Science.gov

Sample records for margin sediments santa

  1. Prokaryotic diversity associated with high rate of organic matter mineralization in continental margin sediments in Santa Barbara Basin

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Berelson, W.; Sansone, F.; Orphan, V. J.

    2005-12-01

    In Santa Barbara Basin sediments, sulfate and total carbon dioxide profiles (TCO2) define a 'hot zone' where sulfate concentrations go to 0 and TCO2 gradients decline dramatically. The average linear gradient of sulfate as it approaches the 'hot zone' defines the sulfate flux of 0.426 ? 0.036 mmol-S per m2 per day. The average linear gradient of TCO2 defines diffusion away from this zone = 0.615 ? 0.077 mmol-C per m2 per day. The difference between the sulfate flux to the zone and the TCO2 flux away from the zone requires a source of TCO2 generated within the 'hot zone' which does not involve the simple reaction stoichiometry of anaerobic methane oxidation. Little is known about the diversity and distribution of prokaryotic community in the 'hot zone'. In the present study, a gravity core (1.7 m in length) was collected at a continental margin site in Santa Barbara Basin (water depth of 591 m). The prokaryotic diversity was analyzed for four sediment horizons that are within, above, and below the 'hot zone', Genomic DNA was extracted and amplified using 16S rDNA primers targeting Bacteria and Archaea. Screening of more than 300 colonies from these 16S rDNA clone libraries revealed a diversity of bacterial species, including members from Proteobacteria, Green-Non-Sulfur bacteria, Planctomycetes, and Candidate division JS1. The detection of sequences related to uncultured Desulfobacter sp. suggests that sulfate reduction is one of the electron-accepting processes. Archaeal populations were affiliated with members from the Crenarchaeota marine benthic group B, the Euryarchaeota marine benthic group D, the Terrestrial Miscellaneous Euryarchaeotal Group (TMEG), and other uncultured relatives of the Thermoplasmatales. Preliminary findings suggest the abundance of marine benthic group B Crenarchaeota decreased with depth, while marine benthic group D Euryarchaeota populations increased with depth. The detection of marine benthic group B and D was consistent with previous

  2. Modern sedimentary processes in the Santa Monica, California continental margin: sediment accumulation, mixing and budget.

    PubMed

    Alexander, Clark R; Venherm, Claudia

    2003-01-01

    Sediment input to SMB appears to be associated with at least two point sources on the shelf, with Malibu Creek and the Hyperion sewage outfall being the most significant. Sediment contributions are sufficient to support apparent mass accumulation rates near these sources up to approximately 1.8 g/cm(2) year, which with distance decrease to approximately 0.5 g/cm(2) year near the shelf break (approximately 80-100 m water depth). Sequestering of material on the shelf and decreasing sediment supply to the slope is evident as rates decrease between 100 and 200 m water depths to less than 0.2 g/cm(2) year. Below 100-200 m water depth, rates are relatively slow throughout a broad region of the slope (0.07-0.14 g/cm(2) year). These slower rates are in general agreement with rates determined on the flanks of the California Borderland basins. Sediment texture fines from approximately 3.5 phi to approximately 7 phi with distance offshore. Texture does not exhibit significant changes from surficial values with depth in the seabed at any given site or between sites on the slope. This similarity in rates and downcore texture over such a broad extent suggests that hemiplegic sedimentation is the dominant mechanism of sediment delivery in water depths >200 m. Seabed distributions of radionuclides suggest that apparent accumulation rates in SMB may be twice the actual accumulation rates. A sediment budget documents that over the past century at least, SMB has served as a sink for 50-100% of the natural and anthropogenic inputs to the coastal ocean.

  3. Variations in archaeal and bacterial diversity associated with the sulfate-methane transition zone in continental margin sediments (Santa Barbara Basin, California).

    PubMed

    Harrison, Benjamin K; Zhang, Husen; Berelson, Will; Orphan, Victoria J

    2009-03-01

    The sulfate-methane transition zone (SMTZ) is a widespread feature of continental margins, representing a diffusion-controlled interface where there is enhanced microbial activity. SMTZ microbial activity is commonly associated with the anaerobic oxidation of methane (AOM), which is carried out by syntrophic associations between sulfate-reducing bacteria and methane-oxidizing archaea. While our understanding of the microorganisms catalyzing AOM has advanced, the diversity and ecological role of the greater microbial assemblage associated with the SMTZ have not been well characterized. In this study, the microbial diversity above, within, and beneath the Santa Barbara Basin SMTZ was described. ANME-1-related archaeal phylotypes appear to be the primary methane oxidizers in the Santa Barbara Basin SMTZ, which was independently supported by exclusive recovery of related methyl coenzyme M reductase genes (mcrA). Sulfate-reducing Deltaproteobacteria phylotypes affiliated with the Desulfobacterales and Desulfosarcina-Desulfococcus clades were also enriched in the SMTZ, as confirmed by analysis of dissimilatory sulfite reductase (dsr) gene diversity. Statistical methods demonstrated that there was a close relationship between the microbial assemblages recovered from the two horizons associated with the geochemically defined SMTZ, which could be distinguished from microbial diversity recovered from the sulfate-replete overlying horizons and methane-rich sediment beneath the transition zone. Comparison of the Santa Barbara Basin SMTZ microbial assemblage to microbial assemblages of methane seeps and other organic matter-rich sedimentary environments suggests that bacterial groups not typically associated with AOM, such as Planctomycetes and candidate division JS1, are additionally enriched within the SMTZ and may represent a common bacterial signature of many SMTZ environments worldwide.

  4. Geology of the continental margin beneath Santa Monica Bay, Southern California, from seismic-reflection data

    USGS Publications Warehouse

    Fisher, M.A.; Normark, W.R.; Bohannon, R.G.; Sliter, R.W.; Calvert, A.J.

    2003-01-01

    We interpret seismic-reflection data, which were collected in Santa Monica Bay using a 70-in3 generator-injector air gun, to show the geologic structure of the continental shelf and slope and of the deep-water, Santa Monica and San Pedro Basins. The goal of this research is to investigate the earthquake hazard posed to urban areas by offshore faults. These data reveal that northwest of the Palos Verdes Peninsula, the Palos Verdes Fault neither offsets the seafloor nor cuts through an undeformed sediment apron that postdates the last sea level rise. Other evidence indicates that this fault extends northwest beneath the shelf in the deep subsurface. However, other major faults in the study area, such as the Dume and San Pedro Basin Faults, were active recently, as indicated by an arched seafloor and offset shallow sediment. Rocks under the lower continental slope are deformed to differing degrees on opposite sides of Santa Monica Canyon. Northwest of this canyon, the continental slope is underlain by a little-deformed sediment apron; the main structures that deform this apron are two lower-slope anticlines that extend toward Point Dume and are cored by faults showing reverse or thrust separation. Southeast of Santa Monica Canyon, lower-slope rocks are deformed by a complex arrangement of strike-slip, normal, and reverse faults. The San Pedro Escarpment rises abruptly along the southeast side of Santa Monica Canyon. Reverse faults and folds underpinning this escarpment steepen progressively southeastward. Locally they form flower structures and cut downward into basement rocks. These faults merge downward with the San Pedro Basin fault zone, which is nearly vertical and strike slip. The escarpment and its attendant structures diverge from this strike-slip fault zone and extend for 60 km along the margin, separating the continental shelf from the deep-water basins. The deep-water Santa Monica Basin has large extent but is filled with only a thin (less than 1.5-km

  5. Continental margin sedimentation: from sediment transport to sequence stratigraphy

    USGS Publications Warehouse

    Nittrouer, Charles A.; Austin, James A.; Field, Michael E.; Kravitz, Joseph H.; Syvitski, James P.M.; Wiberg, Patricia L.; Nittrouer, Charles A.; Austin, James A.; Field, Michael E.; Kravitz, Joseph H.; Syvitski, James P. M.; Wiberg, Patricia L.

    2007-01-01

    This volume on continental margin sedimentation brings together an expert editorial and contributor team to create a state-of-the-art resource. Taking a global perspective, the book spans a range of timescales and content, ranging from how oceans transport particles, to how thick rock sequences are formed on continental margins. - Summarizes and integrates our understanding of sedimentary processes and strata associated with fluvial dispersal systems on continental shelves and slopes - Explores timescales ranging from particle transport at one extreme, to deep burial at the other - Insights are presented for margins in general, and with focus on a tectonically active margin (northern California) and a passive margin (New Jersey), enabling detailed examination of the intricate relationships between a wide suite of sedimentary processes and their preserved stratigraphy - Includes observational studies which document the processes and strata found on particular margins, in addition to numerical models and laboratory experimentation, which provide a quantitative basis for extrapolation in time and space of insights about continental-margin sedimentation - Provides a research resource for scientists studying modern and ancient margins, and an educational text for advanced students in sedimentology and stratigraphy

  6. Sedimentation in Santa Margarita Lake, San Luis Obispo County, California

    USGS Publications Warehouse

    Glysson, G. Douglas

    1977-01-01

    The 1975 storage capacity of Santa Margarita Lake in San Luis Obispo County, Calif., was 41,400 acre-feet, a decrease of 3,400 acre-feet since 1941. Usable capacity decreased from 25,800 to 23,000 acre-feet. Long-term sediment yield for the Salinas River basin upstream from the lake was estimated at 1,150 tons per square mile per year. A correlation between the annual water discharge of the Salinas River near Pozo and the annual quantity of sediment deposited in the lake was developed that can be used to stimate future sediment deposition. (Woodard-USGS)

  7. Sediment accumulation on the Southern California Bight continental margin during the twentieth century

    USGS Publications Warehouse

    Alexander, C.R.; Lee, H.J.

    2009-01-01

    Sediment discharged into the portion of the Southern California Bight extending from Santa Barbara to Dana Point enters a complex system of semi-isolated coastal cells, narrow continental shelves, submarine canyons, and offshore basins. On both the Santa Monica and San Pedro margins, 210Pb accumulation rates decrease in an offshore direction (from ??0.5 g cm-2yr-1 to 0.02 g cm-2yr -1), in concert with a fining in sediment grain size (from 4.5?? to 8.5??), suggesting that offshore transport of wave-resuspended material occurs as relatively dilute nepheloid layers and that hemiplegic sedimentation dominates the supply of sediment to the outer shelf, slope, and basins. Together, these areas are effectively sequestering up to 100% of the annual fluvial input. In contrast to the Santa Monica margin, which does not display evidence of mass wasting as an important process of sediment delivery and redistribution, the San Pedro margin does provide numerous examples of failures and mass wasting, suggesting that intraslope sediment redistribution may play a more important role there. Basin deposits in both areas exhibit evidence of turbidites tentatively associated with both major floods and earthquakes, sourced from either the Redondo Canyon (San Pedro Basin) or Dume Canyon (Santa Monica Basin). On the Palos Verdes shelf, sediment-accumulation rates decrease along and across the shelf away from the White's Point outfall, which has been a major source of contaminants to the shelf deposits. Accumulation rates prior to the construction of the outfall were ??0.2 g cm-2yr-1 and increased 1.5-3.7 times during peak discharges from the outfall in 1971. The distal rate of accumulation has decreased by ??50%, from 0.63 g cm -2yr-1 during the period 1971-1992 to 0.29 g cm -2yr-1 during the period 1992-2003. The proximal rate of accumulation, however, has only decreased ??10%, from 0.83 g cm -2yr-1 during the period 1971-1992 to 0.73 g cm -2yr-1 during the period 1992-2003. Effluent

  8. Across-shelf sediment transport since the Last Glacial Maximum, southern California margin

    USGS Publications Warehouse

    Sommerfield, C.K.; Lee, H.J.

    2004-01-01

    Correlation of continental shelf-slope stratigraphy in Santa Monica Bay (southern California) with Ocean Drilling Program records for nearby slope-basin sites has illuminated the timing and scale of terrigenous sediment dispersal on margin since the Last Glacial Maximum (LGM). Marine flooding surfaces preserved in a transgressive sequence on the Santa Monica Shelf provide a key link between base-level elevation and sediment transport across shelf. Sediment-accumulation rates at slope-basin sites were maximal ca. 15-10 ka, well after the LGM, decreased during the 12-9 ka transition from fluvial-estuarine to fully marine conditions on the shelf, and decelerated throughout the Holocene to 30%-75% of their values at the LGM. The deceleration is interpreted to manifest a landward shift in the margin depocenter with the onset of transgressive sedimentation beginning when sea level surmounted the shelf edge ca. 13 ka, as predicted by sequence-stratigraphic models. However, the records make clear that factors other than base level modulated slope-basin accumulation rates during the deglaciation. ?? 2004 Geological Society of America.

  9. Late Pleistocene to Holocene sedimentation and hydrocarbon seeps on the continental shelf of a steep, tectonically active margin, southern California, USA

    USGS Publications Warehouse

    Draut, Amy E.; Hart, Patrick E.; Lorenson, T.D.; Ryan, Holly F.; Wong, Florence L.; Sliter, Ray W.; Conrad, James E.

    2009-01-01

    Small, steep, uplifting coastal watersheds are prolific sediment producers that contribute significantly to the global marine sediment budget. This study illustrates how sedimentation evolves in one such system where the continental shelf is largely sediment-starved, with most terrestrial sediment bypassing the shelf in favor of deposition in deeper basins. The Santa Barbara-Ventura coast of southern California, USA, is considered a classic area for the study of active tectonics and of Tertiary and Quaternary climatic evolution, interpretations of which depend upon an understanding of sedimentation patterns. High-resolution seismic-reflection data over >570 km2 of this shelf show that sediment production is concentrated in a few drainage basins, with the Ventura and Santa Clara River deltas containing most of the upper Pleistocene to Holocene sediment on the shelf. Away from those deltas, the major factor controlling shelf sedimentation is the interaction of wave energy with coastline geometry. Depocenters containing sediment 5-20 m thick exist opposite broad coastal embayments, whereas relict material (bedrock below a regional unconformity) is exposed at the sea floor in areas of the shelf opposite coastal headlands. Locally, natural hydrocarbon seeps interact with sediment deposition either to produce elevated tar-and-sediment mounds or as gas plumes that hinder sediment settling. As much as 80% of fluvial sediment delivered by the Ventura and Santa Clara Rivers is transported off the shelf (some into the Santa Barbara Basin and some into the Santa Monica Basin via Hueneme Canyon), leaving a shelf with relatively little recent sediment accumulation. Understanding factors that control large-scale sediment dispersal along a rapidly uplifting coast that produces substantial quantities of sediment has implications for interpreting the ancient stratigraphic record of active and transform continental margins, and for inferring the distribution of hydrocarbon resources

  10. Sediment discharge in the Santa Clara River Basin, Ventura and Los Angeles Counties, California

    USGS Publications Warehouse

    Williams, Rhea P.

    1979-01-01

    Sediment data collected in the Santa Clara River in California basin, during the 1967-75 water years were analyzed to determine the particle size and quantity of sediment transported past three gaging stations. The total sediment discharge of the basin , computed from records of Santa Clara River at Montalvo for water years 1968-75, was 63.5 million tons, of which 59.5 million tons was carried in suspension and an estimated 4 million tons was transported as unsampled sediment discharge. About 17.7 million tons, or 28 percent of the total sediment discharge, was coarse sediment (particles larger than 0.062 millimeter). Most of the sediment was transported during only a few days of floodflow each year. During the 1968-75 water years, approximately 55 percent of the total sediment was transported in 2 days and 92 percent was transported in 53 days. The long-term (1928-75) average annual sediment discharge of the Santa Clara River at Montalvo is estimated at 3.67 million tons. Of that quantity, 2.58 million tons consisted of fine sediment and 1.09 million tons consisted of coarse sediment. A sediment budget for the Santa Clara River basin was estimated for sediment discharges under both natural and actual conditions. The major difference between natural and actual sediment discharges of the Santa Clara River basin is the sediment intercepted upstream from Lake Piru. The combined trap efficiency of Lake Piru and Pyramid Lake approaches 100 percent. Sediment deposited in these reservoirs resulted in about a 6-percent reduction of sediment to the Santa Clara River basin during the historical period (1928-75) and a 12-percent reduction during the period most affected by dams (1953-75). Sediment losses to the basin by gravel mining, diversion of flows, and interception of sediment in the Castaic Creek basin resulted in additional reductions of 2 percent during the period 1928-75 and 4 percent during the period 1953-75. (Kosco-USGS)

  11. Eel River margin source-to-sink sediment budgets: revisited

    USGS Publications Warehouse

    Warrick, Jonathan A.

    2014-01-01

    The Eel River coastal margin has been used as a representative source-to-sink sediment dispersal system owing to its steep, high-sediment yield river and the formation of sedimentary strata on its continental shelf. One finding of previous studies is that the adjacent continental shelf retains only ~25% of the Eel River fine-grained sediment (less than 63 μm) discharged over time scales of both individual floods and the 20th century, thus suggesting that the Eel shelf trapping-efficiency is uniquely lower than other similar systems. Here I provide data and analyses showing that sediment discharge relationships in the Eel River have varied strongly with time and include substantial decreases in suspended-sediment concentrations during the latter 20th century. Including these trends in margin-wide sediment budgets, I show that previous Eel River sediment discharge rates were overestimated by a factor of two. Thus, revised sediment budgets shown here reveal that the Eel shelf retained ~50% of the discharged river fine-grained suspended sediment during intensively sampled events of 1995–97 and over the 20th century. In light of this, hypotheses about high rates of sediment export away from the primary shelf depocenter should be reevaluated.

  12. Physical subdivision and description of the water-bearing sediments of the Santa Clara Valley, California

    USGS Publications Warehouse

    Wentworth, Carl M.; Jachens, Robert C.; Williams, Robert A.; Tinsley, John C.; Hanson, Randall T.

    2015-01-01

    Maps and cross sections show the elevations of cycle boundaries and the underlying bedrock surface, the varying thicknesses of the cycles and of their fine tops and coarse bottoms, and the aggregate thickness of coarse layers in those bottom intervals. Coarse sediment is more abundant toward some parts of the basin margin and in the southern part of the basin. Cycle boundary surfaces are relatively smooth, and their shapes are consistent with having been intercycle topographic surfaces. The underlying bedrock surface has a relief of more than 1,200 feet and deepens toward the center of the basin and the west edge of the fault-bounded Evergreen Basin, which is concealed beneath the east side of the Quaternary basin. The absence of consistent abrupt changes in thicknesses or boundary elevations across the basin or in cross section indicates that the interior of the basin is largely unfaulted, with the Silver Creek strand of the San Andreas system at the west edge of the Evergreen Basin being the sole exception. The east and west margins of the Santa Clara Basin, in contrast, are marked by reverse and thrust fault systems.

  13. Deep sea sedimentation processes and geomorphology: Northwest Atlantic continental margin

    NASA Astrophysics Data System (ADS)

    Mosher, David; Campbell, Calvin; Gardner, Jim; Chaytor, Jason; Piper, David; Rebesco, Michele

    2017-04-01

    Deep-sea sedimentation processes impart a fundamental control on the morphology of the western North Atlantic continental margin from Blake Spur to Hudson Strait. This fact is illustrated by the variable patterns of cross-margin gradients that are based on extensive new multibeam echo-sounder data informed by subbottom profiler and seismic reflection data. Erosion by off-shelf sediment transport in turbidity currents creates gullies, canyons and channels and a steep upper slope. Amalgamation of these conduits produces singular channels and turbidite fan complexes on the lower slope, flattening slope-profile gradients. The effect is an exponentially decaying "graded" slope profile. Comparatively, sediment mass failure produces steeper upper slopes due to head scarp development and a wedging architecture to the lower slope as deposits thin in the downslope direction. This process results in either a "stepped" slope, and/or a significant downslope gradient change where MTDs pinch out. Large drift deposits created by geostrophic currents are developed all along the margin. Blake Ridge, Sackville Spur, and Hamilton Spur are large detached drifts on disparate parts of the margin. They form a linear "above grade" profile along their crests from the shelf to abyssal plain. Deeper portions of the US continental margin are dominated by the Chesapeake Drift and Hatteras Outer Ridge; both plastered elongate mounded drifts. Farther north, particularly on the Grand Banks margin, are plastered and separated drifts. These drifts form "stepped" slope profiles, where they onlap the margin. Trough-mouth fan complexes become more common along the margin with increasing latitude. Sediment deposition and retention, particularly those dominated by glacigenic debris flows, characterize these segments producing an "above grade" slope profile. Understanding these geomorphological consequences of deep sea sedimentation processes is important to extended continental shelf mapping in which

  14. SEDIMENT AND PLANT PHOSPHORUS IN TWO THALASSIA TESTUDINUM SEAGRASS BEDS OF SANTA ROSA SOUND, NW FLORIDA

    EPA Science Inventory

    We investigated phosphorus concentrations in the seagrass, Thalassia testudinum, and the supporting quartz sediments of two meadows in Santa Rosa Sound. One meadow was sampled during 2002, and the other during 2003. Triplicate sediment and biomass cores were obtained from beneath...

  15. SEDIMENT AND PLANT PHOSPHORUS IN TWO THALASSIA TESTUDINUM SEAGRASS BEDS OF SANTA ROSA SOUND, NW FLORIDA

    EPA Science Inventory

    We investigated phosphorus concentrations in the seagrass, Thalassia testudinum, and the supporting quartz sediments of two meadows in Santa Rosa Sound. One meadow was sampled during 2002, and the other during 2003. Triplicate sediment and biomass cores were obtained from beneath...

  16. Terrestrial organic carbon contributions to sediments on the Washington margin

    NASA Astrophysics Data System (ADS)

    Prahl, F. G.; Ertel, J. R.; Goni, M. A.; Sparrow, M. A.; Eversmeyer, B.

    1994-07-01

    Elemental and stable carbon isotopic compositions and biomarker concentrations were determined in sediments from the Columbia River basin and the Washington margin in order to evaluate geochemical approaches for quantifying terrestrial organic matter in marine sediments. The biomarkers include: an homologous series of long-chain n-alkanes derived from the surface waxes of higher plants; phenolic and hydroxyalkanoic compounds produced by CuO oxidation of two major vascular plant biopolymers, lignin and cutin. All marine sediments, including samples collected from the most remote sites in Cascadia Basin, showed organic geochemical evidence for the presence of terrestrial organic carbon. Using endmember values for the various biomarkers determined empirically by two independent means, we estimate that the terrestrial contribution to the Washington margin is ~ 60% for shelf sediments, ~ 30% for slope sediments, and decreases further to ≤15% in basin sediments. Results from the same geochemical measurements made with depth in gravity core 6705-7 from Cascadia Seachannel suggest that our approach to assess terrestrial organic carbon contributions to contemporary deposits on the Washington margin can be applied to the study of sediments depositing in this region since the last glacial period.

  17. A conceptual model for river water and sediment dispersal in the Santa Barbara Channel, California

    USGS Publications Warehouse

    Warrick, J.A.; Mertes, L.A.K.; Washburn, L.; Siegel, D.A.

    2004-01-01

    The ephemeral Santa Clara River delivers large amounts of freshwater and sediment to the eastern Santa Barbara Channel during brief, episodic discharge events. This discharge into the channel was characterized here with shipboard measurements during floods of 1997 and 1998. Within approximately 1-km of the river mouth, the river discharge quickly stratifies into a freshened, turbid surface plume and a bottom nephloid layer. Observations immediately off the Santa Clara River mouth on a peak day of river discharge revealed that sediment rapidly settled from the freshened surface waters, as suspended sediment in the freshened surface plume contained only ???6% of the sediment mass expected if the sediment mixed conservatively. On the two subsequent days the reduction of sediment mass in the surface plume continued at ???50% per day. These observations suggest that river sediment undergoes rapid initial settling within ???1-km of the river mouth, followed by somewhat slower rates of settling. Although we did not measure sedimentation or bottom boundary layer processes, our mass balance results suggest that almost all of the river sediment either escapes along or deposits upon the inner shelf seabed.

  18. Geohistory analysis of the Santa Maria basin, California, and its relationship to tectonic evolution of the continental margin

    SciTech Connect

    McCrory, P.A.; Arends, R.G. ); Ingle, J.C. Jr. ); Isaacs, C.M.; Stanley, R.G. ); Thornton, M.L.C. )

    1991-02-01

    The Santa Maria basin of central California is a geologically complex area located along the tectonically active California continental margin. The record of Cenozoic tectonism preserved in Santa Maria strata provides an opportunity to compare the evolution of the region with plate tectonic models for Cenozoic interactions along the margin. Geohistory analysis of Neogene Santa Maria basin strata provides important constraints for hypotheses of the tectonic evolution of the central California margin during its transition from a convergent to a transform plate boundary. Preliminary analyses suggest that the tectonic evolution of the Santa Maria area was dominated by coupling between adjacent oceanic plates and the continental margin. This coupling is reflected in the timing of major hiatuses within the basin sedimentary sequence and margin subsidence and uplift which occurred during periods of tectonic plate adjustment. Stratigraphic evidence indicates that the Santa Maria basin originated on the continental shelf in early Miocene time. A component of margin subsidence is postulated to have been caused by cessation of spreading on adjacent offshore microplates approximately 19-18 ma. A sharp reduction in rate of tectonic subsidence in middle Miocene time, observed in the Santa Maria basin both onshore and offshore, was coeval with rotation of crustal blocks as major shearing shifts shoreward. Tectonic uplift of two eastern sites, offshore Point Arguello and near Point Sal, in the late Miocene may have been related to a change to transpressional motion between the Pacific and North American plates, as well as to rotation of the western Transverse Ranges in a restraining geometry.

  19. Physical properties of southern Alaska margin sediments in the context of global convergent margins

    NASA Astrophysics Data System (ADS)

    Daigle, H.; Piña, O.; Screaton, E.; James, S.

    2014-12-01

    At convergent margins, the deformation response due to external forcing by sedimentation, tectonic stress, and volume changes during chemical reactions is closely interrelated with the ability of excess pore pressure to dissipate. These excess pore pressures in turn can affect plate boundary fault location and strength, rates of sediment accretion or subduction, the taper angle of material on the overriding plate, and may also play a role in the generation of earthquakes and propagation of seismic slip. Offshore southern Alaska, rapid sedimentation and glacial loading are interpreted to have influenced the location of thrust faulting by rapid transport of sediment offshore, where previously active faults were deactivated by increased normal stresses as a result of sediment loading. The response of the wedge to external forcing is linked to permeability of the wedge sediments, as well as those in the underriding plate. We determined permeability of sediments from the glacial sediment dominated accretionary wedge, sampled at Sites U1420 and U1421 on the Yakutat Block, and sediments from the Surveyor Fan that overlies the Pacific Plate and are inputs to the Aleutian Trench, sampled at Sites U1417 and U1418. We found that the Surveyor Fan sediments have porosity-permeability relationships that are comparable to sediments from other reference sites worldwide. However, the sediments in the wedge have somewhat higher permeability, much larger grain sizes, and are much less compressible compared with other wedge sediments. This suggests that the physical properties that control overpressure generation and dissipation in the input sediments to the Aleutian Trench are comparable to other subduction zones, but that the accretionary wedge on the Yakutat Block is uniquely strong and well-drained due to the predominance of glacigenic sediments.

  20. Thickness of Santa Fe Group sediments in the Espanola Basin south of Santa Fe, New Mexico, as estimated from aeromagnetic data

    USGS Publications Warehouse

    Phillips, Jeffrey D.; Grauch, V.J.S.

    2004-01-01

    In the southern Espa?ola basin south of Santa Fe, New Mexico, weakly magnetic Santa Fe Group sediments of Oligocene to Pleistocene age, which represent the primary aquifers for the region, are locally underlain by moderately to strongly magnetic igneous and volcaniclastic rocks of Oligocene age. Where this relationship exists, the thickness of Santa Fe Group sediments, and thus the maximum thickness of the aquifers, can be estimated from quantitative analysis of high-resolution aeromagnetic data. These thickness estimates provide guidance for characterizing the ground-water resources in between scattered water wells in this area of rapid urban development and declining water supplies. This report presents one such analysis based on the two-step extended Euler method for estimating depth to magnetic sources. The results show the general form of a north-trending synclinal basin located between the Cerrillos Hills and Eldorado with northward thickening of Santa Fe Group sediments. The increase in thickness is gradual from the erosional edge on the south to a U-shaped Santa Fe embayment hinge line, north of which sediments thicken much more dramatically. Along the north-south basin axis, Santa Fe Group sediments thicken from 300 feet (91 meters) at the hinge line near latitude 35o32'30'N to 2,000 feet (610 meters) at the Cerrillos Road interchange at Interstate 25, north of latitude 35o36'N. The depth analysis indicates that, superimposed on this general synclinal form, there are many local areas where the Santa Fe Group sediments may be thickened by a few hundred feet, presumably due to erosional relief on the underlying Oligocene volcanic and volcaniclastic rocks. Some larger areas of greater apparent thickening occur where the presence of magnetic rocks directly underlying the Santa Fe Group is uncertain. Where magnetic rocks are absent beneath the Santa Fe Group, the thickness cannot be estimated from the aeromagnetic data.

  1. The dynamics of fine-grain sediment dredged from Santa Cruz Harbor

    USGS Publications Warehouse

    Storlazzi, Curt D.; Conaway, Christopher H.; Presto, M. Katherine; Logan, Joshua B.; Cronin, Katherine; van Ormondt, Maarten; Lescinski, Jamie; Harden, E. Lynne; Lacy, Jessica R.; Tonnon, Pieter K.

    2011-01-01

    In the fall and early winter of 2009, a demonstration project was done at Santa Cruz Harbor, California, to determine if 450 m3/day of predominantly (71 percent) mud-sized sediment could be dredged from the inner portion of the harbor and discharged to the coastal ocean without significant impacts to the beach and inner shelf. During the project, more than 7600 m3 of sediment (~5400 m3 of fine-grain material) was dredged during 17 days and discharged approximately 60 m offshore of the harbor at a depth of 2 m on the inner shelf. The U.S. Geological Survey's Pacific Coastal and Marine Science Center was funded by the U.S. Army Corps of Engineers and the Santa Cruz Port District to do an integrated mapping and process study to investigate the fate of the mud-sized sediment dredged from the inner portion of Santa Cruz Harbor and to determine if any of the fine-grain material settled out on the shoreline and/or inner shelf during the fall and early winter of 2009. This was done by collecting highresolution oceanographic and sediment geochemical measurements along the shoreline and on the continental shelf of northern Monterey Bay to monitor the fine-grain sediment dredged from Santa Cruz Harbor and discharged onto the inner shelf. These in place measurements, in conjunction with beach, water column, and seabed surveys, were used as boundary and calibration information for a three-dimensional numerical circulation and sediment dynamics model to better understand the fate of the fine-grain sediment dredged from Santa Cruz Harbor and the potential consequences of disposing this type of material on the beach and on the northern Monterey Bay continental shelf.

  2. Patterns of late Quaternary shelf-margin sedimentation, southwest Louisiana

    SciTech Connect

    Suter, J.R.; Berryhill, H.L.

    1986-09-01

    Late Quaternary extension of the continental shelf in the northern Gulf of Mexico has been largely accomplished by deposition at the shelf margin during sea level lowstands. The distribution and geometry of facies suggest that delta progradation during sea level fall and lowstand is a principal process for shelf accretion. Along the shelf margin of southwest Louisiana, sets of deltaic deposits corresponding to the last two lowstands of sea level have been mapped from high-resolution seismic profiles. Individual deltas extend farther than 5000 m/sup 2/ and are more than 160 m thick. Diapirism has had a controlling effect on sedimentation patterns of the shelf-margin deltas throughout their depositional histories. Shelf-margin deltas have also been the loci for the transfer of large volumes of sediment from the shelf to the upper slope by mass transport, with buried submarine troughs formed by retrogressive shelf-edge failure in association with major streams acting as conduits for sediment movement. In southwest Louisiana, mass transport deposits follow depressions formed by salt diapirism rather than creating broad aprons on the slope.

  3. Cretaceous to Eocene passive margin sedimentation in Northeastern Venezuela

    SciTech Connect

    Erikson, J.P. )

    1993-02-01

    Twenty two palinspastic paleogeographic maps are presented for the Cretaceous to Eocene strata of the Serrania del Interior of northeastern Venezuela. The mapped lithologies, environmental conditions, and evolving depositional systems record [approximately]90 m.y. of dominantly marine sedimentation on the only observable Mesozoic passive margin in the Western Hemisphere. The depositional systems of the passive margin are heterogeneous at lateral (i.e., along-margin) length scales greater than [approximately]40 km. The primary lateral heterogeneity is caused by a major Lower Cretaceous deltaic system that emanated southwest of the Serrania del Interior. All important intervals, such as the laterally variable Aptian-Albian El Cantil platform limestone and the hydrocarbon source rocks of the Upper Cretaceous Querecual and San Antonio formations, are related to probable causal mechanisms and environmental conditions. Stratigraphic events have been interpreted as of either local or regional extent; based on a combination of outcrop sedimentologic analyses and regional depositional systems interpretation. The 3-dimensional distribution of depositional systems and systems tracts reveals 4-6 regional sequence boundaries separated by 4-20 m.y. Subsidence analyses support the facies interpretation of a passive margin by showing continuous, thermally dominated subsidence during the Cretaceous to Eocene interval. Subsidence and accumulation rates increased and facies changed significantly in the Oligocene, indicating the end of passive margin sedimentation and the initiation of foredeep subsidence and accumulation associated with overthrusting the eastward-advancing Caribbean Plate.

  4. Radiocarbon geochronology of the sediments of the São Paulo Bight (southern Brazilian upper margin).

    PubMed

    Mahiques, Michel M; Sousa, Silvia H M; Burone, Leticia; Nagai, Renata H; Silveira, Ilson C A; Figueira, Rubens C L; Soutelino, Rafael G; Ponsoni, Leandro; Klein, Daniel A

    2011-09-01

    The aim of this work was to generate an inventory of the data on radiocarbon datings obtained from sediments of the São Paulo Bight (southern Brazilian upper margin) and to analyze the data in terms of Late Quaternary sedimentary processes and sedimentation rates. A total of 238 radiocarbon datings from materials collected using differents ampling procedures was considered for this work. The sedimentation rates varied from less than 2 to 68 cm.kyr(-1). The highest sedimentation rate values were found in a low-energy (ría type) coastal system as well as in the upwelling zones of Santa Catarina and Cabo Frio. The lowest rates were found on the outer shelf and upper slopes. Our results confirm the strong dependency of the shelf currents, with an emphasis to the terrigenous input from the Río de La Plata outflow which is transported via the Brazilian Coastal Current, as well as of the coupled Brazil Current - Intermediate Western Boundary Current (BC-IWBC) dynamics on the sedimentary processes. At least three indicators of the paleo sea level were found at 12200 yr BP (conventional radiocarbon age) (103 meters below sea level - mbsl), 8300-8800 cal yr BP (13 mbsl) and 7700-8100 cal yr BP (6 mbsl).

  5. Towards a sediment budget for the Santa Cruz shelf

    USGS Publications Warehouse

    Eittreim, S.L.; Xu, J. P.; Noble, M.; Edwards, B.D.

    2002-01-01

    A conceptual model is presented for the northern Monterey Bay continental shelf in which coarse sediment moves southward along the coast in the littoral zone while fine sediment moves to the north by advection and diffusion along the midshelf. Data from measurements and estimates of various sediment sources and sinks show that the midshelf mudbelt is the dominant sink for fine-grained sediment introduced into Monterey Bay. The principal sources of the fine sediment are the three rivers that enter Monterey Bay: the San Lorenzo, Pajaro and Salinas rivers. Accumulation rates in the midshelf mudbelt are high relative to documented yields of rivers and cliff erosion, and also are high relative to other documented mud accumulations of the west coast continental shelves. ?? 2002 Elsevier Science B.V. All rights reserved.

  6. Shallow marine sedimentation within an active margin basin, James Ross Island, Antarctica

    NASA Astrophysics Data System (ADS)

    Pirrie, Duncan

    1989-06-01

    The Santa Marta Formation exposed on northern James Ross Island, Antarctica, represents shallow marine shelf sedimentation within an active margin basin. The formation is approximately 1000 m thick, is of uppermost Santonian to Campanian age and represents part of a 5000-6000 m thick sedimentary sequence forming the Larsen Basin. The Larsen Basin represents either a back-arc basin, or a half-graben basin, developed on the extending margin of the Weddell Sea. Twelve sedimentary facies have been recognised, which can be subdivided into two groups: those which are controlled by shelf processes and those which are related to active arc volcanism. Background shelf processes include fair-weather suspension sedimentation, storm sands and rare tidal current reworking. Active arc processes include direct settling of airfall detritus and rapid resedimentation of volcaniclastic detritus by sandy debris-flows and both high- and low-concentration turbidity currents. In addition sheet conglomerates represent debris flows that evolved from syn-sedimentary slumps. Two facies associations representing a mid to outer shelf and an inner shelf depositional setting respectively can be distinguished, with an apparent regression in the ?mid to late Campanian.

  7. Magnitude and variability of Holocene sediment accumulation in Santa Monica Bay, California

    USGS Publications Warehouse

    Sommerfield, C.K.; Lee, H.J.

    2003-01-01

    The spatial variability of Holocene (past 10,000 years) sediment accumulation in Santa Monica Bay (California) was examined to identify controls sediment trapping in a bathymetrically complex coastal embayment and to provide geologic context for the post-industrial sedimentary record and associated pollution gradients. Sediment chronologies based on downcore AMS 14C dates were used to quantify long-term (millennia) accumulation rates in an effort to elucidate particle-transport pathways and sinks. Sediment accumulation rates for the full range of bayfloor environments (50-630 m water depths) range from 22 to 102 mg/cm2/year (15-88 mm/100 year), have an overall mean of 51??21 mg/cm2/year (1??, n=11), and are comparable to rates reported for adjacent borderland basins. Maximal accumulation rates on the Malibu shelf and within a reentrant to Redondo canyon are interpreted to reflect (1) proximity to sediment sources and (2) localized oceanographic and topographic conditions conducive to sediment trapping and deposition. The 14C-derived accumulation rates are 2-10 times lower than rates determined through 210Pb geochronology for the same sites in a related study, revealing that Holocene sediment accumulation has been non-steady-state. Santa Monica Bay is an important sink for suspended matter; averaged over the past several millennia a mass of sediment equivalent to 10-80% of the modern annual river supply is sequestered yearly. Net influx of suspended matter derived from the adjacent Palos Verdes shelf is evinced by a concentration gradient of p,p???-DDE in bayfloor sediments, whereas the distribution of anthropogenic silver suggests transport from Santa Monica shelf to the southeastern boundary of the bay. The results of this study provide new insight to the long-term fates of particulate matter in Los Angeles coastal waters. ?? 2003 Elsevier Science Ltd. All rights reserved.

  8. Estimating floodplain sedimentation in the Laguna de Santa Rosa, Sonoma County, CA

    USGS Publications Warehouse

    Curtis, Jennifer A.; Flint, Lorraine E.; Hupp, Cliff R.

    2013-01-01

    We present a conceptual and analytical framework for predicting the spatial distribution of floodplain sedimentation for the Laguna de Santa Rosa, Sonoma County, CA. We assess the role of the floodplain as a sink for fine-grained sediment and investigate concerns regarding the potential loss of flood storage capacity due to historic sedimentation. We characterized the spatial distribution of sedimentation during a post-flood survey and developed a spatially distributed sediment deposition potential map that highlights zones of floodplain sedimentation. The sediment deposition potential map, built using raster files that describe the spatial distribution of relevant hydrologic and landscape variables, was calibrated using 2 years of measured overbank sedimentation data and verified using longer-term rates determined using dendrochronology. The calibrated floodplain deposition potential relation was used to estimate an average annual floodplain sedimentation rate (3.6 mm/year) for the ~11 km2 floodplain. This study documents the development of a conceptual model of overbank sedimentation, describes a methodology to estimate the potential for various parts of a floodplain complex to accumulate sediment over time, and provides estimates of short and long-term overbank sedimentation rates that can be used for ecosystem management and prioritization of restoration activities.

  9. River sediment flux and shelf sediment accumulation rates on the Pacific Northwest margin

    NASA Astrophysics Data System (ADS)

    Wheatcroft, R. A.; Sommerfield, C. K.

    2005-02-01

    To test the generality of insight obtained from recent STRATAFORM studies of northern California's Eel margin, river sediment sources and continental shelf sinks were examined on the Pacific Northwest margin from 38° to 44.5°N. River discharge and sediment concentration data acquired by the US Geological Survey were used to update long-term annual suspended-sediment loads for 17 rivers that range in basin area from 635 to ˜22,000 km 2. Resulting annual load estimates vary over 3 orders of magnitude (0.065-18×10 9 kg/yr), with major suspended-sediment fluxes supplied by, in decreasing order, the Eel, Klamath/Trinity, Mad, Rogue, Umpqua and Russian rivers. Down-core profiles of excess 210Pb and 137Cs were used to estimate sediment accumulation rates (SARs) at prescribed depths (70 and 110 m) and distances (0-40-km north and south along-shelf) from each of the major rivers. SARs were found to vary much less than the river flux estimates, and are mostly in the range of 1.5 to 6 mm/yr. Most significantly, shelf SARs on the other Pacific Northwest margins are only slightly less than those observed on the Eel shelf, implying that much higher proportions of riverine sediment are retained on those shelves. Likely reasons that the Eel dispersal system exhibits greater off-shelf transport are (1) the narrower and steeper shelf geometry, and (2) the existence of a newly documented cross-isobath sediment transport mechanism that involves wave-modulated fluid mud flows. Testing whether the fluid mud flows are a consequence of the Eel River basin's high sediment yield, and are thus unique to the Eel, or are caused by intense wave energy during discharge events, and hence are operative on many other margins, awaits future bottom-boundary layer measurements.

  10. Changes in ice-margin processes and sediment routing during ice-sheet advance across a marginal moraine

    USGS Publications Warehouse

    Knight, P.G.; Jennings, C.E.; Waller, R.I.; Robinson, Z.P.

    2007-01-01

    Advance of part of the margin of the Greenland ice sheet across a proglacial moraine ridge between 1968 and 2002 caused progressive changes in moraine morphology, basal ice formation, debris release, ice-marginal sediment storage, and sediment transfer to the distal proglacial zone. When the ice margin is behind the moraine, most of the sediment released from the glacier is stored close to the ice margin. As the margin advances across the moraine the potential for ice-proximal sediment storage decreases and distal sediment flux is augmented by reactivation of moraine sediment. For six stages of advance associated with distinctive glacial and sedimentary processes we describe the ice margin, the debris-rich basal ice, debris release from the glacier, sediment routing into the proglacial zone, and geomorphic processes on the moraine. The overtopping of a moraine ridge is a significant glaciological, geomorphological and sedimentological threshold in glacier advance, likely to cause a distinctive pulse in distal sediment accumulation rates that should be taken into account when glacial sediments are interpreted to reconstruct glacier fluctuations. ?? 2007 Swedish Society for Anthropology and Geography.

  11. Remineralization of organic carbon in eastern Canadian continental margin sediments

    NASA Astrophysics Data System (ADS)

    Silverberg, Norman; Sundby, Bjørn; Mucci, Alfonso; Zhong, Shaojun; Arakaki, Takeshi; Hall, Per; Landén, Angela; Tengberg, Anders

    2000-04-01

    Undisturbed sediment samples were collected for chemical analyses at six sites during winter and summer cruises to the eastern Canadian continental margin. Micro-electrode oxygen profiles were obtained in freshly collected multicorer samples, and replicate cores were incubated at in situ temperature for 48 h to monitor changes in the concentrations of dissolved oxygen and nitrate. In addition, box cores were subsampled vertically for porewater chemistry, porosity, and particulate carbon. The data obtained are combined with estimates of sedimentation rate based on sediment trap measurements, 210Pb dating and historical data to evaluate the role of benthic processes in the carbon cycle on the eastern Canadian continental margin. With one exception, oxygen uptake rates determined from incubations and calculated from micro-profiles were very similar, indicating that exchange of oxygen across the sediment-water interface was dominated by molecular diffusion. On the basis of this observation, transport by diffusion is assumed for the calculation of the flux rates for other solutes from their respective porewater gradients. The fluxes of oxygen into the sediments were low, but generally comparable to other continental margins at comparable depths. They varied from 1.4 to 1.8 mmol/m 2/d in December 1993 and from 2.8 to 4.5 mmol/m 2/d in June 1994. Uptake of nitrate by the sediment occurred at all sites except for the continental slope off Nova Scotia. Both oxygen and nitrate uptake were higher in summer than in winter, indicative of a lingering response to the input of organic matter associated with the early spring bloom. At one of the sampling sites, Miscou Channel, the measured oxygen uptake rate far exceeded the flux calculated from the oxygen gradient. The difference suggests biologically enhanced exchange with the overlying waters at this site, consistent with the greater abundance of benthic organisms. The rate of organic carbon mineralization at the seafloor (1

  12. Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments: A comparative study

    USGS Publications Warehouse

    Naehr, T.H.; Eichhubl, P.; Orphan, V.J.; Hovland, M.; Paull, C.K.; Ussler, W.; Lorenson, T.D.; Greene, H. Gary

    2007-01-01

    Authigenic carbonates from five continental margin locations, the Eel River Basin, Monterey Bay, Santa Barbara Basin, the Sea of Okhotsk, and the North Sea, exhibit a wide range of mineralogical and stable isotopic compositions. These precipitates include aragonite, low- and high-Mg calcite, and dolomite. The carbon isotopic composition of carbonates varies widely, ranging from -60??? to +26???, indicating complex carbon sources that include 13C-depleted microbial and thermogenic methane and residual, 13C-enriched, bicarbonate. A similarly large variability of ??18O values (-5.5??? to +8.9???) demonstrates the geochemical complexity of these sites, with some samples pointing toward an 18O-enriched oxygen source possibly related to advection of 18O-enriched formation water or to the decomposition of gas hydrate. Samples depleted in 18O are consistent with formation deeper in the sediment or mixing of pore fluids with meteoric water during carbonate precipitation. A wide range of isotopic and mineralogical variation in authigenic carbonate composition within individual study areas but common trends across multiple geographic areas suggest that these parameters alone are not indicative for certain tectonic or geochemical settings. Rather, the observed variations probably reflect local controls on the flux of carbon and other reduced ions, such as faults, fluid conduits, the presence or absence of gas hydrate in the sediment, and the temporal evolution of the local carbon reservoir. Areas with seafloor carbonates that indicate formation at greater depth below the sediment-water interface must have undergone uplift and erosion in the past or are still being uplifted. Consequently, the occurrence of carbonate slabs on the seafloor in areas of active hydrocarbon seepage is commonly an indicator of exhumation following carbonate precipitation in the shallow subsurface. Therefore, careful petrographic and geochemical analyses are critical components necessary for the

  13. Estimated post-Messinian sediment supply and sedimentation rates on the Ebro continental margin, Spain

    USGS Publications Warehouse

    Nelson, C.H.

    1990-01-01

    Because of the extensive data base of seismic profiles, radiometric ages, and stratigraphic time markers such as the subaerial Messinian surface, sedimentation rates and Ebro River sediment discharge can be estimated for different periods and environments of the Ebro continental margin. New values for sediment discharge (i.e., 6.2 versus previous estimates of 2-3.5 million t/yr) for the Holocene highstand are more reliable but remain minimum estimates because a small proportion of Ebro sediment advected to the Balearic Rise and Abyssal Plain cannot be accounted for, especially during lowstands. The general highstand conditions of the Pliocene, which were similar to those of the Holocene, resulted in a low discharge of Ebro River sediment (ca. 6.5 million t/yr) and an even thickness of sediment across the margin that deposited at rates of about 24-40 cm/ky. In contrast, sediment supply increased two-three times during the Pleistocene, the margin prograded rapidly and deposition occurred at rates of 101-165 cm/ky on the outer shelf and slope, but basin floor rates remained anomalously low (21-26 cm/ky) because sediment was drained and broadly dispersed eastward in Valencia Trough. During the late Pleistocene rise of sea level, the main depocenters progressively shifted shoreward and sedimentation rates greatly decreased from 175 cm/ky on the upper slope during the early transgression to 106 cm/ky on the outer shelf and then to 63 cm/ky on the mid-shelf during the late transgression as the river sediment discharge dropped to half by Holocene time. Maximal sedimentation rates occurred in active depocenters of sediment dispersal such as the Holocene delta (370 cm/ky) or the youngest Pleistocene Oropesa channel-levee complex (705 cm/ky) where deposition rates increased by an order of magnitude or more compared to average Ebro shelf (38 cm/ky) or base-of-slope rates in the Pleistocene (21 cm/ky). The sedimentation rates verify the importance of sea-level control on the

  14. Monitoring sediment transfer processes on the desert margin

    NASA Technical Reports Server (NTRS)

    Millington, Andrew C.; Arwyn, R. Jones; Quarmby, Neil; Townshend, John R. G.

    1987-01-01

    LANDSAT Thematic Mapper and Multispectral Scanner data have been used to construct change detection images for three playas in south-central Tunisia. Change detection images have been used to analyze changes in surface reflectance and absorption between wet and dry season (intra-annual change) and between different years (inter-annual change). Change detection imagery has been used to examine geomorphological changes on the playas. Changes in geomorphological phenomena are interpreted from changes in soil and foliar moisture levels, differences in reflectances between different salt and sediments and the spatial expression of geomorphological features. Intra-annual change phenomena that can be detected from multidate imagery are changes in surface moisture, texture and chemical composition, vegetation cover and the extent of aeolian activity. Inter-annual change phenomena are divisible into those restricted to marginal playa facies (sedimentation from sheetwash and alluvial fans, erosion from surface runoff and cliff retreat) and these are found in central playa facies which are related to the internal redistribution of water, salt and sediment.

  15. Sediment Dynamics Affecting the Threatened Santa Ana Sucker in the Highly-modified Santa Ana River and Inset Channel, Southern California, USA

    NASA Astrophysics Data System (ADS)

    Minear, J. T.; Wright, S. A.

    2015-12-01

    In this study, we investigate the sediment dynamics of the low-flow channel of the Santa Ana River that is formed by wastewater discharges and contains some of the last remaining habitat of the Santa Ana Sucker (Catostomus santaanae). The Santa Ana River is a highly-modified river draining the San Bernardino Mountains and Inland Empire metropolitan area east of Los Angeles. Home to over 4 million people, the watershed provides habitat for the federally-threatened Santa Ana Sucker, which presently reside within the mainstem Santa Ana River in a reach supported by year-round constant discharges from water treatment plants. The nearly constant low-flow wastewater discharges and infrequent runoff events create a small, approximately 8 m wide, inset channel within the approximately 300 m wide mainstem channel that is typically dry except for large flood flows. The sediment dynamics within the inset channel are characterized by constantly evolving bed substrate and sediment transport rates, and occasional channel avulsions. The sediment dynamics have large influence on the Sucker, which rely on coarse-substrate (gravel and cobble) for their food production. In WY 2013 through the present, we investigated the sediment dynamics of the inset channel using repeat bathymetric and substrate surveys, bedload sampling, and discharge measurements. We found two distinct phases of the inset channel behavior: 1. 'Reset' flows, where sediment-laden mainstem discharges from upstream runoff events result in sand deposition in the inset channel or avulse the inset channel onto previously dry riverbed; and 2. 'Winnowing' flows, whereby the sand within the inset channel is removed by clear-water low flows from the wastewater treatment plant discharges. Thus, in contrast to many regulated rivers where high flows are required to flush fine sediments from the bed (for example, downstream from dams), in the Santa Ana River the low flows from wastewater treatment plants serve as the flushing

  16. Chromium geochemistry of serpentinous sediment in the Willow core, Santa Clara County, California

    USGS Publications Warehouse

    Oze, Christopher J.; LaForce, Matthew J.; Wentworth, Carl M.; Hanson, Randall T.; Bird, Dennis K.; Coleman, Robert G.

    2003-01-01

    A preliminary investigation of Cr geochemistry in serpentinous sediment completed for a multiple-aquifer ground-water monitoring well (Willow core of Santa Clara County, CA) determined sediment at depths >225 meters contains Cr concentrations ranging from 195 to 1155 mg/kg. Serpentinous sediment from this site is a potential source of non-anthropogenic Cr contamination. Chromium-bearing minerals such as Cr-spinel appear to be the main source of Cr in the sediment; however, Cr-bearing silicates and clay minerals are additional Cr sources. Aqueous Cr concentrations in the sediment are <4.6 mg/L; however, the valence of Cr was not identified in the solutions or in the sediment. Although there is no indication of Cr(VI) contamination derived from the serpentinous sediment, elevated Cr concentrations in the sediment, the observed ‘dissolution’ textures of the Cr-bearing minerals, the estimated redox environment, and water chemistry indicate the formation of Cr(VI) is potentially favorable.

  17. Suspended-sediment rating curve response to urbanization and wildfire, Santa Ana River, California

    USGS Publications Warehouse

    Warrick, J.A.; Rubin, D.M.

    2007-01-01

    River suspended-sediment concentrations provide insights to the erosion and transport of materials from a landscape, and changes in concentrations with time may result from landscape processes or human disturbance. Here we show that suspended-sediment concentrations in the Santa Ana River, California, decreased 20-fold with respect to discharge during a 34-year period (1968−2001). These decreases cannot be attributed to changes in sampling technique or timing, nor to event or seasonal hysteresis. Annual peak and total discharge, however, reveal sixfold increases over the 34-year record, which largely explain the decreases in sediment concentration by a nonlinear dilution process. The hydrological changes were related to the widespread urbanization of the watershed, which resulted in increases in storm water discharge without detectable alteration of sediment discharge, thus reducing suspended-sediment concentrations. Periodic upland wildfire significantly increased water discharge, sediment discharge, and suspended-sediment concentrations and thus further altered the rating curve with time. Our results suggest that previous inventories of southern California sediment flux, which assume time-constant rating curves and extend these curves beyond the sampling history, may have substantially overestimated loads during the most recent decades.

  18. Molybdenum Cycling in Upwelling Sediments: An Example from Namibian Margin Sediments

    NASA Astrophysics Data System (ADS)

    Arnold, G. L.; Goldhammer, T.; Formolo, M.; Brunner, B.; Ferdelman, T.

    2008-12-01

    The paleo-redox application of molybdenum (Mo) isotopes is strongly tied to our knowledge of the modern marine Mo cycle. Elemental mass balance indicates that ~47% of the Mo supplied to the oceans is removed to deep sea sediments, leaving the remaining Mo to "near-shore" reducing sediments (1). The Black Sea is likely the best studied reducing environment with regards to Mo isotopes, yet accounts for only a small fraction of the Mo mass balance. The accumulation of Mo in continental margin sediments has been recently re-assessed and may account for a larger fraction of the marine Mo reservoir than previously thought (2). In the presence of sulfide, the molybdate anion is transformed, by the replacement of oxygen with sulfur, to particle reactive oxy-thiomolybdates (3). This is often cited as the mechanism by which Mo removal proceeds in the Black Sea where sulfide concentrations in the water are high. In contrast, in continental margin settings, the removal mechanism is poorly understood, and the extent to which sulfur cycling plays a role remains un-quantified. To better understand removal/cycling processes in a continental margin setting, where sulfide may only be present in the pore waters and not in the water column, Mo was studied in an array of marine settings off the Namibian coast. Surface sediments were collected across a transect from near-shore/high productivity to deep water/low productivity sediments. These sediments were incubated in bag experiments to study the relationship between sulfur and Mo cycling. Molybdenum concentrations in the Namibian sediments range from detrital values at the lowest productivity site to 25 ppm in surface sediments with high productivity. Preliminary results allude to a correlation between sulfate reduction rates and Mo accumulation in these sediments. Detailed studies of Mo, Mo isotopes, other trace metals, and sulfur investigations from both sediment cores and bag experiments will be presented. (1)Bertine and Turekian

  19. Modeling studies of dissolved organic matter cycling in Santa Barbara Basin (CA, USA) sediments

    NASA Astrophysics Data System (ADS)

    Burdige, David J.; Komada, Tomoko; Magen, Cédric; Chanton, Jeffrey P.

    2016-12-01

    Here we describe new reaction-transport models for the cycling of dissolved organic matter (DOM, both dissolved organic carbon [DOC] and dissolved organic nitrogen [DON]) in anoxic marine sediments, and apply these models to data from Santa Barbara Basin sediment cores (maximum depth of 4.6 m). Model results show that most organic carbon (and nitrogen) flow in the sediments occurs through reactive DOM intermediates that turn over rapidly to produce inorganic remineralization end-products. Refractory DOM is also produced, and the vast majority of this refractory DOM is not remineralized and either escapes as a benthic flux across the sediment-water interface or is buried. Except near the sediment surface, refractory DOM represents >95% of the total pore water DOM. Pore water DOM appears to be consistently depleted in nitrogen as compared to its source organic matter, which may be the result of differential production of carbon- versus nitrogen-containing refractory DOM during remineralization. Refractory DOC (DOCr) in Santa Barbara Basin sediment pore waters is largely produced from degradation of sediment particulate organic carbon (POC). In addition, there is an upward basal flux of DOCr that is strongly depleted in 14C (-810‰). The Δ14C value of DOCr varies according to its source, ranging from +60‰ (a component of surface sediment POC enriched with radiocarbon from nuclear weapons testing in the 1960's) to -810‰ (the basal DOC flux). Each contributes to the DOCr benthic flux, which has a weighted-average Δ14C value of -40‰. The model-determined DOCr benthic flux is roughly half of the total DOC benthic flux, consistent with observations in the literature that sediments are a source of both labile and refractory DOC to bottom waters. These results support previous arguments that sediment benthic fluxes represent an important source of refractory DOC to the oceans. The benthic flux of refractory DOC from these sediments may also contribute pre-aged DOC

  20. Antarctic glacial history from numerical models and continental margin sediments

    USGS Publications Warehouse

    Barker, P.F.; Barrett, P.J.; Cooper, A. K.; Huybrechts, P.

    1999-01-01

    The climate record of glacially transported sediments in prograded wedges around the Antarctic outer continental shelf, and their derivatives in continental rise drifts, may be combined to produce an Antarctic ice sheet history, using numerical models of ice sheet response to temperature and sea-level change. Examination of published models suggests several preliminary conclusions about ice sheet history. The ice sheet's present high sensitivity to sea-level change at short (orbital) periods was developed gradually as its size increased, replacing a declining sensitivity to temperature. Models suggest that the ice sheet grew abruptly to 40% (or possibly more) of its present size at the Eocene-Oligocene boundary, mainly as a result of its own temperature sensitivity. A large but more gradual middle Miocene change was externally driven, probably by development of the Antarctic Circumpolar Current (ACC) and Polar Front, provided that a few million years' delay can be explained. The Oligocene ice sheet varied considerably in size and areal extent, but the late Miocene ice sheet was more stable, though significantly warmer than today's. This difference probably relates to the confining effect of the Antarctic continental margin. Present-day numerical models of ice sheet development are sufficient to guide current sampling plans, but sea-ice formation, polar wander, basal topography and ice streaming can be identified as factors meriting additional modelling effort in the future.

  1. Sediment flux and accretion history on the Cascadia and Sumatra margins

    NASA Astrophysics Data System (ADS)

    McNeill, L. C.; Geersen, J.; Springett, J.; Trehu, A. M.; Wilson, D. J.

    2013-12-01

    The growth of accretionary prisms and continental margins, and the properties of the prism interior and plate boundary are a function of input sediment through time and the history of accretion, erosion, and sediment subduction on the margin. Input sediment volumes are affected by changing sediment sources and pathways, climate, oceanic basement topography, and erosion and reworking of material from the forearc itself. Seismic reflection data have been compiled on the Cascadia margin, imaging the oceanic plate structure and stratigraphy, and forearc structure to analyse these processes at several locations along the margin, providing more detail than earlier compilations of sediment flux. These seismic data are integrated with ocean drilling data on the oceanic plate to establish the history of deposition on the oceanic plate and in the trench. Sediment flux into the subduction zone since the late Miocene can then be estimated and compared with the volume of the currently active prism. Several specific factors are considered, including: décollement position; compaction; reaccretion of sediment eroded from the prism into the trench; prism age; reduction in sediment flux prior to Pleistocene glaciation on the margin; mixing of older prism mélange with the modern prism on the Washington margin; potential changes in convergence rate and direction with time; margin-parallel motion of forearc material. In some cases, these parameters or their temporal change generate significant uncertainty. Initial results suggest that on the southern Washington margin, input sediment since late Miocene broadly balances with prism volume, supporting predominant accretion. On the central Oregon margin (where the prism may be younger), the prism volume is similar or slightly less than the sediment input, and on the southern Oregon margin, the prism volume is significantly less than the sediment input. This supports the hypothesis that basal and surface erosion of the prism and sediment

  2. Microbial Oxidation of Ethane within Seep Sediment at Coal Oil Point, Santa Barbara, CA

    NASA Astrophysics Data System (ADS)

    Mendes, S. D.; Duncombe, R.; Scarlett, R. D.; Shaffer, J.; Lensch, S.; Valentine, D. L.

    2013-12-01

    The hydrocarbon seep field at Coal Oil Point (COP), off the coast of Santa Barbara, California, releases more than 10^10 g of thermogenic natural gas each year. Only a fraction of this methane, ethane, propane, and butane reaches the atmosphere, and is instead consumed by marine microbes in both the sediment and water column. Bacterial respiration of these gases has been observed in aerobic and anaerobic conditions, with the exception of ethane (aerobic only) (Kniemeyer et. al 2007). This work seeks to quantify the rate of ethane oxidation (both aerobic and anaerobic) in marine sediment. A series of experiments, to be conducted using COP seep sediment aboard the R/V Atlantis in October 2013, will test how varying oxygen conditions impact ethane oxidation rate. Oxidation rates will be quantified using sensitive 3H-ethane tracers. Preliminary data from Shane's Seep, located within the COP seep field, indicates that ethane oxidation is restricted to the top 6 cm of sediment. This suggests that oxygen is a limiting factor, but further work is needed to establish if ethane oxidation is restricted to exclusively aerobic environments.

  3. Latest Quaternary structural and stratigraphic controls on continental shelf morphology along a transpressive transform margin, Santa Barbara Channel, California

    NASA Astrophysics Data System (ADS)

    Johnson, S. Y.; Hartwell, S. R.; Sorlien, C. C.; Dartnell, P.; Ritchie, A.

    2016-12-01

    The Santa Barbara mainland continental shelf can be divided into three domains, (from SE to NW) bounded by the blind Oak Ridge and Pitas Point thrust fault systems. (1) South of and in the hanging wall of the blind, south-dipping Oak Ridge fault, the broad (as wide as 17 km), gently dipping Oxnard shelf has a convex-upward shape resulting from thick, deltaic sediment fill. (2) The 5- to 8-km-wide Ventura basin obliquely crosses the shelf and forms an asymmetric trough also filled by thick deltaic sediment. The basin lies between and in the footwalls of the Oak Ridge fault to the south and the blind, north-dipping Pitas Point fault system to the north. (3) The 4- to 7-km-wide central and western Santa Barbara shelf is located north of and in the hanging wall of the Pitas Point fault system. This fault system extends for about 105 km across the shelf and slope from Pitas Point to Point Conception. Numerous discontinuous folds and faults characterize the structurally complex hanging wall, and the concave-up shape of the shelf results from uplift, folding, limited sediment supply, marine erosion, and resulting lack of sediment cover. Two possible segment boundaries (the south strand of the Santa Ynez fault and a structural discontinuity a few km west of Coal Oil Point) coincide with significant shelfbreak submarine landslides. Ages of folded strata and the shelfbreak can be derived from correlation with sea-level curves, allowing estimates of uplift and deformation rates. Post-LGM slip rates on the offshore Oak Ridge fault are about 0.65 to 0.71 mm/yr. Slip rates on the Pitas Point fault system are a minimum of 2.1 to 2.4 mm/yr, and decrease to the west due largely to diminished hanging-wall faulting and folding. Given hanging-wall structural complexity, across-strike (north-south) deformation rates should not be extrapolated from the offshore to the onshore, and along-strike rates should only be extrapolated on the basis of detailed mapping.

  4. Rapid and widespread dispersal of flood sediment on the northern California margin

    USGS Publications Warehouse

    Wheatcroft, R.A.; Sommerfield, C.K.; Drake, D.E.; Borgeld, J.C.; Nittrouer, C.A.

    1997-01-01

    The dispersal of flood sediment from small river systems is a poorly studied, yet potentially important aspect of active continental-margin sedimentation. In January 1995, during a flood with a 30 yr return period, the Eel River (northern California) delivered an estimated 25 ?? 3 ?? 106 t (metric tons) of tine-grained (<62 ??m) sediment to the ocean. The flood formed a distinct layer on the sea bed that was centered on the 70 m isobath, extended for 30 km along shelf and 8 km across shelf, and was as thick as 8.5 cm, but contained only 6 ?? 106 t of sediment. Thus, 75% of the flood-derived sediment did not form a recount/able deposit, but was instead rapidly and widely dispersed over the continental margin. Stratigraphic models of, and compilations of sediment flux to, active continental margins need to take the dispersive nature of small river systems into account.

  5. Dissolved sulfide distributions in the water column and sediment pore waters of the Santa Barbara Basin

    USGS Publications Warehouse

    Kuwabara, J.S.; VanGeen, A.; McCorkle, D.C.; Bernhard, J.M.

    1999-01-01

    Dissolved sulfide concentrations in the water column and in sediment pore waters were measured by square-wave voltammetry (nanomolar detection limit) during three cruises to the Santa Barbara Basin in February 1995, November-December 1995, and April 1997. In the water column, sulfide concentrations measured outside the basin averaged 3 ?? 1 nM (n = 28) in the 0 to 600 m depth range. Inside the basin, dissolved sulfides increased to reach values of up to 15 nM at depths >400 m. A suite of box cores and multicores collected at four sites along the northeastern flank of the basin showed considerable range in surficial (400 ??M at 10 cm. Decreases in water-column nitrate below the sill depth indicate nitrate consumption (-55 to -137 ??mole m-2 h-1) similar to nearby Santa Monica Basin. Peaks in pore-water iron concentrations were generally observed between 2 and 5 cm depth with shallowest peaks at the 590 m site. These observations, including observations of the benthic microfauna, suggest that the extent to which the sulfide flux, sustained by elevated pore-water concentrations, reaches the water column may be modulated by the abundance of sulfide-oxidizing bacteria in addition to iron redox and precipitation reactions.

  6. Sediment discharge in the Upper Arroyo Grande and Santa Rita Creek basins, San Luis Obispo County, California

    USGS Publications Warehouse

    Knott, J.M.

    1976-01-01

    Sediment data collected in the upper Arroyo Grande and Santa Rita Creek basins, San Luis Obispo County, California, during the 1968-73 water years were analyzed to determine total sediment discharge at four stations in the basins. Water discharge and total sediment discharge at these stations, representative of the 1943-72 period, were estimated from long-term flow data for nearby gaging stations and water-sediment discharge relations determined for the 1968-73 water years. Most of the total annual sediment discharge at each station occurs during a few days each year. The quantity of sediment transported in a single day often accounts for more than 40 percent of the total annual sediment discharge. Estimated sediment discharge for the upper Arroyo Grande and Santa Rita Creek basins during the 1943-72 water years averaged 53,000 tons and 23,000 tons per year. Long-term sediment deposition in Lopez Reservoir, which is in the southern part of the upper Arroyo Grande basin, was estimated to be 35 acre-feet per year. (Woodard-USGS)

  7. Temporal and spatial distributions of contaminants in sediments of Santa Monica Bay, California

    USGS Publications Warehouse

    Bay, S.M.; Zeng, E.Y.; Lorenson, T.D.; Tran, K.; Alexander, Corrine

    2003-01-01

    Contaminant inputs from wastewater discharge, a major source of contamination to Santa Monica Bay (SMB), have declined drastically during the last three decades as a result of improved treatment processes and better source control. To assess the concomitant temporal changes in the SMB sediments, a study was initiated in June 1997, in which 25 box cores were collected using a stratified random sampling design. Five sediment strata corresponding to the time intervals of 1890-1920, 1932-1963, 1965-1979, 1979-1989, and 1989-1997 were identified using 210Pb dating techniques. Samples from each stratum were analyzed for metals, 1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) and its metabolites (DDTs), polychlorinated biphenyls (PCBs), and total organic carbon (TOC). Samples from the 1965-1979, 1979-1989, and 1989-1997 strata were also analyzed for polycyclic aromatic hydrocarbons (PAHs) and linear alkylbenzenes (LABs). Sediment metal concentrations increased from 1890-1979 and were similar during the time intervals of 1965-1979, 1979-1989, and 1989-1997, although the mass emissions of trace metals from sewage inputs declined substantially during the same time period. Trace organic contamination in SMB was generally highest in sediments corresponding to deposition during the years of 1965-1979 or 1979-1989 and showed a decline in concentration in the 1989-1997 stratum. Temporal trends of contamination were greatest in sediments collected from areas near the Hyperion Treatment Plant (HTP) outfall system and on the slope of Redondo Canyon. The highest contaminant concentrations were present in sediments near the HTP 7-mile outfall in the 1965-1979 stratum. Elevated trace metal and organic concentrations were still present in the 1989-1997 stratum of most stations, suggesting that sediment contaminants have moved vertically in the sediment column since sludge discharges from the 7-mile outfall (a dominant source of contamination to the bay) ceased in 1987. The

  8. Seismically triggered turbidites in small margin basins: Alfonso Basin, Western Gulf of California and Santa Monica Basin, California Borderland

    NASA Astrophysics Data System (ADS)

    Gorsline, D. S.; De Diego, T.; Nava-Sanchez, E. H.

    2000-09-01

    Box cores and gravity cores collected in Santa Monica Basin, California Continental Borderland, and in Alfonso Basin, western Gulf of California, contain turbidites, some of which can be traced over much of the respective basin floors. In Santa Monica Basin, at least six of these basin-wide flows have been deposited over the past four to five centuries. In Alfonso Basin, 9-10 basin-wide turbidites have been deposited over the past few millenia. Both Santa Monica and Alfonso Basins have anoxic conditions over the deep basin floors, which inhibit bioturbation and preserve primary laminations. These deposits have been dated using the 210Pb and AMS 14C methods, and varve counting so it is therefore possible to date the turbidites. Those that were deposited during historic time can be matched with major floods or earthquakes in the region. In Santa Monica Basin, turbidity currents can be generated directly from decadal major flood discharges, or by centennial slope failures triggered by major earthquake shocks. The flood-generated turbidites are typically a fifth or less of the volume of the earthquake-generated turbidites. In Alfonso Basin, the tributary coastal canyon discharges are small and have a high proportion of coarse-grained sand, which is trapped on the shelves, and cannot directly supply turbidite volumes of basin-wide magnitude. Thus the turbidites seen in that basin floor are probably produced by slope failures of silty clay deposits which were seismically generated. The distribution of the dated turbidites, and a slip face in one box core from the landward slope, indicates a source on the landward depositional slope of the fault-bounded basin. Similar discontinuities of the same age have been reported on the eastern side of the Gulf in the Guaymas area. In ancient basins, the criteria that may distinguish seismo-turbidites are areal extent and volume where those factors can be estimated. Basin-wide turbidites are probably seismically triggered. If

  9. 19th-20th century rainfall patterns reconstructed from sediment provenance in a Santa Barbara Basin box core

    NASA Astrophysics Data System (ADS)

    Napier, T.; Hendy, I. L.; Schimmelmann, A.

    2013-12-01

    Rainfall patterns in Southern California directly affect the availability of water resources and induce hazards in this highly populated and water stressed region. Extreme weather consists of heavy rainfall events in winter associated with atmospheric rivers, and drought conditions when winter rains do not arrive. Water availability has a significant societal impact in Southern California. Here we reconstruct 19th-20th century precipitation history of river catchments draining into Santa Barbara Basin (SBB) through a combination of high-resolution elemental and mineralogical analyses. The deep center of the SBB features suboxic bottom waters and high sedimentation rates resulting in minimal bioturbation of annual sedimentation, which enables high-resolution paleoclimate research. Scanning XRF analysis at a 200 μm resolution of box core SPR0901-04BC from SBB was used to determine annual changes in sediment composition. Samples at 1 cm resolution from the same box core were analyzed for a more extensive suite of elements by ICP-MS, while mineralogy in each sample was determined from whole rock and clay fraction (<2 μm) analysis using X-ray defraction. Elements associated with siliciclastic sediment increase in relative abundance during wet years when significant river runoff events (floods) occurred. The relative proportions of these elements differ between flood events, possibly reflecting differences in temporal and/or spatial rainfall patterns that vary the response of each river catchment draining into SBB. Watershed sediment from the Santa Ynez Mountain streams and Ventura and Santa Clara River catchments derives mostly from Cenozoic sedimentary units, except the Santa Clara River catchment, which contains metamorphic and igneous units. As river runoff is responsible for a significant portion of the terrigenous input into SBB, and is primarily the result of precipitation events, characteristic mineralogy and elemental signatures are a direct recorder of

  10. Particulate Organic Carbon Burial in Ocean Margin Sediments in the Oregon Upwelling Margin: Terrestrial vs. Marine Sources

    NASA Astrophysics Data System (ADS)

    Hastings, R. H.; Goni, M. A.; Wheatcroft, R. A.

    2010-12-01

    Eastern boundary currents are often sites of intense primary production fueled by coastal upwelling. Along these same margins there are often numerous small, mountainous rivers that have high sediment (and POC) yields. In some cases, for example the California Current system, there is a seasonal offset between these two sources of POC, whereby marine POC is delivered to the seabed during spring/summer, and terrestrial POC is delivered during fall/winter. Processes that determine the dispersal, transformation and ultimate burial of this material differ substantially between seasons, therefore the fate of POC on the shelf is complex and uncertain. To investigate these issues we have initiated a study of the Umpqua River dispersal system on the central Oregon margin, a region that is well known for its upwelling-fueled primary production. Elemental, stable isotopic and biomarker analyses were done on surface sediments from ~65 short cores collected on the shelf and upper slope adjacent to the Umpqua River. Multiple tracers of terrestrial organic matter indicate a well-resolved depocenter centered approximately 8 km north of the river mouth at 80-90 m water depth. The terrestrial organic matter depocenter stretches along-margin for ~40 km, is 6-8 km wide and covers an area of approximately 200 square km. Sediment accumulation rates within the depocenter (based on Pb-210 geochronology) are 3-5 times ambient shelf sediments. In addition, measurements of river suspended sediment indicate that much the organic matter carried by the Umpqua River is modern in age (i.e., is not petrogenic). Collectively, these data indicate that both modern terrestrial organic matter as well as marine organic matter are being actively buried on the Umpqua shelf.

  11. Pathways of organic carbon oxidation in three continental margin sediments

    NASA Technical Reports Server (NTRS)

    Canfield, D. E.; Jorgensen, B. B.; Fossing, H.; Glud, R.; Gundersen, J.; Ramsing, N. B.; Thamdrup, B.; Hansen, J. W.; Nielsen, L. P.; Hall, P. O.

    1993-01-01

    We have combined several different methodologies to quantify rates of organic carbon mineralization by the various electron acceptors in sediments from the coast of Denmark and Norway. Rates of NH4+ and Sigma CO2 liberation sediment incubations were used with O2 penetration depths to conclude that O2 respiration accounted for only between 3.6-17.4% of the total organic carbon oxidation. Dentrification was limited to a narrow zone just below the depth of O2 penetration, and was not a major carbon oxidation pathway. The processes of Fe reduction, Mn reduction and sulfate reduction dominated organic carbon mineralization, but their relative significance varied depending on the sediment. Where high concentrations of Mn-oxide were found (3-4 wt% Mn), only Mn reduction occurred. With lower Mn oxide concentrations more typical of coastal sediments, Fe reduction and sulfate reduction were most important and of a similar magnitude. Overall, most of the measured O2 flux into the sediment was used to oxidized reduced inorganic species and not organic carbon. We suspect that the importance of O2 respiration in many coastal sediments has been overestimated, whereas metal oxide reduction (both Fe and Mn reduction) has probably been well underestimated.

  12. Pathways of organic carbon oxidation in three continental margin sediments

    NASA Technical Reports Server (NTRS)

    Canfield, D. E.; Jorgensen, B. B.; Fossing, H.; Glud, R.; Gundersen, J.; Ramsing, N. B.; Thamdrup, B.; Hansen, J. W.; Nielsen, L. P.; Hall, P. O.

    1993-01-01

    We have combined several different methodologies to quantify rates of organic carbon mineralization by the various electron acceptors in sediments from the coast of Denmark and Norway. Rates of NH4+ and Sigma CO2 liberation sediment incubations were used with O2 penetration depths to conclude that O2 respiration accounted for only between 3.6-17.4% of the total organic carbon oxidation. Dentrification was limited to a narrow zone just below the depth of O2 penetration, and was not a major carbon oxidation pathway. The processes of Fe reduction, Mn reduction and sulfate reduction dominated organic carbon mineralization, but their relative significance varied depending on the sediment. Where high concentrations of Mn-oxide were found (3-4 wt% Mn), only Mn reduction occurred. With lower Mn oxide concentrations more typical of coastal sediments, Fe reduction and sulfate reduction were most important and of a similar magnitude. Overall, most of the measured O2 flux into the sediment was used to oxidized reduced inorganic species and not organic carbon. We suspect that the importance of O2 respiration in many coastal sediments has been overestimated, whereas metal oxide reduction (both Fe and Mn reduction) has probably been well underestimated.

  13. Sedimentology of subaqueous volcaniclastic sediment gravity flows in the Neogene Santa Maria Basin, California

    USGS Publications Warehouse

    Cole, Ronald B.; Stanley, Richard G.

    1994-01-01

    Subaqueous tuff deposits within the lower Miocene Lospe Formation of the Santa Maria Basin, California, are up to 20 m thick and were deposited by high density turbidity flows after large volumes of ash were supplied to the basin and remobilized. Tuff units in the Lospe Formation include a lower lithofacies assemblage of planar bedded tuff that grades upward into massive tuff, which in turn is overlain by an upper lithofacies assemblage of alternating thin bedded, coarse grained tuff beds and tuffaceous mudstone. The planar bedded tuff ranges from 0.3 to 3 m thick and contains 1-8 cm thick beds that exhibit inverse grading, and low angle and planar laminations. The overlying massive tuff ranges from 1 to 10 m thick and includes large intraclasts of pumiceous tuff and stringers of pumice grains aligned parallel to bedding. The upper lithofacies assemblage of thin bedded tuff ranges from 0.4 to 3 m thick; individual beds are 6-30 cm thick and display planar laminae and dewatering structures. Pumice is generally concentrated in the upper halves of beds in the thin bedded tuff interval.The association of sedimentary structures combined with semi-quantitative analysis for dispersive and hydraulic equivalence of bubble-wall vitric shards and pumice grains reveals that particles in the planar bedded lithofacies are in dispersive, not settling, equivalence. This suggests deposition under dispersive pressures in a tractive flow. Grains in the overlying massive tuff are more closely in settling equivalence as opposed to dispersive equivalence, which suggests rapid deposition from a suspended sediment load. The set of lithofacies that comprises the lower lithofacies assemblage of each of the Lospe Formation tuff units is analogous to those of traction carpets and subsequent suspension sedimentation deposits often attributed to high density turbidity flows. Grain distributions in the upper thin bedded lithofacies do not reveal a clear relation for dispersive or settling

  14. A Simple Method for Estimating the Sediment-Flux Histories of Ancient Shelf-Margin Successions

    NASA Astrophysics Data System (ADS)

    Petter, A. L.; Mohrig, D. C.; Carvajal, C.; Steel, R.; Kim, W.

    2009-12-01

    Description of sediment flux for ancient siliciclastic successions is most often expressed qualitatively and loosely, or via a proxy such as deposition rate. The latter is an inadequate proxy for sediment flux because it measures only the sediment being deposited and preserved locally, and does not include the amount of sediment being bypassed to other parts of the basin. Recent work has used an improved proxy for sediment flux, namely, accretion rates of the shelf margin, as measured using the shelf-edge trajectory. Accretion rate is useful for comparing relative sediment flux between different shelf margins but does not give actual sediment flux values which would 1) allow for interpretation of paleoenvironmental conditions in the source area, 2) facilitate comparison between ancient and modern analog systems, and 3) provide input boundary condition values for stratigraphic models. A new method is proposed whereby we calculate sediment flux by treating shelf-margin clinoforms as repetitive and similar forms created by advection at a rate (i.e. the celerity) equal to the shelf-margin progradation rate. Assuming sediment conservation, deposition is a consequence of a) subsidence, and b) basinward migration of the clinoform profile. By combining the wave equation (deposition rate equal to the product of progradation rate and depositional slope) with the erosion equation (deposition rate equal to the spatial change in sediment flux) and a source/sink term (accounting for subsidence and sea-level changes), we integrate for sediment flux and find that at any point along the clinoform, the sediment flux is a function of progradation rate, subsidence/sea-level change rate, and local elevation. An advantage of this methodology is that it requires only two-dimensional data (i.e. dip-oriented cross-sections) rather than three-dimensional volumes, making it ideal for use with sparse datasets as well as outcrops. This methodology is also useful for analyzing incomplete

  15. Sedimentation and potential venting on the rifted continental margin of Dronning Maud Land

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoxia; Jokat, Wilfried

    2016-12-01

    The relief of Dronning Maud Land (DML), formed by Middle and Late Mesozoic tectonic activity, had a strong spatial control on the early fluvial and subsequent glacial erosion and deposition. The sources, processes, and products of sedimentation along the DML margin and in the Lazarev Sea in front of the DML mountains have been barely studied. The onshore mountain belt parallel to the coast of the DML margin acts as a barrier to the transport of terrigenous sediments from the east Antarctic interior to the margin and into the Lazarev Sea. Only the Jutul-Penck Graben system allows a localized ice stream controlled transport of material from the interior of DML across its old mountain belt. Offshore, we attribute repeated large-scale debris flow deposits to instability of sediments deposited locally on the steep gradient of the DML margin by high sediment flux. Two types of canyons are defined based on their axial dimensions and originated from turbidity currents and slope failures during glacial/fluvial transport. For the first time, we report pipe-like seismic structures in this region and suggest that they occurred as consequences of volcanic processes. Sedimentary processes on the DML margin were studied using seismic reflection data and we restricted the seismic interpretation to the identification of major seismic sequences and their basal unconformities.

  16. Data report: Permeabilities of eastern equatorial Pacific and Peru margin sediments

    USGS Publications Warehouse

    Gamage, Kusali; Bekins, Barbara A.; Screaton, Elizabeth

    2006-01-01

    Constant-flow permeability tests were conducted on core samples from Ocean Drilling Program Leg 201 from the eastern equatorial Pacific and the Peru margin. Eighteen whole-round core samples from Sites 1225, 1226, 1227, 1230, and 1231 were tested for vertical permeabilities. Sites 1225, 1226, and 1231 represent sediments of the open ocean, whereas Sites 1227 and 1230 represent sediments of the ocean margin. Measured vertical permeabilities vary from ~8 x 10–19 m2 to ~1 x 10–16 m2 for a porosity range of 45%–90%.

  17. SEISMIC AND GEOCHEMICAL EVIDENCE FOR SHALLOW GAS IN SEDIMENT ON NAVARIN CONTINENTAL MARGIN, BERING SEA.

    USGS Publications Warehouse

    Carlson, Paul R.; Golan-Bac, Margaret; Karl, Herman A.; Kvenvolden, Keith A.

    1985-01-01

    Marine sesmic studies coupled with geochemical investigations demonstrate tha hydrocarbon gases are ubiquitous in the near-surface sediment of the Navarin continental margin in the northern Bering Sea. Three types of acoustic anomalies appear to be related to the presence of gas in the sediment. These anomalies are most prevalent in the northern half of the Navarin basin. Acoustic anomalies attributed to gas hydrates and to diagenetic boundaries are present on seismic records of the lower slope between Navarinsky and Zhemchug Canyons. Hydrocarbon gases, methane through butanes, are common in the surface sediment of the Navarin continental margin. The source of methane is mainly biogenic, but the hydrocarbon gas compositions in 17 of 141 cores suggest the presence of thermogenic gas. No direct correlation could be found between acoustic anomalies and gas concentrations in the sediment. Refs.

  18. Particle fluxes and recent sediment accumulation on the Aquitanian margin of Bay of Biscay

    NASA Astrophysics Data System (ADS)

    Schmidt, Sabine; Howa, Hélène; Mouret, Aurelia; Lombard, Fabien; Anschutz, Pierre; Labeyrie, Laurent

    2009-05-01

    As a part of the ANR-Forclim experiment, particle mass fluxes and sedimentation processes were investigated on the slope of Aquitanian margin of the Bay of Biscay, between the canyons of Cap-Breton and Cap-Ferret. Interface sediments were collected along a depth transect from 145 to 2000 m; simultaneously a mooring line was deployed at the deepest station (WH, 2000 m) with two traps (800 and 1700 m) for a 16-month period (June 2006-November 2007). 210Pb activities of settling particles and of interface sediments were determined to study transport processes of particles. Sediment and mass accumulation rates, calculated from excess 210Pb profiles in the sediment column, show the expected decreasing trend with depth, as usually observed on margins. Mean particulate mass fluxes at 800 and 1700-m depth at site WH are, respectively, 27 and 70 g m -2 a -1. The 210Pb budget points out events of temporary high lateral input of particles. The comparison of mass and 210Pb fluxes between the water column and the seabed indicates that lateral transport plays an important role in particle accumulation on the Aquitanian margin. Regarding the objectives of the ANR-Forclim program, which aims to improve significantly the interpretation of fossil foraminifera signals, as a proxy for hydrological changes in the North Atlantic ocean, these results highlight advection processes must be considered when interpreting fluxes of foraminifers on the Aquitanian margin.

  19. Geochemical discrimination of siliciclastic sediments from active and passive margin settings

    NASA Astrophysics Data System (ADS)

    Verma, Surendra P.; Armstrong-Altrin, John S.

    2016-03-01

    Discrimination of active and passive margins is important from both academic and economic aspects. This can only be successfully achieved, however, if there are major compositional differences among sediments derived from different continental margins. A worldwide database of active and passive margin settings was established from published major and trace element geochemical data of Neogene to Quaternary siliciclastic sediments. These data were used to evaluate the performance of existing discrimination diagrams, which were shown to work unsatisfactorily with success values of mostly between 0% and 30%. Because these diagrams were not based on a statistically coherent methodology, we proposed two new discriminant functions from linear discriminant analysis of multinormally distributed isometric log-transformed ratios of major and combined major and trace elements. These new diagrams showed very high percent success values of about 87%-97% and 84%-86% for the active and passive margins, respectively, for the original database. Excellent performance of the multidimensional diagrams and related discriminant functions was confirmed from 11 test studies involving Quaternary to Holocene siliciclastic sediments from known tectonic margins. The expected result of an active or passive margin was obtained, with most samples plotting correctly in the respective field.

  20. Simulation of continental basin margin sedimentation in response to crustal movements, eustatic sea level change, and sediment accumulation rates

    SciTech Connect

    Helland-Hansen, W.; Kendall, C.G.St.C.; Lerche, I.; Nakayama, K.

    1988-10-01

    As eustasy, subsidence, and sediment accumulation vary, a 2D computer-based graphical simulation generates on-lapping and off-lapping geometries of both marine and near coastal alluvial deposits, reproducing timelines within sediment-bodies at basin margins. In the simulation, deposition is expressed by creation of new surfaces above previous ones. Thicknesses of layers are reduced by both erosion and compaction while their surfaces move vertically in response to tectonic change and loading. Simulation is divided into a series of equal time steps in which sediment is deposited as an array of en-echelon columns that mark the top of the previous depositional surface. The volume of sediment deposited in each time step is expressed as a 2D cross section and is derived from two right-angle triangles (sand and shale), whose areas are a 2D expression of the quantity of sediment deposited at that time step and whose length matches the width of the offshore sediment wedge seaward of the shoreline. Each column in the array is filled by both marine sediments up to sea level, and alluvial sediments to a surface determined by an alluvial angle that is projected landward from the shore to its intersection with the previous surface. Each time the area representing the sediment column is subtracted from the triangles, the triangle heights are reduced correspondingly. This process is repeated until the triangle heights match the position of sea level above the sediment surface, at which time the remaining area of the sediment triangle is deposited seaward as a single wedge of offshore sediments. This simulation is designed to aid interpretation of stratigraphic sequences. It can be used as a complement to seismic stratigraphy or can be used alone as an inexpensive test of stratigraphic models.

  1. Physical resuspension and vertical mixing of sediments on a high energy continental margin (Sydney, Australia).

    PubMed

    Matthai, C; Birch, G F; Jenkinson, A; Heijnis, H

    2001-01-01

    Four sediment cores from the continental margin adjacent to Sydney were analyzed for 210Pb, 137Cs, trace metals (Ag, Cd, Co, Cu, Mn, Ni, Pb, Zn), iron, dry bulk density, mud and moisture content. The concentrations of trace metals in the total sediment are low at all sites, although slightly elevated concentrations of Ag, Cu, Pb and Zn are present in the fine fraction of sediment (< 62.5 microns) near a major ocean outfall. Concentrations of trace metals in the fine fraction of sediment are similar in the upper 10-15 cm, indicating strong vertical mixing of the sediments, whereas an upward coarsening grain size in the upper 1-3 cm of sediment supports physical resuspension during storms. Sediment accumulation rates on the middle shelf adjacent to Sydney were estimated from downcore profiles of 210Pb and 137Cs and range between 0.2 and 0.4 cm yr-1. Although the mass fluxes of Cu, Pb and Zn within a distance of 2 km from the outfall (up to 36.1, 30.8 and 86.2 micrograms cm-2 yr-1, respectively) are greater than 20 km north of the outfall (< 23.5 micrograms cm-2 yr-1), the low concentrations of trace metals in sediments near the outfall support an efficient dispersal of anthropogenic contaminants on this continental margin.

  2. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust

    USGS Publications Warehouse

    Von Huene, R.; Scholl, D. W.

    1991-01-01

    At ocean margins where two plates converge, the oceanic plate sinks or is subducted beneath an upper one topped by a layer of terrestrial crust. This crust is constructed of continental or island arc material. The subduction process either builds juvenile masses of terrestrial crust through arc volcanism or new areas of crust through the piling up of accretionary masses (prisms) of sedimentary deposits and fragments of thicker crustal bodies scraped off the subducting lower plate. At convergent margins, terrestrial material can also bypass the accretionary prism as a result of sediment subduction, and terrestrial matter can be removed from the upper plate by processes of subduction erosion. Sediment subduction occurs where sediment remains attached to the subducting oceanic plate and underthrusts the seaward position of the upper plate's resistive buttress (backstop) of consolidated sediment and rock. Sediment subduction occurs at two types of convergent margins: type 1 margins where accretionary prisms form and type 2 margins where little net accretion takes place. At type 2 margins (???19,000 km in global length), effectively all incoming sediment is subducted beneath the massif of basement or framework rocks forming the landward trench slope. At accreting or type 1 margins, sediment subduction begins at the seaward position of an active buttress of consolidated accretionary material that accumulated in front of a starting or core buttress of framework rocks. Where small-to-mediumsized prisms have formed (???16,300 km), approximately 20% of the incoming sediment is skimmed off a detachment surface or decollement and frontally accreted to the active buttress. The remaining 80% subducts beneath the buttress and may either underplate older parts of the frontal body or bypass the prism entirely and underthrust the leading edge of the margin's rock framework. At margins bordered by large prisms (???8,200 km), roughly 70% of the incoming trench floor section is

  3. Sediment budget on African passive margins: a record of margin bulges and far field very long wavelength deformations

    NASA Astrophysics Data System (ADS)

    Guillocheau, Francois; Robin, Cécile; Baby, Guillaume; Simon, Brendan; Rouby, Delphine; Loparev, Artiom

    2017-04-01

    The post-rift siliciclastic sediment budget of passive margins is a function of (1) the deformation (uplift) of the upstream catchment, of (2) the climate (precipitation) regime and of (3) the oceanic circulation (mainly since Miocene times). The main questions in source to sink studies are (1) to quantify the relative importance of the erosion due to uplifts or to precipitation changes and (2) to characterize the source of the sediments. A source to sink study was carried out in Western, Central and Austral Africa, characterized by anorogenic relief (plains and plateaus) that record long (several 100 km) to very long (several 1000 km) wavelength deformations respectively of lithospheric and mantle origin. The sink measurement was based on seismic lines and wells (industrial - IODP) using the VolumeEstimator software including the calculation of the uncertainties (Guillocheau et al., 2013, Basin Research). The source study was performed using dated stepped planation surfaces (etchplains and pediplains), mappable at catchments-scale (Guillocheau et al., in press, Gondwana Research). Results: (1) Deformation (uplift) is the dominant control of the sediment budget. Climate (precipitation) changes only enhance or inhibit a deformation-controlled flux. (2) The sources of siliciclastic sediments are either closed marginal bulges or far field domes due to mantle dynamics with river by-passing over long-lasting polygenic surfaces located between the bulges and domes. Two main periods of African-scale deformations (contemporaneous with an increase of the sedimentary flux) are confirmed, one during Late Cretaceous (Turonian-Coniacian) and the second around the Eocene-Oligocene boundary with a gap and intense chemical erosion from 75 Ma and mainly from 65 to 40 Ma.

  4. Manganese and copper fluxes from continental margin sediments

    SciTech Connect

    Heggie, D.; Klinkhammer, G.; Cullen, D.

    1987-05-01

    Total dissolvable Cu and Mn have been measured in sea water collected from the continental shelf of the eastern Bering Sea. Copper concentrations of <3 nmole kg/sup -1/ were measured over the shelf break but concentrations increased to >4 nmole kg/sup -1/ inshore of a hydrographic front over the 100 m isobath. Manganese concentrations also were low over the shelf break, <10 nmole kg/sup -1/, and increased systematically to concentrations >10 nmole kg/sup -1/ inshore of the hydrographic front. Depth distributions of Mn at all continental shelf stations showed gradients into the sediments, with concentrations typically >20 nmole kg/sup -1/ in a bottom layer extending about 30 m off the bottom. Benthic Cu and Mn fluxes are indicated by cross-shelf pore water profiles that show interfacial concentrations more than an order of magnitude greater than in bottom water. These data and the results of a model of metal transport across the shelf suggest that Cu and Mn fluxes, estimated at 2 and 18 nmole cm/sup -2/y/sup -1/, respectively, from continental shelf sediments may be one source of these metals to the deep sea.

  5. Shelfal sediment transport by undercurrents forces turbidity current activity during high sea level, Chile continental margin

    NASA Astrophysics Data System (ADS)

    Bernhardt, Anne; Hebbeln, Dierk; Regenberg, Marcus; Lückge, Andreas; Strecker, Manfred. R.

    2016-04-01

    Understanding the links between terrigenous sediment supply and marine transport and depositional processes along tectonically active margins is essential to decipher turbidite successions as potential archives of climatic and seismic forcings and to comprehend timing and quantity of marine clastic deposition. Sequence stratigraphic models predict coarse-grained terrigenous sediment delivery to deep-marine sites mainly during sea-level fall and lowstand. Marine clastic deposition during periods of transgression and highstand has been attributed to the continued geomorphic connectivity between terrestrial sediment sources and marine sinks (e.g., rivers connected to submarine canyons) often facilitated by narrow shelves, high sediment supply causing delta migration to the shelf edge, and/or abrupt increases in sediment supply due to climatic variability or catastrophic events. To decipher the controls on Holocene highstand turbidite deposition, we analyzed twelve sediment cores of spatially disparate, coeval Holocene turbidite systems along the Chile margin (29-40°S) with changing climatic and geomorphic characteristics but uniform changes of sea level. Intraslope basins in north-central Chile (29-33°S) offshore a narrow to absent shelf record a shut-off of turbidite activity during the Holocene. In contrast, core sites in south-central Chile (36-40°S) offshore a wide continental shelf have repeatedly experienced turbidite deposition during sea-level highstand conditions, even though most of the depocenters are not connected via canyons to sediment sources. The interplay of stable high sediment supply related to strong onshore precipitation in combination with a wide shelf, over which undercurrents move sediment towards the shelf edge, appears to control Holocene turbidite sedimentation and sediment export to the deep sea.

  6. Organic geochemistry of continental margin and deep ocean sediments

    SciTech Connect

    Whelan, J.K.; Hunt, J.M.; Seewald, J.M.; Eglinton, L.B.; Zawoysky, M.; Dickinson, P.; Dickneider, T.

    1992-09-01

    Objective was to study petroleum formation, migration, and accumulation in marine sediments. Collaboration in Global Basin Research Network (GBRN) showed that the hydrocarbon parameters used in oil exploration are also valuable in understanding sedimentary basin fluid flow processes, crucial to production of drinking water, metal ore deposits, and gas and oil. Two goals are : (1) to run hydrous pyrolysis experiments on immature gas-prone source rocks, in order to evaluate the potential influence of gas evolution on oil migration and subsurface pressurization, and (2) to integrate organic geochemical data from the Louisiana Gulf Coast into GBRN subsurface visualization and computer modeling. Experimental methods (petrography, EPR, thermogravimetric Fourier transform infrared spectroscopy) were also studied.

  7. Authigenic molybdenum formation in marine sediments: A link to pore water sulfide in the Santa Barbara Basin

    USGS Publications Warehouse

    Zheng, Yen; Anderson, Robert F.; VanGeen, A.; Kuwabara, J.

    2000-01-01

    Pore water and sediment Mo concentrations were measured in a suite of multicores collected at four sites along the northeastern flank of the Santa Barbara Basin to examine the connection between authigenic Mo formation and pore water sulfide concentration. Only at the deepest site (580 m), where pore water sulfide concentrations rise to >0.1 ??M right below the sediment water interface, was there active authigenic Mo formation. At shallower sites (550,430, and 340 m), where pore water sulfide concentrations were consistently <0.05 ??M, Mo precipitation was not occuring at the time of sampling. A sulfide concentration of ???0.1 ??M appears to be a threshold for the onset of Mo-Fe-S co-precipitation. A second threshold sulfide concentration of ???100 ??M is required for Mo precipitation without Fe, possibly as Mo-S or as particle-bound Mo. Mass budgets for Mo were constructed by combining pore water and sediment results for Mo with analyses of sediment trap material from Santa Barbara Basin as well as sediment accumulation rates derived from 210Pb. The calculations show that most of the authigenic Mo in the sediment at the deepest site is supplied by diffusion from overlying bottom waters. There is, however, a non-lithogenic particulate Mo associated with sinking particles that contributes ???15% to the total authigenic Mo accumulation. Analysis of sediment trap samples and supernant brine solutions indicates the presence of non-lithogenic particulate Mo, a large fraction of which is easily remobilized and, perhaps, associated with Mn-oxides. Our observations show that even with the very high flux of organic carbon reaching the sediment of Santa Barbara Basin, active formation of sedimentary authigenic Mo requires a bottom water oxygen concentration below 3 ??M. However, small but measurable rates of authigenic Mo accumulation were observed at sites where bottom water oxygen ranged between 5 and 23 ??M, indicating that the formation of authigenic Mo occured in the

  8. Geomorphology of the Eastern North American Continental Margin: the role of deep sea sedimentation processes

    NASA Astrophysics Data System (ADS)

    Mosher, D. C.; Campbell, C.; Piper, D.; Chaytor, J. D.; Gardner, J. V.; Rebesco, M.

    2016-12-01

    Deep-sea sedimentation processes impart a fundamental control on the morphology of the western North Atlantic continental margin from Blake Spur to Hudson Strait. This fact is illustrated by the variable patterns of cross-margin gradients that are based on extensive new multibeam echo-sounder data in concert with subbottom profiler and seismic reflection data. Most of the continental margin has a steep (>3o) upper slope down to 1500 to 2500 m and then a gradual middle and lower slope with a general concave upward shape There is a constant interplay of deep sea sedimentation processes, but the general morphology is dictated by the dominant one. Erosion by off-shelf sediment transport in turbidity currents creating channels, gullies and canyons creates the steep upper slope. These gullies and canyons amalgamate to form singular channels that are conduits to the abyssal plain. This process results in a general seaward flattening of gradients, producing an exponentially decaying slope profile. Comparatively, sediment mass failure produces steeper upper slopes due to head scarp development and a wedging architecture to the lower slope as deposits thin in the downslope direction. This process results in either a two-segment slope, and/or a significant downslope gradient change where MTDs pinch out. Large sediment bodies deposited by contour-following currents are developed all along the margin. Blake Ridge, Sackville Spur, and Hamilton Spur are large detached drifts on disparate parts of the margin. Along their crests, they form a linear profile from the shelf to abyssal plain. Deeper portions of the US continental margin are dominated by the Chesapeake Drift and Hatteras Outer Ridge; both plastered elongate mounded drifts. Farther north, particularly on the Grand Banks margin, are plastered and separated drifts. These drifts tend to form bathymetric steps in profile, where they onlap the margin. Stacked drifts create several steps. Turbidites of the abyssal plain onlap

  9. Miocene-to-Recent sediment routing in the SW Japan forearc: implications for margin evolution

    NASA Astrophysics Data System (ADS)

    Ramirez, S. G.; Hayman, N. W.; Gulick, S. P. S.; Milliken, K.; Stockli, D. F.; Masago, H.

    2016-12-01

    Forearc basins and accretionary prisms are prevalent features along most ocean-continent convergent plate boundaries. Yet, a unified approach to their study is still lacking. This limitation is mostly the result of the number and highly dynamic nature of the processes controlling convergent margin evolution, which complicate their systematic study. In these systems, spatial and temporal changes in sediment sources and routing are the result of a combination of both onshore and offshore tectonic-climatic processes. The sediments locked in accretionary prisms and forearc basins are therefore expected to contain a record of these processes. A high-resolution sediment provenance study can provide a way to retrieve that record, providing key information about the geological evolution of forearc regions. Here, we present the results of a new study of Miocene-to-Recent sediment provenance in the Kumano region of the Nankai margin of SW Japan. We performed detrital zircon analyses on samples retrieved during Integrated Ocean Drilling Program Expeditions 315, 319 and 338, covering the full stratigraphy of the basin and upper prism. Multi-dimensional scaling analysis allows us to compare these samples with each other and with onshore fluvial sands belonging to the major rivers feeding sediments into this region of the margin. With this approach, we assess the degree of similarity and source mixing among samples. Our results indicate that 1) the sediments underlying the landward side of the basin were not frontally accreted, but rather deposited in a slope apron/slope basin environment; 2) the Mt. Fuji region has not being a significant source of sediments to the study area since at least the Mid-Miocene; 3) rather than being sourced directly from local terrigenous sources, the seaward portion of the forearc basin fill contains a component of likely reworked accretionary prism sediments, potentially resulting from prism uplift along an out-of-sequence thrust (Megasplay Fault

  10. Application of compound-specific radiocarbon dating for Antarctic margin sediments

    NASA Astrophysics Data System (ADS)

    Ohkouchi, N.; Koizumi, M.; Anderson, J. B.; Eglinton, T. I.; Miura, H.; Yokoyama, Y.

    2008-12-01

    Radiocarbon dating has been extensively applied for the development of chronologies of Antarctic margin sediments deposited during the late Quaternary. However, the problems are 1) the DIC reservoir age in the surface mixed layer is much older than that of the other oceans, 2) Antarctic margin sediments generally lack calcareous foraminifera conventionally used for radiocarbon dating and as stratigraphic tool, and 3) the sediments are subjected to significant "contamination" of relict organic matter eroded from the Antarctic continent, leading to substantially older radiocarbon ages of bulk sedimentary organic matter. Ohkouchi et al. (2003) first applied compound-specific radiocarbon dating to the surface sediments collected from Ross Sea, Antarctica for resolving the problem. They reported that the radiocarbon ages of solvent-extractable, short-chain (C14, C16, and C18) fatty acids are consistent with the modern DIC reservoir age (Pre-bomb: 14C -150, Post-bomb: 14C -100). Furthermore, the radiocarbon ages of these fatty acids at five down-core intervals progressively increase with the core depth. These results clearly show a utility of the compound- specific radiocarbon dating for developing sediment chronologies in Antarctic margin sediments. We also determined radiocarbon ages of the fatty acids from a core recovered in the NW Ross Sea to reconstruct sediment chronologies. Furthermore, we determined hydrogen isotopic compositions of sedimentary biomarkers in the core. Around 6.8, 5.7, 4.1, 2.5, and 1.5 kyr ago, the reconstructed D values of paleo- seawater were -200 or lower, suggesting a large amount of meltwater influx to the Ross Sea. Currently, we are applying the method to more sediment samples collected from wider area of Ross Sea to investigate the timing and pattern of retreat of West Antarctic Ice Sheet in the Holocene. I will present the up-dated results in my talk.

  11. Impacts of flamingos on saline lake margin and shallow lacustrine sediments in the Kenya Rift Valley

    NASA Astrophysics Data System (ADS)

    Scott, Jennifer J.; Renaut, Robin W.; Owen, R. Bernhart

    2012-11-01

    Studies of modern, Holocene, and Pleistocene sediments around saline to hypersaline, alkaline Lake Bogoria and Lake Magadi show that evidence of flamingo activity in marginal areas of these lakes is nearly ubiquitous. Flamingos produce discrete structures such as webbed footprints (~ 9 cm long, ~ 11 cm wide) and nest mounds (~ 30 cm wide, ~ 20 cm high), and they also extensively rework sediments in delta front, delta plain, and shoreline areas. Large (~ 0.5-2 cm in diameter), pinched, 'bubble pores' and ped-like mud clumps are formed by the trampling and churning of wet clay-rich sediments in these settings. Flamingo nest mounds, although superficially similar to some thrombolite mounds, are typically internally structureless, unless formed on pre-existing sediments that preserve internal structures. The flamingo mounds consist of a dense, packed oval-shaped core, a surrounding 'body' of packed sediment, and an external layer with a ped-like texture of clumped mud. The nests may contain open holes from roots or feather shafts incorporated into the nest, and (or) burrows produced once the nests are abandoned. In areas with high densities of flamingos, lake margin sediments may be preferentially compacted, particularly at breeding sites, and become resistant to subaerial erosion and the effects of transgressive ravinement on time scales ranging from seasons to tens of thousands of years. The relatively well-compacted nest mounds and associated sediments also contribute to the stability of delta distributary channels during regressive-transgressive cycles, and can lead to the minor channelization of unconfined flows where currents are diverted around nest mounds. Pleistocene exhumed surfaces of relatively well-indurated lake margin sediments at Lake Bogoria and Lake Magadi that are interpreted as combined regressive and transgressive surfaces (flooding surface/sequence boundary) preserve evidence of flamingo activities, and are overlain by younger, porous lacustrine

  12. Black carbon and polycyclic aromatic hydrocarbons (PAHs) in surface sediments of China's marginal seas

    NASA Astrophysics Data System (ADS)

    Kang, Yanju; Wang, Xuchen; Dai, Minhan; Feng, Huan; Li, Anchun; Song, Qian

    2009-05-01

    This study investigates the distribution of black carbon (BC) and its correlation with total polycyclic aromatic hydrocarbons (ΣPAH) in the surface sediments of China’s marginal seas. BC content ranges from <0.10 to 2.45 mg/g dw (grams dry weight) in the sediments studied, and varied among the different coastal regions. The Bohai Bay sediments had the highest BC contents (average 2.18 mg/g dw), which comprises a significant fraction (27%-41%) of the total organic carbon (TOC) preserved in the sediments. In comparison, BC in the surface sediments of the North Yellow Sea, Jiaozhou Bay, East China Sea and the South China Sea is less abundant and accounted for an average of 6%, 8%, 14% and 5%, respectively, of the sedimentary organic carbon pool. The concentration of ΣPAH in the surface sediments ranges from 41 to 3 667 ng/g dw and showed large spatial variations among the sampling sites of different costal regions. The Bohai Bay has the highest ΣPAH values, ranging from 79 to 3 667 ng/g dw. This reflects the high anthropogenically contaminated nature of the sediments in the bay. BC is positively correlated to TOC but a strong correlation is not found between BC and ΣPAH in the surface sediments studied, suggesting that BC and PAHs preserved in the sediments are derived from different sources and controlled by different biogeochemical processes. Our study suggests that the abundance of BC preserved in the sediments could represent a significant sink pool of carbon cycling in China’s marginal seas.

  13. Shelf-slope sedimentation during the late Quaternary on the southwestern Kuril forearc margin, northern Japan

    NASA Astrophysics Data System (ADS)

    Noda, Atsushi; TuZino, Taqumi

    2010-12-01

    We studied an active forearc margin off eastern Hokkaido, northern Japan, to identify the main influences on stratigraphic development from the last glacial to the present highstand. This paper presents new data on the environment, texture, and sedimentation rates of forearc shelf-slope sediments, based on more than 300 samples of seafloor sediments and densely gridded sub-bottom profiling records. Lowstand sedimentary wedges developed upon the shelf margins in areas with a large sediment supply and without incising canyons. The transgressive and highstand deposits formed on the shelf in extensive, low-gradient, and topographically low areas. The narrow shelf is covered by sandy sediments, where winnowed fines are likely to have escaped to the slope via gravity-driven across-shelf transport or ocean-current-induced along-shelf transport. The slope has a mid-slope mud belt at water depths of 700-1600 m. The sedimentation rates on the slope subsequent to 15 ka (the late transgressive to highstand stage) were just 10-70% of the rates prior to this period. These changes in sedimentation rates are ascribed to spatially variable topography. High sedimentation rates were maintained at topographically low and gently sloping areas even during highstand periods, due to concentrations of nepheloid layers or deposition via sediment gravity flows. On the other hand, low sedimentation rates were recognized on topographic highs of interfluves on the upper slope or on axes of anticlines, where main flows or overspills of turbidity currents decreased as sealevel rose. These results suggest that sedimentologic and stratigraphic variations are tied to variations in the physical configuration of the shelf/slope system being influenced by the local topography in addition to the climatic and oceanographic processes.

  14. Manganese flux from continental margin sediments in a transect through the oxygen minimum.

    PubMed

    Johnson, K S; Berelson, W M; Coale, K H; Coley, T L; Elrod, V A; Fairey, W R; Iams, H D; Kilgore, T E; Nowicki, J L

    1992-08-28

    The flux of manganese from continental margin sediments to the ocean was measured with a free-vehicle, benthic flux chamber in a transect across the continental shelf and upper slope of the California margin. The highest fluxes were observed on the shallow continental shelf. Manganese flux decreased linearly with bottom water oxygen concentration, and the lowest fluxes occurred in the oxygen minimum zone (at a depth of 600 to 1000 meters). Although the flux of manganese from continental shelf sediments can account for the elevated concentrations observed in shallow, coastal waters, the flux from sediments that intersect the oxygen minimum cannot produce the subsurface concentration maximum of dissolved manganese that is observed in the Pacific Ocean.

  15. Distributions of Pu, Am and Cs in margin sediments from the western Mediterranean (Spanish coast).

    PubMed

    Gascó, C; Antón, M P; Pozuelo, M; Meral, J; González, A M; Papucci, C; Delfanti, R

    2002-01-01

    Continental margins are important areas to be considered when studying the distributions and depositions of pollutants, both conventional and radioactive. Coastal sediments accumulate most of those contaminants which can be introduced following atmospheric and/or fluvial pathways. Moreover, their residence times within the water column are usually shortened due to their affinity to associate with the downward falling particulate matter, more abundant at shallower depths. In this paper the distribution profiles and inventories of plutonium, americium and cesium are detailed, providing useful information about recent sedimentation phenomena such as sediment mixing, slumping processes and bioturbation. Unsupported 210Pb data are used as reliable indicators of enhanced/reduced deposition events. Also, the calculated inventories have enabled the estimation of the radiological contribution of the Spanish Mediterranean margin to the total radioactivity deposited onto the Mediterranean sea floor.

  16. Manganese flux from continental margin sediments in a transect through the oxygen minimum

    SciTech Connect

    Johnson, K.S. Monterey Bay Aquarium Research Inst., Pacific Grove, CA ); Berelson, W.M.; Iams, H.D.; Kilgore, T.E. ); Coale, K.H.; Coley, T.L.; Elrod, V.A.; Fairey, W.R.; Nowicki, J.L. )

    1992-08-28

    The flux of manganese from continental margin sediments to the ocean was measured with a free-vehicle, benthic flux chamber in a transect across the continental shelf and upper slope of the California margin. The highest fluxes were observed on the shallow continental shelf. Manganese flux decreased linearly with bottom water oxygen concentration, and the lowest flux occurred in the oxygen minimum zone (at a depth of 600 to 1,000 meters). Although the flux of manganese from continental shelf sediments can account for the elevated concentrations observed in shallow, coastal waters, the flux from sediments that intersect the oxygen minimum cannot produce the subsurface concentration maximum of dissolved manganese that is observed in the Pacific Ocean.

  17. Evidence of active methanogen communities in shallow sediments of the sonora margin cold seeps.

    PubMed

    Vigneron, Adrien; L'Haridon, Stéphane; Godfroy, Anne; Roussel, Erwan G; Cragg, Barry A; Parkes, R John; Toffin, Laurent

    2015-05-15

    In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic Archaea were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic Methanococcoides burtonii relatives and several new autotrophic Methanogenium lineages, confirming the cooccurrence of Methanosarcinales and Methanomicrobiales methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.

  18. Evidence of Active Methanogen Communities in Shallow Sediments of the Sonora Margin Cold Seeps

    PubMed Central

    L'Haridon, Stéphane; Godfroy, Anne; Roussel, Erwan G.; Cragg, Barry A.; Parkes, R. John; Toffin, Laurent

    2015-01-01

    In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic Archaea were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic Methanococcoides burtonii relatives and several new autotrophic Methanogenium lineages, confirming the cooccurrence of Methanosarcinales and Methanomicrobiales methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps. PMID:25769831

  19. Interim report on streamflow, sediment discharge, and water quality in the Calabazas Creek Basin, Santa Clara County, California

    USGS Publications Warehouse

    Knott, J.M.; Pederson, G.L.; Middelburg, Robert F.

    1978-01-01

    Streamflow, sediment-discharge, and water-quality data are being collected in the Calabazas Creek basin, Santa Clara County, Calif., to determine annual water and sediment discharge at base-line conditions that are representative of a basin prior to urbanization. Results of the first 3 years of the study (1973-75) are given in this report. Climatic conditions during this period were representative of a very wet year (1973) and 2 years of above-average rainfall (1974 and 1975). Daily water and sediment discharge were monitored at three primary stations, and periodic measurements were made at five secondary stations during selected storms. Most of the total annual sediment discharge at each station was transported during a few days each year. Maximum daily sediment discharge in a given year ranged from 23 to 62 percent of the annual total. Daily water discharge at the gaging station Calabazas Creek at Rainbow Drive, near Cupertino, ranged from no flow to 3.31 cubic meters per second. Streamflow at this location was significantly augmented during low flow by diversion of water from the South Bay Aqueduct. Annual sediment discharge at Calabazas Creek at Rainbow Drive was 4,900 t in 1974 and 9,570 t in 1975. A large quantity of sediment was trapped in a debris basin at Comer Drive upstream from this station during both years. If this sediment had not been trapped, sediment discharge at the station would have been about 35 percent greater in 1974 and 30 percent greater in 1975. Most of the trapped sediment consists of sand and gravel that would probably have been deposited in the Calabazas Creek channel downstream from the station. (Woodard-USGS)

  20. Organic geochemistry of continental margin and deep ocean sediments

    SciTech Connect

    Whelan, J.K.; Hunt, J.M.; Eglinton, T.; Dickinson, P.; Johnson, C.; Buxton, L.; Tarafa, M.E.

    1990-08-01

    The objective of this research continues to be the understanding of the complex processes of fossil fuel formation and migration. DOE funded research to date has focused on case histories'' of down-hole well profiles of light hydrocarbons, pyrograms, pyrolysis-GC and -GCMS parameters, and biomarker data from wells in the Louisiana and Texas Gulf Coasts the Alaskan North Slope. In the case of the Alaskan North Slope, geological data and one-dimensional maturation modeling have been integrated in order to better constrain possible source rocks, timing, and migration routes for oil and gas generation and expulsion processes.This period, biomarker analyses and organic petrographic analyses were completed for the Ikpikpuk well. In the case of the Gulf Coast, we have obtained a one-dimensional maturation model of the Cost B-1 well in E. Cameron field of the Louisiana Gulf Coast. The completed E. Cameron data set adds to the enigma of the Gulf Coast oils found on the continental shelf of Louisiana. If significant quantities of the oil are coming from relatively organic lean Tertiary rocks, then non-conventional'' expulsion and migration mechanisms, such as gas dissolved in oil must be invoked to explain the Gulf Coast oils reservoired on the Louisiana continental shelf. We are designing and starting to assemble a hydrous pyrolysis apparatus to follow, the laboratory, rates of generation and expulsion of sediment gases. Initiation of some new research to examine {delta}{sup 13}C of individual compounds from pyrolysis is also described. We are beginning to examine both the laboratory and field data from the Gulf Coast in the context of a Global Basin Research Network (GBRN). The purpose is to better understand subsurface fluid flow processes over geologic time in sedimentary basins and their relation to resource accumulation (i.e., petroleum and metal ores). 58 refs.

  1. Effect of Seasonal Variation on Sediment Transport and Deposition on a Collision Margin: the Umpqua River

    NASA Astrophysics Data System (ADS)

    Moriarty, J.; Kniskern, T.; Harris, C.

    2008-12-01

    Small mountainous rivers transport over half of the global sediment flux from terrestrial to marine environments. Over 9 billion tons per year of sediment and associated nutrients and contaminants, including organic carbon, are transported from these rivers'floodplains to continental margins, primarily during flood events. The fate of such sediments is controlled by the sediment load, river discharge, waves, wind-driven currents, and larger scale currents. The study focused on the Umpqua River, OR because of its low sediment load and simple bathymetry. Seasonal variances in waves, river and sediment discharge, and wind-forced currents and their effect on sediment transport and deposition were analyzed using a version of the ECOMSED model on the continental shelf offshore of the Umpqua River, Oregon. This model is a three-dimensional hydrodynamic model with 9 vertical sigma layers and a horizontal resolution of 200 to 500 m that accounts for sediment transport, including gravity flows. Ten years of hourly data were averaged to obtain input parameters describing waves, winds, and sediment and water discharge for an average December flood (2.6x108 kg) and an average April/May flood (0.4x108 kg). Model results showed that seasonal variations in input parameters significantly affected sediment budgets. December deposits (6.9x107 kg) reached as far as 110 m depth, but April/May deposits (0.3x107 kg) occurred at depths shallower than 100 m. Additionally, the December deposit was over 20 times thicker and occupied an area 3 times larger than the size of the April/May deposit. 41.3% and 50.7% of sediment escaped the shelf during December and April/May storms, primarily to the Northwest. Differences in sediment budgets occurred because December flood events are characterized by stronger waves, larger sediment loads and stronger converging currents near the river mouth than April/May flood events. In December, these conditions initiated gravity flows, despite the small

  2. Marine Coral and Sediment Records of Intermediate Water History from Decadal to Millennial Timescales on the California Margin

    NASA Astrophysics Data System (ADS)

    Hill, T. M.; Kennett, J. P.; Spero, H. J.

    2005-12-01

    Intermediate waters (300-2500m) are critically important to the earth's climate system for the transport of heat and salt around the globe, as well as influencing the carbon cycle via the oxygen minimum zone (OMZ). Results from the California margin indicate that intermediate waters are sensitive to climate change across multiple timescales. Sediment cores in Santa Barbara Basin (MD02-2503 and MD02-2504) provide high-resolution records of surface and intermediate water processes during the most recent deglaciation. Oxygen isotopic values of planktonic and benthic foraminifera indicate that surface and intermediate waters warmed synchronously,~2ka prior to Termination IA. These findings are consistent with previous studies that indicate intermediate waters responded prior to or synchronously with surface waters during major climatic transitions (Kennett et al., 2002; Hendy and Kennett, 2003). Studies from the Santa Barbara Basin also indicate dramatic changes in oxygenation during the Bolling-Allerod, associated with the combined influences of water column methane oxidation, intermediate water ventilation and surface productivity. These studies indicate that intermediate waters are highly sensitive to climate change on millennial timescales. However, it is poorly understood how intermediate waters will respond to climate change on short timescales, such as during ENSO episodes, Pacific Decadal Oscillation mode shifts, or anthropogenic forcing. Investigations of deep-sea bamboo corals collected along the California margin (250-2200m) are utilized to reconstruct the recent environmental history of intermediate waters in this region. Preliminary radiocarbon analyses of four coral specimens from south of Pt. Conception suggest that bamboo corals live for centuries with growth rates of 50-100 microns/year. Radiocarbon content of recently precipitated coral calcite reflects equilibrium with that of ambient seawater (Δ14Ccalcite = ¬ 249.7 ‰ Δ14CDIC = ¬ 242.2 ‰). A

  3. A study of the TEX86 paleothermometer in the water column and sediments of the Santa Barbara Basin, California

    NASA Astrophysics Data System (ADS)

    Huguet, Carme; Schimmelmann, Arndt; Thunell, Robert; Lourens, Lucas J.; Sinninghe Damsté, Jaap S.; Schouten, Stefan

    2007-09-01

    Particulate organic matter collected during a 2-year period, as part of an ongoing sediment trap study, and a high-resolution sediment record from 1850 to 1987 A.D. from the Santa Barbara Basin were analyzed for TEX86, a temperature proxy based on marine crenarchaeotal membrane lipids. Highest fluxes of crenarchaeotal lipids in the water column were found in May-June 1996 and from October 1996 to January 1997 and, in general, showed a good correlation with mass fluxes. TEX86 reconstructed temperatures from the sediment trap series ranged from 8 to 11°C and were usually substantially lower than sea surface temperatures (SST), indicating that unlike in previous studies, the TEX86 corresponds to subsurface temperatures, likely between 100 and 150 m. TEX86 temperature variations observed in trap samples were not coupled to changes in SST or deep-water temperatures and only to some degree with crenarchaeotal lipid fluxes. This suggests that a complex combination of different depth origins and seasonal growth periods of Crenarchaeota contributed to the variations in TEX86 signal during the annual cycle. TEX86 temperatures in the two sediment cores studied (8-13°C) were also substantially lower than those of instrumental SST records (14-17.5°C) confirming that TEX86 records a subsurface temperature signal in the Santa Barbara Basin. This result highlights the importance of performing calibration studies using sediment traps and core tops before applying the TEX86 temperature proxy in a given study area.

  4. 7Be as a tracer of flood sedimentation on the northern California continental margin

    USGS Publications Warehouse

    Sommerfield, C. K.; Nittrouer, C. A.; Alexander, C. R.

    1999-01-01

    Sediment inventories of the cosmogenic radionuclide 7Be (t1/2=53 d) were measured on the Eel River shelf and slope (northern California continental margin) to investigate sedimentation processes associated with coastal river flooding. Seabed coring shortly after major riverflow events in 1995 and 1997 documented a shelf-wide flood deposit, and subsequent radionuclide studies determined 7Be to be a powerful tracer of fine-grained river sediment. In addition, distinctive signatures of 234Th and 210Pb were observed in oceanic flood deposits and provided additional information regarding depositional processes. During the 1995–1997 monitoring period, 7Be was present (2–35 dpm cm-2) in shelf and slope sediments only after periods of high rainfall and river runoff during the winter months. It is suggested that fluvial input was the primary source of 7Be in shelf sediments after the floods. 7Be sediment inventories and sediment-trap fluxes determined after the 1997 flood revealed that fine-grained fluvial sediments were rapidly (within one month) broadcast over the continental margin, to the 500 m isobath. Dispersal was apparently facilitated by energetic storm waves, which resuspended and redistributed some fraction of the suspended load residing on the shelf prior to accretion as flood deposits. These observations illustrate that floods are an important sedimentary process for modern environments of the Eel shelf and slope, and perhaps for other fluviomarine sedimentary systems of the northern California continental margin. Ratios of the 210Pb sediment-accumulation rate (100 yr average) to the 7Be deposition rate (1–2 month average) for shelf sites illustrate the episodic nature of shelf sedimentation, and suggest that a minimum of 3–30 depositional events complete the most recent stratigraphic record. This observation is consistent with the magnetude and frequency of fluvial sediment input, as Eel River floods with return periods of 3–33 yr (3% of the time of

  5. A comparison of Nd isotopes in seawater and authigenic sediments from the South African Margin

    NASA Astrophysics Data System (ADS)

    Jones, K. M.; Goldstein, S. L.; Hemming, S. R.; Murthy, P.; Hall, I.; Zahn, R.

    2008-12-01

    The neodymium isotopic composition of marine archives is an exciting paleocirculation tracer with the potential to provide information on changes in ocean circulation during periods of drastically different climate. An outstanding question that this tracer may help to answer is how the vertical structure of the ocean has changed through time. With this goal in mind we analyzed seawater and leachates of authigenic core-tops sediments from the South African margin, essentially creating depth profiles for seawater and modern sediments for this margin, which can be directly compared. We use this to evaluate the suitability of using leachates of authigenic sediments to recreate the water mass distribution along this margin, where NADW is exported out of the Atlantic system, through time. We report Nd isotopes in two seawater depth profiles as well as in authigenic leachates of multiple sediment core-tops collected from depths ranging between 1010m and 3706m. The core locations span nearly the entire South African margin, from near Durbin to near Cape Town, and the locations of the seawater profiles fall within this span. The seawater profiles show low ɛNd values (ɛNd ~ - 13.5) in the near surface Agulhas Current waters, then trend toward higher values (ɛNd ~ -9) at intermediate depths where waters represent mainly AAIW. The ɛNd values in deep waters show a minimum (ɛNd ~ -12) at depths of the core of NADW (depth ~2500m) then trend toward higher values, with a maximum of -10.5 in the deepest sample (~3600m), which is a NADW-AABW mixture. Some simple calculations show that these profiles are consistent with mixtures of the major end-member water masses present at this location. The Nd isotope ratios of the core-top leachates range in ɛNd from -14 to -9. Some core-top leachates do not match seawater measurements from the same depth, with a maximum deviation of nearly 4 ɛ-units at a depth of 1000m near the Tugela River cone. However, when sediment cores located near

  6. Anomalous subsidence at South China Sea rifted margin: Sediments digging their own hole

    NASA Astrophysics Data System (ADS)

    Brune, Sascha; Clift, Peter; Quinteros, Javier

    2015-04-01

    Rifted continental margins subside as a consequence of combined crustal thinning and mantle lithosphere cooling. While standard models predict a slowing of subsidence after the end of rifting, the deep basins on the northern margin of the South China Sea, notably the Baiyun Sag exhibit subsidence that accelerated several million years after the end of active extension. Additionally, backstripping analysis at the South China margin has shown that the amount of subsidence is much greater than that predicted from the degree of brittle upper crustal extension seen in seismic profiles. Here we explain these observations by linking climate change onshore and deformation of the crystalline crust offshore: Early Miocene monsoon intensification increased erosion and thus the sediment flux to offshore basins after the cessation of active extension. When the sediment load encountered the weak crust of the South China Sea margin, it induced lower crustal flow away from the basin axis so that the deep Baiyun basin was formed nearly without brittle extension. We corroborate this concept using seismic observations and backstripping techniques, as well as thermo-mechanical forward modeling. The numerical forward model is a 2D version of the finite element code SLIM3D. The code includes nonlinear temperature- and stress-dependent elasto-visco-plastic rheology and is able to reproduces a wide range of rift-related deformation processes such as flexure, lower crustal flow, and faulting. We find that two factors allow to satisfy the observational constraints: (1) Post-rift increase of sediment load: The East Asian Summer Monsoon strengthened around the start of the Miocene (~23 Ma), several million years after continental rupture. Changes in the flora of continental China date from around this time and sedimentation rates across continental margins and deltas in South and Southeast Asia increased, as might be expected under the influence of heavier precipitation driving faster erosion

  7. Importance of Microbial Iron Reduction in River-Dominated Continental Margin Sediments

    NASA Astrophysics Data System (ADS)

    Taillefert, M.; Beckler, J. S.; Eitel, E. M.; Owings, S.; Craig, J. D.; Fields, B.; Cathalot, C.; Rassmann, J.; Bombled, B.; Corvaisier, R.; Michalopoulos, P.; Nuzzio, D. B.; Rabouille, C.

    2016-02-01

    Remineralization of organic carbon in continental margin sediments exposed to fast deposition processes is thought to proceed primarily via aerobic respiration and sulfate reduction because the supply of nitrate and metal oxides is not usually significant in deep-sea sediments. Dissimilatory metal reduction, on the other hand, may represent a dominant pathway in coastal and continental shelf sediments where delivery of terrigenous Fe(III) and Mn(IV/III) oxides is sufficiently high or mixing processes near the sediment-water interface recycle these minerals efficiently. Passive continental margin sediments receiving outflow from large rivers are well-known deposition centers for organic carbon, but may also be hot spots for metal-reducing microbial activity considering the simultaneous high deposition rates of unconsolidated metal oxides of terrigenous origin. Interestingly, only a few studies have examined the role of microbial metal reduction in carbon remineralization processes in these environments. In this study, a combination of in situ depth profiles, benthic flux measurements, and ex situ measurements in the Rhône River Delta (< 80 m), Cape Hatteras slope (< 700 m), Louisiana slope (<1,800 m), and Congo River fan ( 5,000 m) sediments are compared to assess the main redox species involved in early diagenesis. Metal reduction dominated carbon remineralization processes in the top 20 cm of sediment subject to high deposition, while evidence for sulfate reduction was lacking. These findings suggest that dissimilatory Fe(III) reduction may be more significant than previously thought in continental slope sediments, which may have important implications on carbon cycling in marine environments.

  8. On the preservation of laminated sediments along the western margin of North America

    NASA Astrophysics Data System (ADS)

    van Geen, A.; Zheng, Y.; Bernhard, J. M.; Cannariato, K. G.; Carriquiry, J.; Dean, W. E.; Eakins, B. W.; Ortiz, J. D.; Pike, J.

    2003-12-01

    Piston, gravity, and multicores as well as hydrographic data were collected along the Pacific margin of Baja California to reconstruct past variations in the intensity of the oxygen-minimum zone (OMZ). Gravity cores collected from within the OMZ north of 24°N did not contain laminated surface sediments even though bottom water oxygen (BWO) concentrations were close to 5 μmol/kg. However, many of the cores collected south of 24°N did contain millimeter- to centimeter-scale, brown to black laminations in Holocene and older sediments but not in sediments deposited during the Last Glacial Maximum. In addition to the dark laminations, Holocene sediments in Soledad Basin, silled at 290 m, also contain white coccolith laminae that probably represent individual blooms. Two open margin cores from 430 and 700 m depth that were selected for detailed radiocarbon dating show distinct transitions from bioturbated glacial sediment to laminated Holocene sediment occurring at 12.9 and 11.5 ka, respectively. The transition is delayed and more gradual (11.3-10.0 ka) in another dated core from Soledad Basin. The observations indicate that bottom-water oxygen concentrations dropped below a threshold for the preservation of laminations at different times or that a synchronous hydrographic change left an asynchronous sedimentary imprint due to local factors. With the caveat that laminated sections should therefore not be correlated without independent age control, the pattern of older sequences of laminations along the North American western margin reported by this and previous studies suggests that multiple patterns of regional productivity and ventilation prevailed over the past 60 kyr.

  9. On the preservation of laminated sediments along the western margin of North America

    USGS Publications Warehouse

    VanGeen, A.; Zheng, Yen; Bernhard, J.M.; Cannariato, K.G.; Carriquiry, J.; Dean, W.E.; Eakins, B.W.; Ortiz, J.D.; Pike, J.

    2003-01-01

    Piston, gravity, and multicores as well as hydrographic data were collected along the Pacific margin of Baja California to reconstruct past variations in the intensity of the oxygen-minimum zone (OMZ). Gravity cores collected from within the OMZ north of 24??N did not contain laminated surface sediments even though bottom water oxygen (BWO) concentrations were close to 5 ??mol/kg. However, many of the cores collected south of 24??N did contain millimeter- to centimeter-scale, brown to black laminations in Holocene and older sediments but not in sediments deposited during the Last Glacial Maximum. In addition to the dark laminations, Holocene sediments in Soledad Basin, silled at 290 m, also contain white coccolith laminae that probably represent individual blooms. Two open margin cores from 430 and 700 m depth that were selected for detailed radiocarbon dating show distinct transitions from bioturbated glacial sediment to laminated Holocene sediment occurring at 12.9 and 11.5 ka, respectively. The transition is delayed and more gradual (11.3-10.0 ka) in another dated core from Soledad Basin. The observations indicate that bottom-water oxygen concentrations dropped below a threshold for the preservation of laminations at different times or that a synchronous hydrographic change left an asynchronous sedimentary imprint due to local factors. With the caveat that laminated sections should therefore not be correlated without independent age control, the pattern of older sequences of laminations along the North American western margin reported by this and previous studies suggests that multiple patterns of regional productivity and ventilation prevailed over the past 60 kyr. Copyright 2003 by the American Geophysical Union.

  10. Chromium isotope composition of reducing and anoxic sediments from the Peru Margin and Cariaco Basin

    NASA Astrophysics Data System (ADS)

    Gueguen, B.; Planavsky, N.; Wang, X.; Algeo, T. J.; Peterson, L. C.; Reinhard, C. T.

    2014-12-01

    Chromium isotope systematics in marine sediments are now being used as a new redox proxy of the modern and ancient Earth's surface. Chromium is primarily delivered to the oceans by riverine inputs through weathering of Cr(III)-rich minerals present in the continental crust and oxidation of insoluble Cr(III) to soluble Cr(VI) species. Since oxidation-reduction reactions fractionate Cr isotopes whereby oxidized Cr(VI) species are preferentially enriched in heavy Cr isotopes, the Cr isotope composition of marine sediments may be useful tracers of redox conditions at the Earth's surface through geological time. Chromium is quantitatively removed in organic-rich sediments where reducing conditions prevail and promote reduction of Cr(VI) to Cr(III), and thus, these sediments should capture the ambient seawater Cr isotope composition. However, the isotopic composition of modern organic-rich sediments is poorly documented so far, and this step is essential for further modeling the global oceanic Cr isotope mass balance and assessing the effects of sedimentation and post-depositional processes on the marine Cr isotopes archive. In this study, we have characterized modern marine organic-rich sediments for their Cr isotope composition (δ53/52Cr) from two different settings, the Peru margin upwelling zone and the anoxic Cariaco Basin (Venezuela). Chromium isotopes were measured on a MC-ICP-MS (Nu Plasma) using a double-spike correction method. The authigenic fraction of shallow samples from the Peru margin sedimentary sequence with a high Total Organic Carbon (TOC) content (>10 wt%) yield an average δ53/52Crauthigenic value of +0.67 ±0.05 ‰ (2sd). However, although this value is close to the seawater value (Atlantic Ocean) and to Cariaco basin sediments (~ +0.6 ‰), reducing sediments from the Peru margin are on average isotopically slightly heavier, especially in samples having a low authigenic fraction and a low TOC content (δ53/52Crauthigenic values up to +1.30

  11. Diversity of Methane related archaea in shallow marine sediment of eastern margin of Japan Sea

    NASA Astrophysics Data System (ADS)

    Imajo, T.

    2016-12-01

    In the eastern margin of Japan Sea, the shallow methane hydrates are said to be buried in wide area, and their geochemical features of methane which is in the hydrates differs by each sea area. Also community structure analyses and isolation of methane related archaea were performed using shallower sediments, but the research on the sediments which methane hydrates forms or exists are yet not to be done. Therefore this study focuses on community structure analyses on methane related archaea at the depth of which methane hydrates exists. Shallow marine sediments were collected from drilling project held in 2014 and 2015 at the several site of eastern margin of Japan Sea. We extracted target DNA directly from the sediments and amplified the PCR method using methane related archaea specific primers. After that we used clone library methods to investigate the community structure analyses. The results were subseafloor of each area has no difference in the community, but the shallower sediment below those had different community structure. We also found out that those included the order which is expected to be the new order of methanogen, so we expect more methane production than what we had expected. This study was conducted under the commission from AIST as a part of the methane hydrate research project funded by METI (the Ministry of Economy, Trade and Industry, Japan).

  12. Organic and black carbon 13C and 14C through the Santa Monica Basin sediment oxic-anoxic transition

    NASA Astrophysics Data System (ADS)

    Masiello, C. A.; Druffel, E. R. M.

    2003-02-01

    Black carbon (BC) is a significant percentage of sedimentary organic carbon (SOC) at abyssal ocean sites, but its presence in shelf sediments is not well studied. Approximately 1600AD, Santa Monica Basin bottom waters shifted from oxic to very low oxygen (dysoxic) deposition conditions. Under oxic deposition conditions BC was 11 +/- 4% of SOC, whereas after the overlying water became dysoxic (and sediments became anoxic), BC was 5.2 +/- 1.2% of SOC. This shift may reflect the preferential remineralization of non-black SOC under oxic conditions. There is an offset between BC and SOC 14C ages which changes with oxidation conditions, suggesting that BC storage is related to oxygen exposure and confirming a previously published report of the vulnerability of BC to sedimentary oxidation [Middelburg, 1999]. Terrestrial carbon is 17 +/- 5% of total SOC in this core's anoxic region, and 31 +/- 11% of this terrestrial carbon is BC.

  13. Nearshore disposal of fine-grained sediment in a high-energy environment: Santa Cruz Harbor case study

    USGS Publications Warehouse

    Cronin, Katherine; van Ormondt, Maarten; Storlazzi, Curt D.; Presto, Katherine; Tonnon, Pieter K.; Rosati, Julie D.; Wang, Ping; Roberts, Tiffany M.

    2011-01-01

    Current regulations in California prohibit the disposal of more than 20% fine-grained sediment in the coastal zone; this threshold is currently being investigated to determine if this environmental regulation can be improved upon. A field monitoring and numerical modeling experiment took place late 2 009 to determine the fate of fine-grained dredge disposal material from Santa Cruz Harbor, California, U.S.A. A multi-nested, hydrodynamic-sediment transport modeling approach was used to simulate the direction and dispersal of the dredge plume. Result s show that the direction and dispersal of the plume was influenced by the wave  climate, a large proportion of which moved in a easterly direction during wave events. Therefore it is vitally important to accurately simulate the tides, waves, currents, temperature and salinity when modeling the dispersal of the fine-grained dredge plume. 

  14. Sediment flux, east Greenland margin. Final report, 1 October 1988-1 September 1991

    SciTech Connect

    Andrews, J.T.; Williams, K.M.

    1991-09-17

    We investigated sediment flux across an ice-dominated, high latitude continental margin, using cores from the East Greenland Shelf (ca. 68 deg N). Density, weight percentages of the various sediment components, and sediment/age relations (AMS C- 14 dates) were investigated from cores collected 1988 and 1990. High-resolution DTS Huntec surveys indicated 10-20 m of acoustically transparent sediment. Maximum core length was 3 m and most of the gravity cores were between 1-2 m. The radiocarbon assays show that basal core sediments date between ca. 9,000 and 14,500 BP. The acoustic characteristics, the low dry volume densities (ca. 600 kg/m3 and the faunal and floral assemblages) suggest ice-distal conditions between ca. 14,500 and the present. Net sediment flux in the Kangerdlugssuaq Trough during the last 14,500 years has been low; this might be explained by either (1) cold-based glaciological conditions of the East Greenland ice sheet; and/or (2) efficient sediment trap(s) lying along the inner shelf/fjords of East Greenland.

  15. Geochemistry of stream-sediment samples from the Santa Renia Fields and Beaver Peak quadrangles, northern Carlin Trend, Nevada

    USGS Publications Warehouse

    Theodore, Ted G.; Kotlyar, Boris B.; Berger, Vladimir I.; Moring, Barry C.; Singer, Donald A.; Edstrom, Sven A.

    1999-01-01

    A broad west-to-east increase of many metal concentrations has been found in stream sediments during a reconnaissance investigation conducted in conjunction with geologic studies in the Santa Renia Fields and Beaver Peak 7–1/2 minute quadrangles near the northern end of the Carlin trend of gold deposits in the Tuscarora Mountains. This regional increase in metal concentrations coincides with a dramatic change in landform wherein high concentrations of metals in stream sediments appear to correlate directly with areas of high elevations and steep slopes in the Beaver Peak quadrangle. Robust erosion combined with high flow rates in streams from these higher elevations are envisaged to have contributed significantly to increased metal concentrations in the stream sediments by an enhanced presence of minerals with high specific gravities and a correspondingly diminished presence of minerals with low specific gravities. Minerals with low specific gravities probably have been preferentially flushed down stream because of high transporting capacities for sediment by streams in the Beaver Peak quadrangle. In addition, the Carlin trend, a generally northwest-alignment of gold deposits in the Santa Renia Fields quadrangle, is well outlined by arsenic concentrations that include a maximum of approximately 54 parts per million. Further, a weakly developed distal-to-proximal metal zonation towards these gold deposits appears to be defined respectively in plots showing distributions of thallium, arsenic, antimony, and zinc. A broad area of high metal concentrations—including sharply elevated abundances of Ag, As, Au, Cd, Co, Cu, Mn, Ni, P, Sb, Sc, Te, V, and especially Zn—near the southeast corner of the Beaver Peak quadrangle primarily could be the result of stratiform mineralized rocks in the Ordovician Vinini Formation or Devonian Slaven Chert, or the result of a subsequent Mesozoic or Tertiary epigenetic overprint.

  16. Ice Sheet History from Antarctic Continental Margin Sediments: The ANTOSTRAT Approach

    USGS Publications Warehouse

    Barker, P.F.; Barrett, P.J.; Camerlenghi, A.; Cooper, A. K.; Davey, F.J.; Domack, E.W.; Escutia, C.; Kristoffersen, Y.; O'Brien, P.E.

    1998-01-01

    The Antarctic Ice Sheet is today an important part of the global climate engine, and probably has been so for most of its long existence. However, the details of its history are poorly known, despite the measurement and use, over two decades, of low-latitude proxies of ice sheet volume. An additional way of determining ice sheet history is now available, based on understanding terrigenous sediment transport and deposition under a glacial regime. It requires direct sampling of the prograded wedge of glacial sediments deposited at the Antarctic continental margin (and of derived sediments on the continental rise) at a small number of key sites, and combines the resulting data using numerical models of ice sheet development. The new phase of sampling is embodied mainly in a suite of proposals to the Ocean Drilling Program, generated by separate regional proponent groups co-ordinated through ANTOSTRAT (the Antarctic Offshore Acoustic Stratigraphy initiative). The first set of margin sites has now been drilled as ODP Leg 178 to the Antarctic Peninsula margin, and a first, short season of inshore drilling at Cape Roberts, Ross Sea, has been completed. Leg 178 and Cape Roberts drilling results are described briefly here, together with an outline of key elements of the overall strategy for determining glacial history, and of the potential contributions of drilling other Antarctic margins investigated by ANTOSTRAT. ODP Leg 178 also recovered continuous ultra-high-resolution Holocene biogenic sections at two sites within a protected, glacially-overdeepened basin (Palmer Deep) on the inner continental shelf of the Antarctic Peninsula. These and similar sites from around the Antarctic margin are a valuable resource when linked with ice cores and equivalent sections at lower latitude sites for studies of decadal and millenial-scale climate variation.

  17. Variations in sediment transport at the central Argentine continental margin during the Cenozoic

    NASA Astrophysics Data System (ADS)

    Gruetzner, Jens; Uenzelmann-Neben, Gabriele; Franke, Dieter

    2012-10-01

    The construction of the sedimentary cover at most passive continental margins includes gravitational downslope transport and along-slope contourite deposition, which are controlled by tectonics, climate and oceanography. At the eastern continental margin of Argentina the history of deposition and erosion is intimately linked to the evolution of the South Atlantic and its water masses. Here we present a detailed seismic investigation of the mixed depositional system located between 41°S and 45°S. The study provides a northward complement to prior investigations from the southern Argentine margin and together with these may be used as background information for future ocean drilling in the region. Prominent features in our seismic cross sections are submarine canyons, mass wasting deposits, contourite channels, and sediment drifts. Four major seismic units above regional reflector PLe (˜65 Ma) are separated by distinct unconformities of regional extent. Using a dense grid of reflection seismic profiles, we mapped the depocenter geometries of the seismic units and derived a chronology of the depositional processes during the Cenozoic. While the Paleocene/Eocene (˜65-34 Ma) is characterized by hemipelagic sedimentation under relatively sluggish bottom water conditions, strong Antarctic bottom water (AABW) circulation led to widespread erosion on the slope and growth of a detached sediment drift during the Oligocene and early Miocene (˜34-17 Ma). After deposition of an aggradational seismic unit interpreted to represent the Mid-Miocene climatic optimum (˜17-14 Ma), gravitational downslope sediment transport increased during the middle to late Miocene (˜14-6 Ma) possibly related to tectonic uplift in South America. The Pliocene to Holocene unit (<˜6 Ma) is very heterogeneous and formed by interactions of downslope and along-slope sediment transport processes as indicated by the evolution of canyons, slope plastered drifts and channels.

  18. The impact of ocean deoxygenation on iron release from continental margin sediments

    NASA Astrophysics Data System (ADS)

    Scholz, Florian; McManus, James; Mix, Alan C.; Hensen, Christian; Schneider, Ralph R.

    2014-06-01

    In the oceans' high-nitrate-low-chlorophyll regions, such as the Peru/Humboldt Current system and the adjacent eastern equatorial Pacific, primary productivity is limited by the micronutrient iron. Within the Peruvian upwelling area, bioavailable iron is released from the reducing continental margin sediments. The magnitude of this seafloor source could change with fluctuations in the extension or intensity of the oxygen minimum zones. Here we show that measurements of molybdenum, uranium and iron concentrations can be used as a proxy for sedimentary iron release, and use this proxy to assess iron release from the sea floor beneath the Peru upwelling system during the past 140,000 years. We observe a coupling between levels of denitrification, as indicated by nitrogen isotopes, trace metal proxies for oxygenation, and sedimentary iron concentrations. Specifically, periods with poor upper ocean oxygenation are characterized by more efficient iron retention in the sediment and a diminished iron supply to the water column. We attribute efficient iron retention under more reducing conditions to widespread sulphidic conditions in the surface sediment and concomitant precipitation of iron sulphides. We argue that iron release from continental margin sediments is most effective in a narrow redox window where neither oxygen nor sulphide is present. We therefore suggest that future deoxygenation in the Peru upwelling area would be unlikely to result in increased iron availability, whereas in weaker oxygen minimum zones partial deoxygenation may enhance the iron supply.

  19. Comparative geochemistry of cadmium, rhenium, uranium, and molybdenum in continental margin sediments

    NASA Astrophysics Data System (ADS)

    Sundby, BjØrn; Martinez, Philippe; Gobeil, Charles

    2004-06-01

    The concentrations of authigenic phases of Cd, Re, U, and Mo increase with depth in four 45-cm-long sediment box cores collected along the axis of the Laurentian Trough, Gulf of St. Lawrence. Average authigenic accumulation rates, estimated from element inventories, are similar to rates in other continental margin environments. Strong regional variations in sediment accumulation rate and sulfide concentration have little influence on the accumulation rates of Cd and Re. This suggests that slow precipitation kinetics controls the accumulation of Cd and Re in these sediments. The accumulation rate of authigenic U is more variable; it may be tied to the kinetics of microbially mediated U reduction and be controlled by the availability of reactive organic matter. Authigenic Mo is distinguished by a sharp subsurface concentration minimum, above which Mo cycles with manganese. Mo released to pore water upon reduction of Mn oxides diffuses downward and enriches the subsurface sediment. Mo accumulates most rapidly in the sediment with the highest sulfide content. Slow conversion of molybdate to thiomolybdate may explain the much slower Mo accumulation rate in the less sulfidic sediments. A component of authigenic Mo accumulates with pyrite in an approximately constant Mo:Fe ratio. The accumulation rate of pyrite and associated Mo is insensitive to AVS abundance. Pyrite formation may be limited by the reactivity of iron oxide minerals.

  20. Shelf-Slope Sedimentation on a Cool-Temperate Glaciated Collisional Margin

    NASA Astrophysics Data System (ADS)

    Powell, R. D.

    2002-12-01

    Collisional margins are unique paleoclimatically because high mountains allow temperate, active glaciation at sea level in mid-latitudes even in interglacial periods, e.g. Alaska and Chile today. Glacial and climatic effects largely impact erosion rates, sediment fluxes, accumulation rates, and sediment architecture on the continental shelf and slope. For example, on the cool-temperate Alaskan shelf each glacial advance alters shelf morphology by erosional foci moving with the glacier during each readvance, cutting new cross-shelf troughs and prograding the slope. The changing foci of erosion and deposition through a glacial cycle force an interplay in uplift and loading between lithostatic and glacial isostasy. Furthermore, rapid tectonic shelf subsidence provides sufficient accommodation space for large sediment volumes produced during advances. High sediment fluxes, also allow episodes of tectonic deformation to be constrained over short time intervals. A strong contrast is apparent between these temperate systems and those of colder glaciated margins. For example, under temperate glacial regimes, subglacial streams dominate sediment fluxes, and where glaciers under convergent flow occupy major cross-shelf troughs, those fluxes form point-source grounding-line fans. At the continental shelf edge that sorted sediment is redeposited as turbidites in submarine fans at the base of the slope and rise. In contrast, under colder regimes, ice in convergent flow within cross-shelf troughs releases deforming-bed till into a grounding- line wedge system where it is redeposited as debrites. At the continental shelf edge, these produce trough-mouth fans at the top of continental slopes. The climatic/glacial regimes control glacial sediment fluxes, both in rates and style, to produce different sedimentary systems on the margins. Grounding lines of glaciers under divergent flow in each glacial regime appear to have lower sediment fluxes of till to be released as debrites at

  1. Sediment delivery to the Gulf of Alaska: source mechanisms along a glaciated transform margin

    USGS Publications Warehouse

    Dobson, M.R.; O'Leary, D.; Veart, M.

    1998-01-01

    Sediment delivery to the Gulf of Alaska occurs via four areally extensive deep-water fans, sourced from grounded tidewater glaciers. During periods of climatic cooling, glaciers cross a narrow shelf and discharge sediment down the continental slope. Because the coastal terrain is dominated by fjords and a narrow, high-relief Pacific watershed, deposition is dominated by channellized point-source fan accumulations, the volumes of which are primarily a function of climate. The sediment distribution is modified by a long-term tectonic translation of the Pacific plate to the north along the transform margin. As a result, the deep-water fans are gradually moved away from the climatically controlled point sources. Sets of abandoned channels record the effect of translation during the Plio-Pleistocene.

  2. Seismic and geochemical evidence for shallow gas in sediment on Navarin continental margin, Bering Sea

    SciTech Connect

    Carlson, P.R.; Golan-Bac, M.; Karl, H.A.; Kvenvolden, K.A.

    1985-03-01

    Marine seismic studies coupled with geochemical investigations demonstrate that hydrocarbon gases are ubiquitous in the near-surface (less than or equal to 250 m or 820 ft depth) sediment of the Navarin continental margin in the northern Bering Sea. Three types of acoustic anomalies appear to be related to the presence of gas in the sediment. These anomalies are most prevalent in the northern half of the Navarin basin. Acoustic anomalies attributed to gas hydrates and to diagenetic boundaries are present on seismic records of the lower slope between Navarinsky and Zhemchug Canyons. Hydrocarbon gases, methane through butanes, are common in the surface sediment of the Navarin continental margin. Methane, the most abundant hydrocarbon gas, is present in amounts ranging from 84,000 to 1 ..mu..L/L of wet sediment. These concentrations are two to three orders of magnitude greater than the other hydrocarbon gases. The highest concentrations of methane (greater than 1,000 ..mu..L/L) were measured in sediment of Navarinsky Canyon and over the central part of the Navarin basin. The source of methane is mainly biogenic, but the hydrocarbon gas compositions in 17 of 141 cores suggest the presence of thermogenic gas. Most of these 17 cores are from the continental slope at water depths greater than 150 m (490 ft). No direct correlation could be found between acoustic anomalies and gas concentrations in the sediment. This lack of correlation is probably due to the limited penetration of the gravity corer and the spotty distribution of hydrocarbon concentrations.

  3. Terrigenous Sedimentation On The North-Western Subtropical Margin Of The American Continent Over The Last 120,000 Yrs. New Insights From Magnetic And Geochemical Properties Of Sediments.

    NASA Astrophysics Data System (ADS)

    Blanchet, C. L.; Thouveny, N.; Vidal, L.

    2006-12-01

    The magnetic and geochemical properties of four marine sediment cores from the North-Western American margin allowed reconstructing the dynamics of the terrigenous sedimentation, related to climatic changes during the last glacial-interglacial cycle (0-120,000 yrs). The cores have been retrieved in three sites located on the Californian and Mexican coasts: Santa Barbara Basin (35°N), margin of Baja California (23°N) and Gulf of Tehuantepec (15°N). The present sedimentation is characterized by high terrigenous input, deposited under the influence of a strong seasonal variability and high accumulation rates (35 to 150 cm/ka), allowing to monitor the rhythms of the terrigenous input at high resolution. The magnetic parameters (magnetic susceptibility, natural, anhysteretic and isothermal remanent magnetizations and hysteresis properties) are used to trace the concentration, nature or grain sizes changes of the magnetic fraction. The type of terrigenous iron oxides and grain sizes identified (magnetite, hematite, goethite) can be related to fluvial or aeolian inputs, and thus to erosion regimes forced by climatic conditions. The relative contents of major and trace elements, measured by X-ray fluorescence scanner (XRF) on key interval of the cores, helped to improve interpretations. The sedimentary sequences, dated by correlation of magnetic susceptibility profiles, calibrated 14C ages and identification of paleomagnetic excursions, totally or partly cover the last glacial-interglacial cycle (0-120 ka). The high concentration of iron oxides in glacial sediments in the three sites suggests strong terrigenous inputs on the NW American margin and notably intense aeolian inputs during the last glacial maximum (20-26 ka BP), revealing a strong erosion in arid conditions affecting wider areas of coastal surfaces (lower sea level). In the Santa Barbara Basin, terrigenous input variations during the last 35 ka were probably modulated by the oscillation of the volume and

  4. Distinguishing Terrestrial Organic Carbon in Marginal Sediments of East China Sea and Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Kandasamy, Selvaraj; Lin, Baozhi; Wang, Huawei; Liu, Qianqian; Liu, Zhifei; Lou, Jiann-Yuh; Chen, Chen-Tung Arthur; Mayer, Lawrence M.

    2016-04-01

    Knowledge about the sources, transport pathways and behavior of terrestrial organic carbon in continental margins adjoining to large rivers has improved in recent decades, but uncertainties and complications still exist with human-influenced coastal regions in densely populated wet tropics and subtropics. In these regions, the monsoon and other episodic weather events exert strong climatic control on mineral and particulate organic matter delivery to the marginal seas. Here we investigate elemental (TOC, TN and bromine-Br) and stable carbon isotopic (δ13C) compositions of organic matter (OM) in surface sediments and short cores collected from active (SW Taiwan) and passive margin (East China Sea) settings to understand the sources of OM that buried in these settings. We used sedimentary bromine to total organic carbon (Br/TOC) ratios to apportion terrigenous from marine organic matter, and find that Br/TOC may serve as an additional, reliable proxy for sedimentary provenance in both settings. Variations in Br/TOC are consistent with other provenance indicators in responding to short-lived terrigenous inputs. Because diagenetic alteration of Br is insignificant on shorter time scales, applying Br/TOC ratios as a proxy to identify organic matter source along with carbon isotope mixing models may provide additional constraints on the quantity and transformation of terrigenous organics in continental margins. We apply this combination of approaches to land-derived organic matter in different depositional environments of East Asian marginal seas.

  5. Late Cretaceous - Paleogene forearc sedimentation and accretion of oceanic plateaus and seamounts along the Middle American convergent margin (Costa Rica)

    NASA Astrophysics Data System (ADS)

    Baumgartner, Peter O.; Baumgartner-Mora, Claudia; Andjic, Goran

    2016-04-01

    The Late Cretaceous-Paleogene sedimentation pattern in space and time along the Middle American convergent margin was controlled by the accretion of Pacific plateaus and seamounts. The accretion of more voluminous plateaus must have caused the temporary extinction of the arc and tectonic uplift, resulting in short lived episodes of both pelagic and neritic biogenic sedimentation. By the Late Eocene, shallow carbonate environments became widespread on a supposed mature arc edifice, that is so far only documented in arc-derived sediments. In northern Costa Rica forearc sedimentation started during the Coniacian-Santonian on the Aptian-Turonian basement of the Manzanillo Terrane. The arrival and collision of the Nicoya Terrane (a CLIP-like, 139-83 Ma Pacific plateau) and the Santa Elena Terrane caused the extinction of the arc during late Campanian- Early Maastrichtian times, indicated by the change to pelagic limestone sedimentation (Piedras Blancas Formation) in deeper areas and shallow-water rudistid - Larger Benthic Foraminfera limestone on tectonically uplifted areas of all terranes. Arc-derived turbidite sedimentation resumed in the Late Maastrichtian and was again interrupted during the Late Paleocene - Early Eocene, perhaps due to the underplating of a yet unknown large seamount. The extinction of the arc resulted in the deposition of the siliceous pelagic Buenavista Formation, as well as the principally Thanetian Barra Honda carbonate platform on a deeply eroded structural high in the Tempisque area. In southern Costa Rica the basement is thought to be the western edge of the CLIP. It is Santonian-Campanian in age and is only exposed in the southwestern corner of Herradura. Cretaceous arc-forearc sequences are unknown, except for the Maastrichtian-Paleocene Golfito Terrane in southeastern Costa Rica. The distribution and age of shallow/pelagic carbonates vs. arc-derived detrital sediments is controlled by the history of accretion of Galápagos hot spot

  6. Sediment Characteristics of Submarine Landslides On the Upper East Australian Continental Margin - Preliminary Findings

    NASA Astrophysics Data System (ADS)

    Clarke, S. L.; Boyd, R.; Hubble, T.; Airey, D.; Keene, J.; Exon, N.; Gardner, J. V.; Shipboard Party Ss12/2008

    2010-12-01

    A large number of recent submarine landslides on the Eastern Australian continental slope were investigated during voyages aboard the RV Southern Surveyor in 2006 and 2008. Preliminary sedimentological analysis, geotechnical and radiocarbon data resulting from the examination of twelve gravity cores recovered from upper-slope slides showed that at least three of the twelve cores penetrated large, geologically-recent, submarine landslide failures. The failure surfaces lay within slide scars at distances of between 60 cm and 200 cm beneath the present-day seabed. Sediment present on the upper slope comprises mixtures of calcareous and terrigenous sand and mud. Distinct differences in physical properties (bulk unit density, water content, grain-size distribution) were recorded across the slide-plane boundaries. Slope stability modelling using classical soil mechanics techniques and measured sediment shear-strengths indicates that the slopes should be stable. However, the ubiquity of slides on this margin indicates that their occurrence is a relatively common event and that submarine-sliding should be considered to be a normal characteristic of this continental margin. While this presents something of an interpretational paradox, it nevertheless indicates that an unidentified mechanism acts to reduce the shear resistance of these sediments to very low values which enables the slope failures to occur. Preliminary bulk dates confirm Boyd et al's (2009) conclusion based on sedimentation rates, that some of the landslide masses were mobilised during the most recent glacial-interglacial cycle. Penecontemporaneous dates recorded for separate but adjacent slides are consistent with the slides being triggered by a single event such as an earthquake. Boyd, R., J. Keene, Hubble T.C.T et al. (2009). Southeast Australia: A Cenozoic Continental Margin Dominated by Mass Transport. Submarine Mass Movements and Their Consequences, Advances in Natural and Technological Hazards Research

  7. Microbial communities in methane seep sediments along US Atlantic Margin are structured by organic matter and seepage dynamics

    NASA Astrophysics Data System (ADS)

    Graw, M. F.; Pohlman, J.; Treude, T.; Ruppel, C. D.; Colwell, F. S.

    2016-12-01

    Methane seeps are dynamic environments on continental margins where subsurface methane reaches the ocean. Microbial communities play a critical role in carbon cycling within seep sediments via organic carbon degradation, methane production, and anaerobic oxidation of methane (AOM), which consumes 20-80% of methane in seep sediments. However, biogeochemical controls on microbial community structure at seeps on a margin-wide scale remain unclear. The passive US Atlantic Margin (USAM) has been identified as a region of active methane seepage. Passive margin seeps have traditionally been understudied relative to seeps on active margins. Passive margins exhibit large cross-margin variability in organic carbon deposition and are anticipated to have divergent seep dynamics from active margins. Thus, the USAM offers a unique opportunity to investigate controls on microbial communities in seep sediments. We undertook analysis of microbial communities inhabiting seep sediments at 6 biogeochemically distinct sites along the USAM. Microbiological samples were co-located with measurements of sediment geochemistry and AOM and sulfate reduction rates. Illumina sequencing of the 16S rRNA gene, using both universal (83 samples) and archaeal-specific (64 samples) primers, and the mcrA gene (18 samples) identified 44 bacterial phyla and 7 archaeal phyla. Seeps in canyons and on open slope, likely representing high and low organic content sediments, hosted distinct communities; the former was dominated by ammonia-oxidizing Marine Group I Thaumarchaeota and the latter by mixotrophic Hadesarchaeota. Seep stability also impacted microbial community structure, and in particular the establishment of an AOM community rather than a Bathyarchaeota-dominated community. These findings contribute to understanding how microbial communities are structured within methane seep sediments and pave the way for investigating broad differences in carbon cycling between seeps on passive and active margins.

  8. Tectonic controls on sedimentation in Mesozoic convergent margin basin of Baja California (Mexico)

    SciTech Connect

    Busby-Spera, C.J.; Smith, D.P.; Morris, W.R. )

    1990-05-01

    Mesozoic rocks of the Baja California peninsula form one of the most extensive, best exposed, oldest (160 m.y.), and least-tectonized and metamorphosed convergent margin basin complexes in the world. Much of the fill of these basins consist of coarse-grained volcaniclastic and epiclastic sequences that directly reflect the tectonic evolution of the region. The early history of the convergent margin was dominated by sedimentation in small, steep-sided basins within oceanic island arc systems. The Triassic and Jurassic convergent margin basins probably represent proto-Pacific terranes that traveled from another area. These terranes were assembled by the Late Jurassic to Early Cretaceous, and underlie the forearc region of a medial Cretaceous oceanic island arc system. Tbis system fringed the Mesoamerican continental margin and underwent regional-scale extension during subduction of old, dense lithosphere. The latest phases of sedimentation in the convergent margin occurred in broad, relatively stable forearc basins of a mature continental arc, during the Late Cretaceous to Paleocene. Nonetheless, intrabasinal faults provided some controls on depositional systems and bathymetry. The authors speculate that these faults formed in response to oblique convergence which ultimately resulted in 10-19{degree} northward displacement of Baja California relative to the North American craton, from the latitude of Central America to northern Mexico. The fill of oceanic island arc basins in Baja California is dominated by coarse-grained marine wedges including (1) arc apron deposits, consisting of pyroclastic and/or volcanic epiclastic debris deposited in intra-arc or back-arc basins, and (2) slope apron deposits, consisting of epiclastic debris shed from local fault scarps and more distally derived arc volcaniclastics, deposited in forearc basins.

  9. A 250-Year Sediment Record of Anthropogenic Contaminants in the Lisbon Canyon, Portuguese Margin

    NASA Astrophysics Data System (ADS)

    de Stigter, H. C.; Richter, T. O.; Booij, K.; Boer, W.; Jesus, C. C.; van Weering, T. C.

    2008-12-01

    The Lisbon Canyon on the continental margin of Portugal is located in the immediate vicinity of a densely populated and industrialized metropolitan area, and receives terrigenous sediments from the Tagus River draining a large part of the Iberian Peninsula. Radionuclide records (210Pb, 137Cs) for piston cores retrieved from the canyon indicate rapid and almost continuous accumulation over the last 250 years, with sedimentation rates of up to 1 cm per year. The devastating 1755AD Lisbon Earthquake is represented in some cores by a sandy turbidite layer with erosive base, but subsequently disturbance of the sedimentary record by mass sedimentation events has been very limited. In one core at 1710 m water depth, Pb concentrations increased gradually over the last 250 years, and more abruptly after ~1960AD. Subsequently, anthropogenic lead contributed more than half of total lead deposition. Stable Pb isotope ratios indicate concurrent shifts in sources of Pb and increasing influence of anthropogenic pollutants. A slight reversal in both long-term trends after ~1990AD presumably reflects the phase-out of leaded gasoline. Organic contaminant analyses of a core collected from 1112 m water depth demonstrate enrichment of the canyon sediments with a variety of polychlorinated biphenyls (PCBs) and polyaromatic hydrocarbons (PAHs) over the last century. PCBs increased abruptly during the second half of the 20th century but show a slight decrease over the most recent decade. PAHs appear to have had their maximum in the late 19th century, possibly reflecting fallout of coal dust from one of the busiest shipping routes of the eastern Atlantic. The present study illustrates the potential of submarine canyon sediments as high-resolution archives of human impacts on the continental margin.

  10. Authigenic apatite formation and burial in sediments from non-upwelling, continental margin environments

    SciTech Connect

    Ruttenberg, K.C.; Berner, R.A. )

    1993-03-01

    Evidence for precipitation of authigenic carbonate fluorapatite (CFA) in Long Island Sound and Mississippi Delta sediments suggests that formation of CFA is not restricted to environments of active coastal upwelling. The authors present porewater data suggestive of CFA formation in both these areas. Application of a sequential leaching procedure, designed specifically to separate authigenic carbonate fluorapatite from other phosphorus-containing phases, including detrital apatite of igneous or metamorphic origin, provides strong supporting evidence for authigenic apatite formation in these sediments. The size of the authigenic apatite reservoir increases with depth, indicating continued formation of CFA during early diagenesis. This depth increase is mirrored by a decrease in solid-phase organic P at both sites, suggesting that CFA is forming at the expense of organic P. Mass balance considerations, application of diagenetic models to intersitital water nutrient data, and the saturation state of the interstitial water are consistent with this interpretation. Diagenetic redistribution of phosphorus among the different solid-phase reservoirs is observed at both sites, and results in near perfect retention of P by these sediments over the depth intervals sampled. Formation of CFA in continental margins which do not conform to the classically defined regions of phosphorite formation renders CFA a quantitatively more important sink than has previously been recognized. Including this reservoir as a newly identified sink for reactive P in the ocean, the residence time of P in the modern ocean must be revised downward. The implication for ancient oceans of CFA formation in continental margin sediments other than phosphorites is that phosphorite formation may be less a representation of episodicity in removal of reactive P from the oceans than of localized concentration of CFA in phosphatic sediments by secondary physical processes. 90 refs., 5 figs., 2 tabs.

  11. Geomicrobial characterization of gas hydrate-bearing sediments along the mid-Chilean margin.

    PubMed

    Hamdan, Leila J; Gillevet, Patrick M; Sikaroodi, Masoumeh; Pohlman, John W; Plummer, Rebecca E; Coffin, Richard B

    2008-07-01

    Bacterial diversity in eight sediment cores from the mid-Chilean margin was studied using length heterogeneity (LH)-PCR, and described in relation to in situ geochemical conditions. DNA from the sulfate-methane transition (SMT) of three cores [one containing methane gas; two proximal to a gas hydrate mound (GHM)] was cloned and sequenced. Clones related to uncultured relatives of Desulfosarcina variabilis were found in all clone libraries and dominated one. Desulfosarcina variabilis related clones were similar to phylotypes observed at the SMT in association with anaerobic methane oxidation in the Eel River basin, Cascadia margin and the Gulf of Mexico. The LH-PCR amplicon associated with D. variabilis clones matched the amplicon that dominated most SMT samples, indicating environmental selection for D. variabilis relatives. Clones related to the Verrucomicrobia dominated the library for the methane gas-containing core. Uncultured Treponema relatives dominated the library for the core obtained on the edge of a GHM. Statistical analysis using geochemical data to describe variance in LH-PCR data revealed that stable carbon isotope ratios of dissolved inorganic carbon are the principal structuring factor on SMT communities. These data suggest that D. variabilis relatives are involved in anaerobic oxidation of methane at the SMT in Chilean margin sediments.

  12. Evidence and biogeochemical implications for glacially-derived sediments in an active margin cold seep

    USGS Publications Warehouse

    Pohlman, John W.; Riedel, Michael; Novosel, Ivana; Bauer, James E.; Canuel, Elizabeth A.; Paull, Charles K.; Coffin, Richard B.; Grabowski, Kenneth S.; Knies, David L.; Hyndman, Roy D.; Spence, George D.

    2011-01-01

    Delineating sediment organic matter origins and sediment accumulation rates at gas hydratebearing and hydrocarbon seeps is complicated by the microbial transfer of 13C-depleted and 14Cdepleted methane carbon into sedimentary pools. Sediment 13C and 14C measurements from four cores recovered at Bullseye vent on the northern Cascadia margin are used to identify methane carbon assimilation into different carbon pools. While the total organic carbon (TOC) is mostly unaltered and primarily terrigenous in origin, planktonic foraminifera and the bulk carbonate display evidence of methane overprinting. Mass balance models are applied to determine the extent to which methane overprinting increased the radiocarbon ages of the biogenic foraminifera. The corrected and calibrated foraminifera ages between sediment depths of 70 and 573 cm are from 14.9 to 15.9 ka BP, which coincides with the retreat of the late Quaternary Cordilleran Ice Sheet from Vancouver Island. Uniform TOC _13C values of -24.5 ± 0.5‰ from the upper 8 meters of sediment at Bullseye vent suggest all cored material is Pleistocene-derived glacimarine material deposited as the ice edge retreated landward. Bullseye vent is located within an uplifted sediment block isolated from turbidite deposition and has been a site of non-deposition since the ice sheet retreated from the shelf. Biogeochemical implications of seep sediments being dominated by aged, organic-poor (<0.4 wt% TOC) material are that methane is the primary energy source, and microbes directly and indirectly associated with the anaerobic oxidation of methane (AOM) will dominate the seep microbial community.

  13. Potential toxicity of chemical elements in beach sediments near Santa Rosalía copper mine, Baja California Peninsula, Mexico

    NASA Astrophysics Data System (ADS)

    Jonathan, M. P.; Shumilin, E.; Rodríguez-Figueroa, G. M.; Rodriguez-Espinosa, P. F.; Sujitha, S. B.

    2016-10-01

    A total of 17 beach sediment samples were analyzed for the determination of thirty-one chemical elements to generate a geochemical data set from the Santa Rosalía mining area in the State of Baja California Sur (south), Mexico. Results indicate that the beach sediments were enriched in Cu, Zn, Co, Pb, Cd (3856, 2599, 635, 236, 240 mg kg-1, respectively) and in Mn (2.01%) due to a century of mining and smelting activities. Comparison of these concentration with ecotoxicological sediment quality criteria (ERL, ERM, LEL, SEL) indicated the values of As, Cd, Co, Cr, Cu, Ni, Pb, Sr, Zn and Mn were higher than the permissible limits. Average values of the calculated geoaccumulation index (Igeo) suggest that the key elements such as Mn, Ba, Cd, Co, Mo, Pb, Sr, Zn are categorized in class 4 to 6 encompassing the strongly polluted to extremely polluted groups. The association and enrichment of the above elements are also well supported statistically (factor analysis) which points to the role of Fe-Mn oxides as the main scavengers for retaining these chemical elements.

  14. Reconstructing Quaternary precipitation periodicities with Santa Barbara Basin sediment cores: application of the siliciclastic detrital element proxy at annual resolution

    NASA Astrophysics Data System (ADS)

    Napier, T.; Hendy, I. L.; Hinnov, L.; Brown, E. T.

    2015-12-01

    Precipitation patterns in Southern California directly affect water availability, and extreme weather exacerbates water stress and subsequent societal impacts in this highly populated and vital agricultural region. In the future, mean annual precipitation is predicted to decrease in California, although frequency of heavy precipitation events may increase. To reconstruct annual precipitation history in Southern California, including both the magnitude and recurrence intervals, we analyze sediment from two Late Holocene (past ~150 years and past ~2 ka) and five Pleistocene (~400-450 ka [MIS 11 and 12] and ~735 ka [MIS 18]) cores collected in Santa Barbara Basin using data from XRF core scans for elements associated with the terrigenous siliciclastic detrital fraction of core sediment (Al, Fe, K, Rb, Si, Ti, Zr). We develop a floating annual age model for each core through identification of the annual signal in the siliciclastic detrital fraction. Siliciclastic detrital element concentrations increase in sediment associated with precipitation events and floods, and decrease in sediment associated with droughts. Variability in the concentrations of these elements can thus be used as a precipitation and river runoff proxy. We investigate changes in annual detrital sediment input during glacial, deglacial, and interglacial climate states, and changes due to rapid climate change (centennial to millennial time scales). Power spectral analysis of our annually tuned time series reveals precipitation periodicities associated with the Pacific Decadal Oscillation (15-25, 50-70 years) and El Niño-Southern Oscillation (2-7 years) that are dissimilar to common tidal perigee and nodal periods. These results provide information on the nature and response of precipitation patterns due to past changes in climate forcing, which will improve climate predictions for this region, especially interannual and decadal variability that impact climate on human timescales (i.e. <100 years).

  15. Diatoms and aquatic palynomorphs in surface sediments of the White Sea bays as indicators of sedimentation in marginal filters of rivers

    NASA Astrophysics Data System (ADS)

    Polyakova, Ye. I.; Novichkova, Ye. A.; Lisitzin, A. P.; Shevchenko, V. P.; Kravchishina, M. D.

    2016-03-01

    Diatom algae, aquatic palynomorphs, and the grain-size of surface sediments from bays of the White Sea were investigated in a program dedicated to the study of marginal filters (MF) in the Severnaya Dvina, Onega, and Kem rivers. Three microalgal assemblages are established in surface sediments, which replace each other successively with distance from river mouths and are characterized by a gradual decrease in a share of freshwater species of diatoms and Chlorophyceae algae, significantly varying concentrations of marine diatoms and dinocysts due to changes in water salinity, grain-size composition of sediments, quantitative distribution of suspended particulate matter (SPM), and water productivity at different marginal filter stages.

  16. Cenozoic ice sheet history from East Antarctic Wilkes Land continental margin sediments

    USGS Publications Warehouse

    Escutia, C.; De Santis, L.; Donda, F.; Dunbar, R.B.; Cooper, A. K.; Brancolini, Giuliano; Eittreim, S.L.

    2005-01-01

    The long-term history of glaciation along the East Antarctic Wilkes Land margin, from the time of the first arrival of the ice sheet to the margin, through the significant periods of Cenozoic climate change is inferred using an integrated geophysical and geological approach. We postulate that the first arrival of the ice sheet to the Wilkes Land margin resulted in the development of a large unconformity (WL-U3) between 33.42 and 30 Ma during the early Oligocene cooling climate trend. Above WL-U3, substantial margin progradation takes place with early glacial strata (e.g., outwash deposits) deposited as low-angle prograding foresets by temperate glaciers. The change in geometry of the prograding wedge across unconformity WL-U8 is interpreted to represent the transition, at the end of the middle Miocene "climatic optimum" (14-10 Ma), from a subpolar regime with dynamic ice sheets (i.e., ice sheets come and go) to a regime with persistent but oscillatory ice sheets. The steep foresets above WL-U8 likely consist of ice proximal sediments (i.e., water-lain till and debris flows) deposited when grounded ice-sheets extended into the shelf. On the continental rise, shelf progradation above WL-U3 results in an up-section increase in the energy of the depositional environment (i.e., seismic facies indicative of more proximal turbidite and of bottom contour current deposition from the deposition of the lower WL-S5 sequence to WL-S7). Maximum rates of sediment delivery to the rise occur during the development of sequences WL-S6 and WL-S7, which we infer to be of middle Miocene age. During deposition of the two uppermost sequences, WL-S8 and WL-S9, there is a marked decrease in the sediment supply to the lower continental rise and a shift in the depocenters to more proximal areas of the margin. We believe WL-S8 records sedimentation during the final transition from a dynamic to a persistent but oscillatory ice sheet in this margin (14-10 Ma). Sequence WL-S9 forms under a polar

  17. Assessment of geochemical mobility of metals in surface sediments of the Santa Rosalia mining region, Western Gulf of California.

    PubMed

    Shumilin, Evgueni; Gordeev, Vyacheslav; Figueroa, Griselda Rodríguez; Demina, Liudmila; Choumiline, Konstantin

    2011-01-01

    To asses the geomobility of cadmium, copper, iron, manganese, nickel, lead, and zinc in marine sediments near the Santa Rosalía copper smelter, which is located on the eastern coast of the Baja California Peninsula, sequential leaching was applied to sediment samples containing different levels of Cu: (1) uncontaminated or slightly contaminated (<55 mg kg⁻¹ Cu); (2) moderately contaminated (55-500 mg kg⁻¹ Cu); and (3) heavily contaminated (>500 mg kg⁻¹ Cu). Concentrations of Cd, Cu, Fe, Mn, Ni, Pb, and Zn in four fractions of the leachate (mobile fraction F1, relatively mobile fraction F2, associated with organic matter/sulphides fraction F3, and residual fraction F4) were measured by atomic absorption spectrophotometry (AAS). The sediments with Cu concentration <500 mg kg⁻¹ displayed prevalence of mobile acid-leachable fraction F1 and reducible fraction F2 for Cd, Cu, Mn, and Pb, whereas the relative contribution of fraction F3 was relatively low for all of the examined metals. Residual fraction F4 was highest (>65%) for Fe and Ni because both metals are associated with the crystalline matrix of natural sediments. The sediments heavily contaminated with Cu (>500 mg kg⁻¹) had dramatically increased percentages of Cu, Mn, Pb, and Zn, ranging on average from 63 to 81%, in the residual fraction. In the case of Cu, for example, the relative abundances of this element in the different fractions of such sediments followed this sequence: residual fraction F4 (76 ± 5%) >absorbed form and carbonates fraction F1 (15 ± 5%) >Fe and Mn oxyhydroxides fraction F2 (5 ± 2%) >fraction associated with organic matter and sulphides F3 (4.5 ± 3.9%). Copper, Pb, and Zn contents in each geochemical fraction of all samples were compared with sediment-quality guideline values ("effects range low" [ERL] and "effects range medium" [ERM]) to assess their possible negative effects on biota. Copper contents in mobile fractions F1 and F2, which were moderately contaminated

  18. Sedimentation and diagenesis along open and island-protected windward carbonate platform margins of the Cretaceous El Abra Formation, Mexico

    NASA Astrophysics Data System (ADS)

    Minero, Charles J.

    1991-05-01

    The windward margin of the mid-Cretaceous Valles-San Luis Potosi carbonate platform in northeastern Mexico included open and island-protected segments. Depositional environments and diagenesis vary markedly with margin type. Sand shoals near the windward open margin are composed of oncoid-bioclastic and cross-laminated carbonates. Increasingly restricted and finer lagoonal and tidal-flat environments occurred bankwards, recording gradually decreasing wave and current energy. Lithofacies include peloid-miliolid, cryptalgal laminite, lime mudstone, and molluscan carbonates. Islands along the windward margin are composed of rudistid-skeletal debris from adjacent reefs. Lagoonal to tidal-flat sediments were deposited bankwards. Similar lithofacies occur as in these environments along the open margin but they are muddier and contain less diverse fauna. The different energy regimes along the margin influenced the distribution and packaging of banktop sediments. The bankward transition to low-energy, restricted environments was gradual across the open margin. In contrast, muddy sediments with restricted fauna accumulated in close proximity to the island-protected margin. Non-cyclic vertical lithofacies successions characterized the open platform margin, whereas asymmetric shoaling-upward sequences characterized the island-protected margin. Early diagenesis along the open margin was minor; burial diagenesis was of major importance. Thin rinds of marine cement are widespread but meteoric diagenesis was minor. Burial promoted extensive compaction. Mg-rich connate brines expressed from Guaxcama gypsum resulted in dolomitization and lithification, thereby precluding further compaction. Pore fluids resulting from dehydration of Guaxcama gypsum to anhydrite yielded pore-filling and replacement anhydrite in the El Abra Formation. Burial and Laramide deformation (Maastrichtian-Paleocene) resulted in stylolitization and extensive fracturing. Uplift produced widespread meteoric

  19. Spatial and Temporal Variability of Polycyclic Aromatic Hydrocarbons in Sediments from Yellow River-Dominated Margin

    PubMed Central

    Ding, Su; Wang, Yinghui; Zhang, Xinyu; Zhao, Liang; Ruan, Jiaping; Wu, Weichao

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAHs) were analyzed for surface sediments and a sediment core from the Yellow River-dominated margin. The concentration of 16 USEPA priority PAHs in surface sediments ranged from 5.6 to 175.4 ng g−1 dry weight sediment (dws) with a mean of 49.1 ng g−1 dws. From 1930 to 2011, the distribution of PAHs (37.2 to 210.6 ng g−1 dws) was consistent with the socioeconomic development of China. The PAHs' concentration peaked in 1964 and 1986, corresponding to the rapid economic growth in China (1958–1965) and the initiation of the “Reform and Open” policy in 1978, respectively. The applications of molecular diagnostic ratios and principal component analysis suggest that PAHs are predominantly produced by the coal and biomass combustion, whereas the contribution of petroleum combustions slightly increased after the 1970s, synchronous with an increasing usage of oil and gas in China. PMID:25386611

  20. Phosphate oxygen isotope ratio proxy for specific microbial activity in marine sediments (Peru Margin)

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Blake, R. E.

    2005-12-01

    Oxygen (O) isotope ratios of biogenic apatites have been widely used as paleotemperature and environmental geochemical proxies. With improved knowledge of the phosphate O isotope effects of different P cycling pathways, the δ18O value of inorganic phosphate (δ18OP) has been proposed as a useful proxy and tracer of biological reactions and P cycling in natural environments[1,2,3,4]. Being the only way of removing P from oceanic water, sedimentary P burial is one of the most important processes during biogeochemical cycling of P. The high concentrations of organic matter and pronounced microbial activity at ODP Site 1230 along the Peru Margin result in unusually high interstitial water phosphate concentrations, which provides a unique opportunity to use δ18OP to investigate inorganic phosphate (Pi) regeneration and P cycling pathways in marine sediments. The isotopic measurements of both dissolved inorganic phosphate (DIP) and bulk sediment Pi show that DIP δ18OP values are affected by three different processes, which are all induced by specific microbial activities present in the sediments. In sediments at ~ 65 to 120 mbsf, porewater DIP is derived from dissolved organophosphorus compounds (DOP) through enzymatic degradation pathways, evidenced by both DIP δ18OP values and interstitial water chemistry. Measured porewater DIP δ18OP values also suggest that 4 to 8% of interstitial water DIP reflects regeneration of Pi from Porg by microbially-synthesized enzymes. Throughout the sediment column and especially at ~ 120 to 150 mbsf, DIP is released from the sediments by microbially-induced reductive dissolution of Fe-oxides, which contributes to the overall high DIP concentrations at Site 1230. The third and dominant process controlling measured DIP δ18OP values is microbial turnover of regenerated Pi. The presence of high microbial activities in organic-rich Site 1230 sediments promotes the remobilization of P and affects marine P cycling by potentially enhancing

  1. Clastic Sediment Dispersal in Rifted Margins, an Example From the Swiss Alps

    NASA Astrophysics Data System (ADS)

    Galster, Federico; Stockli, Daniel

    2017-04-01

    Detrital zircon (DZ) and detrital rutile (DR) U-Pb ages and mineral trace element data from Permian to Cretaceous Alpine sedimentary strata allow for the reconstruction of sediment provenance within Alpine basins and their evolution during Tethyan rifting. Permian and Triassic pre-rift sedimentary strata are characterized by local derived detritus. Permian DZ U-Pb signatures are more localized and dominated by Cambro-Ordovician and Late Proterozoic zircons. In contrast, Triassic sandstones show a first prominent and pervasive occurrence of Variscan-aged zircons with two main age peaks at 290-300 Ma and 330 Ma, while the abundance of Cambrian and Proterozoic zircons is strongly reduced. From a population of ca. 1000 zircons (<5% discordance) from Permo-Triassic strata of the European margin, no zircon exhibit ages between 1200 and 1700Ma. In the Helvetic domain, the lower Liassic sandstones mark the first appearance of detrital zircons with ages between 1200-1700 Ma and a more generalized dominance of the 330 Ma peak over the 290-300 Ma peak. Throughout the Lower Jurassic (early syn-rift), the abundance of 1200-1700 Ma detrital zircons increases with time. This trend marks the transition from sediment supply dominated by local sources toward sediment supply dominated by far-field sources, probably due to the importance of longitudinal currents, depositional system integrations, and the progressive submersion of local sources. This trend is confirmed by detrital rutile thermometry and geochronology as Permo-Triassic sediments are dominated by Paleozoic rutile with Zr-in-rutile temperatures between 600 and 750°C, while Jurassic sandstones mark the appearance of abundant rutile recording temperatures above 750°C with U-Pb ages ranging from late Proterozoic to earliest Permian in age. The Middle Jurassic (main Alpine Tethyan rifting phase) marks a major shift in provenance and the abrupt renewal of local sources. Along the northern Alpine margin, detrital zircons with

  2. The Contribution of Slope and Basin Sediments to Fluid Budgets of the Costa Rica and the Nankai Trough Margins

    NASA Astrophysics Data System (ADS)

    Screaton, E.; James, S. R.; Meridth, L. N.; Villaseñor, T.; Jaeger, J. M.; Kenney, W.

    2016-12-01

    Fluid budgets of subduction zones generally include the fluids entering with sediments at the deformation front but not fluids added to the margin through slope and basin sedimentation. Although the fluids trapped within slope and basin sediments are unlikely to be subducted except in extreme cases, they may still need to be considered in overall fluid budgets. As a first step, we compare the influx of pore fluids contributed by slope and basin sedimentation within 50 km landward of the deformation front to that entering the margin within sediments of the incoming plate. We examine transects offshore of the Osa and Nicoya Peninsulas of Costa Rica and the Kumano Basin transect offshore the Kii Peninsula of Japan. Incoming sediment thicknesses and porosities are determined from Ocean Drilling Program (ODP) and Integrated Ocean Drilling Program (IODP) results. Drilling results also provide estimates of Pleistocene sedimentation rates on slopes and in basins, and seismic reflection profiles are used to roughly estimate basin extent. Slope and basin sediments are assumed to have initial porosities of 70%. Offshore the Nicoya Peninsula the percentage of pore fluids contributed by slope sediment to those carried in sediments on the incoming plate is relatively small, <5%. In contrast, because the Osa Peninsula transect has rapid sedimentation on the upper plate, fluid influx from above can exceed that carried within the thin (<100 m) sediment cover on the incoming plate. The Kumano Basin transect lies between these two extremes. It has thick incoming sediments ( 2 km) but also high sedimentation rates within the Kumano forearc basin. The fluid influx from slope and basin sedimentation is estimated to be 30-40% of the influx at the deformation front. The presentation will further examine the fate of these fluids and the contributions of hydrous minerals in sediments.

  3. Controls of tectonics and sediment source locations on along-strike variations in transgressive deposits on the northern California margin

    USGS Publications Warehouse

    Spinelli, G.A.; Field, M.E.

    2003-01-01

    We identify two surfaces in the shallow subsurface on the Eel River margin offshore northern California, a lowstand erosion surface, likely formed during the last glacial maximum, and an overlying surface likely formed during the most recent transgression of the shoreline. The lowstand erosion surface, which extends from the inner shelf to near the shelfbreak and from the Eel River to Trinidad Head (???80 km), truncates underlying strata on the shelf. Above the surface, inferred transgressive coastal and estuarine sedimentary units separate it from the transgressive surface on the shelf. Early in the transgression, Eel River sediment was likely both transported down the Eel Canyon and dispersed on the slope, allowing transgressive coastal sediment from the smaller Mad River to accumulate in a recognizable deposit on the shelf. The location of coastal Mad River sediment accumulation was controlled by the location of the paleo-Mad River. Throughout the remainder of the transgression, dispersed sediment from the Eel River accumulated an average of 20 m of onlapping shelf deposits. The distribution and thickness of these transgressive marine units was strongly modified by northwest-southeast trending folds. Thick sediment packages accumulated over structural lows in the lowstand surface. The thinnest sediment accumulations (0-10 m) were deposited over structural highs along faults and uplifting anticlines. The Eel margin, an active margin with steep, high sediment-load streams, has developed a thick transgressive systems tract. On this margin sediment accumulates as rapidly as the processes of uplift and downwarp locally create and destroy accommodation space. Sequence stratigraphic models of tectonically active margins should account for variations in accommodation space along margins as well as across them. ?? 2003 Elsevier Science B.V. All rights reserved.

  4. Long-distance multistep sediment transfer at convergent plate margins (Barbados, Lesser Antilles)

    NASA Astrophysics Data System (ADS)

    Limonta, Mara; Garzanti, Eduardo; Resentini, Alberto; Andò, Sergio; Boni, Maria; Bechstädt, Thilo

    2015-04-01

    analysis is a basic tool in paleogeographic reconstructions when multicyclic sediment dispersal along and across convergent plate margins occur. Such analysis provides the link between faraway factories of detritus and depositional sinks, as well as clues on subduction geometry and the nature of associated growing orogenic belts, and even information on climate, atmospheric circulation and weathering intensity in source regions. REFERENCES Garzanti, E., Limonta, M., Resentini, A., Bandopadhyay, P.C., Najman, Y., Andò, S., Vezzoli, G., 2013. Sediment recycling at convergent plate margins (Indo-Burman Ranges and Andaman-Nicobar Ridge). Earth Sci. Rev., 123, 113-132. Speed, C. and Sedlock, R. 2012. Geology and geomorphology of Barbados. Geol. Soc. Am. Spec. Pap., 491, 63 p.

  5. Joint Electrical and Seismic Interpretation of Gas Hydrate Bearing Sediments From the Cascadia Margin

    NASA Astrophysics Data System (ADS)

    Ellis, M.; Minshull, T.; Sinha, M.; Best, A.

    2008-12-01

    Gas hydrates are found in continental margin sediments worldwide. Their global importance as future energy reserves and their potential impact on slope stability and abrupt climate change all require better knowledge of where they occur and how much hydrate is present. However, current estimates of the distribution and volume of gas hydrate beneath the seabed range widely. Improved geophysical methods could provide much better constraints on hydrate concentrations. Geophysical measurements of seismic velocity and electrical resistivity using seabed or borehole techniques are often used to determine the hydrate saturation of sediments. Gas hydrates are well known to affect these physical properties; hydrate increases sediment p-wave velocity and electrical resistivity by replacing the conductive pore fluids, by cementing grains together and by blocking pores. A range of effective medium theoretical models have been developed to interpret these measurements in terms of hydrate content, but uncertainties about the pore-scale distribution of hydrate can lead to large uncertainties in the results. This study developed effective medium models to determine the seismic and electrical properties of hydrate bearing sediments in terms of their porosity, micro-structure and hydrate saturation. The seismic approach combines a Self Consistent Approximation (SCA) and Differential Effective Medium (DEM), which can model a bi-connected effective medium and allows the shape and alignment of the grains to be taken into account. The electrical effective medium method was developed to complement the seismic models and is based on the application of a geometric correction to the Hashin-Shrikman conductive bound. The electrical and seismic models are non-unique and hence it was necessary to develop a joint electrical and seismic interpretation method to investigate hydrate bearing sediments. The joint method allows two variables (taken from porosity, aspect ratio or hydrate saturation

  6. Interactions of Thalassia testudinum and sediment biogeochemsistry in Santa Rosa Sound, NW Florida

    EPA Science Inventory

    Northern Gulf of Mexico Thalassia testudinum biomass, leaf measurements, and shoot growth rates were determined during three surveys each from a different meadow over consecutive years, and correlated with sediment biogeochemical measurements by correlation analyses and multiple ...

  7. Interactions of Thalassia testudinum and sediment biogeochemsistry in Santa Rosa Sound, NW Florida

    EPA Science Inventory

    Northern Gulf of Mexico Thalassia testudinum biomass, leaf measurements, and shoot growth rates were determined during three surveys each from a different meadow over consecutive years, and correlated with sediment biogeochemical measurements by correlation analyses and multiple ...

  8. Analysis of methods to determine storage capacity of, and sedimentation in, Loch Lomond Reservoir, Santa Cruz County, California, 2009

    USGS Publications Warehouse

    McPherson, Kelly R.; Freeman, Lawrence A.; Flint, Lorraine E.

    2011-01-01

    In 2009, the U.S. Geological Survey, in cooperation with the City of Santa Cruz, conducted bathymetric and topographic surveys to determine the water storage capacity of, and the loss of capacity owing to sedimentation in, Loch Lomond Reservoir in Santa Cruz County, California. The topographic survey was done as a supplement to the bathymetric survey to obtain information about temporal changes in the upper reach of the reservoir where the water is shallow or the reservoir may be dry, as well as to obtain information about shoreline changes throughout the reservoir. Results of a combined bathymetric and topographic survey using a new, state-of-the-art method with advanced instrument technology indicate that the maximum storage capacity of the reservoir at the spillway altitude of 577.5 feet (National Geodetic Vertical Datum of 1929) was 8,646 ±85 acre-feet in March 2009, with a confidence level of 99 percent. This new method is a combination of bathymetric scanning using multibeam-sidescan sonar, and topographic surveying using laser scanning (LiDAR), which produced a 1.64-foot-resolution grid with altitudes to 0.3-foot resolution and an estimate of total water storage capacity at a 99-percent confidence level. Because the volume of sedimentation in a reservoir is considered equal to the decrease in water-storage capacity, sedimentation in Loch Lomond Reservoir was determined by estimating the change in storage capacity by comparing the reservoir bed surface defined in the March 2009 survey with a revision of the reservoir bed surface determined in a previous investigation in November 1998. This revised reservoir-bed surface was defined by combining altitude data from the 1998 survey with new data collected during the current (2009) investigation to fill gaps in the 1998 data. Limitations that determine the accuracy of estimates of changes in the volume of sedimentation from that estimated in each of the four previous investigations (1960, 1971, 1982, and 1998

  9. Two Dimensional Groundwater and Sediment Modeling Studies, Santa Ana River Basin, California.

    DTIC Science & Technology

    1983-01-01

    Occurring on All Watersheds With Less Than One Year of Reforestation Recovery Time 9. Estimated Standard Project Flood Sediment Production 10...Simulated Depths of Deposited Sediment - Mentone Dam 11. Summary of Recharge Redistribution -- Condition 3 (Standard Project Flood with Current Burn...Watershed) 12. Summary of Recharge Redistribution -- Condition 5.0 (50-Year Mean Annual Floods With Current Burn Watershed) 13. Summary of Recharge

  10. Budgeting postglacial sedimentation history on the Santa Cruz, California mid-continental shelf

    USGS Publications Warehouse

    Grossman, E.E.; Eittreim, S.L.; Hanes, D.M.; Field, M.E.; Edwards, B.D.; Fallon, S.J.; Anima, R.J.

    2003-01-01

    High-resolution seismic reflection profiling and surface texture mapping of the central California continental shelf, reveal a prominent subsurface reflector interpreted as a low stand erosion surface and an overlying mudbelt that covers 421 km2 of the mid-shelf in depths of 40-90 m. Radiometric and sedimentologic analyses of samples from vibracores taken along the seaward edge of the mudbelt show that initial deposition above the pre-Holocene erosion surface began ca. 14.5 ka. These data and model results of sea-level history, tectonics, and the Monterey Bay littoral sediment budget support the notion that the entire midshelf deposit was formed during the postglacial transgression. An alternative explanation, that <30% of the deposit is Holocene, requires that (1) sediment input is overestimated and/or loss is greatly underestimated, and (2) preservation on the shelf was significant despite deep and active wave scour observed in the form of rapid cliff and bedrock cutting early and late in the transgression. The difference between a basal age of ???14.5 ka and residence time of midshelf sediment (3,273 years), derived from dividing mudbelt volume by modern accumulation rate, implies: (1) significant sediment loss occurred since the mudbelt formed and/or (2) sediment accumulation has varied greatly over time. Although modern sediment budgets are relatively well constrained, it remains uncertain how well we can apply them to the past. An evolving model of sedimentation history explores the likelihood of changes in sediment supply, accumulation patterns, and depositional patterns owing to postglacial sea-level history and human land-use activities while providing important boundary conditions for modeling shoreface evolution.

  11. Preglacial to glacial sediment thickness grids for the Southern Pacific Margin of West Antarctica

    NASA Astrophysics Data System (ADS)

    Lindeque, Ansa; Gohl, Karsten; Wobbe, Florian; Uenzelmann-Neben, Gabriele

    2016-10-01

    Circum-Antarctic sediment thickness grids provide constraints for basin evolution and paleotopographic reconstructions, which are important for paleo-ice sheet formation histories. By compiling old and new seismic data, we identify sequences representing preglacial, transitional, and full glacial deposition processes along the Pacific margin of West Antarctica. The preglacial sediment grid depicts 1.3-4.0 km thick depocenters, relatively evenly distributed along the margin. The depocenters change markedly in the transitional phase at, or after, the Eocene/Oligocene boundary when the first major ice sheets reached the shelf. Full glacial sequences, starting in the middle Miocene, indicate new depocenter formation North of the Amundsen Sea Embayment and localized eastward shifts in the Bellingshausen Sea and Antarctic Peninsula basins. Using present-day drainage paths and source areas on the continent, our calculations indicate that an estimated observed total sedimentary volume of ˜10 × 106 km3 was eroded from West Antarctica since the separation of New Zealand in the Late Cretaceous. Of this, 4.9 × 106 km3 predates the onset of glaciation and need to be considered for a 34 Ma paleotopography reconstruction. Whereas 5.1 × 106 km3 postdates the onset of glaciation, of which 2.5 × 106 km3 were deposited in post mid-Miocene full glacial conditions.

  12. Estimating suspended sediment concentrations in turbid coastal waters of the Santa Barbara Channel with SeaWiFS

    USGS Publications Warehouse

    Warrick, J.A.; Mertes, L.A.K.; Siegel, D.A.; Mackenzie, C.

    2004-01-01

    A technique is presented for estimating suspended sediment concentrations of turbid coastal waters with remotely sensed multi-spectral data. The method improves upon many standard techniques, since it incorporates analyses of multiple wavelength bands (four for Sea-viewing Wide Field of view Sensor (SeaWiFS)) and a nonlinear calibration, which produce highly accurate results (expected errors are approximately ±10%). Further, potential errors produced by erroneous atmospheric calibration in excessively turbid waters and influences of dissolved organic materials, chlorophyll pigments and atmospheric aerosols are limited by a dark pixel subtraction and removal of the violet to blue wavelength bands. Results are presented for the Santa Barbara Channel, California where suspended sediment concentrations ranged from 0–200+ mg l−1 (±20 mg l−1) immediately after large river runoff events. The largest plumes were observed 10–30 km off the coast and occurred immediately following large El Niño winter floods.

  13. Historical oceanographic events reflected in13C/12C ratio of total organic carbon in laminated Santa Barbara Basin Sediment

    NASA Astrophysics Data System (ADS)

    Schimmelmann, Arndt; Tegner, Mia J.

    1991-06-01

    An 1844-1987 time series of carbon stable isotope ratios from dated sedimentary total organic carbon (TOC) from the center of the Santa Barbara Basin (SBB) is compared with historical climate and oceanographic records. Four isotopically distinct biogeochemical sources of TOC are important: phytoplankton-derived marine biomass, macroalgal biomass from kelp forests, terrigenous biomass (mainly flushed into the SBB via river discharge), and redeposited fossil organic carbon. The significance of the latter two sources is largely limited to a few unusual flood and oil spill events, whereas the combination of 13C-depleted phytoplankton and 13C-enriched macroalgal biomass appears to be responsible for most of the isotopic variance of the marine coastal biomass as recorded in sedimentary TOC. The isotopic response of marine organic carbon in sediments records strong El Niño-Southern Oscillation (ENSO) and the frequently associated severe storm and wave events in SBB varved sediments. The plausible major isotopic mechanisms are (1) increased physical liberation of 13C-enriched kelp carbon from locally abundant giant kelp (Macrocystis spp.) forests during times of physical and environmental stress, and (2) decreased productivity of 13C-depleted phytoplankton during ENSO events.

  14. Organic carbon accumulation and preservation in surface sediments on the Peru margin

    USGS Publications Warehouse

    Arthur, M.A.; Dean, W.E.; Laarkamp, K.

    1998-01-01

    Concentrations and characteristics of organic matter in surface sediments deposited under an intense oxygen-minimum zone on the Peru margin were studied in samples from deck-deployed box cores and push cores acquired by submersible on two transects spanning depths of 75 to 1000 m at 12??and 13.5??S. The source of organic matter to the seafloor in these areas is almost entirely marine material as confirmed by the narrow range of ??13C of organic carbon obtained in the present study (-20.3 to -21.6???; PDB) and the lack of any relationship between pyrolysis hydrogen index and carbon isotope composition. Organic carbon contents are highest (up to 16%) on the slope at depths between 75 and 350 m in sediments deposited under intermediate water masses with low dissolved oxygen concentrations (< 5 ??mol/kg). Even at these low concentrations of dissolved oxygen, however, the surface sediments that were recovered from these depths are dominantly unlaminated. Strong currents (up to 30 cm/s) associated with the poleward-flowing Peru Undercurrent were measured at depths between 160 and 300 m on both transects. The seafloor in this range of water depths is characterized by bedforms stabilized by bacterial mats, extensive authigenic mineral crusts, and (or) thick organic flocs. Constant advection of dissolved oxygen, although in low concentrations, active resuspension of surficial organic matter, activity of organisms, and transport of fine-grained sediment to and from more oxygenated zones all contribute to greater degradation and poorer initial preservation of organic matter than might be expected under oxygen-deficient conditions. Dissolved-oxygen concentrations ultimately may be the dominant affect on organic matter characteristics, but reworking of fine-grained sediment and organic matter by strong bottom currents and redeposition on the seafloor in areas of lower energy also exert important controls on organic carbon concentration and degree of oxidation in this region.

  15. Sediment Gravity Flows Triggered by Remotely Generated Earthquake Waves on the Cascadia Margin

    NASA Astrophysics Data System (ADS)

    Salmi, M.; Johnson, H. P.; Gomberg, J. S.; Hautala, S. L.

    2016-12-01

    The tremendous impacts of mega-thrust earthquakes has been exemplified by recent great earthquakes at Sumatra, Chile, and Japan and by their associated tsunamis. Assessing potential triggers of turbidity events helps our understanding of how accretionary margins are remolded, sediments transported, and paleo-turbidites are interpreted. We studied temperature data recorded using Paroscientific sensors deployed on the seafloor of the Cascadia subduction zone offshore Washington and Oregon, as a part of the Cascade Initiative experiment. Our analysis of data from the first three years of the four year experiment revealed anomalous temperature signals (> 3σ of the background noise) at six of the instrument sites. Based on the combination of pressure and seismometer signals, seafloor morphology, ROV video, published examples from elsewhere and other remote sensing data, we infer that temperature anomalies are the result of sediment gravity flows fed by slope failures. These temperature anomalies could be cause by shallower, warmer, sediment-laden water moving to greater depths and colder ambient temperatures. Three adjacent temperature anomalies straddling the deformation front appear to result from slope failures triggered by seismic waves generated by the 2012 Mw8.6 Indian Ocean Earthquake, which were amplified and prolonged by the Cascadia accretionary wedge. If correct, the Cascadia accretionary wedge may host slope failures and sediment-laden gravity flows between major Cascadia subduction zone earthquakes, possibility remotely triggered by waves from distant earthquakes, that should be considered in inferences of recurrence intervals of past great Cascadia earthquakes from turbidite sequences (although the flows we observe are too small to leave a geologic record), models of sediment transport, and the hazards they pose to seafloor infrastructure in regions both with and without local earthquakes.

  16. Distribution and sources of organic matter in surface marine sediments across the North American Arctic margin

    NASA Astrophysics Data System (ADS)

    Goñi, Miguel A.; O'Connor, Alison E.; Kuzyk, Zou Zou; Yunker, Mark B.; Gobeil, Charles; Macdonald, Robie W.

    2013-09-01

    As part of the International Polar Year research program, we conducted a survey of surface marine sediments from box cores along a section extending from the Bering Sea to Davis Strait via the Canadian Archipelago. We used bulk elemental and isotopic compositions, together with biomarkers and principal components analysis, to elucidate the distribution of marine and terrestrial organic matter in different regions of the North American Arctic margin. Marked regional contrasts were observed in organic carbon loadings, with the highest values (≥1 mg C m-2 sediment) found in sites along Barrow Canyon and the Chukchi and Bering shelves, all of which were characterized by sediments with low oxygen exposure, as inferred from thin layers (<2 cm) of Mn oxihydroxides. We found strong regional differences in inorganic carbon concentrations, with sites from the Canadian Archipelago and Lancaster Sound displaying elevated values (2-7 wt %) and highly depleted 14C compositions consistent with inputs from bedrock carbonates. Organic carbon:nitrogen ratios, stable carbon isotopes, and terrigenous organic biomarkers (lignin phenols and cutin acids) all indicate marked regional differences in the proportions of marine and terrigenous organic matter present in surface sediments. Regions such as Barrow Canyon and the Mackenzie River shelf were characterized by the highest contributions of land-derived organic matter, with compositional characteristics that suggested distinct sources and provenance. In contrast, sediments from the Canadian Archipelago and Davis Strait had the smallest contributions of terrigenous organic matter and the lowest organic carbon loadings indicative of a high degree of post-depositional oxidation.

  17. GLORIA imagery links sedimentation in Aleutian Trench to Yakutat margin via surveyor channel

    SciTech Connect

    Carlson, P.R.; Bruns, T.R.; Mann, D.M.; Stevenson, A.J. ); Huggett, Q.J. )

    1990-06-01

    GLORIA side-scan sonar imagery shows that the continental slope developing along the active margin of the Gulf of Alaska is devoid of large submarine canyons, in spite of the presence of large glacially formed sea valleys that cross the continental shelf. In the western and northern Gulf, discontinuous, actively growing deformation structures disrupt or divert the downslope transport of sediment into the Aleutian Trench. To the east of Middleton Island, the slope is intensively gullied and incised only by relatively small canyons. At the base of the gullied slope between Pamplona Spur and Alsek Valley, numerous small slope gullies coalesce into three turbidity current channels that merge to form the Surveyor deep-sea channel. About 350 km from the margin, the channel crosses the structural barrier formed by the Kodiak-Bowie Seamount chain and heads south for another 150 km where it bends northerly, perhaps influenced by the oceanic basement relief of the Patton Seamounts. The channel, now up to 5 km wide and deeply entrenched to 450 m, continues northerly for 200 km where it intercepts the Aleutian Trench, some 700 km from the Yakutat margin. South of Surveyor Channel, GLORIA imagery revealed evidence of another older channel. The older channel meanders through a gap in the seamount chain and eventually bends northwesterly. This now inactive, largely buried channel may have carried turbidity currents to the Aleutian Trench concurrent with the active Surveyor Channel.

  18. Radiocarbon calibration-comparison records based on marine sediments from the Pakistan and Iberian Margins

    NASA Astrophysics Data System (ADS)

    Bard, E.; Ménot, G.; Licari, L.

    2009-04-01

    We present new results on the radiocarbon records based on planktonic foraminifera of core MD042876 from the Pakistan Margin and updated results for core MD952042 from the Iberian Margin (Bard et al. 2004, Science 303, 178; 2004, Quat. Res. 61, 204; 2004, Radiocarbon 46, 1189; Shackleton et al. 2004, QSR 23, 1513). Both cores exhibit high sedimentation rates on the order of 50 and 40 cm/kyr for the Pakistan and Iberian cores, respectively. For a calendar age scale, we matched climate records of both cores to the oxygen isotopic profile of the Hulu Cave stalagmites that have been accurately dated by U-Th (Wang et al. 2001, Science 294, 2345). Our new comparison data can be compared with the IntCal04 record (Reimer et al. 2004, Radiocarbon 46, 1029) and with individual records based on other archives: corals from Barbados (Fairbanks et al. 2005, QSR 24, 1781), marine sediments of the Cariaco Basin (Hughen et al. 2004, Science 303, 202; 2006, QSR 25, 3216), varves of Lake Suigetsu (Kitagawa & van der Plicht 1998, Science 279, 1187; 2000, Radiocarbon 42, 369), and speleothems from the Bahamas (Beck et al. 2001, Science 292, 2453). Up to 26,000 cal-yr-BP, the Pakistan and Iberian data can be used to validate the precision and accuracy of the marine sediment approach. In the interval between 26,000 and 50,000 cal-yr-B.P., the Pakistan and Iberian records agree closely with each other and with the Cariaco and Barbados data. This agreement clearly shows the feasibility of extending the IntCal04 14C calibration curve.

  19. Phylogenetic diversity of sediment bacteria from the southern Cretan margin, Eastern Mediterranean Sea.

    PubMed

    Polymenakou, Paraskevi N; Lampadariou, Nikolaos; Mandalakis, Manolis; Tselepides, Anastasios

    2009-02-01

    This study is the first culture-independent report on the regional variability of bacterial diversity in oxic sediments from the unexplored southern Cretan margin (SCM). Three main deep basins (water column depths: 2670-3603m), located at the mouth of two submarine canyons (Samaria Gorge and Paximades Channel) and an adjacent slope system, as well as two shallow upper-slope stations (water column depths: 215 and 520m), were sampled. A total of 454 clones were sequenced and the bacterial richness, estimated through five clone libraries using rarefaction analysis, ranged from 71 to 296 unique phylotypes. The average sequence identity of the retrieved Cretan margin sequences compared to the >1,000,000 known rRNA sequences was only 93.5%. A diverse range of prokaryotes was found in the sediments, which were represented by 15 different taxonomic groups at the phylum level. The phylogenetic analysis revealed that these new sequences grouped with the phyla Acidobacteria, Planctomycetes, Actinobacteria, Gamma-, Alpha- and Delta-proteobacteria. Only a few bacterial clones were affiliated with Chloroflexi, Bacteroidetes, Firmicutes, Gemmatimonadetes, Verrucomicrobia, Nitrospirae, Beta-proteobacteria, Lentisphaerae and Dictyoglomi. A large fraction of the retrieved sequences (12%) did not fall into any taxonomic division previously characterized by molecular criteria, whereas four novel division-level lineages, termed candidate division SCMs, were identified. Bacterial community composition demonstrated significant differences in comparison to previous phylogenetic studies. This divergence was mainly triggered by the dominance of Acidobacteria and Actinobacteria and reflected a bacterial community different from that currently known for oxic and pristine marine sediments.

  20. Carbon isotope dynamics in the water column and surface sediments of marginal seas

    NASA Astrophysics Data System (ADS)

    Lipka, Marko; Liu, Bo; Schmiedinger, Iris; Böttcher, Michael E.

    2017-04-01

    The microbial mineralization of organic matter in marine sediments leads to the accumulation of dissolved inorganic carbon (DIC) and other metabolites into the interstitial waters. Pore water profiles sensitively reflect the zones of dominant biogeochemical processes, net trans-formation rates, and diffusive and advective transport of dissolved species across the sediment-water interface. They are controlled by different factors like sedimentology, bottom water currents and redox conditions, microbial activity, and the availability of electron acceptors/donors. The biogeochemical processes create steep gradients in DIC and its carbon isotope composition. One boundary condition for transport processes in the sediment is defined by the composition of the water column, which is under impact by physical mixing processes (e.g., salinity gradient; sediment-water exchange), biological activity and carbon dioxide exchange at the water-atmosphere interface. We present here the results of detailed biogeochemical investigations of vertical water column and pore water profiles from two brackish marginal seas: the Baltic Sea and the Black Sea. The water column on a transect between the North Sea and the southern Baltic Sea as well within the Black Sea were investigated on three cruises with RV MS Merian (MSM33, MSM50, MSM51). In addition, biogeochemical processes and associated element fluxes across the sediment-water interface were studied in key regions of Baltic Sea and Black Sea using pore water and sediment samples retrieved from sediment cores that were collected with a multi-coring device. Water samples were analyzed for metals, nutrients, and metabolites concentrations as well as stable carbon isotope composition of DIC to allow a modeling of steady-state transformation, volumetric transformation rates and element fluxes. The isotope composition of the dissolved inorganic carbon system shows a gradient between the North and the Baltic Sea, following the salinity during

  1. Mercury profiles in sediment from the marginal high of Arabian Sea: an indicator of increasing anthropogenic Hg input.

    PubMed

    Chakraborty, Parthasarathi; Vudamala, Krushna; Chennuri, Kartheek; Armoury, Kazip; Linsy, P; Ramteke, Darwin; Sebastian, Tyson; Jayachandran, Saranya; Naik, Chandan; Naik, Richita; Nath, B Nagender

    2016-05-01

    Total Hg distributions and its speciation were determined in two sediment cores collected from the western continental marginal high of India. Total Hg content in the sediment was found to gradually increase (by approximately two times) towards the surface in both the cores. It was found that Hg was preferentially bound to sulfide under anoxic condition. However, redox-mediated reactions in the upper part of the core influenced the total Hg content in the sediment cores. This study suggests that probable increase in authigenic and allogenic Hg deposition attributed to the increasing Hg concentration in the surface sediment in the study area.

  2. Stability studies of surficial sediments in the Wilmington-Lindenkohl Canyons area, eastern U.S. margin

    USGS Publications Warehouse

    Almagor, G.; Bennett, R.H.; Mc Gregor, B.A.; Shephard, L.E.

    1982-01-01

    Stability analysis, based on infinite slope analysis and geotechnical data from a suite of 34 cores collected from the continental slope between Wilmington and Lindenkohl Canyons, indicates that the Quaternary surficial silty clay sediments on gentle slopes are stable; that sediment stability on steeper slopes (14??-19??) is marginal; and that on precipitous slopes (>50??) only a thin veneer of unconsolidated sediments can exist. Small earthquake-induced accelerations or the effects of internal waves can result in slope sediment instabilities. ?? 1982 A. M. Dowden, Inc.

  3. Early diagenesis and trace element accumulation in North American Arctic margin sediments

    NASA Astrophysics Data System (ADS)

    Kuzyk, Zou Zou A.; Gobeil, Charles; Goñi, Miguel A.; Macdonald, Robie W.

    2017-04-01

    Concentrations of redox-sensitive elements (S, Mn, Mo, U, Cd, Re) were analyzed in a set of 27 sediment cores collected along the North American Arctic margin (NAAM) from the North Bering Sea to Davis Strait via the Canadian Archipelago. Sedimentary distributions and accumulation rates of the elements were used to evaluate early diagenesis in sediments along this section and to estimate the importance of this margin as a sink for key elements in the polar and global oceans. Distributions of Mn, total S and reduced inorganic S demonstrated that diagenetic conditions and thus sedimentary carbon turnover in the NAAM is organized regionally: undetectable or very thin layers (<0.5 cm) of surface Mn enrichment occurred in the Bering-Chukchi shelves; thin layers (1-5 cm) of surface Mn enrichment occurred in Barrow Canyon and Lancaster Sound; and thick layers (5-20 cm) of surface Mn enrichment occurred in the Beaufort Shelf, Canadian Archipelago, and Davis Strait. Inventories of authigenic S below the Mn-rich layer decreased about fivefold from Bering-Chukchi shelf and Barrow Canyon to Lancaster Sound and more than ten-fold from Bering-Chukchi shelf to Beaufort Shelf, Canadian Archipelago and Davis Strait. The Mn, total S and reduced inorganic S distributions imply strong organic carbon (OC) flux and metabolism in the Bering-Chukchi shelves, lower aerobic OC metabolism in Barrow Canyon and Lancaster Sound, and deep O2 penetration and much lower OC metabolism in the Beaufort Shelf, Canadian Archipelago, and Davis Strait. Accumulation rates of authigenic S, Mo, Cd, Re, and U displayed marked spatial variability along the NAAM reflecting the range in sedimentary redox conditions. Strong relationships between the accumulation rates and vertical carbon flux, estimated from regional primary production values and water depth at the coring sites, indicate that the primary driver in the regional patterns is the supply of labile carbon to the seabed. Thus, high primary production

  4. Geochemistry, faunal composition and trophic structure in reducing sediments on the southwest South Georgia margin.

    PubMed

    Bell, James B; Aquilina, Alfred; Woulds, Clare; Glover, Adrian G; Little, Crispin T S; Reid, William D K; Hepburn, Laura E; Newton, Jason; Mills, Rachel A

    2016-09-01

    Despite a number of studies in areas of focused methane seepage, the extent of transitional sediments of more diffuse methane seepage, and their influence upon biological communities is poorly understood. We investigated an area of reducing sediments with elevated levels of methane on the South Georgia margin around 250 m depth and report data from a series of geochemical and biological analyses. Here, the geochemical signatures were consistent with weak methane seepage and the role of sub-surface methane consumption was clearly very important, preventing gas emissions into bottom waters. As a result, the contribution of methane-derived carbon to the microbial and metazoan food webs was very limited, although sulfur isotopic signatures indicated a wider range of dietary contributions than was apparent from carbon isotope ratios. Macrofaunal assemblages had high dominance and were indicative of reducing sediments, with many taxa common to other similar environments and no seep-endemic fauna, indicating transitional assemblages. Also similar to other cold seep areas, there were samples of authigenic carbonate, but rather than occurring as pavements or sedimentary concretions, these carbonates were restricted to patches on the shells of Axinulus antarcticus (Bivalvia, Thyasiridae), which is suggestive of microbe-metazoan interactions.

  5. Geochemistry, faunal composition and trophic structure in reducing sediments on the southwest South Georgia margin

    PubMed Central

    Aquilina, Alfred; Woulds, Clare; Glover, Adrian G.; Little, Crispin T. S.; Hepburn, Laura E.; Newton, Jason; Mills, Rachel A.

    2016-01-01

    Despite a number of studies in areas of focused methane seepage, the extent of transitional sediments of more diffuse methane seepage, and their influence upon biological communities is poorly understood. We investigated an area of reducing sediments with elevated levels of methane on the South Georgia margin around 250 m depth and report data from a series of geochemical and biological analyses. Here, the geochemical signatures were consistent with weak methane seepage and the role of sub-surface methane consumption was clearly very important, preventing gas emissions into bottom waters. As a result, the contribution of methane-derived carbon to the microbial and metazoan food webs was very limited, although sulfur isotopic signatures indicated a wider range of dietary contributions than was apparent from carbon isotope ratios. Macrofaunal assemblages had high dominance and were indicative of reducing sediments, with many taxa common to other similar environments and no seep-endemic fauna, indicating transitional assemblages. Also similar to other cold seep areas, there were samples of authigenic carbonate, but rather than occurring as pavements or sedimentary concretions, these carbonates were restricted to patches on the shells of Axinulus antarcticus (Bivalvia, Thyasiridae), which is suggestive of microbe–metazoan interactions. PMID:27703692

  6. Single cell genomic study of dehalogenating Chloroflexi from deep sea sediments of Peruvian Margin

    NASA Astrophysics Data System (ADS)

    Spormann, A.; Kaster, A.; Meyer-Blackwell, K.; Biddle, J.

    2012-12-01

    Dehalogenating Chloroflexi, such as Dehalococcoidites (Dhc), are members of the rare biosphere of deep sea sediments but were originally discovered as the key microbes mediating reductive dehalogenation of the prevalent groundwater contaminants tetrachloroethene and trichloroethene to ethene. Dhc are slow growing, highly niche adapted microbes that are specialized to organohalide respiration as the sole mode of energy conservation. These strictly anaerobic microbes depend on a supporting microbial community to mitigate electron donor and cofactor requirements among other factors. Molecular and genomic studies on the key enzymes for energy conservation, reductive dehalogenases, have provided evidence for rapid adaptive evolution in terrestrial environments. However, the metabolic life style of Dhc in the absence of anthropogenic contaminants, such as in pristine deep sea sediments, is still unknown. In order to provide fundamental insights into life style, genomic population structure and evolution of Dhc, we analyzed a non-contaminated deep sea sediment sample of the Peru Margin 1230 site collected 6 mbf by a metagenomic and single cell genomic. We present for the first time single cell genomic data on dehalogenating Chloroflexi, a significant microbial population in the poorly understood oligotrophic marine sub-surface environments.

  7. Single cell genomic study of Dehalococcoidites in deep sea sediments of Peru Margin 1230

    NASA Astrophysics Data System (ADS)

    Kaster, A.; Meyer-Blackwell, K.; Spormann, A. M.

    2013-12-01

    Dehalogenating Chloroflexi, such as Dehalococcoidites Dhc were originally discovered as the key microorganisms mediating reductive dehalogenation of the prevalent groundwater contaminants tetrachloroethene and trichloroethene. Molecular and genomic studies on their key enzymes for energy conservation, reductive dehalogenases rdh, have provided evidence for ubiquitous horizontal gene transfer. A pioneering study by Futagami et al. discovered novel putative rdh phylotypes in sediments from the Pacific, revealing an unknown and surprising abundance of rdh genes in pristine habitats. The frequent detection of Dhc-related 16S rRNA genes from these environments implied the occurrence of dissimilatory dehalorespiration in marine subsurface sediments, however, pristine Dhc could never be linked to this activity. Despite being ubiquitous in those environments, metabolic life style or ecological function of Dhc in the absence of anthropogenic contaminants is still completely unknown. We therefore analyzed a non-contaminated deep sea sediment sample of the Peru Margin 1230 site by a single cell genomic (SGC) approach. We present for the first time data on three single Dhc cells, helping to elucidate their role in the poorly understood oligotrophic marine sub-surface environment.

  8. Single cell genomic study of dehalogenating Chloroflexi in deep sea sediments of Peru Margin 1230

    NASA Astrophysics Data System (ADS)

    Kaster, A.; Meyer-Blackwell, K.; Biddle, J.; Spormann, A.

    2012-12-01

    Dehalogenating Chloroflexi, such as Dehalococcoidites (Dhc), are members of the rare biosphere of deep sea sediments but were originally discovered as the key microbes mediating reductive dehalogenation of the prevalent groundwater contaminants tetrachloroethene and trichloroethene to ethene. Dhc are slow growing, highly niche adapted microbes that are specialized to organohalide respiration as the sole mode of energy conservation. They are strictly anaerobic microbes that depend on a supporting microbial community for electron donor and cofactor requirements among other factors. Molecular and genomic studies on the key enzymes for energy conservation, reductive dehalogenases, have provided evidence for rapid adaptive evolution in terrestrial environments. However, the metabolic life style of Dhc in the absence of anthropogenic contaminants, such as in pristine deep sea sediments, is still unknown. In order to provide fundamental insights into life style, genomic population structure and evolution of Dhc, we analyzed a non-contaminated deep sea sediment sample of the Peru Margin 1230 site collected 6 mbsf by a metagenomic and single cell genomic approach. We present for the first time single cell genomic data on dehalogenating Chloroflexi, a significant microbial population in the poorly understood oligotrophic marine sub-surface environment.

  9. Geochemistry, faunal composition and trophic structure in reducing sediments on the southwest South Georgia margin

    NASA Astrophysics Data System (ADS)

    Bell, James B.; Aquilina, Alfred; Woulds, Clare; Glover, Adrian G.; Little, Crispin T. S.; Reid, William D. K.; Hepburn, Laura E.; Newton, Jason; Mills, Rachel A.

    2016-09-01

    Despite a number of studies in areas of focused methane seepage, the extent of transitional sediments of more diffuse methane seepage, and their influence upon biological communities is poorly understood. We investigated an area of reducing sediments with elevated levels of methane on the South Georgia margin around 250 m depth and report data from a series of geochemical and biological analyses. Here, the geochemical signatures were consistent with weak methane seepage and the role of sub-surface methane consumption was clearly very important, preventing gas emissions into bottom waters. As a result, the contribution of methane-derived carbon to the microbial and metazoan food webs was very limited, although sulfur isotopic signatures indicated a wider range of dietary contributions than was apparent from carbon isotope ratios. Macrofaunal assemblages had high dominance and were indicative of reducing sediments, with many taxa common to other similar environments and no seep-endemic fauna, indicating transitional assemblages. Also similar to other cold seep areas, there were samples of authigenic carbonate, but rather than occurring as pavements or sedimentary concretions, these carbonates were restricted to patches on the shells of Axinulus antarcticus (Bivalvia, Thyasiridae), which is suggestive of microbe-metazoan interactions.

  10. Distribution and sources of organic matter in surface sediments of the eastern continental margin of India

    NASA Astrophysics Data System (ADS)

    Krishna, M. S.; Naidu, S. A.; Subbaiah, Ch. V.; Sarma, V. V. S. S.; Reddy, N. P. C.

    2013-12-01

    sources and distribution of organic matter (OM) in surface sediments of the eastern continental margin of India, including the region influenced by river discharge, were investigated using content, molar C:N ratios and stable isotopes of carbon and nitrogen. Despite relatively high water column integrated chlorophyll-a concentrations were found in the continental shelf than the slope; however, the lower sediment organic carbon (SOC) was found in the former than the latter region suggesting that in situ production did not play significant role on preservation of SOC in the coastal Bay of Bengal. The broad range of δ13C of SOC (-23.2 to -16.7‰) suggests that OM is a broad mixture of terrestrial and marine OM. Relative contributions from terrestrial C3 and C4 plants and marine sources are quantified as 34%, 23%, and 43%, respectively, indicating that dominant source of allochthonous OM ( 57%) in the coastal Bay of Bengal. Relatively higher contribution of OM from C4 plants was found in the sediments at off river Krishna indicating that this region received detritus of agricultural crops such as jowar, bajra, and sugar cane, which are dominant in its drainage basin, during SW monsoon. This study revealed that relatively high OM preserved in the slope than shelf region along the coastal Bay of Bengal and the composition of OM is primarily controlled by the type of agricultural crops and vegetation in the drainage basin of the river.

  11. Recent sediment transport and deposition in the Cap-Ferret Canyon, South-East margin of Bay of Biscay

    NASA Astrophysics Data System (ADS)

    Schmidt, Sabine; Howa, Hélène; Diallo, Amy; Martín, Jacobo; Cremer, Michel; Duros, Pauline; Fontanier, Christophe; Deflandre, Bruno; Metzger, Edouard; Mulder, Thierry

    2014-06-01

    The Cap-Ferret Canyon (CFC), a major morphologic feature of the eastern margin of the Bay of Biscay, occupies a deep structural depression that opens about 60 km southwest of the Gironde Estuary. Detailed depth profiles of the particle-reactive radionuclides 234Th and 210Pb in interface sediments were used to characterise the present sedimentation (bioturbation, sediment mass accumulation, and focusing) in the CFC region. Two bathymetric transects were sampled along the CFC axis and the southern adjacent margin. Particle fluxes were recorded from the nearby Landes Plateau by means of sediment traps in 2006 and 2007. This dataset provides a new and comprehensive view of particulate matter transfer in the Cap-Ferret Canyon region, through a direct comparison of the canyon with the adjacent southern margin. Radionuclide profiles (234Th and 210Pb) and mass fluxes demonstrate that significant particle dynamics occur on the SE Aquitanian margin in comparison with nearby margins. The results also suggest show three distinct areas in terms of sedimentary activity. In the upper canyon (<500 m), there is little net sediment accumulation, suggesting a by-pass area. Sediment focusing is apparent at the middle canyon (500-1500 m), that therefore acts as a depocenter for particles from the shelf and the upper canyon. The lower canyon (>2000 m) can be considered inactive at annual or decadal scales. In contrast with the slow and continuous accumulation of relatively fresh material that characterises the middle canyon, the lower canyon receives pulses of sediment via gravity flows on longer time scales. At decadal scale, the CFC can be considered as a relatively quiescent canyon. The disconnection of the CFC from major sources of sediment delivery seems to limit its efficiency in particle transfer from coastal areas to the adjacent ocean basin.

  12. Sediment consolidation at the Cascadia margin deformation front and its impact on megathrust slip behavior

    NASA Astrophysics Data System (ADS)

    Han, S.; Carbotte, S. M.; Bangs, N. L.; Saffer, D. M.; Gibson, J. C.

    2016-12-01

    At the Cascadia subduction zone, the megathrust shows along-strike variation in slip behavior that is not well explained. From land-based geodetic observations, the plate interface is currently partially creeping between 43°N and 46°N but is strongly locked to the south and north (Schmalzle et al., 2014). Paleoseismic studies identify four rupture segments that vary in rupture frequency (Goldfinger et al., 2010). The consolidation state of sediments entering subduction zones is one key control on pore fluid pressure and slip behavior of the plate interface, but has not been examined in detail. Here we quantify sediment properties across the deformation front, and from this infer in situ stress and pore pressure along two cross-margin transects where different slip behaviors are inferred: a Washington transect at 47.4°N crossing a locked northern paleo-rupture segment, and an Oregon transect at 44.6°N crossing the partially creeping zone and is at the boundary between two middle segments. Vp models for the sediment are derived from long source-receiver offset (8 km) multichannel seismic data acquired from the Juan de Fuca Ridge-to-Trench study, and then converted to porosity, effective stress, and pore fluid pressure using empirical relationships calibrated by core and log measurements from ocean drilling that link Vp-porosity-effective stress. On the WA transect where the decollement is only 150 m above the basement, we observe over-consolidated sediments near the deformation front, and further consolidation in the outer accretionary wedge. In comparison, along the OR transect, the 1 km thick sediment section beneath a proto-decollement is under-consolidated with velocities of 3.5-3.6 km/s, significantly slower than the sediments at similar depth along the Washington transect (4.0-4.1 km/s). This difference corresponds to a significantly lower ( 40%) mean effective stress offshore OR. The thick under-consolidated sediments subducting beneath central OR and

  13. Pathways of carbon oxidation in continental margin sediments off central Chile.

    PubMed

    Thamdrup, B; Canfield, D E

    1996-12-01

    Rates and oxidative pathways of organic carbon mineralization were determined in sediments at six stations on the shelf and slope off Concepcion Bay at 36.5 degrees S. The depth distribution of C oxidation rates was determined to 10 cm from accumulation of dissolved inorganic C in 1-5-d incubations. Pathways of C oxidation were inferred from the depth distributions of the potential oxidants (O2, NO3-, and oxides of Mn and Fe) and from directly determined rates of SO4(2-) reduction. The study area is characterized by intense seasonal upwelling, and during sampling in late summer the bottom water over the shelf was rich in NO3- and depleted of O2. Sediments at the four shelf stations were covered by mats of filamentous bacteria of the genera Thioploca and Beggiatoa. Carbon oxidation rates at these sites were extremely high near the sediment surface (>3 micromol cm-3 d-1) and decreased exponentially with depth. The process was entirely coupled to SO4(2-) reduction. At the two slope stations where bottom-water O2 was > 100 microM, C oxidation rates were 10-fold lower and varied less with depth; C oxidation coupled to the reduction of O2, NO3-, and Mn oxides combined to yield an estimated 15% of the total C oxidation between 0 and 10 cm. Carbon oxidation through Fe reduction contributed a further 12-29% of the depth-integrated rate, while the remainder of C oxidation was through SO4(2-) reduction. The depth distribution of Fe reduction agreed well with the distribution of poorly crystalline Fe oxides, and as this pool decreased with depth, the importance of SO4(2-) reduction increased. The results point to a general importance of Fe reduction in C oxidation in continental margin sediments. At the shelf stations, Fe reduction was mainly coupled to oxidation of reduced S. These sediments were generally H2S-free despite high SO4(2-) reduction rates, and precipitation of Fe sulfides dominated H2S scavenging during the incubations. A large NO3- pool was associated with the

  14. Carbonate sedimentation in an extensional active margin: Cretaceous history of the Haymana region, Pontides

    NASA Astrophysics Data System (ADS)

    Okay, Aral I.; Altiner, Demir

    2016-10-01

    The Haymana region in Central Anatolia is located in the southern part of the Pontides close to the İzmir-Ankara suture. During the Cretaceous, the region formed part of the south-facing active margin of the Eurasia. The area preserves a nearly complete record of the Cretaceous system. Shallow marine carbonates of earliest Cretaceous age are overlain by a 700-m-thick Cretaceous sequence, dominated by deep marine limestones. Three unconformity-bounded pelagic carbonate sequences of Berriasian, Albian-Cenomanian and Turonian-Santonian ages are recognized: Each depositional sequence is preceded by a period of tilting and submarine erosion during the Berriasian, early Albian and late Cenomanian, which corresponds to phases of local extension in the active continental margin. Carbonate breccias mark the base of the sequences and each carbonate sequence steps down on older units. The deep marine carbonate deposition ended in the late Santonian followed by tilting, erosion and folding during the Campanian. Deposition of thick siliciclastic turbidites started in the late Campanian and continued into the Tertiary. Unlike most forearc basins, the Haymana region was a site of deep marine carbonate deposition until the Campanian. This was because the Pontide arc was extensional and the volcanic detritus was trapped in the intra-arc basins and did not reach the forearc or the trench. The extensional nature of the arc is also shown by the opening of the Black Sea as a backarc basin in the Turonian-Santonian. The carbonate sedimentation in an active margin is characterized by synsedimentary vertical displacements, which results in submarine erosion, carbonate breccias and in the lateral discontinuity of the sequences, and differs from blanket like carbonate deposition in the passive margins.

  15. Measurement of sediment and crustal thickness corrected RDA for 2D profiles at rifted continental margins: Applications to the Iberian, Gulf of Aden and S Angolan margins

    NASA Astrophysics Data System (ADS)

    Cowie, Leanne; Kusznir, Nick

    2014-05-01

    Subsidence analysis of sedimentary basins and rifted continental margins requires a correction for the anomalous uplift or subsidence arising from mantle dynamic topography. Whilst different global model predictions of mantle dynamic topography may give a broadly similar pattern at long wavelengths, they differ substantially in the predicted amplitude and at shorter wavelengths. As a consequence the accuracy of predicted mantle dynamic topography is not sufficiently good to provide corrections for subsidence analysis. Measurements of present day anomalous subsidence, which we attribute to mantle dynamic topography, have been made for three rifted continental margins; offshore Iberia, the Gulf of Aden and southern Angola. We determine residual depth anomaly (RDA), corrected for sediment loading and crustal thickness variation for 2D profiles running from unequivocal oceanic crust across the continental ocean boundary onto thinned continental crust. Residual depth anomalies (RDA), corrected for sediment loading using flexural backstripping and decompaction, have been calculated by comparing observed and age predicted oceanic bathymetries at these margins. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions from Crosby & McKenzie (2009). Non-zero sediment corrected RDAs may result from anomalous oceanic crustal thickness with respect to the global average or from anomalous uplift or subsidence. Gravity anomaly inversion incorporating a lithosphere thermal gravity anomaly correction and sediment thickness from 2D seismic reflection data has been used to determine Moho depth, calibrated using seismic refraction, and oceanic crustal basement thickness. Crustal basement thicknesses derived from gravity inversion together with Airy isostasy have been used to correct for variations of crustal thickness from a standard oceanic thickness of 7km. The 2D profiles of RDA corrected for both sediment loading and non-standard crustal

  16. Bathyal Mollusca from the cold-water coral biotope of Santa Maria di Leuca (Apulian margin, southern Italy).

    PubMed

    Negri, Mauro Pietro; Corselli, Cesare

    2016-11-08

    This paper describes 97 molluskan species (45 Bivalvia, 3 Scaphopoda, 49 Gastropoda) recovered from bathyal bottoms off Santa Maria di Leuca (Puglia, Italy), in the northern Ionian Sea, and provides data about their taxonomy, geographical distribution, habitat, ecological requirements and fossil record. Only 6 species remain unidentified, and all are illustrated. The bivalve-dominated assemblages belong to the so-called "cold-water coral ecosystem". They appear to depend mainly on substrate characteristics, with faunas related to hard substrate around coral-colonized mound tops, and mud-related ones in inter-mound areas, respectively. Nuculanoida and Pectinoidea among bivalves, and Conoidea and Pyramidelloidea among gastropods are the most diverse suprafamilial groups. The present paper is the first comprehensive taxonomic overview of Mediterranean bathyal mollusks including larval shell characters.

  17. The Peru Margin as an Authigenic Mineral Factory, Evidence From Surface Sediments and Oceanography

    NASA Astrophysics Data System (ADS)

    Dean, W. E.; Arthur, M. A.

    2004-12-01

    Characteristics of sediments deposited within an intense oxygen-minimum zone (OMZ) on the Peru continental margin were mapped by submersible, and studied in samples collected in deck-deployed box cores and submersible push cores on two east-west transects over water depths of 75 to 1000 m at 12 degrees and 13.5 degrees S. On the basis of sampling of the top 1-2 cm of available cores, three main belts of sediments were identified in each transect with increasing depth: 1) organic-carbon (OC)-rich muds; 2) authigenic phosphatic mineral crusts; and 3) glaucony facies. These facies patterns are primarily controlled by redox conditions and strength of bottom currents. OC-rich sediments on the 12-degree transect were mainly located on the outer shelf and upper slope (150-350 m), but they occurred in much shallower water (ca. 100 m) on the 13.5-degree transect. The organic matter is almost entirely marine, resulting from very high primary productivity. The OC concentrations are highest (up to 18%) in sediments where intermediate water masses with low dissolved oxygen concentrations (less than 5 micromoles/kg) impinge on the slope at water depths between 75 and 450 m. The region between 175 and 350 m depth is characterized by bedforms stabilized by bacterial mats, extensive authigenic mineral crusts, and (or) thick organic flocs. Currents as high as 30 cm/sec were measured over that depth interval. Current-resuspension of surficial organic matter, activity of organisms, and transport to and from more oxygenated zones contribute to greater oxidation and poorer preservation of organic matter than occur under oxygen-deficient conditions. Phosphate-rich sediments occurred at depths of about 300 to 550 m on both transects. Nodular crusts cemented by carbonate-fluorapatite (CFA; phosphorite) or dolomite form within the OMZ. The crusts start by cementation of sediment near the sediment-water interface forming stiff but friable phosphatizes claystone "protocrusts". The protocrusts

  18. Planktonic and sediment-associated aerobic methanotrophs in two seep systems along the North American margin.

    PubMed

    Tavormina, Patricia L; Ussler, William; Orphan, Victoria J

    2008-07-01

    Methane vents are of significant geochemical and ecological importance. Notable progress has been made toward understanding anaerobic methane oxidation in marine sediments; however, the diversity and distribution of aerobic methanotrophs in the water column are poorly characterized. Both environments play an essential role in regulating methane release from the oceans to the atmosphere. In this study, the diversity of particulate methane monooxygenase (pmoA) and 16S rRNA genes from two methane vent environments along the California continental margin was characterized. The pmoA phylotypes recovered from methane-rich sediments and the overlying water column differed. Sediments harbored the greatest number of unique pmoA phylotypes broadly affiliated with the Methylococcaceae family, whereas planktonic pmoA phylotypes formed three clades that were distinct from the sediment-hosted methanotrophs and distantly related to established methanotrophic clades. Water column-associated phylotypes were highly similar between field sites, suggesting that planktonic methanotroph diversity is controlled primarily by environmental factors rather than geographical proximity. Analysis of 16S rRNA genes from methane-rich waters did not readily recover known methanotrophic lineages, with only a few phylotypes demonstrating distant relatedness to Methylococcus. The development of new pmo primers increased the recovery of monooxygenase genes from the water column and led to the discovery of a highly diverged monooxygenase sequence which is phylogenetically intermediate to Amo and pMMO. This sequence potentiates insight into the amo/pmo superfamily. Together, these findings lend perspective into the diversity and segregation of aerobic methanotrophs within different methane-rich habitats in the marine environment.

  19. Late Pleistocene valley fills source sediment flux of Tibetan Plateau margin rivers, Zanskar, India

    NASA Astrophysics Data System (ADS)

    Blöthe, J. H.; Munack, H.; Korup, O.; Fulop, R. H.; Codilean, A.; Fink, D.

    2015-12-01

    The Indus and its tributaries, one of Asia's largest river systems, drain the NW Himalaya and the Transhimalayan ranges that border the western Tibetan Plateau margin. From the internally drained low-relief areas of the Tibetan Plateau, local relief increases towards the Western Himalayan Syntaxis, where it exceeds 7 km. Simultaneously, average denudation rates rise from as little as 10 mm ka-1 at the Tibetan Plateau margin to rates of >1000 mm ka-1 close to the western Himalayan Syntaxis. In this rugged bedrock landscape, river valleys frequently alternate between deeply incised gorges and broad alluviated reaches. Vast fill terrace staircases of up to 400 m height above current river levels, and intercalated lake sediments point to repeated phases of incision and aggradation within the region. Despite a broad interest in a better understanding of mechanisms that modulate plateau erosion, age constraints on the generation of these impressive features remain sparse, though indicate mainly Pleistocene formation ages. Here we present new data from the More Plains section, a vast sedimentary fill, located in the headwaters of the Zanskar River, the largest tributary to the upper Indus. The vast sedimentary successions of the More Plains originally belonged to a former endorheic basin that has been tapped by the Zanskar River, today revealing a sedimentary exposures of >250 m thickness. We combine morphometric analysis and field based observations with 10Be surface exposure dating and basin-wide denudation rates to constrain the late Quaternary history of this setting. Analysis of a 10Be depth profile on top of the More Plains section indicate a surface exposure age of ~125 +/- 15 ka, which is supported by ages from nearby amalgamated surface samples. Grounding on a morphometric approach, we estimate that ~1.65-1.95 km3 were removed from this section by fluvial erosion since aggradation ceased, requiring a specific sediment yield of 85-100 t km-2 yr-1 averaged over the

  20. Diverse origins and pre-depositional histories of organic matter in contemporary Chinese marginal sea sediments

    NASA Astrophysics Data System (ADS)

    Tao, Shuqin; Eglinton, Timothy I.; Montluçon, Daniel B.; McIntyre, Cameron; Zhao, Meixun

    2016-10-01

    Marginal seas are estimated to account for up to 90% of organic carbon (OC) burial in marine sediments, and thus play an important role in global carbon cycle. However, comprehensive assessments of carbon budgets for marginal sea systems are challenging due to their inherent complexity, with spatial and temporal variability in carbon inputs and dispersal processes. We examine the Bohai Sea and Yellow Sea (BS-YS) in order to further our understanding of sedimentary OC delivery, translocation and accumulation in a shallow marginal sea system. Bulk properties and the content and isotopic compositions (Δ14C, δ13C) of source-specific plant wax n-alkyl lipid biomarkers were determined for a suite of surficial sediment samples. Variable δ13C values (-25.1‰ to -28.5‰) and contemporary radiocarbon ages of short-chain n-fatty acids (FAs; C16, C18) reflect modern autochthonous marine and/or fresh terrestrial plant input. In contrast, extremely depleted Δ14C values (-932‰ to -979‰) of short-chain n-alkanes (C16, C18) suggest a predominant input from sedimentary rocks (petrogenic OC) or petroleum. Abundance-weighted average δ13C and Δ14C values of long-chain leaf wax lipids (C26+28+30n-FAs, C24+26+28n-alkanols, C27+29+31n-alkanes) are -29.1 ± 1.1‰ to -30.2 ± 0.3‰, and -286 ± 150‰ to -442 ± 119‰, respectively, illustrating that terrestrial OC delivery is dominated by pre-aged (∼3000-5000 14C yrs) C3 vegetation sources. A coupled carbon-isotopic mixing model, based on the bulk and compound-specific biomarker δ13C and Δ14C values, is used to partition the BS-YS sedimentary OC into three components that reflect both origins and transport processes. For all sampling sites, 31-64% is modern/contemporary OC, 24-49% is pre-aged terrestrial OC, and 7-26% is fossil OC, the latter likely derived from both physical erosion of ancient sedimentary rocks and fossil fuel sources. Pre-aged soil OC is most prominent in front of the modern and old Huanghe (Yellow

  1. Bottom current influenced sedimentation in the Argentine Basin and on the Argentine Continental Margin reflected in high resolution seismic data

    NASA Astrophysics Data System (ADS)

    von Lom-Keil, H.; Schacht, R.; Spiess, V.

    2003-04-01

    Sediment deposition and distribution in the western Argentine Basin and along the Argentine continental margin is strongly influenced by deep water current activity, i.e. the Antarctic Bottom Water (AABW), spreading northward along the continental margin below 4000 m, the southward flowing North Atlantic Deep Water (NADW) between 1500 and 3500 m and the northward oriented Antarctic Intermediate Water (AAIW) between 700 and 1100 m. Furthermore the Argentine continental margin is characterised by numerous deep incisions and channels, supporting vertical gravity driven sediment transport. In January 2000 and February 2001 cruises with R/V Meteor in the western South Atlantic Ocean, performed as part of the former Bremen Special Research Project 261 (Cruise M46/3) and as an ODP pre-site survey (Cruise M49/2), provided high resolution seismic information on the internal structure of these complex sedimentary structures. The south west Argentine Basin is covered by the huge Zapiola sediment drift, which reaches a sediment thickness of up to 3 km and is draped by extended fields of sediment waves. High resolution seismic profiles across the western part of the drift deposits allow a closer inspection of the onset and growth of the sediment wave coverage, which starts at 400 ms below seafloor. The data also suggest a movement of the western drift crest to the south west during the growth of the drift. Drift deposits, showing evidence of strong bottom water activity, are also a widespread feature along the deeper Argentine continental margin, especially in vicinity of deeply incised channels. These deposits are often associated with topside or embedded sediment layers showing a wavy topography. Further upslope indications for bottom current erosion can be identified as well as downslope sediment transport forming thick slump deposits.

  2. Trace metals and organochlorines in sediments near a major ocean outfall on a high energy continental margin (Sydney, Australia).

    PubMed

    Matthai, C; Birch, G F

    2000-12-01

    Sewage effluent from a large ocean outfall south of Sydney, southeastern Australia, is efficiently dispersed on this high energy continental margin. An enrichment of Ag, Cu, Pb and Zn is only detectable in the fine fraction (<62.5 microm) of sediment. Ag, Co, Cu, Ni, Pb and Zn in the bulk sample correlate strongly with the mud content of surficial sediment, making an identification of the anthropogenic trace metal source difficult using total sediment analyses. The concentrations of HCB and DDE in the total sediment are also slightly elevated near the outfall. In the vicinity of the outfall, the estimated sewage component in the fine fraction of sediment, using Ag, Cu and Zn in a conservative, two-endmember physical mixing model, is <5% and is <0.25% of the total sediment. A greater anthropogenic Pb component in the fine fraction (mean: 24.8%) of surficial sediment compared to Ag, Cu and Zn may suggest a source other than sewage to Sydney continental margin sediments.

  3. Modeling of depth to base of Last Glacial Maximum and seafloor sediment thickness for the California State Waters Map Series, eastern Santa Barbara Channel, California

    USGS Publications Warehouse

    Wong, Florence L.; Phillips, Eleyne L.; Johnson, Samuel Y.; Sliter, Ray W.

    2012-01-01

    Models of the depth to the base of Last Glacial Maximum and sediment thickness over the base of Last Glacial Maximum for the eastern Santa Barbara Channel are a key part of the maps of shallow subsurface geology and structure for offshore Refugio to Hueneme Canyon, California, in the California State Waters Map Series. A satisfactory interpolation of the two datasets that accounted for regional geologic structure was developed using geographic information systems modeling and graphics software tools. Regional sediment volumes were determined from the model. Source data files suitable for geographic information systems mapping applications are provided.

  4. Single cell genomic study of Dehalococcoidetes species from deep-sea sediments of the Peruvian Margin

    PubMed Central

    Kaster, Anne-Kristin; Mayer-Blackwell, Koshlan; Pasarelli, Ben; Spormann, Alfred M

    2014-01-01

    The phylum Chloroflexi is one of the most frequently detected phyla in the subseafloor of the Pacific Ocean margins. Dehalogenating Chloroflexi (Dehalococcoidetes) was originally discovered as the key microorganisms mediating reductive dehalogenation via their key enzymes reductive dehalogenases (Rdh) as sole mode of energy conservation in terrestrial environments. The frequent detection of Dehalococcoidetes-related 16S rRNA and rdh genes in the marine subsurface implies a role for dissimilatory dehalorespiration in this environment; however, the two genes have never been linked to each other. To provide fundamental insights into the metabolism, genomic population structure and evolution of marine subsurface Dehalococcoidetes sp., we analyzed a non-contaminated deep-sea sediment core sample from the Peruvian Margin Ocean Drilling Program (ODP) site 1230, collected 7.3 m below the seafloor by a single cell genomic approach. We present for the first time single cell genomic data on three deep-sea Chloroflexi (Dsc) single cells from a marine subsurface environment. Two of the single cells were considered to be part of a local Dehalococcoidetes population and assembled together into a 1.38-Mb genome, which appears to be at least 85% complete. Despite a high degree of sequence-level similarity between the shared proteins in the Dsc and terrestrial Dehalococcoidetes, no evidence for catabolic reductive dehalogenation was found in Dsc. The genome content is however consistent with a strictly anaerobic organotrophic or lithotrophic lifestyle. PMID:24599070

  5. Organic Matter Sequestration in Oregon Margin Sediments: Tectonic, Climatic and Oceanographic Controls

    NASA Astrophysics Data System (ADS)

    Coccoli, C. A.; Goni, M. A.; Alleau, Y.; Smith, L.

    2014-12-01

    A combination of box, gravity and piston cores from a site on the upper slope off the Umpqua River in the central Oregon margin were used to create a high-resolution record of organic matter burial over the past ~13,000 years. Our objective is to understand how variations in precipitation intensity and frequency, tectonic uplift rates, and topographic relief affect the magnitude and composition of organic matter deposited along this margin. To examine the possible tectonic and climatic factors influencing the land-ocean relationship of Cascadia during the late Holocene, we measured the organic carbon content, carbon-nitrogen ratio, stable isotopic compositions of organic carbon, yields of lignin-derived and lipid-derived constituents, and mineral surface area of collected sediments from box, kasten and piston cores. Decreases in several organic constituents revealed a potential preferential degradation of marine organic matter over time. Lignin phenol abundances oscillated downcore, pointing towards changes in the provenance of terrigenous organic matter transported to this site. Primary component analysis (PCA) illustrated distinct marine and terrestrial organic matter-dominated segments of the record, which will be correlated to eustatic, tectonic and climatic forcings over the late Holocene.

  6. Single cell genomic study of Dehalococcoidetes species from deep-sea sediments of the Peruvian Margin.

    PubMed

    Kaster, Anne-Kristin; Mayer-Blackwell, Koshlan; Pasarelli, Ben; Spormann, Alfred M

    2014-09-01

    The phylum Chloroflexi is one of the most frequently detected phyla in the subseafloor of the Pacific Ocean margins. Dehalogenating Chloroflexi (Dehalococcoidetes) was originally discovered as the key microorganisms mediating reductive dehalogenation via their key enzymes reductive dehalogenases (Rdh) as sole mode of energy conservation in terrestrial environments. The frequent detection of Dehalococcoidetes-related 16S rRNA and rdh genes in the marine subsurface implies a role for dissimilatory dehalorespiration in this environment; however, the two genes have never been linked to each other. To provide fundamental insights into the metabolism, genomic population structure and evolution of marine subsurface Dehalococcoidetes sp., we analyzed a non-contaminated deep-sea sediment core sample from the Peruvian Margin Ocean Drilling Program (ODP) site 1230, collected 7.3 m below the seafloor by a single cell genomic approach. We present for the first time single cell genomic data on three deep-sea Chloroflexi (Dsc) single cells from a marine subsurface environment. Two of the single cells were considered to be part of a local Dehalococcoidetes population and assembled together into a 1.38-Mb genome, which appears to be at least 85% complete. Despite a high degree of sequence-level similarity between the shared proteins in the Dsc and terrestrial Dehalococcoidetes, no evidence for catabolic reductive dehalogenation was found in Dsc. The genome content is however consistent with a strictly anaerobic organotrophic or lithotrophic lifestyle.

  7. Sediment and water column geochemistry related to methane seepage along the northern US Atlantic margin

    NASA Astrophysics Data System (ADS)

    Pohlman, J.; Ruppel, C. D.; Colwell, F. S.; Krause, S.; Treude, T.; Graw, M.; Casso, M.; Boze, L. G.; Buczkowski, B.; Brankovits, D.

    2015-12-01

    Many of the more than 550 gas plumes recently identified along the northern US Atlantic margin (USAM) using multibeam water-column backscatter data lie at, or shallower than, the upper limit of gas hydrate stability on the continental slope. Important questions remain unanswered regarding the gas sources feeding these seeps, the export of carbon from the seafloor and the fundamental biogeochemical processes that regulate the flux and transformation of carbon along this margin. In addition, few programs have ever systematically studied the dynamics across the upper slope transition from no hydrate to hydrate. In September 2015, the US Geological Survey, Oregon State University, Geomar and UCLA conducted a multidisciplinary study aboard the R/V Sharp that included piston coring, multicoring, seafloor heat flow measurements, imaging of sub-seafloor sediments and water column methane plumes, and sampling of methane plumes in the water column. This presentation provides some of the basic geochemical results from the cruise, focusing on the pore water characteristics in upper slope gas hydrate provinces that will be used to constrain the fundamental biogeochemical processes operating at methane seeps, including data on the origin of seep methane at sites with and without a possible association with gas hydrate degradation. Water column profiling of methane and other biogeochemically relevant species (e.g., dissolved inorganic and organic carbon) are also used to establish how carbon exported from the seeps affects ocean chemistry and carbon availability in the deep ocean.

  8. Can we apply the 10Be/9Be flux tracer to marine sediments along glaciated margins?

    NASA Astrophysics Data System (ADS)

    Valletta, R. D.; Willenbring, J. K.; Passchier, S.; Elmi, C.

    2016-12-01

    Radioactive cosmogenic 10Be normalized to its stable isotope 9Be is proposed as a tracer of continental deposition into the marine basins throughout the Late Cenozoic. Close to glaciated margins, 10Be/9Be may reflect shifts in ice sheet dynamics whereby ice sheet retraction is accompanied by increases in freshwater discharge and terrestrial weathering, which may both increase 10Be and 9Be delivery to the continental shelf. However, this signal is complicated by boundary scavenging during periods of warmth and increased productivity. To disentangle the environmental and biological imprint on the 10Be/9Be isotope record, we sampled extensively characterized marine sedimentary packages offshore the Wilkes Subglacial Basin in an area where East Antarctic Ice Sheet (EAIS) retraction and advance is well-established (IODP U1361A). Combining this existing data with our new measurements creates a uniquely large, multi-proxy dataset for geochemical reconstructions along a glaciated margin. We measured 10Be, 9Be and a suite of bio-reactive transition metals from alternating diatom-rich and diatom-poor clay units 1) adsorbed to authigenic clays and 2) contained within diatom frustules, making this the first dataset of its kind. Diatom-rich clay sediments mark abrupt periods of Pliocene warming and a retracted EAIS. Beryllium co-varies with diatom-rich units: maximum 10Be ( 1.3 x 109 atoms g-1) and 9Be ( 300 ng g-1) peak during warmer intervals. These data mimic patterns observed in the nearby Ross Sea (Yokoyama et al., 2016), suggesting that interglacials are marked along glaciated margins by sudden pulses in Be delivery. By accounting for the Be inventory within diatoms, we have allowed for the exciting pairing of 10Be with 26Al to obtain 1) particle flux and 2) freshwater volume discharged from the EAIS during melting events. These values may offer an approach to constraining changes in two elusive parameters: subglacial erosion and ice sheet melt.

  9. Seismo-turbidite Sedimentology: Implications for Active Tectonic Margin Stratigraphy and Sediment Facies Patterns

    NASA Astrophysics Data System (ADS)

    Nelson, C. H.; Goldfinger, C.; Gutierrez Pastor, J.; Polonia, A.; Van Daele, M. E.

    2014-12-01

    Earthquakes generate mass transport deposits (MTDs); megaturbidites (MTD overlain by coeval turbidite); multi-pulsed, stacked, and mud homogenite seismo-turbidites; tsunamites; and seiche deposits. The strongest (Mw 9) earthquake shaking signatures appear to create multi-pulsed individual turbidites, where the number and character of multiple coarse-grained pulses for correlative turbidites generally remain constant both upstream and downstream in different channel systems. Multiple turbidite pulses, that correlate with multiple ruptures shown in seismograms of historic earthquakes (e.g. Chile 1960, Sumatra 2004 and Japan 2011), support this hypothesis. The weaker (Mw = or < 8) (e.g. northern California San Andreas) earthquakes generate dominantly upstream simple fining-up (uni-pulsed) turbidites in single tributary canyons and channels; however, downstream stacked turbidites result from synchronously triggered multiple turbidity currents that deposit in channels below confluences of the tributaries. Proven tsunamites, which result from tsunami waves sweeping onshore and shallow water debris into deeper water, are a fine-grained turbidite cap over other seismo-turbidites. In contrast, MTDs and seismo-turbidites result from slope failures. Multiple great earthquakes cause seismic strengthening of slope sediment, which results in minor MTDs in basin floor turbidite system deposits (e.g. maximum run-out distances of MTDs across basin floors along active margins are up to an order of magnitude less than on passive margins). In contrast, the MTDs and turbidites are equally intermixed in turbidite systems of passive margins (e.g. Gulf of Mexico). In confined basin settings, earthquake triggering results in a common facies pattern of coeval megaturbidites in proximal settings, thick stacked turbidites downstream, and ponded muddy homogenite turbidites in basin or sub-basin centers, sometimes with a cap of seiche deposits showing bi-directional flow patterns.

  10. Anthropogenic and authigenic uranium in marine sediments of the central Gulf of California adjacent to the Santa Rosalía mining region.

    PubMed

    Shumilin, Evgueni; Rodríguez-Figueroa, Griselda; Sapozhnikov, Dmitry; Sapozhnikov, Yuri; Choumiline, Konstantin

    2012-10-01

    To investigate the causes of uranium (U) enrichment in marine sediments in the eastern sector of the Gulf of California, surface sediments and sediment cores were collected adjacent to the Santa Rosalía copper mining region in the Baja California peninsula. Three coastal sediment cores were found to display high concentrations of U (from 54.2 ± 7.3 mg kg(-1) to 110 ± 13 mg kg(-1)) exceeding those found in the deeper cores (1.36 ± 0.26 mg kg(-1) in the Guaymas Basin to 9.31 ± 3.03 mg kg(-1) in the SR63 core from the suboxic zone). The contribution of non-lithogenic U (estimated using scandium to normalize) to the total U content in sediments of three coastal cores varied from 97.2 ± 0.4 % to 98.82 % versus 49.8 ± 3 % (Guaymas Basin) to 84.2 ± 8.2 % (SR62 core) in the deeper cores. The U content record in a lead-210 ((210)Pb)-dated core had two peaks (in 1923 and 1967) corresponding to the history of ancient mining and smelting activities in Santa Rosalía.

  11. 1. Physical properties and age of mid-slope sediments dredged from the Eastern Australian Continental Margin and the implications for continental margin erosion processes

    NASA Astrophysics Data System (ADS)

    Hubble, T.; Yu, P.; Airey, D.; Clarke, S. L.; Boyd, R.; Keene, J.; Exon, N.; Gardner, J. V.

    2010-12-01

    A large number of submarine landslides were identified on the continental slope on the Eastern Australian margin during voyages aboard the RV Southern Surveyor in 2008. Preliminary sedimentological analysis as well as geotechnical and biostratigraphic data determined for mid-slope dredge samples are reported. The dredge samples are normally-consolidated, calcareous sandy-muds of Neogene age and were recovered from submarine scarps located on the mid-continental slope. These scarps probably represent submarine landslide failure surfaces. Slope stability modelling using classical soil mechanics techniques and measured sediment shear-strengths indicates that the slopes should be stable; however, the ubiquity of mid-slope slides on this margin indicates that their occurrence is relatively common and that submarine-sliding should probably be considered to be a normal characteristic of the margin as suggested by Boyd et al (2010). While this presents something of an interpretational paradox, it nevertheless indicates that an, as yet, unidentified mechanism acts to reduce the shear resistance of these sediments to very low values which enables the slope failures to occur. It is suspected that the expansion of the Antarctic Icesheet in Mid-Miocene time and the consequent large-scale production of cold, equator-ward migrating, bottom water has caused significant erosion and removal of material from mid-slope and lower slope of the Australian continental margin in the Tasman Sea since the Mid-Miocene. Such a process would help to explain the exposure of hard Palaeozoic basement rocks along much of the southern part of the Eastern Australian continental margin. It is also suspected that erosion due to equator-ward moving bottom water effectively and progressively removed material from the toe of the continental slope sediment wedge. This rendered the slope sediments that were deposited throughout the Tertiary more susceptible to mass failure than would have otherwise been the

  12. Bacterial populations and processes in sediments containing gas hydrates (ODP Leg 146: Cascadia Margin)

    NASA Astrophysics Data System (ADS)

    Cragg, B. A.; Parkes, R. J.; Fry, J. C.; Weightman, A. J.; Rochelle, P. A.; Maxwell, J. R.

    1996-04-01

    Bacterial populations and activity were quantified at three sites in the Cascadia Margin accretionary wedge, off the West Canadian/American coast (ODP Leg 146). At two sites sediments contained gas hydrates, Site 889/890 had a discrete zone of hydrate approximately 10 m above a bottom simulating reflector (BSR) at 225 m below sea floor (mbsf) and Site 892 had disseminated hydrate in the upper 20 mbsf and a BSR at 74 mbsf. Site 888 was a control site without gas hydrates. The control site (888) and top approximately 90 mbsf of Site 889/890 had bacterial distributions similar to previous Pacific Ocean sites. In the upper approximately 30 m of Site 892, however, bacterial populations were much lower, suggesting inhibition by the high concentrations of H 2S within the hydrate zone. Below this depth bacterial populations rose to concentrations consistent with other sites. The control site was dominated by SO 4 reduction and rates of CH 4 oxidation in the top 90 m were low (0.002-0.033 nmol cm -3 d -1). At Site 889/890 bacterial populations and activity were stimulated in the discrete hydrate zone. CH 4 oxidation rates increased in the middle of this zone to 134.5 nmol cm -3 d -1 (ca. 9 times the average rate at other depths), resulting in a significant (× 10) increase in the total bacterial population. The anaerobic process(es) responsible for this oxidation remain unclear, despite SO 4-reducing bacteria, previously associated with CH 4 oxidation, also being stimulated in this zone. Fluid flux into accretionary wedge sediments may be an important process in providing electron acceptors to maintain these relatively high rates of CH 4 oxidation. This first microbiological study of gas hydrates indicates that bacterial processes are influenced by gas and fluid venting, and they play a major role in geochemical changes within these deep (> 200 mbsf) sediments.

  13. Increased continental-margin slumping frequency during sea-level lowstands above gas hydrate-bearing sediments

    SciTech Connect

    Paull, C.K.; Buelow, W.J.; Ussler, W. III; Borowski, W.S.

    1996-02-01

    We present {sup 14}C data on sediment samples from cores of the upper 7 m of the sediment column overlying a major continental-rise gas hydrate field on the southern Carolina Rise and inner Blake Ridge offshore the southeastern United States. The data show that glacial-age sediments are underrepresented in the cores. The observation is consistent with a previously predicted association between sea-level lowstands and increased frequency of sea-floor slumping on continental margins containing gas hydrates. 26 refs., 3 figs.

  14. Magnetic fabric (AMS, AAR) of the Santa Marta batholith (northern Colombia) and the shear deformation along the Caribbean Plate margin

    NASA Astrophysics Data System (ADS)

    Salazar, Carlos A.; Bustamante, Camilo; Archanjo, Carlos J.

    2016-10-01

    Anisotropy of low-field magnetic susceptibility (AMS) and anhysteretic remanence (AAR) were measured in the Santa Marta Batholith formed by subduction of the Caribbean Plate beneath the northern South America. The batholith, elongated in the N-S direction, records multiple pulses of quartzdiorite to tonalite and granodiorite magmas between 58 and 49 Ma. The high mean magnetic susceptibility (4 × 10-3 SI) combined with thermomagnetic and partial magnetic remanence measurements indicate that the magnetic susceptibility depends on Ti-poor magnetite. AMS is defined by ellipsoids that are dominantly oblate. The foliation was used to distinguish a narrow band of E-trending magnetic structures that separate the batholith in two lobes. The southern lobe is characterized by foliations that are broadly parallel to the contact with the wall rocks, while the northern lobe by foliations oblique to the batholith elongation. Late tonalitic magmas dated at c. 50 Ma record, in turn, a fabric apparently controlled by E-trending tectonic events. Partial AAR indicates that the subfabrics of magnetite with different grain sizes are nearly parallel to AMS, therefore discarding the possibility of superposed fabrics with different orientations. The magnetic fabric pattern is consistent with a magma emplaced in an arc setting deformed by a dextral shear. Synthetic extensional shear bands localize the magmatic deformation along East-trending corridors that probably were exploited to emplace the late magmatic pulses. Accretion of the Eocene batholith and the Late Cretaceous metasedimentary host-rocks to the South American continent defines a major strike-slip shear suture that resulted from the oblique convergence of the Caribbean Plate.

  15. Coarse-grained sediment delivery and distribution in the Holocene Santa Monica Basin, California: Implications for evaluating source-to-sink flux at millennial time scales

    USGS Publications Warehouse

    Romans, B.W.; Normark, W.R.; McGann, M.M.; Covault, J.A.; Graham, S.A.

    2009-01-01

    Utilizing accumulations of coarse-grained terrigenous sediment from deep-marine basins to evaluate the relative contributions of and history of controls on sediment flux through a source-to-sink system has been difficult as a result of limited knowledge of event timing. In this study, six new radiocarbon (14C) dates are integrated with five previously published dates that have been recalibrated from a 12.5-m-thick turbidite section from Ocean Drilling Program (ODP) Site 1015 in Santa Monica Basin, offshore California. This borehole is tied to high-resolution seismic-reflection profiles that cover an 1100 km2 area of the middle and lower Hueneme submarine fan and most of the basin plain. The resulting stratigraphic framework provides the highest temporal resolution for a thick-bedded Holocene turbidite succession to date, permitting an evaluation of source-to-sink controls at millennial (1000 yr) scales. The depositional history from 7 ka to present indicates that the recurrence interval for large turbidity-current events is relatively constant (300-360 yr), but the volume of sediment deposited on the fan and in the basin plain has increased by a factor of 2 over this period. Moreover, the amount of sand per event on the basin plain during the same interval has increased by a factor of 7. Maps of sediment distribution derived from correlation of seismic-reflection profiles indicate that this trend cannot be attributed exclusively to autogenic processes (e.g., progradation of depocenters). The observed variability in sediment accumulation rates is thus largely controlled by allogenic factors, including: (1) increased discharge of Santa Clara River as a result of increased magnitude and frequency of El Ni??o-Southern Oscillation (ENSO) events from ca. 2 ka to present, (2) an apparent change in routing of coarse-grained sediment within the staging area at ca. 3 ka (i.e., from direct river input to indirect, littoral cell input into Hueneme submarine canyon), and (3

  16. Platform-margin and marginal slope relationships and sedimentation in Devonian reef complexes of Canning basin, Western Australia

    SciTech Connect

    Playford, P.E.; Kerans, C.; Hurley, N.F.

    1984-04-01

    Devonian limestone platforms in the Canning basin were generally rimmed by reef-margin and reef-flat deposits, constructed by stromatoporoids, algae, and corals in the Givetian and Frasnian, and by algae in the Famennian. However, some platforms were low-relief banks with little or no reef development. The reefs and slowly deposited parts of the marginal-slope facies were subject to pervasive early submarine cementation by fibrous high-magnesium calcite (now radiaxial spar). The strongly cemented reef limestones formed rigid wave-resistant rims to the platforms. Fracturing of these limestones, probably largely associated with earthquake shaking, gave rise to extensive networks of neptunian dikes and sills, and to the collapse of some sections of the margins. Such collapses in turn initiated debris flows and the deposition of allochthonous reef blocks on the adjoining marginal slopes. The reef complexes are being explored extensively for lead-zinc deposits in outcrop and oil in the subsurface. A significant oil discovery was made in a Famennian platform margin (the Blina field) in 1981.

  17. Correlation and Analysis of Volcanic Ash in Marine Sediments From the Peru Margin

    NASA Astrophysics Data System (ADS)

    Hart, D.; Miller, J.

    2005-05-01

    While land studies have identified the major volcanic centers of historic eruptions and active to recent volcanism within the Central Volcanic Zone (CVZ) of the Central Andes, the tephrachronologic records are disturbed by the high erosion rates of this arid region. However, volcanic material frequently occurs in marine sediment as discrete ash-fall layers and, or disseminated ash accumulations. Cores from three Peru Margin sites sites(1227, 1228, and 1229) drilled during Ocean Drilling Program (ODP) Leg 201 have been studied to determine the occurrence of volcanic ash layers and ash accumulations within marine sediments along the Peru shelf. The thickness of each ash layer and accumulations has been measured and the volumes calculated in order to decipher the episodicity of explosive volcanic activity in the North-Central Andes recorded in the off shore sediments. The geographic distribution of the sites (over 3 degrees of latitude and from 50 to 300 km offshore) and correlation of ash units between sites form the basis for minimal estimates of explosive volcanic activity in the region (only eruptions large enough to deposit ash in excess of 100 km from source are represented). Pouclet et al., (1990) estimated the minimum explosive activity along the Andean Arc from ash-bearing sediments and ash layers within cores from sites along the Peru margin collected during ODP Leg 112. As a result of better recovery (as much as ten times more core recovery in many intervals) and decreased disturbance in cores recovered during Leg 201, our documentation of ash content in cores from Leg 201 has led to a more complete record of the explosive volcanic activity along the Andean Arc. For example, Pouclet, et al., (1990) reports four ash layers from Sites 684, 680, and 681, whereas forty ash layers have been documented from cores recovered from the same locations (Sites 1227, 1228, and 1229 respectively). Our stratigraphic record agrees with Pouclet, et al., (1990), suggesting

  18. Deformation from the 1989 Loma Prieta earthquake near the southwest margin of the Santa Clara Valley, California

    USGS Publications Warehouse

    Schmidt, Kevin M.; Ellen, Stephen D.; Peterson, David M.

    2014-01-01

    To gain additional measurement of any permanent ground deformation that accompanied this damage, we compiled and conducted post-earthquake surveys along two 5-km lines of horizontal control and a 15-km level line. Measurements of horizontal distortion indicate approximately 0.1 m shortening in a NE-SW direction across the valley margin, similar to the amount measured in the channel lining. Evaluation of precise leveling by the National Geodetic Survey showed a downwarp, with an amplitude of >0.1 m over a span of >12 km, that resembled regional geodetic models of coseismic deformation. Although the leveling indicates broad, regional warping, abrupt discontinuities characteristic of faulting characterize both the broad-scale distribution of damage and the local deformation of the channel lining. Reverse movement largely along preexisting faults and probably enhanced significantly by warping combined with enhanced ground shaking, produced the documented coseismic ground deformation.

  19. Nd isotope calibration of core top sediments along the South African Margin

    NASA Astrophysics Data System (ADS)

    Jones, K. M.; Goldstein, S. L.; Hemming, S. R.; Hall, I.; Zahn, R.

    2006-12-01

    Nd isotope ratios in the authigenic ferromanganese fraction of deep-sea sediments show great promise as tracers of ocean circulation. Its designation as a focus tracer for the new GEOTRACES program requires a better understanding of the processes that affect seawater Nd isotope ratios and their transfer to sediments. In this context, the southern tip of Africa is an important location for inter-ocean exchange. There, the North Atlantic Deep Water (NADW) leaves the Atlantic system and flows northeastward, sandwiched by Antarctic Intermediate Water (AAIW) above and Antarctic Bottom Water (AABW) below. It is an ideal place to calibrate coretop samples against these water masses in the hopes of using the successful cores to constrain changes in paleocirculation. Water column samples and cores at various depths were collected during Cruise 154 of the RRS Charles Darwin during Dec.-Jan. 2003-2004 along the eastern margin of South Africa. We report the first results of Holocene coretop ferromanganese leachates from sediment cores at water depths ranging between 1010 and 3706 m, where ambient water masses range from AAIW through NADW-AABW mixtures. Thus, we expected the Nd isotope ratios to be high at AAIW and AABW depths and low at NADW depths, at values that compare favorably with published water column data from the south Atlantic and western Indian Oceans. A few samples showed Nd isotope ratios clearly different from seawater; these are from the submarine fan of the Tugela River and a region with documented slump deposits near East London. Filtering these out, the remaining samples display a distinct U-shape in a plot of ɛNd vs depth, with those samples from the NADW cores yielding the lowest Nd isotope ratios (ɛNd ~ -11.5 to -12.5) and those reflecting mixtures showing appropriately higher values. This was true despite slightly elevated Sr isotope ratios in all but one core. We calculated a synthetic seawater Nd depth profile from 1500m to 4000m depth with three end

  20. Methane Production In Forearc Sediments At The Costa Rican Convergent Margin

    NASA Astrophysics Data System (ADS)

    Cardace, D.; Morris, J. D.; Peacock, A.; White, D. C.

    2004-12-01

    Plate tectonics creates suitable habitats for deep biosphere organisms, affecting the distribution of biological communities on Earth. Subduction zones, where crustal materials return to the planetary interior through plate convergence, expose active microbial communities in subducting seafloor sediments to a fresh chemical inventory as diagenesis, metamorphic reactions, and tectonically-induced fluid flow alter sediments and surrounding porewaters. The plate interface (the decollement) experiences persistent geochemical flux of light hydrocarbon- and metal-bearing fluids from depth. This project (1) examines the habitability of the decollement zone at the Costa Rican convergent margin from a geochemical perspective, (2) uses lipid biomarkers to describe biomass distribution in sediment samples adjacent to and within the decollement, and (3) cites methanogenesis as a likely metabolic strategy employed by the resident microbial community. Sterile plugs of sediment were recovered from cores taken during Leg 205 of the Ocean Drilling Program, in the Middle America Trench off Costa Rica. Samples are from the incoming carbonate section of Site 1253 at 370-437 meters below seafloor (mbsf), in the forearc sedimentary wedge at Site 1255 at 134-145 mbsf, and around an upper fault (153-220 mbsf) and in the decollement zone (305-366 mbsf) at Site 1254. Drilling mud and fluid were sampled to monitor potential microbial contamination. Samples were immediately frozen at -80ºC. Prior to analysis, samples were freeze-dried in preparation for serial extraction of DNA and lipids. DNA was identified by fluorometry in 13 of 26 samples tested. The DNA was screened for methanogens by real time polymerase chain reaction (PCR), employing ME1 and ME2 primers that amplify a 0.75-kb region of the alpha-subunit gene for methyl coenzyme M reductase (MCR). Methanogen-specific genes were detected in DNA extracted from one Site 1253 sample (at 436.9 mbsf in the basal carbonates) and four Site

  1. Microbial methanogenesis in the sulfate-reducing zone of surface sediments traversing the Peruvian margin

    NASA Astrophysics Data System (ADS)

    Maltby, J.; Sommer, S.; Dale, A. W.; Treude, T.

    2015-09-01

    We studied the concurrence of methanogenesis and sulfate reduction in surface sediments (0-25 cm below sea floor, cmbsf) at six stations (70, 145, 253, 407, 770 and 1024 m) along the Peruvian margin (12° S). This oceanographic region is characterized by high carbon export to the seafloor, creating an extensive oxygen minimum zone (OMZ) on the shelf, both factors that could favor surface methanogenesis. Sediments sampled along the depth transect traversed areas of anoxic and oxic conditions in the bottom-near water. Net methane production (batch incubations) and sulfate reduction (35S-sulfate radiotracer incubation) were determined in the upper 0-25 cmbsf of multicorer cores from all stations, while deep hydrogenotrophic methanogenesis (> 30 cmbsf, 14C-bicarbonate radiotracer incubation) was determined in two gravity cores at selected sites (78 and 407 m). Furthermore, stimulation (methanol addition) and inhibition (molybdate addition) experiments were carried out to investigate the relationship between sulfate reduction and methanogenesis. Highest rates of methanogenesis and sulfate reduction in the surface sediments, integrated over 0-25 cmbsf, were observed on the shelf (70-253 m, 0.06-0.1 and 0.5-4.7 mmol m-2 d-1, respectively), while lowest rates were discovered at the deepest site (1024 m, 0.03 and 0.2 mmol m-2 d-1, respectively). The addition of methanol resulted in significantly higher surface methanogenesis activity, suggesting that the process was mostly based on non-competitive substrates, i.e., substrates not used by sulfate reducers. In the deeper sediment horizons, where competition was probably relieved due to the decline of sulfate, the usage of competitive substrates was confirmed by the detection of hydrogenotrophic activity in the sulfate-depleted zone at the shallow shelf station (70 m). Surface methanogenesis appeared to be correlated to the availability of labile organic matter (C / N ratio) and organic carbon degradation (DIC production

  2. Microbial methanogenesis in the sulfate-reducing zone of surface sediments traversing the Peruvian margin

    NASA Astrophysics Data System (ADS)

    Maltby, J.; Sommer, S.; Dale, A. W.; Treude, T.

    2016-01-01

    We studied the concurrence of methanogenesis and sulfate reduction in surface sediments (0-25 cm below sea floor) at six stations (70, 145, 253, 407, 990 and 1024 m) along the Peruvian margin (12° S). This oceanographic region is characterized by high carbon export to the seafloor creating an extensive oxygen minimum zone (OMZ) on the shelf, both factors that could favor surface methanogenesis. Sediments sampled along the depth transect traversed areas of anoxic and oxic conditions in the bottom-near water. Net methane production (batch incubations) and sulfate reduction (35S-sulfate radiotracer incubation) were determined in the upper 0-25 cm b.s.f. of multiple cores from all stations, while deep hydrogenotrophic methanogenesis (> 30 cm b.s.f., 14C-bicarbonate radiotracer incubation) was determined in two gravity cores at selected sites (78 and 407 m). Furthermore, stimulation (methanol addition) and inhibition (molybdate addition) experiments were carried out to investigate the relationship between sulfate reduction and methanogenesis.

    Highest rates of methanogenesis and sulfate reduction in the surface sediments, integrated over 0-25 cm b.s.f., were observed on the shelf (70-253 m, 0.06-0.1 and 0.5-4.7 mmol m-2 d-1, respectively), while lowest rates were discovered at the deepest site (1024 m, 0.03 and 0.2 mmol m-2 d-1, respectively). The addition of methanol resulted in significantly higher surface methanogenesis activity, suggesting that the process was mostly based on non-competitive substrates - i.e., substrates not used by sulfate reducers. In the deeper sediment horizons, where competition was probably relieved due to the decrease of sulfate, the usage of competitive substrates was confirmed by the detection of hydrogenotrophic activity in the sulfate-depleted zone at the shallow shelf station (70 m).

    Surface methanogenesis appeared to be correlated to the availability of labile organic matter (C / N ratio) and organic carbon

  3. Carbonate diagenesis in the methane-rich sediments of the Beringian margin, IODP 323 Expedition

    NASA Astrophysics Data System (ADS)

    Pierre, C.; Blanc Valleron, M.; Maerz, C.; Ravelo, A.; Takahashi, K.; Alvarez Zarikian, C. A.; Scientific Party Of Iodp Expedition 323

    2010-12-01

    During IODP expedition 323 in the Bering Sea (July 5- September 4, 2009) a series of drilling (down to 750 meters below sea floor) was realized at 7 sites localized on the Umnak plateau (U1339), on the Bowers Ridge (U1340, U1341, U1342) and on the Beringian margin (U1343, U1344, U1345) ; the oldest sediments dated at 5 Myrs were recovered at Sites U1340 and U1341. Diagenetic carbonates are present at all Sites either as nodules and cm to dm thick layers, or as isolated acicular crystals, within the diatom-rich oozes of the Bering Sea, which are also characterized by their extreme richness in methane. The mineralogical, geochemical and isotopic study of diagenetic carbonates from Sites U1343, U1344 and U1345 was realized to characterize the nature of inorganic and microbial processes responsible for this diagenesis, and to determine the composition and origin of fluids in which these carbonates were precipitated. The carbonate mineralogy is very complex ; it is represented by composite mixtures of magnesian calcite and dolomite of various composition. Fe-rich dolomite/siderite dominate below ~260 mbsf at Site U1343 and ~200 mbsf at Site U1344. The isotopic compositions of the diagenetic carbonates display wide ranges of variations both for calcite (+2.84 < δ18O ‰ < +6.92 ; -20.52 < δ13C ‰ <+4.83) and dolomite (+3.58< δ18O ‰ < +9.19; +1.28 < δ13C ‰ <+11.37). The δ13C values clearly indicate that methanogenesis was involved in the sediments during microbial fermentation of organic matter : in this reaction, the 13C-rich CO2 was converted to carbonate alkalinity via silicate weathering and the 13C-poor methane was oxidized as bicarbonate via anaerobic oxidation of methane coupled with bacterial sulfate reduction as it is shown by the association of pyrite with the diagenetic carbonates.

  4. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin.

    PubMed

    Inagaki, Fumio; Nunoura, Takuro; Nakagawa, Satoshi; Teske, Andreas; Lever, Mark; Lauer, Antje; Suzuki, Masae; Takai, Ken; Delwiche, Mark; Colwell, Frederick S; Nealson, Kenneth H; Horikoshi, Koki; D'Hondt, Steven; Jørgensen, Bo B

    2006-02-21

    The deep subseafloor biosphere is among the least-understood habitats on Earth, even though the huge microbial biomass therein plays an important role for potential long-term controls on global biogeochemical cycles. We report here the vertical and geographical distribution of microbes and their phylogenetic diversities in deeply buried marine sediments of the Pacific Ocean Margins. During the Ocean Drilling Program Legs 201 and 204, we obtained sediment cores from the Peru and Cascadia Margins that varied with respect to the presence of dissolved methane and methane hydrate. To examine differences in prokaryotic distribution patterns in sediments with or without methane hydrates, we studied >2,800 clones possessing partial sequences (400-500 bp) of the 16S rRNA gene and 348 representative clone sequences (approximately 1 kbp) from the two geographically separated subseafloor environments. Archaea of the uncultivated Deep-Sea Archaeal Group were consistently the dominant phylotype in sediments associated with methane hydrate. Sediment cores lacking methane hydrates displayed few or no Deep-Sea Archaeal Group phylotypes. Bacterial communities in the methane hydrate-bearing sediments were dominated by members of the JS1 group, Planctomycetes, and Chloroflexi. Results from cluster and principal component analyses, which include previously reported data from the West and East Pacific Margins, suggest that, for these locations in the Pacific Ocean, prokaryotic communities from methane hydrate-bearing sediment cores are distinct from those in hydrate-free cores. The recognition of which microbial groups prevail under distinctive subseafloor environments is a significant step toward determining the role these communities play in Earth's essential biogeochemical processes.

  5. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin

    PubMed Central

    Inagaki, Fumio; Nunoura, Takuro; Nakagawa, Satoshi; Teske, Andreas; Lever, Mark; Lauer, Antje; Suzuki, Masae; Takai, Ken; Delwiche, Mark; Colwell, Frederick S.; Nealson, Kenneth H.; Horikoshi, Koki; D’Hondt, Steven; Jørgensen, Bo B.

    2006-01-01

    The deep subseafloor biosphere is among the least-understood habitats on Earth, even though the huge microbial biomass therein plays an important role for potential long-term controls on global biogeochemical cycles. We report here the vertical and geographical distribution of microbes and their phylogenetic diversities in deeply buried marine sediments of the Pacific Ocean Margins. During the Ocean Drilling Program Legs 201 and 204, we obtained sediment cores from the Peru and Cascadia Margins that varied with respect to the presence of dissolved methane and methane hydrate. To examine differences in prokaryotic distribution patterns in sediments with or without methane hydrates, we studied >2,800 clones possessing partial sequences (400–500 bp) of the 16S rRNA gene and 348 representative clone sequences (≈1 kbp) from the two geographically separated subseafloor environments. Archaea of the uncultivated Deep-Sea Archaeal Group were consistently the dominant phylotype in sediments associated with methane hydrate. Sediment cores lacking methane hydrates displayed few or no Deep-Sea Archaeal Group phylotypes. Bacterial communities in the methane hydrate-bearing sediments were dominated by members of the JS1 group, Planctomycetes, and Chloroflexi. Results from cluster and principal component analyses, which include previously reported data from the West and East Pacific Margins, suggest that, for these locations in the Pacific Ocean, prokaryotic communities from methane hydrate-bearing sediment cores are distinct from those in hydrate-free cores. The recognition of which microbial groups prevail under distinctive subseafloor environments is a significant step toward determining the role these communities play in Earth’s essential biogeochemical processes. PMID:16477011

  6. Linking Late Pleistocene alpine glacial erosion and continental margin sedimentation: Insights from 40Ar/39Ar dating of silt-sized sediment, Canterbury Basin, New Zealand

    NASA Astrophysics Data System (ADS)

    Villaseñor, Tania; Jaeger, John M.; Foster, David A.

    2016-01-01

    Quaternary climatic and eustatic cycles in mid-latitude regions have led to more extensive alpine glaciations and continental shelf progradation, respectively. However, the glacial influence on sediment fluxes to the ocean creating continental margin strata is poorly documented. This contribution analyzes the provenance of fine sediment accumulating on the continental shelf during the Late Pleistocene to evaluate the influence of glacial cycles on sediment erosion and routing to the continental shelf. Taking advantage of the contrasting bedrock ages exposed across the Southern Alps, New Zealand, we perform 40Ar/39Ar incremental heating on the bulk silt-size sediment from three drill sites of IODP Expedition 317, Canterbury Basin, New Zealand. The results suggest that a large proportion of sediment accumulating on the continental shelf results from erosion within the Main Divide fault zone of the Southern Alps. Sediment 40Ar/39Ar age fluctuations over this time period suggest that bedrock with various 40Ar/39Ar cooling ages has been differentially eroded in the upper Waitaki River catchment and mixed in the Waitaki-Canterbury sediment-routing system. Across-shelf variations in sediment 40Ar/39Ar age reflect changing modes of sediment dispersal on the continental shelf. Fluvial material, likely derived from the main drainage divide zone, preferentially accumulates in the middle continental shelf, whereas material representing erosion of older bedrock (Torlesse Terrane), located lower in the drainage basin, is dispersed uniformly across the shelf. The age signature of the muddy sediment accumulating on the continental shelf reflects Late Pleistocene landscape evolution of the Southern Alps and its influence on sediment dispersal to the continental shelf.

  7. 14C and 13C characteristics of higher plant biomarkers in Washington margin surface sediments

    NASA Astrophysics Data System (ADS)

    Feng, Xiaojuan; Benitez-Nelson, Bryan C.; Montluçon, Daniel B.; Prahl, Fredrick G.; McNichol, Ann P.; Xu, Li; Repeta, Daniel J.; Eglinton, Timothy I.

    2013-03-01

    Plant wax lipids and lignin phenols are the two most common classes of molecular markers that are used to trace vascular plant-derived OM in the marine environment. However, their 13C and 14C compositions have not been directly compared, which can be used to constrain the flux and attenuation of terrestrial carbon in marine environment. In this study, we describe a revised method of isolating individual lignin phenols from complex sedimentary matrices for 14C analysis using high pressure liquid chromatography (HPLC) and compare this approach to a method utilizing preparative capillary gas chromatography (PCGC). We then examine in detail the 13C and 14C compositions of plant wax lipids and lignin phenols in sediments from the inner and mid shelf of the Washington margin that are influenced by discharge of the Columbia River. Plant wax lipids (including n-alkanes, n-alkanoic (fatty) acids, n-alkanols, and n-aldehydes) displayed significant variability in both δ13C (-28.3‰ to -37.5‰) and Δ14C values (-204‰ to +2‰), suggesting varied inputs and/or continental storage and transport histories. In contrast, lignin phenols exhibited similar δ13C values (between -30‰ and -34‰) and a relatively narrow range of Δ14C values (-45‰ to -150‰; HPLC-based measurement) that were similar to, or younger than, bulk OM (-195‰ to -137‰). Moreover, lignin phenol 14C age correlated with the degradation characteristics of this terrestrial biopolymer in that vanillyl phenols were on average ˜500 years older than syringyl and cinnamyl phenols that degrade faster in soils and sediments. The isotopic characteristics, abundance, and distribution of lignin phenols in sediments suggest that they serve as promising tracers of recently biosynthesized terrestrial OM during supply to, and dispersal within the marine environment. Lignin phenol 14C measurements may also provide useful constraints on the vascular plant end member in isotopic mixing models for carbon source

  8. Survival Of Magnetic Paleoclimatic Signals From Shallow To Deep Water Marine Redoxomorphic Sediments Across The Northwest Iberian Continental Margin

    NASA Astrophysics Data System (ADS)

    Mohamed Falcon, K. J.; Rey, D.; Rubio, B.

    2013-05-01

    The magnetic properties of marine sediments on the North Atlantic Iberian continental Margin are strongly dependent on the organic matter input to the sediments and the onset of reductive diagenesis. An onshore-offshore gradient in the intensity of early diagenesis was recently described for the Ría de Vigo, matched by similar patterns in the adjacent rias of Pontevedra and Muros. In the ria environments of NW Iberia, early diagenetic dissolution of magnetic minerals can lead to magnetite half-lives of a few decades, and virtually obliterates any paleoenvironmental signal carried by magnetic minerals, rendering magnetic properties especially useful for the study of early diagenesis dynamics. Early diagenesis has also been identified in sediments of the adjacent continental shelf and deeper environments of the Galician Bank and Iberian Abyssal Plain. However, in these settings, slower dissolution of magnetic minerals allows the preservation of paleoclimatic signatures on different temporal scales. For instance, magnetic properties of continental shelf sediments reveal periods of enhanced rainfall and continental sediment input to the shelf, coincident with the Roman Warm Period and Medieval Climatic Optimum. On the contrary, cold periods are associated with less detrital input. Furthermore, levels of intensified diagenesis are also recorded during cold periods, which have been interpreted as periods of intensified coastal upwelling probably related to long-term North Atlantic Oscillation positive state. At the Galician Bank and Iberian Abyssal Plain sediments early diagenesis is also pervasive, although a paleoceanographic record of changes in the concentration of magnetic minerals transported by water masses flowing from the Portuguese Margin can still be identified. In addition to the progressive dissolution of magnetic minerals with depth, bulk magnetic properties in these deep marine settings show strong dependence on the pelagic carbonate sedimentation and low

  9. Phylogenetic and Functional Diversity of Microbial Communities Associated with Subsurface Sediments of the Sonora Margin, Guaymas Basin

    PubMed Central

    Vigneron, Adrien; Cruaud, Perrine; Roussel, Erwan G.; Pignet, Patricia; Caprais, Jean-Claude; Callac, Nolwenn; Ciobanu, Maria-Cristina; Godfroy, Anne; Cragg, Barry A.; Parkes, John R.; Van Nostrand, Joy D.; He, Zhili; Zhou, Jizhong; Toffin, Laurent

    2014-01-01

    Subsurface sediments of the Sonora Margin (Guaymas Basin), located in proximity of active cold seep sites were explored. The taxonomic and functional diversity of bacterial and archaeal communities were investigated from 1 to 10 meters below the seafloor. Microbial community structure and abundance and distribution of dominant populations were assessed using complementary molecular approaches (Ribosomal Intergenic Spacer Analysis, 16S rRNA libraries and quantitative PCR with an extensive primers set) and correlated to comprehensive geochemical data. Moreover the metabolic potentials and functional traits of the microbial community were also identified using the GeoChip functional gene microarray and metabolic rates. The active microbial community structure in the Sonora Margin sediments was related to deep subsurface ecosystems (Marine Benthic Groups B and D, Miscellaneous Crenarchaeotal Group, Chloroflexi and Candidate divisions) and remained relatively similar throughout the sediment section, despite defined biogeochemical gradients. However, relative abundances of bacterial and archaeal dominant lineages were significantly correlated with organic carbon quantity and origin. Consistently, metabolic pathways for the degradation and assimilation of this organic carbon as well as genetic potentials for the transformation of detrital organic matters, hydrocarbons and recalcitrant substrates were detected, suggesting that chemoorganotrophic microorganisms may dominate the microbial community of the Sonora Margin subsurface sediments. PMID:25099369

  10. Phylogenetic and functional diversity of microbial communities associated with subsurface sediments of the Sonora Margin, Guaymas Basin.

    PubMed

    Vigneron, Adrien; Cruaud, Perrine; Roussel, Erwan G; Pignet, Patricia; Caprais, Jean-Claude; Callac, Nolwenn; Ciobanu, Maria-Cristina; Godfroy, Anne; Cragg, Barry A; Parkes, John R; Van Nostrand, Joy D; He, Zhili; Zhou, Jizhong; Toffin, Laurent

    2014-01-01

    Subsurface sediments of the Sonora Margin (Guaymas Basin), located in proximity of active cold seep sites were explored. The taxonomic and functional diversity of bacterial and archaeal communities were investigated from 1 to 10 meters below the seafloor. Microbial community structure and abundance and distribution of dominant populations were assessed using complementary molecular approaches (Ribosomal Intergenic Spacer Analysis, 16S rRNA libraries and quantitative PCR with an extensive primers set) and correlated to comprehensive geochemical data. Moreover the metabolic potentials and functional traits of the microbial community were also identified using the GeoChip functional gene microarray and metabolic rates. The active microbial community structure in the Sonora Margin sediments was related to deep subsurface ecosystems (Marine Benthic Groups B and D, Miscellaneous Crenarchaeotal Group, Chloroflexi and Candidate divisions) and remained relatively similar throughout the sediment section, despite defined biogeochemical gradients. However, relative abundances of bacterial and archaeal dominant lineages were significantly correlated with organic carbon quantity and origin. Consistently, metabolic pathways for the degradation and assimilation of this organic carbon as well as genetic potentials for the transformation of detrital organic matters, hydrocarbons and recalcitrant substrates were detected, suggesting that chemoorganotrophic microorganisms may dominate the microbial community of the Sonora Margin subsurface sediments.

  11. Archaeal diversity in ODP legacy borehole 892b and associated seawater and sediments of the Cascadia Margin.

    PubMed

    Lanoil, Brain D; La Duc, Myron T; Wright, Miriam; Kastner, Miriam; Nealson, Kenneth H; Bartlett, Douglas

    2005-10-01

    The Cascadia Margin is a region of active accretionary tectonics characterized by high methane flux accompanied by the formation of sedimentary gas hydrates, carbonate nodules, and carbonate pavements. Several sediment cores have been obtained from this region by the Ocean Drilling Project (ODP), and in some cases the boreholes have been sealed off, serving as sites for long-term observatories. We characterized geochemical parameters and diversity of Archaea in one such "legacy" borehole, ODP site 892b, as well as in bottom water immediately above the borehole and in two nearby sediments. The methane concentrations in the samples varied over five orders of magnitude, from approximately 25 to 35 nM in the bottom water to approximately 1.4mM in one of the sediment samples. Despite these differences, the Archaeal community in all samples was dominated by gene sequences related to the methanogenic Archaea, a finding that correlates with studies of other environments characterized by high methane flux. The archaeal phylotype richness in borehole ODP 892b was limited to two phylotypes; one specifically related to Methanosaeta spp., the other to the anaerobic methane oxidizing ANME-1 group. Although some similar groups were observed in nearby sediment and seawater samples, their archaeal phylotype richness was significantly higher than in the borehole. The possible presence of a dynamic microbial community in the Cascadia Margin sub-surface and its potential roles in methanogenesis, anaerobic oxidation of methane, and authigenic precipitation of carbonate in the Cascadia Margin are discussed.

  12. Continental-Margin Processes Recorded in Shelf and Canyon Sediments. Sediment Deposition, Erosion and Accumulation on a Tidal Flat Adjacent to a River Mouth

    DTIC Science & Technology

    2007-01-01

    Sequence Stratigraphy , IAS Spec. Pub. 37, Blackwell Publishing, Oxford, 549 pp. (2007). C.A. Nittrouer, J.A. Austin, M.E. Field, J.H. Kravitz, J.P.M...Continental Margin Sedimentation: From Sediment Transport to Sequence Stratigraphy , IAS Spec. Pub. 37, Blackwell Publishing, Oxford, 1-48 (2007... Stratigraphy , IAS Spec. Pub. 37, Blackwell Publishing, Oxford, 157-212 (2007). L.F. Pratson, C.A. Nittrouer, P.L.Wiberg, M.S. Steckler, J.B. Swenson

  13. Magnetic Mineralogy as Indicator of dry Conditions in Lacustrine Sediments From Santa María del Oro, Nayarit, Central Mexico

    NASA Astrophysics Data System (ADS)

    Ortega, B.; Vazquez, G.; Rodriguez, A.

    2007-05-01

    Combined magnetic and geochemical analysis were conducted on laminated sediments from Santa Maria del Oro, a crater lake in Nayarit (Mexico), to build up a model of paleoenvironmental conditions for the late Holocene. The occurrence of a severe drought at the end of the archeological Classic period (100 - 900 AD) has been documented in sites of central Mexico (Zirahuen lake and Lerma basin), the Gulf of Mexico coast (Los Tuxtlas) and the Yucatan peninsula. The effects of this climatic event are considered to have stressed the social and political situation in the Yucatan area and other sites in Mesoamerica, and resulted in the "collapse" of the Maya civilization. Santa Maria del Oro sediments between ca. 600 - 1140 AD are characterized by repeated sequences of ocher silt laminae with high inorganic carbon content, authigenic siderite, and low concentration of SD magnetic minerals, followed upward by an increase of concentrations of fine grained SD and SP ferrimagnetic minerals in brown silt laminae. This sequence is considered to represent dissolution-precipitation cycles of magnetic minerals in low erosion, concentrated waters and anoxic water-sediment interface environments. Dissolution of magnetite occurs in reductive conditions, which are considered as warmer and dryer periods. Above the ocher silt, precipitation of fine grained magnetite occurs when conditions change to oxic environments. Ostracode C and O isotopy document a negative precipitation/evaporation balance during this time period.

  14. Strong Acid Mixture and Sequential Geochemical Arsenic Extractions in Surface Sediments from the Santa Maria La Reforma Coastal Lagoon, Mexico: A Bioavailability Assessment.

    PubMed

    Rivera-Hernández, José R; Green-Ruiz, Carlos

    2016-02-01

    Thirty-three sediment samples were collected from the Santa Maria La Reforma coastal lagoon and digested by way of a strong acid mixture and sequential arsenic (As)-extraction method to determine the arsenic (As) content and bioavailability. The As content was determined by atomic fluorescence spectrometry. In addition, grain-size analyses were performed, and organic carbon, carbonate, and iron (Fe) and manganese (Mn) concentrations were determined. Fe and Mn determination was performed by atomic absorption spectroscopy. A Pearson correlation matrix and As enrichment factors were calculated. Sediment concentrations from Santa Maria La Reforma ranged from 3.6 to 25 µg As g(-1) with an average of 13.4 ± 7.6 µg As g(-1). The highest values were observed in the northern (Playa Colorada), north-central (Mocorito River discharge zone), and southern zones ("El Tule" agricultural drain). Most samples were classified as exhibiting no or minor As enrichment and were lower than the threshold effect level (TEL; 7.24 µg g(-1)) for biota (MacDonald et al. in Ecotoxicology 5:253-278, 1996). Low bioavailable As values (<3 %) were measured in the majority of the sediment. The highest As percentages were associated with the oxyhydroxide fraction (F5). The results indicate that As bioavailability is negligible.

  15. Response of infaunal macrobenthos to the sediment granulometry in a tropical continental margin southwest coast of India

    NASA Astrophysics Data System (ADS)

    Jayaraj, K. A.; Sheeba, P.; Jacob, Josia; Revichandran, C.; Arun, P. K.; Praseeda, K. S.; Nisha, P. A.; Rasheed, K. A.

    2008-05-01

    Surficial sediment samples, collected from the continental margin of the southwest coast of India in July 2004, were examined for the grain size and soft-bottom macrobenthic fauna, to understand the sediment granulometry and its effect on the faunal distribution. Samples were collected using Smith-McIntyre Grab, from 20 to 200 m depth range, consisting of mid-shelf, outer shelf and slope. Fine-grained sediment located in the mid shelf and supported low faunal abundance. Polychaetes constituted the bulk of the fauna. Feeding guild changed with depth and sediment granulometry. Coexistence of deposit feeders and carnivores in outer shelf and deposit feeders and filter feeders in the slope region indicated the effective utilization of different food resources. In general, richness and diversity were high in the southern region. Depth wise, the diversity and abundance were relatively high in the 50-75 m depth range. Correlation and BIO-ENV analysis showed that combination of different factors such as sediment texture, sediment sorting and depth were found to influence the distribution of macrobenthos. Hence, spatial variations observed in benthic community were presumably linked to the variations in sediment granulometry and the energy level conditions prevailing in the area.

  16. Potential for generation of natural gas in sediments of the convergent margin of the Aleutian Trench Area

    SciTech Connect

    Kvenvolden, K.A.; von Huene, R.

    1983-01-01

    Sediment being subducted in the eastern part of the convergent margin of the Aleutian Trench has a potential to generate large volumes of natural gas, perhaps as much as 2.8 x 10/sup 6/ m/sup 3/ of methane per km/sup 3/ of sediment, even though the content of organic carbon in the sediment is very low, averaging about 0.4%. This high potential for gas generation results primarily from the enormous volume of sediment undergoing subduction. Along the eastern Aleutian Arc-Trench system a 3-km thick sheet of sediment is being subducted at a rate of about 60 km per million years. We estimate, based on considerations of the stability requirements for gas hydrates observed as anomalous reflectors in some of our seismic records, and on one measurement in a deep well, that the geothermal gradient in this region is about 30/sup 0/C/km. Such a gradient suggests a temperature regime in which the maximum gas generation in the subducting sediment occurs beneath the upper slope. Thus the sediment of the upper slope, as opposed to that of the shelf and lower slope, could be the most prospective for gas accumulation if suitable reservoirs are present. 40 refs., 11 figs., 3 tabs.

  17. Temporal and spatial complexity in post-glacial sedimentation on the tectonically active, Poverty Bay continental margin of New Zealand

    NASA Astrophysics Data System (ADS)

    Orpin, Alan R.; Alexander, Clark; Carter, Lionel; Kuehl, Steve; Walsh, J. P.

    2006-11-01

    On the eastern Raukumara Ranges of the New Zealand East Coast, active tectonics, vigorous weather systems, and human colonisation have combined to cause widespread erosion of the mudstone- and sandstone-dominated hinterland. The Waipaoa River sedimentary dispersal system is an example that has responded to environmental change, and is now New Zealand's second largest river in terms of suspended sediment discharge. This paper presents new sediment accumulation rates for the continental shelf and slope that span century to post-glacial time scales. These data are derived from radiochemical tracer, palynological, tephrostratigraphic, and seismic methods. We hypothesise on the temporal and spatial complexity of post-glacial sedimentation across the margin and identify the broad extent of sediment dispersal from the Waipaoa system. The ˜15 km 3 Poverty Bay mid-shelf basin lies adjacent to the mouth of the Waipaoa River, reaching a maximum thickness of ˜45 m. A post-glacial mud lobe of an additional ˜3 km 3 extends through the Poverty Gap and out onto the uppermost slope, attaining 40 m thickness in a structurally controlled sub-basin. Here, an offset in the last-glacial erosion surface indicates that deposition was sympathetic with fault activity and the creation of accommodation space, implying that sedimentation was not supply limited. Contrary to classical shelf sedimentation models, the highest modern accumulation rate of 1 cm y -1 occurs on the outer-shelf sediment lobe, approximately ˜2 times the rate recorded at the mid-shelf basin depocentre, and ˜10 times faster than the excess 210Pb rates estimated from the slope. Pollen records from slope cores fingerprint Polynesian then European settlement, and broaden the spatial extent of post-settlement sedimentation initially documented from the Poverty Bay mid-shelf. Changes in sub-millennial sedimentation infer a 2-3-times increase in post-settlement accumulation on the shelf but a smaller 1-2 times increase on

  18. The Response of Sediments and Dissolved Organic Matter to Rapid Rainfall in the Santa Maria da Vitoria Watershed, Espírito Santo, BR

    NASA Astrophysics Data System (ADS)

    Ward, N. D.; Firme de Almeida, L.; Dias, G.; Gould, R.; Tan, A.; Bianchi, T. S.; Krusche, A. V.; Keil, R. G.; Richey, J. E.

    2015-12-01

    The Santa Maria da Vitória River supplies over 30% of the water for the greater Vitória, Espírito Santo, BR metropolitan area, which has a population of roughly 1.6 million people. The availability of clean freshwater is severely limited during periods of heavy rainfall because water sanitation facilities are "clogged" by high sediment discharge. The headwaters of the Santa Maria da Vitória River are characterized by relatively pristine forested environments, transitioning into primarily agricultural and rural land uses, and finally reaching the large urban center of Vitória near its marine receiving waters. The discharge of suspended sediments and dissolved organic matter (DOM) was examined at a 3 hour frequency during heavy storm flows from October 2013 to May 2015 in the Santa Maria da Vitória River main channel and a small tributary, the Mangaraí River. Bulk isotopic analyses were used to determine potential sediment sources and whether specific landscape/land use features were functionalized during periods of high runoff. Likewise, time of flight mass spectrometry (GC-ToF-MS) was used to identify a broad suite of DOM compounds that responded positively with river discharge in an effort to determine the influence of land use on the delivery of dissolved components to the river. For example, the abundance of compounds related to specific agricultural settings increased during storm flow along with anthropogenic DOM sources such as plasticizer and pesticide-derived compounds. Suspended sediment concentrations increased by as much as 70 times during peak river discharge relative to base flow several days earlier with similar increases in particulate organic carbon and nitrogen observed. Results from this study and previous field measurements were integrated into a coupled hydrology-sediment transport model, DHSVM, as part of a dynamic information framework with the goal of predicting water/sediment discharge to inform management and policy sectors of the

  19. Dynamic sedimentation of Paleoproterozoic continental margin iron formation, Labrador Trough, Canada: Paleoenvironments and sequence stratigraphy

    NASA Astrophysics Data System (ADS)

    Pufahl, P. K.; Anderson, S. L.; Hiatt, E. E.

    2014-07-01

    formation sequences, but with important differences. The absence of trace and body fossils as well as lack of terrestrial vegetation can make the recognition of these surfaces difficult. Transgressive surfaces can also be easily mistaken for Phanerozoic-style maximum flooding surfaces since stratigraphic condensation was restricted to inboard environments during ravinement. Outboard the accumulation of fresh precipitates increased sedimentation to produce a maximum flooding surface not usually marked by a prominent depositional hiatus. Understanding these differences is essential for establishing an accurate sequence stratigraphic framework. Such context is the backdrop for properly interpreting the sedimentology, oceanography, microbial ecology, and geochemistry of continental margin iron formations.

  20. Effects of urbanization and long-term rainfall on the occurrence of organic compounds and trace elements in reservoir sediment cores, streambed sediment, and fish tissue from the Santa Ana River basin, California, 1998

    USGS Publications Warehouse

    Burton, Carmen A.

    2002-01-01

    Organcochlorine compounds, semivolatile-organic compounds (SVOC), and trace elements were analyzed in reservoir sediment cores, streambed sediment, and fish tissue in the Santa Ana River Basin as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Three reservoirs were sampled in areas that have different degrees of urbanization. Streambed sediment and fish tissue collected at 12 sites were divided into two groups, urban and nonurban. More organochlorine compounds were detected in reservoir sediment cores, streambed sediment and fish tissue, and at higher concentrations at urban sites than at nonurban sites. At all sites, except West Street Basin, concentrations of organochlorine compounds were lower than the probable-effect concentration (PEC). At the highly urbanized West Street Basin, chlordane and p,p'-DDE exceeded the PEC throughout the historical record. The less stringent threshold-effect concentration (TEC) was exceeded for six compounds at eight sites. Most of the organochlorine compounds detected in streambed sediment and fish tissue were at urban sites on the Santa Ana River as opposed to its tributaries, suggesting accumulation and persistence in the river. More SVOCs were detected in reservoir sediment cores and streambed sediment, and at higher concentrations, at urban sites than at nonurban sites. At all the sites, except West Street Basin, concentrations of SVOCs were lower than the PEC. At West Street Basin, chrysene, pyrene, and total polycyclic-aromatic hydrocarbons exceeded the PEC throughout the historical record. The TEC was exceeded for 10 compounds at 3 sites. Most of the SVOCs were detected in streambed sediment at urban sites on tributaries to the Santa Ana River rather than the mainstem itself. The less frequent occurrence and lower concentrations in the Santa Ana River suggest that SVOCs are less persistent than organochlorine compounds, possibly as a result of volatization, gradation, or dilution. Most trace

  1. Morphology, seismic characteristics and development of the sediment dispersal system along the Taiwan-Luzon convergent margin

    NASA Astrophysics Data System (ADS)

    Hsiung, Kan-Hsi; Su, Chih-Chieh; Yu, Ho-Shing; Chang, Jih-Hsin

    2015-12-01

    The sediment dispersal system along the convergent margin between Taiwan and Luzon links the terrestrial and shallow marine sediments from the source areas nearby Taiwan orogen to the ultimate sink in the northern Manila Trench. Using seismic reflection profiles and bathymetry mapping we determine three distinct morpho-tectonic features of the Penghu Submarine Canyon, deep-sea Penghu Channel and oceanic Manila Trench which are linearly interconnected to form a longitudinal sediment route. Seismic profiles show characteristic features of truncated strata along canyon walls and cut-and-fills in canyon bottom. Deformed and uplifted bathymetric ridges and troughs and volcanic intrusions with unstratified and chaotic seismic facies are associated with the Penghu Channel. The seismic facies of the trench wedge are characterized by sub-horizontal and conformable layers of sediment stacking upwards to the trench floor. The sediment wedge adjacent to the inner lower slope is deformed to blind folds and thrust faults as precursors of the accretionary prism. The most prominent seismic characteristics is wide-spread undulating reflectors on the seafloor along the west edge of the sediment dispersal system and the toe of the South China Sea Basin floor, suggesting a large sediment wave field with a turbidity currents origin. The location, orientation and geometry of this sediment routing system are mainly controlled by underlying tectonics in progressive changes from arc-continental collision in transition to subduction. The deep-sea Penghu Channel is formed by compression in transitional zone of the North Luzon Ridge region, neither subduction nor channel erosion. The sediments in northern Manila Trench are mainly transported by turbidity currents via the upslope deep-sea Penghu Channel and Penghu Canyon and trench axis is filled up to a flat-floor trench wedge without sediment ponding. A four-stage development of sediment dispersal system in Taiwan-Luzon convergent margin

  2. Geological and Sediment Thickness Data Sources From the U.S. Continental Margins

    NASA Astrophysics Data System (ADS)

    Hutchinson, D. R.; Childs, J. R.; Edgar, N. T.; Barth, G.; Hammar-Klose, E.; Dadisman, S. V.; Rowland, R.

    2005-12-01

    Although the United States has not yet ratified the United Nations Convention on the Law of the Sea (UNCLOS), work has begun to assess the geophysical and geological data sources that might be applied to an extended continental shelf submission under Article 76 of the UNCLOS. The U.S. Geological Survey, as a follow-up to the Congressional Report published by the University of New Hampshire on data relevant to a potential U.S. submission (Mayer and others, 2002), has identified existing seismic reflection, seismic refraction, and drill-hole data on the U.S. margins for the areas where an extended continental shelf submission could be considered. This work complements ongoing NOAA efforts to map the foot-of-the-slope. The USGS compilation includes more than 80,000 km of multichannel seismic data, 70,000 km of single-channel seismic reflection data, 25 refraction experiments, and 12 drill holes that penetrate to basement. Data quality varies according to year collected and acquisition system used. Data coverage is generally excellent within the 200-nm EEZ boundary, but new data will be required to adequately assess sediment thickness in the area beyond 200-nm in some of the poorly surveyed regions (e.g., the Arctic). Velocity and drill-hole control for deeper sedimentary units is generally poor; this deficiency will also need to be addressed in new data gathering efforts. Subsea mineral resources that might exist in the region of an extended continental shelf vary by region and include conventional hydrocarbons, gas hydrate, ferro-manganese crusts and nodules, and possibly phosphorite deposits. On-going efforts are directed at interpreting these data with reference to UNCLOS criteria and guidelines, as well as evaluating how recent submissions to the United Nations by other States might affect a possible U.S. submission.

  3. Geochemistry of East Antarctic Margin Sediments Spanning the Eocene Oligocene Transition.

    NASA Astrophysics Data System (ADS)

    Light, J. J.; Passchier, S.

    2016-12-01

    The Eocene Oligocene Transition (EOT) 34 million years ago (Ma), marked the global climate change from greenhouse to icehouse, and the full establishment of the East Antarctic Ice Sheet (EAIS). The initiation of the EAIS during the EOT is believed to have been a step-wise transition; however, data resolution is low and merits the need for further study. The purpose of this study is to expand upon existing knowledge of EAIS dynamics spanning the EOT by creating a higher resolution geochemical record of cores taken from continental shelf sites 1166 in Prydz Bay and U1360 from the Wilkes Land margin. We used Inductively Coupled Plasma Optical Emission Spectrometry and Mass Spectrometry (ICP-OES/ ICP-MS) to determine the bulk chemical composition of samples. Results were used to calculate the Chemical Index of Alteration (CIA), Al2O3/TiO2 ratios, and trace elemental variation down core. CIA values for the early Oligocene in Site U1360 indicate an arid colder environment less likely to be chemically weathered. In contrast, Hole 1166A shows values similar to average shales that increase up core and abruptly decrease at the overlying Neogene diamict, suggesting a warmer more humid environment at Prydz Bay during the late Eocene. Al2O3/TiO2 ratios were used to evaluate mud provenance changes at each site. At site 1166 redox sensitive elements (Cr, Ni, and V) show similar down core distributions to one another. The changes in elemental intensities are likely being controlled by factors such as sediment provenance, changes in redox conditions and surficial weathering. We expect the outcomes of this study to allow us to interpret regional depositional environments at a higher resolution, as well as to shed light on the EAIS's step-wise initiation.

  4. Tectonically active sediment dispersal system in SW Taiwan margin with emphasis on the Gaoping (Kaoping) Submarine Canyon

    NASA Astrophysics Data System (ADS)

    Yu, Ho-Shing; Chiang, Cheng-Shing; Shen, Su-Min

    2009-03-01

    The sediment dispersal system in southwestern Taiwan margin consists of two main parts: the subaerial drainage basin and the offshore receiving marine basin. In plan view, this sediment dispersal system can be further divided into five geomorphic units: (1) the Gaoping (formerly spelled Kaoping) River drainage basin, (2) the Gaoping (Kaoping) Shelf, (3) the Gaoping (Kaoping) Slope, (4) the Gaoping (Kaoping) Submarine Canyon and (5) the Manila Trench in the northernmost South China Sea. The Gaoping River drainage basin is a small (3250 km 2), tectonically active and overfilled foreland basin, receiving sediments derived from the uprising Central Range of Taiwan with a maximum elevation of 3952 m. The Gaoping Submarine Canyon begins at the mouth of the Gaoping River, crosses the narrow Gaoping Shelf (~ 10 km) and the Gaoping Slope, and finally merges into the northern termination of the Manila Trench over a distance of ~ 260 km. The SW Taiwan margin dispersal system is characterized by a direct river-canyon connection with a narrow shelf and frequent episodic sediment discharge events in the canyon head. In a regional source to sink scheme, the Gaoping River drainage basin is the primary source area, the Gaoping Shelf being the sediment bypass zone and the Gaoping Slope being the temporary sink and the Manila Trench being the ultimate sink of the sediment from the Taiwan orogen. It is inferred from seismic data that the outer shelf and upper slope region can be considered as a line source for mass wasting deposits delivered to the lower Gaoping Slope where small depressions between diapiric ridges are partially filled with sediment or are empty. At present, recurrent hyperpycnal flows during the flood seasons are temporarily depositing sediments mainly derived from the Gaoping River in the head of the Gaoping Submarine Canyon. On the decadal and century timescales, sediments temporarily stored in the upper reach are removed over longer timescales probably by

  5. Geoacoustic characteristics at the DH-2 long-core sediments in the Korean continental margin of the East Sea

    NASA Astrophysics Data System (ADS)

    Ryang, Woo Hun; Kim, Seong Pil; Hahn, Jooyoung

    2015-04-01

    A long core of 27.2 m was acquired at the DH-2 site (37°34.355'N and 129°19.516'E) in the Korean continental margin of the western East Sea. The core site is located near the Donghae City and the water depth is 316.6 m deep. The long-core sediment was recovered using the Portable Remotely Operated Drill (PROD), a fully contained drilling system, remotely operated at the seafloor. The recovered core sediments were analyzed for physical, sedimentological, and geoacoustic properties mostly at 10~30 cm intervals. Based on the long-core data with subbottom and air-gun profiles at the DH-2 core site, geoacoustic characteristics of the deeper sedimentary successions were firstly investigated in the Korean continental margin of the western East Sea. The geoacoustic measurements comprise 86 P-wave velocities and 76 attenuation values. These geoacoustic characteristics of the DH-2 long core probably contribute for reconstruction of geoacoustic models reflecting vertical and lateral variability of acoustic properties in the Korean continental margin of the western East Sea. Keywords: long core, geoacoustic, East Sea, continental margin, P-wave speed Acknowledgements: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0025733) and by the Agency of Defense Development (UD140003DD).

  6. Fresh and Salt Water Distribution in Passive Margin Sediments: Insights from Iodp Expedition 313 ON the New Jersey Margin

    NASA Astrophysics Data System (ADS)

    Lofi, J.; Inwood, J.; Proust, J.; Monteverde, D.; Loggia, D.; Basile, C.; Hayashi, T.; Stadler, S.; Fehr, A.; Pezard, P.

    2012-12-01

    For the first time in the history of international scientific drillings, the Integrated Ocean Drilling Program (IODP) mission-specific platform (MSP) Expedition 313 drilled three 631-755 m-deep boreholes on the middle shelf of a clastic passive margin. This expedition gathered a full set of geophysical data tied to drillcores with 80% of recovery. It offers a unique opportunity to access the internal structure of a siliciclastic system, at scales ranging from the matrix to the margin, and to correlate the geological skeleton with the spatial distribution and salinity of saturating fluids. In addition to the discovery of very low salinity pore water (<3g/l) at depths exceeding 400 m below the middle shelf, this expedition provides evidence for a multi-layered reservoir, with fresh/brackish water intervals alternating vertically with salty intervals. Our observations suggest that the processes controlling salinity distribution are strongly influenced by lithology, porosity and permeability. Saltier pore waters are recovered in less porous, more permeable, intervals whereas fresher pore waters are recovered in more porous, less permeable, intervals. Pore water concentrations are inversely correlated to the Thorium content, with high salinities in low Th intervals (i.e. sandy formations). The transition from fresher to saltier intervals is often marked by cemented horizons acting as permeability barrier. In the lower part of some holes, the salinity varies independently of lithology, suggesting different mechanisms and/or sources of salinity. We have developed a 2D model of permeability distribution along a dip transect of the margin, extrapolated from combined clinoform geometries observed on seismic data and sedimentary facies described on cores. This model clearly illustrates the importance of taking into account the spatial heterogeneity of geological system at several scales. Lithology reflects permeability at a small scale whereas seismic facies and system tracts

  7. Spatial and temporal variability in sediment deposition and seabed character on the Waipaoa River margin, New Zealand

    NASA Astrophysics Data System (ADS)

    Walsh, J. P.; Corbett, D. R.; Kiker, J. M.; Orpin, A. R.; Hale, R. P.; Ogston, A. S.

    2014-09-01

    The stratigraphic record is the manifestation of a wide range of processes, interactions and responses to environmental drivers. Understanding the functioning of river sediment dispersal systems is necessary to determine the fate of sediment and associated material in the marine environment and differentiate key influences in the development of the stratigraphic record. To that end, this study uses sediment cores collected on four successive cruises (January, May and September 2010 and February 2011) on the Waipaoa River margin, New Zealand, to provide insight into spatial and temporal variability in sediment deposition and seabed character. The Waipaoa River discharges a large sediment load into an energetic coast that has a complex margin morphology. Several flood and wave events occurred during the study, and sedimentation varied spatially and temporally. X-radiographs and short-lived radioisotopes indicate emplacement of new event layers prior to all cruises. Notable variation in surficial seabed character (grain-size composition, loss-on-ignition percentage) was apparent on the inner shelf (water depths <40 m), but mid-shelf areas and seaward had more homogeneous sediment properties. 7Be inventories indicate variable patterns of deposition related to fluvial and oceanographic conditions prior to cruises. Ephemeral sediment storage occurs on the inner-shelf of Poverty Bay, into which the Waipaoa River discharges directly, and subsequent export and dispersal patterns are linked to the relative timing and size of flood and wave events. Surficial deposits with characteristics of fluid muds and wave-enhanced sediment gravity flows were noted at some (<25 sites total) mid-shelf and shallower sites from all cruises. During the last cruise considerable inter- and intra-site seabed variability occurred in the interbedded river-proximal inner-shelf deposits over spatial scales of less than a few kilometers. Evidence from earlier sidescan data infer that this could be

  8. Age determination and provenance of sandy sediments possibly hosting gas hydrate in the eastern margin of Japan Sea

    NASA Astrophysics Data System (ADS)

    Uchida, T.; Takashima, I.; Sasaki, S.; Matsumoto, R.

    2012-12-01

    In 2010 the MD179 project was undertaken by the Marion Dufresne aiming at recovery of deep seated gas and gas hydrate, methane induced carbonate, and deep sediments in order to develop the geologic model of gas hydrate accumulation and evaluate the possible environmental impact of gas hydrate for the last glacial-interglacial cycles. Sediment samples below the seafloor were obtained in the Umitaka Spur, Joetsu Channel, Toyama Trough, Japan Basin, Nishi Tsugaru and Okushiri Ridge areas by the cruise. Small amounts of sandy sediment have been retrieved as thin intercalations in Pleistocene and Holocene silty layers, where trace fossils and strong bioturbations are commonly observed. Those sandy sediments consist of very fine- to fine-grained sand grains, and are sometimes tuffaceous. Pore-size distribution measurements and thin-section observations of these arenite sands were carried out, which indicates that porosities of silty sediments are around 50 % but those of arenites range from 42 to 52 %, of which mean pore sizes and permeabilities are larger than those of silty sediments. These coarser sediments might have been transported approximately around 3 to 30 ka according to the tephra ages, where supplying sediments might have not been abundant due to sea level fluctuation during the Pleistocene ice age. While the presence of gas hydrate in intergranular pores of arenite sands has not been confirmed, the soupy occurrence in recovered sediments may strongly indicate the presence of gas hydrate filling the intergranular pore system of arenite sands that is called pore-space hydrates. They have been recognized till now in the Mallik as well as in the Nankai Trough areas, which are considered to be common even in the subsurface sandy sediments at the eastern margin of Japan Sea. Time of deposition of coarse-grained sediments can be recognized by the thermoluminescence (TL) dating method. The TL dating works on the principle that materials containing naturally

  9. Using ammonium pore water profiles to assess stoichiometry of deep remineralization processes in methanogenic continental margin sediments

    NASA Astrophysics Data System (ADS)

    Burdige, David J.; Komada, Tomoko

    2013-05-01

    many continental margin sediments, a deep reaction zone exists which is separated from remineralization processes near the sediment surface. Here, methane diffuses upward to a depth where it is oxidized by downwardly diffusing sulfate. However, the methane sources that drive this anaerobic oxidation of methane (AOM) in the sulfate-methane transition zone (SMT) may vary among sites. In particular, these sources can be thought of as either (i) "internal" sources from in situ methanogenesis (regardless of where it occurs in the sediment column) that are ultimately coupled to organic matter deposition and burial, or (ii) "external" sources such as hydrocarbon reservoirs derived from ancient source rocks, or deeply buried gas hydrates, both of which are decoupled from contemporaneous organic carbon deposition at the sediment surface. Using a modeling approach, we examine the relationship between different methane sources and pore water sulfate, methane, dissolved inorganic carbon (DIC), and ammonium profiles. We show that pore water ammonium profiles through the SMT represent an independent "tracer" of remineralization processes occurring in deep sediments that complement information obtained from profiles of solutes directly associated with AOM and carbonate precipitation, i.e., DIC, methane, and sulfate. Pore water DIC profiles also show an inflection point in the SMT based on the type of deep methane source and the presence/absence of accompanying upward DIC fluxes. With these results, we present a conceptual framework which illustrates how shallow pore water profiles from continental margin settings can be used to obtain important information about remineralization processes and methane sources in deep sediments.

  10. Early Neogene unroofing of the Sierra Nevada de Santa Marta along the Bucaramanga -Santa Marta Fault

    NASA Astrophysics Data System (ADS)

    Piraquive Bermúdez, Alejandro; Pinzón, Edna; Bernet, Matthias; Kammer, Andreas; Von Quadt, Albrecht; Sarmiento, Gustavo

    2016-04-01

    Plate interaction between Caribbean and Nazca plates with Southamerica gave rise to an intricate pattern of tectonic blocks in the Northandean realm. Among these microblocks the Sierra Nevada de Santa Marta (SNSM) represents a fault-bounded triangular massif composed of a representative crustal section of the Northandean margin, in which a Precambrian to Late Paleozoic metamorphic belt is overlain by a Triassic to Jurassic magmatic arc and collateral volcanic suites. Its western border fault belongs to the composite Bucaramanga - Santa Marta fault with a combined left lateral-normal displacement. SE of Santa Marta it exposes remnants of an Oligocene marginal basin, which attests to a first Cenoizoic activation of this crustal-scale lineament. The basin fill consists of a sequence of coarse-grained cobble-pebble conglomerates > 1000 m thick that unconformably overlay the Triassic-Jurassic magmatic arc. Its lower sequence is composed of interbedded siltstones; topwards the sequence becomes dominated by coarser fractions. These sedimentary sequences yields valuable information about exhumation and coeval sedimentation processes that affected the massif's western border since the Upper Eocene. In order to analyse uplifting processes associated with tectonics during early Neogene we performed detrital zircon U-Pb geochronology, detrital thermochronology of zircon and apatites coupled with the description of a stratigraphic section and its facies composition. We compared samples from the Aracataca basin with analog sequences found at an equivalent basin at the Oca Fault at the northern margin of the SNSM. Our results show that sediments of both basins were sourced from Precambrian gneisses, along with Mesozoic acid to intermediate plutons; sedimentation started in the Upper Eocene-Oligocene according to palynomorphs, subsequently in the Upper Oligocene a completion of Jurassic to Cretaceous sources was followed by an increase of Precambrian input that became the dominant

  11. Hard substrate in the deep ocean: How sediment features influence epibenthic megafauna on the eastern Canadian margin

    NASA Astrophysics Data System (ADS)

    Lacharité, Myriam; Metaxas, Anna

    2017-08-01

    Benthic habitats on deep continental margins (> 1000 m) are now considered heterogeneous - in particular because of the occasional presence of hard substrate in a matrix of sand and mud - influencing the distribution of megafauna which can thrive on both sedimented and rocky substrates. At these depths, optical imagery captured with high-definition cameras to describe megafauna can also describe effectively the fine-scale sediment properties in the immediate vicinity of the fauna. In this study, we determined the relationship between local heterogeneity (10-100 sm) in fine-scale sediment properties and the abundance, composition, and diversity of megafauna along a large depth gradient (1000-3000 m) in a previously-unexplored habitat: the Northeast Fan, which lies downslope of submarine canyons off the Gulf of Maine (northwest Atlantic). Substrate heterogeneity was quantified using a novel approach based on principles of computer vision. This approach proved powerful in detecting gradients in sediment, and sporadic complex features (i.e. large boulders) in an otherwise homogeneous environment because it characterizes sediment properties on a continuous scale. Sediment heterogeneity influenced megafaunal diversity (morphospecies richness and Shannon-Wiener Index) and community composition, with areas of higher substrate complexity generally supported higher diversity. However, patterns in abundance were not influenced by sediment properties, and may be best explained by gradients in food supply. Our study provides a new approach to quantify fine-scale sediment properties and assess their role in shaping megafaunal communities in the deep sea, which should be included into habitat studies given their potential ecological importance.

  12. Breaks in Pavement and Pipes as Indicators of Range-Front Faulting Resulting from the 1989 Loma Prieta Earthquake near the Southwest Margin of the Santa Clara Valley, California

    USGS Publications Warehouse

    Schmidt, Kevin M.; Ellen, Stephen D.; Haugerud, Ralph A.; Peterson, David M.; Phelps, Geoffery A.

    1995-01-01

    Damage to pavement and near-surface utility pipes, caused by the October 17, 1989, Loma Prieta earthquake, provide indicators for ground deformation in a 663 km2 area near the southwest margin of the Santa Clara Valley, California. The spatial distribution of 1284 sites of such damage documents the extent and distribution of detectable ground deformation. Damage was concentrated in four zones, three of which are near previously mapped faults. The zone through Los Gatos showed the highest concentration of damage, as well as evidence for pre- and post-earthquake deformation. Damage along the foot of the Santa Cruz Mountains reflected shortening that is consistent with movement along reverse faults in the region and with the hypothesis that tectonic strain is distributed widely across numerous faults in the California Coast Ranges.

  13. Lipid Biomarkers and Carbon Isotopic Composition from Authigenic Carbonates and Seep Sediments from the US Mid-Atlantic Margin

    NASA Astrophysics Data System (ADS)

    Campbell, P.; Prouty, N.; Demopoulos, A. W.; Roark, B.; Coykendall, K.

    2015-12-01

    Anaerobic oxidation of methane (AOM), mediated by Archaea and sulfate-reducing bacteria, is common in continental margin sediment and can result in authigenic carbonate precipitation. A lipid biomarker study was undertaken in Mid-Atlantic submarine canyons, focusing specifically on Baltimore and Norfolk canyons, to determine biomarker variability of carbonate rock and the associated sediment in cold seep communities dominated by chemosynthetic mussels, Bathymodiolus childressi. Preliminary 16S metagenomic results confirm the presence of free-living sulfur-reducing bacteria and methantrophic endosymbiotic bacteria in the mussels. Depleted d13C values in both the mussel tissue (-63 ‰) and authigenic carbonates (-48 ‰) support methanotrophy as the dominant nutritional pathway and AOM as the main driver of carbonate precipitation. In addition, paired 14C and 230Th dates are highly discordant, reflecting dilution of the 14C pool with fossil hydrocarbon derived carbon. Seep and canyon sediment, as well as authigenic carbonates, were collected and analyzed for a suite of biomarkers, including sterols, alcohols, alkanes and fatty acids, as well as δ13C values of select biomarkers, to elucidate pathways of organic matter cycling. A comparison of terrestrial biomarker signatures (e.g., n-alkane carbon preference index and C23 / (C23 + C29) values, HMW n-alkanes and C29 sterols) suggests that terrestrial inputs dominate the submarine canyon surface sediment, whereas seep sediment is predominantly marine autochthonous (i.e., cholesterol and 5α-cholestanol). Lipid biomarker profiles (e.g., n-alkanes in the C15 to C33 range) from authigenic carbonates mirror those found in the seep sediment, suggesting that the organisms mediating carbonate precipitation on the seafloor are characteristic of the assemblages present in the sediment at these sites. With widespread methane leakage recently discovered along the Atlantic Margin, the presence of AOM-mediated carbonate

  14. Community Proteogenomics of a Cold-methane Seep Sediment at Nyegga, Mid-Norwegian Margin

    NASA Astrophysics Data System (ADS)

    Stokke, R.; Roalkvam, I.; Lanzen, A.; Chen, Y.; Haflidason, H.; Steen, I.

    2010-12-01

    Anaerobic oxidation of methane (AOM) is limited to anoxic environments and differs in its rates from a few pmol cm-3day-1 in subsurface SMTZ (sulfate-methane transition zone) of deep margins, to a few μmol cm-3 day-1 in surface sediments above gas hydrates [1]. This process is catalyzed by consortia of anaerobic methane oxidizing archaea (ANME) in association with sulfate-reducing bacteria. The Nyegga area is located on the Mid-Norwegian continental slope at the northern flank of the Storegga Slide at 700-800 mbsl. Hundreds of pockmarks are widespread on the seabed in Nyegga and sub-zero temperatures (-0.7 °C), and pingo-structures within the pockmarks are indicators of active fluid flow locations. Preliminary microbial and geochemical profiling of a 22 cm push-core within the G11 pockmark gave strong indications of an ANME-1 dominated community at 14-16 cmbsf. In light of these findings we submitted extracted DNA to 454-pyrosequencing. Sequencing data (829,527 reads) was assembled using the Newbler v2.3, resulting in 13,151 contigs (357,530 reads) over 500 bp with the longest contig being 24,521 bp. MEGAN taxonomic analysis supported the high abundance of Euryarchaea (70%) with 66% of the assembled metagenome belonging to ANME-1. In order to obtain functional information of the ANME-1 community, protein extraction protocols from sediment samples was established. Extracted proteins was separated on a large (18cm) 1D-SDS-PAGE and subsequently cut in 30 gel slices. Peptides extracted after In-gel tryptic digest was injected into an Ultimate 3000 nanoLC system connected to a linear quadropole ion trap-orbitrap (LTQ-Orbitrap XL) mass spectrometer equipped with a nanoelectrospray ion source. A custom database of open reading frames (ORFs) from the metagenome including known contaminants such as trypsin and human keratin was search against using Mascot 2.2. IRMa tool box [2] was used in peptide validation and peptides whose score >= 25.0 (i.e avg identity, p<0.05) and

  15. Amino acid biogeochemistry and bacterial contribution to sediment organic matter along the western margin of the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Fernandes, Loreta; Garg, Anita; Borole, Dnyandev V.

    2014-01-01

    Six sediment cores collected from various water depths and sampling locations along the western margin of the Bay of Bengal (BOB) were investigated for the total hydrolysable amino acids (THAA) and D-amino acids (D-AA) to understand their distribution, digenetic alteration and bacterial contribution to organic matter (OM). Irrespective of their location, THAA concentrations and yields generally decreased and mol% glycine increased with increasing water depth indicating that OM was degraded during its transit through the water column. Amino acid based degradation index (DI) indicated that OM of the surface sediments of shallow stations, BOB-1 to BOB-3 was relatively fresher than that of deeper stations, BOB-4, BOB-5 and BOB-6. The concentrations and mol% of the D-AA varied from 0.04 to 0.76 μmol gdw-1 and 0.3 to 8.5 mol%, respectively. Contribution of bacterial peptidoglycan amino acids to THAA (% THAApep/THAA) ranged between 4.0% and 55.0%. Both % THAApep/THAA and mol% D-AAs were significantly (p<0.01) higher in the surface sediments and decreased with sediment core depth. Based on the D-AA yields, bacterial OM accounted for 1.5-15.6% of TOC, and 3.7-50.0% of TN of the sediments of BOB.

  16. Activities and distribution of methanogenic and methane-oxidizing microbes in marine sediments from the Cascadia Margin.

    PubMed

    Yoshioka, H; Maruyama, A; Nakamura, T; Higashi, Y; Fuse, H; Sakata, S; Bartlett, D H

    2010-06-01

    We investigated methane production and oxidation and the depth distribution and phylogenetic affiliation of a functional gene for methanogenesis, methyl coenzyme M reductase subunit A (mcrA), at two sites of the Integrated Ocean Drilling Program Expedition 311. These sites, U1327 and U1329, are respectively inside and outside the area of gas hydrate distribution on the Cascadia Margin. Radiotracer experiments using (14)C-labelled substrates indicated high potential methane production rates in hydrate-bearing sediments [128-223 m below seafloor (mbsf)] at U1327 and in sediments between 70 and 140 mbsf at U1329. Tracer-free experiments indicated high cumulative methane production in sediments within and below the gas hydrate layer at U1327 and in sediments below 70 mbsf at U1329. Stable tracer experiments using (13)C-labelled methane showed high potential methane oxidation rates in near-surface sediments and in sediments deeper than 100 mbsf at both sites. Results of polymerase chain reaction amplification of mcrA in DNA were mostly consistent with methane production: relatively strong mcrA amplification was detected in the gas hydrate-bearing sediments at U1327, whereas at U1329, it was mainly detected in sediments from around the bottom-simulating reflector (126 mbsf). Phylogenetic analysis of mcrA separated it into four phylotype clusters: two clusters of methanogens, Methanosarcinales and Methanobacteriales, and two clusters of anaerobic methanotrophic archaea, ANME-I and ANME-II groups, supporting the activity measurement results. These results reveal that in situ methanogenesis in deep sediments probably contributes to gas hydrate formation and are inconsistent with the geochemical model that microbial methane currently being generated in shallow sediments migrates downward and contributes to the hydrate formation. At Site U1327, gas hydrates occurred in turbidite sediments, which were absent at Site U1329, suggesting that a geological setting suitable for a

  17. Rheological implications of sediment transport for continental rifting and its impact in margin geometry and major unconformities

    NASA Astrophysics Data System (ADS)

    Andres-Martinez, Miguel; Perez-Gussinye, Marta; Armitage, John; Morgan, Jason

    2016-04-01

    The inner dynamics of the Earth such as mantle convection, geochemical reactions and isostasy have been typically interpreted as the main engine of plate tectonics and crustal deformation. However, nowadays it is well established that processes transporting material along the surface of the Earth influence the inner dynamics. Surface processes play a key role particularly during rifting, where great subsidence rates occur at synrift basins while shoulder uplift provides rock to be eroded for later infilling of these basins. Erosion implies unloading of the crust which favours uplift, and sedimentation at basins results in loading which favours subsidence. Consequently, erosion and sedimentation amplify stresses and the flexural response of the lithosphere in situations with extensive faulting. These changes to the stress field may be large enough to result in changes in the evolution of rifting and its modes of extension. Additionally, higher subsidence rates and thermal blanketing due to sediments may result in higher geotherms and consequently, a weaker/more-viscous behaviour of the crustal rocks. This would also have a large impact on the deformation style during extension. Here, we explore the interactions between surface processes and tectonics using numerical modelling. Experiments are run with the absence of sediment transport and with different sediment transport regimes for 35 and 40 km crustal thicknesses. Tests with higher transport coefficient show more effective localization of deformation into upper crustal faults which results in effective crustal thinning, larger blocks and longer-lived faults. Our experiments also prove that more effective surface processes reduce the length of margins generated by sequential faulting. For our end member situations, high sedimentation rates lead to pure shear extension of the crust induced by high temperatures, which finally results in broad extension and symmetric margins. Furthermore, our model allows for the

  18. Relating modes of extension to the spatial and temporal distribution of major sediment unconformities at passive margins

    NASA Astrophysics Data System (ADS)

    Andres-Martinez, M.; Perez-Gussinye, M.; Armitage, J. J.; Morgan, J. P.

    2016-12-01

    Passive margins generally present a very complicated extensional history. Different phases of rifting might have occur along the same margin due to changes in stresses, mantle convection and magmatic inflows, or due to preexisting heterogeneities and changes in modes of deformation related to the thermal evolution of the extended lithosphere. Changes in the basement extension mechanics directly affect sedimentation/erosion regimes. At the regional scale this could lead to major unconformities in the sediments. In seismic interpretation major unconformities have been typically interpreted as a regional synchronous event (i.e. crustal breakup). However, unconformities have also been proven to occur by diachronous basin development and rift migration. Here, we use numerical experiments to study under which conditions major unconformities develop during rifting. We find that rift migration by oceanwards sequential faulting is an effective mechanism to create unconformities older than crustal breakup. By sequential faulting, extension of old half graben basins ceased in favour to extension at new deeper oceanward basins. Erosion then occurs on the landward perched basins and the material is transported to be deposited as synkinematic sediments at the new half grabens. Later, thermal subsidence occurs on the older sectors of the margin. This generates space for sag-basin deposition over the eroded oldest synkinematic sediments creating an angular unconformity. This unconformity youngs oceanwards, as they also do the syn and postkinematic sediments, and eventually its age could coincide with breakup. In this case, the unconformity is not only spatially continuous but it does not correspond to an instantaneous breakup event. This, and other examples of unconformities resulting from rift migration, points out at the need of revising terms such as breakup unconformity, pre-, syn- and post-rift sediments. We also develop a catalogue to relate unconformities to different

  19. The Mid Pleistocene Climate Transition Recorded in a Hemipelagic Sediment Drift (ODP Leg 194): Implications for the Understanding of Continental Margin Sediment Sources and Sinks

    NASA Astrophysics Data System (ADS)

    Obrochta, S. P.; Hine, A. C.; Flower, B. P.; Locker, S. D.; Brooks, G. R.

    2002-12-01

    The Marion Plateau (NE Australia margin) provides an ideal setting to study continental margin paleoceanographic history. It is not significantly current scoured and is located at upper continental slope depths, freeing it from the influence of large sediment gravity flows. Atop the plateau, a hemipelagic sediment drift is perched and was drilled on Ocean Drilling Program Leg 194 (site 1198). The lithologic record and other shipboard-acquired data sets (physical properties, downhole logging), as well as the site-survey seismic data all suggest that cyclicity dominates this sedimentary section, which encompasses the Mid Pleistocene climate transition (0.9 to 0.92 Ma). This period contains the transition from a 41 k.y. cycle (ice volume and temperature) to 100 k.y. (ice volume and temperature) cycle dominated world. Preliminary results indicate that the basic stratigraphic units of this drift record terrestrial climate, continental margin, and pelagic processes. Mass accumulation rates of the siliciclastic, neritic carbonate, and pelagic carbonate components represent orbitally-forced cycles that form a predictable sedimentary architecture, and grain size variations are a proxy for fluctuations in bottom current strength. The terrigenous flux varies as a function of both aridity/humidity variation on the adjacent continent and sea-level fluctuations, while the carbonate flux varies as a function of paleoproductivity of the overlying water column plus lateral input from the developing Great Barrier Reef. Examination of the changing sedimentary architecture of this drift during the Mid Pleistocene climate transition will further the understanding of sedimentary sources and sinks along continental margins, including their sensitivity to sea level, climate, and circulation changes.

  20. Sedimentation on continental margins: An integrated program for innovative studies during the 1990s

    NASA Astrophysics Data System (ADS)

    Nittrourer, Charles A.; Coleman, James M.; Rouge, Baton; Flood, Roger D.; Ginsburg, Robert N.; Gorsline, Donn S.; Hine, Albert C.; Sternberg, Richard W.; Swift, Donald J. P.; Wright, L. Donelson

    Continental margins are of great scientific interest, and they represent the focus of human interaction with the ocean. Their deep structure forms the transition from continental to oceanic crust, and their surface expression extends from coastal environments of estuaries and shorelines across the continental shelf and slope to either the base of a continental rise or a marginal trough. Modern continental margins represent natural laboratories for investigation of complex relationships between physical, chemical, and biological phenomena, which are sensitive to environmental conditions both on the land and in the ocean. The history of these conditions is preserved within the sedimentary deposits of continental margins. The deposits form repositories for much of the particulate material transported off the world's land masses and produced from dissolved components in the world ocean. Past deposits of continental margins have been uplifted to form many mountain ranges and sedimentary terrains of the world, which record details of Earth history and contain valuable natural resources, such as petroleum and natural gas. Modern deposits of continental margins record the more recent events that have influenced Earth and also contain natural resources (for instance, minerals, sand, and gravel), as well as anthropogenic pollutants (for example, heavy metals and pesticides). The fates of many materials beneficial and deleterious to humans are dependent on the pathways followed by sedimentary particles on continental margins.

  1. Zambezi continental margin: compartmentalized sediment transfer routes to the abyssal Mozambique Channel

    NASA Astrophysics Data System (ADS)

    Wiles, E.; Green, A. N.; Watkeys, M. K.; Jokat, W.

    2017-09-01

    Sediment delivery to the abyssal regions of the oceans is an integral process in the source to sink cycle of material derived from adjacent continents and islands. The Zambezi River, the largest in southern Africa, delivers vast amounts of material to the inner continental shelf of central Mozambique. The aim of this contribution is to better constrain sediment transport pathways to the abyssal plains using the latest, regional, high-resolution multibeam bathymetry data available, taking into account the effects of bottom water circulation, antecedent basin morphology and sea-level change. Results show that sediment transport and delivery to the abyssal plains is partitioned into three distinct domains; southern, central and northern. Sediment partitioning is primarily controlled by changes in continental shelf and shelf-break morphology under the influence of a clockwise rotating shelf circulation system. However, changes in sea-level have an overarching control on sediment delivery to particular domains. During highstand conditions, such as today, limited sediment delivery to the submarine Zambezi Valley and Channel is proposed, with increased sediment delivery to the deepwater basin being envisaged during regression and lowstand conditions. However, there is a pronounced along-strike variation in sediment transport during the sea-level cycle due to changes in the width, depth and orientation of the shelf. This combination of features outlines a sequence stratigraphic concept not generally considered in the strike-aligned shelf-slope-abyssal continuum.

  2. Zambezi continental margin: compartmentalized sediment transfer routes to the abyssal Mozambique Channel

    NASA Astrophysics Data System (ADS)

    Wiles, E.; Green, A. N.; Watkeys, M. K.; Jokat, W.

    2017-03-01

    Sediment delivery to the abyssal regions of the oceans is an integral process in the source to sink cycle of material derived from adjacent continents and islands. The Zambezi River, the largest in southern Africa, delivers vast amounts of material to the inner continental shelf of central Mozambique. The aim of this contribution is to better constrain sediment transport pathways to the abyssal plains using the latest, regional, high-resolution multibeam bathymetry data available, taking into account the effects of bottom water circulation, antecedent basin morphology and sea-level change. Results show that sediment transport and delivery to the abyssal plains is partitioned into three distinct domains; southern, central and northern. Sediment partitioning is primarily controlled by changes in continental shelf and shelf-break morphology under the influence of a clockwise rotating shelf circulation system. However, changes in sea-level have an overarching control on sediment delivery to particular domains. During highstand conditions, such as today, limited sediment delivery to the submarine Zambezi Valley and Channel is proposed, with increased sediment delivery to the deepwater basin being envisaged during regression and lowstand conditions. However, there is a pronounced along-strike variation in sediment transport during the sea-level cycle due to changes in the width, depth and orientation of the shelf. This combination of features outlines a sequence stratigraphic concept not generally considered in the strike-aligned shelf-slope-abyssal continuum.

  3. Textures of water-rich mud sediments from the continental margin offshore Costa Rica (IODP expeditions 334 and 344)

    NASA Astrophysics Data System (ADS)

    Kuehn, Rebecca; Stipp, Michael; Leiss, Bernd

    2017-04-01

    During sedimentation and burial at continental margins, clay-rich sediments develop crystallographic preferred orientations (textures) depending on the ongoing compaction as well as size distribution and shape fabrics of the grains. Such textures can control the deformational properties of these sediments and hence the strain distribution in active continental margins and also the frictional behavior along and around the plate boundary. Strain-hardening and discontinuous deformation may lead to earthquake nucleation at or below the updip limit of the seismogenic zone. We want to investigate the active continental margin offshore Costa Rica where the oceanic Cocos plate is subducted below the Caribbean plate at a rate of approximately 9 cm per year. The Costa Rica trench is well-known for shallow seismogenesis and tsunami generation. As it is an erosive continental margin, both the incoming sediments from the Nazca plate as well as the slope sediments of the continental margin can be important for earthquake nucleation and faulting causing sea-floor breakage. To investigate texture and composition of the sediments and hence their deformational properties we collected samples from varying depth of 7 different drilling locations across the trench retrieved during IODP expeditions 334 and 344 as part of the Costa Rica Seismogenesis Project (CRISP). Texture analysis was carried out by means of synchrotron diffraction, as only this method is suitable for water-bearing samples. As knowledge on the sediment composition is required as input parameter for the texture data analysis, additional X-ray powder diffraction analysis on the sample material has been carried out. Samples for texture measurements were prepared from the original drill cores using an internally developed cutter which allows to produce cylindrical samples with a diameter of about 1.5 cm. The samples are oriented with respect to the drill core axis. Synchrotron texture measurements were conducted at the

  4. Sediment deposition rates on the continental margins of the eastern Arabian Sea using 210Pb, 137Cs and 14C.

    PubMed

    Somayajulu, B L; Bhushan, R; Sarkar, A; Burr, G S; Jull, A J

    1999-09-30

    Eight gravity cores from the active eastern continental margins of the Arabian Sea were dated using 210Pbxs, 137Cs and 14C. The short-term (< or = 100 years) sedimentation rates range from 0.06 to 0.66 cm/year where as the long-term (> or = 1000 years) ones using AMS 14C on planktonic foraminifera varied from 0.004 to 0.13 cm/year. For long-term chronology (< or = 50,000 years) AMS dating of well-cleaned planktonic foraminifera is most suited.

  5. Relation between denudation history and sediment supply from apatite fission track thermochronology in the northeast Brazilian Margin

    NASA Astrophysics Data System (ADS)

    Jelinek, Andrea; Chemale, Farid; Bueno, Gilmar

    2014-05-01

    The aim of this study is to provide a quantitative overview of Mesozoic-Cenozoic morphotectonic evolution and sediment supply to the northeast Brazilian margin. Landscape evolution and denudation histories for the northeastern Brazilian continental margin (Sergipe, Alagoas, Bahia, and Espírito Santo states) were detailed by apatite fission track thermochronology and thermal-history modeling and related with the sedimentological record of the offshore basins of the passive margin for a comparison with their denudational history. Approximately one hundred basement samples were analyzed from the coast to the inland of the Brazilian margin. The apparent fission track ages vary from 360 to 61 Ma and confined fission track lengths vary between 10 and 14.6 µm, indicating that not all of the samples recorded the same cooling events. The results of apatite fission track ages indicate that the area has been eroded regionally since the Mesozoic (< 250 Ma) and suggest that at less 4 km of overburden has been eroded regionally since the late Cretaceous (< 120 Ma) at a rate of 120 to 15 m/Ma. Two-stage of erosion process is deduced from simulated cooling histories for each sector. The Permian-Early Jurassic exhumation is restricted to the area of the Sertaneja Depression, besides the Diamantina Plateau. During this time, denudation rates are generally <20 m My-1 and record up to 1.5 km of denudation. Pre-rift sedimentation is recorded in the Camamu-Almada, Recôncavo, and Sergipe-Alagoas basins. Samples from the Conquista and Borborema Plateaus, and Mantiqueira Range record a Cretaceous-Paleogene onset of exhumation. This timing is consistent with the offshore sedimentary record, wherein a large clastic wedge started forming in the northeastern Sergipe-Alagoas basin, which suggests Sergipe-Alagoas basin records drainage reorganization and extension of the São Francisco River catchment. Interestingly, the Camamu basin, adjacent to the section of the margin does not record syn

  6. Estimates of biogenic methane production rates in deep marine sediments at Hydrate Ridge, Cascadia margin.

    PubMed

    Colwell, F S; Boyd, S; Delwiche, M E; Reed, D W; Phelps, T J; Newby, D T

    2008-06-01

    Methane hydrate found in marine sediments is thought to contain gigaton quantities of methane and is considered an important potential fuel source and climate-forcing agent. Much of the methane in hydrates is biogenic, so models that predict the presence and distribution of hydrates require accurate rates of in situ methanogenesis. We estimated the in situ methanogenesis rates in Hydrate Ridge (HR) sediments by coupling experimentally derived minimal rates of methanogenesis to methanogen biomass determinations for discrete locations in the sediment column. When starved in a biomass recycle reactor, Methanoculleus submarinus produced ca. 0.017 fmol methane/cell/day. Quantitative PCR (QPCR) directed at the methyl coenzyme M reductase subunit A gene (mcrA) indicated that 75% of the HR sediments analyzed contained <1,000 methanogens/g. The highest numbers of methanogens were found mostly from sediments <10 m below seafloor. By considering methanogenesis rates for starved methanogens (adjusted to account for in situ temperatures) and the numbers of methanogens at selected depths, we derived an upper estimate of <4.25 fmol methane produced/g sediment/day for the samples with fewer methanogens than the QPCR method could detect. The actual rates could vary depending on the real number of methanogens and various seafloor parameters that influence microbial activity. However, our calculated rate is lower than rates previously reported for such sediments and close to the rate derived using geochemical modeling of the sediments. These data will help to improve models that predict microbial gas generation in marine sediments and determine the potential influence of this source of methane on the global carbon cycle.

  7. Estimates of Biogenic Methane Production Rates in Deep Marine Sediments at Hydrate Ridge, Cascadia Margin

    SciTech Connect

    F. S. Colwell; S. Boyd; M. E. Delwiche; D. W. Reed; T. J. Phelps; D. T. Newby

    2008-06-01

    Methane hydrate found in marine sediments is thought to contain gigaton quantities of methane and is considered an important potential fuel source and climate-forcing agent. Much of the methane in hydrates is biogenic, so models that predict the presence and distribution of hydrates require accurate rates of in situ methanogenesis. We estimated the in situ methanogenesis rates in Hydrate Ridge (HR) sediments by coupling experimentally derived minimal rates of methanogenesis to methanogen biomass determinations for discrete locations in the sediment column. When starved in a biomass recycle reactor Methanoculleus submarinus produced ca. 0.017 fmol methane/cell/day. Quantitative polymerase chain reaction (QPCR) directed at the methyl coenzyme M reductase subunit A (mcrA) gene indicated that 75% of the HR sediments analyzed contained <1000 methanogens/g. The highest methanogen numbers were mostly from sediments <10 meters below seafloor. By combining methanogenesis rates for starved methanogens (adjusted to account for in situ temperatures) and the numbers of methanogens at selected depths we derived an upper estimate of <4.25 fmol methane produced/g sediment/day for the samples with fewer methanogens than the QPCR method could detect. The actual rates could vary depending on the real number of methanogens and various seafloor parameters that influence microbial activity. However, our calculated rate is lower than rates previously reported from such sediments and close to the rate derived using geochemical modeling of the sediments. These data will help to improve models that predict microbial gas generation in marine sediments and determine the potential influence of this source of methane on the global carbon cycle.

  8. Margin Architecture and Sediment Flux as Controls on Submarine Fan Development: Tectonic-Climate Interactions in the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Gulick, S. P. S.; Montelli, A.; Swartz, J. M.; Morey, S.; Jaeger, J. M.; Mix, A. C.; Reece, R.; Somchat, K.; Wagner, P. F.; Worthington, L. L.

    2015-12-01

    The oblique collision of the Yakutat microplate into southeast Alaska generates the St. Elias Mountains, a coastal orogen with significant moisture from the Gulf of Alaska resulting in large, temperate glacial systems that expand to and eventually cross the continental shelf during glacial maxima. We present an overview of the evolution of sediment routing on this margin from integration of seismic images, updated age models and core-log-seismic correlations from IODP Expedition 341 drilling sites, and mapping efforts from shelf, slope, and fan. We focus on the three dominant glacial systems during the climatically important intensification of Northern Hemisphere glaciation at the Plio-Pleistocene transition and the further intensification of glaciation since the mid-Pleistocene transition. Along strike, sediment delivery to deepwater from the three glacial systems varied according to Pleistocene shelf accommodation space. The Alsek crossed a narrower shelf with a bedrock high near the shelf edge; the Malaspina-Hubbard system crossed an undeformed, ~1 km deep shelf; the Bering-Bagley system crossed a several km deep shelf deforming as an active fold and thrust belt. The Malaspina and Bering catchments exhibit high exhumation rates onshore due to the Yakutat collision and upon reaching the shelf edge these glaciers generate trough mouth fans (TMFs) on the adjacent continental slope but only after first filling the available accommodation with glacigenic sediment and lowering the slope gradient through progradation. The Alsek crosses the shelf earliest but never with sufficient sediment flux to generate a TMF. An east-west transition in adjacent deepwater submarine channels that feed and generate the Surveyor Fan suggests that shelf accommodation and sediment flux are primary controls on sediment routing from orogen to submarine fan. Both of these parameters are in turn a function of initial tectonic architecture and ongoing orogen dynamics.

  9. Estimating the amount of gas hydrate in marine sediments in the Blake Ridge area, southeastern Atlantic margin

    USGS Publications Warehouse

    Lee, Myung W.; Dillon, William P.; Hutchinson, Deborah R.

    1992-01-01

    A relative amount of gas hydrate in marine sediments can be estimated by use of either interval velocity or amplitude blanking in seismic profiles. Under the assumption of constant concentration of hydrate irrespective of porosity, the average bulk hydrate amounts for the lower portion of marine sediments above the bottom simulating reflector in the Blake Ridge area, south-eastern Atlantic Margin, is estimated to be about 8.7% of the sediments when using velocity analysis and about 10% when using amplitude blanking. Under the assumption of variable hydrate concentration proportional to the porosity, the estimate is about 8.1% when using velocity information and about 10% when using amplitude blanking. The estimation method using amplitude is comparable to the estimation by interval velocity and provides a convenient way of quantitative classification of the degree of hydrate cementation. In the amplitude method, three classes of blanking are defined; class boundaries represent a change in reflection amplitude by a factor of 2, and the classes may be used to predict the amount of hydrate in bulk sediments.

  10. Distribution and preservation of black carbon in the East China Sea sediments: Perspectives on carbon cycling at continental margins

    NASA Astrophysics Data System (ADS)

    Huang, Liang; Zhang, Jing; Wu, Ying; Wang, Jinlong

    2016-02-01

    We determined the concentrations and radiocarbon (14C) compositions of black carbon (BC) in the sediments of the East China Sea (ECS). The BC concentrations, which were in the range of 0.30-1.52 mg/g, accounted for 12-65% of the total organic carbon (TOC). The distribution of BC in ECS sediments was controlled by factors such as grain size, distance from the coast, and deposition rate. Radiocarbon measurements of BC yielded ages of 6350-10,440 years before present (BP), suggesting that the percentage of BC derived from biomass combustion was in the range of 29-48%. The BC burial flux in sediments of the ECS was estimated to be ∼1.39×106 t/yr, which was similar to burial fluxes reported for shelf sediments in other areas. However, the magnitude of the total BC sink was far greater than that of any other shelf regions studied to date, indicating the global importance of BC accumulation in the ECS, and the magnitude of BC input from large rivers (e.g., the Changjiang). The riverine delivery of BC to the ECS (73%) was far greater than that of atmospheric flux (27%). Further study of the BC cycle and the interactions of BC with other organic compounds in marginal seas was required to better understand the role of BC in the global carbon cycle.

  11. IODP workshop: developing scientific drilling proposals for the Argentina Passive Volcanic Continental Margin (APVCM) - basin evolution, deep biosphere, hydrates, sediment dynamics and ocean evolution

    NASA Astrophysics Data System (ADS)

    Flood, Roger D.; Violante, Roberto A.; Gorgas, Thomas; Schwarz, Ernesto; Grützner, Jens; Uenzelmann-Neben, Gabriele; Hernández-Molina, F. Javier; Biddle, Jennifer; St-Onge, Guillaume; Workshop Participants, Apvcm

    2017-05-01

    The Argentine margin contains important sedimentological, paleontological and chemical records of regional and local tectonic evolution, sea level, climate evolution and ocean circulation since the opening of the South Atlantic in the Late Jurassic-Early Cretaceous as well as the present-day results of post-depositional chemical and biological alteration. Despite its important location, which underlies the exchange of southern- and northern-sourced water masses, the Argentine margin has not been investigated in detail using scientific drilling techniques, perhaps because the margin has the reputation of being erosional. However, a number of papers published since 2009 have reported new high-resolution and/or multichannel seismic surveys, often combined with multi-beam bathymetric data, which show the common occurrence of layered sediments and prominent sediment drifts on the Argentine and adjacent Uruguayan margins. There has also been significant progress in studying the climatic records in surficial and near-surface sediments recovered in sediment cores from the Argentine margin. Encouraged by these recent results, our 3.5-day IODP (International Ocean Discovery Program) workshop in Buenos Aires (8-11 September 2015) focused on opportunities for scientific drilling on the Atlantic margin of Argentina, which lies beneath a key portion of the global ocean conveyor belt of thermohaline circulation. Significant opportunities exist to study the tectonic evolution, paleoceanography and stratigraphy, sedimentology, and biosphere and geochemistry of this margin.

  12. Radiocarbon Evidence for Active Turnover of Pore-Water Dissolved Organic Carbon in the Methanogenic and Sulfate-Methane-Transition Zones of Santa Barbara Basin Sediments

    NASA Astrophysics Data System (ADS)

    Komada, T.; Li, H. L.; Cada, A. K.; Burdige, D.; Magen, C.; Chanton, J.; Grose, A. M.

    2014-12-01

    Diverse metabolic activities have been documented in the deep biosphere. However, how these activities affect carbon cycling in the subsurface, and how they in turn affect the marine and global cycles of carbon are still unclear. Here we present natural-abundance 14C and 13C data from the uppermost 4.5 m of the sediments of the Santa Barbara Basin, California Borderland, showing active turnover of dissolved organic carbon (DOC) within, and immediately below, the sulfate-methane transition zone (SMTZ; ~1.25 m). DOC concentrations increased with depth throughout the core, indicating net production within the sediment column. Enhanced DOC production was observed near the sediment-water interface, and also at ~30 cm below the SMTZ (~1.55 m). ∆14C values of DOC increased across the sediment-water interface, then decreased with depth, consistent with net production of modern DOC near the sediment-water interface, and input of 14C-depleted DOC from deeper horizons. An isotope mixing plot constructed with these data shows that the DOC diffusing upward at the base of the core is devoid of 14C, yet the DOC diffusing into and out of the SMTZ is relatively enriched (-460‰ and -300‰, respectively). This difference in 14C content of the DOC flux can only be reconciled if the following two are occurring within, and immediately below, the SMTZ: (1) >90% of the 14C-dead basal DOC flux is removed from the pore water (by, e.g., oxidation, fermentation, methanogenesis, precipitation), and (2) this DOC is replaced by material produced in this region at a rate that exceeds the upward basal flux. The 14C and 13C signatures suggest sedimentary organic matter to be the dominant source of DOC in process (2). Our data provide a unique insight into the active transformation of DOC and sedimentary organic matter in the subsurface.

  13. Relations Between Tectonics and Sedimentation Along the East-Sardinian Margin (tyrrhenian Sea) : from Rifting to Reactivation

    NASA Astrophysics Data System (ADS)

    Gaullier, V.; Chanier, F.; Vendeville, B.; Lymer, G.; Maillard, A.; Thinon, I.; Lofi, J.; Sage, F.; Giresse, P.; Bassetti, M.; Loncke, L.

    2013-12-01

    The offshore-onshore project METYSS-METYSAR aims at getting a better understanding of the post-Messinian relationships between crustal tectonics, salt tectonics, and sedimentation along the East-Sardinian margin. In this key-area, the Tyrrhenian back-arc basin underwent recent rifting (9-5 Ma), pro parte coeval with the Messinian Salinity Crisis (MSC, 5.96-5.33 Ma), sea-floor spreading starting during Pliocene times, and post-rift reactivation. Thereby, the Tyrrhenian basin and the East-Sardinian margin are excellent examples for studying the mechanisms of extreme lithospheric stretching and thinning, the role of pre-existing structural fabric during and after rifting, and the reactivation of a passive margin and the associated deformation and sedimentation patterns during the MSC. We looked up at the respective contributions of crustal and salt tectonics in quantifying vertical and horizontal movements, using especially the seismic markers of the MSC that were mapped from METYSS seismic-reflection data. Overall, data investigation has allowed us to delineate the history of rifting and tectonic reactivation in the area. METYSAR field work onshore was conducted in the Orosei region and showed that the main present-day river, the Cedrino river, follows the trend of a paleo-valley that cuts through the underlying granitic basement and alterites. These deposits, along with the basement, were likely eroded during Messinian times, then reworked during a marine transgression. Micro-fauna in these fine-grained marine sediments are of Upper Pliocene age. The strata dip by 20° to 30° and trend NNE-SSW, a direction which is subparallel to the main tectonic structures implicated in rifting of the margin. The tilted Pliocene strata were overlain by volcanic flows, some of which dating from Upper Pliocene time. Field mapping has evidenced that there was a paleo-topographic relief, trending NNE-SSW, that controlled the deposition of sedimentary series. These results clearly

  14. Relations between tectonics and sedimentation along the Eastern Sardinian margin (Western Tyrrhenian Sea) : from rifting to reactivation

    NASA Astrophysics Data System (ADS)

    Gaullier, Virginie; Chanier, Frank; Vendeville, Bruno; Lymer, Gaël; Maillard, Agnès; Thinon, Isabelle; Lofi, Johanna; Sage, Françoise; Giresse, Pierre; Bassetti, Maria-Angela

    2014-05-01

    The offshore-onshore project "METYSS-METYSAR" aims at better understand the Miocene-Pliocene relationships between crustal tectonics, salt tectonics, and sedimentation along the Eastern Sardinian margin, Western Tyrrhenian Sea. In this key-area, the Tyrrhenian back-arc basin underwent recent rifting (9-5 Ma), pro parte coeval with the Messinian Salinity Crisis (MSC, 5.96-5.33 Ma), sea-floor spreading starting during Pliocene times. Thereby, the Tyrrhenian basin and the Eastern Sardinian margin are excellent candidates for studying the mechanisms of extreme lithospheric stretching and thinning, the role of pre-existing structural fabric during and after rifting, and the reactivation of a passive margin and the associated deformation and sedimentation patterns during the MSC. We looked at the respective contributions of crustal and salt tectonics in quantifying vertical and horizontal movements, using especially the seismic markers of the MSC. Overall, we delineate the history of rifting and tectonic reactivation in the area. The distribution maps respectively of the Messinian Erosion Surface and of Messinian units (Upper Unit and Mobile Unit) show that a rifted basin already existed by Messinian time. This reveals a major pre-MSC rifting across the entire domain. Because salt tectonics can create fan-shaped geometries in sediments, syn-rift deposits have to be carefully re-examined in order to decipher the effects of crustal tectonics (rifting) and thin-skinned salt tectonics. Our data surprisingly show that there are no clues for Messinian syn-rift sediments along the East-Sardinia Basin and Cornaglia Terrace, hence no evidence for rifting after Late Tortonian times. Nevertheless, widespread deformation occurred during the Pliocene and can only be attributed to post-rift reactivation. This reactivation is characterized not only by normal faulting but also by contractional structures. Some Pliocene vertical movements caused localized gravity gliding of the mobile

  15. Temporal and spatial patterns of sediment routing across the southeast margin of the Tibetan Plateau: Insights from detrital zircon

    NASA Astrophysics Data System (ADS)

    Wissink, Gregory K.; Hoke, Gregory D.; Garzione, Carmala N.; Liu-Zeng, Jing

    2016-11-01

    The Cenozoic deposits of the Tibetan Plateau's southeastern margin are often cited as part of a continental-scale river system connecting the Paleo-Yangtze River with the Paleo-Red River. Confirming the purported connection and any subsequent drainage reorganization has garnered significant attention and varied proposed ages for reorganization. This study presents detrital zircon U-Pb ages and paleocurrents in Eocene to Pleistocene sedimentary basin deposits distributed over a broad area of the southeast Tibetan Plateau margin within the area of proposed paleoriver connectivity. When combined with previously published studies, our U-Pb ages allow examination of the temporal and spatial distributions of provenance throughout the Cenozoic. We identify six key age components of the detrital U-Pb age distributions and use these to examine the patterns of sediment provenance for different Cenozoic epochs. Detailed analysis of these components shows that provenance for both onshore and offshore deposits is best described by local bedrock sources and provides little to no evidence of regional changes in provenance. This suggests that a stable fluvial system similar to the modern drainage network has existed since the Eocene with no evidence for major provenance-altering river capture. Paleoflow measurements taken throughout the SE margin further corroborate the results of detrital zircon provenance. The combination of U-Pb age components and paleocurrent directions does not support a Cenozoic connection between the Paleo-Yangtze and Paleo-Red Rivers.

  16. Coupled onshore erosion and offshore sediment loading as causes of lower crust flow on the margins of South China Sea

    NASA Astrophysics Data System (ADS)

    Clift, Peter D.

    2015-12-01

    Hot, thick continental crust is susceptible to ductile flow within the middle and lower crust where quartz controls mechanical behavior. Reconstruction of subsidence in several sedimentary basins around the South China Sea, most notably the Baiyun Sag, suggests that accelerated phases of basement subsidence are associated with phases of fast erosion onshore and deposition of thick sediments offshore. Working together these two processes induce pressure gradients that drive flow of the ductile crust from offshore towards the continental interior after the end of active extension, partly reversing the flow that occurs during continental breakup. This has the effect of thinning the continental crust under super-deep basins along these continental margins after active extension has finished. This is a newly recognized form of climate-tectonic coupling, similar to that recognized in orogenic belts, especially the Himalaya. Climatically modulated surface processes, especially involving the monsoon in Southeast Asia, affects the crustal structure offshore passive margins, resulting in these "load-flow basins". This further suggests that reorganization of continental drainage systems may also have a role in governing margin structure. If some crustal thinning occurs after the end of active extension this has implications for the thermal history of hydrocarbon-bearing basins throughout the area where application of classical models results in over predictions of heatflow based on observed accommodation space.

  17. Towards Biogeochemical Modeling of Anaerobic Oxidation of Methane: Characterization of Microbial Communities in Methane-bearing North American Continental Margin Sediments

    NASA Astrophysics Data System (ADS)

    Graw, M. F.; Solomon, E. A.; Chrisler, W.; Krause, S.; Treude, T.; Ruppel, C. D.; Pohlman, J.; Colwell, F. S.

    2015-12-01

    Methane advecting through continental margin sediments may enter the water column and potentially contribute to ocean acidification and increase atmospheric methane concentrations. Anaerobic oxidation of methane (AOM), mediated by syntrophic consortia of anaerobic methanotrophic archaea and sulfate-reducing bacteria (ANME-SRB), consumes nearly all dissolved methane in methane-bearing sediments before it reaches the sediment-water interface. Despite the significant role ANME-SRB play in carbon cycling, our knowledge of these organisms and their surrounding microbial communities is limited. Our objective is to develop a metabolic model of ANME-SRB within methane-bearing sediments and to couple this to a geochemical reaction-transport model for these margins. As a first step towards this goal, we undertook fluorescent microscopic imaging, 16S rRNA gene deep-sequencing, and shotgun metagenomic sequencing of sediments from the US Pacific (Washington) and northern Atlantic margins where ANME-SRB are present. A successful Illumina MiSeq sequencing run yielded 106,257 bacterial and 857,834 archaeal 16S rRNA gene sequences from 12 communities from the Washington Margin using both universal prokaryotic and archaeal-specific primer sets. Fluorescent microscopy confirmed the presence of cells of the ANME-2c lineage in the sequenced communities. Microbial community characterization was coupled with measurements of sediment physical and geochemical properties and, for samples from the US Atlantic margin, 14C-based measurements of AOM rates and 35S-based measurements of sulfate reduction rates. These findings have the potential to increase understanding of ANME-SRB, their surrounding microbial communities, and their role in carbon cycling within continental margins. In addition, they pave the way for future efforts at developing a metabolic model of ANME-SRB and coupling it to geochemical models of the US Washington and Atlantic margins.

  18. Basement - Cover decoupling and progressive exhumation of metamorphic sediments at hot rifted margin. Insights from the Northeastern Pyrenean analog

    NASA Astrophysics Data System (ADS)

    Clerc, Camille; Lagabrielle, Yves; Labaume, Pierre; Ringenbach, Jean-Claude; Vauchez, Alain; Nalpas, Thierry; Bousquet, Romain; Ballard, Jean-François; Lahfid, Abdeltif; Fourcade, Serge

    2016-08-01

    We compile field data collected along the eastern part of the North Pyrenean Zone (NPZ) to point to a tectonic evolution under peculiar thermal conditions applying to the basin sediments in relation with the opening of the Cretaceous Pyrenean rift. Based on this compilation, we show that when thinning of the continental crust increased, isotherms moved closer to the surface with the result that the brittle-ductile transition propagated upward and reached sediments deposited at the early stage of the basin opening. During the continental breakup, the pre-rift Mesozoic cover was efficiently decoupled from the Paleozoic basement along the Triassic evaporite level and underwent drastic ductile thinning and boudinage. We suggest that the upper Albian and upper Cretaceous flysches acted as a blanket allowing temperature increase in the mobile pre-rift cover. Finally, we show that continuous spreading of the basin floor triggered the exhumation of the metamorphic, ductily sheared pre-rift cover, thus contributing to the progressive thinning of the sedimentary pile. In a second step, we investigate the detailed geological records of such a hot regime evolution along a reference-section of the eastern NPZ. We propose a balanced restoration from the Mouthoumet basement massif (north) to the Boucheville Albian basin (south). This section shows a north to south increase in the HT Pyrenean imprint from almost no metamorphic recrystallization to more than 600 °C in the pre- and syn-rift sediments. From this reconstruction, we propose a scenario of tectonic thinning involving the exhumation of the pre-rift cover by the activation of various detachment surfaces at different levels in the sedimentary pile. In a third step, examination of the architecture of current distal passive margin domains provides confident comparison between the Pyrenean case and modern analogs. Finally, we propose a general evolutionary model for the pre-rift sequence of the Northeastern Pyrenean rifted

  19. Sedimentation Response to Holocene Landscape Disturbance on the Poverty Bay Continental Margin, East Coast New Zealand

    NASA Astrophysics Data System (ADS)

    Orpin, A. R.; Carter, L.; Alexander, C. R.; Kuehl, S. A.

    2004-12-01

    Since human settlement, dramatic landscape changes have occurred on the Raukumara Peninsula, East Coast North Island of New Zealand. In particular, European destruction of native forests for pasture caused accelerated erosion of the mudstone and sandstone dominated hinterland. Sediment eroded from the Raukumara Ranges is primarily carried by three small-catchment river systems, which collectively deliver approximately 70 Mt/y of suspended sediment, representing about 0.3% of total global input to the ocean. Today, the Waipaoa River delivers 15 Mt/y of mud to coastal Poverty Bay, accumulating in an actively subsiding mid-shelf basin and outer shelf lobe. The shelf is bordered along its seaward edge by two emergent ridges, but a significant component of hemipelagic sediment leaks through the 13 km-wide Poverty Gap between the ridges, and is deposited on the slope in a large structural indentation that is heavily incised by the Poverty submarine canyon system. Using Holocene tephrochronology, and accepting near-full capture of Holocene riverine sediment on the shelf and slope, accumulation rates indicate that the modern (post-colonisation) sediment input from the Waipaoa River is probably an order of magnitude higher than the average for the Holocene. Previous studies suggest that a five-times increase in accumulation rates by the early 1900's on the shelf is contemporaneous with deforestation. Modern sediment mass accumulation rates determined from excess 210Pb profiles suggest that shelf sedimentation increases seaward, reaching a maximum of 0.9 cm/y on the outer shelf, with no net accumulation apparent on the inner-middle shelf. In general, accumulation rates are an order of magnitude lower on the slope, around 0.1 cm/y, decreasing slightly down-slope. Palynological data show a succession of destruction of native forests by burning, extensive land clearance for pasture, and the establishment of exotic forests. These markers date the arrival of Polynesian settlers

  20. Relating modes of extension to the spatial and temporal distribution of major sediment unconformities at passive margins

    NASA Astrophysics Data System (ADS)

    Andrés-Martínez, Miguel; Pérez-Gussinyé, Marta; Armitage, John; Morgan, Jason P.

    2017-04-01

    unconformities under variable kinetic scenarios, from regional to faulted-block scales. We find that unconformities are generally associated to a change in the locus of extension. In models with intermediate-strength crust, sequential faulting takes place, so that only one fault is active at a time and occur in the hanging wall of the previous fault, resulting in asymmetric conjugate margins. In this case a major unconformity separates syn- and post-kinematic sediments. Both syn- and post-kinematic sediments young oceanwards and the unconformity dates the time in which extension abandons the area in favour of new faults forming oceanwards. Models with weaker crusts display extension along a wide region, with overprinting of different faulting phases. Eventually, deformation localizes in a narrow region due to cooling, and crustal break-up occurs. In this case, a first set of unconformities separates different phases of faulting inside the syn-kinematic sediments, and later unconformities separate syn-kinematic and post-kinematic sediments, dating the time at which extension localizes. We also find that unconformities date the crustal break-up only when they develop in the vicinity of the break-up locus. This stresses on that terms such as syn- and post-rift sediments and break-up unconformity should be handled carefully when seismic interpretation is done, and also provides support for unconformities as rifting story-tellers.

  1. Temporal evolution of lead isotope ratios in sediments of the Central Portuguese Margin: a fingerprint of human activities.

    PubMed

    Mil-Homens, Mário; Caetano, Miguel; Costa, Ana M; Lebreiro, Susana; Richter, Thomas; de Stigter, Henko; Trancoso, Maria A; Brito, Pedro

    2013-09-15

    Stable Pb isotope ratios ((206)Pb/(207)Pb, (208)Pb/(206)Pb), (210)Pb, Pb, Al, Ca, Fe, Mn and Si concentrations were measured in 7 sediment cores from the west coast of the Iberian Peninsula to assess the Pb contamination throughout the last 200 years. Independently of their locations, all cores are characterized by increasing Pb/Al rends not related to grain-size changes. Conversely, decreasing trends of (206)Pb/(207)Pb were found towards the present. This tendency suggest a change in Pb sources reflecting an increased proportion derived from anthropogenic activities. The highest anthropogenic Pb inventories for sediments younger than 1950s were found in the two shallowest cores of Cascais and Lisboa submarine canyons, reflecting the proximity of the Tagus estuary. Lead isotope signatures also help demonstrate that sediments contaminated with Pb are not constrained to estuarine-coastal areas and upper parts of submarine canyons, but are also to transferred to a lesser extent to deeper parts of the Portuguese Margin.

  2. The Lithological Constraint To Gas Hydrate Formation: Evidence OF Grain Size Of Sediments From IODP 311 On CASCADIA Margin

    NASA Astrophysics Data System (ADS)

    Wang, J.

    2006-12-01

    A total of 614 sediment samples at intervals of about 1.5 m from all 5 sites of the Integrated Ocean Drilling Program (IODP) Expedition 311 on Cascadia Margin were analyzed using a Beckman Coulter LS-230 Particle Analyzer. The grain-size data were then plotted in depth and compared with other proxies of gas hydrate- occurrence such as soupy/mousse-like structures in sediments, gas hydrate concentration (Sh) derived from LWD data using Archie's relation, IR core images (infrared image) and the recovered samples of gas hydrate¨Cbearing sediments. A good relationship between the distribution of coarse grains in size of 31-63¦Ìm and 63-125¦Ìm sediments and the potential occurrence of gas hydrate was found across the entire gas hydrate stability zone. The depth distribution of grain size from the Site U1326 shows clear excursions at depths of 5-8, 21-26, 50- 123, 132-140, 167-180, 195-206 and 220-240 mbsf, which coincide with the potential occurrence of gas hydrate suggested by soupy/mousse-like structures, logging-derived gas hydrate concentrations (Sh) and the recovered samples of the gas hydrate¨Cbearing sand layers. The lithology of sediments significantly affects the formation of gas hydrate. Gas hydrate forms preferentially within relatively coarse grain-size sediments above 31 ¦Ìm. Key words: grain size of sediments, constraint, occurrence of gas hydrate, IODP 311 IODP Expedition 311 Scientists: Michael Riedel (Co-chief Scientist), Timothy S. Collett (Co-chief Scientist), Mitchell Malone (Expedition Project Manager/Staff Scientist), Gilles Gu¨¨rin, Fumio Akiba, Marie-Madeleine Blanc-Valleron, Michelle Ellis, Yoshitaka Hashimoto, Verena Heuer, Yosuke Higashi, Melanie Holland, Peter D. Jackson, Masanori Kaneko, Miriam Kastner, Ji-Hoon Kim, Hiroko Kitajima, Philip E. Long, Alberto Malinverno, Greg Myers, Leena D. Palekar, John Pohlman, Peter Schultheiss, Barbara Teichert, Marta E. Torres, Anne M. Tr¨¦hu, Jiasheng Wang, Ulrich G. Wortmann, Hideyoshi

  3. Benthic remineralisation rates in shelf and slope sediments of the northern Benguela upwelling margin

    NASA Astrophysics Data System (ADS)

    Neumann, Andreas; Lahajnar, Niko; Emeis, Kay-Christian

    2016-02-01

    The Benguela Upwelling System off Namibia is a region of intensive plankton production. Remineralisation of this biomass frequently causes the formation of an oxygen minimum zone. A part of the organic matter is further deposited on the broad shelf in form of an extensive mudbelt with high TOC concentrations. During February 2011 we retrieved sediment samples from shelf and slope sediment along the Namibian coast to establish fluxes of nutrients, oxygen, and N2 on the basis of pore water concentrations. In mudbelt sediment, fluxes were estimated as high as 8 mmol NH4+ m-2 d-1 and 0.9 mmol PO43 - m-2 d-1, which is probably attributable to the activity of large sulphur bacteria. Especially phosphate is mobilised from sediment overlain by oxygen deficient bottom water when and where bottom water oxygen concentrations fall below 50 μmol l-1. In comparison to nutrient transport by Southern Atlantic Central Water flowing onto the Namibian shelf, benthic nutrient fluxes of the mudbelt contribute less than 5% to the nutrient budget of the shelf.

  4. Lack of enhanced preservation of organic matter in sediments under the oxygen minimum on the Oman Margin

    SciTech Connect

    Pedersen, T.F. ); Shimmield, G.B.; Price, N.B. )

    1992-01-01

    The impingement of oxygen minima on continental margins is widely thought to promote the accumulation of sedimentary facies enriched in well-preserved organic matter. It is shown here, however, that such a relationship does not clearly apply to the productive Oman Margin in the Arabian Sea, which hosts one of the most severe oxygen minima in the oceans. Measurements made on the 0-1 cm depth interval from fourteen box cores collected from the outer shelf-upper continental slope area off Oman show that (1) deposited organic matter is overwhelmingly of marine origin, (2) there is no significant correlation between the abundance of sedimentary organic carbon (C{sub org}) and the bottom-water O{sub 2} concentration, (3) there is no relation between the sedimentary C{sub org}:N ratio and bottom-water O{sub 2}, and (4) there is no correlation between the hydrogen index (HI) of the organic matter and bottom water oxygen. There are, however, significant correlations between the C{sub org}:N ratio and the I:C{sub org}, Cr:Al, and Zr:Al ratios, as well as between the C{sub org}:N ratio and the hydrogen index. Overall, these data suggest that the bottom water oxygen concentration has little effect in governing either the distribution of the degree of preservation of organic matter on this margin. Thus, the generally high but spatially variable C{sub org} content of the sediments on the Oman Margin may not reflect the occurrence of an oxygen minimum but instead be the result of a high settling flux of organic matter, supported by monsoon-driven upwelling, and post-depositional redistribution of the organic material by hydrodynamic influences.

  5. Surface current patterns suggested by suspended sediment distribution over the outer continental margin, Bering Sea

    USGS Publications Warehouse

    Karl, Herman A.; Carlson, P.R.

    1987-01-01

    Samples of total suspended matter (TSM) were collected at the surface over the northern outer continental margin of the Bering Sea during the summers of 1980 and 1981. Volume concentrations of surface TSM averaged 0.6 and 1.1 mg l-1 for 1980 and 1981, respectively. Organic matter, largely plankton, made up about 65% of the near-surface TSM for both years. Distributions of TSM suggested that shelf circulation patterns were characterized either by meso- and large- scale eddies or by cross-shelf components of flow superimposed on a general northwesterly net drift. These patterns may be caused by large submarine canyons which dominate the physiography of this part of the Bering Sea continental margin. ?? 1987.

  6. Erosion processes, fluvial sediment transport, and reservoir sedimentation in a part of the Newell and Zayante Creek basins, Santa Cruz County, California

    USGS Publications Warehouse

    Brown, W. M.

    1973-01-01

    The drainage basins upstream from Loch Lomond, a water-supply reservoir on Newell Creek, and a proposed reservoir site on Zayante Creek were investigated for their characteristics with respect to the erosion, transportation, and deposition of sediment. The study area is underlain predominantly by sandstone, siltstone, and shale of Tertiary age that decompose readily into moderately deep soils, friable colluvium, and easily transported sediment particles. The Rices Mudstone and Twobar, Shale Members of the San Lorenzo Formation of Brabb (1964) underlie steep dip slopes in the study area, and probably are the most highly erodible of the several geologic units present there. However, nearly all of the geologic units have shown a propensity for accelerated erosion accompanying the disturbance of the land surface by the roadbuilding practices that predominate over other types of sediment-producing land-use activities in the study area. Sediment transport in the study area was estimated from (1) a reservoir survey of Loch Lomond in 1971 that was compared with a preconstruction survey of 1960, and (2) sampling of sediment transported in suspension by Zayante Creek during the 1970 and 1971 water years. At least 46 acre-feet of sediment accumulated in Loch Lomond in a 10-year period, and an unmeasured quantity of very fine sediment in the form of a thin layer over much of the reservoir bottom was observed. The measured quantity of deposited sediment in a 10-year period represented a sediment yield of about 1,100 tons annually per square mile of drainage basin upstream from the reservoir arms where the major deposition occurred. This sediment occupied less than i percent of the original capacity of Loch Lomond, but the volume of measured sediment deposition is probably conservative in view of the unmeasured deposits observed and a reservoir trap efficiency of about 95 percent. Sediment sampling on Zayante Creek indicated suspended-sediment yields of about 4,570 and 570 tons

  7. Enteric viruses in surface water and sediment samples from the catchment area of Peri Lagoon, Santa Catarina State, Brazil.

    PubMed

    Elmahdy, E M; Fongaro, G; Schissi, C D; Petrucio, M M; Barardi, C R M

    2016-02-01

    This paper aims to quantify human adenovirus (HAdV), rotavirus species A (RVA), and hepatitis A virus (HAV) in surface water and sediments and to determine the viability of HAdV in these samples. Water and sediment samples were collected, and HAdV, RVA, and HAV were quantified by real-time polymerase chain reaction (PCR); HAdV was also evaluated for infectivity by a plaque assay (PA). For the water samples, HAdV was detected in 70.8% of the summer collections, with 82.4% containing infectious HAdV; the HAdV incidence in winter was 62.5%. For the sediment samples, the incidence of HAdV was 37.5% in the summer collections, with 66.7% containing infectious HAdV; the HAdV incidence in winter was 37.5%. RVA was detected in 20.8 and 45.8% of surface water samples collected in summer and winter, respectively, and 8.3 and 12.5% of sediment samples collected in summer and winter, respectively. HAV was detected only in surface waters, with 54.8 and 12.5% positivity in summer and winter samples, respectively. This study demonstrated that enteric viruses are present in water and sediments and that the presence of infectious viruses should be investigated whenever possible for quantitative microbial risk assessment studies. Combined analyses of water and sediments are important for reliable public health risk analysis of recreational and lagoon waters.

  8. Carbon isotope geochemistry of the Santa Clara River

    NASA Astrophysics Data System (ADS)

    Masiello, Caroline A.; Druffel, Ellen R. M.

    2001-06-01

    The Santa Clara River is a prototypical small mountainous river, with a headwater height greater than 1000 m and a basin area smaller than 10,000 m 2. Although individual small mountainous rivers export trivial amounts of sediment and carbon to the ocean, as a group these rivers may export a major fraction (as much as 50%) of the total global river sediment flux [Milliman and Syvitski, 1992], making their geochemistry relevant the study of the ocean's carbon cycle. In addition, many small rivers export sediment in a few high flux events, causing massive, sporadic discharge of carbon onto coastal shelves, discharge conditions very different from those of large rivers. This class of rivers is an end-member of the river-ocean carbon exchange system,. opposite the Earth's largest river, the Amazon. The carbon mass and isotopic properties of the Santa Clara River are significantly different from previously studied large rivers. During the 1997-1998 winter, all Santa Clara carbon pools were old, with flux-weighted average Δl4C values of-428±76‰ for particulate organic carbon, -73±31‰ for dissolved organic carbon, and-644±58‰ for black carbon. The age of exported carbon is primarily due to the deep erosion of old soils and not to inclusion of fossil fuel carbon. Additionally, the δ13C signatures of exported carbon pools were high relative to terrestrial carbon, bearing a signature quite similar to marine carbon (average particulate organic carbon (POC) δ13C = -22.2±0.8‰). The Santa Clara's estuary is small and drains onto the narrow eastern Pacific coastal margin, exporting this old soil organic matter directly into the ocean. If the Santa Clara export patterns are representative of this class of rivers, they may be a significant source of refractory terrestrial carbon to the ocean.

  9. CaCO 3 dissolution in California continental margin sediments: The influence of organic matter remineralization

    NASA Astrophysics Data System (ADS)

    Jahnke, Richard A.; Craven, Deborah B.; McCorkle, Daniel C.; Reimers, Clare E.

    1997-09-01

    In situ benthic flux chamber and oxygen microelectrode and shipboard porewater results have been used to quantify sea floor dissolution of CaCO 3 on the continental rise adjacent to central California, USA. The porewater distributions and benthic fluxes of O 2, NO 3-, TA, Ca 2+, δ 13C, and TIC are interpreted using a numerical simulation of organic matter remineralization and CaCO 3 dissolution in marine sediments. The processes considered in the simulation include: organic matter oxidation by O 2, NO 3, and SO 42-; CaCO 3 dissolution and precipitation; HS - and NH 4+ oxidation; and sediment mixing and sediment accumulation. Calculated benthic fluxes of O 2, NO 3-, TA, TIC, δ 13C, and Ca 2+; porewater concentrations of O 2, NO 3-, and NH 4+; and sediment distributions of organic carbon, CaCO 3, excess 210Pb, and 14C agree well with the measurements. Benthic fluxes of alkalinity and inferred CaCO 3 dissolution rates cannot be explained on the basis of dissolution driven solely by bottom water undersaturation. If the influence of metabolically-produced CO 2 is included, benthic fluxes are fully reconciled, however. This is in agreement with benthic chamber Ca 2+ and δ 13C results that independently imply substantial CaCO 3 dissolution in these sediments. The above observations are in contrast to those reported by Jahnke et al. (1994) for the west African continental rise and the western equatorial Pacific where 1-G diagenetic models predict dissolution fluxes larger than observed with benthic flux chambers. We conclude that the extent of metabolic CaCO 3 dissolution may vary regionally. Numerous factors, such as the depth of metabolic CO 2 production and CaCO 3 dissolution kinetics, are known or predicted to influence metabolic dissolution. Among the factors that should be considered in reconciling these observations are: (l) the extent to which sulfate reduction and reoxidation reactions may influence acid-base properties in surface sediments and (2) the total

  10. Diversity, Community Composition and Abundance of Anammox Bacteria in Sediments of the North Marginal Seas of China

    PubMed Central

    Shehzad, Ahmed; Liu, Jiwen; Yu, Min; Qismat, Shakeela; Liu, Jingli; Zhang, Xiao-Hua

    2016-01-01

    Over the past few decades, anammox bacteria have been recognized as key players that contribute significantly to the release of large amounts of nitrogen in the global marine nitrogen cycle. In the present study, the diversity, community composition, and abundance of anammox bacteria from the sediments of four diverse regions in the north marginal seas in China were determined via clone library construction and a quantitative PCR analysis. The clone libraries retrieved by the 16S rRNA gene and Hzo gene markers indicated that “Candidatus Scalindua” was the predominant group throughout the sites examined. The 16S rRNA gene clone libraries revealed exceptional diversity by identifying two potential novel anammox clades, as evidenced by the high sequence similarities between these two clades and known anammox genera, and their unique phylogenetic positions with high bootstrap values. However, their potential roles in the anammox reaction need to be validated. Six novel members of Planctomycetes, divergent from the known genera of anammox bacteria, were also detected. A phylogenetic analysis by Hzo protein sequences revealed the existence of two known genera, i.e., “Candidatus Jettenia” and “Candidatus Anammoxoglobus”, which are rarely captured from marine sediments. Among all ecological parameters investigated, the distribution patterns and composition of anammox bacteria were found to be influenced by salinity, total organic matter, and temperature. The abundance of the anammox bacterial 16S rRNA gene from the sites examined ranged between 3.95×105 and 9.21×105 copies g−1 wet sediment and positively correlated with the median size of the sediment sample. PMID:27180640

  11. Linking Short and Long Term Sediment Delivery to Morphology and Seascape Evolution of Continental Margins

    DTIC Science & Technology

    1999-09-30

    history. OBJECTIVES 1) Is the variability in a river’s sediment load, observed over the last 100 years or less, adequate to provide a proxy for longer-term...experiments, small basins are able to capture in terms of textural proxies , both the natural variability associated with precipitation and temperature...as well as realistic scenarios of abrupt climate change. Open ocean basins, like the Eel River, are less likely to record the proxy record of ambient

  12. Depositional dynamics in the El'gygytgyn Crater margin: implications for the 3.6 Ma old sediment archive

    NASA Astrophysics Data System (ADS)

    Schwamborn, G.; Fedorov, G.; Ostanin, N.; Schirrmeister, L.; Andreev, A.; El'gygytgyn Scientific Party, the

    2012-11-01

    The combination of permafrost history and dynamics, lake level changes and the tectonical framework is considered to play a crucial role for sediment delivery to El'gygytgyn Crater Lake, NE Russian Arctic. The purpose of this study is to propose a depositional framework based on analyses of the core strata from the lake margin and historical reconstructions from various studies at the site. A sedimentological program has been conducted using frozen core samples from the 141.5 m long El'gygytgyn 5011-3 permafrost well. The drill site is located in sedimentary permafrost west of the lake that partly fills the El'gygytgyn Crater. The total core sequence is interpreted as strata building up a progradational alluvial fan delta. Four macroscopically distinct sedimentary units are identified. Unit 1 (141.5-117.0 m) is comprised of ice-cemented, matrix-supported sandy gravel and intercalated sandy layers. Sandy layers represent sediments which rained out as particles in the deeper part of the water column under highly energetic conditions. Unit 2 (117.0-24.25 m) is dominated by ice-cemented, matrix-supported sandy gravel with individual gravel layers. Most of the Unit 2 diamicton is understood to result from alluvial wash and subsequent gravitational sliding of coarse-grained (sandy gravel) material on the basin slope. Unit 3 (24.25-8.5 m) has ice-cemented, matrix-supported sandy gravel that is interrupted by sand beds. These sandy beds are associated with flooding events and represent near-shore sandy shoals. Unit 4 (8.5-0.0 m) is ice-cemented, matrix-supported sandy gravel with varying ice content, mostly higher than below. It consists of slope material and creek fill deposits. The uppermost metre is the active layer (i.e. the top layer of soil with seasonal freeze and thaw) into which modern soil organic matter has been incorporated. The nature of the progradational sediment transport taking place from the western and northern crater margins may be related to the

  13. Sorting of Terrestrial and Marine Organic Matter along a Marginal Submarine Canyon: Radiocarbon and Biomarker Signatures of Surface Sediments

    NASA Astrophysics Data System (ADS)

    Close, H. G.; Doherty, S.; Campbell, P.; McCarthy, M. D.; Prouty, N.

    2016-02-01

    Submarine canyons are incised features of many continental margins that can have significant influence on the hydrodynamic distribution of sediments and organic matter (OM) eroded and deposited from the continents. Baltimore Canyon, on the U.S. mid-Atlantic margin, contains a complex set of sedimentary processes that simultaneously create unique benthic habitats and control the deposition of OM. Along the canyon axis, loci of net erosion, net deposition, and intense winnowing each host diverse faunal assemblages and varying mixtures of sedimentary OM derived both from production in the overlying water column and from mobilized sediments. Bioavailable components of this deposited OM sustain benthic communities, while recalcitrant components can contribute to long-term carbon burial in the deep sea. Here we probe in detail the terrestrial versus marine origins of OM along a transect of Baltimore Canyon, as well as its bioavailability for benthic fauna, in order to explore how canyon-specific sediment dynamics might emplace a functional sorting of OM from shelf to open ocean. Determining the provenance of sedimentary OM is a continual challenge: commonly-measured bulk geochemical properties often provide insufficient information to distinguish end-member sources. We present a novel approach to separate functional classes of OM and investigate sources and degradative pathways of OM in Baltimore Canyon. In combination with bulk geochemical characteristics, surface sediments from water depths of 200-1200 meters were sequentially extracted (solvent-extracted, acid-hydrolyzed, and demineralized) to separate pools containing different prevalence of terrigenous, marine, and recalcitrant OM. Each class was analyzed for biomarker distributions; amino acid content, 13C signatures, and degradation indicators; bulk carbon and nitrogen isotopes; and radiocarbon content in order to characterize potential end-member sources within the mixture, as well as their age profiles. These

  14. Radiolarian indicators of El Nino and anti-El Nino events in Holocene sediments of Santa Barbara basin

    SciTech Connect

    Weinheimer, A.L.

    1986-04-01

    Radiolarian distributions and physical oceanographic data from the Santa Barbara basin indicate the following. Strong anti-El Nino periods can be characterized by (1) intermediate radiolarian density, (2) high percentage of transition-central radiolarian fauna, and (3) low percentage and number of warm-water radiolarian fauna. This distribution pattern is attributed to strong wind-driven upwelling and reduced northward transport by the California Countercurrent during anti-El Nino periods. Strong El Nino periods are typically (1) high in radiolarian density, and (2) low in percentage but high in number of warm-water fauna. This distribution is attributed to reduced wind-driven upwelling, enhanced northward countercurrent transport, and geostrophic doming of the cold-water masses in the shear zone between the California Current and California Countercurrent.

  15. Stratigraphy of two conjugate margins (Gulf of Lion and West Sardinia): modeling of vertical movements and sediment budgets

    NASA Astrophysics Data System (ADS)

    Leroux, Estelle; Gorini, Christian; Aslanian, Daniel; Rabineau, Marina; Blanpied, Christian; Rubino, Jean-Loup; Robin, Cécile; Granjeon, Didier; Taillepierre, Rachel

    2016-04-01

    The post-rift (~20-0 Ma) vertical movements of the Provence Basin (West Mediterranean) are quantified on its both conjugate (the Gulf of Lion and the West Sardinia) margins. This work is based on the stratigraphic study of sedimentary markers using a large 3D grid of seismic data, correlations with existing drillings and refraction data. The post-rift subsidence is measured by the direct use of sedimentary geometries analysed in 3D [Gorini et al., 2015; Rabineau et al., 2014] and validated by numerical stratigraphic modelling. Three domains were found: on the platform (1) and slope (2), the subsidence takes the form of a seaward tilting with different amplitudes, whereas the deep basin (3) subsides purely vertically [Leroux et al., 2015a]. These domains correspond to the deeper crustal domains respectively highlighted by wide angle seismic data. The continental crust (1) and the thinned continental crust (2) are tilted, whereas the intermediate crust, identified as lower continental exhumed crust [Moulin et al., 2015, Afhilado et al., 2015] (3) sagged. The post-break-up subsidence re-uses the initial hinge lines of the rifting phase. This striking correlation between surface geologic processes and deep earth dynamic processes emphasizes that the sedimentary record and sedimentary markers is a window into deep geodynamic processes and dynamic topography. Pliocene-Pleistocene seismic markers enabled high resolution quantification of sediment budgets over the past 6 Myr [Leroux et al., in press]. Sediment budget history is here completed on the Miocene interval. Thus, the controlling factors (climate, tectonics and eustasy) are discussed. Afilhado, A., Moulin, M., Aslanian, D., Schnürle, P., Klingelhoefer, F., Nouzé, H., Rabineau, M., Leroux, E. & Beslier, M.-O. (2015). Deep crustal structure across a young 1 passive margin from wide-angle and reflection seismic data (The SARDINIA Experiment) - II. Sardinia's margin. Bull. Soc. géol. France, 186, ILP Spec. issue, 4

  16. Paleoenvironmental records from newly recovered sediment cores at the southeast margin of the Salar de Atacama, Chile

    NASA Astrophysics Data System (ADS)

    Boutt, D. F.; Munk, L. A.; Hynek, S. A.; Corenthal, L.; Huff, H. A.

    2014-12-01

    A suite of new cores recovered from recent boreholes in the southeastern margin of the Salar de Atacama, Chile span a modern environmental gradient from distal alluvial fans, groundwater discharge marshes, sulfate-rich playas, saline lagoons, and the halite nucleus of the salar. These same environments are preserved as stratigraphic records of environmental change in the cores. Cores from the salar nucleus are dominated by halite, and similarly alluvial cores provide a poor paleoenvironmental record. However, the cores from the transition zone between the salar margin and the halite nucleus document alluvial, lagoonal, and evaporite environments. Cores near the halite nucleus record inter-bedded carbonate, gypsum, and halite. Finely laminated carbonates inter-bedded with cm-thick halite beds are a target for U-series geochronology. Cores near modern lagoons contain 2-6 m thick diatomites in addition to microbially-mediated carbonate, organic-rich mud, and minor alluvium. The uppermost 20 cm of diatomite deposits are commonly rooted with vascular plant material which is being processed for 14C geochronology. Ignimbrite and tephra deposits are also encountered and will provide important chronological control. The presence and absence of the 3.5-4.0 Ma Tucucaro ignimbrite in various cores documents a complex pattern of subsidence near the salar margin, some areas have accumulated little sediment since its deposition while in other areas the cores likely record only late Pleistocene deposition. Preliminary interpretations of the stratigraphic records within a paleohydrologic context are tenable. The specific control on this paleohydrologic record is likely to be a combination of increased inflow due to wetter climates and migration of the freshwater/brine interface which underlies the margins of the Salar de Atacama. Stratigraphic variations in the lithium content of evaporite minerals is being explored as a potential indicator of water balance. Lithium concentrations

  17. Gas content and composition of gas hydrate from sediments of the southeastern North American continental margin

    USGS Publications Warehouse

    Lorenson, T.D.; Collett, T.S.

    2000-01-01

    Gas hydrate samples were recovered from four sites (Sites 994, 995, 996, and 997) along the crest of the Blake Ridge during Ocean Drilling Program (ODP) Leg 164. At Site 996, an area of active gas venting, pockmarks, and chemosynthetic communities, vein-like gas hydrate was recovered from less than 1 meter below seafloor (mbsf) and intermittently through the maximum cored depth of 63 mbsf. In contrast, massive gas hydrate, probably fault filling and/or stratigraphically controlled, was recovered from depths of 260 mbsf at Site 994, and from 331 mbsf at Site 997. Downhole-logging data, along with geochemical and core temperature profiles, indicate that gas hydrate at Sites 994, 995, and 997 occurs from about 180 to 450 mbsf and is dispersed in sediment as 5- to 30-m-thick zones of up to about 15% bulk volume gas hydrate. Selected gas hydrate samples were placed in a sealed chamber and allowed to dissociate. Evolved gas to water volumetric ratios measured on seven samples from Site 996 ranged from 20 to 143 mL gas/mL water to 154 mL gas/mL water in one sample from Site 994, and to 139 mL gas/mL water in one sample from Site 997, which can be compared to the theoretical maximum gas to water ratio of 216. These ratios are minimum gas/water ratios for gas hydrate because of partial dissociation during core recovery and potential contamination with pore waters. Nonetheless, the maximum measured volumetric ratio indicates that at least 71% of the cages in this gas hydrate were filled with gas molecules. When corrections for pore-water contamination are made, these volumetric ratios range from 29 to 204, suggesting that cages in some natural gas hydrate are nearly filled. Methane comprises the bulk of the evolved gas from all sites (98.4%-99.9% methane and 0%-1.5% CO2). Site 996 hydrate contained little CO2 (0%-0.56%). Ethane concentrations differed significantly from Site 996, where they ranged from 720 to 1010 parts per million by volume (ppmv), to Sites 994 and 997

  18. Sediment recycling at convergent plate margins (Indo-Burman Ranges and Andaman-Nicobar Ridge)

    NASA Astrophysics Data System (ADS)

    Garzanti, Eduardo; Limonta, Mara; Resentini, Alberto; Bandopadhyay, Pinaki C.; Najman, Yani; Andò, Sergio; Vezzoli, Giovanni

    2013-08-01

    Subduction complexes large enough to be exposed subaerially and become significant sources of terrigenous detritus are formed by tectonic accretion above trenches choked with thick sections of remnant-ocean turbidites. They thus need to be connected along strike to a major collision zone, where huge volumes of orogenic detritus are produced and conveyed via a major fluvio-deltaic system to the deep sea. In this article we investigate sediment generation and recycling in the archetype of such settings, the eastern prolongation of the Himalayan collisional system. We illustrate the petrographic and heavy-mineral suites of modern sands produced all along the Indo-Burman-Andaman-Nicobar subduction complex, which includes accreted abyssal-plain sediments overthrust by ophiolites and unconformably overlain by volcaniclastic forearc strata. "Subduction Complex Provenance" is thus composite, and overwhelmingly consists of detritus recycled from largely turbiditic parent rocks (Recycled Clastic Provenance), with local supply from obducted ultramafic and mafic rocks of forearc lithosphere (Ophiolite Provenance) or recycled paleovolcanic to neovolcanic sources (Volcanic Arc Provenance). In order to specifically investigate the effect of recycling, we characterize the diverse detrital signatures of Cenozoic sandstones originally deposited during subsequent stages of "soft" and "hard" Himalayan collision and presently exposed from Bangladesh to the Andaman Islands, and discuss the reasons for compositional discrepancies between parent sandstones and their recycled daughter sands. Long-distance, multistep and multicyclic sediment transfer along and across convergent plate boundaries follows complex trajectories in space and time, which must be resolved whenever we want to obtain a reasonably faithful paleogeographic reconstruction for the recent and less recent geological past.

  19. Deglacial changes in the strength of deep southern component water and sediment supply at the Argentine continental margin

    NASA Astrophysics Data System (ADS)

    Warratz, Grit; Henrich, Rüdiger; Voigt, Ines; Chiessi, Cristiano M.; Kuhn, Gerhard; Lantzsch, Hendrik

    2017-08-01

    The deep southern component water (SCW), comprising Lower Circumpolar Deep Water (LCDW) and Antarctic Bottom Water (AABW), is a major component of the global oceanic circulation. It has been suggested that the deep Atlantic water mass structure changed significantly during the last glacial/interglacial cycle. However, deep SCW source-proximal records remain sparse. Here we present three coherent deep SCW paleocurrent records from the deep Argentine continental margin shedding light on deep water circulation and deep SCW flow strength in the Southwest Atlantic since the Last Glacial Maximum (LGM). Based on increased sortable silt values, we propose enhanced deep SCW flow strength from 14 to 10 cal ka B.P. relative to the early deglacial/LGM and the Holocene. We propose a direct influence of deep northern component water (NCW) on deep SCW flow strength due to vertical narrowing of deep SCW spreading, concurrent with a migration of the high-energetic LCDW/AABW interface occupying our core sites. We suggest a shoaled NCW until 13 cal ka B.P., thereby providing space for deep SCW spreading that resulted in reduced carbonate preservation at our core sites. Increased carbonate content from 13 cal ka B.P. indicates that the NCW expanded changing deep water properties at our core sites in the deep Southwest Atlantic. However, southern sourced terrigenous sediments continued to be deposited at our core sites, suggesting that deep SCW flow was uninterrupted along the Argentine continental margin since the LGM.

  20. Mixed carbonate-siliciclastic sedimentation on a tectonically active margin: Example from the Pliocene of Baja California Sur, Mexico

    NASA Astrophysics Data System (ADS)

    Dorsey, Rebecca J.; Kidwell, Susan M.

    1999-10-01

    Bioclast-rich, coarse-grained deposits in the Pliocene Loreto basin provide a record of mixed carbonate and siliciclastic sedimentation at the steep hanging-wall margin of this small, fault-controlled basin. Sedimentary facies consist of sand- to gravel-sized carbonate debris mixed with volcaniclastic sand and gravel in a proximal to distal facies tract that includes matrix-rich and matrix-poor shelly conglomerate, impure calcirudite and calcarenite, mixed-composition turbidites, and bioturbated calcarenitic sandstone. Carbonate material was produced by mollusks and other benthic organisms on a narrow, high-energy shelf and mixed with volcaniclastic sand and gravel in cross-shelf channels. These mixtures were transported down a steep subaqueous slope by debris flows, grain flows, and turbidity currents, forming foresets and bottomsets of marine Gilbert-type deltas. This style of mixed carbonate-siliciclastic sedimentation has not been documented in detail elsewhere but should be locally abundant in the stratigraphic record of fault-bounded basins, particularly those with cool or nutrient-rich waters that support relatively few binding and framework-building faunas. Recognition of similar facies in other settings can provide useful insights into ancient conditions of carbonate production, oceanography, climate, and tectonics.

  1. Paleomagnetic Study of Plio-Pleistocene Sediments in the Concentrated Deformation Zone Along the Eastern Margin of the Japan Sea

    NASA Astrophysics Data System (ADS)

    Hoshi, H.; Yamada, K.

    2014-12-01

    Along the eastern margin of the Japan Sea, there is a concentrated deformation zone in which Miocene and younger strata have been strongly folded and faulted within a Quaternary compressional stress regime. An interpretation that the zone is an incipient Eurasian-Okhotsk plate boundary has been proposed, based on several large-magnitude earthquakes occurring in this zone during historic times. In this study we conducted a paleomagnetic and rock magnetic investigation of Plio-Pleistocene sediments of the Sasaoka Formation in northern Honshu, Japan, in order to test whether the compressional deformation is accompanied by rotation about a vertical axis. Despite the possible presence of magnetic iron-sulfides in fine clastic sediments, pre-folding remanent magnetization is confirmed by a bootstrap fold test and reversals test. Recognizable felsic tuffs mostly have stable remanent magnetization carried by magnetite. Site-mean remanent magnetization directions were determined for 23 sites, which cover an interval from ca. 2.7 Ma to 1.7 Ma on the basis of magnetostratigraphic correlation. The resultant overall mean direction is indistinguishable from the geocentric axial dipole field direction, suggesting no rotation. Comparison of this result with Plio-Pleistocene directions reported from other areas illuminates no detectable rotation in and adjacent to the deformation zone, except for local rotations along strike-slip faults.

  2. Evidence of basement-block movement, middle Ordovician shelf sediments, western passive margin, North America

    SciTech Connect

    McDowell, R.R.

    1986-05-01

    Short-lived, basement-block movements initiated sedimentation in the early Middle Ordovician Kanosh basin. The basin was a north-south, elongate, intrashelf structure covering approximately 90,000 km/sup 2/ of Utah and Nevada, and was subdivided into the northern Utah and Ibex subbasins by the east-west-trending Tooele arch. The Kanosh Shale, an organic-rich (TOC less than or equal to 5.6%), graptolitic shale with numerous, thin, interbedded calcarenites, was deposited throughout the basin. Deposition began abruptly and was nearly synchronous, corresponding roughly to the base of macrofossil zone M, early Whiterock stage. The intertidal and shallow, subtidal carbonate sedimentation that preceded the Kanosh Shale continued in area surrounding the basin during Kanosh deposition; abrupt, local subsidence rather than regional sea level rise initiated Kanosh deposition. Basal sands of the lower Swan Peak quartzite and carbonates of the Lehman Formation encroaching on the basin terminated Kanosh deposition. Recurrent uplift of the Tooele arch during the deposition of these two units (middle and late macrofossil zone N, middle Whiterock) caused them to thin markedly over the axis of the arch; this effect is much less noticeable in the underlying Kanosh Shale.

  3. Recent reconstruction of deep-water macrofaunal communities recorded in Continental Margin sediments in the Balearic Basin

    NASA Astrophysics Data System (ADS)

    Cartes, J. E.; Schirone, A.; Barsanti, M.; Delbono, I.; Martínez-Aliaga, A.; Lombarte, A.

    2017-07-01

    We present an initial reconstruction of recent (last few centuries) mud-bottom faunal communities on the upper slope (398-667 m) of the continental margin off Catalonia (western Mediterranean), including periods free of any trawling impact. Radiometric dating of marine sediments and identification of faunal remains (e.g., fish otoliths, pteropod shells, coral sclerites) were performed to obtain a sediment geochronology in a 56 cm sediment core (MC4) taken at 398 m off the Ebro Delta in 2011. Core MC4 was especially rich in faunal remains, including, for example, 247 identifiable otoliths. A fine-scale chronology of MC4 was not possible due to sediment mixing. However, the depth of 210Pbxs penetration (20-22 cm) identified sediments older (below 22 cm depth) and younger (from core top to 22 cm) than ca. 100 years. Mass Accumulation Rate (MAR) from the 210Pbxs profile was estimated as 0.23±0.02 g cm-2 y-1. A significant peak of sclerites of the bamboo coral Isidella elongata was found between 4 and 8 cm in MC4, with remains of the axes and bases of Isidella colonies exclusively found at core depths >8-10 cm, which would correspond (MAR results) to the period 1980-1985. Such structures were not found in the 0-8 cm layer, likely an effect of trawling that started in the area in the 1980s. Other changes both in benthos (corals and cirripedes) and zooplankton (pteropods) seemed to be related with Ebro river discharge, with changes coinciding with massive damming of the Ebro and tributary rivers in the 1950s and until 1965. Mesopelagic fish also showed temporal oscillations in MC4. Abundance of some myctophid remains (Lampanyctus croccodilus and Benthosema glaciale) was related with positive NAO periods and with rather high temperature in Levantine Intermediate Waters. By contrast, periods of higher dominance of Ceratoscopelus maderensis off Catalonian coasts could indicate lower salinity during the past and a progressive degree of eutrophication in intermediate waters

  4. Ostracoda and Foraminifera associated with macrofauna of marginal marine origin in continental sabkha sediments of Tayma (NW Saudi Arabia)

    NASA Astrophysics Data System (ADS)

    Pint, Anna; Frenzel, Peter; Engel, Max; Plessen, Birgit; Melzer, Sandra; Brückner, Helmut

    2016-04-01

    The oasis Tayma in northwestern Saudi Arabia (27°38'N, 38°33'E) is well known for its rich archaeological heritage and also hosts a key sedimentary record of Holocene environmental change.The palaeontologically investigated material comes from two 5.5 m long sediment cores taken in the northeastern and central part of the sabkha and two outcrops of shoreline deposits at the northeastern and southwestern margin of a large lake. Microfossil-rich layers have an age of about 9.2-ca. 8 ka BP. The sandy and carbonate-dominated sediments contain autochthonous balanids, the gastropods Melanoides tuberculatus and hydrobiids as well as the foraminifers Ammonia tepida (Cushman, 1926), Quinqueloculina seminula (Linnaeus, 1758), and Flintionoides labiosa (d'Orbigny, 1839). This brackish water association is completed by partially mass-occurrence of Cyprideis torosa (JONES, 1850), an euryhaline and generally widely tolerant ostracod species. Only the smooth shelled morphotype littoralis occurs. The association indicates a large brackish water lake with temporary freshwater inflows. All species documented originate in the marginal marine environment of the Red or Mediterranean Sea within the intertidal zone and hence they are adapted for strong environmental changes. We assume negative water balance under arid climatic conditions as cause for the high salinity of this athalassic lake. Sieve-pore analyses and shell chemistry suppose a trend of increasing salinity towards the top of the studied microfossil-bearing sections. This pattern is confirmed by increasing test malformation ratios of foraminifers. The marine origin of the fauna is surprising in this area 250 km away from the sea in an altitude of about 800 m a.s.l. We assume an avian-mediated transport of eggs, larvae or even adult animals to this site. The brackish water character of the lake enabled a permanent settling of marginal marine foraminifers, ostracods and even macrofauna as gastropods and balanids. The studied

  5. Structure and Development Processes of the Sediment Ridges on the Continental Rise off the Prydz Bay Margin, East Antarctica

    NASA Astrophysics Data System (ADS)

    Shen, Z.; Yang, C.; Gao, J.; Ji, F.

    2015-12-01

    Several sediment ridges (SRs) are located on the continental slope and rise off the Prydz Bay margin, East Antarctica. These SRs contain the history of the regional glacial movements and bottom current activities. Multichannel seismic reflection data and bathymetric data in this region have been interpreted to know the planar distribution, cross-section structures along strike, and the formation and development processes of the SRs. Based on the above work, two different groups of the SRs have been identified. The first one includes two SRs which were asymmetric levees on both sides of the Wild Canyon in the western part of the study area. The second one includes SRs in the eastern part of the study area whose formation and development are closely related to the local, diachronous hiatuses generated by the turbidity flow. The onset time of the turbidity activities in different canyons are not concurrent. For Wild Canyon in the west, the onset time is P1, which is the base of the glaciomarine deposit on the continental rise, while for Wilkins and Murray Canyon in the east, it is a later time P3 (~26.1 Ma), which represents an expansion of the glaciers in Prydz Bay area. All the canyons and the turbidity currents within them both extend seaward with time and so does the consequent SRs. In the areas north of the seaward edge of the SRs, large deep-sea sediment waves consisting of fine-grain sediments supplied mainly by down-slope turbidity currents were generated under westward-flowing bottom currents.

  6. Environmental Conditions Outweigh Geographical Contiguity in Determining the Similarity of nifH-Harboring Microbial Communities in Sediments of Two Disconnected Marginal Seas

    PubMed Central

    Zhou, Haixia; Dang, Hongyue; Klotz, Martin G.

    2016-01-01

    Ecological evidence suggests that heterotrophic diazotrophs fueled by organic carbon respiration in sediments play an important role in marine nitrogen fixation. However, fundamental knowledge about the identities, abundance, diversity, biogeography, and controlling environmental factors of nitrogen-fixing communities in open ocean sediments is still elusive. Surprisingly, little is known also about nitrogen-fixing communities in sediments of the more research-accessible marginal seas. Here we report on an investigation of the environmental geochemistry and putative diazotrophic microbiota in the sediments of Bohai Sea, an eutrophic marginal sea of the western Pacific Ocean. Diverse and abundant nifH gene sequences were identified and sulfate-reducing bacteria (SRB) were found to be the dominant putative nitrogen-fixing microbes. Community statistical analyses suggested bottom water temperature, bottom water chlorophyll a content (or the covarying turbidity) and sediment porewater Eh (or the covarying pH) as the most significant environmental factors controlling the structure and spatial distribution of the putative diazotrophic communities, while sediment Hg content, sulfide content, and porewater SiO32−-Si content were identified as the key environmental factors correlated positively with the nifH gene abundance in Bohai Sea sediments. Comparative analyses between the Bohai Sea and the northern South China Sea (nSCS) identified a significant composition difference of the putative diazotrophic communities in sediments between the shallow-water (estuarine and nearshore) and deep-water (offshore and deep-sea) environments, and sediment porewater dissolved oxygen content, water depth and in situ temperature as the key environmental factors tentatively controlling the species composition, community structure, and spatial distribution of the marginal sea sediment nifH-harboring microbiota. This confirms the ecophysiological specialization and niche differentiation

  7. A phylogenetic analysis of microbial communities associated with methane hydrate containing marine fluids and sediments in the Cascadia margin (ODP site 892B).

    PubMed

    Bidle, K A; Kastner, M; Bartlett, D H

    1999-08-01

    Methane hydrates represent an enormous carbon and energy source in many low temperature deep marine sediments. However, little information is available concerning the nature of the microbial communities associated with these structures. Here, we describe a phylogenetic analysis based on ribosomal DNA (rDNA) sequences obtained from sediment and fluid samples present in a region of gas hydrate formation in shallow sediments within the Cascadia margin in and around Ocean Drilling Program (ODP) Site 892B. Our studies detected diverse sulfur-utilizing microbes, methanogens, methanotrophs, and non-thermophilic members of the kingdom Crenarchaeota. This is the first culture-independent phylogenetic analysis of a gas hydrate habitat.

  8. Submarine fan sedimentation at a convergent margin: the cretaceous mangapokia formation, New Zealand

    NASA Astrophysics Data System (ADS)

    Barnes, Philip M.

    1988-10-01

    The middle Cretaceous Mangapokia Formation (Pahaoa Group) near Te Awaiti, southeast North Island, New Zealand, consists of indurated, poorly fossiliferous, alternating sandstone and argillite, minor conglomerate, grit, pebbly-sandstone, and pebbly-mudstone (terrigenous sedimentary assemblage), and minor basalt, coloured argillite, chert, and micritic limestone (ocean-floor assemblage). Seven lithofacies are distinguished in the sedimentary assemblage on the basis of lithology, bed thickness and geometry, sand/mud ratio, grain size and internal sedimentary features. Facies 1 (10-15% of total exposure), which includes all sediments coarser than sand grade, comprises seven subfacies as follows: lenticular and erosive beds of coarse-grained (Subfacies 1Ai), medium-grained (Subfacies 1Aii) and fine-grained (Subfacies 1Aiii) predominantly clast-supported conglomerate, grit (Subfacies 1Aiv) and pebbly-sandstone (Subfacies 1Av) displaying numerous types of graded bedding and sedimentary structures, were all deposited predominantly from high-concentration turbidity currents or bed-load inertia flows. Minor chaotic sand or mud matrix-supported conglomerate lenses (Subfacies 1Bi), and beds which show clear evidence of post-depositional remobilisation (Subfacies 1Bii), represent debris flow deposits. Thick lenses of sandstone and minor argillite interbeds (Facies 2) were deposited from large-volume inertia flows, possibly grainflows. Facies 3, the most common lithofacies, consists of laterally more extensive, medium thickness, graded beds of alternating sandstone and argillite with rare Bouma sequences. These deposits are proximal turbidites which accumulated in environments more distal than Facies 1 and 2. Thin-bedded (Facies 4) and very thin-bedded (Facies 5) alternating sandstone and argillite, and argillite-dominated sequences with minor interbedded sandstone (Facies 6) were deposited in interchannel depressions, on channel levees, or in areas distant from high

  9. Sources of terrestrially-derived organic carbon in lower Mississippi River and Louisiana shelf sediments: Implications for differential sedimentation and transport at the coastal margin

    USGS Publications Warehouse

    Bianchi, T.S.; Mitra, Siddhartha; McKee, B.A.

    2002-01-01

    In this study, we examined the temporal and spatial variability of terrestrial organic carbon sources in lower Mississippi River and Louisiana shelf sediments (during 11 cruises over a 22-month period) to further understand the sorting dynamics and selective transport of vascular plant materials within the primary dispersal system of the river. Bulk ??13C values in lower river sediments ranged from -21.90??? to -24.64??? (mean=-23.20??1.09???), these values were generally more depleted than those found in shelf sediments (-22.5??? to -21.2???). The ??8 (??8 = sum of vanillyl, syringyl and cinnamyl phenols produced from the oxidation of 100 mg of organic carbon) values in the lower river ranged from 0.71 to 3.74 (mean = 1.78??0.23). While there was no significant relationship between ??8 and river discharge (p>0.05), the highest value occurred during peak discharge in April 1999-which corresponded to the highest observed C/N value of 17.41. The ??8 values on the shelf ranged from 0.68 to 1.36 (mean = 0.54??0.30) and were significantly lower (p <0.05) than the average value for lower river sediments. The range of S/V (syringyl/vanillyl) and C/V (cinnamyl/vanillyl) ratios on the shelf, 0.11 to 0.95 and 0.01 to 0.08, respectively, were similar to that found in the lower river. These low C/V ratios are indicative a mixture of woody and non-woody carbon sources. Recent work by Goni et al. [Nature 389 (1997) 275; Geochim. Cosmochim. Acta 62 (1998) 3055], which did not include sampling transects within the primary dispersal system of the Mississippi River, showed a non-woody vascular plant signature on the Louisiana shelf. This suggests that riverine-derived woody tissues preferentially settle out of the water column, in the lower river and inner shelf, prior to the selective dispersal of C3 versus C4 non-woody materials in other regions the shelf and slope. This works further demonstrates the importance of differential settlement of particles, sampling location within the

  10. Effects of Climate Change on Production of Siliceous Phytoplankton Over the Twentieth Century as Recorded in Sediments of the Santa Bárbara Basin off Southern California

    NASA Astrophysics Data System (ADS)

    Martinez Lopez, A.; Baumgartner, T. R.; Lange, C.

    2007-05-01

    The relationship between production of siliceous phytoplankton and interannual through multidecadal climate variability is examined by analysis of a high-resolution paleo-record of diatoms and silicoflagellates for the period 1909-1991. The record is reconstructed from the annually layered sediments (varves) preserved in the hypoxic Santa Barbara Basin providing an annual history of production and settling to the sediments of an important fraction of the new production in the coastal environment. Location of the depositional site makes it sensitive to change in ocean climate governing large scale dynamics of the California Current ecosystem. Variables used for comparison to indices of large-scale climate change are: 1) total flux rate to the sediments of both diatom tests and silicoflagellates; 2) change in species richness; 3) the absolute and relative flux of specific functional groups (indicating conditions of upwelling and turbulence vs. stability in the water column); and 4) absolute and relative flux of a species assemblage identified as having warm water affinities. Although the combination of these variables indicates a response to interannual variability associated with ENSO, a more striking feature is the persistence over decadal and interdecadal periods exemplified by the steep decline and reduced values in the overall rate of flux after 1976 (indicating a response to the basin-scale climate shift in 1976-77). The most prominent feature, however, is a major shift in the nature of total flux, and particularly a drastic change in the relative abundances of two different species assemblages, from one that dominated through the first 30 years of the series to another that dominated through the final 40 years of the record. Although the exact nature and timing of this major transition cannot be ascertained because of a break in the record from 1944 through 1948, the change is clearly marked by the replacement of a group of small diatom species (indicative of

  11. AMS 14C and 210Pb dating on a 51-cm sediment core from Santa Barbara Basin, CA: old carbon source

    NASA Astrophysics Data System (ADS)

    Chang, YiWei; Berelson, William M.; Li, HongChun

    2017-04-01

    A 51-cm gravity core, SBB-8-2012, was collected from Santa Barbara Basin (SBB) of California in 2012. Lamination counting of the core yields ˜160 layers. A total of 17 horizons of the core have been analyzed for 210Pb dating through alpha spectrometry method which provides a mean sedimentation rate of 0.24cm/y. Thus, the 51-cm long core covers about 210 years of depositional history of the sampling site in the basin. Up-to-date, we have measured AMS 14C dates on TOC of the bulk sediments in 34 layers from the upper 40.1 cm of the core. Except the 14C date (2983 yr BP) at 35-35.2 cm depth, the 33 uncorrected 14C dates range from 508 yr BP to 2214 yr BP, and form two groups which give two linear lines: age = 417 + 35.9 depth (cm), R2 = 0.976 and age = 665 + 37.4 depth (cm), R2 = 0.949. These equations allow us to observe the following phenomena: (1) TOC of the bulk sediments in the SSB contains old carbon. The old carbon may come from terrestrial input (allogenic/allochthonous) and/or from endogenic input (autochthonous) through photosynthesis in the water column. (2) The reservoir age can exist for both organic carbon of TOC and carbonate. At 35.5-37 cm depth, the AMS 14C date of a plant remain sample was 520±12 yr BP. If this age subtracts the reservoir age of 417 years, the corrected age is close to the result of 210Pb dating. A shell sample at 38.5 cm depth provides a 14C age of 915±47 yr BP, showing older reservoir age for carbonate. (3) The reservoir age for TOC may vary through time depending on water mixing rate in the basin. This is because the endogenic input may be a function of water mixing in the basin. When the mixing rate of the water column in the basin was slower, the reservoir age became older. Based on the chronology from the 210Pb dating, we are able to determine the Δ14C fluctuations of the TOC in the bulk sediments of the core. The variation of the Δ14C may let us evaluate basin mixing during the past 200 years.

  12. Late Holocene Sediment Study From Santa María del Oro Crater Lake, Nayarit, México, Using Environmental Magnetism

    NASA Astrophysics Data System (ADS)

    Vazquez, G.; Ortega, B.; Rodriguez, A.

    2007-05-01

    The lake is located near the Pacific coast of Mexico, at the western end of the Trans Mexican Volcanic Belt. It is a deep lake (ca. 65 m) with steep sides and only a small bay (Agua Caliente) has shallower water (ca. 12 m). Four parallel cores between 4 and 9 m long were recovered in March 2002 from this shallower area. Sediments are characterized by alternated laminations (few millimeters to 2 cm) of sand, brown silt, green silt, reddish silt, ochre silt, and peat. The 14-C dated sequence spans the last ca. 2,600 yrs. Given this age, it is possible that each set of laminations represent annual sedimentation cycles. The record is a potential high- resolution archive of environmental and climatic variability for western Mexico for late Holocene. Magnetic measurements of susceptibility along the cores show a high variability in the concentration of magnetic mineralogy. Different magnetic and non-magnetic properties show two sets of facies in relation to its magnetic mineralogy; one group composed by sand, brown silt, green silt and peat has the magnetite and Ti-magnetite as the principal magnetic phase; the second group, composed by reddish and ochre silt, has a low Ti magnetite component and siderite, as the principal paramagnetic component. The effects of climatic variations such as the drought occurred in the archeological Classic period (100 - 900 dC), the Medieval Warm Period (950 - 1350 dC), the Little Ice Age (1400 - 1800 dC), and the droughts over the last 700 years, documented in sites along central Mexico, are recognized in the magnetic mineralogy of Santa Maria del Oro.

  13. Sedimentation in the Southern Okinawa Trough: enhanced particle scavenging and teleconnection between the Equatorial Pacific and western Pacific margins

    NASA Astrophysics Data System (ADS)

    Lee, Shih-Yu; Huh, Chih-An; Su, Chih-Chieh; You, Chen-Feng

    2004-11-01

    Owing to its location, geomorphology and hydrodynamic conditions, the southernmost part of the Southern Okinawa Trough (SOT) acts like an efficient receptacle for sediments from Taiwan and the East China Sea shelf. The high sediment flux coupled with the passage, bifurcation, upwelling, swirling and detour of Kuroshio in the SOT area result in intense particle scavenging, with sedimentary inventories of 210Pb and 239, 240Pu far greater than expected from local atmospheric input and in situ water column production. The unusually high inventories, as well as the deposition history of Pu isotopes must be explained by advective transport of Pu westward from the Marshall Islands, the largest source of Pu in the Pacific, by the North Equatorial Current (NEC) followed by northward transport of Kuroshio to the SOT area. The high sedimentation rate in the SOT area enabled us to differentiate the subsurface peak of 239, 240Pu resulting from the global fallout maximum in AD 1963 and the subsurface maximum of 240Pu/239Pu caused by close-in fallout from neutron-rich thermonuclear tests conducted by the US during AD 1952-1954 at the Enewetak and Bikini Atolls. The vertical offset between the subsurface peaks of 239, 240Pu and 240Pu/239Pu in sediments suggests that deposition of the 240Pu/239Pu maximum preceded that of the 239, 240Pu maximum by 3-5 yr and that the transit time of the 240Pu-enriched Pu from its source (at ∼12°N, 162°E) to the SOT area is ∼6 yr. The mean velocity of NEC thus calculated is ∼0.022 m s-1. The present is the key to the past. This study reveals teleconnection between the Equatorial Pacific and the western Pacific margins and suggests that ODP and IMAGES cores recently collected from the SOT area holds great promise for the reconstruction of high-resolution paleoceanographic records along the trajectories of NEC and Kuroshio.

  14. Methane and other hydrocarbon gases in sediment from the southeastern North American continental margin

    USGS Publications Warehouse

    Kvenvolden, K.A.; Lorenson, T.D.

    2000-01-01

    Residual concentrations and distributions of hydrocarbon gases from methane to n-heptane were measured in sediments at seven sites on Ocean Drilling Program (ODP) Leg 164. Three sites were drilled at the Cape Fear Diapir of the Carolina Rise, and one site was drilled on the Blake Ridge Diapir. Methane concentrations at these sites result from microbial generation which is influenced by the amount of pore-water sulfate and possible methane oxidation. Methane hydrate was found at the Blake Ridge Diapir site. The other hydrocarbon gases at these sites are likely the produce of early microbial processes. Three sites were drilled on a transect of holes across the crest of the Blake Ridge. The base of the zone of gas-hydrate occurrence was penetrated at all three sites. Trends in hydrocarbon gas distributions suggest that methane is microbial in origin and that the hydrocarbon gas mixture is affected by diagenesis, outgassing, and, near the surface, by microbial oxidation. Methane hydrate was recovered at two of these three sites, although gas hydrate is likely present at all three sites. The method used here for determining amounts of residual hydrocarbon gases has its limitations and provides poor assessment of gas distributions, particularly in the stratigraphic interval below about ~ 100 mbsf. One advantage of the method, however, is that it yields sufficient quantities of gas for other studies such as isotopic determinations.

  15. The effect of grain size and surface area on organic matter, lignin and carbohydrate concentration, and molecular compositions in Peru Margin sediments

    USGS Publications Warehouse

    Bergamaschi, B.A.; Tsamakis, E.; Keil, R.G.; Eglinton, T.I.; Montlucon, D.B.; Hedges, J.I.

    1997-01-01

    A C-rich sediment sample from the Peru Margin was sorted into nine hydrodynamically-determined grain size fractions to explore the effect of grain size distribution and sediment surface area on organic matter content and composition. The neutral monomeric carbohydrate composition, lignin oxidation product yields, total organic carbon, and total nitrogen contents were determined independently for each size fraction, in addition to sediment surface area and abundance of biogenic opal. The percent organic carbon and percent total nitrogen were strongly related to surface area in these sediments. In turn, the distribution of surface area closely followed mass distribution among the textural size classes, suggesting hydrodynamic controls on grain size also control organic carbon content. Nevertheless, organic compositional distinctions were observed between textural size classes. Total neutral carbohydrate yields in the Peru Margin sediments were found to closely parallel trends in total organic carbon, increasing in abundance among grain size fractions in proportion to sediment surface area. Coincident with the increases in absolute abundance, rhamnose and mannose increased as a fraction of the total carbohydrate yield in concert with surface area, indicating these monomers were preferentially represented in carbohydrates associated with surfaces. Lignin oxidation product yields varied with surface area when normalized to organic carbon, suggesting that the terrestrially-derived component may be diluted by sorption of marine derived material. Lignin-based parameters suggest a separate source for terrestrially derived material associated with sand-size material as opposed to that associated with silts and clays. Copyright ?? 1997 Elsevier Science Ltd.

  16. A time-transgressive Holocene onset from Globorotalia menardii records on Brazilian continental margin sediments

    NASA Astrophysics Data System (ADS)

    Iwai, F. S.; Costa, K. B.; Toledo, F. A. D. L.; Santarosa, A. C. A.; Chiessi, C. M.; Camillo, E., Jr.; Quadros, J. P.

    2014-12-01

    The planktic foraminifer Globorotalia menardii presents a cyclic behavior within Pleistocene glacial cycles on Atlantic; it disappears during glacial periods and returns to this ocean after deglaciations. Therefore, G. menardii has been used to identify limits between those cycles and the last limit is recognized as the Holocene onset. The Holocene onset has been reported before as being more than 4 kyrs later than expected at the equatorial Atlantic Ocean based on a G. menardii record (Broecker & Pena, 2014). In this study, we explore the time-transgressive Holocene onset of G. menardii in the Atlantic from 21 piston cores collected along the Brazilian continental margin, between 7 ˚N and 33 ˚S. Radiocarbon dating was conducted on Globigerinoides ruber on samples prior to and after G. menardii reappearance in the cores. Reservoir-age corrected 14C dates vary between 17 and 6.5 cal kyrs; the older ages are found at ~14 ˚S and younger ages at 6 ˚N and 33 ˚S. From these ages and latitudes, we hypothesize that G. menardii's population has spread at higher rates southward. From the scenario observed on Brazilian coast it is possible to conclude that although ocean circulation has an important role on dispersion of planktonic foraminifera, it may be superimposed by ecological constraints of the species. G. menardii absence during glacials is linked to the Agulhas Leakage activity, which is prevented from getting to the Atlantic due the northern position of the Subtropical Convergence Zone during glacials. On interglacials, warm and saline waters carrying G. menardii are transported into the Subtropical Gyre currents, achieving Brazil's coast through the South Equatorial Current and spreading south and northward through Brazil Current and North Brazil Current, respectively. Nonetheless, from velocity and volume registered for this currents, we would expect a higher G. menardii dispersion rate northward. A faster southward dispersal during the deglaciation suggests

  17. Liquid chromatography-atmospheric pressure photoionization-Orbitrap analysis of fullerene aggregates on surface soils and river sediments from Santa Catarina (Brazil).

    PubMed

    Sanchís, Josep; Oliveira, Luis Felipe Silva; de Leão, Felipe Baptista; Farré, Marinella; Barceló, Damià

    2015-02-01

    In the present work, a new analytical approach is proposed for the analysis of seven fullerenes (C₆₀, C₇₀, N-methylfulleropyrrolidine, [6,6]-phenyl C₆₁ butyric acid methyl ester, [6,6]-thienyl C61 butyric acid methyl ester, C60 pyrrolidine tris-acid ethyl ester and [6,6]-phenyl C₇₁ butyric acid methyl ester fullerenes) in soils and sediments. This procedure combines an ultrasound-assisted solvent extraction (UAE) with toluene followed by liquid chromatography (LC), using a pyrenylpropyl group bonded silica based column, coupled to a high-resolution mass spectrometer (HRMS) using atmospheric pressure photoionisation (APPI) in negative ion mode. The analytical performance for fullerene separation of the pyrenylpropyl group bonded silica column was compared to the C18 column. For the ultra-trace analysis of fullerenes in complex environmental samples, the use of the APPI source and the use of the electrospray ionisation (ESI) source were compared. Using this approach for the analysis of fullerenes in complex matrices, a series of advantages, in terms of sensitivity and specificity, have been demonstrated. The method limits of detection (MLOD) and the method limits of quantification (MLOQ) in soils and sediments ranged from 0.022 to 0.39 pg/g and from 0.072 to 1.3 pg/g, respectively. Recoveries were between 68 and 106%. The analytical method was applied in order to assess the occurrence of selected fullerenes in 45 soils of Sul Catarinense (Santa Catalina State, Brazil) and 15 sediments from the Tubarão River, presenting different pressures of contamination: a coal-combustion power plant, car exhaust, coal mining industry and wastewater effluents. C₆₀ and C₇₀ fullerenes have been detected at concentrations ranging from the MLOD to 0.150 ng/g. None of the functionalised fullerenes were detected in any of the samples. Combustion processes, in particular car exhaust, were identified as the main source of fullerenes. However, the potential

  18. The biogeochemistry of carbon in continental slope sediments: The North Carolina margin

    SciTech Connect

    Blair, N.; Levin, L.; DeMaster, D.; Plaia, G.; Martin, C.; Fornes, W.; Thomas, C.; Pope, R.

    1999-12-01

    The responses of the continental slope benthos to organic detritus deposition were studied with a multiple trace approach. Study sites were offshore of Cape Fear (I) and Cape Hatteras (III), N.C. (both 850 m water depth) and were characterized by different organic C deposition rates, macrofaunal densities (III>I in both cases) and taxa. Natural abundances of {sup 13}C and {sup 12}C in particulate organic carbon (POC), dissolved inorganic carbon (DIC) and macrofauna indicate that the reactive organic detritus is marine in origin. Natural abundance levels of {sup 14}C and uptake of {sup 13}C-labeled diatoms by benthic animals indicate that they incorporate a relatively young component of carbon into their biomass. {sup 13}C-labeled diatoms (Thalassiorsira pseudonana) tagged with {sup 210}Pb, slope sediment tagged with {sup 113}Sn and {sup 228}Th-labeled glass beads were emplaced in plots on the seafloor at both locations and the plots were sampled after 30 min., 1-1.5 d and 14 mo. At Site I, tracer diatom was intercepted at the surface primarily by protozoans and surface-feeding annelids. Little of the diatom C penetrated below 2 cm even after 14 months. Oxidation of organic carbon appeared to be largely aerobic. At Site III, annelids were primarily responsible for the initial uptake of tracer. On the time scale of days, diatom C was transported to a depth of 12 cm and was found in animals collected between 5-10 cm. The hoeing of tracer from the surface by the maldanid Praxillela sp. may have been responsible for some of the rapid nonlocal transport. Oxidation of the diatom organic carbon was evident to at least 10 cm depth. Anaerobic breakdown of organic matter is more important at Site III. Horizontal transport, which was probably biologically mediated, was an order of magnitude more rapid than vertical displacement over a year time scale. If the horizontal transport was associated with biochemical transformations of the organic matter, it may represent an

  19. Organic matter pools, C turnover and meiofaunal biodiversity in the sediments of the western Spitsbergen deep continental margin, Svalbard Archipelago

    NASA Astrophysics Data System (ADS)

    Pusceddu, A.; Carugati, L.; Gambi, C.; Mienert, J.; Petani, B.; Sanchez-Vidal, A.; Canals, M.; Heussner, S.; Danovaro, R.

    2016-01-01

    We investigated organic matter (OM) quantity, nutritional quality and degradation rates, as well as abundance and biodiversity of meiofauna and nematodes along the deep continental margin off Spitsbergen, in the Svalbard Archipelago. Sediment samples were collected in July 2010 and 2011 along a bathymetric gradient between 600 m and 2000 m depth, and total mass flux measured at the same depths from July 2010 to July 2011. In both sampling periods sedimentary OM contents and C degradation rates increased significantly with water depth, whereas OM nutritional quality was generally higher at shallower depths, with the unique exception at 600 m depth in 2010. Meiofaunal abundance and biomass (largely dominated by nematodes) showed the highest values at intermediate depths (ca 1500 m) in both sampling periods. The richness of meiofaunal higher taxa and nematode species richness did not vary significantly with water depth in both sampling periods. We suggest here that patterns in OM quantity, C degradation rates, and meiofauna community composition in 2011 were likely influenced by the intensification of the warm West Spitsbergen Current (WSC). We hypothesize that the intensity of the WSC inflow to the Arctic Ocean could have an important role on benthic biodiversity and functioning of deep-sea Arctic ecosystems.

  20. Spatial and temporal distribution of contaminated, effluent-affected sediment on the Palos Verdes margin, southern California

    USGS Publications Warehouse

    Lee, H.J.; Sherwood, C.R.; Drake, D.E.; Edwards, B.D.; Wong, F.; Hamer, M.

    2002-01-01

    A sedimentary deposit on the continental margin near the Palos Verdes Peninsula, California is comprised of sewage effluent and geologic materials and is contaminated with metals, pesticides (including DDT and associated compounds), and PCBs. The deposit was mapped with subbottom acoustic profilers, and sediment cores were analyzed for geochemical and physical properties to determine the volume of the deposit and the distribution and mass of contaminants. Mapping showed that the deposit ranges up to 60-cm thick, has a total volume exceeding 9 million m3, and covers over 40 km2. Virtually the entire effluent-affected deposit is contaminated with DDT and PCBs. Nearly half of the area of the deposit lies on the continental slope, but 70-75% of the volume of the deposit and total mass of DDT reside on the continental shelf. Analysis of data collected biennially since 1981 by the Sanitation Districts of Los Angeles County show that the mass of DDT has apparently decreased at some stations but has remained essentially constant at others. Temporal changes m mass per unit area of DDT are not statistically significant (at the 90% confidence level) at the most contaminated locations over a 16-yr period. The results of this mapping effort were used as a basis for modeling efforts described elsewhere in this issue. ?? 2002 Elsevier Science Ltd. All rights reserved.

  1. Variations in Organic Matter Burial and Composition in Sediments from the Indian Ocean Continental Margin Off SW Indonesia (Sumatra - Java - Flores) Since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Jennerjahn, T. C.; Gesierich, K.; Schefuß, E.; Mohtadi, M.

    2014-12-01

    Global climate change is a mosaic of regional changes to a large extent determined by region-specific feedbacks between climate and ecosystems. At present the ocean is forming a major sink in the global carbon cycle. Organic matter (OM) storage in sediments displays large regional variations and varied over time during the Quaternary. Upwelling regions are sites of high primary productivity and major depocenters of organic carbon (OC), the least understood of which is the Indian Ocean upwelling off Indonesia. In order to reconstruct the burial and composition of OM during the Late Quaternary, we analyzed five sediment cores from the Indian Ocean continental margin off the Indonesian islands Sumatra to Flores spanning the last 20,000 years (20 kyr). Sediments were analyzed for bulk composition, stable carbon and nitrogen isotopes of OM, amino acids and hexosamines and terrestrial plant wax n-alkanes and their stable carbon isotope composition. Sedimentation rates hardly varied over time in the western part of the transect. They were slightly lower in the East during the Last Glacial Maximum (LGM) and deglaciation, but increased strongly during the Holocene. The amount and composition of OM was similar along the transect with maximum values during the deglaciation and the late Holocene. High biogenic opal covarying with OM content indicates upwelling-induced primary productivity dominated by diatoms to be a major control of OM burial in sediments in the East during the past 20 kyr. The content of labile OM was low throughout the transect during the LGM and increased during the late Holocene. The increase was stronger and the OM less degraded in the East than in the West indicating that continental margin sediments off Java and Flores were the major depocenter of OC burial along the Indian Ocean margin off SW Indonesia. Temporal variations probably resulted from changes in upwelling intensity and terrestrial inputs driven by variations in monsoon strength.

  2. Remagnetization of Cretaceous forearc strata on Santa Margarita and Magdalena Islands, Baja California Sur: Implications for northward transport along the California margin

    NASA Astrophysics Data System (ADS)

    Hagstrum, Jonathan T.; Sedlock, Richard L.

    1998-12-01

    Paleomagnetic data for two sections of Cretaceous forearc strata with different structural attitudes on Santa Margarita and Magdalena Islands in Baja California Sur, Mexico, indicate that these rocks have been remagnetized, probably during the late Cenozoic. The in situ paleomagnetic directions, however, are similar to data from other Cretaceous rocks on peninsular California with unexpectedly shallow inclinations and easterly declinations. These data have been interpreted as indicating either northward tectonic transport (10°-15° of latitude) and clockwise rotation (>20°) or compaction shallowing of magnetic inclinations in sedimentary rocks combined with southwestward tilting of plutonic rocks. The available paleomagnetic data for Cretaceous forearc strata in southern and Baja California can be divided into three groups: (1) sections with normal-polarity magnetizations that fail fold tests and are remagnetized, (2) sections with normal-polarity magnetizations with no or inconclusive fold tests that may or may not be remagnetized, and (3) sections with both normal-and reversed-polarity intervals where pervasive remagnetization has not occurred. Other rocks of the Mesozoic Great Valley Group, Coast Range ophiolite, and Franciscan Complex in California also have secondary magnetizations with directions similar to younger geomagnetic field directions. Although these widespread remagnetizations could have variable local causes, we propose regional burial and uplift, related to changes in subduction parameters, as a possible explanation. Two episodes of remagnetization are apparent: one in the Late Cretaceous and a second in the late Cenozoic. On the other hand, the unremagnetized and apparently reliable data from sedimentary and plutonic rocks on the Baja Peninsula consistently indicate northward translation (14° ± 3°) and clockwise rotation (29° ± 8°) with respect to North America since the Late Cretaceous.

  3. The importance of fine-grained channel margin (FGCM) deposits in assessing the multiple residence times of suspended sediment and contaminants in gravel-bed rivers

    NASA Astrophysics Data System (ADS)

    Skalak, K. J.; Pizzuto, J. E.

    2008-12-01

    We have found that fine-grained channel margin (FGCM) deposits conditioned by large woody debris (LWD) are a significant component of sediment budgets in agricultural watersheds. By volume, the deposits store about 28 percent of the annual suspended sediment load. Radiocarbon, Pb-210, and Cs-137 analyses indicate a range of sediment ages (1 year to several decades). Reservoir theory analysis indicates an average turnover time of 1.5 years and an annual mass flux equivalent to 5 percent of the annual sediment load. The power function that best fits the transit time distribution suggests that there are multiple transit times and that most sediment in the deposits is reworked on short timescales, but a portion remains in place for several decades or more. The presence of a long tail in the distribution suggests anomalous transport, which indicates a well-developed framework for subsurface contaminant transport, continuous time random walks (CTRW), could be utilized for suspended sediment transport and contaminants associated with suspended sediment. South River has a history of mercury (Hg) contamination from an industrial release that occurred 1930-1950. The distribution of ages and Hg concentrations suggest that approximately 10 percent of the sediment and 75 percent of the Hg in the deposits dates from the release period. If the sediment in FGCM deposits has been transported primarily in suspension then we can reconstruct the loading history of Hg from the plant and predict that centuries will be required to remove this material. Our approach can be generalized to assess storage of sediments and contaminants in other gravel-bed rivers.

  4. Sediment dispersal system in the Taiwan-South China Sea collision zone along a convergent margin in the perspective of source to sink

    NASA Astrophysics Data System (ADS)

    Hsiung, K.; Yu, H.

    2011-12-01

    Through a large-scale examination of the morpho-sedimentary features on seafloor in the Taiwan-Luzon convergent margin, we determined the main sediment dispersal system which stretches from 23°N to 20°N and displays as an aligned linear sediment pathway, consisting of the Penghu Canyon, the deep-sea Penghu Channel and northern Manila Trench. The seafloor of South China Sea (SCS) north of 21°N are underlain by a triangle-shaped collision basin, resulting from oblique collision between the Luzon Arc and Chinese margin, and is mainly occupied by two juxtaposed slopes, the SCS and Kaoping slopes. The Penghu Canyon is located along the tilting basin axis where is the physiographic boundary separating the SCS and Kaoping slopes. Progressive subsidence of the basin floor from this nearby uplifted Taiwan orogen results in the linear basin axis deepening and tilting towards the open SCS, serving as a longitudinal sediment conduit. Two major tributary canyons of the Formosa and Kaoping and small channels and gullies on both slopes join into the axial Penghu Canyon and form a dendritic canyon drainage system in this collision basin. The canyon drainage system is characteristic of lateral sediment supply from flank slopes and axial sediment transport down-canyon following the tilting basin axis. The significance of the collision basin in term of source to sink is that terrestrial and shallow marine sediments derived from nearby Taiwan orogen, Chinese margin and the Taiwan Strait are transported to and accumulated in the collision basin, serving as a temporary sediment sink and the major marine transport route along the basin axis. The multi-sourced sediments in the collision basin are then delivered down-dip via the Penghu Canyon to the deep-sea Penghu Channel and ultimately to the final destination of the Manila Trench, representing a regional longitudinal sediment dispersal route along the convergent margin between Taiwan and Luzon. A comparison with other examples is a

  5. A quantitative assessment of methane cycling in Hikurangi Margin sediments (New Zealand) using geophysical imaging and biogeochemical modeling

    NASA Astrophysics Data System (ADS)

    Luo, Min; Dale, Andrew W.; Haffert, Laura; Haeckel, Matthias; Koch, Stephanie; Crutchley, Gareth; De Stigter, Henko; Chen, Duofu; Greinert, Jens

    2016-12-01

    Takahe seep, located on the Opouawe Bank, Hikurangi Margin, is characterized by a well-defined subsurface seismic chimney structure ˜80,500 m2 in area. Subseafloor geophysical data based on acoustic anomaly layers indicated the presence of gas hydrate and free gas layers within the chimney structure. Reaction-transport modeling was applied to porewater data from 11 gravity cores to constrain methane turnover rates and benthic methane fluxes in the upper 10 m. Model results show that methane dynamics were highly variable due to transport and dissolution of ascending gas. The dissolution of gas (up to 3761 mmol m-2 yr-1) dwarfed the rate of methanogenesis within the simulated sediment column (2.6 mmol m-2 yr-1). Dissolved methane is mainly consumed by anaerobic oxidation of methane (AOM) at the base of the sulfate reduction zone and trapped by methane hydrate formation below it, with maximum rates in the central part of the chimney (946 and 2420 mmol m-2 yr-1, respectively). A seep-wide methane budget was constrained by combining the biogeochemical model results with geophysical data and led to estimates of AOM rates, gas hydrate formation, and benthic dissolved methane fluxes of 3.68 × 104 mol yr-1, 73.85 × 104 mol yr-1, and 1.19 × 104 mol yr-1, respectively. A much larger flux of methane probably escapes in gaseous form through focused bubble vents. The approach of linking geochemical model results with spatial geophysical data put forward here can be applied elsewhere to improve benthic methane turnover rates from limited single spot measurements to larger spatial scales.

  6. Glaciomarine sedimentation and bottom current activity on the north-western and northern continental margins of Svalbard during the late Quaternary

    NASA Astrophysics Data System (ADS)

    Chauhan, Teena; Noormets, Riko; Rasmussen, Tine L.

    2016-04-01

    Palaeo-bottom current strength of the West Spitsbergen Current (WSC) and the influence of the Svalbard-Barents Sea Ice Sheet (SBIS) on the depositional environment along the northern Svalbard margins are poorly known. Two gravity cores from the southern Yermak Plateau and the upper slope north of Nordaustlandet, covering marine isotope stage (MIS) 1 to MIS 5, are investigated. Five lithofacies, based on grain size distribution, silt/clay ratio, content and mean of sortable silt (SS), are distinguished to characterise the contourite-dominated sedimentary environments. In addition, depositional environments are described using total organic carbon (TOC), total sulphur (TS) and calcium carbonate (CaCO3) contents of sediments. Facies A, containing coarse SS, suggests strong bottom current activity and good bottom water ventilation conditions as inferred from low TOC content. This facies was deposited during the glacial periods MIS 4, MIS 2 and during the late Holocene. Facies B is dominated by fine SS indicating weak bottom current and poor ventilation (cf. high TOC content of 1.2-1.6%), and correlates with the MIS 4/3 and MIS 2/1 transition periods. With an equal amount of clay and sand, fine SS and high content of TOC, facies C indicates reduced bottom current strength for intervals with sediment supply from proximal sources such as icebergs, sea ice or meltwater discharge. This facies was deposited during the last glacial maximum. Facies D represents mass-flow deposits on the northern Svalbard margin attributed to the SBIS advance at or near the shelf edge. Facies E sediments indicating moderate bottom current strength were deposited during MIS 5 and MIS 3, and during parts of MIS 2. This first late Quaternary proxy record of the WSC flow and sedimentation history from the northern Svalbard margin suggests that the oceanographic conditions and ice sheet processes have exerted first-order control on sediment properties.

  7. A Sub-Decadal Continental Margin Record of Little Ice Age-to-Modern Climate-Induced Changes in Sediment Delivery and Transport in the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Jaeger, J. M.; Viene, W.; Finney, B.; Stoner, J.; Evans, H.

    2003-12-01

    The Gulf of Alaska (GOA) margin is one of the few locations on Earth where orogenic processes, glacial climate, and continental margin sedimentation can be studied and quantitatively modeled in unison. Climatic changes control glacial dynamics, erosion, and sediment/meltwater fluxes to the ocean, and GOA margin strata appear to preserve a strong record of terrestrial climate (i.e., temperature and precipitation) as well as paleoceanographic signals on seasonal to tectonic time scales. In collaboration with the GOA-NEP GLOBEC program, gravity cores were collected at key sampling sites under the influence of the climatically sensitive Alaska Coastal Current (ACC). Chronologies for the past 400-y were established using Pb-210/Cs-137, coupled with paleo-and-environmental magnetism analyzed from u-channel samples at one-cm intervals. The sedimentary paleomagnetic record is correlated to the Sitka geomagnetic observatory record for the last century and extended using the Jackson et al. 400-yr global field model. Carbon and nitrogen stable isotopes, C/N ratios and opal concentrations were analyzed to determine OM source and paleoproductivity. Proximal to large sediment sources, high (>1 cm/y) sediment accumulation rates vary over decadal times scales and appear to be directly tied to the amount of coastal precipitation and the corresponding strength of the ACC. Distal shelf cores have sedimentation rates that vary over longer time scales and are 2-3 x higher during glacial melting from LIA maxima. High-resolution grain size analyses and core logging of bulk density and environmental magnetic parameters including magnetic susceptibility vary at LIA, pentadecadal, and decadal time scales and are strongly correlated with variability in regional precipitation as seen in the nearby Mt. Logan ice core record. Preliminary results suggest that the amount of freshwater discharge and corresponding strength of the ACC was substantially higher during the LIA.

  8. Sediment accumulation history in the Mozambique passive margin basin and kinematics of the South African Plateau uplift during Meso-Cenozoic time

    NASA Astrophysics Data System (ADS)

    Said, Aymen; Moder, Christoph; Clark, Stuart; Skogseid, Jakob

    2013-04-01

    The kinematic history of the South African (Kalahari) Plateau uplift during Meso-Cenozoic time is not well understood. Quantifying the terrigeneous sediment budget in its surrounding passive margin basins using a source to sink approach helps to figure out the evolution of this continental relief. In this study, we use data from 43 wells drilled in the Mozambique passive margin basin to estimate the volume of sediments preserved for each time interval, and corrected for in situ production and for remaining porosity. Results show two periods of high accumulation rates. The first is recorded during Mid-Late Cretaceous and is well described in similar studies in the Namibia and South Africa margins, which supports a major uplift of the whole Kalahari Plateau in the Mid-Late Cretaceous. The second high accumulation rate is recorded during the Miocene and is consistent with a relief reorganization driven by uplift during that period at least in the Eastern rim of the Kalahari Plateau feeding the Mozambique passive margin basin.

  9. Decadal changes in carbon fluxes at the East Siberian continental margin: interactions of ice cover, ocean productivity, particle sedimentation and benthic life

    NASA Astrophysics Data System (ADS)

    Boetius, A.; Bienhold, C.; Felden, J.; Fernandez Mendez, M.; Gusky, M.; Rossel, P. E.; Vedenin, A.; Wenzhoefer, F.

    2015-12-01

    The observed and predicted Climate-Carbon-Cryosphere interactions in the Arctic Ocean are likely to alter productivity and carbon fluxes of the Siberian continental margin and adjacent basins. Here, we compare field observations and samples obtained in the nineties, and recently in 2012 during the sea ice minimum, to assess decadal changes in the productivity, export and recycling of organic matter at the outer East Siberian margin. In the 90s, the Laptev Sea margin was still largely ice-covered throughout the year, and the samples and measurements obtained represent an ecological baseline against which current and future ecosystem shifts can be assessed. The POLARSTERN expedition IceArc (ARK-XXVII/3) returned in September 2012 to resample the same transects between 60 and 3400 m water depth as well as stations in the adjacent deep basins. Our results suggest that environmental changes in the past two decades, foremost sea ice thinning and retreat, have led to a substantial increase in phytodetritus sedimentation to the seafloor, especially at the lower margin and adjacent basins. This is reflected in increased benthic microbial activities, leading to higher carbon remineralization rates, especially deeper than 3000 m. Besides a relative increase in typical particle degrading bacterial types in surface sediments, bacterial community composition showed little variation between the two years, suggesting that local microbial communities can cope with changing food input. First assessments of faunal abundances suggest an increase in polychaetes,holothurians and bivalves at depth, which fits the prediction of higher productivity and particle deposition rates upon sea ice retreat. The presentation also discusses the controversial issue whether there is evidence for an Arctic-wide increase in carbon flux, or whether we are looking at a spatial shift of the productive marginal ice zone as the main factor to enhance carbon flux to the deep Siberian margin.

  10. Origin and evolution of the interstitial waters of gas hydrate-bearing sediments, eastern margin of Japan Sea

    NASA Astrophysics Data System (ADS)

    Hiruta, A.; Matsumoto, R.; Snyder, G.; Tomaru, H.

    2007-12-01

    Gas plumes were observed on the Umitaka spur [1] and Joetsu knoll off Joetsu, eastern margin of Japan Sea. The plume sites are characterized by small mounds, active gas venting, seafloor gas hydrate and related chemical anomalies. More than 30 piston cores (4~12 m) were recovered. Some cores show characteristic depth profiles as to the concentration of inert chloride (Cl-) in the interstitial water. Cores recovered from plume sites often contain gas hydrate. In these cores, the Cl- concentrations of interstitial waters exhibit spiky anomaly due to gas hydrate dissociation during and after core recovery. Cores without gas hydrate showed linear decreasing (~-12mM/m) or increasing (48.5mM/m) profile of Cl- with depth. These linear profiles likely suggest diffusion between bottom sea water and brine or hyposaline water in deep sediment. Observed Cl- increasing profiles are likely to be explained as to the dissolution of evaporites, ion excursion by gas hydrate formation, whereas decreasing by inflow of fresh ground water and gas hydrate dissociation. The isotopic composition of water is useful proxy for the origin of such anomalous water. Cl- increasing cores exhibit linear decrease both in delta D and delta O-18. Such depth profiles likely correspond to the build up of the residual waters during gas hydrate formation. These cores are recovered only around plume sites and indicating that gas hydrate is currently formed in the sediment around plume sites. Cl- decreasing cores exhibit linear decrease both in delta D and delta O-18. Such depth profiles may have been caused by inflow of land derived ground water into the sediments. The isotopic compositions of the ground waters are estimated from covariation diagram between observed Cl- concentration, delta D and delta O-18. The estimated values (~-15 permil and ~-3 permil VSMOW for delta D and delta O-18) are different from those of ground waters near land (-61.9~-46.0 permil and -10.8~-8.2 permil VSMOW for delta D and

  11. Late Quaternary slip on the Santa Cruz Island fault, California

    USGS Publications Warehouse

    Pinter, N.; Lueddecke, S.B.; Keller, E.A.; Simmons, K.R.

    1998-01-01

    The style, timing, and pattern of slip on the Santa Cruz Island fault were investigated by trenching the fault and by analysis of offset late Quaternary landforms. A trench excavated across the fault at Christi Beach, on the western coast of the island, exposed deformation of latest Pleistocene to Holocene sediments and pre-Quaternary rocks, recording repeated large-magnitude rupture events. The most recent earthquake at this site occurred ca. 5 ka. Coastal terraces preserved on western Santa Cruz Island have been dated using the uranium-series technique and by extrapolation using terrace elevations and the eustatic record. Offset of terraces and other landforms indicates that the Santa Cruz Island fault is predominantly left lateral, having a horizontal slip rate of not more than 1.1 mm/yr and probably about 0.8 mm/yr. The fault also has a smaller reverse component, slipping at a rate of between 0.1 and 0.2 mm/yr. Combined with measurements of slip per event, this information suggests a long-term average recurrence interval of at least 2.7 k.y. and probably 4-5 k.y., and average earthquake magnitudes of Mw 7.2-7.5. Sense of slip, recurrence interval, and earthquake magnitudes calculated here for the Santa Cruz Island fault are very similar to recent results for other faults along the southern margin of the western Transverse Range, including the Malibu Coast fault, the Santa Monica fault, the Hollywood fault, and the Raymond fault, supporting the contention that these faults constitute a continuous and linked fault system, which is characterized by large but relatively infrequent earthquakes.

  12. Structure and provenance of Late Cretaceous-Miocene sediments located near the NE Dinarides margin: Inferences from kinematics of orogenic building and subsequent extensional collapse

    NASA Astrophysics Data System (ADS)

    Stojadinovic, Uros; Matenco, Liviu; Andriessen, Paul; Toljić, Marinko; Rundić, Ljupko; Ducea, Mihai N.

    2017-07-01

    The NE part of the Dinarides Mountain chain, located near their junction with the Carpatho-Balkanides, is an area where sedimentary basins associated with the Neotethys subduction and collision are still exposed. We performed a provenance study, based on detrital fission track thermochronology combined with zircon Usbnd Pb magmatic geochronology, and existing studies of kinematics and exhumation. Our study shows rapid sedimentation in the trench and forearc basin overlying the upper European tectonic plate. A number of latest Cretaceous-Early Paleocene igneous provenance ages show a dominant magmatic source area, derived from a Late Cretaceous subduction-related arc. This arc shed short time lag sediments in the forearc and the trench system, possibly associated with focused exhumation in the Serbo-Macedonian margin. This was followed by burial of the trench sediments and a novel stage of Middle-Late Eocene exhumation driven by continued continental collision that had larger effects than previously thought. The collision was followed by Late Oligocene-Miocene exhumation of the former lower Adriatic plate along extensional detachments that reactivated the inherited collisional contact along the entire Dinarides margin. This event re-distributed sediments at short distances in the neighboring Miocene basins. Our study demonstrates that the Dinarides orogenic system is characterized by short lag times between exhumation and re-deposition, whereas the upper tectonic plate is significantly exhumed only during the final stages of collision. Such an exhumation pattern is not directly obvious from observing the overall geometry of the orogen.

  13. Sediments overlying exhumed continental mantle: a proxy for the morphotectonic evolution of the Ocean Continent Transition in magma-poor rifted margins

    NASA Astrophysics Data System (ADS)

    Karpoff, A. M.; Manatschal, G.; Bernoulli, D.; Lagabrielle, Y.

    2003-04-01

    Observations from ancient and present-day magma-poor rifted margins in the Alps and Iberia provide compelling evidence that within the ocean-continent transition (OCT) crustal and sub-continental mantle rocks were exhumed along downward-concave faults which were active during final rifting and accommodated high amounts of extension. The faults are overlain by stranded allochthons of continental origin, pillow basalts, and pelagic sediments, i.e. radiolarites and/or pelagic limestones, and hemipelagic shales. Associated with the faults are tectono-sedimentary breccias and various types of clastic sediments, ranging from debris flow deposits to laminated sandstone, and quartz-rich silt- and claystones. Mineralogical studies of the shales, red jaspers, and red cherts overlying mantle rocks in the Alps of eastern Switzerland are typically quartz-rich and contain variable amounts of phyllosilicates (chlorite and/or mica), feldspars, ± calcite, oxides, pyrite, and epidote. Their main geochemical characteristic is the high silica and low iron and manganese content, which contrasts with that of "metalliferous" Fe-Mn-Si-rich sediments overlying oceanic basalts. High Fe, Ba, REE, U/Th values measured in black shales overlying mantle rocks in the proximal OCT point to a strong hydrothermal activity associated with mantle exhumation. The clastic sediments in the OCT show a wide range of compositions related to mantle, continental crust, and/or pelagic contributions. In particular, the fact that these sediments contain abundant material derived from continental basement rocks seems at odds with their occurrence on top of tectonized mantle rocks. However, drilling in the Iberia margin, where tectonized mantle rocks are overlain by sedimentary breccias (e.g. ODP Sites 1068, 1070), shed new light on the observations in the Alps. Based on drill-hole and seismic data, the tectono-sedimentary breccias drilled in the OCT off Iberia may be interpreted to result from a conveyor

  14. Organic geochemistry of sediments from the continental margin off southern New England, U.S.A.--Part I. Amino acids, carbohydrates and lignin.

    PubMed

    Steinberg, S M; Venkatesan, M I; Kaplan, I R

    1987-01-01

    Total organic carbon (TOC), lignin, amino acids, sugars and amino sugars were measured in recent sediments for the continental margin off southern New England. The various organic carbon fractions decreased in concentration with increasing distance from shore. The fraction of the TOC that was accounted for by these major components also decreased with increasing distance from shore. The concentration of lignin indicated that only about 3-5% of the organic carbon in the nearshore sediment was of terrestrial origin. The various fractions were highly correlated, which was consistent with a simple linear mixing model of shelf organic matter with material form the slope and rise and indicated a significant transport of sediment from the continental shelf to the continental slope and rise.

  15. Organic geochemistry of sediments from the continental margin off southern New England, U.S.A.--Part I. Amino acids, carbohydrates and lignin

    NASA Technical Reports Server (NTRS)

    Steinberg, S. M.; Venkatesan, M. I.; Kaplan, I. R.

    1987-01-01

    Total organic carbon (TOC), lignin, amino acids, sugars and amino sugars were measured in recent sediments for the continental margin off southern New England. The various organic carbon fractions decreased in concentration with increasing distance from shore. The fraction of the TOC that was accounted for by these major components also decreased with increasing distance from shore. The concentration of lignin indicated that only about 3-5% of the organic carbon in the nearshore sediment was of terrestrial origin. The various fractions were highly correlated, which was consistent with a simple linear mixing model of shelf organic matter with material form the slope and rise and indicated a significant transport of sediment from the continental shelf to the continental slope and rise.

  16. Organic geochemistry of sediments from the continental margin off southern New England, U.S.A.--Part I. Amino acids, carbohydrates and lignin

    NASA Technical Reports Server (NTRS)

    Steinberg, S. M.; Venkatesan, M. I.; Kaplan, I. R.

    1987-01-01

    Total organic carbon (TOC), lignin, amino acids, sugars and amino sugars were measured in recent sediments for the continental margin off southern New England. The various organic carbon fractions decreased in concentration with increasing distance from shore. The fraction of the TOC that was accounted for by these major components also decreased with increasing distance from shore. The concentration of lignin indicated that only about 3-5% of the organic carbon in the nearshore sediment was of terrestrial origin. The various fractions were highly correlated, which was consistent with a simple linear mixing model of shelf organic matter with material form the slope and rise and indicated a significant transport of sediment from the continental shelf to the continental slope and rise.

  17. Quantification of microbial communities in near-surface and deeply buried marine sediments on the Peru continental margin using real-time PCR.

    PubMed

    Schippers, Axel; Neretin, Lev N

    2006-07-01

    Deeply buried marine sediments harbour a large fraction of all prokaryotes on Earth but it is still unknown which phylogenetic and physiological microbial groups dominate the deep biosphere. In this study real-time PCR allowed a comparative quantitative microbial community analysis in near-surface and deeply buried marine sediments from the Peru continental margin. The 16S rRNA gene copy numbers of prokaryotes and Bacteria were almost identical with a maximum of 10(8)-10(10) copies cm(-3) in the near-surface sediments. Archaea exhibited one to three orders of magnitude lower 16S rRNA gene copy numbers. The 18S rRNA gene of Eukarya was always at least three orders of magnitude less abundant than the 16S rRNA gene of prokaryotes. The 16S rRNA gene of the Fe(III)- and Mn(IV)-reducing bacterial family Geobacteraceae and the dissimilatory (bi)sulfite reductase gene (dsrA) of sulfate-reducing prokaryotes were abundant with 10(6)-10(8) copies cm(-3) in near-surface sediments but showed lower numbers and an irregular distribution in the deep sediments. The copy numbers of all genes decreased with sediment depth exponentially. The depth gradients were steeper for the gene copy numbers than for numbers of total prokaryotes (acridine orange direct counts), which reflects the ongoing degradation of the high-molecular-weight DNA with sediment age and depth. The occurrence of eukaryotic DNA also suggests DNA preservation in the deeply buried sediments.

  18. Influence of the Portuguese Bend landslide on the character of the effluent-affected sediment deposit, Palos Verdes margin, southern California

    USGS Publications Warehouse

    Kayen, R.E.; Lee, H.J.; Hein, J.R.

    2002-01-01

    Historic accretion of sediment on the Palos Verdes margin off Los Angeles County, CA, is dominated by two sources, effluent from Whites Point outfall and sediment eroded from the toe of Portuguese Bend landslide. In this paper, we document the recent history of sedimentation from these non-marine sources from 1937 until the late 1990s, and attempt to estimate the amount of material preserved on the shelf. Toward that end, we characterized offshore sediment by physical and geotechnical testing, using non-destructive gamma-ray whole-core logging techniques and conventional geotechnical strength tests, and X-ray diffraction. Results are reported within a geographic information system framework that allows for: (1) the evaluation of the spatial variability of the measured properties, and (2) assessment of the influence of these properties on processes affecting the effluent-affected Sediment layer. In the inner shelf, material eroded by wave action from the toe of the Portuguese Bend landslide since 1956 has contributed 5.7-9.4 million metric tons (Mmt) of sediment, from a total eroded mass of 12.1 Mmt. A lesser fraction (???2.7Mmt) of sediment is incorporated into the mid- and outer-shelf effluent-affected sediment layer. Evidence from X-ray diffractograms clearly indicates that landslide material has mixed with the mid- and outer-shelf effluent. From 1937-1987, it is estimated that 3.8 Mmt of solid anthropogenic effluent was discharged into the water column and onto the Palos Verdes Shelf.

  19. Modeling sulfate reduction in methane hydrate-bearing continental margin sediments: Does a sulfate-methane transition require anaerobic oxidation of methane?

    USGS Publications Warehouse

    Malinverno, A.; Pohlman, J.W.

    2011-01-01

    The sulfate-methane transition (SMT), a biogeochemical zone where sulfate and methane are metabolized, is commonly observed at shallow depths (1-30 mbsf) in methane-bearing marine sediments. Two processes consume sulfate at and above the SMT, anaerobic oxidation of methane (AOM) and organoclastic sulfate reduction (OSR). Differentiating the relative contribution of each process is critical to estimate methane flux into the SMT, which, in turn, is necessary to predict deeper occurrences of gas hydrates in continental margin sediments. To evaluate the relative importance of these two sulfate reduction pathways, we developed a diagenetic model to compute the pore water concentrations of sulfate, methane, and dissolved inorganic carbon (DIC). By separately tracking DIC containing 12C and 13C, the model also computes ??13C-DIC values. The model reproduces common observations from methane-rich sediments: a well-defined SMT with no methane above and no sulfate below and a ??13C-DIC minimum at the SMT. The model also highlights the role of upward diffusing 13C-enriched DIC in contributing to the carbon isotope mass balance of DIC. A combination of OSR and AOM, each consuming similar amounts of sulfate, matches observations from Site U1325 (Integrated Ocean Drilling Program Expedition 311, northern Cascadia margin). Without AOM, methane diffuses above the SMT, which contradicts existing field data. The modeling results are generalized with a dimensional analysis to the range of SMT depths and sedimentation rates typical of continental margins. The modeling shows that AOM must be active to establish an SMT wherein methane is quantitatively consumed and the ??13C-DIC minimum occurs. The presence of an SMT generally requires active AOM. Copyright 2011 by the American Geophysical Union.

  20. The modern reef complex, Jeddah area, Red Sea: a facies model for carbonate sedimentation on embryonic passive margins

    NASA Astrophysics Data System (ADS)

    Montaggioni, L. F.; Behairy, A. K. A.; El-Sayed, M. K.; Yusuf, N.

    1986-12-01

    The modern reef complex north of Jeddah comprises an offshore knoll platform and a fringing reef, subdivised into several depositional zones: tops and upper flanks of offshore reefs; lower flanks of offshore reefs and nearby inter-reef areas; fringing forereef, reef flat and backreef zones, and beach. Sixty-seven sediment samples were collected from the different zones and have been analysed in order to define relationships between the distribution of sedimentary facies and the depositional environments, and to furnish a reliable facies model by using multivariate analysis. Six types and subtypes have been objectively differentiated on the basis of total biogenic component and foraminiferal associations. Grain size data allowed us to discriminate three textural types, whereas five chemotypes have been recognized according to trace element concentration. Regarding the offshore reef platform, poorly sorted, medium sands of molluscan-coralline algal- Amphistegina and Cd types are restricted to the lower flanks of buildups and to the adjacent inter-reef deposits, whereas the tops and upper flanks of theses buildups are characterized by moderately sorted, coarse sands of coralline algal- Tubipora-Amphistegina-encrusting foraminiferal-bryozoan types, with a Mn chemotype. Concerning the fringing reef system, backreef areas exhibit poorly sorted, fine sands of molluscan- Ammonia-Peneroplis and Fe-Cu types. Moderately sorted, coarse sands of coralgal- Calcarina-Spiroloculina and Fe-Zn types are found on the reef flat. The forereef zone is characterized by poorly sorted, fine sand of Triloculina-encrusting foraminiferal-bryozoan and Zn-Mn types. The lateral limits of the various biotypes roughly coincide with the distribution of the relevant living organic communities. Trace elements appear to be either bound to the reef-associated silicate fractions or incorporated into the carbonate skeletons. On the basis of prevailing water conditions, physiography, biological and

  1. Differences in meiofauna communities with sediment depth are greater than habitat effects on the New Zealand continental margin: implications for vulnerability to anthropogenic disturbance.

    PubMed

    Rosli, Norliana; Leduc, Daniel; Rowden, Ashley A; Clark, Malcolm R; Probert, P Keith; Berkenbusch, Katrin; Neira, Carlos

    2016-01-01

    Studies of deep-sea benthic communities have largely focused on particular (macro) habitats in isolation, with few studies considering multiple habitats simultaneously in a comparable manner. Compared to mega-epifauna and macrofauna, much less is known about habitat-related variation in meiofaunal community attributes (abundance, diversity and community structure). Here, we investigated meiofaunal community attributes in slope, canyon, seamount, and seep habitats in two regions on the continental slope of New Zealand (Hikurangi Margin and Bay of Plenty) at four water depths (700, 1,000, 1,200 and 1,500 m). We found that patterns were not the same for each community attribute. Significant differences in abundance were consistent across regions, habitats, water and sediment depths, while diversity and community structure only differed between sediment depths. Abundance was higher in canyon and seep habitats compared with other habitats, while between sediment layer, abundance and diversity were higher at the sediment surface. Our findings suggest that meiofaunal community attributes are affected by environmental factors that operate on micro- (cm) to meso- (0.1-10 km), and regional scales (> 100 km). We also found a weak, but significant, correlation between trawling intensity and surface sediment diversity. Overall, our results indicate that variability in meiofaunal communities was greater at small scale than at habitat or regional scale. These findings provide new insights into the factors controlling meiofauna in these deep-sea habitats and their potential vulnerability to anthropogenic activities.

  2. Distribution of aliphatic hydrocarbons, polycyclic aromatic hydrocarbons and organochlorinated pollutants in deep-sea sediments of the Southern Cretan margin, Eastern Mediterranean Sea: a baseline assessment.

    PubMed

    Mandalakis, Manolis; Polymenakou, Paraskevi N; Tselepides, Anastasios; Lampadariou, Nikolaos

    2014-07-01

    Deep sediments from the southern Cretan margin were analyzed to establish baseline levels for various types of organic pollutants before the anticipated intensification of anthropogenic activities. The total concentration of aliphatic hydrocarbons (ΣAH:326-3758ngg(-1), dry weight) was similar to those reported for deep sediments of the western Mediterranean Sea, while considerably lower levels were measured for polycyclic aromatic hydrocarbons (ΣPAH:9-60ngg(-1)). Source-diagnostic ratios suggested that the aliphatic hydrocarbons in sediments were mainly of terrestrial biogenic origin, while polycyclic aromatic hydrocarbons stemmed from the deposition of long-range transported combustion aerosols. Among the organochlorinated compounds analyzed, β-hexachlorocyclohexane (β-HCH:222-7052pgg(-1)), 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (p,p'-DDT:37-2236pgg(-1)) and polychlorinated biphenyls (ΣPCB:38-1182pgg(-1)) showed the highest abundance in sediments. The presence of HCHs and PCBs was attributed to historical inputs that have undergone extensive weathering, whereas an ongoing fresh input was suggested for p,p'-DDT. Multiple linear regression analysis revealed that the levels of the various pollutants in sediments were controlled by different factors, but with organic carbon content playing a prominent role in most cases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Differences in meiofauna communities with sediment depth are greater than habitat effects on the New Zealand continental margin: implications for vulnerability to anthropogenic disturbance

    PubMed Central

    Leduc, Daniel; Rowden, Ashley A.; Clark, Malcolm R.; Probert, P. Keith; Berkenbusch, Katrin; Neira, Carlos

    2016-01-01

    Studies of deep-sea benthic communities have largely focused on particular (macro) habitats in isolation, with few studies considering multiple habitats simultaneously in a comparable manner. Compared to mega-epifauna and macrofauna, much less is known about habitat-related variation in meiofaunal community attributes (abundance, diversity and community structure). Here, we investigated meiofaunal community attributes in slope, canyon, seamount, and seep habitats in two regions on the continental slope of New Zealand (Hikurangi Margin and Bay of Plenty) at four water depths (700, 1,000, 1,200 and 1,500 m). We found that patterns were not the same for each community attribute. Significant differences in abundance were consistent across regions, habitats, water and sediment depths, while diversity and community structure only differed between sediment depths. Abundance was higher in canyon and seep habitats compared with other habitats, while between sediment layer, abundance and diversity were higher at the sediment surface. Our findings suggest that meiofaunal community attributes are affected by environmental factors that operate on micro- (cm) to meso- (0.1–10 km), and regional scales (> 100 km). We also found a weak, but significant, correlation between trawling intensity and surface sediment diversity. Overall, our results indicate that variability in meiofaunal communities was greater at small scale than at habitat or regional scale. These findings provide new insights into the factors controlling meiofauna in these deep-sea habitats and their potential vulnerability to anthropogenic activities. PMID:27441114

  4. Sediment movement and dispersal patterns on the Grand Banks continental shelf and slope were tied to the dynamics of the Laurentide ice-sheet margin

    NASA Astrophysics Data System (ADS)

    Rashid, H.; MacKillop, K.; Piper, D.; Vermooten, M.; Higgins, J.; Marche, B.; Langer, K.; Brockway, B.; Spicer, H. E.; Webb, M. D.; Fournier, E.

    2015-12-01

    The expansion and contraction of the late Pleistocene Laurentide ice-sheet (LIS) was the crucial determining factor for the geomorphic features and shelf and slope sediment mobility on the eastern Canadian continental margin, with abundant mass-transport deposits (MTDs) seaward of ice margins on the upper slope. Here, we report for the first time sediment failure and mass-transport deposits from the central Grand Banks slope in the Salar and Carson petroleum basins. High-resolution seismic profiles and multibeam bathymetry show numerous sediment failure scarps in 500-1600 m water depth. There is no evidence for an ice margin on the upper slope younger than MIS 6. Centimeter-scale X-ray fluorescence analysis (XRF), grain size, and oxygen isotope data from piston cores constrain sediment processes over the past 46 ka. Geotechnical measurements including Atterberg limit tests, vane shear measurements and triaxial and multi-stage isotropic consolidation tests allowed us to assess the instability on the continental margin. Cores with continuous undisturbed stratigraphy in contourite silty muds show normal downcore increase in bulk density and undrained peak shear strength. Heinrich (H) layers are identifiable by a marked increase in the bulk density, high Ca (ppm), increase in iceberg-rafted debris and lighter δ18O in the polar planktonic foram Neogloboquadrina pachyderma (sinistral): with a few C-14 dates they provide a robust chronology. There is no evidence for significant supply of sediment from the Grand Banks at the last-glacial maximum. Mass-transport deposits (MTD) are marked by variability in the bulk density, undrained shear strength and little variation in bulk density or Ca (ppm) values. The MTD are older than 46 ka on the central Grand Banks slope, whereas younger MTDs are present in southern Flemish Pass. Factor of safety calculations suggest the slope is statically stable up to gradients of 10°, but more intervals of silty mud may fail during earthquake

  5. Tracing the subducted oceanic crust beneath the central California continental margin: Results from ocean bottom seismometers deployed during the 1986 Pacific Gas and Electric EDGE experiment

    SciTech Connect

    Trehu, A. )

    1991-04-10

    Large aperture seismic data were collected on several ocean bottom seismometers (OBS) deployed along a deep crustal seismic profile that was shot across the central California continental margin. The line of shots extends from the oceanic crust seaward of the Santa Lucia Escarpment to the California coast near Morro Bay and crosses the Santa Lucia Basin, Santa Lucia Bank, Santa Maria Basin, and Hosgri fault zone. The OBS data permits one to trace the subducted oceanic crust from seaward of the Santa Lucia Escarpment to beneath the central part of the Santa Maria Basin. Just seaward of the Santa Lucia Escarpment, the oceanic crust is subhorizontal and covered by a thin layer of low-velocity sediment. The velocity (4.5 km/s) and gradient (1.20-1.25 km/s/km) of the upper oceanic crust in this region are well determined and agree with earlier determinations of the crustal structure of the eastern Pacific. Beneath the Santa Lucia Escarpment and Santa Lucia Basin, the oceanic crust dips approximately 16{degrees} to the east. It is overlain by material with a velocity that increases from 4.8 to 6.4 km/s at a depth of 1.7-5.5 km below the seafloor beneath the Santa Lucia Basin. A low-velocity zone may be sandwiched between the subducted crust and this shallow high-velocity material, which the authors interpret to represent obducted oceanic crustal material. Beneath the eastern edge of Santa Lucia Basin, the dip of the subducted oceanic crust decreases to less that 2{degrees}. The configuration of the subducted crust in this region is consistent with imbrication of the subducted crust. Beneath the central Santa Maria Basin, the top of the subducted oceanic crust is at a depth of about 14-16 km and the Moho is at 19-21 km.

  6. Conditions and mechanism for the formation of iron-rich Montmorillonite in deep sea sediments (Costa Rica margin): Coupling high resolution mineralogical characterization and geochemical modeling

    NASA Astrophysics Data System (ADS)

    Charpentier, D.; Buatier, M. D.; Jacquot, E.; Gaudin, A.; Wheat, C. G.

    2011-03-01

    Iron-rich smectite is commonly described in the diagenetic fraction of deep-sea sediment, as millimeter to centimeter aggregates dispersed in the sediment, or as a coating on sedimentary particles or nodules. This study examines several factors to elucidate formation mechanisms of a particular iron-rich smectite and its potential transformation to glauconite. The study combines a detailed mineralogical investigation on natural samples and a chemical modeling approach to assess mineralogical reactions and pathways. Transmission electron microscopy (TEM) observations and analytical electron microscopy (TEM-AEM) analyses were conducted on microtomed samples of millimeter- to centimeter-long green grains. These grains are widespread in pelagic calcareous sediment from the Costa Rica margin. They are composed of pyrites that are partially dissolved and are surrounded by amorphous or very poorly crystallized iron-rich particles. Iron-rich montmorillonite grows from an amorphous precursor and its formation requires the input of Si, O, Mg, K, Na and Ca; our results suggest that these inputs are supported by the dissolution of sedimentary phases such as volcanic glasses, siliceous fossils and silicates. Thermodynamic modeling of fluid-sediment interactions was conducted with the geochemical computer code PhreeqC, using mineralogical and pore fluid compositions from sediment samples and calculated estimates for thermodynamic constants of smectites that are not maintained by the computer code. Simulations confirm the possibility that the green grains are the product of pyrite alteration by seawater under oxidizing conditions. The extent of smectite production is controlled by the kinetics of pyrite dissolution and fluid migration. The absence of aluminum in the Costa Rica margin system explains the formation of an iron-rich montmorillonite instead of glauconite, whereas the presence of calcite that buffers the system explains the formation of an iron-rich montmorillonite

  7. High-Resolution Seismic Velocity Analysis of Multicomponent OBS Data in Gas Hydrate Saturated Sediments of Vestnesa Ridge, Western Svalbard Margin

    NASA Astrophysics Data System (ADS)

    Singhroha, S.; Chand, S.; Bunz, S.

    2016-12-01

    A bottom-simulating reflection (BSR) occurs within sediments on the western Svalbard continental margin and the Vestnesa Ridge, a large sediment drift that extends in west, northwest direction from the margin towards the mid-ocean ridge. The BSR indicates the transition from gas hydrates bearing sediments to those containing gas at the base of the gas-hydrate stability zone. The BSR is most pronounced at the crest of the ridge where topographically controlled fluid migration leads to the accumulation of free gas beneath the BSR. Here we focus on the crest area of the eastern segment of the Vestnesa Ridge that is characterized by an active seepage of gas from pockmarks at the seafloor. Multi-component ocean-bottom seismic (OBS) data has been acquired at 9 different locations. We have estimated P-wave and S-wave velocities in gas hydrate saturated sediments through travel-time inversion of OBS data. Application of 1-D Full Waveform Inversion (FWI) at selected OBS stations using velocity models obtained from travel-time inversion as starting models improved the resolution of velocity models. We observe high P-wave velocity (Vp≈1.74-1.85 Km/s) in gas hydrate stability zone above the BSR and low P-wave velocity (Vp≈1.35-1.5 Km/s) in free gas zone below. Combined study of vertical and shear wave components help in improving our understanding about the distribution of gas hydrates within the marine sediments. We find the presence of strong shear wave reflectivity in the gas hydrate stability zone above the BSR at three different OBS locations indicating the presence of cemented gas hydrate layers intercalated with non-cemented gas hydrate layers.

  8. Carbon cycling on the continental margin evidence from sediment 14-C and nutrient elements. Progress report, October 1992--October 1993

    SciTech Connect

    Not Available

    1993-12-01

    This progress report discusses field equipment acquisition, fabrication, sample collection and sample analysis of sea bottom sediments. Investigators also discussed the Neuse River Estuary Experiment.

  9. Factors governing abundance of hydrolyzable amino acids in the sediments from the N.W. European Continental Margin (47 50°N)

    NASA Astrophysics Data System (ADS)

    Boski, T.; Pessoa, J.; Pedro, P.; Thorez, J.; Dias, J. M. A.; Hall, I. R.

    1998-12-01

    Fifty-six samples representing 6 sediment cores taken along the N.W. European Continental Margin from the shelf, slope and abyssal plain of the Goban Spur and Meriadzek Terrace were quantitatively analysed for total hydrolyzable amino acids (THAA) and clay minerals. In descending order, the five most abundant amino acids making up more than 70% of the total were: aspartic acid, glycine, serine, alanine and glutamic acid. Clay mineral proportions were typical for the N.E. Atlantic, in order of descending abundance: illite, kaolinite, chlorite, smectite and mixed layers. The Meriadzek Terrace area is characterised by fine grain suspension sedimentation with a low pelagic carbonate input and the lowest content of THAA. In contrast, the Goban Spur transect is characterised by much higher carbonate inputs and more vigorous hydrodynamics as judged from granulometry and the high abundance of minerals of shelf and continental origin and a generally higher THAA content. The pelagic portion of THAA deposited at the sea floor is more readily mineralised during early diagenesis than the more `refractory', clay mineral-associated continental portion. Along this margin the average mineralization of THAA down to 25 cm in the sediment is about 54%. There is a significant affinity between chlorites and amino acids which we suggest may involve the formation of ionic bonds between the octahedral layers of the clay and the amino acids.

  10. Evolution of post-rift sediment transport on a young rifted margin : Insights from the eastern part of the Gulf of Aden

    NASA Astrophysics Data System (ADS)

    Baurion, C.; Gorini, C.; Leroy, S.; Lucazeau, F.; Migeon, S.

    2012-04-01

    The formation of gravity-driven sedimentary systems on continental rifted margins results from the interaction between climate, ocean currents and tectonic activity. During the early stages of margin evolution, the tectonic processes are probably as important as climate for the sedimentary architecture. Therefore, the young margins (ca. 35 Ma) of the Gulf of Aden provide the opportunity to evaluate the respective roles of monsoon and tectonic uplift in the formation and evolution through the post-rift period of gravity-driven deposits (Mass Transport Complexes (MTCs) and deep-sea systems) on the continental slopes and in the oceanic basin respectively. Here we present a combined geomorphologic and stratigraphic study of the northern margin (Oman and Yemen) and the southern margin (Socotra island), in which we classified and interpreted the gravity-driven processes, their formation and their evolution during the post-rift period. The interpretation of seismic lines reveals the presence of bottom currents since the drift phase, suggesting that the Gulf of Aden was connected to the world oceans at that time. An abrupt depositional change affected the eastern basin of the Gulf of Aden around 10 Ma or thereafter (Chron 5), characterised by the first occurrence of deep sea fans and an increase in the number of MTCs. The first occurrence of MTCs may be explained by the combined 2nd-3rd order fall of the relative sea-level (Serravalian/Tortonian transition). This variation of relative sea level combined with a climatic switch (Asian monsoon onset around 15 Ma and its intensification around 7-8 Ma) control the sediment flux. The youngest unit of the post-rift supersequence is characterised by a second important MTC occurrence that is restricted to the eastern part of the deep basin. This is caused by a late uplift of the northern and southern margins witnessed onshore by the presence of young stepped marine terraces.

  11. An Assessment of Global Organic Carbon Flux Along Continental Margins

    NASA Technical Reports Server (NTRS)

    Thunell, Robert

    2004-01-01

    This project was designed to use real-time and historical SeaWiFS and AVHRR data, and real-time MODIS data in order to estimate the global vertical carbon flux along continental margins. This required construction of an empirical model relating surface ocean color and physical variables like temperature and wind to vertical settling flux at sites co-located with sediment trap observations (Santa Barbara Basin, Cariaco Basin, Gulf of California, Hawaii, and Bermuda, etc), and application of the model to imagery in order to obtain spatially-weighted estimates.

  12. Geomorphology, acoustic backscatter, and processes in Santa Monica Bay from multibeam mapping.

    PubMed

    Gardner, James V; Dartnell, Peter; Mayer, Larry A; Hughes Clarke, John E

    2003-01-01

    Santa Monica Bay was mapped in 1996 using a high-resolution multibeam system, providing the first substantial update of the submarine geomorphology since the initial compilation by Shepard and Emery [(1941) Geol. Soc. Amer. Spec. Paper 31]. The multibeam mapping generated not only high-resolution bathymetry, but also coregistered, calibrated acoustic backscatter at 95 kHz. The geomorphology has been subdivided into six provinces; shelf, marginal plateau, submarine canyon, basin slope, apron, and basin. The dimensions, gradients, and backscatter characteristics of each province is described and related to a combination of tectonics, climate, sea level, and sediment supply. Fluctuations of eustatic sea level have had a profound effect on the area; by periodically eroding the surface of Santa Monica plateau, extending the mouth of the Los Angeles River to various locations along the shelf break, and by connecting submarine canyons to rivers. A wetter glacial climate undoubtedly generated more sediment to the rivers that then transported the increased sediment load to the low-stand coastline and canyon heads. The trends of Santa Monica Canyon and several bathymetric highs suggest a complex tectonic stress field that has controlled the various segments. There is no geomorphic evidence to suggest Redondo Canyon is fault controlled. The San Pedro fault can be extended more than 30 km to the northwest by the alignment of a series of bathymetric highs and abrupt changes in direction of channel thalwegs.

  13. Suspended sediment and phosphorus in proglacial rivers: bioavailability and potential impacts upon the P status of ice-marginal receiving waters

    NASA Astrophysics Data System (ADS)

    Hodson, Andy; Mumford, Paul; Lister, Debbie

    2004-09-01

    This paper adopts standard tests developed in temperate catchment research to determine the total phosphorus (TP) and the algal available (base-extractable) phosphorus (NaOH-P) content of a wide range of glaciofluvial sediments from the Northern Hemisphere. We find that the TP content of these sediments is broadly similar to the P content of major rock types in Earth's crust (230-670 μgP/g) and so the TP yields of glacier basins may be high owing to the efficacy of suspended sediment evacuation by glacial meltwaters. We show that this is best achieved where subglacial drainage systems are present. The NaOH-P pool of the sediments is found to be low (1-23 μgP/g) relative to the TP pool and also to the NaOH-P pool of suspended sediments in temperate, non-glacierized catchments. This most probably reflects the restricted duration of intimate contact between dilute meltwaters and glacial suspended sediments during the ablation season. Thus, despite the high surface-area:volume ratio of glacial suspended sediments, the potential for P adsorption to mineral surfaces following release by dissolution is also low. Further, sorption experiments and sequential extraction tests conducted using glacial suspended sediments from two Svalbard catchments indicate that the generation of reactive secondary minerals (e.g. Fe- and other hydroxides) with a strong capacity to scavenge P from solution (and thereby promote the continued dissolution of P) may also be limited by the short residence times. Most P is therefore associated with poorly weathered, calcite/apatite-rich mineral phases. However, we use examples from the Svalbard glacier basins (Austre Brøggerbreen and Midre Lovénbreen) to show that the high sediment yields of glaciers may result in appreciable NaOH-P loading of ice-marginal receiving waters. Again, the importance of subglacial drainage is highlighted, as it produces a major, episodic release of NaOH-P at Midre Lovénbreen that results in a yield (8.2 kg Na

  14. Sediment transport processes at the head of Halibut Canyon, Eastern Canada margin: An interplay between internal tides and dense shelf water cascading.

    NASA Astrophysics Data System (ADS)

    Puig, Pere; Greenan, Blair J. W.; Li, Michael Z.; Prescott, Robert H.; Piper, David J. W.

    2013-04-01

    To investigate the processes by which sediment is transported through a submarine canyon incised in a glaciated margin, the bottom boundary layer quadrapod RALPH was deployed at 276-m depth in the West Halibut Canyon (off Newfoundland) during winter 2008-2009. Two main sediment transport processes were identified throughout the deployment. Firstly, periodic increases of near-bottom suspended-sediment concentrations (SSC) were recorded associated with the up-canyon propagation of the semidiurnal internal tidal bore along the canyon axis, carrying fine sediment particles resuspended from deeper canyon regions. The recorded SSC peaks, lasting less than one hour, were observed sporadically and were linked to bottom intensified up-canyon flows concomitant with sharp drops in temperature. Secondly, sediment transport was also observed during events of intensified down-canyon current velocities that occurred during periods of sustained heat loss from surface waters, but were not associated with large storms. High-resolution velocity profiles throughout the water column during these events revealed that the highest current speeds (~1 m s-1) were centered several meters above the sea floor and corresponded to the region of maximum velocities of a gravity flow. Such flows had associated low SSC and cold water temperatures and have been interpreted as dense shelf water cascading events channelized along the canyon axis. Sediment transport during these events was largely restricted to bedload and saltation, producing winnowing of sands and fine sediments around larger gravel particles. Analysis of historical hydrographic data suggests that the origin of such gravity flows is not related to the formation of coastal dense waters advected towards the canyon head. Rather, the dense shelf waters appear to be generated around the outer shelf, where convection during winter is able to reach the sea floor and generate a pool of near-bottom dense water that cascades into the canyon

  15. Estimates of Biogenic Methane Production Rates in Deep Marine Sediments at Hydrate Ridge, Cascadia Margin ▿ †

    PubMed Central

    Colwell, F. S.; Boyd, S.; Delwiche, M. E.; Reed, D. W.; Phelps, T. J.; Newby, D. T.

    2008-01-01

    Methane hydrate found in marine sediments is thought to contain gigaton quantities of methane and is considered an important potential fuel source and climate-forcing agent. Much of the methane in hydrates is biogenic, so models that predict the presence and distribution of hydrates require accurate rates of in situ methanogenesis. We estimated the in situ methanogenesis rates in Hydrate Ridge (HR) sediments by coupling experimentally derived minimal rates of methanogenesis to methanogen biomass determinations for discrete locations in the sediment column. When starved in a biomass recycle reactor, Methanoculleus submarinus produced ca. 0.017 fmol methane/cell/day. Quantitative PCR (QPCR) directed at the methyl coenzyme M reductase subunit A gene (mcrA) indicated that 75% of the HR sediments analyzed contained <1,000 methanogens/g. The highest numbers of methanogens were found mostly from sediments <10 m below seafloor. By considering methanogenesis rates for starved methanogens (adjusted to account for in situ temperatures) and the numbers of methanogens at selected depths, we derived an upper estimate of <4.25 fmol methane produced/g sediment/day for the samples with fewer methanogens than the QPCR method could detect. The actual rates could vary depending on the real number of methanogens and various seafloor parameters that influence microbial activity. However, our calculated rate is lower than rates previously reported for such sediments and close to the rate derived using geochemical modeling of the sediments. These data will help to improve models that predict microbial gas generation in marine sediments and determine the potential influence of this source of methane on the global carbon cycle. PMID:18344348

  16. Vertical distribution of nitrite reductase genes (nir S) in continental margin sediments of the Gulf of Mexico.

    PubMed

    Tiquia, Sonia M; Masson, Steven A; Devol, Allan

    2006-12-01

    Marine sediments account for up to 66% of the loss of nitrogen load to coastal areas. Sedimentary denitrification is the main sink for fixed nitrogen in the global nitrogen budget, and thus it is important to understand the structure and composition of denitrifying communities. To understand the structure and composition of denitrifying communities, the diversity of nitrite reductase (nirS) genes from sediments along the Gulf of Mexico was examined using a PCR-based cloning approach. Sediments were collected at three different depths (0-0.5, 4-5 and 19-21 cm). Geochemical analysis revealed decreasing nitrate and oxygen concentrations with increasing sediment depth. This trend coincided with the decrease in diversity of denitrifying bacteria. LIBSHUFF analysis indicated that the clone library in the shallowest sediment (depth, 0-0.5 cm) was significantly different from that in the deepest sediment (depth, 19-21 cm), and that the deeper sediments (depths of 4-5 and 19-21 cm) were significantly similar. Community structural shifts were evident between the shallowest (oxic zone) and deepest (anoxic zone) sediments. Community changes within the deepest sediments were more subtle, with the presence of different nirS clone sequences gradually becoming dominant or, alternatively, decreasing with depth. The changes in community structure at this depth are possibly driven by nutrient availability, with lower quality sources of carbon and energy leading to the disappearance of nirS sequences common in the top layer. The majority of recovered nirS sequences were phylogenetically divergent relative to known denitrifying bacteria in the database.

  17. Landscape response to late Pleistocene climate change along the Puna Plateau margin: Sediment flux and cosmogenic landslide signatures modulated by basin geometry

    NASA Astrophysics Data System (ADS)

    Schildgen, T. F.; Robinson, R. A. J.; Savi, S.; Phillips, W. M.; Spencer, J. Q. G.; Bookhagen, B.; Scherler, D.; Tofelde, S.; Alonso, R. N.; Kubik, P.; Binnie, S. A.; Strecker, M. R.

    2015-12-01

    Along the steep flanks of the southern Central Andes (eastern margin of the Puna Plateau), fluvial fill terraces preserve archives of landscape response to climate change over millennial timescales. These archives record information about past erosion and aggradation rates, erosion processes, and even paleoclimate. In the Humahuaca Basin of NW Argentina, our 29 new optically stimulated luminescence ages of late Pleistocene fill terrace sediments demonstrate that past river aggradation occurred over different intervals on the west and east sides of the valley. On the west side, aggradation coincided with periods of increasing intensity of the South American Monsoon System and the South Atlantic Convergence Zone (increasing precipitation), while on the east side, aggradation coincided with periods of decreasing intensities of both systems (decreasing precipitation) or with more variable conditions. Denudation rates and grain-size dependencies from 70 new cosmogenic 10Be analyses reveal that landslides were more important during periods of increasing precipitation compared to today. On the west side of the valley, a sudden pulse of sediment led to aggradation near the intersection with the trunk stream. In contrast, on the east side, the pulse of sediment likely blocked the narrow bedrock gorges that characterize those catchments, leading to temporary sediment storage in upstream perched basins; sediment evacuation into the main valley occurred preferentially during periods of decreasing precipitation and fewer landslides. Different levels of fluvial connectivity to the trunk stream for the western and eastern catchments within the Humahuaca Basin produces heterogeneity in the locus of aggradation and the timing of sediment movement through the system. Hence, for larger basins that integrate sub-basins with differing geometries or degrees of connectivity, sedimentary responses to climate forcing are likely to be attenuated.

  18. Sedimentary processes on the Storfjorden trough-mouth fan during last deglaciation phase: the role of subglacial meltwater plumes on continental margin sedimentation

    NASA Astrophysics Data System (ADS)

    Lucchi, Renata G.; Camerlenghi, Angelo; Colmenero-Hidalgo, Elena; Sierro, Francisco J.; Bárcena, Maria Angeles; Flores, José-Abel; Urgeles, Roger; Macrı, Patrizia; Sagnotti, Leonardo; Caburlotto, Andrea

    2010-05-01

    The continental margin of the Southern Storfjorden trough-mouth fan was investigated within the SVAIS project (BIO Hesperides cruise, August 2007) as a Spanish contribution to IPY Activity N. 367 (Neogene ice streams and sedimentary processes on high- latitude continental margins - NICE STREAMS). The objectives were to investigate the glacially-dominated late-Neogene-Quaternary sedimentary architecture of the NW Barents Sea continental margin and reconstruct its sedimentary system in response to natural climate change. The paleo-ice streams in Storfjorden had a small catchment area draining ice from the southern Spitsbergen and Bear Island. The short distance from the ice source to the calving front produced a short residence time of ice, and therefore a rapid response to climatic changes. Here ground truthing recovered the last few thousands years sedimentary sequence thought to represent last deglaciation phase. Detailed palaeostratigraphic investigations together with paleomagnetic and rock magnetic analyses and AMS dating define the constraints for high-resolution inter-core correlation and dating. Most of the cores contain at the base gravity-mass deposits including debris flows and over-consolidated glacigenic diamicton. Mass deposits are overlain by an oxidized interval originated at the release and sink of fresh, cold and oxygenated melt-waters at the inception of the deglaciation phase. On the upper slope the oxidized interval is overlain by several meters of finely-stratified sediments composed of sandy-silt layers cyclically recurring within finer-grained laminated silty-clay sediments. Textural and compositional analyses suggest preferential deposition by settling from meltwater sediment-laden plumes (plumites) occurred during deglaciation with coarser layers representing episodes of subglacial meltwater discharge (glacial hyperpycnal flows) accompanying the ice streams retreat. The laminated sequence is truncated at uppermost part by a more recent

  19. Isopach map showing Quaternary deposits in the Gulf of Santa Catalina area, California

    USGS Publications Warehouse

    McCrory, Patricia A.

    1993-01-01

    The Gulf of Santa Catalina is part of the California Continental Borderand, an active transform margin characterized by narrow shelves, steep slopes, and deep closed basin separated by shallow banks and islands. The Gulf of Santa Catalina extend from Point Fermin south to San Diego. It is bounded on the west by prominent bedrock ridges, 30 to 45 km offshore, compromising Santa Catalina Island and Thirtymile Bank. The predominant structural grain within the Gulf of Santa Catalina trends northwesterly. Two major fault zones bound a relatively undeformed structural block, the Catalina block (Clarke and others, 1983). The Newport-Inglewood-Rose Canyon Fault Zone forms the northeast boundary of the Catalina block, and the Palos Verdes Hills-Coronafo Bank Fault Zone forms the southwest boundary (Figure 1). Both of these fault zones are characterized by discontinuous, right-stepping en echelon faults and associated folds. Major structural and physiographic features within and bounding the Catalina block are compatible with wrench-style tectonism (Harding, 1973; Wilcox and others, 1973; Nardin and Henyey, 1978). The distribution of seismicity, along with geophysical evidence showing local displacement of sea floor and Holocene deposits, indicate that Newport-Inglewood, Palos Verdes Hills, and subsidiary faults are active (Clarke and others, 1983). The distribution of Quaternary sediments (Pleistocene and Holocene) off the coast of southern California provides insight into recent sedimentation patterns and recency of faulting and tectonic deformation. This report focuses on the distribution of Quaternary sediments, particularly in the shelf and upper slop areas, the sources of detrial sediment, and depositional environments of Holocene as well as relict deposits.

  20. Ramped PyrOx 14C With a Twist: Improving Radiocarbon Chronologies on Highly Detrital Marginal Antarctic Sediments

    NASA Astrophysics Data System (ADS)

    Subt, C.; Yoon, H.; Yoo, K. C.; Lee, J. I.; Domack, E. W.; Rosenheim, B. E.

    2016-02-01

    Highly detrital sediments can be difficult to date when the detritus includes material similar to that from which dates are sought. For radiocarbon dating, samples with a high degree of pre-aged detrital carbon contamination necessitate measurement of a very small portion of the sample to remove that contamination from the targeted component, even when using advanced techniques such as Ramped PyrOx (RP) 14C dating. Here we present three case studies of alternative RP approaches, producing accurate and precise chronologies for highly detrital sediments near the Larsen C ice shelf, near the Drygalski Ice Tongue in Ross Sea, and in Lapeyrère Bay, Anvers Island. For sediments where the proportion of organic carbon that was modern at the time of deposition is too small for a traditional AMS analysis after RP treatment, we have developed an innovative multiple RP analyses approach to minimize the cost in precision from using smaller temperature intervals, while maximizing the benefit in accuracy. Resulting sub ice-shelf chronologies show vastly improved dates down-core, significantly younger than the equivalent 14C chronology from the bulk acid insoluble organic (AIO) carbon with increasing ages down-core. By comparison, bulk AIO 14C dates in the study areas are not only older, but are subject to age reversals and nearly constant ages that make sedimentation rates impossible to resolve. Using our new approaches, we can reduce pre-aged carbon contamination in Lapeyrère Bay, and date sediments within layers of siliceous mud and ooze in the Ross Sea, and near the Larsen C ice shelf. Improved accuracy for 14C dates of highly detrital sediments can sometimes require the incorporation of a larger blank correction to account for multiple analyses, decreasing the precision. Application of this method refines ages of hard-to-date sediments, removing limits on what to include in a regional approach to chronicle ice shelf collapse.

  1. Impact of open-ocean convection on particle fluxes and sediment dynamics in the deep margin of the Gulf of Lions

    NASA Astrophysics Data System (ADS)

    Stabholz, M.; Durrieu de Madron, X.; Canals, M.; Khripounoff, A.; Taupier-Letage, I.; Testor, P.; Heussner, S.; Kerhervé, P.; Delsaut, N.; Houpert, L.; Lastras, G.; Denneliou, B.

    2012-09-01

    The deep outer margin of the Gulf of Lions and the adjacent basin, in the Western Mediterranean Sea, are regularly impacted by open-ocean convection, a major hydrodynamic event responsible for the ventilation of the deep water in the Western Mediterranean Basin. However, the impact of open-ocean convection on the flux and transport of particulate matter remains poorly understood. The variability of water mass properties (i.e. temperature and salinity), currents, and particle fluxes was monitored between September 2007 and April 2009 at five instrumented mooring lines deployed between 2050 and 2350 m-depth in the deepest continental margin and adjacent basin. Four of the lines followed a NW-SE transect, while the fifth one was located on a sediment wave field to the west. The results of the main, central line SC2350 ("LION"), located at 42° 02.5' N and 4° 41' E, at 2350 m-depth, show that open-ocean convection reached mid-water depth (≈ 1000 m-depth) during winter 2007-2008, and reached the seabed (≈ 2350 m-depth) during winter 2008-2009. Horizontal currents were unusually strong with speeds up to 39 cm s-1 during winter 2008-2009. The measurements at all 5 different locations indicate that mid-depth and near-bottom currents and particle fluxes gave relatively consistent values of similar magnitude across the study area except during winter 2008-2009, when near-bottom fluxes abruptly increased by one to two orders of magnitude. Particulate organic carbon contents, which generally vary between 3 and 5%, were abnormally low (≤ 1%) during winter 2008-2009 and approached those observed in surface sediments (≈ 0.6%). Turbidity profiles made in the region demonstrated the existence of a bottom nepheloid layer, several hundred meters thick, and related to the resuspension of bottom sediments. These observations support the view that open-ocean deep convection events in the Gulf of Lions can cause significant remobilization of sediments in the deep outer margin

  2. Impact of open-ocean convection on particle fluxes and sediment dynamics in the deep margin of the Gulf of Lions

    NASA Astrophysics Data System (ADS)

    Stabholz, M.; Durrieu de Madron, X.; Canals, M.; Khripounoff, A.; Taupier-Letage, I.; Testor, P.; Heussner, S.; Kerhervé, P.; Delsaut, N.; Houpert, L.; Lastras, G.; Dennielou, B.

    2013-02-01

    The deep outer margin of the Gulf of Lions and the adjacent basin, in the western Mediterranean Sea, are regularly impacted by open-ocean convection, a major hydrodynamic event responsible for the ventilation of the deep water in the western Mediterranean Basin. However, the impact of open-ocean convection on the flux and transport of particulate matter remains poorly understood. The variability of water mass properties (i.e., temperature and salinity), currents, and particle fluxes were monitored between September 2007 and April 2009 at five instrumented mooring lines deployed between 2050 and 2350-m depth in the deepest continental margin and adjacent basin. Four of the lines followed a NW-SE transect, while the fifth one was located on a sediment wave field to the west. The results of the main, central line SC2350 ("LION") located at 42°02.5' N, 4°41' E, at 2350-m depth, show that open-ocean convection reached mid-water depth (≍ 1000-m depth) during winter 2007-2008, and reached the seabed (≍ 2350-m depth) during winter 2008-2009. Horizontal currents were unusually strong with speeds up to 39 cm s-1 during winter 2008-2009. The measurements at all 5 different locations indicate that mid-depth and near-bottom currents and particle fluxes gave relatively consistent values of similar magnitude across the study area except during winter 2008-2009, when near-bottom fluxes abruptly increased by one to two orders of magnitude. Particulate organic carbon contents, which generally vary between 3 and 5%, were abnormally low (≤ 1%) during winter 2008-2009 and approached those observed in surface sediments (≍ 0.6%). Turbidity profiles made in the region demonstrated the existence of a bottom nepheloid layer, several hundred meters thick, and related to the resuspension of bottom sediments. These observations support the view that open-ocean deep convection events in the Gulf of Lions can cause significant remobilization of sediments in the deep outer margin and

  3. Chemistry and mineralogy of pyrite-enriched sediments at a passive margin sulfide brine seep: abyssal Gulf of Mexico

    USGS Publications Warehouse

    Commeau, R.F.; Paull, C.K.; Commeau, J.A.; Poppe, L.J.

    1987-01-01

    Pyrite is rapidly accumulating at the contact between the Cretaceous limestones of the Florida Platform and the hemipelagic sediments of the abyssal Gulf of Mexico. Sediments sampled with the submersible "Alvin" in 3266 m of water are associated with a dense community of organisms that depend on chemosynthetic primary production as a food source. Analysis of the chemistry, mineralogy, and textural composition of these sediments indicate that iron sulfide mineralization is occurring at the seafloor within an anoxic micro-habitat sustained by the advection of hydrogen sulfide-charged saline brines from the adjacent platform. The chemosynthetic bacteria that directly overlie the sediments oxidize hydrogen sulfide for energy and provide elemental sulfur that reacts with iron monosulfide to form some of the pyrite. The sediments are mixtures of pyrite (??? 30 wt.%), BaSr sulfates (??? 4 wt.%), clays, and locally derived biogenic carbonates and are progressively being cemented by iron sulfides. Oxidation of hydrogen sulfide produces locally acidic conditions that corrode the adjacent limestones. Potential sources of S, H2S, Fe, Ba, and Sr are discussed. ?? 1987.

  4. Eocene-Oligocene sedimentation in the external areas of the Moldavide Basin (Marginal Folds Nappe, Eastern Carpathians, Romania): sedimentological, paleontological and petrographic approaches

    NASA Astrophysics Data System (ADS)

    Miclăuş, Crina; Loiacono, Francesco; Puglisi, Diego; Baciu, Dorin Sorin

    2009-10-01

    The Marginal Folds Nappe is one of the most external tectonic units of the Moldavide Nappe System (Eastern Carpathians), formed by Cretaceous to Tertiary flysch and molasse deposits, piled up during the Miocene closure of the East Carpathian Flysch basin, cropping out in several tectonic half-windows, the Bistriţa half-window being one of them. The deposits of this tectonic unit were accumulated in anoxic-oxic-anoxic conditions, in a forebulge depozone (sensu DeCelles & Giles 1996), and consist of a pelitic background sporadically interrupted by coarse-grained events. During the Late Eocene the sedimentation registered a transition from calcareous (Doamna Limestones) to pelitic (Bisericani Beds) grading to Globigerina Marls at the Eocene-Oligocene boundary, and upward during the Oligocene in deposits rich in organic matter (Lower Menilites, Bituminous Marls, Lower and Upper Dysodilic Shales) with coarsegrained interlayers. Seven facies associations were recognized, and interpreted as depositional systems of shallow to deeper water on a ramp-type margin. Two mixed depositional systems of turbidite-like facies association separated by a thick pelitic interval (Bituminous Marls) have been recognized. They were supplied by a "green schists" source area of Central Dobrogea type. The petrography of the sandstone beds shows an excellent compositional uniformity (quartzarenite-like rocks), probably representing a first cycle detritus derived from low rank metamorphic sources, connected with the forebulge relief developed on such a basement. The sedimentation was controlled mainly by different subsidence of blocks created by extensional tectonic affecting the ramp-type margin of the forebulge depozone.

  5. Continental-Margin Processes Recorded in Shelf and Canyon Sediments Documenting Fine-Sediment Import and Export for Two Contrasting Mesotidal Flats

    DTIC Science & Technology

    2008-01-01

    are the foundation for understanding and interpreting sedimentary processes and seabed stratigraphy . To investigate the relationship between... Sedimentological Congress, Fukuoka (2006). T.M. Drexler, C.A. Nittrouer, A.S. Ogston, P. Puig, Sediment record on the Rhone prodelta and processes controlling

  6. Dynamics of Organic Carbon Flux on the Northwest Atlantic Margin: Results from a Three-year Time-Series Sediment Trap Study

    NASA Astrophysics Data System (ADS)

    Hwang, J.; Manganini, S. J.; Montlucon, D. B.; Eglinton, T. I.

    2012-12-01

    Sinking particles have been collected on the Northwest Atlantic margin since summer 2004 to understand the dynamics of particle export and the role of the Deep Western Boundary Current in resuspension of particles from sediment and their horizontal transport. Three traps were deployed at roughly 1000m, 2000m, and 3000m (50 m above the bottom) on a mooring at 3000m isobath. The results from the 2004-2005 deployment have been published previously (Hwang et al., 2009). We report the results from summer 2004 to summer 2007 in this presentation. Lithogenic component accounted for an increasing fraction with increasing depth from 27% at 1000m to 42% at 3000m. Radiocarbon contents as Δ14C values of sinking particulate organic matter were significantly depleted from the value of particulate organic matter in the surface water. The 3-year average value decreased with increasing depth from +13 per mil at 1000m to -20 per mil at 3000m. As previously observed for the first year samples, radiocarbon content showed a strong negative correlation with aluminum concentration. Because there is no considerable riverine input the high concentrations of lithogenic component and depleted Δ14C values imply the influence of laterally transported particles resuspended from sediment. Fluxes of biogenic and lithogenic components and their temporal variation will be discussed in relation with production in the surface water, lateral supply of resuspended sediment, and the variability of the Deep Western Boundary Current. Hwang, J., et al. (2009), Dynamics of particle export on the Northwest Atlantic margin, Deep-Sea Res. I, 56, 1792-1803.

  7. Methanogen and bacterial diversity and distribution in deep gas hydrate sediments from the Cascadia Margin as revealed by 16S rRNA molecular analysis.

    PubMed

    Marchesi; Weightman; Cragg; Parkes; Fry

    2001-01-01

    The microbial community of a deep (to 234 m below the sea floor) sediment gas hydrate deposit (Cascadia Margin Ocean Drilling Program Site 889/890, Leg 146) was analysed for the first time by molecular genetic techniques. Both bacterial and methanogen diversity were determined by phylogenetic analysis of ribosomal DNA sequences. High molecular mass DNA, indicative of active bacteria, was present in all of the samples. Ribosomal RNA genes were amplified from extracted DNA extracted from sediment using bacteria, and methanogen specific PCR primers, the latter designed in this study. Phylogenetic analysis of approximately 400 bacterial clones demonstrated that 96% were members of the Proteobacteria. These clones were affiliated with the alpha, beta and gamma subdivisions, with Caulobacter (Zymomonas group), Ralstonia and Pseudomonas phylotypes predominating. The methanogen clones were of low diversity and clustered in three sub-groups. Two of these sub-groups (contained 96% of the 400 clones) were closely related to Methanosarcina mazeii, while the third sub-group clustered in the Methanobacteriales. This analysis of a deep sediment gas hydrate environment shows a bacteria and methanogen community of limited diversity and confirms that the gas hydrate zone is biogeochemically active. These results are consistent with the presence of bacterial populations capable of methanogenesis throughout the core, and suggest that the methane hydrate at this site is at least partially biogenic in origin.

  8. Fan sedimentation on continental margins: A comparison of Miocene Gulf Coast systems with the Middle Eocene Cozy Dell Formation of southern California

    SciTech Connect

    Riese, W.C.R. ); Clark, M.S. )

    1990-05-01

    Recent seismic and subsurface stratigraphic studies of the Miocene System, offshore Texas resulted in the development of a depositional model that documents and explains the deposition of sand-prone fans on the outer shelf during times when these areas were still covered by several hundred feet of water. This model suggests that sediment transport was by turbid flow and that sedimentation resulted in the development of leveed channel systems. The geometries and scales of these fan systems have been documented by three-dimensional seismic analysis and field-wide well penetrations in the Matagorda 668 field. It further advances the hypothesis that global eustatic levels were generally higher and basin water budgets greater during the Miocene than during later times in at least the Gulf Coast area. Translation of this model to outcrop areas is hampered in the Gulf Coast, and detail verification and refinement of the model has been restricted to subsurface work alone. This has also hampered the authors attempt to carry this model to non-Miocene-age systems. Work on the middle Eocene Cozy Dell Formation exposures in the Topatopa and Santa Ynez Mountains of southern California has revealed that this formation has a depositional history which may not be different than that interpreted for the Gulf Coast Miocene. This formation was deposited by turbidity currents in what has been interpreted to be an upper slope setting. The fans deposited by these currents have well-developed channel-levee complexes and display scales of geometry similar to those seen in the Gulf Coast Miocene. This formation displays seismic-sequence scale stratal geometries that suggest that it was deposited during lowstands of sea level.

  9. Sedimentation

    Treesearch

    Cliff R. Hupp; Michael R. Schening

    2000-01-01

    Sedimentation is arguably the most important water-quality concern in the United States. Sediment trapping is cited frequently as a major function of riverine-forested wetlands, yet little is known about sedimcntation rates at the landscape scale in relation to site parameters, including woody vegetation type, elevation, velocity, and hydraulic connection to the river...

  10. Potential Feedbacks Between Tectonics, Climate, and Sediment Accumulation in a Neogene-Quaternary Intermontane Basin on the Margin of the Puna Plateau, Quebrada de Humahuaca, NW Argentina

    NASA Astrophysics Data System (ADS)

    Streit, R. L.; Burbank, D. W.; Strecker, M. R.; Alonso, R. N.

    2014-12-01

    Feedbacks between tectonics, climate, and sediment storage or removal in intermontane basins have the potential to modulate plateau growth. Previous studies suggest that the lithostatic load of thick sedimentary basin fills promotes the propagation of deformation into the foreland, whereas the removal of large volumes of sediment results in thrusting stepping back into the hinterland. To investigate these feedbacks, we reconstruct the Neogene-Quaternary deformational and sedimentary history of the northern Humahuaca basin, an intermontane basin on margin of the Puna Plateau. The timing of faulting, folding, sediment accumulation, and unconformities is constrained by U-Pb zircon dating of volcanic ashes interbedded with the sedimentary fill. As in the southern Humahuaca basin, the transition from westerly-derived sandstone and conglomeratic foreland basin deposits (Maimará Fm.) to predominately conglomeratic intermontane basin fills with variable provenance occurred at 4.3 Ma and is interpreted to result from uplift of the eastern basin-bounding ranges. In the northern Humahuaca basin, however, this transition is punctuated by two unconformities between 5 - 3.8 Ma. Between 4.3 - 2.5 Ma, the basin fill was dominated by rounded pebble-cobble conglomerates. Around 2.5 Ma, these conglomerates gave way to the fine-grained deposits of the Uquía Fm. and sediment-accumulation rates increased from 200-400 m/Myr to >500 m/Myr. This interval of fine-grained deposition and high sediment-accumulation rates may reflect a period of basin isolation and severed fluvial connectivity with the foreland related to increased aridity as a result of uplift of the eastern ranges. The transition back to conglomerates occurs at 2.2 Ma in the southern part of the northern Humahuaca basin and sometime between 2.1 and 1.3 Ma in the north. An unconformity exists between 2 Ma and 1 Ma strata. Thrust faults on the west side of the basin were active from >4.3 Ma to <3 Ma. Thrusts in the center of

  11. Organic geochemistry of sediments from the continental margin off southern New England, U.S.A.--Part II. Lipids

    NASA Technical Reports Server (NTRS)

    Venkatesan, M. I.; Ruth, E.; Steinberg, S.; Kaplan, I. R.

    1987-01-01

    Organic geochemical measurements of the lipid fraction, comparing saturated and aromatic hydrocarbons, fatty acids, alcohols and sterols, have been carried out on six sediments cores collected from the Atlantic shelf, slope and the rise areas to evaluate the cross-shelf transport of the organic carbon. The concentration of most of the organic compound classes studied is correlated with the total organic carbon, which decreases from the shelf through slope to the rise. Terrigenous carbon is recognizable even in the slope and rise sediments, but terrestrial influx decreases relative to marine generated lipids in the slope and rise organic matter. We estimate that approximately 50% of the shelf organic matter is exported to the slope. Data of sediment trap material collected at 1200 m from 1250 m water depth are discussed and compared with that of surface sediment from 1280 m water depth (slope). Fluxes for specific organic compound classes have been computed. The fluxes are of the same magnitude as for equatorial North Atlantic trap particulates at comparable water depth, studied by other investigations.

  12. Organic geochemistry of sediments from the continental margin off southern New England, U.S.A.--Part II. Lipids

    NASA Technical Reports Server (NTRS)

    Venkatesan, M. I.; Ruth, E.; Steinberg, S.; Kaplan, I. R.

    1987-01-01

    Organic geochemical measurements of the lipid fraction, comparing saturated and aromatic hydrocarbons, fatty acids, alcohols and sterols, have been carried out on six sediments cores collected from the Atlantic shelf, slope and the rise areas to evaluate the cross-shelf transport of the organic carbon. The concentration of most of the organic compound classes studied is correlated with the total organic carbon, which decreases from the shelf through slope to the rise. Terrigenous carbon is recognizable even in the slope and rise sediments, but terrestrial influx decreases relative to marine generated lipids in the slope and rise organic matter. We estimate that approximately 50% of the shelf organic matter is exported to the slope. Data of sediment trap material collected at 1200 m from 1250 m water depth are discussed and compared with that of surface sediment from 1280 m water depth (slope). Fluxes for specific organic compound classes have been computed. The fluxes are of the same magnitude as for equatorial North Atlantic trap particulates at comparable water depth, studied by other investigations.

  13. Quantification of the effects of eustasy, subsidence, and sediment supply on Miocene sequences, mid-Atlantic margin of the United States

    USGS Publications Warehouse

    Browning, J.V.; Miller, K.G.; McLaughlin, P.P.; Kominz, M.A.; Sugarman, P.J.; Monteverde, D.; Feigenson, M.D.; Hernandez, J.C.

    2006-01-01

    We use backstripping to quantify the roles of variations in global sea level (eustasy), subsidence, and sediment supply on the development of the Miocene stratigraphic record of the mid-Atlantic continental margin of the United States (New Jersey, Delaware, and Maryland). Eustasy is a primary influence on sequence patterns, determining the global template of sequences (i.e., times when sequences can be preserved) and explaining similarities in Miocene sequence architecture on margins throughout the world. Sequences can be correlated throughout the mid-Atlantic region with Sr-isotopic chronology (??0.6 m.y. to ??1.2 m.y.). Eight Miocene sequences correlate regionally and can be correlated to global ??18O increases, indicating glacioeustatic control. This margin is dominated by passive subsidence with little evidence for active tectonic overprints, except possibly in Maryland during the early Miocene. However, early Miocene sequences in New Jersey and Delaware display a patchwork distribution that is attributable to minor (tens of meters) intervals of excess subsidence. Backstripping quantifies that excess subsidence began in Delaware at ca. 21 Ma and continued until 12 Ma, with maximum rates from ca. 21-16 Ma. We attribute this enhanced subsidence to local flexural response to the progradation of thick sequences offshore and adjacent to this area. Removing this excess subsidence in Delaware yields a record that is remarkably similar to New Jersey eustatic estimates. We conclude that sea-level rise and fall is a first-order control on accommodation providing similar timing on all margins to the sequence record. Tectonic changes due to movement of the crust can overprint the record, resulting in large gaps in the stratigraphic record. Smaller differences in sequences can be attributed to local flexural loading effects, particularly in regions experiencing large-scale progradation. ?? 2006 Geological Society of America.

  14. Seismic modelling of gas hydrate and free gas in sediments, from ocean-bottom seismometer data along the continental margin of Western Svalbard

    NASA Astrophysics Data System (ADS)

    Chabert, A.; Minshull, T. A.; Westbrook, G. K.; Berndt, C.

    2009-12-01

    Over the next decades, the shallow parts of continental margins in the Arctic are likely to experience warming of bottom-water. It is, therefore, important to evaluate how methane hydrate beneath the seabed in these margins will react to future increases in bottom-water temperature and whether release of methane from hydrate will have an impact on climate. As part of the International Polar Year initiative, a multidisciplinary marine expedition was carried out in August-September 2008 along the continental margin west of Svalbard in the Arctic Ocean. One of its objectives was to determine the extent of the gas hydrate stability zone (GHSZ) along the continental slope and to quantify the amount of methane present as hydrate or gas beneath the seabed, using seismic techniques. Thirteen ocean-bottom seismometers (OBS) were deployed at 5 representative sites along and across the continental margin. High frequency airguns (GI guns) were fired at 5-s intervals and the data were recorded at a high sampling rate (1 kHz) in the OBS. The records show clear P-wave reflections at short offsets, as well as refracted arrivals at larger offsets, from depths up to 2 km below the seabed. The sub-seabed variation of P-wave velocity was modelled for three sites located above and below the upper limit of GHSZ, using ray-traced forward modelling. The velocity model for the deepest site (~1250 m deep) below the upper limit of the GHSZ shows a zone about 120 metres below the seabed with a greater velocity (1.8 km/s) than expected for terrigenous sediment. This high velocity zone lies above a lower velocity zone (1.55 km/s) and the acoustic contrast between the two zones forms a bottom simulator reflector (BSR) at approximately 170 m below the seabed. The BSR marks the boundary between sediments containing gas hydrate above and free gas below. The velocity model from the shallow site (~480 m deep), below the upper limit of the GHSZ, indicates the presence of a low velocity zone (1.60 km

  15. Glacial-interglacial cycles of erosion and sediment transport along the western North American margin constrained by reconciling geologic and climate model data sets

    NASA Astrophysics Data System (ADS)

    Vanlaningham, S.; Pisias, N. G.; Duncan, R. A.; Hostetler, S. W.; Wilson, K. L.

    2009-12-01

    This study aims to determine whether observed shifts in sediment source (indicated by bulk sediment 40Ar-39Ar and Nd isotopic tracers) at a northeast Pacific core site are in response to variations in river basin erosion or transport pathways of terrigenous sediment once it reaches the ocean. We synthesize geologic and climate model data sets to evaluate whether climate model (REGCM2) outputs of precipitation-evaporation (P-E) can be linked to observed changes in erosion and landscape evolution along the western North American margin (core site EW9504-17PC, offshore southern Oregon) over the last glacial-interglacial cycle. This site is ideally located to test this new approach as it captures the combined sediment fluxes from coastal N. California/S. Oregon and the interior Cascade Volcanic Ranges, which have drastically different 40Ar-39Ar bedrock ages (130-147 Ma versus 10-30 Ma, respectively) and different climate responses occurring on glacial-interglacial timescales. We perturb a watershed-scale model of bedrock 40Ar-39Ar ages by the P-E changes to reproduce the total range of variability observed in downcore, bulk sediment 40Ar-39Ar ages and Nd isotopic values at the core site. We find that climate model percent changes in P-E values cannot reproduce the total range of variability seen in the provenance record before 22 ka without invoking drastic reductions in Klamath Mountain and Eel River sediment sources. A relatively unconstrained variable in the source area at this time is the presence of a large pluvial lake, Lake Modoc. It is possible that discharges from it could carry large volumes of young, Cascade Mountain-derived sediments offshore. Alternatively, an offshore switch in ocean current direction or reduction (relative to present-day) could explain the downcore sedimentological changes, as material discharged from the Eel River (the largest sediment source south of the core site) would not be carried north. To reproduce the observed downcore shift in

  16. Remnants of Miocene fluvial sediments in the Negev Desert, Israel, and the Jordanian Plateau: Evidence for an extensive subsiding basin in the northwestern margins of the Arabian plate

    NASA Astrophysics Data System (ADS)

    Zilberman, Ezra; Calvo, Ran

    2013-06-01

    Relics of a thick, widely spread, fluvial sequence of Early Miocene age are scattered throughout southern Israel, eastern Sinai, the Dead Sea Rift Valley and the western margins of the Jordanian Plateau. These relics are mainly preserved in structural lows, karstic systems, and abandoned stream valleys. The paleogeography of this fluvial system was reconstructed based on the relations between the sequence remnants and the main structural and morphological features of the southeastern Levant region. Three sedimentary associations were identified in the Miocene sequence: a lower part dominated by locally derived clastic sediments; a thicker middle part, composed mostly of far-field allochthonous clastic sediments; and an upper part composed of local as well as allochthonous sediments. The two lower parts are regionally distributed whereas the upper part is syn-tectonic and confined to the Dead Sea basin and the Karkom graben in the central Negev. The composition of the far-field allochthonous sediments points to a provenance of Precambrian crystalline rocks of the Arabo-Nubian massif that were exposed along the uplifted shoulders of the Red Sea Rift as the upper drainage basin of the fluvial system. The diverse mammal remains found in this fluvial sequence suggest a complex of savanna, forests and fluvial habitats similar to those of present East Africa, with monsoon-type rains, which were the dominant water source of the rivers. The thickness of the Miocene sequence in the central Negev is at least 1700 m, similar to that of the subsurface sequence encountered in the Dead Sea basin. This similarity suggests that both were parts of an extensive subsiding sedimentary basin that developed between the Neo-Tethys and the uplifted margins of the Red Sea. The relations between the reconstructed pre-depositional landscape of southern Israel during the Early Miocene and the overlying fluvial sequence indicate that the entire area was buried under several hundred meters of

  17. The relationships between soft-sediment deformation structures and synsedimentary extensional tectonics in Upper Triassic deep-water carbonate succession (Southern Tethyan rifted continental margin - Central Sicily)

    NASA Astrophysics Data System (ADS)

    Basilone, Luca; Sulli, Attilio; Gasparo Morticelli, Maurizio

    2016-10-01

    We describe soft-sediment deformation structures into the Upper Triassic cherty limestone outcropping in the Pizzo Lupo section (Central Sicily, Italy), pertaining to the deep-water palaeodomain of the Southern Tethyan margin. In the study section, mainly consisting of thin-bedded mudstone/marl alternations with bedded chert intercalations, some lithofacies have been separated on the basis of the abundance of the calcium carbonate/clay content and the overall textural features. The deformational structures, displaying different deformational styles as folded and faulted beds, disturbed layers, clastic dikes, and slumps occur mainly in the deformed horizons that involve marl-dominated lithofacies. Small-scale water-escape structures involve beds with nodular fabric. Synsedimentary faults affect the mud-limestone dominated lithofacies, which are characterized by fault-rotating blocks producing lateral thinning. These bodies appear to have moved coherently along an overall planar surface. We relate these soft-sediment deformations to slump sheets, associated with down-slope sliding of sedimentary masses. The deformation mechanism and driving force for these soft-sediment deformations are due essentially to gravitational instability and dewatering. Detailing, rotational (slump) and translational (glide) slides and water-escape are the main processes causing the distinguished deformational styles. The synsedimentary extensional tectonics that affected the Upper Triassic pelagic deposits was the triggering process responsible for the instability of the seafloor inducing loss of coherence of the unconsolidated sediments on the sea bottom, developing a large number of gravity-driven slides. The analysis of both of these SSDSs and their relationships with the structural scenario allow us to hypothesise that they are seismically-induced.

  18. Chronic Polyaromatic Hydrocarbon (PAH) Contamination Is a Marginal Driver for Community Diversity and Prokaryotic Predicted Functioning in Coastal Sediments.

    PubMed

    Jeanbille, Mathilde; Gury, Jérôme; Duran, Robert; Tronczynski, Jacek; Ghiglione, Jean-François; Agogué, Hélène; Saïd, Olfa Ben; Taïb, Najwa; Debroas, Didier; Garnier, Cédric; Auguet, Jean-Christophe

    2016-01-01

    Benthic microorganisms are key players in the recycling of organic matter and recalcitrant compounds such as polyaromatic hydrocarbons (PAHs) in coastal sediments. Despite their ecological importance, the response of microbial communities to chronic PAH pollution, one of the major threats to coastal ecosystems, has received very little attention. In one of the largest surveys performed so far on coastal sediments, the diversity and composition of microbial communities inhabiting both chronically contaminated and non-contaminated coastal sediments were investigated using high-throughput sequencing on the 18S and 16S rRNA genes. Prokaryotic alpha-diversity showed significant association with salinity, temperature, and organic carbon content. The effect of particle size distribution was strong on eukaryotic diversity. Similarly to alpha-diversity, beta-diversity patterns were strongly influenced by the environmental filter, while PAHs had no influence on the prokaryotic community structure and a weak impact on the eukaryotic community structure at the continental scale. However, at the regional scale, PAHs became the main driver shaping the structure of bacterial and eukaryotic communities. These patterns were not found for PICRUSt predicted prokaryotic functions, thus indicating some degree of functional redundancy. Eukaryotes presented a greater potential for their use as PAH contamination biomarkers, owing to their stronger response at both regional and continental scales.

  19. Chronic Polyaromatic Hydrocarbon (PAH) Contamination Is a Marginal Driver for Community Diversity and Prokaryotic Predicted Functioning in Coastal Sediments

    PubMed Central

    Jeanbille, Mathilde; Gury, Jérôme; Duran, Robert; Tronczynski, Jacek; Ghiglione, Jean-François; Agogué, Hélène; Saïd, Olfa Ben; Taïb, Najwa; Debroas, Didier; Garnier, Cédric; Auguet, Jean-Christophe

    2016-01-01

    Benthic microorganisms are key players in the recycling of organic matter and recalcitrant compounds such as polyaromatic hydrocarbons (PAHs) in coastal sediments. Despite their ecological importance, the response of microbial communities to chronic PAH pollution, one of the major threats to coastal ecosystems, has received very little attention. In one of the largest surveys performed so far on coastal sediments, the diversity and composition of microbial communities inhabiting both chronically contaminated and non-contaminated coastal sediments were investigated using high-throughput sequencing on the 18S and 16S rRNA genes. Prokaryotic alpha-diversity showed significant association with salinity, temperature, and organic carbon content. The effect of particle size distribution was strong on eukaryotic diversity. Similarly to alpha-diversity, beta-diversity patterns were strongly influenced by the environmental filter, while PAHs had no influence on the prokaryotic community structure and a weak impact on the eukaryotic community structure at the continental scale. However, at the regional scale, PAHs became the main driver shaping the structure of bacterial and eukaryotic communities. These patterns were not found for PICRUSt predicted prokaryotic functions, thus indicating some degree of functional redundancy. Eukaryotes presented a greater potential for their use as PAH contamination biomarkers, owing to their stronger response at both regional and continental scales. PMID:27594854

  20. The stable carbon isotope biogeochemistry of acetate and other dissolved carbon species in deep subseafloor sediments at the northern Cascadia Margin

    USGS Publications Warehouse

    Heuer, Verena B.; Pohlman, John W.; Torres, Marta E.; Elvert, Marcus; Hinrichs, Kai-Uwe

    2009-01-01

    Ocean drilling has revealed the existence of vast microbial populations in the deep subseafloor, but to date little is known about their metabolic activities. To better understand the biogeochemical processes in the deep biosphere, we investigate the stable carbon isotope chemistry of acetate and other carbon-bearing metabolites in sediment pore-waters. Acetate is a key metabolite in the cycling of carbon in anoxic sediments. Its stable carbon isotopic composition provides information on the metabolic processes dominating acetate turnover in situ. This study reports our findings for a methane-rich site at the northern Cascadia Margin (NE Pacific) where Expedition 311 of the Integrated Ocean Drilling Program (IODP) sampled the upper 190 m of sediment. At Site U1329, δ13C values of acetate span a wide range from −46.0‰ to −11.0‰ vs. VPDB and change systematically with sediment depth. In contrast, δ13C values of both the bulk dissolved organic carbon (DOC) (−21.6 ± 1.3‰ vs. VPDB) and the low-molecular-weight compound lactate (−20.9 ± 1.8‰ vs. VPDB) show little variability. These species are interpreted to represent the carbon isotopic composition of fermentation products. Relative to DOC, acetate is up to 23.1‰ depleted and up to 9.1‰ enriched in 13C. Broadly, 13C-depletions of acetate relative to DOC indicate flux of carbon from acetogenesis into the acetate pool while 13C-enrichments of pore-water acetate relative to DOC suggest consumption of acetate by acetoclastic methanogenesis. Isotopic relationships between acetate and lactate or DOC provide new information on the carbon flow and the presence and activity of specific functional microbial communities in distinct biogeochemical horizons of the sediment. In particular, they suggest that acetogenic CO2-reduction can coexist with methanogenic CO2-reduction, a notion contrary to the hypothesis that hydrogen levels are controlled by the thermodynamically most favorable electron

  1. Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin: numerical modeling and mass balances

    NASA Astrophysics Data System (ADS)

    Luff, Roger; Wallmann, Klaus

    2003-09-01

    A numerical model was applied to investigate and to quantify biogeochemical processes and methane turnover in gas hydrate-bearing surface sediments from a cold vent site situated at Hydrate Ridge, an accretionary structure located in the Cascadia Margin subduction zone. Steady state simulations were carried out to obtain a comprehensive overview on the activity in these sediments which are covered with bacterial mats and are affected by strong fluid flow from below. The model results underline the dominance of advective fluid flow that forces a large inflow of methane from below (869 μmol cm -2 a -1) inducing high oxidation rates in the surface layers. Anaerobic methane oxidation is the major process, proceeding at a depth-integrated rate of 870 μmol cm -2 a -1. A significant fraction (14%) of bicarbonate produced by anaerobic methane oxidation is removed from the fluids by precipitation of authigenic aragonite and calcite. The total rate of carbonate precipitation (120 μmol cm -2 a -1) allows for the build-up of a massive carbonate layer with a thickness of 1 m over a period of 20,000 years. Aragonite is the major carbonate mineral formed by anaerobic methane oxidation if the flow velocity of methane-charge fluids is high enough (≥10 cm a -1) to maintain super-saturation with respect to this highly soluble carbonate phase. It precipitates much faster within the studied surface sediments than previously observed in abiotic laboratory experiments, suggesting microbial catalysis. The investigated station is characterized by high carbon and oxygen turnover rates (≈1000 μmol cm -2 a -1) that are well beyond the rates observed at other continental slope sites not affected by fluid venting. This underlines the strong impact of fluid venting on the benthic system, even though the flow velocity of 10 cm a -1 derived by the model is relative low compared to fluid flow rates found at other cold vent sites. Non-steady state simulations using measured fluid flow

  2. Tracking Monsoon Related Provenance Changes in Continental Margin Sediments of the East China Sea: Preliminary Results from IODP Expedition 346.

    NASA Astrophysics Data System (ADS)

    Anderson, C. H.; Dunlea, A. G.; Murray, R. W.; Kinsley, C. W.; McGee, D.; Giosan, L.; Zheng, H.; Tada, R.; Alvarez Zarikian, C. A.

    2014-12-01

    Sedimentation in the East China Sea (ECS) is driven largely by fluvial and eolian fluxes that are likely influenced by the East Asian Monsoon (EAM). Terrigenous matter from the Yangtze River is transported into the ECS and is also carried by winds of the Westerly Jet. Seasonal and long term shifts in the atmospheric and precipitation regimes over Asia are recorded in the inorganic chemistry of the sediment of the ECS and other Asian coastal seas. For example, changes in intensity and timing of the EAM over short and long term time scales likely impact the relative proportion of fluvial and eolian inputs to the region, and perhaps their individual sources. Bulk sediment was recovered from IODP Sites U1428 and U1429 in the ECS during Expedition 346. T these sites are separated by 7.4 km, located in the northernmost portion of the ECS in the Danjo Basin, and are generally characterized by two sedimentary units. Unit A is largely nannofossil-rich calcareous ooze and calcareous-rich clays, punctuated with smaller tephra layers throughout. Unit B is composed of fine- to medium-grained, rounded sands. Here we present major, trace and rare earth element (REE) data for 54 bulk sediment samples analyzed via ICP-ES and ICP-MS. We trace downhole fluctuations in the geochemical data in order to investigate the provenance of terrigenous material during the Pleistocene. Preliminary major element concentration data indicate the presence of distinct continental sediment and carbonates at both sites. Average downhole major element ratios exhibit limited variation at both sites. For example, Ti/Al (g/g) is tightly constrained with values of 0.05 /- 0.003, Fe/Al 0.5 /- 0.05, and Si/Al 3.3 /- 0.3. In addition to standard geochemical techniques to assess provenance, we are using multivariate statistics (e.g., Q-Mode Factor Analyses, Multiple Linear Regressions) to examine this large dataset. We focus on a smaller suite of elements that are exclusively associated with the terrigenous

  3. Porewater Profiles of Dissolved N2/Ar Gas Ratios in Sediments From the Gulf of Mexico Continental Margin

    NASA Astrophysics Data System (ADS)

    Hartnett, H.; Devol, A.; Brandes, J.; Sobolev, D.; Chang, B.

    2004-12-01

    Dissolved gases in sediment porewaters are useful tracers of the biogeochemical processes that consume organic matter. In autumn of 2003, we collected cores from three stations off the Gulf coast of Texas. The stations ranged from 200 to 1300 meters water depth and represent a range in oxygen exposure time, organic carbon flux to the seafloor, and sediment redox conditions. Porewater profiles of O2, NO3, NH4, and the N2/Ar gas ratio were determined at each station. Porewater dissolved O2 concentrations decreased rapidly at shallow stations and more slowly at deeper stations; penetration depths ranged from ˜5mm at the 200 m station to ˜40 mm at the 1300 m station. Nitrate concentrations showed a similar pattern (although over a longer depth scale) with penetration depths ranging from 1.25 cm at the shallow station to 40 cm at the deepest station. We present high-resolution profiles of the porewater N2/Ar gas ratio measured in the field by membrane-inlet mass spectrometry (MIMS) using a probe-style inlet. Changes in the N2/Ar gas ratio reflect the production of N2 gas due to denitrification in the sediments. At all stations the N2/Ar gas ratios increased significantly with depth in the sediments and were oversaturated relative to the bottom water N2/Ar ratio. The gas ratio profiles increased rapidly with depth as oxygen concentrations went to zero, and maximum values of N2/Ar oversaturation occurred at the depth range where NO3 concentrations decreased rapidly and thus NO3 consumption rates were highest. The maximum in the N2/Ar gas ratio occurred at 25 mm at the 200 m station and at more than 70 mm at the 1300 m station, similar to the patterns in the O2 and NO3 penetration depths. These porewater dissolved gas ratio profiles provide an additional estimate of the total denitrification rate in sediments that can be compared to rates determined from benthic chamber fluxes and NO3 profiles.

  4. High-resolution seismic-reflection interpretations of some sediment deposits, Antarctic continental margin: Focus on the western Ross Sea

    USGS Publications Warehouse

    Karl, Herman A.

    1989-01-01

    High-resolution seismic-reflection data have been used to a varying degree by geoscientists to interpret the history of marine sediment accumulations around Antarctica. Reconnaissance analysis of 1-, 3.5-, and 12-kHz data collected by the U.S. Geological Survey in the western Ross Sea has led to the identification of eight echo-character facies and six microtopographic facies in the sediment deposits that overlie the Ross Sea unconformity. Three depositional facies regions, each characterized by a particular assemblage of echo-character type and microtopographic facies, have been identified on the continental shelf. These suites of acoustic facies are the result of specific depositional processes that control type and accumulation of sediment in a region. Evidence of glacial processes and products is uncommon in regions 1 and 2, but is abundant in region 3. McMurdo Sound, region 1, is characterized by a monospecific set of acoustic facies. This unique assemblage probably represents turbidity current deposition in the western part of the basin. Most of the seafloor in region 2, from about latitude 77??S to 75??S, is deeper than 600 m below sealevel. The microtopographic facies and echo-character facies observed on the lower slopes and basin floor there reflect the thin deposits of pelagic sediments that have accumulated in the low-energy conditions that are typical of deep-water environments. In shallower water near the boundary with region 3, the signature of the acoustic facies is different from that in deeper water and probably indicates higher energy conditions or, perhaps, ice-related processes. Thick deposits of tills emplaced by lodgement during the most recent advance of the West Antarctic Ice Sheet are common from latitude 75??S to the northern boundary of the study area just south of Coulman Island (region 3). The signature of microtopographic facies in this region reflects the relief of the base of the grounded ice sheet prior to decoupling from the

  5. Chemical and isotopic signature of bulk organic matter and hydrocarbon biomarkers within mid-slope accretionary sediments of the northern Cascadia margin gas hydrate system

    USGS Publications Warehouse

    Kaneko, Masanori; Shingai, Hiroshi; Pohlman, John W.; Naraoka, Hiroshi

    2010-01-01

    The chemical and isotopic compositions of sedimentary organic matter (SOM) from two mid-slope sites of the northern Cascadia margin were investigated during Integrated Ocean Drilling Program (IODP) Expedition 311 to elucidate the organic matter origins and identify potential microbial contributions to SOM. Gas hydrate is present at both locations (IODP Sites U1327 and U1328), with distinct patterns of near-seafloor structural accumulations at the cold seep Site U1328 and deeper stratigraphic accumulations at the slope-basin Site U1327. Source characterization and evidence that some components of the organic matter have been diagenetically altered are determined from the concentrations and isotopic compositions of hydrocarbon biomarkers, total organic carbon (TOC), total nitrogen (TN) and total sulfur (TS). The carbon isotopic compositions of TOC (δ13CTOC = −26 to −22‰) and long-chain n-alkanes (C27, C29 and C31, δ13C = −34 to − 29‰) suggest the organic matter at both sites is a mixture of 1) terrestrial plants that employ the C3 photosynthetic pathway and 2) marine algae. In contrast, the δ15NTN values of the bulk sediment (+ 4 to + 8‰) are consistent with a predominantly marine source, but these values most likely have been modified during microbial organic matter degradation. The δ13C values of archaeal biomarker pentamethylicosane (PMI) (− 46.4‰) and bacterial-sourced hopenes, diploptene and hop-21-ene (− 40.9 to − 34.7‰) indicate a partial contribution from methane carbon or a chemoautotrophic pathway. Our multi-isotope and biomarker-based conclusions are consistent with previous studies, based only on the elemental composition of bulk sediments, that suggested a mixed marine-terrestrial organic matter origin for these mid-slope sites of the northern Cascadia margin.

  6. Mineralogical, geochemical and isotopic characterization of authigenic carbonates from the methane-bearing sediments of the Bering Sea continental margin (IODP Expedition 323, Sites U1343-U1345)

    NASA Astrophysics Data System (ADS)

    Pierre, C.; Blanc-Valleron, M.-M.; Caquineau, S.; März, C.; Ravelo, A. C.; Takahashi, K.; Alvarez Zarikian, C.

    2016-03-01

    During Expedition 323 of the Integrated Ocean Drilling Program to the Bering Sea (July 5-September 4, 2009), three sites were drilled along the Bering Sea northeastern continental margin [U1343 down to 745 meters below sea floor (mbsf), U1344 (745 mbsf), U1345 (150 mbsf)]. Diagenetic carbonates are present at all sites within the clayey, diatom-rich oozes of the Bering Sea, where pore waters are also characterized by extremely high methane concentrations. We here present mineralogical, elemental and isotopic data obtained from the authigenic carbonate-rich intercalations within the clay-rich Pleistocene sediments deposited along the Bering Sea continental margin. The mineralogy of the authigenic carbonates is generally represented by composite mixtures of very small crystals of magnesian calcite, dolomite, and iron-rich carbonates, with the latter phases occurring below 260 mbsf at Site U1343, below 200 mbsf at Site U1344, and below 130 mbsf at Site U1345. Element geochemistry shows that Ca, Mg, Fe, Ba, Mn, Sr and U are enriched in the carbonate-rich intercalations relative to the background sediments due to their incorporation into the carbonates and into other authigenic phases (e.g., barite and pyrite). The oxygen and carbon isotopic compositions of the authigenic carbonate minerals show that they were sequentially precipitated from pore waters at different temperatures (i.e., different burial depths) and with different isotopic compositions of dissolved inorganic carbon (DIC). The authigenic Mg-calcite precipitated early during diagenesis and shallow burial from a 13C-depleted DIC pool, whereas dolomite and Fe-rich carbonates formed during later diagenesis and deeper burial from a 13C-enriched DIC pool. These authigenic carbonate occurrences are interpreted as resulting from microbial sulfate reduction combined with anaerobic oxidation of methane, and methanogenesis that was intimately linked to the alteration of silicates, especially iron-rich clay minerals.

  7. Zircon from Mesoproterozoic sediments sheds light on the subduction-collision history at the eastern active continental margin of the Archaean Kalahari-Grunehogna Craton

    NASA Astrophysics Data System (ADS)

    Marschall, H.; Hawkesworth, C. J.; Leat, P. T.; Dhuime, B.; Storey, C.

    2013-12-01

    The Grunehogna Craton (East Antarctica) was a part of the Archean Kalahari Craton of southern Africa prior to Gondwana breakup. Granite from the basement of the craton has been dated by U-Pb zircon dating to 3,067 Ma with inherited grains showing ages of up to 3,433 Ma [1]. At the eastern margin of the craton, the Ahlmannryggen nunataks comprise an ~2000 m thick pile of clastic and volcanic sediments of the Ritscherflya Supergroup. These were sourced from eroding a proximal active continental arc as demonstrated through the age distribution and internal zoning of detrital zircon [2]. Detrital zircon grains from the Ritscherflya Supergroup show an age distribution with a dominant age peak at ~1,130 Ma, i.e., close to the sedimentation age. Older age peaks include those at 1370 Ma, 1725 Ma, 1880 Ma, 2050 Ma, and 2700 Ma. Palaeo- and Mesoarchaean zircon grains (2800-3445 Ma) were also discovered, corresponding to the age of the Kalahari-Grunehogna Craton basement. Most significantly we found a number of inherited Archaean cores in ~1130 Ma zircons. They demonstrate that the volcanic arc was indeed located on Archaean continental crust, rather than in Mesoproterozoic, intra-oceanic island arcs. The age spectrum of the zircons bears strong evidence for (i) derivation of the entire Ritscherflya sediment sequence from an active continental convergent margin; (ii) a cratonic provenance of part of the sediments from population peaks coinciding with major tectono-thermal events in the Kalahari Craton; (iii) at least some of the active volcanism being located on cratonic basement rather than a juvenile island arc. Detrital zircons in the ~1130 Ma age group show several distinct populations in their Hf isotopic compositions. The dominant group shows negative ɛHf values of -11.5 corresponding to a model age (TDM) of ~2700 Ma (average crustal 176Lu/177Hf = 0.015). A smaller group shows ɛHf values of +2 to +6, which may represent mantle-derived subduction-zone volcanism at

  8. Diversity and spatial distribution of amoA-encoding archaea in the deep-sea sediments of the tropical West Pacific Continental Margin.

    PubMed

    Dang, H; Li, J; Zhang, X; Li, T; Tian, F; Jin, W

    2009-05-01

    The ecological characteristics of the deep-sea amoA-encoding archaea (AEA) are largely unsolved. Our aim was to study the diversity, structure and distribution of the AEA community in the sediments of the tropical West Pacific Continental Margin, to develop a general view of the AEA biogeography in the deep-sea extreme environment. Archaeal amoA clone libraries were constructed. Diverse and novel amoA sequences were identified, with the Bohol Sea, Bashi Strait and Sibuyan Sea harbouring the highest and the Bicol Shelf the lowest AEA diversity. Phylogenetic and statistical analyses illustrate a heterogeneous distribution of the AEA community, probably caused by the differential distribution of the terrestrial or estuarine AEA in the various sampling sites. The deep-sea sedimentary environments potentially harbour diverse and novel AEA in the tropical West Pacific Continental Margin. The stations in the Philippine inland seas (including station 3043) may represent AEA assemblages with various terrestrial influences and the stations connected directly to the open Philippine Sea may represent marine environment-dominant AEA assemblages. Our study indicates the potential importance of geological and climatic events in the transport of terrestrial micro-organisms to the deep-sea sedimentary environments, almost totally neglected previously.

  9. Mass-physical properties of surficial sediments on the Rhoˆne continental margin: implications for the nepheloid benthic layer

    NASA Astrophysics Data System (ADS)

    Chassefiere, Bernard

    1990-09-01

    Mass-physical properties of the surficial (upper 5 m) sediments on the Gulf of Lions continental margin were analysed, from more than 100 short (1 m) and longer (5 m) cores obtained during several cruises. Data include water content, unit weight, Atterberg limits (liquid limit, plastic limit, plasticity index), shear strength and compression index, and are used to determine: first, the mass property distribution, according to the main parameters influencing mass-physical properties; the relationships between these properties and the nepheloid layer on the shelf. The shoreline (lagoons) and inner shelf are characterized by low density and shear strength and high water content deposits, due to electrochemical flocculation of the sediment. The outer shelf is blanketed by higher density and shear strength and lower water content deposits generated by normal settling of suspended particles. On the inner shelf, during river peak discharges, a short-term thin bottom layer of "yogurt-like" [ FASS (1985) Geomarine Letters, 4, 147-152; FASS (1986) Continental Shelf Research, 6, 189-208] fluid-mud (unit weight lower than 1.3 mg m -3) is supplied, by a bottom nepheloid layer. During stormy periods, this "yogurt-like" layer (about 10 cm thick) partly disappears by resuspension of suspended particulate matter; this is advected, in the bottom nepheloid layer, over the shelf and the canyons within the upper slope.

  10. Impact of water depth on the distribution of iGDGTs in the surface sediments from the northern South China Sea: applicability of TEX86 in marginal seas

    NASA Astrophysics Data System (ADS)

    Chen, Jiali; Hu, Pengju; Li, Xing; Yang, Yang; Song, Jinming; Li, Xuegang; Yuan, Huamao; Li, Ning; Lü, Xiaoxia

    2017-01-01

    The TEX{86/H} paleothermometer on the base of isoprenoid glycerol dialkyl glycerol tetraethers (iGDGTs) has been widely applied to various marine settings to reconstruct past sea surface temperatures (SSTs). However, it remains uncertain how well this proxy reconstructs SSTs in marginal seas. In this study, we analyze the environmental factors governing distribution of iGDGTs in surface sediments to assess the applicability of TEX{86/H} paleothermometer in the South China Sea (SCS). Individual iGDGT concentrations increase gradually eastwards. Redundancy analysis based on the relative abundance of an individual iGDGT compound and environmental parameters suggests that water depth is the most influential factor to the distribution of iGDGTs, because thaumarchaeota communities are water-depth dependent. Interestingly, the SST difference (ΔT) between TEX{86/H} derived temperature and remote-sensing SST is less than 1°C in sediments with water depth>200 m, indicating that TEX{86/H} was the robust proxy to trace the paleo-SST in the region if water depth is greater than 200 m.

  11. Compound-specific δ15N and chlorin preservation in surface sediments of the Peru Margin with implications for ancient bulk δ15N records

    NASA Astrophysics Data System (ADS)

    Junium, Christopher K.; Arthur, Michael A.; Freeman, Katherine H.

    2015-07-01

    Understanding the processes that control the preservation of paleoceanographic proxies is of clear importance. Surface sediments from the Peru Margin oxygen-minimum zone are subject to lateral and downslope transport by bottom currents that decrease organic matter (OM) quality. Indicators of bulk OM quality (pyrolysis hydrogen index, pyrolysis S1 + S2 and C/N) demonstrate significant degradation between 150 and 400 m water depth, within the oxygen-minimum zone. Concentrations of the three most abundant chlorins (chlorophyllone, pheophytin and pyropheophytin) decrease from 750 to 150 nmol g TOC-1 from 150 to 400 m water depth though the relative abundances of the chlorins in an individual sample do not change. This suggests that the three chlorins have similar reactivity over the ambient conditions. Values for δ15N of bulk sediments (δ15Nbulk) decrease by 3‰ from the inner shelf to the upper slope (1000 m) but co-occurring compound-specific δ15N values (δ15Nchlorin) do not decrease downslope. The low variability of δ15Nchlorin values supports a single source for the chlorins, and demonstrates the recalcitrance of δ15Nchlorin values despite degradation. This set of observation raises questions about which type of OM fraction best records 'primary' signatures. We assess two possible models to guide our interpretation of these disparate datasets (1) that decreasing δ15Nbulk values are the result of degradation of a 15N-enriched fraction during downslope transport, and that δ15Nchlorin values reflect primary values; (2) that δ15Nbulk values are primary and that chlorins are derived from material transported from upslope. These data reaffirm that in active sedimentary environments such as the Eastern Tropical Pacific, transport of OM can significantly alter bulk geochemical parameters of OM integrity, but the impacts on the δ15N record of bulk sediments and chlorins are less clear, and require more study to be thoroughly understood.

  12. Lipid biomarkers for anaerobic oxidation of methane and sulphate reduction in cold seep sediments of Nyegga pockmarks (Norwegian margin): discrepancies in contents and carbon isotope signatures

    NASA Astrophysics Data System (ADS)

    Chevalier, Nicolas; Bouloubassi, Ioanna; Stadnitskaia, Alina; Taphanel, Marie-Hélène; Sinninghe Damsté, Jaap S.

    2014-06-01

    Distributions and carbon isotopic compositions of microbial lipid biomarkers were investigated in sediment cores from the G11 and G12 pockmarks in the Nyegga sector of the Storegga Slide on the mid-Norwegian margin to explore differences in depth zonation, type and carbon assimilation mode of anaerobic methane-oxidizing archaea (ANMEs) and associated sulphate-reducing bacteria responsible for anaerobic oxidation of methane (AOM) in these cold seep environments. While the G11 site is characterised by black reduced sediments colonized by gastropods and Siboglinidae tubeworms, the G12 site has black reduced sediments devoid of fauna but surrounded by a peripheral occurrence of gastropods and white filamentous microbial mats. At both sites, bulk sediments contained abundant archaeal and bacterial lipid biomarkers substantially depleted in 13C, consisting mainly of isoprenoidal hydrocarbons and dialkyl glycerol diethers, fatty acids and non-isoprenoidal monoalkylglycerol ethers. At the G11 site, down-core profiles revealed that lipid biomarkers were in maximum abundance from 10 cm depth to the core bottom at 16 cm depth, associated with δ13C values of -57 to -136‰. At the G12 site, by contrast, lipid biomarkers were in high abundance in the upper 5 cm sediment layer, associated with δ13C values of -43 to -133‰. This suggests that, as expected from the benthic fauna characteristics of the sites, AOM takes place mainly at depth in the G11 pockmark but just below the seafloor in the G12 pockmark. These patterns can be explained largely by variable fluid flow rates. Furthermore, at both sites, a dominance of ANME-2 archaea accompanied by their bacterial partners is inferred based on lipid biomarker distributions and carbon isotope signatures, which is in agreement with recently published DNA analyses for the G11 pockmark. However, the present data reveal high discrepancies in the contents and δ13C values for both archaeal and bacterial lipid profiles, implying the

  13. Late quaternary deposition in the inner basins of the California continental borderland - Part A. Santa Monica Basin

    USGS Publications Warehouse

    Normark, William R.; McGann, Mary

    2004-01-01

    Radiocarbon dating of sediment core samples from Santa Monica Basin document Holocene (younger than approximately 11 ka) landslides and fault offsets along the basin margin. The new dates include 17 from six piston cores on the continental slope and 11 from Ocean Drilling Program Site 1015 on the basin floor. The dates, which are based on data from pelagic and benthic foraminifera in addition to several dates from mollusk shells, are used to provide chronostratigraphic control for a previously determined basin-wide seismic stratigraphy. The geologic setting at the core sites and a sediment log for each core are shown. In addition, each sediment log is accompanied by a color core photograph as well as P-wave velocity and gamma-ray density profiles. The primary purpose of the report is to make the radiocarbon dates available for other studies in the Santa Monica Basin. A comparison of sediment accumulation rates between the late Pleistocene and Holocene provides insight to the effects of sea-level change on sediment input to the basin. In addition, the results can be used to evaluate the effectiveness of wire-line piston coring in providing age control for earthquake hazard and sedimentologic studies.

  14. Neural network interpretation of LWD data (ODP Leg 170) confirms complete sediment subduction at the Costa Rica convergent margin

    NASA Astrophysics Data System (ADS)

    Moritz, Erik; Bornholdt, Stefan; Westphal, Hildegard; Meschede, Martin

    2000-01-01

    The internal structure of a convergent plate boundary was the focus of ODP Leg 170 in 1996 at the subduction zone off Costa Rica. Although the structure of the subduction zone is rather well known from seismic surveys, prior to drilling of ODP Leg 170 it was a matter of discussion whether it is accretionary or non-accretionary. With a neural network approach, we confirm the evidence gained during drilling of Leg 170, that at least presently no lower-plate sediments are transferred to the upper plate by accretion. To supplement lithological information, Logging-While-Drilling geophysical data have been included in this study and were interpreted in terms of lithology using a genetically trained artificial neural network.

  15. Sulfate reduction and methane oxidation in continental margin sediments influenced by irrigation (South-East Atlantic off Namibia)

    NASA Astrophysics Data System (ADS)

    Fossing, Henrik; Ferdelman, Timothy G.; Berg, Peter

    2000-03-01

    Sulfate reduction rates (SRR) and concentrations of SO 42-, H 2S, pyrite sulfur, total sulfur, CH 4, and organic carbon were measured with high depth resolution through the entire length of the SO 42--zone and well into the CH 4-zone at two continental slope stations in the eastern South Atlantic (Benguela upwelling area). The sediments were characterized by a high organic carbon content of approx. 7.5% at GeoB 3703 and 3.7% at GeoB 3714. At GeoB 3703 SO 42- concentrations decreased linearly with depth to about 40 μM at the sulfate-methane transition zone (SMT) at 3.5 m, while at GeoB 3714, SO 42- remained at sea water concentration in the top 2 m of the sediment and then decreased linearly to about 70 μM at the SMT at 6 m. Direct rate measurements of SRR ( 35SO 42-) showed that the highest SRR occurred within the surface 3-5 cm with peak rates of up to 20 and 7 nmol SO 42- cm -3 day -1 at GeoB 3703 and GeoB 3714, respectively. SRR decreased quasi-exponentially with depth at GeoB 3703 and the cumulative SRR over the length of the SO 42- zone resulted in an areal SRR (SRR area) of 1114-3493 μmol m -2 day -1 (median value: 2221 μmol m -2 day -1) at GeoB 3703 with more than 80% of the total sulfate reduction proceeding in the top 30 cm sediment. At GeoB 3714 SRR exhibited more scatter with a cumulative SRR area of 398-1983 μmol m -2 day -1 (median value: 1251 μmol m -2 day -1) and with >60% of the total sulfate reduction occurring below a depth of 30 cm due partially to a deeply buried zone of sulfate reduction located between 3 and 5 m depths. SRR peaks were also observed in SMT of both cores, ostensibly associated with methane oxidation, but with rates about 10 times lower than at the surface. Modeled SRR balanced both methane oxidation rates and measured SRR within the SMT, but severely underestimated by up to 89% the total SRR area that were obtained from direct measurements. Modeled and measured SRR were reconciled by including solute transport by

  16. Sulfate reduction and methane oxidation in continental margin sediments influenced by irrigation (south-east Atlantic off Namibia)

    SciTech Connect

    Fossing, H.; Ferdelman, T.G.; Berg, P.

    2000-03-01

    Sulfate reduction rates (SRR) and concentrations of SO{sub 4}{sup 2{minus}}, H{sub 2}S, pyrite sulfur, total sulfur, CH{sub 4}, and organic carbon were measured with high depth resolution through the entire length of the SO{sub 4}{sup 2{minus}}-zone and well into the CH{sub 4}-xone at two continental slope stations in the eastern South Atlantic (Benguela upwelling area). The sediments were characterized by a high organic carbon content of approx. 7.5% at GeoB 3703 and 3.7% at GeoB 3714. At GeoB 3703 SO{sub 4}{sup 2{minus}} concentrations decreased linearly with depth to about 40 {micro}M at the sulfate-methane transition zone (SMT) at 3.5 m, while at GeoB 3714, SO{sub 4}{sup 2{minus}} remained at sea water concentration in the top 2 m of the sediment and then decreased linearly to about 70 {micro}M at the SMT at 6 m. Direct rate measurements of SRR ({sup 35}SO{sub 4}{sup 2{minus}}) showed that the highest SRR occurred within the surface 3--5 cm with peak rates of up to 20 and 7 nmol SO{sub 4}{sup 2{minus}} cm{sup 3}/day at GeoB 3703 and GeoB 3714, respectively. SRR decreased quasi-exponentially with depth at GeoB 3703 and the cumulative SRR over the length of the SO{sub 4}{sup 2{minus}} zone resulted in an areal SRR of 1114--3493 {micro}mol/m{sup 2} day at GeoB 3703 with more than 80% of the total sulfate reduction proceeding in the top 30 cm sediment. Modeled SRR balanced both methane oxidation rates and measured SRR within the SMT, but severely underestimated by up to 89% the total SRR{sub area} that were obtained from direct measurements. Modeled and measured SRR were reconciled by including solute transport by irrigation described by a non-local pore water exchange function ({alpha}) which had values of up to 0.3 year{sup {minus}1} in the top sediment, and decreased exponentially to zero (i.e., no irrigation) at 2--3 meters (i.e., above SMT). These results suggested that co-existing sulfate reduction processes and linear SO{sub 4}{sup 2{minus}} gradients can be

  17. Organic geochemistry of continental margin and deep ocean sediments. Progress report, 1 March 1991--28 February 1993

    SciTech Connect

    Whelan, J.K.; Hunt, J.M.; Seewald, J.M.; Eglinton, L.B.; Zawoysky, M.; Dickinson, P.; Dickneider, T.

    1992-09-01

    Objective was to study petroleum formation, migration, and accumulation in marine sediments. Collaboration in Global Basin Research Network (GBRN) showed that the hydrocarbon parameters used in oil exploration are also valuable in understanding sedimentary basin fluid flow processes, crucial to production of drinking water, metal ore deposits, and gas and oil. Two goals are : (1) to run hydrous pyrolysis experiments on immature gas-prone source rocks, in order to evaluate the potential influence of gas evolution on oil migration and subsurface pressurization, and (2) to integrate organic geochemical data from the Louisiana Gulf Coast into GBRN subsurface visualization and computer modeling. Experimental methods (petrography, EPR, thermogravimetric Fourier transform infrared spectroscopy) were also studied.

  18. Regional implications of an extensive linear sediment-dispersal system along western margin of Cretaceous interior seaway

    SciTech Connect

    Vondra, C.F.; Khandaker, N.I.

    1988-01-01

    The Second Wall Creek sand in the Powder River basin in Johnson and Natrona Counties is similar in clast lithology, primary sedimentary structures, and facies association to the Torchlight Sandstone at the top of the Frontier Formation in the northern Big Horn basin. The Second Wall Creek sand is predominantly composed of medium to coarse-grained, moderately sorted massive to cross-bedded quartz-lithic wacke with a minor amount of carbonaceous shale and siltstone. The unit is conglomeraic at the top and contains abundant granule to cobble-size clasts of andesite, quartzite, chert, granite, and sandstone. The largest clasts are concentrated in the Kaycee-Mayworth area in Johnson County and progressively decrease in size southward toward Arminto in Natrona Country, Paloeocurrent directions obtained from the cross-bedded unit indicate a general south-southeast trend. The Second Wall Creek sand is thickest in the Kaycee-Mayworth area and thins southward towards Arminto. The presence of a unique petrologic suite places a constraint on provenance and sediment-dispersal patterns in a tectonically active rapidly evolving foreland basin. Of particular interest is the peculiar lensoid distribution of andesite clasts, which follows a general northwest-southeast trend for more than 150 mi from Cody to the Kaycee-Mayworth area, Wyoming. Noticeable absence of andesite clasts on either side of this observed trend suggests a strong dependence of the ultimate sediment-dispersal system on several physical constraints, including local morphotectonic setting, paleohydraulics, and provenance. A large high-energy distributary complex is invoked for the deposition of this linear conglomeratic facies. This dispersal system extended east-southeastward from the orogenic fold-and-thrust-belt into the adjoining foreland basin.

  19. Tracking Sediment Sources to Pacific Northwest Margin Sites through Radiometric Ages of Clays: Ocean-Land Response to Millenial Scale Climate Change

    NASA Astrophysics Data System (ADS)

    Duncan, R. A.; Pisias, N. G.; Hostetler, S. W.

    2001-12-01

    The terrigenous fraction of marine sediments carries the memory of its source through its mineralogy, composition and age. This signal may also carry important information about tectonic and climatic conditions on the continents and about the mechanisms by which material is transported to the depositional site. Sediments recovered from long piston cores at sites along the Pacific Northwest margin of North America contain highly correlated records of oceanographic and terrestrial vegetation changes over the last full glacial cycle. We speculate that these records reflect principally climate-induced changes in terrestrial vegetation rather than changes in ocean circulation and sediment transport. To test this, we have begun to identify specific sources of terrigenous sediment through 40Ar-39Ar radiometric dating of clays from Pacific NW rivers. Age spectra from 15-20 step heating experiments reveal well-resolved clay formation ages from two size fractions (2-20 and 20-63 micron), and evidence of post-formation Ar-loss from low temperature steps. From these we make several important conclusions: First, the individual river clay ages are distinct from one another, and reflect the age of terranes from which they derive. Thus clay ages fingerprint discharge from specific rivers. Second, plateau (formation) ages for the two size fractions are the same. This is a different observation from that seen in previous K-Ar results, probably because the smaller size fraction has experienced more Ar-loss and K-addition during transport, and thus produces generally younger ages. However, the 40Ar-39Ar experiments reveal the same plateau (formation) ages. Thus the additional information gained from incremental heating is important in better defining the source identity. Third, we can directly measure the composition of phases carrying the age information. Two isotopes (37Ar and 39Ar) determine the Ca and K content of the phase(s) contributing to each step. The K/Ca is not strictly

  20. Sediment geochemical records of productivity and oxygen depletion along the margin of western North America during the past 60,000 years: teleconnections with Greenland Ice and the Cariaco Basin

    USGS Publications Warehouse

    Dean, W.E.

    2007-01-01

    Many sediment records from the margins of the Californias (Alta and Baja) collected in water depths between 60 and 1200 m contain anoxic intervals (laminated sediments) that can be correlated with interstadial intervals as defined by the oxygen-isotope composition of Greenland ice (Dansgaard-Oeschger, D-O, cycles). These intervals include all or parts of Oxygen Isotope Stage 3 (OIS3; 60-24 cal ka), the Bo??lling/Allero??d warm interval (B/A; 15-13 cal ka), and the Holocene. This study uses organic carbon (Corg) and trace-element proxies for anoxia and productivity, namely elevated concentrations and accumulation rates of molybdenum and cadmium, in these laminated sediments to suggest that productivity may be more important than ventilation in producing changes in bottom-water oxygen (BWO) conditions on open, highly productive continental margins. The main conclusion from these proxies is that during the last glacial interval (LGI; 24-15 cal ka) and the Younger Dryas cold interval (YD; 13-11.6 cal ka) productivity was lower and BWO levels were higher than during OIS3, the B/A, and the Holocene on all margins of the Californias. The Corg and trace-element profiles in the LGI-B/A-Holocene transition in the Cariaco Basin on the margin of northern Venezuela are remarkably similar to those in the transition on the northern California margin. Correlation between D-O cycles in Greenland ice with gray-scale measurements in varved sediments in the Cariaco Basin also is well established. Synchronous climate-driven changes as recorded in the sediments on the margins of the Californias, sediments from the Cariaco Basin, and in the GISP-2 Greenland ice core support the hypothesis that changes in atmospheric dynamics played a major role in abrupt climate change during the last 60 ka. Millennial-scale cycles in productivity and oxygen depletion on the margins of the Californias demonstrate that the California Current System was poised at a threshold whereby perturbations of

  1. Sediment dispersal system in the Taiwan-South China Sea collision zone along a convergent margin: A comparison with the Papua New Guinea collision zone of the western Solomon Sea

    NASA Astrophysics Data System (ADS)

    Hsiung, Kan-Hsi; Yu, Ho-Shing

    2013-01-01

    Through a large-scale examination of the morpho-sedimentary features on sea floors in the Taiwan-Luzon convergent margin, we determined the main sediment dispersal system which stretches from 23°N to 20°N and displays as an aligned linear sediment pathway, consisting of the Penghu Canyon, the deep-sea Penghu Channel and northern Manila Trench. The seafloor of South China Sea north of 21°N are underlain by a triangle-shaped collision marine basin, resulting from oblique collision between the Luzon Arc and Chinese margin, and are mainly occupied by two juxtaposed slopes, the South China Sea and Kaoping Slopes, and a southward tilting basin axis located along the Penghu Canyon. Two major tributary canyons of the Formosa and Kaoping and small channels and gullies on both slopes join into the axial Penghu Canyon and form a dendritic canyon drainage system in this collision marine basin. The canyon drainage system is characteristic of lateral sediment supply from flank slopes and axial sediment transport down-canyon following the tilting basin axis. The significance of the collision marine basin in term of source to sink is that sediments derived from nearby orogen and continental margins are transported to and accumulated in the collision basin, serving as a temporary sediment sink and major marine transport route along the basin axis. The comparison of the Taiwan-South China Sea collision zone with the Papua New Guinea collision zone of the western Solomon Sea reveals remarkable similarities in tectonic settings and sedimentary processes that have resulted in similar sediment dispersal systems consisting of (1) a canyon drainage network mainly in the collision basin and (2) a longitudinal sediment transport system comprising a linear connection of submarine canyon, deep-sea channel and oceanic trench beyond the collision marine basin.

  2. Morphology, spatial pattern and sediment of Nitraria tangutorum nebkhas in barchans interdune areas at the southeast margin of the Badain Jaran Desert, China

    NASA Astrophysics Data System (ADS)

    Yang, YanYan; Liu, LianYou; Shi, PeiJun; Zhang, GuoMing; Qu, ZhiQiang; Tang, Yan; Lei, Jie; Wen, HaiMing; Xiong, YiYing; Wang, JingPu; Shen, LingLing

    2015-03-01

    To understand the characteristics of the nebkhas in barchan interdune areas, isolated barchan dunes at the southeast margin of the Badain Jaran Desert in China and Nitraria tangutorun nebkhas in the interdune areas were selected, and the morphometric parameters, spatial patterns, and granulometric characteristics of the nebkhas in various interdune zones were compared. According to the locations relative to barchan dunes, the interdune areas were divided into three zones: the windward interdune zone (Zw), the leeward interdune zone (Zl), and the horn interdune zone (Zh). The zone that is proximal to barchan dunes and has never been disturbed by barchan dunes was also selected (Zi). The morphometric parameters were measured through a satellite image and field investigation. The population density and spatial patterns were analyzed using the satellite image, and surface sediment samples of the nebkhas and barchan dunes were collected for grain size analysis. The morphometric parameters of Nitraria tangutorun nebkhas in the interdune zones differ significantly. The nebkhas in Zh are larger than those observed in the other zones, and the nebkhas are the smallest in Zl. In all of the zones, the long-axis orientation of the nebkhas is perpendicular to the prevailing wind direction. The population density of the nebkhas in Zw is relatively higher, whereas the density in Zh and Zl becomes obviously lower. The spatial distribution of nebkhas in all of the zones can be categorized as a dispersed pattern. The sediments of the nebkhas are coarsest in Zh and finest in Zl. In addition, the sediments of the nebkhas in all of the zones are finer than those of barchan dunes. The amount of sand captured by the nebkhas in the interdune areas is approximately 20% of the volume of barchan dunes. The variations of the nebkhas' sizes, spatial pattern and sediment are subjected to migration, flow field and sand transport of barchan dunes and sand accumulation with plant growth in the

  3. A high-resolution record of Holocene millennial-scale oscillations of surface water, foraminiferal paleoecology and sediment redox chemistry in the SE Brazilian margin

    NASA Astrophysics Data System (ADS)

    Dias, B. B.; Barbosa, C. F.; Albuquerque, A. L.; Piotrowski, A. M.

    2014-12-01

    Holocene millennial-scale oscillations and Bond Events (Bond et al. 1997) are well reported in the North Atlantic as consequence of fresh water input and weaking of the Atlantic Meridional Overturning Circulation (AMOC). It has been hypothesized that the effect of weaking of AMOC would lead to warming in the South Atlantic due to "heat piracy", causing surface waters to warm and a reorganization of surface circulation. There are few reconstructions of AMOC strength in the South Atlantic, and none with a high resolution Holocene record of changes of productivity and the biological pump. We reconstruct past changes in the surface water mass hydrography, productivity, and sediment redox changes in high-resolution in the core KCF10-01B, located 128 mbsl water depth off Cabo Frio, Brazil, a location where upwelling is strongly linked to surface ocean hydrography. We use Benthic Foraminiferal Accumulation Rate (BFAR) to reconstruct productivity, which reveals a 1.3kyr cyclicity during the mid- and late-Holocene. The geochemistry of trace and rare earth elements on foraminiferal Fe-Mn oxide coatings show changes in redox-sensitive elements indicating that during periods of high productivity there were more reducing conditions in sediment porewaters, producing a Ce anomaly and reduction and re-precipitation of Mn oxides. Bond events 1-7 were identified by a productivity increase along with reducing sediment conditions which was likely caused by Brazil Current displacement offshore allowing upwelling of the nutritive bottom water South Atlantic Central Waters (SACW) to the euphotic zone and a stronger local biological pump. In a global context, correlation with other records show that this occurred during weakened AMOC and southward displacement of the ITCZ. We conclude that Bond climatic events and millennial-scale variability of AMOC caused sea surface hydrographic changes off the Brazilian Margin leading to biological and geochemical changes recorded in coastal records

  4. Fluxes of uranium and thorium series isotopes in the Santa Barbara Basin

    NASA Astrophysics Data System (ADS)

    Moore, Willard S.; Bruland, Kenneth W.; Michel, Jacqueline

    1981-05-01

    Samples from the MANOP Santa Barbara Basin sediment trap intercomparison were analyzed for the isotopes of uranium, thorium, radium, lead, and polonium. All of the traps showed approximately the same compositions and isotopic ratios, indicating that they trapped similar materials. The 234Th flux via falling particles was very close to the flux predicted from the production and scavenging rates of 234Th from the water column. The 210Pb content of the trapped particles and the surface sediments were the same, however, the measured flux of 210Pb was seven times greater than the predicted flux. Predicted and measured fluxes of 228Th and 210Po were similarly out of balance. To explain this apparent inconsistency, we suggest (as others have done) that the Santa Barbara Basin is an area where scavenging from the water column is intensified and where sediments deposited initially on the margins may be physically remobilized on a short time scale. These two effects increase the apparent area from which the basin derives the longer-lived isotopes but does not increase significantly the supply of the short-lived 234Th.

  5. Sedimentary response to Milankovitch-type climatic oscillations and formation of sediment undulations: evidence from a shallow-shelf setting at Gela Basin on the Sicilian continental margin

    NASA Astrophysics Data System (ADS)

    Kuhlmann, Jannis; Asioli, Alessandra; Trincardi, Fabio; Klügel, Andreas; Huhn, Katrin

    2015-01-01

    A multi-proxy chronological framework along with sequence-stratigraphic interpretations unveils composite Milankovitch cyclicity in the sedimentary records of the Last Glacial-Interglacial cycle at NE Gela Basin on the Sicilian continental margin. Chronostratigraphic data (including foraminifera-based eco-biostratigraphy and δ18O records, tephrochronological markers and 14C AMS radiometric datings) was derived from the shallow-shelf drill sites GeoB14403 (54.6 m recovery) and GeoB14414 (27.5 m), collected with both gravity and drilled MeBo cores in 193 m and 146 m water depth, respectively. The recovered intervals record Marine Isotope Stages and Substages (MIS) from MIS 5 to MIS 1, thus comprising major stratigraphic parts of the progradational deposits that form the last 100-ka depositional sequence. Calibration of shelf sedimentary units with borehole stratigraphies indicates the impact of higher-frequency (20-ka) sea level cycles punctuating this 100-ka cycle. This becomes most evident in the alternation of thick interstadial highstand (HST) wedges and thinner glacial forced-regression (FSST) units mirroring seaward shifts in coastal progradation. Albeit their relatively short-lived depositional phase, these subordinate HST units form the bulk of the 100-ka depositional sequence. Two mechanisms are proposed that likely account for enhanced sediment accumulation ratios (SAR) of up to 200 cm/ka during these intervals: (1) intensified activity of deep and intermediate Levantine Intermediate Water (LIW) associated to the drowning of Mediterranean shelves, and (2) amplified sediment flux along the flooded shelf in response to hyperpycnal plumes that generate through extreme precipitation events during overall arid conditions. Equally, the latter mechanism is thought to be at the origin of undulated features resolved in the acoustic records of MIS 5 Interstadials, which bear a striking resemblance to modern equivalents forming on late-Holocene prodeltas of other

  6. Sulfate reduction and methane oxidation activity below the sulfate-methane transition zone in Alaskan Beaufort Sea continental margin sediments: Implications for deep sulfur cycling

    NASA Astrophysics Data System (ADS)

    Treude, Tina; Krause, Stefan; Maltby, Johanna; Dale, Andrew W.; Coffin, Richard; Hamdan, Leila J.

    2014-11-01

    Two ∼6 m long sediment cores were collected along the ∼300 m isobath on the Alaskan Beaufort Sea continental margin. Both cores showed distinct sulfate-methane transition zones (SMTZ) at 105 and 120 cm below seafloor (cmbsf). Sulfate was not completely depleted below the SMTZ but remained between 30 and 500 μM. Sulfate reduction and anaerobic oxidation of methane (AOM) determined by radiotracer incubations were active throughout the methanogenic zone. Although a mass balance could not explain the source of sulfate below the SMTZ, geochemical profiles and correlation network analyses of biotic and abiotic data suggest a cryptic sulfur cycle involving iron, manganese and barite. Inhibition experiments with molybdate and 2-bromoethanesulfonate (BES) indicated decoupling of sulfate reduction and AOM and competition between sulfate reducers and methanogens for substrates. While correlation network analyses predicted coupling of AOM to iron reduction, the addition of manganese or iron did not stimulate AOM. Since none of the classical archaeal anaerobic methanotrophs (ANME) were abundant, the involvement of unknown or unconventional phylotypes in AOM is conceivable. The resistance of AOM activity to inhibitors implies deviation from conventional enzymatic pathways. This work suggests that the classical redox cascade of electron acceptor utilization based on Gibbs energy yields does not always hold in diffusion-dominated systems, and instead biotic processes may be more strongly coupled to mineralogy.

  7. Configuration of Miocene Basins Along the Santa Cruz-Catalina Ridge, California Continental Borderland

    NASA Astrophysics Data System (ADS)

    Stoller, A. R.; Legg, M.; Malone, D. H.

    2015-12-01

    Miocene basins associated with the oblique rifting of the Inner Continental Borderland offshore Southern California are preserved along the flanks of the transpressional Santa Cruz-Catalina Ridge. Using 184 lines of two-dimensional seismic data including high resolution records from Oregon State University and deep penetration data from Western Geco archived in USGS/NAMSS, we were able to map the configuration of the Miocene basin along the flanks of the northern core complex on the Santa Cruz-Catalina Ridge. There are distinct early and middle Miocene basins along the flanks of the ridge, which we are using to try to define the initial configuration of the Inner Borderland Rift. Along the hinge, between the uplifted ridge and the sub-horizontal basement in the Santa Monica Basin, lies the thickest part of the sequence. Pliocene to Recent sediments lap on to the tilted and uplifted Miocene basin sequences and constrain timing of uplift when transpression commenced. Segmentation and other distinctive character of the basin along the ridge flank may be correlated with similar features in the Miocene basin on the conjugate margin of the rift. Our working model for oblique rifting in the Borderland resembles of the Gulf of California, where right-stepping echelon transform faults link left-stepping extensional basins. The objective of our project is to reconstruct the configuration of the middle Miocene rift and to further our quest to understand the rifting process and tectonic evolution of the Pacific-North American plate boundary.

  8. Microbioirrigation of marine sediments in dysoxic environments: Implications for early sediment fabric formation and diagenetic processes

    NASA Astrophysics Data System (ADS)

    Pike, Jennifer; Bernhard, Joan M.; Moreton, Steven G.; Butler, Ian B.

    2001-10-01

    It is manifest in the study of dysoxic sediments from the geological record that infaunal burrowing is considered so severely limited by the lack of dissolved oxygen as to be nonexistent. Although the effects of megafauna and macrofauna on sedimentary and geochemical processes are well known, the effects of meiofauna are largely ignored. Here we document abundant meiofauna in the recent severely dysoxic, laminated sediments from the Santa Barbara basin, California margin, and also microcavities and microtunnels in laminated deglacial sediments from Palmer Deep, west Antarctic Peninsula, that we interpret to be open, relict nematode burrows. Santa Barbara basin box-core subcores were sieved to quantify metazoan abundance, and others were embedded with resin for examination of meiofaunal life positions using confocal microscopy. Metazoan densities in the surface centimeters of sediment range from 80.7 to 117.9 cm-3, and nematode populations, together with their abundant burrows, remain quite high to at least 3 cm. Scanning electron microscope analysis of fractured surfaces in Palmer Deep sediments revealed that the rigid diatom ooze framework aids the preservation of ˜50 μm diameter open nematode burrows. These structures were observed to at least 40 m below the seafloor surface. This is the first description of a nematode-produced open burrow network preserved in the geological record. Optical microscopy of resin-embedded thin sections revealed widespread sediment redistribution without significant lamina disruption. The implications of abundant nematode burrows in surface sediments, and their preservation in the geological record, are wide ranging for both modern and ancient dysoxic marine environments, including for determining early sediment fabric production, geochemical processes, and diagenetic reactions in the oxic and suboxic zones.

  9. Holocene late Pleistocene non-tropical carbonate sediments and tectonic history of the western rift basin margin of the southern Gulf of California

    NASA Astrophysics Data System (ADS)

    Halfar, Jochen; Godinez-Orta, Lucio; Goodfriend, Glenn A.; Mucciarone, David A.; Ingle, James C.; Holden, Peter

    2001-10-01

    Using high-resolution seismic reflection profiling and dating of (1) shallow marine vibracores and (2) sediments collected from uplifted marine terraces we reconstruct the tectonic history and sediment accumulation patterns of Holocene to late Pleistocene warm-temperate to subtropical carbonates in the southern Gulf of California, Mexico. The study was conducted in the vicinity of La Paz where carbonates form along the fault bounded narrow western shelf of the tectonically active Gulf of California rift basin. The non-tropical nature of the setting is responsible for (1) poor cementation of the bioclastic carbonates, and (2) a composition which is dominated by rhodoliths (coralline red algae), corals and mollusks. Unrimmed carbonate flats forming in small pocket bays and a rhodolith bioherm, which has a surface area of more than 20 km 2 and is up to 16 m thick, constitute the major carbonate factories. Holocene carbonate accumulation rates were deduced from seismic and core data and are highest on the rhodolith bioherm (260 cm/ka) and in subtidal zones of pocket bays (210 cm/ka), and lowest on the inner and middle shelf (100 cm/ka). Taken together, rates of carbonate accumulation are intermediate in magnitude between higher rates recorded in fully tropical carbonate settings and lower rates typical of cool-water carbonates. Seismic reflection profiles demonstrate that Isla Espiritu Santo in the center of the study area is a west dipping fault block, which is tectonically influenced by two distinct faults, the La Paz and Espiritu Santo faults. The latter fault accommodates at least 700 m of east-side down normal offset, and forms a steep eastern escarpment leading into the La Paz slope basin. Some of the sediments produced in the shallow carbonate factories of the narrow La Paz shelf are transported across this escarpment and are redeposited in the slope basin at a water depth of 750 m. Uranium-series dates of marine terraces exposed on Isla Espiritu Santo indicate

  10. Quantifying the transfer of sediment from terrestrial source to deep-sea sink over millennial timescales

    NASA Astrophysics Data System (ADS)

    Romans, B.; Covault, J. A.; Fildani, A.; Hilley, G. E.

    2010-12-01

    We construct a millennial-scale mass balance for the greater Santa Monica and Santa Barbara basins (and their corresponding watersheds) in southern California by comparing (1) cosmogenic nuclide-derived bulk denudation rates for the Santa Clara, Ventura, and Calleguas drainage basins, which are the primary fluvial sources of sediment to the offshore sinks, with (2) sediment accumulation rates in Santa Monica and Santa Barbara basins and adjacent continental shelves from new seismic-reflection mapping and published mapping constrained by radiocarbon-dated cores. The cosmogenic nuclide-derived denudation rates obtained for each watershed correspond to timescales similar to radiocarbon-based deposition rates (104-105 yr) and, thus, capture sediment transfer periods longer than measured historical fluxes. We found that the terrestrial denudation rates are about twice as large as those derived from 20th century measurements, and are approximately half the mass deposition rates in the offshore sinks during an equivalent time interval highlighting a clear sediment mass imbalance. Our mass balance suggests that erosion of the continental shelf and coast must be significant to close the deficit between the deposition of mass in deep-sea sediment sinks and its supply from terrestrial catchments. According to our sediment budget, more than one-third of the sediment deposited in the deep sea might have been redistributed from the shelf and coast during post-glacial transgression. Additional sources of sediment and explanations for this mass imbalance are also considered. Stratigraphic models of continental margin evolution typically dismiss the occurrence of shelf and coastal erosion during sea-level rise as a source of significant volume of sediment to the deep sea -- instead, the shelf is typically characterized as a permanent sink or an area of bypass to the deep sea. These results bring into question stratigraphic models that posit a relatively stable shelf system based on

  11. Glacial/interglacial changes in southern Africa: Compound-specific δ13C land plant biomarker and pollen records from southeast Atlantic continental margin sediments

    NASA Astrophysics Data System (ADS)

    Rommerskirchen, Florian; Eglinton, Geoffrey; Dupont, Lydie; RullköTter, Jürgen

    2006-08-01

    This is part 2 of a study examining southwest African continental margin sediments from nine sites on a north-south transect from the Congo Fan (4°S) to the Cape Basin (30°S) representing two glacial (MIS 2 and 6a) and two interglacial stages (MIS 1 and 5e). Contents, distribution patterns, and molecular stable carbon isotope signatures of long-chain n-alkanes (C27-C33) and n-alkanols (C22-C32) as indicators of land plant vegetation of different biosynthetic types were correlated with concentrations and distributions of pollen taxa in sediments of the same time horizons. Selected single pollen type data reveal details of vegetation changes, but the overall picture is best illustrated by summing pollen known to predominantly derive from C4 plants or C4 plus CAM plants. The C4 plant signals in the biomarkers are recorded in the δ13C data and in the abundances of C31 and C33n-alkanes, and the C32n-alkanol. Calculated clusters of wind trajectories for austral summer and winter situations for the Holocene and the Last Glacial Maximum afford information on the source areas for the lipids and pollen and their transport pathways to the ocean. This multidisciplinary approach provides clear evidence of latitudinal differences in leaf wax lipid and pollen composition, with the Holocene sedimentary data paralleling the current major phytogeographic zonations. The northern sites (Congo Fan area and northern Angola Basin) get most of their terrestrial material from the Congo Basin and the Angolan highlands dominated by C3 plants. Airborne particulates derived from the western and central South African hinterland dominated by deserts, semideserts, and savannah regions are rich in organic matter from C4 plants. As can be expected from the present and glacial positions of the phytogeographic zones, the carbon isotopic signatures of n-alkanes and n-alkanols both become isotopically more enriched in 13C from north to south. In the northern part of the transect the relative

  12. Correlation and Analysis of Volcanic Ash in Marine Sediments From the Peru Margin: Explosive Volcanic Cycles of the North-Central Andes

    NASA Astrophysics Data System (ADS)

    Hart, D.; Miller, J.

    2003-12-01

    To decipher the episodicity of explosive volcanic activity in the North-Central Andes, we have measured the thickness and calculated the volume of ash layers from sites drilled along the Peru margin during Leg 201 of the Ocean Drilling Program (ODP). The geographic distribution of the sites (over 3 degrees of latitude and from 50 to 300 km offshore) and correlation of ash units between sites form the basis for minimal estimates of explosive volcanic activity in the region (only eruptions large enough to deposit ash in excess of 100 km from source are represented). Pouclet et al., (1990), estimated the minimum explosive activity along the Andean Arc from ash-bearing sediments and ash layers within cores from sites along the Peru margin collected during ODP Leg 112. As a result of higher recovery (as much as ten times more core recovery in many intervals) and decreased disturbance in cores recovered during Leg 201, our documentation of ash content in cores from Leg 201 has led to a more complete record of the explosive volcanic activity along the Andean Arc. For example, Pouclet, et al., (1990), reports four ash layers from Sites 680 and 684, whereas we have documented fourteen ash layers from cores recovered from the same locations (Sites 1228 and 1227, respectively). Our stratigraphic record agrees with Pouclet, et al., (1990), suggesting that explosive activity began in the early Eocene ( ˜35Ma) and continued with explosive pulses during the Miocene. The greatest explosive activity occurred within the past 5 million years, with peak activity in the late Pliocene to early Pleistocene. Based on petrographic and geochemical analysis, most of the volcanic ash within cores from Leg 201 was derived from the Andean volcanic arc. These plinian eruptions produced acidic glasses and ash layers with abundant feldspar, hornblende, and biotite. Pouclet, et al., (1990), reports a transition from andesitic volcanism in the Middle to Late Miocene to a more shoshonitic

  13. Hyperextension along the pre-Caledonian margin of the Iapetus? Age and origin of discontinuous gneiss sheets associated with deep-marine sediments, Alpine metaperidotites and detrital serpentinites

    NASA Astrophysics Data System (ADS)

    Jakob, Johannes; Alsaif, Manar; Corfu, Fernando; Andersen, Torgeir B.

    2016-04-01

    A mélange zone is positioned structurally below some large Proterozoic crystalline nappe complexes (NC), including the Upper Bergsdalen, Jotun and Lindås NCs in the South Norwegian Caledonides. The mélange is characterized by a lithological association of originally deep marine sediments intercalated with some coarser grained siliciclastic metasediments including meta-sandstone and conglomerates, thin slivers of gneisses, as well as detrital serpentinites and 'Alpine-type' metaperidotites. The formation of the mélange and particularly the origin of the detrital serpentinites are disputed. Several models have been suggested including formation as a) an ophiolitic mélange during ophiolite obduction, b) an unconformable post-obduction transgressive sequence or c) a mélange formed during hyperextension along the pre-Caledonian margin of Baltica. Here we present new ID-TIMS U-Pb geochronology of zircon and titanite separated from some of the laterally discontinuous gneiss slivers of variably granitic to gabbroic composition. These gneisses are intercalated with the metasediments as sheets with a maximum strike length of up to 40 km, in the case of the Haukenes gneiss in the Bergen area. Two main groups of gneisses can be distinguished; a) rocks formed at ca. 1495 Ma, 1212 Ma, and 1094 Ma, respectively and b) felsic to mafic meta-intrusives formed in the Early Ordovician between 486 and 474 Ma. In the Samnanger Complex the mélange was truncated by little deformed minor granitoid intrusives at 420 Ma. We propose a Baltican origin for the Mesoproterozoic gneisses. This also implies that the mélange has an affinity with Baltica as is also suggested by its tectonostratigraphic position below the Jotun, Lindås and Upper Bergsdalen Nappe complexes.

  14. Rapid formation of hyperpycnal sediment gravity currents offshore of a semi-arid California river

    NASA Astrophysics Data System (ADS)

    Warrick, Jonathan A.; Xu, Jingping; Noble, Marlene A.; Lee, Homa J.

    2008-05-01

    Observations of sediment dispersal from the Santa Clara River of southern California during two moderately sized river discharge events suggest that river sediment rapidly formed a negatively buoyant (hyperpycnal) bottom plume along the seabed within hours of peak discharge. An array of acoustic and optical sensors were placed at three stations 1 km from the Santa Clara River mouth in 10-m water depth during January-February 2004. These combined observations suggest that fluid mud concentrations of suspended sediment (>10 g/l) and across-shore gravity currents (˜5 cm/s) were observed in the lower 20-40 cm of the water column 4-6 h after discharge events. Gravity currents were wave dominated, rather than auto-suspending, and appeared to consist of silt-to-clay sized sediment from the river. Sediment mass balances suggest that 25-50% of the discharged river sediment was transported by these hyperpycnal currents. Sediment settling purely by flocs (˜1 mm/s) cannot explain the formation of the observed hyperpycnal plumes, therefore we suggest that some enhanced sediment settling from mixing, convective instabilities, or diverging plumes occurred that would explain the formation of the gravity currents. These combined results provide field evidence that high suspended-sediment concentrations from rivers (>1 g/l) may rapidly form hyperpycnal sediment gravity currents immediately offshore of river mouths, and these pathways can explain a significant portion of the river-margin sediment budget. The fate of this sediment will be strongly influenced by bathymetry, whereas the fate of the remaining sediment will be much more influenced by ocean currents.

  15. Rapid formation of hyperpycnal sediment gravity currents offshore of a semi-arid California river

    USGS Publications Warehouse

    Warrick, J.A.; Xu, Jie; Noble, M.A.; Lee, H.J.

    2008-01-01

    Observations of sediment dispersal from the Santa Clara River of southern California during two moderately sized river discharge events suggest that river sediment rapidly formed a negatively buoyant (hyperpycnal) bottom plume along the seabed within hours of peak discharge. An array of acoustic and optical sensors were placed at three stations 1 km from the Santa Clara River mouth in 10-m water depth during January-February 2004. These combined observations suggest that fluid mud concentrations of suspended sediment (>10 g/l) and across-shore gravity currents (???5 cm/s) were observed in the lower 20-40 cm of the water column 4-6 h after discharge events. Gravity currents were wave dominated, rather than auto-suspending, and appeared to consist of silt-to-clay sized sediment from the river. Sediment mass balances suggest that 25-50% of the discharged river sediment was transported by these hyperpycnal currents. Sediment settling purely by flocs (???1 mm/s) cannot explain the formation of the observed hyperpycnal plumes, therefore we suggest that some enhanced sediment settling from mixing, convective instabilities, or diverging plumes occurred that would explain the formation of the gravity currents. These combined results provide field evidence that high suspended-sediment concentrations from rivers (>1 g/l) may rapidly form hyperpycnal sediment gravity currents immediately offshore of river mouths, and these pathways can explain a significant portion of the river-margin sediment budget. The fate of this sediment will be strongly influenced by bathymetry, whereas the fate of the remaining sediment will be much more influenced by ocean currents.

  16. Sediment yields from small, steep coastal watersheds of California

    USGS Publications Warehouse

    Warrick, Jonathan A.; Melack, John M.; Goodridge, Blair M.

    2015-01-01

    Global inventories of sediment discharge to the ocean highlight the importance of small, steep watersheds (i.e., those having drainage areas less than 100,000 km2 and over 1000 m of relief) that collectively provide a dominant flux of sediment. The smallest of these coastal watersheds (e.g., those that have drainage areas less than 1000 km2) can represent a large portion of the drainage areas of active margin coasts, such as California’s coast, but remain almost universally unmonitored. Here we report on the suspended-sediment discharge of several small coastal watersheds (10-56 km2) of the Santa Ynez Mountains, California, that were found to have ephemeral discharge and suspended-sediment concentrations ranging between 1 and over 200,000 mgL-1. Sediment concentrations were weakly correlated with discharge (r2 = 0.10–0.25), and all types of hysteresis patterns were observed during high flows (clockwise, counterclockwise, no hysteresis, and complex). Sediment discharge varied strongly with time and was measurably elevated in one watershed following a wildfire. Although sediment yields varied by over 100-fold across the watersheds (e.g., 15 – 2100 tkm-2 yr -1during the relatively wet 2005 water year), the majority of sediment discharge (65-80%) occurred during only 1% of the time for all watersheds. Furthermore, sampling of dozens of high flow events provides evidence that sediment yields were generally related to peak discharge yields, although these relationships were not consistent across the watersheds. These results suggest that small watersheds of active margins can provide large fluxes of sediment to the coast, but that the rates and timing of this sediment discharge is more irregular in time – and thus more difficult to characterize – than the better monitored and studied watersheds that are 1000-100,000 km2.

  17. Sediment transport and deposition processes near ocean outfalls in Southern California

    USGS Publications Warehouse

    Lee, H.J.; Noble, M.A.; Xu, Jie; ,

    2003-01-01

    An urbanized coastal ocean that has complex topography and large-scale atmospheric and oceanographic forcing can contain a variety of sediment and pollutant distribution patterns. For example, the central southern California Bight has two large embayments, Santa Monica and San Pedro Bays, that are connected by a short, very narrow shelf off the Palos Verdes peninsula. The complex topography causes quite different oceanographic and sediment distribution patterns in this fairly small region of the coastal ocean. In addition, three sewage outfalls discharge material over the outer shelf. A large suite of sediment cores was obtained and analyzed for contaminants, physical properties, accumulation rates, and grain sizes. Arrays of instrumented moorings that monitor currents, waves, water clarity, water density and collect resuspended materials were deployed. The data and models developed for the Palos Verdes margin suggest that a large reservoir of DDT and its byproducts exists in the coastal ocean sediment and will continue to be exhumed and transported along the shelf for a long time. On the Santa Monica shelf, very large internal waves, or bores, are generated at the shelf break. The near-bottom currents associated with these waves sweep sediment and the associated contaminants from the shelf onto the continental slope. On the San Pedro margin an initial examination of recent data collected in the coastal ocean does not suggest that bacterial contamination on local beaches is primarily caused by transport of material from the adjacent ocean outfall.

  18. Is these a link between eustatic variations, platform drowning, oceanic anoxic events, and ammonite faunal turnovers ? Case study of the Aptian sediments along the northern Tethyan margin

    NASA Astrophysics Data System (ADS)

    Pictet, Antoine; Föllmi, Karl; Spangenberg, Jorge

    2014-05-01

    The early Aptian witnessed an important episode of paleoenvironmental change, which has been linked to major marine volcanic activity related to the formation of the Ontong-Java large igneous province (e.g., Larson and Erba, 1999). This phase culminated in the formation of hemipelagic and pelagic organic-rich sediments, whereas profound changes are also observed in shallow-water settings, with the step-by-step disappearance of the northern Tethyan platform. Results show that the northern Tethyan platform has passed through three major crises in its evolution during the early Aptian. A first one started with an emersion phase, marked by a subaerial karstified discontinuity reported from the middle early Aptian (Deshayesites forbesi or early D. deshayesi zone). This is directly followed by the drowning of the Urgonian platform along the northern Tethyan margin, preceding the Selli Episode. The period following this drowning phase coincides with the negative and the following positive excursions in the δ13C records and went along with the deposition of the so-called Lower Grünten Member, which is the result of heterozoan carbonate production and characterized by increased detrital input. Ammonite fauna witnessed an important diversification of hemipelagic forms, especially inside the heteromorph Ancyloceratacea. This radiation is probably linked to the expansion of hemipelagic facies, one of the main habitats of ammonites. A second phase, reported from the late early Aptian (late D. deshayesi zone), started with a small drowning event, marked by a firmground and by a phosphatic enrichment. This stratigraphical layer also corresponds to the establishment of the anoxic Apparein level. Above, the Upper Grünten Member continues with heterozoan carbonate production or with glauconitic condensed sediments. The corresponding δ13C record is a the onset of a long-term decrease. The ammonite fauna is marked by a first turnover with the disappearance of Deshayesites, and the

  19. Real-Time PCR Quantification and Diversity Analysis of the Functional Genes aprA and dsrA of Sulfate-Reducing Prokaryotes in Marine Sediments of the Peru Continental Margin and the Black Sea.

    PubMed

    Blazejak, Anna; Schippers, Axel

    2011-01-01

    Sulfate-reducing prokaryotes (SRP) are ubiquitous and quantitatively important members in many ecosystems, especially in marine sediments. However their abundance and diversity in subsurface marine sediments is poorly understood. In this study, the abundance and diversity of the functional genes for the enzymes adenosine 5'-phosphosulfate reductase (aprA) and dissimilatory sulfite reductase (dsrA) of SRP in marine sediments of the Peru continental margin and the Black Sea were analyzed, including samples from the deep biosphere (ODP site 1227). For aprA quantification a Q-PCR assay was designed and evaluated. Depth profiles of the aprA and dsrA copy numbers were almost equal for all sites. Gene copy numbers decreased concomitantly with depth from around 10(8)/g sediment close to the sediment surface to less than 10(5)/g sediment at 5 mbsf. The 16S rRNA gene copy numbers of total bacteria were much higher than those of the functional genes at all sediment depths and used to calculate the proportion of SRP to the total Bacteria. The aprA and dsrA copy numbers comprised in average 0.5-1% of the 16S rRNA gene copy numbers of total bacteria in the sediments up to a depth of ca. 40 mbsf. In the zone without detectable sulfate in the pore water from about 40-121 mbsf (Peru margin ODP site 1227), only dsrA (but not aprA) was detected with copy numbers of less than 10(4)/g sediment, comprising ca. 14% of the 16S rRNA gene copy numbers of total bacteria. In this zone, sulfate might be provided for SRP by anaerobic sulfide oxidation. Clone libraries of aprA showed that all isolated sequences originate from SRP showing a close relationship to aprA of characterized species or form a new cluster with only distant relation to aprA of isolated SRP. For dsrA a high diversity was detected, even up to 121 m sediment depth in the deep biosphere.

  20. Real-Time PCR Quantification and Diversity Analysis of the Functional Genes aprA and dsrA of Sulfate-Reducing Prokaryotes in Marine Sediments of the Peru Continental Margin and the Black Sea

    PubMed Central

    Blazejak, Anna; Schippers, Axel

    2011-01-01

    Sulfate-reducing prokaryotes (SRP) are ubiquitous and quantitatively important members in many ecosystems, especially in marine sediments. However their abundance and diversity in subsurface marine sediments is poorly understood. In this study, the abundance and diversity of the functional genes for the enzymes adenosine 5′-phosphosulfate reductase (aprA) and dissimilatory sulfite reductase (dsrA) of SRP in marine sediments of the Peru continental margin and the Black Sea were analyzed, including samples from the deep biosphere (ODP site 1227). For aprA quantification a Q-PCR assay was designed and evaluated. Depth profiles of the aprA and dsrA copy numbers were almost equal for all sites. Gene copy numbers decreased concomitantly with depth from around 108/g sediment close to the sediment surface to less than 105/g sediment at 5 mbsf. The 16S rRNA gene copy numbers of total bacteria were much higher than those of the functional genes at all sediment depths and used to calculate the proportion of SRP to the total Bacteria. The aprA and dsrA copy numbers comprised in average 0.5–1% of the 16S rRNA gene copy numbers of total bacteria in the sediments up to a depth of ca. 40 mbsf. In the zone without detectable sulfate in the pore water from about 40–121 mbsf (Peru margin ODP site 1227), only dsrA (but not aprA) was detected with copy numbers of less than 104/g sediment, comprising ca. 14% of the 16S rRNA gene copy numbers of total bacteria. In this zone, sulfate might be provided for SRP by anaerobic sulfide oxidation. Clone libraries of aprA showed that all isolated sequences originate from SRP showing a close relationship to aprA of characterized species or form a new cluster with only distant relation to aprA of isolated SRP. For dsrA a high diversity was detected, even up to 121 m sediment depth in the deep biosphere. PMID:22203820

  1. Earthquake site response in Santa Cruz, California

    USGS Publications Warehouse

    Carver, D.; Hartzell, S.H.

    1996-01-01

    Aftershocks of the 1989 Loma Prieta, California, earthquake are used to estimate site response in a 12-km2 area centered on downtown Santa Cruz. A total of 258 S-wave records from 36 aftershocks recorded at 33 sites are used in a linear inversion for site-response spectra. The inversion scheme takes advantage of the redundancy of the large data set for which several aftershocks are recorded at each site. The scheme decomposes the observed spectra into source, path, and site terms. The path term is specified before the inversion. The undetermined degree of freedom in the decomposition into source and site spectra is removed by specifying the site-response factor to be approximately 1.0 at two sites on crystalline bedrock. The S-wave site responses correlate well with the surficial geology and observed damage pattern of the mainshock. The site-response spectra of the floodplain sites, which include the heavily damaged downtown area, exhibit significant peaks. The largest peaks are between 1 and 4 Hz. Five floodplain sites have amplification factors of 10 or greater. Most of the floodplain site-response spectra also have a smaller secondary peak between 6 and 8 Hz. Residential areas built on marine terraces above the flood-plain experienced much less severe damage. Site-response spectra for these areas also have their largest peaks between 1 and 4 Hz, but the amplification is generally below 6. Several of these sites also have a secondary peak between 6 and 8 Hz. The response peaks seen at nearly all sites between 1 and 4 Hz are probably caused by the natural resonance of the sedimentary rock column. The higher amplifications at floodplain sites may be caused by surface waves generated at the basin margins. The secondary peak between 6 and 8 Hz at many sites may be a harmonic of the 1- to 4-Hz peaks. We used waveforms from a seven-station approximately linear array located on the floodplain to calculate the apparent velocity and azimuth of propagation of coherent

  2. Sea level reconstructions and non-marine sedimentation at the Triassic-Jurassic boundary: southwestern margin of the Neotethys in the Salt Range, Pakistan

    NASA Astrophysics Data System (ADS)

    Iqbal, Shahid; Wagreich, Michael

    2016-04-01

    The environmental changes during the Triassic-Jurassic boundary interval and the associated mass extinction event are still strongly debated. Sea-level reconstruction records during this interval reveal an end-Triassic global regression event. Erosion and karstification at the top of Triassic sediments, and Lower Jurassic fluvial channels with reworked Triassic clasts indicate widespread regression in the European basins. Laterite at the top of the Triassic, and quartzose conglomerates/sandstones at the base of the Jurassic indicate a fluvial/terrestrial onset in Iran and Afghanistan. Abrupt emergence, erosion and facies dislocation, from the Triassic dolomites (Kingriali Formation) to Lower Jurassic fluvial/continental quartzose conglomerates/pebbly sandstones (Datta Formation) occur in the Tethyan Salt Range of Pakistan. Sedimentological analyses indicate marine regression and emergence under tropical-subtropical conditions (Greenhouse conditions) and negates the possibility of glacial influence in this region. Field evidences indicate the presence of an undulatory surface at the base of the Jurassic and a high (Sargodha High) is present south of the Salt Range Thrust, the southern boundary of the basin. Furthermore, geophysical data (mostly seismic sections) in different parts of the basin display normal faults in the basement. These features are interpreted as horst and graben structures at the Triassic-Jurassic boundary in the Kohat-Potwar Plateau. The Lower Jurassic Datta Formation appears to have been deposited in an overall graben fill settings. Similar normal faults and graben fill geometries are observed on seismic sections in Tanzania, Mozambique, Madagascar and other regions of the southeastern margin of the African Plate and are related to the Karoo rift system. To summarize, the basement normal faults and the graben fill features at the Triassic-Jurassic boundary in the Kohat-Potwar Plateau can be correlated to similar features common in the Karoo

  3. Record of a Mid-Pleistocene depositional anomaly in West Antarctic continental margin sediments: an indicator for ice-sheet collapse?

    NASA Astrophysics Data System (ADS)

    Hillenbrand, C.-D.; Kuhn, G.; Frederichs, T.

    2009-06-01

    Modern global warming is likely to cause future melting of Earth's polar ice sheets that may result in dramatic sea-level rise. A possible collapse of the West Antarctic Ice Sheet (WAIS) alone, which is considered highly vulnerable as it is mainly based below sea level, may raise global sea level by up to 5-6 m. Despite the importance of the WAIS for changes in global sea level, its response to the glacial-interglacial cycles of the Quaternary is poorly constrained. Moreover, the geological evidence for the disintegration of the WAIS at some time within the last ca. 750 kyr, possibly during Marine Isotope Stage (MIS) 11 (424-374 ka), is ambiguous. Here we present physical properties, palaeomagnetic, geochemical and clay mineralogical data from a glaciomarine sedimentary sequence that was recovered from the West Antarctic continental margin in the Amundsen Sea and spans more than the last 1 Myr. Within the sedimentary sequence, proxies for biological productivity (such as biogenic opal and the barium/aluminum ratio) and the supply of lithogenic detritus from the West Antarctic hinterland (such as ice-rafted debris and clay minerals) exhibit cyclic fluctuations in accordance with the glacial-interglacial cycles of the Quaternary. A prominent depositional anomaly spans MIS 15-MIS 13 (621-478 ka). The proxies for biological productivity and lithogenic sediment supply indicate that this interval has the characteristics of a single, prolonged interglacial period. Even though no proxy suggests environmental conditions much different from today, we conclude that, if the WAIS collapsed during the last 800 kyr, then MIS 15-MIS 13 was the most likely time period. Apparently, the duration rather than the strength of interglacial conditions was the crucial factor for the WAIS drawdown. A comparison with various marine and terrestrial climate archives from around the world corroborates that unusual environmental conditions prevailed throughout MIS 15-MIS 13. Some of these

  4. In North Ecuador - South Colombia margin (0-4°N), the sedimentation rate in the trench and the tectonic deformation co-control the location of the seismogenic zone.

    NASA Astrophysics Data System (ADS)

    Marcaillou, Boris; Jean-Yves, Collot; Allessandra, Ribodetti; Elia, D'acremont

    2010-05-01

    The North Ecuador - South Colombia convergent margin shows along strike variations in tectonic, thermal and seismogenic features that offer a great opportunity to study the relation between subduction zone tectono-structure, thermal regime and location of the thermally-defined seismogenic zone. Multichannel seismic reflections and conventional bathymetric data were collected in 2000 and 2005 during the SISTEUR and AMADEUS cruises. 6 selected lines perpendicular to the margin were processed with a pre-stack depth migration using a preserved amplitude approach (alias Ray+Born diffraction tomography). The first heat flow measurements in this area were also acquired, completed by heat flow derived from numerous bottom simulating reflectors. The margin is divided in Esmeraldas, Patia, Tumaco and Manglares segments. 1/ Tectonically, the tectonic deformation at the margin front drastically vary from North to South: The Patia segment is fronted by a 35 km- long active accretionary prism, the Tumaco segment by a less than 10 km-long active accretionary prism, no accretion occur in the Manglares segment, while the southern Esmeraldas segment undergoes a strong tectonic erosion. It is noteworthy that this regime is independent from the sediment thickness in the trench which is thinner where the prism is longer. 2/ Thermally, these segments also shows clear variations in heat flow that is, in the trench and in the lower slope, two-fold lower in the Tumaco segment than in the others. 3/ Sismogenically, large subduction earthquakes have ruptured the plate interface beneath the Manglares segment in 1958 and the Tumaco-Patia segments en 1979. Based on the aftershocks distribution and the rupture zone location, the seismogenic zone extends trenchward nearby the deformation front in the Patia-Tumaco segments but is restricted 30 km landward in the Manglares segment. The integrated interpretation of heat flow and sismic data indicate that: 1/ The thermal segmentation is mainly

  5. Santa Cruz River Options

    EPA Science Inventory

    This presentation summarizes qualitative research insights gained during development of a nonmarket valuation survey for changes to the Santa Cruz River in Southern Arizona. Qualitative research provides an important avenue for understanding how the public interprets valuation s...

  6. Santa Cruz River Options

    EPA Science Inventory

    This presentation summarizes qualitative research insights gained during development of a nonmarket valuation survey for changes to the Santa Cruz River in Southern Arizona. Qualitative research provides an important avenue for understanding how the public interprets valuation s...

  7. Quaternary sedimentation and active faulting along the Ecuadorian shelf: preliminary results of the ATACAMES Cruise (2012)

    NASA Astrophysics Data System (ADS)

    Michaud, F.; Proust, J. N.; Collot, J. Y.; Lebrun, J. F.; Witt, C.; Ratzov, G.; Pouderoux, H.; Martillo, C.; Hernández, M. J.; Loayza, G.; Penafiel, L.; Schenini, L.; Dano, A.; Gonzalez, M.; Barba, D.; De Min, L.; Ponce, G.; Urresta, A.; Calderon, M.

    2015-03-01

    Selected high-resolution seismic-reflection profiles and multibeam bathymetry acquired along the convergent Ecuador margin during the ATACAMES cruise on onboard the R/V L'Atalante (Jan.15-Feb.18, 2012) allow a preliminary evaluation of the neotectonic development and stratigraphic evolution of the margin based on the sismo-stratigraphic analysis of Quaternary sediment preserved on the margin shelf and upper slope. We present three major preliminary results. (1) The evolution of the Esmeraldas, Guayaquil and Santa Elena canyons. The head of the Esmeraldas canyon is the location of a continuous significant sediment transport. The Guayaquil canyon shows several episodes of deposition and incision. Aggrading sedimentation pattern in the canyon records several changes in relative sea-level. The subsidence of the Gulf of Guayaquil probably contributes to the good preservation of the canyon filling stages. The Santa Elena canyon is controlled by a SW-NE trending normal fault. (2) Variations of sediment accumulation and relative vertical motions are shown along-strike the shelf edge. Offshore the uplifted Manta peninsula, a pronounced subsidence of the shelf edge is documented by sedimentary clinoforms that have deposited in a morphological reentrant, and have migrated upslope testifying of a local subsidence meanwhile the adjacent La Plata Island area underwent uplift. In the Esmeraldas canyon area, a local uplift of the shelf is documented. (3) Two neotectonic fault systems with a possible transcurrent component are imaged across the shelf edge and upper margin slope offshore Jama, and Cape Galera. This possible transcurrent motion could be related to the reactivation of ancient faults of the upper plate by the subduction. These preliminary results indicate that the ATACAMES data set has a strong potential to evaluate the spatial and temporal contribution of tectonic and climate changes on the structural development and stratigraphic evolution of the Ecuador continental

  8. Determining rates of Quaternary uplift across the Santa Rosa Island Fault, Channel Islands National Park, Southern California

    NASA Astrophysics Data System (ADS)

    Cyr, A.; Schmidt, K. M.; Minor, S. A.; Bedford, D.

    2014-12-01

    The northern Channel Islands, southern California, form the southern margin of the western Transverse Ranges. They constitute a roughly east-west trending emergent ridge uplifted as a result of south-vergent shortening and left-lateral slip, mostly on west-striking, north-dipping faults. Late Quaternary uplift of these islands is recorded by two prominent wave-cut platforms, which occur at elevations of ~5-7 and ~6-24 meters above sea level, have been attributed by previous workers to Marine Isotope Stages (MIS) 5a (~80ka) and 5e (~120 ka), and indicate low and somewhat spatially variable, uplift rates of 0.1-0.2 mm/yr. We have documented evidence of older, higher marine features, such as shoreline angles, beveled surfaces buried by aeolian sand, and pholad borings, in the interior of Santa Rosa Island. Our simple steady uplift models indicate that the highest of these paleo shore line markers, which occur at ~275 m, could be anywhere from ~1.2 Ma to ~2.7 Ma. However, despite their importance for understanding longer term uplift rates associated with the Santa Rosa Island fault and/or other faults, their ages remain unknown. As part of a cooperative effort with the National Park Service to complete a new Quaternary geologic map of the northern Channel Islands, we collected samples of quartz-bearing rock and sediment at seven locations on Santa Rosa Island, representative of 6 paleo shorelines spanning elevations between ~65 and ~275 meters above sea level, from both sides of the Santa Rosa Island fault. Rock samples were collected from moderately indurated fossiliferous marine sands that either contain pholad-bored clasts or overlie a beveled bedrock surface in order to determine 10Be exposure ages. Sediments were collected from where they directly overlie shoreline angles for determination of 10Be-26Al burial ages. Ages of these paleo sea level markers will enable us to test previous assumptions of steady island uplift, as well as allow us to test hypotheses

  9. C sub 1 -C sub 8 hydrocarbons in sediments from Guaymas Basin, Gulf of California: Comparison to Peru margin, Japan Trench and California borderlands

    SciTech Connect

    Whelan, J.K.; Tarafa, M.E. ); Simoneit, B.R.T. )

    1988-01-01

    Surface sea floor sediments, hydrothermal vent samples, and Deep Sea Drilling Project sediments (Hole 481 A) from the Guaymas Basin were examined for C{sub 1}-C{sub 8} hydrocarbons. The proportions of various classes of compounds were examined and compared to those from other geographic areas (Peru upwelling region and Japan Trench) to gain insight into the relative importance of thermal generation, migration and biodegradation. Concentrations of C{sub 2}-C{sub 7} hydrocarbons were about 10-10,000 times higher in geothermally warm Guaymas Basin sediments in comparison to the low concentrations (0.1-10 ppb per compound) typical of geothermally cold sea floor and DSDP diatomaceous sediments. Alkene/alkane ratios of 0.1 or greater were typical of both geothermally cold sediments and also of very hydrocarbon-rich Alvin samples recovered from the sea floor. Because little or no alkene was generally detected in buried sediments exposed to geothermal temperatures greater than 30C, it is suggested that the alkenes are produced by biogenic processes. Normal alkanes predominated over cyclic and branched structures in geothermally cooler (<20{degree}C) sediments, with the proportion of cyclic and branched compounds increasing in hotter sediments. Similarities in compositions of branched and cyclic compounds were observed in some pairs of bitumen-rich Guaymas sea floor samples recovered from different areas, suggesting common mechanisms of light hydrocarbon generation and/or migration. 76 refs.

  10. Spectral reflectance and soil morphology characteristics of Santa Rita Experimental Range soils

    Treesearch

    A. Karim Batchily; Donald F. Post; R. B. Bryant; Donald J. Breckenfeld

    2003-01-01

    The Santa Rita Experimental Range (SRER) soils are mostly transported alluvial sediments that occur on the piedmont slope flanking the Santa Rita Mountains in Arizona. The major geomorphic land forms are alluvial fans or fan terraces, but there are also areas of residual soils formed on granite and limestone bedrock, basin floor, stream terraces, and flood plains. The...

  11. Effects of bottom water dissolved oxygen variability on copper and lead fractionation in the sediments across the oxygen minimum zone, western continental margin of India.

    PubMed

    Chakraborty, Parthasarathi; Chakraborty, Sucharita; Jayachandran, Saranya; Madan, Ritu; Sarkar, Arindam; Linsy, P; Nath, B Nagender

    2016-10-01

    This study describes the effect of varying bottom-water oxygen concentration on geochemical fractionation (operational speciation) of Cu and Pb in the underneath sediments across the oxygen minimum zone (Arabian Sea) in the west coast of India. Both, Cu and Pb were redistributed among the different binding phases of the sediments with changing dissolved oxygen level (from oxic to hypoxic and close to suboxic) in the bottom water. The average lability of Cu-sediment complexes gradually decreased (i.e., stability increased) with the decreasing dissolved oxygen concentrations of the bottom water. Decreasing bottom-water oxygen concentration increased Cu association with sedimentary organic matter. However, Pb association with Fe/Mn-oxyhydroxide phases in the sediments gradually decreased with the decreasing dissolved oxygen concentration of the overlying bottom water (due to dissolution of Fe/Mn oxyhydroxide phase). The lability of Pb-sediment complexes increased with the decreasing bottom-water oxygen concentration. This study suggests that bottom-water oxygen concentration is one of the key factors governing stability and lability of Cu and Pb complexes in the underneath sediment. Sedimentary organic matter and Fe/Mn oxyhydroxide binding phases were the major hosting phases for Cu and Pb respectively in the study area. Increasing lability of Pb-complexes in bottom sediments may lead to positive benthic fluxes of Pb at low oxygen environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Holocene ice-rafting and sediment transport from the glaciated margin of East Greenland (67-70°N) to the N Iceland shelves: detecting and modelling changing sediment sources

    NASA Astrophysics Data System (ADS)

    Andrews, John T.; Bigg, Grant R.; Wilton, David J.

    2014-05-01

    We examine variations in the ice-rafted sources for sediments in the Iceland/East Greenland offshore marine archives by utilizing a sediment unmixing model and link the results to a coupled iceberg-ocean model. Surface samples from around Iceland and along the E/NE Greenland shelf are used to define potential sediment sources, and these are examined within the context of the down-core variations in mineralogy in the <2 mm sediment fraction from a transect of cores across Denmark Strait. A sediment unmixing model is used to estimate the fraction of sediment <2 mm off NW and N Iceland exported across Denmark Strait; this averaged between 10 and 20%. Both the sediment unmixing model and the coupled iceberg-ocean model are consistent in finding that the fraction of “far-travelled” sediments in the Denmark Strait environs is overwhelmingly of local, mid-East Greenland, provenance, and therefore with a significant cross-channel component to their travel. The Holocene record of ice-rafted sediments denotes a three-part division of the Holocene in terms of iceberg sediment transport with a notable increase in the process starting ca 4000 cal yr BP. This latter increase may represent the re-advance during the Neoglacial period of land-terminating glaciers on the Geikie Plateau to become marine-terminating. The contrast in spectral signals between these cores and the 1500-yr cycle at VM28-14, just south of the Denmark Strait, combined with the coupled iceberg-model results, leads us to speculate that the signal at VM28-14 reflects pulses in overflow waters, rather than an ice-rafted signal.

  13. Reconstructing 2000 years of hydrological variation derived from laminated proglacial sediments of Lago del Desierto at the eastern margin of the South Patagonian Ice Field, Argentina

    NASA Astrophysics Data System (ADS)

    Kastner, Stephanie; Enters, Dirk; Ohlendorf, Christian; Haberzettl, Torsten; Kuhn, Gerhard; Lücke, Andreas; Mayr, Christoph; Reyss, Jean-Louis; Wastegård, Stefan; Zolitschka, Bernd

    2010-06-01

    Lago del Desierto (49°02'S, 72°51'W) is situated in the climatically sensitive area of Southern Patagonia close to the Hielo Patagonico Sur (HPS or South Patagonian Ice Field, Argentina). Next to marine records and Antarctic ice cores, this continental area is important to reveal hemispheric and global climate trends. As instrumental climate records from this region are generally short and scarce, environmental archives are the only source of long-term records of climate variations. In this study, the potential of laminated proglacial sediments from Lago del Desierto as a palaeoclimate archive is evaluated. Two parallel gravity cores (max. length 283 cm) were analysed using a multi-proxy approach. Radiometric dating ( 14C, 210Pb and 137Cs) and tephrochronology document that the sediment cover the last 2000 years. Especially in the middle part of the record, numerous turbidites make climate variations difficult to decipher. However, after exclusion of event layers changes in sedimentological, mineralogical, and geochemical parameters reveal a long-term trend of runoff variations and sediment accessibility controlled by changes in temperature and precipitation. An abrupt transition in sediment composition occurred around AD 850 and is interpreted as a change in sediment availability related to the initial exposure of formerly glaciated areas in the catchment. This striking change mirrors the onset of warmer climate conditions during the Medieval Climate Anomaly. Moreover, the Little Ice Age cooling and the subsequent 20th century warming can be traced in the sediment record corresponding to an overall trend observed for southern South America. The proglacial lacustrine sediment record of Lago del Desierto thus constitutes a link between glacier studies of the HPS and other terrestrial climate archives in a region were long, and continuous climate records are still rare.

  14. Provenance of Holocene sediment</