Orbital Deployer PPOD container. The PPOD and CubeSat Project were developed by Cal Poly and Stanford University’s Space Systems Development Lab for use on NASA’s Educational Launch of Nanosatellite ELaNa missions. Each CubeSat measures about 4-inches cubed and is about the same volume as a quart. The CubeSats weigh about 2.2 pounds, must conform to standard aerospace materials and must operate without propulsion. The satellites are being prepared to launch with NASA's Glory spacecraft aboard an Orbital Sciences Corp. Taurus XL rocket, targeted to lift off Feb. 23, 2011, from Vandenberg's Space Launch Complex 576-E. Glory is scheduled to collect data on the properties of aerosols and black carbon from its place in low Earth orbit. It also will help scientists understand how the sun's irradiance affects Earth's climate. Photo credit: U.S. Air Force/Jerry E. Clemens Jr.
2010-11-16
San Luis Obispo, Calif. -- 101116-F-8290C-054 -- Roland Coelho and Ryan Nugent, students at California Polytechnic State University Cal Poly, integrate miniature research satellites called CubeSats into a Poly Picosatellite Orbital Deployer PPOD container. The PPOD and CubeSat Project were developed by Cal Poly and Stanford University’s Space Systems Development Lab for use on NASA’s Educational Launch of Nanosatellite ELaNa missions. Each CubeSat measures about 4-inches cubed and is about the same volume as a quart. The CubeSats weigh about 2.2 pounds, must conform to standard aerospace materials and must operate without propulsion. The satellites are being prepared to launch with NASA's Glory spacecraft aboard an Orbital Sciences Corp. Taurus XL rocket, targeted to lift off Feb. 23, 2011, from Vandenberg's Space Launch Complex 576-E. Glory is scheduled to collect data on the properties of aerosols and black carbon from its place in low Earth orbit. It also will help scientists understand how the sun's irradiance affects Earth's climate. Photo credit: U.S. Air Force/Jerry E. Clemens Jr.
NASA Astrophysics Data System (ADS)
Johnson, Michael
2015-04-01
iCubeSat, the Interplanetary CubeSat Workshop, is an annual technical workshop for researchers working on an exciting new standardised platform and opportunity for planetary and space scientists. The first workshop was held in 2012 at MIT, 2013 at Cornell, 2014 at Caltech with the 2015 workshop scheduled to take place on the 26-27th May 2015 at Imperial College London. Mission concepts and flight projects presented since 2012 have included orbiters and landers targeting asteroids, the moon, Mars, Venus, Saturn and their satellites to perform science traditionally reserved for flagship missions at a fraction of their cost. Some of the first missions proposed are currently being readied for flight in Europe, taking advantage of multiple ride share launch opportunities and technology providers. A review of these and other interplanetary CubeSat projects will be presented, covering details of their science objectives, instrument capabilities, technology, team composition, budget, funding sources, and the other programattic elements required to implement this potentially revolutionary new class of mission.
The Latest IceCube Results and the Implications
NASA Astrophysics Data System (ADS)
Mase, Keiichi
IceCube was built at the South Pole and aims to detect high energy neutrinos from the universe mainly above 100 GeV. The transparent ice media allows us to build a 1 km3 large detection volume to detect the rarely interacting particles. Neutrinos are thought to be generated at astrophysical sources such as active galactic nuclei and gamma-ray bursts. Nature of the rare interaction with matters and little deflection by a magnetic field makes it possible to explore such sources located at the deep universe. Since the neutrinos are produced through collisions of hadronic particles, the observation can elucidate the origin of cosmic rays, which is still mystery after the discovery 100 years ago. The detector was completed at the end of 2010 and is running smoothly. Recently, IceCube has found the first evidence of extraterrestrial neutrinos with energies above approximately 60 TeV. IceCube also contributes to elementary particle physics by searching for neutrinos produced in self-annihilation of SUSY particles such as neutralinos and by investigating atmospheric neutrino oscillations. The latest IceCube results and the corresponding implications are presented.
Structural and chemical orders in N i 64.5 Z r 35.5 metallic glass by molecular dynamics simulation
Tang, L.; Wen, T. Q.; Wang, N.; ...
2018-03-06
The atomic structure of Ni 64.5Zr 35.5 metallic glass has been investigated by molecular dynamics (MD) simulations. The calculated structure factors from the MD glassy sample at room temperature agree well with the X-ray diffraction (XRD) and neutron diffraction (ND) experimental data. Using the pairwise cluster alignment and clique analysis methods, we show that there are three types dominant short-range order (SRO) motifs around Ni atoms in the glass sample of Ni 64.5Zr 35.5, i.e., Mixed- Icosahedron(ICO)-Cube, Twined-Cube and icosahedron-like clusters. Furthermore, chemical order and medium-range order (MRO) analysis show that the Mixed-ICOCube and Twined-Cube clusters exhibit the characteristics ofmore » the crystalline B2 phase. In conclusion, our simulation results suggest that the weak glass-forming ability (GFA) of Ni 64.5Zr 35.5 can be attributed to the competition between the glass forming ICO SRO and the crystalline Mixed-ICO-Cube and Twined-Cube motifs.« less
Structural and chemical orders in N i 64.5 Z r 35.5 metallic glass by molecular dynamics simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, L.; Wen, T. Q.; Wang, N.
The atomic structure of Ni 64.5Zr 35.5 metallic glass has been investigated by molecular dynamics (MD) simulations. The calculated structure factors from the MD glassy sample at room temperature agree well with the X-ray diffraction (XRD) and neutron diffraction (ND) experimental data. Using the pairwise cluster alignment and clique analysis methods, we show that there are three types dominant short-range order (SRO) motifs around Ni atoms in the glass sample of Ni 64.5Zr 35.5, i.e., Mixed- Icosahedron(ICO)-Cube, Twined-Cube and icosahedron-like clusters. Furthermore, chemical order and medium-range order (MRO) analysis show that the Mixed-ICOCube and Twined-Cube clusters exhibit the characteristics ofmore » the crystalline B2 phase. In conclusion, our simulation results suggest that the weak glass-forming ability (GFA) of Ni 64.5Zr 35.5 can be attributed to the competition between the glass forming ICO SRO and the crystalline Mixed-ICO-Cube and Twined-Cube motifs.« less
NASA Near Earth Network (NEN) and Space Network (SN) Support of CubeSat Communications
NASA Technical Reports Server (NTRS)
Schaire, Scott H.; Shaw, Harry C.; Altunc, Serhat; Bussey, George; Celeste, Peter; Kegege, Obadiah; Wong, Yen; Zhang, Yuwen; Patel, Chitra; Raphael, David;
2016-01-01
There has been a historical trend to increase capability and drive down the Size, Weight and Power (SWAP) of satellites and that trend continues today. NASA scientists and engineers across many of NASAs Mission Directorates and Centers are developing exciting CubeSat concepts and welcome potential partnerships for CubeSat endeavors. From a Telemetry, Tracking and Command (TTC) Systems and Flight Operations for Small Satellites point of view, small satellites including CubeSats are a challenge to coordinate because of existing small spacecraft constraints, such as limited SWAP and attitude control, and the potential for high numbers of operational spacecraft. The NASA Space Communications and Navigation (SCaN) Programs Near Earth Network (NEN) and Space Network (SN) are customer driven organizations that provide comprehensive communications services for space assets including data transport between a missions orbiting satellite and its Mission Operations Center (MOC). This paper presents how well the SCaN networks, SN and NEN, are currently positioned to support the emerging small small satellite and CubeSat market as well as planned enhancements for future support.
NASA Astrophysics Data System (ADS)
Cutler, J.
2015-12-01
CubeSats sprung from a formative picosatellite effort at a university in the heart of Silicon Valley, took root in a university-led university environment, and have grown into complex-shaped explorers in both near and soon-to-be deep space. Private citizens, businesses, government are building and launching a variety of science, technology demonstration, and service missions. A new generation of space explorers is gaining first hand experience in space missions at all educational levels. There is new life and new energy in the space program. However, space is still difficult. The environment is harsh. Funding is sparse. This talk explores this history and the future of CubeSats from the context of a university-centric laboratory that emphasizes teaching, research, and entrepreneurial impact. It will explore the following questions: What sparked the CubeSat innovation? What are longer lasting lessons of this community? Where are places we can go next? What does it take to get there? The talk will draw on lessons learned from building over six on-orbit CubeSat missions and training hundreds of space engineers.
NASA Astrophysics Data System (ADS)
Sekhar, H.; Narayana Rao, D.
2012-07-01
Cuprous oxide nanoclusters, micro-cubes and micro-particles were successfully synthesized by reducing copper(II) salt with ascorbic acid in the presence of sodium hydroxide via a co-precipitation method. The X-ray diffraction and FTIR studies revealed that the formation of pure single-phase cubic. Raman and EPR spectral studies show the presence of CuO in as-synthesized powders of Cu2O. Transmission electron microscopy and field emission scanning electron microscopy data revealed that the morphology evolves from nanoclusters to micro-cubes and micro-particles by increasing the concentration of NaOH. Linear optical measurements show absorption peak maximum shifts towards red with changing morphology from nanoclusters to micro-cubes and micro-particles. The nonlinear optical properties were studied using open aperture Z-scan technique with 532 nm 6 ns laser pulses. Samples-exhibited both saturable as well as reverse saturable absorption. Due to confinement effects (enhanced band gap), we observed enhanced nonlinear absorption coefficient (β) in the case of nanoclusters compared to their micro-cubes and micro-particles.
NASA Astrophysics Data System (ADS)
Ali, Anwar; Mughal, M. Rizwan; Ali, Haider; Reyneri, Leonardo
2014-03-01
Electric power supply (EPS) and attitude determination and control subsystem (ADCS) are the most essential elements of any aerospace mission. Efficient EPS and precise ADCS are the core of any spacecraft mission. So keeping in mind their importance, they have been integrated and developed on a single tile called CubePMT module. Modular power management tiles (PMTs) are already available in the market but they are less efficient, heavier in weight, consume more power and contain less number of subsystems. Commercial of the shelf (COTS) components have been used for CubePMT implementation which are low cost and easily available from the market. CubePMT is developed on the design approach of AraMiS architecture: a project developed at Politecnico di Torino that provides low cost and higher performance space missions with dimensions larger than CubeSats. The feature of AraMiS design approach is its modularity. These modules can be reused for multiple missions which helps in significant reduction of the overall budget, development and testing time. One has just to reassemble the required subsystems to achieve the targeted specific mission.
On the role of grain boundary character distribution in grain growth of Al-Mg alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumoto, K.; Shibayanagi, T.; Umakoshi, Y.
1997-02-01
Grain growth behavior of recrystallized Al-Mg alloys containing 0.3 and 2.7 mass% Mg was investigated, focusing on the interconnection between development of the texture and grain boundary character distribution. An Al-0.3 mass% Mg alloy showed two stages in the change of microstructure during grain growth: the frequency of cube oriented grains and the {Sigma}1 boundary significantly increased at an early stage and then decreased. In the second stage a small amount of isolated large grains with the non-cube component grew and consumed the surrounding cube grains. In contrast, the frequency of cube oriented grains and the grain boundary character distributionmore » showed no significant change during grain growth of Al-2.7 mass% Mg. Small clusters composed of several cube grains containing {Sigma}1 boundaries were formed and their spatial distribution played an important role in the change of microstructure during grain growth. The effect of the spatial distribution on the grain growth behavior was discussed considering the energy balance at triple junctions of grain boundaries.« less
Time-Resolved CubeSat Photometry with a Low Cost Electro-Optics System
NASA Astrophysics Data System (ADS)
Gasdia, F.; Barjatya, A.; Bilardi, S.
2016-09-01
Once the orbits of small debris or CubeSats are determined, optical rate-track follow-up observations can provide information for characterization or identification of these objects. Using the Celestron 11" RASA telescope and an inexpensive CMOS machine vision camera, we have obtained time-series photometry from dozens of passes of small satellites and CubeSats over sites in Florida and Massachusetts. The fast readout time of the CMOS detector allows temporally resolved sampling of glints from small wire antennae and structural facets of rapidly tumbling objects. Because the shape of most CubeSats is known, these light curves can be used in a mission support function for small satellite operators to diagnose or verify the proper functioning of an attitude control system or deployed antenna or instrument. We call this telescope system and the accompanying analysis tools OSCOM for Optical tracking and Spectral characterization of CubeSats for Operational Missions. We introduce the capability of OSCOM for space object characterization, and present photometric observations demonstrating the potential of high frame rate small satellite photometry.
Cosmic ray spectrum, composition, and anisotropy measured with IceCube
NASA Astrophysics Data System (ADS)
Tamburro, Alessio
2014-04-01
Analysis of cosmic ray surface data collected with the IceTop array of Cherenkov detectors at the South Pole provides an accurate measurement of the cosmic ray spectrum and its features in the "knee" region up to energies of about 1 EeV. IceTop is part of the IceCube Observatory that includes a deep-ice cubic kilometer detector that registers signals of penetrating muons and other particles. Surface and in-ice signals detected in coincidence provide clear insights into the nuclear composition of cosmic rays. IceCube already measured an increase of the average primary mass as a function of energy. We present preliminary results on both IceTop-only and coincident events analysis. Furthermore, we review the recent measurement of the cosmic ray anisotropy with IceCube.
Radio Astronomy Tools in Python: Spectral-cube, pvextractor, and more
NASA Astrophysics Data System (ADS)
Ginsburg, A.; Robitaille, T.; Beaumont, C.; Rosolowsky, E.; Leroy, A.; Brogan, C.; Hunter, T.; Teuben, P.; Brisbin, D.
2015-12-01
The radio-astro-tools organization has been established to facilitate development of radio and millimeter analysis tools by the scientific community. The first packages developed under its umbrella are: • The spectral-cube package, for reading, writing, and analyzing spectral data cubes • The pvextractor package for extracting position-velocity slices from position-position-velocity cubes along aribitrary paths • The radio-beam package to handle gaussian beams in the context of the astropy quantity and unit framework • casa-python to enable installation of these packages - and any other - into users' CASA environments without conflicting with the underlying CASA package. Community input in the form of code contributions, suggestions, questions and commments is welcome on all of these tools. They can all be found at http://radio-astro-tools.github.io.
CHARM: A CubeSat Water Vapor Radiometer for Earth Science
NASA Technical Reports Server (NTRS)
Lim, Boon; Mauro, David; DeRosee, Rodolphe; Sorgenfrei, Matthew; Vance, Steve
2012-01-01
The Jet Propulsion Laboratory (JPL) and Ames Research Center (ARC) are partnering in the CubeSat Hydrometric Atmospheric Radiometer Mission (CHARM), a water vapor radiometer integrated on a 3U CubeSat platform, selected for implementation under NASA Hands-On Project Experience (HOPE-3). CHARM will measure 4 channels at 183 GHz water vapor line, subsets of measurements currently performed by larger and more costly spacecraft (e.g. ATMS, AMSU-B and SSMI/S). While flying a payload that supports SMD science objectives, CHARM provides a hands-on opportunity to develop technical, leadership, and project skills. CHARM will furthermore advance the technology readiness level (TRL) of the 183 GHz receiver subsystem from TRL 4 to TRL 6 and the CubeSat 183 GHz radiometer system from TRL 4 to TRL 7.