Sample records for marine algal neurotoxin

  1. EFFECTS OF MARINE ALGAL TOXINS ON THERMOREGULATION IN MICE.

    EPA Science Inventory

    Hypothermia is often seen in mice and rats exposed acutely to marine algal toxins, but the mechanism of action of these toxins on thermoregulation is not well understood. Our laboratory has assessed the thermoregulatory mechanisms of two marine algal toxins, maitotoxin and brevet...

  2. sxtA-Based Quantitative Molecular Assay To Identify Saxitoxin-Producing Harmful Algal Blooms in Marine Waters ▿ †

    PubMed Central

    Murray, Shauna A.; Wiese, Maria; Stüken, Anke; Brett, Steve; Kellmann, Ralf; Hallegraeff, Gustaaf; Neilan, Brett A.

    2011-01-01

    The recent identification of genes involved in the production of the potent neurotoxin and keystone metabolite saxitoxin (STX) in marine eukaryotic phytoplankton has allowed us for the first time to develop molecular genetic methods to investigate the chemical ecology of harmful algal blooms in situ. We present a novel method for detecting and quantifying the potential for STX production in marine environmental samples. Our assay detects a domain of the gene sxtA that encodes a unique enzyme putatively involved in the sxt pathway in marine dinoflagellates, sxtA4. A product of the correct size was recovered from nine strains of four species of STX-producing Alexandrium and Gymnodinium catenatum and was not detected in the non-STX-producing Alexandrium species, other dinoflagellate cultures, or an environmental sample that did not contain known STX-producing species. However, sxtA4 was also detected in the non-STX-producing strain of Alexandrium tamarense, Tasmanian ribotype. We investigated the copy number of sxtA4 in three strains of Alexandrium catenella and found it to be relatively constant among strains. Using our novel method, we detected and quantified sxtA4 in three environmental blooms of Alexandrium catenella that led to STX uptake in oysters. We conclude that this method shows promise as an accurate, fast, and cost-effective means of quantifying the potential for STX production in marine samples and will be useful for biological oceanographic research and harmful algal bloom monitoring. PMID:21841034

  3. Prevalence of algal toxins in Alaskan marine mammals foraging in a changing arctic and subarctic environment.

    PubMed

    Lefebvre, Kathi A; Quakenbush, Lori; Frame, Elizabeth; Huntington, Kathy Burek; Sheffield, Gay; Stimmelmayr, Raphaela; Bryan, Anna; Kendrick, Preston; Ziel, Heather; Goldstein, Tracey; Snyder, Jonathan A; Gelatt, Tom; Gulland, Frances; Dickerson, Bobette; Gill, Verena

    2016-05-01

    Current climate trends resulting in rapid declines in sea ice and increasing water temperatures are likely to expand the northern geographic range and duration of favorable conditions for harmful algal blooms (HABs), making algal toxins a growing concern in Alaskan marine food webs. Two of the most common HAB toxins along the west coast of North America are the neurotoxins domoic acid (DA) and saxitoxin (STX). Over the last 20 years, DA toxicosis has caused significant illness and mortality in marine mammals along the west coast of the USA, but has not been reported to impact marine mammals foraging in Alaskan waters. Saxitoxin, the most potent of the paralytic shellfish poisoning toxins, has been well-documented in shellfish in the Aleutians and Gulf of Alaska for decades and associated with human illnesses and deaths due to consumption of toxic clams. There is little information regarding exposure of Alaskan marine mammals. Here, the spatial patterns and prevalence of DA and STX exposure in Alaskan marine mammals are documented in order to assess health risks to northern populations including those species that are important to the nutritional, cultural, and economic well-being of Alaskan coastal communities. In this study, 905 marine mammals from 13 species were sampled including; humpback whales, bowhead whales, beluga whales, harbor porpoises, northern fur seals, Steller sea lions, harbor seals, ringed seals, bearded seals, spotted seals, ribbon seals, Pacific walruses, and northern sea otters. Domoic acid was detected in all 13 species examined and had the greatest prevalence in bowhead whales (68%) and harbor seals (67%). Saxitoxin was detected in 10 of the 13 species, with the highest prevalence in humpback whales (50%) and bowhead whales (32%). Pacific walruses contained the highest concentrations of both STX and DA, with DA concentrations similar to those detected in California sea lions exhibiting clinical signs of DA toxicosis (seizures) off the coast

  4. Marine algal toxins: origins, health effects, and their increased occurrence.

    PubMed Central

    Van Dolah, F M

    2000-01-01

    Certain marine algae produce potent toxins that impact human health through the consumption of contaminated shellfish and finfish and through water or aerosol exposure. Over the past three decades, the frequency and global distribution of toxic algal incidents appear to have increased, and human intoxications from novel algal sources have occurred. This increase is of particular concern, since it parallels recent evidence of large-scale ecologic disturbances that coincide with trends in global warming. The extent to which human activities have contributed to their increase therefore comes into question. This review summarizes the origins and health effects of marine algal toxins, as well as changes in their current global distribution, and examines possible causes for the recent increase in their occurrence. Images Figure 2 Figure 3 PMID:10698729

  5. New Typical Vector of Neurotoxin β-N-Methylamino-l-Alanine (BMAA) in the Marine Benthic Ecosystem.

    PubMed

    Li, Aifeng; Song, Jialiang; Hu, Yang; Deng, Longji; Ding, Ling; Li, Meihui

    2016-11-04

    The neurotoxin β- N -methylamino-l-alanine (BMAA) has been identified as an environmental factor triggering neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS) and Alzheimer's disease (AD). We investigated the possible vectors of BMAA and its isomers 2,4-diaminobutyric acid (DAB) and N -2(aminoethyl)glycine (AEG) in marine mollusks collected from the Chinese coast. Sixty-eight samples of marine mollusks were collected along the Chinese coast in 2016, and were analyzed by an HILIC-MS/MS (hydrophilic interaction liquid chromatography with tandem quadrupole mass spectrometer) method without derivatization. BMAA was detected in a total of five samples from three species: Neverita didyma , Solen strictus , and Mytilus coruscus . The top three concentrations of free-form BMAA (0.99~3.97 μg·g -1 wet weight) were detected in N. didyma . DAB was universally detected in most of the mollusk samples (53/68) with no species-specific or regional differences (0.051~2.65 μg·g -1 wet weight). No AEG was detected in any mollusk samples tested here. The results indicate that the gastropod N. didyma might be an important vector of the neurotoxin BMAA in the Chinese marine ecosystem. The neurotoxin DAB was universally present in marine bivalve and gastropod mollusks. Since N. didyma is consumed by humans, we suggest that the origin and risk of BMAA and DAB toxins in the marine ecosystem should be further investigated in the future.

  6. Beneficial Effects of Marine Algal Compounds in Cosmeceuticals

    PubMed Central

    Thomas, Noel Vinay; Kim, Se-Kwon

    2013-01-01

    The name “cosmeceuticals” is derived from “cosmetics and pharmaceuticals”, indicating that a specific product contains active ingredients. Marine algae have gained much importance in cosmeceutical product development due to their rich bioactive compounds. In the present review, marine algal compounds (phlorotannins, sulfated polysaccharides and tyrosinase inhibitors) have been discussed toward cosmeceutical application. In addition, atopic dermatitis and the possible role of matrix metalloproteinase (MMP) in skin-related diseases have been explored extensively for cosmeceutical products. The proper development of marine algae compounds will be helpful in cosmeceutical product development and in the development of the cosmeceutical industry. PMID:23344156

  7. Endangered North Atlantic right whales (Eubalaena glacialis) experience repeated, concurrent exposure to multiple environmental neurotoxins produced by marine algae.

    PubMed

    Doucette, Gregory J; Mikulski, Christina M; King, Kristen L; Roth, Patricia B; Wang, Zhihong; Leandro, Luis F; DeGrasse, Stacey L; White, Kevin D; De Biase, Daniela; Gillett, Roxanne M; Rolland, Rosalind M

    2012-01-01

    The western North Atlantic population of right whales (Eubalaena glacialis) is one of the most critically endangered of any whale population in the world. Among the factors considered to have potentially adverse effects on the health and reproduction of E. glacialis are biotoxins produced by certain microalgae responsible for causing harmful algal blooms. The worldwide incidence of these events has continued to increase dramatically over the past several decades and is expected to remain problematic under predicted climate change scenarios. Previous investigations have demonstrated that N. Atlantic right whales are being exposed to at least two classes of algal-produced environmental neurotoxins-paralytic shellfish toxins (PSTs) and domoic acid (DA). Our primary aims during this six-year study (2001-2006) were to assess whether the whales' exposure to these algal biotoxins occurred annually over multiple years, and to what extent individual whales were exposed repeatedly and/or concurrently to one or both toxin classes. Approximately 140 right whale fecal samples obtained across multiple habitats in the western N. Atlantic were analyzed for PSTs and DA. About 40% of these samples were attributed to individual whales in the North Atlantic Right Whale Catalog, permitting analysis of biotoxin exposure according to sex, age class, and reproductive status/history. Our findings demonstrate clearly that right whales are being exposed to both of these algal biotoxins on virtually an annual basis in multiple habitats for periods of up to six months (April through September), with similar exposure rates for females and males (PSTs: ∼70-80%; DA: ∼25-30%). Notably, only one of 14 lactating females sampled did not contain either PSTs or DA, suggesting the potential for maternal toxin transfer and possible effects on neonatal animals. Moreover, 22% of the fecal samples tested for PSTs and DA showed concurrent exposure to both neurotoxins, leading to questions of interactive

  8. Interaction of a dinoflagellate neurotoxin with voltage-activated ion channels in a marine diatom.

    PubMed

    Kitchen, Sheila A; Bourdelais, Andrea J; Taylor, Alison R

    2018-01-01

    The potent neurotoxins produced by the harmful algal bloom species Karenia brevis are activators of sodium voltage-gated channels (VGC) in animals, resulting in altered channel kinetics and membrane hyperexcitability. Recent biophysical and genomic evidence supports widespread presence of homologous sodium (Na + ) and calcium (Ca 2+ ) permeable VGCs in unicellular algae, including marine phytoplankton. We therefore hypothesized that VGCs of these phytoplankton may be an allelopathic target for waterborne neurotoxins produced by K. brevis blooms that could lead to ion channel dysfunction and disruption of signaling in a similar manner to animal Na + VGCs. We examined the interaction of brevetoxin-3 (PbTx-3), a K. brevis neurotoxin, with the Na + /Ca 2+ VGC of the non-toxic diatom Odontella sinensi s using electrophysiology. Single electrode current- and voltage- clamp recordings from O. sinensis in the presence of PbTx-3 were used to examine the toxin's effect on voltage gated Na + /Ca 2+ currents. In silico analysis was used to identify the putative PbTx binding site in the diatoms. We identified Na + /Ca 2+ VCG homologs from the transcriptomes and genomes of 12 diatoms, including three transcripts from O. sinensis and aligned them with site-5 of Na + VGCs, previously identified as the PbTx binding site in animals. Up to 1 µM PbTx had no effect on diatom resting membrane potential or membrane excitability. The kinetics of fast inward Na + /Ca 2+ currents that underlie diatom action potentials were also unaffected. However, the peak inward current was inhibited by 33%, delayed outward current was inhibited by 25%, and reversal potential of the currents shifted positive, indicating a change in permeability of the underlying channels. Sequence analysis showed a lack of conservation of the PbTx binding site in diatom VGC homologs, many of which share molecular features more similar to single-domain bacterial Na + /Ca 2+ VGCs than the 4-domain eukaryote channels

  9. Remote Sensing Marine Ecology: Wind-driven algal blooms in the open oceans and their ecological impacts

    NASA Astrophysics Data System (ADS)

    Tang, DanLing

    2016-07-01

    Algal bloom not only can increase the primary production but also could result in negative ecological consequence, e.g., Harmful Algal Blooms (HABs). According to the classic theory for the formation of algal blooms "critical depth" and "eutrophication", oligotrophic sea area is usually difficult to form a large area of algal blooms, and actually the traditional observation is only sporadic capture to the existence of algal blooms. Taking full advantage of multiple data of satellite remote sensing, this study: 1), introduces "Wind-driven algal blooms in open oceans: observation and mechanisms" It explained except classic coastal Ekman transport, the wind through a variety of mechanisms affecting the formation of algal blooms. Proposed a conceptual model of "Strong wind -upwelling-nutrient-phytoplankton blooms" in Western South China Sea (SCS) to assess role of wind-induced advection transport in phytoplankton bloom formation. It illustrates the nutrient resources that support long-term offshore phytoplankton blooms in the western SCS; 2), Proposal of the theory that "typhoons cause vertical mixing, induce phytoplankton blooms", and quantify their important contribution to marine primary production; Proposal a new ecological index for typhoon. Proposed remote sensing inversion models. 3), Finding of the spatial and temporaldistributions pattern of harmful algal bloom (HAB)and species variations of HAB in the South Yellow Sea and East China Sea, and in the Pearl River estuary, and their oceanic dynamic mechanisms related with monsoon; The project developed new techniques and generated new knowledge, which significantly improved understanding of the formation mechanisms of algal blooms. 1), It proposed "wind-pump" mechanism integrates theoretical system combing "ocean dynamics, development of algal blooms, and impact on primary production", which will benefit fisheries management. 2), A new interdisciplinary subject "Remote Sensing Marine Ecology"(RSME) has been

  10. Lack of variation in voltage-gated sodium channels of common bottlenose dolphins (Tursiops truncatus) exposed to neurotoxic algal blooms.

    PubMed

    Cammen, Kristina M; Rosel, Patricia E; Wells, Randall S; Read, Andrew J

    2014-12-01

    In coastal marine ecosystems, neurotoxins produced by harmful algal blooms (HABs) often result in large-scale mortality events of many marine species. Historical and frequent exposure to HABs therefore may provide a strong selective pressure for adaptations that result in toxin resistance. Neurotoxin resistance has independently evolved in a variety of terrestrial and marine species via mutations in genes encoding the toxin binding sites within the voltage-gated sodium channel gene complex. Accordingly, we tested the hypothesis that genetic variation in the putative binding site of brevetoxins in common bottlenose dolphins (Tursiops truncatus) explains differences among individuals or populations in resistance to harmful Karenia brevis blooms in the Gulf of Mexico. We found very little variation in the sodium channel exons encoding the putative brevetoxin binding site among bottlenose dolphins from central-west Florida and the Florida Panhandle. Our study included samples from several bottlenose dolphin mortality events associated with HABs, but we found no association between genetic variation and survival. We observed a significant effect of geographic region on genetic variation for some sodium channel isoforms, but this can be primarily explained by rare private alleles and is more likely a reflection of regional genetic differentiation than the cause of different levels of HAB resistance between regions. In contrast to many other previously studied neurotoxin-resistant species, we conclude that bottlenose dolphins have not evolved resistance to HABs via mutations in genes encoding the brevetoxin binding site on the voltage-gated sodium channels. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Antimicrobial effects of marine algal extracts and cyanobacterial pure compounds against five foodborne pathogens.

    PubMed

    Dussault, Dominic; Vu, Khanh Dang; Vansach, Tifanie; Horgen, F David; Lacroix, Monique

    2016-05-15

    The marine environment is a proven source of structurally complex and biologically active compounds. In this study, the antimicrobial effects of a small collection of marine-derived extracts and isolates, were evaluated against 5 foodborne pathogens using a broth dilution assay. Results demonstrated that algal extracts from Padina and Ulva species and cyanobacterial compounds antillatoxin B, laxaphycins A, B and B3, isomalyngamide A, and malyngamides C, I and J showed antimicrobial activity against Gram positive foodborne pathogens (Listeria monocytogenes, Bacillus cereus and Staphylococcus aureus) at low concentrations (⩽ 500 μg/ml). None of the algal extracts or cyanobacterial isolates had antibacterial activity against Gram negative bacteria (Escherichia coli and Salmonella enterica serovar Typhimurium). Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. MARINE SULFUR CYCLE. Identification of the algal dimethyl sulfide-releasing enzyme: A missing link in the marine sulfur cycle.

    PubMed

    Alcolombri, Uria; Ben-Dor, Shifra; Feldmesser, Ester; Levin, Yishai; Tawfik, Dan S; Vardi, Assaf

    2015-06-26

    Algal blooms produce large amounts of dimethyl sulfide (DMS), a volatile with a diverse signaling role in marine food webs that is emitted to the atmosphere, where it can affect cloud formation. The algal enzymes responsible for forming DMS from dimethylsulfoniopropionate (DMSP) remain unidentified despite their critical role in the global sulfur cycle. We identified and characterized Alma1, a DMSP lyase from the bloom-forming algae Emiliania huxleyi. Alma1 is a tetrameric, redox-sensitive enzyme of the aspartate racemase superfamily. Recombinant Alma1 exhibits biochemical features identical to the DMSP lyase in E. huxleyi, and DMS released by various E. huxleyi isolates correlates with their Alma1 levels. Sequence homology searches suggest that Alma1 represents a gene family present in major, globally distributed phytoplankton taxa and in other marine organisms. Copyright © 2015, American Association for the Advancement of Science.

  13. Harmful Algal Blooms

    USGS Publications Warehouse

    Graham, Jennifer L.

    2007-01-01

    What are Harmful Algal Blooms (HABs)? Freshwater and marine harmful algal blooms (HABs) can occur anytime water use is impaired due to excessive accumulations of algae. HAB occurrence is affected by a complex set of physical, chemical, biological, hydrological, and meteorological conditions making it difficult to isolate specific causative environmental factors. Potential impairments include reduction in water quality, accumulation of malodorous scums in beach areas, algal production of toxins potent enough to poison both aquatic and terrestrial organisms, and algal production of taste-and-odor compounds that cause unpalatable drinking water and fish. HABs are a global problem, and toxic freshwater and (or) marine algae have been implicated in human and animal illness and death in over 45 countries worldwide and in at least 27 U.S. States (Yoo and others, 1995; Chorus and Bartram, 1999; Huisman and others, 2005).

  14. Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties

    PubMed Central

    2013-01-01

    For their various bioactivities, biomaterials derived from marine algae are important ingredients in many products, such as cosmetics and drugs for treating cancer and other diseases. This mini-review comprehensively compares the bioactivities and biological functions of biomaterials from red, green, brown, and blue-green algae. The anti-oxidative effects and bioactivities of several different crude extracts of algae have been evaluated both in vitro and in vivo. Natural products derived from marine algae protect cells by modulating the effects of oxidative stress. Because oxidative stress plays important roles in inflammatory reactions and in carcinogenesis, marine algal natural products have potential for use in anti-cancer and anti-inflammatory drugs. PMID:23724847

  15. Identification of the algal dimethyl sulfide-releasing enzyme: A missing link in the marine sulfur cycle

    NASA Astrophysics Data System (ADS)

    Alcolombri, Uria; Ben-Dor, Shifra; Feldmesser, Ester; Levin, Yishai; Tawfik, Dan S.; Vardi, Assaf

    2015-06-01

    Algal blooms produce large amounts of dimethyl sulfide (DMS), a volatile with a diverse signaling role in marine food webs that is emitted to the atmosphere, where it can affect cloud formation. The algal enzymes responsible for forming DMS from dimethylsulfoniopropionate (DMSP) remain unidentified despite their critical role in the global sulfur cycle. We identified and characterized Alma1, a DMSP lyase from the bloom-forming algae Emiliania huxleyi. Alma1 is a tetrameric, redox-sensitive enzyme of the aspartate racemase superfamily. Recombinant Alma1 exhibits biochemical features identical to the DMSP lyase in E. huxleyi, and DMS released by various E. huxleyi isolates correlates with their Alma1 levels. Sequence homology searches suggest that Alma1 represents a gene family present in major, globally distributed phytoplankton taxa and in other marine organisms.

  16. Exploration of the antioxidant system and photosynthetic system of a marine algicidal Bacillus and its effect on four harmful algal bloom species.

    PubMed

    Hou, Shaoling; Shu, Wanjiao; Tan, Shuo; Zhao, Ling; Yin, Pinghe

    2016-01-01

    A novel marine bacterium, strain B1, initially showed 96.4% algicidal activity against Phaeocystis globosa. Under this situation, 3 other harmful algal species (Skeletonema costatum, Heterosigma akashiwo, and Prorocentrum donghaiense) were chosen to study the algicidal effects of strain B1, and the algicidal activities were 91.4%, 90.7%, and 90.6%, respectively. To explore the algicidal mechanism of strain B1 on these 4 harmful algal species, the characteristics of the antioxidant system and photosynthetic system were studied. Sensitivity to strain B1 supernatant, enzyme activity, and gene expression varied with algal species, while the algicidal patterns were similar. Strain B1 supernatant increased malondialdehyde contents; decreased chlorophyll a contents; changed total antioxidant and superoxide dismutase activity; and restrained psbA, psbD, and rbcL genes expression, which eventually resulted in the algal cells death. The algicidal procedure was observed using field emission scanning electron microscopy, which indicated that algal cells were lysed and cellular substances were released. These findings suggested that the antioxidant and photosynthetic system of these 4 algal species was destroyed under strain B1 supernatant stress. This is the first report to explore and compare the mechanism of a marine Bacillus against harmful algal bloom species of covered 4 phyla.

  17. Dynamic metabolic exchange governs a marine algal-bacterial interaction.

    PubMed

    Segev, Einat; Wyche, Thomas P; Kim, Ki Hyun; Petersen, Jörn; Ellebrandt, Claire; Vlamakis, Hera; Barteneva, Natasha; Paulson, Joseph N; Chai, Liraz; Clardy, Jon; Kolter, Roberto

    2016-11-18

    Emiliania huxleyi is a model coccolithophore micro-alga that generates vast blooms in the ocean. Bacteria are not considered among the major factors influencing coccolithophore physiology. Here we show through a laboratory model system that the bacterium Phaeobacter inhibens , a well-studied member of the Roseobacter group, intimately interacts with E. huxleyi. While attached to the algal cell, bacteria initially promote algal growth but ultimately kill their algal host. Both algal growth enhancement and algal death are driven by the bacterially-produced phytohormone indole-3-acetic acid. Bacterial production of indole-3-acetic acid and attachment to algae are significantly increased by tryptophan, which is exuded from the algal cell. Algal death triggered by bacteria involves activation of pathways unique to oxidative stress response and programmed cell death. Our observations suggest that bacteria greatly influence the physiology and metabolism of E. huxleyi. Coccolithophore-bacteria interactions should be further studied in the environment to determine whether they impact micro-algal population dynamics on a global scale.

  18. Seasonal and algal diet-driven patterns of the digestive microbiota of the European abalone Haliotis tuberculata, a generalist marine herbivore.

    PubMed

    Gobet, Angélique; Mest, Laëtitia; Perennou, Morgan; Dittami, Simon M; Caralp, Claire; Coulombet, Céline; Huchette, Sylvain; Roussel, Sabine; Michel, Gurvan; Leblanc, Catherine

    2018-03-27

    Holobionts have a digestive microbiota with catabolic abilities allowing the degradation of complex dietary compounds for the host. In terrestrial herbivores, the digestive microbiota is known to degrade complex polysaccharides from land plants while in marine herbivores, the digestive microbiota is poorly characterized. Most of the latter are generalists and consume red, green, and brown macroalgae, three distinct lineages characterized by a specific composition in complex polysaccharides, which represent half of their biomass. Subsequently, each macroalga features a specific epiphytic microbiota, and the digestive microbiota of marine herbivores is expected to vary with a monospecific algal diet. We investigated the effect of four monospecific diets (Palmaria palmata, Ulva lactuca, Saccharina latissima, Laminaria digitata) on the composition and specificity of the digestive microbiota of a generalist marine herbivore, the abalone, farmed in a temperate coastal area over a year. The microbiota from the abalone digestive gland was sampled every 2 months and explored using metabarcoding. Diversity and multivariate analyses showed that patterns of the microbiota were significantly linked to seasonal variations of contextual parameters but not directly to a specific algal diet. Three core genera: Psychrilyobacter, Mycoplasma, and Vibrio constantly dominated the microbiota in the abalone digestive gland. Additionally, a less abundant and diet-specific core microbiota featured genera representing aerobic primary degraders of algal polysaccharides. This study highlights the establishment of a persistent core microbiota in the digestive gland of the abalone since its juvenile state and the presence of a less abundant and diet-specific core community. While composed of different microbial taxa compared to terrestrial herbivores, the digestive gland constitutes a particular niche in the abalone holobiont, where bacteria (i) may cooperate to degrade algal polysaccharides to

  19. Dynamic metabolic exchange governs a marine algal-bacterial interaction

    PubMed Central

    Segev, Einat; Wyche, Thomas P; Kim, Ki Hyun; Petersen, Jörn; Ellebrandt, Claire; Vlamakis, Hera; Barteneva, Natasha; Paulson, Joseph N; Chai, Liraz; Clardy, Jon; Kolter, Roberto

    2016-01-01

    Emiliania huxleyi is a model coccolithophore micro-alga that generates vast blooms in the ocean. Bacteria are not considered among the major factors influencing coccolithophore physiology. Here we show through a laboratory model system that the bacterium Phaeobacter inhibens, a well-studied member of the Roseobacter group, intimately interacts with E. huxleyi. While attached to the algal cell, bacteria initially promote algal growth but ultimately kill their algal host. Both algal growth enhancement and algal death are driven by the bacterially-produced phytohormone indole-3-acetic acid. Bacterial production of indole-3-acetic acid and attachment to algae are significantly increased by tryptophan, which is exuded from the algal cell. Algal death triggered by bacteria involves activation of pathways unique to oxidative stress response and programmed cell death. Our observations suggest that bacteria greatly influence the physiology and metabolism of E. huxleyi. Coccolithophore-bacteria interactions should be further studied in the environment to determine whether they impact micro-algal population dynamics on a global scale. DOI: http://dx.doi.org/10.7554/eLife.17473.001 PMID:27855786

  20. Decomposition of algal lipids in clay-enriched marine sediment under oxic and anoxic conditions

    NASA Astrophysics Data System (ADS)

    Lü, Dongwei; Song, Qian; Wang, Xuchen

    2010-01-01

    A series of laboratory incubation experiments were conducted to examine the decomposition of algal organic matter in clay-enriched marine sediment under oxic and anoxic conditions. During the 245-day incubation period, changes in the concentrations of TOC, major algal fatty acid components (14:0, 16:0, 16:1, 18:1 and 20:5), and n-alkanes (C16-C23) were quantified in the samples. Our results indicate that the organic matters were degraded more rapidly in oxic than anoxic conditions. Adsorption of fatty acids onto clay minerals was a rapid and reversible process. Using a simple G model, we calculated the decomposition rate constants for TOC, n-alkanes and fatty acids which ranged from 0.017-0.024 d-1, 0.049-0.103 d-1 and 0.011 to 0.069 d-1, respectively. Algal organic matter degraded in two stages characterized by a fast and a slow degradation processes. The addition of clay minerals montmorillonite and kaolinite to the sediments showed significant influence affecting the decomposition processes of algal TOC and fatty acids by adsorption and incorporation of the compounds with clay particles. Adsorption/association of fatty acids by clay minerals was rapid but appeared to be a slow reversible process. In addition to the sediment redox and clay influence, the structure of the compounds also played important roles in affecting their degradation dynamic in sediments.

  1. Concurrent Exposure of Bottlenose Dolphins (Tursiops truncatus) to Multiple Algal Toxins in Sarasota Bay, Florida, USA

    PubMed Central

    Twiner, Michael J.; Fire, Spencer; Schwacke, Lori; Davidson, Leigh; Wang, Zhihong; Morton, Steve; Roth, Stephen; Balmer, Brian; Rowles, Teresa K.; Wells, Randall S.

    2011-01-01

    Sentinel species such as bottlenose dolphins (Tursiops truncatus) can be impacted by large-scale mortality events due to exposure to marine algal toxins. In the Sarasota Bay region (Gulf of Mexico, Florida, USA), the bottlenose dolphin population is frequently exposed to harmful algal blooms (HABs) of Karenia brevis and the neurotoxic brevetoxins (PbTx; BTX) produced by this dinoflagellate. Live dolphins sampled during capture-release health assessments performed in this region tested positive for two HAB toxins; brevetoxin and domoic acid (DA). Over a ten-year study period (2000–2009) we have determined that bottlenose dolphins are exposed to brevetoxin and/or DA on a nearly annual basis (i.e., DA: 2004, 2005, 2006, 2008, 2009; brevetoxin: 2000, 2004, 2005, 2008, 2009) with 36% of all animals testing positive for brevetoxin (n = 118) and 53% positive for DA (n = 83) with several individuals (14%) testing positive for both neurotoxins in at least one tissue/fluid. To date there have been no previously published reports of DA in southwestern Florida marine mammals, however the May 2008 health assessment coincided with a Pseudo-nitzschia pseudodelicatissima bloom that was the likely source of DA observed in seawater and live dolphin samples. Concurrently, both DA and brevetoxin were observed in common prey fish. Although no Pseudo-nitzschia bloom was identified the following year, DA was identified in seawater, fish, sediment, snails, and dolphins. DA concentrations in feces were positively correlated with hematologic parameters including an increase in total white blood cell (p = 0.001) and eosinophil (p<0.001) counts. Our findings demonstrate that dolphins within Sarasota Bay are commonly exposed to two algal toxins, and provide the impetus to further explore the potential long-term impacts on bottlenose dolphin health. PMID:21423740

  2. Algal chloroplast produced camelid VHH antitoxins are capable of neutralizing botulinum neurotoxin

    PubMed Central

    Barrera, Daniel J.; Rosenberg, Julian N.; Chiu, Joanna G.; Chang, Yung-Nien; Debatis, Michelle; Ngoi, Soo-Mun; Chang, John T.; Shoemaker, Charles B.; Oyler, George A.; Mayfield, Stephen P.

    2015-01-01

    We have produced three antitoxins consisting of the variable domains of camelid heavy chain-only antibodies (VHH) by expressing the genes in the chloroplast of green algae. These antitoxins accumulate as soluble proteins capable of binding and neutralizing botulinum neurotoxin. Furthermore, they accumulate at up to 5% total soluble protein, sufficient expression to easily produce these antitoxins at scale from algae. The genes for the three different antitoxins were transformed into Chlamydomonas reinhardtii chloroplasts and their products purified from algae lysates and assayed for in vitro biological activity using toxin protection assays. The produced antibody domains bind to botulinum neurotoxin serotype A (BoNT/A) with similar affinities as camelid antibodies produced in Escherichia coli, and they are similarly able to protect primary rat neurons from intoxication by BoNT/A. Furthermore, the camelid antibodies were produced in algae without the use of solubilization tags commonly employed in E. coli. These camelid antibody domains are potent antigen binding proteins and the heterodimer fusion protein containing two VHH domains was capable of neutralizing BoNT/A at near equimolar concentrations with the toxin. Intact antibody domains were detected in the gastrointestinal (GI) tract of mice treated orally with antitoxin producing microalgae. These findings support the use of orally delivered antitoxins produced in green algae as a novel treatment for botulism. PMID:25229405

  3. Algal Toxins Alter Copepod Feeding Behavior

    PubMed Central

    Hong, Jiarong; Talapatra, Siddharth; Katz, Joseph; Tester, Patricia A.; Waggett, Rebecca J.; Place, Allen R.

    2012-01-01

    Using digital holographic cinematography, we quantify and compare the feeding behavior of free-swimming copepods, Acartia tonsa, on nutritional prey (Storeatula major) to that occurring during exposure to toxic and non-toxic strains of Karenia brevis and Karlodinium veneficum. These two harmful algal species produce polyketide toxins with different modes of action and potency. We distinguish between two different beating modes of the copepod’s feeding appendages–a “sampling beating” that has short durations (<100 ms) and involves little fluid entrainment and a longer duration “grazing beating” that persists up to 1200 ms and generates feeding currents. The durations of both beating modes have log-normal distributions. Without prey, A. tonsa only samples the environment at low frequency. Upon introduction of non-toxic food, it increases its sampling time moderately and the grazing period substantially. On mono algal diets for either of the toxic dinoflagellates, sampling time fraction is high but the grazing is very limited. A. tonsa demonstrates aversion to both toxic algal species. In mixtures of S. major and the neurotoxin producing K. brevis, sampling and grazing diminish rapidly, presumably due to neurological effects of consuming brevetoxins while trying to feed on S. major. In contrast, on mixtures of cytotoxin producing K. veneficum, both behavioral modes persist, indicating that intake of karlotoxins does not immediately inhibit the copepod’s grazing behavior. These findings add critical insight into how these algal toxins may influence the copepod’s feeding behavior, and suggest how some harmful algal species may alter top-down control exerted by grazers like copepods. PMID:22629336

  4. Tetrodotoxin, an Extremely Potent Marine Neurotoxin: Distribution, Toxicity, Origin and Therapeutical Uses

    PubMed Central

    Lago, Jorge; Rodríguez, Laura P.; Blanco, Lucía; Vieites, Juan Manuel; Cabado, Ana G.

    2015-01-01

    Tetrodotoxin (TTX) is a potent neurotoxin responsible for many human intoxications and fatalities each year. The origin of TTX is unknown, but in the pufferfish, it seems to be produced by endosymbiotic bacteria that often seem to be passed down the food chain. The ingestion of contaminated pufferfish, considered the most delicious fish in Japan, is the usual route of toxicity. This neurotoxin, reported as a threat to human health in Asian countries, has spread to the Pacific and Mediterranean, due to the increase of temperature waters worldwide. TTX, for which there is no known antidote, inhibits sodium channel producing heart failure in many cases and consequently death. In Japan, a regulatory limit of 2 mg eq TTX/kg was established, although the restaurant preparation of “fugu” is strictly controlled by law and only chefs qualified are allowed to prepare the fish. Due to its paralysis effect, this neurotoxin could be used in the medical field as an analgesic to treat some cancer pains. PMID:26492253

  5. Biodegradation of polyether algal toxins--isolation of potential marine bacteria.

    PubMed

    Shetty, Kateel G; Huntzicker, Jacqueline V; Rein, Kathleen S; Jayachandran, Krish

    2010-12-01

    Marine algal toxins such as brevetoxins, okadaic acid, yessotoxin, and ciguatoxin are polyether compounds. The fate of polyether toxins in the aqueous phase, particularly bacterial biotransformation of the toxins, is poorly understood. An inexpensive and easily available polyether structural analog salinomycin was used for enrichment and isolation of potential polyether toxin degrading aquatic marine bacteria from Florida bay area, and from red tide endemic sites in the South Florida Gulf coast. Bacterial growth on salinomycin was observed in most of the enrichment cultures from both regions with colony forming units ranging from 0 to 6×10(7) per mL. The salinomycin biodegradation efficiency of bacterial isolates determined using LC-MS ranged from 22% to 94%. Selected bacterial isolates were grown in media with brevetoxin as the sole carbon source to screen for brevetoxin biodegradation capability using ELISA. Out of the two efficient salinomycin biodegrading isolates MB-2 and MB-4, maximum brevetoxin biodegradation efficiency of 45% was observed with MB-4, while MB-2 was unable to biodegrade brevetoxin. Based on 16S rRNA sequence similarity MB-4 was found have a match with Chromohalobacter sp.

  6. Biodegradation of polyether algal toxins–Isolation of potential marine bacteria

    PubMed Central

    SHETTY, KATEEL G.; HUNTZICKER, JACQUELINE V.; REIN, KATHLEEN S.; JAYACHANDRAN, KRISH

    2012-01-01

    Marine algal toxins such as brevetoxins, okadaic acid, yessotoxin, and ciguatoxin are polyether compounds. The fate of polyether toxins in the aqueous phase, particularly bacterial biotransformation of the toxins, is poorly understood. An inexpensive and easily available polyether structural analog salinomycin was used for enrichment and isolation of potential polyether toxin degrading aquatic marine bacteria from Florida bay area, and from red tide endemic sites in the South Florida Gulf coast. Bacterial growth on salinomycin was observed in most of the enrichment cultures from both regions with colony forming units ranging from 0 to 6 × 107 per mL. The salinomycin biodegradation efficiency of bacterial isolates determined using LC-MS ranged from 22% to 94%. Selected bacterial isolates were grown in media with brevetoxin as the sole carbon source to screen for brevetoxin biodegradation capability using ELISA. Out of the two efficient salinomycin biodegrading isolates MB-2 and MB-4, maximum brevetoxin biodegradation efficiency of 45% was observed with MB-4, while MB-2 was unable to biodegrade brevetoxin. Based on 16S rRNA sequence similarity MB-4 was found have a match with Chromohalobacter sp. PMID:20954040

  7. Swimming under the Influence: Effect of Algal Toxins on the Behavior of the Marine Ciliate Favella sp.

    NASA Astrophysics Data System (ADS)

    Sterling, A.; Echevarria, M. L.; Borrett, S. R.; Taylor, A. R.

    2016-02-01

    Although it is known that microzooplankton can regulate harmful algal bloom (HAB) dynamics through grazing of algae, the effects of HAB-related toxins on these micrograzers are unknown. Therefore I examined the effects of the algal toxins domoic acid (DA), brevetoxin (PbTx-2), and 2,4-trans,trans-decadienal (DDA) on the swimming behavior of the marine ciliate Favella sp. Neither DA nor PbTx-2 had a significant effect at the highest concentrations tested (800 nM and 400 nM respectively). However, about 50% of ciliates ceased swimming after 1 h exposure to 30 µM and 50 µM DDA and displayed significant behavioral changes within 5 min. Preliminary recovery experiments showed that up to 80% of the non-swimming ciliates were viable after 24 h, suggesting in these ciliates DDA did not induce programmed cell death. This work demonstrates that some, but not all, algal toxins may compromise the ability of microzooplankton to evade predators, capture prey, and regulate HABs.

  8. Algal toxins

    USGS Publications Warehouse

    Creekmore, Lynn H.

    1999-01-01

    Periodic blooms of algae, including true algae, dinoflagellates, and cyanobacteria or blue-green algae have been reported in marine and freshwater bodies throughout the world. Although many blooms are merely an aesthetic nuisance, some species of algae produce toxins that kill fish, shellfish, humans, livestock and wildlife. Pigmented blooms of toxinproducing marine algae are often referred to as “red tides” (Fig. 36.1). Proliferations of freshwater toxin-producing cyanobacteria are simply called “cyanobacterial blooms” or “toxic algal blooms.” Cyanobacterial blooms initially appear green and may later turn blue, sometimes forming a “scum” in the water (Fig. 36.2).Although algal blooms historically have been considered a natural phenomenon, the frequency of occurrence of harmful algae appears to have increased in recent years. Agricultural runoff and other pollutants of freshwater and marine wetlands and water bodies have resulted in increased nutrient loading of phosphorus and nitrogen, thus providing conditions favorable to the growth of potentially toxic algae. The detrimental impact of red tides and cyanobacterial blooms on wetland, shore, and pelagic species has long been suspected but not often been substantiated because information on the effects of these toxins in fish and wildlife species is lacking and diagnostic tools are limited.

  9. Cyanobacterial Neurotoxin β-N-Methylamino-L-alanine (BMAA) in Shark Fins

    PubMed Central

    Mondo, Kiyo; Hammerschlag, Neil; Basile, Margaret; Pablo, John; Banack, Sandra A.; Mash, Deborah C.

    2012-01-01

    Sharks are among the most threatened groups of marine species. Populations are declining globally to support the growing demand for shark fin soup. Sharks are known to bioaccumulate toxins that may pose health risks to consumers of shark products. The feeding habits of sharks are varied, including fish, mammals, crustaceans and plankton. The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) has been detected in species of free-living marine cyanobacteria and may bioaccumulate in the marine food web. In this study, we sampled fin clips from seven different species of sharks in South Florida to survey the occurrence of BMAA using HPLC-FD and Triple Quadrupole LC/MS/MS methods. BMAA was detected in the fins of all species examined with concentrations ranging from 144 to 1836 ng/mg wet weight. Since BMAA has been linked to neurodegenerative diseases, these results may have important relevance to human health. We suggest that consumption of shark fins may increase the risk for human exposure to the cyanobacterial neurotoxin BMAA. PMID:22412816

  10. Harmful algal toxins of the Florida red tide (Karenia brevis): natural chemical stressors in South Florida coastal ecosystems

    PubMed Central

    Henry, M. S.

    2009-01-01

    The Florida red tide is a descriptive name for high concentrations of the harmful marine alga, Karenia brevis. Although most prevalent along the south-west Florida coast, periodic blooms have occurred throughout the entire US and Mexico Gulf coasts and the Atlantic coast to North Carolina. This dinoflagellate produces a suite of polyether neurotoxins, called brevetoxins, that cause severe impacts to natural resources, as well as public health. These naturally produced biotoxins may represent one of the most common chemical stressors impacting South Florida coastal and marine ecosystems. Impacts include massive fish kills, marine mammal, sea turtle and sea bird mortalities, benthic community die-off and public health effects from shellfish contamination and inhalation of air-borne toxins. The primary mode of action is binding to voltage-gated sodium channels causing depolarization of nerve cells, thus interfering with nerve transmission. Other effects include immune depression, bronchial constriction and haemolysis. Parent algal toxins are synthesized within the unicellular organism, others are produced as metabolic products. Recent studies into the composition of brevetoxins in cells, water, air and organisms have shown PbTx-2 to be the primary intracellular brevetoxin that is converted over time to PbTx-3 when the cells are ruptured, releasing extracellular brevetoxins into the environment. Brevetoxins become aerosolized by bubble-mediated transport of extracellular toxins, the composition of which varies depending on the composition in the source water. Bivalved molluscs rapidly accumulate brevetoxins as they filter feed on K. brevis cells. However, the parent algal toxins are rapidly metabolized to other compounds, some of which are responsible for neurotoxic shellfish poisoning (NSP). These results provide new insight into the distribution, persistence and impacts of red tide toxins to south-west Florida ecosystems. PMID:18758951

  11. Harmful algal toxins of the Florida red tide (Karenia brevis): natural chemical stressors in South Florida coastal ecosystems.

    PubMed

    Pierce, R H; Henry, M S

    2008-10-01

    The Florida red tide is a descriptive name for high concentrations of the harmful marine alga, Karenia brevis. Although most prevalent along the south-west Florida coast, periodic blooms have occurred throughout the entire US and Mexico Gulf coasts and the Atlantic coast to North Carolina. This dinoflagellate produces a suite of polyether neurotoxins, called brevetoxins, that cause severe impacts to natural resources, as well as public health. These naturally produced biotoxins may represent one of the most common chemical stressors impacting South Florida coastal and marine ecosystems. Impacts include massive fish kills, marine mammal, sea turtle and sea bird mortalities, benthic community die-off and public health effects from shellfish contamination and inhalation of air-borne toxins. The primary mode of action is binding to voltage-gated sodium channels causing depolarization of nerve cells, thus interfering with nerve transmission. Other effects include immune depression, bronchial constriction and haemolysis. Parent algal toxins are synthesized within the unicellular organism, others are produced as metabolic products. Recent studies into the composition of brevetoxins in cells, water, air and organisms have shown PbTx-2 to be the primary intracellular brevetoxin that is converted over time to PbTx-3 when the cells are ruptured, releasing extracellular brevetoxins into the environment. Brevetoxins become aerosolized by bubble-mediated transport of extracellular toxins, the composition of which varies depending on the composition in the source water. Bivalved molluscs rapidly accumulate brevetoxins as they filter feed on K. brevis cells. However, the parent algal toxins are rapidly metabolized to other compounds, some of which are responsible for neurotoxic shellfish poisoning (NSP). These results provide new insight into the distribution, persistence and impacts of red tide toxins to south-west Florida ecosystems.

  12. Coupling the Torpedo microplate-receptor binding assay with mass spectrometry to detect cyclic imine neurotoxins.

    PubMed

    Aráoz, Rómulo; Ramos, Suzanne; Pelissier, Franck; Guérineau, Vincent; Benoit, Evelyne; Vilariño, Natalia; Botana, Luis M; Zakarian, Armen; Molgó, Jordi

    2012-12-04

    Cyclic imine neurotoxins constitute an emergent family of neurotoxins of dinoflagellate origin that are potent antagonists of nicotinic acetylcholine receptors. We developed a target-directed functional method based on the mechanism of action of competitive agonists/antagonists of nicotinic acetylcholine receptors for the detection of marine cyclic imine neurotoxins. The key step for method development was the immobilization of Torpedo electrocyte membranes rich in nicotinic acetylcholine receptors on the surface of microplate wells and the use of biotinylated-α-bungarotoxin as tracer. Cyclic imine neurotoxins competitively inhibit biotinylated-α-bungarotoxin binding to Torpedo-nicotinic acetylcholine receptors in a concentration-dependent manner. The microplate-receptor binding assay allowed rapid detection of nanomolar concentrations of cyclic imine neurotoxins directly in shellfish samples. Although highly sensitive and specific for the detection of neurotoxins targeting nicotinic acetylcholine receptors as a class, the receptor binding assay cannot identify a given analyte. To address the low selectivity of the microplate-receptor binding assay, the cyclic imine neurotoxins tightly bound to the coated Torpedo nicotinic receptor were eluted with methanol, and the chemical nature of the eluted ligands was identified by mass spectrometry. The immobilization of Torpedo electrocyte membranes on the surface of microplate wells proved to be a high-throughput format for the survey of neurotoxins targeting nicotinic acetylcholine receptors directly in shellfish matrixes with high sensitivity and reproducibility.

  13. Coupling the Torpedo Microplate-Receptor Binding Assay with Mass Spectrometry to Detect Cyclic Imine Neurotoxins

    PubMed Central

    Aráoz, Rómulo; Ramos, Suzanne; Pelissier, Franck; Guérineau, Vincent; Benoit, Evelyne; Vilariño, Natalia; Botana, Luis M.; Zakarian, Armen; Molgó, Jordi

    2014-01-01

    Cyclic imine neurotoxins constitute an emergent family of neurotoxins of dinoflagellate origin that are potent antagonists of nicotinic acetylcholine receptors. We developed a target-directed functional method based on the mechanism of action of competitive agonists/antagonists of nicotinic acetylcholine receptors for the detection of marine cyclic imine neurotoxins. The key step for method development was the immobilization of Torpedo electrocyte membranes rich in nicotinic acetylcholine receptors on the surface of microplate wells and the use of biotinylated-α-bungarotoxin as tracer. Cyclic imine neurotoxins competitively inhibit biotinylated-α-bungarotoxin binding to Torpedo-nicotinic acetylcholine receptors in a concentration-dependent manner. The microplate-receptor binding assay allowed rapid detection of nanomolar concentrations of cyclic imine neurotoxins directly in shellfish samples. Although highly sensitive and specific for the detection of neurotoxins targeting nicotinic acetylcholine receptors as a class, the receptor binding assay cannot identify a given analyte. To address the low selectivity of the microplate-receptor binding assay, the cyclic imine neurotoxins tightly bound to the coated Torpedo nicotinic receptor were eluted with methanol, and the chemical nature of the eluted ligands was identified by mass spectrometry. The immobilization of Torpedo electrocyte membranes on the surface of microplate wells proved to be a high-throughput format for the survey of neurotoxins targeting nicotinic acetylcholine receptors directly in shellfish matrixes with high sensitivity and reproducibility. PMID:23131021

  14. TOXICITY ASSESSMENT OF PARALYTIC SHELLFISH POISONS (PSPS) USING QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS

    EPA Science Inventory

    The most significant harmful algal bloom (HAB) toxin in terms of public health is commonly known as paralytic shellfish poisons (PSPs, "red tides" toxins). PSPs are neurotoxins produced by marine dinoflagellates and some cyanobacteria. PSPs comprise of over 21 natural toxins wi...

  15. Marine biogeochemistry: Methylmercury manufacture

    NASA Astrophysics Data System (ADS)

    Cossa, Daniel

    2013-10-01

    The neurotoxin methylmercury can accumulate in marine food webs, contaminating seafood. An analysis of the isotopic composition of fish in the North Pacific suggests that much of the mercury that enters the marine food web originates from low-oxygen subsurface waters.

  16. On botulinum neurotoxin variability.

    PubMed

    Montecucco, Cesare; Rasotto, Maria Berica

    2015-01-06

    The rapidly growing number of botulinum neurotoxin sequences poses the problem of the possible evolutionary significance of the variability of these superpotent neurotoxins for toxin-producing Clostridium species. To progress in the understanding of this remarkable phenomenon, we suggest that researchers should (i) abandon an anthropocentric view of these neurotoxins as human botulism-causing agents or as human therapeutics, (ii) begin to investigate in depth the role of botulinum neurotoxins in animal botulism in the wilderness, and (iii) devote large efforts to next-generation sequencing of soil samples to identify novel botulinum neurotoxins. In order to compare the fitness of the different toxins, we suggest that assays of all the steps from toxin production to animal death should be performed. Copyright © 2015 Montecucco and Rasotto.

  17. Seasonal variations of marine algal community in the vicinity of Uljin nuclear power plant, Korea.

    PubMed

    Kim, Y S; Choi, H G; Nam, K W

    2008-07-01

    Three marine algal sites were examined seasonally in an area of thermal discharge from the Uljin nuclear power plant in Korea to assess possible impacts from thermal stress. Quadrat samples were taken at three sites: cooling water intake, outfall and Chukbyon. The degree of wave exposure increased from intake, outfallto Chukbyon. Percent cover and biomass were response variables. All sites were, by numbers red algae, followed by brown and green algae. Over the year the maximum species diversity was also found at the Chukbyon (2.39), but the minimal one (1.67) was observed at the outfall. Seasonally generally among algal form-functional groups, filamentous and coarsely branched algae were most abundant throughout the year at the three sites. The numberof species in the jointed calcareous groups increased remarkably at the outfall. Based on these results, species richness appears tobe strongly affected by wave exposure and thermal stress. The higher proportion of calcareous form groups at the outfall sites indicates that these species are better adapted morphologically to thermal stress such as high temperatures.

  18. Fueling Future with Algal Genomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigoriev, Igor

    Algae constitute a major component of fundamental eukaryotic diversity, play profound roles in the carbon cycle, and are prominent candidates for biofuel production. The US Department of Energy Joint Genome Institute (JGI) is leading the world in algal genome sequencing (http://jgi.doe.gov/Algae) and contributes of the algal genome projects worldwide (GOLD database, 2012). The sequenced algal genomes offer catalogs of genes, networks, and pathways. The sequenced first of its kind genomes of a haptophyte E.huxleyii, chlorarachniophyte B.natans, and cryptophyte G.theta fill the gaps in the eukaryotic tree of life and carry unique genes and pathways as well as molecular fossils ofmore » secondary endosymbiosis. Natural adaptation to conditions critical for industrial production is encoded in algal genomes, for example, growth of A.anophagefferens at very high cell densities during the harmful algae blooms or a global distribution across diverse environments of E.huxleyii, able to live on sparse nutrients due to its expanded pan-genome. Communications and signaling pathways can be derived from simple symbiotic systems like lichens or complex marine algae metagenomes. Collectively these datasets derived from algal genomics contribute to building a comprehensive parts list essential for algal biofuel development.« less

  19. Factsheet: Climate Change and Harmful Algal Blooms

    EPA Pesticide Factsheets

    Climate change is predicted to change many environmental conditions that could affect the properties of fresh and marine waters. These changes could favor the growth of harmful algal blooms and habitat changes.

  20. Harmful Algal Blooms and Public Health

    PubMed Central

    Grattan, Lynn M.; Holobaugh, Sailor; Morris, J. Glenn

    2015-01-01

    The five most commonly recognized Harmful Algal Bloom related illnesses include Ciguatera poisoning, Paralytic Shellfish poisoning, Neurotoxin Shellfish poisoning, Diarrheic Shellfish Poisoning and Amnesic Shellfish poisoning. Although they are each the product of different toxins, toxin assemblages or HAB precursors these clinical syndromes have much in common. Exposure occurs through the consumption of fish or shellfish; routine clinical tests are not available for diagnosis; there is no known antidote for exposure; and the risk of these illnesses can negatively impact local fishing and tourism industries. Thus, illness prevention is of paramount importance to minimize human and public health risks. To accomplish this, close communication and collaboration is needed among HAB scientists, public health researchers and local, state and tribal health departments at academic, community outreach, and policy levels. PMID:27616971

  1. Harmful Algal Blooms and Public Health.

    PubMed

    Grattan, Lynn M; Holobaugh, Sailor; Morris, J Glenn

    2016-07-01

    The five most commonly recognized Harmful Algal Bloom related illnesses include Ciguatera poisoning, Paralytic Shellfish poisoning, Neurotoxin Shellfish poisoning, Diarrheic Shellfish Poisoning and Amnesic Shellfish poisoning. Although they are each the product of different toxins, toxin assemblages or HAB precursors these clinical syndromes have much in common. Exposure occurs through the consumption of fish or shellfish; routine clinical tests are not available for diagnosis; there is no known antidote for exposure; and the risk of these illnesses can negatively impact local fishing and tourism industries. Thus, illness prevention is of paramount importance to minimize human and public health risks. To accomplish this, close communication and collaboration is needed among HAB scientists, public health researchers and local, state and tribal health departments at academic, community outreach, and policy levels.

  2. Selective algicidal action of peptides against harmful algal bloom species.

    PubMed

    Park, Seong-Cheol; Lee, Jong-Kook; Kim, Si Wouk; Park, Yoonkyung

    2011-01-01

    Recently, harmful algal bloom (HAB), also termed "red tide", has been recognized as a serious problem in marine environments according to climate changes worldwide. Many novel materials or methods to prevent HAB have not yet been employed except for clay dispersion, in which can the resulting sedimentation on the seafloor can also cause alteration in marine ecology or secondary environmental pollution. In the current study, we investigated that antimicrobial peptide have a potential in controlling HAB without cytotoxicity to harmless marine organisms. Here, antimicrobial peptides are proposed as new algicidal compounds in combating HAB cells. HPA3 and HPA3NT3 peptides which exert potent antimicrobial activity via pore forming action in plasma membrane showed that HPA3NT3 reduced the motility of algal cells, disrupted their plasma membrane, and induced the efflux of intracellular components. Against raphidoflagellate such as Heterosigma akashiwo, Chattonella sp., and C. marina, it displayed a rapid lysing action in cell membranes at 1~4 µM within 2 min. Comparatively, its lysing effects occurred at 8 µM within 1 h in dinoflagellate such as Cochlodium polykrikoides, Prorocentrum micans, and P. minimum. Moreover, its lysing action induced the lysis of chloroplasts and loss of chlorophyll a. In the contrary, this peptide was not effective against Skeletonema costatum, harmless algal cell, even at 256 µM, moreover, it killed only H. akashiwo or C. marina in co-cultivation with S. costatum, indicating to its selective algicidal activity between harmful and harmless algal cells. The peptide was non-hemolytic against red blood cells of Sebastes schlegeli, the black rockfish, at 120 µM. HAB cells were quickly and selectively lysed following treatment of antimicrobial peptides without cytotoxicity to harmless marine organisms. Thus, the antibiotic peptides examined in our study appear to have much potential in effectively controlling HAB with minimal impact on marine

  3. Evidence for a novel marine harmful algal bloom: Cyanotoxin (Microcystin) transfer from land to sea otters

    USGS Publications Warehouse

    Miller, Melissa A.; Kudela, Raphael M.; Mekebri, Abdu; Crane, Dave; Oates, Stori C.; Tinker, M. Timothy; Staedler, Michelle; Miller, Woutrina A.; Toy-Choutka, Sharon; Dominik, Clare; Hardin, Dane; Langlois, Gregg; Murray, Michael; Ward, Kim; Jessup, David A.

    2010-01-01

    "Super-blooms" of cyanobacteria that produce potent and environmentally persistent biotoxins (microcystins) are an emerging global health issue in freshwater habitats. Monitoring of the marine environment for secondary impacts has been minimal, although microcystin-contaminated freshwater is known to be entering marine ecosystems. Here we confirm deaths of marine mammals from microcystin intoxication and provide evidence implicating land-sea flow with trophic transfer through marine invertebrates as the most likely route of exposure. This hypothesis was evaluated through environmental detection of potential freshwater and marine microcystin sources, sea otter necropsy with biochemical analysis of tissues and evaluation of bioaccumulation of freshwater microcystins by marine invertebrates. Ocean discharge of freshwater microcystins was confirmed for three nutrient-impaired rivers flowing into the Monterey Bay National Marine Sanctuary, and microcystin concentrations up to 2,900 ppm (2.9 million ppb) were detected in a freshwater lake and downstream tributaries to within 1 km of the ocean. Deaths of 21 southern sea otters, a federally listed threatened species, were linked to microcystin intoxication. Finally, farmed and free-living marine clams, mussels and oysters of species that are often consumed by sea otters and humans exhibited significant biomagnification (to 107 times ambient water levels) and slow depuration of freshwater cyanotoxins, suggesting a potentially serious environmental and public health threat that extends from the lowest trophic levels of nutrient-impaired freshwater habitat to apex marine predators. Microcystin-poisoned sea otters were commonly recovered near river mouths and harbors and contaminated marine bivalves were implicated as the most likely source of this potent hepatotoxin for wild otters. This is the first report of deaths of marine mammals due to cyanotoxins and confirms the existence of a novel class of marine "harmful algal

  4. Evidence for a Novel Marine Harmful Algal Bloom: Cyanotoxin (Microcystin) Transfer from Land to Sea Otters

    PubMed Central

    Miller, Melissa A.; Kudela, Raphael M.; Mekebri, Abdu; Crane, Dave; Oates, Stori C.; Tinker, M. Timothy; Staedler, Michelle; Miller, Woutrina A.; Toy-Choutka, Sharon; Dominik, Clare; Hardin, Dane; Langlois, Gregg; Murray, Michael; Ward, Kim; Jessup, David A.

    2010-01-01

    “Super-blooms” of cyanobacteria that produce potent and environmentally persistent biotoxins (microcystins) are an emerging global health issue in freshwater habitats. Monitoring of the marine environment for secondary impacts has been minimal, although microcystin-contaminated freshwater is known to be entering marine ecosystems. Here we confirm deaths of marine mammals from microcystin intoxication and provide evidence implicating land-sea flow with trophic transfer through marine invertebrates as the most likely route of exposure. This hypothesis was evaluated through environmental detection of potential freshwater and marine microcystin sources, sea otter necropsy with biochemical analysis of tissues and evaluation of bioaccumulation of freshwater microcystins by marine invertebrates. Ocean discharge of freshwater microcystins was confirmed for three nutrient-impaired rivers flowing into the Monterey Bay National Marine Sanctuary, and microcystin concentrations up to 2,900 ppm (2.9 million ppb) were detected in a freshwater lake and downstream tributaries to within 1 km of the ocean. Deaths of 21 southern sea otters, a federally listed threatened species, were linked to microcystin intoxication. Finally, farmed and free-living marine clams, mussels and oysters of species that are often consumed by sea otters and humans exhibited significant biomagnification (to 107 times ambient water levels) and slow depuration of freshwater cyanotoxins, suggesting a potentially serious environmental and public health threat that extends from the lowest trophic levels of nutrient-impaired freshwater habitat to apex marine predators. Microcystin-poisoned sea otters were commonly recovered near river mouths and harbors and contaminated marine bivalves were implicated as the most likely source of this potent hepatotoxin for wild otters. This is the first report of deaths of marine mammals due to cyanotoxins and confirms the existence of a novel class of marine

  5. Constraints to commercialization of algal fuels.

    PubMed

    Chisti, Yusuf

    2013-09-10

    Production of algal crude oil has been achieved in various pilot scale facilities, but whether algal fuels can be produced in sufficient quantity to meaningfully displace petroleum fuels, has been largely overlooked. Limitations to commercialization of algal fuels need to be understood and addressed for any future commercialization. This review identifies the major constraints to commercialization of transport fuels from microalgae. Algae derived fuels are expensive compared to petroleum derived fuels, but this could change. Unfortunately, improved economics of production are not sufficient for an environmentally sustainable production, or its large scale feasibility. A low-cost point supply of concentrated carbon dioxide colocated with the other essential resources is necessary for producing algal fuels. An insufficiency of concentrated carbon dioxide is actually a major impediment to any substantial production of algal fuels. Sustainability of production requires the development of an ability to almost fully recycle the phosphorous and nitrogen nutrients that are necessary for algae culture. Development of a nitrogen biofixation ability to support production of algal fuels ought to be an important long term objective. At sufficiently large scale, a limited supply of freshwater will pose a significant limitation to production even if marine algae are used. Processes for recovering energy from the algal biomass left after the extraction of oil, are required for achieving a net positive energy balance in the algal fuel oil. The near term outlook for widespread use of algal fuels appears bleak, but fuels for niche applications such as in aviation may be likely in the medium term. Genetic and metabolic engineering of microalgae to boost production of fuel oil and ease its recovery, are essential for commercialization of algal fuels. Algae will need to be genetically modified for improved photosynthetic efficiency in the long term. Copyright © 2013 Elsevier B.V. All

  6. A Novel Enzyme Portfolio for Red Algal Polysaccharide Degradation in the Marine Bacterium Paraglaciecola hydrolytica S66T Encoded in a Sizeable Polysaccharide Utilization Locus.

    PubMed

    Schultz-Johansen, Mikkel; Bech, Pernille K; Hennessy, Rosanna C; Glaring, Mikkel A; Barbeyron, Tristan; Czjzek, Mirjam; Stougaard, Peter

    2018-01-01

    Marine microbes are a rich source of enzymes for the degradation of diverse polysaccharides. Paraglaciecola hydrolytica S66 T is a marine bacterium capable of hydrolyzing polysaccharides found in the cell wall of red macroalgae. In this study, we applied an approach combining genomic mining with functional analysis to uncover the potential of this bacterium to produce enzymes for the hydrolysis of complex marine polysaccharides. A special feature of P. hydrolytica S66 T is the presence of a large genomic region harboring an array of carbohydrate-active enzymes (CAZymes) notably agarases and carrageenases. Based on a first functional characterization combined with a comparative sequence analysis, we confirmed the enzymatic activities of several enzymes required for red algal polysaccharide degradation by the bacterium. In particular, we report for the first time, the discovery of novel enzyme activities targeting furcellaran, a hybrid carrageenan containing both β-carrageenan and κ/β-carrageenan motifs. Some of these enzymes represent a new subfamily within the CAZy classification. From the combined analyses, we propose models for the complete degradation of agar and κ/β-type carrageenan by P. hydrolytica S66 T . The novel enzymes described here may find value in new bio-based industries and advance our understanding of the mechanisms responsible for recycling of red algal polysaccharides in marine ecosystems.

  7. Selective Algicidal Action of Peptides against Harmful Algal Bloom Species

    PubMed Central

    Park, Seong-Cheol; Lee, Jong-Kook; Kim, Si Wouk; Park, Yoonkyung

    2011-01-01

    Recently, harmful algal bloom (HAB), also termed “red tide”, has been recognized as a serious problem in marine environments according to climate changes worldwide. Many novel materials or methods to prevent HAB have not yet been employed except for clay dispersion, in which can the resulting sedimentation on the seafloor can also cause alteration in marine ecology or secondary environmental pollution. In the current study, we investigated that antimicrobial peptide have a potential in controlling HAB without cytotoxicity to harmless marine organisms. Here, antimicrobial peptides are proposed as new algicidal compounds in combating HAB cells. HPA3 and HPA3NT3 peptides which exert potent antimicrobial activity via pore forming action in plasma membrane showed that HPA3NT3 reduced the motility of algal cells, disrupted their plasma membrane, and induced the efflux of intracellular components. Against raphidoflagellate such as Heterosigma akashiwo, Chattonella sp., and C. marina, it displayed a rapid lysing action in cell membranes at 1∼4 µM within 2 min. Comparatively, its lysing effects occurred at 8 µM within 1 h in dinoflagellate such as Cochlodium polykrikoides, Prorocentrum micans, and P. minimum. Moreover, its lysing action induced the lysis of chloroplasts and loss of chlorophyll a. In the contrary, this peptide was not effective against Skeletonema costatum, harmless algal cell, even at 256 µM, moreover, it killed only H. akashiwo or C. marina in co-cultivation with S. costatum, indicating to its selective algicidal activity between harmful and harmless algal cells. The peptide was non-hemolytic against red blood cells of Sebastes schlegeli, the black rockfish, at 120 µM. HAB cells were quickly and selectively lysed following treatment of antimicrobial peptides without cytotoxicity to harmless marine organisms. Thus, the antibiotic peptides examined in our study appear to have much potential in effectively controlling HAB with minimal impact on

  8. Novel symptomatology and changing epidemiology of domoic acid toxicosis in California sea lions (Zalophus californianus): an increasing risk to marine mammal health

    PubMed Central

    Goldstein, T; Mazet, J.A.K; Zabka, T.S; Langlois, G; Colegrove, K.M; Silver, M; Bargu, S; Van Dolah, F; Leighfield, T; Conrad, P.A; Barakos, J; Williams, D.C; Dennison, S; Haulena, M; Gulland, F.M.D

    2007-01-01

    Harmful algal blooms are increasing worldwide, including those of Pseudo-nitzschia spp. producing domoic acid off the California coast. This neurotoxin was first shown to cause mortality of marine mammals in 1998. A decade of monitoring California sea lion (Zalophus californianus) health since then has indicated that changes in the symptomatology and epidemiology of domoic acid toxicosis in this species are associated with the increase in toxigenic blooms. Two separate clinical syndromes now exist: acute domoic acid toxicosis as has been previously documented, and a second novel neurological syndrome characterized by epilepsy described here associated with chronic consequences of previous sub-lethal exposure to the toxin. This study indicates that domoic acid causes chronic damage to California sea lions and that these health effects are increasing. PMID:18006409

  9. Blurred lines: Multiple freshwater and marine algal toxins at the land-sea interface of San Francisco Bay, California

    USGS Publications Warehouse

    Peacock, Melissa B.; Gibble, Corinne M.; Senn, David B.; Cloern, James E.; Kudela, Raphael M.

    2018-01-01

    San Francisco Bay (SFB) is a eutrophic estuary that harbors both freshwater and marine toxigenic organisms that are responsible for harmful algal blooms. While there are few commercial fishery harvests within SFB, recreational and subsistence harvesting for shellfish is common. Coastal shellfish are monitored for domoic acid and paralytic shellfish toxins (PSTs), but within SFB there is no routine monitoring for either toxin. Dinophysis shellfish toxins (DSTs) and freshwater microcystins are also present within SFB, but not routinely monitored. Acute exposure to any of these toxin groups has severe consequences for marine organisms and humans, but chronic exposure to sub-lethal doses, or synergistic effects from multiple toxins, are poorly understood and rarely addressed. This study documents the occurrence of domoic acid and microcystins in SFB from 2011 to 2016, and identifies domoic acid, microcystins, DSTs, and PSTs in marine mussels within SFB in 2012, 2014, and 2015. At least one toxin was detected in 99% of mussel samples, and all four toxin suites were identified in 37% of mussels. The presence of these toxins in marine mussels indicates that wildlife and humans who consume them are exposed to toxins at both sub-lethal and acute levels. As such, there are potential deleterious impacts for marine organisms and humans and these effects are unlikely to be documented. These results demonstrate the need for regular monitoring of marine and freshwater toxins in SFB, and suggest that co-occurrence of multiple toxins is a potential threat in other ecosystems where freshwater and seawater mix.

  10. Algicidal bacteria in the sea and their impact on algal blooms.

    PubMed

    Mayali, Xavier; Azam, Farooq

    2004-01-01

    Over the past two decades, many reports have revealed the existence of bacteria capable of killing phytoplankton. These algicidal bacteria sometimes increase in abundance concurrently with the decline of algal blooms, suggesting that they may affect algal bloom dynamics. Here, we synthesize the existing knowledge on algicidal bacteria interactions with marine eukaryotic microalgae. We discuss the effectiveness of the current methods to characterize the algicidal phenotype in an ecosystem context. We briefly consider the literature on the phylogenetic identification of algicidal bacteria, their interaction with their algal prey, the characterization of algicidal molecules, and the enumeration of algicidal bacteria during algal blooms. We conclude that, due to limitations of current methods, the evidence for algicidal bacteria causing algal bloom decline is circumstantial. New methods and an ecosystem approach are needed to test hypotheses on the impact of algicidal bacteria in algal bloom dynamics. This will require enlarging the scope of inquiry from its current focus on the potential utility of algicidal bacteria in the control of harmful algal blooms. We suggest conceptualizing bacterial algicidy within the general problem of bacterial regulation of algal community structure in the ocean.

  11. Exchanging the minimal cell binding fragments of tetanus neurotoxin in botulinum neurotoxin A and B impacts their toxicity at the neuromuscular junction and central neurons.

    PubMed

    Höltje, Markus; Schulze, Sebastian; Strotmeier, Jasmin; Mahrhold, Stefan; Richter, Karin; Binz, Thomas; Bigalke, Hans; Ahnert-Hilger, Gudrun; Rummel, Andreas

    2013-12-01

    The modular four domain structure of clostridial neurotoxins supports the idea to reassemble individual domains from tetanus and botulinum neurotoxins to generate novel molecules with altered pharmacological properties. To treat disorders of the central nervous system drug transporter molecules based on catalytically inactive clostridial neurotoxins circumventing the passage of the blood-brain-barrier are desired. Such molecules can be produced based on the highly effective botulinum neurotoxin serotype A incorporating the retrograde axonal sorting property of tetanus neurotoxin which is supposed to be encoded within its C-terminal cell binding domain HC. The corresponding exchange of the tetanus neurotoxin HC-fragment in botulinum neurotoxin A yielded the novel hybrid molecule AATT which displayed decreased potency at the neuromuscular junction like tetanus neurotoxin but exerted equal activity in cortical neurons compared to botulinum neurotoxin A wild-type. Minimizing the tetanus neurotoxin cell binding domain to its N- or C-terminal half drastically reduced the potencies of AATA and AAAT in cortical neurons indicating that the structural motif mediating sorting of tetanus neurotoxin is predominantly encoded within the entire HC-fragment. However, the reciprocal exchange resulted in TTAA which showed a similar potency as tetanus neurotoxin at the neuromuscular junction indicating that the tetanus neurotoxin portion prevents a high potency as observed for botulinum neurotoxins. In conclusion, clostridial neurotoxin based inactivated drug transporter for targeting central neurons should contain the cell binding domain of tetanus neurotoxin to exert its tropism for the central nervous system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Botulinum neurotoxin: the ugly duckling.

    PubMed

    Koussoulakos, Stauros

    2009-01-01

    This review presents a brief account of the most significant biological effects and clinical applications of botulinum neurotoxins, in a way comprehensive even for casual readers who are not familiar with the subject. The most toxic known substances in botulinum neurotoxins are polypeptides naturally synthesized by bacteria of the genus Clostridium. These polypeptides inhibit acetylcholine release at neuromuscular junctions, thus causing muscle paralysis involving both somatic and autonomic innervation. There is substantial evidence that this muscle-paralyzing feature of botulinum neurotoxins is useful for their beneficial influence on more than 50 pathological conditions such as spastic paralysis, cerebral palsy, focal dystonia, essential tremor, headache, incontinence and a variety of cosmetic interventions. Injection of adequate quantities of botulinum toxins in spastic muscles is considered as a highly hopeful procedure for the treatment of people who suffer from dystonia, cerebral palsy or have experienced a stroke. So far, numerous and reliable studies have established the safety and efficacy of botulinum neurotoxins and advocate wider clinical therapeutic and cosmetic applications.

  13. The Hawaiian Freshwater Algal Database (HfwADB): a laboratory LIMS and online biodiversity resource

    PubMed Central

    2012-01-01

    Background Biodiversity databases serve the important role of highlighting species-level diversity from defined geographical regions. Databases that are specially designed to accommodate the types of data gathered during regional surveys are valuable in allowing full data access and display to researchers not directly involved with the project, while serving as a Laboratory Information Management System (LIMS). The Hawaiian Freshwater Algal Database, or HfwADB, was modified from the Hawaiian Algal Database to showcase non-marine algal specimens collected from the Hawaiian Archipelago by accommodating the additional level of organization required for samples including multiple species. Description The Hawaiian Freshwater Algal Database is a comprehensive and searchable database containing photographs and micrographs of samples and collection sites, geo-referenced collecting information, taxonomic data and standardized DNA sequence data. All data for individual samples are linked through unique 10-digit accession numbers (“Isolate Accession”), the first five of which correspond to the collection site (“Environmental Accession”). Users can search online for sample information by accession number, various levels of taxonomy, habitat or collection site. HfwADB is hosted at the University of Hawaii, and was made publicly accessible in October 2011. At the present time the database houses data for over 2,825 samples of non-marine algae from 1,786 collection sites from the Hawaiian Archipelago. These samples include cyanobacteria, red and green algae and diatoms, as well as lesser representation from some other algal lineages. Conclusions HfwADB is a digital repository that acts as a Laboratory Information Management System for Hawaiian non-marine algal data. Users can interact with the repository through the web to view relevant habitat data (including geo-referenced collection locations) and download images of collection sites, specimen photographs and

  14. Blurred lines: Multiple freshwater and marine algal toxins at the land-sea interface of San Francisco Bay, California.

    PubMed

    Peacock, Melissa B; Gibble, Corinne M; Senn, David B; Cloern, James E; Kudela, Raphael M

    2018-03-01

    San Francisco Bay (SFB) is a eutrophic estuary that harbors both freshwater and marine toxigenic organisms that are responsible for harmful algal blooms. While there are few commercial fishery harvests within SFB, recreational and subsistence harvesting for shellfish is common. Coastal shellfish are monitored for domoic acid and paralytic shellfish toxins (PSTs), but within SFB there is no routine monitoring for either toxin. Dinophysis shellfish toxins (DSTs) and freshwater microcystins are also present within SFB, but not routinely monitored. Acute exposure to any of these toxin groups has severe consequences for marine organisms and humans, but chronic exposure to sub-lethal doses, or synergistic effects from multiple toxins, are poorly understood and rarely addressed. This study documents the occurrence of domoic acid and microcystins in SFB from 2011 to 2016, and identifies domoic acid, microcystins, DSTs, and PSTs in marine mussels within SFB in 2012, 2014, and 2015. At least one toxin was detected in 99% of mussel samples, and all four toxin suites were identified in 37% of mussels. The presence of these toxins in marine mussels indicates that wildlife and humans who consume them are exposed to toxins at both sub-lethal and acute levels. As such, there are potential deleterious impacts for marine organisms and humans and these effects are unlikely to be documented. These results demonstrate the need for regular monitoring of marine and freshwater toxins in SFB, and suggest that co-occurrence of multiple toxins is a potential threat in other ecosystems where freshwater and seawater mix. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Antipruritic Effects of Botulinum Neurotoxins

    PubMed Central

    2018-01-01

    This review explores current evidence to demonstrate that botulinum neurotoxins (BoNTs) exert antipruritic effects. Both experimental and clinical conditions in which botulinum neurotoxins have been applied for pruritus relief will be presented and significant findings will be highlighted. Potential mechanisms underlying antipruritic effects will also be discussed and ongoing challenges and unmet needs will be addressed. PMID:29596343

  16. Formation of regulated and unregulated disinfection byproducts during chlorination of algal organic matter extracted from freshwater and marine algae.

    PubMed

    Liu, Chao; Ersan, Mahmut S; Plewa, Michael J; Amy, Gary; Karanfil, Tanju

    2018-05-29

    Seasonal algal blooms in freshwater and marine water can increase the input of algal organic matter (AOM) to the pool of dissolved organic matter. The impact of bromide (Br - ) and iodide (I - ) on the formation of regulated and unregulated disinfection byproducts (DBPs) was studied from chlorination of AOM solutions extracted from three species of cultured isolates of freshwater and marine algae (Microcystis aeruginosa (MA), Synechococcus (SYN), and Alexandrium tamarense (AT)). Comparable concentrations of DBPs were formed from three types of AOM. In the absence of Br - , trihalomethanes (THMs), haloacetic acids (HAAs), and haloacetaldehydes (HALs) were the main groups of DBP formed, and haloacetonitriles (HANs) were formed at lower concentrations. In contrast, the formation of iodinated THMs was <8 nM (1.7 μg/L) since most of initial I - was oxidized to iodate. Increasing initial Br - concentrations increased the formation of THMs and HANs, while concentrations of total organic halogen and HAA remained stable. On the contrary, total HAL concentrations decreased due to the instability of bromated HALs. Decreasing the specific UV absorbance (SUVA) value of AOM favours bromine substitution since bromine more preferentially reacts with low reactivity organic matter than chlorine. Increasing the pH enhanced the formation of THMs but decreased the formation of HANs. Concentrations of HANs and HALs decreased at high pH (e.g., 9.0), high initial chlorine concentration and long reaction time due to the decomposition. Based on the cytotoxicity calculations, unregulated HANs and HALs were the main contributors for the total toxicity of DBPs measured, even though based on the weight regulated THMs and HAAs predominated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Detection of surface algal blooms using the newly developed algorithm surface algal bloom index (SABI)

    NASA Astrophysics Data System (ADS)

    Alawadi, Fahad

    2010-10-01

    Quantifying ocean colour properties has evolved over the past two decades from being able to merely detect their biological activity to the ability to estimate chlorophyll concentration using optical satellite sensors like MODIS and MERIS. The production of chlorophyll spatial distribution maps is a good indicator of plankton biomass (primary production) and is useful for the tracing of oceanographic currents, jets and blooms, including harmful algal blooms (HABs). Depending on the type of HABs involved and the environmental conditions, if their concentration rises above a critical threshold, it can impact the flora and fauna of the aquatic habitat through the introduction of the so called "red tide" phenomenon. The estimation of chlorophyll concentration is derived from quantifying the spectral relationship between the blue and the green bands reflected from the water column. This spectral relationship is employed in the standard ocean colour chlorophyll-a (Chlor-a) product, but is incapable of detecting certain macro-algal species that float near to or at the water surface in the form of dense filaments or mats. The ability to accurately identify algal formations that sometimes appear as oil spill look-alikes in satellite imagery, contributes towards the reduction of false-positive incidents arising from oil spill monitoring operations. Such algal formations that occur in relatively high concentrations may experience, as in land vegetation, what is known as the "red-edge" effect. This phenomena occurs at the highest reflectance slope between the maximum absorption in the red due to the surrounding ocean water and the maximum reflectance in the infra-red due to the photosynthetic pigments present in the surface algae. A new algorithm termed the surface algal bloom index (SABI), has been proposed to delineate the spatial distributions of floating micro-algal species like for example cyanobacteria or exposed inter-tidal vegetation like seagrass. This algorithm was

  18. Historical Perspectives and Guidelines for Botulinum Neurotoxin Subtype Nomenclature

    PubMed Central

    Peck, Michael W.; Smith, Theresa J.; Anniballi, Fabrizio; Austin, John W.; Bano, Luca; Bradshaw, Marite; Cuervo, Paula; Cheng, Luisa W.; Derman, Yagmur; Dorner, Brigitte G.; Fisher, Audrey; Hill, Karen K.; Kalb, Suzanne R.; Korkeala, Hannu; Lindström, Miia; Lista, Florigio; Lúquez, Carolina; Mazuet, Christelle; Pirazzini, Marco; Popoff, Michel R.; Rossetto, Ornella; Rummel, Andreas; Sesardic, Dorothea; Singh, Bal Ram; Stringer, Sandra C.

    2017-01-01

    Botulinum neurotoxins are diverse proteins. They are currently represented by at least seven serotypes and more than 40 subtypes. New clostridial strains that produce novel neurotoxin variants are being identified with increasing frequency, which presents challenges when organizing the nomenclature surrounding these neurotoxins. Worldwide, researchers are faced with the possibility that toxins having identical sequences may be given different designations or novel toxins having unique sequences may be given the same designations on publication. In order to minimize these problems, an ad hoc committee consisting of over 20 researchers in the field of botulinum neurotoxin research was convened to discuss the clarification of the issues involved in botulinum neurotoxin nomenclature. This publication presents a historical overview of the issues and provides guidelines for botulinum neurotoxin subtype nomenclature in the future. PMID:28106761

  19. Historical Perspectives and Guidelines for Botulinum Neurotoxin Subtype Nomenclature.

    PubMed

    Peck, Michael W; Smith, Theresa J; Anniballi, Fabrizio; Austin, John W; Bano, Luca; Bradshaw, Marite; Cuervo, Paula; Cheng, Luisa W; Derman, Yagmur; Dorner, Brigitte G; Fisher, Audrey; Hill, Karen K; Kalb, Suzanne R; Korkeala, Hannu; Lindström, Miia; Lista, Florigio; Lúquez, Carolina; Mazuet, Christelle; Pirazzini, Marco; Popoff, Michel R; Rossetto, Ornella; Rummel, Andreas; Sesardic, Dorothea; Singh, Bal Ram; Stringer, Sandra C

    2017-01-18

    Botulinum neurotoxins are diverse proteins. They are currently represented by at least seven serotypes and more than 40 subtypes. New clostridial strains that produce novel neurotoxin variants are being identified with increasing frequency, which presents challenges when organizing the nomenclature surrounding these neurotoxins. Worldwide, researchers are faced with the possibility that toxins having identical sequences may be given different designations or novel toxins having unique sequences may be given the same designations on publication. In order to minimize these problems, an ad hoc committee consisting of over 20 researchers in the field of botulinum neurotoxin research was convened to discuss the clarification of the issues involved in botulinum neurotoxin nomenclature. This publication presents a historical overview of the issues and provides guidelines for botulinum neurotoxin subtype nomenclature in the future.

  20. Predicting Presynaptic and Postsynaptic Neurotoxins by Developing Feature Selection Technique

    PubMed Central

    Yang, Yunchun; Zhang, Chunmei; Chen, Rong; Huang, Po

    2017-01-01

    Presynaptic and postsynaptic neurotoxins are proteins which act at the presynaptic and postsynaptic membrane. Correctly predicting presynaptic and postsynaptic neurotoxins will provide important clues for drug-target discovery and drug design. In this study, we developed a theoretical method to discriminate presynaptic neurotoxins from postsynaptic neurotoxins. A strict and objective benchmark dataset was constructed to train and test our proposed model. The dipeptide composition was used to formulate neurotoxin samples. The analysis of variance (ANOVA) was proposed to find out the optimal feature set which can produce the maximum accuracy. In the jackknife cross-validation test, the overall accuracy of 94.9% was achieved. We believe that the proposed model will provide important information to study neurotoxins. PMID:28303250

  1. A shift in the dominant toxin-producing algal species in central California alters phycotoxins in food webs

    USGS Publications Warehouse

    Jester, R.; Lefebvre, K.; Langlois, G.; Vigilant, V.; Baugh, K.; Silver, M.W.

    2009-01-01

    In California, the toxic algal species of primary concern are the dinoflagellate Alexandrium catenella and members of the pennate diatom genus Pseudo-nitzschia, both producers of potent neurotoxins that are capable of sickening and killing marine life and humans. During the summer of 2004 in Monterey Bay, we observed a change in the taxonomic structure of the phytoplankton community-the typically diatom-dominated community shifted to a red tide, dinoflagellate-dominated community. Here we use a 6-year time series (2000-2006) to show how the abundance of the dominant harmful algal bloom (HAB) species in the Bay up to that point, Pseudo-nitzschia, significantly declined during the dinoflagellate-dominated interval, while two genera of toxic dinoflagellates, Alexandrium and Dinophysis, became the predominant toxin producers. This change represents a shift from a genus of toxin producers that typically dominates the community during a toxic bloom, to HAB taxa that are generally only minor components of the community in a toxic event. This change in the local HAB species was also reflected in the toxins present in higher trophic levels. Despite the small contribution of A. catenella to the overall phytoplankton community, the increase in the presence of this species in Monterey Bay was associated with an increase in the presence of paralytic shellfish poisoning (PSP) toxins in sentinel shellfish and clupeoid fish. This report provides the first evidence that PSP toxins are present in California's pelagic food web, as PSP toxins were detected in both northern anchovies (Engraulis mordax) and Pacific sardines (Sardinops sagax). Another interesting observation from our data is the co-occurrence of DA and PSP toxins in both planktivorous fish and sentinel shellfish. We also provide evidence, based on the statewide biotoxin monitoring program, that this increase in the frequency and abundance of PSP events related to A. catenella occurred not just in Monterey Bay, but also

  2. Assessment of antioxidant activity in Victorian marine algal extracts using high performance thin-layer chromatography and multivariate analysis.

    PubMed

    Agatonovic-Kustrin, Snezana; Morton, David W; Ristivojević, Petar

    2016-10-14

    The aim of this study was to develop and validate a rapid and simple high performance thin layer chromatographic (HPTLC) method to screen for antioxidant activity in algal samples. 16 algal species were collected from local Victorian beaches. Fucoxanthin, one of the most abundant marine carotenoids was quantified directly from the HPTLC plates before derivatization, while derivatization either with 2,2-diphenyl-1-picrylhydrazyl (DPPH) or ferric chloride (FeCl 3 ) was used to analyze antioxidants in marine algae, based on their ability to scavenge non biological stable free radical (DPPH) or to chelate iron ions. Principal component analysis of obtained HPTLC fingerprints has classified algae species into 5 groups according to their chemical/antioxidant profiles. The investigated brown algae samples were found to be rich in non-and moderate-polar compounds and phenolic compounds with antioxidant activity. Most of the phenolic iron chelators also have shown free radical scavenging activity. Strong positive and significant correlations between total phenolic content and DPPH radical scavenging activity showed that, phenolic compounds, including flavonoids are the main contributors of antioxidant activity in these species. The results suggest that certain brown algae possess significantly higher antioxidant potential when compared to red or green algae and could be considered for future applications in medicine, dietary supplements, cosmetics or food industries. Cystophora monilifera extract was found to have the highest antioxidant concentration, followed by Zonaria angustata, Cystophora pectinate, Codium fragile, and Cystophora pectinata. Fucoxanthin was found mainly in the brown algae species. The proposed methods provide an edge in terms of screening for antioxidants and quantification of antioxidant constituents in complex mixtures. The current application also demonstrates flexibility and versatility of a standard HPTLC system in the drug discovery. Proposed

  3. Marine harmful algal blooms, human health and wellbeing: challenges and opportunities in the 21st century

    PubMed Central

    BERDALET, ELISA; FLEMING, LORA E.; GOWEN, RICHARD; DAVIDSON, KEITH; HESS, PHILIPP; BACKER, LORRAINE C.; MOORE, STEPHANIE K.; HOAGLAND, PORTER; ENEVOLDSEN, HENRIK

    2015-01-01

    Microalgal blooms are a natural part of the seasonal cycle of photosynthetic organisms in marine ecosystems. They are key components of the structure and dynamics of the oceans and thus sustain the benefits that humans obtain from these aquatic environments. However, some microalgal blooms can cause harm to humans and other organisms. These harmful algal blooms (HABs) have direct impacts on human health and negative influences on human wellbeing, mainly through their consequences to coastal ecosystem services (fisheries, tourism and recreation) and other marine organisms and environments. HABs are natural phenomena, but these events can be favoured by anthropogenic pressures in coastal areas. Global warming and associated changes in the oceans could affect HAB occurrences and toxicity as well, although forecasting the possible trends is still speculative and requires intensive multidisciplinary research. At the beginning of the 21st century, with expanding human populations, particularly in coastal and developing countries, mitigating HABs impacts on human health and wellbeing is becoming a more pressing public health need. The available tools to address this global challenge include maintaining intensive, multidisciplinary and collaborative scientific research, and strengthening the coordination with stakeholders, policymakers and the general public. Here we provide an overview of different aspects of the HABs phenomena, an important element of the intrinsic links between oceans and human health and wellbeing. PMID:26692586

  4. Marine harmful algal blooms, human health and wellbeing: challenges and opportunities in the 21st century.

    PubMed

    Berdalet, Elisa; Fleming, Lora E; Gowen, Richard; Davidson, Keith; Hess, Philipp; Backer, Lorraine C; Moore, Stephanie K; Hoagland, Porter; Enevoldsen, Henrik

    Microalgal blooms are a natural part of the seasonal cycle of photosynthetic organisms in marine ecosystems. They are key components of the structure and dynamics of the oceans and thus sustain the benefits that humans obtain from these aquatic environments. However, some microalgal blooms can cause harm to humans and other organisms. These harmful algal blooms (HABs) have direct impacts on human health and negative influences on human wellbeing, mainly through their consequences to coastal ecosystem services (fisheries, tourism and recreation) and other marine organisms and environments. HABs are natural phenomena, but these events can be favoured by anthropogenic pressures in coastal areas. Global warming and associated changes in the oceans could affect HAB occurrences and toxicity as well, although forecasting the possible trends is still speculative and requires intensive multidisciplinary research. At the beginning of the 21st century, with expanding human populations, particularly in coastal and developing countries, mitigating HABs impacts on human health and wellbeing is becoming a more pressing public health need. The available tools to address this global challenge include maintaining intensive, multidisciplinary and collaborative scientific research, and strengthening the coordination with stakeholders, policymakers and the general public. Here we provide an overview of different aspects of the HABs phenomena, an important element of the intrinsic links between oceans and human health and wellbeing.

  5. Botulinum Neurotoxin Injections

    MedlinePlus

    ... Myobloc in the United States, and as Neurobloc abroad. Botulinum neurotoxin type A is approved by the ... indications. This is called "off-label" use. No studies have been done to examine the effects of ...

  6. Occurrence of marine algal toxins in oyster and phytoplankton samples in Daya Bay, South China Sea.

    PubMed

    Jiang, Tao; Liu, Lei; Li, Yang; Zhang, Jing; Tan, Zhijun; Wu, Haiyan; Jiang, Tianjiu; Lu, Songhui

    2017-09-01

    The occurrence and seasonal variations of marine algal toxins in phytoplankton and oyster samples in Daya Bay (DYB), South China Sea were investigated. Two Dinophysis species, namely, D. caudata and D. acuminata complex, were identified as Okadaic acid (OA)/pectenotoxin (PTX) related species. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis demonstrated that 2.04-14.47 pg PTX2 per cell was the predominant toxin in single-cell isolates of D. caudata. D. acuminata was not subjected to toxin analysis. The occurrence of OAs in phytoplankton concentrates of net-haul sample coincided with the presence of D. accuminata complex, suggesting that this species is most likely an OA producer in this sea area. OA, dinophysistoxins-1 (DTX1), PTX2, PTX2sa, gymnodimine (GYM), homoyessotoxin (homoYTX), and domoic acid (DA) demonstrated positive results in net haul samples. To our best knowledge, this paper is the first to report the detection of GYM, DA, and homoYTX in phytoplankton samples in Chinese coastal waters. Among the algal toxins, GYM demonstrated the highest frequency of positive detections in phytoplankton concentrates (13/17). Five compounds of algal toxins, including OA, DTX1, PTX2, PTX2sa, and GYM, were detected in oyster samples. DA and homoYTX were not detected in oysters despite of positive detections for both in the phytoplankton concentrates. However, neither the presence nor absence of DA in oysters can be determined because extraction conditions with 100% methanol used to isolate toxins from oysters (recommended by the EU-Harmonised Standard Operating Procedure, 2015) would likely be unsuitable for this water-soluble toxin. In addition, transformation of DA during the digestion process of oysters may also be involved in the negative detections of this toxin. GYM exhibited the highest frequency of positive results in oysters (14/17). OAs were only detected in the hydrolyzed oyster samples. The detection rates of PTX and PTX2sa in

  7. Emerging Opportunities for Serotypes of Botulinum Neurotoxins

    PubMed Central

    Peng Chen, Zhongxing; Morris, J. Glenn; Rodriguez, Ramon L.; Shukla, Aparna Wagle; Tapia-Núñez, John; Okun, Michael S.

    2012-01-01

    Background: Two decades ago, botulinum neurotoxin (BoNT) type A was introduced to the commercial market. Subsequently, the toxin was approved by the FDA to address several neurological syndromes, involving muscle, nerve, and gland hyperactivity. These syndromes have typically been associated with abnormalities in cholinergic transmission. Despite the multiplicity of botulinal serotypes (designated as types A through G), therapeutic preparations are currently only available for BoNT types A and B. However, other BoNT serotypes are under study for possible clinical use and new clinical indications; Objective: To review the current research on botulinum neurotoxin serotypes A-G, and to analyze potential applications within basic science and clinical settings; Conclusions: The increasing understanding of botulinal neurotoxin pathophysiology, including the neurotoxin’s effects on specific neuronal populations, will help us in tailoring treatments for specific diagnoses, symptoms and patients. Scientists and clinicians should be aware of the full range of available data involving neurotoxin subtypes A-G. PMID:23202312

  8. Cloning and purification of alpha-neurotoxins from king cobra (Ophiophagus hannah).

    PubMed

    He, Ying-Ying; Lee, Wei-Hui; Zhang, Yun

    2004-09-01

    Thirteen complete and three partial cDNA sequences were cloned from the constructed king cobra (Ophiophagus hannah) venom gland cDNA library. Phylogenetic analysis of nucleotide sequences of king cobra with those from other snake venoms revealed that obtained cDNAs are highly homologous to snake venom alpha-neurotoxins. Alignment of deduced mature peptide sequences of the obtained clones with those of other reported alpha-neurotoxins from the king cobra venom indicates that our obtained 16 clones belong to long-chain neurotoxins (seven), short-chain neurotoxins (seven), weak toxin (one) and variant (one), respectively. Up to now, two out of 16 newly cloned king cobra alpha-neurotoxins have identical amino acid sequences with CM-11 and Oh-6A/6B, which have been characterized from the same venom. Furthermore, five long-chain alpha-neurotoxins and two short-chain alpha-neurotoxins were purified from crude venom and their N-terminal amino acid sequences were determined. The cDNAs encoding the putative precursors of the purified native peptide were also determined based on the N-terminal amino acid sequencing. The purified alpha-neurotoxins showed different lethal activities on mice.

  9. Sources, factors, mechanisms and possible solutions to pollutants in marine ecosystems.

    PubMed

    Mostofa, Khan M G; Liu, Cong-Qiang; Vione, Davide; Gao, Kunshan; Ogawa, Hiroshi

    2013-11-01

    Algal toxins or red-tide toxins produced during algal blooms are naturally-derived toxic emerging contaminants (ECs) that may kill organisms, including humans, through contaminated fish or seafood. Other ECs produced either naturally or anthropogenically ultimately flow into marine waters. Pharmaceuticals are also an important pollution source, mostly due to overproduction and incorrect disposal. Ship breaking and recycle industries (SBRIs) can also release various pollutants and substantially deteriorate habitats and marine biodiversity. Overfishing is significantly increasing due to the global food crisis, caused by an increasing world population. Organic matter (OM) pollution and global warming (GW) are key factors that exacerbate these challenges (e.g. algal blooms), to which acidification in marine waters should be added as well. Sources, factors, mechanisms and possible remedial measures of these challenges to marine ecosystems are discussed, including their eventual impact on all forms of life including humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Molecular and Ecological Evidence for Species Specificity and Coevolution in a Group of Marine Algal-Bacterial Symbioses

    PubMed Central

    Ashen, Jon B.; Goff, Lynda J.

    2000-01-01

    The phylogenetic relationships of bacterial symbionts from three gall-bearing species in the marine red algal genus Prionitis (Rhodophyta) were inferred from 16S rDNA sequence analysis and compared to host phylogeny also inferred from sequence comparisons (nuclear ribosomal internal-transcribed-spacer region). Gall formation has been described previously on two species of Prionitis, P. lanceolata (from central California) and P. decipiens (from Peru). This investigation reports gall formation on a third related host, Prionitis filiformis. Phylogenetic analyses based on sequence comparisons place the bacteria as a single lineage within the Roseobacter grouping of the α subclass of the division Proteobacteria (99.4 to 98.25% sequence identity among phylotypes). Comparison of symbiont and host molecular phylogenies confirms the presence of three gall-bearing algal lineages and is consistent with the hypothesis that these red seaweeds and their bacterial symbionts are coevolving. The species specificity of these associations was investigated in nature by whole-cell hybridization of gall bacteria and in the laboratory by using cross-inoculation trials. Whole-cell in situ hybridization confirmed that a single bacterial symbiont phylotype is present in galls on each host. In laboratory trials, bacterial symbionts were incapable of inducing galls on alternate hosts (including two non-gall-bearing species). Symbiont-host specificity in Prionitis gall formation indicates an effective ecological separation between these closely related symbiont phylotypes and provides an example of a biological context in which to consider the organismic significance of 16S rDNA sequence variation. PMID:10877801

  11. Specialized proteomic responses and an ancient photoprotection mechanism sustain marine green algal growth during phosphate limitation.

    PubMed

    Guo, Jian; Wilken, Susanne; Jimenez, Valeria; Choi, Chang Jae; Ansong, Charles; Dannebaum, Richard; Sudek, Lisa; Milner, David S; Bachy, Charles; Reistetter, Emily Nahas; Elrod, Virginia A; Klimov, Denis; Purvine, Samuel O; Wei, Chia-Lin; Kunde-Ramamoorthy, Govindarajan; Richards, Thomas A; Goodenough, Ursula; Smith, Richard D; Callister, Stephen J; Worden, Alexandra Z

    2018-07-01

    mechanism for mitigating light stress is central to sustaining growth during extended phosphate limitation highlights the possibility of interactive effects arising from combined stressors under ocean change, which could reduce the efficacy of algal strategies for optimizing marine photosynthesis.

  12. Mollusc-algal chloroplast endosymbiosis. Photosynthesis, thylakoid protein maintenance, and chloroplast gene expression continue for many months in the absence of the algal nucleus.

    PubMed

    Green, B J; Li, W Y; Manhart, J R; Fox, T C; Summer, E J; Kennedy, R A; Pierce, S K; Rumpho, M E

    2000-09-01

    Early in its life cycle, the marine mollusc Elysia chlorotica Gould forms an intracellular endosymbiotic association with chloroplasts of the chromophytic alga Vaucheria litorea C. Agardh. As a result, the dark green sea slug can be sustained in culture solely by photoautotrophic CO(2) fixation for at least 9 months if provided with only light and a source of CO(2). Here we demonstrate that the sea slug symbiont chloroplasts maintain photosynthetic oxygen evolution and electron transport activity through photosystems I and II for several months in the absence of any external algal food supply. This activity is correlated to the maintenance of functional levels of chloroplast-encoded photosystem proteins, due in part at least to de novo protein synthesis of chloroplast proteins in the sea slug. Levels of at least one putative algal nuclear encoded protein, a light-harvesting complex protein homolog, were also maintained throughout the 9-month culture period. The chloroplast genome of V. litorea was found to be 119.1 kb, similar to that of other chromophytic algae. Southern analysis and polymerase chain reaction did not detect an algal nuclear genome in the slug, in agreement with earlier microscopic observations. Therefore, the maintenance of photosynthetic activity in the captured chloroplasts is regulated solely by the algal chloroplast and animal nuclear genomes.

  13. Algal-bacterial co-variation in streams: a cross-stream comparison

    Treesearch

    Xueqing Gao; Ola A. Olapade; Mark W. Kershner; Laura G. Leff

    2004-01-01

    Algal-bacterial co-variation has been frequently observed in lentic and marine environments, but the existence of such relationships in lotic ecosystems is not well established. To examine possible co-variation, bacterial number and chlorophyll-a concentration in water and sediments of nine streams from different regions in the USA were examined. In the water, a strong...

  14. Early detection of protozoan grazers in algal biofuel cultures.

    PubMed

    Day, John G; Thomas, Naomi J; Achilles-Day, Undine E M; Leakey, Raymond J G

    2012-06-01

    Future micro-algal biofuels will most likely be derived from open-pond production systems. These are by definition open to "invasion" by grazers, which could devastate micro-algal mass-cultures. There is an urgent requirement for methodologies capable of early detection and control of grazers in dense algal cultures. In this study a model system employing the marine alga Nannochloropsis oculata was challenged by grazers including ciliates, amoebae and a heterotrophic dinoflagellate. A FlowCAM flow-cytometer was used to detect all grazers investigated (size range <20->80 μm in length) in the presence of algae. Detection limits were <10 cells ml(-1) for both "large" and "small" model grazers, Euplotes vannus (80 × 45 μm) and an unidentified holotrichous ciliate (~18 × 8 μm) respectively. Furthermore, the system can distinguish the presence of ciliates in N. oculata cultures with biotechnologically relevant cell densities; i.e. >1.4 × 10(8) cells ml(-1) (>0.5 g l(-1) dry wt.). Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Botulinum neurotoxin serotypes detected by electrochemical impedance spectroscopy.

    PubMed

    Savage, Alison C; Buckley, Nicholas; Halliwell, Jennifer; Gwenin, Christopher

    2015-05-06

    Botulinum neurotoxin is one of the deadliest biological toxins known to mankind and is able to cause the debilitating disease botulism. The rapid detection of the different serotypes of botulinum neurotoxin is essential for both diagnosis of botulism and identifying the presence of toxin in potential cases of terrorism and food contamination. The modes of action of botulinum neurotoxins are well-established in literature and differ for each serotype. The toxins are known to specifically cleave portions of the SNARE proteins SNAP-25 or VAMP; an interaction that can be monitored by electrochemical impedance spectroscopy. This study presents a SNAP-25 and a VAMP biosensors for detecting the activity of five botulinum neurotoxin serotypes (A-E) using electrochemical impedance spectroscopy. The biosensors are able to detect concentrations of toxins as low as 25 fg/mL, in a short time-frame compared with the current standard methods of detection. Both biosensors show greater specificity for their compatible serotypes compared with incompatible serotypes and denatured toxins.

  16. Botulinum Neurotoxin Serotypes Detected by Electrochemical Impedance Spectroscopy

    PubMed Central

    Savage, Alison C.; Buckley, Nicholas; Halliwell, Jennifer; Gwenin, Christopher

    2015-01-01

    Botulinum neurotoxin is one of the deadliest biological toxins known to mankind and is able to cause the debilitating disease botulism. The rapid detection of the different serotypes of botulinum neurotoxin is essential for both diagnosis of botulism and identifying the presence of toxin in potential cases of terrorism and food contamination. The modes of action of botulinum neurotoxins are well-established in literature and differ for each serotype. The toxins are known to specifically cleave portions of the SNARE proteins SNAP-25 or VAMP; an interaction that can be monitored by electrochemical impedance spectroscopy. This study presents a SNAP-25 and a VAMP biosensors for detecting the activity of five botulinum neurotoxin serotypes (A–E) using electrochemical impedance spectroscopy. The biosensors are able to detect concentrations of toxins as low as 25 fg/mL, in a short time-frame compared with the current standard methods of detection. Both biosensors show greater specificity for their compatible serotypes compared with incompatible serotypes and denatured toxins. PMID:25954998

  17. Fetal exposure to environmental neurotoxins in Taiwan.

    PubMed

    Jiang, Chuen-Bin; Hsi, Hsing-Cheng; Fan, Chun-Hua; Chien, Ling-Chu

    2014-01-01

    Mercury (Hg), lead (Pb), cadmium (Cd), and arsenic (As) are recognized neurotoxins in children that particularly affect neurodevelopment and intellectual performance. Based on the hypothesis that the fetal basis of adult disease is fetal toxic exposure that results in adverse outcomes in adulthood, we explored the concentrations of key neurotoxins (i.e., Hg, Pb, Cd, and As) in meconium to identify the risk factors associated with these concentrations. From January 2007 to December 2009, 545 mother-infant pairs were recruited. The geometric mean concentrations of Pb and As in the meconium of babies of foreign-born mothers (22.9 and 38.1 µg/kg dry weight, respectively) were significantly greater than those of babies of Taiwan-born mothers (17.5 and 33.0 µg/kg dry weight, respectively). Maternal age (≥30 y), maternal education, use of traditional Chinese herbs during pregnancy, and fish cutlet consumption (≥3 meals/wk) were risk factors associated with concentrations of key prenatal neurotoxins. The Taiwan government should focus more attention on providing intervention programs for immigrant mothers to help protect the health of unborn babies. Further investigation on how multiple neurotoxins influence prenatal neurodevelopment is warranted.

  18. Fetal Exposure to Environmental Neurotoxins in Taiwan

    PubMed Central

    Jiang, Chuen-Bin; Hsi, Hsing-Cheng; Fan, Chun-Hua; Chien, Ling-Chu

    2014-01-01

    Mercury (Hg), lead (Pb), cadmium (Cd), and arsenic (As) are recognized neurotoxins in children that particularly affect neurodevelopment and intellectual performance. Based on the hypothesis that the fetal basis of adult disease is fetal toxic exposure that results in adverse outcomes in adulthood, we explored the concentrations of key neurotoxins (i.e., Hg, Pb, Cd, and As) in meconium to identify the risk factors associated with these concentrations. From January 2007 to December 2009, 545 mother-infant pairs were recruited. The geometric mean concentrations of Pb and As in the meconium of babies of foreign-born mothers (22.9 and 38.1 µg/kg dry weight, respectively) were significantly greater than those of babies of Taiwan-born mothers (17.5 and 33.0 µg/kg dry weight, respectively). Maternal age (≥30 y), maternal education, use of traditional Chinese herbs during pregnancy, and fish cutlet consumption (≥3 meals/wk) were risk factors associated with concentrations of key prenatal neurotoxins. The Taiwan government should focus more attention on providing intervention programs for immigrant mothers to help protect the health of unborn babies. Further investigation on how multiple neurotoxins influence prenatal neurodevelopment is warranted. PMID:25299345

  19. Effective Use of Marine Algal Products in the Management of Plant-Parasitic Nematodes

    PubMed Central

    Paracer, Surindar; Tarjan, Armen C.; Hodgson, Lynn M.

    1987-01-01

    Algal extracts were ineffective against Meloidogyne spp., Panagrellus redivivus, and Neoaplectana carpocapsae at 1.0% aqueous concentrations, with the exception of Spatoglossum schroederi. S. schroederi killed Meloidogyne incognita, M. javanica, M. acrita, and Hoplolaimus galeatus at concentrations of 1.0, 0.75, and 0.50%. Extracts from S. schroederi at a concentration of 1.0% were ineffective against Hirschmanniella caudacrena and Belonolaimus longicaudatus. Spatoglossum schroederi, Botryocladia occidentalis, and Bryothamnion triquestrum when used as soil amendments at 0.5-1.0% concentrations (by weight) produced significant reduction of root gall development in tomato plants infected with M. incognita. Tomato plant growth was significantly improved by these algae, as well as by Caulerpa prolifera. Soil amendments of S. schroederi at concentrations of 0.5 and 1.0% significantly reduced root galling of tomato infected with M. incognita, M. arenaria, and M. javanica. Tomatoes grown in algal-soil mixture produced significantly heavier shoots and roots than plants raised in autoclaved soil. No significant differences in root-knot indices, nor in fresh and dry weights of tomato, were noted between the two concentrations of algal-soil mixture. PMID:19290129

  20. Comparison of oral toxicological properties of botulinum neurotoxin

    USDA-ARS?s Scientific Manuscript database

    Botulinum neurotoxins (BoNTs) are among the most potent biological toxins for humans. Of the seven known serotypes (A-G) of BoNT, serotypes A, B and E cause most of the foodborne intoxications in humans. BoNTs in nature are associated with non-toxic accessory proteins known as neurotoxin-associated ...

  1. CRYSTAL STRUCTURE OF CLOSTRIDIUM BOTULINUM NEUROTOXIN SEROTYPE B.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SWAMINATHAN,S.; ESWARAMOORTHY,S.

    2001-11-19

    The toxigenic strains of Clostridium botulinum produce seven serologically distinct types of neurotoxins labeled A - G (EC 3.4.24.69), while Clostridium tetani produces tetanus neurotoxin (EC 3.4.24.68). Botulinum and tetanus neurotoxins (BoNTs and TeNT) are produced as single inactive chains of molecular mass of approximately 150 kDa. Most of these neurotoxins are released after being cleaved into two chains, a heavy chain (HI) of 100 kDa and a light chain (L) of 50 kDa held together by an interchain disulfide bond, by tissue proteinases. BoNT/E is released as a single chain but cleaved by host proteinases [1]. Clostvidium botulinum neurotoxinsmore » are extremely poisonous proteins with their LD{sub 50} for humans in the range of 0.1 - 1 ng kg{sup -1} [2]. Botulinum neurotoxins are responsible for neuroparalytic syndromes of botulism characterized by serious neurological disorders and flaccid paralysis. BoNTs block the release of acetylcholine at the neuromuscular junction causing flaccid paralysis while TeNT blocks the release of neurotransmitters like glycine and {gamma}-aminobutyric acid (GABA) in the inhibitory interneurons of the spinal cord resulting in spastic paralysis. In spite of different clinical symptoms, their aetiological agents intoxicate neuronal cells in the same way and these toxins have similar structural organization [3].« less

  2. Copper desorption from Gelidium algal biomass.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2007-04-01

    Desorption of divalent copper from marine algae Gelidium sesquipedale, an algal waste (from agar extraction industry) and a composite material (the algal waste immobilized in polyacrylonitrile) was studied in a batch system. Copper ions were first adsorbed until saturation and then desorbed by HNO(3) and Na(2)EDTA solutions. Elution efficiency using HNO(3) increases as pH decreases. At pH=1, for a solid to liquid ratio S/L=4gl(-1), elution efficiency was 97%, 95% and 88%, the stoichiometric coefficient for the ionic exchange, 0.70+/-0.02, 0.73+/-0.05 and 0.76+/-0.06 and the selectivity coefficient, 0.93+/-0.07, 1.0+/-0.3 and 1.1+/-0.3, respectively, for algae Gelidium, algal waste and composite material. Complexation of copper ions by EDTA occurs in a molar proportion of 1:1 and the elution efficiency increases with EDTA concentration. For concentrations of 1.4, 0.88 and 0.57 mmoll(-1), the elution efficiency for S/L=4gl(-1), was 91%, 86% and 78%, respectively, for algae Gelidium, algal waste and composite material. The S/L ratio, in the range 1-20gl(-1), has little influence on copper recovery by using 0.1M HNO(3). Desorption kinetics was very fast for all biosorbents. Kinetic data using HNO(3) as eluant were well described by the mass transfer model, considering the average metal concentration in the solid phase and the equilibrium relationship given by the mass action law. The homogeneous diffusion coefficient varied between 1.0 x 10(-7)cm(2)s(-1) for algae Gelidium and 3.0 x 10(-7)cm(2)s(-1) for the composite material.

  3. Wind-driven marine phytoplank blooms: Satellite observation and analysis

    NASA Astrophysics Data System (ADS)

    Tang, DanLing

    2016-07-01

    Algal bloom is defined as a rapid increase or accumulation in biomass in an aquatic system. It not only can increase the primary production but also could result in negative ecological consequence, e.g.,Harmful Algal Blooms (HABs). According to the classic theory for the formation of algal blooms "critical depth" and "eutrophication", oligotrophic sea area is usually difficult to form a large area of algal blooms, and actuallythe traditional observation is only sporadic capture to the existence of algal blooms.Taking full advantage of multiple data of satellite remote sensing , this study introduces "Wind-driven algal blooms in open oceans: observation and mechanisms" It explained except classic coastal Ekman transport, the wind through a variety of mechanisms affecting the formation of algal blooms. Proposed a conceptual model of "Strong wind -upwelling-nutrient-phytoplankton blooms" in Western South China Sea (SCS) to assess role of wind-induced advection transport in phytoplankton bloom formation. It illustrates the nutrient resources that support long-term offshore phytoplankton blooms in the western SCS; (2)Proposal of the theory that "typhoons cause vertical mixing, induce phytoplankton blooms", and quantify their important contribution to marine primary production; Proposal a new ecological index for typhoon. Proposed remote sensing inversion models. (3)Finding of the spatial and temporaldistributions pattern of harmful algal bloom (HAB)and species variations of HAB in the South Yellow Sea and East China Sea, and in the Pearl River estuary, and their oceanic dynamic mechanisms related with monsoon; The project developed new techniques and generated new knowledge, which significantly improved understanding of the formation mechanisms of algal blooms. The proposed "wind-pump" mechanism integrates theoretical system combined "ocean dynamics, development of algal blooms, and impact on primary production", which will benefit fisheries management. These

  4. Structure of dual receptor binding to botulinum neurotoxin B.

    PubMed

    Berntsson, Ronnie P-A; Peng, Lisheng; Dong, Min; Stenmark, Pål

    2013-01-01

    Botulinum neurotoxins are highly toxic, and bind two receptors to achieve their high affinity and specificity for neurons. Here we present the first structure of a botulinum neurotoxin bound to both its receptors. We determine the 2.3-Å structure of a ternary complex of botulinum neurotoxin type B bound to both its protein receptor synaptotagmin II and its ganglioside receptor GD1a. We show that there is no direct contact between the two receptors, and that the binding affinity towards synaptotagmin II is not influenced by the presence of GD1a. The interactions of botulinum neurotoxin type B with the sialic acid 5 moiety of GD1a are important for the ganglioside selectivity. The structure demonstrates that the protein receptor and the ganglioside receptor occupy nearby but separate binding sites, thus providing two independent anchoring points.

  5. Historical perspectives and guidelines for botulinum neurotoxin subtype nomenclature

    USDA-ARS?s Scientific Manuscript database

    Botulinum neurotoxins are diverse proteins. They are currently represented by at least seven serotypes and 40 subtypes. New clostridial strains that produce novel neurotoxin variants are being identified with increasing frequency, which presents challenges when organizing the nomenclature surroundin...

  6. Halogenated compounds from marine algae.

    PubMed

    Cabrita, Maria Teresa; Vale, Carlos; Rauter, Amélia Pilar

    2010-08-09

    Marine algae produce a cocktail of halogenated metabolites with potential commercial value. Structures exhibited by these compounds go from acyclic entities with a linear chain to complex polycyclic molecules. Their medical and pharmaceutical application has been investigated for a few decades, however other properties, such as antifouling, are not to be discarded. Many compounds were discovered in the last years, although the need for new drugs keeps this field open as many algal species are poorly screened. The ecological role of marine algal halogenated metabolites has somehow been overlooked. This new research field will provide valuable and novel insight into the marine ecosystem dynamics as well as a new approach to comprehending biodiversity. Furthermore, understanding interactions between halogenated compound production by algae and the environment, including anthropogenic or global climate changes, is a challenging target for the coming years. Research of halogenated metabolites has been more focused on macroalgae than on phytoplankton. However, phytoplankton could be a very promising material since it is the base of the marine food chain with quick adaptation to environmental changes, which undoubtedly has consequences on secondary metabolism. This paper reviews recent progress on this field and presents trends on the role of marine algae as producers of halogenated compounds.

  7. Halogenated Compounds from Marine Algae

    PubMed Central

    Cabrita, Maria Teresa; Vale, Carlos; Rauter, Amélia Pilar

    2010-01-01

    Marine algae produce a cocktail of halogenated metabolites with potential commercial value. Structures exhibited by these compounds go from acyclic entities with a linear chain to complex polycyclic molecules. Their medical and pharmaceutical application has been investigated for a few decades, however other properties, such as antifouling, are not to be discarded. Many compounds were discovered in the last years, although the need for new drugs keeps this field open as many algal species are poorly screened. The ecological role of marine algal halogenated metabolites has somehow been overlooked. This new research field will provide valuable and novel insight into the marine ecosystem dynamics as well as a new approach to comprehending biodiversity. Furthermore, understanding interactions between halogenated compound production by algae and the environment, including anthropogenic or global climate changes, is a challenging target for the coming years. Research of halogenated metabolites has been more focused on macroalgae than on phytoplankton. However, phytoplankton could be a very promising material since it is the base of the marine food chain with quick adaptation to environmental changes, which undoubtedly has consequences on secondary metabolism. This paper reviews recent progress on this field and presents trends on the role of marine algae as producers of halogenated compounds. PMID:20948909

  8. Mollusc-Algal Chloroplast Endosymbiosis. Photosynthesis, Thylakoid Protein Maintenance, and Chloroplast Gene Expression Continue for Many Months in the Absence of the Algal Nucleus1

    PubMed Central

    Green, Brian J.; Li, Wei-Ye; Manhart, James R.; Fox, Theodore C.; Summer, Elizabeth J.; Kennedy, Robert A.; Pierce, Sidney K.; Rumpho, Mary E.

    2000-01-01

    Early in its life cycle, the marine mollusc Elysia chlorotica Gould forms an intracellular endosymbiotic association with chloroplasts of the chromophytic alga Vaucheria litorea C. Agardh. As a result, the dark green sea slug can be sustained in culture solely by photoautotrophic CO2 fixation for at least 9 months if provided with only light and a source of CO2. Here we demonstrate that the sea slug symbiont chloroplasts maintain photosynthetic oxygen evolution and electron transport activity through photosystems I and II for several months in the absence of any external algal food supply. This activity is correlated to the maintenance of functional levels of chloroplast-encoded photosystem proteins, due in part at least to de novo protein synthesis of chloroplast proteins in the sea slug. Levels of at least one putative algal nuclear encoded protein, a light-harvesting complex protein homolog, were also maintained throughout the 9-month culture period. The chloroplast genome of V. litorea was found to be 119.1 kb, similar to that of other chromophytic algae. Southern analysis and polymerase chain reaction did not detect an algal nuclear genome in the slug, in agreement with earlier microscopic observations. Therefore, the maintenance of photosynthetic activity in the captured chloroplasts is regulated solely by the algal chloroplast and animal nuclear genomes. PMID:10982447

  9. Coral reef grazer-benthos dynamics complicated by invasive algae in a small marine reserve

    PubMed Central

    Stamoulis, Kostantinos A.; Friedlander, Alan M.; Meyer, Carl G.; Fernandez-Silva, Iria; Toonen, Robert J.

    2017-01-01

    Blooms of alien invasive marine algae have become common, greatly altering the health and stability of nearshore marine ecosystems. Concurrently, herbivorous fishes have been severely overfished in many locations worldwide, contributing to increases in macroalgal cover. We used a multi-pronged, interdisciplinary approach to test if higher biomass of herbivorous fishes inside a no-take marine reserve makes this area more resistant to invasive algal overgrowth. Over a two year time period, we (1) compared fish biomass and algal cover between two fished and one unfished patch reef in Hawai’i, (2) used acoustic telemetry to determine fidelity of herbivorous fishes to the unfished reef, and (3) used metabarcoding and next-generation sequencing to determine diet composition of herbivorous fishes. Herbivore fish biomass was significantly higher in the marine reserve compared to adjacent fished reefs, whereas invasive algal cover differed by species. Herbivorous fish movements were largely confined to the unfished patch reef where they were captured. Diet analysis indicated that the consumption of invasive algae varied among fish species, with a high prevalence of comparatively rare native algal species. Together these findings demonstrate that the contribution of herbivores to coral reef resilience, via resistance to invasive algae invasion, is complex and species-specific. PMID:28276458

  10. Mass spectrometry-based methods for detection and differentiation of botulinum neurotoxins

    DOEpatents

    Schmidt, Jurgen G [Los Alamos, NM; Boyer, Anne E [Atlanta, GA; Kalb, Suzanne R [Atlanta, GA; Moura, Hercules [Tucker, GA; Barr, John R [Suwannee, GA; Woolfitt, Adrian R [Atlanta, GA

    2009-11-03

    The present invention is directed to a method for detecting the presence of clostridial neurotoxins in a sample by mixing a sample with a peptide that can serve as a substrate for proteolytic activity of a clostridial neurotoxin; and measuring for proteolytic activity of a clostridial neurotoxin by a mass spectroscopy technique. In one embodiment, the peptide can have an affinity tag attached at two or more sites.

  11. Rachael Carson Lecture - Algal Toxins in the Deep Blue Sea: an Environmental Concern?

    NASA Astrophysics Data System (ADS)

    Silver, M. W.; Bargu, S.

    2008-05-01

    Many land plants are known to possess toxins, presumably for grazer deterrence, whereas toxins in marine phytoplankton are a much rarer phenomenon, particularly in open ocean (blue water) environments. Several dozen phytoplankton species, frequently dinoflagellates but also some diatoms, form "harmful algal blooms" nearshore: here their toxins can contaminate filter-feeding shellfish resulting in poisoning "syndromes" when humans consume the tainted shellfish. The present rise in such coastal events is a likely consequence of human activities. In blue water, open ocean environments, the filamentous cyanobacterium Trichodesmium (a blue green alga) is one of the few bloom-forming toxin producers and hosts a consortium of microorganisms that may be partially immune to its toxins. Pseudo-nitzschia, a ubiquitous genus of diatoms recently has been shown to include coastal species that produce domoic acid (DA), a neurotoxin that passes through the food web, sometimes with resulting deaths of marine birds and mammals. Oceanic species of Pseudo-nitzschia also exist but are less well known, and DA has not yet been found in them. Here we review some general features of toxic marine phytoplankton, recent studies on DA in coastal ecosystems and describe some of our findings on blue water Pseudo-nitzschia. We will summarize laboratory experiments that show complex patterns of DA retention and release into the water when Fe is added to coastal Pseudo-nitzschia cultures. In oceanic species, equivalent experiments on cell physiology are limited and the natural species and abundance patterns poorly known. Here we present our recent discovery that DA occurs in oceanic Pseudo-nitzschia and review evidence from the literature that this genus may be preferentially enhanced when iron is added to HNLC (high nutrient, low chlorophyll) waters: areas where nitrogen and phosphorus are not yet depleted, but iron concentrations and phytoplankton biomass are low. The rapid growth of these DA

  12. Structure-based drug discovery for botulinum neurotoxins.

    PubMed

    Swaminathan, Subramanyam

    2013-01-01

    Clostridium botulinum neurotoxin is the most poisonous substance known to humans. It is a potential biowarfare threat and a public health hazard. The only therapeutics available is antibody treatment which will not be effective for post-exposure therapy. There are no drugs available for post-intoxication treatment. Accordingly, it is imperative to develop effective drugs to counter botulism. Available structural information on botulinum neurotoxins both alone and in complex with their substrates offers an efficient method for designing structure-based drugs to treat botulism.

  13. Algal blooms in the spread and persistence of cholera.

    PubMed

    Epstein, P R

    1993-01-01

    Cholera has been long associated with the seasonality of coastal algal blooms off Bangladesh. Using fluorescent antibody (FA) techniques, microbiologists have now identified a viable, non-cultivable form of Vibrio cholerae in a wide range of marine life, including cyanobacteria (Anabaena variabilis), diatoms (Skeletonema costatum), phaeophytes (Ascophyllum nodosum), in copepod molts, and in freshwater vascular aquatic plants (water hyacinths and duckweed). In unfavourable conditions V. cholerae assumes spore-like forms; with proper nutrients, pH and temperature, it reverts to a readily transmissible and infectious state. Nitrates and phosphates in sewage and fertilizers cause eutrophication, and scientists report an increase in intensity, duration and shifts in the biodiversity of algal blooms in many coastal, brackish and fresh waters worldwide. V. cholerae has been isolated from phyto- and zooplankton in marine and fresh waters near Lima, Peru. V. cholera 01, biotype El Tor, serotype Inaba, may have arrived in the Americas in the bilge of a Chinese freighter. There, in the abundant coastal sea life along the Latin American Pacific coast, nourished by the Humboldt current and eutrophication, it found a reservoir for surviving unfavourable conditions. It is hypothesized that the algae and Vibrio populations grew exponentially; consumed by fish, mollusks and crustacea, a heavy 'inoculum' of carriers infected with V. cholerae was generated and transported into multiple coastal communities.

  14. Algal recycling enhances algal productivity and settleability in Pediastrum boryanum pure cultures.

    PubMed

    Park, Jason B K; Craggs, Rupert J; Shilton, Andy N

    2015-12-15

    Recycling a portion of gravity harvested algae (i.e. algae and associated bacteria biomass) has been shown to improve both algal biomass productivity and harvest efficiency by maintaining the dominance of a rapidly-settleable colonial alga, Pediastrum boryanum in both pilot-scale wastewater treatment High Rate Algal Ponds (HRAP) and outdoor mesocosms. While algal recycling did not change the relative proportions of algae and bacteria in the HRAP culture, the contribution of the wastewater bacteria to the improved algal biomass productivity and settleability with the recycling was not certain and still required investigation. P. boryanum was therefore isolated from the HRAP and grown in pure culture on synthetic wastewater growth media under laboratory conditions. The influence of recycling on the productivity and settleability of the pure P. boryanum culture was then determined without wastewater bacteria present. Six 1 L P. boryanum cultures were grown over 30 days in a laboratory growth chamber simulating New Zealand summer conditions either with (Pr) or without (Pc) recycling of 10% of gravity harvested algae. The cultures with recycling (Pr) had higher algal productivity than the controls (Pc) when the cultures were operated at both 4 and 3 d hydraulic retention times by 11% and 38% respectively. Furthermore, algal recycling also improved 1 h settleability from ∼60% to ∼85% by increasing the average P. boryanum colony size due to the extended mean cell residence time and promoted formation of large algal bio-flocs (>500 μm diameter). These results demonstrate that the presence of wastewater bacteria was not necessary to improve algal productivity and settleability with algal recycling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. MITIGATION OF HARMFUL ALGAL BLOOMS IN THE UNITED STATES USING CLAY: RESEARCH PROGRESS AND FUTURE PERSPECTIVES

    EPA Science Inventory

    Throughout the United States, red tides and harmful algal blooms (HABs) pose a serious and recurrent threat to marine ecosystems, fisheries, human health, and coastal aesthetics. Here we report results from a research program investigating the use of clay dispersal for bloom cont...

  16. Fast-growing algicidal Streptomyces sp. U3 and its potential in harmful algal bloom controls.

    PubMed

    Yu, Xiaoqi; Cai, Guanjing; Wang, Hui; Hu, Zhong; Zheng, Wei; Lei, Xueqian; Zhu, Xiaoying; Chen, Yao; Chen, Qiuliang; Din, Hongyan; Xu, Hong; Tian, Yun; Fu, Lijun; Zheng, Tianling

    2018-01-05

    To find the potential algicidal microorganisms and apply them to prevent and terminate harmful algal blooms (HABs), we isolated an actinomycete U3 from Mangrove, which had a potent algicidal effect on the harmful alga Heterosigma akashiwo. It could completely lyse the algal cells by producing active compounds, which were highly sensitive to high temperature and strong alkaline, but resistant to acid. One μg/mL of crude extract of the fermentation supernatant could kill 70% of H. akashiwo cells in 3 d. Unlike most of the other known algicidal Streptomyces, U3 showed strong ability of proliferation with the algal inclusion as the nutrient source. The washed mycelial pellets also gradually exhibited significant algicidal effect during the visible growth in the algal culture. It suggests that U3 could efficiently absorb nutrients from algal culture to support its growth and produce algicidal compounds that might cause the autophagy of algal cells. Therefore, applying U3, as a long-term and environmentally friendly bio-agent to control the harmful blooms of H. akashiwo, would be effective and promising. And the decrease of bioavailable DOM and increase of bio-refractory DOM during the algicidal process of U3 provided new insights into the ecological influence of algicial microorganisms on marine ecosystem. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Cephalopods as Vectors of Harmful Algal Bloom Toxins in Marine Food Webs

    PubMed Central

    Lopes, Vanessa M.; Lopes, Ana Rita; Costa, Pedro; Rosa, Rui

    2013-01-01

    Here we summarize the current knowledge on the transfer and accumulation of harmful algal bloom (HAB)-related toxins in cephalopods (octopods, cuttlefishes and squids). These mollusks have been reported to accumulate several HAB-toxins, namely domoic acid (DA, and its isomers), saxitoxin (and its derivatives) and palytoxin (and palytoxin-like compounds) and, therefore, act as HAB-toxin vectors in marine food webs. Coastal octopods and cuttlefishes store considerably high levels of DA (amnesic shellfish toxin) in several tissues, but mainly in the digestive gland (DG)—the primary site of digestive absorption and intracellular digestion. Studies on the sub-cellular partitioning of DA in the soluble and insoluble fractions showed that nearly all DA (92.6%) is found in the cytosol. This favors the trophic transfer of the toxins since cytosolic substances can be absorbed by predators with greater efficiency. The available information on the accumulation and tissue distribution of DA in squids (e.g., in stranded Humboldt squids, Dosidicus gigas) is scarcer than in other cephalopod groups. Regarding paralytic shellfish toxins (PSTs), these organisms accumulate them at the greatest extent in DG >> kidneys > stomach > branchial hearts > posterior salivary glands > gills. Palytoxins are among the most toxic molecules identified and stranded octopods revealed high contamination levels, with ovatoxin (a palytoxin analogue) reaching 971 μg kg−1 and palytoxin reaching 115 μg kg−1 (the regulatory limit for PlTXs is 30 μg kg−1 in shellfish). Although the impacts of HAB-toxins in cephalopod physiology are not as well understood as in fish species, similar effects are expected since they possess a complex nervous system and highly developed brain comparable to that of the vertebrates. Compared to bivalves, cephalopods represent a lower risk of shellfish poisoning in humans, since they are usually consumed eviscerated, with exception of traditional dishes from the

  18. Cephalopods as vectors of harmful algal bloom toxins in marine food webs.

    PubMed

    Lopes, Vanessa M; Lopes, Ana Rita; Costa, Pedro; Rosa, Rui

    2013-09-06

    Here we summarize the current knowledge on the transfer and accumulation of harmful algal bloom (HAB)-related toxins in cephalopods (octopods, cuttlefishes and squids). These mollusks have been reported to accumulate several HAB-toxins, namely domoic acid (DA, and its isomers), saxitoxin (and its derivatives) and palytoxin (and palytoxin-like compounds) and, therefore, act as HAB-toxin vectors in marine food webs. Coastal octopods and cuttlefishes store considerably high levels of DA (amnesic shellfish toxin) in several tissues, but mainly in the digestive gland (DG)--the primary site of digestive absorption and intracellular digestion. Studies on the sub-cellular partitioning of DA in the soluble and insoluble fractions showed that nearly all DA (92.6%) is found in the cytosol. This favors the trophic transfer of the toxins since cytosolic substances can be absorbed by predators with greater efficiency. The available information on the accumulation and tissue distribution of DA in squids (e.g., in stranded Humboldt squids, Dosidicus gigas) is scarcer than in other cephalopod groups. Regarding paralytic shellfish toxins (PSTs), these organisms accumulate them at the greatest extent in DG > kidneys > stomach > branchial hearts > posterior salivary glands > gills. Palytoxins are among the most toxic molecules identified and stranded octopods revealed high contamination levels, with ovatoxin (a palytoxin analogue) reaching 971 μg kg⁻¹ and palytoxin reaching 115 μg kg⁻¹ (the regulatory limit for PlTXs is 30 μg kg⁻¹ in shellfish). Although the impacts of HAB-toxins in cephalopod physiology are not as well understood as in fish species, similar effects are expected since they possess a complex nervous system and highly developed brain comparable to that of the vertebrates. Compared to bivalves, cephalopods represent a lower risk of shellfish poisoning in humans, since they are usually consumed eviscerated, with exception of traditional dishes from the

  19. Biological importance of marine algae

    PubMed Central

    El Gamal, Ali A.

    2009-01-01

    Marine organisms are potentially prolific sources of highly bioactive secondary metabolites that might represent useful leads in the development of new pharmaceutical agents. Algae can be classified into two main groups; first one is the microalgae, which includes blue green algae, dinoflagellates, bacillariophyta (diatoms)… etc., and second one is macroalgae (seaweeds) which includes green, brown and red algae. The microalgae phyla have been recognized to provide chemical and pharmacological novelty and diversity. Moreover, microalgae are considered as the actual producers of some highly bioactive compounds found in marine resources. Red algae are considered as the most important source of many biologically active metabolites in comparison to other algal classes. Seaweeds are used for great number of application by man. The principal use of seaweeds as a source of human food and as a source of gums (phycocollides). Phycocolloides like agar agar, alginic acid and carrageenan are primarily constituents of brown and red algal cell walls and are widely used in industry. PMID:23960716

  20. Biosorption of copper by marine algae Gelidium and algal composite material in a packed bed column.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Loureiro, José M; Boaventura, Rui A R

    2008-09-01

    Marine algae Gelidium and algal composite material were investigated for the continuous removal of Cu(II) from aqueous solution in a packed bed column. The biosorption behaviour was studied during one sorption-desorption cycle of Cu(II) in the flow through column fed with 50 and 25 mg l(-1) of Cu(II) in aqueous solution, at pH 5.3, leading to a maximum uptake capacity of approximately 13 and 3 mg g(-1), respectively, for algae Gelidium and composite material. The breakthrough time decreases as the inlet copper concentration increases, for the same flow rate. The pH of the effluent decreases over the breakthrough time of copper ions, which indicates that ion exchange is one of the mechanisms involved in the biosorption process. Temperature has little influence on the metal uptake capacity and the increase of the ionic strength reduces the sorption capacity, decreasing the breakthrough time. Desorption using 0.1M HNO(3) solution was 100% effective. After two consecutive sorption-desorption cycles no changes in the uptake capacity of the composite material were observed. A mass transfer model including film and intraparticle resistances, and the equilibrium relationship, for adsorption and desorption, was successfully applied for the simulation of the biosorption column performance.

  1. Interactions between arsenic species and marine algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanders, J.G.

    The arsenic concentration and speciation of marine algae varies widely, from 0.4 to 23 ng.mg/sup -1/, with significant differences in both total arsenic content and arsenic speciation occurring between algal classes. The Phaeophyceae contain more arsenic than other algal classes, and a greater proportion of the arsenic is organic. The concentration of inorganic arsenic is fairly constant in macro-algae, and may indicate a maximum level, with the excess being reduced and methylated. Phytoplankton take up As(V) readily, and incorporate a small percentage of it into the cell. The majority of the As(V) is reduced, methylated, and released to the surroundingmore » media. The arsenic speciation in phytoplankton and Valonia also changes when As(V) is added to cultures. Arsenate and phosphate compete for uptake by algal cells. Arsenate inhibits primary production at concentrations as low as 5 ..mu..g.1/sup -1/ when the phosphate concentration is low. The inhibition is competitive. A phosphate enrichment of > 0.3 ..mu..M alleviates this inhibition; however, the As(V) stress causes an increase in the cell's phosphorus requirement. Arsenite is also toxic to phytoplankton at similar concentrations. Methylated arsenic species did not affect cell productivity, even at concentrations of 25 ..mu..g.1/sup -1/. Thus, the methylation of As(V) by the cell produces a stable, non-reactive compound which is nontoxic. The uptake and subsequent reduction and methylation of As(V) is a significant factor in determining the arsenic biogeochemistry of productive systems, and also the effect that the arsenic may have on algal productivity. Therefore, the role of marine algae in determining the arsenic speciation of marine systems cannot be ignored. (ERB)« less

  2. Detection of marine neurotoxins and characterization of the presynaptic activity of iotrochotin from the sponge Iotrochota birotulata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, J.V.

    1987-01-01

    In order to detect novel presynaptic neurotoxins, a total of 766 extracts from marine organisms collected during expeditions of the research vessel Alpha Helix around the peninsula of Baja Mexico in 1974 and through the Caribbean in 1978 were tested for activity in a synaptosomal assay for the release of acetylcholine (ACh). To eliminate from consideration sample extracts which lysed the synaptosomal membrane, lactate dehydrogenase (LDH) activity was measured as a cytoplasmic marker. On the basis of the screening studies the extract of the sponge lotrochota birotulata was chosen for more detailed characterization. The active factor, iotrochotin (IOT), was sensitivemore » to thermal inactivation, was partially activated by trypsin treatment and had a molecular weight of 12,000-13,000. The activity of IOT was found to be complete by one minute. The maximal release of radioactivity from synaptosomes preloaded with (/sup 3/H)choline was found to be dependent on the concentration of IOT irrespective of the time of further incubation. The concentration-response curve of IOT activity showed a sigmoid shape which did not fit the Hill equation. IOT caused release of both ACh and choline. Of the radioactivity released by IOT from synaptosomes preloaded with (/sup 3/H)choline, 50-60% was (/sup 3/H)ACh. IOT also released (/sup 3/H)GABA and (/sup 3/H)norepinephrine from synaptosomes preincubated with these labeled neurotransmitters. The activity of IOT was only minimally sensitive to reduction in Na/sup +/ or Ca/sup 2 +/ levels, and was not sensitive to tetrodotoxin. IOT did not dramatically change the fluorescence of synaptosomes incubated with a depolarization-indicating dye. However, depolarization of synaptosomes with high concentrations of K/sup +/ was still detectable by this method in the presence of IOT.« less

  3. Molecular Basis of Paralytic Neurotoxin Action on Voltage-Sensitive Sodium Channels

    DTIC Science & Technology

    1989-10-20

    acting at neurotoxin receptor site 2, and markedly potentiated and prolonged by polypeptide a-scorpion toxins and sea anemone toxins acting at neurotoxin...to block the actions of scorpion toxins and sea anemone toxins on the sodium channel. Transmembrane organization of amino acid sequences between

  4. Climatic regulation of the neurotoxin domoic acid

    PubMed Central

    McKibben, S. Morgaine; Peterson, William; Wood, A. Michelle; Trainer, Vera L.; Hunter, Matthew; White, Angelicque E.

    2017-01-01

    Domoic acid is a potent neurotoxin produced by certain marine microalgae that can accumulate in the foodweb, posing a health threat to human seafood consumers and wildlife in coastal regions worldwide. Evidence of climatic regulation of domoic acid in shellfish over the past 20 y in the Northern California Current regime is shown. The timing of elevated domoic acid is strongly related to warm phases of the Pacific Decadal Oscillation and the Oceanic Niño Index, an indicator of El Niño events. Ocean conditions in the northeast Pacific that are associated with warm phases of these indices, including changes in prevailing currents and advection of anomalously warm water masses onto the continental shelf, are hypothesized to contribute to increases in this toxin. We present an applied domoic acid risk assessment model for the US West Coast based on combined climatic and local variables. Evidence of regional- to basin-scale controls on domoic acid has not previously been presented. Our findings have implications in coastal zones worldwide that are affected by this toxin and are particularly relevant given the increased frequency of anomalously warm ocean conditions. PMID:28069959

  5. Climate Change and Algal Blooms =

    NASA Astrophysics Data System (ADS)

    Lin, Shengpan

    Algal blooms are new emerging hazards that have had important social impacts in recent years. However, it was not very clear whether future climate change causing warming waters and stronger storm events would exacerbate the algal bloom problem. The goal of this dissertation was to evaluate the sensitivity of algal biomass to climate change in the continental United States. Long-term large-scale observations of algal biomass in inland lakes are challenging, but are necessary to relate climate change to algal blooms. To get observations at this scale, this dissertation applied machine-learning algorithms including boosted regression trees (BRT) in remote sensing of chlorophyll-a with Landsat TM/ETM+. The results show that the BRT algorithm improved model accuracy by 15%, compared to traditional linear regression. The remote sensing model explained 46% of the total variance of the ground-measured chlorophyll- a in the first National Lake Assessment conducted by the US Environmental Protection Agency. That accuracy was ecologically meaningful to study climate change impacts on algal blooms. Moreover, the BRT algorithm for chlorophyll- a would not have systematic bias that is introduced by sediments and colored dissolved organic matter, both of which might change concurrently with climate change and algal blooms. This dissertation shows that the existing atmospheric corrections for Landsat TM/ETM+ imagery might not be good enough to improve the remote sensing of chlorophyll-a in inland lakes. After deriving long-term algal biomass estimates from Landsat TM/ETM+, time series analysis was used to study the relations of climate change and algal biomass in four Missouri reservoirs. The results show that neither temperature nor precipitation was the only factor that controlled temporal variation of algal biomass. Different reservoirs, even different zones within the same reservoir, responded differently to temperature and precipitation changes. These findings were further

  6. Exploring the Utilization of Complex Algal Communities to Address Algal Pond Crash and Increase Annual Biomass Production for Algal Biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, Cyd E.

    2014-03-25

    This white paper briefly reviews the research literature exploring complex algal communities as a means of increasing algal biomass production via increased tolerance, resilience, and resistance to a variety of abiotic and biotic perturbations occurring within harvesting timescales. This paper identifies what data are available and whether more research utilizing complex communities is needed to explore the potential of complex algal community stability (CACS) approach as a plausible means to increase biomass yields regardless of ecological context and resulting in decreased algal-based fuel prices by reducing operations costs. By reviewing the literature for what we do and do not know,more » in terms of CACS methodologies, this report will provide guidance for future research addressing pond crash phenomena.« less

  7. National Algal Biofuels Technology Roadmap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrell, John; Sarisky-Reed, Valerie

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status ofmore » algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.« less

  8. Probiotic microorganisms inhibit epithelial cell internalization of botulinum neurotoxin serotype A

    USDA-ARS?s Scientific Manuscript database

    Botulinum neurotoxins (BoNTs) are some of the most poisonous natural toxins known to man and are threats to public health and safety. Previous work from our laboratory showed that BoNT serotype A (BoNT/A) complex (holotoxin with neurotoxin-associated proteins) bind and transit through the intestinal...

  9. Algicidal effect of hybrid peptides as potential inhibitors of harmful algal blooms.

    PubMed

    Park, Seong-Cheol; Moon, Jeong Chan; Kim, Nam-Hong; Kim, Eun-Ji; Jeong, Jae-Eun; Nelson, Andrew D L; Jo, Beom-Ho; Jang, Mi-Kyeong; Lee, Jung Ro

    2016-05-01

    To biochemically characterize synthetic peptides to control harmful algal blooms (HABs) that cause red tides in marine water ecosystems. We present an analysis of several short synthetic peptides and their efficacy as algicidal agents. By altering the amino acid composition of the peptides we addressed the mode of algicidal action and determine the optimal balance of cationic and hydrophobic content for killing. In a controlled setting, these synthetic peptides disrupted both plasma and chloroplast membranes of several species known to result in HABs. This disruption was a direct result of the hydrophobic and cationic content of the peptide. Furthermore, by using an anti-HAB bioassay in scallops, we determined that these peptides were algicidal without being cytotoxic to other marine organisms. These synthetic peptides may prove promising for general marine ecosystem remediation where HABs have become widespread and resulted in serious economic loss.

  10. Botulinum neurotoxin type A in the masseter muscle: Effects on incisor eruption in rabbits

    PubMed Central

    Navarrete, Alfonso L.; Rafferty, Katherine L.; Liu, Zi Jun; Ye, Wenmin; Greenlee, Geoffrey M.; Herring, Susan W.

    2015-01-01

    Introduction Botulinum neurotoxins are responsible for the paralytic food poisoning, botulism. Commercial formulations such as botulinum neurotoxin type A are increasingly used for various conditions, including cosmetic recontouring of the lower face by injection of the large masseter muscles. The paralysis of a major muscle of mastication lowers occlusal force and thus might affect tooth eruption. The purpose of this study was to investigate the effects of unilateral masseter muscle injection of botulinum neurotoxin type A on the rate of eruption of incisors in a rabbit model. We hypothesized that the teeth would overerupt in an underloaded environment. Methods Forty rabbits were injected with either botulinum neurotoxin type A or saline solution in 1 masseter muscle. Mastication and muscle force production were monitored, and incisor eruption rate was assessed by caliper measurement of grooved teeth. Results The injection of saline solution had no effect. The masseter muscle injected with botulinum neurotoxin type A showed a dramatic loss of force 3 weeks after injection despite apparently normal mastication. Incisor eruption rate was significantly decreased for the botulinum neurotoxin type A group, an effect attributed to decreased attrition. Conclusions This study has implications for orthodontics. Although findings from ever-growing rabbit incisors cannot be extrapolated to human teeth, it is clear that botulinum neurotoxin type A caused a decrease in bite force that could influence dental eruption. PMID:23561411

  11. Analysis and prediction of presynaptic and postsynaptic neurotoxins by Chou's general pseudo amino acid composition and motif features.

    PubMed

    Mei, Juan; Zhao, Ji

    2018-06-14

    Presynaptic neurotoxins and postsynaptic neurotoxins are two important neurotoxins isolated from venoms of venomous animals and have been proven to be potential effective in neurosciences and pharmacology. With the number of toxin sequences appeared in the public databases, there was a need for developing a computational method for fast and accurate identification and classification of the novel presynaptic neurotoxins and postsynaptic neurotoxins in the large databases. In this study, the Multinomial Naive Bayes Classifier (MNBC) had been developed to discriminate the presynaptic neurotoxins and postsynaptic neurotoxins based on the different kinds of features. The Minimum Redundancy Maximum Relevance (MRMR) feature selection method was used for ranking 400 pseudo amino acid (PseAA) compositions and 50 top ranked PseAA compositions were selected for improving the prediction results. The motif features, 400 PseAA compositions and 50 PseAA compositions were combined together, and selected as the input parameters of MNBC. The best correlation coefficient (CC) value of 0.8213 was obtained when the prediction quality was evaluated by the jackknife test. It was anticipated that the algorithm presented in this study may become a useful tool for identification of presynaptic neurotoxin and postsynaptic neurotoxin sequences and may provide some useful help for in-depth investigation into the biological mechanism of presynaptic neurotoxins and postsynaptic neurotoxins. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Defensin-neurotoxin dyad in a basally branching metazoan sea anemone.

    PubMed

    Kim, Chan-Hee; Lee, Ye Jin; Go, Hye-Jin; Oh, Hye Young; Lee, Tae Kwan; Park, Ji Been; Park, Nam Gyu

    2017-10-01

    Recent studies suggest that vertebrate and invertebrate defensins have evolved from two independent ancestors, and that both defensins could share origins with animal toxins. Here, we purified novel sea anemone neurotoxin (BDS)-like antimicrobial peptides (AMPs)-Crassicorin-I and its putative homolog (Crassicorin-II)-from the pharynx extract of an anthozoan sea anemone (Urticina crassicornis). Based on structural analyses and cDNA cloning, mature Crassicorin-I represents a cationic AMP likely generated from a precursor and comprising 40 amino acid residues, including six cysteines forming three intramolecular disulfide bonds. Recombinant Crassicorin-I produced in a heterologous bacterial-expression system displayed antimicrobial activity against both a gram-positive bacterium (Bacillus subtilis) and gram-negative bacteria (Escherichia coli and Salmonella enterica). The Crassicorin-I transcript was upregulated by immune challenge, suggesting its involvement in defense mechanisms against infectious pathogens in sea anemone. Sequence alignment and three-dimensional molecular modeling revealed that Crassicorin-I exhibits high degrees of structural similarity to sea anemone neurotoxins that share β-defensin fold which is found in vertebrate defensins and invertebrate big-defensins. Consistent with its structural similarity to neurotoxins, Crassicorin-I exhibited paralytic activity toward a crustacean. These findings motivated our investigation and subsequent discovery of antimicrobial activity from other known sea anemone neurotoxins, such as APETx1 and ShK. Collectively, our work signified that Crassicorin-I is the first AMP identified from a sea anemone and provided evidence of a functional linkage between AMPs and neurotoxins in a basally branching metazoan. © 2017 Federation of European Biochemical Societies.

  13. Unique Ganglioside Recognition Strategies for Clostridial Neurotoxins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, Marc A.; Fu, Zhuji; Kim, Jung-Ja P.

    2012-03-15

    Botulinum neurotoxins (BoNTs) and tetanus neurotoxin are the causative agents of the paralytic diseases botulism and tetanus, respectively. The potency of the clostridial neurotoxins (CNTs) relies primarily on their highly specific binding to nerve terminals and cleavage of SNARE proteins. Although individual CNTs utilize distinct proteins for entry, they share common ganglioside co-receptors. Here, we report the crystal structure of the BoNT/F receptor-binding domain in complex with the sugar moiety of ganglioside GD1a. GD1a binds in a shallow groove formed by the conserved peptide motif E ... H ... SXWY ... G, with additional stabilizing interactions provided by two argininemore » residues. Comparative analysis of BoNT/F with other CNTs revealed several differences in the interactions of each toxin with ganglioside. Notably, exchange of BoNT/F His-1241 with the corresponding lysine residue of BoNT/E resulted in increased affinity for GD1a and conferred the ability to bind ganglioside GM1a. Conversely, BoNT/E was not able to bind GM1a, demonstrating a discrete mechanism of ganglioside recognition. These findings provide a structural basis for ganglioside binding among the CNTs and show that individual toxins utilize unique ganglioside recognition strategies.« less

  14. The Hawaiian Algal Database: a laboratory LIMS and online resource for biodiversity data

    PubMed Central

    Wang, Norman; Sherwood, Alison R; Kurihara, Akira; Conklin, Kimberly Y; Sauvage, Thomas; Presting, Gernot G

    2009-01-01

    Background Organization and presentation of biodiversity data is greatly facilitated by databases that are specially designed to allow easy data entry and organized data display. Such databases also have the capacity to serve as Laboratory Information Management Systems (LIMS). The Hawaiian Algal Database was designed to showcase specimens collected from the Hawaiian Archipelago, enabling users around the world to compare their specimens with our photographs and DNA sequence data, and to provide lab personnel with an organizational tool for storing various biodiversity data types. Description We describe the Hawaiian Algal Database, a comprehensive and searchable database containing photographs and micrographs, geo-referenced collecting information, taxonomic checklists and standardized DNA sequence data. All data for individual samples are linked through unique accession numbers. Users can search online for sample information by accession number, numerous levels of taxonomy, or collection site. At the present time the database contains data representing over 2,000 samples of marine, freshwater and terrestrial algae from the Hawaiian Archipelago. These samples are primarily red algae, although other taxa are being added. Conclusion The Hawaiian Algal Database is a digital repository for Hawaiian algal samples and acts as a LIMS for the laboratory. Users can make use of the online search tool to view and download specimen photographs and micrographs, DNA sequences and relevant habitat data, including georeferenced collecting locations. It is publicly available at . PMID:19728892

  15. Harmful Algal Bloom Webinar

    EPA Pesticide Factsheets

    The problem is complex. Excessive nitrogen and phosphorous levels can cause harmful algal blooms. Different algal/cyanobacteria strains bloom under different conditions. Different strains produce different toxins at varying amounts.

  16. Cell death in a harmful algal bloom causing species Alexandrium tamarense upon an algicidal bacterium induction.

    PubMed

    Zhang, Huajun; Lv, Jinglin; Peng, Yun; Zhang, Su; An, Xinli; Xu, Hong; Zhang, Jun; Tian, Yun; Zheng, Wei; Zheng, Tianling

    2014-09-01

    Harmful algal blooms occur throughout the world, destroying aquatic ecosystems and threatening human health. The culture supernatant of the marine algicidal bacteria DHQ25 was able to lysis dinoflagellate Alexandrium tamarense. Loss of photosynthetic pigments, accompanied by a decline in Photosystem II (PSII) photochemical efficiency (Fv/Fm), in A. tamarense was detected under bacterial supernatant stress. Transmission electron microscope analysis showed obvious morphological modifications of chloroplast dismantling as a part of the algicidal process. The PSII electron transport chain was seriously blocked, with its reaction center damaged. This damage was detected in a relative transcriptional level of psbA and psbD genes, which encode the D1 and D2 proteins in the PSII reaction center. And the block in the electron transport chain of PSII might generate excessive reactive oxygen species (ROS) which could destroy the membrane system and pigment synthesis and activated enzymic antioxidant systems including superoxide dismutase (SOD) and catalase (CAT). This study indicated that marine bacteria with indirect algicidal activity played an important role in the changes of photosynthetic process in a harmful algal bloom species.

  17. Botulinum Neurotoxin Serotype A Inhibitors: Small-Molecule Mercaptoacetamide Analogs

    PubMed Central

    Moe, Scott T.; Thompson, Andrew B.; Smith, Genessa M.; Fredenburg, Ross A.; Stein, Ross L.; Jacobson, Alan R

    2009-01-01

    Botulinum neurotoxin elicits its paralytic activity through a zinc-dependant metalloprotease that cleaves proteins involved in neurotransmitter release. Currently, no drugs are available to reverse the effects of botulinum intoxication. Herein we report the design of a novel series of mercaptoacetamide small-molecule inhibitors active against botulinum neurotoxin serotype A. These analogs show low micromolar inhibitory activity against the isolated enzyme. Structure-activity relationship studies for a series of mercaptoacetamide analogs of 5-amino-3-phenylpyrazole reveal components essential for potent inhibitory activity. PMID:19329331

  18. Short-chain consensus alpha-neurotoxin: a synthetic 60-mer peptide with generic traits and enhanced immunogenic properties.

    PubMed

    de la Rosa, Guillermo; Corrales-García, Ligia L; Rodriguez-Ruiz, Ximena; López-Vera, Estuardo; Corzo, Gerardo

    2018-07-01

    The three-fingered toxin family and more precisely short-chain α-neurotoxins (also known as Type I α-neurotoxins) are crucial in defining the elapid envenomation process, but paradoxically, they are barely neutralized by current elapid snake antivenoms. This work has been focused on the primary structural identity among Type I neurotoxins in order to create a consensus short-chain α-neurotoxin with conserved characteristics. A multiple sequence alignment considering the twelve most toxic short-chain α-neurotoxins reported from the venoms of the elapid genera Acanthophis, Oxyuranus, Walterinnesia, Naja, Dendroaspis and Micrurus led us to propose a short-chain consensus α-neurotoxin, here named ScNtx. The synthetic ScNtx gene was de novo constructed and cloned into the expression vector pQE30 containing a 6His-Tag and an FXa proteolytic cleavage region. Escherichia coli Origami cells transfected with the pQE30/ScNtx vector expressed the recombinant consensus neurotoxin in a soluble form with a yield of 1.5 mg/L of culture medium. The 60-amino acid residue ScNtx contains canonical structural motifs similar to α-neurotoxins from African elapids and its LD 50 of 3.8 µg/mice is similar to the most toxic short-chain α-neurotoxins reported from elapid venoms. Furthermore, ScNtx was also able to antagonize muscular, but not neuronal, nicotinic acetylcholine receptors (nAChR). Rabbits immunized with ScNtx were able to immune-recognize short-chain α-neurotoxins within whole elapid venoms. Type I neurotoxins are difficult to isolate and purify from natural sources; therefore, the heterologous expression of molecules such ScNtx, bearing crucial motifs and key amino acids, is a step forward to create common immunogens for developing cost-effective antivenoms with a wider spectrum of efficacy, quality and strong therapeutic value.

  19. Coralline algal Barium as indicator for 20th century northwestern North Atlantic surface ocean freshwater variability

    PubMed Central

    Hetzinger, S.; Halfar, J.; Zack, T.; Mecking, J. V.; Kunz, B. E.; Jacob, D. E.; Adey, W. H.

    2013-01-01

    During the past decades climate and freshwater dynamics in the northwestern North Atlantic have undergone major changes. Large-scale freshening episodes, related to polar freshwater pulses, have had a strong influence on ocean variability in this climatically important region. However, little is known about variability before 1950, mainly due to the lack of long-term high-resolution marine proxy archives. Here we present the first multidecadal-length records of annually resolved Ba/Ca variations from Northwest Atlantic coralline algae. We observe positive relationships between algal Ba/Ca ratios from two Newfoundland sites and salinity observations back to 1950. Both records capture episodical multi-year freshening events during the 20th century. Variability in algal Ba/Ca is sensitive to freshwater-induced changes in upper ocean stratification, which affect the transport of cold, Ba-enriched deep waters onto the shelf (highly stratified equals less Ba/Ca). Algal Ba/Ca ratios therefore may serve as a new resource for reconstructing past surface ocean freshwater changes. PMID:23636135

  20. Coralline algal barium as indicator for 20th century northwestern North Atlantic surface ocean freshwater variability.

    PubMed

    Hetzinger, S; Halfar, J; Zack, T; Mecking, J V; Kunz, B E; Jacob, D E; Adey, W H

    2013-01-01

    During the past decades climate and freshwater dynamics in the northwestern North Atlantic have undergone major changes. Large-scale freshening episodes, related to polar freshwater pulses, have had a strong influence on ocean variability in this climatically important region. However, little is known about variability before 1950, mainly due to the lack of long-term high-resolution marine proxy archives. Here we present the first multidecadal-length records of annually resolved Ba/Ca variations from Northwest Atlantic coralline algae. We observe positive relationships between algal Ba/Ca ratios from two Newfoundland sites and salinity observations back to 1950. Both records capture episodical multi-year freshening events during the 20th century. Variability in algal Ba/Ca is sensitive to freshwater-induced changes in upper ocean stratification, which affect the transport of cold, Ba-enriched deep waters onto the shelf (highly stratified equals less Ba/Ca). Algal Ba/Ca ratios therefore may serve as a new resource for reconstructing past surface ocean freshwater changes.

  1. Algal Attributes: An Autecological Classification of Algal Taxa Collected by the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Porter, Stephen D.

    2008-01-01

    Algae are excellent indicators of water-quality conditions, notably nutrient and organic enrichment, and also are indicators of major ion, dissolved oxygen, and pH concentrations and stream microhabitat conditions. The autecology, or physiological optima and tolerance, of algal species for various water-quality contaminants and conditions is relatively well understood for certain groups of freshwater algae, notably diatoms. However, applications of autecological information for water-quality assessments have been limited because of challenges associated with compiling autecological literature from disparate sources, tracking name changes for a large number of algal species, and creating an autecological data base from which algal-indicator metrics can be calculated. A comprehensive summary of algal autecological attributes for North American streams and rivers does not exist. This report describes a large, digital data file containing 28,182 records for 5,939 algal taxa, generally species or variety, collected by the U.S. Geological Survey?s National Water-Quality Assessment (NAWQA) Program. The data file includes 37 algal attributes classified by over 100 algal-indicator codes or metrics that can be calculated easily with readily available software. Algal attributes include qualitative classifications based on European and North American autecological literature, and semi-quantitative, weighted-average regression approaches for estimating optima using regional and national NAWQA data. Applications of algal metrics in water-quality assessments are discussed and national quartile distributions of metric scores are shown for selected indicator metrics.

  2. Large-scale marine ecosystem change and the conservation of marine mammals

    USGS Publications Warehouse

    O'Shea, T.J.; Odell, D.K.

    2008-01-01

    Papers in this Special Feature stem from a symposium on large-scale ecosystem change and the conservation of marine mammals convened at the 86th Annual Meeting of the American Society of Mammalogists in June 2006. Major changes are occurring in multiple aspects of the marine environment at unprecedented rates, within the life spans of some individual marine mammals. Drivers of change include shifts in climate, acoustic pollution, disturbances to trophic structure, fisheries interactions, harmful algal blooms, and environmental contaminants. This Special Feature provides an in-depth examination of 3 issues that are particularly troublesome. The 1st article notes the huge spatial and temporal scales of change to which marine mammals are showing ecological responses, and how these species can function as sentinels of such change. The 2nd paper describes the serious problems arising from conflicts with fisheries, and the 3rd contribution reviews the growing issues associated with underwater noise. ?? 2008 American Society of Mammalogists.

  3. Microwave-Assisted Extraction of Fucoidan from Marine Algae.

    PubMed

    Mussatto, Solange I

    2015-01-01

    Microwave-assisted extraction (MAE) is a technique that can be applied to extract compounds from different natural resources. In this chapter, the use of this technique to extract fucoidan from marine algae is described. The method involves a closed MAE system, ultrapure water as extraction solvent, and suitable conditions of time, pressure, and algal biomass/water ratio. By using this procedure under the specified conditions, the penetration of the electromagnetic waves into the material structure occurs in an efficient manner, generating a distributed heat source that promotes the fucoidan extraction from the algal biomass.

  4. Structure-function relationship in the binding of snake neurotoxins to the torpedo membrane receptor.

    PubMed

    Chicheportiche, R; Vincent, J P; Kopeyan, C; Schweitz, H; Lazdunski, M

    1975-05-20

    The Cys30-Cus34 bridge present in all long neutotoxins (71-74 amino acids, 5 disulfide bridges), but not in short toxins (60-63 amino acids, 4 disulfide bridges), is exposed at the surface since it can be reduced rapidly and selectively by sodium borohydride. Reduction and alkylation of the Cys30-Cys34 bridge of Naja haje neurotoxin III hardly alter the conformational properties of this model long toxin. Although alkylation by iodoacetic acid of th -SH groups liberated by reduction abolishes the toxicity, alkylation by iodoacetamide or ethylenimine does not affect the curarizing efficacy of the toxin. The Cys30-Cys34 bridge is not very important for the toxic activity of long neurotoxins. Reduction of the Cys30-Cys34 bridge followed by alkylation with radioactive iodoacetamide gave a labeled and active toxin which is a convenient derivative for binding experiments to the toxin receptor in membranes of the Torpedo electric organ. The binding capacity of these membrane is 1200 pmol of toxin/mg of membrane protein. The dissociation constant of the modified toxin-receptor complex at pH 7.4, 20 degrees is 10 minus 8m. Reduction with carbroxamidomethylation of the Cys30-Cys34 bridge decreases the affinity of the native Naja haje toxin only by a factor of 15. Carboxymethylation after reduction prevents binding to the membrane receptor. The binding properties of the derivative obtained by reduction and aminoethylation of Cys30-Cys34 are very similar to those of native neurotoxin III; the affinity is decreased only by a factor of 5. Binding properties to Toredo membrane of long neurotoxins (Naja haje neurotoxin III) and short neurotoxins (Naje haje toxin I and Naja mossambica toxin I) have been compared. Dissociation constants of receptor-long neurotoxin and receptor-short neurotoxin complexes are very similar (5.7 minus 8.2 times 10(-10) M at pH 7.4, 20degrees. However, the kinetics of complex formation and complex dissociation are quite different. Short neurotoxins

  5. Ocean acidification increases the toxic effects of TiO2 nanoparticles on the marine microalga Chlorella vulgaris.

    PubMed

    Xia, Bin; Sui, Qi; Sun, Xuemei; Han, Qian; Chen, Bijuan; Zhu, Lin; Qu, Keming

    2018-03-15

    Concerns about the environmental effects of engineered nanoparticles (NPs) on marine ecosystems are increasing. Meanwhile, ocean acidification (OA) has become a global environmental problem. However, the combined effects of NPs and OA on marine organisms are still not well understood. In this study, we investigated the effects of OA (pH values of 7.77 and 7.47) on the bioavailability and toxicity of TiO 2 NPs to the marine microalga Chlorella vulgaris. The results showed that OA enhanced the growth inhibition of algal cells caused by TiO 2 NPs. We observed synergistic interactive effects of pH and TiO 2 NPs on oxidative stress, indicating that OA significantly increased the oxidative damage of TiO 2 NPs on the algal cells. Importantly, the elevated toxicity of TiO 2 NPs associated with OA could be explained by the enhanced internalization of NPs in algal cells, which was attributed to the slighter aggregation and more suspended particles in acidified seawater. Overall, these findings provide useful information on marine environmental risk assessments of NPs under near future OA conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Cytochrome P450 Monooxygenases for Fatty Acids and Xenobiotics in Marine Macroalgae1

    PubMed Central

    Pflugmacher, Stephan; Sandermann, Heinrich

    1998-01-01

    The metabolism of xenobiotics has mainly been investigated in higher plant species. We studied them in various marine macroalgae of the phyla Chlorophyta, Chromophyta, and Rhodophyta. Microsomes contained high oxidative activities for known cytochrome (Cyt) P450 substrates (fatty acids, cinnamic acid, 3- and 4-chlorobiphenyl, 2,3-dichlorobiphenyl, and isoproturon; up to 54 pkat/mg protein). The presence of Cyt P450 (approximately 50 pmol/mg protein) in microsomes of the three algal families was demonstrated by CO-difference absorption spectra. Intact algal tissue converted 3-chlorobiphenyl to the same monohydroxy-metabolite formed in vitro. This conversion was 5-fold stimulated upon addition of phenobarbital, and was abolished by the known P450 inhibitor, 1-aminobenzotriazole. It is concluded that marine macroalgae contain active species of Cyt P450 and could act as a metabolic sink for marine pollutants. PMID:9576781

  7. Critical evaluation and modeling of algal harvesting using dissolved air flotation. DAF Algal Harvesting Modeling

    DOE PAGES

    Zhang, Xuezhi; Hewson, John C.; Amendola, Pasquale; ...

    2014-07-14

    In our study, Chlorella zofingiensis harvesting by dissolved air flotation (DAF) was critically evaluated with regard to algal concentration, culture conditions, type and dosage of coagulants, and recycle ratio. Harvesting efficiency increased with coagulant dosage and leveled off at 81%, 86%, 91%, and 87% when chitosan, Al 3+, Fe 3+, and cetyl trimethylammonium bromide (CTAB) were used at dosages of 70, 180, 250, and 500 mg g -1, respectively. The DAF efficiency-coagulant dosage relationship changed with algal culture conditions. In evaluating the influence of the initial algal concentration and recycle ratio revealed that, under conditions typical for algal harvesting, wemore » found that it is possible that the number of bubbles is insufficient. A DAF algal harvesting model was developed to explain this observation by introducing mass-based floc size distributions and a bubble limitation into the white water blanket model. Moreover, the model revealed the importance of coagulation to increase floc-bubble collision and attachment, and the preferential interaction of bubbles with larger flocs, which limited the availability of bubbles to the smaller sized flocs. The harvesting efficiencies predicted by the model agree reasonably with experimental data obtained at different Al 3+ dosages, algal concentrations, and recycle ratios. Based on this modeling, critical parameters for efficient algal harvesting were identified.« less

  8. Critical evaluation and modeling of algal harvesting using dissolved air flotation. DAF Algal Harvesting Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xuezhi; Hewson, John C.; Amendola, Pasquale

    In our study, Chlorella zofingiensis harvesting by dissolved air flotation (DAF) was critically evaluated with regard to algal concentration, culture conditions, type and dosage of coagulants, and recycle ratio. Harvesting efficiency increased with coagulant dosage and leveled off at 81%, 86%, 91%, and 87% when chitosan, Al 3+, Fe 3+, and cetyl trimethylammonium bromide (CTAB) were used at dosages of 70, 180, 250, and 500 mg g -1, respectively. The DAF efficiency-coagulant dosage relationship changed with algal culture conditions. In evaluating the influence of the initial algal concentration and recycle ratio revealed that, under conditions typical for algal harvesting, wemore » found that it is possible that the number of bubbles is insufficient. A DAF algal harvesting model was developed to explain this observation by introducing mass-based floc size distributions and a bubble limitation into the white water blanket model. Moreover, the model revealed the importance of coagulation to increase floc-bubble collision and attachment, and the preferential interaction of bubbles with larger flocs, which limited the availability of bubbles to the smaller sized flocs. The harvesting efficiencies predicted by the model agree reasonably with experimental data obtained at different Al 3+ dosages, algal concentrations, and recycle ratios. Based on this modeling, critical parameters for efficient algal harvesting were identified.« less

  9. Geographical Segregation of the Neurotoxin-Producing Cyanobacterium Anabaena circinalis

    PubMed Central

    Beltran, E. Carolina; Neilan, Brett A.

    2000-01-01

    Blooms of the cyanobacterium Anabaena circinalis are a major worldwide problem due to their production of a range of toxins, in particular the neurotoxins anatoxin-a and paralytic shellfish poisons (PSPs). Although there is a worldwide distribution of A. circinalis, there is a geographical segregation of neurotoxin production. American and European isolates of A. circinalis produce only anatoxin-a, while Australian isolates exclusively produce PSPs. The reason for this geographical segregation of neurotoxin production by A. circinalis is unknown. The phylogenetic structure of A. circinalis was determined by analyzing 16S rRNA gene sequences. A. circinalis was found to form a monophyletic group of international distribution. However, the PSP- and non-PSP-producing A. circinalis formed two distinct 16S rRNA gene clusters. A molecular probe was designed, allowing the identification of A. circinalis from cultured and uncultured environmental samples. In addition, probes targeting the predominantly PSP-producing or non-PSP-producing clusters were designed for the characterization of A. circinalis isolates as potential PSP producers. PMID:11010900

  10. Purification and characterization of neurotoxin complex from a dual toxin gene containing Clostridium botulinum strain PS-5

    USDA-ARS?s Scientific Manuscript database

    Botulinum neurotoxins (BoNTs) are produced as a toxin complex (TC) which consists of neurotoxin (NT) and neurotoxin associated proteins (NAPs). The characterization of NT in its native state is an essential step for developing diagnostics and therapeutic countermeasures against botulism. The presenc...

  11. Cyanobacteria, neurotoxins and water resources: are there implications for human neurodegenerative disease?

    PubMed

    Metcalf, James S; Codd, Geoffrey A

    2009-01-01

    Cyanobacteria are cosmopolitan microbes that inhabit marine, freshwater and terrestrial environments. Under favourable conditions in waterbodies, they can form massive populations (blooms and scums), which present hazards to human and animal health. Such cyanobacteria often contain a variety of toxic substances (cyanotoxins) that can exist as both cell-associated and free forms in the surrounding water. Some cyanotoxins are highly neurotoxic and act through a variety of mechanisms. Recent findings of the production of the neurotoxin beta-N-methylamino-L-alanine (BMAA) by cyanobacteria in aquatic environments, and of BMAA in brain and cerebrospinal fluid samples of amyotrophic lateral sclerosis and Alzheimer's disease victims, raises the possibility that people may be exposed to waterborne BMAA of cyanobacterial origin and that this may contribute to human neurodegenerative disease. An understanding of the risks presented by waterborne BMAA and of available mitigation strategies to reduce this potential exposure is needed.

  12. Algal refossilization of atmospheric carbon dioxide. [Contains bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neushul, M.

    1991-07-01

    The atmospheric concentration of carbon dioxide (CO{sub 2}) is steadily increasing. With our increasing awareness of the economic and environmental impacts of the greenhouse effects'' of CO{sub 2}, methane and other gases, there is interest in finding new methods to reduce the amounts of these gases in the atmosphere. This study evaluates the possibility that large-scale oceanic cultures of macroalgae (macroscopic seaweeds'') could be used to capture atmospheric CO{sub 2}. It is a design for a marine farm system in which a crop'' of calcareous macroalgae grows attached to, and supported by, floating macroalgae that comprise the farm structure.'' Themore » least complicated, yet feasible, macroalgal farm system appears to be one in which laboratory-propagated calcareous algal epiphytes'' and floating algal basiphytes'' are dispersed together in natural ocean upwelling regions. From there, the plants drift with surface currents to the open ocean and then sink to the sea floor, where the buried carbon is refossilized.'' An important caveat regarding the use of calcareous algae is that the process of calcification may release CO{sub 2} to the atmosphere. There is some evidence that CO{sub 2} is not released by calcification in red calcareous algae, but in contrast many geochemists feel that all biologically -- as well as chemically --mediated calcification processes release CO{sub 2}. A substantial amount of research will be necessary to answer basic questions about algal carbon fixation and biomineralization on one hand, while on the other hand to devise strategies for farming the open ocean. 76 refs., 14 figs., 7 tabs.« less

  13. Microplastic ingestion by Daphnia magna and its enhancement on algal growth.

    PubMed

    Canniff, Patrick M; Hoang, Tham C

    2018-08-15

    The rapid increase in plastic use over the last few decades has resulted in plastic pollution in freshwater and marine ecosystems. However, more attention has been paid to plastic pollution in marine ecosystems than to freshwater ecosystems. This research determined microplastic ingestion by Daphnia magna and the potential effect of microplastics on the organism's survival and reproduction. The study also examined the potential of microplastics to enhance algal growth in support of understanding effects of microplastic ingestion on the organism. When exposed to 25, 50, and 100mg/L fluorescent green polyethylene microbeads at size of 63-75μm, D. magna ingested significant amount of plastic microbeads. The number of ingested beads increased with increasing particle concentration and exposure time. However, no significant effect on survival and reproduction was observed although the gut of D. magna was filled with plastic microbeads. In the algal experiment, Raphidocelis subcapitata grew more in the exposure media with the present of plastic microbeads than without plastic microbeads. This result suggests that plastic microbeads could serve as substrates for R. subcapitata to grow. Raphidocelis subcapitata then could be transferred to the organism's gut and provided energy for survival and reproduction. Results of the present study add to the literature of microplastic ingestion by aquatic organisms. Caution should be taken when interpreting hazards of microplastics based on ingestion, such as the measurement unit and the presence of algae in the environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Temporal characteristics of botulinum neurotoxin therapy

    PubMed Central

    Lebeda, Frank J; Cer, Regina Z; Stephens, Robert M; Mudunuri, Uma

    2010-01-01

    Botulinum neurotoxin is a pharmaceutical treatment used for an increasing number of neurological and non-neurological indications, symptoms and diseases. Despite the wealth of clinical reports that involve the timing of the therapeutic effects of this toxin, few studies have attempted to integrate these data into unified models. Secondary reactions have also been examined including the development of adverse events, resistance to repeated applications, and nerve terminal sprouting. Our primary intent for conducting this review was to gather relevant pharmacodynamic data from suitable biomedical literature regarding botulinum neurotoxins via the use of automated data-mining techniques. We envision that mathematical models will ultimately be of value to those who are healthcare decision makers and providers, as well as clinical and basic researchers. Furthermore, we hypothesize that the combination of this computer-intensive approach with mathematical modeling will predict the percentage of patients who will favorably or adversely respond to this treatment and thus will eventually assist in developing the increasingly important area of personalized medicine. PMID:20021324

  15. Structure and activity of a functional derivative of Clostridium botulinum neurotoxin B.

    PubMed

    Masuyer, Geoffrey; Beard, Matthew; Cadd, Verity A; Chaddock, John A; Acharya, K Ravi

    2011-04-01

    Botulinum neurotoxins (BoNTs) cause flaccid paralysis by inhibiting neurotransmission at cholinergic nerve terminals. BoNTs consist of three essential domains for toxicity: the cell binding domain (Hc), the translocation domain (Hn) and the catalytic domain (LC). A functional derivative (LHn) of the parent neurotoxin B composed of Hn and LC domains was recombinantly produced and characterised. LHn/B crystallographic structure at 2.8Å resolution is reported. The catalytic activity of LHn/B towards recombinant human VAMP was analysed by substrate cleavage assay and showed a higher specificity for VAMP-1, -2 compared to VAMP-3. LHn/B also showed measurable activity in living spinal cord neurons. Despite lacking the Hc (cell-targeting) domain, LHn/B retained the capacity to internalize and cleave intracellular VAMP-1 and -2 when added to the cells at high concentration. These activities of the LHn/B fragment demonstrate the utility of engineered botulinum neurotoxin fragments as analytical tools to study the mechanisms of action of BoNT neurotoxins and of SNARE proteins. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Botulinum neurotoxins: new questions arising from structural biology.

    PubMed

    Kammerer, Richard A; Benoit, Roger M

    2014-11-01

    Botulinum neurotoxins (BoNTs) are the most toxic substances known and cause botulism in vertebrates. They have also emerged as effective and powerful reagents for cosmetic and medical applications. One important prerequisite for understanding BoNT function in disease, and the further development of the toxins for cosmetic and medical applications, is a detailed knowledge of BoNT interactions with non-toxic neurotoxin-associated proteins and cell surface receptors. Based on the substantial recent progress in obtaining high-resolution crystal structures of key BoNT complexes, we summarize the major advances in understanding BoNT interactions and discuss the resulting potential implications, in particular those relating to BoNT serotype A. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Advanced Algal Systems Fact Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-06-01

    Research and development (R&D) on advanced algal biofuels and bioproducts presents an opportunity to sustainably expand biomass resource potential in the United States. The Bioenergy Technologies Office’s (BETO’s) Advanced Algal Systems Program is carrying out a long-term, applied R&D strategy to lower the costs of algal biofuel production by working with partners to develop revolutionary technologies and conduct crosscutting analyses to better understand the potential

  18. Translocation of botulinum neurotoxin serotype a and associated proteins across the intestinal epithelia

    USDA-ARS?s Scientific Manuscript database

    Botulinum neurotoxins (BoNTs) are some of the most poisonous natural toxins and considered to be a major venue of bioterrorist threat. BoNTs associate with neurotoxin associated proteins (NAPs), forming large complexes. NAPs have been shown to shield the BoNT holotoxin from the harsh environment of ...

  19. EFFECT OF MARINE TOXINS ON THERMOREGULATION IN MICE.

    EPA Science Inventory

    Marine algal toxins are extremely toxic and can represent a major health problem to humans and animals. Temperature regulation is one of many processes to be affected by exposure to these toxins. Mice and rats become markedly hypothermic when subjected to acute exposure to the ma...

  20. Quorum sensing is a language of chemical signals and plays an ecological role in algal-bacterial interactions

    PubMed Central

    Zhou, Jin; Lyu, Yihua; Richlen, Mindy; Anderson, Donald M.; Cai, Zhonghua

    2017-01-01

    Algae are ubiquitous in the marine environment, and the ways in which they interact with bacteria are of particular interest in marine ecology field. The interactions between primary producers and bacteria impact the physiology of both partners, alter the chemistry of their environment, and shape microbial diversity. Although algal-bacterial interactions are well known and studied, information regarding the chemical-ecological role of this relationship remains limited, particularly with respect to quorum sensing (QS), which is a system of stimuli and response correlated to population density. In the microbial biosphere, QS is pivotal in driving community structure and regulating behavioral ecology, including biofilm formation, virulence, antibiotic resistance, swarming motility, and secondary metabolite production. Many marine habitats, such as the phycosphere, harbour diverse populations of microorganisms and various signal languages (such as QS-based autoinducers). QS-mediated interactions widely influence algal-bacterial symbiotic relationships, which in turn determine community organization, population structure, and ecosystem functioning. Understanding infochemicals-mediated ecological processes may shed light on the symbiotic interactions between algae host and associated microbes. In this review, we summarize current achievements about how QS modulates microbial behavior, affects symbiotic relationships, and regulates phytoplankton chemical ecological processes. Additionally, we present an overview of QS-modulated co-evolutionary relationships between algae and bacterioplankton, and consider the potential applications and future perspectives of QS. PMID:28966438

  1. Small Molecules Showing Significant Protection of Mice against Botulinum Neurotoxin Serotype A

    DTIC Science & Technology

    2010-04-13

    Botulinum neurotoxin serotype A (BoNTA) causes a life-threatening neuroparalytic disease known as botulism that could afflict large, unprotected...that is effective for treating infant botulism at a cost of US $45,300 per treatment regimen. Antibodies can neutralize the extracellular but not the...Inhibitors, Therapeutics, Antidotes, Countermeasures, Botulism , Botulinum Neurotoxins, In Vivo Study, and Mouse Protection. Yuan-Ping Pang, Jon Davis

  2. Adaptive signals in algal Rubisco reveal a history of ancient atmospheric carbon dioxide.

    PubMed

    Young, J N; Rickaby, R E M; Kapralov, M V; Filatov, D A

    2012-02-19

    Rubisco, the most abundant enzyme on the Earth and responsible for all photosynthetic carbon fixation, is often thought of as a highly conserved and sluggish enzyme. Yet, different algal Rubiscos demonstrate a range of kinetic properties hinting at a history of evolution and adaptation. Here, we show that algal Rubisco has indeed evolved adaptively during ancient and distinct geological periods. Using DNA sequences of extant marine algae of the red and Chromista lineage, we define positive selection within the large subunit of Rubisco, encoded by rbcL, to occur basal to the radiation of modern marine groups. This signal of positive selection appears to be responding to changing intracellular concentrations of carbon dioxide (CO(2)) triggered by physiological adaptations to declining atmospheric CO(2). Within the ecologically important Haptophyta (including coccolithophores) and Bacillariophyta (diatoms), positive selection occurred consistently during periods of falling Phanerozoic CO(2) and suggests emergence of carbon-concentrating mechanisms. During the Proterozoic, a strong signal of positive selection after secondary endosymbiosis occurs at the origin of the Chromista lineage (approx. 1.1 Ga), with further positive selection events until 0.41 Ga, implying a significant and continuous decrease in atmospheric CO(2) encompassing the Cryogenian Snowball Earth events. We surmise that positive selection in Rubisco has been caused by declines in atmospheric CO(2) and hence acts as a proxy for ancient atmospheric CO(2).

  3. Adaptive signals in algal Rubisco reveal a history of ancient atmospheric carbon dioxide

    PubMed Central

    Young, J. N.; Rickaby, R. E. M.; Kapralov, M. V.; Filatov, D. A.

    2012-01-01

    Rubisco, the most abundant enzyme on the Earth and responsible for all photosynthetic carbon fixation, is often thought of as a highly conserved and sluggish enzyme. Yet, different algal Rubiscos demonstrate a range of kinetic properties hinting at a history of evolution and adaptation. Here, we show that algal Rubisco has indeed evolved adaptively during ancient and distinct geological periods. Using DNA sequences of extant marine algae of the red and Chromista lineage, we define positive selection within the large subunit of Rubisco, encoded by rbcL, to occur basal to the radiation of modern marine groups. This signal of positive selection appears to be responding to changing intracellular concentrations of carbon dioxide (CO2) triggered by physiological adaptations to declining atmospheric CO2. Within the ecologically important Haptophyta (including coccolithophores) and Bacillariophyta (diatoms), positive selection occurred consistently during periods of falling Phanerozoic CO2 and suggests emergence of carbon-concentrating mechanisms. During the Proterozoic, a strong signal of positive selection after secondary endosymbiosis occurs at the origin of the Chromista lineage (approx. 1.1 Ga), with further positive selection events until 0.41 Ga, implying a significant and continuous decrease in atmospheric CO2 encompassing the Cryogenian Snowball Earth events. We surmise that positive selection in Rubisco has been caused by declines in atmospheric CO2 and hence acts as a proxy for ancient atmospheric CO2. PMID:22232761

  4. Molding the business end of neurotoxins by diversifying evolution.

    PubMed

    Kozminsky-Atias, Adi; Zilberberg, Noam

    2012-02-01

    A diverse range of organisms utilize neurotoxins that target specific ion channels and modulate their activity. Typically, toxins are clustered into several multigene families, providing an organism with the upper hand in the never-ending predator-prey arms race. Several gene families, including those encoding certain neurotoxins, have been subject to diversifying selection forces, resulting in rapid gene evolution. Here we sought a spatial pattern in the distribution of both diversifying and purifying selection forces common to neurotoxin gene families. Utilizing the mechanistic empirical combination model, we analyzed various toxin families from different phyla affecting various receptors and relying on diverse modes of action. Through this approach, we were able to detect clear correlations between the pharmacological surface of a toxin and rapidly evolving domains, rich in positively selected residues. On the other hand, patches of negatively selected residues were restricted to the nontoxic face of the molecule and most likely help in stabilizing the tertiary structure of the toxin. We thus propose a mutual evolutionary strategy of venomous animals in which adaptive molecular evolution is directed toward the toxin active surface. Furthermore, we propose that the binding domains of unstudied toxins could be readily predicted using evolutionary considerations.

  5. Phylogenetic Inferences Reveal a Large Extent of Novel Biodiversity in Chemically Rich Tropical Marine Cyanobacteria

    PubMed Central

    Gunasekera, Sarath P.; Gerwick, William H.

    2013-01-01

    Benthic marine cyanobacteria are known for their prolific biosynthetic capacities to produce structurally diverse secondary metabolites with biomedical application and their ability to form cyanobacterial harmful algal blooms. In an effort to provide taxonomic clarity to better guide future natural product drug discovery investigations and harmful algal bloom monitoring, this study investigated the taxonomy of tropical and subtropical natural product-producing marine cyanobacteria on the basis of their evolutionary relatedness. Our phylogenetic inferences of marine cyanobacterial strains responsible for over 100 bioactive secondary metabolites revealed an uneven taxonomic distribution, with a few groups being responsible for the vast majority of these molecules. Our data also suggest a high degree of novel biodiversity among natural product-producing strains that was previously overlooked by traditional morphology-based taxonomic approaches. This unrecognized biodiversity is primarily due to a lack of proper classification systems since the taxonomy of tropical and subtropical, benthic marine cyanobacteria has only recently been analyzed by phylogenetic methods. This evolutionary study provides a framework for a more robust classification system to better understand the taxonomy of tropical and subtropical marine cyanobacteria and the distribution of natural products in marine cyanobacteria. PMID:23315747

  6. Accelerating Commercialization of Algal Biofuels Through Partnerships (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2011-10-01

    This brochure describes National Renewable Energy Laboratory's (NREL's) algal biofuels research capabilities and partnership opportunities. NREL is accelerating algal biofuels commercialization through: (1) Advances in applied biology; (2) Algal strain development; (3) Development of fuel conversion pathways; (4) Techno-economic analysis; and (5) Development of high-throughput lipid analysis methodologies. NREL scientists and engineers are addressing challenges across the algal biofuels value chain, including algal biology, cultivation, harvesting and extraction, and fuel conversion. Through partnerships, NREL can share knowledge and capabilities in the following areas: (1) Algal Biology - A fundamental understanding of algal biology is key to developing cost-effective algal biofuelsmore » processes. NREL scientists are experts in the isolation and characterization of microalgal species. They are identifying genes and pathways involved in biofuel production. In addition, they have developed a high-throughput, non-destructive technique for assessing lipid production in microalgae. (2) Cultivation - NREL researchers study algal growth capabilities and perform compositional analysis of algal biomass. Laboratory-scale photobioreactors and 1-m2 open raceway ponds in an on-site greenhouse allow for year-round cultivation of algae under a variety of conditions. A bioenergy-focused algal strain collection is being established at NREL, and our laboratory houses a cryopreservation system for long-term maintenance of algal cultures and preservation of intellectual property. (3) Harvesting and Extraction - NREL is investigating cost-effective harvesting and extraction methods suitable for a variety of species and conditions. Areas of expertise include cell wall analysis and deconstruction and identification and utilization of co-products. (4) Fuel Conversion - NREL's excellent capabilities and facilities for biochemical and thermochemical conversion of biomass to biofuels

  7. Alkaloids in Marine Algae

    PubMed Central

    Güven, Kasım Cemal; Percot, Aline; Sezik, Ekrem

    2010-01-01

    This paper presents the alkaloids found in green, brown and red marine algae. Algal chemistry has interested many researchers in order to develop new drugs, as algae include compounds with functional groups which are characteristic from this particular source. Among these compounds, alkaloids present special interest because of their pharmacological activities. Alkaloid chemistry has been widely studied in terrestrial plants, but the number of studies in algae is insignificant. In this review, a detailed account of macro algae alkaloids with their structure and pharmacological activities is presented. The alkaloids found in marine algae may be divided into three groups: 1. Phenylethylamine alkaloids, 2. Indole and halogenated indole alkaloids, 3. Other alkaloids. PMID:20390105

  8. Pharmaceutical, biological, and clinical properties of botulinum neurotoxin type A products.

    PubMed

    Frevert, Jürgen

    2015-03-01

    Botulinum neurotoxin injections are a valuable treatment modality for many therapeutic indications and have revolutionized the field of aesthetic medicine so that they are the leading cosmetic procedure performed worldwide. Studies show that onabotulinumtoxinA, abobotulinumtoxinA, and incobotulinumtoxinA are comparable in terms of clinical efficacy. Differences between the products relate to the botulinum neurotoxin complexes, specific biological potency, and their immunogenicity. Protein complex size and molecular weight have no effect on biological activity, stability, distribution, or side effect profile. Complexing proteins and inactive toxin (toxoid) content increase the risk of neutralizing antibody formation, which can cause secondary treatment failure, particularly in chronic disorders that require frequent injections and long-term treatment. These attributes could lead to differences in therapeutic outcomes, and, given the widespread aesthetic use of these three neurotoxin products, physicians should be aware of how they differ to ensure their safe and effective use.

  9. Botulinum neurotoxin homologs in non-Clostridium species.

    PubMed

    Mansfield, Michael J; Adams, Jeremy B; Doxey, Andrew C

    2015-01-30

    Clostridial neurotoxins (CNTs) are the deadliest toxins known and the causative agents of botulism and tetanus. Despite their structural and functional complexity, no CNT homologs are currently known outside Clostridium. Here, we report the first homologs of Clostridium CNTs within the genome of the rice fermentation organism Weissella oryzae SG25. One gene in W. oryzae S25 encodes a protein with a four-domain architecture and HExxH protease motif common to botulinum neurotoxins (BoNTs). An adjacent gene with partial similarity to CNTs is also present, and both genes seem to have been laterally transferred into the W. oryzae genome from an unknown source. Identification of mobile, CNT-related genes outside of Clostridium has implications for our understanding of the evolution of this important toxin family. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  10. Bioaccumulation of methylmercury in a marine copepod

    PubMed Central

    Lee, Cheng-Shiuan; Fisher, Nicholas S.

    2016-01-01

    Methylmercury (MeHg) is known to biomagnify in marine food chains, resulting in higher concentrations in upper trophic level animals than their prey. To better understand how marine copepods, an important intermediate between phytoplankton and forage fish at the bottom of the food chain, assimilate and release MeHg, we performed a series of laboratory experiments using the gamma-emitting radiotracer 203Hg2+ and Me203Hg with the calanoid copepod Acartia tonsa. Assimilation efficiencies (AEs) of Hg2+ and MeHg ranged from 25 to 31% and 58 to 79%, respectively, depending on algal diets. The AEs were positively related to the fraction of mercury in the cytoplasm of the algal cells that comprised their diet. Efflux rates of Hg2+ (0.29/d) and MeHg (0.21/d) following aqueous uptake were similar, but efflux rates following dietary uptake were significantly lower for MeHg (0.11-0.22 /d) than Hg2+ (0.47-0.66 /d). The calculated trophic transfer factors (TTFs) in copepods were >1 for MeHg and consistently low (≤0.2) for Hg2+. We used the parameters measured in this study to (1) quantitatively model the relative importance of MeHg sources (water or diet) for copepods, and to (2) predict the overall MeHg concentrations in copepods in different marine environments. In general, MeHg uptake from diet accounted for most of the body burden in copepods (>50%). For an algal diet whose MeHg dry weight bioconcentration factor (BCF) is ≥106, over 90% of a copepod's MeHg body burden can be shown to derive from diet. Our model-predicted MeHg concentrations in the copepods were comparable to independent measurements for copepods in coastal and open-ocean regions, implying our measured parameters and model are applicable to natural waters. PMID:27764899

  11. Peg Precipitation Coupled with Chromatography is a New and Sufficient Method for the Purification of Botulinum Neurotoxin Type B

    PubMed Central

    Zhao, Yao; Kang, Lin; Gao, Shan; Gao, Xing; Xin, Wenwen; Wang, Jinglin

    2012-01-01

    Clostridium botulinum neurotoxins are used to treat a variety of neuro-muscular disorders, as well as in cosmetology. The increased demand requires efficient methods for the production and purification of these toxins. In this study, a new purification process was developed for purifying type B neurotoxin. The kinetics of C.botulinum strain growth and neurotoxin production were determined for maximum yield of toxin. The neurotoxin was purified by polyethylene glycol (PEG) precipitation and chromatography. Based on design of full factorial experiment, 20% (w/v) PEG-6000, 4°C, pH 5.0 and 0.3 M NaCl were optimal conditions to obtain a high recovery rate of 87% for the type B neurotoxin complex, as indicated by a purification factor of 61.5 fold. Furthermore, residual bacterial cells, impurity proteins and some nucleic acids were removed by PEG precipitation. The following purification of neurotoxin was accomplished by two chromatography techniques using Sephacryl™ S-100 and phenyl HP columns. The neurotoxin was recovered with an overall yield of 21.5% and the purification factor increased to 216.7 fold. In addition, a mouse bioassay determined the purified neurotoxin complex possessed a specific toxicity (LD50) of 4.095 ng/kg. PMID:22761863

  12. Direct and indirect effects of high pCO2 on algal grazing by coral reef herbivores from the Gulf of Aqaba (Red Sea)

    NASA Astrophysics Data System (ADS)

    Borell, E. M.; Steinke, M.; Fine, M.

    2013-12-01

    Grazing on marine macroalgae is a key structuring process for coral reef communities. However, ocean acidification from rising atmospheric CO2 concentrations is predicted to adversely affect many marine animals, while seaweed communities may benefit and prosper. We tested how exposure to different pCO2 (400, 1,800 and 4,000 μatm) may affect grazing on the green alga Ulva lactuca by herbivorous fish and sea urchins from the coral reefs in the northern Gulf of Aqaba (Red Sea), either directly, by changing herbivore behaviour, or indirectly via changes in algal palatability. We also determined the effects of pCO2 on algal tissue concentrations of protein and the grazing-deterrent secondary metabolite dimethylsulfoniopropionate (DMSP). Grazing preferences and overall consumption were tested in a series of multiple-choice feeding experiments in the laboratory and in situ following exposure for 14 d (algae) and 28 d (herbivores). 4,000 μatm had a significant effect on the biochemical composition and palatability of U. lactuca. No effects were observed at 1,800 relative to 400 μatm (control). Exposure of U. lactuca to 4,000 μatm resulted in a significant decrease in protein and increase in DMSP concentration. This coincided with a reduced preference for these algae by the sea urchin Tripneustes gratilla and different herbivorous fish species in situ (Acanthuridae, Siganidae and Pomacanthidae). No feeding preferences were observed for the rabbitfish Siganus rivulatus under laboratory conditions. Exposure to elevated pCO2 had no direct effect on the overall algal consumption by T. gratilla and S. rivulatus. Our results show that CO2 has the potential to alter algal palatability to different herbivores which could have important implications for algal abundance and coral community structure. The fact that pCO2 effects were observed only at a pCO2 of 4,000 μatm, however, indicates that algal-grazer interactions may be resistant to predicted pCO2 concentrations in the

  13. Effects of marine actinomycete on the removal of a toxicity alga Phaeocystis globose in eutrophication waters.

    PubMed

    Zhang, Huajun; Zhang, Su; Peng, Yun; Li, Yi; Chen, Zhangran; Xu, Hong; Yu, Zhiming; Zheng, Wei; Zheng, Tianling

    2015-01-01

    Phaeocystis globosa blooms in eutrophication waters can cause severely damage in marine ecosystem and consequently influence human activities. This study investigated the effect and role of an algicidal actinomycete (Streptomyces sp. JS01) on the elimination process of P. globosa. JS01 supernatant could alter algal cell membrane permeability in 4 h when analyzed with flow cytometry. Reactive oxygen species (ROS) levels were 7.2 times higher than that at 0 h following exposure to JS01 supernatant for 8 h, which indicated that algal cells suffered from oxidative damage. The Fv/Fm value which could reflect photosystem II (PS II) electron flow status also decreased. Real-time PCR showed that the expression of the photosynthesis related genes psbA and rbcS were suppressed by JS01 supernatant, which might induce damage to PS II. Our results demonstrated that JS01 supernatant can change algal membrane permeability in a short time and then affect photosynthesis process, which might block the PS II electron transport chain to produce excessive ROS. This experiment demonstrated that Streptomyces sp. JS01 could eliminate harmful algae in marine waters efficiently and may be function as a harmful algal bloom controller material.

  14. Effects of marine actinomycete on the removal of a toxicity alga Phaeocystis globose in eutrophication waters

    PubMed Central

    Zhang, Huajun; Zhang, Su; Peng, Yun; Li, Yi; Chen, Zhangran; Xu, Hong; Yu, Zhiming; Zheng, Wei; Zheng, Tianling

    2015-01-01

    Phaeocystis globosa blooms in eutrophication waters can cause severely damage in marine ecosystem and consequently influence human activities. This study investigated the effect and role of an algicidal actinomycete (Streptomyces sp. JS01) on the elimination process of P. globosa. JS01 supernatant could alter algal cell membrane permeability in 4 h when analyzed with flow cytometry. Reactive oxygen species (ROS) levels were 7.2 times higher than that at 0 h following exposure to JS01 supernatant for 8 h, which indicated that algal cells suffered from oxidative damage. The Fv/Fm value which could reflect photosystem II (PS II) electron flow status also decreased. Real-time PCR showed that the expression of the photosynthesis related genes psbA and rbcS were suppressed by JS01 supernatant, which might induce damage to PS II. Our results demonstrated that JS01 supernatant can change algal membrane permeability in a short time and then affect photosynthesis process, which might block the PS II electron transport chain to produce excessive ROS. This experiment demonstrated that Streptomyces sp. JS01 could eliminate harmful algae in marine waters efficiently and may be function as a harmful algal bloom controller material. PMID:26042109

  15. Energetic potential of algal biomass from high-rate algal ponds for the production of solid biofuels.

    PubMed

    Costa, Taynan de Oliveira; Calijuri, Maria Lúcia; Avelar, Nayara Vilela; Carneiro, Angélica de Cássia de Oliveira; de Assis, Letícia Rodrigues

    2017-08-01

    In this investigation, chemical characteristics, higher, lower and net heating value, bulk and energy density, and thermogravimetric analysis were applied to study the thermal characteristics of three algal biomasses. These biomasses, grown as by-products of wastewater treatment in high-rate algal ponds (HRAPs), were: (i) biomass produced in domestic effluent and collected directly from an HRAP (PO); (ii) biomass produced in domestic effluent in a mixed pond-panel system and collected from the panels (PA); and (iii) biomass originating from the treatment effluent from the meat processing industry and collected directly from an HRAP (IN). The biomass IN was the best alternative for thermal power generation. Subsequently, a mixture of the algal biomasses and Jatropha epicarp was used to produce briquettes containing 0%, 25%, 50%, 75%, and 100% of algal biomass, and their properties were evaluated. In general, the addition of algal biomass to briquettes decreased both the hygroscopicity and fixed carbon content and increased the bulk density, ash content, and energy density. A 50% proportion of biomass IN was found to be the best raw material for producing briquettes. Therefore, the production of briquettes consisting of algal biomass and Jatropha epicarp at a laboratory scale was shown to be technically feasible.

  16. A minireview of marine algal virus — Coccolithoviruses

    NASA Astrophysics Data System (ADS)

    Liu, Jingwen; Xu, Miaomiao; Zheng, Tianling

    2015-04-01

    Coccolithophorid is unicellular marine microalgae with a global distribution in temperate and sub-temperate oceanic regions and has the ability to produce `the coccoliths'. It is considered to be the second most productive calcifying organism on earth and becoming an important factor in the global carbonate cycle. Emiliania huxleyi is one of the only two bloom-forming coccolithophores and becomes a species crucial to the study of global biogeochemical cycles and climate modeling. Coccolithoviruse is a recently discovered group of viruses infecting the marine coccolithophorid E. huxleyi. They are a major cause of coccolithophore bloom termination, and DMSP concentration is increasing in the process of viral lysis. Phylogenetic evidences support that some genes are functional both in E. huxleyi and its virus (EhV). Horizontal gene transfer (HGT) of multiple functionally coupled enzymes occurs in E. huxleyi and its DNA virus EhV has been confirmed, which contributes to the diversification and adaptation of plankton in the oceans and also critically regulates virus-host infection by allowing viruses to control host metabolic pathways for their replication. Therefore, it is of particular interest to understand this host-virus interaction. On this issue, we have made a minireview of coccolithoviruses focusing on the basic characteristics, phylogenesis, horizontal gene transfer and the interaction between the host and its viruses, as well as its important role in global biogeochemical cycling.

  17. Three enzymatically active neurotoxins of Clostridium botulinum strain Af84: BoNT/A2, /F4, and /F5.

    PubMed

    Kalb, Suzanne R; Baudys, Jakub; Smith, Theresa J; Smith, Leonard A; Barr, John R

    2014-04-01

    Botulinum neurotoxins (BoNTs) are produced by various species of clostridia and are potent neurotoxins which cause the disease botulism, by cleaving proteins needed for successful nerve transmission. There are currently seven confirmed serotypes of BoNTs, labeled A-G, and toxin-producing clostridia typically only produce one serotype of BoNT. There are a few strains (bivalent strains) which are known to produce more than one serotype of BoNT, producing either both BoNT/A and /B, BoNT/A and /F, or BoNT/B and /F, designated as Ab, Ba, Af, or Bf. Recently, it was reported that Clostridium botulinum strain Af84 has three neurotoxin gene clusters: bont/A2, bont/F4, and bont/F5. This was the first report of a clostridial organism containing more than two neurotoxin gene clusters. Using a mass spectrometry based proteomics approach, we report here that all three neurotoxins, BoNT/A2, /F4, and /F5, are produced by C. botulinum Af84. Label free MS(E) quantification of the three toxins indicated that toxin composition is 88% BoNT/A2, 1% BoNT/F4, and 11% BoNT/F5. The enzymatic activity of all three neurotoxins was assessed by examining the enzymatic activity of the neurotoxins upon peptide substrates, which mimic the toxins' natural targets, and monitoring cleavage of the substrates by mass spectrometry. We determined that all three neurotoxins are enzymatically active. This is the first report of three enzymatically active neurotoxins produced in a single strain of Clostridium botulinum.

  18. Contribution of arsenic species in unicellular algae to the cycling of arsenic in marine ecosystems.

    PubMed

    Duncan, Elliott G; Maher, William A; Foster, Simon D

    2015-01-06

    This review investigates the arsenic species produced by and found in marine unicellular algae to determine if unicellular algae contribute to the formation of arsenobetaine (AB) in higher marine organisms. A wide variety of arsenic species have been found in marine unicellular algae including inorganic species (mainly arsenate--As(V)), methylated species (mainly dimethylarsenate (DMA)), arsenoribosides (glycerol, phosphate, and sulfate) and metabolites (dimethylarsenoethanol (DMAE)). Subtle differences in arsenic species distributions exist between chlorophyte and heterokontophyte species with As(V) commonly found in water-soluble cell fractions of chlorophyte species, while DMA is more common in heterokontophyte species. Additionally, different arsenoriboside species are found in each phyla with glycerol and phosphate arsenoribosides produced by chlorophytes, whereas glycerol, phosphate, and sulfate arsenoribosides are produced by heterokontophytes, which is similar to existing data for marine macro-algae. Although arsenoribosides are the major arsenic species in many marine unicellular algal species, AB has not been detected in unicellular algae which supports the hypothesis that AB is formed in marine animals via the ingestion and further metabolism of arsenoribosides. The observation of significant DMAE concentrations in some unicellular algal cultures suggests that unicellular algae-based detritus contains arsenic species that can be further metabolized to form AB in higher marine organisms. Future research establishing how environmental variability influences the production of arsenic species by marine unicellular algae and what effect this has on arsenic cycling within marine food webs is essential to clarify the role of these organisms in marine arsenic cycling.

  19. Alga-PrAS (Algal Protein Annotation Suite): A Database of Comprehensive Annotation in Algal Proteomes

    PubMed Central

    Kurotani, Atsushi; Yamada, Yutaka

    2017-01-01

    Algae are smaller organisms than land plants and offer clear advantages in research over terrestrial species in terms of rapid production, short generation time and varied commercial applications. Thus, studies investigating the practical development of effective algal production are important and will improve our understanding of both aquatic and terrestrial plants. In this study we estimated multiple physicochemical and secondary structural properties of protein sequences, the predicted presence of post-translational modification (PTM) sites, and subcellular localization using a total of 510,123 protein sequences from the proteomes of 31 algal and three plant species. Algal species were broadly selected from green and red algae, glaucophytes, oomycetes, diatoms and other microalgal groups. The results were deposited in the Algal Protein Annotation Suite database (Alga-PrAS; http://alga-pras.riken.jp/), which can be freely accessed online. PMID:28069893

  20. Epitope mapping of botulinum neurotoxins light chains

    PubMed Central

    Zdanovsky, Alexey; Zdanovsky, Denis; Zdanovskaia, Maria

    2012-01-01

    Botulinum neurotoxins (BoNTs) are listed among the most potent biothreat agents. Simultaneously, two out of seven known serotypes of these toxins are used in medicine and cosmetics. This situation calls for development of detailed epitope maps of these toxins. Such maps will help to develop new ways for decreasing damage caused by these toxins if they were to be used as weapons while retaining the therapeutic effect of these toxins used as medicine. Here, we used a library of random fragments of DNA encoding the catalytic domain of botulinum neurotoxin serotype A to identify short epitope-forming sequences. We demonstrated that knowledge of such sequences in a BoNT of one serotype can be used for identification of epitope-forming sequences in other serotypes of BoNTs. We also demonstrated a serodiagnostic value of identified sequences and their ability to retain epitope-specific structures and trigger production of corresponding antibodies, even when they are transferred into a background of a completely alien carrier protein. PMID:22922018

  1. Structural and functional characterization of a novel homodimeric three-finger neurotoxin from the venom of Ophiophagus hannah (king cobra).

    PubMed

    Roy, Amrita; Zhou, Xingding; Chong, Ming Zhi; D'hoedt, Dieter; Foo, Chun Shin; Rajagopalan, Nandhakishore; Nirthanan, Selvanayagam; Bertrand, Daniel; Sivaraman, J; Kini, R Manjunatha

    2010-03-12

    Snake venoms are a mixture of pharmacologically active proteins and polypeptides that have led to the development of molecular probes and therapeutic agents. Here, we describe the structural and functional characterization of a novel neurotoxin, haditoxin, from the venom of Ophiophagus hannah (King cobra). Haditoxin exhibited novel pharmacology with antagonism toward muscle (alphabetagammadelta) and neuronal (alpha(7), alpha(3)beta(2), and alpha(4)beta(2)) nicotinic acetylcholine receptors (nAChRs) with highest affinity for alpha(7)-nAChRs. The high resolution (1.5 A) crystal structure revealed haditoxin to be a homodimer, like kappa-neurotoxins, which target neuronal alpha(3)beta(2)- and alpha(4)beta(2)-nAChRs. Interestingly however, the monomeric subunits of haditoxin were composed of a three-finger protein fold typical of curaremimetic short-chain alpha-neurotoxins. Biochemical studies confirmed that it existed as a non-covalent dimer species in solution. Its structural similarity to short-chain alpha-neurotoxins and kappa-neurotoxins notwithstanding, haditoxin exhibited unique blockade of alpha(7)-nAChRs (IC(50) 180 nm), which is recognized by neither short-chain alpha-neurotoxins nor kappa-neurotoxins. This is the first report of a dimeric short-chain alpha-neurotoxin interacting with neuronal alpha(7)-nAChRs as well as the first homodimeric three-finger toxin to interact with muscle nAChRs.

  2. Dissolved organic matter reduces algal accumulation of methylmercury

    USGS Publications Warehouse

    Luengen, Allison C.; Fisher, Nicholas S.; Bergamaschi, Brian A.

    2012-01-01

    Dissolved organic matter (DOM) significantly decreased accumulation of methylmercury (MeHg) by the diatom Cyclotella meneghiniana in laboratory experiments. Live diatom cells accumulated two to four times more MeHg than dead cells, indicating that accumulation may be partially an energy-requiring process. Methylmercury enrichment in diatoms relative to ambient water was measured by a volume concentration factor (VCF). Without added DOM, the maximum VCF was 32 x 104, and the average VCF (from 10 to 72 h) over all experiments was 12.6 x 104. At very low (1.5 mg/L) added DOM, VCFs dropped by approximately half. At very high (20 mg/L) added DOM, VCFs dropped 10-fold. Presumably, MeHg was bound to a variety of reduced sulfur sites on the DOM, making it unavailable for uptake. Diatoms accumulated significantly more MeHg when exposed to transphilic DOM extracts than hydrophobic ones. However, algal lysate, a labile type of DOM created by resuspending a marine diatom in freshwater, behaved similarly to a refractory DOM isolate from San Francisco Bay. Addition of 67 μM L-cysteine resulted in the largest drop in VCFs, to 0.28 x 104. Although the DOM composition influenced the availability of MeHg to some extent, total DOM concentration was the most important factor in determining algal bioaccumulation of MeHg.

  3. Sapphire Energy - Integrated Algal Biorefinery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Rebecca L.; Tyler, Mike

    2015-07-22

    Sapphire Energy, Inc. (SEI) is a leader in large-scale photosynthetic algal biomass production, with a strongly cohesive research, development, and operations program. SEI takes a multidiscipline approach to integrate lab-based strain selection, cultivation and harvest and production scale, and extraction for the production of Green Crude oil, a drop in replacement for traditional crude oil.. SEI’s technical accomplishments since 2007 have produced a multifunctional platform that can address needs for fuel, feed, and other higher value products. Figure 1 outlines SEI’s commercialization process, including Green Crude production and refinement to drop in fuel replacements. The large scale algal biomass productionmore » facility, the SEI Integrated Algal Biorefinery (IABR), was built in Luna County near Columbus, New Mexico (see fig 2). The extraction unit was located at the existing SEI facility in Las Cruces, New Mexico, approximately 95 miles from the IABR. The IABR facility was constructed on time and on budget, and the extraction unit expansion to accommodate the biomass output from the IABR was completed in October 2012. The IABR facility uses open pond cultivation with a proprietary harvesting method to produce algal biomass; this biomass is then shipped to the extraction facility for conversion to Green Crude. The operation of the IABR and the extraction facilities has demonstrated the critical integration of traditional agricultural techniques with algae cultivation knowledge for algal biomass production, and the successful conversion of the biomass to Green Crude. All primary unit operations are de-risked, and at a scale suitable for process demonstration. The results are stable, reliable, and long-term cultivation of strains for year round algal biomass production. From June 2012 to November 2014, the IABR and extraction facilities produced 524 metric tons (MT) of biomass (on a dry weight basis), and 2,587 gallons of Green Crude. Additionally, the

  4. Individual Specialization to Non-Optimal Hosts in a Polyphagous Marine Invertebrate Herbivore

    PubMed Central

    Baumgartner, Finn A.; Pavia, Henrik; Toth, Gunilla B.

    2014-01-01

    Factors determining the degree of dietary generalism versus specialism are central in ecology. Species that are generalists at the population level may in fact be composed of specialized individuals. The optimal diet theory assumes that individuals choose diets that maximize fitness, and individual specialization may occur if individuals' ability to locate, recognize, and handle different food types differ. We investigate if individuals of the marine herbivorous slug Elysia viridis, which co-occur at different densities on several green macroalgal species in the field, are specialized to different algal hosts. Individual slugs were collected from three original algal host species (Cladophora sericea, Cladophora rupestris and Codium fragile) in the field, and short-term habitat choice and consumption, as well as long-term growth (proxy for fitness), on four algal diet species (the original algal host species and Chaetomorpha melagonium) were studied in laboratory experiments. Nutritional (protein, nitrogen, and carbon content) and morphological (dry weight, and cell/utricle volume) algal traits were also measured to investigate if they correlated with the growth value of the different algal diets. E. viridis individuals tended to choose and consume algal species that were similar to their original algal host. Long-term growth of E. viridis, however, was mostly independent of original algal host, as all individuals reached a larger size on the non-host C. melagonium. E. viridis growth was positively correlated to algal cell/utricle volume but not to any of the other measured algal traits. Because E. viridis feeds by piercing individual algal cells, the results indicate that slugs may receive more cytoplasm, and thus more energy per unit time, on algal species with large cells/utricles. We conclude that E. viridis individuals are specialized on different hosts, but host choice in natural E. viridis populations is not determined by the energetic value of seaweed diets

  5. Algal culture studies for CELSS

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Behrens, P.; Arnett, K.; Gladue, R.; Cox, J.; Lieberman, D.

    1987-01-01

    Microalgae are well-suited as a component of a Closed Environmental Life Support System (CELSS), since they can couple the closely related functions of food production and atmospheric regeneration. The objective was to provide a basis for predicting the response of CELSS algal cultures, and thus the food supply and air regeneration system, to changes in the culture parameters. Scenedesmus growth was measured as a function of light intensity, and the spectral dependence of light absorption by the algae as well as algal respiration in the light were determined as a function of cell concentration. These results were used to test and confirm a mathematical model that describes the productivity of an algal culture in terms of the competing processes of photosynthesis and respiration. The relationship of algal productivity to cell concentration was determined at different carbon dioxide concentrations, temperatures, and light intensities. The maximum productivity achieved by an air-grown culture was found to be within 10% of the computed maximum productivity, indicating that CO2 was very efficiently removed from the gas stream by the algal culture. Measurements of biomass productivity as a function of cell concentration at different light intensities indicated that both the productivity and efficiency of light utilization were greater at higher light intensities.

  6. Fish-seastar facilitation leads to algal forest restoration on protected rocky reefs.

    PubMed

    Galasso, Nicola M; Bonaviri, Chiara; Di Trapani, Francesco; Picciotto, Mariagrazia; Gianguzza, Paola; Agnetta, Davide; Badalamenti, Fabio

    2015-07-22

    Although protected areas can lead to recovery of overharvested species, it is much less clear whether the return of certain predator species or a diversity of predator species can lead to re-establishment of important top-down forces that regulate whole ecosystems. Here we report that the algal recovery in a Mediterranean Marine Protected Area did not derive from the increase in the traditional strong predators, but rather from the establishment of a previously unknown interaction between the thermophilic fish Thalassoma pavo and the seastar Marthasterias glacialis. The interaction resulted in elevated predation rates on sea urchins responsible for algal overgrazing. Manipulative experiments and field observations revealed that the proximity of the seastars triggered an escape response in sea urchins, extending their tube feet. Fishes exploited this behavior by feeding on the exposed tube feet, thus impairing urchin movement, and making them vulnerable to predation by the seastars. These findings suggest that predator diversity generated by MPA establishment can activate positive interactions among predators, with subsequent restoration of the ecosystem structure and function through cascading consumer impacts.

  7. Fish-seastar facilitation leads to algal forest restoration on protected rocky reefs

    PubMed Central

    Galasso, Nicola M.; Bonaviri, Chiara; Trapani, Francesco Di; Picciotto, Mariagrazia; Gianguzza, Paola; Agnetta, Davide; Badalamenti, Fabio

    2015-01-01

    Although protected areas can lead to recovery of overharvested species, it is much less clear whether the return of certain predator species or a diversity of predator species can lead to re-establishment of important top-down forces that regulate whole ecosystems. Here we report that the algal recovery in a Mediterranean Marine Protected Area did not derive from the increase in the traditional strong predators, but rather from the establishment of a previously unknown interaction between the thermophilic fish Thalassoma pavo and the seastar Marthasterias glacialis. The interaction resulted in elevated predation rates on sea urchins responsible for algal overgrazing. Manipulative experiments and field observations revealed that the proximity of the seastars triggered an escape response in sea urchins, extending their tube feet. Fishes exploited this behavior by feeding on the exposed tube feet, thus impairing urchin movement, and making them vulnerable to predation by the seastars. These findings suggest that predator diversity generated by MPA establishment can activate positive interactions among predators, with subsequent restoration of the ecosystem structure and function through cascading consumer impacts. PMID:26198539

  8. Methods for removing contaminants from algal oil

    DOEpatents

    Lupton, Francis Stephen

    2016-09-27

    Methods for removing contaminants from algal oil are provided. In an embodiment, a method comprises the steps of combining a sulfuric acid-aqueous solution that has a pH of about 1 or less with a contaminant-containing algal oil at treatment conditions effective to form an effluent. The effluent comprises a treated algal oil phase and contaminants in an acidic aqueous phase. The contaminants comprise metals, phosphorus, or combinations thereof. The acidic aqueous phase is removed from the effluent to form a contaminant-depleted algal oil.

  9. Structural Studies on Intact Clostridium botulinum Neurotoxins Complexed with Inhibitors Leading to Drug Design

    DTIC Science & Technology

    2007-02-01

    699. 5. Hanson, M. A., and Stevens, R. C. (2000) Cocrystal structure of synaptobrevin-ll bound to botulinum neurotoxin type B at 2.0 A resolution...R. C. (2000). Cocrystal structure of synaptobrevin-II bound to botulinum neurotoxin type B at 2.0 A resolution. Nature Struct. Biol. 7, 687–692. 23

  10. Novel Botulinum Neurotoxins: Exploring Underneath the Iceberg Tip.

    PubMed

    Tehran, Domenico Azarnia; Pirazzini, Marco

    2018-05-10

    Botulinum neurotoxins (BoNTs), the etiological agents of botulism, are the deadliest toxins known to humans. Yet, thanks to their biological and toxicological features, BoNTs have become sophisticated tools to study neuronal physiology and valuable therapeutics for an increasing number of human disorders. BoNTs are produced by multiple bacteria of the genus Clostridium and, on the basis of their different immunological properties, were classified as seven distinct types of toxin. BoNT classification remained stagnant for the last 50 years until, via bioinformatics and high-throughput sequencing techniques, dozens of BoNT variants, novel serotypes as well as BoNT-like toxins within non-clostridial species have been discovered. Here, we discuss how the now “booming field” of botulinum neurotoxin may shed light on their evolutionary origin and open exciting avenues for future therapeutic applications.

  11. Algal Supply System Design - Harmonized Version

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abodeely, Jared; Stevens, Daniel; Ray, Allison

    2013-03-01

    The objective of this design report is to provide an assessment of current technologies used for production, dewatering, and converting microalgae cultivated in open-pond systems to biofuel. The original draft design was created in 2011 and has subsequently been brought into agreement with the DOE harmonized model. The design report extends beyond this harmonized model to discuss some of the challenges with assessing algal production systems, including the ability to (1) quickly assess alternative algal production system designs, (2) assess spatial and temporal variability, and (3) perform large-scale assessments considering multiple scenarios for thousands of potential sites. The Algae Logisticsmore » Model (ALM) was developed to address each of these limitations of current modeling efforts to enable assessment of the economic feasibility of algal production systems across the United States. The (ALM) enables (1) dynamic assessments using spatiotemporal conditions, (2) exploration of algal production system design configurations, (3) investigation of algal production system operating assumptions, and (4) trade-off assessments with technology decisions and operating assumptions. The report discusses results from the ALM, which is used to assess the baseline design determined by harmonization efforts between U.S. DOE national laboratories. Productivity and resource assessment data is provided by coupling the ALM with the Biomass Assessment Tool developed at PNNL. This high-fidelity data is dynamically passed to the ALM and used to help better understand the impacts of spatial and temporal constraints on algal production systems by providing a cost for producing extracted algal lipids annually for each potential site.« less

  12. Modelling the Stoichiometric Regulation of C-Rich Toxins in Marine Dinoflagellates.

    PubMed

    Pinna, Adriano; Pezzolesi, Laura; Pistocchi, Rossella; Vanucci, Silvana; Ciavatta, Stefano; Polimene, Luca

    2015-01-01

    Toxin production in marine microalgae was previously shown to be tightly coupled with cellular stoichiometry. The highest values of cellular toxin are in fact mainly associated with a high carbon to nutrient cellular ratio. In particular, the cellular accumulation of C-rich toxins (i.e., with C:N > 6.6) can be stimulated by both N and P deficiency. Dinoflagellates are the main producers of C-rich toxins and may represent a serious threat for human health and the marine ecosystem. As such, the development of a numerical model able to predict how toxin production is stimulated by nutrient supply/deficiency is of primary utility for both scientific and management purposes. In this work we have developed a mechanistic model describing the stoichiometric regulation of C-rich toxins in marine dinoflagellates. To this purpose, a new formulation describing toxin production and fate was embedded in the European Regional Seas Ecosystem Model (ERSEM), here simplified to describe a monospecific batch culture. Toxin production was assumed to be composed by two distinct additive terms; the first is a constant fraction of algal production and is assumed to take place at any physiological conditions. The second term is assumed to be dependent on algal biomass and to be stimulated by internal nutrient deficiency. By using these assumptions, the model reproduced the concentrations and temporal evolution of toxins observed in cultures of Ostreopsis cf. ovata, a benthic/epiphytic dinoflagellate producing C-rich toxins named ovatoxins. The analysis of simulations and their comparison with experimental data provided a conceptual model linking toxin production and nutritional status in this species. The model was also qualitatively validated by using independent literature data, and the results indicate that our formulation can be also used to simulate toxin dynamics in other dinoflagellates. Our model represents an important step towards the simulation and prediction of marine algal

  13. Algal Cell Response to Pulsed Waved Stimulation and Its Application to Increase Algal Lipid Production

    NASA Astrophysics Data System (ADS)

    Savchenko, Oleksandra; Xing, Jida; Yang, Xiaoyan; Gu, Quanrong; Shaheen, Mohamed; Huang, Min; Yu, Xiaojian; Burrell, Robert; Patra, Prabir; Chen, Jie

    2017-02-01

    Generating renewable energy while sequestering CO2 using algae has recently attracted significant research attention, mostly directing towards biological methods such as systems biology, genetic engineering and bio-refining for optimizing algae strains. Other approaches focus on chemical screening to adjust culture conditions or culture media. We report for the first time the physiological changes of algal cells in response to a novel form of mechanical stimulation, or a pulsed wave at the frequency of 1.5 MHz and the duty cycle of 20%. We studied how the pulsed wave can further increase algal lipid production on top of existing biological and chemical methods. Two commonly used algal strains, fresh-water Chlorella vulgaris and seawater Tetraselmis chuii, were selected. We have performed the tests in shake flasks and 1 L spinner-flask bioreactors. Conventional Gravimetric measurements show that up to 20% increase for algal lipid could be achieved after 8 days of stimulation. The total electricity cost needed for the stimulations in a one-liter bioreactor is only one-tenth of a US penny. Gas liquid chromatography shows that the fatty acid composition remains unchanged after pulsed-wave stimulation. Scanning electron microscope results also suggest that pulsed wave stimulation induces shear stress and thus increases algal lipid production.

  14. What is the risk of aluminium as a neurotoxin?

    PubMed

    Exley, Christopher

    2014-06-01

    Aluminium is neurotoxic. Its free ion, Al(3+) (aq), is highly biologically reactive and uniquely equipped to do damage to essential cellular (neuronal) biochemistry. This unequivocal fact must be the starting point in examining the risk posed by aluminium as a neurotoxin in humans. Aluminium is present in the human brain and it accumulates with age. The most recent research demonstrates that a significant proportion of individuals older than 70 years of age have a potentially pathological accumulation of aluminium somewhere in their brain. What are the symptoms of chronic aluminium intoxication in humans? What if neurodegenerative diseases such as Alzheimer's disease are the manifestation of the risk of aluminium as a neurotoxin? How might such an (outrageous) hypothesis be tested?

  15. Independent evolution of neurotoxin and flagellar genetic loci in proteolytic Clostridium botulinum

    PubMed Central

    Carter, Andrew T; Paul, Catherine J; Mason, David R; Twine, Susan M; Alston, Mark J; Logan, Susan M; Austin, John W; Peck, Michael W

    2009-01-01

    Background Proteolytic Clostridium botulinum is the causative agent of botulism, a severe neuroparalytic illness. Given the severity of botulism, surprisingly little is known of the population structure, biology, phylogeny or evolution of C. botulinum. The recent determination of the genome sequence of C. botulinum has allowed comparative genomic indexing using a DNA microarray. Results Whole genome microarray analysis revealed that 63% of the coding sequences (CDSs) present in reference strain ATCC 3502 were common to all 61 widely-representative strains of proteolytic C. botulinum and the closely related C. sporogenes tested. This indicates a relatively stable genome. There was, however, evidence for recombination and genetic exchange, in particular within the neurotoxin gene and cluster (including transfer of neurotoxin genes to C. sporogenes), and the flagellar glycosylation island (FGI). These two loci appear to have evolved independently from each other, and from the remainder of the genetic complement. A number of strains were atypical; for example, while 10 out of 14 strains that formed type A1 toxin gave almost identical profiles in whole genome, neurotoxin cluster and FGI analyses, the other four strains showed divergent properties. Furthermore, a new neurotoxin sub-type (A5) has been discovered in strains from heroin-associated wound botulism cases. For the first time, differences in glycosylation profiles of the flagella could be linked to differences in the gene content of the FGI. Conclusion Proteolytic C. botulinum has a stable genome backbone containing specific regions of genetic heterogeneity. These include the neurotoxin gene cluster and the FGI, each having evolved independently of each other and the remainder of the genetic complement. Analysis of these genetic components provides a high degree of discrimination of strains of proteolytic C. botulinum, and is suitable for clinical and forensic investigations of botulism outbreaks. PMID:19298644

  16. Independent evolution of neurotoxin and flagellar genetic loci in proteolytic Clostridium botulinum.

    PubMed

    Carter, Andrew T; Paul, Catherine J; Mason, David R; Twine, Susan M; Alston, Mark J; Logan, Susan M; Austin, John W; Peck, Michael W

    2009-03-19

    Proteolytic Clostridium botulinum is the causative agent of botulism, a severe neuroparalytic illness. Given the severity of botulism, surprisingly little is known of the population structure, biology, phylogeny or evolution of C. botulinum. The recent determination of the genome sequence of C. botulinum has allowed comparative genomic indexing using a DNA microarray. Whole genome microarray analysis revealed that 63% of the coding sequences (CDSs) present in reference strain ATCC 3502 were common to all 61 widely-representative strains of proteolytic C. botulinum and the closely related C. sporogenes tested. This indicates a relatively stable genome. There was, however, evidence for recombination and genetic exchange, in particular within the neurotoxin gene and cluster (including transfer of neurotoxin genes to C. sporogenes), and the flagellar glycosylation island (FGI). These two loci appear to have evolved independently from each other, and from the remainder of the genetic complement. A number of strains were atypical; for example, while 10 out of 14 strains that formed type A1 toxin gave almost identical profiles in whole genome, neurotoxin cluster and FGI analyses, the other four strains showed divergent properties. Furthermore, a new neurotoxin sub-type (A5) has been discovered in strains from heroin-associated wound botulism cases. For the first time, differences in glycosylation profiles of the flagella could be linked to differences in the gene content of the FGI. Proteolytic C. botulinum has a stable genome backbone containing specific regions of genetic heterogeneity. These include the neurotoxin gene cluster and the FGI, each having evolved independently of each other and the remainder of the genetic complement. Analysis of these genetic components provides a high degree of discrimination of strains of proteolytic C. botulinum, and is suitable for clinical and forensic investigations of botulism outbreaks.

  17. Botulinum neurotoxin type A injections for vaginismus secondary to vulvar vestibulitis syndrome.

    PubMed

    Bertolasi, Laura; Frasson, Emma; Cappelletti, Jee Yun; Vicentini, Silvana; Bordignon, Monia; Graziottin, Alessandra

    2009-11-01

    To investigate whether botulinum neurotoxin type A improves vaginismus and study its efficacy with repeated treatments. Outpatients were referred because standard cognitive-behavioral and medical treatment for vaginismus and vulvar vestibular syndrome failed. From this group, we prospectively recruited consecutive women (n=39) whose diagnostic electromyogram (EMG) recordings from the levator ani muscle showed hyperactivity at rest and reduced inhibition during straining. These women were followed for a mean (+/-standard deviation) of 105 (+/-50) weeks. Recruited patients underwent repeated cycles of botulinum neurotoxin type A injected into the levator ani under EMG guidance and EMG monitoring thereafter. At enrollment and 4 weeks after each cycle, women were asked about sexual intercourse; underwent EMG evaluation and examinations to grade vaginal resistance according to Lamont; and completed a visual analog scale (VAS) for pain, the Female Sexual Function Index Scale, a quality-of-life questionnaire (Short-Form 12 Health Survey), and bowel and bladder symptom assessment. At 4 weeks after the first botulinum neurotoxin type A cycle, the primary outcome measures (the possibility of having sexual intercourse, and levator ani EMG hyperactivity) both improved, as did the secondary outcomes, Lamont scores, VAS, Female Sexual Function Index Scales, Short-Form 12 Health Survey, and bowel-bladder symptoms. These benefits persisted through later cycles. When follow-up ended, 63.2% of the patients completely recovered from vaginismus and vulvar vestibular syndrome, 15.4% still needed reinjections (censored), and 15.4% had dropped out. Botulinum neurotoxin type A is an effective treatment option for vaginismus secondary to vulvar vestibular syndrome refractory to standard cognitive-behavioral and medical management. After patients received botulinum neurotoxin type A, their sexual activity improved and reinjections provided sustained benefits. III.

  18. Extreme Algal Bloom Detection with MERIS

    NASA Astrophysics Data System (ADS)

    Amin, R.; Gilerson, A.; Gould, R.; Arnone, R.; Ahmed, S.

    2009-05-01

    Harmful Algal Blooms (HAB's) are a major concern all over the world due to their negative impacts on the marine environment, human health, and the economy. Their detection from space still remains a challenge particularly in turbid coastal waters. In this study we propose a simple reflectance band difference approach for use with Medium Resolution Imaging Spectrometer (MERIS) data to detect intense plankton blooms. For convenience we label this approach as the Extreme Bloom Index (EBI) which is defined as EBI = Rrs (709) - Rrs (665). Our initial analysis shows that this band difference approach has some advantages over the band ratio approaches, particularly in reducing errors due to imperfect atmospheric corrections. We also do a comparison between the proposed EBI technique and the Maximum Chlorophyll Index (MCI) Gower technique. Our preliminary result shows that both the EBI and MCI indeces detect intense plankton blooms, however, MCI is more vulnerable in highly scattering waters, giving more positive false alarms than EBI.

  19. Tracking the Effect of Algal Mats on Coral Bleaching Using Remote Sensing

    NASA Astrophysics Data System (ADS)

    El-Askary, H. M.; Johnson, S. H.; Idris, N.; Qurban, M. A. B.

    2014-12-01

    Benthic habitats rely on relatively stable environmental conditions for survival. The introduction of algal mats into an ecosystem can have a notable effect on the livelihood of organisms such as coral reefs by causing changes in the biogeochemistry of the surrounding water. Increasing levels of acidity and new competition for sunlight caused by congregations of cyanobacteria essentially starve coral reefs of natural resources. These changes are particularly prevalent in waters near quickly developing population centers, such as the ecologically diverse Arabian Gulf. While ground-truthing studies to determine the extensiveness of coral death proves useful on a microcosmic level, new ventures in remote sensing research allow scientists to utilize satellite data to track these changes on a broader scale. Satellite images acquired from Landsat 5, 1987, Landsat 7, 2000, and Landsat 8, 2013 along with higher resolution IKONOS data are digitally analyzed in order to create spectral libraries for relevant benthic types, which in turn can be used to perform supervised classifications and change detection analyses over a larger area. The supervised classifications performed over the three scenes show five significant marine-related classes, namely coral, mangroves, macro-algae, and seagrass, in different degrees of abundance, yet here we focus only on the algal mats impact on corals bleaching. The change detection analysis is introduced to study see the degree of algal mats impact on coral bleaching over the course of time with possible connection to the local meteorology and current climate scenarios.

  20. Clostridium botulinum neurotoxin type B is heat-stable in milk and not inactivated by pasteurization

    USDA-ARS?s Scientific Manuscript database

    Foodborne botulism is caused by the ingestion of foods containing botulinum neurotoxins (BoNTs). Currently, the only accepted assay to detect active C. botulinum neurotoxin is an in vivo mouse bioassay, which raises ethical concerns with regard to the use of experimental animals. Therefore, there is...

  1. Current methods for detecting the presence of botulinum neurotoxins in food and other biological samples

    USDA-ARS?s Scientific Manuscript database

    Current methods for detecting the presence of botulinum neurotoxins in food and other biological samples Botulinum neurotoxins (BoNTs), the causative agents of botulism, are among the most lethal human bacterial toxins and the causative agent of botulism. BoNTs are also classified as Select Agents ...

  2. Distribution of chlorophyll and harmful algal blooms (HABs): A review on space based studies in the coastal environments of Chinese marginal seas

    NASA Astrophysics Data System (ADS)

    Wei, Guifeng; Tang, Danling; Wang, Sufen

    Monitoring of spatial and temporal distribution of chlorophyll (Chl-a) concentrations in the aquatic milieu is always challenging and often interesting. However, the recent advancements in satellite digital data play a significant role in providing outstanding results for the marine environmental investigations. The present paper is aimed to review ‘remote sensing research in Chinese seas’ within the period of 24 years from 1978 to 2002. Owing to generalized distributional pattern, the Chl-a concentrations are recognized high towards northern Chinese seas than the southern. Moreover, the coastal waters, estuaries, and upwelling zones always exhibit relatively high Chl-a concentrations compared with offshore waters. On the basis of marine Chl-a estimates obtained from satellite and other field measured environmental parameters, we have further discussed on the applications of satellite remote sensing in the fields of harmful algal blooms (HABs), primary production and physical oceanographic currents of the regional seas. Concerned with studies of HABs, satellite remote sensing proved more advantageous than any other conventional methods for large-scale applications. Probably, it may be the only source of authentic information responsible for the evaluation of new research methodologies to detect HABs. At present, studies using remote sensing methods are mostly confined to observe algal bloom occurrences, hence, it is essential to coordinate the mechanism of marine ecological and oceanographic dynamic processes of HABs using satellite remote sensing data with in situ measurements of marine environmental parameters. The satellite remote sensing on marine environment and HABs is believed to have a great improvement with popular application of technology.

  3. Control of algal production in a high rate algal pond: investigation through batch and continuous experiments.

    PubMed

    Derabe Maobe, H; Onodera, M; Takahashi, M; Satoh, H; Fukazawa, T

    2014-01-01

    For decades, arid and semi-arid regions in Africa have faced issues related to water availability for drinking, irrigation and livestock purposes. To tackle these issues, a laboratory scale greywater treatment system based on high rate algal pond (HRAP) technology was investigated in order to guide the operation of the pilot plant implemented in the 2iE campus in Ouagadougou (Burkina Faso). Because of the high suspended solids concentration generally found in effluents of this system, the aim of this study is to improve the performance of HRAPs in term of algal productivity and removal. To determine the selection mechanism of self-flocculated algae, three sets of sequencing batch reactors (SBRs) and three sets of continuous flow reactors (CFRs) were operated. Despite operation with the same solids retention time and the similarity of the algal growth rate found in these reactors, the algal productivity was higher in the SBRs owing to the short hydraulic retention time of 10 days in these reactors. By using a volume of CFR with twice the volume of our experimental CFRs, the algal concentration can be controlled during operation under similar physical conditions in both reactors.

  4. Characterization of Cladosporols from the Marine Algal-Derived Endophytic Fungus Cladosporium cladosporioides EN-399 and Configurational Revision of the Previously Reported Cladosporol Derivatives.

    PubMed

    Li, Hong-Lei; Li, Xiao-Ming; Mándi, Attila; Antus, Sándor; Li, Xin; Zhang, Peng; Liu, Yang; Kurtán, Tibor; Wang, Bin-Gui

    2017-10-06

    Four new cladosporol derivatives, cladosporols F-I (1-4), the known cladosporol C (5), and its new epimer, cladosporol J (6), were isolated and identified from the marine algal-derived endophytic fungus Cladosporium cladosporioides EN-399. Their structures were determined by detailed interpretation of NMR and MS data, and the absolute configurations were established on the basis of TDDFT-ECD and OR calculations. The configurational assignment of cladosporols F (1) and G (2) showed that the previously reported absolute configuration of cladosporol A and all the related cladosporols need to be revised from (4'R) to (4'S). Compounds 1-6 showed antibacterial activity against Escherichia coli, Micrococcus luteus, and Vibrio harveyi with MIC values ranging from 4 to 128 μg/mL. Compound 3 showed significant cytotoxicity against A549, Huh7, and LM3 cell lines with IC 50 values of 5.0, 1.0, and 4.1 μM, respectively, and compound 5 showed activity against H446 cell line with IC 50 value of 4.0 μM.

  5. Genomic blueprint of Hahella chejuensis, a marine microbe producing an algicidal agent

    PubMed Central

    Jeong, Haeyoung; Yim, Joung Han; Lee, Choonghwan; Choi, Sang-Haeng; Park, Yon Kyoung; Yoon, Sung Ho; Hur, Cheol-Goo; Kang, Ho-Young; Kim, Dockyu; Lee, Hyun Hee; Park, Kyun Hyang; Park, Seung-Hwan; Park, Hong-Seog; Lee, Hong Kum; Oh, Tae Kwang; Kim, Jihyun F.

    2005-01-01

    Harmful algal blooms, caused by rapid growth and accumulation of certain microalgae in the ocean, pose considerable impacts on marine environments, aquatic industries and even public health. Here, we present the 7.2-megabase genome of the marine bacterium Hahella chejuensis including genes responsible for the biosynthesis of a pigment which has the lytic activity against a red-tide dinoflagellate. H.chejuensis is the first sequenced species in the Oceanospiralles clade, and sequence analysis revealed its distant relationship to the Pseudomonas group. The genome was well equipped with genes for basic metabolic capabilities and contained a large number of genes involved in regulation or transport as well as with characteristics as a marine heterotroph. Sequence analysis also revealed a multitude of genes of functional equivalence or of possible foreign origin. Functions encoded in the genomic islands include biosynthesis of exopolysacchrides, toxins, polyketides or non-ribosomal peptides, iron utilization, motility, type III protein secretion and pigmentation. Molecular structure of the algicidal pigment, which was determined through LC-ESI-MS/MS and NMR analyses, indicated that it is prodigiosin. In conclusion, our work provides new insights into mitigating algal blooms in addition to genetic make-up, physiology, biotic interactions and biological roles in the community of a marine bacterium. PMID:16352867

  6. RNA aptasensor for rapid detection of natively folded type A botulinum neurotoxin.

    PubMed

    Janardhanan, Pavithra; Mello, Charlene M; Singh, Bal Ram; Lou, Jianlong; Marks, James D; Cai, Shuowei

    2013-12-15

    A surface plasmon resonance based RNA aptasensor for rapid detection of natively folded type A botulinum neurotoxin is reported. Using detoxified recombinant type A botulinum neurotoxin as the surrogate, the aptasensor detects active toxin within 90 min. The detection limit of the aptasensor in phosphate buffered saline, carrot juice, and fat free milk is 5.8 ng/ml, 20.3 ng/ml and 23.4 ng/ml, respectively, while that in 5-fold diluted human serum is 22.5 ng/ml. Recovery of toxin from disparate sample matrices are within 91-116%. Most significant is the ability of this aptasensor to effectively differentiate the natively folded toxin from denatured, inactive toxin, which is important for homeland security surveillance and threat assessment. The aptasensor is stable for more than 30 days and over 400 injections/regeneration cycles. Such an aptasensor holds great promise for rapid detection of active botulinum neurotoxin for field surveillance due to its robustness, stability and reusability. © 2013 Elsevier B.V. All rights reserved.

  7. High-throughput screening technologies for botulinum neurotoxins.

    PubMed

    Bompiani, Kristin M; Dickerson, Tobin J

    2014-01-01

    Botulinum neurotoxins (BoNTs) are a class of bacterial neurotoxins that are the most potent toxic compounds reported to date. Exposure to relatively low concentrations of the toxin protein can result in major muscle paralysis, which may result in death in severe cases. In addition to their role in natural human disease, BoNTs are currently under close scrutiny because of their potential to be used as biowarfare agents. Clinical treatment options for botulism are currently limited, and finite stockpiles of antitoxin exist. In light of current bioterrorist threats, researchers have focused on identifying new molecules that can be applied to either sensitive toxin detection or improved clinical treatment. High-throughput screening (HTS) is a laboratory technique commonly employed to screen large libraries of diverse compounds based on specific compound binding capabilities or function. Here we review existing HTS platforms that have been applied to identify novel BoNT diagnostic or therapeutic agents. HTS platforms for screening antibodies, peptides, small molecules, and aptamers are described, as well as the screening results and current progress of the identified compounds.

  8. Antibody Protection Against Botulinum Neurotoxin Intoxication In Mice

    USDA-ARS?s Scientific Manuscript database

    Adulteration of food or feed with any of the seven serotypes of botulinum neurotoxin (BoNT) is a potential bioterrorism concern. Currently, there is strong interest in the development of detection reagents, vaccines, therapeutics and other countermeasures. A sensitive immunoassay for detecting BoNT/...

  9. Differentiating Botulinum Neurotoxin-Producing Clostridia with a Simple, Multiplex PCR Assay.

    PubMed

    Williamson, Charles H D; Vazquez, Adam J; Hill, Karen; Smith, Theresa J; Nottingham, Roxanne; Stone, Nathan E; Sobek, Colin J; Cocking, Jill H; Fernández, Rafael A; Caballero, Patricia A; Leiser, Owen P; Keim, Paul; Sahl, Jason W

    2017-09-15

    Diverse members of the genus Clostridium produce botulinum neurotoxins (BoNTs), which cause a flaccid paralysis known as botulism. While multiple species of clostridia produce BoNTs, the majority of human botulism cases have been attributed to Clostridium botulinum groups I and II. Recent comparative genomic studies have demonstrated the genomic diversity within these BoNT-producing species. This report introduces a multiplex PCR assay for differentiating members of C. botulinum group I, C. sporogenes , and two major subgroups within C. botulinum group II. Coding region sequences unique to each of the four species/subgroups were identified by in silico analyses of thousands of genome assemblies, and PCR primers were designed to amplify each marker. The resulting multiplex PCR assay correctly assigned 41 tested isolates to the appropriate species or subgroup. A separate PCR assay to determine the presence of the ntnh gene (a gene associated with the botulinum neurotoxin gene cluster) was developed and validated. The ntnh gene PCR assay provides information about the presence or absence of the botulinum neurotoxin gene cluster and the type of gene cluster present ( ha positive [ ha + ] or orfX + ). The increased availability of whole-genome sequence data and comparative genomic tools enabled the design of these assays, which provide valuable information for characterizing BoNT-producing clostridia. The PCR assays are rapid, inexpensive tests that can be applied to a variety of sample types to assign isolates to species/subgroups and to detect clostridia with botulinum neurotoxin gene ( bont ) clusters. IMPORTANCE Diverse clostridia produce the botulinum neurotoxin, one of the most potent known neurotoxins. In this study, a multiplex PCR assay was developed to differentiate clostridia that are most commonly isolated in connection with human botulism cases: C. botulinum group I, C. sporogenes , and two major subgroups within C. botulinum group II. Since Bo

  10. Evaluation of Algal Biofilms on Indium Tin Oxide (ITO) for Use in Biophotovoltaic Platforms Based on Photosynthetic Performance

    PubMed Central

    Ng, Fong-Lee; Phang, Siew-Moi; Periasamy, Vengadesh; Yunus, Kamran; Fisher, Adrian C.

    2014-01-01

    In photosynthesis, a very small amount of the solar energy absorbed is transformed into chemical energy, while the rest is wasted as heat and fluorescence. This excess energy can be harvested through biophotovoltaic platforms to generate electrical energy. In this study, algal biofilms formed on ITO anodes were investigated for use in the algal biophotovoltaic platforms. Sixteen algal strains, comprising local isolates and two diatoms obtained from the Culture Collection of Marine Phytoplankton (CCMP), USA, were screened and eight were selected based on the growth rate, biochemical composition and photosynthesis performance using suspension cultures. Differences in biofilm formation between the eight algal strains as well as their rapid light curve (RLC) generated using a pulse amplitude modulation (PAM) fluorometer, were examined. The RLC provides detailed information on the saturation characteristics of electron transport and overall photosynthetic performance of the algae. Four algal strains, belonging to the Cyanophyta (Cyanobacteria) Synechococcus elongatus (UMACC 105), Spirulina platensis. (UMACC 159) and the Chlorophyta Chlorella vulgaris (UMACC 051), and Chlorella sp. (UMACC 313) were finally selected for investigation using biophotovoltaic platforms. Based on power output per Chl-a content, the algae can be ranked as follows: Synechococcus elongatus (UMACC 105) (6.38×10−5 Wm−2/µgChl-a)>Chlorella vulgaris UMACC 051 (2.24×10−5 Wm−2/µgChl-a)>Chlorella sp.(UMACC 313) (1.43×10−5 Wm−2/µgChl-a)>Spirulina platensis (UMACC 159) (4.90×10−6 Wm−2/µgChl-a). Our study showed that local algal strains have potential for use in biophotovoltaic platforms due to their high photosynthetic performance, ability to produce biofilm and generation of electrical power. PMID:24874081

  11. Estimation of Antarctic Land-Fast Sea Ice Algal Biomass and Snow Thickness From Under-Ice Radiance Spectra in Two Contrasting Areas

    NASA Astrophysics Data System (ADS)

    Wongpan, P.; Meiners, K. M.; Langhorne, P. J.; Heil, P.; Smith, I. J.; Leonard, G. H.; Massom, R. A.; Clementson, L. A.; Haskell, T. G.

    2018-03-01

    Fast ice is an important component of Antarctic coastal marine ecosystems, providing a prolific habitat for ice algal communities. This work examines the relationships between normalized difference indices (NDI) calculated from under-ice radiance measurements and sea ice algal biomass and snow thickness for Antarctic fast ice. While this technique has been calibrated to assess biomass in Arctic fast ice and pack ice, as well as Antarctic pack ice, relationships are currently lacking for Antarctic fast ice characterized by bottom ice algae communities with high algal biomass. We analyze measurements along transects at two contrasting Antarctic fast ice sites in terms of platelet ice presence: near and distant from an ice shelf, i.e., in McMurdo Sound and off Davis Station, respectively. Snow and ice thickness, and ice salinity and temperature measurements support our paired in situ optical and biological measurements. Analyses show that NDI wavelength pairs near the first chlorophyll a (chl a) absorption peak (≈440 nm) explain up to 70% of the total variability in algal biomass. Eighty-eight percent of snow thickness variability is explained using an NDI with a wavelength pair of 648 and 567 nm. Accounting for pigment packaging effects by including the ratio of chl a-specific absorption coefficients improved the NDI-based algal biomass estimation only slightly. Our new observation-based algorithms can be used to estimate Antarctic fast ice algal biomass and snow thickness noninvasively, for example, by using moored sensors (time series) or mapping their spatial distributions using underwater vehicles.

  12. The role of selective predation in harmful algal blooms

    NASA Astrophysics Data System (ADS)

    Solé, Jordi; Garcia-Ladona, Emilio; Estrada, Marta

    2006-08-01

    A feature of marine plankton communities is the occurrence of rapid population explosions. When the blooming species are directly or indirectly noxious for humans, these proliferations are denoted as harmful algal blooms (HAB). The importance of biological interactions for the appearance of HABs, in particular when the proliferating microalgae produce toxins that affect other organisms in the food web, remains still poorly understood. Here we analyse the role of toxins produced by a microalgal species and affecting its predators, in determining the success of that species as a bloom former. A three-species predator-prey model is used to define a criterion that determines whether a toxic microalga will be able to initiate a bloom in competition against a non-toxic one with higher growth rate. Dominance of the toxic species depends on a critical parameter that defines the degree of feeding selectivity by grazers. The criterion is applied to a particular simplified model and to numerical simulations of a full marine ecosystem model. The results suggest that the release of toxic compounds affecting predators may be a plausible biological factor in allowing the development of HABs.

  13. Mixotrophy in the Marine Plankton

    NASA Astrophysics Data System (ADS)

    Stoecker, Diane K.; Hansen, Per Juel; Caron, David A.; Mitra, Aditee

    2017-01-01

    Mixotrophs are important components of the bacterioplankton, phytoplankton, microzooplankton, and (sometimes) zooplankton in coastal and oceanic waters. Bacterivory among the phytoplankton may be important for alleviating inorganic nutrient stress and may increase primary production in oligotrophic waters. Mixotrophic phytoflagellates and dinoflagellates are often dominant components of the plankton during seasonal stratification. Many of the microzooplankton grazers, including ciliates and Rhizaria, are mixotrophic owing to their retention of functional algal organelles or maintenance of algal endosymbionts. Phototrophy among the microzooplankton may increase gross growth efficiency and carbon transfer through the microzooplankton to higher trophic levels. Characteristic assemblages of mixotrophs are associated with warm, temperate, and cold seas and with stratification, fronts, and upwelling zones. Modeling has indicated that mixotrophy has a profound impact on marine planktonic ecosystems and may enhance primary production, biomass transfer to higher trophic levels, and the functioning of the biological carbon pump.

  14. Mechanistic insights on spider neurotoxins.

    PubMed

    Luch, Andreas

    2010-01-01

    In physiology research, animal neurotoxins historically have served as valuable tools for identification, purification, and functional characterization of voltage-dependent ion channels. In particular, toxins from scorpions, sea anemones and cone snails were at the forefront of work aimed at illuminating the three-dimensional architecture of sodium channels. To date, at least six different receptor binding sites have been identified and--most of them--structurally assigned in terms of protein sequence and spatial disposition. Recent work on Australian funnel-web spiders identified certain peptidic ingredients as being responsible for the neurotoxicity of the crude venom. These peptides, termed delta-atracotoxins (delta-ACTX), consist of 42 amino acids and bind to voltage-gated sodium channels in the same way as classical scorpion alpha-toxins. According to the 'voltage-sensor trapping model' proposed in the literature, delta-ACTX isoforms interact with the voltage sensor S4 transmembrane segment of alpha-subunit domain IV, thereby preventing its normal outward movement and concurrent conformational changes required for inactivation of the channel. As consequence prolonged action potentials at autonomic or somatic synapses induce massive transmitter release, resulting in clinical correlates of neuroexcitation (e.g., muscle fasciculation, spasms, paresthesia, tachycardia, diaphoresis, etc.). On the other hand, the major neurotoxin isolated from black widow spiders, alpha-latrotoxin (alpha-LTX), represents a 132 kDa protein consisting of a unique N-terminal sequence and a C-terminal part harboring multiple ankyrin-like repeats. Upon binding to one of its specific presynaptic receptors, alpha-LTX has been shown to tetramerize under physiological conditions to form Ca2+-permeable pores in presynaptic membranes. The molecular model worked out during recent years separates two distinguishable receptor-mediated effects. According to current knowledge, binding of the N

  15. Recent developments on algal biochar production and characterization.

    PubMed

    Yu, Kai Ling; Lau, Beng Fye; Show, Pau Loke; Ong, Hwai Chyuan; Ling, Tau Chuan; Chen, Wei-Hsin; Ng, Eng Poh; Chang, Jo-Shu

    2017-12-01

    Algal biomass is known as a promising sustainable feedstock for the production of biofuels and other valuable products. However, since last decade, massive amount of interests have turned to converting algal biomass into biochar. Due to their high nutrient content and ion-exchange capacity, algal biochars can be used as soil amendment for agriculture purposes or adsorbents in wastewater treatment for the removal of organic or inorganic pollutants. This review describes the conventional (e.g., slow and microwave-assisted pyrolysis) and newly developed (e.g., hydrothermal carbonization and torrefaction) methods used for the synthesis of algae-based biochars. The characterization of algal biochar and a comparison between algal biochar with biochar produced from other feedstocks are also presented. This review aims to provide updated information on the development of algal biochar in terms of the production methods and the characterization of its physical and chemical properties to justify and to expand their potential applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Toxic effects of microplastic on marine microalgae Skeletonema costatum: Interactions between microplastic and algae.

    PubMed

    Zhang, Cai; Chen, Xiaohua; Wang, Jiangtao; Tan, Liju

    2017-01-01

    To investigate toxic effects of microplastic on marine microalgae Skeletonema costatum, both algal growth inhibition test and non-contact shading test were carried out, and algal photosynthesis parameters were also determined. The SEM images were used to observe interactions between microplastic and algae. It was found that microplastic (mPVC, average diameter 1 μm) had obvious inhibition on growth of microalgae and the maximum growth inhibition ratio (IR) reached up to 39.7% after 96 h exposure. However, plastic debris (bPVC, average diameter 1 mm) had no effects on growth of microalgae. High concentration (50 mg/L) mPVC also had negative effects on algal photosynthesis since both chlorophyll content and photosynthetic efficiency (ΦPSⅡ) decreased under mPVC treatments. Shading effect was not one reason for toxicity of microplastic on algae in this study. Compared with non-contact shading effect, interactions between microplastic and microalage such as adsorption and aggregation were more reasonable explanations for toxic effects of microplastic on marine microalgae. The SEM images provided a more direct and reasonable method to observe the behaviors of microplastic. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Functional Evaluation of Biological Neurotoxins in Networked Cultures of Stem Cell-derived Central Nervous System Neurons

    DTIC Science & Technology

    2015-02-05

    botulism or tetanus , whole-cell patch clamp electrophysiology was used to quantify spontaneous miniature excitory post-synaptic currents (mEPSCs) in...ESNs exposed to tetanus neurotoxin (TeNT) or botulinum neurotoxin (BoNT) serotypes / A-/G. In all cases, ESNs exhibited near-complete loss of synaptic

  18. NREL Algal Biofuels Projects and Partnerships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-10-01

    This fact sheet highlights several algal biofuels research and development projects focused on improving the economics of the algal biofuels production process. These projects should serve as a foundation for the research efforts toward algae as a source of fuels and other chemicals.

  19. Botulinum neurotoxin: Where are we with detection technologies

    USDA-ARS?s Scientific Manuscript database

    The poisonous nature of botulinum neurotoxin (BoNT) poses a great risk to humans and also can be exploited as a possible bioterrorism and biological warfare agent. BoNT serotypes A and B have emerged as effective treatments for a variety of neurological disorders, in addition to their applicability ...

  20. Brevetoxins, like ciguatoxins, are potent ichthyotoxic neurotoxins that accumulate in fish✩

    PubMed Central

    Naar, Jerome P.; Flewelling, Leanne J.; Lenzi, Allison; Abbott, Jay P.; Granholm, April; Jacocks, Henry M.; Gannon, Damon; Henry, Michael; Pierce, Richard; Baden, Daniel G.; Wolny, Jennifer; Landsberg, Jan H.

    2009-01-01

    Brevetoxins and ciguatoxins are closely related potent marine neurotoxins. Although ciguatoxins accumulate in fish to levels that are dangerous for human consumption, live fish have not been considered as potential sources of brevetoxin exposure in humans. Here we show that, analogous to ciguatoxins, brevetoxins can accumulate in live fish by dietary transfer. We experimentally identify two pathways leading to brevetoxin-contaminated omnivorous and planktivorous fish. Fish fed with toxic shellfish and Karenia brevis cultures remained healthy and accumulated high brevetoxin levels in their tissues (up to 2675 ng g−1 in viscera and 1540 ng g−1 in muscle). Repeated collections of fish from St. Joseph Bay in the Florida panhandle reveal that accumulation of brevetoxins in healthy fish occurs in the wild. We observed that levels of brevetoxins in the muscle of fish at all trophic levels rise significantly, but not to dangerous levels, during a K. brevis bloom. Concentrations were highest in fish liver and stomach contents, and increased during and immediately following the bloom. The persistence of brevetoxins in the fish food web was followed for 1 year after the K. brevis bloom. PMID:17675204

  1. Molecular Structures and Functional Relationships in Clostridial Neurotoxins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swaminathan S.

    2011-12-01

    The seven serotypes of Clostridium botulinum neurotoxins (A-G) are the deadliest poison known to humans. They share significant sequence homology and hence possess similar structure-function relationships. Botulinum neurotoxins (BoNT) act via a four-step mechanism, viz., binding and internalization to neuronal cells, translocation of the catalytic domain into the cytosol and finally cleavage of one of the three soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) causing blockage of neurotransmitter release leading to flaccid paralysis. Crystal structures of three holotoxins, BoNT/A, B and E, are available to date. Although the individual domains are remarkably similar, their domain organization is different. These structuresmore » have helped in correlating the structural and functional domains. This has led to the determination of structures of individual domains and combinations of them. Crystal structures of catalytic domains of all serotypes and several binding domains are now available. The catalytic domains are zinc endopeptidases and share significant sequence and structural homology. The active site architecture and the catalytic mechanism are similar although the binding mode of individual substrates may be different, dictating substrate specificity and peptide cleavage selectivity. Crystal structures of catalytic domains with substrate peptides provide clues to specificity and selectivity unique to BoNTs. Crystal structures of the receptor domain in complex with ganglioside or the protein receptor have provided information about the binding of botulinum neurotoxin to the neuronal cell. An overview of the structure-function relationship correlating the 3D structures with biochemical and biophysical data and how they can be used for structure-based drug discovery is presented here.« less

  2. Molecular structures and functional relationships in clostridial neurotoxins.

    PubMed

    Swaminathan, Subramanyam

    2011-12-01

    The seven serotypes of Clostridium botulinum neurotoxins (A-G) are the deadliest poison known to humans. They share significant sequence homology and hence possess similar structure-function relationships. Botulinum neurotoxins (BoNT) act via a four-step mechanism, viz., binding and internalization to neuronal cells, translocation of the catalytic domain into the cytosol and finally cleavage of one of the three soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) causing blockage of neurotransmitter release leading to flaccid paralysis. Crystal structures of three holotoxins, BoNT/A, B and E, are available to date. Although the individual domains are remarkably similar, their domain organization is different. These structures have helped in correlating the structural and functional domains. This has led to the determination of structures of individual domains and combinations of them. Crystal structures of catalytic domains of all serotypes and several binding domains are now available. The catalytic domains are zinc endopeptidases and share significant sequence and structural homology. The active site architecture and the catalytic mechanism are similar although the binding mode of individual substrates may be different, dictating substrate specificity and peptide cleavage selectivity. Crystal structures of catalytic domains with substrate peptides provide clues to specificity and selectivity unique to BoNTs. Crystal structures of the receptor domain in complex with ganglioside or the protein receptor have provided information about the binding of botulinum neurotoxin to the neuronal cell. An overview of the structure-function relationship correlating the 3D structures with biochemical and biophysical data and how they can be used for structure-based drug discovery is presented here. Journal compilation © 2011 FEBS. No claim to original US government works.

  3. Abundance and Size Distribution of the Sacoglossan Elysia viridis on Co-Occurring Algal Hosts on the Swedish West Coast

    PubMed Central

    Baumgartner, Finn A.; Toth, Gunilla B.

    2014-01-01

    Sacoglossans are specialized marine herbivores that tend to have a close evolutionary relationship with their macroalgal hosts, but the widely distributed species Elysia viridis can associate with several algal species. However, most previous investigations on the field abundance and size distribution of E. viridis have focussed on Codium spp. in the British Isles, and algae from this genus are considered superior hosts for E. viridis. In the present study, we investigated the abundance and size distribution of E. viridis on 6 potential host algae with differing morphologies (the septate species Cladophora sericea, Cladophora rupestris, Chaetomorpha melagonium, and Ceramium virgatum, as well as the siphonaceous species Codium fragile and Bryopsis sp.) at 2 sites on the Swedish west coast over the course of a year. In spring, slugs were almost absent from all algal hosts. In summer and autumn, E. viridis consistently occurred on several of the algal species at both sites. The highest number of small E. viridis were found on C. sericea, intermediate numbers of significantly larger E. viridis were found on C. rupestris, while fewer, intermediate sized animals were found on C. fragile. Throughout the study period, only a few E. viridis individuals were found on C. melagonium, Bryopsis sp., and C. virgatum. Our results indicate that E. viridis is an annual species in Sweden, capable of exploiting co-occurring congeneric and intergeneric algal hosts with differing morphologies. These results corroborate previous findings that E. viridis can exploit several different algal species, but does not indicate that C. fragile is a superior host. PMID:24647524

  4. Separation of Betti Reaction Product Enantiomers: Absolute Configuration and Inhibition of Botulinum Neurotoxin A

    DTIC Science & Technology

    2011-03-01

    of Betti Reaction Product Enantiomers : Absolute Configuration and Inhibition of Botulinum Neurotoxin A John H. Cardellina II,† Rebecca C. Vieira...observing sufficient resolution of the two enantiomers on a Chiralcel OD column to permit semipreparative purification of adequate quantities of (þ)-1...comparison of the botulinum neurotoxin serotype A (BoNT/A) inhibitory activity of the (þ) and () enantiomers of 1 was accomplished via an HPLC-based assay

  5. Defining the neurotoxin derived illness chronic ciguatera using markers of chronic systemic inflammatory disturbances: a case/control study.

    PubMed

    Shoemaker, Ritchie C; House, Dennis; Ryan, James C

    2010-01-01

    Ciguatoxins are extremely potent neurotoxins, produced by tropical marine dinoflagellates, that persistently enter into our food web. Over 100,000 people annually experience acute ciguatera poisoning from consuming toxic fish. Roughly 5% of these victims will develop chronic ciguatera (CC), a widespread, multisymptom, multisystem, chronic illness that can last tens of years. CC is marked by disproportionate disability and non-specific refractory symptoms such as fatigue, cognitive deficits and pain, and is suggestive of other illnesses. Its unknown pathophysiology makes both diagnosis and treatment difficult. We wanted to compare objective parameters of visual contrast sensitivity testing, measures of innate immune response and genetic markers in cases to controls to assess the potential for the presence of persistent inflammatory parameters that are demonstrated in other biotoxin associated illnesses at a single specialty clinic. Using 59 CC cases and 59 controls we present in retrospective review, in all cases, abnormalities in immune responses paralleling the chronic systemic inflammatory response syndrome seen in several other chronic diseases. This study defines a preliminary case definition using medical history, total symptoms, visual contrast sensitivity, HLA DR genotype analysis, reduction of regulatory neuropeptides VIP and MSH, and multiple measures of inflammatory immune response, especially C4a and TGFβ1, thereby providing a basis for identification and targeted therapy. CC provides a model for chronic human illness associated with initiation of inflammatory responses by biologically produced neurotoxins. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Repeated mass strandings of Miocene marine mammals from Atacama Region of Chile point to sudden death at sea.

    PubMed

    Pyenson, Nicholas D; Gutstein, Carolina S; Parham, James F; Le Roux, Jacobus P; Chavarría, Catalina Carreño; Little, Holly; Metallo, Adam; Rossi, Vincent; Valenzuela-Toro, Ana M; Velez-Juarbe, Jorge; Santelli, Cara M; Rogers, David Rubilar; Cozzuol, Mario A; Suárez, Mario E

    2014-04-22

    Marine mammal mass strandings have occurred for millions of years, but their origins defy singular explanations. Beyond human causes, mass strandings have been attributed to herding behaviour, large-scale oceanographic fronts and harmful algal blooms (HABs). Because algal toxins cause organ failure in marine mammals, HABs are the most common mass stranding agent with broad geographical and widespread taxonomic impact. Toxin-mediated mortalities in marine food webs have the potential to occur over geological timescales, but direct evidence for their antiquity has been lacking. Here, we describe an unusually dense accumulation of fossil marine vertebrates from Cerro Ballena, a Late Miocene locality in Atacama Region of Chile, preserving over 40 skeletons of rorqual whales, sperm whales, seals, aquatic sloths, walrus-whales and predatory bony fish. Marine mammal skeletons are distributed in four discrete horizons at the site, representing a recurring accumulation mechanism. Taphonomic analysis points to strong spatial focusing with a rapid death mechanism at sea, before being buried on a barrier-protected supratidal flat. In modern settings, HABs are the only known natural cause for such repeated, multispecies accumulations. This proposed agent suggests that upwelling zones elsewhere in the world should preserve fossil marine vertebrate accumulations in similar modes and densities.

  7. Repeated mass strandings of Miocene marine mammals from Atacama Region of Chile point to sudden death at sea

    PubMed Central

    Pyenson, Nicholas D.; Gutstein, Carolina S.; Parham, James F.; Le Roux, Jacobus P.; Chavarría, Catalina Carreño; Little, Holly; Metallo, Adam; Rossi, Vincent; Valenzuela-Toro, Ana M.; Velez-Juarbe, Jorge; Santelli, Cara M.; Rogers, David Rubilar; Cozzuol, Mario A.; Suárez, Mario E.

    2014-01-01

    Marine mammal mass strandings have occurred for millions of years, but their origins defy singular explanations. Beyond human causes, mass strandings have been attributed to herding behaviour, large-scale oceanographic fronts and harmful algal blooms (HABs). Because algal toxins cause organ failure in marine mammals, HABs are the most common mass stranding agent with broad geographical and widespread taxonomic impact. Toxin-mediated mortalities in marine food webs have the potential to occur over geological timescales, but direct evidence for their antiquity has been lacking. Here, we describe an unusually dense accumulation of fossil marine vertebrates from Cerro Ballena, a Late Miocene locality in Atacama Region of Chile, preserving over 40 skeletons of rorqual whales, sperm whales, seals, aquatic sloths, walrus-whales and predatory bony fish. Marine mammal skeletons are distributed in four discrete horizons at the site, representing a recurring accumulation mechanism. Taphonomic analysis points to strong spatial focusing with a rapid death mechanism at sea, before being buried on a barrier-protected supratidal flat. In modern settings, HABs are the only known natural cause for such repeated, multispecies accumulations. This proposed agent suggests that upwelling zones elsewhere in the world should preserve fossil marine vertebrate accumulations in similar modes and densities. PMID:24573855

  8. An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions

    PubMed Central

    Hickey, Barbara M.; Kudela, Raphael M.; Lefebvre, Kathi A.; Adams, Nicolaus G.; Bill, Brian D.; Gulland, Frances M. D.; Thomson, Richard E.; Cochlan, William P.; Trainer, Vera L.

    2016-01-01

    Abstract A coastwide bloom of the toxigenic diatom Pseudo‐nitzschia in spring 2015 resulted in the largest recorded outbreak of the neurotoxin, domoic acid, along the North American west coast. Elevated toxins were measured in numerous stranded marine mammals and resulted in geographically extensive and prolonged closures of razor clam, rock crab, and Dungeness crab fisheries. We demonstrate that this outbreak was initiated by anomalously warm ocean conditions. Pseudo‐nitzschia australis thrived north of its typical range in the warm, nutrient‐poor water that spanned the northeast Pacific in early 2015. The seasonal transition to upwelling provided the nutrients necessary for a large‐scale bloom; a series of spring storms delivered the bloom to the coast. Laboratory and field experiments confirming maximum growth rates with elevated temperatures and enhanced toxin production with nutrient enrichment, together with a retrospective analysis of toxic events, demonstrate the potential for similarly devastating ecological and economic disruptions in the future. PMID:27917011

  9. Ether Lipids of Planktonic Archaea in the Marine Water Column

    PubMed Central

    Hoefs, M.; Schouten, S.; De Leeuw, J. W.; King, L. L.; Wakeham, S. G.; Damste, J.

    1997-01-01

    Acyclic and cyclic biphytanes derived from the membrane ether lipids of archaea were found in water column particulate and sedimentary organic matter from several oxic and anoxic marine environments. Compound-specific isotope analyses of the carbon skeletons suggest that planktonic archaea utilize an isotopically heavy carbon source such as algal carbohydrates and proteins or dissolved bicarbonate. Due to their high preservation potential, these lipids provide a fossil record of planktonic archaea and suggest that they have thrived in marine environments for more than 50 million years. PMID:16535669

  10. Isolation and characterization of α-elapitoxin-Bf1b, a postsynaptic neurotoxin from Malaysian Bungarus fasciatus venom.

    PubMed

    Rusmili, Muhamad Rusdi Ahmad; Tee, Ting Yee; Mustafa, Mohd Rais; Othman, Iekhsan; Hodgson, Wayne C

    2014-03-15

    Bungarus fasciatus is one of three species of krait found in Malaysia. Envenoming by B. fasciatus results in neurotoxicity due to the presence of presynaptic and postsynaptic neurotoxins. Antivenom, either monovalent or polyvalent, is the treatment of choice in systemically envenomed patients. In this study, we have isolated a postsynaptic neurotoxin which we named α-elapitoxin-Bf1b. This toxin has an approximate molecular weight of 6.9 kDa, with LCMS/MS data showing that it is highly homologous with Neurotoxin 3FTx-RI, a toxin identified in the Bungarus fasciatus venom gland transcriptome. α-Elapitoxin-Bf1b also shared similarity with short-chain neurotoxins from Laticauda colubrina and Pseudechis australis. α-Elapitoxin-Bf1b produced concentration- and time-dependent neurotoxicity in the indirectly-stimulated chick biventer cervicis muscle preparation, an effect partially reversible by repetitive washing of the preparation. The pA2 value for α-elapitoxin-Bf1b of 9.17 ± 0.64, determined by examining the effects of the toxin on cumulative carbacol concentration-response curves, indicated that the toxin is more potent than tubocurarine and α-bungarotoxin. Pre-incubation of Bungarus fasciatus monovalent and neuro polyvalent antivenom failed to prevent the neurotoxic effects of α-elapitoxin-Bf1b in the chick biventer cervicis muscle preparation. In conclusion, the isolation of a postsynaptic neurotoxin that cannot be neutralized by either monovalent and polyvalent antivenoms may indicate the presence of isoforms of postsynaptic neurotoxins in Malaysian B. fasciatus venom. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Algal succession and chronosequences on abandoned mine spoils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shubert, L.E.; Starks, T.L.

    1978-06-01

    Soils were collected from spoil material aged 0 to 45 years. The soils were analyzed for the presence of algal species, chlorophyll ..cap alpha.., major cations, anions and trace elements. There was a gradual increase in the number of algal species and chlorophyll ..cap alpha.. from 1 year old spoils to adjacent unmined natural sites. A total of 41 algal species were identified from all sites. Several species were only found at the unmined sites and they may represent a stable algal community. Results of a statistical analysis on the litho- and chronosequence of the soils will be discussed.

  12. Sex in murky waters: algal-induced turbidity increases sexual selection in pipefish.

    PubMed

    Sundin, Josefin; Aronsen, Tonje; Rosenqvist, Gunilla; Berglund, Anders

    2017-01-01

    Algal-induced turbidity has been shown to alter several important aspects of reproduction and sexual selection. However, while turbidity has been shown to negatively affect reproduction and sexually selected traits in some species, it may instead enhance reproductive success in others, implying that the impact of eutrophication is far more complex than originally believed. In this study, we aimed to provide more insight into these inconsistent findings. We used molecular tools to investigate the impact of algal turbidity on reproductive success and sexual selection on males in controlled laboratory experiments, allowing mate choice, mating competition, and mate encounter rates to affect reproduction. As study species, we used the broad-nosed pipefish, Syngnathus typhle , a species practicing male pregnancy and where we have previously shown that male mate choice is impaired by turbidity. Here, turbidity instead enhanced sexual selection on male size and mating success as well as reproductive success. Effects from mating competition and mate encounter rates may thus override effects from mate choice based on visual cues, producing an overall stronger sexual selection in turbid waters. Hence, seemingly inconsistent effects of turbidity on sexual selection may depend on which mechanisms of sexual selection that have been under study. Algal blooms are becoming increasingly more common due to eutrophication of freshwater and marine environments. The high density of algae lowers water transparency and reduces the possibility for fish and other aquatic animals to perform behaviors dependent on vision. We have previously shown that pipefish are unable to select the best partner in mate choice trials when water transparency was reduced. However, fish might use other senses than vision to compensate for the reduction in water transparency. In this study, we found that when fish were allowed to freely interact, thereby allowing competition between partners and direct contact

  13. Adsorption of Nanoplastics on Algal Photosynthesis

    NASA Astrophysics Data System (ADS)

    Turner, James; Bhattacharya, Priyanka; Lin, Sijie; Ke, Pu Chun

    2010-03-01

    The rapid accumulation of disposed plastics in the environment, especially in the Pacific Ocean, has become a global concern in recent years. Photo, chemical and physical degradations constantly fragment these plastics into a wide array of macroscopic to microscopic particles. As a result, marine organisms such as algae may be exposed to plastic particles through ingestion, adsorption and other forms of uptake. Such interactions, currently little understood, could potentially impact on the health state of the entire food chain. Here we report on polystyrene-algae interaction and its impact on algal photosynthesis. We first investigated the adsorption of polystyrene beads (20 nm) on a cellulose film coated on a 96-well plate. We derived a supralinear increase of the adsorption with the beads concentration for both positively and negatively charged polystyrene beads, with a saturation observed for the negatively charged polystyrene beads of concentration above 1.6 mg/mL. Using a bicarbonate indicator we discovered decreased carbon dioxide depletion due to polystyrene-algae binding. Since polystyrene beads also mediated algae aggregation, nanoplastics may alternatively be harnessed for waste water treatment.

  14. Towards an Autonomous Space In-Situ Marine Sensorweb

    NASA Technical Reports Server (NTRS)

    Chien, S.; Doubleday, J.; Tran, D.; Thompson, D.; Mahoney, G.; Chao, Y.; Castano, R.; Ryan, J.; Kudela, R.; Palacios, S.; hide

    2009-01-01

    We describe ongoing efforts to integrate and coordinate space and marine assets to enable autonomous response to dynamic ocean phenomena such as algal blooms, eddies, and currents. Thus far we have focused on the use of remote sensing assets (e.g. satellites) but future plans include expansions to use a range of in-situ sensors such as gliders, autonomous underwater vehicles, and buoys/moorings.

  15. Air pollutant production by algal cell cultures

    NASA Technical Reports Server (NTRS)

    Fong, F.; Funkhouser, E. A.

    1982-01-01

    The production of phytotoxic air pollutants by cultures of Chlorella vulgaris and Euglena gracilis is considered. Algal and plant culture systems, a fumigation system, and ethylene, ethane, cyanide, and nitrogen oxides assays are discussed. Bean, tobacco, mustard green, cantaloupe and wheat plants all showed injury when fumigated with algal gases for 4 hours. Only coleus plants showed any resistance to the gases. It is found that a closed or recycled air effluent system does not produce plant injury from algal air pollutants.

  16. Effects of algal-derived carbon on sediment methane ...

    EPA Pesticide Factsheets

    Nutrient loading is known to have adverse consequences for aquatic ecosystems, particularly in the form of algal blooms that may result. These blooms pose problems for humans and wildlife, including harmful toxin release, aquatic hypoxia and increased costs for water treatment. Another potential disservice resulting from algal blooms is the enhanced production of methane (CH4), a potent greenhouse gas, in aquatic sediments. Laboratory experiments have shown that algal biomass additions to sediment cores increase rates of CH4 production, but it is unclear whether or not this effect occurs at the ecosystem scale. The goal of this research was to explore the link between algal-derived carbon and methane production in the sediment of a eutrophic reservoir located in southwest Ohio, using a sampling design that capitalized on spatial and temporal gradients in autochthonous carbon input to sediments. Specifically, we aimed to determine if the within-reservoir gradient of sediment algal-derived organic matter and sediment CH4 production rates correlate. This was done by retrieving sediment cores from 15 sites within the reservoir along a known gradient of methane emission rates, at two separate time points in 2016: late spring before the sediments had received large amounts of algal input and mid-summer after algal blooms had been prevalent in the reservoir. Potential CH4 production rates, sediment organic matter source, and microbial community composition were charac

  17. Closed Genome Sequence of Chryseobacterium piperi Strain CTMT/ATCC BAA-1782, a Gram-Negative Bacterium with Clostridial Neurotoxin-Like Coding Sequences

    PubMed Central

    Wentz, Travis G.; Muruvanda, Tim; Thirunavukkarasu, Nagarajan; Hoffmann, Maria; Allard, Marc W.; Hodge, David R.; Pillai, Segaran P.; Hammack, Thomas S.; Brown, Eric W.

    2017-01-01

    ABSTRACT Clostridial neurotoxins, including botulinum and tetanus neurotoxins, are among the deadliest known bacterial toxins. Until recently, the horizontal mobility of this toxin gene family appeared to be limited to the genus Clostridium. We report here the closed genome sequence of Chryseobacterium piperi, a Gram-negative bacterium containing coding sequences with homology to clostridial neurotoxin family proteins. PMID:29192076

  18. Botulinum neurotoxin A complex recognizes host carbohydrates through its hemagglutinin component.

    PubMed

    Yao, Guorui; Lee, Kwangkook; Gu, Shenyan; Lam, Kwok-Ho; Jin, Rongsheng

    2014-02-12

    Botulinum neurotoxins (BoNTs) are potent bacterial toxins. The high oral toxicity of BoNTs is largely attributed to the progenitor toxin complex (PTC), which is assembled from BoNT and nontoxic neurotoxin-associated proteins (NAPs) that are produced together with BoNT in bacteria. Here, we performed ex vivo studies to examine binding of the highly homogeneous recombinant NAPs to mouse small intestine. We also carried out the first comprehensive glycan array screening with the hemagglutinin (HA) component of NAPs. Our data confirmed that intestinal binding of the PTC is partly mediated by the HA moiety through multivalent interactions between HA and host carbohydrates. The specific HA-carbohydrate recognition could be inhibited by receptor-mimicking saccharides.

  19. Antifungal and antiviral products of marine organisms

    PubMed Central

    Cheung, Randy Chi Fai; Pan, Wen Liang; Chan, Yau Sang; Yin, Cui Ming; Dan, Xiu Li; Wang, He Xiang; Fang, Evandro Fei; Lam, Sze Kwan; Ngai, Patrick Hung Kui; Xia, Li Xin; Liu, Fang; Ye, Xiu Yun; Zhang, Guo Qing; Liu, Qing Hong; Sha, Ou; Lin, Peng; Ki, Chan; Bekhit, Adnan A; Bekhit, Alaa El-Din; Wan, David Chi Cheong

    2017-01-01

    Marine organisms including bacteria, fungi, algae, sponges, echinoderms, mollusks, and cephalochordates produce a variety of products with antifungal activity including bacterial chitinases, lipopeptides, and lactones; fungal (−)-sclerotiorin and peptaibols, purpurides B and C, berkedrimane B and purpuride; algal gambieric acids A and B, phlorotannins; 3,5-dibromo-2-(3,5-dibromo-2-methoxyphenoxy)phenol, spongistatin 1, eurysterols A and B, nortetillapyrone, bromotyrosine alkaloids, bis-indole alkaloid, ageloxime B and (−)-ageloxime D, haliscosamine, hamigeran G, hippolachnin A from sponges; echinoderm triterpene glycosides and alkene sulfates; molluscan kahalalide F and a 1485-Da peptide with a sequence SRSELIVHQR; and cepalochordate chitotriosidase and a 5026.9-Da antifungal peptide. The antiviral compounds from marine organisms include bacterial polysaccharide and furan-2-yl acetate; fungal macrolide, purpurester A, purpurquinone B, isoindolone derivatives, alterporriol Q, tetrahydroaltersolanol C and asperterrestide A, algal diterpenes, xylogalactofucan, alginic acid, glycolipid sulfoquinovosyldiacylglycerol, sulfated polysaccharide p-KG03, meroditerpenoids, methyl ester derivative of vatomaric acid, lectins, polysaccharides, tannins, cnidarian zoanthoxanthin alkaloids, norditerpenoid and capilloquinol; crustacean antilipopolysaccharide factors, molluscan hemocyanin; echinoderm triterpenoid glycosides; tunicate didemnin B, tamandarins A and B and; tilapia hepcidin 1–5 (TH 1–5), seabream SauMx1, SauMx2, and SauMx3, and orange-spotted grouper β-defensin. Although the mechanisms of antifungal and antiviral activities of only some of the afore-mentioned compounds have been elucidated, the possibility to use those known to have distinctly different mechanisms, good bioavailability, and minimal toxicity in combination therapy remains to be investigated. It is also worthwhile to test the marine antimicrobials for possible synergism with existing drugs. The

  20. A Novel Surface Plasmon Resonance Biosensor for the Rapid Detection of Botulinum Neurotoxins

    PubMed Central

    Patel, Kruti; Halevi, Shmuel; Melman, Paul; Schwartz, John; Cai, Shuowei; Singh, Bal Ram

    2017-01-01

    Botulinum neurotoxins (BoNTs) are Category A agents on the NIAID (National Institute of Allergy and Infectious Diseases) priority pathogen list owing to their extreme toxicity and the relative ease of production. These deadly toxins, in minute quantities (estimated human i.v. lethal dose LD50 of 1–2 ng/kg body weight), cause fatal flaccid paralysis by blocking neurotransmitter release. The current gold standard detection method, the mouse-bioassay, often takes days to confirm botulism. Furthermore, there are no effective antidotes known to reverse the symptoms of botulism, and as a result, patients with severe botulism often require meticulous care during the prolonged paralytic illness. To combat potential bio-terrorism incidents of botulinum neurotoxins, their rapid detection is paramount. Surface plasmon resonance (SPR) is a very sensitive technique to examine bio-molecular interactions. The label-free, real-time analysis, with high sensitivity and low sample consumption makes this technology particularly suitable for detection of the toxin. In this study, we demonstrated the feasibility in an assay with a newly designed SPR instrument for the rapid detection of botulinum neurotoxins. The LOD (limit of detection) of the Newton Photonics (NP) SPR based assay is 6.76 pg/mL for Botulinum Neurotoxin type A Light Chain (BoNT/A LC). We established that the detection sensitivity of the system is comparable to the traditional mouse LD50 bioassay in BoNT/A using this SPR technology. PMID:28783115

  1. Marine Algae: a Source of Biomass for Biotechnological Applications.

    PubMed

    Stengel, Dagmar B; Connan, Solène

    2015-01-01

    Biomass derived from marine microalgae and macroalgae is globally recognized as a source of valuable chemical constituents with applications in the agri-horticultural sector (including animal feeds and health and plant stimulants), as human food and food ingredients as well as in the nutraceutical, cosmeceutical, and pharmaceutical industries. Algal biomass supply of sufficient quality and quantity however remains a concern with increasing environmental pressures conflicting with the growing demand. Recent attempts in supplying consistent, safe and environmentally acceptable biomass through cultivation of (macro- and micro-) algal biomass have concentrated on characterizing natural variability in bioactives, and optimizing cultivated materials through strain selection and hybridization, as well as breeding and, more recently, genetic improvements of biomass. Biotechnological tools including metabolomics, transcriptomics, and genomics have recently been extended to algae but, in comparison to microbial or plant biomass, still remain underdeveloped. Current progress in algal biotechnology is driven by an increased demand for new sources of biomass due to several global challenges, new discoveries and technologies available as well as an increased global awareness of the many applications of algae. Algal diversity and complexity provides significant potential provided that shortages in suitable and safe biomass can be met, and consumer demands are matched by commercial investment in product development.

  2. The ins and outs of algal metal transport

    PubMed Central

    Blaby-Haas, Crysten E.; Merchant, Sabeeha S.

    2012-01-01

    Metal transporters are a central component in the interaction of algae with their environment. They represent the first line of defense to cellular perturbations in metal concentration, and by analyzing algal metal transporter repertoires, we gain insight into a fundamental aspect of algal biology. The ability of individual algae to thrive in environments with unique geochemistry, compared to non-algal species commonly used as reference organisms for metal homeostasis, provides an opportunity to broaden our understanding of biological metal requirements, preferences and trafficking. Chlamydomonas reinhardtii is the best developed reference organism for the study of algal biology, especially with respect to metal metabolism; however, the diversity of algal niches necessitates a comparative genomic analysis of all sequenced algal genomes. A comparison between known and putative proteins in animals, plants, fungi and algae using protein similarity networks has revealed the presence of novel metal metabolism components in Chlamydomonas including new iron and copper transporters. This analysis also supports the concept that, in terms of metal metabolism, algae from similar niches are more related to one another than to algae from the same phylogenetic clade. PMID:22569643

  3. Structural Studies on Intact Clostridium Botulinum Neurotoxins Complexed with Inhibitors Leading to Drug Design

    DTIC Science & Technology

    2006-02-01

    6. Hanson, M. A., and Stevens, R. C. (2000) Cocrystal structure of synaptobrevin-ll bound to botulinum neurotoxin type B at 2.0 A resolution, Nature...Hanson, R.C. Stevens, Cocrystal structure of synaptobre- vin-ll bound to botulinum neurotoxin type B at 2.0 Å resolution, Nat. Struct. Biol. 7 (2000...of the Glu212 carboxylate in the catalytic pathway, Biochemistry 43, 6637-6644. 4. Hanson, M. A., and Stevens, R. C. (2000) Cocrystal structure of

  4. Assessing the potential of polyculture to accelerate algal biofuel production

    DOE PAGES

    Newby, Deborah T.; Mathews, Teresa J.; Pate, Ron C.; ...

    2016-10-24

    To date, the algal biofuel industry has focused on the cultivation of monocultures of highly productive algal strains, but scaling up production remains challenging. However, algal monocultures are difficult to maintain because they are easily contaminated by wild algal strains, grazers, and pathogens. In contrast, theory suggests that polycultures (multispecies assemblages) can promote both ecosystem stability and productivity. A greater understanding of species interactions and how communities change with time will need to be developed before polycultures can be successfully applied to large-scale algal production efforts. Here in this paper we review the agricultural and ecological literature to explore opportunitiesmore » for increased annual biomass production through the use of algal polycultures. We discuss case studies where algal polycultures have been successfully maintained for industries other than the biofuel industry, as well as the few studies that have compared biomass production of algal polycultures to that of monocultures. Assemblages that include species with complementary traits are of particular promise. These assemblages have the potential not only to increase crop productivity and stability, but they may also be capable of utilizing natural resources (e.g. light, nutrients, water) more efficiently via tighter niche packing. Therefore, algal polycultures show promise for enhancing biomass productivity, enabling sustainable production and reducing overall production costs.« less

  5. Assessing the potential of polyculture to accelerate algal biofuel production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newby, Deborah T.; Mathews, Teresa J.; Pate, Ron C.

    To date, the algal biofuel industry has focused on the cultivation of monocultures of highly productive algal strains, but scaling up production remains challenging. However, algal monocultures are difficult to maintain because they are easily contaminated by wild algal strains, grazers, and pathogens. In contrast, theory suggests that polycultures (multispecies assemblages) can promote both ecosystem stability and productivity. A greater understanding of species interactions and how communities change with time will need to be developed before polycultures can be successfully applied to large-scale algal production efforts. Here in this paper we review the agricultural and ecological literature to explore opportunitiesmore » for increased annual biomass production through the use of algal polycultures. We discuss case studies where algal polycultures have been successfully maintained for industries other than the biofuel industry, as well as the few studies that have compared biomass production of algal polycultures to that of monocultures. Assemblages that include species with complementary traits are of particular promise. These assemblages have the potential not only to increase crop productivity and stability, but they may also be capable of utilizing natural resources (e.g. light, nutrients, water) more efficiently via tighter niche packing. Therefore, algal polycultures show promise for enhancing biomass productivity, enabling sustainable production and reducing overall production costs.« less

  6. Isolation and functional characterization of the novel Clostridium botulinum neurotoxin A8 subtype.

    PubMed

    Kull, Skadi; Schulz, K Melanie; Weisemann, Jasmin; Kirchner, Sebastian; Schreiber, Tanja; Bollenbach, Alexander; Dabrowski, P Wojtek; Nitsche, Andreas; Kalb, Suzanne R; Dorner, Martin B; Barr, John R; Rummel, Andreas; Dorner, Brigitte G

    2015-01-01

    Botulism is a severe neurological disease caused by the complex family of botulinum neurotoxins (BoNT). Based on the different serotypes known today, a classification of serotype variants termed subtypes has been proposed according to sequence diversity and immunological properties. However, the relevance of BoNT subtypes is currently not well understood. Here we describe the isolation of a novel Clostridium botulinum strain from a food-borne botulism outbreak near Chemnitz, Germany. Comparison of its botulinum neurotoxin gene sequence with published sequences identified it to be a novel subtype within the BoNT/A serotype designated BoNT/A8. The neurotoxin gene is located within an ha-orfX+ cluster and showed highest homology to BoNT/A1, A2, A5, and A6. Unexpectedly, we found an arginine insertion located in the HC domain of the heavy chain, which is unique compared to all other BoNT/A subtypes known so far. Functional characterization revealed that the binding characteristics to its main neuronal protein receptor SV2C seemed unaffected, whereas binding to membrane-incorporated gangliosides was reduced in comparison to BoNT/A1. Moreover, we found significantly lower enzymatic activity of the natural, full-length neurotoxin and the recombinant light chain of BoNT/A8 compared to BoNT/A1 in different endopeptidase assays. Both reduced ganglioside binding and enzymatic activity may contribute to the considerably lower biological activity of BoNT/A8 as measured in a mouse phrenic nerve hemidiaphragm assay. Despite its reduced activity the novel BoNT/A8 subtype caused severe botulism in a 63-year-old male. To our knowledge, this is the first description and a comprehensive characterization of a novel BoNT/A subtype which combines genetic information on the neurotoxin gene cluster with an in-depth functional analysis using different technical approaches. Our results show that subtyping of BoNT is highly relevant and that understanding of the detailed toxin function might

  7. Methylation of inorganic mercury in polar marine waters

    NASA Astrophysics Data System (ADS)

    Lehnherr, Igor; St. Louis, Vincent L.; Hintelmann, Holger; Kirk, Jane L.

    2011-05-01

    Monomethylmercury is a neurotoxin that accumulates in marine organisms, with serious implications for human health. The toxin is of particular concern to northern Inuit peoples, for example, whose traditional diets are composed primarily of marine mammals and fish. The ultimate source of monomethylmercury to marine organisms has remained uncertain, although various potential sources have been proposed, including export from coastal and deep-sea sediments and major river systems, atmospheric deposition and water-column production. Here, we report results from incubation experiments in which we added isotopically labelled inorganic mercury and monomethylmercury to seawater samples collected from a range of sites in the Canadian Arctic Archipelago. Monomethylmercury formed from the methylation of inorganic mercury in all samples. Demethylation of monomethylmercury was also observed in water from all sites. We determined steady-state concentrations of monomethylmercury in marine waters by incorporating the rate constants for monomethylmercury formation and degradation derived from these experiments into a numerical model. We estimate that the conversion of inorganic mercury to monomethylmercury in the water column accounts for around 47% (+/-62%, standard deviation) of the monomethylmercury present in polar marine waters, with site-to-site differences in inorganic mercury and monomethylmercury levels accounting for most of the variability. We suggest that water-column methylation of inorganic mercury is a significant source of monomethylmercury in pelagic marine food webs in the Arctic, and possibly in the world's oceans in general.

  8. The active site structure of tetanus neurotoxin resolved by multiple scattering analysis in X-Ray absorption spectroscopy.

    PubMed Central

    Meneghini, C; Morante, S

    1998-01-01

    A detailed study of the x-ray absorption spectrum of tetanus neurotoxin in the K-edge EXAFS region of the zinc absorber is presented that allows the complete identification of the amino acid residues coordinated to the zinc active site. A very satisfactory interpretation of the experimental data can be given if multiple scattering contributions are included in the analysis. Comparing the absorption spectrum of tetanus neurotoxin to that of two other structurally similar zinc-endopeptidases, thermolysin and astacin, in which the zinc coordination mode is known from crystallographic data, we conclude that in tetanus neurotoxin, besides a water molecule, zinc is coordinated to two histidines and a tyrosine. PMID:9746536

  9. Sustainable Algal Energy Production and Environmental Remediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooke, William E.

    2012-07-14

    Overall, our results confirm that wild algal species sequester a wide range of organic and metal contaminants and excess nutrients (PAHs, trace metals, and nutrients) from natural waters, and suggest parameters that could be useful in predicting uptake rates for algae growing on an algal floway or other algal growth systems in the environment or in industrial processes. The implication for various fuel production processes differ with the detailed unit operations involved, and these results will be of use in the developing of scaling experiments for various types of engineering process designs.

  10. A marine algicidal actinomycete and its active substance against the harmful algal bloom species Phaeocystis globosa.

    PubMed

    Zheng, Xiaowei; Zhang, Bangzhou; Zhang, Jinlong; Huang, Liping; Lin, Jing; Li, Xinyi; Zhou, Yanyan; Wang, Hui; Yang, Xiaoru; Su, Jianqiang; Tian, Yun; Zheng, Tianling

    2013-10-01

    A strain O4-6, which had pronounced algicidal effects to the harmful algal bloom causing alga Phaeocystis globosa, was isolated from mangrove sediments in the Yunxiao Mangrove National Nature Reserve, Fujian, China. Based on the 16S rRNA gene sequence and morphological characteristics, the isolate was found to be phylogenetically related to the genus Streptomyces and identified as Streptomyces malaysiensis O4-6. Heat stability, pH tolerance, molecular weight range and aqueous solubility were tested to characterize the algicidal compound secreted from O4-6. Results showed that the algicidal activity of this compound was not heat stable and not affected by pH changes. Residue extracted from the supernatant of O4-6 fermentation broth by ethyl acetate, was purified by Sephadex LH-20 column and silica gel column chromatography before further structure determination. Chemical structure of the responsible compound, named NIG355, was illustrated based on quadrupole time-of-flight mass spectrometry (Q-TOF-MS) and nuclear magnetic resonance (NMR) spectra. And this compound showed a stronger algicidal activity compared with other reported algicides. Furthermore, this article represents the first report of an algicide against P. globosa, and the compound may be potentially used as a bio-agent for controlling harmful algal blooms.

  11. Fungal-assisted algal flocculation: application in wastewater treatment and biofuel production.

    PubMed

    Muradov, Nazim; Taha, Mohamed; Miranda, Ana F; Wrede, Digby; Kadali, Krishna; Gujar, Amit; Stevenson, Trevor; Ball, Andrew S; Mouradov, Aidyn

    2015-01-01

    The microalgal-based industries are facing a number of important challenges that in turn affect their economic viability. Arguably the most important of these are associated with the high costs of harvesting and dewatering of the microalgal cells, the costs and sustainability of nutrient supplies and costly methods for large scale oil extraction. Existing harvesting technologies, which can account for up to 50% of the total cost, are not economically feasible because of either requiring too much energy or the addition of chemicals. Fungal-assisted flocculation is currently receiving increased attention because of its high harvesting efficiency. Moreover, some of fungal and microalgal strains are well known for their ability to treat wastewater, generating biomass which represents a renewable and sustainable feedstock for bioenergy production. We screened 33 fungal strains, isolated from compost, straws and soil for their lipid content and flocculation efficiencies against representatives of microalgae commercially used for biodiesel production, namely the heterotrophic freshwater microalgae Chlorella protothecoides and the marine microalgae Tetraselmis suecica. Lipid levels and composition were analyzed in fungal-algal pellets grown on media containing alternative carbon, nitrogen and phosphorus sources from wheat straw and swine wastewater, respectively. The biomass of fungal-algal pellets grown on swine wastewater was used as feedstock for the production of value-added chemicals, biogas, bio-solids and liquid petrochemicals through pyrolysis. Co-cultivation of microalgae and filamentous fungus increased total biomass production, lipid yield and wastewater bioremediation efficiency. Fungal-assisted microalgal flocculation shows significant potential for solving the major challenges facing the commercialization of microalgal biotechnology, namely (i) the efficient and cost-effective harvesting of freshwater and seawater algal strains; (ii) enhancement of total oil

  12. Theoretical Calculations on the Feasibility of Microalgal Biofuels: Utilization of Marine Resources Could Help Realizing the Potential of Microalgae

    PubMed Central

    Park, Hanwool

    2016-01-01

    Abstract Microalgae have long been considered as one of most promising feedstocks with better characteristics for biofuels production over conventional energy crops. There have been a wide range of estimations on the feasibility of microalgal biofuels based on various productivity assumptions and data from different scales. The theoretical maximum algal biofuel productivity, however, can be calculated by the amount of solar irradiance and photosynthetic efficiency (PE), assuming other conditions are within the optimal range. Using the actual surface solar irradiance data around the world and PE of algal culture systems, maximum algal biomass and biofuel productivities were calculated, and feasibility of algal biofuel were assessed with the estimation. The results revealed that biofuel production would not easily meet the economic break‐even point and may not be sustainable at a large‐scale with the current algal biotechnology. Substantial reductions in the production cost, improvements in lipid productivity, recycling of resources, and utilization of non‐conventional resources will be necessary for feasible mass production of algal biofuel. Among the emerging technologies, cultivation of microalgae in the ocean shows great potentials to meet the resource requirements and economic feasibility in algal biofuel production by utilizing various marine resources. PMID:27782372

  13. Algal biodiesel economy and competition among bio-fuels.

    PubMed

    Lee, D H

    2011-01-01

    This investigation examines the possible results of policy support in developed and developing economies for developing algal biodiesel through to 2040. This investigation adopts the Taiwan General Equilibrium Model-Energy for Bio-fuels (TAIGEM-EB) to predict competition among the development of algal biodiesel, bioethanol and conventional crop-based biodiesel. Analytical results show that algal biodiesel will not be the major energy source in 2040 without strong support in developed economies. In contrast, bioethanol enjoys a development advantage relative to both forms of biodiesel. Finally, algal biodiesel will almost completely replace conventional biodiesel. CO(2) reduction benefits the development of the bio-fuels industry. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Current gaps in basic science knowledge of botulinum neurotoxin biological actions.

    PubMed

    Rossetto, Ornella; Pirazzini, Marco; Montecucco, Cesare

    2015-12-01

    Botulinum neurotoxins are produced by anaerobic spore-forming bacteria of the genus Clostridium in several dozens of variants that inactivate neurotransmitter release owing to their metalloprotease activity. This results in a persistent paralysis of peripheral nerve terminals known as botulism. They are the most potent toxins known and are classified as one of the six highest-risk threat agents of bioterrorism. Despite their high toxicity, two of them are used as valuable pharmaceutical for the therapy of many neurological and non-neurological disorders. Notwithstanding the many advances in our understanding of the genetics and structure of botulinum neurotoxins, there are still many gaps in knowledge of toxin mechanism of action that will be discussed here. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Algal genes in the closest relatives of animals.

    PubMed

    Sun, Guiling; Yang, Zefeng; Ishwar, Arjun; Huang, Jinling

    2010-12-01

    The spread of photosynthesis is one of the most important but controversial topics in eukaryotic evolution. Because of massive gene transfer from plastids to the nucleus and because of the possibility that plastids have been lost in evolution, algal genes in aplastidic organisms often are interpreted as footprints of photosynthetic ancestors. These putative plastid losses, in turn, have been cited as support for scenarios involving the spread of plastids in broadscale eukaryotic evolution. Phylogenomic analyses identified more than 100 genes of possible algal origin in Monosiga, a unicellular species from choanoflagellates, a group considered to be the closest protozoan relatives of animals and to be primitively heterotrophic. The vast majority of these algal genes appear to be derived from haptophytes, diatoms, or green plants. Furthermore, more than 25% of these algal genes are ultimately of prokaryotic origin and were spread secondarily to Monosiga. Our results show that the presence of algal genes may be expected in many phagotrophs or taxa of phagotrophic ancestry and therefore does not necessarily represent evidence of plastid losses. The ultimate prokaryotic origin of some algal genes and their simultaneous presence in both primary and secondary photosynthetic eukaryotes either suggest recurrent gene transfer events under specific environments or support a more ancient origin of primary plastids.

  16. Evidence for water-mediated mechanisms in coral–algal interactions

    PubMed Central

    Jorissen, Hendrikje; Skinner, Christina; Osinga, Ronald; de Beer, Dirk

    2016-01-01

    Although many coral reefs have shifted from coral-to-algal dominance, the consequence of such a transition for coral–algal interactions and their underlying mechanisms remain poorly understood. At the microscale, it is unclear how diffusive boundary layers (DBLs) and surface oxygen concentrations at the coral–algal interface vary with algal competitors and competitiveness. Using field observations and microsensor measurements in a flow chamber, we show that coral (massive Porites) interfaces with thick turf algae, macroalgae, and cyanobacteria, which are successful competitors against coral in the field, are characterized by a thick DBL and hypoxia at night. In contrast, coral interfaces with crustose coralline algae, conspecifics, and thin turf algae, which are poorer competitors, have a thin DBL and low hypoxia at night. Furthermore, DBL thickness and hypoxia at the interface with turf decreased with increasing flow speed, but not when thick turf was upstream. Our results support the importance of water-mediated transport mechanisms in coral–algal interactions. Shifts towards algal dominance, particularly dense assemblages, may lead to thicker DBLs, higher hypoxia, and higher concentrations of harmful metabolites and pathogens along coral borders, which in turn may facilitate algal overgrowth of live corals. These effects may be mediated by flow speed and orientation. PMID:27512146

  17. Evidence for water-mediated mechanisms in coral-algal interactions.

    PubMed

    Jorissen, Hendrikje; Skinner, Christina; Osinga, Ronald; de Beer, Dirk; Nugues, Maggy M

    2016-08-17

    Although many coral reefs have shifted from coral-to-algal dominance, the consequence of such a transition for coral-algal interactions and their underlying mechanisms remain poorly understood. At the microscale, it is unclear how diffusive boundary layers (DBLs) and surface oxygen concentrations at the coral-algal interface vary with algal competitors and competitiveness. Using field observations and microsensor measurements in a flow chamber, we show that coral (massive Porites) interfaces with thick turf algae, macroalgae, and cyanobacteria, which are successful competitors against coral in the field, are characterized by a thick DBL and hypoxia at night. In contrast, coral interfaces with crustose coralline algae, conspecifics, and thin turf algae, which are poorer competitors, have a thin DBL and low hypoxia at night. Furthermore, DBL thickness and hypoxia at the interface with turf decreased with increasing flow speed, but not when thick turf was upstream. Our results support the importance of water-mediated transport mechanisms in coral-algal interactions. Shifts towards algal dominance, particularly dense assemblages, may lead to thicker DBLs, higher hypoxia, and higher concentrations of harmful metabolites and pathogens along coral borders, which in turn may facilitate algal overgrowth of live corals. These effects may be mediated by flow speed and orientation. © 2016 The Author(s).

  18. Algal turf scrubber (ATS) floways on the Great Wicomico River, Chesapeake Bay: productivity, algal community structure, substrate and chemistry(1).

    PubMed

    Adey, Walter H; Laughinghouse, H Dail; Miller, John B; Hayek, Lee-Ann C; Thompson, Jesse G; Bertman, Steven; Hampel, Kristin; Puvanendran, Shanmugam

    2013-06-01

    Two Algal Turf Scrubber (ATS) units were deployed on the Great Wicomico River (GWR) for 22 months to examine the role of substrate in increasing algal productivity and nutrient removal. The yearly mean productivity of flat ATS screens was 15.4 g · m(-2)  · d(-1) . This was elevated to 39.6 g · m(-2)  · d(-1) with a three-dimensional (3-D) screen, and to 47.7 g · m(-2)  · d(-1) by avoiding high summer harvest temperatures. These methods enhanced nutrient removal (N, P) in algal biomass by 3.5 times. Eighty-six algal taxa (Ochrophyta [diatoms], Chlorophyta [green algae], and Cyan-obacteria [blue-green algae]) self-seeded from the GWR and demonstrated yearly cycling. Silica (SiO2 ) content of the algal biomass ranged from 30% to 50% of total biomass; phosphorus, nitrogen, and carbon content of the total algal biomass ranged from 0.15% to 0.21%, 2.13% to 2.89%, and 20.0% to 25.7%, respectively. Carbohydrate content (at 10%-25% of AFDM) was dominated by glucose. Lipids (fatty acid methyl ester; FAMEs) ranged widely from 0.5% to 9% AFDM, with Omega-3 fatty acids a consistent component. Mathematical modeling of algal produ-ctivity as a function of temperature, light, and substrate showed a proportionality of 4:3:3, resp-ectively. Under landscape ATS operation, substrate manipulation provides a considerable opportunity to increase ATS productivity, water quality amelioration, and biomass coproduction for fertilizers, fermentation energy, and omega-3 products. Based on the 3-D prod-uctivity and algal chemical composition demonstrated, ATS systems used for nonpoint source water treat-ment can produce ethanol (butanol) at 5.8× per unit area of corn, and biodiesel at 12.0× per unit area of soy beans (agricultural production US). © 2013 Phycological Society of America.

  19. Associations between marine phytoplankton and symptoms of illness among recreational beachgoers in Puerto Rico, 2009

    EPA Science Inventory

    While phytoplankton generally have crucial roles in marine ecosystems, a small subset can release toxins and produce harmful algal blooms (HABs). HABs can be a threat to human health as symptoms from exposure range from neurological impairment to gastrointestinal (GI), dermal, a...

  20. Chemical Structures and Bioactivities of Sulfated Polysaccharides from Marine Algae

    PubMed Central

    Jiao, Guangling; Yu, Guangli; Zhang, Junzeng; Ewart, H. Stephen

    2011-01-01

    Sulfated polysaccharides and their lower molecular weight oligosaccharide derivatives from marine macroalgae have been shown to possess a variety of biological activities. The present paper will review the recent progress in research on the structural chemistry and the bioactivities of these marine algal biomaterials. In particular, it will provide an update on the structural chemistry of the major sulfated polysaccharides synthesized by seaweeds including the galactans (e.g., agarans and carrageenans), ulvans, and fucans. It will then review the recent findings on the anticoagulant/antithrombotic, antiviral, immuno-inflammatory, antilipidemic and antioxidant activities of sulfated polysaccharides and their potential for therapeutic application. PMID:21566795

  1. PASSIVE MECHANICAL PROPERTIES AND RELATED PROTEINS CHANGE WITH BOTULINUM NEUROTOXIN A INJECTION OF NORMAL SKELETAL MUSCLE

    PubMed Central

    Thacker, Bryan E.; Tomiya, Akihito; Hulst, Jonah B.; Suzuki, Kentaro P.; Bremner, Shannon N.; Gastwirt, Randy F.; Greaser, Marion L.; Lieber, Richard L.; Ward, Samuel R.

    2011-01-01

    Summary The effects of botulinum neurotoxin A on the passive mechanical properties of skeletal muscle have not been investigated, but may have significant impact in the treatment of neuromuscular disorders including spasticity. Single fiber and fiber bundle passive mechanical testing was performed on rat muscles treated with botulinum neurotoxin A. Myosin heavy chain and titin composition of single fibers was determined by gel electrophoresis. Muscle collagen content was determined using a hydroxyproline assay. Neurotoxin-treated single fiber passive elastic modulus was reduced compared to control fibers (53.00 kPa versus 63.43 kPa). Fiber stiffness and slack sarcomere length were also reduced compared to control fibers and myosin heavy chain composition shifted from faster to slower isoforms. Average titin molecular weight increased 1.77% after treatment. Fiber bundle passive elastic modulus increased following treatment (168.83 kPa versus 75.14 kPa). Bundle stiffness also increased while collagen content per mass of muscle tissue increased 38%. Injection of botulinum neurotoxin A produces an effect on the passive mechanical properties of normal muscle that is opposite to the changes observed in spastic muscles. PMID:21853457

  2. Passive mechanical properties and related proteins change with botulinum neurotoxin A injection of normal skeletal muscle.

    PubMed

    Thacker, Bryan E; Tomiya, Akihito; Hulst, Jonah B; Suzuki, Kentaro P; Bremner, Shannon N; Gastwirt, Randy F; Greaser, Marion L; Lieber, Richard L; Ward, Samuel R

    2012-03-01

    The effects of botulinum neurotoxin A on the passive mechanical properties of skeletal muscle have not been investigated, but may have significant impact in the treatment of neuromuscular disorders including spasticity. Single fiber and fiber bundle passive mechanical testing was performed on rat muscles treated with botulinum neurotoxin A. Myosin heavy chain and titin composition of single fibers was determined by gel electrophoresis. Muscle collagen content was determined using a hydroxyproline assay. Neurotoxin-treated single fiber passive elastic modulus was reduced compared to control fibers (53.00 kPa vs. 63.43 kPa). Fiber stiffness and slack sarcomere length were also reduced compared to control fibers and myosin heavy chain composition shifted from faster to slower isoforms. Average titin molecular weight increased 1.77% after treatment. Fiber bundle passive elastic modulus increased following treatment (168.83  kPa vs. 75.14 kPa). Bundle stiffness also increased while collagen content per mass of muscle tissue increased 38%. Injection of botulinum neurotoxin A produces an effect on the passive mechanical properties of normal muscle that is opposite to the changes observed in spastic muscles. Copyright © 2011 Orthopaedic Research Society.

  3. Ethanol production from marine algal hydrolysates using Escherichia coli KO11.

    PubMed

    Kim, Nag-Jong; Li, Hui; Jung, Kwonsu; Chang, Ho Nam; Lee, Pyung Cheon

    2011-08-01

    Algae biomass is a potential raw material for the production of biofuels and other chemicals. In this study, biomass of the marine algae, Ulva lactuca, Gelidium amansii,Laminaria japonica, and Sargassum fulvellum, was treated with acid and commercially available hydrolytic enzymes. The hydrolysates contained glucose, mannose, galactose, and mannitol, among other sugars, at different ratios. The Laminaria japonica hydrolysate contained up to 30.5% mannitol and 6.98% glucose in the hydrolysate solids. Ethanogenic recombinant Escherichia coli KO11 was able to utilize both mannitol and glucose and produced 0.4g ethanol per g of carbohydrate when cultured in L. japonica hydrolysate supplemented with Luria-Bertani medium and hydrolytic enzymes. The strategy of acid hydrolysis followed by simultaneous enzyme treatment and inoculation with E. coli KO11 could be a viable strategy to produce ethanol from marine alga biomass. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Peptides, Peptidomimetics, and Polypeptides from Marine Sources: A Wealth of Natural Sources for Pharmaceutical Applications

    PubMed Central

    Sable, Rushikesh; Parajuli, Pravin; Jois, Seetharama

    2017-01-01

    Nature provides a variety of peptides that are expressed in most living species. Evolutionary pressure and natural selection have created and optimized these peptides to bind to receptors with high affinity. Hence, natural resources provide an abundant chemical space to be explored in peptide-based drug discovery. Marine peptides can be extracted by simple solvent extraction techniques. The advancement of analytical techniques has made it possible to obtain pure peptides from natural resources. Extracted peptides have been evaluated as possible therapeutic agents for a wide range of diseases, including antibacterial, antifungal, antidiabetic and anticancer activity as well as cardiovascular and neurotoxin activity. Although marine resources provide thousands of possible peptides, only a few peptides derived from marine sources have reached the pharmaceutical market. This review focuses on some of the peptides derived from marine sources in the past ten years and gives a brief review of those that are currently in clinical trials or on the market. PMID:28441741

  5. Spatial analysis of freshwater lake cyanobacteria blooms, 2008-2011

    EPA Science Inventory

    Background/Question/Methods Cyanobacteria and associated harmful algal blooms cause significant social, economic, and environmental impacts. Cyanobacteria synthesize hepatotoxins, neurotoxins, and dermatotoxins, affecting the health of humans and other species. The Cyanobacteria ...

  6. Botulinum Neurotoxin Research at the Western Regional Research Center

    USDA-ARS?s Scientific Manuscript database

    Botulinum neurotoxins (BoNTs) are some of the most potent toxins to humans. The most common route of intoxication is through ingestion of contaminated food or drink. In addition, these toxins are likely targets for use in intentional adulteration of food or animal feeds and are thus classified as Se...

  7. Biochemistry of snake venom neurotoxins and their application to the study of synapse. [Neurotoxins isolated from venom of the Formosan banded krait

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanley, M.R.

    1978-11-01

    The crude venom of the Formosan banded krait, Bungarus multicinctus, was separated into eleven lethal protein fractions. Nine fractions were purified to final homogeneous toxins, designated ..cap alpha..-bungarotoxin, ..beta..-bungarotoxin, and toxins 7, 8, 9A, 11, 12, 13, and 14. Three of the toxins, ..cap alpha..-bungarotoxin, 7, and 8, were identified as post-synaptic curarimimetic neurotoxins. The remaining toxins were identified as pre-synaptic neurotoxins. ..cap alpha..-Bungarotoxin, toxin 7, and toxin 8 are all highly stable basic polypeptides of approx. 8000 daltons molecular weight. The pre-synaptic toxins fell into two structural groups: toxin 9A and 14 which were single basic chains of approx.more » 14,000 daltons, and ..beta..-bungarotoxin, and toxins 11 thru 13 which were composed of two chains of approx. 8000 and approx. 13,000 daltons covalently linked by disulfides. All the pre-synaptic neurotoxins were shown to have intrinsic calcium-dependent phospholipase A activities. Under certain conditions, intact synaptic membranes were hydrolyzed more rapidly than protein-free extracted synaptic-lipid liposomes which, in turn, were hydrolyzed more rapidly than any other tested liposomes. It was speculated that cell-surface arrays of phosphatidyl serine/glycolipids created high affinity target sites for ..beta..-bungarotoxin. Single-chain toxins were found to be qualitatively different from the two-chain toxins in their ability to block the functioning of acetylcholine receptors, and were quantitatively different in their enzymatic and membrane disruptive activities. ..beta..-Bungarotoxin was shown to be an extremely potent neuronal lesioning agent. There was no apparent selectivity for cholinergic over non-cholinergic neurons, nor for nerve terminals over cell bodies. It was suggested that ..beta..-bungarotoxin can be considered a useful new histological tool, which may exhibit some regional selectivity.« less

  8. On the role of endogenous neurotoxins and neuroprotection in Parkinson's disease.

    PubMed

    Segura-Aguilar, Juan

    2017-06-01

    For 50 years ago was introduced L-3,4-dihydroxyphenylalanine (L-dopa) in Parkinson's disease treatment and during this significant advances has been done but what trigger the degeneration of the nigrostriatal system remain unknown. There is a general agreement in the scientific community that mitochondrial dysfunction, protein degradation dysfunction, alpha-synuclein aggregation to neurotoxic oligomers, neuroinflammation, oxidative and endoplasmic reticulum stress are involved in the loss of dopaminergic neurons containing neuromelanin in Parkinson's disease. The question is what triggers these mechanisms. The age of normal onset in idiopathic Parkinson's disease suggests that environmental factors such as metals, pollutants or genetic mutations cannot be involved because these factors are related to early onset of Parkinsonism. Therefore, we have to search for endogenous neurotoxins and neuroprotection in order to understand what trigger the loss of dopaminergic neurons. One important feature of Parkinson's disease is the rate of the degenerative process before the motor symptoms are evident and during the disease progression. The extremely slow rate of Parkinson's disease suggests that the neurotoxins and the neuroprotection have to be related to dopamine metabolism. Possible candidates for endogenous neurotoxins are alpha-synuclein neurotoxic oligomers, 4-dihydroxyphenylacetaldehyde and ortho-quinones formed during dopamine oxidation to neuromelanin. Vesicular monoamine transporter-2, DT-diaphorase and glutathione transferase M2-2 seems to be the most important neuroprotective mechanism to prevent neurotoxic mechanism during dopamine oxidation.

  9. Recent Advances in Marine Enzymes for Biotechnological Processes.

    PubMed

    Lima, R N; Porto, A L M

    In the last decade, new trends in the food and pharmaceutical industries have increased concern for the quality and safety of products. The use of biocatalytic processes using marine enzymes has become an important and useful natural product for biotechnological applications. Bioprocesses using biocatalysts like marine enzymes (fungi, bacteria, plants, animals, algae, etc.) offer hyperthermostability, salt tolerance, barophilicity, cold adaptability, chemoselectivity, regioselectivity, and stereoselectivity. Currently, enzymatic methods are used to produce a large variety of products that humans consume, and the specific nature of the enzymes including processing under mild pH and temperature conditions result in fewer unwanted side-effects and by-products. This offers high selectivity in industrial processes. The marine habitat has been become increasingly studied because it represents a huge source potential biocatalysts. Enzymes include oxidoreductases, hydrolases, transferases, isomerases, ligases, and lyases that can be used in food and pharmaceutical applications. Finally, recent advances in biotechnological processes using enzymes of marine organisms (bacterial, fungi, algal, and sponges) are described and also our work on marine organisms from South America, especially marine-derived fungi and bacteria involved in biotransformations and biodegradation of organic compounds. © 2016 Elsevier Inc. All rights reserved.

  10. Recent Advances in Algal Genetic Tool Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Dahlin, Lukas; T. Guarnieri, Michael

    The goal of achieving cost-effective biofuels and bioproducts derived from algal biomass will require improvements along the entire value chain, including identification of robust, high-productivity strains and development of advanced genetic tools. Though there have been modest advances in development of genetic systems for the model alga Chlamydomonas reinhardtii, progress in development of algal genetic tools, especially as applied to non-model algae, has generally lagged behind that of more commonly utilized laboratory and industrial microbes. This is in part due to the complex organellar structure of algae, including robust cell walls and intricate compartmentalization of target loci, as well asmore » prevalent gene silencing mechanisms, which hinder facile utilization of conventional genetic engineering tools and methodologies. However, recent progress in global tool development has opened the door for implementation of strain-engineering strategies in industrially-relevant algal strains. Here, we review recent advances in algal genetic tool development and applications in eukaryotic microalgae.« less

  11. Recent Advances in Algal Genetic Tool Development

    DOE PAGES

    R. Dahlin, Lukas; T. Guarnieri, Michael

    2016-06-24

    The goal of achieving cost-effective biofuels and bioproducts derived from algal biomass will require improvements along the entire value chain, including identification of robust, high-productivity strains and development of advanced genetic tools. Though there have been modest advances in development of genetic systems for the model alga Chlamydomonas reinhardtii, progress in development of algal genetic tools, especially as applied to non-model algae, has generally lagged behind that of more commonly utilized laboratory and industrial microbes. This is in part due to the complex organellar structure of algae, including robust cell walls and intricate compartmentalization of target loci, as well asmore » prevalent gene silencing mechanisms, which hinder facile utilization of conventional genetic engineering tools and methodologies. However, recent progress in global tool development has opened the door for implementation of strain-engineering strategies in industrially-relevant algal strains. Here, we review recent advances in algal genetic tool development and applications in eukaryotic microalgae.« less

  12. Eukaryotic algal phytochromes span the visible spectrum

    PubMed Central

    Rockwell, Nathan C.; Duanmu, Deqiang; Martin, Shelley S.; Bachy, Charles; Price, Dana C.; Bhattacharya, Debashish; Worden, Alexandra Z.; Lagarias, J. Clark

    2014-01-01

    Plant phytochromes are photoswitchable red/far-red photoreceptors that allow competition with neighboring plants for photosynthetically active red light. In aquatic environments, red and far-red light are rapidly attenuated with depth; therefore, photosynthetic species must use shorter wavelengths of light. Nevertheless, phytochrome-related proteins are found in recently sequenced genomes of many eukaryotic algae from aquatic environments. We examined the photosensory properties of seven phytochromes from diverse algae: four prasinophyte (green algal) species, the heterokont (brown algal) Ectocarpus siliculosus, and two glaucophyte species. We demonstrate that algal phytochromes are not limited to red and far-red responses. Instead, different algal phytochromes can sense orange, green, and even blue light. Characterization of these previously undescribed photosensors using CD spectroscopy supports a structurally heterogeneous chromophore in the far-red–absorbing photostate. Our study thus demonstrates that extensive spectral tuning of phytochromes has evolved in phylogenetically distinct lineages of aquatic photosynthetic eukaryotes. PMID:24567382

  13. Resolving Mixed Algal Species in Hyperspectral Images

    PubMed Central

    Mehrubeoglu, Mehrube; Teng, Ming Y.; Zimba, Paul V.

    2014-01-01

    We investigated a lab-based hyperspectral imaging system's response from pure (single) and mixed (two) algal cultures containing known algae types and volumetric combinations to characterize the system's performance. The spectral response to volumetric changes in single and combinations of algal mixtures with known ratios were tested. Constrained linear spectral unmixing was applied to extract the algal content of the mixtures based on abundances that produced the lowest root mean square error. Percent prediction error was computed as the difference between actual percent volumetric content and abundances at minimum RMS error. Best prediction errors were computed as 0.4%, 0.4% and 6.3% for the mixed spectra from three independent experiments. The worst prediction errors were found as 5.6%, 5.4% and 13.4% for the same order of experiments. Additionally, Beer-Lambert's law was utilized to relate transmittance to different volumes of pure algal suspensions demonstrating linear logarithmic trends for optical property measurements. PMID:24451451

  14. Assessing the potential of amino acid δ13C patterns as a carbon source tracer in marine sediments: effects of algal growth conditions and sedimentary diagenesis

    NASA Astrophysics Data System (ADS)

    Larsen, T.; Bach, L. T.; Salvatteci, R.; Wang, Y. V.; Andersen, N.; Ventura, M.; McCarthy, M. D.

    2015-01-01

    Burial of organic carbon in marine sediments has a profound influence in marine biogeochemical cycles, and provides a sink for greenhouse gases such as CO2 and CH4. However, tracing organic carbon from primary production sources as well as its transformations in the sediment record remains challenging. Here we examine a novel but growing tool for tracing biosynthetic origin of amino acid carbon skeletons, based on natural occurring stable carbon isotope patterns in individual amino acids (δ13CAA). We focus on two important aspects for δ13CAA utility in sedimentary paleoarchives: first, the fidelity of source diagnostic of algal δ13CAA patterns across different oceanographic growth conditions; and second, the ability of δ13CAA patterns to record the degree of subsequent microbial amino acid synthesis after sedimentary burial. Using the marine diatom Thalassiosira weissflogii, we tested under controlled conditions how δ13CAA patterns respond to changing environmental conditions, including light, salinity, temperature, and pH. Our findings show that while differing oceanic growth conditions can change macromolecular cellular composition, δ13CAA isotopic patterns remain largely invariant. These results underscore that δ13CAA patterns should accurately record biosynthetic sources across widely disparate oceanographic conditions. We also explored how δ13CAA patterns change as a function of age, total nitrogen and organic carbon content after burial, in a marine sediment core from a coastal upwelling area off Peru. Based on the four most informative amino acids for distinguishing between diatom and bacterial sources (i.e. isoleucine, lysine, leucine and tyrosine), bacterial derived amino acids ranged from 10-15% in the sediment layers from the last 5000 years to 35% during the last glacial period. The larger bacterial fractions in older sediments indicate that bacterial activity and amino acid resynthesis progressed, approximately as a function of sediment age, to

  15. TEXAS HARMFUL ALGAL BLOOM COORDINATION MX964014

    EPA Science Inventory

    Harmful algal blooms (HAB) are an expanding problem in coastal Texas. Nearly � of the known harmful algal blooms along the Texas coast have occurred in the past ten years and have led to significant resource and tourism losses. For example, there are at least two types of toxic...

  16. Life cycle environmental impacts of wastewater-based algal biofuels.

    PubMed

    Mu, Dongyan; Min, Min; Krohn, Brian; Mullins, Kimberley A; Ruan, Roger; Hill, Jason

    2014-10-07

    Recent research has proposed integrating wastewater treatment with algae cultivation as a way of producing algal biofuels at a commercial scale more sustainably. This study evaluates the environmental performance of wastewater-based algal biofuels with a well-to-wheel life cycle assessment (LCA). Production pathways examined include different nutrient sources (municipal wastewater influent to the activated sludge process, centrate from the sludge drying process, swine manure, and freshwater with synthetic fertilizers) combined with emerging biomass conversion technologies (microwave pyrolysis, combustion, wet lipid extraction, and hydrothermal liquefaction). Results show that the environmental performance of wastewater-based algal biofuels is generally better than freshwater-based algal biofuels, but depends on the characteristics of the wastewater and the conversion technologies. Of 16 pathways compared, only the centrate cultivation with wet lipid extraction pathway and the centrate cultivation with combustion pathway have lower impacts than petroleum diesel in all environmental categories examined (fossil fuel use, greenhouse gas emissions, eutrophication potential, and consumptive water use). The potential for large-scale implementation of centrate-based algal biofuel, however, is limited by availability of centrate. Thus, it is unlikely that algal biofuels can provide a large-scale and environmentally preferable alternative to petroleum transportation fuels without considerable improvement in current production technologies. Additionally, the cobenefit of wastewater-based algal biofuel production as an alternate means of treating various wastewaters should be further explored.

  17. Water turbidity by algal blooms causes mating system breakdown in a shallow-water fish, the sand goby Pomatoschistus minutus.

    PubMed

    Järvenpää, Marja; Lindström, Kai

    2004-11-22

    Eutrophication as a result of human activity has resulted in increased algal blooms and turbidity in aquatic environments. We investigated experimentally the effect of algal turbidity on the mating system and sexual selection in the sand goby, Pomatoschistus minutus (Pallas), a marine fish with a resource-defence mating system and paternal care. Owing to male-male competition and female choice, large males can monopolize multiple mates, while some males do not achieve mating at all. We show that the number of eggs laid was the same in both turbid and clear tanks but that mating success was more evenly distributed among males in turbid than in clear water. The opportunity for sexual selection was lower in turbid conditions. In turbid conditions mating success was less skewed towards large males. Our results suggest that increased turbidity can change mating systems and decrease the opportunity for sexual selection as well as selection intensity.

  18. The Regulation of Gene Expression in Cnidarian-Algal Associations.

    DTIC Science & Technology

    1999-04-29

    initiation, establishment and maintenance of cnidarian -algal-algal associations. These associations are of global significance as corals and other related...underlying the establishment of the cnidarian -algal partnership, Further, the work described the natural life history of two associations, chosen for...histories of two cnidarians (hosts), a tropical coral Fungia scutaria and a temperate anemone Anthopleura elegantissima. We examined symbiosis onset in

  19. Algal-mediated ecosystem exchanges in the Eel River drainage network: towards photogrammetric mapping of color to function

    NASA Astrophysics Data System (ADS)

    Power, M. E.; Welter, J.; Furey, P.; Lowe, R.; Finlay, J. C.; Hondzo, M.; Limm, M.; Bode, C.; Dietrich, W. E.

    2009-12-01

    Seasonal algal proliferations in river networks are typically short-lived (weeks-months) but spatially extensive. They mediate important ecological and biogeochemical exchanges within and between ecosystems. We are investigating correspondence of assemblage color with ecosystem function in the nitrogen-limited Eel River of northern California. During summer base flow following winter floods, Eel algal assemblages are dominated by the green macroalga Cladophora glomerata. New growths are green, but blooms turn yellow as Cladophora filaments are colonized by epiphytic diatoms (Cocconeis spp.). Later, proliferations turn rust colored as epiphytic assemblages became dominated by Epithemia spp., diatoms that contain nitrogen-fixing cyanobacterial endosymbionts. Epithemia-encrusted Cladophora occurs at and downstream of reaches draining > 100 km2 (where summer inundated average channel widths > 25 m), coinciding with a threshold increase in concentration of total dissolved nitrogen. Areal nitrogen fixation rates are 14x higher in rusty algal proliferations than in green, and 3-4x higher than in yellow Cladophora mats. Corresponding increases in insect emergence suggest that nitrogen fixed by cyanobacterial endosymbionts is highly edible. Rates of biomass emergence from rusty Cladophora mats are 12-17 times greater than from green mats, and 8-10 times greater from rusty than from yellow Cladophora mats, because larger taxa emerge from rusty mats (Chironominae versus Ceratopogonidae in yellow mats). Photogrammetric detection of spatial coverage and color changes in algal proliferations may help us track nitrogen fluxes they mediate (riverine loading from the atmosphere via fixation, river to the watershed return via insect emergence) that link riverine to aerial, watershed, and potentially nearshore marine ecosystems at reach to basin scales.

  20. Algal Biofuels Techno-Economic Analysis | Bioenergy | NREL

    Science.gov Websites

    Biofuels Techno-Economic Analysis Algal Biofuels Techno-Economic Analysis To promote an understanding of the challenges and opportunities unique to microalgae, NREL's Algae Techno-Economic Analysis group focuses on techno-economic analysis (TEA) for the production and conversion of algal biomass into

  1. Detection of the HA-33 protein in botulinum neurotoxin type G complex by mass spectrometry.

    PubMed

    Kalb, Suzanne R; Baudys, Jakub; Barr, John R

    2015-10-23

    The disease botulism is caused by intoxication with botulinum neurotoxins (BoNTs), extremely toxic proteins which cause paralysis. This neurotoxin is produced by some members of the Clostridium botulinum and closely related species, and is produced as a protein complex consisting of the neurotoxin and neurotoxin-associated proteins (NAPs). There are seven known serotypes of BoNT, A-G, and the composition of the NAPs can differ between these serotypes. It was previously published that the BoNT/G complex consisted of BoNT/G, nontoxic-nonhemagglutinin (NTNH), Hemagglutinin 70 (HA-70), and HA-17, but that HA-33, a component of the protein complex of other serotypes of BoNT, was not found. Components of the BoNT/G complex were first separated by SDS-PAGE, and bands corresponding to components of the complex were digested and analyzed by LC-MS/MS. Gel bands were identified with sequence coverages of 91% for BoNT/G, 91% for NTNH, 89% for HA-70, and 88% for HA-17. Notably, one gel band was also clearly identified as HA-33 with 93% sequence coverage. The BoNT/G complex consists of BoNT/G, NTNH, HA-70, HA-17, and HA-33. These proteins form the progenitor form of BoNT/G, similar to all other HA positive progenitor toxin complexes.

  2. Botulinum neurotoxin detection methods for public health response and surveillance

    USDA-ARS?s Scientific Manuscript database

    A single suspected case of foodborne botulism caused by food contaminated with botulinum neurotoxin (BoNTs) could evoke public health emergency. The threat of bioterrorism through deliberate distribution in food sources and/or aerosolization of BoNTs raises global public health and security concerns...

  3. Comprehensive insights into the response of Alexandrium tamarense to algicidal component secreted by a marine bacterium.

    PubMed

    Lei, Xueqian; Li, Dong; Li, Yi; Chen, Zhangran; Chen, Yao; Cai, Guanjing; Yang, Xujun; Zheng, Wei; Zheng, Tianling

    2015-01-01

    Harmful algal blooms occur throughout the world, threatening human health, and destroying marine ecosystems. Alexandrium tamarense is a globally distributed and notoriously toxic dinoflagellate that is responsible for most paralytic shellfish poisoning incidents. The culture supernatant of the marine algicidal bacterium BS02 showed potent algicidal effects on A. tamarense ATGD98-006. In this study, we investigated the effects of this supernatant on A. tamarense at physiological and biochemical levels to elucidate the mechanism involved in the inhibition of algal growth by the supernatant of the strain BS02. Reactive oxygen species (ROS) levels increased following exposure to the BS02 supernatant, indicating that the algal cells had suffered from oxidative damage. The levels of cellular pigments, including chlorophyll a and carotenoids, were significantly decreased, which indicated that the accumulation of ROS destroyed pigment synthesis. The decline of the maximum photochemical quantum yield (Fv/Fm) and relative electron transport rate (rETR) suggested that the photosynthesis systems of algal cells were attacked by the BS02 supernatant. To eliminate the ROS, the activities of antioxidant enzymes, including superoxide dismutase (SOD) and catalase (CAT), increased significantly within a short period of time. Real-time PCR revealed changes in the transcript abundances of two target photosynthesis-related genes (psbA and psbD) and two target respiration-related genes (cob and cox). The transcription of the respiration-related genes was significantly inhibited by the treatments, which indicated that the respiratory system was disturbed. Our results demonstrate that the BS02 supernatant can affect the photosynthesis process and might block the PS II electron transport chain, leading to the production of excessive ROS. The increased ROS can further destroy membrane integrity and pigments, ultimately inducing algal cell death.

  4. Comprehensive insights into the response of Alexandrium tamarense to algicidal component secreted by a marine bacterium

    PubMed Central

    Lei, Xueqian; Li, Dong; Li, Yi; Chen, Zhangran; Chen, Yao; Cai, Guanjing; Yang, Xujun; Zheng, Wei; Zheng, Tianling

    2015-01-01

    Harmful algal blooms occur throughout the world, threatening human health, and destroying marine ecosystems. Alexandrium tamarense is a globally distributed and notoriously toxic dinoflagellate that is responsible for most paralytic shellfish poisoning incidents. The culture supernatant of the marine algicidal bacterium BS02 showed potent algicidal effects on A. tamarense ATGD98-006. In this study, we investigated the effects of this supernatant on A. tamarense at physiological and biochemical levels to elucidate the mechanism involved in the inhibition of algal growth by the supernatant of the strain BS02. Reactive oxygen species (ROS) levels increased following exposure to the BS02 supernatant, indicating that the algal cells had suffered from oxidative damage. The levels of cellular pigments, including chlorophyll a and carotenoids, were significantly decreased, which indicated that the accumulation of ROS destroyed pigment synthesis. The decline of the maximum photochemical quantum yield (Fv/Fm) and relative electron transport rate (rETR) suggested that the photosynthesis systems of algal cells were attacked by the BS02 supernatant. To eliminate the ROS, the activities of antioxidant enzymes, including superoxide dismutase (SOD) and catalase (CAT), increased significantly within a short period of time. Real-time PCR revealed changes in the transcript abundances of two target photosynthesis-related genes (psbA and psbD) and two target respiration-related genes (cob and cox). The transcription of the respiration-related genes was significantly inhibited by the treatments, which indicated that the respiratory system was disturbed. Our results demonstrate that the BS02 supernatant can affect the photosynthesis process and might block the PS II electron transport chain, leading to the production of excessive ROS. The increased ROS can further destroy membrane integrity and pigments, ultimately inducing algal cell death. PMID:25667582

  5. Isolation and Functional Characterization of the Novel Clostridium botulinum Neurotoxin A8 Subtype

    PubMed Central

    Kull, Skadi; Schulz, K. Melanie; Strotmeier, Jasmin Weisemann née; Kirchner, Sebastian; Schreiber, Tanja; Bollenbach, Alexander; Dabrowski, P. Wojtek; Nitsche, Andreas; Kalb, Suzanne R.; Dorner, Martin B.; Barr, John R.; Rummel, Andreas; Dorner, Brigitte G.

    2015-01-01

    Botulism is a severe neurological disease caused by the complex family of botulinum neurotoxins (BoNT). Based on the different serotypes known today, a classification of serotype variants termed subtypes has been proposed according to sequence diversity and immunological properties. However, the relevance of BoNT subtypes is currently not well understood. Here we describe the isolation of a novel Clostridium botulinum strain from a food-borne botulism outbreak near Chemnitz, Germany. Comparison of its botulinum neurotoxin gene sequence with published sequences identified it to be a novel subtype within the BoNT/A serotype designated BoNT/A8. The neurotoxin gene is located within an ha-orfX+ cluster and showed highest homology to BoNT/A1, A2, A5, and A6. Unexpectedly, we found an arginine insertion located in the HC domain of the heavy chain, which is unique compared to all other BoNT/A subtypes known so far. Functional characterization revealed that the binding characteristics to its main neuronal protein receptor SV2C seemed unaffected, whereas binding to membrane-incorporated gangliosides was reduced in comparison to BoNT/A1. Moreover, we found significantly lower enzymatic activity of the natural, full-length neurotoxin and the recombinant light chain of BoNT/A8 compared to BoNT/A1 in different endopeptidase assays. Both reduced ganglioside binding and enzymatic activity may contribute to the considerably lower biological activity of BoNT/A8 as measured in a mouse phrenic nerve hemidiaphragm assay. Despite its reduced activity the novel BoNT/A8 subtype caused severe botulism in a 63-year-old male. To our knowledge, this is the first description and a comprehensive characterization of a novel BoNT/A subtype which combines genetic information on the neurotoxin gene cluster with an in-depth functional analysis using different technical approaches. Our results show that subtyping of BoNT is highly relevant and that understanding of the detailed toxin function might

  6. Application of a fluorometric microplate algal toxicity assay for riverine periphytic algal species.

    PubMed

    Nagai, Takashi; Taya, Kiyoshi; Annoh, Hirochica; Ishihara, Satoru

    2013-08-01

    Although riverine periphytic algae attached to riverbed gravel are dominant species in flowing rivers, there is limited toxicity data on them because of the difficulty in cell culture and assays. Moreover, it is well known that sensitivity to pesticides differ markedly among species, and therefore the toxicity data for multiple species need to be efficiently obtained. In this study, we investigated the use of fluorometric microplate toxicity assay for testing periphytic algal species. We selected five candidate test algal species Desmodesmus subspicatus, Achnanthidium minutissimum, Navicula pelliculosa, Nitzschia palea, and Pseudanabaena galeata. The selected species are dominant in the river, include a wide range of taxon, and represent actual species composition. Other additional species were also used to compare the sensitivity and suitability of the microplate assay. A 96-well microplate was used as a test chamber and algal growth was measured by in-vivo fluorescence. Assay conditions using microplate and fluorometric measurement were established, and sensitivities of 3,5-dichlorophenol as a reference substance were assayed. The 50 percent effect concentrations (EC50s) obtained by fluorometric microplate assay and those obtained by conventional Erlenmeyer flask assay conducted in this study were consistent. Moreover, the EC50 values of 3,5-dichlorophenol were within the reported confidence intervals in literature. These results supported the validity of our microplate assay. Species sensitivity distribution (SSD) analysis was conducted using the EC50s of five species. The SSD was found to be similar to the SSD obtained using additional tested species, suggesting that SSD using the five species largely represents algal sensitivity. Our results provide a useful and efficient method for high-tier probabilistic ecological risk assessment of pesticides. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Digital Marine Bioprospecting: Mining New Neurotoxin Drug Candidates from the Transcriptomes of Cold-Water Sea Anemones

    PubMed Central

    Urbarova, Ilona; Karlsen, Bård Ove; Okkenhaug, Siri; Seternes, Ole Morten; Johansen, Steinar D.; Emblem, Åse

    2012-01-01

    Marine bioprospecting is the search for new marine bioactive compounds and large-scale screening in extracts represents the traditional approach. Here, we report an alternative complementary protocol, called digital marine bioprospecting, based on deep sequencing of transcriptomes. We sequenced the transcriptomes from the adult polyp stage of two cold-water sea anemones, Bolocera tuediae and Hormathia digitata. We generated approximately 1.1 million quality-filtered sequencing reads by 454 pyrosequencing, which were assembled into approximately 120,000 contigs and 220,000 single reads. Based on annotation and gene ontology analysis we profiled the expressed mRNA transcripts according to known biological processes. As a proof-of-concept we identified polypeptide toxins with a potential blocking activity on sodium and potassium voltage-gated channels from digital transcriptome libraries. PMID:23170083

  8. The death mechanism of the harmful algal bloom species Alexandrium tamarense induced by algicidal bacterium Deinococcus sp. Y35

    PubMed Central

    Li, Yi; Zhu, Hong; Lei, Xueqian; Zhang, Huajun; Cai, Guanjing; Chen, Zhangran; Fu, Lijun; Xu, Hong; Zheng, Tianling

    2015-01-01

    Harmful algal blooms (HABs) cause a variety of deleterious effects on aquatic ecosystems, especially the toxic dinoflagellate Alexandrium tamarense, which poses a serious threat to marine economic and human health based on releasing paralytic shellfish poison into the environment. The algicidal bacterium Deinococcus sp. Y35 which can induce growth inhibition on A. tamarense was used to investigate the functional mechanism. The growth status, reactive oxygen species (ROS) content, photosynthetic system and the nuclear system of algal cells were determined under algicidal activity. A culture of strain Y35 not only induced overproduction of ROS in algal cells within only 0.5 h of treatment, also decrease the total protein content as well as the response of the antioxidant enzyme. Meanwhile, lipid peroxidation was induced and cell membrane integrity was lost. Photosynthetic pigments including chlorophyll a and carotenoid decreased along with the photosynthetic efficiency being significantly inhibited. At the same time, photosynthesis-related gene expression showed down-regulation. More than, the destruction of cell nuclear structure and inhibition of proliferating cell nuclear antigen (PCNA) related gene expression were confirmed. The potential functional mechanism of the algicidal bacterium on A. tamarense was investigated and provided a novel viewpoint which could be used in HABs control. PMID:26441921

  9. The death mechanism of the harmful algal bloom species Alexandrium tamarense induced by algicidal bacterium Deinococcus sp. Y35.

    PubMed

    Li, Yi; Zhu, Hong; Lei, Xueqian; Zhang, Huajun; Cai, Guanjing; Chen, Zhangran; Fu, Lijun; Xu, Hong; Zheng, Tianling

    2015-01-01

    Harmful algal blooms (HABs) cause a variety of deleterious effects on aquatic ecosystems, especially the toxic dinoflagellate Alexandrium tamarense, which poses a serious threat to marine economic and human health based on releasing paralytic shellfish poison into the environment. The algicidal bacterium Deinococcus sp. Y35 which can induce growth inhibition on A. tamarense was used to investigate the functional mechanism. The growth status, reactive oxygen species (ROS) content, photosynthetic system and the nuclear system of algal cells were determined under algicidal activity. A culture of strain Y35 not only induced overproduction of ROS in algal cells within only 0.5 h of treatment, also decrease the total protein content as well as the response of the antioxidant enzyme. Meanwhile, lipid peroxidation was induced and cell membrane integrity was lost. Photosynthetic pigments including chlorophyll a and carotenoid decreased along with the photosynthetic efficiency being significantly inhibited. At the same time, photosynthesis-related gene expression showed down-regulation. More than, the destruction of cell nuclear structure and inhibition of proliferating cell nuclear antigen (PCNA) related gene expression were confirmed. The potential functional mechanism of the algicidal bacterium on A. tamarense was investigated and provided a novel viewpoint which could be used in HABs control.

  10. Assembly and function of the botulinum neurotoxin progenitor complex.

    PubMed

    Gu, Shenyan; Jin, Rongsheng

    2013-01-01

    Botulinum neurotoxins (BoNTs) are among the most poisonous substances known to man, but paradoxically, BoNT-containing medicines and cosmetics have been used with great success in the clinic. Accidental BoNT poisoning mainly occurs through oral ingestion of food contaminated with Clostridium botulinum. BoNTs are naturally produced in the form of progenitor toxin complexes (PTCs), which are high molecular weight (up to ~900 kDa) multiprotein complexes composed of BoNT and several non-toxic neurotoxin-associated proteins (NAPs). NAPs protect the inherently fragile BoNTs against the hostile environment of the gastrointestinal (GI) tract and help BoNTs pass through the intestinal epithelial barrier before they are released into the general circulation. These events are essential for ingested BoNTs to gain access to motoneurons, where they inhibit neurotransmitter release and cause muscle paralysis. In this review, we discuss the structural basis for assembly of NAPs and BoNT into the PTC that protects BoNT and facilitate its delivery into the bloodstream.

  11. Neurotoxin localization to ectodermal gland cells uncovers an alternative mechanism of venom delivery in sea anemones.

    PubMed

    Moran, Yehu; Genikhovich, Grigory; Gordon, Dalia; Wienkoop, Stefanie; Zenkert, Claudia; Ozbek, Suat; Technau, Ulrich; Gurevitz, Michael

    2012-04-07

    Jellyfish, hydras, corals and sea anemones (phylum Cnidaria) are known for their venomous stinging cells, nematocytes, used for prey and defence. Here we show, however, that the potent Type I neurotoxin of the sea anemone Nematostella vectensis, Nv1, is confined to ectodermal gland cells rather than nematocytes. We demonstrate massive Nv1 secretion upon encounter with a crustacean prey. Concomitant discharge of nematocysts probably pierces the prey, expediting toxin penetration. Toxin efficiency in sea water is further demonstrated by the rapid paralysis of fish or crustacean larvae upon application of recombinant Nv1 into their medium. Analysis of other anemone species reveals that in Anthopleura elegantissima, Type I neurotoxins also appear in gland cells, whereas in the common species Anemonia viridis, Type I toxins are localized to both nematocytes and ectodermal gland cells. The nematocyte-based and gland cell-based envenomation mechanisms may reflect substantial differences in the ecology and feeding habits of sea anemone species. Overall, the immunolocalization of neurotoxins to gland cells changes the common view in the literature that sea anemone neurotoxins are produced and delivered only by stinging nematocytes, and raises the possibility that this toxin-secretion mechanism is an ancestral evolutionary state of the venom delivery machinery in sea anemones.

  12. Experimental Protocol for Biodiesel Production with Isolation of Alkenones as Coproducts from Commercial Isochrysis Algal Biomass.

    PubMed

    O'Neil, Gregory W; Williams, John R; Wilson-Peltier, Julia; Knothe, Gerhard; Reddy, Christopher M

    2016-06-24

    The need to replace petroleum fuels with alternatives from renewable and more environmentally sustainable sources is of growing importance. Biomass-derived biofuels have gained considerable attention in this regard, however first generation biofuels from edible crops like corn ethanol or soybean biodiesel have generally fallen out of favor. There is thus great interest in the development of methods for the production of liquid fuels from domestic and superior non-edible sources. Here we describe a detailed procedure for the production of a purified biodiesel from the marine microalgae Isochrysis. Additionally, a unique suite of lipids known as polyunsaturated long-chain alkenones are isolated in parallel as potentially valuable coproducts to offset the cost of biodiesel production. Multi-kilogram quantities of Isochrysis are purchased from two commercial sources, one as a wet paste (80% water) that is first dried prior to processing, and the other a dry milled powder (95% dry). Lipids are extracted with hexanes in a Soxhlet apparatus to produce an algal oil ("hexane algal oil") containing both traditional fats (i.e., triglycerides, 46-60% w/w) and alkenones (16-25% w/w). Saponification of the triglycerides in the algal oil allows for separation of the resulting free fatty acids (FFAs) from alkenone-containing neutral lipids. FFAs are then converted to biodiesel (i.e., fatty acid methyl esters, FAMEs) by acid-catalyzed esterification while alkenones are isolated and purified from the neutral lipids by crystallization. We demonstrate that biodiesel from both commercial Isochrysis biomasses have similar but not identical FAME profiles, characterized by elevated polyunsaturated fatty acid contents (approximately 40% w/w). Yields of biodiesel were consistently higher when starting from the Isochrysis wet paste (12% w/w vs. 7% w/w), which can be traced to lower amounts of hexane algal oil obtained from the powdered Isochrysis product.

  13. Experimental Protocol for Biodiesel Production with Isolation of Alkenones as Coproducts from Commercial Isochrysis Algal Biomass

    PubMed Central

    O'Neil, Gregory W.; Williams, John R.; Wilson-Peltier, Julia; Knothe, Gerhard; Reddy, Christopher M.

    2016-01-01

    The need to replace petroleum fuels with alternatives from renewable and more environmentally sustainable sources is of growing importance. Biomass-derived biofuels have gained considerable attention in this regard, however first generation biofuels from edible crops like corn ethanol or soybean biodiesel have generally fallen out of favor. There is thus great interest in the development of methods for the production of liquid fuels from domestic and superior non-edible sources. Here we describe a detailed procedure for the production of a purified biodiesel from the marine microalgae Isochrysis. Additionally, a unique suite of lipids known as polyunsaturated long-chain alkenones are isolated in parallel as potentially valuable coproducts to offset the cost of biodiesel production. Multi-kilogram quantities of Isochrysis are purchased from two commercial sources, one as a wet paste (80% water) that is first dried prior to processing, and the other a dry milled powder (95% dry). Lipids are extracted with hexanes in a Soxhlet apparatus to produce an algal oil ("hexane algal oil") containing both traditional fats (i.e., triglycerides, 46-60% w/w) and alkenones (16-25% w/w). Saponification of the triglycerides in the algal oil allows for separation of the resulting free fatty acids (FFAs) from alkenone-containing neutral lipids. FFAs are then converted to biodiesel (i.e., fatty acid methyl esters, FAMEs) by acid-catalyzed esterification while alkenones are isolated and purified from the neutral lipids by crystallization. We demonstrate that biodiesel from both commercial Isochrysis biomasses have similar but not identical FAME profiles, characterized by elevated polyunsaturated fatty acid contents (approximately 40% w/w). Yields of biodiesel were consistently higher when starting from the Isochrysis wet paste (12% w/w vs. 7% w/w), which can be traced to lower amounts of hexane algal oil obtained from the powdered Isochrysis product. PMID:27404113

  14. Theoretical Calculations on the Feasibility of Microalgal Biofuels: Utilization of Marine Resources Could Help Realizing the Potential of Microalgae.

    PubMed

    Park, Hanwool; Lee, Choul-Gyun

    2016-11-01

    Microalgae have long been considered as one of most promising feedstocks with better characteristics for biofuels production over conventional energy crops. There have been a wide range of estimations on the feasibility of microalgal biofuels based on various productivity assumptions and data from different scales. The theoretical maximum algal biofuel productivity, however, can be calculated by the amount of solar irradiance and photosynthetic efficiency (PE), assuming other conditions are within the optimal range. Using the actual surface solar irradiance data around the world and PE of algal culture systems, maximum algal biomass and biofuel productivities were calculated, and feasibility of algal biofuel were assessed with the estimation. The results revealed that biofuel production would not easily meet the economic break-even point and may not be sustainable at a large-scale with the current algal biotechnology. Substantial reductions in the production cost, improvements in lipid productivity, recycling of resources, and utilization of non-conventional resources will be necessary for feasible mass production of algal biofuel. Among the emerging technologies, cultivation of microalgae in the ocean shows great potentials to meet the resource requirements and economic feasibility in algal biofuel production by utilizing various marine resources. © 2016 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Retrieving marine inherent optical properties from satellites using temperature and salinity-dependent backscattering by seawater.

    PubMed

    Werdell, P Jeremy; Franz, Bryan A; Lefler, Jason T; Robinson, Wayne D; Boss, Emmanuel

    2013-12-30

    Time-series of marine inherent optical properties (IOPs) from ocean color satellite instruments provide valuable data records for studying long-term time changes in ocean ecosystems. Semi-analytical algorithms (SAAs) provide a common method for estimating IOPs from radiometric measurements of the marine light field. Most SAAs assign constant spectral values for seawater absorption and backscattering, assume spectral shape functions of the remaining constituent absorption and scattering components (e.g., phytoplankton, non-algal particles, and colored dissolved organic matter), and retrieve the magnitudes of each remaining constituent required to match the spectral distribution of measured radiances. Here, we explore the use of temperature- and salinity-dependent values for seawater backscattering in lieu of the constant spectrum currently employed by most SAAs. Our results suggest that use of temperature- and salinity-dependent seawater spectra elevate the SAA-derived particle backscattering, reduce the non-algal particles plus colored dissolved organic matter absorption, and leave the derived absorption by phytoplankton unchanged.

  16. Retrieving Marine Inherent Optical Properties from Satellites Using Temperature and Salinity-dependent Backscattering by Seawater

    NASA Technical Reports Server (NTRS)

    Werdell, Paul J.; Franz, Bryan Alden; Lefler, Jason Travis; Robinson, Wayne D.; Boss, Emmanuel

    2013-01-01

    Time-series of marine inherent optical properties (IOPs) from ocean color satellite instruments provide valuable data records for studying long-term time changes in ocean ecosystems. Semi-analytical algorithms (SAAs) provide a common method for estimating IOPs from radiometric measurements of the marine light field. Most SAAs assign constant spectral values for seawater absorption and backscattering, assume spectral shape functions of the remaining constituent absorption and scattering components (e.g., phytoplankton, non-algal particles, and colored dissolved organic matter), and retrieve the magnitudes of each remaining constituent required to match the spectral distribution of measured radiances. Here, we explore the use of temperature- and salinity-dependent values for seawater backscattering in lieu of the constant spectrum currently employed by most SAAs. Our results suggest that use of temperature- and salinity-dependent seawater spectra elevate the SAA-derived particle backscattering, reduce the non-algal particles plus colored dissolved organic matter absorption, and leave the derived absorption by phytoplankton unchanged.

  17. A chemical arms race at sea mediates algal host-virus interactions.

    PubMed

    Bidle, Kay D; Vardi, Assaf

    2011-08-01

    Despite the critical importance of viruses in shaping marine microbial ecosystems and lubricating upper ocean biogeochemical cycles, relatively little is known about the molecular mechanisms mediating phytoplankton host-virus interactions. Recent work in algal host-virus systems has begun to shed novel insight into the elegant strategies of viral infection and subcellular regulation of cell fate, which not only reveal tantalizing aspects of viral replication and host resistance strategies but also provide new diagnostic tools toward elucidating the impact of virus-mediated processes in the ocean. Widespread lateral gene transfer between viruses and their hosts plays a prominent role in host-virus diversification and in the regulation of host-virus infection mechanisms by allowing viruses to manipulate and 'rewire' host metabolic pathways to facilitate infection. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Prevention of Paralytic Neurotoxin Action on Voltage-Sensitive Sodium Channels.

    DTIC Science & Technology

    1992-02-10

    sodium channel from mammalian brain. Neurotoxin receptor site 3, which binds scorpion and sea anemone toxins, has been located to an extracellular...against them, and use these reagents to develop an effective treatment to prevent neurotoxicity of a-o toxins and sea anemone toxins; 2. Covalently

  19. Discovery of a fluorene class of compounds as inhibitors of botulinum neurotoxin serotype E by virtual screening.

    PubMed

    Kumar, Gyanendra; Agarwal, Rakhi; Swaminathan, Subramanyam

    2012-02-28

    Botulinum neurotoxins are one of the most poisonous biological substances known to humans and present a potential bioterrorism threat. There are no therapeutic interventions developed so far. Here, we report the first small molecule non-peptide inhibitor for botulinum neurotoxin serotype E discovered by structure-based virtual screening and propose a mechanism for its inhibitory activity. This journal is © The Royal Society of Chemistry 2012

  20. Titanium dioxide nanoparticle exposure reduces algal biomass and alters algal assemblage composition in wastewater effluent-dominated stream mesocosms.

    PubMed

    Wright, Moncie V; Matson, Cole W; Baker, Leanne F; Castellon, Benjamin T; Watkins, Preston S; King, Ryan S

    2018-06-01

    A 5-week mesocosm experiment was conducted to investigate the toxicity of titanium dioxide nanoparticles (TiO 2 NPs) to periphytic algae in an environmentally-realistic scenario. We used outdoor experimental streams to simulate the characteristics of central Texas streams receiving large discharges of wastewater treatment plant effluent during prolonged periods of drought. The streams were continually dosed and maintained at two concentrations. The first represents an environmentally relevant concentration of 0.05 mg L -1 (low concentration). The second treatment of 5 mg L -1 (high concentration) was selected to represent a scenario where TiO 2 NPs are used for photocatalytic degradation of pharmaceuticals in wastewater. Algal cell density, chlorophyll-a, ash-free dry mass, algal assemblage composition, and Ti accumulation were determined for the periphyton in the riffle sections of each stream. The high concentration treatment of TiO 2 NPs significantly decreased algal cell density, ash-free dry mass, and chlorophyll-a, and altered algal assemblage composition. Decreased abundance of three typically pollution-sensitive taxa and increased abundance of two genera associated with heavy metal sorption and organic pollution significantly contributed to algal assemblage composition changes in response to TiO 2 NPs. Benefits of the use of TiO 2 NPs in wastewater treatment plants will need to be carefully weighed against the demonstrated ability of these NPs to cause large changes in periphyton that would likely propagate significant effects throughout the stream ecosystem, even in the absence of direct toxicity to higher trophic level organisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Cultivation of algal biofilm using different lignocellulosic materials as carriers.

    PubMed

    Zhang, Qi; Liu, Cuixia; Li, Yubiao; Yu, Zhigang; Chen, Zhihua; Ye, Ting; Wang, Xun; Hu, Zhiquan; Liu, Shiming; Xiao, Bo; Jin, Shiping

    2017-01-01

    Algal biofilm technology is recently supposed to be a promising method to produce algal biomass as the feedstock for the production of biofuels. However, the carrier materials currently used to form algal biofilm are either difficult to be obtained at a low price or undurable. Commercialization of the biofilm technology for algal biomass production extremely requires new and inexpensive materials as biofilm carriers with high biomass production performances. Four types of lignocellulosic materials were investigated to evaluate their performance of acting as carriers for algal cells attachment and the relevant effects on the algal biomass production in this study. The cultivation of algal biofilm was processed in a self-designed flat plate photo-bioreactor. The biofilm production and chemical composition of the harvested biomass were determined. The surface physics properties of the materials were examined through a confocal laser-scanning microscopy. Algal biomass production varied significantly with the variation of the carriers ( P  < 0.05). All the lignocellulosic materials showed better performances in biofilm production than poly methyl methacrylate, and the application of pine sawdust as the carrier could gain the maximum biofilm productivity of 10.92 g m -2  day -1 after 16-day cultivation. In addition, 20.10-23.20% total lipid, 30.35-36.73% crude proteins, and 20.29-25.93% carbohydrate were achieved from the harvested biomasses. Biomass productivity increased linearly as the increase of surface roughness, and Wenzel's roughness factor of the tested materials, and surface roughness might significantly affect the biomass production through the size of surface morphology and the area of surface ( P  < 0.05). The results showed that lignocellulosic materials can be efficient carriers for low-cost cultivation of algal biofilm and the enhancement of biomass productivity.

  2. Genomic insights into the evolution and ecology of botulinum neurotoxins.

    PubMed

    Mansfield, Michael J; Doxey, Andrew C

    2018-06-01

    Clostridial neurotoxins, which include botulinum neurotoxins (BoNTs) and tetanus neurotoxins, have evolved a remarkably sophisticated structure and molecular mechanism fine-tuned for the targeting and cleavage of vertebrate neuron substrates leading to muscular paralysis. How and why did this toxin evolve? From which ancestral proteins are BoNTs derived? And what is, or was, the primary ecological role of BoNTs in the environment? In this article, we examine these questions in light of recent studies identifying homologs of BoNTs in the genomes of non-clostridial bacteria, including Weissella, Enterococcus and Chryseobacterium. Genomic and phylogenetic analysis of these more distantly related toxins suggests that they are derived from ancient toxin lineages that predate the evolution of BoNTs and are not limited to the Clostridium genus. We propose that BoNTs have therefore evolved from a precursor family of BoNT-like toxins, and ultimately from non-neurospecific toxins that cleaved different substrates (possibly non-neuronal SNAREs). Comparison of BoNTs with these related toxins reveals several unique molecular features that underlie the evolution of BoNT's unique function, including functional shifts involving all four domains, and gain of the BoNT gene cluster associated proteins. BoNTs then diversified to produce the existing serotypes, including TeNT, and underwent repeated substrate shifts from ancestral VAMP2 specificity to SNAP25 specificity at least three times in their history. Finally, similar to previous proposals, we suggest that one ecological role of BoNTs could be to create a paralytic phase in vertebrate decomposition, which provides a competitive advantage for necrophagous scavengers that in turn facilitate the spread of Clostridium botulinum and its toxin.

  3. Clostridium botulinum neurotoxin type B is heat-stable in milk and not inactivated by pasteurization.

    PubMed

    Rasooly, Reuven; Do, Paula M

    2010-12-08

    Foodborne botulism is caused by the ingestion of foods containing botulinum neurotoxins (BoNTs). To study the heat stability of Clostridium botulinum neurotoxins, we needed to measure and compare the activity of botulinum neurotoxins, serotypes A and B, under various pasteurization conditions. Currently, the only accepted assay to detect active C. botulinum neurotoxin is an in vivo mouse bioassay, which raises ethical concerns with regard to the use of experimental animals. In this study, noninvasive methods were used to simultaneously detect and distinguish between active BoNT serotypes A and B in one reaction and sample. We developed an enzymatic activity assay employing internally quenched fluorogenic peptides corresponding to SNAP-25, for BoNT-A, and VAMP2, for BoNT-B, as an alternative method to the mouse bioassay. Because each peptide is labeled with different fluorophores, we were able to distinguish between these two toxins. We used this method to analyze the heat stability of BoNT-A and BoNT-B. This study reports that conventional milk pasteurization (63 °C, 30 min) inactivated BoNT serotype A; however, serotype B is heat-stable in milk and not inactivated by pasteurization. Using this activity assay, we also showed that the commonly used food processes such as acidity and pasteurization, which are known to inhibit C. botulinum growth and toxin production, are more effective in inactivating BoNT serotype A than serotype B when conventional pasteurization (63 °C, 30 min) is used.

  4. Method and system of culturing an algal mat

    DOEpatents

    Das, Keshav C; Cannon, Benjamin R; Bhatnagar, Ashish; Chinnasamy, Senthil

    2014-05-13

    A system and method for culturing algae are presented. The system and method utilize a fog of growth medium that is delivered to an algal mat generator along with a stream of CO.sub.2 to promote growth of algal cells contained in the generator.

  5. Extreme Sensitivity of Botulinum Neurotoxin Domains Toward Mild Agitation

    DTIC Science & Technology

    2009-09-01

    Department Molecular Biology, Integrated Toxicology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick...hydroxyethylpiperazine-N0-2-ethanesulfo- cular dichroism. AL OF PHARMACEUTICAL SCIENCES, VOL. 98, NO. 9, SEPTapplications. Botulinum neurotoxins (BoNTs) are...Dr. S. Ashraf Ahmed (Telephone: 301- 619-6299; Fax: 301-619-2348; E-mail: syed.ahmed@amedd.army.mil) Journal of Pharmaceutical Sciences, Vol. 98

  6. Oceans and human health: Emerging public health risks n the marine environment

    PubMed Central

    Fleming, L.E.; Broad, K.; Clement, A.; Dewailly, E.; Elmir, S.; Knap, A.; Pomponi, S.A.; Smith, S.; Gabriele, H. Solo; Walsh, P.

    2008-01-01

    There has been an increasing recognition of the inter-relationship between human health and the oceans. Traditionally, the focus of research and concern has been on the impact of human activities on the oceans, particularly through anthropogenic pollution and the exploitation of marine resources. More recently, there has been recognition of the potential direct impact of the oceans on human health, both detrimental and beneficial. Areas identified include: global change, harmful algal blooms (HABs), microbial and chemical contamination of marine waters and seafood, and marine models and natural products from the seas. It is hoped that through the recognition of the inter-dependence of the health of both humans and the oceans, efforts will be made to restore and preserve the oceans. PMID:16996542

  7. Structural analysis and the effect of cyclo(His-Pro) dipeptide on neurotoxins--a dynamics and density functional theory study.

    PubMed

    Abiram, Angamuthu; Kolandaivel, Ponmalai

    2010-02-01

    The switching propensity and maximum probability of occurrence of the side chain imidazole group in the dipeptide cyclo(His-Pro) (CHP) were studied by applying molecular dynamics simulations and density functional theory. The atomistic behaviour of CHP with the neurotoxins glutamate (E) and paraquat (Pq) were also explored; E and Pq engage in hydrogen bond formation with the diketopiperazine (DKP) ring of the dipeptide, with which E shows a profound interaction, as confirmed further by NH and CO stretching vibrational frequencies. The effect of CHP was found to be greater on E than on Pq neurotoxin. A ring puckering study indicated a twist boat conformation for the six-membered DKP ring. Molecular electrostatic potential (MESP) mapping was also used to explore the hydrogen bond interactions prevailing between the neurotoxins and the DKP ring. The results of this study reveal that the DKP ring of the dipeptide CHP can be expected to play a significant role in reducing effects such as oxidative stress and cell death caused by neurotoxins.

  8. Antifouling Compounds from Marine Macroalgae

    PubMed Central

    Dahms, Hans Uwe; Dobretsov, Sergey

    2017-01-01

    Marine macroalgae produce a wide variety of biologically-active metabolites that have been developed into commercial products, such as antibiotics, immunosuppressive, anti-inflammatory, cytotoxic agents, and cosmetic products. Many marine algae remain clean over longer periods of time, suggesting their strong antifouling potential. Isolation of biogenic compounds and the determination of their structure could provide leads for the development of environmentally-friendly antifouling paints. Isolated substances with potent antifouling activity belong to fatty acids, lipopeptides, amides, alkaloids, lactones, steroids, terpenoids, and pyrroles. It is unclear as yet to what extent symbiotic microorganisms are involved in the synthesis of these compounds. Algal secondary metabolites have the potential to be produced commercially using genetic and metabolic engineering techniques. This review provides an overview of publications from 2010 to February 2017 about antifouling activity of green, brown, and red algae. Some researchers were focusing on antifouling compounds of brown macroalgae, while metabolites of green algae received less attention. Several studies tested antifouling activity against bacteria, microalgae and invertebrates, but in only a few studies was the quorum sensing inhibitory activity of marine macroalgae tested. Rarely, antifouling compounds from macroalgae were isolated and tested in an ecologically-relevant way. PMID:28846625

  9. Antifouling Compounds from Marine Macroalgae.

    PubMed

    Dahms, Hans Uwe; Dobretsov, Sergey

    2017-08-28

    Marine macroalgae produce a wide variety of biologically-active metabolites that have been developed into commercial products, such as antibiotics, immunosuppressive, anti-inflammatory, cytotoxic agents, and cosmetic products. Many marine algae remain clean over longer periods of time, suggesting their strong antifouling potential. Isolation of biogenic compounds and the determination of their structure could provide leads for the development of environmentally-friendly antifouling paints. Isolated substances with potent antifouling activity belong to fatty acids, lipopeptides, amides, alkaloids, lactones, steroids, terpenoids, and pyrroles. It is unclear as yet to what extent symbiotic microorganisms are involved in the synthesis of these compounds. Algal secondary metabolites have the potential to be produced commercially using genetic and metabolic engineering techniques. This review provides an overview of publications from 2010 to February 2017 about antifouling activity of green, brown, and red algae. Some researchers were focusing on antifouling compounds of brown macroalgae, while metabolites of green algae received less attention. Several studies tested antifouling activity against bacteria, microalgae and invertebrates, but in only a few studies was the quorum sensing inhibitory activity of marine macroalgae tested. Rarely, antifouling compounds from macroalgae were isolated and tested in an ecologically-relevant way.

  10. Harmful algal blooms and climate change: Learning from the past and present to forecast the future.

    PubMed

    Wells, Mark L; Trainer, Vera L; Smayda, Theodore J; Karlson, Bengt S O; Trick, Charles G; Kudela, Raphael M; Ishikawa, Akira; Bernard, Stewart; Wulff, Angela; Anderson, Donald M; Cochlan, William P

    2015-11-01

    Climate change pressures will influence marine planktonic systems globally, and it is conceivable that harmful algal blooms may increase in frequency and severity. These pressures will be manifest as alterations in temperature, stratification, light, ocean acidification, precipitation-induced nutrient inputs, and grazing, but absence of fundamental knowledge of the mechanisms driving harmful algal blooms frustrates most hope of forecasting their future prevalence. Summarized here is the consensus of a recent workshop held to address what currently is known and not known about the environmental conditions that favor initiation and maintenance of harmful algal blooms. There is expectation that harmful algal bloom (HAB) geographical domains should expand in some cases, as will seasonal windows of opportunity for harmful algal blooms at higher latitudes. Nonetheless there is only basic information to speculate upon which regions or habitats HAB species may be the most resilient or susceptible. Moreover, current research strategies are not well suited to inform these fundamental linkages. There is a critical absence of tenable hypotheses for how climate pressures mechanistically affect HAB species, and the lack of uniform experimental protocols limits the quantitative cross-investigation comparisons essential to advancement. A HAB "best practices" manual would help foster more uniform research strategies and protocols, and selection of a small target list of model HAB species or isolates for study would greatly promote the accumulation of knowledge. Despite the need to focus on keystone species, more studies need to address strain variability within species, their responses under multifactorial conditions, and the retrospective analyses of long-term plankton and cyst core data; research topics that are departures from the norm. Examples of some fundamental unknowns include how larger and more frequent extreme weather events may break down natural biogeographic barriers

  11. Harmful algal blooms and climate change: Learning from the past and present to forecast the future

    PubMed Central

    Wells, Mark L.; Trainer, Vera L.; Smayda, Theodore J.; Karlson, Bengt S.O.; Trick, Charles G.; Kudela, Raphael M.; Ishikawa, Akira; Bernard, Stewart; Wulff, Angela; Anderson, Donald M.; Cochlan, William P.

    2015-01-01

    Climate change pressures will influence marine planktonic systems globally, and it is conceivable that harmful algal blooms may increase in frequency and severity. These pressures will be manifest as alterations in temperature, stratification, light, ocean acidification, precipitation-induced nutrient inputs, and grazing, but absence of fundamental knowledge of the mechanisms driving harmful algal blooms frustrates most hope of forecasting their future prevalence. Summarized here is the consensus of a recent workshop held to address what currently is known and not known about the environmental conditions that favor initiation and maintenance of harmful algal blooms. There is expectation that harmful algal bloom (HAB) geographical domains should expand in some cases, as will seasonal windows of opportunity for harmful algal blooms at higher latitudes. Nonetheless there is only basic information to speculate upon which regions or habitats HAB species may be the most resilient or susceptible. Moreover, current research strategies are not well suited to inform these fundamental linkages. There is a critical absence of tenable hypotheses for how climate pressures mechanistically affect HAB species, and the lack of uniform experimental protocols limits the quantitative cross-investigation comparisons essential to advancement. A HAB “best practices” manual would help foster more uniform research strategies and protocols, and selection of a small target list of model HAB species or isolates for study would greatly promote the accumulation of knowledge. Despite the need to focus on keystone species, more studies need to address strain variability within species, their responses under multifactorial conditions, and the retrospective analyses of long-term plankton and cyst core data; research topics that are departures from the norm. Examples of some fundamental unknowns include how larger and more frequent extreme weather events may break down natural biogeographic

  12. Combined algal processing: A novel integrated biorefinery process to produce algal biofuels and bioproducts

    DOE PAGES

    Dong, Tao; Knoshaug, Eric P.; Davis, Ryan; ...

    2016-01-18

    Here, the development of an integrated biorefinery process capable of producing multiple products is crucial for commercialization of microalgal biofuel production. Dilute acid pretreatment has been demonstrated as an efficient approach to utilize algal biomass more fully, by hydrolyzing microalgal carbohydrates into fermentable sugars, while making the lipids more extractable, and a protein fraction available for other products. Previously, we have shown that sugar-rich liquor could be separated from solid residue by solid-liquid separation (SLS) to produce ethanol via fermentation. However, process modeling has revealed that approximately 37% of the soluble sugars were lost in the solid cake after themore » SLS. Herein, a Combined Algal Processing (CAP) approach with a simplified configuration has been developed to improve the total energy yield. In CAP, whole algal slurry after acid pretreatment is directly used for ethanol fermentation. The ethanol and microalgal lipids can be sequentially recovered from the fermentation broth by thermal treatment and solvent extraction. Almost all the monomeric fermentable sugars can be utilized for ethanol production without compromising the lipid recovery. The techno-economic analysis (TEA) indicates that the CAP can reduce microalgal biofuel cost by $0.95 per gallon gasoline equivalent (GGE), which is a 9% reduction compared to the previous biorefinery scenario.« less

  13. Molecular Basis of Paralytic Neurotoxin Action on Voltage-Sensitive Sodium Channels

    DTIC Science & Technology

    1988-10-20

    channels bind a scorpion toxins and sea anemone toxins, which act at an extracellular site and spccifically slow Na+ channel inactivation (Catterall, 1980...the molecule by antibodies as well as by polypeptide neurotoxins from scorpions, sea anemones , coral and snail (Catterall, 1980; Strichartz et al

  14. Cellular partitioning of nanoparticulate versus dissolved metals in marine phytoplankton.

    PubMed

    Bielmyer-Fraser, Gretchen K; Jarvis, Tayler A; Lenihan, Hunter S; Miller, Robert J

    2014-11-18

    Discharges of metal oxide nanoparticles into aquatic environments are increasing with their use in society, thereby increasing exposure risk for aquatic organisms. Separating the impacts of nanoparticle from dissolved metal pollution is critical for assessing the environmental risks of the rapidly growing nanomaterial industry, especially in terms of ecosystem effects. Metal oxides negatively affect several species of marine phytoplankton, which are responsible for most marine primary production. Whether such toxicity is generally due to nanoparticles or exposure to dissolved metals liberated from particles is uncertain. The type and severity of toxicity depends in part on whether phytoplankton cells take up and accumulate primarily nanoparticles or dissolved metal ions. We compared the responses of the marine diatom, Thalassiosira weissflogii, exposed to ZnO, AgO, and CuO nanoparticles with the responses of T. weissflogii cells exposed to the dissolved metals ZnCl2, AgNO3, and CuCl2 for 7 d. Cellular metal accumulation, metal distribution, and algal population growth were measured to elucidate differences in exposure to the different forms of metal. Concentration-dependent metal accumulation and reduced population growth were observed in T. weissflogii exposed to nanometal oxides, as well as dissolved metals. Significant effects on population growth were observed at the lowest concentrations tested for all metals, with similar toxicity for both dissolved and nanoparticulate metals. Cellular metal distribution, however, markedly differed between T. weissflogii exposed to nanometal oxides versus those exposed to dissolved metals. Metal concentrations were highest in the algal cell wall when cells were exposed to metal oxide nanoparticles, whereas algae exposed to dissolved metals had higher proportions of metal in the organelle and endoplasmic reticulum fractions. These results have implications for marine plankton communities as well as higher trophic levels, since

  15. Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases.

    PubMed

    Lordan, Sinéad; Ross, R Paul; Stanton, Catherine

    2011-01-01

    The marine environment represents a relatively untapped source of functional ingredients that can be applied to various aspects of food processing, storage, and fortification. Moreover, numerous marine-based compounds have been identified as having diverse biological activities, with some reported to interfere with the pathogenesis of diseases. Bioactive peptides isolated from fish protein hydrolysates as well as algal fucans, galactans and alginates have been shown to possess anticoagulant, anticancer and hypocholesterolemic activities. Additionally, fish oils and marine bacteria are excellent sources of omega-3 fatty acids, while crustaceans and seaweeds contain powerful antioxidants such as carotenoids and phenolic compounds. On the basis of their bioactive properties, this review focuses on the potential use of marine-derived compounds as functional food ingredients for health maintenance and the prevention of chronic diseases.

  16. Marine Bioactives as Functional Food Ingredients: Potential to Reduce the Incidence of Chronic Diseases

    PubMed Central

    Lordan, Sinéad; Ross, R. Paul; Stanton, Catherine

    2011-01-01

    The marine environment represents a relatively untapped source of functional ingredients that can be applied to various aspects of food processing, storage, and fortification. Moreover, numerous marine-based compounds have been identified as having diverse biological activities, with some reported to interfere with the pathogenesis of diseases. Bioactive peptides isolated from fish protein hydrolysates as well as algal fucans, galactans and alginates have been shown to possess anticoagulant, anticancer and hypocholesterolemic activities. Additionally, fish oils and marine bacteria are excellent sources of omega-3 fatty acids, while crustaceans and seaweeds contain powerful antioxidants such as carotenoids and phenolic compounds. On the basis of their bioactive properties, this review focuses on the potential use of marine-derived compounds as functional food ingredients for health maintenance and the prevention of chronic diseases. PMID:21747748

  17. Effects of zeolites on cultures of marine micro-algae: A brief review.

    PubMed

    Fachini, Adriano; Vasconcelos, Maria Teresa S D

    2006-10-01

    The cation-exchange capacity of zeolites is well known and has been increasingly explored in different fields with both economic and environmental successes. In aquatic medium with low salinity, zeolites have found multiple applications. However, a review of the literature on the applications of zeolites in salt waters found relatively few articles, including some recently published papers. The purpose of this review is to present the state-of-the-art on applications of using zeolites for amending the trace elemental contents of salt water as well as the implications of this property for promoting marine micro-algal growth. This paper deals with the following features: Sorption capacity of zeolites including 1. application of zeolites in saltwater, 2. the role of silicon and zeolites on cultures of micro-algae, and 3. the role of organically chelated trace metals. The following competing factors have been identified as effects of zeolites on algal growth in salt water: (i) ammonia decrease: growth inhibition reduced; (ii) macro-nutrients increase, mainly silicon: stimulation of silicon-dependent algae; (iii) trace metals increase (desorption from zeolites) or decrease (adsorption): inhibition or stimulation, depending on the nature of the element and its concentration; and, (iv) changes in the chelating organics exudation: inhibition or stimulation of growth, depending on the (a) nature of the complexed element; (b) bioavailability of the complex; and (c) concentration of the elements simultaneously present in inorganic forms. Zeolites have been capable of stimulating the growth of the silicon-demanding marine micro-algae, like diatoms, mainly because they can act as a silicon buffer in seawater. Zeolites can also influence the yield of non-silicon-demanding algae, because the changes they can cause (liberation and adsorption of trace elements) in the composition of the medium. Zeolites have been capable of stimulating the growth of the marine micro-algae. However

  18. Exploitation of Botulinum Neurotoxins for Research and Clinical Purposes

    DTIC Science & Technology

    1993-06-01

    de Paiva ~nnd Dolly, 1990) 0 were employed to transport phosphoramidon and captopril to this site. Phosphatidyl choline, cholesterol and phosphatidyl...botulinum neurotoxin (BoNT), and delivering this inside cholinergic neurons via a innocuous transporter form of the toxins. Towards this end, our multi...agenesis. Thus, results to date dictate that the desired non-toxic transporter can be readily constructed by routine reconstitution (involving S-S

  19. Fabrication of Slippery Lubricant-Infused Porous Surface with High Underwater Transparency for the Control of Marine Biofouling.

    PubMed

    Wang, Peng; Zhang, Dun; Sun, Shimei; Li, Tianping; Sun, Yan

    2017-01-11

    Marine optical instruments are bearing serious biofouling problem, which affects the accuracy of data collected. To solve the biofouling problem of marine optical instruments, a novel instance of slippery lubricant-infused porous surface (SLIPS) with high underwater-transparency was designed over glass substrate via infusing lubricant into its porous microstructure fabricated with hydrothermal method. The advantage of SLIPS as antibiofouling strategy to marine optical instruments was proven by comparing its underwater optical and antibiofouling performances with three kinds of samples (hydrophilic glass sample, textured hydrophilic glass sample, and superhydrophobic glass sample). The modification of SLIPS enhances the underwater-transparency of glass sample within the wavelength of 500-800 nm, for the infusion of lubricant with lower refractive index than glass substrate. In contrast with hydrophilic surface, textured hydrophilic surface and superhydrophobic surface, SLIPS can significantly inhibit bacterial and algal settlements, thereby maintaining high underwater-transparency in both dynamic and static seawater. The inhibition of bacterial and algal settlements over SLIPS results from its liquid-like property. The contact angle hysteresis of water over SLIPS increases with immersion time in seawater under different conditions (static, dynamic, and vibration conditions). Both dynamic and vibration conditions accelerate the failure of SLIPS exposed in seawater. This research provides valuable information for solving biofouling problem of marine optical instruments with SLIPS.

  20. Direct conversion of algal biomass to biofuel

    DOEpatents

    Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

    2014-10-14

    A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

  1. Indicators: Algal Toxins (microcystin)

    EPA Pesticide Factsheets

    Algal toxins are toxic substances released by some types of algae (phytoplankton) when they are present in large quantities (blooms) and decay or degrade. High nutrient levels and warm temperatures often result in favorable conditions for algae blooms.

  2. Molecular mechanisms of substrate recognition and specificity of botulinum neurotoxin serotype F.

    PubMed

    Chen, Sheng; Wan, Hoi Ying

    2011-01-15

    BoNTs (botulinum neurotoxins) are both deadly neurotoxins and natural toxins that are widely used in protein therapies to treat numerous neurological disorders of dystonia and spinal spasticity. Understanding the mechanism of action and substrate specificity of BoNTs is a prerequisite to develop antitoxin and novel BoNT-derived protein therapy. To date, there is a lack of detailed information with regard to how BoNTs recognize and hydrolyse the substrate VAMP-2 (vesicle-associated membrane protein 2), even though it is known to be cleaved by four of the seven BoNT serotypes, B, D, F, G and TeNT (tetanus neurotoxin). In the present study we dissected the molecular mechanisms of VAMP-2 recognition by BoNT serotype F for the first time. The initial substrate recognition was mediated through sequential binding of VAMP-2 to the B1, B2 and B3 pockets in LC/F (light chain of BoNT serotype F), which directed VAMP-2 to the active site of LC/F and stabilized the active site substrate recognition, where the P2, P1' and P2' sites of VAMP-2 were specifically recognized by the S2, S1' and S2' pockets of LC/F to promote substrate hydrolysis. The understanding of the molecular mechanisms of LC/F substrate recognition provides insights into the development of antitoxins and engineering novel BoNTs to optimize current therapy and extend therapeutic interventions.

  3. Neurotoxins from Clostridium botulinum (serotype A) isolated from the soil of Mendoza (Argentina) differ from the A-Hall archetype and from that causing infant botulism.

    PubMed

    Caballero, P; Troncoso, M; Patterson, S I; López Gómez, C; Fernandez, R; Sosa, M A

    2016-10-01

    The type A of neurotoxin produced by Clostridium botulinum is the prevalent serotype in strains of Mendoza. The soil is the main reservoir for C.botulinum and is possibly one of the infection sources in infant botulism. In this study, we characterized and compared autochthonous C. botulinum strains and their neurotoxins. Bacterial samples were obtained from the soil and from fecal samples collected from children with infant botulism. We first observed differences in the appearance of the colonies between strains from each source and with the A Hall control strain. In addition, purified neurotoxins of both strains were found to be enriched in a band of 300 kDa, whereas the A-Hall strain was mainly made up of a band of ∼600 kDa. This finding is in line with the lack of hemagglutinating activity of the neurotoxins under study. Moreover, the proteolytic activity of C. botulinum neurotoxins was evaluated against SNARE (soluble N-ethylmaleimide-sensitive factor-attachment protein receptor) proteins from rat brain. It was observed that both, SNAP 25 (synaptosomal-associated protein 25) and VAMP 2 (vesicle-associated membrane protein) were cleaved by the neurotoxins isolated from the soil strains, whereas the neurotoxins from infant botulism strains only induced a partial cleavage of VAMP 2. On the other hand, the neurotoxin from the A-Hall strain was able to cleave both proteins, though at a lesser extent. Our data indicate that the C.botulinum strain isolated from the soil, and its BoNT, exhibit different properties compared to the strain obtained from infant botulism patients, and from the A-Hall archetype. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Grazing preferences of marine isopods and amphipods on three prominent algal species of the Baltic Sea [rapid communication

    NASA Astrophysics Data System (ADS)

    Goecker, Margene E.; Kåll, Sara E.

    2003-12-01

    Preference tests were performed over a two-week period in September 2001 in which isopods ( Idotea baltica) and amphipods ( Gammarus oceanicus) were offered choices of three common species of algae from the Baltic Sea: Enteromorpha intestinalis, Cladophora spp., and Fucus vesiculosus. After a 48-hour starvation period, 20 individuals of each grazer species were placed in aquaria containing approximately 1.0 g of each algal species. Fifteen trials for each grazer species were run for 20 hours. We found that G. oceanicus ate significantly more Cladophora spp. and E. intestinalis than F. vesiculosus (p<0.001), with a preference order of: Cladophora spp.> E. intestinalis> F. vesiculosus. Similarly, I. baltica ate significantly more of both the filamentous green algae than F. vesiculosus (p<0.001), with a preference order of: E. intestinalis> Cladophora spp.> F. vesiculosus. Given the preference of isopods and amphipods for filamentous green algae, we might expect these algae to be maintained at low biomass levels. However, this is clearly not the case in the Baltic Sea. Nutrient enrichment (bottom-up effects) is the accepted dominant reason for the non-controlling impact of algal grazers, but other reasons may include cascading trophic effects resulting from the removal of large piscivorous fish (top-down effects).

  5. Marine mammals as sentinel species for oceans and human health.

    PubMed

    Bossart, G D

    2011-05-01

    The long-term consequences of climate change and potential environmental degradation are likely to include aspects of disease emergence in marine plants and animals. In turn, these emerging diseases may have epizootic potential, zoonotic implications, and a complex pathogenesis involving other cofactors such as anthropogenic contaminant burden, genetics, and immunologic dysfunction. The concept of marine sentinel organisms provides one approach to evaluating aquatic ecosystem health. Such sentinels are barometers for current or potential negative impacts on individual- and population-level animal health. In turn, using marine sentinels permits better characterization and management of impacts that ultimately affect animal and human health associated with the oceans. Marine mammals are prime sentinel species because many species have long life spans, are long-term coastal residents, feed at a high trophic level, and have unique fat stores that can serve as depots for anthropogenic toxins. Marine mammals may be exposed to environmental stressors such as chemical pollutants, harmful algal biotoxins, and emerging or resurging pathogens. Since many marine mammal species share the coastal environment with humans and consume the same food, they also may serve as effective sentinels for public health problems. Finally, marine mammals are charismatic megafauna that typically stimulate an exaggerated human behavioral response and are thus more likely to be observed.

  6. Distribution, behavior, and condition of herbivorous fishes on coral reefs track algal resources.

    PubMed

    Tootell, Jesse S; Steele, Mark A

    2016-05-01

    Herbivore distribution can impact community structure and ecosystem function. On coral reefs, herbivores are thought to play an important role in promoting coral dominance, but how they are distributed relative to algae is not well known. Here, we evaluated whether the distribution, behavior, and condition of herbivorous fishes correlated with algal resource availability at six sites in the back reef environment of Moorea, French Polynesia. Specifically, we tested the hypotheses that increased algal turf availability would coincide with (1) increased biomass, (2) altered foraging behavior, and (3) increased energy reserves of herbivorous fishes. Fish biomass and algal cover were visually estimated along underwater transects; behavior of herbivorous fishes was quantified by observations of focal individuals; fish were collected to assess their condition; and algal turf production rates were measured on standardized tiles. The best predictor of herbivorous fish biomass was algal turf production, with fish biomass increasing with algal production. Biomass of herbivorous fishes was also negatively related to sea urchin density, suggesting competition for limited resources. Regression models including both algal turf production and urchin density explained 94 % of the variation in herbivorous fish biomass among sites spread over ~20 km. Behavioral observations of the parrotfish Chlorurus sordidus revealed that foraging area increased as algal turf cover decreased. Additionally, energy reserves increased with algal turf production, but declined with herbivorous fish density, implying that algal turf is a limited resource for this species. Our findings support the hypothesis that herbivorous fishes can spatially track algal resources on coral reefs.

  7. Distribution of green algal mats throughout shallow soft bottoms of the Swedish Skagerrak archipelago in relation to nutrient sources and wave exposure

    NASA Astrophysics Data System (ADS)

    Pihl, Leif; Svenson, Anders; Moksnes, Per-Olav; Wennhage, Håkan

    1999-06-01

    Distribution and biomass of green algal mats were studied in marine shallow (0-1 m) soft-bottom areas on the Swedish west coast from 1994 to 1996, by combining aerial photography surveys with ground truth sampling. Filamentous green algae, dominated by species of the genera Cladophora and Enteromorpha, were generally present throughout the study area during July and August, and largely absent in late April and early May. These algae occurred at 60 to 90% of the locations investigated during the summer, and were estimated to cover between 30 and 50% of the total area of shallow soft bottoms of the Swedish Skagerrak archipelago. The distributional patterns were similar during the three years of the investigation and appeared unrelated to annual local nutrient inputs from point sources and river discharge. We postulate that the apparent lack of such a relationship is due to an altered state of nutrient dynamics throughout the archipelago. Mechanisms are likely to involve long-term, diffuse elevations in nutrient levels in coastal waters of the Skagerrak and the Kattegat over several decades leading to current eutrophic conditions, exceeding nutrient requirements for abundant filamentous algal growth. Patterns of algal abundance in our study were largely related to physical factors such as exposure to wind, waves and water exchange under conditions where nutrient loads among embayments seemed to be unlimited. Further, our results show that sediments covered by algal mats had higher carbon and nitrogen contents than unvegetated sediments. We hypothesise that sustained high nutrient loads, manifested in extensive biomass of filamentous algae during summer months, are re-mineralised via decay and sedimentation in the benthic realm. Hence, accumulated carbon and nutrients in the sediment could, in turn, constitute the basic pool for future algal mat production overlying soft bottoms in areas where tidal exchange is limited.

  8. Marine neurotoxins: state of the art, bottlenecks, and perspectives for mode of action based methods of detection in seafood.

    PubMed

    Nicolas, Jonathan; Hendriksen, Peter J M; Gerssen, Arjen; Bovee, Toine F H; Rietjens, Ivonne M C M

    2014-01-01

    Marine biotoxins can accumulate in fish and shellfish, representing a possible threat for consumers. Many marine biotoxins affect neuronal function essentially through their interaction with ion channels or receptors, leading to different symptoms including paralysis and even death. The detection of marine biotoxins in seafood products is therefore a priority. Official methods for control are often still using in vivo assays, such as the mouse bioassay. This test is considered unethical and the development of alternative assays is urgently required. Chemical analyses as well as in vitro assays have been developed to detect marine biotoxins in seafood. However, most of the current in vitro alternatives to animal testing present disadvantages: low throughput and lack of sensitivity resulting in a high number of false-negative results. Thus, there is an urgent need for the development of new in vitro tests that would allow the detection of marine biotoxins in seafood products at a low cost, with high throughput combined with high sensitivity, reproducibility, and predictivity. Mode of action based in vitro bioassays may provide tools that fulfil these requirements. This review covers the current state of the art of such mode of action based alternative assays to detect neurotoxic marine biotoxins in seafood. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Inhibiting oral intoxication of botulinum neurotoxin A by carbohydrate receptor mimics

    USDA-ARS?s Scientific Manuscript database

    Botulinum neurotoxins (BoNTs) cause the disease botulism manifested by flaccid paralysis that could be fatal to humans and animals. Oral ingestion of the toxin with contaminated food is one of the most common routes of BoNT intoxication, where BoNT assembles with several auxiliary proteins to surviv...

  10. Algicidal effects of a novel marine actinomycete on the toxic dinoflagellate Alexandrium tamarense.

    PubMed

    Bai, Shijie J; Huang, Liping P; Su, Jianqiang Q; Tian, Yun; Zheng, Tianling L

    2011-06-01

    A marine actinomycete strain BS01 with algicidal activity to the toxic dinoflagellate, Alexandrium tamarense, was isolated from Xiamen Bay, China. Sequence analysis of 16S rDNA demonstrates that BS01 is closely related to the genus Brevibacterium of Actinomycetales. BS01 exhibited algicidal activity in an indirect manner. Additional organic nutrients, but not algal-derived dissolved organic matter, were necessary for the synthesis of yet unidentified algicidal compounds (molecular weight less than 100), which were heat tolerant, a stable in acidic or alkali conditions, and exhibited a wide range of algicidal activity. This is the first report of an actinomycete algicide to the toxic dinoflagellate A. tamarense. Our results indicate that BS01 could be a potential bio-agent for controlling harmful algal blooms.

  11. Assessing the potential of amino acid 13C patterns as a carbon source tracer in marine sediments: effects of algal growth conditions and sedimentary diagenesis

    NASA Astrophysics Data System (ADS)

    Larsen, T.; Bach, L. T.; Salvatteci, R.; Wang, Y. V.; Andersen, N.; Ventura, M.; McCarthy, M. D.

    2015-08-01

    Burial of organic carbon in marine sediments has a profound influence in marine biogeochemical cycles and provides a sink for greenhouse gases such as CO2 and CH4. However, tracing organic carbon from primary production sources as well as its transformations in the sediment record remains challenging. Here we examine a novel but growing tool for tracing the biosynthetic origin of amino acid carbon skeletons, based on naturally occurring stable carbon isotope patterns in individual amino acids (δ13CAA). We focus on two important aspects for δ13CAA utility in sedimentary paleoarchives: first, the fidelity of source diagnostic of algal δ13CAA patterns across different oceanographic growth conditions, and second, the ability of δ13CAA patterns to record the degree of subsequent microbial amino acid synthesis after sedimentary burial. Using the marine diatom Thalassiosira weissflogii, we tested under controlled conditions how δ13CAA patterns respond to changing environmental conditions, including light, salinity, temperature, and pH. Our findings show that while differing oceanic growth conditions can change macromolecular cellular composition, δ13CAA isotopic patterns remain largely invariant. These results emphasize that δ13CAA patterns should accurately record biosynthetic sources across widely disparate oceanographic conditions. We also explored how δ13CAA patterns change as a function of age, total nitrogen and organic carbon content after burial, in a marine sediment core from a coastal upwelling area off Peru. Based on the four most informative amino acids for distinguishing between diatom and bacterial sources (i.e., isoleucine, lysine, leucine and tyrosine), bacterially derived amino acids ranged from 10 to 15 % in the sediment layers from the last 5000 years, and up to 35 % during the last glacial period. The greater bacterial contributions in older sediments indicate that bacterial activity and amino acid resynthesis progressed, approximately as a

  12. Harmful Algal Blooms Research

    EPA Science Inventory

    This project represents the Agency’s first effort to unify harmful algal blooms (HABs) research that had been previously carried out in isolation within various laboratories. A unified program is the most efficient way generate useful results for the Agency’s decision...

  13. Substrate Binding Mode and its Implication on Drug Design for Botulinum Neurotoxin A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumaran, D.; Rawat, R; Ahmed, A

    2008-01-01

    The seven antigenically distinct serotypes of Clostridium botulinum neurotoxins, the causative agents of botulism, block the neurotransmitter release by specifically cleaving one of the three SNARE proteins and induce flaccid paralysis. The Centers for Disease Control and Prevention (CDC) has declared them as Category A biowarfare agents. The most potent among them, botulinum neurotoxin type A (BoNT/A), cleaves its substrate synaptosome-associated protein of 25 kDa (SNAP-25). An efficient drug for botulism can be developed only with the knowledge of interactions between the substrate and enzyme at the active site. Here, we report the crystal structures of the catalytic domain ofmore » BoNT/A with its uncleavable SNAP-25 peptide 197QRATKM202 and its variant 197RRATKM202 to 1.5 A and 1.6 A, respectively. This is the first time the structure of an uncleavable substrate bound to an active botulinum neurotoxin is reported and it has helped in unequivocally defining S1 to S5? sites. These substrate peptides make interactions with the enzyme predominantly by the residues from 160, 200, 250 and 370 loops. Most notably, the amino nitrogen and carbonyl oxygen of P1 residue (Gln197) chelate the zinc ion and replace the nucleophilic water. The P1?-Arg198, occupies the S1? site formed by Arg363, Thr220, Asp370, Thr215, Ile161, Phe163 and Phe194. The S2? subsite is formed by Arg363, Asn368 and Asp370, while S3? subsite is formed by Tyr251, Leu256, Val258, Tyr366, Phe369 and Asn388. P4?-Lys201 makes hydrogen bond with Gln162. P5?-Met202 binds in the hydrophobic pocket formed by the residues from the 250 and 200 loop. Knowledge of interactions between the enzyme and substrate peptide from these complex structures should form the basis for design of potent inhibitors for this neurotoxin.« less

  14. Addressing harmful algal blooms (HABs) impacts with ferrate(VI): Simultaneous removal of algal cells and toxins for drinking water treatment.

    PubMed

    Deng, Yang; Wu, Meiyin; Zhang, Huiqin; Zheng, Lei; Acosta, Yaritza; Hsu, Tsung-Ta D

    2017-11-01

    Although ferrate(VI) has long been recognized as a multi-purpose treatment agent, previous investigations regarding ferrate(VI) for addressing harmful algal blooms (HABs) impacts in drinking water treatment only focused on a single HAB pollutant (e.g. algal cells or algal toxins). Moreover, the performance of ferrate(VI)-driven coagulation was poorly investigated in comparison with ferrate(VI) oxidation, though it has been widely acknowledged as a major ferrate(VI) treatment mechanism. We herein reported ferrate(VI) as an emerging agent for simultaneous and effective removal of algal cells and toxins in a simulated HAB-impacted water. Ferrate(VI)-driven oxidation enabled algal cell inactivation and toxin decomposition. Subsequently, Fe(III) from ferrate(VI) reduction initiated an in-situ coagulation for cell aggregation. Cell viability (initial 4.26 × 10 4 cells/mL at pH 5.5 and 5.16 × 10 4 cells/mL at pH 7.5) decreased to 0.0% at ≥ 7 mg/L Fe(VI) at pH 5.5 and 7.5, respectively. Cell density and turbidity were dramatically decreased at pH 5.5 once ferrate(VI) doses were beyond their respective threshold levels, which are defined as minimum effective iron doses (MEIDs). However, the particulate removal at pH 7.5 was poor, likely because the coagulation was principally driven by charge neutralization and a higher pH could not sufficiently lower the particle surface charge. Meanwhile, algal toxins (i.e., microcystins) of 3.98 μg/L could be substantially decomposed at either pH. And the greater degradation achieved at pH 5.5 was due to the higher reactivity of ferrate(VI) at the lower pH. This study represents the first step toward the ferrate(VI) application as a promising approach for addressing multiple HABs impacts for water treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Development of immunodetection system for botulinum neurotoxin type B using synthetic gene based recombinant protein

    PubMed Central

    Jain, Swati; Ponmariappan, S.; Kumar, Om

    2011-01-01

    Background & objectives: Botulinum neurotoxins (A-G) are among most poisonous substances in the world, produced by obligate anaerobic bacteria Clostridum botulinum. Among the seven serotypes A, B, E and F are of human importance. In India, the prevalence of C. botulinum as well as botulism outbreaks have been reported. Due to its extreme toxicity it has been classified in the Category A of biological warfare agent. So far, there is no commercial detection system available in India to detect botulism. The present study aims to develop an immuno detection system for botulinum neurotoxin serotype B using synthetic gene approach. Methods: The truncated fragment of the botulinum neurotoxin type B from amino acid 1-450 was synthesized using PCR overlap primers; the constructed gene was cloned in the pQE30UA vector and transformed to Escherichia coli SG 13009. The recombinant protein expression was optimized using various concentration of isopropylthiogalactoside (IPTG) induction, further the expression was confirmed by Western blot analysis using anti-His antibody. Recombinant protein was purified under denatured condition using Ni-NTA affinity chromatography. Antibody was generated against the recombinant protein using alum adjuvant in BALB/c mice and tested for cross reactivity with other serotypes of C. botulinum as well as closely related clostridia. An ELISA test was developed for the detection of botulinum neurotoxin and the minimum detection limit was also estimated. Results: The recombinant protein was expressed at maximum yield at 4.3 h of post-induction with 0.5 mM IPTG concentration. The recombinant protein was purified using Ni-NTA affinity chromatography up to the homogeneity level. The polyclonal antibodies were raised in mice with a titre of 1:2048000. The developed antibody was highly specific with a sensitivity of detecting approximately 15 ng/ml of recombinant protein and not showing any cross-reactivity with other serotypes. Interpretation

  16. COMPARISON OF LARGE RIVER SAMPLING METHODS ON ALGAL METRICS

    EPA Science Inventory

    We compared the results of four methods used to assess the algal communities at 60 sites distributed among four rivers. Based on Principle Component Analysis of physical habitat data collected concomitantly with the algal data, sites were separated into those with a mean thalweg...

  17. Biotic interactions as drivers of algal origin and evolution.

    PubMed

    Brodie, Juliet; Ball, Steven G; Bouget, François-Yves; Chan, Cheong Xin; De Clerck, Olivier; Cock, J Mark; Gachon, Claire; Grossman, Arthur R; Mock, Thomas; Raven, John A; Saha, Mahasweta; Smith, Alison G; Vardi, Assaf; Yoon, Hwan Su; Bhattacharya, Debashish

    2017-11-01

    Contents 670 I. 671 II. 671 III. 676 IV. 678 678 References 678 SUMMARY: Biotic interactions underlie life's diversity and are the lynchpin to understanding its complexity and resilience within an ecological niche. Algal biologists have embraced this paradigm, and studies building on the explosive growth in omics and cell biology methods have facilitated the in-depth analysis of nonmodel organisms and communities from a variety of ecosystems. In turn, these advances have enabled a major revision of our understanding of the origin and evolution of photosynthesis in eukaryotes, bacterial-algal interactions, control of massive algal blooms in the ocean, and the maintenance and degradation of coral reefs. Here, we review some of the most exciting developments in the field of algal biotic interactions and identify challenges for scientists in the coming years. We foresee the development of an algal knowledgebase that integrates ecosystem-wide omics data and the development of molecular tools/resources to perform functional analyses of individuals in isolation and in populations. These assets will allow us to move beyond mechanistic studies of a single species towards understanding the interactions amongst algae and other organisms in both the laboratory and the field. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  18. Isolation and characterization at cholinergic nicotinic receptors of a neurotoxin from the venom of the Acanthophis sp. Seram death adder.

    PubMed

    Wickramaratna, Janith C; Fry, Bryan G; Loiacono, Richard E; Aguilar, Marie-Isabel; Alewood, Paul F; Hodgson, Wayne C

    2004-07-15

    The present study describes the isolation of the first neurotoxin (acantoxin IVa) from Acanthophis sp. Seram death adder venom and an examination of its activity at nicotinic acetylcholine receptor (nAChR) subtypes. Acantoxin IVa (MW 6815; 0.1-1.0 microM) caused concentration-dependent inhibition of indirect twitches (0.1 Hz, 0.2 ms, supramaximal V) and inhibited contractile responses to exogenous nicotinic agonists in the chick biventer cervicis nerve-muscle, confirming that this toxin is a postsynaptic neurotoxin. Acantoxin IVa (1-10 nM) caused pseudo-irreversible antagonism at skeletal muscle nAChR with an estimated pA2 of 8.36+/-0.17. Acantoxin IVa was approximately two-fold less potent than the long-chain (Type II) neurotoxin, alpha-bungarotoxin. With a pKi value of 4.48, acantoxin IVa was approximately 25,000 times less potent than alpha-bungarotoxin at alpha7-type neuronal nAChR. However, in contrast to alpha-bungarotoxin, acantoxin IVa completely inhibited specific [3H]-methyllycaconitine (MLA) binding in rat hippocampus homogenate. Acantoxin IVa had no activity at ganglionic nAChR, alpha4beta2 subtype neuronal nAChR or cytisine-resistant [3H]-epibatidine binding sites. While long-chain neurotoxin resistant [3H]-MLA binding in hippocampus homogenate requires further investigation, we have shown that a short-chain (Type I) neurotoxin is capable of fully inhibiting specific [3H]-MLA binding.

  19. Algal MIPs, high diversity and conserved motifs

    PubMed Central

    2011-01-01

    Background Major intrinsic proteins (MIPs) also named aquaporins form channels facilitating the passive transport of water and other small polar molecules across membranes. MIPs are particularly abundant and diverse in terrestrial plants but little is known about their evolutionary history. In an attempt to investigate the origin of the plant MIP subfamilies, genomes of chlorophyte algae, the sister group of charophyte algae and land plants, were searched for MIP encoding genes. Results A total of 22 MIPs were identified in the nine analysed genomes and phylogenetic analyses classified them into seven subfamilies. Two of these, Plasma membrane Intrinsic Proteins (PIPs) and GlpF-like Intrinsic Proteins (GIPs), are also present in land plants and divergence dating support a common origin of these algal and land plant MIPs, predating the evolution of terrestrial plants. The subfamilies unique to algae were named MIPA to MIPE to facilitate the use of a common nomenclature for plant MIPs reflecting phylogenetically stable groups. All of the investigated genomes contained at least one MIP gene but only a few species encoded MIPs belonging to more than one subfamily. Conclusions Our results suggest that at least two of the seven subfamilies found in land plants were present already in an algal ancestor. The total variation of MIPs and the number of different subfamilies in chlorophyte algae is likely to be even higher than that found in land plants. Our analyses indicate that genetic exchanges between several of the algal subfamilies have occurred. The PIP1 and PIP2 groups and the Ca2+ gating appear to be specific to land plants whereas the pH gating is a more ancient characteristic shared by all PIPs. Further studies are needed to discern the function of the algal specific subfamilies MIPA-E and to fully understand the evolutionary relationship of algal and terrestrial plant MIPs. PMID:21510875

  20. Algal MIPs, high diversity and conserved motifs.

    PubMed

    Anderberg, Hanna I; Danielson, Jonas Å H; Johanson, Urban

    2011-04-21

    Major intrinsic proteins (MIPs) also named aquaporins form channels facilitating the passive transport of water and other small polar molecules across membranes. MIPs are particularly abundant and diverse in terrestrial plants but little is known about their evolutionary history. In an attempt to investigate the origin of the plant MIP subfamilies, genomes of chlorophyte algae, the sister group of charophyte algae and land plants, were searched for MIP encoding genes. A total of 22 MIPs were identified in the nine analysed genomes and phylogenetic analyses classified them into seven subfamilies. Two of these, Plasma membrane Intrinsic Proteins (PIPs) and GlpF-like Intrinsic Proteins (GIPs), are also present in land plants and divergence dating support a common origin of these algal and land plant MIPs, predating the evolution of terrestrial plants. The subfamilies unique to algae were named MIPA to MIPE to facilitate the use of a common nomenclature for plant MIPs reflecting phylogenetically stable groups. All of the investigated genomes contained at least one MIP gene but only a few species encoded MIPs belonging to more than one subfamily. Our results suggest that at least two of the seven subfamilies found in land plants were present already in an algal ancestor. The total variation of MIPs and the number of different subfamilies in chlorophyte algae is likely to be even higher than that found in land plants. Our analyses indicate that genetic exchanges between several of the algal subfamilies have occurred. The PIP1 and PIP2 groups and the Ca2+ gating appear to be specific to land plants whereas the pH gating is a more ancient characteristic shared by all PIPs. Further studies are needed to discern the function of the algal specific subfamilies MIPA-E and to fully understand the evolutionary relationship of algal and terrestrial plant MIPs.

  1. Geochemical legacies and the future health of cities: A tale of two neurotoxins in urban soils

    USGS Publications Warehouse

    Fillipelli, Gabriel M.; Risch, Martin R.; Laidlaw, Mark A. S.; Nichols, Deborah E.; Crewe, Julie

    2015-01-01

    Acute exposure to lead (Pb), a powerful neurotoxin to which children are particularly susceptible, has largely been eliminated in the U.S. and other countries through policy-based restrictions on leaded gasoline and lead-based paints. But the legacy of these sources remains in the form of surface soil Pb contamination, a common problem in cities and one that has only recently emerged as a widespread chronic exposure mechanism in cities. Some urban soils are also contaminated with another neurotoxin, mercury (Hg). The greatest human exposure to Hg is through fish consumption, so eating fish caught in urban areas presents risks for toxic Hg exposure. The potential double impact of chronic exposure to these two neurotoxins is pronounced in cities. Overall, there is a paradigmatic shift from reaction to and remediation of acute exposures towards a more nuanced understanding of the dynamic cycling of persistent environmental contaminants with resultant widespread and chronic exposure of inner-city dwellers, leading to chronic toxic illness and disability at substantial human and social cost.

  2. Highly-efficient enzymatic conversion of crude algal oils into biodiesel.

    PubMed

    Wang, Yao; Liu, Jin; Gerken, Henri; Zhang, Chengwu; Hu, Qiang; Li, Yantao

    2014-11-01

    Energy-intensive chemical conversion of crude algal oils into biodiesel is a major barrier for cost-effective algal biofuel production. To overcome this problem, we developed an enzyme-based platform for conversion of crude algal oils into fatty acid methyl esters. Crude algal oils were extracted from the oleaginous microalga Nannochloropsis oceanica IMET1 and converted by an immobilized lipase from Candida antarctica. The effects of different acyl acceptors, t-butanol as a co-solvent, oil to t-butanol ratio, oil to methanol ratio, temperature and reaction time on biodiesel conversion efficiency were studied. The conversion efficiency reached 99.1% when the conversion conditions were optimized, i.e., an oil to t-butanol weight ratio of 1:1, an oil to methanol molar ratio of 1:12, and a reaction time of 4h at 25°C. The enzymatic conversion process developed in this study may hold a promise for low energy consumption, low wastewater-discharge biochemical conversion of algal feedstocks into biofuels. Published by Elsevier Ltd.

  3. Bioactive Potential of Marine Macroalgae from the Central Red Sea (Saudi Arabia) Assessed by High-Throughput Imaging-Based Phenotypic Profiling

    PubMed Central

    Kremb, Stephan; Müller, Constanze; Schmitt-Kopplin, Philippe; Voolstra, Christian R.

    2017-01-01

    Marine algae represent an important source of novel natural products. While their bioactive potential has been studied to some extent, limited information is available on marine algae from the Red Sea. This study aimed at the broad discovery of new bioactivities from a collection of twelve macroalgal species from the Central Red Sea. We used imaging-based High-Content Screening (HCS) with a diverse spectrum of cellular markers for detailed cytological profiling of fractionated algal extracts. The cytological profiles for 3 out of 60 algal fractions clustered closely to reference inhibitors and showed strong inhibitory activities on the HIV-1 reverse transcriptase in a single-enzyme biochemical assay, validating the suggested biological target. Subsequent chemical profiling of the active fractions of two brown algal species by ultra-high resolution mass spectrometry (FT-ICR-MS) revealed possible candidate molecules. A database query of these molecules led us to groups of compounds with structural similarities, which are suggested to be responsible for the observed activity. Our work demonstrates the versatility and power of cytological profiling for the bioprospecting of unknown biological resources and highlights Red Sea algae as a source of bioactives that may serve as a starting point for further studies. PMID:28335513

  4. Bioactive Potential of Marine Macroalgae from the Central Red Sea (Saudi Arabia) Assessed by High-Throughput Imaging-Based Phenotypic Profiling.

    PubMed

    Kremb, Stephan; Müller, Constanze; Schmitt-Kopplin, Philippe; Voolstra, Christian R

    2017-03-20

    Marine algae represent an important source of novel natural products. While their bioactive potential has been studied to some extent, limited information is available on marine algae from the Red Sea. This study aimed at the broad discovery of new bioactivities from a collection of twelve macroalgal species from the Central Red Sea. We used imaging-based High-Content Screening (HCS) with a diverse spectrum of cellular markers for detailed cytological profiling of fractionated algal extracts. The cytological profiles for 3 out of 60 algal fractions clustered closely to reference inhibitors and showed strong inhibitory activities on the HIV-1 reverse transcriptase in a single-enzyme biochemical assay, validating the suggested biological target. Subsequent chemical profiling of the active fractions of two brown algal species by ultra-high resolution mass spectrometry (FT-ICR-MS) revealed possible candidate molecules. A database query of these molecules led us to groups of compounds with structural similarities, which are suggested to be responsible for the observed activity. Our work demonstrates the versatility and power of cytological profiling for the bioprospecting of unknown biological resources and highlights Red Sea algae as a source of bioactives that may serve as a starting point for further studies.

  5. Bivalve molluscs as vectors of marine biotoxins involved in seafood poisoning.

    PubMed

    Ciminiello, P; Fattorusso, E

    2006-01-01

    Molluscs of many sorts, which are high in protein and trace minerals, have always been a substantial portion of the human diet. A great variety of mollusc species are therefore of commercial importance throughout the world. Episodes of poisoning occasionally happen to the consumers of molluscs, the main hazard being represented by bivalve molluscs. These organisms are filter-feeders, feeding mainly on a wide range of phytoplankton species. Among the thousands of species of microscopic algae at the base of the marine food chain, there are a few dozen which produce potent toxins. One major category of impact occurs when toxic phytoplankton are filtered from the water as food by shellfish, which then accumulate the algal toxins to levels which can be lethal to humans. Incidences of poisoning related to marine algal toxins come under the main categories of paralytic shellfish poisoning (PSP), neurotoxic shellfish poisoning (NSP), diarrhetic shellfish poisoning (DSP), and amnesic shellfish poisoning (ASP), depending upon the toxins and the symptoms that they cause. Since the beginning of the 1990s, a research program has been initiated to examine the toxin profiles in mussels from the Adriatic Sea. Since then, a number of polyether toxins have been isolated and characterized, some of which represent new additions to the DSP class of biotoxins. During this investigation, new types of toxins have also been isolated. The recent application of LC-MS methods for the detection of Adriatic marine biotoxins made it possible to speed up the analysis of toxic samples.

  6. Primary Isolation and Characterization of Tenacibaculum maritimum from Chilean Atlantic Salmon Mortalities Associated with a Pseudochattonella spp. Algal Bloom.

    PubMed

    Apablaza, Patricia; Frisch, Kathleen; Brevik, Øyvind Jakobsen; Småge, Sverre Bang; Vallestad, Camilla; Duesund, Henrik; Mendoza, Julio; Nylund, Are

    2017-09-01

    This study presents the first isolation of Tenacibaculum maritimum from farmed Atlantic Salmon Salmo salar in Chile. The isolate, designated T. maritimum Ch-2402, was isolated from gills of Atlantic Salmon at a farm located in region X, Los Lagos, Chile, during the harmful algal bloom caused by Pseudochattonella spp. in February 2016. The algal bloom is reported to have caused 40,000 metric tons of mortality in this salmon farming area. The bacterium T. maritimum, which causes tenacibaculosis, is recognized as an important pathogen of marine fish worldwide. Genetic, phylogenetic, and phenotypic characterizations were used to describe the T. maritimum Ch-2402 isolate. The isolate was similar to the type strain of T. maritimum but was genetically unique. Tenacibaculum dicentrarchi isolates were also recovered during sampling from the same farm. Based on the fact that T. maritimum has been shown to cause disease in Atlantic Salmon in other regions, the presence of this bacterium poses a potential risk of disease to fish in the Chilean aquaculture industry. Received November 6, 2016; accepted May 29, 2017.

  7. Botulinum neurotoxin B recognizes its protein receptor with high affinity and specificity.

    PubMed

    Jin, Rongsheng; Rummel, Andreas; Binz, Thomas; Brunger, Axel T

    2006-12-21

    Botulinum neurotoxins (BoNTs) are produced by Clostridium botulinum and cause the neuroparalytic syndrome of botulism. With a lethal dose of 1 ng kg(-1), they pose a biological hazard to humans and a serious potential bioweapon threat. BoNTs bind with high specificity at neuromuscular junctions and they impair exocytosis of synaptic vesicles containing acetylcholine through specific proteolysis of SNAREs (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors), which constitute part of the synaptic vesicle fusion machinery. The molecular details of the toxin-cell recognition have been elusive. Here we report the structure of a BoNT in complex with its protein receptor: the receptor-binding domain of botulinum neurotoxin serotype B (BoNT/B) bound to the luminal domain of synaptotagmin II, determined at 2.15 A resolution. On binding, a helix is induced in the luminal domain which binds to a saddle-shaped crevice on a distal tip of BoNT/B. This crevice is adjacent to the non-overlapping ganglioside-binding site of BoNT/B. Synaptotagmin II interacts with BoNT/B with nanomolar affinity, at both neutral and acidic endosomal pH. Biochemical and neuronal ex vivo studies of structure-based mutations indicate high specificity and affinity of the interaction, and high selectivity of BoNT/B among synaptotagmin I and II isoforms. Synergistic binding of both synaptotagmin and ganglioside imposes geometric restrictions on the initiation of BoNT/B translocation after endocytosis. Our results provide the basis for the rational development of preventive vaccines or inhibitors against these neurotoxins.

  8. Marine Enzymes and Microorganisms for Bioethanol Production.

    PubMed

    Swain, M R; Natarajan, V; Krishnan, C

    Bioethanol is a potential alternative fuel to fossil fuels. Bioethanol as a fuel has several economic and environmental benefits. Though bioethanol is produced using starch and sugarcane juice, these materials are in conflict with food availability. To avoid food-fuel conflict, the second-generation bioethanol production by utilizing nonfood lignocellulosic materials has been extensively investigated. However, due to the complexity of lignocellulose architecture, the process is complicated and not economically competitive. The cultivation of lignocellulosic energy crops indirectly affects the food supplies by extensive land use. Marine algae have attracted attention to replace the lignocellulosic feedstock for bioethanol production, since the algae grow fast, do not use land, avoid food-fuel conflict and have several varieties to suit the cultivation environment. The composition of algae is not as complex as lignocellulose due to the absence of lignin, which renders easy hydrolysis of polysaccharides to fermentable sugars. Marine organisms also produce cold-active enzymes for hydrolysis of starch, cellulose, and algal polysaccharides, which can be employed in bioethanol process. Marine microoorganisms are also capable of fermenting sugars under high salt environment. Therefore, marine biocatalysts are promising for development of efficient processes for bioethanol production. © 2017 Elsevier Inc. All rights reserved.

  9. The chimerical and multifaceted marine acoel Symsagittifera roscoffensis: from photosymbiosis to brain regeneration

    PubMed Central

    Bailly, Xavier; Laguerre, Laurent; Correc, Gaëlle; Dupont, Sam; Kurth, Thomas; Pfannkuchen, Anja; Entzeroth, Rolf; Probert, Ian; Vinogradov, Serge; Lechauve, Christophe; Garet-Delmas, Marie-José; Reichert, Heinrich; Hartenstein, Volker

    2014-01-01

    A remarkable example of biological engineering is the capability of some marine animals to take advantage of photosynthesis by hosting symbiotic algae. This capacity, referred to as photosymbiosis, is based on structural and functional complexes that involve two distantly unrelated organisms. These stable photosymbiotic associations between metazoans and photosynthetic protists play fundamental roles in marine ecology as exemplified by reef communities and their vulnerability to global changes threats. Here we introduce a photosymbiotic tidal acoel flatworm, Symsagittifera roscoffensis, and its obligatory green algal photosymbiont, Tetraselmis convolutae (Lack of the algal partner invariably results in acoel lethality emphasizing the mandatory nature of the photosymbiotic algae for the animal's survival). Together they form a composite photosymbiotic unit, which can be reared in controlled conditions that provide easy access to key life-cycle events ranging from early embryogenesis through the induction of photosymbiosis in aposymbiotic juveniles to the emergence of a functional “solar-powered” mature stage. Since it is possible to grow both algae and host under precisely controlled culture conditions, it is now possible to design a range of new experimental protocols that address the mechanisms and evolution of photosymbiosis. S. roscoffensis thus represents an emerging model system with experimental advantages that complement those of other photosymbiotic species, in particular corals. The basal taxonomic position of S. roscoffensis (and acoels in general) also makes it a relevant model for evolutionary studies of development, stem cell biology and regeneration. Finally, it's autotrophic lifestyle and lack of calcification make S. roscoffensis a favorable system to study the role of symbiosis in the response of marine organisms to climate change (e.g., ocean warming and acidification). In this article we summarize the state of knowledge of the biology of S

  10. Beach-goer behavior during a retrospectively detected algal ...

    EPA Pesticide Factsheets

    Algal blooms occur among nutrient rich, warm surface waters and may adversely impact recreational beaches. During July – September 2003, a prospective study of beachgoers was conducted on weekends at a public beach on a Great Lake in the United States. We measured each beachgoer’s activity at the start and end of their beach visit and the environmental factors: water and air temperature, wind speed and wave height at the study site each day. At the time, there was no notification of algal blooms; we retrospectively evaluated the presence of algal blooms using MERIS data from the Envisat-1 satellite. A total of 2840 people participated in the study over 16 study days. The majority (55%) were female, and 751 (26%) were < 18 years of age. An algal bloom was detected retrospectively by remotely sensed satellite imagery during August 16 – 24. This peak bloom period (PB) included 4 study days. During PB study days, more study participants 226/742 (31%) reported body contact with the water compared to contact 531/2098 (25%) on non-peak days. During the 4 PB days, of the environmental factors, only mean water temperature was significantly different, 250 C vs. 230 C (p<0.05) from other days.These results suggest that beachgoer body contact with water was not deterred by the presence of an algal bloom, and that interventions to actively discourage water contact during a bloom are needed to reduce exposure to blooms. This is an abstract of a proposed presentation and

  11. Oligosaccharide composition of the neurotoxin responsive Na/sup +/ channel and the requirement of sialic acid for activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negishi, M.; Shaw, G.W.; Glick, M.C.

    1986-05-01

    The neurotoxin responsive Na/sup +/ channel was purified to homogeneity in an 18% yield from a clonal cell line of mouse neuroblastoma, N-18, metabolically labeled with L-(/sup 3/H)fucose. The Na/sup +/ channel, a glycoprotein, M/sub r/=200,000 (gradient 7-14% PAGE) was digested with Pronase and the glycopeptides were characterized by serial lectin affinity chromatography. greater than 90% of the oligosaccharides contained sialic acid and 18% were biantennary, 39% were triantennary and 30% tetraantennary. The glycoprotein was reconstituted into artificial phospholipid vesicles and /sup 86/Rb flux was stimulated (65%) by 200 ..mu..M veratridine and 1.2 ..mu..g of scorpion venom and was inhibitedmore » (95%) by 5 ..mu..M tetrodotoxin. The requirement of sialic acid for Na/sup +/ channel activity was demonstrated since neuraminidase (0.01 U) treatment of the reconstituted glycoprotein eliminated the response of /sup 86/Rb flux to the stimulating neurotoxins. In other experiments, treatment of N-18 cells with 10 ..mu..M swainsonine, an inhibitor of glycoprotein processing, altered the oligosaccharide composition of the Na/sup +/ channel. When the abnormally glycosylated Na/sup +/ channel was reconstituted into artificial phospholipid vesicles, /sup 86/Rb flux in response to neurotoxins was impaired. Thus, glycosylation of the polypeptide with oligosaccharides of specific composition and structure is essential for expression of the biological activity of the neurotoxin responsive Na/sup +/ channel.« less

  12. Algal taxonomy: a road to nowhere?

    PubMed

    De Clerck, Olivier; Guiry, Michael D; Leliaert, Frederik; Samyn, Yves; Verbruggen, Heroen

    2013-04-01

    The widespread view of taxonomy as an essentially retrogressive and outmoded science unable to cope with the current biodiversity crisis stimulated us to analyze the current status of cataloguing global algal diversity. Contrary to this largely pessimistic belief, species description rates of algae through time and trends in the number of active taxonomists, as revealed by the web resource AlgaeBase, show a much more positive picture. More species than ever before are being described by a large community of algal taxonomists. The lack of any decline in the rate at which new species and genera are described, however, is indicative of the large proportion of undiscovered diversity and bears heavily on any prediction of global algal species diversity and the time needed to catalogue it. The saturation of accumulation curves of higher taxa (family, order, and classes) on the other hand suggest that at these taxonomic levels most diversity has been discovered. This reasonably positive picture does not imply that algal taxonomy does not face serious challenges in the near future. The observed levels of cryptic diversity in algae, combined with the shift in methods used to characterize them, have resulted in a rampant uncertainty about the status of many older species. As a consequence, there is a tendency in phycology to move gradually away from traditional names to a more informal system whereby clade-, specimen- or strain-based identifiers are used to communicate biological information. Whether these informal names for species-level clades represent a temporary situation stimulated by the lag between species discovery and formal description, or an incipient alternative or parallel taxonomy, will be largely determined by how well we manage to integrate historical collections into modern taxonomic research. Additionally, there is a pressing need for a consensus about the organizational framework to manage the information about algal species names. An eventual strategy

  13. Mass Spectrometric Identification and Differentiation of Botulinum Neurotoxins through Toxin Proteomics.

    PubMed

    Kalb, Suzanne R; Barr, John R

    2013-08-01

    Botulinum neurotoxins (BoNTs) cause the disease botulism, which can be lethal if untreated. There are seven known serotypes of BoNT, A-G, defined by their response to antisera. Many serotypes are distinguished into differing subtypes based on amino acid sequence and immunogenic properties, and some subtypes are further differentiated into toxin variants. Toxin characterization is important as different types of BoNT can respond differently to medical countermeasures for botulism, and characterization of the toxin can aid in epidemiologic and forensic investigations. Proteomic techniques have been established to determine the serotype, subtype, or toxin variant of BoNT. These techniques involve digestion of the toxin into peptides, tandem mass spectrometric (MS/MS) analysis of the peptides, and database searching to identify the BoNT protein. These techniques demonstrate the capability to detect BoNT and its neurotoxin-associated proteins, and differentiate the toxin from other toxins which are up to 99.9% identical in some cases. This differentiation can be accomplished from toxins present in a complex matrix such as stool, food, or bacterial cultures and no DNA is required.

  14. Rattlesnake Neurotoxin Structure, Mechanism of Action, Immunology and Molecular Biology

    DTIC Science & Technology

    1992-09-10

    and Kaiser, 1990). Sequencing of the three peptides present in the acidic subunit, two of which are blocked by pyroglutamate , represents a significant...deblock with pyroglutamate aminopeptidase were unsuccessful. The B-chain contained 35 amino acids and showed 91% amino acid identity witn the...similarities of all rattlesnake neurotoxins, showed that the acidic subunit plays more than a chaperone role for the basic subunit and is clearly

  15. Botulinum neurotoxin type C protease induces apoptosis in differentiated human neuroblastoma cells.

    PubMed

    Rust, Aleksander; Leese, Charlotte; Binz, Thomas; Davletov, Bazbek

    2016-05-31

    Neuroblastomas constitute a major cause of cancer-related deaths in young children. In recent years, a number of translation-inhibiting enzymes have been evaluated for killing neuroblastoma cells. Here we investigated the potential vulnerability of human neuroblastoma cells to protease activity derived from botulinum neurotoxin type C. We show that following retinoic acid treatment, human neuroblastoma cells, SiMa and SH-SY5Y, acquire a neuronal phenotype evidenced by axonal growth and expression of neuronal markers. Botulinum neurotoxin type C which cleaves neuron-specific SNAP25 and syntaxin1 caused apoptotic death only in differentiated neuroblastoma cells. Direct comparison of translation-inhibiting enzymes and the type C botulinum protease revealed one order higher cytotoxic potency of the latter suggesting a novel neuroblastoma-targeting pathway. Our mechanistic insights revealed that loss of ubiquitous SNAP23 due to differentiation coupled to SNAP25 cleavage due to botulinum activity may underlie the apoptotic death of human neuroblastoma cells.

  16. Recent developments with metalloprotease inhibitor class of drug candidates for Botulinum neurotoxins

    DOE PAGES

    Kumar, Gyanendra; Swaminathan, Subramanyam

    2015-03-01

    Botulinum Neurotoxins are the most poisonous of all toxins with lethal dose in nanogram quantities. They are also potential biological warfare and bioterrorism agents due to their high toxicity and ease of preparation. On the other hand BoNTs are also being increasingly used for therapeutic and cosmetic purposes, and with that the chances of accidental overdose are increasing. And despite the potential damage they could cause to human health, there are no post-intoxication drugs available so far. But progress is being made in this direction. The crystal structures in native form and bound with substrate peptides have been determined, andmore » these are enabling structure-based drug discovery possible. High throughput assays have also been designed to speed up the screening progress. Substrate-based and small molecule inhibitors have been identified. But turning high affinity inhibitors into clinically viable drug candidates has remained a challenge. We discuss here the latest developments and the future challenges in drug discovery for Botulinum neurotoxins.« less

  17. Recent developments with metalloprotease inhibitor class of drug candidates for botulinum neurotoxins.

    PubMed

    Kumar, Gyanendra; Swaminathan, Subramanyam

    2015-01-01

    Botulinum Neurotoxins are the most poisonous of all toxins with lethal dose in nanogram quantities. They are potential biological warfare and bioterrorism agents due to their high toxicity and ease of preparation. On the other hand BoNTs are also being increasingly used for therapeutic and cosmetic purposes, and with that the chances of accidental overdose are increasing. And despite the potential damage they could cause to human health, there are no post-intoxication drugs available so far. But progress is being made in this direction. The crystal structures in native form and bound with substrate peptides have been determined, and these are enabling structure-based drug discovery possible. High throughput assays have also been designed to speed up the screening progress. Substrate-based and small molecule inhibitors have been identified. But turning high affinity inhibitors into clinically viable drug candidates has remained a challenge. We discuss here the latest developments and the future challenges in drug discovery for Botulinum neurotoxins.

  18. Production of biofuel using molluscan pseudofeces derived from algal cells

    DOEpatents

    Das, Keshav C.; Chinnasamy, Senthil; Shelton, James; Wilde, Susan B.; Haynie, Rebecca S.; Herrin, James A.

    2012-08-28

    Embodiments of the present disclosure provide for novel strategies to harvest algal lipids using mollusks which after feeding algae from the growth medium can convert algal lipids into their biomass or excrete lipids in their pseudofeces which makes algae harvesting energy efficient and cost effective. The bioconverter, filter-feeding mollusks and their pseudofeces can be harvested and converted to biocrude using an advanced thermochemical liquefaction technology. Methods, systems, and materials are disclosed for the harvest and isolation of algal lipids from the mollusks, molluscan feces and molluscan pseudofeces.

  19. Algal Biomass Analysis by Laser-Based Analytical Techniques—A Review

    PubMed Central

    Pořízka, Pavel; Prochazková, Petra; Prochazka, David; Sládková, Lucia; Novotný, Jan; Petrilak, Michal; Brada, Michal; Samek, Ota; Pilát, Zdeněk; Zemánek, Pavel; Adam, Vojtěch; Kizek, René; Novotný, Karel; Kaiser, Jozef

    2014-01-01

    Algal biomass that is represented mainly by commercially grown algal strains has recently found many potential applications in various fields of interest. Its utilization has been found advantageous in the fields of bioremediation, biofuel production and the food industry. This paper reviews recent developments in the analysis of algal biomass with the main focus on the Laser-Induced Breakdown Spectroscopy, Raman spectroscopy, and partly Laser-Ablation Inductively Coupled Plasma techniques. The advantages of the selected laser-based analytical techniques are revealed and their fields of use are discussed in detail. PMID:25251409

  20. A novel single-parameter approach for forecasting algal blooms.

    PubMed

    Xiao, Xi; He, Junyu; Huang, Haomin; Miller, Todd R; Christakos, George; Reichwaldt, Elke S; Ghadouani, Anas; Lin, Shengpan; Xu, Xinhua; Shi, Jiyan

    2017-01-01

    Harmful algal blooms frequently occur globally, and forecasting could constitute an essential proactive strategy for bloom control. To decrease the cost of aquatic environmental monitoring and increase the accuracy of bloom forecasting, a novel single-parameter approach combining wavelet analysis with artificial neural networks (WNN) was developed and verified based on daily online monitoring datasets of algal density in the Siling Reservoir, China and Lake Winnebago, U.S.A. Firstly, a detailed modeling process was illustrated using the forecasting of cyanobacterial cell density in the Chinese reservoir as an example. Three WNN models occupying various prediction time intervals were optimized through model training using an early stopped training approach. All models performed well in fitting historical data and predicting the dynamics of cyanobacterial cell density, with the best model predicting cyanobacteria density one-day ahead (r = 0.986 and mean absolute error = 0.103 × 10 4  cells mL -1 ). Secondly, the potential of this novel approach was further confirmed by the precise predictions of algal biomass dynamics measured as chl a in both study sites, demonstrating its high performance in forecasting algal blooms, including cyanobacteria as well as other blooming species. Thirdly, the WNN model was compared to current algal forecasting methods (i.e. artificial neural networks, autoregressive integrated moving average model), and was found to be more accurate. In addition, the application of this novel single-parameter approach is cost effective as it requires only a buoy-mounted fluorescent probe, which is merely a fraction (∼15%) of the cost of a typical auto-monitoring system. As such, the newly developed approach presents a promising and cost-effective tool for the future prediction and management of harmful algal blooms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Recent progress and future challenges in algal biofuel production

    PubMed Central

    Shurin, Jonathan B.; Burkart, Michael D.; Mayfield, Stephen P.

    2016-01-01

    Modern society is fueled by fossil energy produced millions of years ago by photosynthetic organisms. Cultivating contemporary photosynthetic producers to generate energy and capture carbon from the atmosphere is one potential approach to sustaining society without disrupting the climate. Algae, photosynthetic aquatic microorganisms, are the fastest growing primary producers in the world and can therefore produce more energy with less land, water, and nutrients than terrestrial plant crops. We review recent progress and challenges in developing bioenergy technology based on algae. A variety of high-value products in addition to biofuels can be harvested from algal biomass, and these may be key to developing algal biotechnology and realizing the commercial potential of these organisms. Aspects of algal biology that differentiate them from plants demand an integrative approach based on genetics, cell biology, ecology, and evolution. We call for a systems approach to research on algal biotechnology rooted in understanding their biology, from the level of genes to ecosystems, and integrating perspectives from physical, chemical, and social sciences to solve one of the most critical outstanding technological problems. PMID:27781084

  2. Induction of protective neutralizing antibody responses against botulinum neurotoxin serotype C using plasmid carried by PLGA nanoparticles.

    PubMed

    Ruwona, Tinashe B; Xu, Haiyue; Li, Junwei; Diaz-Arévalo, Diana; Kumar, Amit; Zeng, Mingtao; Cui, Zhengrong

    2016-05-03

    Botulinum neurotoxin (BoNT) is a lethal neurotoxin, for which there is currently not an approved vaccine. Recent efforts in developing vaccine candidates against botulism have been directed at the heavy chain fragment of BoNT, because antibodies against this region have been shown to prevent BoNT from binding to its receptor and thus to nerve cell surface, offering protection against BoNT intoxication. In the present study, it was shown that immunization with plasmid DNA that encodes the 50 KDa C-terminal fragment of the heavy chain of BoNT serotype C (i.e., BoNT/C-Hc50) and is carried by cationic poly (lactic-co-glycolic) acid (PLGA) nanoparticles induces stronger BoNT/C-specific antibody responses, as compared to immunization with the plasmid alone. Importantly, the antibodies have BoNT/C-neutralizing activity, protecting the immunized mice from a lethal dose of BoNT/C challenge. A plasmid DNA vaccine encoding the Hc50 fragments of BoNT serotypes that cause human botulism may represent a viable vaccine candidate for protecting against botulinum neurotoxin intoxication.

  3. An Ultrasensitive Gold Nanoparticle-based Lateral Flow Test for the Detection of Active Botulinum Neurotoxin Type A

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Gao, Shan; Kang, Lin; Ji, Bin; Xin, Wenwen; Kang, Jingjing; Li, Ping; Gao, Jie; Wang, Hanbin; Wang, Jinglin; Yang, Hao

    2017-03-01

    Botulism is a severe and potentially lethal paralytic disease caused by several botulinum neurotoxin-producing Clostridia spp. In China, the majority of the cases caused by botulism were from less-developed rural areas. Here, we designed specific substrate peptides and reconfigured gold nanoparticle-based lateral flow test strip (LFTS) to develop an endopeptidase-based lateral flow assay for the diagnosis of botulism. We performed this lateral flow assay on botulinum neurotoxin-spiked human serum samples. The as-prepared LFTS had excellent performance in the detection of botulinum neurotoxin using only 1 μL of simulated serum, and its sensitivity and specificity were comparable to that of mouse lethality assay. Moreover, the assay takes only half a day and does not require highly trained laboratory staff, specialized facility, or equipment. Finally, our LFTS can be potentially extended to other serotypes of BoNTs by designing specific substrate peptides against the different types of BoNTs. Overall, we demonstrate a strategy by which LFTS and endopeptidase activity assays can be integrated to achieve facile and economic diagnosis of botulism in resource-limited settings.

  4. Rapid microfluidic assay for the detection of botulinum neurotoxin in animal sera

    USDA-ARS?s Scientific Manuscript database

    The potent botulinum neurotoxins (BoNTs) represent a threat to public health and safety. Botulism is a disease caused by BoNT intoxication that results in muscle paralysis that can be fatal. Sensitive assays capable of detecting BoNTs from different substrates and settings are essential to limit f...

  5. Marine Neurotoxins: Ingestible Toxins.

    PubMed

    Stommel, Elijah W.; Watters, Michael R.

    2004-03-01

    Fish and shellfish account for a significant portion of food-borne illnesses throughout the world. In general, three classes of diseases result from seafood consumption--intoxication, allergies, and infections. In this review, the authors discuss several seafood-borne toxins, including domoic acid, which acts on the central nervous system. In addition, the authors discuss ciguatoxin-, brevetoxin-, saxitoxin-, tetrodotoxin-, and scombroid-related histamine toxicity, all of which act primarily on the peripheral nervous system. Fish has become a very popular food in the US mostly related to its potential health benefits. Fish is consumed to such a degree that fishing stocks are reportedly at an all time low from what seemed like an endless supply even 30 years ago. One of the most significant threats to human intoxication is the recreational harvest of shellfish, often times located in remote locations where the harvesters are subsistent on fishery resources and have no monitoring in place. The hazard to intoxication is not as common in purchased seafood, which is more stringently regulated, yet still is a serious problem. Most ingestible toxins are thermo-stable and therefore unaffected by cooking, freezing, or salting. Air transport of consumable products throughout the world makes it easy to obtain exotic edibles from far away countries. A seemingly unusual toxin can be more commonly encountered than previously thought and it is important to consider this when evaluating patients. Recognition and treatment of various neurologic symptoms related to seafood ingestion is paramount in today's mobile, gastronomic world. Specific treatments vary with each individual toxin and with the individual's specific reaction to the toxin. Generally, some degree of medical care is required with all ingestible toxin exposure, ranging from simple administration of medication and hydration to ventilatory and cardiovascular support.

  6. Collection and conversion of algal lipid

    NASA Astrophysics Data System (ADS)

    Lin, Ching-Chieh

    Sustainable economic activities mandate a significant replacement of fossil energy by renewable forms. Algae-derived biofuels are increasingly seen as an alternative source of energy with potential to supplement the world's ever increasing demand. Our primary objective is, once the algae were cultivated, to eliminate or make more efficient energy-intensive processing steps of collection, drying, grinding, and solvent extraction prior to conversion. To overcome the processing barrier, we propose to streamline from cultivated algae to biodiesel via algal biomass collection by sand filtration, cell rupturing with ozone, and immediate transesterification. To collect the algal biomass, the specific Chlorococcum aquaticum suspension was acidified to pH 3.3 to promote agglomeration prior to sand filtration. The algae-loaded filter bed was drained of free water and added with methanol and ozonated for 2 min to rupture cell membrane to accelerate release of the cellular contents. The methanol solution now containing the dissolved lipid product was collected by draining, while the filter bed was regenerated by further ozonation when needed. The results showed 95% collection of the algal biomass from the suspension and a 16% yield of lipid from the algae, as well as restoration of filtration velocity of the sand bed via ozonation. The results further showed increased lipid yield upon cell rupturing and transesterified products composed entirely of fatty acid methyl ester (FAME) compounds, demonstrating that the rupture and transesterification processes could proceed consecutively in the same medium, requiring no separate steps of drying, extraction, and conversion. The FAME products from algae without exposure to ozone were mainly of 16 to 18 carbons containing up to 3 double bonds, while those from algae having been ozonated were smaller, highly saturated hydrocarbons. The new technique streamlines individual steps from cultivated algal lipid to transesterified products and

  7. Two-decade reconstruction of algal blooms in China's Lake Taihu.

    PubMed

    Duan, Hongtao; Ma, Ronghua; Xu, Xiaofeng; Kong, Fanxiang; Zhang, Shouxuan; Kong, Weijuan; Hao, Jingyan; Shang, Linlin

    2009-05-15

    The algal blooming in the inland lakes has become a critically important issue for its impacts not only on local natural and social environments, but also on global human community. However, the occurrences of blooming on larger spatial scale and longer time scale have rarely been studied. As the third largest freshwater lake in China, Lake Taihu has drawn increasing attention from both public and scientific communities concerning its degradation. Using available satellite images, we reconstructed the spatial and temporal patterns of algal blooms in Lake Taihu through the pasttwo decades. The blooming characteristics over the past two decades were examined with the dynamic of initial blooming date being highlighted. The initial blooming dates were gradually becoming later and later from 1987 to 1997. Since 1998, however, the initial blooming date came earlier and earlier year by year, with approximately 11.42 days advancement per year. From 1987 to 2007, the annual duration of algal blooms lengthened year by year, in line with the substantial increases in the occurrences of algal blooms in spring and summer months. The algal blooms usually occur in northern bays and spread to center and south parts of Lake Taihu. The increases in previous winter's mean daily minimum temperature partially contributed to the earlier blooming onset. However, human activities, expressed as total gross domestic product (GDP) and population, outweighed the climatic contribution on the initial blooming date and blooming duration. This study may provide insights for the policy makers who try to curb the algal blooming and improve the water quality of inland freshwater lakes.

  8. Molecular composition and extinction coefficient of native botulinum neurotoxin complex produced by Clostridium botulinum hall A strain.

    PubMed

    Bryant, Anne-Marie; Davis, Jenny; Cai, Shuowei; Singh, Bal Ram

    2013-02-01

    Seven distinct strains of Clostridium botulinum (type A to G) each produce a stable complex of botulinum neurotoxin (BoNT) along with neurotoxin-associated proteins (NAPs). Type A botulinum neurotoxin (BoNT/A) is produced with a group of NAPs and is commercially available for the treatment of numerous neuromuscular disorders and cosmetic purposes. Previous studies have indicated that BoNT/A complex composition is specific to the strain, the method of growth and the method of purification; consequently, any variation in composition of NAPs could have significant implications to the effectiveness of BoNT based therapeutics. In this study, a standard analytical technique using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and densitometry analysis was developed to accurately analyze BoNT/A complex from C. botulinum type A Hall strain. Using 3 batches of BoNT/A complex the molar ratio was determined as neurotoxin binding protein (NBP, 124 kDa), heavy chain (HC, 90 kDa), light chain (LC, 53 kDa), NAP-53 (50 kDa), NAP-33 (36 kDa), NAP-22 (24 kDa), NAP-17 (17 kDa) 1:1:1:2:3:2:2. With Bradford, Lowry, bicinchoninic acid (BCA) and spectroscopic protein estimation methods, the extinction coefficient of BoNT/A complex was determined as 1.54 ± 0.26 (mg/mL)(-1)cm(-1). These findings of a reproducible BoNT/A complex composition will aid in understanding the molecular structure and function of BoNT/A and NAPs.

  9. Role of gas vesicles and intra-colony spaces during the process of algal bloom formation.

    PubMed

    Zhang, Yongsheng; Zheng, Binghui; Jiang, Xia; Zheng, Hao

    2013-06-01

    Aggregation morphology, vertical distribution, and algal density were analyzed during the algal cell floating process in three environments. The role of gas vesicles and intra-colony spaces was distinguished by algal blooms treated with ultrasonic waves and high pressure. Results demonstrated that the two buoyancy providers jointly provide buoyancy for floating algal cells. The results were also confirmed by force analysis. In the simulation experiment, the buoyancy acting on algal cells was greater than its gravity at sample ports 2 and 3 of a columnar-cultivated cell vessel, and intra-colony spaces were not detected. In Taihu Lake, gas vesicle buoyancy was notably less than total algal cell gravity. Buoyancy provided by intra-colony spaces exceeded total algal cell gravity at the water surface, but not at other water depths. In the Daning River, total buoyancies provided by the two buoyancy providers were less than total algal cell gravity at different water depths.

  10. Recycling algae to improve species control and harvest efficiency from a high rate algal pond.

    PubMed

    Park, J B K; Craggs, R J; Shilton, A N

    2011-12-15

    This paper investigates the influence of recycling gravity harvested algae on species dominance and harvest efficiency in wastewater treatment High Rate Algal Ponds (HRAP). Two identical pilot-scale HRAPs were operated over one year either with (HRAP(r)) or without (HRAP(c)) harvested algal biomass recycling. Algae were harvested from the HRAP effluent in algal settling cones (ASCs) and harvest efficiency was compared to settlability in Imhoff cones five times a week. A microscopic image analysis technique was developed to determine relative algal dominance based on biovolume and was conducted once a month. Recycling of harvested algal biomass back to the HRAP(r) maintained the dominance of a single readily settleable algal species (Pediastrum sp.) at >90% over one year (compared to the control with only 53%). Increased dominance of Pediastrum sp. greatly improved the efficiency of algal harvest (annual average of >85% harvest for the HRAP(r) compared with ∼60% for the control). Imhoff cone experiments demonstrated that algal settleability was influenced by both the dominance of Pediastrum sp. and the species composition of remaining algae. Algal biomass recycling increased the average size of Pediastrum sp. colonies by 13-30% by increasing mean cell residence time. These results indicate that recycling gravity harvested algae could be a simple and effective operational strategy to maintain the dominance of readily settleable algal species, and enhance algal harvest by gravity sedimentation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Translocation of botulinum neurotoxins and associated proteins across intestinal epithelial cells(Abstract)

    USDA-ARS?s Scientific Manuscript database

    Botulinum neurotoxins(BoNTs)secreted by Clostridium botulinum are some of the most poisonous toxins in nature and considered to be major bioterrorism threats. To date, seven BoNT subtypes (A to G) have been identified. When secreted from bacteria, some BoNTs associate with a non-toxic, non hemagglu...

  12. Enhanced Production of Green Tide Algal Biomass through Additional Carbon Supply

    PubMed Central

    de Paula Silva, Pedro H.; Paul, Nicholas A.; de Nys, Rocky; Mata, Leonardo

    2013-01-01

    Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci) to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2) enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3 −) as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3 − affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7–9.9), and grew at similar rates up to pH 9, demonstrating HCO3 − utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%), Chaetomorpha linum (24%) and to a lesser extent for Cladophora patentiramea (11%), compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3 −. PMID:24324672

  13. Enhanced production of green tide algal biomass through additional carbon supply.

    PubMed

    de Paula Silva, Pedro H; Paul, Nicholas A; de Nys, Rocky; Mata, Leonardo

    2013-01-01

    Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci) to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2) enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3 (-)) as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3 (-) affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7-9.9), and grew at similar rates up to pH 9, demonstrating HCO3 (-) utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%), Chaetomorpha linum (24%) and to a lesser extent for Cladophora patentiramea (11%), compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3 (-).

  14. Structure-function relationships of curaremimetic neurotoxin loop 2 and of a structurally similar segment of rabies virus glycoprotein in their interaction with the nicotinic acetylcholine receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lentz, T.L.

    1991-11-12

    Peptides corresponding to portions of curaremimetic neurotoxin loop 2 and to a structurally similar segment of rabies virus glycoprotein were synthetically modified in order to gain information on structure-function relationships of neurotoxin loop 2 interactions with the acetylcholine receptor. Binding of synthetic peptides to the acetylcholine receptor of Torpedo electric organ membranes was assessed by measuring their ability to inhibit the binding of {sup 125}I-{alpha}-bungarotoxin to the receptor. The peptides showing the highest affinity for the receptor were a peptide corresponding to the sequence of loop 2 (residues 25-44) of Ophiophagus hannah (king cobra) toxin b and the structurally similarmore » segment of CVS rabies virus glycoprotein. These affinities were comparable to those of d-tubocurarine and suberyldicholine. These results demonstrate the importance of loop 2 in the neurotoxin interaction with the receptor. N- and C-terminal deletions of the loop 2 peptides and substitution of residues invariant or highly conserved among neurotoxins were performed in order to determine the role of individual residues in binding. Residues 25-40 are the most crucial in the interaction with the acetylcholine receptor. Since this region of the glycoprotein contains residues corresponding to all of the functionally invariant neurotoxin residues, it may interact with the acetylcholine receptor through a mechanism similar to that of the neurotoxins.« less

  15. Molecular formulae of marine and terrigenous dissolved organic matter detected by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Koch, Boris P.; Witt, Matthias; Engbrodt, Ralph; Dittmar, Thorsten; Kattner, Gerhard

    2005-07-01

    The chemical structure of refractory marine dissolved organic matter (DOM) is still largely unknown. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS) was used to resolve the complex mixtures of DOM and provide valuable information on elemental compositions on a molecular scale. We characterized and compared DOM from two sharply contrasting aquatic environments, algal-derived DOM from the Weddell Sea (Antarctica) and terrigenous DOM from pore water of a tropical mangrove area in northern Brazil. Several thousand molecular formulas in the mass range of 300-600 Da were identified and reproduced in element ratio plots. On the basis of molecular elemental composition and double-bond equivalents (DBE) we calculated an average composition for marine DOM. O/C ratios in the marine samples were lower (0.36 ± 0.01) than in the mangrove pore-water sample (0.42). A small proportion of chemical formulas with higher molecular mass in the marine samples were characterized by very low O/C and H/C ratios probably reflecting amphiphilic properties. The average number of unsaturations in the marine samples was surprisingly high (DBE = 9.9; mangrove pore water: DBE = 9.4) most likely due to a significant contribution of carbonyl carbon. There was no significant difference in elemental composition between surface and deep-water DOM in the Weddell Sea. Although there were some molecules with unique marine elemental composition, there was a conspicuous degree of similarity between the terrigenous and algal-derived end members. Approximately one third of the molecular formulas were present in all marine as well as in the mangrove samples. We infer that different forms of microbial degradation ultimately lead to similar structural features that are intrinsically refractory, independent of the source of the organic matter and the environmental conditions where degradation took place.

  16. Cyanobacterial-algal cenoses in ordinary chernozems under the impact of different phytoameliorants

    NASA Astrophysics Data System (ADS)

    Dubovik, I. E.; Suyundukov, Ya. T.; Khasanova, R. F.; Shalygina, R. R.

    2016-04-01

    General ecological and taxonomic characteristics of cyanobacterial-algal cenoses in ordinary chernozems under different ameliorative plants (phytoameliorants) were studied in the Trans-Ural region of the Republic of Bashkortostan. A comparative analysis of the taxa of studied cenoses in the soils under leguminous herbs and grasses was performed. The phytoameliorative effect of different herbs and their relationships with cyanobacterial-algal cenoses were examined. Overall, 134 cyanoprokaryotic and algal species belonging to 70 genera, 36 families, 15 orders, and 9 classes were identified. Cyanobacterial-algal cenoses included the divisions of Chlorophyta, Cyanoprokaryota, Xanthophyta, Bacillariophyta, and Euglenophyta. Representatives of Ch-, X-, CF-, and P-forms were the leading ecobiomorphs in the studied cenoses.

  17. Cerebrovascular Acute Radiation Syndrome : Radiation Neurotoxins, Mechanisms of Toxicity, Neuroimmune Interactions.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Slava

    Introduction: Cerebrovascular Acute Radiation Syndrome (CvARS) is an extremely severe in-jury of Central Nervous System (CNS) and Peripheral Nervous System (PNS). CvARS can be induced by the high doses of neutron, heavy ions, or gamma radiation. The Syndrome clinical picture depends on a type, timing, and the doses of radiation. Four grades of the CvARS were defined: mild, moderate, severe, and extremely severe. Also, four stages of CvARS were developed: prodromal, latent, manifest, outcome -death. Duration of stages depends on the types, doses, and time of radiation. The CvARS clinical symptoms are: respiratory distress, hypotension, cerebral edema, severe disorder of cerebral blood microcirculation, and acute motor weakness. The radiation toxins, Cerebro-Vascular Radiation Neurotoxins (SvARSn), determine development of the acute radiation syndrome. Mechanism of action of the toxins: Though pathogenesis of radiation injury of CNS remains unknown, our concept describes the Cv ARS as a result of Neurotoxicity and Excitotoxicity, cell death through apoptotic necrosis. Neurotoxicity occurs after the high doses radiation exposure, formation of radiation neuro-toxins, possible bioradicals, or group of specific enzymes. Intracerebral hemorrhage can be a consequence of the damage of endothelial cells caused by radiation and the radiation tox-ins. Disruption of blood-brain barrier (BBB)and blood-cerebrospinal fluid barrier (BCFB)is possibly the most significant effect of microcirculation disorder and metabolic insufficiency. NMDA-receptors excitotoxic injury mediated by cerebral ischemia and cerebral hypoxia. Dam-age of the pyramidal cells in layers 3 and 5 and Purkinje cell layer the cerebral cortex , damage of pyramidal cells in the hippocampus occur as a result of cerebral ischemia and intracerebral bleeding. Methods: Radiation Toxins of CV ARS are defined as glycoproteins with the molec-ular weight of RT toxins ranges from 200-250 kDa and with high enzymatic activity

  18. The Regulation of Gene Expression in Cnidarian-Algal Associations.

    DTIC Science & Technology

    1998-07-13

    symbiotic cnidarians , Aiptasia pallida, Anthopleura eligantissima, synbiosis-specific proteins, cDNA libraries, O. SECURITY CLASSIFICATION OP REPORT...gene expression in cnidarian -algal associations Award Period: 1 July 1995-30 June 1998 Objectives: A. To identify and characterize heat shock...Exploring Symbiosis-Specific Gene Expression in Cnidarian /Algal Associations. In: Molecular Approaches to the Study of the Ocean.. Ed. K. Cooksey, Chapman

  19. 2016 National Algal Biofuels Technology Review Fact Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-06-01

    Algae-based biofuels and bioproducts offer great promise in contributing to the U.S. Department of Energy (DOE) Bioenergy Technologies Office’s (BETO’s) vision of a thriving and sustainable bioeconomy fueled by innovative technologies. The state of technology for producing algal biofuels continues to mature with ongoing investment by DOE and the private sector, but additional research, development, and demonstration (RD&D) is needed to achieve widespread deployment of affordable, scalable, and sustainable algal biofuels.

  20. Analysis-Software for Hyperspectral Algal Reflectance Probes v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timlin, Jerilyn A.; Reichardt, Thomas A.; Jenson, Travis J.

    This software provides onsite analysis of the hyperspectral reflectance data acquired on an outdoor algal pond by a multichannel, fiber-coupled spectroradiometer. The analysis algorithm is based on numerical inversion of a reflectance model, in which the above-water reflectance is expressed as a function of the single backscattering albedo, which is dependent on the backscatter and absorption coefficients of the algal culture, which are in turn related to the algal biomass and pigment optical activity, respectively. Prior to the development of this software, while raw multichannel data were displayed in real time, analysis required a post-processing procedure to extract the relevantmore » parameters. This software provides the capability to track the temporal variation of such culture parameters in real time, as raw data are being acquired, or can be run in a post processing mode. The software allows the user to select between different algal species, incorporate the appropriate calibration data, and observe the quality of the resulting model inversions.« less

  1. Effects of fertilizers used in agricultural fields on algal blooms

    NASA Astrophysics Data System (ADS)

    Chakraborty, Subhendu; Tiwari, P. K.; Sasmal, S. K.; Misra, A. K.; Chattopadhyay, Joydev

    2017-06-01

    The increasing occurrence of algal blooms and their negative ecological impacts have led to intensified monitoring activities. This needs the proper identification of the most responsible factor/factors for the bloom formation. However, in natural systems, algal blooms result from a combination of factors and from observation it is difficult to identify the most important one. In the present paper, using a mathematical model we compare the effects of three human induced factors (fertilizer input in agricultural field, eutrophication due to other sources than fertilizers, and overfishing) on the bloom dynamics and DO level. By applying a sophisticated sensitivity analysis technique, we found that the increasing use of fertilizers in agricultural field causes more rapid algal growth and decreases DO level much faster than eutrophication from other sources and overfishing. We also look at the mechanisms how fertilizer input rate affects the algal bloom dynamics and DO level. The model can be helpful for the policy makers in determining the influential factors responsible for the bloom formation.

  2. A review of algal research in space

    NASA Astrophysics Data System (ADS)

    Niederwieser, Tobias; Kociolek, Patrick; Klaus, David

    2018-05-01

    With the continued expansion of human presence into space, typical mission durations will routinely exceed six months and extend to distances beyond the Moon. As such, sending periodic resupply vehicles, as currently provided to the International Space Station, will likely no longer be feasible. Instead, self-sustaining life support systems that recycle human waste products will become increasingly necessary, especially for planetary bases. The idea of bioregenerative life support systems using algal photobioreactors has been discussed since the beginning of the space age. In order to evaluate how such a system could be implemented, a variety of space flight studies aimed at characterizing the potential for using algae in air revitalization, water recycling, food production, and radiation shielding applications have been conducted over the years. Also, given the recent, growing interest in algal research for regenerative fuel production, food supplements, and cosmetics, many algal strains are already well documented from related terrestrial experiments. This paper reviews past algal experiments flown in space from 1960 until today. Experimental methods and results from 51 investigations utilizing either green algae (Chlorophyta), cyanobacteria (Cyanophyta), or Euglenophyta are analyzed and categorized by a variety of parameters, including size, species and duration. The collected data are summarized in a matrix that allows easy comparison between the experiments and provides important information for future life support system requirement definition and design. Similarities between experiment results are emphasized. Common problems and shortcomings are summarized and analyzed in terms of potential solutions. Finally, key research gaps, which must be closed before developing a functional life support system, are identified.

  3. Multi-centennial Record of Labrador Sea Primary Productivity and Sea-Ice Variability Archived in Coralline Algal Ba/Ca

    NASA Astrophysics Data System (ADS)

    Chan, Phoebe; Halfar, Jochen; Adey, Walter; Hetzinger, Steffen; Zack, Thomas; Moore, Kent; Wortmann, Ulrich; Williams, Branwen; Hou, Alicia

    2017-04-01

    Arctic sea-ice thickness and concentration have dropped by approximately 9% per decade since 1978. Concurrent with this sea-ice decline is an increase in rates of phytoplankton productivity, driven by shoaling of the mixed layer and enhanced transmittance of solar radiation into the surface ocean. This has recently been confirmed by phytoplankton studies in Arctic and Subarctic basins that have revealed earlier timing, prolonged duration, and increased primary productivity of the spring phytoplankton bloom. However, difficulties of navigating in remote ice-laden waters and harsh polar climates have often resulted in short and incomplete records of in-situ plankton abundance in the northwestern Labrador Sea. Alternatively, information of past ocean productivity may be gained through the study of trace nutrient distributions in the surface water column. Investigations of dissolved barium (Ba) concentrations in the Arctic reveal significant depletions of Ba in surface seawaters due to biological scavenging during the spring phytoplankton bloom. Here we apply a barium-to-calcium (Ba/Ca) and carbon isotope (δ13C) multiproxy approach to long-lived crustose coralline algae in order to reconstruct an annually-resolved multi-centennial record of Labrador Sea productivity related to sea-ice variability in Labrador, Canada that extends well into the Little Ice Age (LIA; 1646 AD). The crustose coralline alga Clathromorphum compactum is a shallow marine calcareous plant that is abundant along the eastern Canadian coastline, and produces annual growth increments which allow for the precise calendar dating and geochemical sampling of hard tissue. Algal Ba/Ca ratios can serve as a promising new proxy for surface water productivity, demonstrating a close correspondence to δ13C that does not suffer from the anthropogenically-induced carbon isotope decline (ex. Suess Effect) beginning in the 1960s. Coralline algal Ba/Ca demonstrates statistically significant correlations to both

  4. Dolichospermum and Aphanizomenon as neurotoxins producers in some Russian freshwaters.

    PubMed

    Chernova, Ekaterina; Sidelev, Sergey; Russkikh, Iana; Voyakina, Ekaterina; Babanazarova, Olga; Romanov, Roman; Kotovshchikov, Anton; Mazur-Marzec, Hanna

    2017-05-01

    Last decades, cyanobacterial blooms have been commonly reported in Russia. Among the boom-forming species, potential toxin producers have been identified. The aim of this paper was to study the presence of neurotoxic compounds - saxitoxins and anatoxin-a - in water bodies from different regions of Russia. We also made attempts to identify the neurotoxin-producing genera. The good convergence of the results obtained by light microscopy, PCR and LC-MS/MS analyses indicated the presence of active neurotoxin producing species in all investigated water bodies. Saxitoxin was detected in phytoplankton from 4 water bodies in Central European Russia and West Siberia, including lake and reservoirs used as a source for potable water. The water bodies differed with the respect of saxitoxin producers which belonged to Aphanizomenon and/or Dolichospermum genera. For the first time, we obtained quantitative data on the intracellular saxitoxin concentration in Russian freshwaters using LC-MS/MS. Anatoxin-a was detected only in lakes of Northwestern Russia. In the eutrophic shallow Lower Suzdal Lake, Aphanizomenon was the stated anatoxin-a-producing genus. In the large shallow artificial hypertrophic Sestroretskij Razliv Lake, it was very likely that both dominant species - Aphanizomenon flos-aquae and Dolichospermum planctonicum - were anatoxin-a producers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Botulinum neurotoxin structure, engineering, and novel cellular trafficking and targeting.

    PubMed

    Singh, B R

    2006-04-01

    Botulinum neurotoxins are multifaceted molecules, which are truly unique not only in their mode of action, but also their utility as a drug carrier either across the gut wall or to the nerve terminals. The molecule is divided in clear functional domains that can operate independently. This feature can be used to employ them as cargo carrier by linking other drugs or vaccines with the binding and translocation domains of BoNT. While the domain structures are largely independent of each other, the dynamic structure of these domains, especially that of the enzymatic domain (L chain), is quite different from the reported crystal structures for several BoNT serotypes and their enzymatic domain. This review discusses the comparative structures of BoNT in crystal and solution for their relevance to the molecular mechanism of BoNT action, especially in view of our recent discovery that the enzymatically active structure of the BoNT exists as a molten-globule and that of the endopeptidase domain as a novel PRIME conformation. Finally, a non-exhaustive discussion has been included to explain the long-lasting biological effects of certain serotypes of BoNT, based on the current knowledge of the structure-function of different serotypes of botulinum neurotoxins.

  6. Algicidal Effects of a Novel Marine Pseudoalteromonas Isolate (Class Proteobacteria, Gamma Subdivision) on Harmful Algal Bloom Species of the Genera Chattonella, Gymnodinium, and Heterosigma

    PubMed Central

    Lovejoy, Connie; Bowman, John P.; Hallegraeff, Gustaaf M.

    1998-01-01

    During a bacterial survey of the Huon Estuary in southern Tasmania, Australia, we isolated a yellow-pigmented Pseudoalteromonas strain (class Proteobacteria, gamma subdivision), designated strain Y, that had potent algicidal effects on harmful algal bloom species. This organism was identified by 16S rRNA sequencing as a strain with close affinities to Pseudoalteromonas peptidysin. This bacterium caused rapid cell lysis and death (within 3 h) of gymnodinoids (including Gymnodinium catenatum) and raphidophytes (Chattonella marina and Heterosigma akashiwo). It caused ecdysis of armored dinoflagellates (e.g., Alexandrium catenella, Alexandrium minutum, and Prorocentrum mexicanum), but the algal cultures then recovered over the subsequent 24 h. Strain Y had no effect on a cryptomonad (Chroomonas sp.), a diatom (Skeletonema sp.), a cyanobacterium (Oscillatoria sp.), and two aplastidic protozoans. The algicidal principle of strain Y was excreted into the seawater medium and lost its efficacy after heating. Another common bacterial species, Pseudoalteromonas carrageenovora, was isolated at the same time and did not have these algicidal effects. The minimum concentrations of strain Y required to kill G. catenatum were higher than the mean concentrations found in nature under nonbloom conditions. However, the new bacterium showed a chemotactic, swarming behavior that resulted in localized high concentrations around target organisms. These observations imply that certain bacteria could play an important role in regulating the onset and development of harmful algal blooms. PMID:9687434

  7. Small herbivores suppress algal accumulation on Agatti atoll, Indian Ocean

    NASA Astrophysics Data System (ADS)

    Cernohorsky, Nicole H.; McClanahan, Timothy R.; Babu, Idrees; Horsák, Michal

    2015-12-01

    Despite large herbivorous fish being generally accepted as the main group responsible for preventing algal accumulation on coral reefs, few studies have experimentally examined the relative importance of herbivore size on algal communities. This study used exclusion cages with two different mesh sizes (1 × 1 cm and 6 × 6 cm) to investigate the impact of different-sized herbivores on algal accumulation rates on the shallow (<2 m) back-reef of Agatti atoll, Lakshadweep. The fine-mesh cages excluded all visible herbivores, which had rapid and lasting effects on the benthic communities, and, after 127 d of deployment, there was a visible and significant increase in algae (mainly macroalgae) with algal volume being 13 times greater than in adjacent open areas. The coarse-mesh cages excluded larger fishes (>8 cm body depth) while allowing smaller fishes to access the plots. In contrast to the conclusions of most previous studies, the exclusion of large herbivores had no significant effect on the accumulation of benthic algae and the amount of algae present within the coarse-mesh cages was relatively consistent throughout the experimental period (around 50 % coverage and 1-2 mm height). The difference in algal accumulation between the fine-mesh and coarse-mesh cages appears to be related to the actions of small individuals from 12 herbivorous fish species (0.17 ind. m-2 and 7.7 g m-2) that were able to enter through the coarse mesh. Although restricted to a single habitat, these results suggest that when present in sufficient densities and diversity, small herbivorous fishes can prevent the accumulation of algal biomass on coral reefs.

  8. Algal bloom-associated disease outbreaks among users of freshwater lakes-United States, 2009 - 2010

    EPA Science Inventory

    Algal blooms’ are local abundances of phytoplankton – microscopic photosynthesizing aquatic organisms found in surface waters worldwide; blooms are variable temporally and spatially and frequently produce a visible algal scum on the water. Harmful algal blooms (HABs) are abundan...

  9. Advancing Commercialization of Algal Biofuel through Increased Biomass Productivity and Technical Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anton, David

    The proposed project built on the foundation of over several years years of intensive and ground-breaking R&D work at Cellana's Kona Demonstration Facility (KDF). Phycological and engineering solutions were provided to tackle key cultivation issues and technical barriers limiting algal biomass productivity identified through work conducted outdoors at industrial (1 acre) scale. The objectives of this project were to significantly improve algal biomass productivity and reduce operational cost in a seawater-based system, using results obtained from two top-performing algal strains as the baseline while technically advancing and more importantly, integrating the various unit operations involved in algal biomass production, processing,more » and refining.« less

  10. Algal Accessory Pigment Detection Using AVIRIS Image-Derived Spectral Radiance Data

    NASA Technical Reports Server (NTRS)

    Richardson, Laurie L.; Ambrosia, Vincent G.

    1996-01-01

    Visual and derivative analyses of AVIRIS spectral data can be used to detect algal accessory pigments in aquatic communities. This capability extends the use of remote sensing for the study of aquatic ecosystems by allowing detection of taxonomically significant pigment signatures which yield information about the type of algae present. Such information allows remote sensing-based assessment of aquatic ecosystem health, as in the detection of nuisance blooms of cyanobacteria or toxic blooms of dinoflagellates. Remote sensing of aquatic systems has traditionally focused on quantification of chlorophyll a, a photoreactive (and light-harvesting) pigment which is common to all algae as well as cyanobacteria (bluegreen algae). Due to the ubiquitousness of this pigment within algae, chl a is routinely measured to estimate algal biomass both during ground-truthing and using various airborne or satellite based sensors, including AVIRIS. Within the remote sensing and aquatic sciences communities, ongoing research has been performed to detect algal accessory pigments for assessment of algal population composition. This research is based on the fact that many algal accessory pigments are taxonomically significant, and all are spectrally unique. Aquatic scientists have been refining pigment analysis techniques, primarily high performance liquid chromatography, or HPLC, to detect specific pigments as a time-saving alternative to individual algal cell identifications and counts. Remote sensing scientists are investigating the use of pigment signatures to construct pigment libraries analogous to mineral spectral libraries used in geological remote sensing applications. The accessory pigment approach has been used successfully in remote sensing using data from the Thematic Mapper, low-altitude, multiple channel scanners, field spectroradiometers and the AVIRIS hyperspectral scanner. Due to spectral and spatial resolution capabilities, AVIRIS is the sensor of choice for such

  11. Development of a quail embryo model for the detection of botulinum neurotoxin activity

    USDA-ARS?s Scientific Manuscript database

    Clostridium botulinum is a ubiquitous microorganism that under anaerobic conditions produces botulinum neurotoxins. In regards to both food-borne illness and the potential use of botulinum toxin as a biological weapon, the capability to assess the amount of toxin in a food or environmental sample e...

  12. Systematic analysis of snake neurotoxins' functional classification using a data warehousing approach.

    PubMed

    Siew, Joyce Phui Yee; Khan, Asif M; Tan, Paul T J; Koh, Judice L Y; Seah, Seng Hong; Koo, Chuay Yeng; Chai, Siaw Ching; Armugam, Arunmozhiarasi; Brusic, Vladimir; Jeyaseelan, Kandiah

    2004-12-12

    Sequence annotations, functional and structural data on snake venom neurotoxins (svNTXs) are scattered across multiple databases and literature sources. Sequence annotations and structural data are available in the public molecular databases, while functional data are almost exclusively available in the published articles. There is a need for a specialized svNTXs database that contains NTX entries, which are organized, well annotated and classified in a systematic manner. We have systematically analyzed svNTXs and classified them using structure-function groups based on their structural, functional and phylogenetic properties. Using conserved motifs in each phylogenetic group, we built an intelligent module for the prediction of structural and functional properties of unknown NTXs. We also developed an annotation tool to aid the functional prediction of newly identified NTXs as an additional resource for the venom research community. We created a searchable online database of NTX proteins sequences (http://research.i2r.a-star.edu.sg/Templar/DB/snake_neurotoxin). This database can also be found under Swiss-Prot Toxin Annotation Project website (http://www.expasy.org/sprot/).

  13. Universal and specific quantitative detection of botulinum neurotoxin genes

    PubMed Central

    2010-01-01

    Background Clostridium botulinum, an obligate anaerobic spore-forming bacterium, produces seven antigenic variants of botulinum toxin that are distinguished serologically and termed "serotypes". Botulinum toxin blocks the release of acetylcholine at neuromuscular junctions resulting in flaccid paralysis. The potential lethality of the disease warrants a fast and accurate means of diagnosing suspected instances of food contamination or human intoxication. Currently, the Food and Drug Administration (FDA)-accepted assay to detect and type botulinum neurotoxins (BoNTs) is the mouse protection bioassay. While specific and sensitive, this assay requires the use of laboratory animals, may take up to four days to achieve a diagnosis, and is unsuitable for high-throughput analysis. We report here a two-step PCR assay that identifies all toxin types, that achieves the specificity of the mouse bioassay while surpassing it in equivalent sensitivity, that has capability for high-throughput analysis, and that provides quantitative results within hours. The first step of our assay consists of a conventional PCR that detects the presence of C. botulinum regardless of the neurotoxin type. The second step uses quantitative PCR (qPCR) technology to determine the specific serotype of the neurotoxin. Results We assayed purified C. botulinum DNA and crude toxin preparations, as well as food and stool from healthy individuals spiked with purified BoNT DNA, and one stool sample from a case of infant botulism for the presence of the NTNH gene, which is part of the BoNT gene cluster, and for the presence of serotype-specific BoNT genes. The PCR surpassed the mouse bioassay both in specificity and sensitivity, detecting positive signals in BoNT preparations containing well below the 1 LD50 required for detection via the mouse bioassay. These results were type-specific and we were reliably able to quantify as few as 10 genomic copies. Conclusions While other studies have reported

  14. Centers for Oceans and Human Health: a unified approach to the challenge of harmful algal blooms

    PubMed Central

    Erdner, Deana L; Dyble, Julianne; Parsons, Michael L; Stevens, Richard C; Hubbard, Katherine A; Wrabel, Michele L; Moore, Stephanie K; Lefebvre, Kathi A; Anderson, Donald M; Bienfang, Paul; Bidigare, Robert R; Parker, Micaela S; Moeller, Peter; Brand, Larry E; Trainer, Vera L

    2008-01-01

    Background Harmful algal blooms (HABs) are one focus of the national research initiatives on Oceans and Human Health (OHH) at NIEHS, NOAA and NSF. All of the OHH Centers, from the east coast to Hawaii, include one or more research projects devoted to studying HAB problems and their relationship to human health. The research shares common goals for understanding, monitoring and predicting HAB events to protect and improve human health: understanding the basic biology of the organisms; identifying how chemistry, hydrography and genetic diversity influence blooms; developing analytical methods and sensors for cells and toxins; understanding health effects of toxin exposure; and developing conceptual, empirical and numerical models of bloom dynamics. Results In the past several years, there has been significant progress toward all of the common goals. Several studies have elucidated the effects of environmental conditions and genetic heterogeneity on bloom dynamics. New methods have been developed or implemented for the detection of HAB cells and toxins, including genetic assays for Pseudo-nitzschia and Microcystis, and a biosensor for domoic acid. There have been advances in predictive models of blooms, most notably for the toxic dinoflagellates Alexandrium and Karenia. Other work is focused on the future, studying the ways in which climate change may affect HAB incidence, and assessing the threat from emerging HABs and toxins, such as the cyanobacterial neurotoxin β-N-methylamino-L-alanine. Conclusion Along the way, many challenges have been encountered that are common to the OHH Centers and also echo those of the wider HAB community. Long-term field data and basic biological information are needed to develop accurate models. Sensor development is hindered by the lack of simple and rapid assays for algal cells and especially toxins. It is also critical to adequately understand the human health effects of HAB toxins. Currently, we understand best the effects of acute

  15. Use of biosensors for the detection of marine toxins

    PubMed Central

    McPartlin, Daniel A.; Lochhead, Michael J.; Connell, Laurie B.; Doucette, Gregory J.

    2016-01-01

    Increasing occurrences of harmful algal blooms (HABs) in the ocean are a major concern for countries around the globe, and with strong links between HABs and climate change and eutrophication, the occurrences are only set to increase. Of particular concern with regard to HABs is the presence of toxin-producing algae. Six major marine biotoxin groups are associated with HABs. Ingestion of such toxins via contaminated shellfish, fish, or other potential vectors, can lead to intoxication syndromes with moderate to severe symptoms, including death in extreme cases. There are also major economic implications associated with the diverse effects of marine biotoxins and HABs. Thus, effective monitoring programmes are required to manage and mitigate their detrimental global effect. However, currently legislated detection methods are labour-intensive, expensive and relatively slow. The growing field of biosensor diagnostic devices is an exciting area that has the potential to produce robust, easy-to-use, cost-effective, rapid and accurate detection methods for marine biotoxins and HABs. This review discusses recently developed biosensor assays that target marine biotoxins and their microbial producers, both in harvested fish/shellfish samples and in the open ocean. The effective deployment of such biosensor platforms could address the pressing need for improved monitoring of HABs and marine biotoxins, and could help to reduce their global economic impact. PMID:27365035

  16. Fungal community dynamics during a marine dinoflagellate (Noctiluca scintillans) bloom.

    PubMed

    Sun, Jing-Yun; Song, Yu; Ma, Zhi-Ping; Zhang, Huai-Jing; Yang, Zhong-Duo; Cai, Zhong-Hua; Zhou, Jin

    2017-10-01

    Contamination and eutrophication have caused serious ecological events (such as algal bloom) in coastal area. During this ecological process, microbial community structure is critical for algal bloom succession. The diversity and composition of bacteria and archaea communities in algal blooms have been widely investigated; however, those of fungi are poorly understood. To fill this gap, we used pyrosequencing and correlation approaches to assess fungal patterns and associations during a dinoflagellate (Noctiluca scintillans) bloom. Phylum level fungal types were predominated by Ascomycota, Chytridiomycota, Mucoromycotina, and Basidiomycota. At the genus level drastic changes were observed with Hysteropatella, Malassezia and Saitoella dominating during the initial bloom stage, while Malassezia was most abundant (>50%) during onset and peak-bloom stages. Saitoella and Lipomyces gradually became more abundant and, in the decline stage, contributed almost 70% of sequences. In the terminal stage of the bloom, Rozella increased rapidly to a maximum of 50-60%. Fungal population structure was significantly influenced by temperature and substrate (N and P) availability (P < 0.05). Inter-specific network analyses demonstrated that Rozella and Saitoella fungi strongly impacted the ecological trajectory of N. scintillans. The functional prediction show that symbiotrophic fungi was dominated in the onset stage; saprotroph type was the primary member present during the exponential growth period; whereas pathogentroph type fungi enriched in decline phase. Overall, fungal communities and functions correlated significantly with N. scintillans processes, suggesting that they may regulate dinoflagellate bloom fates. Our results will facilitate deeper understanding of the ecological importance of marine fungi and their roles in algal bloom formation and collapse. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Climate Adaptation and Harmful Algal Blooms

    EPA Pesticide Factsheets

    EPA supports local, state and tribal efforts to maintain water quality. A key element of its efforts is to reduce excess nutrient pollution and the resulting adverse impacts, including harmful algal blooms.

  18. Structural And Biochemical Studies of Botulinum Neurotoxin Serotype C1 Light Chain Protease: Implications for Dual Substrate Specificity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, R.; Sikorra, S.; Stegmann, C.M.

    2009-06-01

    Clostridial neurotoxins are the causative agents of the neuroparalytic disease botulism and tetanus. They block neurotransmitter release through specific proteolysis of one of the three soluble N-ethylmaleimide-sensitive-factor attachment protein receptors (SNAREs) SNAP-25, syntaxin, and synaptobrevin, which constitute part of the synaptic vesicle fusion machinery. The catalytic component of the clostridial neurotoxins is their light chain (LC), a Zn2+ endopeptidase. There are seven structurally and functionally related botulinum neurotoxins (BoNTs), termed serotype A to G, and tetanus neurotoxin (TeNT). Each of them exhibits unique specificity for their target SNAREs and peptide bond(s) they cleave. The mechanisms of action for substrate recognitionmore » and target cleavage are largely unknown. Here, we report structural and biochemical studies of BoNT/C1-LC, which is unique among BoNTs in that it exhibits dual specificity toward both syntaxin and SNAP-25. A distinct pocket (S1') near the active site likely achieves the correct register for the cleavage site by only allowing Ala as the P1' residue for both SNAP-25 and syntaxin. Mutations of this SNAP-25 residue dramatically reduce enzymatic activity. The remote a-exosite that was previously identified in the complex of BoNT/A-LC and SNAP-25 is structurally conserved in BoNT/C1. However, mutagenesis experiments show that the a-exosite of BoNT/C1 plays a less stringent role in substrate discrimination in comparison to that of BoNT/A, which could account for its dual substrate specificity.« less

  19. A Compilation of Common Algal Control and Management Techniques.

    DTIC Science & Technology

    1980-01-01

    sources within their exten- sive watersheds. Excessive algal production and the subsequent decay of algal biomass often result in oxygen depletion...organisms in the food chain. c. Harmless to man and animals. 8 d. No incorporation into mineral or biological cycles. e. No adverse effect on water...phytoplankton decreased by ca 30 percent and, due to better light conditions, the productive layer increased. The number of zooplankton, especially

  20. Structure of a bimodular botulinum neurotoxin complex provides insights into its oral toxicity

    USDA-ARS?s Scientific Manuscript database

    Botulinum neurotoxins (BoNTs) are highly potent oral poisons produced by Clostridium botulinum. BoNTs are secreted along with several auxiliary proteins forming progenitor toxin complexes (PTC). Here, we report the structure of a ~760 kDa 14-subunit PTC using a combination of X-ray crystallography a...

  1. HEALTH AND ECOLOGICAL IMPACTS OF HARMFUL ALGAL BLOOMS: RISK ASSESSMENT NEEDS

    EPA Science Inventory

    The symposium session, Indicators for Effects and Predictions of Harmful Algal Blooms, explored the current state of indicators used to assess the human health and ecological risks caused by harmful algal blooms, and highlighted future needs and impediments that must be overcome...

  2. Algal biofuels: challenges and opportunities.

    PubMed

    Leite, Gustavo B; Abdelaziz, Ahmed E M; Hallenbeck, Patrick C

    2013-10-01

    Biodiesel production using microalgae is attractive in a number of respects. Here a number of pros and cons to using microalgae for biofuels production are reviewed. Algal cultivation can be carried out using non-arable land and non-potable water with simple nutrient supply. In addition, algal biomass productivities are much higher than those of vascular plants and the extractable content of lipids that can be usefully converted to biodiesel, triacylglycerols (TAGs) can be much higher than that of the oil seeds now used for first generation biodiesel. On the other hand, practical, cost-effective production of biofuels from microalgae requires that a number of obstacles be overcome. These include the development of low-cost, effective growth systems, efficient and energy saving harvesting techniques, and methods for oil extraction and conversion that are environmentally benign and cost-effective. Promising recent advances in these areas are highlighted. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Praseodymium sorption on Laminaria digitata algal beads and foams.

    PubMed

    Wang, Shengye; Hamza, Mohammed F; Vincent, Thierry; Faur, Catherine; Guibal, Eric

    2017-10-15

    Algal (Laminaria digitata) beads and algal foams have been prepared by a new synthesis mode and the sorbents were tested for praseodymium sorption in batch and fixed-bed like systems (recirculation or one-pass modes), respectively. Metal binding occurs through ion-exchange with Ca(II) ions used for ionotropic gelation of alginate contained in the algal biomass and eventually with protons. Sorption isotherms at pH 4 are described by the Langmuir and the Sips equations with maximum sorption capacities close to 110-120mgPrg -1 . Uptake kinetics are fitted by the pseudo-second order reaction rate equation for both beads and foams; in the case of beads the Crank equation also gives good fit of experimental data. Metal is successfully desorbed using 2M HCl/0.05M CaCl 2 solutions and the sorbent can be efficiently re-used for a minimum of 5 cycles with negligible decrease in sorption/desorption properties and appreciable concentrating effect (around 8-10 times the initial metal concentration). Tested in continuous mode, the algal foam shows typical breakthrough curves that are fitted by the Yan method; desorption is also efficient and allows under the best conditions to achieve a concentration factor close to 8. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Effects of ozone and peroxone on algal separation via dispersed air flotation.

    PubMed

    Nguyen, Truc Linh; Lee, D J; Chang, J S; Liu, J C

    2013-05-01

    Effects of pre-oxidation on algal separation by dispersed air flotation were examined. Ozone (O3) and peroxone (O3 and H2O2) could induce cell lysis, release of intracellular organic matter (IOM), and mineralization of organic substances. Separation efficiency of algal cells improved when pre-oxidized. Total of 76.4% algal cells was separated at 40 mg/L of N-cetyl-N-N-N-trimethylammonium bromide (CTAB), while 95% were separated after 30-min ozonation. Pre-oxidation by ozone and peroxone also enhanced flotation separation efficiency of dissolved organic carbon (DOC), polysaccharide, and protein, in which peroxone process exerted more significantly than O3. Two main mechanisms were involved in flotation separation of unoxidized algal suspension, namely hydrophobic cell surface and cell flocculation resulting from CTAB adsorption. However, flocculation by CTAB was hindered for pre-oxidized algal suspensions. It implied that the compositional changes in extracellular organic matter (EOM) by pre-oxidation were more determined for flotation separation of pre-oxidized cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Stabilization of benthic algal biomass in a temperate stream draining agroecosystems.

    PubMed

    Ford, William I; Fox, James F

    2017-01-01

    Results of the present study quantified carbon sequestration due to algal stabilization in low order streams, which has not been considered previously in carbon stream ecosystem studies. The authors used empirical mode decomposition of an 8-year carbon elemental and isotope dataset to quantify carbon accrual and fingerprint carbon derived from algal stabilization. The authors then applied a calibrated, process-based stream carbon model (ISOFLOC) that elicits further evidence of algal stabilization. Data and modeling results suggested that processes of shielding and burial during an extreme hydrologic event enhance algal stabilization. Given that previous studies assumed stream algae are turned over or sloughed downstream, the authors performed scenario simulations of the calibrated model in order to assess how changing environmental conditions might impact algae stabilization within the stream. Results from modeling scenarios showed an increase in algal stabilization as mean annual water temperature increases ranging from 0 to 0.04 tC km -2  °C -1 for the study watershed. The dependence of algal stabilization on temperature highlighted the importance of accounting for benthic fate of carbon in streams under projected warming scenarios. This finding contradicts the evolving paradigm that net efflux of CO 2 from streams increases with increasing temperatures. Results also quantified sloughed algae that is transported and potentially stabilized downstream and showed that benthos-derived sloughed algae was on the same order of magnitude, and at times greater, than phytoplankton within downstream water bodies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The engine of the reef: photobiology of the coral–algal symbiosis

    PubMed Central

    Roth, Melissa S.

    2014-01-01

    Coral reef ecosystems thrive in tropical oligotrophic oceans because of the relationship between corals and endosymbiotic dinoflagellate algae called Symbiodinium. Symbiodinium convert sunlight and carbon dioxide into organic carbon and oxygen to fuel coral growth and calcification, creating habitat for these diverse and productive ecosystems. Light is thus a key regulating factor shaping the productivity, physiology, and ecology of the coral holobiont. Similar to all oxygenic photoautotrophs, Symbiodinium must safely harvest sunlight for photosynthesis and dissipate excess energy to prevent oxidative stress. Oxidative stress is caused by environmental stressors such as those associated with global climate change, and ultimately leads to breakdown of the coral–algal symbiosis known as coral bleaching. Recently, large-scale coral bleaching events have become pervasive and frequent threatening and endangering coral reefs. Because the coral–algal symbiosis is the biological engine producing the reef, the future of coral reef ecosystems depends on the ecophysiology of the symbiosis. This review examines the photobiology of the coral–algal symbiosis with particular focus on the photophysiological responses and timescales of corals and Symbiodinium. Additionally, this review summarizes the light environment and its dynamics, the vulnerability of the symbiosis to oxidative stress, the abiotic and biotic factors influencing photosynthesis, the diversity of the coral–algal symbiosis, and recent advances in the field. Studies integrating physiology with the developing “omics” fields will provide new insights into the coral–algal symbiosis. Greater physiological and ecological understanding of the coral–algal symbiosis is needed for protection and conservation of coral reefs. PMID:25202301

  7. Genetic Diversity Among Botulinum Neurotoxin Producing Clostridial Strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, K K; Smith, T J; Helma, C H

    2006-07-06

    Clostridium botulinum is a taxonomic designation for many diverse anaerobic spore forming rod-shaped bacteria which have the common property of producing botulinum neurotoxins (BoNTs). The BoNTs are exoneurotoxins that can cause severe paralysis and even death in humans and various other animal species. A collection of 174 C. botulinum strains were examined by amplified fragment length polymorphism (AFLP) analysis and by sequencing of the 16S rRNA gene and BoNT genes to examine genetic diversity within this species. This collection contained representatives of each of the seven different serotypes of botulinum neurotoxins (BoNT A-G). Analysis of the16S rRNA sequences confirmed earliermore » reports of at least four distinct genomic backgrounds (Groups I-IV) each of which has independently acquired one or more BoNT serotypes through horizontal gene transfer. AFLP analysis provided higher resolution, and can be used to further subdivide the four groups into sub-groups. Sequencing of the BoNT genes from serotypes A, B and E in multiple strains confirmed significant sequence variation within each serotype. Four distinct lineages within each of the BoNT A and B serotypes, and five distinct lineages of serotype E strains were identified. The nucleotide sequences of the seven serotypes of BoNT were compared and show varying degrees of interrelatedness and recombination as has been previously noted for the NTNH gene which is linked to BoNT. These analyses contribute to the understanding of the evolution and phylogeny within this species and assist in the development of improved diagnostics and therapeutics for treatment of botulism.« less

  8. Consortium for Algal Biofuel Commercialization (CAB-COMM) Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayfield, Stephen P.

    The Consortium for Algal Biofuel Commercialization (CAB-Comm) was established in 2010 to conduct research to enable commercial viability of alternative liquid fuels produced from algal biomass. The main objective of CAB-Comm was to dramatically improve the viability of algae as a source of liquid fuels to meet US energy needs, by addressing several significant barriers to economic viability. To achieve this goal, CAB-Comm took a diverse set of approaches on three key aspects of the algal biofuels value chain: crop protection; nutrient utilization and recycling; and the development of genetic tools. These projects have been undertaken as collaboration between sixmore » academic institutions and two industrial partners: University of California, San Diego; Scripps Institution of Oceanography; University of Nebraska, Lincoln; Rutgers University; University of California, Davis; Johns Hopkins University; Sapphire Energy; and Life Technologies.« less

  9. Algal dermatitis in cichlids.

    PubMed

    Yanong, Roy P E; Francis-Floyd, Ruth; Curtis, Eric; Klinger, Ruth Ellen; Cichra, Mary E; Berzins, Ilze K

    2002-05-01

    Three varieties of a popular African cichlid aquarium species, Pseudotropheus zebra, from 2 tropical fish farms in east central Florida were submitted for diagnostic evaluation because of the development of multifocal green lesions. The percentage of infected fish in these populations varied from 5 to 60%. Fish were otherwise clinically normal. Microscopic examination of fresh and fixed lesions confirmed algal dermatitis, with light invasion of several internal organs in each group. A different alga was identified from each farm. Fish from farm A were infected with Chlorochytrium spp, whereas fish from farm B were infected with Scenedesmus spp. Because of the numbers of fish involved, bath treatments to remove the algae from affected fish from farm B were attempted, with different dosages of several common algaecides including copper sulfate pentahydrate, diuron, and sodium chloride. However, none of these treatments were successful, possibly because of the location of the algae under the scales and within the dermis, and also because of the sequestering effect of the granulomatous response. To our knowledge, this is the first report of algal dermatitis in ornamental cichlids, as well as the first report of Scenedesmus spp infection in any fish.

  10. SURVEY OF THE STEROL COMPOSITION OF THE MARINE DINOFLAGELLATES KARENIA BREVIS, KARENIA MIKIMOTOI, AND KARLODINIUM MICRUM: DISTRIBUTION OF STEROLS WITHIN OTHER MEMBERS OF THE CLASS DINOPHYCEAE

    EPA Science Inventory

    The sterol composition of different marine microalgae was examined to determine the utility of sterols as biomarkers to distinguish members of various algal classes. For example, members of the class Dinophyceae possess certain 4-methyl sterols, such as dinosterol, which are rare...

  11. Atmosphere stabilization and element recycle in an experimental mouse-algal system

    NASA Technical Reports Server (NTRS)

    Smernoff, David T.

    1986-01-01

    Life support systems based on bioregeneration rely on the control and manipulation of organisms. Experiments conducted with a gas-closed mouse-algal system designed to investigate principles of photosynthetic gas exchange focus primarily on observing gas exchange phenomena under varying algal environmental conditions and secondarily on studying element cycling through compartments of the experimental system. Inherent instabilities exit between the uptake and release of carbon dioxide CO2 and oxygen O2 by the mouse and algae. Variations in light intensity and cell density alter the photosynthetic rate of the algae and enable maintenance of physiologic concentrations of CO2 and O2. Different nitrogen sources (urea and nitrate) result in different algal assimilatory quotients (AQ). Combinations of photosynthetic rate and AQ ratio manipulations have been examined for their potential in stabilizing atmospheric gas concentrations in the gas-closed algal-mouse system. Elemental mass balances through the experimental systems compartments are being studied with the concurrent development of a mathematical simulation model. Element cycling experiments include quantification of elemental flows through system compartments and wet oxidation of system waste materials for use as an algal nutrient source. Oxidized waste products demonstrate inhibitory properties although dilution has been shown to allow normal growth.

  12. Impact of Viral Infection on Absorption and Scattering Properties of Marine Bacteria and Phytoplankton

    DTIC Science & Technology

    2001-09-30

    Opt. Eng. 2963: 260-265. 5 Bratbak, G., J. K. Egge, and M. Heldal. 1993. Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae...and termination of algal blooms. Mar. Ecol. Prog. Ser. 93: 39-48. Bratbak, G., W. Wilson, and M. Heldal. 1996. Viral control of Emiliania huxleyi...relation to Emiliania huxleyi blooms: a mechanism of DMSP release? Mar. Ecol. Prog. Ser. 128: 133-142. Brussaard, C. P. D., R. S. Kempers, A. J

  13. The effect of light direction and suspended cell concentrations on algal biofilm growth rates.

    PubMed

    Schnurr, Peter J; Espie, George S; Allen, D Grant

    2014-10-01

    Algae biofilms were grown in a semicontinuous flat plate biofilm photobioreactor to study the effects of light direction and suspended algal cell populations on algal biofilm growth. It was determined that, under the growth conditions and biofilm thicknesses studied, light direction had no effect on long-term algal biofilm growth (26 days); however, light direction did affect the concentration of suspended algal cells by influencing the photon flux density in the growth medium in the photobioreactors. This suspended algal cell population affected short-term (7 days) algae cell recruitment and algal biofilm growth, but additional studies showed that enhanced suspended algal cell populations did not affect biofilm growth rates over the long term (26 days). Studying profiles of light transmittance through biofilms as they grew showed that most of the light became attenuated by the biomass after just a few days of growth (88 % after 3 days). The estimated biofilm thicknesses after these few days of growth were approximately 150 μm. The light attenuation data suggests that, although the biofilms grew to 700-900 μm, under these light intensities, only the first few hundred micrometers of the biofilm is receiving enough light to be photosynthetically active. We postulate that this photosynthetically active layer of the biofilm grows adjacent to the light source, while the rest of the biofilm is in a stationary growth phase. The results of this study have implications for algal biofilm photobioreactor design and operation.

  14. A Protein Microarray ELISA for the Detection of Botulinum neurotoxin A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varnum, Susan M.

    An enzyme-linked immunosorbent assay (ELISA) microarray was developed for the specific and sensitive detection of botulinum neurotoxin A (BoNT/A), using high-affinity recombinant monoclonal antibodies against the receptor binding domain of the heavy chain of BoNT/A. The ELISA microarray assay, because of its sensitivity, offers a screening test with detection limits comparable to the mouse bioassay, with results available in hours instead of days.

  15. Macroalgal blooms alter community structure and primary productivity in marine ecosystems.

    PubMed

    Lyons, Devin A; Arvanitidis, Christos; Blight, Andrew J; Chatzinikolaou, Eva; Guy-Haim, Tamar; Kotta, Jonne; Orav-Kotta, Helen; Queirós, Ana M; Rilov, Gil; Somerfield, Paul J; Crowe, Tasman P

    2014-09-01

    Eutrophication, coupled with loss of herbivory due to habitat degradation and overharvesting, has increased the frequency and severity of macroalgal blooms worldwide. Macroalgal blooms interfere with human activities in coastal areas, and sometimes necessitate costly algal removal programmes. They also have many detrimental effects on marine and estuarine ecosystems, including induction of hypoxia, release of toxic hydrogen sulphide into the sediments and atmosphere, and the loss of ecologically and economically important species. However, macroalgal blooms can also increase habitat complexity, provide organisms with food and shelter, and reduce other problems associated with eutrophication. These contrasting effects make their overall ecological impacts unclear. We conducted a systematic review and meta-analysis to estimate the overall effects of macroalgal blooms on several key measures of ecosystem structure and functioning in marine ecosystems. We also evaluated some of the ecological and methodological factors that might explain the highly variable effects observed in different studies. Averaged across all studies, macroalgal blooms had negative effects on the abundance and species richness of marine organisms, but blooms by different algal taxa had different consequences, ranging from strong negative to strong positive effects. Blooms' effects on species richness also depended on the habitat where they occurred, with the strongest negative effects seen in sandy or muddy subtidal habitats and in the rocky intertidal. Invertebrate communities also appeared to be particularly sensitive to blooms, suffering reductions in their abundance, species richness, and diversity. The total net primary productivity, gross primary productivity, and respiration of benthic ecosystems were higher during macroalgal blooms, but blooms had negative effects on the productivity and respiration of other organisms. These results suggest that, in addition to their direct social and

  16. Effects of electron acceptors on soluble reactive phosphorus in the overlying water during algal decomposition.

    PubMed

    Wang, Jinzhi; Jiang, Xia; Zheng, Binghui; Niu, Yuan; Wang, Kun; Wang, Wenwen; Kardol, Paul

    2015-12-01

    Endogenous phosphorus (P) release from sediments is an important factor to cause eutrophication and, hence, algal bloom in lakes in China. Algal decomposition depletes dissolved oxygen (DO) and causes anaerobic conditions and therefore increases P release from sediments. As sediment P release is dependent on the iron (Fe) cycle, electron acceptors (e.g., NO3 (-), SO4 (2-), and Mn(4+)) can be utilized to suppress the reduction of Fe(3+) under anaerobic conditions and, as such, have the potential to impair the release of sediment P. Here, we used a laboratory experiment to test the effects of FeCl3, MnO2, and KNO3 on soluble reactive phosphorus (SRP) concentration and related chemical variables in the overlying water column during algal decomposition at different algal densities. Results showed that algal decomposition significantly depleted DO and thereby increased sediment Fe-bound P release. Compared with the control, addition of FeCl3 significantly decreased water SRP concentration through inhibiting sediment P release. Compared with FeCl3, addition of MnO2 has less potential to suppress sediment P release during algal decomposition. Algal decomposition has the potential for NO3 (-) removal from aquatic ecosystem through denitrification and by that alleviates the suppressing role of NO3 (-) on sediment P release. Our results indicated that FeCl3 and MnO2 could be efficient in reducing sediment P release during algal decomposition, with the strongest effect found for FeCl3; large amounts of NO3 (-) were removed from the aquatic ecosystem through denitrification during algal decomposition. Moreover, the amounts of NO3 (-) removal increased with increasing algal density.

  17. Interactions between macro-algal mats and invertebrates in the Ythan estuary, Aberdeenshire, Scotland

    NASA Astrophysics Data System (ADS)

    Raffaelli, D.

    2000-07-01

    Blooms of opportunistic green macro-algae are a common feature of coastal areas and their effects on mudflat invertebrates can be dramatic. On the Ythan estuary, Aberdeenshire, Scotland, we have carried out a number of manipulative field experiments designed to evaluate the effects on invertebrates of different species of macro-algae with contrasting ecologies, and the effects of invertebrates on the development of the blooms. Macro-algal mats were found to have dramatic nega- tive effects on the density of the amphipod Corophium volutator, with higher algal biomasses having greater impact. The mechanism for this interaction seems to be interference by the algal filaments with the feeding behaviour of the amphipod. In contrast, the polychaete Capitella spp. increases in abundance under macro-algal mats due to enrichment of the sediment with organic material. These two interactions are seen at all scales, in areas of less than 1 m2 to the scale of the entire estuary, irrespective of the species composition of the macro- algal mats. Bioturbation by Corophium and grazing by the snail Hydrobia ulvae had little effect on macro-algal biomass, but there were less algae when the polychaete Nereis diversicolor was present. The most significant interaction in this system is the pronounced negative impact of algal mats on the abundance of Corophium, probably the most important invertebrate species in the diets of the estuary's shorebirds, fish and epibenthic crustaceans.

  18. Zebrafish (Danio rerio) bioassay for visceral toxicosis of catfish and botulinum neurotoxin serotype E

    USDA-ARS?s Scientific Manuscript database

    Visceral toxicosis of catfish (VTC), a sporadic disease of cultured channel catfish (Ictalurus punctatus) often with high mortality, is caused by botulinum neurotoxin serotype E (BoNT/E). Presumptive diagnosis of VTC is based on characteristic clinical signs and lesions, and the production of these ...

  19. Impact of Microalgae-Bacteria Interactions on the Production of Algal Biomass and Associated Compounds

    PubMed Central

    Fuentes, Juan Luis; Garbayo, Inés; Cuaresma, María; Montero, Zaida; González-del-Valle, Manuel; Vílchez, Carlos

    2016-01-01

    A greater insight on the control of the interactions between microalgae and other microorganisms, particularly bacteria, should be useful for enhancing the efficiency of microalgal biomass production and associated valuable compounds. Little attention has been paid to the controlled utilization of microalgae-bacteria consortia. However, the studies of microalgal-bacterial interactions have revealed a significant impact of the mutualistic or parasitic relationships on algal growth. The algal growth, for instance, has been shown to be enhanced by growth promoting factors produced by bacteria, such as indole-3-acetic acid. Vitamin B12 produced by bacteria in algal cultures and bacterial siderophores are also known to be involved in promoting faster microalgal growth. More interestingly, enhancement in the intracellular levels of carbohydrates, lipids and pigments of microalgae coupled with algal growth stimulation has also been reported. In this sense, massive algal production might occur in the presence of bacteria, and microalgae-bacteria interactions can be beneficial to the massive production of microalgae and algal products. This manuscript reviews the recent knowledge on the impact of the microalgae-bacteria interactions on the production of microalgae and accumulation of valuable compounds, with an emphasis on algal species having application in aquaculture. PMID:27213407

  20. Optimizing production of asperolide A, a potential anti-tumor tetranorditerpenoid originally produced by the algal-derived endophytic fungus Aspergillus wentii EN-48

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Li, Xiaoming; Xu, Gangming; Wang, Bingui

    2017-05-01

    The marine algal-derived endophytic fungus Aspergillus wentii EN-48 produces the potential anti-tumor agent asperolide A, a tetranorlabdane diterpenoid active against lung cancer. However, the fermentation yield of asperolide A was very low and only produced in static cultures. Static fermentation conditions of A. wentii EN-48 were optimized employing response surface methodology to enhance the production of asperolide A. The optimized conditions resulted in a 13.9-fold yield enhancement, which matched the predicted value, and the optimized conditions were successfully used in scale-up fermentation for the production of asperolide A. Exogenous addition of plant hormones (especially 10 μmol/L methyl jasmonate) stimulated asperolide A production. To our knowledge, this is first optimized production of an asperolide by a marine-derived fungus. The optimization is Effective and valuable to supply material for further anti-tumor mechanism studies and preclinical evaluation of asperolide A and other norditerpenoids.

  1. Evaluation of Lateral-Flow Clostridium botulinum Neurotoxin Detection Kits for Food Analysis

    DTIC Science & Technology

    2005-02-08

    toxic proteins. Annu. Rev. Microbiol. 53:551–575. 19. Ketema, F., C. Zeh, D. C. Edelman, R. Saville, and N. T. Constantine. 2001. Assessment of the...H. H., and F. Sun. 2001. Assessing cyanogen content in cassava -based food using the enzyme-dipstick method. Food Chem. Toxicol. 39:649–653. VOL. 71, 2005 RAPID DETECTION OF C. BOTULINUM NEUROTOXIN 3941

  2. On the translocation of botulinum and tetanus neurotoxins across the membrane of acidic intracellular compartments.

    PubMed

    Pirazzini, Marco; Azarnia Tehran, Domenico; Leka, Oneda; Zanetti, Giulia; Rossetto, Ornella; Montecucco, Cesare

    2016-03-01

    Tetanus and botulinum neurotoxins are produced by anaerobic bacteria of the genus Clostridium and are the most poisonous toxins known, with 50% mouse lethal dose comprised within the range of 0.1-few nanograms per Kg, depending on the individual toxin. Botulinum neurotoxins are similarly toxic to humans and can therefore be considered for potential use in bioterrorism. At the same time, their neurospecificity and reversibility of action make them excellent therapeutics for a growing and heterogeneous number of human diseases that are characterized by a hyperactivity of peripheral nerve terminals. The complete crystallographic structure is available for some botulinum toxins, and reveals that they consist of four domains functionally related to the four steps of their mechanism of neuron intoxication: 1) binding to specific receptors of the presynaptic membrane; 2) internalization via endocytic vesicles; 3) translocation across the membrane of endocytic vesicles into the neuronal cytosol; 4) catalytic activity of the enzymatic moiety directed towards the SNARE proteins. Despite the many advances in understanding the structure-mechanism relationship of tetanus and botulinum neurotoxins, the molecular events involved in the translocation step have been only partially elucidated. Here we will review recent advances that have provided relevant insights on the process and discuss possible models that can be experimentally tested. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale. Copyright © 2015. Published by Elsevier B.V.

  3. Comparison of Toxicological Properties of Botulinum Neurotoxin Serotypes A and B in Mice

    USDA-ARS?s Scientific Manuscript database

    Botulinum neurotoxins (BoNTs) are among the most toxic biological toxins for humans. Of the seven known serotypes (A-G) of BoNT, serotypes A, B and E cause most of the human foodborne intoxications. In this study, we compared the toxicological properties of BoNT serotype A and B holotoxins and compl...

  4. Monitoring and removal of cyanobacterial toxins from drinking water by algal-activated carbon.

    PubMed

    Ibrahim, Wael M; Salim, Emad H; Azab, Yahia A; Ismail, Abdel-Hamid M

    2016-10-01

    Microcystins (MCs) are the most potent toxins that can be produced by cyanobacteria in drinking water supplies. This study investigated the abundance of toxin-producing algae in 11 drinking water treatment plants (DWTPs). A total of 26 different algal taxa were identified in treated water, from which 12% were blue green, 29% were green, and 59% were diatoms. MC levels maintained strong positive correlations with number of cyanophycean cells in raw and treated water of different DWTPs. Furthermore, the efficiency of various algal-based adsorbent columns used for the removal of these toxins was evaluated. The MCs was adsorbed in the following order: mixed algal-activated carbon (AAC) ≥ individual AAC > mixed algal powder > individual algal powder. The results showed that the AAC had the highest efficient columns capable of removing 100% dissolved MCs from drinking water samples, thereby offering an economically feasible technology for efficient removal and recovery of MCs in DWTPs. © The Author(s) 2015.

  5. Wastewater treatment high rate algal ponds (WWT HRAP) for low-cost biofuel production.

    PubMed

    Mehrabadi, Abbas; Craggs, Rupert; Farid, Mohammed M

    2015-05-01

    Growing energy demand and water consumption have increased concerns about energy security and efficient wastewater treatment and reuse. Wastewater treatment high rate algal ponds (WWT HRAPs) are a promising technology that could help solve these challenges concurrently where climate is favorable. WWT HRAPs have great potential for biofuel production as a by-product of WWT, since the costs of algal cultivation and harvest for biofuel production are covered by the wastewater treatment function. Generally, 800-1400 GJ/ha/year energy (average biomass energy content: 20 GJ/ton; HRAP biomass productivity: 40-70 tons/ha/year) can be produced in the form of harvestable biomass from WWT HRAP which can be used to provide community-level energy supply. In this paper the benefits of WWT HRAPs are compared with conventional mass algal culture systems. Moreover, parameters to effectively increase algal energy content and overall energy production from WWT HRAP are discussed including selection of appropriate algal biomass biofuel conversion pathways. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Marine macroalgal community structure, metal content and reproductive function near an acid mine drainage outflow.

    PubMed

    Marsden, A D; DeWreede, R E

    2000-12-01

    Marine macroalgal communities were examined near the outflow of acid mine drainage (AMD) from the Britannia Mine, British Columbia, Canada. No marine algae were present within 100 m of the mouth of Britannia Creek, which carries the AMD into the marine environment. At greater distances (300-700 m) from this Creek, mean summer cover of filamentous green algae, mostly Enteromorpha intestinalis, was >60%, which was significantly higher than at nearby reference stations. At still greater distances (600-1000 m) from Britannia Creek, Fucus gardneri dominated algal communities that were similar to those at reference stations. No consistent differences were detected in mean plant length, mean per cent cover or mean oocyte production between F. gardneri near Britannia Creek and those at reference stations. Cu body burden in F. gardneri near Britannia Creek was five to 17 times higher than in reference plants.

  7. Adsorption of marine phycotoxin okadaic acid on a covalent organic framework.

    PubMed

    Salonen, Laura M; Pinela, Sara R; Fernandes, Soraia P S; Louçano, João; Carbó-Argibay, Enrique; Sarriá, Marisa P; Rodríguez-Abreu, Carlos; Peixoto, João; Espiña, Begoña

    2017-11-24

    Phycotoxins, compounds produced by some marine microalgal species, can reach high concentrations in the sea when a massive proliferation occurs, the so-called harmful algal bloom. These compounds are especially dangerous to human health when concentrated in the digestive glands of seafood. In order to generate an early warning system to alert for approaching toxic outbreaks, it is very important to improve monitoring methods of phycotoxins in aquatic ecosystems. Solid-phase adsorption toxin tracking devices reported thus far based on polymeric resins have not been able to provide an efficient harmful algal bloom prediction system due to their low adsorption capabilities. In this work, a water-stable covalent organic framework (COF) was evaluated as adsorbent for the hydrophobic toxin okadaic acid, one of the most relevant marine toxins and the parental compound of the most common group of toxins responsible for the diarrhetic shellfish poisoning. Adsorption kinetics of okadaic acid onto the COF in seawater showed that equilibrium concentration was reached in only 60min, with a maximum experimental adsorption of 61mgg -1 . Desorption of okadaic acid from the COF was successful with both 70% ethanol and acetonitrile as solvent, and the COF material could be reused with minor losses in adsorption capacity for three cycles. The results demonstrate that COF materials are promising candidates for solid-phase adsorption in water monitoring devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Releasing Stored Solar Energy within Pond Scum: Biodiesel from Algal Lipids

    ERIC Educational Resources Information Center

    Blatti, Jillian L.; Burkart, Michael D.

    2012-01-01

    Microalgae have emerged as an attractive feedstock for the mass production of renewable transportation fuels due to their fast growth rate, flexible habitat preferences, and substantial oil yields. As an educational tool, a laboratory was developed that mimics emerging algal biofuel technology, including the extraction of algal lipids and…

  9. Algal cell disruption using microbubbles to localize ultrasonic energy

    PubMed Central

    Krehbiel, Joel D.; Schideman, Lance C.; King, Daniel A.; Freund, Jonathan B.

    2015-01-01

    Microbubbles were added to an algal solution with the goal of improving cell disruption efficiency and the net energy balance for algal biofuel production. Experimental results showed that disruption increases with increasing peak rarefaction ultrasound pressure over the range studied: 1.90 to 3.07 MPa. Additionally, ultrasound cell disruption increased by up to 58% by adding microbubbles, with peak disruption occurring in the range of 108 microbubbles/ml. The localization of energy in space and time provided by the bubbles improve efficiency: energy requirements for such a process were estimated to be one-fourth of the available heat of combustion of algal biomass and one-fifth of currently used cell disruption methods. This increase in energy efficiency could make microbubble enhanced ultrasound viable for bioenergy applications and is expected to integrate well with current cell harvesting methods based upon dissolved air flotation. PMID:25311188

  10. Interactions among irradiance, nutrients, and herbivores constrain a stream algal community.

    PubMed

    Rosemond, A D

    1993-07-01

    Using stream-side, flow-through channels, I tested for the effects of nutrients (NU) (nitrogen plus phosphorus), irradiance (L), and snail grazing (G) on a benthic algal community in a small, forested stream. Grazed communities were-dominated by a chlorophyte (basal cells ofStigeoclonium) and a cyanophyte (Chamaesiphon investiens), whereas ungrazed communities were comprised almost entirely of diatoms, regardless of nutrient and light levels. Snails maintained low algal biomass in all grazed treatments, presumably by consuming increased algal production in treatments to which L and NU were increased. When nutrients were increased, cellular nutrient content increased under ambient conditions (shaded, grazed) and biomass and productivity increased when snails were removed and light was increased. Together, nutrients and light had positive effects and grazing had negative effects on biomass (chlorophylla, AFDM, algal biovolume) and chlorophyll-and areal-specific productivity in ANOVAs. However, in most cases, only means from treatments in which all three factors were manipulated (ungrazed, +NU&L treatments) were significantly different from controls; effects of single factors were generally undetectable. These results indicate that all three factors simultaneously limited algal biomass and productivity in this stream during the summer months. Additionally, the effects of these factors in combination were in some cases different from the effects of single factors. For example, light had slight negative effects on some biomass parameters when added at ambient snail densities and nutrient concentrations, but had strong positive effects in conjunction with nutrient addition and snail removal. This study demonstrates that algal biomass and productivity can be under multiple constraints by irradiance, nutrients, and herbivores and indicates the need to employ multifactor experiments to test for such interactive effects.

  11. An emerging trend in functional foods for the prevention of cardiovascular disease and diabetes: Marine algal polyphenols.

    PubMed

    Murray, Margaret; Dordevic, Aimee L; Ryan, Lisa; Bonham, Maxine P

    2018-05-24

    Marine macroalgae are gaining recognition among the scientific community as a significant source of functional food ingredients. Due to the harsh environments in which macroalgae survive, they produce unique bioactive compounds that are not found in terrestrial plants. Polyphenols are the predominant bioactive compound in brown algae and are accountable for the majority of its biological activity. Phlorotannins are a type of polyphenol that are unique to marine sources and have exhibited protective effects against hyperglycemia, hyperlipidemia, inflammation and oxidative stress, known risk factors for cardiovascular disease and diabetic complications, in cell culture, animal studies and some human studies. This review updates the information on marine polyphenols, with a particular focus on phlorotannins and their potential health benefits in relation to the prevention and treatment of risk factors for type 2 diabetes and cardiovascular diseases.

  12. Hyperspectral remote sensing study of harmful algal blooms in the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Nie, Yixiang

    Recent development of hyperspectral remote sensing provides capability to identify and classify harmful algal blooms beyond the estimation of chlorophyll concentrations. This study uses hyperspectral data to extract spectral signatures, classify algal blooms, and map the spatial distribution of the algal blooms in the upper Chesapeake Bay. Furthermore, water quality parameters from ground stations have been used together with remote sensing data to provide better understanding of the formation and transformation of the life cycle of harmful algal blooms, and the cause of their outbreaks in the upper Chesapeake Bay. The present results show a strong and significant positive correlation between chlorophyll concentrations and total organic nitrogen concentrations. This relation suggests that total organic nitrogen played an important role in triggering the harmful algal blooms in the upper Chesapeake Bay in this study. This study establishes an integrated approach which combines hyperspectral imaging with multispectral ocean color remote sensing data and traditional water quality monitoring system in the study of harmful algal blooms in small water bodies such as the Chesapeake Bay. Presently, remote sensing is well integrated into the research community, but is less commonly used by resource managers. This dissertation couples remote sensing technologies with specific monitoring programs. The present results will help natural resource managers, local authorities, and the public to utilize an integrated approach in order to better understand, evaluate, preserve, and restore the health of the Chesapeake Bay waters and habitats.

  13. Characterization of Clostridium botulinum Type B Neurotoxin Associated with Infant Botulism in Japan

    PubMed Central

    Kozaki, Shunji; Kamata, Yoichi; Nishiki, Tei-ichi; Kakinuma, Hiroaki; Maruyama, Hiromi; Takahashi, Hiroaki; Karasawa, Tadahiro; Yamakawa, Kiyotaka; Nakamura, Shinichi

    1998-01-01

    The neurotoxin of strain 111 (111/NT) associated with type B infant botulism showed antigenic and biological properties different from that (Okra/NT) produced by a food-borne botulism-related strain, Okra. The specific toxicity of 111/NT was found to be about 10 times lower than that of Okra/NT. The monoclonal antibodies recognizing the light chain cross-reacted with both neurotoxins, whereas most of the antibodies recognizing the carboxyl-terminal half of the heavy chain of Okra/NT did not react to 111/NT. Binding experiments with rat brain synaptosomes revealed that 125I-labeled 111/NT bound to a single binding site with a dissociation constant (Kd) of 2.5 nM; the value was rather lower than that (0.42 nM) of 125I-Okra/NT for the high-affinity binding site. In the lipid vesicles reconstituted with ganglioside GT1b, 125I-Okra/NT interacted with the amino-terminal domain of synaptotagmin 1 (Stg1N) or synaptotagmin 2 (Stg2N), fused with the maltose-binding protein, in the same manner as the respective full-length synaptotagmins, and the Kd values accorded with those of the low- and high-affinity binding sites in synaptosomes. However, 125I-111/NT only exhibited a low capacity for binding to the lipid vesicles containing Stg2N, but not Stg1N, in the presence of ganglioside GT1b. Moreover, synaptobrevin-2, an intracellular target protein, was digested to the same extent by the light chains of both neurotoxins in a concentration-dependent manner. These findings indicate that the 111/NT molecule possesses the receptor-recognition site structurally different from Okra/NT, probably causing a decreased specific toxicity. PMID:9746583

  14. Maculotoxin: a neurotoxin from the venom glands of the octopus Hapalochlaena maculosa identified as tetrodotoxin.

    PubMed

    Sheumack, D D; Howden, M E; Spence, I; Quinn, R J

    1978-01-13

    Maculotoxin, a potent neurotoxin isolated from the posterior salivary glands of the blue-ringed octopus. Hapalochlaena maculosa, has now been identified as tetrodotoxin. This is the first reported case in which tetrodotoxin has been found to occur in a venom.

  15. Use of monoclonal antibodies in the sensitive detection and neutralization of botulinum neurotoxin serotype B

    USDA-ARS?s Scientific Manuscript database

    Botulinum neurotoxins (BoNT) are some of nature’s most potent toxins. Due to potential food contamination and bioterrorism concerns, the development of detection reagents, therapeutics and countermeasures are of urgent interest. Recently, we have developed sensitive electrochemiluminescent (ECL) i...

  16. Algal bioassessment metrics for wadeable streams and rivers of Maine, USA

    USGS Publications Warehouse

    Danielson, Thomas J.; Loftin, Cynthia S.; Tsomides, Leonidas; DiFranco, Jeanne L.; Connors, Beth

    2011-01-01

    Many state water-quality agencies use biological assessment methods based on lotic fish and macroinvertebrate communities, but relatively few states have incorporated algal multimetric indices into monitoring programs. Algae are good indicators for monitoring water quality because they are sensitive to many environmental stressors. We evaluated benthic algal community attributes along a landuse gradient affecting wadeable streams and rivers in Maine, USA, to identify potential bioassessment metrics. We collected epilithic algal samples from 193 locations across the state. We computed weighted-average optima for common taxa for total P, total N, specific conductance, % impervious cover, and % developed watershed, which included all land use that is no longer forest or wetland. We assigned Maine stream tolerance values and categories (sensitive, intermediate, tolerant) to taxa based on their optima and responses to watershed disturbance. We evaluated performance of algal community metrics used in multimetric indices from other regions and novel metrics based on Maine data. Metrics specific to Maine data, such as the relative richness of species characterized as being sensitive in Maine, were more correlated with % developed watershed than most metrics used in other regions. Few community-structure attributes (e.g., species richness) were useful metrics in Maine. Performance of algal bioassessment models would be improved if metrics were evaluated with attributes of local data before inclusion in multimetric indices or statistical models. ?? 2011 by The North American Benthological Society.

  17. Toxicology and detection methods of the alkaloid neurotoxin produced by cyanobacteria, anatoxin-a.

    PubMed

    Osswald, Joana; Rellán, Sandra; Gago, Ana; Vasconcelos, Vitor

    2007-11-01

    Freshwater resources are under stress due to naturally occurring conditions and human impacts. One of the consequences is the proliferation of cyanobacteria, microphytoplankton organisms that are capable to produce toxins called cyanotoxins. Anatoxin-a is one of the main cyanotoxins. It is a very potent neurotoxin that was already responsible for some animal fatalities. In this review we endeavor to divulgate much of the internationally published information about toxicology, occurrence and detection methods of anatoxin-a. Cyanobacteria generalities, anatoxin-a occurrence and production as well as anatoxin-a toxicology and its methods of detection are the aspects focused in this review. Remediation of anatoxin-a occurrence will be addressed with a public health perspective. Final remarks call the attention for some important gaps in the knowledge about this neurotoxin and its implication to public health. Alterations of aquatic ecosystems caused by anatoxin-a is also addressed. Although anatoxin-a is not the more frequent cyanotoxin worldwide, it has to be regarded as a health risk that can be fatal to terrestrial and aquatic organisms because of its high toxicity.

  18. Neurotoxins from venoms of the Hymenoptera--twenty-five years of research in Amsterdam.

    PubMed

    Piek, T

    1990-01-01

    1. In co-operation with colleagues in Europe, Japan and the U.S.A., 25 years of research in Amsterdam have provided new views on the way some hymenopteran insects incapacitate their prey by a diversity of neurotoxins, resulting in block of synaptic transmission in CNS or neuromuscular junctions, or affecting voltage dependent phenomena in nerve and muscle fibers. 2. Nicotinic synaptic transmission in the insect CNS is irreversibly blocked at the presynaptic side by kinins, or reversibly and postsynaptically blocked by philanthotoxins. 3. Glutamatergic neuromuscular transmission is reversibly blocked by philanthotoxins at the pre- and/or postsynaptic side. 4. A presynaptic block of neuromuscular transmission was found with the Microbracon toxins. 5. An irreversible deactivation, without paralysis, of cockroaches is caused by a sting of Ampulex compressa into the suboesophageal ganglion. 6. Poneratoxin, a 25 amino acid residue polypeptide, isolated from an ant venom, is the first described hymenopteran neurotoxin affecting excitability of nerve and muscle fibres by changing the kinetics of the voltage-dependent sodium channel.

  19. Efficacy of algal metrics for assessing nutrient and organic enrichment in flowing waters

    USGS Publications Warehouse

    Porter, S.D.; Mueller, D.K.; Spahr, N.E.; Munn, M.D.; Dubrovsky, N.M.

    2008-01-01

    4. Although algal species tolerance to nutrient and organic enrichment is well documented, additional taxonomic and autecological research on sensitive, endemic algal species would further enhance water-quality assessments.

  20. Sensing the deadliest toxin: technologies for botulinum neurotoxin detection.

    PubMed

    Capek, Petr; Dickerson, Tobin J

    2010-01-01

    Sensitive and rapid detection of botulinum neurotoxins (BoNTs), the most poisonous substances known to date, is essential for studies of medical applications of BoNTs and detection of poisoned food, as well as for response to potential bioterrorist threats. Currently, the most common method of BoNT detection is the mouse bioassay. While this assay is sensitive, it is slow, quite expensive, has limited throughput and requires sacrificing animals. Herein, we discuss and compare recently developed alternative in vitro detection methods and assess their ability to supplement or replace the mouse bioassay in the analysis of complex matrix samples.

  1. Role of algal biofilm in improving the performance of free surface, up-flow constructed wetland.

    PubMed

    Badhe, Neha; Saha, Shaswati; Biswas, Rima; Nandy, Tapas

    2014-10-01

    The role of algal biofilm in a pilot-scale, free-surface, up-flow constructed wetland (CW), was studied for its effect on chemical oxygen demand (COD), ammonia and phosphate removal during three seasons-autumn, winter and early spring. Effect of hydraulic retention time (HRT) was also investigated in presence and absence of algal biofilm. Principal Component Analysis was used to identify the independent factors governing the performance of CW. The study showed algal biofilm significantly improved nutrient removal, especially phosphate. Ammonia removal varied with HRT, biofilm and ambient temperature. Increase in biofilm thickness affected ammonia removal efficiency adversely. Algal biofilm-assisted COD removal compensated for reduced macrophyte density during winter. Two-way ANOVA test and the coefficients of dependent factors derived through multiple linear regression model confirmed role of algal biofilm in improving nutrient removal in CW. The study suggests that algal biofilm can be a green solution for bio-augmenting COD and nutrient removal in CW. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Hydrogen production from algal biomass - Advances, challenges and prospects.

    PubMed

    Show, Kuan-Yeow; Yan, Yuegen; Ling, Ming; Ye, Guoxiang; Li, Ting; Lee, Duu-Jong

    2018-06-01

    Extensive effort is being made to explore renewable energy in replacing fossil fuels. Biohydrogen is a promising future fuel because of its clean and high energy content. A challenging issue in establishing hydrogen economy is sustainability. Biohydrogen has the potential for renewable biofuel, and could replace current hydrogen production through fossil fuel thermo-chemical processes. A promising source of biohydrogen is conversion from algal biomass, which is abundant, clean and renewable. Unlike other well-developed biofuels such as bioethanol and biodiesel, production of hydrogen from algal biomass is still in the early stage of development. There are a variety of technologies for algal hydrogen production, and some laboratory- and pilot-scale systems have demonstrated a good potential for full-scale implementation. This work presents an elucidation on development in biohydrogen encompassing biological pathways, bioreactor designs and operation and techno-economic evaluation. Challenges and prospects of biohydrogen production are also outlined. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. From benchtop to raceway : spectroscopic signatures of dynamic biological processes in algal communities.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trahan, Christine Alexandra; Garcia, Omar Fidel; Martino, Anthony A.

    2010-08-01

    The search is on for new renewable energy and algal-derived biofuel is a critical piece in the multi-faceted renewable energy puzzle. It has 30x more oil than any terrestrial oilseed crop, ideal composition for biodiesel, no competition with food crops, can be grown in waste water, and is cleaner than petroleum based fuels. This project discusses these three goals: (1) Conduct fundamental research into the effects that dynamic biotic and abiotic stressors have on algal growth and lipid production - Genomics/Transcriptomics, Bioanalytical spectroscopy/Chemical imaging; (2) Discover spectral signatures for algal health at the benchtop and greenhouse scale - Remote sensing,more » Bioanalytical spectroscopy; and (3) Develop computational model for algal growth and productivity at the raceway scale - Computational modeling.« less

  4. Algal culture studies related to a Closed Ecological Life Support System (CELSS)

    NASA Technical Reports Server (NTRS)

    Radmer, R. O.; Ollinger, O.; Venables, A.; Fernandez, E.

    1982-01-01

    Studies with algal cultures which relate to closed ecological life support systems (CELSS) are discussed. A description of a constant cell density apparatus for continuous culture of algae is included. Excretion of algal by-products, and nitrogen utilization and excretion are discussed.

  5. Neuronal targeting, internalization, and biological activity of a recombinant atoxic derivative of botulinum neurotoxin A

    USDA-ARS?s Scientific Manuscript database

    Botulinum neurotoxins (BoNT) have the unique capacity to cross epithelial barriers, target neuromuscular junctions, and translocate active metalloprotease component to the cytosol of motor neurons. We have taken advantage of the molecular carriers responsible for this trafficking to create a family ...

  6. Coupling of Algal Biofuel Production with Wastewater

    PubMed Central

    Panwar, Amit; Bisht, Tara Singh; Tamta, Sushma

    2014-01-01

    Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area. PMID:24982930

  7. Mycosporine-Like Amino Acids and Marine Toxins - The Common and the Different

    PubMed Central

    Klisch, Manfred; Häder, Donat-P.

    2008-01-01

    Marine microorganisms harbor a multitude of secondary metabolites. Among these are toxins of different chemical classes as well as the UV-protective mycosporine-like amino acids (MAAs). The latter form a group of water-soluble, low molecular-weight (generally < 400) compounds composed of either an aminocyclohexenone or an aminocyclohexenimine ring, carrying amino acid or amino alcohol substituents. So far there has been no report of toxicity in MAAs but nevertheless there are some features they have in common with marine toxins. Among the organisms producing MAAs are cyanobacteria, dinoflagellates and diatoms that also synthesize toxins. As in cyclic peptide toxins found in cyanobacteria, amino acids are the main building blocks of MAAs. Both, MAAs and some marine toxins are transferred to other organisms e.g. via the food chains, and chemical modifications can take place in secondary consumers. In contrast to algal toxins, the physiological role of MAAs is clearly the protection from harmful UV radiation by physical screening. However, other roles, e.g. as osmolytes and antioxidants, are also considered. In this paper the common characteristics of MAAs and marine toxins are discussed as well as the differences. PMID:18728764

  8. ERTS-1 observes algal blooms in Lake Erie and Utah Lake

    NASA Technical Reports Server (NTRS)

    Strong, A. E.

    1973-01-01

    During late summer when the surface waters of Lake Erie reach their maximum temperature an algal bloom is likely to develop. Such phenomena have been noticed on other shallow lakes using ERTS-1 and characterize eutrophic conditions. The concentration of the algae into long streamers provides additional information on surface circulations. To augment the ERTS-1 MSS data of Lake Erie an aircraft was flown to provide correlative thermal-IR and additional multiband photographs. The algal bloom is highly absorptive in the visible wavelengths but reverses contrast with the surrounding water in the near-IR bands. The absorption of shortwave energy heats the dark brown algal mass, providing a hot surface target for the thermal-IR scanner.

  9. Co-expression Network Approach to Studying the Effects of Botulinum Neurotoxin-A.

    PubMed

    Mukund, Kavitha; Ward, Samuel R; Lieber, Richard L; Subramaniam, Shankar

    2017-10-16

    Botulinum Neurotoxin A (BoNT-A) is a potent neurotoxin with several clinical applications.The goal of this study was to utilize co-expression network theory to analyze temporal transcriptional data from skeletal muscle after BoNT-A treatment. Expression data for 2000 genes (extracted using a ranking heuristic) served as the basis for this analysis. Using weighted gene co-expression network analysis (WGCNA), we identified 19 co-expressed modules, further hierarchically clustered into 5 groups. Quantifying average expression and co-expression patterns across these groups revealed temporal aspects of muscle's response to BoNT-A. Functional analysis revealed enrichment of group 1 with metabolism; group 5 with contradictory functions of atrophy and cellular recovery; and groups 2 and 3 with extracellular matrix (ECM) and non-fast fiber isoforms. Topological positioning of two highly ranked, significantly expressed genes- Dclk1 and Ostalpha within group 5 suggested possible mechanistic roles in recovery from BoNT-A induced atrophy. Phenotypic correlations of groups with titin and myosin protein content further emphasized the effect of BoNT-A on the sarcomeric contraction machinery in early phase of chemodenervation. In summary, our approach revealed a hierarchical functional response to BoNT-A induced paralysis with early metabolic and later ECM responses and identified putative biomarkers associated with chemodenervation. Additionally, our results provide an unbiased validation of the response documented in our previous workBotulinum Neurotoxin A (BoNT-A) is a potent neurotoxin with several clinical applications.The goal of this study was to utilize co-expression network theory to analyze temporal transcriptional data from skeletal muscle after BoNT-A treatment. Expression data for 2000 genes (extracted using a ranking heuristic) served as the basis for this analysis. Using weighted gene co-expression network analysis (WGCNA), we identified 19 co-expressed modules

  10. Impact of Submarine Groundwater Discharge on Marine Water Quality and Reef Biota of Maui

    PubMed Central

    Bishop, James M.

    2016-01-01

    Generally unseen and infrequently measured, submarine groundwater discharge (SGD) can transport potentially large loads of nutrients and other land-based contaminants to coastal ecosystems. To examine this linkage we employed algal bioassays, benthic community analysis, and geochemical methods to examine water quality and community parameters of nearshore reefs adjacent to a variety of potential, land-based nutrient sources on Maui. Three common reef algae, Acanthophora spicifera, Hypnea musciformis, and Ulva spp. were collected and/or deployed at six locations with SGD. Algal tissue nitrogen (N) parameters (δ15N, N %, and C:N) were compared with nutrient and δ15N-nitrate values of coastal groundwater and nearshore surface water at all locations. Benthic community composition was estimated for ten 10-m transects per location. Reefs adjacent to sugarcane farms had the greatest abundance of macroalgae, low species diversity, and the highest concentrations of N in algal tissues, coastal groundwater, and marine surface waters compared to locations with low anthropogenic impact. Based on δ15N values of algal tissues, we estimate ca. 0.31 km2 of Kahului Bay is impacted by effluent injected underground at the Kahului Wastewater Reclamation Facility (WRF); this region is barren of corals and almost entirely dominated by colonial zoanthids. Significant correlations among parameters of algal tissue N with adjacent surface and coastal groundwater N indicate that these bioassays provided a useful measure of nutrient source and loading. A conceptual model that uses Ulva spp. tissue δ15N and N % to identify potential N source(s) and relative N loading is proposed for Hawaiʻi. These results indicate that SGD can be a significant transport pathway for land-based nutrients with important biogeochemical and ecological implications in tropical, oceanic islands. PMID:27812171

  11. Impact of Submarine Groundwater Discharge on Marine Water Quality and Reef Biota of Maui.

    PubMed

    Amato, Daniel W; Bishop, James M; Glenn, Craig R; Dulai, Henrietta; Smith, Celia M

    2016-01-01

    Generally unseen and infrequently measured, submarine groundwater discharge (SGD) can transport potentially large loads of nutrients and other land-based contaminants to coastal ecosystems. To examine this linkage we employed algal bioassays, benthic community analysis, and geochemical methods to examine water quality and community parameters of nearshore reefs adjacent to a variety of potential, land-based nutrient sources on Maui. Three common reef algae, Acanthophora spicifera, Hypnea musciformis, and Ulva spp. were collected and/or deployed at six locations with SGD. Algal tissue nitrogen (N) parameters (δ15N, N %, and C:N) were compared with nutrient and δ15N-nitrate values of coastal groundwater and nearshore surface water at all locations. Benthic community composition was estimated for ten 10-m transects per location. Reefs adjacent to sugarcane farms had the greatest abundance of macroalgae, low species diversity, and the highest concentrations of N in algal tissues, coastal groundwater, and marine surface waters compared to locations with low anthropogenic impact. Based on δ15N values of algal tissues, we estimate ca. 0.31 km2 of Kahului Bay is impacted by effluent injected underground at the Kahului Wastewater Reclamation Facility (WRF); this region is barren of corals and almost entirely dominated by colonial zoanthids. Significant correlations among parameters of algal tissue N with adjacent surface and coastal groundwater N indicate that these bioassays provided a useful measure of nutrient source and loading. A conceptual model that uses Ulva spp. tissue δ15N and N % to identify potential N source(s) and relative N loading is proposed for Hawai'i. These results indicate that SGD can be a significant transport pathway for land-based nutrients with important biogeochemical and ecological implications in tropical, oceanic islands.

  12. Alginate and Algal-Based Beads for the Sorption of Metal Cations: Cu(II) and Pb(II)

    PubMed Central

    Wang, Shengye; Vincent, Thierry; Faur, Catherine; Guibal, Eric

    2016-01-01

    Alginate and algal-biomass (Laminaria digitata) beads were prepared by homogeneous Ca ionotropic gelation. In addition, glutaraldehyde-crosslinked poly (ethyleneimine) (PEI) was incorporated into algal beads. The three sorbents were characterized by scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX): the sorption occurs in the whole mass of the sorbents. Sorption experiments were conducted to evaluate the impact of pH, sorption isotherms, and uptake kinetics. A special attention was paid to the effect of drying (air-drying vs. freeze-drying) on the mass transfer properties. For alginate, freeze drying is required for maintaining the porosity of the hydrogel, while for algal-based sorbents the swelling of the material minimizes the impact of the drying procedure. The maximum sorption capacities observed from experiments were 415, 296 and 218 mg Pb g−1 and 112, 77 and 67 mg Cu g−1 for alginate, algal and algal/PEI beads respectively. Though the sorption capacities of algal-beads decreased slightly (compared to alginate beads), the greener and cheaper one-pot synthesis of algal beads makes this sorbent more competitive for environmental applications. PEI in algal beads decreases the sorption properties in the case of the sorption of metal cations under selected experimental conditions. PMID:27598128

  13. Relations of habitat-specific algal assemblages to land use and water chemistry in the Willamette Basin, Oregon

    USGS Publications Warehouse

    Carpenter, K.D.; Waite, I.R.

    2000-01-01

    Benthic algal assemblages, water chemistry, and habitat were characterized at 25 stream sites in the Willamette Basin, Oregon, during low flow in 1994. Seventy-three algal samples yielded 420 taxa - Mostly diatoms, blue-green algae, and green algae. Algal assemblages from depositional samples were strongly dominated by diatoms (76% mean relative abundance), whereas erosional samples were dominated by blue-green algae (68% mean relative abundance). Canonical correspondence analysis (CCA) of semiquantitative and qualitative (presence/absence) data sets identified four environmental variables (maximum specific conductance, % open canopy, pH, and drainage area) that were significant in describing patterns of algal taxa among sites. Based on CCA, four groups of sites were identified: Streams in forested basins that supported oligotrophic taxa, such as Diatoma mesodon; small streams in agricultural and urban basins that contained a variety of eutrophic and nitrogen-heterotrophic algal taxa; larger rivers draining areas of mixed land use that supported planktonic, eutrophic, and nitrogen-heterotrophic algal taxa; and streams with severely degraded or absent riparian vegetation (> 75% open canopy) that were dominated by other planktonic, eutrophic, and nitrogen-heterotrophic algal taxa. Patterns in water chemistry were consistent with the algal autecological interpretations and clearly demonstrated relationships between land use, water quality, and algal distribution patterns.

  14. Reviews and Syntheses: Ocean acidification and its potential impacts on marine ecosystems

    NASA Astrophysics Data System (ADS)

    Mostofa, Khan M. G.; Liu, Cong-Qiang; Zhai, WeiDong; Minella, Marco; Vione, Davide; Gao, Kunshan; Minakata, Daisuke; Arakaki, Takemitsu; Yoshioka, Takahito; Hayakawa, Kazuhide; Konohira, Eiichi; Tanoue, Eiichiro; Akhand, Anirban; Chanda, Abhra; Wang, Baoli; Sakugawa, Hiroshi

    2016-03-01

    Ocean acidification, a complex phenomenon that lowers seawater pH, is the net outcome of several contributions. They include the dissolution of increasing atmospheric CO2 that adds up with dissolved inorganic carbon (dissolved CO2, H2CO3, HCO3-, and CO32-) generated upon mineralization of primary producers (PP) and dissolved organic matter (DOM). The aquatic processes leading to inorganic carbon are substantially affected by increased DOM and nutrients via terrestrial runoff, acidic rainfall, increased PP and algal blooms, nitrification, denitrification, sulfate reduction, global warming (GW), and by atmospheric CO2 itself through enhanced photosynthesis. They are consecutively associated with enhanced ocean acidification, hypoxia in acidified deeper seawater, pathogens, algal toxins, oxidative stress by reactive oxygen species, and thermal stress caused by longer stratification periods as an effect of GW. We discuss the mechanistic insights into the aforementioned processes and pH changes, with particular focus on processes taking place with different timescales (including the diurnal one) in surface and subsurface seawater. This review also discusses these collective influences to assess their potential detrimental effects to marine organisms, and of ecosystem processes and services. Our review of the effects operating in synergy with ocean acidification will provide a broad insight into the potential impact of acidification itself on biological processes. The foreseen danger to marine organisms by acidification is in fact expected to be amplified by several concurrent and interacting phenomena.

  15. Reviews and Syntheses: Ocean acidification and its potential impacts on marine ecosystems

    NASA Astrophysics Data System (ADS)

    Mostofa, K. M. G.; Liu, C.-Q.; Zhai, W. D.; Minella, M.; Vione, D.; Gao, K.; Minakata, D.; Arakaki, T.; Yoshioka, T.; Hayakawa, K.; Konohira, E.; Tanoue, E.; Akhand, A.; Chanda, A.; Wang, B.; Sakugawa, H.

    2015-07-01

    Ocean acidification, a complex phenomenon that lowers seawater pH, is the net outcome of several contributions. They include the dissolution of increasing atmospheric CO2 that adds up with dissolved inorganic carbon (dissolved CO2, H2CO3, HCO3-, and CO32-) generated upon mineralization of primary producers (PP) and dissolved organic matter (DOM). The aquatic processes leading to inorganic carbon are substantially affected by increased DOM and nutrients via terrestrial runoff, acidic rainfall, increased PP and algal blooms, nitrification, denitrification, sulfate reduction, global warming (GW), and by atmospheric CO2 itself through enhanced photosynthesis. They are consecutively associated with enhanced ocean acidification, hypoxia in acidified deeper seawater, pathogens, algal toxins, oxidative stress by reactive oxygen species, and thermal stress caused by longer stratification periods as an effect of GW. We discuss the mechanistic insights into the aforementioned processes and pH changes, with particular focus on processes taking place with different time scales (including the diurnal one) in surface and subsurface seawater. This review also discusses these collective influences to assess their potential detrimental effects to marine organisms, and of ecosystem processes and services. Our review of the effects operating in synergy with ocean acidification will provide a broad insight into the potential impact of acidification itself on biological processes. The foreseen danger to marine organisms by acidification is in fact expected to be amplified by several concurrent and interacting phenomena.

  16. Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts

    DOE PAGES

    Unkefer, Clifford Jay; Sayre, Richard Thomas; Magnuson, Jon K.; ...

    2016-06-21

    In 2010,when the National Alliance for Advanced Biofuels and Bioproducts (NAABB) consortium began, little was known about the molecular basis of algal biomass or oil production. Very few algal genome sequences were available and efforts to identify the best-producing wild species through bioprospecting approaches had largely stalled after the U.S. Department of Energy's Aquatic Species Program. This lack of knowledge included how reduced carbon was partitioned into storage products like triglycerides or starch and the role played by metabolite remodeling in the accumulation of energy-dense storage products. Furthermore, genetic transformation and metabolic engineering approaches to improve algal biomass and oilmore » yields were in their infancy. Genome sequencing and transcriptional profiling were becoming less expensive, however; and the tools to annotate gene expression profiles under various growth and engineered conditions were just starting to be developed for algae. It was in this context that an integrated algal biology program was introduced in the NAABB to address the greatest constraints limiting algal biomass yield. Our review describes the NAABB algal biology program, including hypotheses, research objectives, and strategies to move algal biology research into the twenty-first century and to realize the greatest potential of algae biomass systems to produce biofuels.« less

  17. Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unkefer, Clifford Jay; Sayre, Richard Thomas; Magnuson, Jon K.

    In 2010,when the National Alliance for Advanced Biofuels and Bioproducts (NAABB) consortium began, little was known about the molecular basis of algal biomass or oil production. Very few algal genome sequences were available and efforts to identify the best-producing wild species through bioprospecting approaches had largely stalled after the U.S. Department of Energy's Aquatic Species Program. This lack of knowledge included how reduced carbon was partitioned into storage products like triglycerides or starch and the role played by metabolite remodeling in the accumulation of energy-dense storage products. Furthermore, genetic transformation and metabolic engineering approaches to improve algal biomass and oilmore » yields were in their infancy. Genome sequencing and transcriptional profiling were becoming less expensive, however; and the tools to annotate gene expression profiles under various growth and engineered conditions were just starting to be developed for algae. It was in this context that an integrated algal biology program was introduced in the NAABB to address the greatest constraints limiting algal biomass yield. Our review describes the NAABB algal biology program, including hypotheses, research objectives, and strategies to move algal biology research into the twenty-first century and to realize the greatest potential of algae biomass systems to produce biofuels.« less

  18. Algal Pretreatment Improves Biofuels Yield and Value; Highlights in Science, NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-05-15

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. This research has been highlighted in the Green Chemistry journal article mentioned above and a milestone report, and is based on the workmore » the researchers are doing for the AOP projects Algal Biomass Conversion and Algal Biofuels Techno-economic Analysis. That work has demonstrated an advanced process for algal biofuel production that captures the value of both the algal lipids and carbohydrates for conversion to biofuels.  With this process, as much as 150 GGE/ton of biomass can be produced, 2-3X more than can be produced by terrestrial feedstocks.  This can also reduce the cost of biofuel production by as much as 40%. This also represents the first ever design case for the algal lipid upgrading pathway.« less

  19. [Effects of outbreak and extinction of algal blooms on the microbial community structure in sediments of Chaohu Lake].

    PubMed

    Diao, Xiao-jun; Li, Yi-wei; Wang, Shu-guang

    2015-01-01

    Although impacts of algal bloom on the physicochemical and biological properties of water and sediment in many lakes have been largely studied, less attention is paid to the impact of outbreak and extinction of algal blooms on the microbial community structure in sediment. In this study, outbreak and extinction of algal blooms and their effects on the microbial community structure in sediment of Chaohu Lake were studied by PCR-DGGE method. The results showed that algal blooms formed between May 15 and June 20, sustained from June 20 to September 5, and then went into extinction. In the region without algal blooms, PCR-DGGE analysis showed that microbial species, Shannon-Wiener diversity index and Simpson dominance index changed slightly over time; moreover, the microbial community structure had high similarity during the whole study. Temperature may be the main factor affecting the fluctuation of the microbial community structure in this region. In the region with algal blooms, however, microbial species and Shannon-Wiener diversity index were higher during the formation and extinction of algal blooms and lower in the sustaining blooms stage than those in the region without algal blooms. But the Simpson dominance index showed the opposite trend over time. In addition, the microbial community structure had low similarity during the whole study. The results suggested that outbreak and extinction of algal blooms produced different effects on the microbial community structure and the dominant microbial species, which may be related to the variation of water properties caused by temperature and algal blooms. This study showed that outbreak and extinction of algal blooms caused different effects on microbes in lake sediment, and this is significantly important to deeply evaluate the effects of algal bloom on the aquatic ecosystem of the lake and effectively control algal blooms using sediment microbes.

  20. Shedding light on ovothiol biosynthesis in marine metazoans

    PubMed Central

    Castellano, Immacolata; Migliaccio, Oriana; D’Aniello, Salvatore; Merlino, Antonello; Napolitano, Alessandra; Palumbo, Anna

    2016-01-01

    Ovothiol, isolated from marine invertebrate eggs, is considered one of the most powerful antioxidant with potential for drug development. However, its biological functions in marine organisms still represent a matter of debate. In sea urchins, the most accepted view is that ovothiol protects the eggs by the high oxidative burst at fertilization. In this work we address the role of ovothiol during sea urchin development to give new insights on ovothiol biosynthesis in metazoans. The gene involved in ovothiol biosynthesis OvoA was identified in Paracentrotus lividus genome (PlOvoA). PlOvoA embryo expression significantly increased at the pluteus stage and was up-regulated by metals at concentrations mimicking polluted sea-water and by cyclic toxic algal blooms, leading to ovothiol biosynthesis. In silico analyses of the PlOvoA upstream region revealed metal and stress responsive elements. Structural protein models highlighted conserved active site residues likely responsible for ovothiol biosynthesis. Phylogenetic analyses indicated that OvoA evolved in most marine metazoans and was lost in bony vertebrates during the transition from the aquatic to terrestrial environment. These results highlight the crucial role of OvoA in protecting embryos released in seawater from environmental cues, thus allowing the survival under different conditions. PMID:26916575

  1. Shedding light on ovothiol biosynthesis in marine metazoans

    NASA Astrophysics Data System (ADS)

    Castellano, Immacolata; Migliaccio, Oriana; D'Aniello, Salvatore; Merlino, Antonello; Napolitano, Alessandra; Palumbo, Anna

    2016-02-01

    Ovothiol, isolated from marine invertebrate eggs, is considered one of the most powerful antioxidant with potential for drug development. However, its biological functions in marine organisms still represent a matter of debate. In sea urchins, the most accepted view is that ovothiol protects the eggs by the high oxidative burst at fertilization. In this work we address the role of ovothiol during sea urchin development to give new insights on ovothiol biosynthesis in metazoans. The gene involved in ovothiol biosynthesis OvoA was identified in Paracentrotus lividus genome (PlOvoA). PlOvoA embryo expression significantly increased at the pluteus stage and was up-regulated by metals at concentrations mimicking polluted sea-water and by cyclic toxic algal blooms, leading to ovothiol biosynthesis. In silico analyses of the PlOvoA upstream region revealed metal and stress responsive elements. Structural protein models highlighted conserved active site residues likely responsible for ovothiol biosynthesis. Phylogenetic analyses indicated that OvoA evolved in most marine metazoans and was lost in bony vertebrates during the transition from the aquatic to terrestrial environment. These results highlight the crucial role of OvoA in protecting embryos released in seawater from environmental cues, thus allowing the survival under different conditions.

  2. Marine Algicolous Endophytic Fungi - A Promising Drug Resource of the Era.

    PubMed

    Sarasan, Manomi; Puthumana, Jayesh; Job, Neema; Han, Jeonghoon; Lee, Jae-Seong; Philip, Rosamma

    2017-06-28

    Endophytic fungi have currently been acknowledged as the most promising source of bioactive compounds for drug discovery, and considerable progress has been made in exploring their diversity, species richness, and bioprospecting. Fungal endophytes from unique environmental settings offer a pool of potentially useful medicinal entities. Owing to the constant stresses imposed on macroalgae by marine environments, it is believed that algae and their associated endophytic symbionts represent a good source of structurally diverse bioactive secondary metabolites. Despite the proven significance of active metabolites of algal endophytes, little have been exploited. This review highlights the latest discoveries in algicolous endophytic research, with particular focus on the bioactive metabolites from algal endophytes. Compounds are classified according to their reported biological activities, like anticancer, antibacterial, antifungal, and antioxidant properties. Present experimental evidence suggests that a majority of the bioactive metabolites were reported from Phaeophyceae followed by Rhodophyceae and Chlorophyceae. An intensive search for newer and more effective bioactive metabolites has generated a treasure trove of publications, and this review partially covers the literature published up to 2016.

  3. Application of Multispectral and Hyperspectral Remote Sensing For Detection of Freshwater Harmful Algal Blooms

    NASA Astrophysics Data System (ADS)

    Kudela, R. M.; Accorsi, E.; Austerberry, D.; Palacios, S. L.

    2013-12-01

    Freshwater Cyanobacterial Harmful algal blooms (CHABs) represent a pressing and apparently increasing threat to both human and environmental health. In California, toxin producing blooms of several species, including Aphanizomenon, Microcystis, Lyngbya, and Anabaena are common; toxins from these blooms have been linked to impaired drinking water, domestic and wild animal deaths, and increasing evidence for toxin transfer to coastal marine environments, including the death of several California sea otters, a threatened marine species. California scientists and managers are under increasing pressure to identify and mitigate these potentially toxic blooms, but point-source measurements and grab samples have been less than effective. There is increasing awareness that these toxic events are both spatially widespread and ephememeral, leading to the need for better monitoring methods applicable to large spatial and temporal scales. Based on monitoring in several California water bodies, it appears that Aphanizomenon blooms frequently precede dangerous levels of toxins from Microcystis. We are exploring new detection methods for identifying CHABs and potentially distinguishing between blooms of the harmful cyanobacteria Aphanizomenon and Microcystis using remote sensing reflectance from a variety of airborne and satellite sensors. We suggest that Aphanizomenon blooms could potentially be used as an early warning of more highly toxic subsequent blooms, and that these methods, combined with better toxin monitoring, can lead to improved understanding and prediction of CHABs by pinpointing problematic watersheds.

  4. Stressor-Response Models Relating Nutrient Enrichment to Algal Communities in Pacific Northwest Streams and Rivers

    NASA Astrophysics Data System (ADS)

    Sobota, D. J.; Hubler, S.; Paul, M. J.; Labiosa, R.

    2015-12-01

    Excessive algal growth in streams and rivers from nutrient enrichment can cause costly human health and environmental problems. As part of the US Environmental Protection Agency's Nutrient Scientific Technical Exchange Partnership and Support (N-STEPS) program, we have been developing stressor-response (S-R) models relating nutrients to attached algal (periphyton) communities to help prioritize monitoring for water quality impairments in Oregon (Pacific Northwest, USA) streams and rivers. Existing data from the state and neighboring states were compiled and standardized from the Oregon Department of Environmental Quality, US Environmental Protection Agency, and the US Geological Survey. To develop S-R models, algal community and biomass metrics were compared with nitrogen (N) and phosphorus (P) concentration data, including total, dissolved, and inorganic forms of these nutrients. In total, 928 paired algal-nutrient samples were compiled from the 8 Level-III Ecoregions occurring in Oregon. Relationships between algal biomass metrics and nutrient concentrations were weak, with only ash-free dry mass and standing stock of chlorophyll a showing slight positive relationships across gradients of total N and soluble reactive P concentrations, respectively. In contrast, metrics describing algal community composition, including percent diatoms and abundance of nutrient-sensitive species, showed very strong nonlinear relationships with total N or P concentrations. This suggests that data describing algal community composition can help identify specific nutrient stressors across environmentally-diverse streams and rivers in the Pacific Northwest. Future analyses will examine if nutrient-algal S-R models vary across different hydrological, physiographical, and ecological settings in the region.

  5. Substrates and controls for the quantitative detection of active botulinum neurotoxin in protease-containing samples

    USDA-ARS?s Scientific Manuscript database

    Botulinum neurotoxins (BoNTs) enjoy a wide variety of medical applications. However, limited pharmacokinetic data on active BoNT is available. Monitoring BoNT activity in the circulation is a challenging task, due to BoNT’s enormous toxicity, rapid neuronal uptake, and removal from the bloodstream. ...

  6. Managing variability in algal biomass production through drying and stabilization of feedstock blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahlen, Bradley D.; Roni, Mohammad S.; Cafferty, Kara G.

    The uncertainty and variability of algal biomass production presents several challenges to the algal biofuel industry including equipment scaling and the ability to provide a consistent feedstock stream for conversion. Blended feedstocks containing both algal and terrestrial biomass may provide a cost-effective method to manage variability of algal biomass production. The hypothesis is that mixing of algae with terrestrial biomass has the potential to create blends with rheologic (flowability) properties similar to terrestrial feedstock and that blends with the consistency of terrestrial biomass can be dried using established low-cost drying systems. To test this hypothesis and its technical feasibility, prototypemore » bench scale simulated drum dyers were designed and tested with blends of algae and ground pine. Scenedesmus dimorphus biomass was used as the algal feedstock, while 2 mm grind pine was used as the terrestrial feedstock. Pine was selected as the representative terrestrial feedstock to leverage independent HTL research using pine feedstock. In these studies, blends up to 60% algae produced drying curves similar to those of pine alone, and reached dryness (2% moisture) much more rapidly than algae alone. Thermogravimetric analyses performed on these feedstocks provided drying curves consistent with the simulated drum dryers. In addition, observable rheologic properties at the time of blending served as an indicator of drying performance, as those blends with texture similar to pine also dried similar to the pine control. Logistics analyses performed to determine cost and availability of feedstock materials for blending at production scale further indicate the potential of this approach. Lastly, our results indicate that blending of algae with terrestrial biomass enables the use of low cost dryers and has the potential to improve overall algal biofuel economics by capturing the value of excess biomass produced during periods of high productivity and

  7. Managing variability in algal biomass production through drying and stabilization of feedstock blends

    DOE PAGES

    Wahlen, Bradley D.; Roni, Mohammad S.; Cafferty, Kara G.; ...

    2017-03-22

    The uncertainty and variability of algal biomass production presents several challenges to the algal biofuel industry including equipment scaling and the ability to provide a consistent feedstock stream for conversion. Blended feedstocks containing both algal and terrestrial biomass may provide a cost-effective method to manage variability of algal biomass production. The hypothesis is that mixing of algae with terrestrial biomass has the potential to create blends with rheologic (flowability) properties similar to terrestrial feedstock and that blends with the consistency of terrestrial biomass can be dried using established low-cost drying systems. To test this hypothesis and its technical feasibility, prototypemore » bench scale simulated drum dyers were designed and tested with blends of algae and ground pine. Scenedesmus dimorphus biomass was used as the algal feedstock, while 2 mm grind pine was used as the terrestrial feedstock. Pine was selected as the representative terrestrial feedstock to leverage independent HTL research using pine feedstock. In these studies, blends up to 60% algae produced drying curves similar to those of pine alone, and reached dryness (2% moisture) much more rapidly than algae alone. Thermogravimetric analyses performed on these feedstocks provided drying curves consistent with the simulated drum dryers. In addition, observable rheologic properties at the time of blending served as an indicator of drying performance, as those blends with texture similar to pine also dried similar to the pine control. Logistics analyses performed to determine cost and availability of feedstock materials for blending at production scale further indicate the potential of this approach. Lastly, our results indicate that blending of algae with terrestrial biomass enables the use of low cost dryers and has the potential to improve overall algal biofuel economics by capturing the value of excess biomass produced during periods of high productivity and

  8. CRISPR/Cas9-Mediated Genomic Deletion of the Beta-1, 4 N-acetylgalactosaminyltransferase 1 Gene in Murine P19 Embryonal Carcinoma Cells Results in Low Sensitivity to Botulinum Neurotoxin Type C.

    PubMed

    Tsukamoto, Kentaro; Ozeki, Chikako; Kohda, Tomoko; Tsuji, Takao

    2015-01-01

    Botulinum neurotoxins produced by Clostridium botulinum cause flaccid paralysis by inhibiting neurotransmitter release at peripheral nerve terminals. Previously, we found that neurons derived from the murine P19 embryonal carcinoma cell line exhibited high sensitivity to botulinum neurotoxin type C. In order to prove the utility of P19 cells for the study of the intracellular mechanism of botulinum neurotoxins, ganglioside-knockout neurons were generated by deletion of the gene encoding beta-1,4 N-acetylgalactosaminyltransferase 1 in P19 cells using the clustered regularly interspaced short palindromic repeats combined with Cas9 (CRISPR/Cas9) system. By using this system, knockout cells could be generated more easily than with previous methods. The sensitivity of the generated beta-1,4 N-acetylgalactosaminyltransferase 1-depleted P19 neurons to botulinum neurotoxin type C was decreased considerably, and the exogenous addition of the gangliosides GD1a, GD1b, and GT1b restored the susceptibility of P19 cells to botulinum neurotoxin type C. In particular, addition of a mixture of these three ganglioside more effectively recovered the sensitivity of knockout cells compared to independent addition of GD1a, GD1b, or GT1b. Consequently, the genome-edited P19 cells generated by the CRISPR/Cas9 system were useful for identifying and defining the intracellular molecules involved in the toxic action of botulinum neurotoxins.

  9. How Hydrodynamics Control Algal Blooms in the Ythan Estuary, Scotland

    NASA Astrophysics Data System (ADS)

    Champangern, K.; Hoey, T.; Thomas, R.; Mitchard, E. T.

    2016-12-01

    The Ythan estuary, northeast Scotland, was designated in 2000 as a Nitrate Vulnerable Zone (NVZ) under the European Commission (EC) Nitrates Directive. Much of the catchment is intensively farmed and water quality has been adversely affected by nutrients from agricultural fertilisers. As a result, algal mats develop annually on tidal flats where sediment from upstream and from the adjacent dune systems is deposited. Understanding the patterns of water (river and ocean) circulation in the estuary as well as nutrient transport in the estuary is crucial for comprehending the role of several factors (elevation; sediment characteristics; nutrient flux) control the locations and scale of annual algal blooms. To understand the controls, the Delft3d flow model is used to simulate hydrodynamic patterns and nutrient pathways in the estuary during high flow and low flow events. The results from the simulations reveal that during high river flow in the central part of the estuary, where algal growth is most extensive, flow velocity are higher during flood tide than in the ebb. However, the velocity in this area remain very low throughout the tidal cycle. During low river flow, the velocity during one tidal cycle has the same pattern as in high flow event, although the velocity is generally slightly higher than during high river flow except during slack tide where velocity and shear stress are lower. The modelled nutrient pathways and their concentration also show the movement of nutrients with regard to interaction of both fresh and sea water. The concentration is greatest during low tide in the upper estuary followed by middle and lower estuary, while appearing lowest during high tide. The nutrients mobilise along the main channel where velocity is greater. However, they are also dispersed to shallower areas where algal growth is extensive and remain high concentrated in the areas until a new flood tide. These model results are validated against measured data, of which the

  10. Ultrasound Guidance for Botulinum Neurotoxin Chemodenervation Procedures.

    PubMed

    Alter, Katharine E; Karp, Barbara I

    2017-12-28

    Injections of botulinum neurotoxins (BoNTs) are prescribed by clinicians for a variety of disorders that cause over-activity of muscles; glands; pain and other structures. Accurately targeting the structure for injection is one of the principle goals when performing BoNTs procedures. Traditionally; injections have been guided by anatomic landmarks; palpation; range of motion; electromyography or electrical stimulation. Ultrasound (US) based imaging based guidance overcomes some of the limitations of traditional techniques. US and/or US combined with traditional guidance techniques is utilized and or recommended by many expert clinicians; authors and in practice guidelines by professional academies. This article reviews the advantages and disadvantages of available guidance techniques including US as well as technical aspects of US guidance and a focused literature review related to US guidance for chemodenervation procedures including BoNTs injection.

  11. Effect of Chlorpromazine on the Toxicity in Mice of the Venoms and Neurotoxins from Various Snakes

    DTIC Science & Technology

    1988-07-26

    the neuromuscular junction and blocks muscle contraction stimulated by acetylcholine. P-Bungarotoxin is a presynaptic neurotoxin which inhibits the...release of acetylcholine from neurons, also blocking muscle contraction (Chang, 1985). The two toxins work in concert to cause respiratory failure

  12. Effect of Tetracycline Antibiotics on Performance and Microbial Community of Algal Photo-Bioreactor.

    PubMed

    Taşkan, Ergin

    2016-07-01

    Tetracycline antibiotics have been increasingly used in medical applications and have been found in wastewater treatment plants as a result of human and industrial activities. This study investigates the combined effects of tetracycline antibiotics on the performance of an algal photo-bioreactor operated under different antibiotic concentrations in the ranges of 0.25 to 30 mg/L and considers the inhibition of algal growth, carbon and nutrient removal rates, and eukaryotic and cyanobacterial algal community changes. The results indicated that increases in the concentration of tetracycline mixtures have adverse effects on the algal community and the performance of a photo-bioreactor, and the eukaryotic algae species were more sensitive to tetracycline antibiotics than were the cyanobacterial species. Cultivation tests showed that approximately 94 % growth inhibition of mixed algae occurred at 30 mg/L.

  13. Advances in algal-prokaryotic wastewater treatment: A review of nitrogen transformations, reactor configurations and molecular tools.

    PubMed

    Wang, Meng; Keeley, Ryan; Zalivina, Nadezhda; Halfhide, Trina; Scott, Kathleen; Zhang, Qiong; van der Steen, Peter; Ergas, Sarina J

    2018-07-01

    The synergistic activity of algae and prokaryotic microorganisms can be used to improve the efficiency of biological wastewater treatment, particularly with regards to nitrogen removal. For example, algae can provide oxygen through photosynthesis needed for aerobic degradation of organic carbon and nitrification and harvested algal-prokaryotic biomass can be used to produce high value chemicals or biogas. Algal-prokaryotic consortia have been used to treat wastewater in different types of reactors, including waste stabilization ponds, high rate algal ponds and closed photobioreactors. This review addresses the current literature and identifies research gaps related to the following topics: 1) the complex interactions between algae and prokaryotes in wastewater treatment; 2) advances in bioreactor technologies that can achieve high nitrogen removal efficiencies in small reactor volumes, such as algal-prokaryotic biofilm reactors and enhanced algal-prokaryotic treatment systems (EAPS); 3) molecular tools that have expanded our understanding of the activities of algal and prokaryotic communities in wastewater treatment processes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Algal Data from Selected Sites in the Upper Colorado River Basin, Colorado, Water Years 1996-97

    USGS Publications Warehouse

    Mize, Scott V.; Deacon, Jeffrey R.

    2001-01-01

    Algal community samples were collected at 15 sites in the Upper Colorado River Basin in Colorado as part of the National Water-Quality Assessment Program during water years 1996-97. Sites sampled were located in two physiographic provinces, the Southern Rocky Mountains and the Colorado Plateaus, and represented agricultural, mining, urban, and mixed land uses and background conditions. Algal samples were collected once per year during low-flow conditions. Quantitative algal samples were collected within two targeted instream habitat types including a taxonomically richest-targeted habitat and a depositional-targeted habitat. This report presents the algal community data collected at the fixed sites in the Upper Colorado River Basin study unit. Algal data include densities (abundance of cells per square centimeter of substrate) and biovolumes (cubic micrometers of cells per square centimeter of substrate) for the two habitat types. Quality-assurance and quality-control results for algal samples indicate that the largest sampling variability tends to occur in samples from small streams.

  15. 8-Hydroxyquinoline and hydroxamic acid inhibitors of botulinum neurotoxin BoNT/A.

    PubMed

    Dickerson, Tobin J; Smith, Garry R; Pelletier, Jeffrey C; Reitz, Allen B

    2014-01-01

    We describe here the state of the art of certain aspects concerning potential small molecule therapy directed toward botulism, by inhibition of the zinc-protease containing light chain (LC) of botulinum neurotoxin BoNT/A from the anaerobic bacillus Clostridium botulinum. Botulinum neurotoxins (BoNTs) are comprised of eight serologically-distinct proteins (A - H), several of which are further divided, such as BoNT/A which has five subtypes. The BoNTs are the most toxic substances known to mankind, causing a form of flaccid paralysis that can be rapid and is often lethal. BoNT/A is comprised of a ~100 kDa heavy chain (HC) attached via a single disulfide Cys-Cys bond to a ~50 kDa LC. The HC mediates transport to and uptake by presynaptic glutamatergic neurons, where the LC cleaves the protein SNAP-25 and thus prevents vesicular trafficking and release of acetylcholine. The Zn-endoprotease activity of the LC of BoNT/A is a target for the development of small molecule inhibitors of BoNT/A-mediated toxicity. A variety of BoNT/A LC inhibitors have been described to date and we focus here primarily on the Zn-binding 8-hydroxyquinoline structural type as well as some of the previously-described hydroxamic acids.

  16. Fatal Canine Intoxications Linked to the Presence of Saxitoxins in Stranded Marine Organisms Following Winter Storm Activity

    PubMed Central

    Turner, Andrew D.; Dhanji-Rapkova, Monika; Dean, Karl; Milligan, Steven; Hamilton, Mike; Thomas, Julie; Poole, Chris; Haycock, Jo; Spelman-Marriott, Jo; Watson, Alice; Hughes, Katherine; Marr, Bridget; Dixon, Alan; Coates, Lewis

    2018-01-01

    At the start of 2018, multiple incidents of dog illnesses were reported following consumption of marine species washed up onto the beaches of eastern England after winter storms. Over a two-week period, nine confirmed illnesses including two canine deaths were recorded. Symptoms in the affected dogs included sickness, loss of motor control, and muscle paralysis. Samples of flatfish, starfish, and crab from the beaches in the affected areas were analysed for a suite of naturally occurring marine neurotoxins of dinoflagellate origin. Toxins causing paralytic shellfish poisoning (PSP) were detected and quantified using two independent chemical testing methods in samples of all three marine types, with concentrations over 14,000 µg saxitoxin (STX) eq/kg found in one starfish sample. Further evidence for PSP intoxication of the dogs was obtained with the positive identification of PSP toxins in a vomited crab sample from one deceased dog and in gastrointestinal samples collected post mortem from a second affected dog. Together, this is the first report providing evidence of starfish being implicated in a PSP intoxication case and the first report of PSP in canines. PMID:29495385

  17. Botulinum neurotoxin: where are we with detection technologies?

    PubMed

    Singh, Ajay K; Stanker, Larry H; Sharma, Shashi K

    2013-02-01

    Because of its high toxicity, botulinum neurotoxin (BoNT) poses a significant risk to humans and it represents a possible biological warfare agent. Nevertheless, BoNT serotypes A and B are considered an effective treatment for a variety of neurological disorders. The growing applicability of BoNT as a drug, and its potential use as a biological threat agent, highlight the urgent need to develop sensitive detection assays and therapeutic counter measures. In the last decade, significant progress has been made in BoNT detection technologies but none have fully replaced the mouse lethality assay, the current "gold standard". Recently, new advances in robotics and the availability of new reagents have allowed development of methods for rapid toxin analysis. These technologies while promising need further refinement.

  18. Okadaic Acid Meet and Greet: An Insight into Detection Methods, Response Strategies and Genotoxic Effects in Marine Invertebrates

    PubMed Central

    Prego-Faraldo, María Verónica; Valdiglesias, Vanessa; Méndez, Josefina; Eirín-López, José M.

    2013-01-01

    Harmful Algal Blooms (HABs) constitute one of the most important sources of contamination in the oceans, producing high concentrations of potentially harmful biotoxins that are accumulated across the food chains. One such biotoxin, Okadaic Acid (OA), is produced by marine dinoflagellates and subsequently accumulated within the tissues of filtering marine organisms feeding on HABs, rapidly spreading to their predators in the food chain and eventually reaching human consumers causing Diarrhetic Shellfish Poisoning (DSP) syndrome. While numerous studies have thoroughly evaluated the effects of OA in mammals, the attention drawn to marine organisms in this regard has been scarce, even though they constitute primary targets for this biotoxin. With this in mind, the present work aimed to provide a timely and comprehensive insight into the current literature on the effect of OA in marine invertebrates, along with the strategies developed by these organisms to respond to its toxic effect together with the most important methods and techniques used for OA detection and evaluation. PMID:23939476

  19. Algicidal activity against Skeletonema costatum by marine bacteria isolated from a high frequency harmful algal blooms area in southern Chinese coast.

    PubMed

    Shi, Rongjun; Huang, Honghui; Qi, Zhanhui; Hu, Weian; Tian, Ziyang; Dai, Ming

    2013-01-01

    Four marine bacterial strains P1, P5, N5 and N21 were isolated from the surface water and sediment of Mirs Bay in southern Chinese coast using the liquid infection method with 48-well plates. These bacteria were all shown to have algicidal activities against Skeletonema costatum. Based on morphological observations, biochemical tests and homology comparisons by 16S rDNA sequences, the isolated strains P1, P5, N5 and N21 were identified as Halobacillus sp., Muricauda sp., Kangiella sp. and Roseivirga sp., respectively. Our results showed that bacterial strain P1 killed S. costatum by release of heat labile algicide, while strains P5, N5 and N21 killed them directly. The algicidal processes of four bacterial strains were different. Strains P1, N5 and N21 disrupted the chain structure and S. costatum appeared as single cells, in which the cellular components were aggregated and the individual cells were inflated and finally lysed, while strain P5 decomposed the algal chains directly. We also showed that the algicidal activities of the bacterial strains were concentration-dependent. More specifically, 10 % (v/v) of bacteria in algae showed the strongest algicidal activities, as all S. costatum cells were killed by strains N5 and N21 within 72 h and by strains P1 and P5 within 96 h. 5 % of bacteria in algae also showed significant algicidal activities, as all S. costatum were killed by strains N5, P5 and N21 within 72, 96 and 120 h, respectively, whereas at this concentration, only 73.4 % of S. costatum cells exposed to strain P1 were killed within 120 h. At the concentration of 1 % bacteria in algae, the number of S. costatum cells continued to increase and the growth rate of algae upon exposure to strain N5 was significantly inhibited.

  20. Adaptive evolution of insect selective excitatory β-type sodium channel neurotoxins from scorpion venom.

    PubMed

    Wu, Wenlan; Li, Zhongjie; Ma, Yibao

    2017-06-01

    Insect selective excitatory β-type sodium channel neurotoxins from scorpion venom (β-NaScTxs) are composed of about 70-76 amino acid residues and share a common scaffold stabilized by four unique disulfide bonds. The phylogenetic analysis of these toxins was hindered by limited sequence data. In our recent study, two new insect selective excitatory β-NaScTxs, LmIT and ImIT, were isolated from Lychas mucronatus and Isometrus maculatus, respectively. With the sequences previously reported, we examined the adaptive molecular evolution of insect selective excitatory β-NaScTxs by estimating the nonsynonymous-to-synonymous rate ratio (ω=d N /d S ). The results revealed 12 positively selected sites in the genes of insect selective excitatory β-NaScTxs. Moreover, these positively selected sites match well with the sites important for interacting with sodium channels, as demonstrated in previous mutagenesis study. These results reveal that adaptive evolution after gene duplication is one of the most important genetic mechanisms of scorpion neurotoxin diversification. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Identification of a Unique Ganglioside Binding Loop within Botulinum Neurotoxins C and D-SA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karalewitz, Andrew P.-A.; Kroken, Abby R.; Fu, Zhuji

    2010-09-22

    The botulinum neurotoxins (BoNTs) are the most potent protein toxins for humans. There are seven serotypes of BoNTs (A-G) based on a lack of cross antiserum neutralization. BoNTs utilize gangliosides as components of the host receptors for binding and entry into neurons. Members of BoNT/C and BoNT/D serotypes include mosaic toxins that are organized in D/C and C/D toxins. One D/C mosaic toxin, BoNT/D-South Africa (BoNT/D-SA), was not fully neutralized by immunization with BoNT serotype C or D, which stimulated this study. Here the crystal structures of the receptor binding domains of BoNT/C, BoNT/D, and BoNT/D-SA are presented. Biochemical andmore » cell binding studies show that BoNT/C and BoNT/D-SA possess unique mechanisms for ganglioside binding. These studies provide new information about how the BoNTs can enter host cells as well as a basis for understanding the immunological diversity of these neurotoxins.« less

  2. Use of an algal hydrolysate to improve enzymatic hydrolysis of anaerobically digested fiber

    USDA-ARS?s Scientific Manuscript database

    This study investigated the use of acid hydrolyzed algae to enhance the enzymatic hydrolysis of cellulosic biomass. We first characterized wastewater-grown algal samples and determined the optimal conditions (acid concentration, reaction temperature, and reaction time) for algal hydrolysis using di...

  3. Harmful algal blooms and eutrophication: Examining linkages from selected coastal regions of the United States

    PubMed Central

    Anderson, Donald M.; Burkholder, JoAnn M.; Cochlan, William P.; Glibert, Patricia M.; Gobler, Christopher J.; Heil, Cynthia A.; Kudela, Raphael; Parsons, Michael L.; Rensel, J. E. Jack; Townsend, David W.; Trainer, Vera L.; Vargo, Gabriel A.

    2008-01-01

    Coastal waters of the United States (U.S.) are subject to many of the major harmful algal bloom (HAB) poisoning syndromes and impacts. These include paralytic shellfish poisoning (PSP), neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning (ASP), ciguatera fish poisoning (CFP) and various other HAB phenomena such as fish kills, loss of submerged vegetation, shellfish mortalities, and widespread marine mammal mortalities. Here, the occurrences of selected HABs in a selected set of regions are described in terms of their relationship to eutrophication, illustrating a range of responses. Evidence suggestive of changes in the frequency, extent or magnitude of HABs in these areas is explored in the context of the nutrient sources underlying those blooms, both natural and anthropogenic. In some regions of the U.S., the linkages between HABs and eutrophication are clear and well documented, whereas in others, information is limited, thereby highlighting important areas for further research. PMID:19956363

  4. Review and Evaluation of Reservoir Management Strategies for Harmful Algal Blooms

    DTIC Science & Technology

    2017-07-28

    report is to review and evaluate available information regarding reservoir operation strategies for management of harmful algal ERDC/EL TR-17-11 2...health. Resource managers are challenged to consider de- tailed information such as algal growth patterns, environmental conditions, dominant...need to be specifically tailored to the situa- tion at hand and managers must be flexible in their approach, taking into consideration new information

  5. A monoclonal antibody based capture ELISA for botulinum neurotoxin serotype B: toxin detection in food

    USDA-ARS?s Scientific Manuscript database

    Botulism is a serious foodborne neuroparalyic disease caused by botulinum neurotoxin (BoNT) produced by the anaerobic bacterium Clostridium botulinum. Seven toxin serotypes (A-H) have been described. The majority of human cases of botulism are caused by serotypes A and B followed by E and F. We repo...

  6. Proton nuclear magnetic resonance studies on the variant-3 neurotoxin from Centruroides sculpturatus Ewing: Sequential assignment of resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nettesheim, D.G.; Klevit, R.E.; Drobny, G.

    1989-02-21

    The authors report the sequential assignment of resonances to specific residues in the proton nuclear magnetic resonance spectrum of the variant-3 neurotoxin from the scorpion Centruroides sculpturatus Ewing (range southwestern U.S.A.). A combination of two-dimensional NMR experiments such as 2D-COSY, 2D-NOESY, and single- and double-RELAY coherence transfer spectroscopy has been employed on samples of the protein dissolved in D{sub 2}O and in H{sub 2}O for assignment purposes. These studies provide a basis for the determination of the solution-phase conformation of this protein and for undertaking detailed structure-function studies of these neurotoxins that modulate the flow of sodium current by bindingmore » to the sodium channels of excitable membranes.« less

  7. Evidence-based green algal genomics reveals marine diversity and ancestral characteristics of land plants.

    PubMed

    van Baren, Marijke J; Bachy, Charles; Reistetter, Emily Nahas; Purvine, Samuel O; Grimwood, Jane; Sudek, Sebastian; Yu, Hang; Poirier, Camille; Deerinck, Thomas J; Kuo, Alan; Grigoriev, Igor V; Wong, Chee-Hong; Smith, Richard D; Callister, Stephen J; Wei, Chia-Lin; Schmutz, Jeremy; Worden, Alexandra Z

    2016-03-31

    Prasinophytes are widespread marine green algae that are related to plants. Cellular abundance of the prasinophyte Micromonas has reportedly increased in the Arctic due to climate-induced changes. Thus, studies of these unicellular eukaryotes are important for marine ecology and for understanding Viridiplantae evolution and diversification. We generated evidence-based Micromonas gene models using proteomics and RNA-Seq to improve prasinophyte genomic resources. First, sequences of four chromosomes in the 22 Mb Micromonas pusilla (CCMP1545) genome were finished. Comparison with the finished 21 Mb genome of Micromonas commoda (RCC299; named herein) shows they share ≤8,141 of ~10,000 protein-encoding genes, depending on the analysis method. Unlike RCC299 and other sequenced eukaryotes, CCMP1545 has two abundant repetitive intron types and a high percent (26 %) GC splice donors. Micromonas has more genus-specific protein families (19 %) than other genome sequenced prasinophytes (11 %). Comparative analyses using predicted proteomes from other prasinophytes reveal proteins likely related to scale formation and ancestral photosynthesis. Our studies also indicate that peptidoglycan (PG) biosynthesis enzymes have been lost in multiple independent events in select prasinophytes and plants. However, CCMP1545, polar Micromonas CCMP2099 and prasinophytes from other classes retain the entire PG pathway, like moss and glaucophyte algae. Surprisingly, multiple vascular plants also have the PG pathway, except the Penicillin-Binding Protein, and share a unique bi-domain protein potentially associated with the pathway. Alongside Micromonas experiments using antibiotics that halt bacterial PG biosynthesis, the findings highlight unrecognized phylogenetic complexity in PG-pathway retention and implicate a role in chloroplast structure or division in several extant Viridiplantae lineages. Extensive differences in gene loss and architecture between related prasinophytes underscore

  8. Evidence-based green algal genomics reveals marine diversity and ancestral characteristics of land plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Baren, Marijke J.; Bachy, Charles; Reistetter, Emily Nahas

    Prasinophytes are widespread marine green algae that are related to plants. Abundance of the genus Micromonas has reportedly increased in the Arctic due to climate-induced changes. Thus, studies of these organisms are important for marine ecology and understanding Virdiplantae evolution and diversification. We generated evidence-based Micromonas gene models using proteomics and RNA-Seq to improve prasinophyte genomic resources. First, sequences of four chromosomes in the 22 Mb Micromonas pusilla (CCMP1545) genome were finished. Comparison with the finished 21 Mb Micromonas commoda (RCC299) shows they share ≤ 8,142 of ~10,000 protein-encoding genes, depending on the analysis method. Unlike RCC299 and other sequencedmore » eukaryotes, CCMP1545 has two abundant repetitive intron types and a high percent (26%) GC splice donors. Micromonas has more genus-specific protein families (19%) than other genome sequenced prasinophytes (11%). Comparative analyses using predicted proteomes from other prasinophytes reveal proteins likely related to scale formation and ancestral photosynthesis. Our studies also indicate that peptidoglycan (PG) biosynthesis enzymes have been lost in multiple independent events in select prasinophytes and most plants. However, CCMP1545, polar Micromonas CCMP2099 and prasinophytes from other claasses retain the entire PG pathway, like moss and glaucophyte algae. Multiple vascular plants that share a unique bi-domain protein also have the pathway, except the Penicillin-Binding-Protein. Alongside Micromonas experiments using antibiotics that halt bacterial PG biosynthesis, the findings highlight unrecognized phylogenetic complexity in the PG-pathway retention and implicate a role in chloroplast structure of division in several extant Vridiplantae lineages. Extensive differences in gene loss and architecture between related prasinophytes underscore their extensive divergence. PG biosynthesis genes from the cyanobacterial endosymbiont that became the

  9. Evidence-based green algal genomics reveals marine diversity and ancestral characteristics of land plants

    DOE PAGES

    van Baren, Marijke J.; Bachy, Charles; Reistetter, Emily Nahas; ...

    2016-03-31

    Prasinophytes are widespread marine green algae that are related to plants. Abundance of the genus Micromonas has reportedly increased in the Arctic due to climate-induced changes. Thus, studies of these organisms are important for marine ecology and understanding Virdiplantae evolution and diversification. We generated evidence-based Micromonas gene models using proteomics and RNA-Seq to improve prasinophyte genomic resources. First, sequences of four chromosomes in the 22 Mb Micromonas pusilla (CCMP1545) genome were finished. Comparison with the finished 21 Mb Micromonas commoda (RCC299) shows they share ≤ 8,142 of ~10,000 protein-encoding genes, depending on the analysis method. Unlike RCC299 and other sequencedmore » eukaryotes, CCMP1545 has two abundant repetitive intron types and a high percent (26%) GC splice donors. Micromonas has more genus-specific protein families (19%) than other genome sequenced prasinophytes (11%). Comparative analyses using predicted proteomes from other prasinophytes reveal proteins likely related to scale formation and ancestral photosynthesis. Our studies also indicate that peptidoglycan (PG) biosynthesis enzymes have been lost in multiple independent events in select prasinophytes and most plants. However, CCMP1545, polar Micromonas CCMP2099 and prasinophytes from other claasses retain the entire PG pathway, like moss and glaucophyte algae. Multiple vascular plants that share a unique bi-domain protein also have the pathway, except the Penicillin-Binding-Protein. Alongside Micromonas experiments using antibiotics that halt bacterial PG biosynthesis, the findings highlight unrecognized phylogenetic complexity in the PG-pathway retention and implicate a role in chloroplast structure of division in several extant Vridiplantae lineages. Extensive differences in gene loss and architecture between related prasinophytes underscore their extensive divergence. PG biosynthesis genes from the cyanobacterial endosymbiont that became the

  10. Differential role of molten globule and protein folding in distinguishing unique features of botulinum neurotoxin.

    PubMed

    Kumar, Raj; Kukreja, Roshan V; Cai, Shuowei; Singh, Bal R

    2014-06-01

    Botulinum neurotoxins (BoNTs) are proteins of great interest not only because of their extreme toxicity but also paradoxically for their therapeutic applications. All the known serotypes (A-G) have varying degrees of longevity and potency inside the neuronal cell. Differential chemical modifications such as phosphorylation and ubiquitination have been suggested as possible mechanisms for their longevity, but the molecular basis of the longevity remains unclear. Since the endopeptidase domain (light chain; LC) of toxin apparently survives inside the neuronal cells for months, it is important to examine the structural features of this domain to understand its resistance to intracellular degradation. Published crystal structures (both botulinum neurotoxins and endopeptidase domain) have not provided adequate explanation for the intracellular longevity of the domain. Structural features obtained from spectroscopic analysis of LCA and LCB were similar, and a PRIME (PReImminent Molten Globule Enzyme) conformation appears to be responsible for their optimal enzymatic activity at 37°C. LCE, on the other hand, was although optimally active at 37°C, but its active conformation differed from the PRIME conformation of LCA and LCB. This study establishes and confirms our earlier finding that an optimally active conformation of these proteins in the form of PRIME exists for the most poisonous poison, botulinum neurotoxin. There are substantial variations in the structural and functional characteristics of these active molten globule related structures among the three BoNT endopeptidases examined. These differential conformations of LCs are important in understanding the fundamental structural features of proteins, and their possible connection to intracellular longevity could provide significant clues for devising new countermeasures and effective therapeutics. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton.

    PubMed

    Lin, Senjie; Litaker, Richard Wayne; Sunda, William G

    2016-02-01

    Phosphorus (P) is an essential nutrient for marine phytoplankton and indeed all life forms. Current data show that P availability is growth-limiting in certain marine systems and can impact algal species composition. Available P occurs in marine waters as dissolved inorganic phosphate (primarily orthophosphate [Pi]) or as a myriad of dissolved organic phosphorus (DOP) compounds. Despite numerous studies on P physiology and ecology and increasing research on genomics in marine phytoplankton, there have been few attempts to synthesize information from these different disciplines. This paper is aimed to integrate the physiological and molecular information on the acquisition, utilization, and storage of P in marine phytoplankton and the strategies used by these organisms to acclimate and adapt to variations in P availability. Where applicable, we attempt to identify gaps in our current knowledge that warrant further research and examine possible metabolic pathways that might occur in phytoplankton from well-studied bacterial models. Physical and chemical limitations governing cellular P uptake are explored along with physiological and molecular mechanisms to adapt and acclimate to temporally and spatially varying P nutrient regimes. Topics covered include cellular Pi uptake and feedback regulation of uptake systems, enzymatic utilization of DOP, P acquisition by phagotrophy, P-limitation of phytoplankton growth in oceanic and coastal waters, and the role of P-limitation in regulating cell size and toxin levels in phytoplankton. Finally, we examine the role of P and other nutrients in the transition of phytoplankton communities from early succession species (diatoms) to late succession ones (e.g., dinoflagellates and haptophytes). © 2015 Phycological Society of America.

  12. Discovery of Nuclear-Encoded Genes for the Neurotoxin Saxitoxin in Dinoflagellates

    PubMed Central

    Stüken, Anke; Orr, Russell J. S.; Kellmann, Ralf; Murray, Shauna A.; Neilan, Brett A.; Jakobsen, Kjetill S.

    2011-01-01

    Saxitoxin is a potent neurotoxin that occurs in aquatic environments worldwide. Ingestion of vector species can lead to paralytic shellfish poisoning, a severe human illness that may lead to paralysis and death. In freshwaters, the toxin is produced by prokaryotic cyanobacteria; in marine waters, it is associated with eukaryotic dinoflagellates. However, several studies suggest that saxitoxin is not produced by dinoflagellates themselves, but by co-cultured bacteria. Here, we show that genes required for saxitoxin synthesis are encoded in the nuclear genomes of dinoflagellates. We sequenced >1.2×106 mRNA transcripts from the two saxitoxin-producing dinoflagellate strains Alexandrium fundyense CCMP1719 and A. minutum CCMP113 using high-throughput sequencing technology. In addition, we used in silico transcriptome analyses, RACE, qPCR and conventional PCR coupled with Sanger sequencing. These approaches successfully identified genes required for saxitoxin-synthesis in the two transcriptomes. We focused on sxtA, the unique starting gene of saxitoxin synthesis, and show that the dinoflagellate transcripts of sxtA have the same domain structure as the cyanobacterial sxtA genes. But, in contrast to the bacterial homologs, the dinoflagellate transcripts are monocistronic, have a higher GC content, occur in multiple copies, contain typical dinoflagellate spliced-leader sequences and eukaryotic polyA-tails. Further, we investigated 28 saxitoxin-producing and non-producing dinoflagellate strains from six different genera for the presence of genomic sxtA homologs. Our results show very good agreement between the presence of sxtA and saxitoxin-synthesis, except in three strains of A. tamarense, for which we amplified sxtA, but did not detect the toxin. Our work opens for possibilities to develop molecular tools to detect saxitoxin-producing dinoflagellates in the environment. PMID:21625593

  13. Discovery of nuclear-encoded genes for the neurotoxin saxitoxin in dinoflagellates.

    PubMed

    Stüken, Anke; Orr, Russell J S; Kellmann, Ralf; Murray, Shauna A; Neilan, Brett A; Jakobsen, Kjetill S

    2011-01-01

    Saxitoxin is a potent neurotoxin that occurs in aquatic environments worldwide. Ingestion of vector species can lead to paralytic shellfish poisoning, a severe human illness that may lead to paralysis and death. In freshwaters, the toxin is produced by prokaryotic cyanobacteria; in marine waters, it is associated with eukaryotic dinoflagellates. However, several studies suggest that saxitoxin is not produced by dinoflagellates themselves, but by co-cultured bacteria. Here, we show that genes required for saxitoxin synthesis are encoded in the nuclear genomes of dinoflagellates. We sequenced >1.2×10(6) mRNA transcripts from the two saxitoxin-producing dinoflagellate strains Alexandrium fundyense CCMP1719 and A. minutum CCMP113 using high-throughput sequencing technology. In addition, we used in silico transcriptome analyses, RACE, qPCR and conventional PCR coupled with Sanger sequencing. These approaches successfully identified genes required for saxitoxin-synthesis in the two transcriptomes. We focused on sxtA, the unique starting gene of saxitoxin synthesis, and show that the dinoflagellate transcripts of sxtA have the same domain structure as the cyanobacterial sxtA genes. But, in contrast to the bacterial homologs, the dinoflagellate transcripts are monocistronic, have a higher GC content, occur in multiple copies, contain typical dinoflagellate spliced-leader sequences and eukaryotic polyA-tails. Further, we investigated 28 saxitoxin-producing and non-producing dinoflagellate strains from six different genera for the presence of genomic sxtA homologs. Our results show very good agreement between the presence of sxtA and saxitoxin-synthesis, except in three strains of A. tamarense, for which we amplified sxtA, but did not detect the toxin. Our work opens for possibilities to develop molecular tools to detect saxitoxin-producing dinoflagellates in the environment.

  14. Structural Studies on Intact Clostridium botulinum Neurotoxins Complexed with Inhibitors Leading to Drug Design

    DTIC Science & Technology

    2008-02-01

    via virtual screening. These compounds include small molecules – transition state analogues and benzimidazoles . We have determined the crystal...project period. It has been established that benzimidazole compounds are good zinc chealators and since botulinum neurotoxin catalytic domains are zinc...endopeptidases we first selected a subset of compounds containing benzimidazole moieties. We pulled out nearly 9000 compound containing both

  15. Isolation of AHL-degrading bacteria from micro-algal cultures and their impact on algal growth and on virulence of Vibrio campbellii to prawn larvae.

    PubMed

    Pande, Gde Sasmita Julyantoro; Natrah, Fatin Mohd Ikhsan; Flandez, Ace Vincent Bravo; Kumar, Uday; Niu, Yufeng; Bossier, Peter; Defoirdt, Tom

    2015-12-01

    Inactivation of quorum sensing (QS) signal molecules, such as acylhomoserine lactones (AHLs) of pathogenic bacteria, has been proposed as a novel method to combat bacterial diseases in aquaculture. Despite the importance of micro-algae for aquaculture, AHL degradation by bacteria associated with micro-algal cultures has thus far not been investigated. In this study, we isolated Pseudomonas sp. NFMI-T and Bacillus sp. NFMI-C from open cultures of the micro-algae Tetraselmis suecica and Chaetoceros muelleri, respectively. An AHL degradation assay showed that either monocultures or co-cultures of the isolates were able to degrade the AHL N-hexanoyl-L-homoserine lactone. In contrast, only Bacillus sp. NFMI-C was able to inactivate N-hydroxybutanoyl-L-homoserine lactone, the AHL produced by Vibrio campbellii. The isolated bacteria were able to persist for up to 3 weeks in conventionalized micro-algal cultures, indicating that they were able to establish and maintain themselves within open algal cultures. Using gnotobiotic algal cultures, we found that the isolates did not affect growth of the micro-algae from which they were isolated, whereas a mixture of both isolates increased the growth of Tetraselmis and decreased the growth of Chaetoceros. Finally, addition of Bacillus sp. NFMI-C to the rearing water of giant river prawn (Macrobrachium rosenbergii) larvae significantly improved survival of the larvae when challenged with pathogenic V. campbellii, whereas it had no effect on larval growth.

  16. Toxicologic evaluation of DHA-rich algal oil: Genotoxicity, acute and subchronic toxicity in rats.

    PubMed

    Schmitt, D; Tran, N; Peach, J; Bauter, M; Marone, P

    2012-10-01

    DHA-rich algal oil ONC-T18, tested in a battery of in vitro and in vivo genotoxicity tests, did not show mutagenic or genotoxic potential. The acute oral LD50 in rats has been estimated to be greater than 5000 mg/kg of body weight. In a 90-day subchronic dietary study, administration of DHA-rich algal oil at concentrations of 0, 10,000, 25,000, and 50,000 ppm in the diet for 13 weeks did not produce any significant toxicologic manifestations. The algal oil test article was well tolerated as evidenced by the absence of major treatment-related changes in the general condition and appearance of the rats, neurobehavioral endpoints, growth, feed and water intake, ophthalmoscopic examinations, routine hematology and clinical chemistry parameters, urinalysis, or necropsy findings. The no observed adverse effect level (NOAEL) was the highest level fed of 50,000 ppm which is equivalent to 3,305 and 3,679 mg/kg bw/day, for male and female rats, respectively. The studies were conducted as part of an investigation to examine the safety of DHA-rich algal oil. The results confirm that it possesses a toxicity profile similar to other currently marketed algal oils and support the safety of DHA-rich algal oil for its proposed use in food. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Marine Algae As A Prospective Source For Antidiabetic Compounds - A Brief Review.

    PubMed

    Unnikrishnan, Pulikkaparambil Sasidharan; Jayasri, Mangalam Achuthananda

    2018-01-01

    Diabetes Mellitus (DM) is a metabolic disorder characterized by chronic hyperglycaemia, which is attributed to several life threatening complications including atherosclerosis, nephropathy, and retinopathy. The current therapies available for the management of DM mainly include oral antidiabetic drugs and insulin injections. However, continuous use of synthetic drugs provides lower healing with many side effects. Therefore, there is an urge for safe and efficient antidiabetic drugs for the management of DM. In the continuing search for effective antidiabetic drugs, marine algae (seaweeds) remains as a promising source with potent bioactivity. It is anticipated that the isolation, characterization, and pharmacological study of unexplored marine algae can be useful in the discovery of novel antidiabetic compounds with high biomedical value. Among marine algae, brown and red algae are reported to exhibit antidiabetic activity. Majority of the investigations on algal derived compounds controls the blood glucose levels through the inhbition of carbohydrate hydroloyzing enzymes and protein tyrosine phosphatase 1B enzymes, insulin sensitization, glucose uptake effect and other protective effects against diabetic complications. Based on the above perspective this review provides; profiles for various marine algae posessing antidiabetic activity. This study also highlights the therapeutic potential of compounds isolated from marine algae for the effective management of diabetes and its associated complications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Botulinum neurotoxin serotype D attacks neurons via two carbohydrate-binding sites in a ganglioside-dependent manner.

    PubMed

    Strotmeier, Jasmin; Lee, Kwangkook; Völker, Anne K; Mahrhold, Stefan; Zong, Yinong; Zeiser, Johannes; Zhou, Jie; Pich, Andreas; Bigalke, Hans; Binz, Thomas; Rummel, Andreas; Jin, Rongsheng

    2010-10-15

    The extraordinarily high toxicity of botulinum neurotoxins primarily results from their specific binding and uptake into neurons. At motor neurons, the seven BoNT (botulinum neurotoxin) serotypes A-G inhibit acetylcholine release leading to flaccid paralysis. Uptake of BoNT/A, B, E, F and G requires a dual interaction with gangliosides and the synaptic vesicle proteins synaptotagmin or SV2 (synaptic vesicle glycoprotein 2), whereas little is known about the cell entry mechanisms of the serotypes C and D, which display the lowest amino acid sequence identity compared with the other five serotypes. In the present study we demonstrate that the neurotoxicity of BoNT/D depends on the presence of gangliosides by employing phrenic nerve hemidiaphragm preparations derived from mice expressing the gangliosides GM3, GM2, GM1 and GD1a, or only GM3 [a description of our use of ganglioside nomenclature is given in Svennerholm (1994) Prog. Brain Res. 101, XI-XIV]. High-resolution crystal structures of the 50 kDa cell-binding domain of BoNT/D alone and in complex with sialic acid, as well as biological analyses of single-site BoNT/D mutants identified two carbohydrate-binding sites. One site is located at a position previously identified in BoNT/A, B, E, F and G, but is lacking the conserved SXWY motif. The other site, co-ordinating one molecule of sialic acid, resembles the second ganglioside-binding pocket (the sialic-acid-binding site) of TeNT (tetanus neurotoxin).

  19. Mechanical algal disruption for efficient biodiesel extraction

    NASA Astrophysics Data System (ADS)

    Krehbiel, Joel David

    Biodiesel from algae provides several benefits over current biodiesel feedstocks, but the energy requirements of processing algae into a useable fuel are currently so high as to be prohibitive. One route to improving this is via disruption of the cells prior to lipid extraction, which can significantly increase energy recovery. Unfortunately, several obvious disruption techniques require more energy than can be gained. This dissertation examines the use of microbubbles to improve mechanical disruption of algal cells using experimental, theoretical, and computational methods. New laboratory experiments show that effective ultrasonic disruption of algae is achieved by adding microbubbles to an algal solution. The configuration studied flows the solution through a tube and insonifies a small section with a high-pressure ultrasound wave. Previous biomedical research has shown effective cell membrane damage on animal cells with similar methods, but the present research is the first to extend such study to algal cells. Results indicate that disruption increases with peak negative pressure between 1.90 and 3.07 MPa and with microbubble concentration up to 12.5 x 107 bubbles/ml. Energy estimates of this process suggest that it requires only one-fourth the currently most-efficient laboratory-scale disruption process. Estimates of the radius near each bubble that causes disruption (i.e. the disruption radius) suggest that it increases with peak negative pressure and is near 9--20 microm for all cases tested. It is anticipated that these procedures can be designed for better efficiency and efficacy, which will be facilitated by identifying the root mechanisms of the bubble-induced disruption. We therefore examine whether bubble expansion alone creates sufficient cell deformation for cell rupture. The spherically-symmetric Marmottant model for bubble dynamics allows estimation of the flow regime under experimental conditions. Bubble expansion is modeled as a point source of

  20. Direct utilization of waste water algal biomass for ethanol production by cellulolytic Clostridium phytofermentans DSM1183.

    PubMed

    Fathima, Anwar Aliya; Sanitha, Mary; Kumar, Thangarathinam; Iyappan, Sellamuthu; Ramya, Mohandass

    2016-02-01

    Direct bioconversion of waste water algal biomass into ethanol using Clostridium phytofermentans DSM1183 was demonstrated in this study. Fermentation of 2% (w/v) autoclaved algal biomass produced ethanol concentration of 0.52 g L(-1) (solvent yield of 0.19 g/g) where as fermentation of acid pretreated algal biomass (2%, w/v) produced ethanol concentration of 4.6 g L(-1) in GS2 media (solvent yield of 0.26 g/g). The control experiment with 2% (w/v) glucose in GS2 media produced ethanol concentration of 2.8 g L(-1) (solvent yield of 0.25 g/g). The microalgal strains from waste water algal biomass were identified as Chlamydomonas dorsoventralis, Graesiella emersonii, Coelastrum proboscideum, Scenedesmus obliquus, Micractinium sp., Desmodesmus sp., and Chlorella sp., based on ITS-2 molecular marker. The presence of glucose, galactose, xylose and rhamnose were detected by high performance liquid chromatography in the algal biomass. Scanning Electron Microscopy observations of fermentation samples showed characteristic morphological changes in algal cells and bioaccessibility of C. phytofermentans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Ex vivo inhibition of Clostridium botulinum neurotoxin types B, C, E, and F by small molecular weight inhibitors.

    PubMed

    Montgomery, Vicki A; Ahmed, S Ashraf; Olson, Mark A; Mizanur, Rahman M; Stafford, Robert G; Roxas-Duncan, Virginia I; Smith, Leonard A

    2015-05-01

    Two small molecular weight inhibitors, compounds CB7969312 and CB7967495, that displayed inhibition of botulinum neurotoxin serotype A in a previous study, were evaluated for inhibition of botulinum neurotoxin serotypes B, C, E, and F. The small molecular weight inhibitors were assessed by molecular modeling, UPLC-based peptide cleavage assay; and an ex vivo assay, the mouse phrenic nerve - hemidiaphragm assay (MPNHDA). While both compounds were inhibitors of botulinum neurotoxin (BoNT) serotypes B, C, and F in the MPNHDA, compound CB7969312 was effective at lower molar concentrations than compound CB7967495. However, compound CB7967495 was significantly more effective at preventing BoNTE intoxication than compound CB7969312. In the UPLC-based peptide cleavage assay, CB7969312 was also more effective against LcC. Both compounds inhibited BoNTE, but not BoNTF, LcE, or LcF in the UPLC-based peptide cleavage assay. Molecular modeling studies predicted that both compounds would be effective inhibitors of BoNTs B, C, E, and F. But CB7967495 was predicted to be a more effective inhibitor of the four serotypes (B, C, E, and F) than CB7969312. This is the first report of a small molecular weight compound that inhibits serotypes B, C, E, and F in the ex vivo assay. Published by Elsevier Ltd.

  2. How are climate and marine biological outbreaks functionally linked?

    USGS Publications Warehouse

    Hayes, M.L.; Bonaventura, J.; Mitchell, T.P.; Prospero, J.M.; Shinn, E.A.; Van Dolah, F.; Barber, R.T.

    2001-01-01

    Since the mid-1970s, large-scale episodic events such as disease epidemics, mass mortalities, harmful algal blooms and other population explosions have been occurring in marine environments at an historically unprecedented rate. The variety of organisms involved (host, pathogens and other opportunists) and the absolute number of episodes have also increased during this period. Are these changes coincidental? Between 1972 and 1976, a global climate regime shift took place, and it is manifest most clearly by a change in strength of the North Pacific and North Atlantic pressure systems. Consequences of this regime shift are: (1) prolonged drought conditions in the Sahel region of Africa; (2) increased dust supply to the global atmosphere, by a factor of approximately four; (3) increased easterly trade winds across the Atlantic; (4) increased eolian transport of dust to the Atlantic and Caribbean basins; and (5) increased deposition of iron-rich eolian dust to typically iron-poor marine regions. On the basis of well-documented climate and dust observations and the widely accepted increase in marine outbreak rates, this paper proposes that the increased iron supply has altered the micronutrient factors limiting growth of opportunistic organisms and virulence of pathogenic microbes, particularly in macronutrient-rich coastal systems.

  3. Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events

    PubMed Central

    Algeo, T. J.

    1998-01-01

    The Devonian Period was characterized by major changes in both the terrestrial biosphere, e.g. the evolution of trees and seed plants and the appearance of multi-storied forests, and in the marine biosphere, e.g. an extended biotic crisis that decimated tropical marine benthos, especially the stromatoporoid-tabulate coral reef community. Teleconnections between these terrestrial and marine events are poorly understood, but a key may lie in the role of soils as a geochemical interface between the lithosphere and atmosphere/hydrosphere, and the role of land plants in mediating weathering processes at this interface. The effectiveness of terrestrial floras in weathering was significantly enhanced as a consequence of increases in the size and geographic extent of vascular land plants during the Devonian. In this regard, the most important palaeobotanical innovations were (1) arborescence (tree stature), which increased maximum depths of root penetration and rhizoturbation, and (2) the seed habit, which freed land plants from reproductive dependence on moist lowland habitats and allowed colonization of drier upland and primary successional areas. These developments resulted in a transient intensification of pedogenesis (soil formation) and to large increases in the thickness and areal extent of soils. Enhanced chemical weathering may have led to increased riverine nutrient fluxes that promoted development of eutrophic conditions in epicontinental seaways, resulting in algal blooms, widespread bottomwater anoxia, and high sedimentary organic carbon fluxes. Long-term effects included drawdown of atmospheric pCO2 and global cooling, leading to a brief Late Devonian glaciation, which set the stage for icehouse conditions during the Permo-Carboniferous. This model provides a framework for understanding links between early land plant evolution and coeval marine anoxic and biotic events, but further testing of Devonian terrestrial-marine teleconnections is needed.

  4. High Frequency Monitoring for Harmful Algal Blooms

    EPA Science Inventory

    Harmful algal blooms (HABs) are increasingly becoming a significant ecologic, economic, and social driver in the use of water resources. Cyanobacteria and their toxins play an important role in management decisions for drinking water utilities and public health officials. Online ...

  5. Industrial-strength ecology: trade-offs and opportunities in algal biofuel production.

    PubMed

    Shurin, Jonathan B; Abbott, Rachel L; Deal, Michael S; Kwan, Garfield T; Litchman, Elena; McBride, Robert C; Mandal, Shovon; Smith, Val H

    2013-11-01

    Microalgae represent one of the most promising groups of candidate organisms for replacing fossil fuels with contemporary primary production as a renewable source of energy. Algae can produce many times more biomass per unit area than terrestrial crop plants, easing the competing demands for land with food crops and native ecosystems. However, several aspects of algal biology present unique challenges to the industrial-scale aquaculture of photosynthetic microorganisms. These include high susceptibility to invading aquatic consumers and weeds, as well as prodigious requirements for nutrients that may compete with the fertiliser demands of other crops. Most research on algal biofuel technologies approaches these problems from a cellular or genetic perspective, attempting either to engineer or select algal strains with particular traits. However, inherent functional trade-offs may limit the capacity of genetic selection or synthetic biology to simultaneously optimise multiple functional traits for biofuel productivity and resilience. We argue that a community engineering approach that manages microalgal diversity, species composition and environmental conditions may lead to more robust and productive biofuel ecosystems. We review evidence for trade-offs, challenges and opportunities in algal biofuel cultivation with a goal of guiding research towards intensifying bioenergy production using established principles of community and ecosystem ecology. © 2013 John Wiley & Sons Ltd/CNRS.

  6. The place of algae in agriculture: policies for algal biomass production.

    PubMed

    Trentacoste, Emily M; Martinez, Alice M; Zenk, Tim

    2015-03-01

    Algae have been used for food and nutraceuticals for thousands of years, and the large-scale cultivation of algae, or algaculture, has existed for over half a century. More recently algae have been identified and developed as renewable fuel sources, and the cultivation of algal biomass for various products is transitioning to commercial-scale systems. It is crucial during this period that institutional frameworks (i.e., policies) support and promote development and commercialization and anticipate and stimulate the evolution of the algal biomass industry as a source of renewable fuels, high value protein and carbohydrates and low-cost drugs. Large-scale cultivation of algae merges the fundamental aspects of traditional agricultural farming and aquaculture. Despite this overlap, algaculture has not yet been afforded a position within agriculture or the benefits associated with it. Various federal and state agricultural support and assistance programs are currently appropriated for crops, but their extension to algal biomass is uncertain. These programs are essential for nascent industries to encourage investment, build infrastructure, disseminate technical experience and information, and create markets. This review describes the potential agricultural policies and programs that could support algal biomass cultivation, and the barriers to the expansion of these programs to algae.

  7. Progress on lipid extraction from wet algal biomass for biodiesel production.

    PubMed

    Ghasemi Naghdi, Forough; González González, Lina M; Chan, William; Schenk, Peer M

    2016-11-01

    Lipid recovery and purification from microalgal cells continues to be a significant bottleneck in biodiesel production due to high costs involved and a high energy demand. Therefore, there is a considerable necessity to develop an extraction method which meets the essential requirements of being safe, cost-effective, robust, efficient, selective, environmentally friendly, feasible for large-scale production and free of product contamination. The use of wet concentrated algal biomass as a feedstock for oil extraction is especially desirable as it would avoid the requirement for further concentration and/or drying. This would save considerable costs and circumvent at least two lengthy processes during algae-based oil production. This article provides an overview on recent progress that has been made on the extraction of lipids from wet algal biomass. The biggest contributing factors appear to be the composition of algal cell walls, pre-treatments of biomass and the use of solvents (e.g. a solvent mixture or solvent-free lipid extraction). We compare recently developed wet extraction processes for oleaginous microalgae and make recommendations towards future research to improve lipid extraction from wet algal biomass. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  8. Enhancement of Chlorophyll Concentration and Growing Harmful Algal Bloom Along the California Coast

    NASA Astrophysics Data System (ADS)

    Aceves, Joselyn; Singh, Ramesh

    2016-07-01

    We have carried out detailed analysis of satellite and ground data at different locations, Cal Poly, Goleta, Newport, Santa Monica, and Scripps piers and Monterey, Stearns and Santa Cruz wharfs along the California coast for the period 2008-2015. The sea surface temperature and chlorophyll concentrations derived from satellite data are analyzed together with ground observations of nitrogen, phosphorus, domoic acids and harmful algal blooms. The frequency of harmful algal blooms are found to increase in recent years depending upon the enhancement of chlorophyll concentrations and the discharges along the coast and dynamics of the sea surface temperature. The frequency of harmful algal blooms is higher in the northern California compared to southern California. The anthropogenic activities along the coast have increased which are associated with the forest fires and long range transport of dusts from Asia. The aerosol optical depth derived from satellite data during summer months seems to play an important role in the frequency of harmful algal blooms.

  9. Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unkefer, Clifford J.; Sayre, Richard T.; Magnuson, Jon K.

    In 2010,when the National Alliance for Advanced Biofuels and Bioproducts (NAABB) consortiumbegan, littlewas known about themolecular basis of algal biomass or oil production. Very fewalgal genome sequenceswere available and efforts to identify the best-producing wild species through bioprospecting approaches had largely stalled after the U.S. Department of Energy's Aquatic Species Program. This lack of knowledge included how reduced carbon was partitioned into storage products like triglycerides or starch and the role played bymetabolite remodeling in the accumulation of energy-dense storage products. Furthermore, genetic transformation and metabolic engineering approaches to improve algal biomass and oil yields were in their infancy. Genomemore » sequencing and transcriptional profiling were becoming less expensive, however; and the tools to annotate gene expression profiles under various growth and engineered conditions were just starting to be developed for algae. It was in this context that an integrated algal biology program was introduced in the NAABB to address the greatest constraints limiting algal biomass yield. This review describes the NAABB algal biology program, including hypotheses, research objectives, and strategies to move algal biology research into the twenty-first century and to realize the greatest potential of algae biomass systems to produce biofuels.« less

  10. Structural Analysis of Botulinum Neurotoxin Type G Receptor Binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, John; Karalewitz, Andrew; Benefield, Desire A.

    2010-10-19

    Botulinum neurotoxin (BoNT) binds peripheral neurons at the neuromuscular junction through a dual-receptor mechanism that includes interactions with ganglioside and protein receptors. The receptor identities vary depending on BoNT serotype (A-G). BoNT/B and BoNT/G bind the luminal domains of synaptotagmin I and II, homologous synaptic vesicle proteins. We observe conditions under which BoNT/B binds both Syt isoforms, but BoNT/G binds only SytI. Both serotypes bind ganglioside G{sub T1b}. The BoNT/G receptor-binding domain crystal structure provides a context for examining these binding interactions and a platform for understanding the physiological relevance of different Syt receptor isoforms in vivo.

  11. Microbial communities mediating algal detritus turnover under anaerobic conditions

    PubMed Central

    Morrison, Jessica M.; Murphy, Chelsea L.; Baker, Kristina; Zamor, Richard M.; Nikolai, Steve J.; Wilder, Shawn; Elshahed, Mostafa S.

    2017-01-01

    Background Algae encompass a wide array of photosynthetic organisms that are ubiquitously distributed in aquatic and terrestrial habitats. Algal species often bloom in aquatic ecosystems, providing a significant autochthonous carbon input to the deeper anoxic layers in stratified water bodies. In addition, various algal species have been touted as promising candidates for anaerobic biogas production from biomass. Surprisingly, in spite of its ecological and economic relevance, the microbial community involved in algal detritus turnover under anaerobic conditions remains largely unexplored. Results Here, we characterized the microbial communities mediating the degradation of Chlorella vulgaris (Chlorophyta), Chara sp. strain IWP1 (Charophyceae), and kelp Ascophyllum nodosum (phylum Phaeophyceae), using sediments from an anaerobic spring (Zodlteone spring, OK; ZDT), sludge from a secondary digester in a local wastewater treatment plant (Stillwater, OK; WWT), and deeper anoxic layers from a seasonally stratified lake (Grand Lake O’ the Cherokees, OK; GL) as inoculum sources. Within all enrichments, the majority of algal biomass was metabolized within 13–16 weeks, and the process was accompanied by an increase in cell numbers and a decrease in community diversity. Community surveys based on the V4 region of the 16S rRNA gene identified different lineages belonging to the phyla Bacteroidetes, Proteobacteria (alpha, delta, gamma, and epsilon classes), Spirochaetes, and Firmicutes that were selectively abundant under various substrate and inoculum conditions. Within all kelp enrichments, the microbial communities structures at the conclusion of the experiment were highly similar regardless of the enrichment source, and were dominated by the genus Clostridium, or family Veillonellaceae within the Firmicutes. In all other enrichments the final microbial community was dependent on the inoculum source, rather than the type of algae utilized as substrate. Lineages enriched

  12. Explaining Human Recreational Use of ‘pesticides’: The Neurotoxin Regulation Model of Substance Use vs. the Hijack Model and Implications for Age and Sex Differences in Drug Consumption

    PubMed Central

    Hagen, Edward H.; Roulette, Casey J.; Sullivan, Roger J.

    2013-01-01

    Most globally popular drugs are plant neurotoxins or their close chemical analogs. These compounds evolved to deter, not reward or reinforce, consumption. Moreover, they reliably activate virtually all toxin defense mechanisms, and are thus correctly identified by human neurophysiology as toxins. Acute drug toxicity must therefore play a more central role in drug use theory. We accordingly challenge the popular idea that the rewarding and reinforcing properties of drugs “hijack” the brain, and propose instead that the brain evolved to carefully regulate neurotoxin consumption to minimize fitness costs and maximize fitness benefits. This perspective provides a compelling explanation for the dramatic changes in substance use that occur during the transition from childhood to adulthood, and for pervasive sex differences in substance use: because nicotine and many other plant neurotoxins are teratogenic, children, and to a lesser extent women of childbearing age, evolved to avoid ingesting them. However, during the course of human evolution many adolescents and adults reaped net benefits from regulated intake of plant neurotoxins. PMID:24204348

  13. Update on botulinum neurotoxin use in aesthetic dermatology.

    PubMed

    Ibrahim, Omer; Keller, Emily C; Arndt, Kenneth A

    2014-12-01

    Botulinum toxins are among the most widely studied and versatile drugs in the medicinal market. Since their extraction from Clostridium botulinum, they have been harnessed and incorporated into different formulations with varied properties and actions. These products have been used to treat countless disorders such as musculoskeletal disorders, headaches, and eye disorders, among many others. In the realm of aesthetic cutaneous medicine, the evolution and creativity in the use of botulinum toxins has been swift and ever changing. Knowledge of the science and innovation behind this toxin enables the user to provide the patient with a variety of treatment options founded in evidence-based medicine. This review will highlight the properties and actions of the newer, more recent neurotoxin preparations, as well as some of the latest and novel therapeutic applications of botulinum toxins.

  14. Harmful algal blooms and public health.

    PubMed

    Grattan, Lynn M; Holobaugh, Sailor; Morris, J Glenn

    2016-07-01

    The five most commonly recognized Harmful Algal Bloom-related illnesses are ciguatera poisoning, paralytic shellfish poisoning, neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning, and diarrhetic shellfish poisoning. Although these exposures result from exposure to different toxins or toxin congeners, these clinical syndromes have much in common. Exposure occurs through the consumption of fish, shellfish, or through exposure to aerosolized NSP toxins. Routine clinical tests are not available for the diagnosis of harmful algal bloom related illnesses, there is no known antidote for exposure, and the risk of these illnesses can negatively impact local fishing and tourism industries. The absence of exposure risk or diagnostic certainty can also precipitate a chain of events that results in considerable psychological distress for coastal populations. Thus, illness prevention is of paramount importance to minimize human and public health risks. To accomplish this, further transdisciplinary research, close communication and collaboration are needed among HAB scientists, public health researchers, and local, state and tribal health departments at academic, community outreach, and policy levels. Copyright © 2016. Published by Elsevier B.V.

  15. Molecular insights into the microbial formation of marine dissolved organic matter: recalcitrant or labile?

    NASA Astrophysics Data System (ADS)

    Koch, B. P.; Kattner, G.; Witt, M.; Passow, U.

    2014-08-01

    The degradation of marine dissolved organic matter (DOM) is an important control variable in the global carbon cycle. For our understanding of the kinetics of organic matter cycling in the ocean, it is crucial to achieve a mechanistic and molecular understanding of its transformation processes. A long-term microbial experiment was performed to follow the production of non-labile DOM by marine bacteria. Two different glucose concentrations and dissolved algal exudates were used as substrates. We monitored the bacterial abundance, concentrations of dissolved and particulate organic carbon (DOC, POC), nutrients, amino acids and transparent exopolymer particles (TEP) for 2 years. The molecular characterization of extracted DOM was performed by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) after 70 days and after ∼2 years of incubation. Although glucose quickly degraded, a non-labile DOC background (5-9% of the initial DOC) was generated in the glucose incubations. Only 20% of the organic carbon from the algal exudate degraded within the 2 years of incubation. The degradation rates for the non-labile DOC background in the different treatments varied between 1 and 11 μmol DOC L-1 year-1. Transparent exopolymer particles, which are released by microorganisms, were produced during glucose degradation but decreased back to half of the maximum concentration within less than 3 weeks (degradation rate: 25 μg xanthan gum equivalents L-1 d-1) and were below detection in all treatments after 2 years. Additional glucose was added after 2 years to test whether labile substrate can promote the degradation of background DOC (co-metabolism; priming effect). A priming effect was not observed but the glucose addition led to a slight increase of background DOC. The molecular analysis demonstrated that DOM generated during glucose degradation differed appreciably from DOM transformed during the degradation of the algal exudates. Our

  16. Atoxic derivative of botulinum neurotoxin A as a prototype vehicle for targeted delivery to neuronal cytoplasm

    USDA-ARS?s Scientific Manuscript database

    We have previously described genetic constructs and expression systems that enable facile production of recombinant derivatives of botulinum neurotoxins (BoNTs) that retain the structural and trafficking properties of wt BoNTs. In this report we describe the properties of one such derivative, BoNT/A...

  17. Identification of botulinum neurotoxin serotype a inhibitors using in vitro cell and oral models of intoxication

    USDA-ARS?s Scientific Manuscript database

    Introduction and Objective: Botulinum neurotoxins (BoNTs) are some of the most poisonous natural toxins known to man and are threats to public health and safety. There are no treatment options available for treatment except for antitoxin antibody treatment after disease diagnosis and long-term suppo...

  18. Crystal Structure of Botulinum Neurotoxin Type a in Complex With the Cell Surface Co-Receptor GT1b-Insight Into the Toxin-Neuron Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenmark, P.; Dupuy, J.; Inamura, A.

    2009-05-26

    Botulinum neurotoxins have a very high affinity and specificity for their target cells requiring two different co-receptors located on the neuronal cell surface. Different toxin serotypes have different protein receptors; yet, most share a common ganglioside co-receptor, GT1b. We determined the crystal structure of the botulinum neurotoxin serotype A binding domain (residues 873-1297) alone and in complex with a GT1b analog at 1.7 A and 1.6 A, respectively. The ganglioside GT1b forms several key hydrogen bonds to conserved residues and binds in a shallow groove lined by Tryptophan 1266. GT1b binding does not induce any large structural changes in themore » toxin; therefore, it is unlikely that allosteric effects play a major role in the dual receptor recognition. Together with the previously published structures of botulinum neurotoxin serotype B in complex with its protein co-receptor, we can now generate a detailed model of botulinum neurotoxin's interaction with the neuronal cell surface. The two branches of the GT1b polysaccharide, together with the protein receptor site, impose strict geometric constraints on the mode of interaction with the membrane surface and strongly support a model where one end of the 100 A long translocation domain helix bundle swing into contact with the membrane, initiating the membrane anchoring event.« less

  19. Crystal structure of botulinum neurotoxin type A in complex with the cell surface co-receptor GT1b-insight into the toxin-neuron interaction.

    PubMed

    Stenmark, Pål; Dupuy, Jérôme; Imamura, Akihiro; Kiso, Makoto; Stevens, Raymond C

    2008-08-15

    Botulinum neurotoxins have a very high affinity and specificity for their target cells requiring two different co-receptors located on the neuronal cell surface. Different toxin serotypes have different protein receptors; yet, most share a common ganglioside co-receptor, GT1b. We determined the crystal structure of the botulinum neurotoxin serotype A binding domain (residues 873-1297) alone and in complex with a GT1b analog at 1.7 A and 1.6 A, respectively. The ganglioside GT1b forms several key hydrogen bonds to conserved residues and binds in a shallow groove lined by Tryptophan 1266. GT1b binding does not induce any large structural changes in the toxin; therefore, it is unlikely that allosteric effects play a major role in the dual receptor recognition. Together with the previously published structures of botulinum neurotoxin serotype B in complex with its protein co-receptor, we can now generate a detailed model of botulinum neurotoxin's interaction with the neuronal cell surface. The two branches of the GT1b polysaccharide, together with the protein receptor site, impose strict geometric constraints on the mode of interaction with the membrane surface and strongly support a model where one end of the 100 A long translocation domain helix bundle swing into contact with the membrane, initiating the membrane anchoring event.

  20. Reeling in the damages: Harmful algal blooms' impact on Lake Erie's recreational fishing industry.

    PubMed

    Wolf, David; Georgic, Will; Klaiber, H Allen

    2017-09-01

    Lake Erie is one of the most valuable natural resources in the United States, providing billions of dollars in benefits each year to recreationalists, homeowners and local governments. The ecosystem services provided by Lake Erie, however, are under threat due to harmful algal blooms. This paper provides recreational damage estimates using spatially and temporally varying algae measures and monthly fishing permit sales collected between 2011 and 2014. Results indicate that fishing license sales drop between 10% and 13% when algal conditions surpass the World Health's Organization's moderate health risk advisory threshold of 20,000 cyanobacteria cells/mL. For Lake Erie adjacent counties experiencing a large, summer-long algal bloom, this would result in approximately 3600 fewer fishing licenses issued and approximately $2.25 million to $5.58 million in lost fishing expenditures. Our results show a discrete jump in reduced angling activity upon crossing this threshold, with limited additional impacts associated with more severe algal blooms. This suggests that policies aimed at eliminating, rather than mitigating, algal levels are most beneficial to the Ohio angling industry. Copyright © 2017 Elsevier Ltd. All rights reserved.