Science.gov

Sample records for marine antifoulants laboratory

  1. Antifouling marine concrete

    NASA Astrophysics Data System (ADS)

    Mathews, C. W.

    1980-03-01

    Various toxic agents were investigated for their ability to prevent the attachment and growth of marine fouling organisms on concrete. Three methods of incorporating antifoulants into concrete were also studied. Porous aggregate was impregnated with creosote and bis-(tri-n-butyltin) oxide (TBTO) and then used in making the concrete. Cuprous oxide, triphenyltin hydroxide (TPTH), and 2-2-bis-(p-methoxyphenyl)-1,1,1-trichloroethane (methoxychlor) were used as dry additives. Two proprietary formulations were applied as coatings on untreated concrete. Test specimens were exposed at Port Hueneme, Calif. and Key Biscayne, Fla. Efficacy of toxicants was determined by periodically weighing the specimens and the fouling organisms that became attached. Concrete prepared with an aggregate impregnated with a TBTO/creosote mixture demonstrated the best antifouling performance of those specimens exposed for more than 1 year. The two proprietary coatings and the concrete containing methoxychlor, TPTH, and cuprous oxide as dry additives have exhibited good antifouling properties but have been exposed for a shorter time. Also, the strength of concrete prepared using the toxicants was acceptable and the corrosion rate of reinforcing rods did not increase. The concentration of organotin compounds was essentially unchanged in a concrete specimen exposed 6-1/2 years in seawater.

  2. Antifouling marine concrete

    SciTech Connect

    Vind, H P; Mathews, C W

    1980-07-01

    Various toxic agents were evaluated as the their capability to prevent or inhibit the attachment of marine fouling organisms to concrete. Creosote and bis-(tri-n-butyltin) oxide (TBTO) were impregnated into porous aggregate which was used in making concrete. Cuprous oxide, triphenyltin hydroxide (TPTH), and 2-2-bis-(p-methoxyphenyl)-1,1,1-trichloroethane (methoxychlor) were used as dry additives. Two proprietary formulations were applied as coatings on untreated concrete. Test specimens were exposed at Port Hueneme, CA, and Key Biscayne, FL. The efficacy of toxicants was determined by periodically weighing the adhering fouling organisms. Concrete prepared with an aggregate impregnated with a TBTO/creosote mixture has demonstrated the best antifouling performance of those specimens exposed for more than one year. The two proprietary coatings and the concrete containing methoxychlor, TPTH, and cuprous oxide as dry additives have exhibited good antifouling properties, but they have been exposed for a shorter time. The strength of concrete containing the toxicants was acceptable, and the toxicants did not increase the corrosion rate of reinforcing rods. Organotin compounds were essentially unchanged in concrete specimens exposed 6 1/2 years in seawater.

  3. Antifouling marine concrete

    SciTech Connect

    Vind, H P; Mathews, C W

    1980-07-01

    Various toxic agents were evaluated as to their capability to prevent or inhibit the attachment of marine fouling organisms to concrete for OTEC plants. Creosote and bis-(tri-n-butyltin) oxide (TBTO) were impregnated into porous aggregate which was used in making concrete. Cuprous oxide, triphenyltin hydroxide (TPTH), and 2-2-bis-(p-methoxyphenyl)-1,1,1-trichloroethane (methoxychlor) were used as dry additives. Two proprietary formulations were applied as coatings on untreated concrete. Test specimens were exposed at Port Hueneme, CA, and Key Biscayne, FL. The efficacy of toxicants was determined by periodically weighing the adhering fouling organisms. Concrete prepared with an aggregate impregnated with a TBTO/creosote mixture has demonstrated the best antifouling performance of those specimens exposed for more than one year. The two proprietary coatings and the concrete containing methoxychlor, TPTH, and cuprous oxide as dry additives have exhibited good antifouling properties, but they have been exposed for a shorter time. The strength of concrete containing the toxicants was acceptable, and the toxicants did not increase the corrosion rate of reinforcing rods. Organotin compounds were essentially unchanged in concrete specimens exposed 6-1/2 years in seawater.

  4. Various mortars for anti-fouling purposes in marine environments

    SciTech Connect

    Kanematsu, Hideyuki; Masuda, Tomoka; Miura, Yoko; Kuroda, Daisuke; Hirai, Nobumitsu; Yokoyama, Seiji

    2014-02-20

    The antifouling properties for some mortars with steel making slags were investigated by real marine immersion tests and a unique laboratory acceleration tests with a specially devised biofilm acceleration reactors. Mortars mixed with steel making slags containing abundant iron elements tended to form biofilm and also bifouling. The two kinds of biofilm formation tests were used in this study. Real immersion in marine environments and laboratory test with a specially devised biofilm acceleration reactor. The former evaluated the biofouling characteristics more properly, while the latter did the biofilm formation characteristics more effectively.

  5. Marine antifouling from thin air.

    PubMed

    Arnott, Jaimys; Wu, Alex H F; Vucko, Matthew J; Lamb, Robert N

    2014-10-01

    The dynamic relationship between the settlement behaviour of marine biota (cells, spores, larvae) and the longevity of an entrapped air layer (plastron) on submersed superhydrophobic surfaces was systematically investigated. Plastron lifetime decreased with increasing hydrophobic polymer loadings, and was correlated with the settlement rate of a range of fouling species of varying length scale, motility and hydrophobic/hydrophilic surface preference. The results show that the level of fouling on immersed superhydrophobic surfaces was greater when plastron lifetimes were minimal, regardless of the length scale, motility and the surface preference of the organisms. This is the first direct demonstration of the broad-spectrum attachment-inhibiting properties of a plastron on an immersed superhydrophobic surface.

  6. Marine antifouling from thin air.

    PubMed

    Arnott, Jaimys; Wu, Alex H F; Vucko, Matthew J; Lamb, Robert N

    2014-10-01

    The dynamic relationship between the settlement behaviour of marine biota (cells, spores, larvae) and the longevity of an entrapped air layer (plastron) on submersed superhydrophobic surfaces was systematically investigated. Plastron lifetime decreased with increasing hydrophobic polymer loadings, and was correlated with the settlement rate of a range of fouling species of varying length scale, motility and hydrophobic/hydrophilic surface preference. The results show that the level of fouling on immersed superhydrophobic surfaces was greater when plastron lifetimes were minimal, regardless of the length scale, motility and the surface preference of the organisms. This is the first direct demonstration of the broad-spectrum attachment-inhibiting properties of a plastron on an immersed superhydrophobic surface. PMID:25329518

  7. Antifouling potential of the marine microalga Dunaliella salina.

    PubMed

    Gao, Min; Li, Fengchao; Su, Rongguo; Wang, Ke; Li, Xuzhao; Lu, Wei

    2014-11-01

    Marine organisms have usually been viewed as sources of environmentally friendly compounds with antifouling activity. We performed a series of operations to investigate the antifouling potential of the marine microalga Dunaliella salina. For the ethyl acetate crude extract, the antialgal activity was significant, and the EC50 value against Skeletonema costatum was 58.9 μg ml(-1). The isolated purified extract was tested for antifouling activity, the EC 50 value against S. costatum was 21.2 μg ml(-1), and the LC50 against Balanus amphitrite larvae was 18.8 μg ml(-1). Subsequently, both UHR-TOF-MS and GC-MS were used for the structural elucidation of the compounds, and a series of unsaturated and saturated 16- and 18-carbon fatty acids were detected. The data suggested that the fatty acid extracts from D. salina possess high antifouling activity, and could be used as substitutes for potent, toxic antifouling compounds.

  8. Antifouling indole alkaloids from two marine derived fungi.

    PubMed

    He, Fei; Han, Zhuang; Peng, Jiang; Qian, Pei-Yuan; Qi, Shu-Hua

    2013-03-01

    In order to find non-toxic antifouling natural products from marine microorganisms, the chemical constituents of two marine derived fungi Penicillium sp. and Aspergillus sydowii have been investigated under bio-guided fractionation. A new indolyl diketopiperazine compound, penilloid A (1), together with 15 known ones were isolated from these two strains. The structure of 1 was elucidated on the basis of NMR and mass spectra. Some alkaloids showed significant antifouling and antibacterial activities. The results indicate that indole alkaloids could be a potential antifouling agent resource.

  9. Marine pollution from antifouling paint particles.

    PubMed

    Turner, Andrew

    2010-02-01

    Antifouling paint particles (APP) are generated during the maintenance of boats and are shed from abandoned structures and grounded ships. Although they afford a highly visible, colourful reflection of contamination in the vicinity of the source, little systematic study has been undertaken regarding the distribution, composition and effects of APP in the wider marine environment. This paper reviews the state of knowledge in respect of APP, with particular emphasis on those generated by recreational boatyards. The likely biogeochemical pathways of the biocidal and non-biocidal metals in current use (mainly Cu and Zn) are addressed in light of recent research and an understanding of the more general behaviour of contaminants in marine systems. Analyses of paint fragment composites from recreational facilities in the UK reveal chemical compositions that are similar to those representing the net signal of the original formulations; significantly, dry weight concentrations of Cu and Zn of up to about 35% and 15%, respectively, are observed and, relative to ambient dusts and sediment, elevated concentrations of other trace metals, like Ba, Cd, Cr, Ni, Pb and Sn, occur. These metals leach more rapidly from APP than a painted surface due to the greater surface area of pigments and additives exposed to the aqueous medium. In suspension, APP are subject to greater and more rapid environmental variation (e.g. salinity, pH, dissolved oxygen) than painted hulls, while settled APP represent an important source of persistent and degradable biocides to poorly circulating environments. Through diffusion and abrasion, high concentrations of contaminants are predicted in interstitial waters that may be accumulated directly by benthic invertebrates. Animals that feed non-selectively and that are exposed to or ingest paint-contaminated sediment are able to accelerate the leaching, deposition and burial of biocides and other substances, and represent an alternative vehicle for

  10. Antifouling potential of the marine microalga Dunaliella salina.

    PubMed

    Gao, Min; Li, Fengchao; Su, Rongguo; Wang, Ke; Li, Xuzhao; Lu, Wei

    2014-11-01

    Marine organisms have usually been viewed as sources of environmentally friendly compounds with antifouling activity. We performed a series of operations to investigate the antifouling potential of the marine microalga Dunaliella salina. For the ethyl acetate crude extract, the antialgal activity was significant, and the EC50 value against Skeletonema costatum was 58.9 μg ml(-1). The isolated purified extract was tested for antifouling activity, the EC 50 value against S. costatum was 21.2 μg ml(-1), and the LC50 against Balanus amphitrite larvae was 18.8 μg ml(-1). Subsequently, both UHR-TOF-MS and GC-MS were used for the structural elucidation of the compounds, and a series of unsaturated and saturated 16- and 18-carbon fatty acids were detected. The data suggested that the fatty acid extracts from D. salina possess high antifouling activity, and could be used as substitutes for potent, toxic antifouling compounds. PMID:25096202

  11. Antifouling effect of bioactive compounds from selected marine organisms in the Obhur Creek, Red Sea

    NASA Astrophysics Data System (ADS)

    Al-Sofyani, Abdulmohsin; Marimuthu, N.; Wilson, J. Jerald; Pugazhendi, Arulazhagan; Dhavamani, Jeyakumar

    2016-06-01

    Three species of sponges and a tunicate were collected from Obhur creek of Jeddah coast for this bioactivity study. In order to assess the antifouling efficacy of selected marine organisms, methanolic extracts of these organisms were tested against different fouling bacterial forms and II-instar stage of the barnacle, Balanus amphitrite. Antibiosis, bioactivity and followed by multivariate analyses were carried out to check the efficacy of antifouling effect of the selected marine organisms. Principal component analysis revealed the exemplary antifouling efficacy of the sponge extracts of Stylissa sp. observed followed by Hyrtios sp. against bacterial forms in the laboratory study. De-trended correspondence analysis confirmed that the contribution of antifouling efficacy of the selected sponge extracts was observed to be more towards Bacillus sp., Vibrio sp. and Alteromonas sp. Moreover, the efficacy of Hyrtios sp. extract (20.430 μg mL-1) followed by Stylissa sp. (30.945 μg mL-1) showed higher against barnacle instar compared with other extracts in the bioactivity assay. Bray-Curtis cluster analysis under paired linkage categorized all the sponge extracts into one major cluster with 75% similarity, and one outlier tunicate. More than 80% similarity observed between Hyrtios sp. and Stylissa sp. Fourier transform infrared spectroscopy (FTIR) showed that the contribution of major peaks found in the marine organisms were towards sulfones, sulfoxides, cyanates and ketones.

  12. Antifouling potential of bacteria isolated from a marine biofilm

    NASA Astrophysics Data System (ADS)

    Gao, Min; Wang, Ke; Su, Rongguo; Li, Xuzhao; Lu, Wei

    2014-10-01

    Marine microorganisms are a new source of natural antifouling compounds. In this study, two bacterial strains, Kytococcus sedentarius QDG-B506 and Bacillus cereus QDG-B509, were isolated from a marine biofilm and identified. The bacteria fermentation broth could exert inhibitory effects on the growth of Skeletonema costatum and barnacle larvae. A procedure was employed to extract and identify the antifouling compounds. Firstly, a toxicity test was conducted by graduated pH and liquid-liquid extraction to determine the optimal extraction conditions. The best extraction conditions were found to be pH 2 and 100% petroleum ether. The EC 50 value of the crude extract of K. sedentarius against the test microalgae was 236.7 ± 14.08 μg mL-1, and that of B. cereus was 290.6 ± 27.11 μg mL-1. Secondly, HLB SPE columns were used to purify the two crude extracts. After purification, the antifouling activities of the two extracts significantly increased: the EC 50 of the K. sedentarius extract against the test microalgae was 86.4 ± 3.71 μg mL-1, and that of B. cereus was 92.6 ± 1.47 μg mL-1. These results suggest that the metabolites produced by the two bacterial strains are with high antifouling activities and they should be fatty acid compounds. Lastly, GC-MS was used for the structural elucidation of the compounds. The results show that the antifouling compounds produced by the two bacterial strains are myristic, palmitic and octadecanoic acids.

  13. Antifouling properties of hydrogels

    NASA Astrophysics Data System (ADS)

    Murosaki, Takayuki; Ahmed, Nafees; Gong, Jian Ping

    2011-12-01

    Marine sessile organisms easily adhere to submerged solids such as rocks, metals and plastics, but not to seaweeds and fishes, which are covered with soft and wet 'hydrogel'. Inspired by this fact, we have studied long-term antifouling properties of hydrogels against marine sessile organisms. Hydrogels, especially those containing hydroxy group and sulfonic group, show excellent antifouling activity against barnacles both in laboratory assays and in the marine environment. The extreme low settlement on hydrogels in vitro and in vivo is mainly caused by antifouling properties against the barnacle cypris.

  14. Mimetic marine antifouling films based on fluorine-containing polymethacrylates

    NASA Astrophysics Data System (ADS)

    Sun, Qianhui; Li, Hongqi; Xian, Chunying; Yang, Yihang; Song, Yanxi; Cong, Peihong

    2015-07-01

    Novel methacrylate copolymers containing catechol and trifluoromethyl pendant side groups were synthesized by free radical polymerization of N-(3,4-dihydroxyphenyl)ethyl methacrylamide (DMA) and 2,2,2-trifluoroethyl methacrylate (TFME) with α,α‧-azobisisobutyronitrile (AIBN) as initiator. A series of copolymers with different content of TFME ranging from 3% to 95% were obtained by changing the molar ratio of DMA to TFME from 25:1 to 1:25. Fourier transform infrared (FT-IR) spectroscopy, gel permeation chromatography (GPC), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were used to characterize the copolymers, which displayed a certain degree of hardness and outstanding thermostability reflected from their high glass transition temperatures. The copolymers could adhere to surfaces of glass, plastics and metals due to introduction of catechol groups as multivalent hydrogen bonding anchors. Water contact angle on the polymer films was up to 117.4°. Chemicals resistance test manifested that the polymer films possessed excellent resistance to water, salt, acid and alkali. Moreover, the polymer films displayed fair antifouling property and might be used as promising environmentally friendly marine antifouling coatings.

  15. A New, Sensitive Marine Microalgal Recombinant Biosensor Using Luminescence Monitoring for Toxicity Testing of Antifouling Biocides

    PubMed Central

    Sanchez-Ferandin, Sophie; Leroy, Fanny; Bouget, François-Yves

    2013-01-01

    In this study, we propose the use of the marine green alga Ostreococcus tauri, the smallest free-living eukaryotic cell known to date, as a new luminescent biosensor for toxicity testing in the environment. Diuron and Irgarol 1051, two antifouling biocides commonly encountered in coastal waters, were chosen to test this new biosensor along with two degradation products of diuron. The effects of various concentrations of the antifoulants on four genetic constructs of O. tauri (based on genes involved in photosynthesis, cell cycle, and circadian clock) were compared using 96-well culture microplates and a luminometer to automatically measure luminescence over 3 days. This was compared to growth inhibition of O. tauri wild type under the same conditions. Luminescence appeared to be more sensitive than growth inhibition as an indicator of toxicity. Cyclin-dependent kinase (CDKA), a protein involved in the cell cycle, fused to luciferase (CDKA-Luc) was found to be the most sensitive of the biosensors, allowing an accurate determination of the 50% effective concentration (EC50) after only 2 days (diuron, 5.65 ± 0.44 μg/liter; Irgarol 1015, 0.76 ± 0.10 μg/liter). The effects of the antifoulants on the CDKA-Luc biosensor were then compared to growth inhibition in natural marine phytoplankton. The effective concentrations of diuron and Irgarol 1051 were found to be similar, indicating that this biosensor would be suitable as a reliable ecotoxicological test. The advantage of this biosensor over cell growth inhibition testing is that the process can be easily automated and could provide a high-throughput laboratory approach to perform short-term toxicity tests. The ability to genetically transform and culture recombinant O. tauri gives it huge potential for screening many other toxic compounds. PMID:23144143

  16. Sulfobetaine-based polymer brushes in marine environment: is there an effect of the polymerizable group on the antifouling performance?

    PubMed

    Quintana, Robert; Jańczewski, Dominik; Vasantha, Vivek Arjunan; Jana, Satyasankar; Lee, Serina Siew Chen; Parra-Velandia, Fernando Jose; Guo, Shifeng; Parthiban, Anbanandam; Teo, Serena Lay-Ming; Vancso, G Julius

    2014-08-01

    Three different zwitterionic polymer brush coatings for marine biofouling control were prepared by surface-initiated atom transfer radical polymerization (ATRP) of sulfobetaine-based monomers including methacrylamide (SBMAm), vinylbenzene (SBVB) and vinylimidazolium (SBVI). None of these brush systems have been assessed regarding marine antifouling performance. Antifouling tests performed indicate that surfaces featuring these three brush systems substantially reduce the adhesion of the marine microalgae, Amphora coffeaeformis, and the settlement of cyprid larvae of the barnacle, Amphibalanus amphitrite, in a similar way, displaying comparable performance. Thus, it appears that the chemical structure of the polymerizable group has no substantial influence on marine antifouling performance. PMID:24907581

  17. Antifouling properties of tough gels against barnacles in a long-term marine environment experiment.

    PubMed

    Murosaki, T; Noguchi, T; Hashimoto, K; Kakugo, A; Kurokawa, T; Saito, J; Chen, Y M; Furukawa, H; Gong, J P

    2009-10-01

    In the marine environment, the antifouling (AF) properties of various kinds of hydrogels against sessile marine organisms (algae, sea squirts, barnacles) were tested in a long-term experiment. The results demonstrate that most hydrogels can endure at least 2 months in the marine environment. In particular, mechanically tough PAMPS/PAAm DN and PVA gels exhibited AF activity against marine sessile organisms, especially barnacles, for as long as 330 days. The AF ability of hydrogels toward barnacles is explained in terms of an 'easy-release' mechanism in which the high water content and the elastic modulus of the gel are two important parameters.

  18. Accumulation of Cu and Zn in discarded antifouling paint particles by the marine gastropod, Littorina littorea

    NASA Astrophysics Data System (ADS)

    Gammon, Melanie; Turner, Andrew; Brown, Murray T.

    2009-10-01

    The short-term (5 day) accumulation of Cu and Zn in different tissues of the marine gastropod, Littorina littorea, has been studied in the presence of ˜10 mg l -1 of antifouling paint particles and pre- or simultaneously contaminated algal food ( Ulva lactuca). Accumulation of Cu was observed in the head-foot, digestive gland-gonad complex and gills to extents dependent on how and when food was contaminated and administered. However, retention of Zn was only observed in the gills and only when L. littorea and U. lactuca were simultaneously exposed to paint particles. Relative to the alga, faecal material was highly enriched in Zn, suggesting that the animal is able to rapidly eliminate this metal, most likely through the formation and egestion of insoluble phosphate granules. Thus, L. littorea is a useful biomonitor of marine contamination by antifouling applications in respect of Cu but not Zn.

  19. Antifouling and antibacterial polyketides from marine gorgonian coral-associated fungus Penicillium sp. SCSGAF 0023.

    PubMed

    Bao, Jie; Sun, Yu-Lin; Zhang, Xiao-Yong; Han, Zhuang; Gao, Hai-Chun; He, Fei; Qian, Pei-Yuan; Qi, Shu-Hua

    2013-04-01

    Two new polyketides, 6,8,5'6'-tetrahydroxy-3'-methylflavone (1) and paecilin C (2), together with six known analogs secalonic acid D (3), secalonic acid B (4) penicillixanthone A (5), emodin (6), citreorosein (7) and isorhodoptilometrin (8) were obtained from a broth of gorgonian coral-associated fungus Penicillium sp. SCSGAF 0023. Compounds 1 and 6-8 had significant antifouling activity against Balanus amphitrite larvae settlement with EC50 values of 6.7, 6.1, 17.9 and 13.7 μg ml(-1), respectively, and 3-5 showed medium antibacterial activity against four tested bacterial strains. This was the first report of antibacterial activity of 3-5 against marine bacteria and antifouling activity of 6-8 against marine biofouling organism's larvae. The results indicated that gorgonian coral-associated fungus Penicillium sp. SCSGAF 0023 strain could produce antifouling and antibacterial compounds that might aid the host gorgonian coral in protection against marine pathogen bacteria, biofouling organisms and other intruders.

  20. Antifouling Compounds from the Marine-Derived Fungus Aspergillus terreus SCSGAF0162.

    PubMed

    Nong, Xu-Hua; Zhang, Xiao-Yong; Xu, Xin-Ya; Qi, Shu-Hua

    2015-06-01

    A new cyclic tetrapeptide, asperterrestide B (1), and 11 known compounds (2-12) were isolated from a marine-derived fungus Aspergillus terreus SCSGAF0162. The structure of 1 was elucidated by spectroscopic analysis, and the absolute configuration of 1 was determined by Mosher ester and Marfey's methods. Compounds 4, 6, and 8 had potent antifouling activity against larvae of the barnacle Balanus amphitrite, with EC50 values of 17.1 ± 1.2, 11.6 ± 0.6, and 17.1 ± 0.8 μg x mL(-1), respectively. PMID:26197544

  1. Antifouling activity of green-synthesized 7-hydroxy-4-methylcoumarin.

    PubMed

    Pérez, Miriam; García, Mónica; Ruiz, Diego; Autino, Juan Carlos; Romanelli, Gustavo; Blustein, Guillermo

    2016-02-01

    In the search for new environmental-friendly antifoulants for replace metallic biocides, 7-hydroxy-4-methylcoumarin was synthesized according to green chemistry procedures. This compound was characterized by current organic analysis and its antifouling properties were firstly evaluated on the bivalve Mytilus edulis platensis in the laboratory. In the second stage, a soluble matrix antifouling coating formulated with this compound was assayed in marine environment. Laboratory experiments showed that 7-hydroxy-4-methylcoumarin was effective in inhibiting both the settlement as well as the byssogenesis of mussels. In addition, after exposure time in the sea, painted panels containing this compound showed strong antifouling effect on conspicuous species of the fouling community of Mar el Plata harbor. In conclusion, green-synthesized coumarin could be a suitable antifoulant candidate for marine protective coatings.

  2. Antifouling activities against colonizer marine bacteria of extracts from marine invertebrates collected in the Colombian Caribbean Sea and on the Brazilian coast (Santa Catarina).

    PubMed

    Mora-Cristancho, Jennyfer A; Arévalo-Ferro, Catalina; Ramos, Freddy A; Tello, Edisson; Duque, Carmenza; Lhullier, Cintia; Falkenberg, Miriam; Schenkel, Eloir Paulo

    2011-01-01

    The growth inhibition of 12 native marine bacteria isolated from Aplysina sponge surfaces, the shell of a bivalve, and Phytagel immersed for 48 h in sea water were used as indicator of the antifouling activity of the extracts of 39 marine organisms (octocorals, sponges, algae, and zoanthid) collected in the Colombian Caribbean Sea and on the Brazilian coast (Santa Catarina). Gram-negative bacteria represented 75% of the isolates; identified strains belonged to Oceanobacillus iheyensis, Ochrobactrum pseudogrignonense, Vibrio campbellii, Vibrio harveyi, and Bacillus megaterium species and seven strains were classified at genus level by the 16S rRNA sequencing method. The extracts of the octocorals Pseudopterogorgia elisabethae, four Eunicea octocorals, and the sponges Topsentia ophiraphidites, Agelas citrina, Neopetrosia carbonaria, Monanchora arbuscula, Cliona tenuis, Iotrochota imminuta, and Ptilocaulis walpersii were the most active, thus suggesting those species as antifoulant producers. This is the first study of natural antifoulants from marine organisms collected on the Colombian and Brazilian coasts.

  3. Bio-inspired self-cleaning PAAS hydrogel released coating for marine antifouling.

    PubMed

    Xue, Lili; Lu, Xili; Wei, Huan; Long, Ping; Xu, Jina; Zheng, Yufeng

    2014-05-01

    In this paper, an antifouling hydrogel coating of slippery hydrogel-released hydrous surface (SHRHS) with the self-cleaning ability of oil-resistance and self-regeneration characters was designed. A physical blending method of loading Sodium polyacrylate (PAAS) powder into the organic silicon resin was employed to prepare the SHRHS coating. The oil-resistance of the intact and scratch SHRHS coatings was performed by time-sequence images of washing dyed beef tallow stain away. The results showed that the SHRHS coating has the greater ability of stain removal. The concentration of Na+ ions released from PAAS hydrogel on the surface of the SHRHS coating was investigated by ion chromatograph (IC). The results revealed that the coating had the ability of self-regeneration by PAAS hydrogel continuously peeling. The biomass of two marine microalgae species, Nitzschia closterium f. minutissima and Navicula climacospheniae Booth attached on the SHRHS was investigated using UV-Visible Spectrophotometer (UV) and Scanning electron microscopy (SEM). The results showed that the microalgaes attached a significantly lower numbers on the SHRHS in comparison with the organic silicon coating. In order to confirm the antifouling ability of the SHRHS coating, the field trials were carried out for 12weeks. It showed that the SHRHS may provide an effective attachment resistance to reduce biofouling.

  4. Natural antifouling compounds produced by a novel fungus Aureobasidium pullulans HN isolated from marine biofilm.

    PubMed

    Gao, Min; Su, Rongguo; Wang, Ke; Li, Xuzhao; Lu, Wei

    2013-12-15

    A fungus, Aureobasidium pullulans, was isolated from marine biofilm and identified. A bioassay-guided fractionation procedure was developed to isolate and purify antifouling compounds from A. pullulans HN. The procedure was: fermentation broth-aeration and addition of sodium thiosulfate-graduated pH and liquid-liquid extraction-SPE purification-GC-MS analysis. Firstly, the fermentation broth was tested for its toxicity. Then it was treated with aeration and addition of sodium thiosulfate, and its toxicity was almost not changed. Lastly, antifouling compounds were extracted at different pH, the extract had high toxicity at pH 2 but almost no toxicity at pH 10, which suggested the toxicants should be fatty acids. The EC50 of the extract against Skeletonema costatum was 90.9 μg ml(-1), and its LC50 against Balanus amphitrete larvae was 22.2 μg ml(-1). After purified by HLB SPE column, the EC50 of the extract against S. costatum was 49.4 μg ml(-1). The myristic and palmitic acids were found as the main toxicants by GC-MS. PMID:24210009

  5. Evaluation of antifouling activity of eight commercially available organic chemicals against the early foulers marine bacteria and Ulva spores.

    PubMed

    Bhattarai, Hari Datta; Paudel, Babita; Park, Nam-Sik; Lee, Kwang Soo; Shin, Hyun-Woung

    2007-10-01

    Environmental impacts caused by tin and copper based commercial antifouling (AF) paints were proved to be detrimental to aquatic ecosystems. Therefore, a search of environmental friendly AF compounds to be used in marine paint to protect the surface of maritime developmental structures from the unwanted biofouling is a burning issue of the present time. Commercially available eight organic chemicals--allyl isothiocyanate, beta-myrecene, cis-3-hexenyl acetate, citral, ethyl heptanoate, eugenol, methyl caproate, and octyl alcohol were evaluated forAF activities using both laboratory and field assays. The test chemicals were found to repel the target motile marine bacteria--Alteromonas marina, Bacillus atrophaeus, Roseobactergallaeciensis and Shewanella oneidensis and motile spores of the green alga, Ulva pertusa. The bacterial and Ulva spore repulsion activities of the test chemicals were measured by chemotaxis and agar diffusion methods respectively interestingly these test chemicals were less toxic to the test fouling species. The toxicity of the test chemicals was measured by using antibiotic assay disks against the bacteria and motility test against Ulva spores. Moreover, in field assay, all test chemicals showed a perfect performance ofAF activity showing no fouling during the experimental period of one year Such results and commercial as well as technical feasibility of the test chemicals firmly showed the possibility of using as alternatives of the existing toxic AF agents.

  6. Development of FDR-AF (Frictional Drag Reduction Anti-Fouling) Marine Coating

    NASA Astrophysics Data System (ADS)

    Lee, Inwon; Park, Hyun; Chun, Ho Hwan; GCRC-SOP Team

    2013-11-01

    In this study, a novel skin-friction reducing marine paint has been developed by mixing fine powder of PEO(PolyEthyleneOxide) with SPC (Self-Polishing Copolymer) AF (Anti-Fouling) paint. The PEO is well known as one of drag reducing agent to exhibit Toms effect, the attenuation of turbulent flows by long chain polymer molecules in the near wall region. The frictional drag reduction has been implemented by injecting such polymer solutions to liquid flows. However, the injection holes have been a significant obstacle to marine application. The present PEO-containing marine paint is proposed as an alternative to realize Toms effect without any hole on the ship surface. The erosion mechanism of SPC paint resin and the subsequent dissolution of PEO enable the controlled release of PEO solution from the coating. Various tests such as towing tank drag measurement of flat plate and turbulence measurement in circulating water tunnel demonstrated over 10% frictional drag reduction compared with conventional AF paint. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) through GCRC-SOP(No. 2011-0030013).

  7. Economic and environmental impacts on ports and harbors from the convention to ban harmful marine anti-fouling systems.

    PubMed

    Champ, Michael A

    2003-08-01

    The recent Diplomatic Conference held (1-5 October 2001) by the International Maritime Organization (IMO) in London adopted the Draft Convention prepared by The Marine Environmental Protection Committee (MEPC) of IMO for the "Control of Harmful Anti-fouling Systems for Ships." The convention has been developed to immediately ban the use of Tributyltin (TBT) globally in anti-fouling paints to "protect the marine environment". The ban on TBT has come about because TBT has detrimental effects on non-target marine organisms. In November 1999, IMO agreed that a treaty be developed by the MEPC to ensure a ban on the application of TBT based anti-fouling paints by 1 January 2003, and a ban on the use of TBT by 1 January 2008. At the meeting surious concern was expressed by some experts for the need to identify in the treaty the necessary regulatory language for: (1) the "safe" removal, treatment, and disposal of marine anti-foulants deemed "harmful" by the treaty and (2) who is liable for the future dredging and disposal of TBT-contaminated port and harbor sediments--to also "protect the marine environment". The requirement for "safe" removal and disposal was incorporated at MEPC 46 as Article 5 in the treaty, without it shipyards complying with existing national and local discharge regulations (most have none for discharge of TBT) could inadvertently release more TBT to ports and harbors in the five-year compliance period than has been leached from ships (hulls) in the past 40 years to the same waters. Virginia is the only State in the US that regulates the discharge to below 50 ng/l (50 parts per trillion). However, the liability for the future dredging and disposal costs of TBT-contaminated port and harbor sediments has not been addressed.

  8. Hydrogel brushes grafted from stainless steel via surface-initiated atom transfer radical polymerization for marine antifouling

    NASA Astrophysics Data System (ADS)

    Wang, Jingjing; Wei, Jun

    2016-09-01

    Crosslinked hydrogel brushes were grafted from stainless steel (SS) surfaces for marine antifouling. The brushes were prepared by surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-methacryloyloxyethyl phosphorylcholine (MPC) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) respectively with different fractions of crosslinker in the feed. The grafted layers prepared with different thickness were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), ellipsometry and water contact angle measurements. With the increase in the fraction of crosslinker in the feed, the thickness of the grafted layer increased and the surface became smooth. All the brush-coated SS surfaces could effectively reduce the adhesion of bacteria and microalgae and settlement of barnacle cyprids, as compared to the pristine SS surface. The antifouling efficacy of the PEGMA polymer (PPEGMA)-grafted surface was higher than that of the MPC polymer (PMPC)-grafted surfaces. Furthermore, the crosslinked hydrogel brush-grafted surfaces exhibited better fouling resistance than the non-crosslinked polymer brush-grafted surfaces, and the antifouling efficacy increased with the crosslinking density. These hydrogel coatings of low toxicity and excellent anti-adhesive characteristics suggested their useful applications as environmentally friendly antifouling coatings.

  9. Amphiphilic triblock copolymers with PEGylated hydrocarbon structures as environmentally friendly marine antifouling and fouling-release coatings.

    PubMed

    Zhou, Zhaoli; Calabrese, David R; Taylor, Warren; Finlay, John A; Callow, Maureen E; Callow, James A; Fischer, Daniel; Kramer, Edward J; Ober, Christopher K

    2014-01-01

    The ideal marine antifouling (AF)/fouling-release (FR) coating should be non-toxic, while effectively either resisting the attachment of marine organisms (AF) or significantly reducing their strength of attachment (FR). Many recent studies have shown that amphiphilic polymeric materials provide a promising solution to producing such coatings due to their surface dual functionality. In this work, poly(ethylene glycol) (PEG) of different molecular weights (Mw = 350, 550) was coupled to a saturated difunctional alkyl alcohol to generate amphiphilic surfactants (PEG-hydrocarbon-OH). The resulting macromolecules were then used as side chains to covalently modify a pre-synthesized PS8 K-b-P(E/B)25 K-b-PI10 K (SEBI or K3) triblock copolymer, and the final polymers were applied to glass substrata through an established multilayer surface coating technique to prepare fouling resistant coatings. The coated surfaces were characterized with AFM, XPS and NEXAFS, and evaluated in laboratory assays with two important fouling algae, Ulva linza (a green macroalga) and Navicula incerta, a biofilm-forming diatom. The results suggest that these polymer-coated surfaces undergo surface reconstruction upon changing the contact medium (polymer/air vs polymer/water), due to the preferential interfacial aggregation of the PEG segment on the surface in water. The amphiphilic polymer-coated surfaces showed promising results as both AF and FR coatings. The sample with longer PEG chain lengths (Mw = 550 g mol(-1)) exhibited excellent properties against both algae, highlighting the importance of the chemical structures on ultimate biological performance. Besides reporting synthesis and characterization of this new type of amphiphilic surface material, this work also provides insight into the nature of PEG/hydrocarbon amphiphilic coatings, and this understanding may help in the design of future generations of fluorine-free, environmentally friendly AF/FR polymeric coatings. PMID:24730510

  10. Amphiphilic triblock copolymers with PEGylated hydrocarbon structures as environmentally friendly marine antifouling and fouling-release coatings.

    PubMed

    Zhou, Zhaoli; Calabrese, David R; Taylor, Warren; Finlay, John A; Callow, Maureen E; Callow, James A; Fischer, Daniel; Kramer, Edward J; Ober, Christopher K

    2014-01-01

    The ideal marine antifouling (AF)/fouling-release (FR) coating should be non-toxic, while effectively either resisting the attachment of marine organisms (AF) or significantly reducing their strength of attachment (FR). Many recent studies have shown that amphiphilic polymeric materials provide a promising solution to producing such coatings due to their surface dual functionality. In this work, poly(ethylene glycol) (PEG) of different molecular weights (Mw = 350, 550) was coupled to a saturated difunctional alkyl alcohol to generate amphiphilic surfactants (PEG-hydrocarbon-OH). The resulting macromolecules were then used as side chains to covalently modify a pre-synthesized PS8 K-b-P(E/B)25 K-b-PI10 K (SEBI or K3) triblock copolymer, and the final polymers were applied to glass substrata through an established multilayer surface coating technique to prepare fouling resistant coatings. The coated surfaces were characterized with AFM, XPS and NEXAFS, and evaluated in laboratory assays with two important fouling algae, Ulva linza (a green macroalga) and Navicula incerta, a biofilm-forming diatom. The results suggest that these polymer-coated surfaces undergo surface reconstruction upon changing the contact medium (polymer/air vs polymer/water), due to the preferential interfacial aggregation of the PEG segment on the surface in water. The amphiphilic polymer-coated surfaces showed promising results as both AF and FR coatings. The sample with longer PEG chain lengths (Mw = 550 g mol(-1)) exhibited excellent properties against both algae, highlighting the importance of the chemical structures on ultimate biological performance. Besides reporting synthesis and characterization of this new type of amphiphilic surface material, this work also provides insight into the nature of PEG/hydrocarbon amphiphilic coatings, and this understanding may help in the design of future generations of fluorine-free, environmentally friendly AF/FR polymeric coatings.

  11. Potent Antifouling Marine Dihydroquinolin-2(1H)-one-Containing Alkaloids from the Gorgonian Coral-Derived Fungus Scopulariopsis sp.

    PubMed

    Shao, Chang-Lun; Xu, Ru-Fang; Wang, Chang-Yun; Qian, Pei-Yuan; Wang, Kai-Ling; Wei, Mei-Yan

    2015-08-01

    Marine biofouling has a major economic impact, especially when it occurs on ship hulls or aquaculture facilities. Since the International Maritime Organization (IMO) treaty to ban the application of organotin-based paints to ships went into effect in 2008, there is an urgent demand for the development of efficient and environmentally friendly antifouling agents. Marine microorganisms have proved to be a potential source of antifouling natural compounds. In this study, six dihydroquinolin-2-one-containing alkaloids, three monoterpenoids combined with a 4-phenyl-3,4-dihydroquinolin-2(1H)-one (1-3) and three 4-phenyl-3,4-dihydroquinolin-2(1H)-one alkaloids (4-6), were isolated from the gorgonian coral-derived fungus Scopulariopsis sp. collected in the South China Sea. These dihydroquinolin-2-one-containing alkaloids were evaluated against the larval settlement of barnacle Balanus amphitrite, and antifouling activity was detected for the first time for this class of metabolites. All of them except 6 showed strong antifouling activity. Compounds 1 and 2 were discovered to be the most promising non-toxic antilarval settlement candidates. Especially, compound 1 is the strongest antifouling compound in nature until now which showed highly potent activity with picomolar level (EC50 17.5 pM) and a very safety and high therapeutic ratio (LC50/EC50 1200). This represents an effective non-toxic, anti-larval settlement structural class of promising antifouling lead compound. PMID:25833409

  12. Potent Antifouling Marine Dihydroquinolin-2(1H)-one-Containing Alkaloids from the Gorgonian Coral-Derived Fungus Scopulariopsis sp.

    PubMed

    Shao, Chang-Lun; Xu, Ru-Fang; Wang, Chang-Yun; Qian, Pei-Yuan; Wang, Kai-Ling; Wei, Mei-Yan

    2015-08-01

    Marine biofouling has a major economic impact, especially when it occurs on ship hulls or aquaculture facilities. Since the International Maritime Organization (IMO) treaty to ban the application of organotin-based paints to ships went into effect in 2008, there is an urgent demand for the development of efficient and environmentally friendly antifouling agents. Marine microorganisms have proved to be a potential source of antifouling natural compounds. In this study, six dihydroquinolin-2-one-containing alkaloids, three monoterpenoids combined with a 4-phenyl-3,4-dihydroquinolin-2(1H)-one (1-3) and three 4-phenyl-3,4-dihydroquinolin-2(1H)-one alkaloids (4-6), were isolated from the gorgonian coral-derived fungus Scopulariopsis sp. collected in the South China Sea. These dihydroquinolin-2-one-containing alkaloids were evaluated against the larval settlement of barnacle Balanus amphitrite, and antifouling activity was detected for the first time for this class of metabolites. All of them except 6 showed strong antifouling activity. Compounds 1 and 2 were discovered to be the most promising non-toxic antilarval settlement candidates. Especially, compound 1 is the strongest antifouling compound in nature until now which showed highly potent activity with picomolar level (EC50 17.5 pM) and a very safety and high therapeutic ratio (LC50/EC50 1200). This represents an effective non-toxic, anti-larval settlement structural class of promising antifouling lead compound.

  13. Australia's marine virtual laboratory

    NASA Astrophysics Data System (ADS)

    Proctor, Roger; Gillibrand, Philip; Oke, Peter; Rosebrock, Uwe

    2014-05-01

    In all modelling studies of realistic scenarios, a researcher has to go through a number of steps to set up a model in order to produce a model simulation of value. The steps are generally the same, independent of the modelling system chosen. These steps include determining the time and space scales and processes of the required simulation; obtaining data for the initial set up and for input during the simulation time; obtaining observation data for validation or data assimilation; implementing scripts to run the simulation(s); and running utilities or custom-built software to extract results. These steps are time consuming and resource hungry, and have to be done every time irrespective of the simulation - the more complex the processes, the more effort is required to set up the simulation. The Australian Marine Virtual Laboratory (MARVL) is a new development in modelling frameworks for researchers in Australia. MARVL uses the TRIKE framework, a java-based control system developed by CSIRO that allows a non-specialist user configure and run a model, to automate many of the modelling preparation steps needed to bring the researcher faster to the stage of simulation and analysis. The tool is seen as enhancing the efficiency of researchers and marine managers, and is being considered as an educational aid in teaching. In MARVL we are developing a web-based open source application which provides a number of model choices and provides search and recovery of relevant observations, allowing researchers to: a) efficiently configure a range of different community ocean and wave models for any region, for any historical time period, with model specifications of their choice, through a user-friendly web application, b) access data sets to force a model and nest a model into, c) discover and assemble ocean observations from the Australian Ocean Data Network (AODN, http://portal.aodn.org.au/webportal/) in a format that is suitable for model evaluation or data assimilation, and

  14. Extending the Marine Microcosm Laboratory

    ERIC Educational Resources Information Center

    Ryswyk, Hal Van; Hall, Eric W.; Petesch, Steven J.; Wiedeman, Alice E.

    2007-01-01

    The traditional range of marine microcosm laboratory experiments is presented as an ideal environment to teach the entire analysis process. The microcosm lab provides student-centered approach with opportunities for collaborative learning and to develop critical communication skills.

  15. Zebra mussel antifouling activity of the marine natural product aaptamine and analogs.

    PubMed

    Diers, Jeffrey A; Bowling, John J; Duke, Stephen O; Wahyuono, Subagus; Kelly, Michelle; Hamann, Mark T

    2006-01-01

    Several aaptamine derivatives were selected as potential zebra mussel (Dreissena polymorpha) antifoulants because of the noteworthy absence of fouling observed on Aaptos sponges. Sponges of the genus Aaptos collected in Manado, Indonesia consistently produce aaptamine-type alkaloids. To date, aaptamine and its derivatives have not been carefully evaluated for their antifoulant properties. Structure-activity relationship studies were conducted using several aaptamine derivatives in a zebra mussel antifouling assay. From these data, three analogs have shown significant antifouling activity against zebra mussel attachment. Aaptamine, isoaaptamine, and the demethylated aaptamine compounds used in the zebra mussel assay produced EC(50) values of 24.2, 11.6, and 18.6 microM, respectively. In addition, neither aaptamine nor isoaaptamine produced a phytotoxic response (as high as 300 microM) toward a nontarget organism, Lemna pausicostata, in a 7-day exposure. The use of these aaptamine derivatives from Aaptos sp. as potential environmentally benign antifouling alternatives to metal-based paints and preservatives is significant, not only as a possible control of fouling organisms, but also to highlight the ecological importance of these and similar biochemical defenses.

  16. Zebra Mussel Antifouling Activity of the Marine Natural Product Aaptamine and Analogs

    PubMed Central

    Diers, Jeffrey A.; Bowling, John J.; Duke, Stephen O.; Wahyuono, Subagus; Kelly, Michelle; Hamann, Mark T.

    2016-01-01

    Several aaptamine derivatives were selected as potential zebra mussel (Dreissena polymorpha) antifoulants because of the noteworthy absence of fouling observed on Aaptos sponges. Sponges of the genus Aaptos collected in Manado, Indonesia consistently produce aaptamine-type alkaloids. To date, aaptamine and its derivatives have not been carefully evaluated for their antifoulant properties. Structure–activity relationship studies were conducted using several aaptamine derivatives in a zebra mussel antifouling assay. From these data, three analogs have shown significant antifouling activity against zebra mussel attachment. Aaptamine, isoaaptamine, and the demethylated aaptamine compounds used in the zebra mussel assay produced EC50 values of 24.2, 11.6, and 18.6 μM, respectively. In addition, neither aaptamine nor isoaaptamine produced a phytotoxic response (as high as 300 μM) toward a nontarget organism, Lemna pausicostata, in a 7-day exposure. The use of these aaptamine derivatives from Aaptos sp. as potential environmentally benign antifouling alternatives to metal-based paints and preservatives is significant, not only as a possible control of fouling organisms, but also to highlight the ecological importance of these and similar biochemical defenses. PMID:16718618

  17. -A practical application of reduced-copper antifouling paint in marine biological research.

    PubMed

    Jerabek, Andrea S; Wall, Kara R; Stallings, Christopher D

    2016-01-01

    Biofouling of experimental cages and other field apparatuses can be problematic for scientists and has traditionally been addressed using frequent manual removal (e.g., scraping, scrubbing). Recent environmental restrictions and legislative changes have driven the development of less hazardous antifouling products, making antifouling paint a potential alternative option to manual removal. Consequently, the viability of using these newly developed products as a replacement for the manual cleaning of exclusion cages was experimentally investigated. There were six treatments tested, comprising three with settlement tiles in experimental cages coated with antifouling paint, two with settlement tiles in unpainted experimental cages, and one cage-free suspended tile. The three antifouling treatments comprised two reduced-copper paints (21% Cu2O and 40% Cu2O) and one copper-free, Econea (™)-based paint (labeled "ecofriendly"). Antifouling paints were assessed for performance of preventing fouling of the cages and whether they elicited local effects on settlement tiles contained within them. All three paints performed well to reduce fouling of the cages during the initial six weeks of the experiment, but the efficacy of "ecofriendly" paint began to decrease during an extended deployment that lasted 14 weeks. The macro-community composition, biomass, and percent cover of settled organism on tiles within cages treated with copper-based paints (21% and 40% concentrations) were indistinguishable from tiles within the manually scrubbed cages. In contrast, settlement to tiles from the "ecofriendly" treatment was different in composition of macro-community and lower in biomass, suggesting the presence of local effects and therefore rendering it unsuitable for use in settlement experiments. The results of this study suggest that reduced-copper paints have the potential to serve as an alternative to manual maintenance, which may be useful for deployments in locations that are

  18. ­A practical application of reduced-copper antifouling paint in marine biological research

    PubMed Central

    2016-01-01

    Biofouling of experimental cages and other field apparatuses can be problematic for scientists and has traditionally been addressed using frequent manual removal (e.g., scraping, scrubbing). Recent environmental restrictions and legislative changes have driven the development of less hazardous antifouling products, making antifouling paint a potential alternative option to manual removal. Consequently, the viability of using these newly developed products as a replacement for the manual cleaning of exclusion cages was experimentally investigated. There were six treatments tested, comprising three with settlement tiles in experimental cages coated with antifouling paint, two with settlement tiles in unpainted experimental cages, and one cage-free suspended tile. The three antifouling treatments comprised two reduced-copper paints (21% Cu2O and 40% Cu2O) and one copper-free, Econea™-based paint (labeled “ecofriendly”). Antifouling paints were assessed for performance of preventing fouling of the cages and whether they elicited local effects on settlement tiles contained within them. All three paints performed well to reduce fouling of the cages during the initial six weeks of the experiment, but the efficacy of “ecofriendly” paint began to decrease during an extended deployment that lasted 14 weeks. The macro-community composition, biomass, and percent cover of settled organism on tiles within cages treated with copper-based paints (21% and 40% concentrations) were indistinguishable from tiles within the manually scrubbed cages. In contrast, settlement to tiles from the “ecofriendly” treatment was different in composition of macro-community and lower in biomass, suggesting the presence of local effects and therefore rendering it unsuitable for use in settlement experiments. The results of this study suggest that reduced-copper paints have the potential to serve as an alternative to manual maintenance, which may be useful for deployments in locations

  19. -A practical application of reduced-copper antifouling paint in marine biological research.

    PubMed

    Jerabek, Andrea S; Wall, Kara R; Stallings, Christopher D

    2016-01-01

    Biofouling of experimental cages and other field apparatuses can be problematic for scientists and has traditionally been addressed using frequent manual removal (e.g., scraping, scrubbing). Recent environmental restrictions and legislative changes have driven the development of less hazardous antifouling products, making antifouling paint a potential alternative option to manual removal. Consequently, the viability of using these newly developed products as a replacement for the manual cleaning of exclusion cages was experimentally investigated. There were six treatments tested, comprising three with settlement tiles in experimental cages coated with antifouling paint, two with settlement tiles in unpainted experimental cages, and one cage-free suspended tile. The three antifouling treatments comprised two reduced-copper paints (21% Cu2O and 40% Cu2O) and one copper-free, Econea (™)-based paint (labeled "ecofriendly"). Antifouling paints were assessed for performance of preventing fouling of the cages and whether they elicited local effects on settlement tiles contained within them. All three paints performed well to reduce fouling of the cages during the initial six weeks of the experiment, but the efficacy of "ecofriendly" paint began to decrease during an extended deployment that lasted 14 weeks. The macro-community composition, biomass, and percent cover of settled organism on tiles within cages treated with copper-based paints (21% and 40% concentrations) were indistinguishable from tiles within the manually scrubbed cages. In contrast, settlement to tiles from the "ecofriendly" treatment was different in composition of macro-community and lower in biomass, suggesting the presence of local effects and therefore rendering it unsuitable for use in settlement experiments. The results of this study suggest that reduced-copper paints have the potential to serve as an alternative to manual maintenance, which may be useful for deployments in locations that are

  20. Effects of five antifouling biocides on settlement and growth of zoospores from the marine macroalga Ulva lactuca L.

    PubMed

    Wendt, Ida; Arrhenius, Åsa; Backhaus, Thomas; Hilvarsson, Annelie; Holm, Kristina; Langford, Katherine; Tunovic, Timur; Blanck, Hans

    2013-10-01

    Antifouling biocides are found in the marine ecosystem were they can affect non-target organisms. In this study the effects of five antifouling biocides on the settlement and growth of Ulva lactuca zoospores were investigated. The biocides investigated were copper (Cu(2+)), 4,5-dichloro-2-n-octyl-3(2H)-isothiazolone (DCOIT), triphenylborane pyridine (TPBP), tolylfluanid and medetomidine. Full concentration-response curves where determined for each compound. EC50 values were determined for copper, DCOIT, TPBP and tolylfluanid, all of which inhibited settlement and growth in a concentration dependent manner with the following toxicity ranking; tolylfluanid (EC50 80 nmol L(-1)) ~ DCOIT (EC50 83 nmol L(-1)) > TPBP (EC50 400 nmol L(-1)) > Cu(2+) (EC50 2,000 nmol L(-1)). Medetomidine inhibited settlement and growth only at the extreme concentration of 100,000 nmol L(-1) (93% effect). The low toxicity is possibly a consequence of a lack of receptors that medetomidine can bind to in the U. lactuca zoospores. PMID:23846394

  1. Aqueous-Based Fabrication of Low-VOC Nanostructured Block Copolymer Films as Potential Marine Antifouling Coatings.

    PubMed

    Kim, Kris S; Gunari, Nikhil; MacNeil, Drew; Finlay, John; Callow, Maureen; Callow, James; Walker, Gilbert C

    2016-08-10

    The ability to fabricate nanostructured films by exploiting the phenomenon of microphase separation has made block copolymers an invaluable tool for a wide array of coating applications. Standard approaches to engineering nanodomains commonly involve the application of organic solvents, either through dissolution or annealing protocols, resulting in the release of volatile organic compounds (VOCs). In this paper, an aqueous-based method of fabricating low-VOC nanostructured block copolymer films is presented. The reported procedure allows for the phase transfer of water insoluble triblock copolymer, poly(styrene-block-2 vinylpyridine-block-ethylene oxide) (PS-b-P2VP-b-PEO), from a water immiscible phase to an aqueous environment with the assistance of a diblock copolymeric phase transfer agent, poly(styrene-block-ethylene oxide) (PS-b-PEO). Phase transfer into the aqueous phase results in self-assembly of PS-b-P2VP-b-PEO into core-shell-corona micelles, which are characterized by dynamic light scattering techniques. The films that result from coating the micellar solution onto Si/SiO2 surfaces exhibit nanoscale features that disrupt the ability of a model foulant, a zoospore of Ulva linza, to settle. The multilayered architecture consists of a pH-responsive P2VP-"shell" which can be stimulated to control the size of these features. The ability of these nanostructured thin films to resist protein adsorption and serve as potential marine antifouling coatings is supported through atomic force microscopy (AFM) and analysis of the settlement of Ulva linza zoospore. Field trials of the surfaces in a natural environment show the inhibition of macrofoulants for 1 month. PMID:27388921

  2. Acute toxicities of five commonly used antifouling booster biocides to selected subtropical and cosmopolitan marine species.

    PubMed

    Bao, Vivien W W; Leung, Kenneth M Y; Qiu, Jian-Wen; Lam, Michael H W

    2011-05-01

    Since 1990s, various booster biocides have been increasingly used as substitutes of organotins. However, knowledge about their toxicities on tropical/sub-tropical marine species is significantly lacking. This study comprehensively investigated the acute toxicities of copper, tributyltin (TBT), and five commonly used booster biocides including Irgarol, diuron, zinc pyrithione (ZnPT), copper pyrithione (CuPT) and chlorothalonil on the growth or survival of 12 marine species in which eight of them are native species of subtropical Hong Kong. We found that Irgarol was more toxic than TBT on the growth of autotrophic species. The toxicity of CuPT was comparable to that of TBT on almost all test species, while it showed higher toxicity than TBT on medaka fish larvae. As the usage of these biocides is expected to further increase worldwide, accurate assessments of their ecological risks are required for better informed decision on their management. This study provided useful datasets for such purposes. PMID:21420693

  3. A comparison of toxicant-induced succession for five antifouling compounds on marine periphyton in SWIFT microcosms.

    PubMed

    Ohlauson, Cecilia; Blanck, Hans

    2014-01-01

    Five antifouling biocides, chlorothalonile, dichlofluanide, medetomidine, tolylfluanide, and zinc pyrithione, were evaluated regarding their effect on the composition of the periphyton community and the subsequent toxicant-induced succession (TIS). The periphyton communities were exposed in a semi-static setting for 96 h using a SWIFT microcosm. As a measure of community composition, pigment profiles from the exposed communities were used as effect indicators and compared with unexposed parts of the same community using the Bray-Curtis dissimilarity index. Chlorothalonile caused changes in the community starting at 85 μg l(-1) while dichlofluanide had no effect even at the highest concentrations used, 810 μg l(-1). The related substance tolylfluanide only affected the community composition at 2700 μg l(-1). Medetomidine had a different response curve with a small effect on the community composition at 0.8 μg l(-1) which then disappeared only to reappear at 240 μg l(-1). Zinc pyrithione had the largest effect on the periphyton community with changes starting at 10 μg l(-1) and no detectable pigments at 100 μg l(-1). The changes in the community composition for the five substances were also compared using multidimensional scaling. When all substances were analyzed and plotted together, chlorothalonile, dichlofluanide, medetomidine, and tolylfluanide showed surprisingly similar effects compared to zinc pyrithione that gave very different TIS. However, when only chlorothalonile, dichlofluanide, and tolylfluanide were plotted together, clear differences in TIS between the three toxicants were revealed. Dichlofluanide only induced small effects, while concentration-dependent TIS trajectories for chlorothalonile and tolylfluanide took off in opposite directions indicating very different responses of the periphyton communities. This study demonstrates that substances with a similar chemical structure and mechanisms of action can have different effects

  4. Forecasting models to quantify three anthropogenic stresses on coral reefs from marine recreation: anchor damage, diver contact and copper emission from antifouling paint.

    PubMed

    Saphier, Adam D; Hoffmann, Tegan C

    2005-01-01

    This research focuses on damage to coral reefs from three anthropogenic stresses: the dropping of anchors and their chains, human contact, and emission of copper from antifouling paints. Forecasting models are described that quantify degradation in terms of percentage of coral cover damaged/year or increasing levels of water toxicity/year. The models utilize a Monte Carlo simulation that applies a range of values or a probability distribution to each of the numerous uncertain variables. This model has the flexibility to adapt, and become more accurate, when users input assumptions specific to their diving sites. Given our specific assumptions for a frequently visited site, anchors and their chains forecast a distribution of coral reef cover damage with a mean of 7.11%+/-4.77%, diver contact forecast a distribution of coral reef cover damage with a mean of 0.67%+/-0.38%, and antifouling paint forecast a distribution of copper level increase in the water with a mean of 0.037+/-0.014ppb. The results support recommendations for the implementation and sustained use of several specific marine recreation practices.

  5. Studies on nano-additive for the substitution of hazardous chemical substances in antifouling coatings for the protection of ship hulls.

    PubMed

    Zhao, Xiaodong; Fan, Weijie; Duan, Jizhou; Hou, Baorong

    2014-07-01

    Adhesion and growth of biofouling organisms have severe influence on the reliability, service life and environmental adaptability of marine ships. Based on the bactericidal capacity of cuprous oxide and photochemical effect of nano-additive, environment-friendly and efficient marine antifouling paints were prepared in this study. The evaluation of the antifouling paints was carried out by the laboratory method using bacteria and phytoplanktonic microorganisms as target organisms, as well as measurements with panels in shallow submergence in natural seawater. Results showed good agreement of all the tests, indicating the remarkable antifouling performance of the paints. To our knowledge, this was one of the first systematic studies on effects of nano-additive for the substitution of hazardous chemical substances in antifouling coatings for the protection of ship hulls by measurements on bacterial inhibition, algal adhesion and growth of large organisms. PMID:25016277

  6. Studies on nano-additive for the substitution of hazardous chemical substances in antifouling coatings for the protection of ship hulls.

    PubMed

    Zhao, Xiaodong; Fan, Weijie; Duan, Jizhou; Hou, Baorong

    2014-07-01

    Adhesion and growth of biofouling organisms have severe influence on the reliability, service life and environmental adaptability of marine ships. Based on the bactericidal capacity of cuprous oxide and photochemical effect of nano-additive, environment-friendly and efficient marine antifouling paints were prepared in this study. The evaluation of the antifouling paints was carried out by the laboratory method using bacteria and phytoplanktonic microorganisms as target organisms, as well as measurements with panels in shallow submergence in natural seawater. Results showed good agreement of all the tests, indicating the remarkable antifouling performance of the paints. To our knowledge, this was one of the first systematic studies on effects of nano-additive for the substitution of hazardous chemical substances in antifouling coatings for the protection of ship hulls by measurements on bacterial inhibition, algal adhesion and growth of large organisms.

  7. Transport and antifouling properties of papain-based antifouling coatings

    NASA Astrophysics Data System (ADS)

    Peres, Rafael S.; Armelin, Elaine; Moreno-Martínez, Juan A.; Alemán, Carlos; Ferreira, Carlos A.

    2015-06-01

    The aim of this work is to study the antifouling performance and water uptake behaviour of coatings formulated with papain (an environmentally friendly pigment). Antifouling coatings have been formulated using rosin (natural resin) as matrix and papain adsorbed in activated carbon as pigment. Electrochemical impedance spectroscopy (EIS) measurements were used to evaluate the behaviour of the formulated coatings in the marine environment and to calculate the apparent water coefficient of diffusion (D). FTIR and XPS analyses confirm the presence of papain adsorbed inside the activated carbon pores and the release of papain in water. Immersion tests in the Mediterranean Sea were carried out for 7 months to verify the degree of biofouling of the tested coatings. These field assays clearly indicate the excellent behaviour of papain-based antifouling coatings; the results being similar to those achieved using a commercial coating. Additionally, the EIS technique is shown to be a great tool to predict the coating diffusivity of antifouling coatings before immersion tests. Furthermore, the use of biodegradable papain as a nature-friendly antifouling agent can eliminate the negative environmental impact caused by metals and chemical biocides typically used in current commercial formulations.

  8. Bubbles versus biofilms: a novel method for the removal of marine biofilms attached on antifouling coatings using an ultrasonically activated water stream

    NASA Astrophysics Data System (ADS)

    Salta, M.; Goodes, L. R.; Maas, B. J.; Dennington, S. P.; Secker, T. J.; Leighton, T. G.

    2016-09-01

    The accumulation of marine organisms on a range of manmade surfaces, termed biofouling, has proven to be the Achilles’ heel of the shipping industry. Current antifouling coatings, such as foul release coatings (FRCs), only partially inhibit biofouling, since biofilms remain a major issue. Mechanical ship hull cleaning is commonly employed to remove biofilms, but these methods tend to damage the antifouling coating and often do not result in full removal. Here, we report the effectiveness of biofilm removal from FRCs through a novel cleaning device that uses an ultrasonically activated stream (UAS). In this device, ultrasound enhances the cleaning properties of microbubbles in a freely flowing stream of water. The UAS was applied on two types of commercial FRCs which were covered with biofilm growth following twelve days immersion in the marine environment. Biofilm removal was quantified in terms of reduction in biovolume and surface roughness, both measured using an optical profilometer, which were then compared with similar measurements after cleaning with a non-ultrasonically activated water stream. It was found that the UAS significantly improves the cleaning capabilities of a water flow, up to the point where no detectable biofilm remained on the coating surfaces. Overall biofilm surface coverage was significantly lower on the FRC coatings cleaned with the UAS system when compared to the coatings cleaned with water or not cleaned at all. When biofilm biomass removal was investigated, the UAS system resulted in significantly lower biovolume values even when compared to the water cleaning treatment with biovolume values close to zero. Remarkably, the surface roughness of the coatings after cleaning with the UAS was found to be comparable to that of the blank, non-immersed coatings, illustrating that the UAS did not damage the coatings in the process. The data supporting this study are openly available from the University of Southampton repository at http

  9. Laboratory Experiences in Marine Biology, Student Edition.

    ERIC Educational Resources Information Center

    Raimist, Roger J.

    This manual contains instructions for laboratory exercises using marine organisms. For each exercise a problem is defined, materials are listed, possible ways to solve the problem are suggested, questions are asked to guide the student in interpreting data, and further reading is suggested. The exercises deal with the measurement of oxygen…

  10. ABC triblock surface active block copolymer with grafted ethoxylated fluoroalkyl amphiphilic side chains for marine antifouling/fouling-release applications.

    PubMed

    Weinman, Craig J; Finlay, John A; Park, Daewon; Paik, Marvin Y; Krishnan, Sitaraman; Sundaram, Harihara S; Dimitriou, Michael; Sohn, Karen E; Callow, Maureen E; Callow, James A; Handlin, Dale L; Willis, Carl L; Kramer, Edward J; Ober, Christopher K

    2009-10-20

    An amphiphilic triblock surface-active block copolymer (SABC) possessing ethoxylated fluoroalkyl side chains was synthesized through the chemical modification of a polystyrene-block-poly(ethylene-ran-butylene)-block-polyisoprene polymer precursor. Bilayer coatings on glass slides consisting of a thin layer of the amphiphilic SABC spray coated on a thick layer of a polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS) thermoplastic elastomer were prepared for biofouling assays with the green alga Ulva and the diatom Navicula. Dynamic water contact angle analysis and X-ray photoelectron spectroscopy (XPS) were used to characterize the surfaces. Additionally, the effect of the Young's modulus of the coating on the release properties of sporelings (young plants) of the green alga Ulva was examined through the use of two different SEBS thermoplastic elastomers possessing modulus values of an order of magnitude in difference. The amphiphilic SABC was found to reduce the settlement density of zoospores of Ulva as well as the strength of attachment of sporelings. The attachment strength of the sporelings was further reduced for the amphiphilic SABC on the "low"-modulus SEBS base layer. The weaker adhesion of diatoms, relative to a PDMS standard, further highlights the antifouling potential of this amphiphilic triblock hybrid copolymer.

  11. The performance of hybrid titania/silica-derived xerogels as active antifouling/fouling-release surfaces against the marine alga Ulva linza: in situ generation of hypohalous acids.

    PubMed

    Damon, Corey A; Gatley, Caitlyn M; Beres, Joshua J; Finlay, John A; Franco, Sofia C; Clare, Anthony S; Detty, Michael R

    2016-09-13

    Mixed titania/silica xerogels were prepared using titanium tetraisopropoxide (TTIP) and tetraethoxy orthosilicate (TEOS). Xerogel properties were modified by incorporating n-octyltriethoxysilane (C8). The xerogels catalyze the oxidation of bromide and chloride with hydrogen peroxide (H2O2) to produce hypohalous acids at pH 7 and pH 8. The antifouling/ fouling-release performance of a TTIP/C8/TEOS xerogel in the presence and absence of H2O2 was evaluated for the settlement of zoospores of the marine alga Ulva linza and for the removal of sporelings (young plants). In the absence of H2O2, differences in the settlement of zoospores and removal of sporelings were not significant relative to a titanium-free C8/TEOS xerogel. Addition of H2O2 gave a significant reduction in zoospore settlement and sporeling removal relative to the C8/TEOS xerogel and relative to peroxide-free conditions. The impact of TTIP on xerogel characteristics was evaluated by comprehensive contact angle analysis, scanning electron microscopy, and X-ray photoelectron spectroscopy. PMID:27458654

  12. Effects of antifouling booster biocide Irgarol 1051 on the structure of free living nematodes: a laboratory experiment.

    PubMed

    Hannachi, Amel; Elarbaoui, Soumaya; Khazri, Abdelhafidh; D'Agostino, Fabio; Sellami, Badreddine; Beyrem, Hamouda; Gambi, Cristina; Danovaro, Roberto; Mahmoudi, Ezzeddine

    2016-07-13

    A mesocosm experiment was conducted to evaluate the effects of Irgarol on nematode diversity, composition and trophic structure. Sediment samples were experimentally contaminated using four increasing Irgarol concentrations [I1 (11.5 ng g(-1)), I2 (35 ng g(-1)), I3 (105 ng g(-1)) and I4 (315 ng g(-1))] and compared to non-contaminated sediments (controls). Nematode diversity as the number of nematodes species (S) and species richness (d) was significantly lower in all Irgarol treatments than in the controls while the evenness (J') increased significantly in I4 treated mesocosms. The nematode species composition significantly changed following Irgarol concentrations. Paracomesoma dubiun and Terschellingia longicaudata appeared as "tolerant" species to the highest Irgarol concentration. Additionally, Chromadorina germanica and Microlaimus cyatholaimoides appeared as "opportunistic" species. In contrast, Daptonema normandicum seemed to be a "sensitive" species to Irgarol contamination. Irgarol modified also the nematode trophic structure where the relative abundance of deposit feeders decreased significantly in all the treatments compared to control mesocosms and optional predators decreased only in treated mesocosms with I3. Epigrowth feeders increased significantly in treated mesocosms with I3 and I4 and the microvores increased with I1 and decreased with I4. The relative abundance of ciliate consumers appeared unaffected by the presence of Irgarol contamination. Our results open new perspectives on the potential impact of antifouling booster biocide Irgarol 1051 on nematode biodiversity and functional diversity as trophic structures.

  13. Effects of antifouling booster biocide Irgarol 1051 on the structure of free living nematodes: a laboratory experiment.

    PubMed

    Hannachi, Amel; Elarbaoui, Soumaya; Khazri, Abdelhafidh; D'Agostino, Fabio; Sellami, Badreddine; Beyrem, Hamouda; Gambi, Cristina; Danovaro, Roberto; Mahmoudi, Ezzeddine

    2016-07-13

    A mesocosm experiment was conducted to evaluate the effects of Irgarol on nematode diversity, composition and trophic structure. Sediment samples were experimentally contaminated using four increasing Irgarol concentrations [I1 (11.5 ng g(-1)), I2 (35 ng g(-1)), I3 (105 ng g(-1)) and I4 (315 ng g(-1))] and compared to non-contaminated sediments (controls). Nematode diversity as the number of nematodes species (S) and species richness (d) was significantly lower in all Irgarol treatments than in the controls while the evenness (J') increased significantly in I4 treated mesocosms. The nematode species composition significantly changed following Irgarol concentrations. Paracomesoma dubiun and Terschellingia longicaudata appeared as "tolerant" species to the highest Irgarol concentration. Additionally, Chromadorina germanica and Microlaimus cyatholaimoides appeared as "opportunistic" species. In contrast, Daptonema normandicum seemed to be a "sensitive" species to Irgarol contamination. Irgarol modified also the nematode trophic structure where the relative abundance of deposit feeders decreased significantly in all the treatments compared to control mesocosms and optional predators decreased only in treated mesocosms with I3. Epigrowth feeders increased significantly in treated mesocosms with I3 and I4 and the microvores increased with I1 and decreased with I4. The relative abundance of ciliate consumers appeared unaffected by the presence of Irgarol contamination. Our results open new perspectives on the potential impact of antifouling booster biocide Irgarol 1051 on nematode biodiversity and functional diversity as trophic structures. PMID:27285609

  14. Laboratory assessment of the antifouling potential of a soluble-matrix paint laced with the natural compound polygodial.

    PubMed

    Cahill, Patrick Louis; Heasman, Kevin; Jeffs, Andrew; Kuhajek, Jeanne

    2013-09-01

    Polygodial is a potent and selective inhibitor of ascidian metamorphosis that shows promise for controlling fouling by ascidians in bivalve aquaculture. The current study examined the potency of, and associated effects of seawater exposure on, a rosin-based soluble-matrix paint laced with 0.08-160 ng polygodial g(-1) wet paint matrix. Paint-coated surfaces were soaked in seawater for 0, 2, 4 or 12 weeks prior to screening for antifouling activity using a bioassay based on the nuisance ascidian Ciona savignyi Herdman. Mortality was greater (mean 50% lethal concentration: 5 ± 2 ng g(-1); mean 75% lethal concentration: 17 ± 4 ng g(-1)) and metamorphosis was inhibited (mean 50% anti-metamorphic concentration: 2 ± 0.4 ng g(-1); mean 75% anti-metamorphic concentration: 15 ± 10 ng g(-1)) in C. savignyi larvae exposed to polygodial-laced soluble-matrix paints, relative to control paints without polygodial. Soaking in seawater prior to testing reduced the efficacy of the formulation up to nearly 12-fold, but even after soaking for 12 weeks paints laced with polygodial at 160 ng g(-1) wet paint matrix prevented ⩾90% of the larvae of C. savignyi from completing metamorphosis. The outcome of this experiment provides a positive first step in evaluating the suitability of polygodial-laced soluble-matrix paints for use in aquaculture.

  15. Antifouling properties of zinc oxide nanorod coatings.

    PubMed

    Al-Fori, Marwan; Dobretsov, Sergey; Myint, Myo Tay Zar; Dutta, Joydeep

    2014-01-01

    In laboratory experiments, the antifouling (AF) properties of zinc oxide (ZnO) nanorod coatings were investigated using the marine bacterium Acinetobacter sp. AZ4C, larvae of the bryozoan Bugula neritina and the microalga Tetraselmis sp. ZnO nanorod coatings were fabricated on microscope glass substrata by a simple hydrothermal technique using two different molar concentrations (5 and 10 mM) of zinc precursors. These coatings were tested for 5 h under artificial sunlight (1060 W m(-2) or 530 W m(-2)) and in the dark (no irradiation). In the presence of light, both the ZnO nanorod coatings significantly reduced the density of Acinetobacter sp. AZ4C and Tetraselmis sp. in comparison to the control (microscope glass substratum without a ZnO coating). High mortality and low settlement of B. neritina larvae was observed on ZnO nanorod coatings subjected to light irradiation. In darkness, neither mortality nor enhanced settlement of larvae was observed. Larvae of B. neritina were not affected by Zn(2+) ions. The AF effect of the ZnO nanorod coatings was thus attributed to the reactive oxygen species (ROS) produced by photocatalysis. It was concluded that ZnO nanorod coatings effectively prevented marine micro and macrofouling in static conditions.

  16. Antifouling properties of zinc oxide nanorod coatings.

    PubMed

    Al-Fori, Marwan; Dobretsov, Sergey; Myint, Myo Tay Zar; Dutta, Joydeep

    2014-01-01

    In laboratory experiments, the antifouling (AF) properties of zinc oxide (ZnO) nanorod coatings were investigated using the marine bacterium Acinetobacter sp. AZ4C, larvae of the bryozoan Bugula neritina and the microalga Tetraselmis sp. ZnO nanorod coatings were fabricated on microscope glass substrata by a simple hydrothermal technique using two different molar concentrations (5 and 10 mM) of zinc precursors. These coatings were tested for 5 h under artificial sunlight (1060 W m(-2) or 530 W m(-2)) and in the dark (no irradiation). In the presence of light, both the ZnO nanorod coatings significantly reduced the density of Acinetobacter sp. AZ4C and Tetraselmis sp. in comparison to the control (microscope glass substratum without a ZnO coating). High mortality and low settlement of B. neritina larvae was observed on ZnO nanorod coatings subjected to light irradiation. In darkness, neither mortality nor enhanced settlement of larvae was observed. Larvae of B. neritina were not affected by Zn(2+) ions. The AF effect of the ZnO nanorod coatings was thus attributed to the reactive oxygen species (ROS) produced by photocatalysis. It was concluded that ZnO nanorod coatings effectively prevented marine micro and macrofouling in static conditions. PMID:25115521

  17. The effects of a copper-based antifouling paint on mortality and enzymatic activity of a non-target marine organism.

    PubMed

    Katranitsas, A; Castritsi-Catharios, J; Persoone, G

    2003-11-01

    Antifouling paints are used on a wide range of underwater structures in order to protect them from the development of fouling organisms. The leaching of the toxic substances from the matrix of the paint causes toxic effects not only to the fouling organisms but also on other "non-target" biota. The present study addresses the impact of the antifouling paint Flexgard VI-II on brine shrimp nauplii selected as convenient test organisms. The surface to volume (S/V) concept developed by Persoone and Castritsi-Catharios (1989) was used to determine S/V-LC50s for the test biota exposed to PVC test panels of 400-1000 mm2 surface coated with the antifouling paint in test vessels containing 20 ml seawater. Total ATPase and Mg2+-ATPase were also analyzed for coated surface areas inducing less than 50% mortality in the brine shrimp nauplii. The calculated S/V-LC50 (24 h) was 24.6 mm2/ml, which shows the high toxic character of the antifouling paint. Decreased enzymatic activities were noted in the brine shrimp nauplii exposed to test panels of 50 and 100 mm2 in 20 ml seawater. The present study indicates that the "surface to volume" concept is an interesting methodology that can be applied with both lethal and sublethal effect criteria for the determination of toxic stress from leaches of painted surfaces. PMID:14607547

  18. Risks of using antifouling biocides in aquaculture.

    PubMed

    Guardiola, Francisco Antonio; Cuesta, Alberto; Meseguer, José; Esteban, Maria Angeles

    2012-01-01

    Biocides are chemical substances that can deter or kill the microorganisms responsible for biofouling. The rapid expansion of the aquaculture industry is having a significant impact on the marine ecosystems. As the industry expands, it requires the use of more drugs, disinfectants and antifoulant compounds (biocides) to eliminate the microorganisms in the aquaculture facilities. The use of biocides in the aquatic environment, however, has proved to be harmful as it has toxic effects on the marine environment. Organic booster biocides were recently introduced as alternatives to the organotin compounds found in antifouling products after restrictions were imposed on the use of tributyltin (TBT). The replacement products are generally based on copper metal oxides and organic biocides. The biocides that are most commonly used in antifouling paints include chlorothalonil, dichlofluanid, DCOIT (4,5-dichloro-2-n-octyl-4-isothiazolin-3-one, Sea-nine 211(®)), Diuron, Irgarol 1051, TCMS pyridine (2,3,3,6-tetrachloro-4-methylsulfonyl pyridine), zinc pyrithione and Zineb. There are two types of risks associated with the use of biocides in aquaculture: (i) predators and humans may ingest the fish and shellfish that have accumulated in these contaminants and (ii) the development of antibiotic resistance in bacteria. This paper provides an overview of the effects of antifouling (AF) biocides on aquatic organisms. It also provides some insights into the effects and risks of these compounds on non-target organisms. PMID:22408407

  19. Risks of Using Antifouling Biocides in Aquaculture

    PubMed Central

    Guardiola, Francisco Antonio; Cuesta, Alberto; Meseguer, José; Esteban, Maria Angeles

    2012-01-01

    Biocides are chemical substances that can deter or kill the microorganisms responsible for biofouling. The rapid expansion of the aquaculture industry is having a significant impact on the marine ecosystems. As the industry expands, it requires the use of more drugs, disinfectants and antifoulant compounds (biocides) to eliminate the microorganisms in the aquaculture facilities. The use of biocides in the aquatic environment, however, has proved to be harmful as it has toxic effects on the marine environment. Organic booster biocides were recently introduced as alternatives to the organotin compounds found in antifouling products after restrictions were imposed on the use of tributyltin (TBT). The replacement products are generally based on copper metal oxides and organic biocides. The biocides that are most commonly used in antifouling paints include chlorothalonil, dichlofluanid, DCOIT (4,5-dichloro-2-n-octyl-4-isothiazolin-3-one, Sea-nine 211®), Diuron, Irgarol 1051, TCMS pyridine (2,3,3,6-tetrachloro-4-methylsulfonyl pyridine), zinc pyrithione and Zineb. There are two types of risks associated with the use of biocides in aquaculture: (i) predators and humans may ingest the fish and shellfish that have accumulated in these contaminants and (ii) the development of antibiotic resistance in bacteria. This paper provides an overview of the effects of antifouling (AF) biocides on aquatic organisms. It also provides some insights into the effects and risks of these compounds on non-target organisms. PMID:22408407

  20. Risks of using antifouling biocides in aquaculture.

    PubMed

    Guardiola, Francisco Antonio; Cuesta, Alberto; Meseguer, José; Esteban, Maria Angeles

    2012-01-01

    Biocides are chemical substances that can deter or kill the microorganisms responsible for biofouling. The rapid expansion of the aquaculture industry is having a significant impact on the marine ecosystems. As the industry expands, it requires the use of more drugs, disinfectants and antifoulant compounds (biocides) to eliminate the microorganisms in the aquaculture facilities. The use of biocides in the aquatic environment, however, has proved to be harmful as it has toxic effects on the marine environment. Organic booster biocides were recently introduced as alternatives to the organotin compounds found in antifouling products after restrictions were imposed on the use of tributyltin (TBT). The replacement products are generally based on copper metal oxides and organic biocides. The biocides that are most commonly used in antifouling paints include chlorothalonil, dichlofluanid, DCOIT (4,5-dichloro-2-n-octyl-4-isothiazolin-3-one, Sea-nine 211(®)), Diuron, Irgarol 1051, TCMS pyridine (2,3,3,6-tetrachloro-4-methylsulfonyl pyridine), zinc pyrithione and Zineb. There are two types of risks associated with the use of biocides in aquaculture: (i) predators and humans may ingest the fish and shellfish that have accumulated in these contaminants and (ii) the development of antibiotic resistance in bacteria. This paper provides an overview of the effects of antifouling (AF) biocides on aquatic organisms. It also provides some insights into the effects and risks of these compounds on non-target organisms.

  1. PROJECT SUCCESS: Marine Science. (Introductory Packet, Basic Marine Science Laboratory Techniques, Oceanographic Instruments, Individual Projects, Bibliography).

    ERIC Educational Resources Information Center

    Demaray, Bryan

    Five packets comprise the marine science component of an enrichment program for gifted elementary students. Considered in the introductory section are identification (pre/post measure) procedures. Remaining packets address the following topics (subtopics in parentheses): basic marine science laboratory techniques (microscope techniques and metric…

  2. Keys to the Common Genera of Marine Plants Taken Aboard the Orange County Floating Marine Laboratory.

    ERIC Educational Resources Information Center

    Williams, H. R.

    Provided is a dichotomous key to the common genera of marine algae and angiosperms which are taken aboard the Orange County Floating Marine Laboratory. It is designed primarily for use by junior and senior high school students. Drawings of representative members of the various genera are included. This work was prepared under an ESEA Title III…

  3. Quantitative exploration of the contribution of settlement, growth, dispersal and grazing to the accumulation of natural marine biofilms on antifouling and fouling-release coatings

    PubMed Central

    Van Mooy, Benjamin A. S.; Hmelo, Laura R.; Fredricks, Helen F.; Ossolinski, Justin E.; Pedler, Byron E.; Bogorff, Daniel J.; Smith, Peter J.S.

    2014-01-01

    The accumulation of microbial biofilms on ships' hulls negatively affects ships' performance and efficiency while also moderating the establishment of even more detrimental hard-fouling communities. However, there is little quantitative information on how the accumulation rate of microbial biofilms is impacted by the balance of the rates of cell settlement, in situ production (ie growth), dispersal to surrounding waters and mortality induced by grazers. These rates were quantified on test panels coated with copper-based antifouling or polymer-based fouling-release coatings by using phospholipids as molecular proxies for microbial biomass. The results confirmed the accepted modes of efficacy of these two types of coatings. In a more extensive set of experiments with only the fouling-release coatings, it was found that seasonally averaged cellular production rates were 1.5 ± 0.5 times greater than settlement and the dispersal rates were 2.7 ± 0.8 greater than grazing. The results of this study quantitatively describe the dynamic balance of processes leading to microbial biofilm accumulation on coatings designed for ships' hulls. PMID:24417212

  4. Incorporation of capsaicin in silicone coatings for enhanced antifouling performance

    NASA Astrophysics Data System (ADS)

    Reddy Jaggari, Karunakar; Zhang Newby, Bi-Min

    2002-03-01

    Successful use of capsaicin as insect and animal repellant propelled us to use it as a possible antifouling agent. Its non-toxic, non-biocidal, non-leaching properties make it a viable alternative to organotin compounds. In order to optimize the anti-fouling performance of the coating, silicone, the most effective foul-release marine coating, was chosen as the carrier. We have incorporated capsaicin into silicone coating, by both bulk entrapment and surface immobilization. Contact angle measurements on capsaicin-incorporated silicone exhibited an increase in wettability, owing to the presence of capsaicin. FTIR study further confirmed the incorporation of capsaicin in silicone. Bacterial attachment studies were conducted using lake Erie water. While bacteria liberally inhabited the control coating, their presence on the capsaicin-incorporated coating was found to be minimal. These preliminary studies indicate that capsaicin incorporated silicone could be a viable environment friendly alternative to currently used antifouling coatings.

  5. Design of a Laboratory-scale Marine Hydrokinetic device

    NASA Astrophysics Data System (ADS)

    Markovic, Uros; Beninati, Maria; Krane, Michael

    2015-11-01

    This study focused on the design of a small-scale marine hydrokinetic turbine, centered on a precision brake to facilitate rotational speed control, torque and power measurement. Generators of size and power capacity suitable for laboratory-scale experiments generally operate at vanishingly small efficiency, making accurate power measurements difficult. A small magnetic particle brake was attached to the shaft of a two-bladed model marine turbine (0.1 m rotor diameter). Preliminary testing of the device was performed to calibrate torque measurement by the magnetic brake. Further testing was conducted in the hydraulic flume facility (9.8 m long, 1.2 m wide and 0.4 m deep) at Bucknell University, to measure turbine torque and power to establish the range of rotational speed control.

  6. Laboratory Experiences in Marine Biology for Upper Elementary and Secondary School Grades, Teachers Edition.

    ERIC Educational Resources Information Center

    Raimist, Roger J.

    Designed to assist the teacher who wishes to use marine organisms for biological laboratory investigations, this manual includes general information on maintaining marine aquaria and collecting marine organisms as well as five tested laboratory exercises. The exercises deal with the measurement of oxygen consumption (giving techniques for…

  7. Antifouling potentials of eight deep-sea-derived fungi from the South China Sea.

    PubMed

    Zhang, Xiao-Yong; Xu, Xin-Ya; Peng, Jiang; Ma, Chun-Feng; Nong, Xu-Hua; Bao, Jie; Zhang, Guang-Zhao; Qi, Shu-Hua

    2014-04-01

    Marine-derived microbial secondary metabolites are promising potential sources of nontoxic antifouling agents. The search for environmentally friendly and low-toxic antifouling components guided us to investigate the antifouling potentials of eight novel fungal isolates from deep-sea sediments of the South China Sea. Sixteen crude ethyl acetate extracts of the eight fungal isolates showed distinct antibacterial activity against three marine bacteria (Loktanella hongkongensis UST950701-009, Micrococcus luteus UST950701-006 and Pseudoalteromonas piscida UST010620-005), or significant antilarval activity against larval settlement of bryozoan Bugula neritina. Furthermore, the extract of Aspergillus westerdijkiae DFFSCS013 displayed strong antifouling activity in a field trial lasting 4 months. By further bioassay-guided isolation, five antifouling alkaloids including brevianamide F, circumdatin F and L, notoamide C, and 5-chlorosclerotiamide were isolated from the extract of A. westerdijkiae DFFSCS013. This is the first report about the antifouling potentials of metabolites of the deep-sea-derived fungi from the South China Sea, and the first stage towards the development of non- or low-toxic antifouling agents from deep-sea-derived fungi.

  8. Antifouling potentials of eight deep-sea-derived fungi from the South China Sea.

    PubMed

    Zhang, Xiao-Yong; Xu, Xin-Ya; Peng, Jiang; Ma, Chun-Feng; Nong, Xu-Hua; Bao, Jie; Zhang, Guang-Zhao; Qi, Shu-Hua

    2014-04-01

    Marine-derived microbial secondary metabolites are promising potential sources of nontoxic antifouling agents. The search for environmentally friendly and low-toxic antifouling components guided us to investigate the antifouling potentials of eight novel fungal isolates from deep-sea sediments of the South China Sea. Sixteen crude ethyl acetate extracts of the eight fungal isolates showed distinct antibacterial activity against three marine bacteria (Loktanella hongkongensis UST950701-009, Micrococcus luteus UST950701-006 and Pseudoalteromonas piscida UST010620-005), or significant antilarval activity against larval settlement of bryozoan Bugula neritina. Furthermore, the extract of Aspergillus westerdijkiae DFFSCS013 displayed strong antifouling activity in a field trial lasting 4 months. By further bioassay-guided isolation, five antifouling alkaloids including brevianamide F, circumdatin F and L, notoamide C, and 5-chlorosclerotiamide were isolated from the extract of A. westerdijkiae DFFSCS013. This is the first report about the antifouling potentials of metabolites of the deep-sea-derived fungi from the South China Sea, and the first stage towards the development of non- or low-toxic antifouling agents from deep-sea-derived fungi. PMID:24532297

  9. Risk assessment of marine environments from ballast water discharges with laboratory-scale hydroxyl radicals treatment in Tianjin Harbor, China.

    PubMed

    Zhang, Nahui; Zhang, Yubo; Bai, Mindong; Zhang, Zhitao; Chen, Cao; Meng, Xiangying

    2014-12-01

    For the majority of ballast water treatment system (BWTS) that employ active substances (e.g., oxidative compounds), relevant chemicals (RCs) formation is an issue owing to their potential adverse effects on aquatic organisms. Accordingly, BWTS must be approved by the International Maritime Organization (IMO), and the approval procedure requires environmental risk assessment. The most commonly employed harbor used to calculate predicted environmental concentrations (PECs) for RCs in treated ballast water is the GESAMP-BWWG (Group of Experts on Scientific Aspects of Marine Environmental Protection-Ballast Water Working Group) model harbor. However, there is very little assessment data available regarding the associated environmental impacts in ports and harbors of China. Therefore, in this study the concentration of fifteen RCs from the existing laboratory-scale BWTS using hydroxyl radicals was obtained and input into the MAMPEC (Marine Antifoulant Model to Predict Environmental Concentrations) model to compute PECs in Tianjin Harbor, China. The potential risks to the aquatic environment posed by treated ballast water in Tianjin Harbor were further assessed based on the calculated ratio of PECs and predicted no effect concentrations (PNECs). Only monochloroacetic acid and dichloroacetic acid were found to have potential risks, and the ratios of PECs and PNECs to the other measured RCs were less than 1, indicating that the environmental risk posed by treated ballast water discharged into Tianjin Harbor is of little concern. The concentration of total residual oxidant recommended by the IMO (<0.2 mg/L) in treated ballast water at discharge was found to be at levels that may pose a risk to the aquatic environment in Tianjin Harbor.

  10. Oscar Marin and the Creation of a Cognitive Neuropsychology Laboratory.

    PubMed

    Posner, Michael I

    2015-09-01

    During the 1980s, the Cognitive Neuropsychology Laboratory at Good Samaritan Hospital, Portland, Oregon, made important strides in the study of brain injury. Created and headed by Oscar Marin and the author, in affiliation with the University of Oregon, the lab brought together students, fellows, and visiting experts in neurology, psychology, psychiatry, neuropsychology, neurobiology, neurophysiology, and computation. Their patient-focused collaborations produced groundbreaking research in language and its disorders, bradyphrenia, neglect, cerebellar function and impairment, and the psychology of music. The lab hosted the meeting that they documented in the influential 1985 book Attention and Performance XI: Mechanisms of Attention. The lab's members have gone on to lead distinguished careers and continue making major contributions to cognitive neuroscience. PMID:26413738

  11. Oscar Marin and the Creation of a Cognitive Neuropsychology Laboratory.

    PubMed

    Posner, Michael I

    2015-09-01

    During the 1980s, the Cognitive Neuropsychology Laboratory at Good Samaritan Hospital, Portland, Oregon, made important strides in the study of brain injury. Created and headed by Oscar Marin and the author, in affiliation with the University of Oregon, the lab brought together students, fellows, and visiting experts in neurology, psychology, psychiatry, neuropsychology, neurobiology, neurophysiology, and computation. Their patient-focused collaborations produced groundbreaking research in language and its disorders, bradyphrenia, neglect, cerebellar function and impairment, and the psychology of music. The lab hosted the meeting that they documented in the influential 1985 book Attention and Performance XI: Mechanisms of Attention. The lab's members have gone on to lead distinguished careers and continue making major contributions to cognitive neuroscience.

  12. Antifouling and antibacterial compounds from the gorgonians Subergorgia suberosa and Scripearia gracillis.

    PubMed

    Qi, S H; Zhang, S; Yang, L H; Qian, P Y

    2008-01-20

    In this study, we investigated the potential antilarval and antibacterial activity of secondary metabolites of the gorgonians Subergorgia suberosa and Scripearia gracillis from the South China Sea. Fresh specimens of these two gorgonian corals were collected from a shallow reef in Sanya Bay of Hainan Island and extracted with different solvents. Antilarval activity of the chemical extracts and pure compounds was evaluated in settlement inhibition assays with laboratory-reared Balanus amphitrite and Bugula neritina larvae, while antibacterial activity was assessed with disc diffusion bioassay on growth inhibition of 15 marine bacterial species. Using bioassay-guided procedures, we purified and identified nine compounds. The most potent metabolites produced by these gorgonian corals were subergorgic acid and pregn-4-ene-3, 20-dione extracted from S. suberosa. Our results show that the gorgonian coral S. suberosa and S. gracillis can produce potent anti-fouling compounds that deserve further exploration.

  13. Challenges for the Development of New Non-Toxic Antifouling Solutions

    PubMed Central

    Maréchal, Jean-Philippe; Hellio, Claire

    2009-01-01

    Marine biofouling is of major economic concern to all marine industries. The shipping trade is particularly alert to the development of new antifouling (AF) strategies, especially green AF paint as international regulations regarding the environmental impact of the compounds actually incorporated into the formulations are becoming more and more strict. It is also recognised that vessels play an extensive role in invasive species propagation as ballast waters transport potentially threatening larvae. It is then crucial to develop new AF solutions combining advances in marine chemistry and topography, in addition to a knowledge of marine biofoulers, with respect to the marine environment. This review presents the recent research progress made in the field of new non-toxic AF solutions (new microtexturing of surfaces, foul-release coatings, and with a special emphasis on marine natural antifoulants) as well as the perspectives for future research directions. PMID:20087457

  14. Settling velocity of marine microplastic particles: laboratory tests

    NASA Astrophysics Data System (ADS)

    Isachenko, Igor; Khatmullina, Lilia; Chubarenko, Irina; Stepanova, Natalia

    2016-04-01

    An assessment of the settling velocity of different classes of microplastic particles (< 5 mm) is crucial for the prediction of their transport and fate. The Reynolds numbers for the settling microplastic particles is usually outside the Stokes range (Re << 1), but still far from fully developed turbulent flow (Re >105). Even for such transitional regime, the settling velocity of the particles that could be treated as more or less smooth spheres can be predicted with high accuracy by relationships available in publications. This is not the case for the non-spherical particles like fibres or flakes. There are quite a large number of quasi-theoretical or semi-empirical approaches that take into account the shape and roughness of the particles, usually in the applications to transport of natural sediments. Some engineering formulas for the settling velocity are also developed which have simpler structure along with high degree of accuracy on the set of experimental data. For marine microplastic particles, the absence of relationship between the settling velocity and the properties of the particle requires testing on the samples of marine microplastics. Besides small fragments of rigid plastic (granules, microbeads), there are also fibres and thin plastic sheets (flakes) with some degree of flexibility. The applicability of available formulae to thin and/or flexible plastic particles again requires verification by experiments. The set of laboratory experiments on settling of microplastic particles of various shapes and excess densities in homogeneous water is reported. The particles were collected in water column, bottom sediments and on the beaches of the South-Eastern Baltic. The experiments demonstrate not just different regimes of motion but different manner of the sinking of spheres, flakes and fibres. The very definition of the "settling velocity" has a specific meaning for every kind of a particle shape. The results of test measurements are compared with

  15. 33 CFR 334.150 - Severn River at Annapolis, Md.; experimental test area, U.S. Navy Marine Engineering Laboratory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....; experimental test area, U.S. Navy Marine Engineering Laboratory. 334.150 Section 334.150 Navigation and... Marine Engineering Laboratory. (a) The restricted area. The waters of Severn River shoreward of a line beginning at the southeasternmost corner of the U.S. Navy Marine Engineering Laboratory sea wall and...

  16. 33 CFR 334.150 - Severn River at Annapolis, Md.; experimental test area, U.S. Navy Marine Engineering Laboratory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....; experimental test area, U.S. Navy Marine Engineering Laboratory. 334.150 Section 334.150 Navigation and... Marine Engineering Laboratory. (a) The restricted area. The waters of Severn River shoreward of a line beginning at the southeasternmost corner of the U.S. Navy Marine Engineering Laboratory sea wall and...

  17. 33 CFR 334.150 - Severn River at Annapolis, Md.; experimental test area, U.S. Navy Marine Engineering Laboratory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....; experimental test area, U.S. Navy Marine Engineering Laboratory. 334.150 Section 334.150 Navigation and... Marine Engineering Laboratory. (a) The restricted area. The waters of Severn River shoreward of a line beginning at the southeasternmost corner of the U.S. Navy Marine Engineering Laboratory sea wall and...

  18. 33 CFR 334.150 - Severn River at Annapolis, Md.; experimental test area, U.S. Navy Marine Engineering Laboratory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....; experimental test area, U.S. Navy Marine Engineering Laboratory. 334.150 Section 334.150 Navigation and... Marine Engineering Laboratory. (a) The restricted area. The waters of Severn River shoreward of a line beginning at the southeasternmost corner of the U.S. Navy Marine Engineering Laboratory sea wall and...

  19. Antifouling activity of macroalgal extracts on Fragilaria pinnata (Bacillariophyceae): a comparison with Diuron.

    PubMed

    Silkina, Alla; Bazes, Alexandra; Vouvé, Florence; Le Tilly, Véronique; Douzenel, Philippe; Mouget, Jean-Luc; Bourgougnon, Nathalie

    2009-10-01

    The tributyltin-based products and organic biocides which are incorporated into antifouling paints have had a negative impact on the marine environment, and the ban on tributyltin-based antifouling products has urged the industry to find substitutes to prevent the development of fouling on ship hulls. Natural antifouling agents could be isolated from marine resources, providing an alternative option for the industry. The effects of different marine seaweed extracts from Sargassum muticum and Ceramium botryocarpum on the growth, pigment content and photosynthetic apparatus of the marine diatom Fragilaria pinnata were compared with those of Diuron, a biocide widely used in antifouling paints. The addition of the macroalgal extracts in the culture medium resulted in an inhibition of the growth of F. pinnata, but this inhibition was lower than that obtained with Diuron. After transfer to a biocide-free medium, F. pinnata cells previously exposed to the macroalgal extracts exhibited normal growth, in contrast to Diuron-treated cells, which died, demonstrating that the effects of the natural antifouling agents were reversible. Macroalgal extracts and Diuron-induced modifications in F. pinnata cellular pigment content. Chlorophyll a, fucoxanthin, and the xanthophyll pool, diadinoxanthin and diatoxanthin, were the most affected. Changes in the structure and function of the photosynthetic apparatus were studied by microspectrofluorimetry, and provided a comprehensive evaluation of the inhibition of the diatom Photosystem II (PSII) by the biocides. This study confirms that natural extracts from the macroalgae studied have the potential to be used as a substitute to commercial biocides in antifouling paints. PMID:19726092

  20. Antifouling activity of macroalgal extracts on Fragilaria pinnata (Bacillariophyceae): a comparison with Diuron.

    PubMed

    Silkina, Alla; Bazes, Alexandra; Vouvé, Florence; Le Tilly, Véronique; Douzenel, Philippe; Mouget, Jean-Luc; Bourgougnon, Nathalie

    2009-10-01

    The tributyltin-based products and organic biocides which are incorporated into antifouling paints have had a negative impact on the marine environment, and the ban on tributyltin-based antifouling products has urged the industry to find substitutes to prevent the development of fouling on ship hulls. Natural antifouling agents could be isolated from marine resources, providing an alternative option for the industry. The effects of different marine seaweed extracts from Sargassum muticum and Ceramium botryocarpum on the growth, pigment content and photosynthetic apparatus of the marine diatom Fragilaria pinnata were compared with those of Diuron, a biocide widely used in antifouling paints. The addition of the macroalgal extracts in the culture medium resulted in an inhibition of the growth of F. pinnata, but this inhibition was lower than that obtained with Diuron. After transfer to a biocide-free medium, F. pinnata cells previously exposed to the macroalgal extracts exhibited normal growth, in contrast to Diuron-treated cells, which died, demonstrating that the effects of the natural antifouling agents were reversible. Macroalgal extracts and Diuron-induced modifications in F. pinnata cellular pigment content. Chlorophyll a, fucoxanthin, and the xanthophyll pool, diadinoxanthin and diatoxanthin, were the most affected. Changes in the structure and function of the photosynthetic apparatus were studied by microspectrofluorimetry, and provided a comprehensive evaluation of the inhibition of the diatom Photosystem II (PSII) by the biocides. This study confirms that natural extracts from the macroalgae studied have the potential to be used as a substitute to commercial biocides in antifouling paints.

  1. Antifouling activity of synthetic alkylpyridinium polymers using the barnacle model.

    PubMed

    Piazza, Veronica; Dragić, Ivanka; Sepčić, Kristina; Faimali, Marco; Garaventa, Francesca; Turk, Tom; Berne, Sabina

    2014-04-01

    Polymeric alkylpyridinium salts (poly-APS) isolated from the Mediterranean marine sponge, Haliclona (Rhizoniera) sarai, effectively inhibit barnacle larva settlement and natural marine biofilm formation through a non-toxic and reversible mechanism. Potential use of poly-APS-like compounds as antifouling agents led to the chemical synthesis of monomeric and oligomeric 3-alkylpyridinium analogues. However, these are less efficient in settlement assays and have greater toxicity than the natural polymers. Recently, a new chemical synthesis method enabled the production of poly-APS analogues with antibacterial, antifungal and anti-acetylcholinesterase activities. The present study examines the antifouling properties and toxicity of six of these synthetic poly-APS using the barnacle (Amphibalanus amphitrite) as a model (cyprids and II stage nauplii larvae) in settlement, acute and sub-acute toxicity assays. Two compounds, APS8 and APS12-3, show antifouling effects very similar to natural poly-APS, with an anti-settlement effective concentration that inhibits 50% of the cyprid population settlement (EC₅₀) after 24 h of 0.32 mg/L and 0.89 mg/L, respectively. The toxicity of APS8 is negligible, while APS12-3 is three-fold more toxic (24-h LC₅₀: nauplii, 11.60 mg/L; cyprids, 61.13 mg/L) than natural poly-APS. This toxicity of APS12-3 towards nauplii is, however, 60-fold and 1200-fold lower than that of the common co-biocides, Zn- and Cu-pyrithione, respectively. Additionally, exposure to APS12-3 for 24 and 48 h inhibits the naupliar swimming ability with respective IC₅₀ of 4.83 and 1.86 mg/L. PMID:24699112

  2. Carbon disulphide production in laboratory cultures of marine phytoplankton

    NASA Astrophysics Data System (ADS)

    Xie, Huixiang; Scarratt, Michael G.; Moore, Robert M.

    Carbon disulphide (CS 2) data were collected from axenic monocultures of six species of marine phytoplankton. The tested species included Chaetoceros calcitrans, Phaeodactylum tricornutum, Phaeocystis sp., Porphyridium purpureum, Synechococcus sp. and Isochrysis sp. For a period of between two weeks and forty days, substantial accumulation of CS 2 was found in the cultures of C. calcitrans, P. tricornutum and Phaeocystis sp., whereas the change of CS 2 concentration in the remaining cultures was insignificant. C. calcitrans had a potential for CS 2 production about 10 times higher than P. tricornutum or Phaeocystis sp. The formation of the compound was strongly dependent on the physiological state of the cultured species. More investigation is needed to elucidate the mechanisms responsible for the formation of this sulphur compound in these cultures.

  3. 33 CFR 334.150 - Severn River at Annapolis, Md.; experimental test area, U.S. Navy Marine Engineering Laboratory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Marine Engineering Laboratory. (a) The restricted area. The waters of Severn River shoreward of a line... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Severn River at Annapolis, Md.; experimental test area, U.S. Navy Marine Engineering Laboratory. 334.150 Section 334.150 Navigation...

  4. Microtopography of the eye surface of the crab Carcinus maenas: an atomic force microscope study suggesting a possible antifouling potential.

    PubMed

    Greco, G; Lanero, T Svaldo; Torrassa, S; Young, R; Vassalli, M; Cavaliere, A; Rolandi, R; Pelucchi, E; Faimali, M; Davenport, J

    2013-07-01

    Marine biofouling causes problems for technologies based on the sea, including ships, power plants and marine sensors. Several antifouling techniques have been applied to marine sensors, but most of these methodologies are environmentally unfriendly or ineffective. Bioinspiration, seeking guidance from natural solutions, is a promising approach to antifouling. Here, the eye of the green crab Carcinus maenas was regarded as a marine sensor model and its surface characterized by means of atomic force microscopy. Engineered surface micro- and nanotopography is a new mechanism found to limit biofouling, promising an effective solution with much reduced environmental impact. Besides giving a new insight into the morphology of C. maenas eye and its characterization, our study indicates that the eye surface probably has antifouling/fouling-release potential. Furthermore, the topographical features of the surface may influence the wettability properties of the structure and its interaction with organic molecules. Results indicate that the eye surface micro- and nanotopography may lead to bioinspired solutions to antifouling protection. PMID:23635491

  5. Acrylic coatings: Anticorrosive and antifouling. (Latest citations from World Surface Coatings Abstracts). Published Search

    SciTech Connect

    Not Available

    1993-05-01

    The bibliography contains citations concerning the compositions and applications of anticorrosion and antifouling acrylic coatings. Applications include appliances, house siding and windows, manufacturing equipment, marine structures and ships, reinforcing bars in concrete, sheet and construction steel, sheet and plastics for vehicles, and iron and steel pipes. Some of the citations report on effectiveness and durability of the coatings. Powder-coatings and water-based coatings are examined in separate bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  6. Release and detection of nanosized copper from a commercial antifouling paint.

    PubMed

    Adeleye, Adeyemi S; Oranu, Ekene A; Tao, Mengya; Keller, Arturo A

    2016-10-01

    One major concern with the use of antifouling paints is the release of its biocides (mainly copper and zinc) into natural waters, where they may exhibit toxicity to non-target organisms. While many studies have quantified the release of biocides from antifouling paints, very little is known about the physicochemical state of released copper. For proper risk assessment of antifouling paints, characterization of copper released into water is necessary because the physicochemical state determines the metal's environmental fate and effects. In this study, we monitored release of different fractions of copper (dissolved, nano, and bulk) from a commercial copper-based antifouling paint. Release from painted wood and aluminum mini-bars that were submerged in natural waters was monitored for 180 days. Leachates contained both dissolved and particulate copper species. X-ray diffraction and X-ray photoelectron spectroscopy were used to determine the chemical phase of particles in the leachate. The amount of copper released was strongly dependent on water salinity, painted surface, and paint drying time. The presence of nanosized Cu2O particles was confirmed in paint and its leachate using single-particle inductively coupled plasma-mass spectrometry and electron microscopy. Toxicity of paint leachate to a marine phytoplankton was also evaluated.

  7. Release and detection of nanosized copper from a commercial antifouling paint.

    PubMed

    Adeleye, Adeyemi S; Oranu, Ekene A; Tao, Mengya; Keller, Arturo A

    2016-10-01

    One major concern with the use of antifouling paints is the release of its biocides (mainly copper and zinc) into natural waters, where they may exhibit toxicity to non-target organisms. While many studies have quantified the release of biocides from antifouling paints, very little is known about the physicochemical state of released copper. For proper risk assessment of antifouling paints, characterization of copper released into water is necessary because the physicochemical state determines the metal's environmental fate and effects. In this study, we monitored release of different fractions of copper (dissolved, nano, and bulk) from a commercial copper-based antifouling paint. Release from painted wood and aluminum mini-bars that were submerged in natural waters was monitored for 180 days. Leachates contained both dissolved and particulate copper species. X-ray diffraction and X-ray photoelectron spectroscopy were used to determine the chemical phase of particles in the leachate. The amount of copper released was strongly dependent on water salinity, painted surface, and paint drying time. The presence of nanosized Cu2O particles was confirmed in paint and its leachate using single-particle inductively coupled plasma-mass spectrometry and electron microscopy. Toxicity of paint leachate to a marine phytoplankton was also evaluated. PMID:27393962

  8. Antifouling glycocalyx-mimetic peptoids.

    PubMed

    Ham, Hyun Ok; Park, Sung Hyun; Kurutz, Josh W; Szleifer, Igal G; Messersmith, Phillip B

    2013-09-01

    The glycocalyx of the cell is composed of highly hydrated saccharidic groups conjugated to protein and lipid cores. Although components of the glycocalyx are important in cell-cell interactions and other specific biological recognition events, a fundamental role of the glycocalyx is the inhibition of nonspecific interactions at the cell surface. Inspired by glycoproteins present in the glycocalyx, we describe a new class of synthetic antifouling polymer composed of saccharide containing N-substituted polypeptide (glycopeptoid). Grafting of glycopeptoids to a solid surface resulted in a biomimetic shielding layer that dramatically reduced nonspecific protein, fibroblast, and bacterial cell attachment. All-atom molecular dynamics simulation of grafted glycopeptoids revealed an aqueous interface enriched in highly hydrated saccharide residues. In comparison to saccharide-free peptoids, the interfacial saccharide residues of glycopeptoids formed a higher number of hydrogen bonds with water molecules. Moreover, these hydrogen bonds displayed a longer persistence time, which we believe contributed to fouling resistance by impeding interactions with biomolecules. Our findings suggest that the fouling resistance of glycopeptoids can be explained by the presence of both a 'water barrier' effect associated with the hydrated saccharide residues as well as steric hindrance from the polymer backbone.

  9. Antifouling Glycocalyx-Mimetic Peptoids

    PubMed Central

    Ham, Hyun Ok; Park, Sung Hyun; Kurutz, Josh W.; Szleifer, Igal G.; Messersmith, Phillip B.

    2013-01-01

    The glycocalyx of the cell is composed of highly hydrated saccharidic groups conjugated to protein and lipid cores. Although components of the glycocalyx are important in cell-cell interactions and other specific biological recognition events, a fundamental role of the glycocalyx is the inhibition of nonspecific interactions at the cell surface. Inspired by glycoproteins present in the glycocalyx, we describe a new class of synthetic antifouling polymer composed of saccharide containing N-substituted poly-peptide (glycopeptoid). Grafting of glycopeptoids to a solid surface resulted in a biomimetic shielding layer that dramatically reduced nonspecific protein, fibroblast and bacterial cell attachment. All-atom molecular dynamics simulation of grafted glycopeptoids revealed an aqueous interface enriched in highly hydrated saccharide residues. In comparison to saccharide-free peptoids, the interfacial saccharide residues of glycopeptoids formed a higher number of hydrogen bonds with water molecules. Moreover, these hydrogen bonds displayed a longer persistence time, which we believe contributed to fouling resistance by impeding interactions with biomolecules. Our findings suggest that the fouling resistance of glycopeptoids can be explained by the presence of both a ‘water barrier’ effect associated with the hydrated saccharide residues, as well as steric hindrance from the polymer backbone. PMID:23919653

  10. Antifouling leaching technique for optical lenses

    USGS Publications Warehouse

    Strahle, William J.; Perez, C. L.; Martini, Marinna A.

    1994-01-01

    The effectiveness of optical lenses deployed in water less than 100 m deep is significantly reduced by biofouling caused by the settlement of macrofauna, such as barnacles, hydroids, and tunicates. However, machineable porous plastic rings can be used to dispense antifoulant into the water in front of the lens to retard macrofaunal growth without obstructing the light path. Unlike coatings which can degrade the optical performance, antifouling rings do not interfere with the instrument optics. The authors have designed plastic, reusable cup-like antifouling rings to slip over the optical lenses of a transmissometer. These rings have been used for several deployments on shallow moorings in Massachusetts Bay, MA and have increased the time before fouling degrades optical characteristics

  11. Data Quality Objectives Supporting Radiological Air Emissions Monitoring for the Marine Sciences Laboratory, Sequim Site

    SciTech Connect

    Barnett, J. Matthew; Meier, Kirsten M.; Snyder, Sandra F.; Antonio, Ernest J.; Fritz, Brad G.; Poston, Theodore M.

    2012-12-27

    This document of Data Quality Objectives (DQOs) was prepared based on the U.S. Environmental Protection Agency (EPA) Guidance on Systematic Planning Using the Data Quality Objectives Process, EPA, QA/G4, 2/2006 (EPA 2006), as well as several other published DQOs. The intent of this report is to determine the necessary steps required to ensure that radioactive emissions to the air from the Marine Sciences Laboratory (MSL) headquartered at the Pacific Northwest National Laboratory’s Sequim Marine Research Operations (Sequim Site) on Washington State’s Olympic Peninsula are managed in accordance with regulatory requirements and best practices. The Sequim Site was transitioned in October 2012 from private operation under Battelle Memorial Institute to an exclusive use contract with the U.S. Department of Energy, Office of Science, Pacific Northwest Site Office.

  12. Assessment of organotin and tin-free antifouling paints contamination in the Korean coastal area.

    PubMed

    Lee, Mi-Ri-Nae; Kim, Un-Jung; Lee, In-Seok; Choi, Minkyu; Oh, Jeong-Eun

    2015-10-15

    Twelve organotins (methyl-, octyl-, butyl-, and phenyl-tin), and eight tin-free antifouling paints and their degradation products were measured in marine sediments from the Korean coastal area, and Busan and Ulsan bays, the largest harbor area in Korea. The total concentration of tin-free antifouling paints was two- to threefold higher than the total concentration of organotins. Principal component analysis was used to identify sites with relatively high levels of contamination in the inner bay area of Busan and Ulsan bays, which were separated from the coastal area. In Busan and Ulsan bays, chlorothalonil and DMSA were more dominant than in the coastal area. However, Sea-Nine 211 and total diurons, including their degradation products, were generally dominant in the Korean coastal area. The concentrations of tin and tin-free compounds were significantly different between the east and west coasts.

  13. Surface anchored metal-organic frameworks as stimulus responsive antifouling coatings.

    PubMed

    Sancet, Maria Pilar Arpa; Hanke, Maximilian; Wang, Zhengbang; Bauer, Stella; Azucena, Carlos; Arslan, Hasan K; Heinle, Marita; Gliemann, Hartmut; Wöll, Christof; Rosenhahn, Axel

    2013-12-01

    Surface-anchored, crystalline and oriented metal organic frameworks (SURMOFs) have huge potential for biological applications due to their well-defined and highly-porous structure. In this work we describe a MOF-based, fully autonomous system, which combines sensing, a specific response, and the release of an antimicrobial agent. The Cu-containing SURMOF, Cu-SURMOF 2, is stable in artificial seawater and shows stimulus-responsive anti-fouling properties against marine bacteria. When Cobetia marina adheres on the SURMOF, the framework's response is lethal to the adhering microorganism. A thorough analysis reveals that this response is induced by agents secreted from the microbes after adhesion to the substrate, and includes a release of Cu ions resulting from a degradation of the SURMOF. The stimulus-responsive antifouling effect of Cu-SURMOF 2 demonstrates the first application of Cu-SURMOF 2 as autonomous system with great potential for further microbiological and cell culture applications.

  14. The legal design of the international and European Union ban on tributyltin antifouling paint: direct and indirect effects.

    PubMed

    Gipperth, Lena

    2009-02-01

    The Convention on the Control of Harmful Anti-fouling Systems on Ships (AFS Convention), which was adopted in 2001 and will come into force in September 2008, bans the use of TBT (tributyltin) antifouling paint on ships. The EU (European Union) effectively implemented the Convention on 1 January 2008 by enforcing a similar ban. Several states have national restrictions and bans in place. The regulation on TBT antifouling paint aims at checking the risk of adverse effects on marine ecosystems. The legal and political situation is, however, characterized by complex relations between different layers of legislation, the use of several different legal techniques, and levels of ambition. The international and EU bans thereby cause some indirect effects, which are only partly included in what is seen as 'the TBT issue' and so only partly assessed in the legal process of the ban. This article discusses the expediency of the existing legislation and legal strategies aimed at reducing the negative environmental effects of TBT-like toxins in marine ecosystems and indirect effects of such actions. It considers the adequacy and limits of current regulatory approaches for handling complex environmental problems, such as TBT in antifouling paint.

  15. Degradation kinetics of a potent antifouling agent, butenolide, under various environmental conditions.

    PubMed

    Chen, Lianguo; Xu, Ying; Wang, Wenxiong; Qian, Pei-Yuan

    2015-01-01

    Here, we investigated the degradation kinetics of butenolide, a promising antifouling compound, under various environmental conditions. The active ingredient of the commercial antifoulant SeaNine 211, 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT), was used as positive control. The results showed that the degradation rate increased with increasing temperature. Half-lives of butenolide at 4 °C, 25 °C and 40 °C were>64 d, 30.5 d and 3.9 d, respectively. Similar half-lives were recorded for DCOIT: >64 d at 4 °C, 27.9 d at 25 °C and 4.5d at 40 °C. Exposure to sunlight accelerated the degradation of both butenolide and DCOIT. The photolysis half-lives of butenolide and DCOIT were 5.7 d and 6.8 d, respectively, compared with 9.7 d and 14.4 d for the dark control. Biodegradation led to the fastest rate of butenolide removal from natural seawater, with a half-life of 0.5 d, while no obvious degradation was observed for DCOIT after incubation for 4 d. The biodegradative ability of natural seawater for butenolide was attributed mainly to marine bacteria. During the degradation of butenolide and DCOIT, a gradual decrease in antifouling activity was observed, as indicated by the increased settlement percentage of cypris larvae from barnacle Balanus amphitrite. Besides, increased cell growth of marine diatom Skeletonema costatum demonstrated that the toxicity of seawater decreased gradually without generation of more toxic by-products. Overall, rapid degradation of butenolide in natural seawater supported its claim as a promising candidate for commercial antifouling industry.

  16. Degradation kinetics of a potent antifouling agent, butenolide, under various environmental conditions.

    PubMed

    Chen, Lianguo; Xu, Ying; Wang, Wenxiong; Qian, Pei-Yuan

    2015-01-01

    Here, we investigated the degradation kinetics of butenolide, a promising antifouling compound, under various environmental conditions. The active ingredient of the commercial antifoulant SeaNine 211, 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT), was used as positive control. The results showed that the degradation rate increased with increasing temperature. Half-lives of butenolide at 4 °C, 25 °C and 40 °C were>64 d, 30.5 d and 3.9 d, respectively. Similar half-lives were recorded for DCOIT: >64 d at 4 °C, 27.9 d at 25 °C and 4.5d at 40 °C. Exposure to sunlight accelerated the degradation of both butenolide and DCOIT. The photolysis half-lives of butenolide and DCOIT were 5.7 d and 6.8 d, respectively, compared with 9.7 d and 14.4 d for the dark control. Biodegradation led to the fastest rate of butenolide removal from natural seawater, with a half-life of 0.5 d, while no obvious degradation was observed for DCOIT after incubation for 4 d. The biodegradative ability of natural seawater for butenolide was attributed mainly to marine bacteria. During the degradation of butenolide and DCOIT, a gradual decrease in antifouling activity was observed, as indicated by the increased settlement percentage of cypris larvae from barnacle Balanus amphitrite. Besides, increased cell growth of marine diatom Skeletonema costatum demonstrated that the toxicity of seawater decreased gradually without generation of more toxic by-products. Overall, rapid degradation of butenolide in natural seawater supported its claim as a promising candidate for commercial antifouling industry. PMID:25460745

  17. Marine Sciences Laboratory Radionuclide Air Emissions Report for Calendar Year 2014

    SciTech Connect

    Snyder, Sandra F.; Barnett, J. Matthew

    2015-05-04

    The U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest Site Office (PNSO) has oversight and stewardship duties associated with the Pacific Northwest National Laboratory (PNNL) Marine Sciences Laboratory (MSL) located on Battelle Land – Sequim.This report is prepared to document compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities” and Washington Administrative Code (WAC) Chapter 246-247, “Radiation Protection–Air Emissions.'' The EDE to the MSL MEI due to routine operations in 2014 was 9E-05 mrem (9E-07 mSv). No non-routine emissions occurred in 2014. The MSL is in compliance with the federal and state 10 mrem/yr standard.

  18. Marine Sciences Laboratory Radionuclide Air Emissions Report for Calendar Year 2013

    SciTech Connect

    Snyder, Sandra F.; Barnett, J. Matthew; Ballinger, Marcel Y.

    2014-05-01

    The U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest Site Office (PNSO) has oversight and stewardship duties associated with the Pacific Northwest National Laboratory (PNNL) Marine Sciences Laboratory (MSL) located on Battelle Land – Sequim (Sequim). This report is prepared to document compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, “National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities” and Washington Administrative Code (WAC) Chapter 246-247, “Radiation Protection–Air Emissions.” The EDE to the Sequim MEI due to routine operations in 2013 was 5E-05 mrem (5E-07 mSv). No non-routine emissions occurred in 2013. The MSL is in compliance with the federal and state 10 mrem/yr standard.

  19. Environmental management aspects for TBT antifouling wastes from the shipyards.

    PubMed

    Kotrikla, Anna

    2009-02-01

    Tributyltin (TBT)-based antifouling paints have been successfully used for over 40 years to protect a ship's hull from biofouling. However, due to its high toxicity to marine organisms, the International Maritime Organization (IMO), in 1990, adopted a resolution recommending governments to adopt measures to eliminate antifouling paints containing TBT. High concentrations of TBT are detected in the vicinity of ports and shipyards. TBT is also usually detected in the sediment, in which it accumulates. This study reviews recent literature for the best management practices (BMPs) in order to minimize the environmental effects of TBT. The paper focuses on the evaluation of the available techniques for the removal of TBT from shipyard wastes and from the sediment. The most effective treatment methods are highlighted. BMPs include recycling of abrasive materials, use of cleaner abrasive materials, reuse of spent abrasive materials, substitution of hydroblasting by vacuum blasting or containment or ultra-high-pressure water blasting and confinement of pollution by enclosure and containment systems. The treatment of the TBT wastes by conventional biological wastewater treatment processes is probably not suitable, because the concentrations of TBT found in shipyards' wastewaters are toxic to microorganisms. Advanced technologies such as activated carbon adsorption and dissolved air flotation, in combination with filtration and coagulation-clarification, photodegradation and electrochemical treatment, are required to remove TBT. However, advanced methods should be further optimized to meet the regulatory limit of 200 ng/L. To date, only one published work examines the efficiency of incineration for the treatment of solid sandblast wastes. Regarding the treatment of sediment, land deposition of the less polluted fraction of sediment is a feasible option. Such treatment must take into account the risk of contamination of groundwater and the surroundings, and it requires

  20. Layer-by-layer-assembled healable antifouling films.

    PubMed

    Chen, Dongdong; Wu, Mingda; Li, Bochao; Ren, Kefeng; Cheng, Zhongkai; Ji, Jian; Li, Yang; Sun, Junqi

    2015-10-21

    Healable antifouling films are fabricated by the exponential layer-by-layer assembly of PEGylated branched poly(ethylenimine) and hyaluronic acid followed by post-crosslinking. The antifouling function originates from the grafted PEG and the extremely soft nature of the films. The rapid and multiple healing of damaged antifouling functions caused by cuts and scratches can be readily achieved by immersing the films in normal saline solution. PMID:26455733

  1. Copper and copper-nickel alloys as zebra mussel antifoulants

    SciTech Connect

    Dormon, J.M.; Cottrell, C.M.; Allen, D.G.; Ackerman, J.D.; Spelt, J.K.

    1996-04-01

    Copper has been used in the marine environment for decades as cladding on ships and pipes to prevent biofouling by marine mussels (Mytilus edulis L.). This motivated the present investigation into the possibility of using copper to prevent biofouling in freshwater by both zebra mussels and quagga mussels (Dreissena polymorpha and D. bugensis collectively referred to as zebra mussels). Copper and copper alloy sheet proved to be highly effective in preventing biofouling by zebra mussels over a three-year period. Further studies were conducted with copper and copper-nickel mesh (lattice of expanded metal) and screen (woven wire with a smaller hole size), which reduced the amount of copper used. Copper screen was also found to be strongly biofouling-resistant with respect to zebra mussels, while copper mesh reduced zebra mussel biofouling in comparison to controls, but did not prevent it entirely. Preliminary investigations into the mechanism of copper antifouling, using galvanic couples, indicated that the release of copper ions from the surface of the exposed metal into the surrounding water is directly or indirectly responsible for the biofouling resistance of copper.

  2. First evaluation of the threat posed by antifouling biocides in the Southern Adriatic Sea.

    PubMed

    Manzo, Sonia; Ansanelli, Giuliana; Parrella, Luisa; Di Landa, Giuseppe; Massanisso, Paolo; Schiavo, Simona; Minopoli, Carmine; Lanza, Bruno; Boggia, Raffaella; Aleksi, Pellumb; Tabaku, Afrim

    2014-08-01

    The CARISMA project (characterization and ecological risk analysis of antifouling biocides in the Southern Adriatic Sea) aims to appraise the quality of the Southern Adriatic Sea between Italy (Apulia region) and Albania and, in particular, the impact due to the use of biocidal antifouling coatings. Under this project, a preliminary survey at the main hot spots of contamination (e.g. ports and marinas) was conducted at the end of the nautical season in 2012. Chemical seawater analyses were complemented with ecotoxicological assays and the results were analyzed by principal component analysis (PCA). As expected, PCA splits the Albanian and Italian ports, according to the different degrees of contamination indicated for the two countries by the experimental data, highlighting the most critical situation in one port of Apulia. In addition, in order to assess the potential adverse ecological effects posed by antifouling agents (i.e. tributyltin (TBT)-irgarol-diuron) on non-target marine organisms, hazard quotients (HQ) were calculated. The results showed a low risk posed by irgarol and diuron whereas the probability of adverse effects was high in the case of TBT.

  3. On the influence of the culture conditions in bacterial antifouling bioassays and biofilm properties: Shewanella algae, a case study

    PubMed Central

    2014-01-01

    Background A variety of conditions (culture media, inocula, incubation temperatures) are employed in antifouling tests with marine bacteria. Shewanella algae was selected as model organism to evaluate the effect of these parameters on: bacterial growth, biofilm formation, the activity of model antifoulants, and the development and nanomechanical properties of the biofilms. The main objectives were: 1) To highlight and quantify the effect of these conditions on relevant parameters for antifouling studies: biofilm morphology, thickness, roughness, surface coverage, elasticity and adhesion forces. 2) To establish and characterise in detail a biofilm model with a relevant marine strain. Results Both the medium and the temperature significantly influenced the total cell densities and biofilm biomasses in 24-hour cultures. Likewise, the IC50 of three antifouling standards (TBTO, tralopyril and zinc pyrithione) was significantly affected by the medium and the initial cell density. Four media (Marine Broth, MB; 2% NaCl Mueller-Hinton Broth, MH2; Luria Marine Broth, LMB; and Supplemented Artificial Seawater, SASW) were selected to explore their effect on the morphological and nanomechanical properties of 24-h biofilms. Two biofilm growth patterns were observed: a clear trend to vertical development, with varying thickness and surface coverage in MB, LMB and SASW, and a horizontal, relatively thin film in MH2. The Atomic Force Microscopy analysis showed the lowest Young modulii for MB (0.16 ± 0.10 MPa), followed by SASW (0.19 ± 0.09 MPa), LMB (0.22 ± 0.13 MPa) and MH2 (0.34 ± 0.16 MPa). Adhesion forces followed an inverted trend, being higher in MB (1.33 ± 0.38 nN) and lower in MH2 (0.73 ± 0.29 nN). Conclusions All the parameters significantly affected the ability of S. algae to grow and form biofilms, as well as the activity of antifouling molecules. A detailed study has been carried out in order to establish a biofilm model for further assays. The morphology and

  4. Laboratory and field studies of polonium and plutonium in marine plankton.

    PubMed

    Wilson, R C; Watts, S J; Vives i Batlle, J; McDonald, P

    2009-08-01

    Uptake experiments were successfully undertaken for polonium and plutonium in the marine diatom Skeletonema costatum. Experiments were complemented with a field study which yielded concentration factors for these radionuclides for plankton samples collected in the eastern Irish Sea. The uptake experiment produced uptake half times of 0.8 and 0.6 days for plutonium and polonium, respectively. Concentration factors of 3.1 x 10(5) l kg(-1) for plutonium and 2.4 x 10(5) l kg(-1) for polonium were consistent with those suggested by the IAEA for phytoplankton. Concentration factors derived from the field study were 2 x 10(3) l kg(-1) for plutonium and 1.4 x 10(4) l kg(-1) for polonium and were more consistent with IAEA values for zooplankton rather than phytoplankton. The maximum calculated dose rate due to Po and Pu in plankton sampled in the field was 0.12 microGyh(-1). In applying the laboratory-derived phytoplankton CF values for Po and Pu, higher dose rates, in the range 6-11 microGyh(-1), were calculated. The latter values are well below the UNSCEAR and IAEA review value of 400 microGyh(-1), and are also below the Environment Agency marine action level of 40 microGyh(-1).

  5. From Broad-Spectrum Biocides to Quorum Sensing Disruptors and Mussel Repellents: Antifouling Profile of Alkyl Triphenylphosphonium Salts

    PubMed Central

    Martín-Rodríguez, Alberto J.; Babarro, Jose M. F.; Lahoz, Fernando; Sansón, Marta; Martín, Víctor S.; Norte, Manuel; Fernández, José J.

    2015-01-01

    ‘Onium’ compounds, including ammonium and phosphonium salts, have been employed as antiseptics and disinfectants. These cationic biocides have been incorporated into multiple materials, principally to avoid bacterial attachment. In this work, we selected 20 alkyl-triphenylphosphonium salts, differing mainly in the length and functionalization of their alkyl chains, in fulfilment of two main objectives: 1) to provide a comprehensive evaluation of the antifouling profile of these molecules with relevant marine fouling organisms; and 2) to shed new light on their potential applications, beyond their classic use as broad-spectrum biocides. In this regard, we demonstrate for the first time that these compounds are also able to act as non-toxic quorum sensing disruptors in two different bacterial models (Chromobacterium violaceum and Vibrio harveyi) as well as repellents in the mussel Mytilus galloprovincialis. In addition, their inhibitory activity on a fouling-relevant enzymatic model (tyrosinase) is characterized. An analysis of the structure-activity relationships of these compounds for antifouling purposes is provided, which may result useful in the design of targeted antifouling solutions with these molecules. Altogether, the findings reported herein provide a different perspective on the biological activities of phosphonium compounds that is particularly focused on, but, as the reader will realize, is not limited to their use as antifouling agents. PMID:25897858

  6. Laboratory investigations on the survival of marine bacteriophages in raw and treated seawater

    NASA Astrophysics Data System (ADS)

    Moebus, K.

    1992-09-01

    Laboratory investigations were performed to gain insight into the mechanisms which govern the survival of marine bacteriophages in nature. Samples collected in 1988 to 1990 at station “Kabeltonne” near Helgoland were used raw, membrane-filtered (0.15μm), and/or after inverse filtration through 10 μm-mesh gauze to reduce or increase live and dead particles. The development of natural or artificial bacterial populations and the survival of 2 to 10 distinguishable strains of test phage were followed during incubation at 20°C. The results obtained with most test phages point to the predominant role of indigenous bacteria for marine phage inactivation which was generally enhanced by sample managements leading to improved growth of bacteria. The virucidal properties of the samples differed greatly in total strength as well as in the changes taking place during incubation, the latter resulting in conspicuously differing inactivation curves. Generally, phage inactivation was slow during the first 2 to 3 days of incubation, followed by a period of very rapid inactivation which usually coincided with the die-away of colony-forming bacteria. This period lasted either only a few days or until the concentration of test phage was reduced to (near) zero. While the inactivation of most test phage is assumedly caused by proteolytic enzymes released during the die-away of bacteria, the survivability of one test phage (H7/2) was also markedly influenced by the bacteria sensitive to it. Survival rates of the test phages in the laboratory tests were generally of the same order of magnitude as those recently observed with natural phage populations.

  7. 76 FR 76896 - International Anti-Fouling System Certificate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-09

    ...The Coast Guard is amending its vessel inspection regulations to add the International Anti-fouling System (IAFS) Certificate to the list of certificates a recognized classification society may issue on behalf of the Coast Guard. This action is being taken in response to recently enacted legislation implementing the International Convention on the Control of Harmful Anti-fouling Systems on......

  8. Field results of antifouling techniques for optical instruments

    USGS Publications Warehouse

    Strahle, W.J.; Hotchkiss, F.S.; Martini, M.A.

    1998-01-01

    An anti-fouling technique is developed for the protection of optical instruments from biofouling which leaches a bromide compound into a sample chamber and pumps new water into the chamber prior to measurement. The primary advantage of using bromide is that it is less toxic than the metal-based antifoulants. The drawback of the bromide technique is also discussed.

  9. Sandia National Laboratories environmental fluid dynamics code. Marine Hydrokinetic Module User's Manual

    SciTech Connect

    James, Scott Carlton; Roberts, Jesse D.

    2014-03-01

    This document describes the marine hydrokinetic (MHK) input file and subroutines for the Sandia National Laboratories Environmental Fluid Dynamics Code (SNL-EFDC), which is a combined hydrodynamic, sediment transport, and water quality model based on the Environmental Fluid Dynamics Code (EFDC) developed by John Hamrick [1], formerly sponsored by the U.S. Environmental Protection Agency, and now maintained by Tetra Tech, Inc. SNL-EFDC has been previously enhanced with the incorporation of the SEDZLJ sediment dynamics model developed by Ziegler, Lick, and Jones [2-4]. SNL-EFDC has also been upgraded to more accurately simulate algae growth with specific application to optimizing biomass in an open-channel raceway for biofuels production [5]. A detailed description of the input file containing data describing the MHK device/array is provided, along with a description of the MHK FORTRAN routine. Both a theoretical description of the MHK dynamics as incorporated into SNL-EFDC and an explanation of the source code are provided. This user manual is meant to be used in conjunction with the original EFDC [6] and sediment dynamics SNL-EFDC manuals [7]. Through this document, the authors provide information for users who wish to model the effects of an MHK device (or array of devices) on a flow system with EFDC and who also seek a clear understanding of the source code, which is available from staff in the Water Power Technologies Department at Sandia National Laboratories, Albuquerque, New Mexico.

  10. Laboratory and marine study of photoluminescent sensors of oxygen dissolved in seawater

    NASA Astrophysics Data System (ADS)

    Vlasov, V. L.; Konovalov, B. V.; Mosharov, V. E.; Radchenko, V. N.; Khanaev, S. A.; Khlebnikov, D. V.

    2010-02-01

    The laboratory and marine study of photoluminescent sensors developed at the TsAGI has been conducted to create a highly sensitivity gauge of the oxygen dissolved in seawater. The advantages of the photoluminescent gauge over the electrochemical ones are the following: zero sensitivity to electromagnetic fields, the pH of the water, and the hydrogen sulphide and ions of heavy metals in the water; zero oxygen consumption; and no need for the water to be pumped through the device. A breadboard model of the photoluminescent gauge with LED excitation of the luminescence has been built. The laboratory tests of the model demonstrated the accuracy of the gauge to be as high as 0.05 ml/1 in air at a response time of 0.3 s for 63% relaxation. Comparative field tests of the breadboard model and the SBE 43 electrochemical oxygen gauge (Sea-Bird Electronics Corp.) have shown good agreement of the estimates of the oxygen content in the water and clarified the prospects of model’s performance improvement.

  11. Environmentally benign sol-gel antifouling and foul-releasing coatings.

    PubMed

    Detty, Michael R; Ciriminna, Rosaria; Bright, Frank V; Pagliaro, Mario

    2014-02-18

    application, and the waterborne nature of sol-gel coatings all support the diffusion of these paints to efficiently reduce the accumulation of fouling layers on valued surfaces immersed in marine or fluvial waters. Furthermore, sol-gel glassy coatings are transparent and can be effectively applied to optical devices, windows, and solar panels used in lake, fluvial, or marine environments. Sol-gel technology is eminently versatile, and the first generation sol-gel paints have already shown good performance. Even so, vast opportunities still exist for chemists to develop novel sol-gel derived coatings to both prevent biofouling and enhance the hydrodynamic properties of boat and ship hulls. Moreover, researchers have prepared and applied multifunctional sol-gel coatings providing protection against both biofouling and corrosion. They have tested these in the marine environment with good preliminary results. In this Account, we discuss some of our new strategies for the controlled functionalization of surfaces for the development of efficient antifouling and foul-releasing systems and summarize the main achievements with biocidal and nonbiocidal sol-gel coatings. We conclude by giving insight into the marine coatings and sol-gel products markets, providing arguments to justify our conclusion that the sol-gel coatings technology is now a mature platform for the development of economically viable and environmentally friendly antifouling and foul-release formulations of enhanced performance.

  12. Environmentally benign sol-gel antifouling and foul-releasing coatings.

    PubMed

    Detty, Michael R; Ciriminna, Rosaria; Bright, Frank V; Pagliaro, Mario

    2014-02-18

    application, and the waterborne nature of sol-gel coatings all support the diffusion of these paints to efficiently reduce the accumulation of fouling layers on valued surfaces immersed in marine or fluvial waters. Furthermore, sol-gel glassy coatings are transparent and can be effectively applied to optical devices, windows, and solar panels used in lake, fluvial, or marine environments. Sol-gel technology is eminently versatile, and the first generation sol-gel paints have already shown good performance. Even so, vast opportunities still exist for chemists to develop novel sol-gel derived coatings to both prevent biofouling and enhance the hydrodynamic properties of boat and ship hulls. Moreover, researchers have prepared and applied multifunctional sol-gel coatings providing protection against both biofouling and corrosion. They have tested these in the marine environment with good preliminary results. In this Account, we discuss some of our new strategies for the controlled functionalization of surfaces for the development of efficient antifouling and foul-releasing systems and summarize the main achievements with biocidal and nonbiocidal sol-gel coatings. We conclude by giving insight into the marine coatings and sol-gel products markets, providing arguments to justify our conclusion that the sol-gel coatings technology is now a mature platform for the development of economically viable and environmentally friendly antifouling and foul-release formulations of enhanced performance. PMID:24397288

  13. Antifouling strategies and corrosion control in cooling circuits.

    PubMed

    Cristiani, P; Perboni, G

    2014-06-01

    Biofouling and corrosion phenomena dramatically reduce the functionality of industrial cooling circuits, especially in marine environments. This study underlines the effectiveness of a low level chlorination treatment of seawater to prevent biological fouling and biocorrosion. Reported examples emphasize the reaction of chlorine with bromide, ammonia and organic compounds in seawater and the effectiveness of a treatment performed in such a way to guarantee a residual concentration lower than 3μM at the outlet of the condensers. In a brief review of antifouling strategies, alternatives to chlorination and the monitoring approach able to optimize the treatments are also reported. An integrated, on-line system based on electrochemical probes (Biox system and a linear polarization resistance probe) demonstrated to be sufficient to monitor in real time: corrosion, biofilm growth and chemical treatments based on chlorine or alternative oxidant products (chlorine dioxide, etc.). A careful electrochemical monitoring and the optimized treatments help the plant operators of industrial cooling circuits prevent the decay of the equipment performance, allowing at the same time the control of the halogenated by-products formation. PMID:24507969

  14. Inspection method for the identification of TBT-containing antifouling paints.

    PubMed

    Senda, Tetsuya; Miyata, Osamu; Kihara, Takeshi; Yamada, Yasujiro

    2003-04-01

    In order to ensure the effectiveness of the international convention which will prohibit the use of organotin compounds in antifouling paints applied to ships, it is essential to establish an inspection system to determine the presence of the prohibited compounds in the paint. In the present study, a method for the identification of organotin containing antifouling paints using a two-stage analysis process is investigated. Firstly, X-ray fluorescence analysis (XRF) is utilized, which could be used at the place of ship surveys or port state control. Using a portable XRF instrument customized for ship inspection, analysis is automatically executed and determines whether tin is present or not. If the presence of tin is confirmed by XRF, the sample is subsequently examined at an analytical laboratory using more rigorous analytical techniques, such as gas chromatograph mass spectrometry (GC-MS). A sampling device has been designed. It is a disc of approximately 10 mm diameter and has abrasive paper pasted to one of its flat surfaces. The device is pressed onto and then slid along a ship hull to lightly scrape off fragments of paint onto the abrasive paper. Preliminary field tests have revealed that sampling from a ship in dock yields successful collection of the paint for XRD analysis and that the resultant damage caused to the antifouling paint surface by the sampling technique was found to be negligible.

  15. Antifouling Polymer Brushes Displaying Antithrombogenic Surface Properties.

    PubMed

    de los Santos Pereira, Andres; Sheikh, Sonia; Blaszykowski, Christophe; Pop-Georgievski, Ognen; Fedorov, Kiril; Thompson, Michael; Rodriguez-Emmenegger, Cesar

    2016-03-14

    The contact of blood with artificial materials generally leads to immediate protein adsorption (fouling), which mediates subsequent biological processes such as platelet adhesion and activation leading to thrombosis. Recent progress in the preparation of surfaces able to prevent protein fouling offers a potential avenue to mitigate this undesirable effect. In the present contribution, we have prepared several types of state-of-the-art antifouling polymer brushes on polycarbonate plastic substrate, and investigated their ability to prevent platelet adhesion and thrombus formation under dynamic flow conditions using human blood. Moreover, we compared the ability of such brushes--grafted on quartz via an adlayer analogous to that used on polycarbonate--to prevent protein adsorption from human blood plasma, assessed for the first time by means of an ultrahigh frequency acoustic wave sensor. Results show that the prevention of such a phenomenon constitutes one promising route toward enhanced resistance to thrombus formation, and suggest that antifouling polymer brushes could be of service in biomedical applications requiring extensive blood-material surface contact.

  16. Combining a photocatalyst with microtopography to develop effective antifouling materials.

    PubMed

    Vucko, M J; Poole, A J; Sexton, B A; Glenn, F L; Carl, C; Whalan, S; de Nys, R

    2013-01-01

    Polydimethylsiloxane surfaces textured with a square-wave linear grating profile (0, 20, 200, 300 and 600 μm), and embedded with a range of photocatalytic titanium dioxide (TiO2) nanoparticle loadings (3.75, 7.5, 11.25 and 15 wt.%), were used to test the combined efficacy of these technologies as antifouling materials. Settlement of the fouling bryozoan species Bugula neritina was quantified in the laboratory under two intensities of UV light. The lowest settlement rates were observed on 20 μm surfaces. However, texture effects were not as critical to larval settlement as the presence of TiO2. In conjunction with UV light, TiO2 completely inhibited larval metamorphosis even at the lowest loading (3.75 wt.%) and the lowest intensity of UV light (24 W m(-2)). Recruitment of B. neritina was also quantified in field trials and showed similar results to laboratory assays. The lowest recruitment was observed on 20 and 200 μm surfaces, with recruitment being significantly lower on all surfaces containing TiO2. Therefore for B. neritina, although all TiO2 loadings were effective, 3.75 wt.% can be used as a minimum inhibitory concentration to deter larval settlement and the addition of a 20 μm texture further increases the deterrent effect.

  17. Combining a photocatalyst with microtopography to develop effective antifouling materials.

    PubMed

    Vucko, M J; Poole, A J; Sexton, B A; Glenn, F L; Carl, C; Whalan, S; de Nys, R

    2013-01-01

    Polydimethylsiloxane surfaces textured with a square-wave linear grating profile (0, 20, 200, 300 and 600 μm), and embedded with a range of photocatalytic titanium dioxide (TiO2) nanoparticle loadings (3.75, 7.5, 11.25 and 15 wt.%), were used to test the combined efficacy of these technologies as antifouling materials. Settlement of the fouling bryozoan species Bugula neritina was quantified in the laboratory under two intensities of UV light. The lowest settlement rates were observed on 20 μm surfaces. However, texture effects were not as critical to larval settlement as the presence of TiO2. In conjunction with UV light, TiO2 completely inhibited larval metamorphosis even at the lowest loading (3.75 wt.%) and the lowest intensity of UV light (24 W m(-2)). Recruitment of B. neritina was also quantified in field trials and showed similar results to laboratory assays. The lowest recruitment was observed on 20 and 200 μm surfaces, with recruitment being significantly lower on all surfaces containing TiO2. Therefore for B. neritina, although all TiO2 loadings were effective, 3.75 wt.% can be used as a minimum inhibitory concentration to deter larval settlement and the addition of a 20 μm texture further increases the deterrent effect. PMID:23800308

  18. Microsomal detoxication enzyme responses of the marine snail, Thais haemastoma, to laboratory oil exposure

    SciTech Connect

    Livingstone, D.R.; Stickle, W.B.; Kapper, M.; Wang, S.

    1986-06-01

    The cytochrome P-450 monooxygenase or mixed function oxidase (MFO) system is a widely distributed enzyme system involved in the detoxication of foreign organic compounds (xenobiotics) taken up by organisms. Increases in the activities of the MFO system, occur with exposure of the organism to organic xenobiotics and such responses in the field have been proposed as a means of identifying biological impact by organic pollution. The carnivorous marine gastropod Thais haemastoma, or southern oyster drill, rapidly accumulated polynuclear aromatic and other hydrocarbons from the environment, through both the food source and the water-column. In laboratory experiments T. haemastoma were exposed to the water soluble fraction (WSF) of South Louisiana crude oil and the responses of the MFO system examined. Preliminary characterization of the snail MFO system was carried out using methodology developed from studies on the common mussel Mytilus edulis. Microsomal benz(a)pyrene hydroxylase (BPH), NADH- and NADPH- dependent cytochrome c reductase (NAD(P)H-CYTCRED) and NADH-dependent ferricyanide reductase (NADH-FERRIRED) activities were measured but it was not possible to determine cytochrome P-450 or b/sub 5/.

  19. Laboratory investigations of marine impact events: Factors influencing crater formation and projectile survivability

    NASA Astrophysics Data System (ADS)

    Milner, D. J.; Baldwin, E. C.; Burchell, M. J.

    2008-12-01

    Given that the Earth’s surface is covered in around two-thirds water, the majority of impact events should have occurred in marine environments. However, with the presence of a water layer, crater formation may be prohibited. Indeed, formation is greatly controlled by the water depth to projectile diameter ratio, as discussed in this paper. Previous work has shown that the underlying target material also influences crater formation (e.g., Gault and Sonett 1982; Baldwin et al. 2007). In addition to the above parameters we also show the influence of impact angle, impact velocity and projectile density for a variety of water depths on crater formation and projectile survivability. The limiting ratio of water depth to projectile diameter on cratering represents the point at which the projectile is significantly slowed by transit through the water layer to reduce the impact energy to that which prohibits cratering. We therefore study the velocity decay produced by a water layer using laboratory, analytical and numerical modelling techniques, and determine the peak pressures endured by the projectile. For an impact into a water depth five times the projectile diameter, the velocity of the projectile is found to be reduced to 26-32% its original value. For deep water impacts we find that up to 60% of the original mass of the projectile survives in an oblique impact, where survivability is defined as the solid or melted mass fraction of the projectile that could be collected after impact.

  20. The influence of marine microbial activities on aerosol production: A laboratory mesocosm study

    NASA Astrophysics Data System (ADS)

    Alpert, Peter A.; Kilthau, Wendy P.; Bothe, Dylan W.; Radway, JoAnn C.; Aller, Josephine Y.; Knopf, Daniel A.

    2015-09-01

    The oceans cover most of the Earth's surface, contain nearly half the total global primary biomass productivity, and are a major source of atmospheric aerosol particles. Here we experimentally investigate links between biological activity in seawater and sea spray aerosol (SSA) flux, a relationship of potential significance for organic aerosol loading and cloud formation over the oceans and thus for climate globally. Bubbles were generated in laboratory mesocosm experiments either by recirculating impinging water jets or glass frits. Experiments were conducted with Atlantic Ocean seawater collected off the eastern end of Long Island, NY, and with artificial seawater containing cultures of bacteria and phytoplankton Thalassiosira pseudonana, Emiliania huxleyi, and Nannochloris atomus. Changes in SSA size distributions occurred during all phases of bacterial and phytoplankton growth, as characterized by cell concentrations, dissolved organic carbon, total particulate carbon, and transparent exopolymer particles (gel-forming polysaccharides representing a major component of biogenic exudate material). Over a 2 week growth period, SSA particle concentrations increased by a factor of less than 2 when only bacteria were present and by a factor of about 3 when bacteria and phytoplankton were present. Production of jet-generated SSA particles of diameter less than 200 nm increased with time, while production of all particle diameters increased with time when frits were used. The implications of a marine biological activity dependent SSA flux are discussed.

  1. Field and laboratory studies of the etiology of liver neoplasms in marine fish from Puget Sound.

    PubMed Central

    Malins, D C; McCain, B B; Myers, M S; Brown, D W; Krahn, M M; Roubal, W T; Schiewe, M H; Landahl, J T; Chan, S L

    1987-01-01

    A series of field studies was conducted between 1979 and 1985 in Puget Sound, Washington State, to investigate etiological relationships between prevalences of hepatic neoplasms in bottom-dwelling marine fish species, with emphasis on English sole (Parophrys vetulus), and concentrations of toxic chemicals in sediments and affected fish. Statistically significant (p less than or equal to 0.05) correlations have been found between the prevalences of hepatic neoplasms in English sole and the following parameters: sediment concentrations of aromatic hydrocarbons, and concentrations of the metabolites of aromatic compounds in the bile of affected sole. A significant difference (p less than 0.001) was also found between the relative concentrations of aromatic free radicals in the liver microsomes of English sole with liver lesions compared to sole without liver lesions. Laboratory studies designed to evaluate the etiology of the liver neoplasms in English sole have also yielded evidence that is consistent with the view that high molecular weight aromatic hydrocarbons, e.g., benzo[a]pyrene (BaP), are hepatocarcinogens in English sole. The current status of a series of long-term (up to 18 months) exposures of English sole and rainbow trout (Salmo gairdneri) to selected fractions of Puget Sound sediment extracts, enriched with aromatic hydrocarbons and nitrogen-containing aromatic compounds, and to individual carcinogens (e.g., BaP) is discussed. Images FIGURE 6. FIGURE 7. FIGURE 8. FIGURE 9. FIGURE 10. FIGURE 11. FIGURE 12. PMID:3297664

  2. Partitioning of alcohol ethoxylates and polyethylene glycols in the marine environment: field samplings vs laboratory experiments.

    PubMed

    Traverso-Soto, Juan M; Brownawell, Bruce J; González-Mazo, Eduardo; Lara-Martín, Pablo A

    2014-08-15

    Nowadays, alcohol ethoxylates (AEOs) constitute the most important group of non-ionic surfactants, used in a wide range of applications such as household cleaners and detergents. Significant amounts of these compounds and their degradation products (polyethylene glycols, PEGs, which are also used for many other applications) reach aquatic environments, and are eliminated from the water column by degradation and sorption processes. This work deals with the environmental distribution of AEOs and PEGs in the Long Island Sound Estuary, a setting impacted by sewage discharges from New York City (NYC). The distribution of target compounds in seawater was influenced by tides, consistent with salinity differences, and concentrations in suspended solid samples ranged from 1.5 to 20.5 μg/g. The more hydrophobic AEOs were mostly attached to the particulate matter whereas the more polar PEGs were predominant in the dissolved form. Later, the sorption of these chemicals was characterized in the laboratory. Experimental and environmental sorption coefficients for AEOs and PEGs showed average values from 3607 to 164,994 L/kg and from 74 to 32,862 L/kg, respectively. The sorption data were fitted to a Freundlich isotherm model with parameters n and log KF between 0.8-1.2 and 1.46-4.39 L/kg, respectively. AEO and PEG sorptions on marine sediment were also found to be mostly not affected by changes in salinity. PMID:24887194

  3. The Marine Virtual Laboratory (version 2.1): enabling efficient ocean model configuration

    NASA Astrophysics Data System (ADS)

    Oke, Peter R.; Proctor, Roger; Rosebrock, Uwe; Brinkman, Richard; Cahill, Madeleine L.; Coghlan, Ian; Divakaran, Prasanth; Freeman, Justin; Pattiaratchi, Charitha; Roughan, Moninya; Sandery, Paul A.; Schaeffer, Amandine; Wijeratne, Sarath

    2016-09-01

    The technical steps involved in configuring a regional ocean model are analogous for all community models. All require the generation of a model grid, preparation and interpolation of topography, initial conditions, and forcing fields. Each task in configuring a regional ocean model is straightforward - but the process of downloading and reformatting data can be time-consuming. For an experienced modeller, the configuration of a new model domain can take as little as a few hours - but for an inexperienced modeller, it can take much longer. In pursuit of technical efficiency, the Australian ocean modelling community has developed the Web-based MARine Virtual Laboratory (WebMARVL). WebMARVL allows a user to quickly and easily configure an ocean general circulation or wave model through a simple interface, reducing the time to configure a regional model to a few minutes. Through WebMARVL, a user is prompted to define the basic options needed for a model configuration, including the model, run duration, spatial extent, and input data. Once all aspects of the configuration are selected, a series of data extraction, reprocessing, and repackaging services are run, and a "take-away bundle" is prepared for download. Building on the capabilities developed under Australia's Integrated Marine Observing System, WebMARVL also extracts all of the available observations for the chosen time-space domain. The user is able to download the take-away bundle and use it to run the model of his or her choice. Models supported by WebMARVL include three community ocean general circulation models and two community wave models. The model configuration from the take-away bundle is intended to be a starting point for scientific research. The user may subsequently refine the details of the model set-up to improve the model performance for the given application. In this study, WebMARVL is described along with a series of results from test cases comparing WebMARVL-configured models to observations

  4. Compounds with Antifouling Activities from the Roots of Notopterygium franchetii.

    PubMed

    Yu, Chun; Cheng, Liqing; Zhang, Zhongling; Zhang, Yu; Yuan, Chunmao; Liu, Weiwei; Hao, Xiaojiang; Ma, Weiguang; He, Hongping

    2015-12-01

    In antifouling screening, the extract of Notopterygium franchetii de Boiss showed obvious activity. Two new phenylpropanoids (1-2) and five known coumarins (3-7) were isolated from the methanol extract of the roots of this species. The structures of the isolated compounds were determined on the basis of spectroscopic analysis. Compounds 1-2 showed definite antifouling activity against larval settlement of Bugula neritina. PMID:26882679

  5. Shogaols from Zingiber officinale as promising antifouling agents.

    PubMed

    Etoh, Hideo; Kondoh, Takeyoshi; Noda, Rikoh; Singh, Inder Pal; Sekiwa, Yohko; Morimitsu, Kohjiro; Kubota, Kikue

    2002-08-01

    We isolated the highly potent attachment-inhibitors (three times more active than standard CuSO4 in the blue mussel assay), trans-6-, 8-, and 10-shogaols, from a hexane extract of the roots of ginger, Zingiber officinale Roscoe. Trans-8-shogaol showed the highest antifouling activity comparable with that of tributyltin fluoride (TBTF), which is recognized as one of the most effective antifouling agents, in the conventional submerged assay. PMID:12353640

  6. Bioinspired catecholic copolymers for antifouling surface coatings.

    PubMed

    Cho, Joon Hee; Shanmuganathan, Kadhiravan; Ellison, Christopher J

    2013-05-01

    We report here a synthetic approach to prepare poly(methyl methacrylate)-polydopamine diblock (PMMA-PDA) and triblock (PDA-PMMA-PDA) copolymers combining mussel-inspired catecholic oxidative chemistry and atom transfer radical polymerization (ATRP). These copolymers display very good solubility in a range of organic solvents and also a broad band photo absorbance that increases with increasing PDA content in the copolymer. Spin-cast thin films of the copolymer were stable in water and showed a sharp reduction (by up to 50%) in protein adsorption compared to those of neat PMMA. Also the peak decomposition temperature of the copolymers was up to 43°C higher than neat PMMA. The enhanced solvent processability, thermal stability and low protein adsorption characteristics of this copolymer makes it attractive for variety of applications including antifouling coatings on large surfaces such as ship hulls, buoys, and wave energy converters.

  7. Laboratory scale electrokinetic remediation and geophysical monitoring of metal-contaminated marine sediments

    NASA Astrophysics Data System (ADS)

    Masi, Matteo; Pazzi, Veronica; Losito, Gabriella

    2013-04-01

    Electrokinetic remediation is an emerging technology that can be used to remove contaminants from soils and sediments. This technique relies on the application of a low-intensity electric field to extract heavy metals, radionuclides and some organic compounds. When the electric field is applied three main transport processes occur in the porous medium: electromigration, electroosmosis and electrophoresis. Monitoring of electrokinetic processes in laboratory and field is usually conducted by means of point measurements and by collecting samples from discrete locations. Geophysical methods can be very effective in obtaining high spatial and temporal resolution mapping for an adequate control of the electrokinetic processes. This study investigates the suitability of electrokinetic remediation for extracting heavy metals from dredged marine sediments and the possibility of using geophysical methods to monitor the remediation process. Among the geophysical methods, the spectral induced polarization technique was selected because of its capability to provide valuable information about the physico-chemical characteristics of the porous medium. Electrokinetic remediation experiments in laboratory scale were made under different operating conditions, obtained by varying the strength of the applied electric field and the type of conditioning agent used at the electrode compartments in each experiment. Tap water, 0.1M citric acid and 0.1M ethylenediamine tetraacetic acid (EDTA) solutions were used respectively as processing fluids. Metal removal was relevant when EDTA was used as conditioning agent and the electric potential was increased, as these two factors promoted the electroosmotic flow which is considered to be the key transport mechanism. The removal efficiencies ranged from 9.5% to 27% depending on the contaminant concerned. These percentages are likely to be raised by a further increase of the applied electric field. Furthermore, spectral induced polarization

  8. The R/V Folger a Floating Laboratory: Teaching Marine Science Skills on Lake Champlain (Invited)

    NASA Astrophysics Data System (ADS)

    Manley, P.; Manley, T.

    2013-12-01

    Undergraduate senior work has been required at Middlebury College as far back as 1960's and hands-on experiential learning was and still is the mode for our geology courses. The history of Middlebury College having a research vessel started in the 1970's when Dave Folger started the marine component of our curriculum and obtained the first Middlebury College's research vessel - a coast guard rescue surf boat (Bruno Schmidt). The second Middlebury College research vessel, the R/V Baldwin was purchased in 1985 and was used exclusively in a river-like setting due to its open cockpit and minimal research equipment. In 1990, Middlebury College received a grant from NSF-MRI to upgrade the vessel, to a then state-of the-art small oceanographic vessel including new equipment (CTD, side-scan sonar, ROV, met station, coring devices, computers and navigation). Middlebury College contributed monies to enclose the wheelhouse, install safer diesel engines, as well as a winch and an A-frame to haul in equipment. Over 600+ students used the Baldwin in a variety of geology courses; mainly Oceanography and Marine Geology. In 2010, Middlebury College received an NSF -ARRA grant (American Recovery and Reinvestment Act) to replace the ailing R/V Baldwin with a floating state-of-the art laboratory with the specific goals of increasing 1) access to lake research for Middlebury faculty and students in the biological, chemical, and environmental sciences, 2) the scope of lake research by reducing transit times over this 100km long lake, 3) stability for broad-lake research, 4) improve and expand research capabilities on Lake Champlain, 5) the carrying capacity (both equipment and people), and 6) instructional capability and overnight capabilities. The newly built R/V Folger is a sophisticated research vessel with advanced capabilities that provides a greater capacity to the research infrastructure on Lake Champlain, enhancing interdisciplinary inquiry not only for Middlebury College, but

  9. Marine lake as in situ laboratory for studies of organic matter influence on speciation and distribution of trace metals

    NASA Astrophysics Data System (ADS)

    Mlakar, Marina; Fiket, Željka; Geček, Sunčana; Cukrov, Neven; Cuculić, Vlado

    2015-07-01

    Karst marine lakes are unique marine systems, also recognized as in situ "laboratories" in which geochemical processes on a different scale compared to the open sea, can be observed. In this study, organic matter cycle and its impact on distribution of trace metals in the marine lake Mir, located on Dugi Otok Island, in the central part of the eastern Adriatic Sea, was investigated for the first time. Studied marine lake is small, isolated, shallow basin, with limited communication with the open sea. Intense spatial and seasonal variations of organic matter, dissolved and particulate (DOC, POC), and dissolved trace metals concentrations in the water column of the Lake are governed predominantly by natural processes. Enhanced oxygen consumption in the Lake during summer season, high DOC and POC concentrations and low redox potential result in occasional occurrence of anoxic conditions in the bottom layers with appearance of sulfur species. Speciation modeling showed that dissolved trace metals Cu, Pb and Zn, are mostly bound to organic matter, while Cd, Co and Ni are present predominantly as free ions and inorganic complexes. Trace metals removal from the water column and their retention in the sediment was found to depend on the nature of the relationship between specific metal and organic or inorganic phases, sulfides, Fe-oxyhydroxydes or biogenic calcite. The above is reflected in the composition of the sediments, which are, in addition to influence of karstic background and bathymetry of the basin, significantly affected by accumulation of detritus at the bottom of the Lake.

  10. Synthesis and evaluation of polystyrene-polybutadiene-polystyrene-dodecafluoroheptyl methacrylate/polystyrene-polybutadiene-polystyrene hybrid antifouling coating.

    PubMed

    Li, Jiang; Wang, Guoqing; Ding, Chunhua; Jiang, Hong; Wang, Peiqing

    2014-11-15

    Copolymers SBS-DFHMA and mesoporous silica SBA-15 were respectively synthesized and SBS-DFHMA were mixed with SBA-15 to prepared hybrid antifouling coatings by a spin-coater. By measuring the surface water contact angle and the attachment of Pseudomonas fluorescens, Chlorella and Diatoms, the antifouling properties of coatings were evaluated. The results shown that the surface of hybrid coatings, the water contact angle arrived 120°, were more hydrophobic than the SBS-DFHMA coatings. In terms of resistance of adhesion, low surface energy coatings of SBS-DFHMA could effectively weaken the adhesion behavior of P.fluorescens and Diatoms, but the role to Chlorella was not obvious. When 0.01 g/ml SBA-15 was added, the adhesion of three marine microorganisms all had a very significant decrease to the hybrid coatings. These indicated that the fluorinated low surface energy antifouling coatings had limitation on resisting Chlorella attaching, and the addition of SBA-15 not only enhanced the ability of resistance to adhesion but also widen the applicability to more fouling and narrowed its limitations. This surprising effect was due to micro-nano convex structure of the coatings surface caused by hybrid. PMID:25170599

  11. Biofouling Growth in Cold Estuarine Waters and Evaluation of Some Chitosan and Copper Anti-Fouling Paints

    PubMed Central

    Pelletier, Émilien; Bonnet, Claudie; Lemarchand, Karine

    2009-01-01

    Ecological concerns about antifouling paints containing non-green tin and copper compounds have highlighted the need for environmentally friendly alternatives. We report here a field test conducted in estuarine waters over two months designed to evaluate the efficiency of a number of active natural and man-made chemical ingredients added into a silicon-polyurethane marine paint. Early steps of biofouling in cold seawater of the St. Lawrence Estuary (Canada) were observed. Analyses, including dry biomass, flow cytometry and spectrofluorimetry, demonstrated a short-term antibacterial action of chitosan-based paints although no significant anti-algal action was observed. Cuprous oxide paints were efficient against bacteria and algae invasion in the first two weeks, especially those with added organic biocides such as isothiazolone and copper pyrithione. However, the overall dry biomass and chlorophyll a content were similar for all chitosan-and copper-based paints after 63 days. Microscopic observations revealed variation in the highly diverse benthic diatom population including species Navicula, Melosira, Cocconeis, Nitshzcia, Fragilaria and Amphora. Results suggest no real long-term efficiency for tested antifouling paints and highlight a particular need for green antifouling ingredients that are active under northern estuarine conditions. PMID:19742133

  12. Analysis of the Essential Nutrient Strontium in Marine Aquariums by Atomic Absorption Spectroscopy: An Undergraduate Analytical Chemistry Laboratory Exercise

    NASA Astrophysics Data System (ADS)

    Gilles de Pelichy, Laurent D.; Adam, Carl; Smith, Eugene T.

    1997-10-01

    An undergraduate atomic absorption spectroscopy (AAS) laboratory experiment is presented involving the analysis of the essential nutrient strontium in a real-life sample, sea water. The quantitative analysis of strontium in sea water is a problem well suited for an undergraduate analytical chemistry laboratory. Sea water contains numerous components which prevent the direct quantitative determination of strontium. Students learn first hand about the role of interferences in analytical measurements, and about the method of standard addition which is used to minimize these effects. This laboratory exercise also introduces undergraduate students to practical problems associated with AAS. We encourage students as a part of this experiment to collect and analyze marine water samples from local pet shops.

  13. Trace Element Uptake in Marine Bivalve Shells Constraints from Field- and Laboratory Studies

    NASA Astrophysics Data System (ADS)

    Klünder, M.; Hippler, D.; Witbaard, R.; Frei, D.; Immenhauser, A.

    2006-12-01

    There is an increasing interest in the use of the trace element signatures recorded in calcium carbonate skeletons of marine organisms as archives of past and present environmental conditions, such as temperature, salinity or nutrition level. Because of their global occurrence in the modern and ancient oceans, the trace element chemistry of bivalve shells might be used as a potential proxy for present and past environmental conditions. If the composition of bivalve shells, for instance, can be shown to represent the environment in which they lived, then shells can be used to investigate conditions in the lifetime of the animal. And as the shell material is sequentially deposited, an understanding of the internal shell structure will enable time- resolution of the analyses. Therefore, the trace element signature of bivalve shells may provide an important record of climate changes and global geochemical cycles. One of the difficulties of using the trace element signatures of bivalve shells as proxies for environmental conditions is that little is known about the mechanisms by which the trace elements are incorporated into the shells. There has been quite an amount of research into the use of bivalve shell chemistry as proxy for one or more environmental parameters, but there are relatively few datasets in which both bivalve shells and the water in which the animals lived have been analysed. It is as yet not clear to what extent the trace element incorporation into bivalve shells is governed by biological processes, like growth rate and metabolism of the animals, or by physical and crystal chemical parameters. An added difficulty is that the existing data do suggest that trace element uptake in bivalve shells may be species specific. Therefore, studies that investigate the relationships between the content of these elements in the shells and the ambient water and the possible incorporation mechanisms are needed if the potential that bivalve shells offer as

  14. Low-Toxicity Diindol-3-ylmethanes as Potent Antifouling Compounds.

    PubMed

    Wang, Kai-Ling; Xu, Ying; Lu, Liang; Li, Yongxin; Han, Zhuang; Zhang, Jun; Shao, Chang-Lun; Wang, Chang-Yun; Qian, Pei-Yuan

    2015-10-01

    In the present study, eight natural products that belonged to di(1H-indol-3-yl)methane (DIM) family were isolated from Pseudovibrio denitrificans UST4-50 and tested for their antifouling activity against larval settlement (including both attachment and metamorphosis) of the barnacle Balanus (=Amphibalanus) amphitrite and the bryozoan Bugula neritina. All diindol-3-ylmethanes (DIMs) showed moderate to strong inhibitory effects against larval settlement of B. amphitrite with EC50 values ranging from 18.57 to 1.86 μM and could be considered as low-toxicity antifouling compounds since their LC50/EC50 ratios were larger than 15. Furthermore, the DIM- and 4-(di(1H-indol-3-yl)methyl)phenol (DIM-Ph-4-OH)-treated larvae completed normal settlement when they were transferred to clean seawater after being exposed to those compounds for 24 h. DIM also showed comparable antifouling performance to the commercial antifouling biocide Sea-Nine 211(™) in the field test over a period of 5 months, which further confirmed that DIMs can be considered as promising candidates of environmentally friendly antifouling compounds.

  15. Low-Toxicity Diindol-3-ylmethanes as Potent Antifouling Compounds.

    PubMed

    Wang, Kai-Ling; Xu, Ying; Lu, Liang; Li, Yongxin; Han, Zhuang; Zhang, Jun; Shao, Chang-Lun; Wang, Chang-Yun; Qian, Pei-Yuan

    2015-10-01

    In the present study, eight natural products that belonged to di(1H-indol-3-yl)methane (DIM) family were isolated from Pseudovibrio denitrificans UST4-50 and tested for their antifouling activity against larval settlement (including both attachment and metamorphosis) of the barnacle Balanus (=Amphibalanus) amphitrite and the bryozoan Bugula neritina. All diindol-3-ylmethanes (DIMs) showed moderate to strong inhibitory effects against larval settlement of B. amphitrite with EC50 values ranging from 18.57 to 1.86 μM and could be considered as low-toxicity antifouling compounds since their LC50/EC50 ratios were larger than 15. Furthermore, the DIM- and 4-(di(1H-indol-3-yl)methyl)phenol (DIM-Ph-4-OH)-treated larvae completed normal settlement when they were transferred to clean seawater after being exposed to those compounds for 24 h. DIM also showed comparable antifouling performance to the commercial antifouling biocide Sea-Nine 211(™) in the field test over a period of 5 months, which further confirmed that DIMs can be considered as promising candidates of environmentally friendly antifouling compounds. PMID:26239187

  16. Marine Isonitriles and Their Related Compounds

    PubMed Central

    Emsermann, Jens; Kauhl, Ulrich; Opatz, Till

    2016-01-01

    Marine isonitriles represent the largest group of natural products carrying the remarkable isocyanide moiety. Together with marine isothiocyanates and formamides, which originate from the same biosynthetic pathways, they offer diverse biological activities and in spite of their exotic nature they may constitute potential lead structures for pharmaceutical development. Among other biological activities, several marine isonitriles show antimalarial, antitubercular, antifouling and antiplasmodial effects. In contrast to terrestrial isonitriles, which are mostly derived from α-amino acids, the vast majority of marine representatives are of terpenoid origin. An overview of all known marine isonitriles and their congeners will be given and their biological and chemical aspects will be discussed. PMID:26784208

  17. Use of a Marine Vertebrate, the Flounder, in the Physiology Teaching Laboratory

    ERIC Educational Resources Information Center

    Bruce, David S.; Linden, Donald G.

    1973-01-01

    Describes two experiments in physiology using a readily available marine vertebrate, the flounder. Representative results are presented from experiments which measure the effect of excess potassium on the flounder EKG, and the effect of temperature on heart rate of the starry flounder. (JR)

  18. How to Make a Field Trip a Hands-On Investigative Laboratory: Learning about Marine Invertebrates

    ERIC Educational Resources Information Center

    Burrowes, Patricia A.

    2007-01-01

    Research has shown that when students are given the opportunity to ask their own questions and design their own experiments, they become more interested in learning the answers. In this article, the author describes an effective method to do a field trip to the beach and gets her students to make observations about marine animals, come up with a…

  19. Characterization of self-generated variants in Pseudoalteromonas lipolytica biofilm with increased antifouling activities.

    PubMed

    Zeng, Zhenshun; Guo, Xing-Pan; Li, Baiyuan; Wang, Pengxia; Cai, Xingsheng; Tian, Xinpeng; Zhang, Si; Yang, Jin-Long; Wang, Xiaoxue

    2015-12-01

    Pseudoalteromonas is widespread in various marine environments, and most strains can affect invertebrate larval settlement and metamorphosis by forming biofilms. However, the impact and the molecular basis of population diversification occurring in Pseudoalteromonas biofilms are poorly understood. Here, we show that morphological diversification is prevalent in Pseudoalteromonas species during biofilm formation. Two types of genetic variants, wrinkled (frequency of 12±5%) and translucent (frequency of 5±3%), were found in Pseudoalteromonas lipolytica biofilms. The inducing activities of biofilms formed by the two variants on larval settlement and metamorphosis of the mussel Mytilus coruscus were significantly decreased, suggesting strong antifouling activities. Using whole-genome re-sequencing combined with genetic manipulation, two genes were identified to be responsible for the morphology alternations. A nonsense mutation in AT00_08765 led to a wrinkled morphology due to the overproduction of cellulose, whereas a point mutation in AT00_17125 led to a translucent morphology via a reduction in capsular polysaccharide production. Taken together, the results suggest that the microbial behavior on larval settlement and metamorphosis in marine environment could be affected by the self-generated variants generated during the formation of marine biofilms, thereby rendering potential application in biocontrol of marine biofouling.

  20. Occurrence and distribution of antifouling biocide Irgarol-1051 in coastal waters of Peninsular Malaysia.

    PubMed

    Ali, Hassan Rashid; Arifin, Marinah Mohd; Sheikh, Mohammed Ali; Mohamed Shazili, Noor Azhar; Bachok, Zainudin

    2013-05-15

    Emerging booster biocides contamination raises particular attention in the marine ecosystem health. This study provides the baseline data on the occurrence of Irgarol-1051 (2-methylthio-4-tert-butylamino-6-cyclopropylamiono-s-triazine) in the selected coastal water around Malaysia. The maximum detected concentration of Irgarol was 2021 ng/L at Klang West, commercial and cargo port. Coral reef Islands (Redang and Bidong) were relatively less contaminated compared to other coastal areas. The temporal variation revealed that only 1% of 28 stations sampled on November, 2011 was above the environmental risk limit of 24 ng/L as suggested by Dutch Authorities, while in January and April, 2012; 46% and 92% of the stations were above the limit respectively. The present findings demonstrate the wide detection of novel antifouling materials Irgarol-1051 which advocates the need for proper monitoring and conservation strategies for the coastal resources. PMID:23490347

  1. The impact of marine surface organic enrichment on the measured hygroscopicity parameter of laboratory generated sea-spray aerosols

    NASA Astrophysics Data System (ADS)

    Schill, S.; Novak, G.; Zimmermann, K.; Bertram, T. H.

    2014-12-01

    The ocean serves as a major source for atmospheric aerosol particles, yet the chemicophysical properties of sea spray aerosol to date are not well characterized. Understanding the transfer of organic compounds, present in the sea surface microlayer (SSML), to sea-spray particles and their resulting impact on cloud formation is important for predicting aerosol impact on climate in remote marine environments. Here, we present a series of laboratory experiments designed to probe the fractionation of select organic molecules during wave breaking. We use a representative set of organic mimics (e.g. sterols, sugars, lipids, proteins, fatty acids) to test a recent physically based model of organic enrichment in sea-spray aerosol [Burrows et al., 2014] that is based on Langmuir absorption equilibria. Experiments were conducted in the UCSD Marine Aerosol Reference Tank (MART) permitting accurate representation of wave breaking processes in the laboratory. We report kappa values for the resulting sea-spray aerosols and compare them to a predictions made using Kappa-Köhler Theory driven by a linear combination of the pure component kappa values. Hygroscopicity determinations made using the model systems are discussed within the context of measurements of CCN activity made using natural, coastal water.

  2. Polycyclovorans algicola gen. nov., sp. nov., an aromatic-hydrocarbon-degrading marine bacterium found associated with laboratory cultures of marine phytoplankton.

    PubMed

    Gutierrez, Tony; Green, David H; Nichols, Peter D; Whitman, William B; Semple, Kirk T; Aitken, Michael D

    2013-01-01

    A strictly aerobic, halotolerant, rod-shaped bacterium, designated strain TG408, was isolated from a laboratory culture of the marine diatom Skeletonema costatum (CCAP1077/1C) by enrichment with polycyclic aromatic hydrocarbons (PAHs) as the sole carbon source. 16S rRNA gene sequence analysis placed this organism within the order Xanthomonadales of the class Gammaproteobacteria. Its closest relatives included representatives of the Hydrocarboniphaga-Nevskia-Sinobacter clade (<92% sequence similarity) in the family Sinobacteraceae. The strain exhibited a narrow nutritional spectrum, preferring to utilize aliphatic and aromatic hydrocarbon compounds and small organic acids. Notably, it displayed versatility in degrading two- and three-ring PAHs. Moreover, catechol 2,3-dioxygenase activity was detected in lysates, indicating that this strain utilizes the meta-cleavage pathway for aromatic compound degradation. Cells produced surface blebs and contained a single polar flagellum. The predominant isoprenoid quinone of strain TG408 was Q-8, and the dominant fatty acids were C(16:0), C(16:1) ω7c, and C(18:1) ω7c. The G+C content of the isolate's DNA was 64.3 mol% ± 0.34 mol%. On the basis of distinct phenotypic and genotypic characteristics, strain TG408 represents a novel genus and species in the class Gammaproteobacteria for which the name Polycyclovorans algicola gen. nov., sp. nov., is proposed. Quantitative PCR primers targeting the 16S rRNA gene of this strain were developed and used to show that this organism is found associated with other species of marine phytoplankton. Phytoplankton may be a natural biotope in the ocean where new species of hydrocarbon-degrading bacteria await discovery and which contribute significantly to natural remediation processes. PMID:23087039

  3. New hybrid materials based on poly(ethyleneoxide)-grafted polysilazane by hydrosilylation and their anti-fouling activities

    PubMed Central

    Perrin, François-Xavier; Nguyen, Dinh Lam

    2013-01-01

    Summary The objective of this work was to develop new coating materials based on poly(ethyleneoxide) (PEO), which was grafted onto polysilazane (PSZ) by hydrosilylation. Three types of PEO with different molecular weights (350, 750, 2000 g/mol) were studied. The kinetics and yields of this reaction have been surveyed by 1H and 13C NMR spectroscopy. The PEO grafting-density onto PSZ by hydrosilylation increases with a reduction of the S–H/allyl ratio and a decrease of the PEO chain-length. The PEO-graft-PSZ (PSZ-PEO) hybrid coatings, which can be used to prevent the adhesion of marine bacteria on surfaces, were applied by moisture curing at room temperature. The anti-adhesion performance, and thus the anti-fouling activity, of the coatings against three marine bacteria species, Clostridium sp. SR1, Neisseria sp. LC1 and Neisseria sp. SC1, was examined. The anti-fouling activity of the coatings depends on the grafting density and the chain length of PEO. The shortest PEO(350 g/mol)-graft-PSZ with the highest graft density was found to have the best anti-fouling activity. As the density of grafted PEO(750 g/mol) and PEO(2000 g/mol) chains onto the PSZ surface is approximately equal, the relative effectiveness of these two types of PEO is controlled by the length of the PEO chain. The PEO(2000 g/mol)-graft-PSZ coatings are more efficient than the PEO(750 g/mol)-graft-PSZ coatings for the bacterial anti-adhesion. PMID:24205462

  4. Spectral measurements of ocean-dumped wastes tested in the marine upwelled spectral signature laboratory

    NASA Technical Reports Server (NTRS)

    Witte, W. G.; Usry, J. W.; Whitlock, C. H.; Gurganus, E. A.

    1979-01-01

    Transmission and inherent upwelled radiance measurements were made of various mixtures of three ocean-dumped industrial plant wastes in artificial seawater. Laboratory analyses were made of the physical and chemical properties of the various mixtures. These results and the laboratory measurements of beam attenuation and inherent upwelled radiance indicate a variety of chemical and spectral responses when industrial wastes are added to artificial seawater. In particular, increased levels of turbidity did not always cause increased levels of inherent reflectance.

  5. Pseudoalteromonas spp. serve as initial bacterial attractants in mesocosms of coastal waters but have subsequent antifouling capacity in mesocosms and when embedded in paint.

    PubMed

    Bernbom, Nete; Ng, Yoke Yin; Olsen, Stefan Møller; Gram, Lone

    2013-11-01

    The purpose of the present study was to determine if the monoculture antifouling effect of several pigmented pseudoalteromonads was retained in in vitro mesocosm systems using natural coastal seawater and when the bacteria were embedded in paint used on surfaces submerged in coastal waters. Pseudoalteromonas piscicida survived on a steel surface and retained antifouling activity for at least 53 days in sterile seawater, whereas P. tunicata survived and had antifouling activity for only 1 week. However, during the first week, all Pseudoalteromonas strains facilitated rather than prevented bacterial attachment when used to coat stainless steel surfaces and submerged in mesocosms with natural seawater. The bacterial density on surfaces coated with sterile growth medium was 10(5) cells/cm(2) after 7 days, whereas counts on surfaces precoated with Pseudoalteromonas were significantly higher, at 10(6) to 10(8) cells/cm(2). However, after 53 days, seven of eight Pseudoalteromonas strains had reduced total bacterial adhesion compared to the control. P. piscicida, P. antarctica, and P. ulvae remained on the surface, at levels similar to those in the initial coating, whereas P. tunicata could not be detected. Larger fouling organisms were observed on all plates precoated with Pseudoalteromonas; however, plates coated only with sterile growth medium were dominated by a bacterial biofilm. Suspensions of a P. piscicida strain and a P. tunicata strain were incorporated into ship paints (Hempasil x3 87500 and Hempasil 77500) used on plates that were placed at the Hempel A/S test site in Jyllinge Harbor. For the first 4 months, no differences were observed between control plates and treated plates, but after 5 to 6 months, the control plates were more fouled than the plates with pseudoalteromonad-based paint. Our study demonstrates that no single laboratory assay can predict antifouling effects and that a combination of laboratory and real-life methods must be used to determine

  6. A New Laboratory Radio Frequency Identification (RFID) System for Behavioural Tracking of Marine Organisms

    PubMed Central

    Aguzzi, Jacopo; Sbragaglia, Valerio; Sarriá, David; García, José Antonio; Costa, Corrado; del Río, Joaquín; Mànuel, Antoni; Menesatti, Paolo; Sardà, Francesc

    2011-01-01

    Radio frequency identification (RFID) devices are currently used to quantify several traits of animal behaviour with potential applications for the study of marine organisms. To date, behavioural studies with marine organisms are rare because of the technical difficulty of propagating radio waves within the saltwater medium. We present a novel RFID tracking system to study the burrowing behaviour of a valuable fishery resource, the Norway lobster (Nephrops norvegicus L.). The system consists of a network of six controllers, each handling a group of seven antennas. That network was placed below a microcosm tank that recreated important features typical of Nephrops’ grounds, such as the presence of multiple burrows. The animals carried a passive transponder attached to their telson, operating at 13.56 MHz. The tracking system was implemented to concurrently report the behaviour of up to three individuals, in terms of their travelled distances in a specified unit of time and their preferential positioning within the antenna network. To do so, the controllers worked in parallel to send the antenna data to a computer via a USB connection. The tracking accuracy of the system was evaluated by concurrently recording the animals’ behaviour with automated video imaging. During the two experiments, each lasting approximately one week, two different groups of three animals each showed a variable burrow occupancy and a nocturnal displacement under a standard photoperiod regime (12 h light:12 h dark), measured using the RFID method. Similar results were obtained with the video imaging. Our implemented RFID system was therefore capable of efficiently tracking the tested organisms and has a good potential for use on a wide variety of other marine organisms of commercial, aquaculture, and ecological interest. PMID:22163710

  7. A new laboratory radio frequency identification (RFID) system for behavioural tracking of marine organisms.

    PubMed

    Aguzzi, Jacopo; Sbragaglia, Valerio; Sarriá, David; García, José Antonio; Costa, Corrado; del Río, Joaquín; Mànuel, Antoni; Menesatti, Paolo; Sardà, Francesc

    2011-01-01

    Radio frequency identification (RFID) devices are currently used to quantify several traits of animal behaviour with potential applications for the study of marine organisms. To date, behavioural studies with marine organisms are rare because of the technical difficulty of propagating radio waves within the saltwater medium. We present a novel RFID tracking system to study the burrowing behaviour of a valuable fishery resource, the Norway lobster (Nephrops norvegicus L.). The system consists of a network of six controllers, each handling a group of seven antennas. That network was placed below a microcosm tank that recreated important features typical of Nephrops' grounds, such as the presence of multiple burrows. The animals carried a passive transponder attached to their telson, operating at 13.56 MHz. The tracking system was implemented to concurrently report the behaviour of up to three individuals, in terms of their travelled distances in a specified unit of time and their preferential positioning within the antenna network. To do so, the controllers worked in parallel to send the antenna data to a computer via a USB connection. The tracking accuracy of the system was evaluated by concurrently recording the animals' behaviour with automated video imaging. During the two experiments, each lasting approximately one week, two different groups of three animals each showed a variable burrow occupancy and a nocturnal displacement under a standard photoperiod regime (12 h light:12 h dark), measured using the RFID method. Similar results were obtained with the video imaging. Our implemented RFID system was therefore capable of efficiently tracking the tested organisms and has a good potential for use on a wide variety of other marine organisms of commercial, aquaculture, and ecological interest.

  8. Antiparasitic, Nematicidal and Antifouling Constituents from Juniperus Berries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A bioassay-guided fractionation of Juniperus procera berries yielded antiparasitic, nematicidal and antifouling constituents, including a wide range of known abietane, pimarane and labdane diterpenes. Among these, abieta-7,13-diene (1) demonstrated in vitro antimalarial activity against Plasmodium f...

  9. Comparative efficiency of macroalgal extracts and booster biocides as antifouling agents to control growth of three diatom species.

    PubMed

    Silkina, Alla; Bazes, Alexandra; Mouget, Jean-Luc; Bourgougnon, Nathalie

    2012-10-01

    The application of 'booster biocides' Diuron, Tolylfluanid and Copper thiocyanate inbantifouling paints, used to prevent development of biofouling, needs to be monitored before assessing their impacts on the environment. An alternative approach aims to propose eco-friendly and effective antifoulants isolated from marine organisms such as seaweeds. In this study, the effects of 'booster biocides' and the ethanol and dichloromethane extracts from a brown (Sargassum muticum) and a red alga (Ceramium botryocarpum) have been compared by algal growth inhibition tests of marine diatoms. The most efficient extracts were ethanol fraction of S. muticum and C. botryocarpum extracts with growth EC(50)=4.74 and 5.3μg mL(-1) respectively, with reversible diatom growth effect. The booster biocides are more efficient EC(50)=0.52μg mL(-1), but are highly toxic. Results validate the use of macroalgal extracts as non toxic antifouling compounds, and they represent valuable environmentally friendly alternatives in comparison with currently used biocides. PMID:22853990

  10. Reprotoxicity of the Antifoulant Chlorothalonil in Ascidians: An Ecological Risk Assessment

    PubMed Central

    Gallo, Alessandra; Tosti, Elisabetta

    2015-01-01

    Chlorothalonil is a widely used biocide in antifouling paint formulation that replaces tin-based compounds after their definitive ban. Although chlorothalonil inputs into the marine environment have significantly increased in recent years, little is known about its effect on marine animals and in particular on their reproductive processes. In this line, the aim of the present study was to investigate the effects of chlorothalonil exposure on the gamete physiology, fertilization rate and transmissible damage to offspring in the marine invertebrate Ciona intestinalis (ascidians). To identify a possible mechanism of action of chlorothalonil, electrophysiological techniques were used to study the impact on oocyte membrane excitability and on the electrical events occurring at fertilization. The pre-exposure of spermatozoa and oocytes to chlorothalonil did not affect the fertilization rate but caused damage to the offspring by inducing larval malformation. The highest toxicity was observed when fertilization was performed in chlorothalonil solutions with the lowest EC50 value. In particular, it was observed that low chlorothalonil concentrations interfered with embryo development and led to abnormal larvae, whereas high concentrations arrested embryo formation. In mature oocytes, a decrease in the amplitudes of the sodium and fertilization currents was observed, suggesting an involvement of plasma membrane ion currents in the teratogenic mechanism of chlorothalonil action. The risk estimation confirmed that the predicted no-effect concentration (PNEC) exceeded the predicted effect concentration (PEC), thus indicating that chlorothalonil may pose a risk to aquatic species. PMID:25875759

  11. Occurrence and distribution of antifouling biocide Irgarol-1051 in coral reef ecosystems, Zanzibar.

    PubMed

    Sheikh, Mohammed A; Juma, Fatma S; Staehr, Peter; Dahl, Karsten; Rashid, Rashid J; Mohammed, Mohammed S; Ussi, Ali M; Ali, Hassan R

    2016-08-15

    2-methythiol-4-tert-butylamino-6-cyclopropylamino-s-triazine (Irgarol-1051) has been widely used as effective alternative antifouling paint in marine structures including ships. However, it has been causing deleterious effects to marine organisms including reef building corals. The main objective of this study was to establish baseline levels of Irgarol-1051 around coral reefs and nearby ecosystems along coastline of Zanzibar Island. The levels of Irgarol-1051 ranged from 1.35ng/L around coral reefs to 15.44ng/L around harbor with average concentration of 4.11 (mean)±0.57 (SD) ng/L. This is below Environmental Risk Limit of 24ng/L as proposed by Dutch Authorities which suggests that the contamination is not alarming especially for coral reef ecosystem health. The main possible sources of the contamination are from shipping activities. This paper provides important baseline information of Irgarol-1051 around the coral reef ecosystems within the Western Indian Ocean (WIO) region and may be useful for formulation of marine conservation strategies and policies. PMID:27234364

  12. Marine biofouling resistance of polyurethane with biodegradation and hydrolyzation.

    PubMed

    Xu, Wentao; Ma, Chunfeng; Ma, Jielin; Gan, Tiansheng; Zhang, Guangzhao

    2014-03-26

    We have prepared polyurethane with poly(ε-caprolactone) (PCL) as the segments of the main chain and poly(triisopropylsilyl acrylate) (PTIPSA) as the side chains by a combination of radical polymerization and a condensation reaction. Quartz crystal microbalance with dissipation studies show that polyurethane can degrade in the presence of enzyme and the degradation rate decreases with the PTIPSA content. Our studies also demonstrate that polyurethane is able to hydrolyze in artificial seawater and the hydrolysis rate increases as the PTIPSA content increases. Moreover, hydrolysis leads to a hydrophilic surface that is favorable to reduction of the frictional drag under dynamic conditions. Marine field tests reveal that polyurethane has good antifouling ability because polyurethane with a biodegradable PCL main chain and hydrolyzable PTIPSA side chains can form a self-renewal surface. Polyurethane was also used to carry and release a relatively environmentally friendly antifoulant, and the combined system exhibits a much higher antifouling performance even in a static marine environment.

  13. Long-term changes in Prosobranchia (Gastropoda) abundances on the German North Sea coast: the role of the anti-fouling biocide tributyltin

    NASA Astrophysics Data System (ADS)

    Nehring, S.

    2000-05-01

    Tributyltin (TBT) has been used as a biocide in marine anti-fouling paints since the early 1970s. Due to its strong ecotoxicity and the relatively high levels in the water column as well as in port sediments on the German North Sea coast, it probably has negative ecological effects on organisms other than those targeted. An analysis of the long-term development of prosobranch stocks in the inner German Bight reveals a decrease in abundance of many species. For most species the decline cannot be attributed to TBT, but in four prosobranch species ( Buccinum undatum, Hydrobia ulvae, Littorina littorea and Nucella lapillus) significant ecological effects by TBT pollution are very probable. Although research for alternative non-TBT anti-fouling paints (e.g. biocide-free types on the basis of silicone) has been intensified, the potential threats to ecosystems and the ecotoxicological profiles of these alternatives have to be carefully evaluated.

  14. Diketopiperazines from marine organisms.

    PubMed

    Huang, Riming; Zhou, Xuefeng; Xu, Tunhai; Yang, Xianwen; Liu, Yonghong

    2010-12-01

    Diketopiperazines (DKPs), which are cyclic dipeptides, have been detected in a variety of natural resources. Recently, the interest in these compounds increased significantly because of their remarkable bioactivity. This review deals with the chemical structures, biosynthetic pathways, and biological activities of DKPs from marine microorganisms, sponges, sea stars, tunicates (ascidians), and red algae. The literature has been covered up to December 2008, and a total 124 DKPs from 104 publications have been discussed and reviewed. Some of these compounds have been found to possess various bioactivities including cytotoxicity, and antibacterial, antifungal, antifouling, plant-growth regulatory, and other activities.

  15. Addressing the ice nucleating abilities of marine aerosol: A combination of deposition mode laboratory and field measurements

    NASA Astrophysics Data System (ADS)

    Ladino, L. A.; Yakobi-Hancock, J. D.; Kilthau, W. P.; Mason, R. H.; Si, M.; Li, J.; Miller, L. A.; Schiller, C. L.; Huffman, J. A.; Aller, J. Y.; Knopf, D. A.; Bertram, A. K.; Abbatt, J. P. D.

    2016-05-01

    This study addresses, through two types of experiments, the potential for the oceans to act as a source of atmospheric ice-nucleating particles (INPs). The INP concentration via deposition mode nucleation was measured in situ at a coastal site in British Columbia in August 2013. The INP concentration at conditions relevant to cirrus clouds (i.e., -40 °C and relative humidity with respect to ice, RHice = 139%) ranged from 0.2 L-1 to 3.3 L-1. Correlations of the INP concentrations with levels of anthropogenic tracers (i.e., CO, SO2, NOx, and black carbon) and numbers of fluorescent particles do not indicate a significant influence from anthropogenic sources or submicron bioaerosols, respectively. Additionally, the INPs measured in the deposition mode showed a poor correlation with the concentration of particles with sizes larger than 500 nm, which is in contrast with observations made in the immersion freezing mode. To investigate the nature of particles that could have acted as deposition INP, laboratory experiments with potential marine aerosol particles were conducted under the ice-nucleating conditions used in the field. At -40 °C, no deposition activity was observed with salt aerosol particles (sodium chloride and two forms of commercial sea salt: Sigma-Aldrich and Instant Ocean), particles composed of a commercial source of natural organic matter (Suwannee River humic material), or particle mixtures of sea salt and humic material. In contrast, exudates from three phytoplankton (Thalassiosira pseudonana, Nanochloris atomus, and Emiliania huxleyi) and one marine bacterium (Vibrio harveyi) exhibited INP activity at low RHice values, down to below 110%. This suggests that the INPs measured at the field site were of marine biological origins, although we cannot rule out other sources, including mineral dust.

  16. Ultraviolet radiation affects emission of ozone-depleting substances by marine macroalgae: results from a laboratory incubation study.

    PubMed

    Laturnus, Frank; Svensson, Teresia; Wiencke, Christian; Oberg, Gunilla

    2004-12-15

    The depletion of stratospheric ozone due to the effects of ozone-depleting substances, such as volatile organohalogens, emitted into the atmosphere from industrial and natural sources has increased the amount of ultraviolet radiation reaching the earth's surface. Especially in the subpolar and polar regions, where stratospheric ozone destruction is the highest, individual organisms and whole ecosystems can be affected. In a laboratory study, several species of marine macroalgae occurring in the polar and northern temperate regions were exposed to elevated levels of ultraviolet radiation. Most of the macroalgae released significantly more chloroform, bromoform, dibromomethane, and methyl iodide-all volatile organohalogens. Calculating on the basis of the release of total chlorine, bromine, and iodine revealed that, except for two macroalgae emitting chlorine and one alga emitting iodine, exposure to ultraviolet radiation caused macroalgae to emit significantly more total chlorine, bromine, and iodine. Increasing levels of ultraviolet radiation due to possible further destruction of the stratospheric ozone layer as a result of ongoing global atmospheric warming may thus increase the future importance of marine macroalgae as a source for the global occurrence of reactive halogen-containing compounds.

  17. Recreation of Marine Atmospheric Corrosion Condition on Weathering Steel in Laboratory

    NASA Astrophysics Data System (ADS)

    Guchhait, S. K.; Dewan, S.; Saha, J. K.; Mitra, P. K.

    2014-04-01

    Salt spray test, autoclave corrosion test, SO2 salt spray test, and Relative humidity test are generally used to assess atmospheric corrosion in laboratories at accelerated rates. However, no test can absolutely simulate the service condition. One can get only approximate corrosion rates using the aforesaid tests which serve as an indicative of corrosion behavior of the material in a service condition. The present work is aimed at creating specific environmental condition in laboratory to get the corrosion test done in short duration to compare with on field exposure test which would otherwise take years to complete. In this work recreation of atmospheric environment of Digha was tried and it was simulated in such a manner that the results of laboratory test could be compared with long time field exposure at Digha. Weathering steel (WS) was taken for experimentations. Potentiostatic electrochemical tests route was adopted to simulate atmospheric condition of Digha. Laboratory test results compared well with 18 month field exposure data in terms of corrosion rate, SEM and Ramon Spectroscopy matching.

  18. Phytochelatin production by marine phytoplankton at low free metal ion concentrations: laboratory studies and field data from Massachusetts Bay.

    PubMed

    Ahner, B A; Price, N M; Morel, F M

    1994-08-30

    Phytochelatins are small metal-binding polypeptides synthesized by algae in response to high metal concentrations. Using a very sensitive HPLC method, we have quantified phytochelatins from phytoplankton in laboratory cultures at environmentally relevant metal concentrations and in marine field samples. Intracellular concentrations of phytochelatin, in the diatom Thalassiosira weissflogii, exhibit a distinct dose-response relation with free Cd2+ concentration in the medium--not with total Cd(2+)--and are detectable even when the free Cd2+ concentration is less than 1 pM. In Massachusetts Bay, phytochelatin levels (normalized to chlorophyll a) in the particulate fraction are similar to those measured in laboratory cultures exposed to picomolar free Cd2+ concentrations and exhibit a decreasing seaward trend. Incubations of natural samples with added Cd2+ confirmed the induction of the peptides by this metal. Ambient phytochelatin concentrations thus appear to provide a measure of the metal stress resulting from the complex mixture of trace metals and chelators in natural waters. PMID:8078899

  19. Embryotoxicity of the antifouling biocide zinc pyrithione to sea urchin (Paracentrotus lividus) and mussel (Mytilus edulis).

    PubMed

    Bellas, Juan; Granmo, Ke; Beiras, Ricardo

    2005-11-01

    The effects of the new antifouling compound zinc pyrithione (Zpt) on the embryonic development of sea urchin (Paracentrotus lividus) and mussel (Mytilus edulis) were investigated in laboratory toxicity tests. The median effective concentrations (EC50) were 7.7 nM for sea urchin embryos and 8 nM for mussel embryos. Toxic effects of Zpt on the larval growth of the sea urchin were detected at 0.5 nM. Predicted environmental concentrations of Zpt in pleasure craft harbours are higher than the predicted no effect concentrations for sea urchin and mussel embryos, indicating that Zpt may pose a threat to those species from exposure in the field. PMID:16023145

  20. Toxicological effects of cypermethrin to marine phytoplankton in a co-culture system under laboratory conditions.

    PubMed

    Wang, Zhao-Hui; Nie, Xiang-Ping; Yue, Wen-Jie

    2011-08-01

    The growth of three marine phytoplankton species Skeletonema costatum, Scrippsiella trochoidea and Chattonella marina and the response of the antioxidant defense system have been investigated on exposure to commercial cypermethrin for 96 h and 32 days in a co-culture system. Growth of the three species was generally comparable over 96 h with an inoculation of 1:3:6.5 (C. marina:S. trochoidea:S. costatum), with stimulation at 5 μg l(-1) and inhibition under higher concentrations (50, 100 μg l(-1)). However, when inoculating at ratios of 1:1:1 during a 32 day test, S. costatum became the most sensitive species and was significantly inhibited in all test groups under the dual stresses of cypermethrin and interspecies competition. The growth of C. marina was significantly inhibited at the concentrations higher than 5 μg l(-1), while the growth of S. trochoidea was significantly promoted at low concentrations. Superoxide dismutase (SOD) activities significantly increased during 6-12 h exposure periods in test treatments at low concentrations, and enhanced in the control as well due to interspecies competition. The lipid peroxidation product malondialdehyde was enhanced at high concentrations, but did not increase in control and low concentration cultures with high SOD activities, indicating that algal cells activated the antioxidant enzymes promptly to protect the cells from lipid membrane damage. Results from this study suggested that cypermethrin pollution in maricultural sea waters might lead to a shift in phytoplankton community structure from diatom to harmful dinoflagellate species, and thus potentially stimulatory for harmful algal blooms. PMID:21499869

  1. Laboratory Test Methods to Determine the Degradation of Plastics in Marine Environmental Conditions

    PubMed Central

    Tosin, Maurizio; Weber, Miriam; Siotto, Michela; Lott, Christian; Degli Innocenti, Francesco

    2012-01-01

    In this technology report, three test methods were developed to characterize the degradation of plastic in marine environment. The aim was to outline a test methodology to measure the physical and biological degradation in different habitats where plastic waste can deposit when littered in the sea. Previously, research has focused mainly on the conditions encountered by plastic items when floating in the sea water (pelagic domain). However, this is just one of the possible habitats that plastic waste can be exposed to. Waves and tides tend to wash up plastic waste on the shoreline, which is also a relevant habitat to be studied. Therefore, the degradation of plastic items buried under sand kept wet with sea water has been followed by verifying the disintegration (visual disappearing) as a simulation of the tidal zone. Most biodegradable plastics have higher densities than water and also as a consequence of fouling, they tend to sink and lay on the sea floor. Therefore, the fate of plastic items lying on the sediment has been followed by monitoring the oxygen consumption (biodegradation). Also the effect of a prolonged exposure to the sea water, to simulate the pelagic domain, has been tested by measuring the decay of mechanical properties. The test material (Mater-Bi) was shown to degrade (total disintegration achieved in less than 9 months) when buried in wet sand (simulation test of the tidal zone), to lose mechanical properties but still maintain integrity (tensile strength at break = −66% in 2 years) when exposed to sea water in an aquarium (simulation of pelagic domain), and substantially biodegrade (69% in 236 days; biodegradation relative to paper: 88%) when located at the sediment/sea water interface (simulation of benthic domain). This study is not conclusive as the methodological approach must be completed by also determining degradation occurring in the supralittoral zone, on the deep sea floor, and in the anoxic sediment. PMID:22737147

  2. Laboratory test methods to determine the degradation of plastics in marine environmental conditions.

    PubMed

    Tosin, Maurizio; Weber, Miriam; Siotto, Michela; Lott, Christian; Degli Innocenti, Francesco

    2012-01-01

    In this technology report, three test methods were developed to characterize the degradation of plastic in marine environment. The aim was to outline a test methodology to measure the physical and biological degradation in different habitats where plastic waste can deposit when littered in the sea. Previously, research has focused mainly on the conditions encountered by plastic items when floating in the sea water (pelagic domain). However, this is just one of the possible habitats that plastic waste can be exposed to. Waves and tides tend to wash up plastic waste on the shoreline, which is also a relevant habitat to be studied. Therefore, the degradation of plastic items buried under sand kept wet with sea water has been followed by verifying the disintegration (visual disappearing) as a simulation of the tidal zone. Most biodegradable plastics have higher densities than water and also as a consequence of fouling, they tend to sink and lay on the sea floor. Therefore, the fate of plastic items lying on the sediment has been followed by monitoring the oxygen consumption (biodegradation). Also the effect of a prolonged exposure to the sea water, to simulate the pelagic domain, has been tested by measuring the decay of mechanical properties. The test material (Mater-Bi) was shown to degrade (total disintegration achieved in less than 9 months) when buried in wet sand (simulation test of the tidal zone), to lose mechanical properties but still maintain integrity (tensile strength at break = -66% in 2 years) when exposed to sea water in an aquarium (simulation of pelagic domain), and substantially biodegrade (69% in 236 days; biodegradation relative to paper: 88%) when located at the sediment/sea water interface (simulation of benthic domain). This study is not conclusive as the methodological approach must be completed by also determining degradation occurring in the supralittoral zone, on the deep sea floor, and in the anoxic sediment.

  3. The interaction of marine fouling organisms with topography of varied scale and geometry: a review.

    PubMed

    Myan, Felicia Wong Yen; Walker, James; Paramor, Odette

    2013-12-01

    Many studies have examined the effects of surface topography on the settlement behaviour of marine organisms and this article reviews these investigations with more emphasis on the effects of topography scale. It has been observed that macro topographies (1-100 mm) are generally favoured by marine fouling taxa and are unsuitable for antifouling applications. This is because macro topographies are usually large enough to fit fouling organisms and provide refuge from dangers in the marine environment. Micro topographies had only limited success at reducing fouling from a wide range of marine taxa. The antifouling performance of micro topographies (1 to ≤ 1000 μm) is dependent on the properties of topography features in terms of symmetry, isotropy, width, length, height/depth, separation distance and average roughness. In terms of the antifouling performance of micro topography, topography geometry may only be of secondary importance in comparison to the size of features itself. It is also noted that hydrodynamic stresses also contribute to the settlement trends of foulers on textured surfaces. Future studies on antifouling topographies should be directed to hierarchical topographies because the mixed topography scales might potentially reduce fouling by both micro and macro organisms. Patterned nano-topographies (1- ≤ 1000 nm) should also be explored because the antifouling mechanisms of these topographies are not yet clear.

  4. Artificial primary marine aerosol production: a laboratory study with varying water temperature, salinity, and succinic acid concentration

    NASA Astrophysics Data System (ADS)

    Zábori, J.; Matisāns, M.; Krejci, R.; Nilsson, E. D.; Ström, J.

    2012-11-01

    Primary marine aerosols are an important component of the climate system, especially in the remote marine environment. With diminishing sea-ice cover, better understanding of the role of sea spray aerosol on climate in the polar regions is required. As for Arctic Ocean water, laboratory experiments with NaCl water confirm that a few degrees change in the water temperature (Tw) gives a large change in the number of primary particles. Small particles with a dry diameter between 0.01 μm and 0.25 μm dominate the aerosol number density, but their relative dominance decreases with increasing water temperature from 0 °C where they represent 85-90% of the total aerosol number to 10 °C, where they represent 60-70% of the total aerosol number. This effect is most likely related to a change in physical properties and not to modification of sea water chemistry. A change of salinity between 15 g kg-1 and 35 g kg-1 did not influence the shape of a particle number size distribution. Although the magnitude of the size distribution for a water temperature change between 0 °C and 16 °C changed, the shape did not. An experiment where succinic acid was added to a NaCl water solution showed, that the number concentration of particles with 0.010 μm < Dp < 4.5 μm decreased on average by 10% when the succinic acid concentration in NaCl water at a water temperature of 0 °C was increased from 0 μmol L-1 to 94 μmol L-1. A shift to larger sizes in the particle number size distribution is observed from pure NaCl water to Arctic Ocean water. This is likely a consequence of organics and different inorganic salts present in Arctic Ocean water in addition to the NaCl.

  5. Industrial Market Research Report: Feasibility of commercialization of the advanced antifouling coating of Copperlok, Inc.

    SciTech Connect

    Gormley, G.J.

    1990-10-01

    The Copperlok antifouling process was designed to prevent marine growth on surfaces exposed to sea water. It is a method of bonding thermally sprayed Cu and Cu alloys onto an epoxy material containing microballoons (hollow spheres). After the epoxy cures, the surface is abraded so that the microballoons are fractured, exposing microscopic concave porosity. The sprayed material is directed to the surface, where it impregnates the pores, bridges and then welds across the surface, creating a very thin laminate of the metal materials security bonded to the bond coat and to the substrate. The Copperlok process laminates an approximate layer of Cu-Ni alloy 8 mils thick with an expected active life of 15--20 y. This report addresses the perceived acceptability of the process in several different marketplaces with the hope of directing the invention to the most receptive consumer group. The opinion surveys of the recreational marine industry were limited to the three coastal areas of the Atlantic, Gulf, and Pacific.

  6. Industrial Market Research Report: Feasibility of commercialization of the advanced antifouling coating of Copperlok, Inc

    SciTech Connect

    Gormley, G.J.

    1990-10-01

    The Copperlok antifouling process was designed to prevent marine growth on surfaces exposed to sea water. It is a method of bonding thermally sprayed Cu and Cu alloys onto an epoxy material containing microballoons (hollow spheres). After the epoxy cures, the surface is abraded so that the microballoons are fractured, exposing microscopic concave porosity. The sprayed material is directed to the surface, where it impregnates the pores, bridges and then welds across the surface, creating a very thin laminate of the metal materials security bonded to the bond coat and to the substrate. The Copperlok process laminates an approximate layer of Cu-Ni alloy 8 mils thick with an expected active life of 15--20 y. This report addresses the perceived acceptability of the process in several different marketplaces with the hope of directing the invention to the most receptive consumer group. The opinion surveys of the recreational marine industry were limited to the three coastal areas of the Atlantic, Gulf, and Pacific.

  7. Field and laboratory simulations of storm water pulses: behavioural avoidance by marine epifauna.

    PubMed

    Roberts, David A; Johnston, Emma L; Müller, Stefanie; Poore, Alistair G B

    2008-03-01

    Epifaunal communities associated with macroalgae were exposed to storm water pulses using a custom made irrigation system. Treatments included Millipore freshwater, freshwater spiked with trace metals and seawater controls to allow for the relative importance of freshwater inundation, trace metals and increased flow to be determined. Experimental pulses created conditions similar to those that occur following real storm water events. Brief storm water pulses reduced the abundance of amphipods and gastropods. Freshwater was the causative agent as there were no additional effects of trace metals on the assemblages. Laboratory assays indicated that neither direct nor latent mortality was likely following experimental pulses and that epifauna readily avoid storm water. Indirect effects upon epifauna through salinity-induced changes to algal habitats were not found in field recolonisation experiments. Results demonstrate the importance of examining the effects of pulsed contaminants under realistic exposure conditions and the need to consider ecologically relevant endpoints.

  8. Production, Organic Characterization, and Phase Transformations of Marine Particles Aerosolized from a Laboratory Mesocosm Phytoplankton Bioreactor

    NASA Astrophysics Data System (ADS)

    Alpert, P. A.; Knopf, D. A.; Aller, J. Y.; Radway, J.; Kilthau, W.

    2012-12-01

    Previous studies have shown that particles emitted from bubble bursting and wave breaking of ocean waters with high biological activity can contain sea salts associated with organic material, with smaller particles containing a larger mass fraction of organics than larger particles. This likely indicates a link between phytoplankton productivity in oceans and particulate organic material in marine air. Once aerosolized, particles with significant amount of organic material can affect cloud activation and formation of ice crystals, among other atmospheric processes, thus influencing climate. This is significant for clouds and climate particularly over nutrient rich polar seas, in which concentrations of biological organisms can reach up to 109 cells per ml during spring phytoplankton blooms. Here we present results of bubble bursting aerosol production from a seawater mesocosm containing artificial seawater, natural seawater and unialgal cultures of three representative phytoplankton species. These phytoplankton (Thalassiosira pseudonana, Emilianaia huxleyi, and Nannochloris atomus), possessed siliceous frustules, calcareous frustules and no frustules, respectively. Bubbles were generated employing recirculating impinging water jets or glass frits. Dry and humidified aerosol size distributions and bulk aerosol organic composition were measured as a function of phytoplankton growth, and chlorophyll composition and particulate and dissolved organic carbon in the water were determined. Finally, particles were collected on substrates for ice nucleation and water uptake experiments, their elemental compositions were determined using computer controlled scanning electron microscopy and energy dispersive analysis of X-rays (CCSEMEDAX), and their carbon speciation was determined using scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Particle size distributions exposed to dry and humidified air employing

  9. Polyketides from a marine-derived fungus Xylariaceae sp.

    PubMed

    Nong, Xu-Hua; Zheng, Zhi-Hui; Zhang, Xiao-Yong; Lu, Xin-Hua; Qi, Shu-Hua

    2013-05-01

    Eighteen polyketides (1-18) including six citrinin derivatives, two phenol derivatives, one cyclopentenone, two naphthol derivatives, and seven tetralone derivatives were isolated from the culture broth of a marine-derived fungal strain Xylariaceae sp. SCSGAF0086. Five of these compounds (1, 2, 8, 9, and 10) were new, and their structures were determined by spectroscopic methods. Compounds 4, 6, 7, and 17 showed enzyme-inhibitory activities towards several tested enzymes, and 6 and 7 showed strong antifouling activity against Bugula neritina larvae settlement. This is the first time that the antifouling and enzyme-inhibitory activities of these compounds has been reported. PMID:23697953

  10. Polyketides from a marine-derived fungus Xylariaceae sp.

    PubMed

    Nong, Xu-Hua; Zheng, Zhi-Hui; Zhang, Xiao-Yong; Lu, Xin-Hua; Qi, Shu-Hua

    2013-05-01

    Eighteen polyketides (1-18) including six citrinin derivatives, two phenol derivatives, one cyclopentenone, two naphthol derivatives, and seven tetralone derivatives were isolated from the culture broth of a marine-derived fungal strain Xylariaceae sp. SCSGAF0086. Five of these compounds (1, 2, 8, 9, and 10) were new, and their structures were determined by spectroscopic methods. Compounds 4, 6, 7, and 17 showed enzyme-inhibitory activities towards several tested enzymes, and 6 and 7 showed strong antifouling activity against Bugula neritina larvae settlement. This is the first time that the antifouling and enzyme-inhibitory activities of these compounds has been reported.

  11. Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen-sulfate reducer consortium

    NASA Astrophysics Data System (ADS)

    Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.; Martens, Christopher S.

    1994-12-01

    Field and laboratory studies of anoxic sediments from Cape Lookout Bight, North Carolina, suggest that anaerobic methane oxidation is mediated by a consortium of methanogenic and sulfate-reducing bacteria. A seasonal survey of methane oxidation and CO2 reduction rates indicates that methane production was confined to sulfate-depleted sediments at all times of year, while methane oxidation occurred in two modes. In the summer, methane oxidation was confined to sulfate-depleted sediments and occurred at rates lower than those of CO2 reduction. In the winter, net methane oxidation occurred in an interval at the base of the sulfate-containing zone. Sediment incubation experiments suggest both methanogens and sulfate reducers were responsible for the observed methane oxidation. In one incubation experiment both modes of oxidation were partially inhibited by 2-bromoethanesulfonic acid (a specific inhibitor of methanogens). This evidence, along with the apparent confinement of methane oxidation to sulfate-depleted sediments in the summer, indicates that methanogenic bacteria are involved in methane oxidation. In a second incubation experiment, net methane oxidation was induced by adding sulfate to homogenized methanogenic sediments, suggesting that sulfate reducers also play a role in the process. We hypothesize that methanogens oxidize methane and produce hydrogen via a reversal of CO2 reduction. The hydrogen is efficiently removed and maintained at low concentrations by sulfate reducers. Pore water H2 concentrations in the sediment incubation experiments (while net methane oxidation was occurring) were low enough that methanogenic bacteria could derive sufficient energy for growth from the oxidation of methane. The methanogen-sulfate reducer consortium is consistent not only with the results of this study, but may also be a feasible mechanism for previously documented anaerobic methane oxidation in both freshwater and marine environments.

  12. Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen-sulfate reducer consortium

    SciTech Connect

    Hoehler, T.M.; Alperin, M.J.; Albert, D.B.

    1994-12-01

    Field and laboratory studies of anoxic sediments from Cape Lookout Bight, North Carolina, suggest that anaerobic methane oxidation is mediated by a consortium of methanogenic and sulfate-reducing bacteria. A seasonal survey of methane oxidation and CO{sub 2} reduction rates indicates that methane production was confined to sulfate-depleted sediments at all times of year, while methane oxidation occurred in two modes. In the summer, methane oxidation was confined to sulfate-depleted sediments and occurred at rates lower than those of CO{sub 2} reduction. In the winter, net methane oxidation occurred in an interval at the base of the sulfate-containing zone. Sediment incubation experiments suggest both methanogens and sulfate reducers were responsible for the observed methane oxidation. In one incubation experiment both modes of oxidation were partially inhibited by 2-bromoethanesulfonic acid (a specific inhibitor of methanogens). This evidence, along with the apparent confinement of methane oxidation to sulfate-depleted sediments in the summer, indicates that methanogenic bacteria are involved in methane oxidation. In a second incubation experiment, net methane oxidation was induced by adding sulfate to homogenized methanogenic sediments, suggesting that sulfate reducers also a play a role in the process. We hypothesize that methanogens oxidize methane and produce hydrogen via a reversal of CO{sub 2} reduction. The hydrogen is efficiently removed and maintained at low concentrations by sulfate reducers. Pore water H{sub 2} concentrations in the sediment incubation experiments (while net methane oxidation was occurring) were low enough that methanogenic bacteria could derive sufficient energy for growth from the oxidation of methane. The methanogen-sulfate reducer consortium may also be a feasible mechanism for previously documented anaerobic methane oxidation in both freshwater and marine environments. 63 refs., 6 refs.

  13. Environmental risk assessment on capsaicin used as active substance for antifouling system on ships.

    PubMed

    Wang, Jianbing; Shi, Ting; Yang, Xiaoling; Han, Wenya; Zhou, Yunrui

    2014-06-01

    Biodegradation experiments were carried out with capsaicin to evaluate its degradability. The results show that capsaicin was readily biodegradable under aerobic conditions. The values of Kow and the calculated bioconcentration factor indicate that capsaicin have a low potential for bioconcentration. The fish acute toxicity tests conducted with Brachydanio rerio show LC50 for capsaicin was 5.98 mg L(-1). The tests of alga growth inhibition conducted with Selenastrum capricornutum suggest EC50 for capsaicin was 114 mg L(-1). The calculated PNEC (Predicted No Effect Concentration) was 4.9×10(-4) mg L(-1). The average PEC (Predicted Environmental Concentration) for OECD-EU commercial harbor and marina were 3.99×10(-6) and 2.49×10(-5) mg L(-1), respectively. These indicate that the PEC was much less than the PNEC for capsaicin. The low Kp value of capsaicin suggests the data about the risk of capsaicin to sediment organisms can be waived. According to the results from the analysis of the degradation, bioaccumulation, toxicity and accumulation in sediment, it can be concluded that capsaicin used as active substance for antifouling system on ships poses relatively low risk to marine environment.

  14. Bio-inspired strategies for designing antifouling biomaterials.

    PubMed

    Damodaran, Vinod B; Murthy, N Sanjeeva

    2016-01-01

    Contamination of biomedical devices in a biological medium, biofouling, is a major cause of infection and is entirely avoidable. This mini-review will coherently present the broad range of antifouling strategies, germicidal, preventive and cleaning using one or more of biological, chemical and physical techniques. These techniques will be discussed from the point of view of their ability to inhibit protein adsorption, usually the first step that eventually leads to fouling. Many of these approaches draw their inspiration from nature, such as emulating the nitric oxide production in endothelium, use of peptoids that mimic protein repellant peptides, zwitterionic functionalities found in membrane structures, and catechol functionalities used by mussel to immobilize poly(ethylene glycol) (PEG). More intriguing are the physical modifications, creation of micropatterns on the surface to control the hydration layer, making them either superhydrophobic or superhydrophilic. This has led to technologies that emulate the texture of shark skin, and the superhyprophobicity of self-cleaning textures found in lotus leaves. The mechanism of antifouling in each of these methods is described, and implementation of these ideas is illustrated with examples in a way that could be adapted to prevent infection in medical devices. PMID:27326371

  15. Formation and antifouling properties of amphiphilic coatings on polypropylene fibers.

    PubMed

    Goli, Kiran K; Rojas, Orlando J; Genzer, Jan

    2012-11-12

    We describe the formation of amphiphilic polymeric assemblies via a three-step functionalization process applied to polypropylene (PP) nonwovens and to reference hydrophobic self-assembled n-octadecyltrichlorosilane (ODTS) monolayer surfaces. In the first step, denatured proteins (lysozyme or fibrinogen) are adsorbed onto the hydrophobic PP or the ODTS surfaces, followed by cross-linking with glutaraldehyde in the presence of sodium borohydride (NaBH(4)). The hydroxyl and amine functional groups of the proteins permit the attachment of initiator molecules, from which poly (2-hydroxyethyl methacrylate) (PHEMA) polymer grafts are grown directly through "grafting from" atom transfer radical polymerization. The terminal hydroxyls of HEMA's pendent groups are modified with fluorinating moieties of different chain lengths, resulting in amphiphilic brushes. A palette of analytical tools, including ellipsometry, contact angle goniometry, Fourier transform infrared spectroscopy in the attenuated total reflection mode, and X-ray photoelectron spectroscopy is employed to determine the changes in physicochemical properties of the functionalized surfaces after each modification step. Antifouling properties of the resultant amphiphilic coatings on PP are analyzed by following the adsorption of fluorescein isothiocyanate-labeled bovine serum albumin as a model fouling protein. Our results suggest that amphiphilic coatings suppress significantly adsorption of proteins as compared with PP fibers or PP surfaces coated with PHEMA brushes. The type of fluorinated chain grafted to PHEMA allows modulation of the surface composition of the topmost layer of the amphiphilic coating and its antifouling capability.

  16. Searching for “Environmentally-Benign” Antifouling Biocides

    PubMed Central

    Cui, Yan Ting; Teo, Serena L. M.; Leong, Wai; Chai, Christina L. L.

    2014-01-01

    As the result of the ecological impacts from the use of tributyltins (TBT) in shipping, environmental legislation for the registration of chemicals for use in the environment has grown to a monumental challenge requiring product dossiers to include information on the environmental fate and behavior of any chemicals. Specifically, persistence, bioaccumulation and toxicity, collectively known as PBT, are properties of concern in the assessment of chemicals. However, existing measurements of PBT properties are a cumbersome and expensive process, and thus not applied in the early stages of the product discovery and development. Inexpensive methods for preliminary PBT screening would minimize risks arising with the subsequent registration of products. In this article, we evaluated the PBT properties of compounds reported to possess anti-fouling properties using QSAR (quantitative structure-activity relationship) prediction programs such as BIOWIN™ (a biodegradation probability program), KOWWIN™ (log octanol-water partition coefficient calculation program) and ECOSAR™ (Ecological Structure Activity Relationship Programme). The analyses identified some small (Mr < 400) synthetic and natural products as potential candidates for environmentally benign biocides. We aim to demonstrate that while these methods of estimation have limitations, when applied with discretion, they are powerful tools useful in the early stages of research for compound selection for further development as anti-foulants. PMID:24865489

  17. Antiparasitic, nematicidal and antifouling constituents from Juniperus berries.

    PubMed

    Samoylenko, Volodymyr; Dunbar, D Chuck; Gafur, Md Abdul; Khan, Shabana I; Ross, Samir A; Mossa, Jaber S; El-Feraly, Farouk S; Tekwani, Babu L; Bosselaers, Jan; Muhammad, Ilias

    2008-12-01

    A bioassay-guided fractionation of Juniperus procera berries yielded antiparasitic, nematicidal and antifouling constituents, including a wide range of known abietane, pimarane and labdane diterpenes. Among these, abieta-7,13-diene (1) demonstrated in vitro antimalarial activity against Plasmodium falciparum D6 and W2 strains (IC(50) = 1.9 and 2.0 microg/mL, respectively), while totarol (6), ferruginol (7) and 7beta-hydroxyabieta-8,13-diene-11,12-dione (8) inhibited Leishmania donovani promastigotes with IC(50) values of 3.5-4.6 microg/mL. In addition, totarol demonstrated nematicidal and antifouling activities against Caenorhabditis elegans and Artemia salina at a concentration of 80 microg/mL and 1 microg/mL, respectively. The resinous exudate of J. virginiana afforded known antibacterial E-communic acid (4) and 4-epi-abietic acid (5), while the volatile oil from its trunk wood revealed large quantities of cedrol (9). Using GC/MS, the two known abietanes totarol (6) and ferruginol (7) were identified from the berries of J. procera, J. excelsa and J. phoenicea. PMID:19067375

  18. Surface Grafted Polysarcosine as a Peptoid Antifouling Polymer Brush

    PubMed Central

    Lau, King Hang Aaron; Ren, Chunlai; Sileika, Tadas S.; Park, Sung Hyun; Szleifer, Igal; Messersmith, Phillip B.

    2012-01-01

    Poly(N-substituted glycine) “peptoids” are a class of peptidomimetic molecules receiving significant interest as engineered biomolecules. Sarcosine (i.e. poly(N-methyl glycine)) has the simplest sidechain chemical structure of this family. In this contribution, we demonstrate that surface-grafted polysarcosine (PSAR) brushes exhibit excellent resistance to non-specific protein adsorption and cell attachment. Polysarcosine was coupled to a mussel adhesive protein inspired DOPA-Lys pentapeptide, which enabled solution grafting and control of the surface chain density of the PSAR brushes. Protein adsorption was found to decrease monotonically with increasing grafted chain densities, and protein adsorption could be completely inhibited above certain critical chain densities specific to different polysarcosine chain-lengths. The dependence of protein adsorption on chain length and density was also investigated by a molecular theory. PSAR brushes at high chain length and density were shown to resist fibroblast cell attachment over a 7 wk period, as well as resist the attachment of some clinically relevant bacteria strains. The excellent antifouling performance of PSAR may be related to the highly hydrophilic character of polysarcosine, which was evident from high-pressure liquid chromatography measurements of polysarcosine and water contact angle measurements of the PSAR brushes. Peptoids have been shown to resist proteolytic degradation and polysarcosine could be produced in large quantities by N-carboxy anhydride polymerization. In summary, surface grafted polysarcosine peptoid brushes hold great promise for antifouling applications. PMID:23101930

  19. Enhanced Antifouling Properties of Carbohydrate Coated Poly(ether sulfone) Membranes.

    PubMed

    Angione, M Daniela; Duff, Thomas; Bell, Alan P; Stamatin, Serban N; Fay, Cormac; Diamond, Dermot; Scanlan, Eoin M; Colavita, Paula E

    2015-08-12

    Poly(ether sulfone) membranes (PES) were modified with biologically active monosaccharides and disaccharides using aryldiazonium chemistry as a mild, one-step, surface-modification strategy. We previously proposed the modification of carbon, metals, and alloys with monosaccharides using the same method; herein, we demonstrate modification of PES membranes and the effect of chemisorbed carbohydrate layers on their resistance to biofouling. Glycosylated PES surfaces were characterized using spectroscopic methods and tested against their ability to interact with specific carbohydrate-binding proteins. Galactose-, mannose-, and lactose-modified PES surfaces were exposed to Bovine Serum Albumin (BSA) solutions to assess unspecific protein adsorption in the laboratory and were found to adsorb significantly lower amounts of BSA compared to bare membranes. The ability of molecular carbohydrate layers to impart antifouling properties was further tested in the field via long-term immersive tests at a wastewater treatment plant. A combination of ATP content assays, infrared spectroscopic characterization and He-ion microscopy (HIM) imaging were used to investigate biomass accumulation at membranes. We show that, beyond laboratory applications and in the case of complex aqueous environments that are rich in biomass such as wastewater effluent, we observe significantly lower biofouling at carbohydrate-modified PES than at bare PES membrane surfaces.

  20. Improving the antifouling property of polysulfone ultrafiltration membrane by incorporation of isocyanate-treated graphene oxide.

    PubMed

    Zhao, Haiyang; Wu, Liguang; Zhou, Zhijun; Zhang, Lin; Chen, Huanlin

    2013-06-21

    In this paper, isocyanate-treated graphene oxide (iGO), which can be well dispersed in organic solvent, was prepared in a simple manner and showed excellent compatibility with polysulfone (PSF). iGO-PSF ultrafiltration membranes were prepared by the classical phase inversion method. The separation performance and the antifouling property of the prepared membranes were investigated in detail. The antifouling property of the prepared membranes was found to be greatly enhanced by the addition of iGO, and we attributed the enhanced antifouling property to the improved hydrophilicity, the more negative zeta potential and the improved smoothness of the membrane surface.

  1. Isolation of Typical Marine Bacteria by Dilution Culture: Growth, Maintenance, and Characteristics of Isolates under Laboratory Conditions

    PubMed Central

    Schut, Frits; de Vries, Egbert J.; Gottschal, Jan C.; Robertson, Betsy R.; Harder, Wim; Prins, Rudolf A.; Button, Don K.

    1993-01-01

    Marine bacteria in Resurrection Bay near Seward, Alaska, and in the central North Sea off the Dutch coast were cultured in filtered autoclaved seawater following dilution to extinction. The populations present before dilution varied from 0.11 × 109 to 1.07 × 109 cells per liter. The mean cell volume varied between 0.042 and 0.074 μm3, and the mean apparent DNA content of the cells ranged from 2.5 to 4.7 fg of DNA per cell. All three parameters were determined by high-resolution flow cytometry. All 37 strains that were obtained from very high dilutions of Resurrection Bay and North Sea samples represented facultatively oligotrophic bacteria. However, 15 of these isolates were eventually obtained from dilution cultures that could initially be cultured only on very low-nutrient media and that could initially not form visible colonies on any of the agar media tested, indicating that these cultures contained obligately oligotrophic bacteria. It was concluded that the cells in these 15 dilution cultures had adapted to growth under laboratory conditions after several months of nutrient deprivation prior to isolation. From the North Sea experiment, it was concluded that the contribution of facultative oligotrophs and eutrophs to the total population was less than 1% and that while more than half of the population behaved as obligately oligotrophic bacteria upon first cultivation in the dilution culture media, around 50% could not be cultured at all. During one of the Resurrection Bay experiments, 53% of the dilution cultures obtained from samples diluted more than 2.5 × 105 times consisted of such obligate oligotrophs. These cultures invariably harbored a small rod-shaped bacterium with a mean cell volume of 0.05 to 0.06 μm3 and an apparent DNA content of 1 to 1.5 fg per cell. This cell type had the dimensions of ultramicrobacteria. Isolates of these ultramicrobacterial cultures that were eventually obtained on relatively high-nutrient agar plates were, with respect

  2. Evaluating Effects of Stressors from Marine and Hydrokinetic Energy

    SciTech Connect

    Copping, Andrea E.; Blake, Kara M.; Hanna, Luke A.; Brandt, Charles A.; Ward, Jeffrey A.; Brandenberger, Jill M.; Gill, Gary A.; Carlson, Thomas J.; Elster, Jennifer L.; Jones, Mark E.; Watson, Bruce E.; Jepsen, Richard A.; Metzinger, Kurt

    2012-09-30

    Potential environmental effects of marine and hydrokinetic (MHK) energy development are not well understood, yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term consequences. An understanding of risks associated with interactions between MHK installations and aquatic receptors, including animals, habitats, and ecosystems, can help define key uncertainties and focus regulatory actions and scientific studies on interactions of most concern. During FY 2012, Pacific Northwest National Laboratory (PNNL) continued to follow project developments on the two marine and hydrokinetic projects reviewed for Environmental Risk Evaluation System (ERES) screening analysis in FY 2011: a tidal project in the Gulf of Maine using Ocean Renewable Power Company TidGenTM turbines and a wave project planned for the coast of Oregon using Aquamarine Oyster surge devices. The ERES project in FY 2012 also examined two stressor–receptor interactions previously identified through the screening process as being of high importance: 1) the toxicity effects of antifouling coatings on MHK devices on aquatic resources and 2) the risk of a physical strike encounter between an adult killer whale and an OpenHydro turbine blade. The screening-level assessment of antifouling paints and coatings was conducted for two case studies: the Snohomish County Public Utility District No. 1 (SnoPUD) tidal turbine energy project in Admiralty Inlet, Puget Sound, Washington, and the Ocean Power Technologies (OPT) wave buoy project in Reedsport, Oregon. Results suggest minimal risk to aquatic biota from antifouling coatings used on MHK devices deployed in large estuaries or open ocean environments. For the strike assessment of a Southern Resident Killer Whale (SRKW) encountering an OpenHydro tidal turbine blade, PNNL teamed with colleagues from Sandia National Laboratories (SNL) to carry out an analysis of the mechanics and

  3. An inter-laboratory investigation of the Arctic sea ice biomarker proxy IP25 in marine sediments: key outcomes and recommendations

    NASA Astrophysics Data System (ADS)

    Belt, S. T.; Brown, T. A.; Ampel, L.; Cabedo-Sanz, P.; Fahl, K.; Kocis, J. J.; Massé, G.; Navarro-Rodriguez, A.; Ruan, J.; Xu, Y.

    2014-01-01

    We describe the results of an inter-laboratory investigation into the identification and quantification of the Arctic sea ice biomarker proxy IP25 in marine sediments. Seven laboratories took part in the study, which consisted of the analysis of IP25 in a series of sediment samples from different regions of the Arctic, sub-Arctic and Antarctic, additional sediment extracts and purified standards. The results obtained allowed 4 key outcomes to be determined. First, IP25 was identified by all laboratories in sediments from the Canadian Arctic with inter-laboratory variation in IP25 concentration being substantially larger than within individual laboratories. This greater variation between laboratories was attributed to the difficulty in accurately determining instrumental response factors for IP25, even though laboratories were supplied with appropriate standards. Second, the identification of IP25 by 3 laboratories in sediment from SW Iceland that was believed to represent a blank, was interpreted as representing a better limit of detection or quantification for such laboratories, contamination or mis-identification. These alternatives could not be distinguished conclusively with the data available, although it is noted that the precision of these data was significantly poorer compared with the other IP25 concentration measurements. Third, 3 laboratories reported the occurrence of IP25 in a sediment sample from the Antarctic Peninsula even though this biomarker is believed to be absent from the Southern Ocean. This anomaly is attributed to a combined chromatographic and mass spectrometric interference that results from the presence of a di-unsaturated highly branched isoprenoid (HBI) pseudo-homologue of IP25 that occurs in Antarctic sediments. Finally, data are presented that suggest that extraction of IP25 is consistent between Accelerated Solvent Extraction (ASE) and sonication methods and that IP25 concentrations based on 7-hexylnonadecane as an internal standard

  4. Antialgal and antilarval activities of bioactive compounds extracted from the marine dinoflagellate Amphidinium carterae

    NASA Astrophysics Data System (ADS)

    Kong, Xianyu; Han, Xiurong; Gao, Min; Su, Rongguo; Wang, Ke; Li, Xuzhao; Lu, Wei

    2016-09-01

    With the global ban on the application of organotin-based marine coatings by the International Maritime Organization, the development of environmentally friendly, low-toxic and nontoxic antifouling compounds for marine industries has become an urgent need. Marine microorganisms have been considered as a potential source of natural antifoulants. In this study, the antifouling potential of marine dinoflagellate Amphidinium carterae, the toxic and red-tide microalgae, was investigated. We performed a series of operations to extract the bioactive substances from Amphidinium carterae and tested their antialgal and antilarval activities. The crude extract of Amphidinium carterae showed significant antialgal activity and the EC50 value against Skeletonema costatum was 55.4 μg mL-1. After purification, the isolated bioactive substances (the organic extract C) exhibited much higher antialgal and antilarval activities with EC50 of 12.9 μg mL-1 against Skeletonema costatum and LC50 of 15.1 μg mL-1 against Amphibalanus Amphitrite larvae. Subsequently, IR, Q-TOFMS, and GC-MS were utilized for the structural elucidation of the bioactive compounds, and a series of unsaturated and saturated 16- to 22-carbon fatty acids were detected. The data suggested the bioactive compounds isolated from Amphidinium carterae exhibited a significant inhibiting effect against the diatom Skeletonema costatum and Amphibalanus Amphitrite larvae, and could be substitutes for persistent, toxic antifouling compounds.

  5. Structural activity relationship studies of zebra mussel antifouling and antimicrobial agents from verongid sponges.

    PubMed

    Diers, Jeffrey A; Pennaka, Hari Kishore; Peng, Jiangnan; Bowling, John J; Duke, Stephen O; Hamann, Mark T

    2004-12-01

    Several dibromotyramine derivatives including moloka'iamine were selected as potential zebra mussel (Dreissena polymorpha) antifoulants due to the noteworthy absence of fouling observed on sponges of the order Verongida. Sponges of the order Verongida consistently produce these types of bromotyrosine-derived secondary metabolites. Previously reported antifouling data for the barnacle Balanus amphitrite(EC50 = 12.2 microM) support the results reported here that the compound moloka'iamine may be a potential zebra mussel antifoulant compound (EC50 = 10.4 microM). The absence of phytotoxic activity of the compound moloka'iamine toward Lemna pausicostata and, most importantly, the compound's significant selectivity against macrofouling organisms such as zebra mussels suggest the potential utility of this compound as a naturally derived antifoulant lead.

  6. Structural Activity Relationship Studies of Zebra Mussel Antifouling and Antimicrobial Agents from Verongid Sponges

    PubMed Central

    Diers, Jeffrey A.; Pennaka, Hari Kishore; Peng, Jiangnan; Bowling, John J.; Duke, Stephen O.; Hamann, Mark T.

    2016-01-01

    Several dibromotyramine derivatives including moloka’iamine were selected as potential zebra mussel (Dreissena polymorpha) antifoulants due to the noteworthy absence of fouling observed on sponges of the order Verongida. Sponges of the order Verongida consistently produce these types of bromotyrosine-derived secondary metabolites. Previously reported antifouling data for the barnacle Balanus amphitrite (EC50 = 12.2 μM) support the results reported here that the compound moloka’iamine may be a potential zebra mussel antifoulant compound (EC50 = 10.4 μM). The absence of phytotoxic activity of the compound moloka’iamine toward Lemna pausicostata and, most importantly, the compound’s significant selectivity against macrofouling organisms such as zebra mussels suggest the potential utility of this compound as a naturally derived antifoulant lead. PMID:15620267

  7. Cannabinoids inhibit zebra mussel (Dreissena polymorpha) byssal attachment: a potentially green antifouling technology.

    PubMed

    Angarano, Maj-Britt; McMahon, Robert F; Schetz, John A

    2009-01-01

    Macrofouling by zebra mussels (Dreissena polymorpha) has serious environmental, economic and legal consequences for freshwater shipping and raw water facilities. Current antifouling technologies, such as organometallics or aggressive oxidisers, have negative environmental impacts limiting their application. As part of an effort to discover antifoulants with a reduced environmental footprint, the endocannabinoid, anandamide and nine other compounds sharing structural or functional features were tested for their ability to inhibit zebra mussel byssal attachment. A byssal attachment bioassay identified six efficacious compounds; four compounds also had no negative impact on mussels at concentrations maximally inhibiting byssal attachment and three of them had no significant cumulative toxicity towards a non-target organism, Daphnia magna. This discovery demonstrates that both naturally occurring and synthetic cannabinoids can serve as non-toxic efficacious zebra mussel antifoulants. Applications with this technology may lead to a new genre of cleaner antifoulants, because the strategy is to prevent attachment rather than to poison mussels.

  8. An inter-laboratory investigation of the Arctic sea ice biomarker proxy IP25 in marine sediments: key outcomes and recommendations

    NASA Astrophysics Data System (ADS)

    Belt, S. T.; Brown, T. A.; Ampel, L.; Cabedo-Sanz, P.; Fahl, K.; Kocis, J. J.; Massé, G.; Navarro-Rodriguez, A.; Ruan, J.; Xu, Y.

    2013-09-01

    We describe the results of an inter-laboratory investigation into the identification and quantification of the Arctic sea ice biomarker proxy IP25 in marine sediments. 7 laboratories took part in the study, which consisted of the analysis of IP25 in a series of sediment samples from different regions of the Arctic, sub-Arctic and Antarctic, additional sediment extracts and purified standards. The results obtained allowed 4 key outcomes to be determined. First, IP25 was identified by all laboratories in sediments from the Canadian Arctic with inter-laboratory variation in IP25 concentration being substantially larger than within individual laboratories. This greater variation between laboratories was attributed to the difficulty in accurately determining instrumental response factors for IP25, despite provision of appropriate standards. Second, the identification of IP25 by 3 laboratories in sediment from SW Iceland that was believed to represent a blank, was interpreted as representing a better limit of detection or quantification for such laboratories, contamination or mis-identification. These alternatives could not be distinguished conclusively with the data available, although it is noted that the precision of these data was significantly poorer compared with the other IP25 concentration measurements. Third, 3 laboratories reported the occurrence of IP25 in a sediment sample from the Antarctic Peninsula even though this biomarker is believed to be absent from the Southern Ocean. This anomaly is attributed to a combined chromatographic and mass spectrometric interference that results from the presence of a di-unsaturated highly branched isoprenoid (HBI) pseudo-homologue of IP25 that occurs in Antarctic sediments. Finally, data are presented that suggest that extraction of IP25 is consistent between Automated Solvent Extraction (ASE) and sonication methods and that IP25 concentrations based on 7-hexylnonadecane as an internal standard are comparable using these

  9. Reusable antifouling viscoelastic adhesive with an elastic skin.

    PubMed

    Patil, Sandip; Malasi, Abhinav; Majumder, Abhijit; Ghatak, Animangsu; Sharma, Ashutosh

    2012-01-10

    Although the viscoelasticity or tackiness of a pressure-sensitive adhesive gives it strength owing to energy dissipation during peeling, it also renders it nonreusable because of structural changes such as the formation of fibrils, cohesive failure, and fouling. However, an elastic layer has good structural integrity and cohesive strength but low adhesive energy. We demonstrate an effective composite adhesive in which a soft viscoelastic bulk layer is imbedded in a largely elastic thin skin layer. The composite layer is able to meet the conflicting demands of the high peel strength comparable to the viscoelastic core and the structural integrity, reusability, and antifouling properties of the elastic skin. Our model adhesive is made of poly(dimethylsiloxane), where its core and skin are created by varying the cross-linking percentage from 2 to 10%. PMID:22201420

  10. Reusable antifouling viscoelastic adhesive with an elastic skin.

    PubMed

    Patil, Sandip; Malasi, Abhinav; Majumder, Abhijit; Ghatak, Animangsu; Sharma, Ashutosh

    2012-01-10

    Although the viscoelasticity or tackiness of a pressure-sensitive adhesive gives it strength owing to energy dissipation during peeling, it also renders it nonreusable because of structural changes such as the formation of fibrils, cohesive failure, and fouling. However, an elastic layer has good structural integrity and cohesive strength but low adhesive energy. We demonstrate an effective composite adhesive in which a soft viscoelastic bulk layer is imbedded in a largely elastic thin skin layer. The composite layer is able to meet the conflicting demands of the high peel strength comparable to the viscoelastic core and the structural integrity, reusability, and antifouling properties of the elastic skin. Our model adhesive is made of poly(dimethylsiloxane), where its core and skin are created by varying the cross-linking percentage from 2 to 10%.

  11. Scalable antifouling reverse osmosis membranes utilizing perfluorophenyl azide photochemistry.

    PubMed

    McVerry, Brian T; Wong, Mavis C Y; Marsh, Kristofer L; Temple, James A T; Marambio-Jones, Catalina; Hoek, Eric M V; Kaner, Richard B

    2014-09-01

    We present a method to produce anti-fouling reverse osmosis (RO) membranes that maintains the process and scalability of current RO membrane manufacturing. Utilizing perfluorophenyl azide (PFPA) photochemistry, commercial reverse osmosis membranes were dipped into an aqueous solution containing PFPA-terminated poly(ethyleneglycol) species and then exposed to ultraviolet light under ambient conditions, a process that can easily be adapted to a roll-to-roll process. Successful covalent modification of commercial reverse osmosis membranes was confirmed with attenuated total reflectance infrared spectroscopy and contact angle measurements. By employing X-ray photoelectron spectroscopy, it was determined that PFPAs undergo UV-generated nitrene addition and bind to the membrane through an aziridine linkage. After modification with the PFPA-PEG derivatives, the reverse osmosis membranes exhibit high fouling-resistance.

  12. Long-lasting Antifouling Coating from Multi-Armed Polymer

    PubMed Central

    Mizrahi, Boaz; Khoo, Xiaojuan; Chaing, Homer H.; Sher, Katalina J.; Feldman, Rose G.; Lee, Jung-Jae; Irusta, Silvia; Kohane, Daniel S.

    2013-01-01

    We describe a new antifouling surface coating, based on aggregation of a short amphiphilic four-armed PEG-dopamine polymer into particles, and on surface binding by catechol chemistry. An unbroken and smooth polymeric coating layer with an average thickness of approximately 4 microns was formed on top of titanium oxide surfaces by a single step reaction. Coatings conferred excellent resistance to protein adhesion. Cell attachment was completely prevented for at least eight weeks, although the membranes themselves did not appear to be intrinsically cytotoxic. When linear PEG or four-armed PEG of higher molecular weight were used, the resulting coatings were inferior in thickness and in preventing protein adhesion. This coating method has potential applicability for biomedical devices susceptible to fouling after implantation. PMID:23855875

  13. Influence of antifouling paint on freshwater invertebrates (Mytilidae, Chironomidae and Naididae): density, richness and composition.

    PubMed

    Fujita, D S; Takeda, A M; Coutinho, R; Fernandes, F C

    2015-11-01

    We conducted a study about invertebrates on artificial substrates with different antifouling paints in order to answer the following questions 1) is there lower accumulation of organic matter on substrates with antifouling paints, 2) is invertebrate colonization influenced by the release of biocides from antifouling paints, 3) is the colonization of aquatic invertebrates positively influenced by the material accumulated upon the substrate surface and 4) is the assemblage composition of invertebrates similar among the different antifouling paints? To answer these questions, four structures were installed in the Baía River in February 1st, 2007. Each structure was composed of 7 wood boards: 5 boards painted with each type of antifouling paints (T1, T2, T3, T4 and T5), one painted only with the primer (Pr) and the other without any paint (Cn). After 365 days, we observed a greater accumulation of organic matter in the substrates with T2 and T3 paint coatings. Limnoperna fortunei was recorded in all tested paints, with higher densities in the control, primer, T2 and T3. The colonization of Chironomidae and Naididae on the substrate was positively influenced by L. fortunei density. The non-metric multidimensional scaling (NMDS) of the invertebrate community provided evidence of the clear distinction of invertebrate assemblages among the paints. Paints T2 and T3 were the most similar to the control and primer. Our results suggest that antifouling paints applied on substrates hinder invertebrate colonization by decreasing the density and richness of invertebrates.

  14. Effects of Organoboron Antifoulants on Oyster and Sea Urchin Embryo Development

    PubMed Central

    Tsunemasa, Noritaka; Tsuboi, Ai; Okamura, Hideo

    2013-01-01

    Prohibition of Ot (organotin) compounds was introduced in Japan in 1997 and worldwide from September 2008. This meant that the production of paints containing TBT compounds was stopped and alternatives to the available Ot antifoulants had to be developed. It has been claimed that the degradation by-products of these alternative antifoulants were less toxic than those of Ot compounds. Since the introduction of the alternative antifoulants, the accumulation of these compounds has been reported in many countries. However, the toxicity of these compounds was still largely unreported. In this research, the toxicity of the alternative Ot antifoulants TPBP (triphenylborane pyridine) and TPBOA (triphenylborane octadecylamine) and their degradation products on Crassostea gigas and Hemicentrotus pulcherrimus were tested. The results showed that toxic effects in Crassostea gigas was higher for each antifouling biocide than that in Hemicentrotus pulcherrimus. Also, while the toxicity of the Organoboron antifoulants and the Ots were the same, the former’s degradation products were much less harmful. PMID:23263671

  15. iTRAQ-based proteomic profiling of the barnacle Balanus amphitrite in response to the antifouling compound meleagrin.

    PubMed

    Han, Zhuang; Sun, Jin; Zhang, Yu; He, Fei; Xu, Ying; Matsumura, Kiyotaka; He, Li-Sheng; Qiu, Jian-Wen; Qi, Shu-Hua; Qian, Pei-Yuan

    2013-05-01

    Marine biofouling refers to the unwanted accumulation of fouling organisms, such as barnacles, on artificial surfaces, resulting in severe consequences for marine industries. Meleagrin is a potential nontoxic antifoulant that is isolated from the fungus Penicillium sp.; however, its mechanistic effect mode of action on larval settlement remains unknown. Here, we applied iTRAQ coupled with 2D LC-MS/MS proteomic analysis to investigate the effect of meleagrin on the proteomic expression profile of cyprid development and aging in the barnacle Balanus amphitrite . Fifty proteins were differentially expressed in response to treatment with meleagrin, among which 26 proteins were associated with cyprid development/aging and 24 were specifically associated with the meleagrin treatment. The 66 proteins that were associated with aging only remained unaltered during exposure to meleagrin. Using KEGG analysis, those proteins were assigned to several groups, including metabolic pathways, ECM-receptor interactions, and the regulation of the actin cytoskeleton. Among the 24 proteins that were not related to the development/aging process, expression of the cyprid major protein (CMP), a vitellogenin-like protein, increased after the meleagrin treatment, which suggested that meleagrin might affect the endocrine system and prevent the larval molting cycle. With the exception of the chitin binding protein that mediates the molting process and ATPase-mediated energy processes, the majority of proteins with significant effects in previous studies in response to cyprid treatment with butenolide and polyether B remained unchanged in the present study, suggesting that meleagrin may exhibit a different mechanism.

  16. Bacterial assay for the rapid assessment of antifouling and fouling release properties of coatings and materials.

    PubMed

    D'Souza, Fraddry; Bruin, Anouk; Biersteker, Rens; Donnelly, Glen; Klijnstra, Job; Rentrop, Corne; Willemsen, Peter

    2010-04-01

    An assay has been developed to accurately quantify the growth and release behaviour of bacterial biofilms on several test reference materials and coatings, using the marine bacterium Cobetia marina as a model organism. The assay can be used to investigate the inhibition of bacterial growth and release properties of many surfaces when compared to a reference. The method is based upon the staining of attached bacterial cells with the nucleic acid-binding, green fluorescent SYTO 13 stain. A strong linear correlation exists between the fluorescence of the bacterial suspension measured (RFU) using a plate reader and the total bacterial count measured with epifluorescence microscopy. This relationship allows the fluorescent technique to be used for the quantification of bacterial cells attached to surfaces. As the bacteria proliferate on the surface over a period of time, the relative fluorescence unit (RFU) measured using the plate reader also shows an increase with time. This was observed on all three test surfaces (glass, Epikote and Silastic T2) over a period of 4 h of bacterial growth, followed by a release assay, which was carried out by the application of hydrodynamic shear forces using a custom-made rotary device. Different fixed rotor speeds were tested, and based on the release analysis, 12 knots was used to provide standard shear force. The assay developed was then applied for assessing three different antifouling coatings of different surface roughness. The novel assay allows the rapid and sensitive enumeration of attached bacteria directly on the coated surface. This is the first plate reader assay technique that allows estimation of irreversibly attached bacterial cells directly on the coated surface without their removal from the surface or extraction of a stain into solution.

  17. Quantitative determination of marine lipophilic toxins in mussels, oysters and cockles using liquid chromatography-mass spectrometry: inter-laboratory validation study.

    PubMed

    van den Top, H J; Gerssen, A; McCarron, P; van Egmond, H P

    2011-12-01

    Thirteen laboratories participated in an inter-laboratory study to evaluate the method performance characteristics of a liquid chromatography-tandem mass spectrometric method (LC-MS/MS) for marine lipophilic shellfish toxins. Method performance characteristics were evaluated for mussel (Mytilus edulis), oyster (Crassostrea gigas) and cockle (Cerastoderma edule) matrices. The specific toxin analogues tested included okadaic acid (OA), dinophysistoxins-1 and -2 (DTX1, -2), azaspiracids-1, -2 and -3 (AZA1, -2, -3), pectenotoxin-2 (PTX2), yessotoxin (YTX), and 45-OH-yessotoxin (45-OH-YTX). The instrumental technique was developed as an alternative to the still widely applied biological methods (mouse or rat bioassay). Validation was conducted according to the AOAC-harmonised protocol for the design, conduct and interpretation of method-performance studies. Eight different test materials were sent as blind duplicates to the participating laboratories. Twelve laboratories returned results that were accepted to be included in the statistical evaluation. The method precision was expressed as HORRATs. For the individual toxins (except for 45-OH-YTX) HORRATs were found to be ≤1.8 (median HORRAT=0.8) in all tested materials. The recoveries of OA-, AZA- and YTX-group toxins were within the range of 80-108% and PTX2 was within the range of 62-93%. Based on the acceptable values for precision and recovery, it was concluded that the method is suitable for official control purposes to quantitatively determine OA/DTXs, AZAs, YTXs and PTX2 in shellfish.

  18. Microplastics as vector for heavy metal contamination from the marine environment

    NASA Astrophysics Data System (ADS)

    Brennecke, Dennis; Duarte, Bernardo; Paiva, Filipa; Caçador, Isabel; Canning-Clode, João

    2016-09-01

    The permanent presence of microplastics in the marine environment is considered a global threat to several marine animals. Heavy metals and microplastics are typically included in two different classes of pollutants but the interaction between these two stressors is poorly understood. During 14 days of experimental manipulation, we examined the adsorption of two heavy metals, copper (Cu) and zinc (Zn), leached from an antifouling paint to virgin polystyrene (PS) beads and aged polyvinyl chloride (PVC) fragments in seawater. We demonstrated that heavy metals were released from the antifouling paint to the water and both microplastic types adsorbed the two heavy metals. This adsorption kinetics was described using partition coefficients and mathematical models. Partition coefficients between pellets and water ranged between 650 and 850 for Cu on PS and PVC, respectively. The adsorption of Cu was significantly greater in PVC fragments than in PS, probably due to higher surface area and polarity of PVC. Concentrations of Cu and Zn increased significantly on PVC and PS over the course of the experiment with the exception of Zn on PS. As a result, we show a significant interaction between these types of microplastics and heavy metals, which can have implications for marine life and the environment. These results strongly support recent findings where plastics can play a key role as vectors for heavy metal ions in the marine system. Finally, our findings highlight the importance of monitoring marine litter and heavy metals, mainly associated with antifouling paints, particularly in the framework of the Marine Strategy Framework Directive (MSFD).

  19. Laboratory Simulation of an Iron(II)-rich Precambrian Marine Upwelling System to Explore the Growth of Photosynthetic Bacteria.

    PubMed

    Maisch, Markus; Wu, Wenfang; Kappler, Andreas; Swanner, Elizabeth D

    2016-01-01

    A conventional concept for the deposition of some Precambrian Banded Iron Formations (BIF) proceeds on the assumption that ferrous iron [Fe(II)] upwelling from hydrothermal sources in the Precambrian ocean was oxidized by molecular oxygen [O2] produced by cyanobacteria. The oldest BIFs, deposited prior to the Great Oxidation Event (GOE) at about 2.4 billion years (Gy) ago, could have formed by direct oxidation of Fe(II) by anoxygenic photoferrotrophs under anoxic conditions. As a method for testing the geochemical and mineralogical patterns that develop under different biological scenarios, we designed a 40 cm long vertical flow-through column to simulate an anoxic Fe(II)-rich marine upwelling system representative of an ancient ocean on a lab scale. The cylinder was packed with a porous glass bead matrix to stabilize the geochemical gradients, and liquid samples for iron quantification could be taken throughout the water column. Dissolved oxygen was detected non-invasively via optodes from the outside. Results from biotic experiments that involved upwelling fluxes of Fe(II) from the bottom, a distinct light gradient from top, and cyanobacteria present in the water column, show clear evidence for the formation of Fe(III) mineral precipitates and development of a chemocline between Fe(II) and O2. This column allows us to test hypotheses for the formation of the BIFs by culturing cyanobacteria (and in the future photoferrotrophs) under simulated marine Precambrian conditions. Furthermore we hypothesize that our column concept allows for the simulation of various chemical and physical environments - including shallow marine or lacustrine sediments.

  20. Laboratory Simulation of an Iron(II)-rich Precambrian Marine Upwelling System to Explore the Growth of Photosynthetic Bacteria.

    PubMed

    Maisch, Markus; Wu, Wenfang; Kappler, Andreas; Swanner, Elizabeth D

    2016-01-01

    A conventional concept for the deposition of some Precambrian Banded Iron Formations (BIF) proceeds on the assumption that ferrous iron [Fe(II)] upwelling from hydrothermal sources in the Precambrian ocean was oxidized by molecular oxygen [O2] produced by cyanobacteria. The oldest BIFs, deposited prior to the Great Oxidation Event (GOE) at about 2.4 billion years (Gy) ago, could have formed by direct oxidation of Fe(II) by anoxygenic photoferrotrophs under anoxic conditions. As a method for testing the geochemical and mineralogical patterns that develop under different biological scenarios, we designed a 40 cm long vertical flow-through column to simulate an anoxic Fe(II)-rich marine upwelling system representative of an ancient ocean on a lab scale. The cylinder was packed with a porous glass bead matrix to stabilize the geochemical gradients, and liquid samples for iron quantification could be taken throughout the water column. Dissolved oxygen was detected non-invasively via optodes from the outside. Results from biotic experiments that involved upwelling fluxes of Fe(II) from the bottom, a distinct light gradient from top, and cyanobacteria present in the water column, show clear evidence for the formation of Fe(III) mineral precipitates and development of a chemocline between Fe(II) and O2. This column allows us to test hypotheses for the formation of the BIFs by culturing cyanobacteria (and in the future photoferrotrophs) under simulated marine Precambrian conditions. Furthermore we hypothesize that our column concept allows for the simulation of various chemical and physical environments - including shallow marine or lacustrine sediments. PMID:27500924

  1. Understanding ship-grounding impacts on a coral reef: potential effects of anti-foulant paint contamination on coral recruitment.

    PubMed

    Negri, Adrew P; Smith, Luke D; Webster, Nicole S; Heyward, Andrew J

    2002-02-01

    The 184 m cargo ship Bunga Teratai Satu collided with Sudbury Reef, part of the Great Barrier Reef and remained grounded for 12 days. The ship was re-floated only 3 days prior to the November 2000 mass coral spawning. No cargo or fuel was lost but the impact resulted in significant contamination of the reef with anti-foulant paint containing tributyltin (TBT), copper (Cu) and zinc (Zn). Larvae of the reef-building scleractinian coral Acropora microphthalma were exposed to various concentrations of sediment collected from the grounding site in replicated laboratory experiments. Two experiments were performed, both of which used varying ratios of contaminated and control site sediment in seawater as treatments. In the first experiment, the influence of contaminated sediment on larval competency was examined using metamorphosis bioassays. In the second, the effect of contaminated sediment upon larval recruitment on pre-conditioned terracotta tiles was assessed. In both experiments, sediment containing 8.0 mg kg(-1) TBT, 72 mg kg(-1) Cu and 92 mg kg(-1) Zn significantly inhibited larval settlement and metamorphosis. At this level of contamination larvae survived but contracted to a spherical shape and swimming and searching behaviour ceased. At higher contamination levels, 100% mortality was recorded. These results indicate that the contamination of sediment by anti-fouling paint at Sudbury Reef has the potential to significantly reduce coral recruitment in the immediate vicinity of the site and that this contamination may threaten the recovery of the resident coral community unless the paint is removed.

  2. Understanding ship-grounding impacts on a coral reef: potential effects of anti-foulant paint contamination on coral recruitment.

    PubMed

    Negri, Adrew P; Smith, Luke D; Webster, Nicole S; Heyward, Andrew J

    2002-02-01

    The 184 m cargo ship Bunga Teratai Satu collided with Sudbury Reef, part of the Great Barrier Reef and remained grounded for 12 days. The ship was re-floated only 3 days prior to the November 2000 mass coral spawning. No cargo or fuel was lost but the impact resulted in significant contamination of the reef with anti-foulant paint containing tributyltin (TBT), copper (Cu) and zinc (Zn). Larvae of the reef-building scleractinian coral Acropora microphthalma were exposed to various concentrations of sediment collected from the grounding site in replicated laboratory experiments. Two experiments were performed, both of which used varying ratios of contaminated and control site sediment in seawater as treatments. In the first experiment, the influence of contaminated sediment on larval competency was examined using metamorphosis bioassays. In the second, the effect of contaminated sediment upon larval recruitment on pre-conditioned terracotta tiles was assessed. In both experiments, sediment containing 8.0 mg kg(-1) TBT, 72 mg kg(-1) Cu and 92 mg kg(-1) Zn significantly inhibited larval settlement and metamorphosis. At this level of contamination larvae survived but contracted to a spherical shape and swimming and searching behaviour ceased. At higher contamination levels, 100% mortality was recorded. These results indicate that the contamination of sediment by anti-fouling paint at Sudbury Reef has the potential to significantly reduce coral recruitment in the immediate vicinity of the site and that this contamination may threaten the recovery of the resident coral community unless the paint is removed. PMID:11981977

  3. Preparation of hydrophilic vinyl chloride copolymer hollow fiber membranes with antifouling properties

    NASA Astrophysics Data System (ADS)

    Rajabzadeh, Saeid; Sano, Rie; Ishigami, Toru; Kakihana, Yuriko; Ohmukai, Yoshikage; Matsuyama, Hideto

    2015-01-01

    Hydrophilic vinyl chloride copolymer hollow fiber membranes with antifouling properties were prepared from brominated vinyl chloride-hydroxyethyl methacrylate copolymer (poly(VC-co-HEMA-Br)). The base membrane was grafted with two different zwitterionic monomers, (2-methacryloyloxyethylphosphorylcholine) (MPC) and [2-(methacryloyloxy) ethyl] dimethyl (3-sulfopropyl) ammonium hydroxide) (MEDSAH), and poly(ethylene glycol) methyl ether methacrylate (PEGMA). The effect of the grafting on the base membrane hydrophilicity and antifouling properties was investigated. For comparison of the results, the pure water permeabilities and pore sizes at the outer surfaces of the grafted hollow fiber membranes were controlled to be similar. A poly(VC-co-HEMA-Br) hollow fiber membrane with similar pure water permeability and pore size was also prepared as a control membrane. A BSA solution was used as a model fouling solution for evaluation of the antifouling properties. Grafting with zwitterionic monomers and PEGMA improved the antifouling properties compared with the control membrane. The PEGMA grafted membrane showed the best antifouling properties among the grafted membranes

  4. Preparation and characterization of amphiphilic triblock terpolymer-based nanofibers as antifouling biomaterials.

    PubMed

    Cho, Youngjin; Cho, Daehwan; Park, Jay Hoon; Frey, Margaret W; Ober, Christopher K; Joo, Yong Lak

    2012-05-14

    Antifouling surfaces are critical for the good performance of functional materials in various applications including water filtration, medical implants, and biosensors. In this study, we synthesized amphiphilic triblock terpolymers (tri-BCPs, coded as KB) and fabricated amphiphilic nanofibers by electrospinning of solutions prepared by mixing the KB with poly(lactic acid) (PLA) polymer. The resulting fibers with amphiphilic polymer groups exhibited superior antifouling performance to the fibers without such groups. The adsorption of bovine serum albumin (BSA) on the amphiphilic fibers was about 10-fold less than that on the control surfaces from PLA and PET fibers. With the increase of the KB content in the amphiphilic fibers, the resistance to adsorption of BSA was increased. BSA was released more easily from the surface of the amphiphilic fibers than from the surface of hydrophobic PLA or PET fibers. We have also investigated the structural conformation of KB in fibers before and after annealing by contact angle measurements, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and coarse-grained molecular dynamics (CGMD) simulation to probe the effect of amphiphilic chain conformation on antifouling. The results reveal that the amphiphilic KB was evenly distributed within as-spun hybrid fibers, while migrated toward the core from the fiber surface during thermal treatment, leading to the reduction in antifouling. This suggests that the antifouling effect of the amphiphilic fibers is greatly influenced by the arrangement of amphiphilic groups in the fibers.

  5. Superior Antifouling Performance of a Zwitterionic Peptide Compared to an Amphiphilic, Non-Ionic Peptide.

    PubMed

    Ye, Huijun; Wang, Libing; Huang, Renliang; Su, Rongxin; Liu, Boshi; Qi, Wei; He, Zhimin

    2015-10-14

    The aim of this study was to explore the influence of amphiphilic and zwitterionic structures on the resistance of protein adsorption to peptide self-assembled monolayers (SAMs) and gain insight into the associated antifouling mechanism. Two kinds of cysteine-terminated heptapeptides were studied. One peptide had alternating hydrophobic and hydrophilic residues with an amphiphilic sequence of CYSYSYS. The other peptide (CRERERE) was zwitterionic. Both peptides were covalently attached onto gold substrates via gold-thiol bond formation. Surface plasmon resonance analysis results showed that both peptide SAMs had ultralow or low protein adsorption amounts of 1.97-11.78 ng/cm2 in the presence of single proteins. The zwitterionic peptide showed relatively higher antifouling ability with single proteins and natural complex protein media. We performed molecular dynamics simulations to understand their respective antifouling behaviors. The results indicated that strong surface hydration of peptide SAMs contributes to fouling resistance by impeding interactions with proteins. Compared to the CYSYSYS peptide, more water molecules were predicted to form hydrogen-bonding interactions with the zwitterionic CRERERE peptide, which is in agreement with the antifouling test results. These findings reveal a clear relation between peptide structures and resistance to protein adsorption, facilitating the development of novel peptide-containing antifouling materials.

  6. Molecular Understanding and Structural-Based Design of Polyacrylamides and Polyacrylates as Antifouling Materials.

    PubMed

    Chen, Hong; Zhao, Chao; Zhang, Mingzhen; Chen, Qiang; Ma, Jie; Zheng, Jie

    2016-04-12

    Design and synthesis of highly bioinert and biocompatible antifouling materials are crucial for a broad range of biomedical and engineering applications. Among antifouling materials, polyacrylamides and polyacrylates have proved so promising because of cheap raw materials, ease of synthesis and applicability, and abundant functional groups. The strong surface hydration and the high surface packing density of polyacrylamides and polyacrylates are considered to be the key contributors to their antifouling property. In this article, we review our studies on the design and synthesis of a series of polyacrylamides and polyacrylates with different molecular structures. These polymers can be fabricated into different architectural forms (brushes, nanoparticles, nanogels, and hydrogels), all of which are highly resistant to the attachment of proteins, cells, and bacteria. We find that small structural changes in the polymers can lead to large enhancement in surface hydration and antifouling performance, both showing a positive correlation. This reveals a general design rule for effective antifouling materials. Furthermore, polyacrylamides and polyacrylates are readily functionalized with other bioactive compounds to achieve different new multifunctionalities.

  7. Ultrasonic Mastering of Filter Flow and Antifouling of Renewable Resources.

    PubMed

    Radziuk, Darya; Möhwald, Helmuth

    2016-04-01

    Inadequate access to pure water and sanitation requires new cost-effective, ergonomic methods with less consumption of energy and chemicals, leaving the environment cleaner and sustainable. Among such methods, ultrasound is a unique means to control the physics and chemistry of complex fluids (wastewater) with excellent performance regarding mass transfer, cleaning, and disinfection. In membrane filtration processes, it overcomes diffusion limits and can accelerate the fluid flow towards the filter preventing antifouling. Here, we outline the current state of knowledge and technological design, with a focus on physicochemical strategies of ultrasound for water cleaning. We highlight important parameters of ultrasound for the delivery of a fluid flow from a technical perspective employing principles of physics and chemistry. By introducing various ultrasonic methods, involving bubbles or cavitation in combination with external fields, we show advancements in flow acceleration and mass transportation to the filter. In most cases we emphasize the main role of streaming and the impact of cavitation with a perspective to prevent and remove fouling deposits during the flow. We also elaborate on the deficiencies of present technologies and on problems to be solved to achieve a wide-spread application. PMID:26601628

  8. New analytical application for metal determination in antifouling paints.

    PubMed

    Ytreberg, Erik; Lundgren, Lennart; Bighiu, Maria Alexandra; Eklund, Britta

    2015-10-01

    Despite the ban of applying TBT coatings on leisure boats in the late 80s, recent studies show an ongoing spread of TBT from leisure boats, particularly during hull cleaning events. Therefore, countries in EU have adopted expensive measures to clean this wash water. A more cost-efficient measure is to focus directly on the source, i.e. identify leisure boats with high concentrations of TBT and prescribe boat owners to remove the paint. We have developed a new antifouling paint application for a handheld X-ray fluorescence (XRF) analyzer to be used for identifying boats with high area concentrations (µg/cm(2)) of Sn (indication that the hull contains TBT paint residues). Copper and zinc are also included in the application since these metals are used in the vast majority of today's paints. A blind test with up to four layers of TBT-, copper- and zinc-based paints showed good correlation between XRF-measured area concentrations and chemically analyzed concentrations. Future usage of the applications involves identification of boat hulls in particular with high Sn concentrations and also with high Cu and Zn concentrations. This method has the potential to become a useful tool in regulatory management of existence and use of toxic elements on boat hulls. PMID:26078138

  9. Transparent antifouling material for improved operative field visibility in endoscopy

    PubMed Central

    Sunny, Steffi; Cheng, George; Daniel, Daniel; Lo, Peter; Ochoa, Sebastian; Howell, Caitlin; Vogel, Nicolas; Majid, Adnan; Aizenberg, Joanna

    2016-01-01

    Camera-guided instruments, such as endoscopes, have become an essential component of contemporary medicine. The 15–20 million endoscopies performed every year in the United States alone demonstrate the tremendous impact of this technology. However, doctors heavily rely on the visual feedback provided by the endoscope camera, which is routinely compromised when body fluids and fogging occlude the lens, requiring lengthy cleaning procedures that include irrigation, tissue rubbing, suction, and even temporary removal of the endoscope for external cleaning. Bronchoscopies are especially affected because they are performed on delicate tissue, in high-humidity environments with exposure to extremely adhesive biological fluids such as mucus and blood. Here, we present a repellent, liquid-infused coating on an endoscope lens capable of preventing vision loss after repeated submersions in blood and mucus. The material properties of the coating, including conformability, mechanical adhesion, transparency, oil type, and biocompatibility, were optimized in comprehensive in vitro and ex vivo studies. Extensive bronchoscopy procedures performed in vivo on porcine lungs showed significantly reduced fouling, resulting in either unnecessary or ∼10–15 times shorter and less intensive lens clearing procedures compared with an untreated endoscope. We believe that the material developed in this study opens up opportunities in the design of next-generation endoscopes that will improve visual field, display unprecedented antibacterial and antifouling properties, reduce the duration of the procedure, and enable visualization of currently unreachable parts of the body, thus offering enormous potential for disease diagnosis and treatment. PMID:27688761

  10. Ultrasonic Mastering of Filter Flow and Antifouling of Renewable Resources.

    PubMed

    Radziuk, Darya; Möhwald, Helmuth

    2016-04-01

    Inadequate access to pure water and sanitation requires new cost-effective, ergonomic methods with less consumption of energy and chemicals, leaving the environment cleaner and sustainable. Among such methods, ultrasound is a unique means to control the physics and chemistry of complex fluids (wastewater) with excellent performance regarding mass transfer, cleaning, and disinfection. In membrane filtration processes, it overcomes diffusion limits and can accelerate the fluid flow towards the filter preventing antifouling. Here, we outline the current state of knowledge and technological design, with a focus on physicochemical strategies of ultrasound for water cleaning. We highlight important parameters of ultrasound for the delivery of a fluid flow from a technical perspective employing principles of physics and chemistry. By introducing various ultrasonic methods, involving bubbles or cavitation in combination with external fields, we show advancements in flow acceleration and mass transportation to the filter. In most cases we emphasize the main role of streaming and the impact of cavitation with a perspective to prevent and remove fouling deposits during the flow. We also elaborate on the deficiencies of present technologies and on problems to be solved to achieve a wide-spread application.

  11. Development of antifouling surfaces to reduce bacterial attachment

    NASA Astrophysics Data System (ADS)

    Graham, Mary Viola

    Bacteria are exceptionally good at adhering to surfaces and forming complex structures known as biofilms. This process, known as biofouling, can cause problems for infrastructure (eg, clogging and damaging pipes), for the food industry (eg, contamination of processing surfaces and equipment, and for the medical industry (eg, contamination of indwelling medical devices). Accordingly, multiple strategies have been explored to combat biofouling, including chemical modification of surfaces, development of antibiotic coatings, and more recently, the use of engineered surface topography. When designed properly, engineered surface topographies can significantly reduce bacterial surface attachment, ultimately limiting surface colonization. In this work, we hypothesized that the morphology, size, spacing, and surface pre-treatment of topographical features should directly correlate with the size and shape of target organisms, in order to reduce biofouling. Topographical features with size and spacing from 0.25 to 2 mum were fabricated in silicone elastomer and tested against rod shaped bacteria with an average size of 0.5 x 2 mum and spherical bacteria (cocci) ranging from 0.5 - 1 μm in diameter. Antifouling properties of the different topographical features were tested in both static and flow-based assays, and under oxygen plasma-treated (hydrophilic) and untreated (hydrophobic) surface conditions. We found that surface pre-treatment universally affects the ability bacteria to attach to surfaces, while surface topography limits attachment in a manner dependent on the bacterial size/shape and the size/spacing of the topography.

  12. Halogenated Compounds from Marine Algae

    PubMed Central

    Cabrita, Maria Teresa; Vale, Carlos; Rauter, Amélia Pilar

    2010-01-01

    Marine algae produce a cocktail of halogenated metabolites with potential commercial value. Structures exhibited by these compounds go from acyclic entities with a linear chain to complex polycyclic molecules. Their medical and pharmaceutical application has been investigated for a few decades, however other properties, such as antifouling, are not to be discarded. Many compounds were discovered in the last years, although the need for new drugs keeps this field open as many algal species are poorly screened. The ecological role of marine algal halogenated metabolites has somehow been overlooked. This new research field will provide valuable and novel insight into the marine ecosystem dynamics as well as a new approach to comprehending biodiversity. Furthermore, understanding interactions between halogenated compound production by algae and the environment, including anthropogenic or global climate changes, is a challenging target for the coming years. Research of halogenated metabolites has been more focused on macroalgae than on phytoplankton. However, phytoplankton could be a very promising material since it is the base of the marine food chain with quick adaptation to environmental changes, which undoubtedly has consequences on secondary metabolism. This paper reviews recent progress on this field and presents trends on the role of marine algae as producers of halogenated compounds. PMID:20948909

  13. Comparison of laboratory and field testing performance evaluations of siloxane-polyurethane fouling-release marine coatings.

    PubMed

    Stafslien, Shane J; Sommer, Stacy; Webster, Dean C; Bodkhe, Rajan; Pieper, Robert; Daniels, Justin; Vander Wal, Lyndsi; Callow, Maureen C; Callow, James A; Ralston, Emily; Swain, Geoff; Brewer, Lenora; Wendt, Dean; Dickinson, Gary H; Lim, Chin-Sing; Teo, Serena Lay-Ming

    2016-09-01

    A series of eight novel siloxane-polyurethane fouling-release (FR) coatings were assessed for their FR performance in both the laboratory and in the field. Laboratory analysis included adhesion assessments of bacteria, microalgae, macroalgal spores, adult barnacles and pseudobarnacles using high-throughput screening techniques, while field evaluations were conducted in accordance with standardized testing methods at three different ocean testing sites over the course of six-months exposure. The data collected were subjected to statistical analysis in order to identify potential correlations. In general, there was good agreement between the laboratory screening assays and the field assessments, with both regimes clearly distinguishing the siloxane-polyurethane compositions comprising monofunctional poly(dimethyl siloxane) (PDMS) (m-PDMS) as possessing superior, broad-spectrum FR properties compared to those prepared with difunctional PDMS (d-PDMS). Of the seven laboratory screening techniques, the Cellulophaga lytica biofilm retraction and reattached barnacle (Amphibalanus amphitrite) adhesion assays were shown to be the most predictive of broad-spectrum field performance. PMID:27494780

  14. Comparison of laboratory and field testing performance evaluations of siloxane-polyurethane fouling-release marine coatings.

    PubMed

    Stafslien, Shane J; Sommer, Stacy; Webster, Dean C; Bodkhe, Rajan; Pieper, Robert; Daniels, Justin; Vander Wal, Lyndsi; Callow, Maureen C; Callow, James A; Ralston, Emily; Swain, Geoff; Brewer, Lenora; Wendt, Dean; Dickinson, Gary H; Lim, Chin-Sing; Teo, Serena Lay-Ming

    2016-09-01

    A series of eight novel siloxane-polyurethane fouling-release (FR) coatings were assessed for their FR performance in both the laboratory and in the field. Laboratory analysis included adhesion assessments of bacteria, microalgae, macroalgal spores, adult barnacles and pseudobarnacles using high-throughput screening techniques, while field evaluations were conducted in accordance with standardized testing methods at three different ocean testing sites over the course of six-months exposure. The data collected were subjected to statistical analysis in order to identify potential correlations. In general, there was good agreement between the laboratory screening assays and the field assessments, with both regimes clearly distinguishing the siloxane-polyurethane compositions comprising monofunctional poly(dimethyl siloxane) (PDMS) (m-PDMS) as possessing superior, broad-spectrum FR properties compared to those prepared with difunctional PDMS (d-PDMS). Of the seven laboratory screening techniques, the Cellulophaga lytica biofilm retraction and reattached barnacle (Amphibalanus amphitrite) adhesion assays were shown to be the most predictive of broad-spectrum field performance.

  15. Hydrophilicity and antifouling property of membrane materials from cellulose acetate/polyethersulfone in DMAc.

    PubMed

    Sun, Zhonghua; Chen, Fushan

    2016-10-01

    In this study, cellulose acetate (CA) was blended with polyethersulfone (PES) to endow the ultrafiltration membrane with the improved hydrophilicity and antifouling property by using N,N-dimethylacetamide (DMAc) as the solvent. The effects of blend composition and evaporation time on the mechanical strength and pure water flux were investigated. It was found that the optimal composition of the casting solution was: 18wt% (PES), 4wt% (Polyvinylpyrrolidone K30), 3wt% (CA) and 20s (Evaporation time). The characteristics of CA-PES blend membranes were investigated through the methods of contact angle goniometer, antifouling property, compatibility, thermo gravimetric analysis and SEM. The results showed that the hydrophilicity and antifouling property of CA-PES ultrafiltration membranes were enhanced in comparison with the pure PES membranes. The CA-PES membranes exhibited semi-compatibility and good thermal stability below 270°C. This study provided a potential industrial application prospect of CA-PES membranes prepared in DMAc.

  16. Copper storage in the liver of the wild mute swan (Cygnus olor). Its possible relation to pollution of harbor waters by antifouling paints

    SciTech Connect

    Molnar, J.J.

    1983-12-01

    Postmortem examination of three wild mute swans (Cygnus olor) from a harbor area disclosed an unusual black discoloration of the liver. Chemical, histochemical, and microscopic studies, along with electron-probe microanalysis, showed that cytoplasmic pigment granules in the liver cells contained a copper-protein complex. Similar findings have been reported in Danish and English studies on large numbers of wild mute swans. Two control mute swans from The Bronx Zoo had negligible amounts of hepatic copper. The striking difference between the wild and the captive swans in hepatic copper content suggests that the copper in the wild swans was of environmental origin, most likely from copper-rich antifouling paint used extensively in the marine industry. Flakes of this paint may be ingested by swans searching for food in the sediment of harbor waters.

  17. Dynamic surface deformation of silicone elastomers for management of marine biofouling: laboratory and field studies using pneumatic actuation.

    PubMed

    Shivapooja, Phanindhar; Wang, Qiming; Szott, Lizzy M; Orihuela, Beatriz; Rittschof, Daniel; Zhao, Xuanhe; López, Gabriel P

    2015-01-01

    Many strategies have been developed to improve the fouling release (FR) performance of silicone coatings. However, biofilms inevitably build on these surfaces over time. Previous studies have shown that intentional deformation of silicone elastomers can be employed to detach biofouling species. In this study, inspired by the methods used in soft-robotic systems, controlled deformation of silicone elastomers via pneumatic actuation was employed to detach adherent biofilms. Using programmed surface deformation, it was possible to release > 90% of biofilm from surfaces in both laboratory and field environments. A higher substratum strain was required to remove biofilms accumulated in the field environment as compared with laboratory-grown biofilms. Further, the study indicated that substratum modulus influences the strain needed to de-bond biofilms. Surface deformation-based approaches have potential for use in the management of biofouling in a number of technological areas, including in niche applications where pneumatic actuation of surface deformation is feasible.

  18. The role of nano-roughness in antifouling

    SciTech Connect

    Scardino, A.J.; Zhang, H.; Cookson, D.J.; Lamb, R.N.; de Nys, R.

    2010-02-19

    Nano-engineered superhydrophobic surfaces have been investigated for potential fouling resistance properties. Integrating hydrophobic materials with nanoscale roughness generates surfaces with superhydrophobicity that have water contact angles ({theta}) >150{sup o} and concomitant low hysteresis (<10{sup o}). Three superhydrophobic coatings (SHCs) differing in their chemical composition and architecture were tested against major fouling species (Amphora sp., Ulva rigida, Polysiphonia sphaerocarpa, Bugula neritina, Amphibalanus amphitrite) in settlement assays. The SHC which had nanoscale roughness alone (SHC 3) deterred the settlement of all the tested fouling organisms, compared to selective settlement on the SHCs with nano- and micro-scale architectures. The presence of air incursions or nanobubbles at the interface of the SHCs when immersed was characterized using small angle X-ray scattering, a technique sensitive to local changes in electron density contrast resulting from partial or complete wetting of a rough interface. The coating with broad spectrum antifouling properties (SHC 3) had a noticeably larger amount of unwetted interface when immersed, likely due to the comparatively high work of adhesion (60.77 mJ m{sup -2} for SHC 3 compared to 5.78 mJ m-2 for the other two SHCs) required for creating solid/liquid interface from the solid/vapour interface. This is the first example of a non-toxic, fouling resistant surface against a broad spectrum of fouling organisms ranging from plant cells and non-motile spores, to complex invertebrate larvae with highly selective sensory mechanisms. The only physical property differentiating the immersed surfaces is the nano-architectured roughness which supports longer standing air incursions providing a novel non-toxic broad spectrum mechanism for the prevention of biofouling.

  19. Removal by sorption and in situ biodegradation of oil spills limits damage to marine biota: a laboratory simulation.

    PubMed

    Suni, Sonja; Koskinen, Kaisa; Kauppi, Sari; Hannula, Emilia; Ryynänen, Tuukka; Aalto, Annika; Jäänheimo, Jenni; Ikävalko, Johanna; Romantschuk, Martin

    2007-04-01

    This study examined the efficiency of cotton grass fibers in removing diesel oil from the surface of water in conditions prevailing in the Baltic Sea. The effect of low temperature, salinity, and bacterial amendments were tested in laboratory-scale set-ups, whereas 600-L mesocosms filled with Baltic Sea water were used for testing the effects of diesel oil and rapid removal of the oil on microorganisms, phytoplankton, and mussels. Cotton grass proved to be an excellent sorbent for diesel oil from the water surface at a low temperature. Inoculation with diesel-enriched microorganisms enhanced degradation of oil significantly in laboratory-scale experiments. In mesocosm experiments, the addition of diesel oil (0.66 mg L(-1), 0.533 L m(-2)) to the basins resulted in higher microbial density than in all other basins, including inoculated ones, suggesting that the Baltic Sea contains indigenous hydrocarbon degraders. The removal of oil with cotton grass significantly improved the survival of mussels in the mesocosm tests: 100% mortality in diesel basins versus 0% mortality in basins with cotton grass, respectively. However, the surviving mussels suffered from histopathological changes such as inflammatory responses, degenerations, and cell death. The observed rescuing effect was observable even when the cotton grass-bound oil was left in the water. The results underline the importance of rapid action in limiting damage caused by oil spills.

  20. Porometric properties of siliciclastic marine sand: A comparison of traditional laboratory measurements with image analysis and effective medium modeling

    USGS Publications Warehouse

    Reed, A.H.; Briggs, K.B.; Lavoie, D.L.

    2002-01-01

    During the 1999 sediment acoustics experiment (SAX99), porometric properties were measured and predicted for a well sorted, medium sand using standard laboratory geotechnical methods and image analysis of resin-impregnated sediments. Sediment porosity measured by laboratory water-weight-loss methods (0.372 ?? 0.0073 for mean ??1 standard deviation) is 0.026 lower than determined by microscopic image analysis of resin-impregnated sediments (0.398 ?? 0.029). Values of intrinsic permeability (m2) determined from constant-head permeameter measurements (3.29 ?? 10-11 ?? 0.60 ?? 10-11) and by microscopic image analysis coupled with effective medium theory modeling (2.78 ?? 10-11 ?? 1.01 ?? 10-11) are nearly identical within measurement error. The mean value of tortuosity factor measured from images is 1.49 ?? 0.09, which is in agreement with tortuosity factor determined from electrical resistivity measurements. Slight heterogeneity and anisotropy are apparent in the top three centimeters of sediment as determined by image-based porometric property measurements. However, the overall similarity for both measured and predicted values of porosity and permeability among and within SAX99 sites indicates sediments are primarily homogeneous and isotropic and pore size distributions are fairly uniform. The results indicate that an effective medium theory technique and two-dimensional image analysis accurately predicts bulk permeability in resin-impregnated sands.

  1. Triggers of the HSP70 stress response: environmental responses and laboratory manipulation in an Antarctic marine invertebrate (Nacella concinna)

    PubMed Central

    Peck, Lloyd S.

    2009-01-01

    The Antarctic limpet, Nacella concinna, exhibits the classical heat shock response, with up-regulation of duplicated forms of the inducible heat shock protein 70 (HSP70) gene in response to experimental manipulation of seawater temperatures. However, this response only occurs in the laboratory at temperatures well in excess of any experienced in the field. Subsequent environmental sampling of inter-tidal animals also showed up-regulation of these genes, but at temperature thresholds much lower than those required to elicit a response in the laboratory. It was hypothesised that this was a reflection of the complexity of the stresses encountered in the inter-tidal region. Here, we describe a further series of experiments comprising both laboratory manipulation and environmental sampling of N. concinna. We investigate the expression of HSP70 gene family members (HSP70A, HSP70B, GRP78 and HSC70) in response to a further suite of environmental stressors: seasonal and experimental cold, freshwater, desiccation, chronic heat and periodic emersion. Lowered temperatures (−1.9°C and −1.6°C), generally produced a down-regulation of all HSP70 family members, with some up-regulation of HSC70 when emerging from the winter period and increasing sea temperatures. There was no significant response to freshwater immersion. In response to acute and chronic heat treatments plus simulated tidal cycles, the data showed a clear pattern. HSP70A showed a strong but very short-term response to heat whilst the duplicated HSP70B also showed heat to be a trigger, but had a more sustained response to complex stresses. GRP78 expression indicates that it was acting as a generalised stress response under the experimental conditions described here. HSC70 was the major chaperone invoked in response to long-term stresses of varying types. These results provide intriguing clues not only to the complexity of HSP70 gene expression in response to environmental change but also insights into the

  2. Parasitism in marine fish after chronic exposure to petroleum hydrocarbons in the laboratory and to the Exxon Valdez oil spill

    SciTech Connect

    Khan, R.A. )

    1990-05-01

    Crude oil or its water soluble components are known to induce histopathological effects in fish following chronic exposure. Fish tend to harbor a variety of parasites, most of which under natural conditions cause little or no apparent harm. However, after chronic exposure to petroleum hydrocarbons, the prevalence and intensity of parasitism increases substantially. Trichodinid ciliates are mainly ectoparasitic protozoans on the fills of fish. Since a previous study showed that chronic exposure to crude oil fractions resulted in increased parasitism, a study was initiated to ascertain the relationship between trichodinid infections and exposure of fish to crude oil or its fractions in the laboratory and subsequently, in the Gulf of Alaska following the Exxon Valdez oil spill.

  3. Toxicity of degradation products of the antifouling biocide pyridine triphenylborane to marine organisms.

    PubMed

    Onduka, Toshimitsu; Ojima, Daisuke; Ito, Mana; Ito, Katsutoshi; Mochida, Kazuhiko; Fujii, Kazunori

    2013-11-01

    We evaluated the acute toxicities of the main degradation products of pyridine triphenylborane (PTPB), namely, diphenylborane hydroxide (DPB), phenylborane dihydroxide (MPB), phenol, and biphenyl, to the alga Skeletonema costatum, the crustacean Tigriopus japonicus, and two teleosts, the red sea bream Pagrus major and the mummichog Fundulus heteroclitus. DPB was the most toxic of the degradation products to all four organisms. The acute toxicity values of DPB for S. costatum, T. japonicus, red sea bream, and mummichog were 55, 70, 100, and 200-310 μg/L, respectively. The degradation products were less toxic than PTPB to S. costatum and T. japonicus; however, the toxicities of DPB and PTPB to the fish species were similar. We also examined changes in the inhibition of growth rate of S. costatum as well as the percentage of immobilization of T. japonicus as end points of toxicity of PTPB after irradiation of PTPB with 432 ± 45 W/m(2) of 290-700 nm wavelength light. After 7 days of irradiation with this light, the concentration of PTPB in the test solutions decreased markedly. A decrease in toxic effects closely coincided with the decrease in the concentration of PTPB caused by the irradiation. PTPB probably accounted for most of the toxicity in the irradiation test solutions. Because the concentrations of PTPB that were acutely toxic to S. costatum and T. japonicus were <10 % of the corresponding concentrations of its degradation products, PTPB probably accounted for most of the toxicity in the irradiation test solutions. PMID:23929384

  4. Rapid construction of an effective antifouling layer on a Au surface via electrodeposition.

    PubMed

    Li, Bor-Ran; Shen, Mo-Yuan; Yu, Hsiao-Hua; Li, Yaw-Kuen

    2014-06-28

    A new approach to immobilize zwitterionic molecules rapidly and highly efficiently on a gold surface applies aniline-based electrodeposition. The zwitterion-functionalized antifouling surface enables a decrease of the adsorption of non-specific proteins by 95% from fetal bovine serum (FBS, 10%).

  5. Evaluation of low copper content antifouling paints containing natural phenolic compounds as bioactive additives.

    PubMed

    Pérez, Miriam; García, Mónica; Blustein, Guillermo

    2015-08-01

    Cuprous oxide is the most commonly used biocide in antifouling paints. However, copper has harmful effects not only on the fouling community but also on non-target species. In the current study, we investigated the use of thymol, eugenol and guaiacol in this role combined with small quantities of copper. Phenolic compounds were tested for anti-settlement activity against cyprid larvae of the barnacle Balanus amphitrite and for their toxicity to nauplius larvae. Thymol, eugenol and guaiacol were active for anti-settlement but guaiacol had the disadvantage of being toxic to nauplius larvae. However, all of them showed therapeutic ratio>1. Antifouling paints with thymol (low copper content/thymol, LCP/T), eugenol (low copper content/eugenol, LCP/E) and guaiacol (low copper content/guaiacol, LCP/G) combined with small copper content were formulated for field trials. After 12 months exposure in the sea, statistical analysis revealed that LCP/T and LCP/E paints were the most effective combinations and had similar performances to control paints with high copper content (traditional cuprous oxide based paints). In contrast, LCP/G paint was only partially effective in preventing and inhibiting biofouling and was colonized by some hard and soft foulers. However, this antifouling paint was effective against calcareous tubeworm Hydroides elegans. In the light of various potential applications, thymol, eugenol and guaiacol have thus to be considered in future antifouling formulations. PMID:26210408

  6. The double effects of silver nanoparticles on the PVDF membrane: Surface hydrophilicity and antifouling performance

    NASA Astrophysics Data System (ADS)

    Li, Jian-Hua; Shao, Xi-Sheng; Zhou, Qing; Li, Mi-Zi; Zhang, Qi-Qing

    2013-01-01

    In this study, silver nanoparticles were used to endow poly(vinylidene fluoride) (PVDF) membrane with excellent surface hydrophilicity and outstanding antifouling performance. Silver nanoparticles were successfully immobilized onto PVDF membrane surface under the presence of poly(acrylic acid) (PAA). The double effects of silver nanoparticles on PVDF membrane, i.e., surface hydrophilicity and anti-fouling performance, were systematically investigated. Judging from result of water static contact measurement, silver nanoparticles had provided a significant improvement in PVDF membrane surface hydrophilicity. And the possible explanation on the improvement of PVDF membrane surface hydrophilicity with silver nanoparticles was firstly proposed in this study. Membrane permeation and anti-bacterial tests were carried out to characterize the antifouling performance of PVDF membrane. Flux recovery ratio (FRR) increased about 40% after the presence of silver nanoparticles on the PVDF membrane surface, elucidating the anti-organic fouling performance of PVDF membrane was elevated by silver nanoparticles. Simultaneously, anti-bacterial test confirmed that PVDF membrane showed superior anti-biofouling activity because of silver nanoparticles. The above-mentioned results clarified that silver nanoparticles can endow PVDF membrane with both excellent surface hydrophilicity and outstanding antifouling performance in this study.

  7. Quantifying Marine Emissions of Biogenic Volatile Organic Compounds Using Laboratory Measurements of Plankton Monocultures and Field Samples

    NASA Astrophysics Data System (ADS)

    Sabolis, A. W.; Meskhidze, N.; Kamykowski, D.; Reed, R. E.

    2010-12-01

    Marine biogenic volatile organic compounds (BVOCs) have been suggested to contribute significant portion of the organic carbon present in ocean atmosphere. In this study emission rates of 40 different hydrocarbons are quantified for lab-grown non-axenic phytoplankton monocultures and ambient samples from the Pamlico-Neuse Estuary, NC. The outcome of environmental conditions on production of BVOCs was examined for different light and temperature conditions. These different regimes are considered proxies for physiological stress-induced effects observed in natural ecosystems. The samples were incubated in a climate controlled room; they were then transferred to smaller volumes (200 ml) for analysis. BVOCs accumulated in the water and headspace above the water were measured by bubbling hydrocarbon-free gas mixture through the sample and passing the gas stream through a gas chromatography/mass spectrometry system equipped with a sample pre-concentrator. Inside the pre-concentrator, the compounds were trapped on a sorbent material, heated, and flushed into the GC-MS column. The pre-concentrator/GC-MS system gave at least 1000 times magnification of the sample concentrations, allowing detection of low ppt levels of hydrocarbons. Here we report results for lab-grown diatoms Thalassiosira weissflogii and Thalassiosira pseudonana, prymnesiophyte Pleurochrysis carterae, and dinoflagellates Karina brevis and Procentrum minimum, as well as field samples. To make results widely usable, all the emissions are normalized to Chlorophyll-a (Chl-a) concentration and cell counts. Our results show that diatoms had the highest isoprene production rate of 2.8 μmol (g Chl-a)-1 h-1 with ranges between 1.4 and 3.6 μmol (g Chl-a)-1 h-1 at light levels between 90 and 900 μE m-2 s-1, respectively. The prymnesiophyte and dinoflagellate species had isoprene production rates of 1.3±0.4 μmol (g Chl-a)-1 h-1 with a similar light dependency as diatoms. Field samples had comparable isoprene

  8. Entrapment of subtilisin in ceramic sol-gel coating for antifouling applications.

    PubMed

    Regina, Viduthalai Rasheedkhan; Søhoel, Helmer; Lokanathan, Arcot Raghupathi; Bischoff, Claus; Kingshott, Peter; Revsbech, Niels Peter; Meyer, Rikke Louise

    2012-11-01

    Enzymes with antifouling properties are of great interest in developing nontoxic antifouling coatings. A bottleneck in developing enzyme-based antifouling coatings is to immobilize the enzyme in a suitable coating matrix without compromising its activity and stability. Entrapment of enzymes in ceramics using the sol-gel method is known to have several advantages over other immobilization methods. The sol-gel method can be used to make robust coatings, and the aim of this study was to explore if sol-gel technology can be used to develop robust coatings harboring active enzymes for antifouling applications. We successfully entrapped a protease, subtilisin (Savinase, Novozymes), in a ceramic coating using a sol-gel method. The sol-gel formulation, when coated on a stainless steel surface, adhered strongly and cured at room temperature in less than 8 h. The resultant coating was smoother and less hydrophobic than stainless steel. Changes in the coating's surface structure, thickness and chemistry indicate that the coating undergoes gradual erosion in aqueous medium, which results in release of subtilisin. Subtilisin activity in the coating increased initially, and then gradually decreased. After 9 months, 13% of the initial enzyme activity remained. Compared to stainless steel, the sol-gel-coated surfaces with active subtilisin were able to reduce bacterial attachment of both Gram positive and Gram negative bacteria by 2 orders of magnitude. Together, our results demonstrate that the sol-gel method is a promising coating technology for entrapping active enzymes, presenting an interesting avenue for enzyme-based antifouling solutions.

  9. The Hawai'i Undersea Research Laboratory: Applying Innovative Deep-sea Technologies Toward Research, Service, and Stewardship in Marine Protected Areas of the Pacific Region

    NASA Astrophysics Data System (ADS)

    Smith, J. R.

    2012-12-01

    The Hawai'i Undersea Research Laboratory (HURL) is the only U.S. deep submergence facility in the Pacific Rim tasked with supporting undersea research necessary to fulfill the mission, goals, and objectives of the National Oceanic and Atmospheric Administration (NOAA), along with other national interests of importance. Over 30 years of submersible operations have resulted in nearly 1900 dives representing 9300 hours underwater, and a benthic ecology database derived from in-house video record logging of over 125,000 entries based on 1100 unique deep-sea animal identifications in the Hawaiian Archipelago. As a Regional Center within the Office of Ocean Exploration and Research (OER), HURL conducts undersea research in offshore and nearshore waters of the main and Northwestern Hawaiian Islands and waters of the central, southern, and western Pacific. HURL facilities primarily support marine research projects that require data acquisition at depths greater than wet diving methods. These consist of the research vessel Ka'imikai-o-Kanaloa (KOK), human occupied submersibles Pisces IV and Pisces V (2000 m), a new remotely operated vehicle (6000 m), and a multibeam bathymetric sonar system (11,000 m). In addition, HURL has also supported AAUS compliant wet diving since 2003, including technical mixed gas/rebreather work. While ecosystem studies of island, atoll, and seamount flanks are the largest component of the HURL science program, many other thematic research areas have been targeted including extreme and unique environments, new resources from the sea, episodic events to long term changes, and the development of innovative technologies. Several examples of HURL's contributions to marine protected areas (MPAs) include: (a) A long term presence in the pristine ecosystems of the Papahānaumokuākea Marine National Monument in the Northwestern Hawaiian Islands. Researchers from National Marine Fisheries have used HURL assets to study endangered Hawaiian Monk Seal habitat

  10. The Marine Biological Laboratory (Woods Hole) and the scientific advancement of women in the early 20th century: the example of Mary Jane Hogue (1883-1962).

    PubMed

    Zottoli, Steven J; Seyfarth, Ernst-August

    2015-01-01

    The Marine Biological Laboratory (MBL) in Woods Hole, MA provided opportunities for women to conduct research in the late 19th and early 20th century at a time when many barriers existed to their pursuit of a scientific career. One woman who benefited from the welcoming environment at the MBL was Mary Jane Hogue. Her remarkable career as an experimental biologist spanned over 55 years. Hogue was born into a Quaker family in 1883 and received her undergraduate degree from Goucher College. She went to Germany to obtain an advanced degree, and her research at the University of Würzburg with Theodor Boveri resulted in her Ph.D. (1909). Although her research interests included experimental embryology, and the use of tissue culture to study a variety of cell types, she is considered foremost a protozoologist. Her extraordinary demonstration of chromidia (multiple fission) in the life history of a new species of Flabellula associated with diseased oyster beds is as important as it is ignored. We discuss Hogue's career path and her science to highlight the importance of an informal network of teachers, research advisors, and other women scientists at the MBL all of whom contributed to her success as a woman scientist.

  11. Levels and mass burden of DDTs in sediments from fishing harbors: the importance of DDT-containing antifouling paint to the coastal environment of China.

    PubMed

    Lin, Tian; Hu, Zhaohui; Zhang, Gan; Li, Xiangdong; Xu, Weihai; Tang, Jianhui; Li, Jun

    2009-11-01

    DDT remains an important type of persistent organic pollutant (POP) in the environment of China. One of the current applications of DDT in China has been through antifouling paint for fishing ships as an active component. It has been estimated that approximately 5000 t of DDT was released into the Chinese coastal environment during the last two decades. Therefore, sediments in coastal fishing harbors of China may be the important sinks of DDT. In this study, DDT and its metabolites in 58 sediment samples from nine typical fishing harbors along the coastal line of China were characterized to assess their accumulation levels, sediment burdens, and potential ecological risks. The concentrations of DDTs ranged from 9 to 7350 ng/g dry weight, which were generally 1-2 orders of magnitude higher than those of the adjacent estuarine/marine sediments. The high concentrations of DDT coupled with the lower concentrations of HCH and TOC clearly indicated a strong local DDT input, i.e., DDT-containing antifouling paint, within the fishing harbors. A significant correlation between the total DDT concentrations and p,p'-DDT concentrations further confirmed the existence of fresh DDT input. The overall burden of DDTs within the upper 10 cm sediment layer in the fishing harbors of the Pearl River Delta, southern China, was estimated to be 1.0-5.7 t, which was several times higher than the DDT accumulation in the surface sediment of the Pearl River estuary. The concentrations of DDTs in the fishing harbor sediments significantly exceeded the sediment quality guidelines on the basis of adverse biological effects. The absence or low concentrations of p,p'-DDD in aquatic organisms and human may imply that either p,p'-DDD may be less bioaccumulated by fish and human, or is biotransformed to other metabolites. A national ban of DDT as an additive to antifouling paint was implemented in 2009 in China; however, the legacy high DDT burden in the coastal fishing harbors needs further

  12. Corrosion resistance and durability of siloxane ceramic/polymer films for aluminum alloys in marine environments

    NASA Astrophysics Data System (ADS)

    Kusada, Kentaro

    The objective of this study is to evaluate corrosion resistance and durability of siloxane ceramic/polymer films for aluminum alloys in marine environments. Al5052-H3 and Al6061-T6 were selected as substrates, and HCLCoat11 and HCLCoat13 developed in the Hawaii Corrosion Laboratory were selected for the siloxane ceramic/polymer coatings. The HCLCoat11 is a quasi-ceramic coating that has little to no hydrocarbons in its structure. The HCLCoat13 is formulated to incorporate more hydrocarbons to improve adhesion to substrate surfaces with less active functionalities. In this study, two major corrosion evaluation methods were used, which were the polarization test and the immersion test. The polarization tests provided theoretical corrosion rates (mg/dm 2/day) of bare, HCLCoat11-coated, and HCLCoat13-coated aluminum alloys in aerated 3.15wt% sodium chloride solution. From these results, the HCLCoat13-coated Al5052-H3 was found to have the lowest corrosion rate which was 0.073mdd. The next lowest corrosion rate was 0.166mdd of the HCLCoat11-coated Al5052-H3. Corrosion initiation was found to occur at preexisting breaches (pores) in the films by optical microscopy and SEM analysis. The HCLCoat11 film had many preexisting breaches of 1-2microm in diameter, while the HCLCoat13 film had much fewer preexisting breaches of less than 1microm in diameter. However, the immersion tests showed that the seawater immersion made HCLCoat13 film break away while the HCLCoat11 film did not apparently degrade, indicating that the HCLCoat11 film is more durable against seawater than the HCLCoat13. Raman spectroscopy revealed that there was some degradation of HCLCoat11 and HCLCoat13. For the HCLCoat11 film, the structure relaxation of Si-O-Si linkages was observed. On the other hand, seawater generated C-H-S bonds in the HCLCoat13 film resulting in the degradation of the film. In addition, it was found that the HCLCoat11 coating had anti-fouling properties due to its high water contact

  13. Marine Fisheries: A Biological Insight.

    ERIC Educational Resources Information Center

    Haefner, Paul A., Jr.

    1980-01-01

    Described is a marine science course offered to high school biology teachers. The course objectives were designed to introduce teachers to a marine science subject that could be used in the secondary science classroom and laboratory and to create an awareness of the issues surrounding the marine sciences. (DS)

  14. Investigation of the role of hydrophilic chain length in amphiphilic perfluoropolyether/poly(ethylene glycol) networks: towards high-performance antifouling coatings.

    PubMed

    Wang, Yapei; Pitet, Louis M; Finlay, John A; Brewer, Lenora H; Cone, Gemma; Betts, Douglas E; Callow, Maureen E; Callow, James A; Wendt, Dean E; Hillmyer, Marc A; DeSimonea, Joseph M

    2011-01-01

    The facile preparation of amphiphilic network coatings having a hydrophobic dimethacryloxy-functionalized perfluoropolyether (PFPE-DMA; M(w) = 1500 g mol(-1)) crosslinked with hydrophilic monomethacryloxy functionalized poly(ethylene glycol) macromonomers (PEG-MA; M(w) = 300, 475, 1100 g mol(-1)), intended as non-toxic high-performance marine coatings exhibiting antifouling characteristics is demonstrated. The PFPE-DMA was found to be miscible with the PEG-MA. Photo-cured blends of these materials containing 10 wt% of PEG-MA oligomers did not swell significantly in water. PFPE-DMA crosslinked with the highest molecular weight PEG oligomer (ie PEG1100) deterred settlement (attachment) of algal cells and cypris larvae of barnacles compared to a PFPE control coating. Dynamic mechanical analysis of these networks revealed a flexible material. Preferential segregation of the PEG segments at the polymer/air interface resulted in enhanced antifouling performance. The cured amphiphilic PFPE/PEG films showed decreased advancing and receding contact angles with increasing PEG chain length. In particular, the PFPE/PEG1100 network had a much lower advancing contact angle than static contact angle, suggesting that the PEG1100 segments diffuse to the polymer/water interface quickly. The preferential interfacial aggregation of the larger PEG segments enables the coating surface to have a substantially enhanced resistance to settlement of spores of the green seaweed Ulva, cells of the diatom Navicula and cypris larvae of the barnacle Balanus amphitrite as well as low adhesion of sporelings (young plants) of Ulva, adhesion being lower than to a polydimethyl elastomer, Silastic T2. PMID:22087876

  15. Investigation of the role of hydrophilic chain length in amphiphilic perfluoropolyether/poly(ethylene glycol) networks: towards high-performance antifouling coatings

    SciTech Connect

    Wang, Yapei; Pitet, Louis M.; Finlay, John A.; Brewer, Lenora H.; Cone, Gemma; Betts, Douglas E.; Callow, Maureen E.; Callow, James A.; Wendt, Dean E.; Hillmyer, Marc A.; DeSimone, Joseph M.

    2013-03-07

    The facile preparation of amphiphilic network coatings having a hydrophobic dimethacryloxy-functionalized perfluoropolyether (PFPE-DMA; M{sub w} = 1500 g mol{sup -1}) crosslinked with hydrophilic monomethacryloxy functionalized poly(ethylene glycol) macromonomers (PEG-MA; M{sub w} = 300, 475, 1100 g mol{sup -1}), intended as non-toxic high-performance marine coatings exhibiting antifouling characteristics is demonstrated. The PFPE-DMA was found to be miscible with the PEG-MA. Photo-cured blends of these materials containing 10 wt% of PEG-MA oligomers did not swell significantly in water. PFPE-DMA crosslinked with the highest molecular weight PEG oligomer (ie PEG1100) deterred settlement (attachment) of algal cells and cypris larvae of barnacles compared to a PFPE control coating. Dynamic mechanical analysis of these networks revealed a flexible material. Preferential segregation of the PEG segments at the polymer/air interface resulted in enhanced antifouling performance. The cured amphiphilic PFPE/PEG films showed decreased advancing and receding contact angles with increasing PEG chain length. In particular, the PFPE/PEG1100 network had a much lower advancing contact angle than static contact angle, suggesting that the PEG1100 segments diffuse to the polymer/water interface quickly. The preferential interfacial aggregation of the larger PEG segments enables the coating surface to have a substantially enhanced resistance to settlement of spores of the green seaweed Ulva, cells of the diatom Navicula and cypris larvae of the barnacle Balanus amphitrite as well as low adhesion of sporelings (young plants) of Ulva, adhesion being lower than to a polydimethyl elastomer, Silastic T2.

  16. Plasma-enhanced deposition of antifouling layers on silicone rubber surfaces

    NASA Astrophysics Data System (ADS)

    Jiang, Hongquan

    In food processing and medical environments, biofilms serve as potential sources of contamination, and lead to food spoilage, transmission of diseases or infections. Because of its ubiquitous and recalcitrant nature, Listeria monocytogenes biofilm is especially hard to control. Generating antimicrobial surfaces provide a method to control the bacterial attachment. The difficulty of silver deposition on polymeric surfaces has been overcome by using a unique two-step plasma-mediated method. First silicone rubber surfaces were plasma-functionalized to generate aldehyde groups. Then thin silver layers were deposited onto the functionalized surfaces according to Tollen's reaction. X-ray photoelectron spectroscopy (XPS), atomic force spectroscopy (AFM) and scanning electron microscopy (SEM) showed that silver particles were deposited. By exposing the silver coated surfaces to L. monocytogenes, it was demonstrated that they were bactericidal to L. monocytogenes. No viable bacteria were detected after 12 to 18 h on silver-coated silicone rubber surfaces. Another antifouling approach is to generate polyethylene glycol (PEG) thin layer instead of silver on polymer surfaces. Covalent bond of PEG structures of various molecular weights to cold-plasma-functionalized polymer surfaces, such as silicone rubber, opens up a novel way for the generation of PEG brush-like or PEG branch-like anti-fouling layers. In this study, plasma-generated surface free radicals can react efficiently with dichlorosilane right after plasma treatment. With the generation of halo-silane groups, this enables PEG molecules to be grafted onto the modified surfaces. XPS data clearly demonstrated the presence of PEG molecules on plasma-functionalized silicone rubber surfaces. AFM images showed the changed surface morphologies as a result of covalent attachment to the surface of PEG molecules. Biofilm experiment results suggest that the PEG brush-like films have the potential ability to be the next

  17. Effects of metal pyrithione antifoulants on freshwater macrophyte Lemna gibba G3 determined by image analysis.

    PubMed

    Okamura, Hideo; Togosmaa, Luvsantsend; Sawamoto, Takuya; Fukushi, Keiichi; Nishida, Tomoaki; Beppu, Toshio

    2012-05-01

    Copper pyrithione (CuPT(2)) and zinc pyrithione (ZnPT(2)) are two popular antifouling agents that prevent biofouling. Research into the environmental effects of metal pyrithiones has mainly focused on aquatic animal species such as fish and crustaceans, and little attention has been paid to primary producers. There have been few reports on residues in environmental matrices because of the high photolabile characteristics of the agents. Residue analyses and ecological effects of the metabolites and metal pyrithiones are not yet fully understood. This study was undertaken to assess the effects of CuPT(2), ZnPT(2), and six metabolites (PT(2): 2,2'-dithio-bispyridine N-oxide, PS(2): 2,2'-dithio-bispyridine, PSA: pyridine-2-sulfonic acid, HPT: 2-mercaptopyridine N-oxide, HPS: 2-mercaptopyridine, and PO: pyridine N-oxide) on a freshwater macrophyte. A 7-day static bioassay using axenic duckweed Lemna gibba G3 was performed under laboratory conditions. Toxic effects of test compounds were assessed by biomass reduction and morphological changes were determined in image analysis. Concentrations of ZnPT(2) and CuPT(2) and those of PT(2) and HPT in the medium were determined by derivatizing 2,2'-dithio-bispyridine mono-N-oxide with pyridine disulfide/ethylene diamine tetra-acetic acid reagent that was equimolar with pyrithione. The toxic intensity of the compounds was calculated from the measured concentrations after 7-day exposure. ZnPT(2), CuPT(2), PT(2), and HPT inhibited the growth of L. gibba with EC(50) ranging from 77 to 140 μg/l as calculated from the total frond number as the conventional index, whereas the other four metabolites had less effect even at 10 mg/l. The presence of the former four toxic derivatives resulted in abnormally shaped and unhealthily colored fronds, whose size was about 20% of the control fronds. EC(50), calculated from the healthy frond area determined in image analysis, ranged from 10 to 53 μg/l. Thus, image analysis as part of a duckweed

  18. Brush-like polycarbonates containing dopamine, cations, and PEG providing a broad-spectrum, antibacterial, and antifouling surface via one-step coating.

    PubMed

    Yang, Chuan; Ding, Xin; Ono, Robert J; Lee, Haeshin; Hsu, Li Yang; Tong, Yen Wah; Hedrick, James; Yang, Yi Yan

    2014-11-19

    An antibacterial and antifouling surface is obtained by simple one-step immersion of a catheter surface with brush-like polycarbonates containing pendent adhesive dopamine, antifouling polyethylene glycol (PEG), and antibacterial cations. This coating demonstrates excellent antibacterial and antifouling activities against both Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria, proteins, and platelets, good stability under simulated blood-flow conditions, and no toxicity.

  19. Bioassay development using early life stages of the marine macroalga, Ecklonia radiata

    SciTech Connect

    Bidwell, J.R.; Wheeler, K.D.; Roper, J.; Burridge, T.R.

    1995-12-31

    A lack of standard toxicity test methods for species native to Australia has stimulated research to overcome this deficiency. In the present work, germination inhibition was utilized as an endpoint in 48h bioassays with the marine macroalga Ecklonia radiata. E radiata is often a dominant member of temperate subtidal communities in Australia and other parts of the southern hemisphere. The alga fills an ecological niche similar to that of Macrocystis pyrifera, the giant kelp which occurs in the northern hemisphere. In an adaptation of test methods used for M. pyrifera, release of E. radiata zoospores was induced in the laboratory. Settled spores were then exposed to toxicants for 48 h and germination success was determined by scoring the spores for the development of a germination tube. At 20 C, EC{sub 50} values ranging between 53.4 and 77.4 mg/L were generated in tests with hexavalent chromium (potassium chromate). The EC{sub 50} for copper (cupric chloride) was 0.53 mg/L. Sensitivity of E. radiata to metals such as copper may have significance toward assessing the environmental impacts of some antifoulant coatings used on seagoing vessels. In future studies, growth of zoospore germination tubes and comparative sensitivity of different E. radiata populations will be examined.

  20. Status of marine biomedical research.

    PubMed Central

    Bessey, O

    1976-01-01

    A meeting on Marine Biomedical Research, sponsored by the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health and the Smithsonian Institution Museum of Natural History, was attended by approximately 125 scientists, directors and representatives from many of the country's marine biological laboratories, and government agencies whose interests and responsibilites are in the marine biology and health areas. The purpose of the meeting was to explore the undeveloped research opportunities in the area of marine biology for the advancement of our understanding of human health problems and to provide information on the current status of marine biology laboratories. The meeting was devoted to presentations and discussions in four general areas: (1)Marine Species as Models for Human Disease; (2)Environmental Carcinogenesis and Mutagenesis; (3)Human Health and the Marine Environment--infectious agents and naturally occurring and foreign toxins; and (4)Drugs from the seas. Representatives from twelve of the country's approximatley 40 marine laboratories discussed their organization, developmental history, scientific programs, facilities, and present status of their support. The presentations served as a background and stimulated very lively analytical and constructive discussions of the undeveloped research and education potential residing in the marine environment and biological laboratories for a better understanding of many human health problems; some scientific areas that should be developed to realize this potential; and the needs and problems of marine laboratories that require attention and support if they are to survive and realize their possibilities. PMID:944630

  1. Integrated antifouling and bactericidal polymer membranes through bioinspired polydopamine/poly(N-vinyl pyrrolidone) coating

    NASA Astrophysics Data System (ADS)

    Wang, Xianghong; Yuan, Shuaishuai; Shi, Dean; Yang, Yingkui; Jiang, Tao; Yan, Shunjie; Shi, Hengchong; Luan, Shifang; Yin, Jinghua

    2016-07-01

    Polypropylene (PP) non-woven has been widely used as wound dressing; however, the hydrophobic nature of PP can initiate bacterial attachment and subsequent biofilm formation. Herein, we propose a facile approach to functionalize PP non-woven with poly(ethylene glycol) (PEG) and poly(N-vinyl pyrrolidone)-iodine complex (PVP-I). PVP and PEG were successively tethered onto PP non-woven surface via versatile bioinspired dopamine (DA) chemistry, followed by complexing iodine with PVP moieties. It was demonstrated through the field emission scanning electron microscope (SEM) and spread plate method that the as-modified PP non-woven integrated both antifouling property of PEG for suppressing bacterial adhesion, and bactericidal property of PVP-I for killing the few adherent bacteria. Meanwhile, it could greatly resist platelet and red blood cell adhesion. The integrated antifouling and bactericidal PP non-woven surfaces might have great potential in various wound dressing applications.

  2. Preparation and Analysis of Type II Xerogel Films with Antifouling/Foul Release Characteristics

    NASA Astrophysics Data System (ADS)

    Sokolova, Anastasiya

    In order to combat biofouling, xerogel coatings comprised of aminopropyl, fluorocarbon, and hydrocarbon silanes were prepared and tested for their antifouling/foul release properties against Ulva, Navicula, barnacles, and tubeworms. Many of the coatings showed settlement and removal of Ulva to be as good as or better than the poly(dimethylsiloxane) (PDMSE) standard. Barnacle removal assays showed excellent results for some coatings while others did not fair so well. The best foul release coatings for barnacles were comprised of aminopropyl/hydrocarbon- and fluorocarbon/hydrocarbon-modified silanes. For the majority of coatings tested, water wettability and surface energy did not play a role in the antifouling/ foul release properties of the coatings.

  3. A robust way to prepare blood-compatible and anti-fouling polyethersulfone membrane.

    PubMed

    Xie, Yi; Wang, Rui; Li, Shuangsi; Xiang, Tao; Zhao, Chang-Sheng

    2016-10-01

    Functional copolymers were successfully grafted onto polyethersulfone (PES) membrane surfaces by free radical mechanism using ammonium persulfate (APS) as an initiator. The anti-coagulant and anti-fouling properties of the membranes were well controlled by changing the functional copolymer compositions. Attenuated total reflection-Fourier transforminfrared (ATR-FTIR), X-ray photoelectron spectrometer spectrum (XPS), water contact angles (WCAs), and scanning electron microscopy (SEM) images were used to characterize the membranes. The results of protein adsorption, clotting times, platelet adhesion and bacteria attachment indicated that the membranes had good blood-compatibility and/or anti-fouling ability. Meanwhile, the modification didn't cause an adverse effect on the membrane permeability. This new method provides a general, robust and flexible way to adjust membrane surface performance and potentially has wide applications. PMID:27371892

  4. Antifouling Transparent ZnO Thin Films Fabricated by Atmospheric Pressure Cold Plasma Deposition

    NASA Astrophysics Data System (ADS)

    Suzaki, Yoshifumi; Du, Jinlong; Yuji, Toshifumi; Miyagawa, Hayato; Ogawa, Kazufumi

    2015-09-01

    One problem with outdoor-mounted solar panels is that power generation efficiency is reduced by face plate dirt; a problem with electronic touch panels is the deterioration of screen visibility caused by finger grease stains. To solve these problems, we should fabricate antifouling surfaces which have superhydrophobic and oil-repellent properties without spoiling the transparency of the transparent substrate. In this study, an antifouling surface with both superhydrophobicity and oil-repellency was fabricated on a glass substrate by forming a fractal microstructure. The fractal microstructure was constituted of transparent silica particles 100 nm in diameter and transparent zinc-oxide columns grown on silica particles through atmospheric pressure cold plasma deposition; the sample surface was coated with a chemically adsorbed monomolecular layer. Samples were obtained which had a superhydrophobic property (with a water droplet contact angle of more than 150°) and a high average transmittance of about 90% (with wavelengths ranging from 400 nm to 780 nm).

  5. Bioassays and selected chemical analysis of biocide-free antifouling coatings.

    PubMed

    Watermann, B T; Daehne, B; Sievers, S; Dannenberg, R; Overbeke, J C; Klijnstra, J W; Heemken, O

    2005-09-01

    Over the years several types of biocide-free antifouling paints have entered the market. The prohibition of biocidal antifouling paints in special areas of some European countries such as Sweden, Denmark and Germany has favoured the introduction of these paints to the market. Several types of biocide-free antifouling paints were subjected to bioassays and selected chemical analysis of leachate and incorporated substances. Both non-eroding coatings (silicones, fibre coats, epoxies, polyurethane, polyvinyl) and eroding coatings (SPCs, ablative) were tested to exclude the presence of active biocides and dangerous compounds. The paints were subjected to the luminescent bacteria test and the cypris larvae settlement assay, the latter delivering information on toxicity as well as on efficacy. The following chemical analyses of selected compounds of dry-film were performed: The results of the bioassays indicated that none of the coatings analysed contained leachable biocides. Nevertheless, some products contained or leached dangerous compounds. The analyses revealed leaching of nonylphenol (up to 74.7 ng/cm2/d after 48 h) and bisphenol A (up to 2.77 ng/cm2/d after 24 h) from epoxy resins used as substitutes for antifouling paints. The heavy metal, zinc, was measured in dry paint film in quantities up to 576,000 ppm in erodable coatings, not incorporated as a biocide but to control the rate of erosion. Values for TBT in silicone elutriates were mostly below the detection limit of 0.005 mg/kg. Values for DBT ranged between <0.005 and 6.28 mg/kg, deriving from catalysts used as curing agents. Some biocide-free paints contained leachable, toxic and dangerous compounds in the dry film, some of which may act as substitutes for biocides or are incorporated as plasticizers or catalysts. Implications to environmental requirements and legislation are discussed. PMID:15878605

  6. XRF measurements of tin, copper and zinc in antifouling paints coated on leisure boats.

    PubMed

    Ytreberg, Erik; Bighiu, Maria Alexandra; Lundgren, Lennart; Eklund, Britta

    2016-06-01

    Tributyltin (TBT) and other organotin compounds have been restricted for use on leisure boats since 1989 in the EU. Nonetheless, release of TBT is observed from leisure boats during hull maintenance work, such as pressure hosing. In this work, we used a handheld X-ray Fluorescence analyser (XRF) calibrated for antifouling paint matrixes to measure tin, copper and zinc in antifouling paints coated on leisure boats in Sweden. Our results show that over 10% of the leisure boats (n = 686) contain >400 μg/cm(2) of tin in their antifouling coatings. For comparison, one layer (40 μm dry film) of a TBT-paint equals ≈ 800 μg Sn/cm(2). To our knowledge, tin has never been used in other forms than organotin (OT) in antifouling paints. Thus, even though the XRF analysis does not provide any information on the speciation of tin, the high concentrations indicate that these leisure boats still have OT coatings present on their hull. On several leisure boats we performed additional XRF measurements by progressively scraping off the top coatings and analysing each underlying layer. The XRF data show that when tin is detected, it is most likely present in coatings close to the hull with several layers of other coatings on top. Thus, leaching of OT compounds from the hull into the water is presumed to be negligible. The risk for environmental impacts arises during maintenance work such as scraping, blasting and high pressure hosing activities. The data also show that many boat owners apply excessive paint layers when following paint manufacturers recommendations. Moreover, high loads of copper were detected even on boats sailing in freshwater, despite the more than 20 year old ban, which poses an environmental risk that has not been addressed until now. PMID:27016611

  7. XRF measurements of tin, copper and zinc in antifouling paints coated on leisure boats.

    PubMed

    Ytreberg, Erik; Bighiu, Maria Alexandra; Lundgren, Lennart; Eklund, Britta

    2016-06-01

    Tributyltin (TBT) and other organotin compounds have been restricted for use on leisure boats since 1989 in the EU. Nonetheless, release of TBT is observed from leisure boats during hull maintenance work, such as pressure hosing. In this work, we used a handheld X-ray Fluorescence analyser (XRF) calibrated for antifouling paint matrixes to measure tin, copper and zinc in antifouling paints coated on leisure boats in Sweden. Our results show that over 10% of the leisure boats (n = 686) contain >400 μg/cm(2) of tin in their antifouling coatings. For comparison, one layer (40 μm dry film) of a TBT-paint equals ≈ 800 μg Sn/cm(2). To our knowledge, tin has never been used in other forms than organotin (OT) in antifouling paints. Thus, even though the XRF analysis does not provide any information on the speciation of tin, the high concentrations indicate that these leisure boats still have OT coatings present on their hull. On several leisure boats we performed additional XRF measurements by progressively scraping off the top coatings and analysing each underlying layer. The XRF data show that when tin is detected, it is most likely present in coatings close to the hull with several layers of other coatings on top. Thus, leaching of OT compounds from the hull into the water is presumed to be negligible. The risk for environmental impacts arises during maintenance work such as scraping, blasting and high pressure hosing activities. The data also show that many boat owners apply excessive paint layers when following paint manufacturers recommendations. Moreover, high loads of copper were detected even on boats sailing in freshwater, despite the more than 20 year old ban, which poses an environmental risk that has not been addressed until now.

  8. Zwitterionic Modifications for Enhancing the Antifouling Properties of Poly(vinylidene fluoride) Membranes.

    PubMed

    Venault, Antoine; Huang, Wen-Yu; Hsiao, Sheng-Wen; Chinnathambi, Arunachalam; Alharbi, Sulaiman Ali; Chen, Hong; Zheng, Jie; Chang, Yung

    2016-04-26

    The development of effective antibiofouling membranes is critical for many scientific interests and industrial applications. However, the existing available membranes often suffer from the lack of efficient, stable, and scalable antifouling modification strategy. Herein, we designed, synthesized, and characterized alternate copolymers of p(MAO-DMEA) (obtained by reaction between poly(maleic anhydride-alt-1-octadecene) and N,N-dimethylenediamine) and p(MAO-DMPA) (obtained by reaction between poly(maleic anhydride-alt-1-octadecene) and 3-(dimethylamino)-1-propylamine) of different carbon space length (CSL) using a ring-opening zwitterionization. We coated these copolymers on poly(vinylidene fluoride) (PVDF) membranes using a self-assembled anchoring method. Two important design parameters-the CSL of polymers and the coating density of polymers on membrane-were extensively examined for their effects on the antifouling performance of the modified membranes using a series of protein, cell, and bacterial assays. Both zwitterionic-modified membranes with different coating densities showed improved membrane hydrophilicity, increased resistance to protein, bacteria, blood cells, and platelet adsorption. However, while p(MAO-DMEA) with two CSLs and p(MAO-DMPA) with three CSLs only differ by one single carbon between the amino and ammonium groups, such subtle structural difference between the two polymers led to the fact that the membranes self-assembled with MAO-DMEA outperformed those modified with MAO-DMPA in all aspects of surface hydration, protein and bacteria resistance, and blood biocompatibility. This work provides an important structural-based design principle: a subtle change in the CSL of polymers affects the surface and antifouling properties of the membranes. It can help to achieve the design of more effective antifouling membranes for blood contacting applications. PMID:27044737

  9. Assessment of the risk posed by the antifouling booster biocides Irgarol 1051 and diuron to freshwater macrophytes.

    PubMed

    Lambert, S J; Thomas, K V; Davy, A J

    2006-05-01

    Antifouling paints are used to reduce the attachment of living organisms to the submerged surfaces of ships, boats and aquatic structures, usually by the release of a biocide. Two 'booster' biocides in common use are the triazine herbicide Irgarol 1051 (N-2-methylthio-4-tert-butylamino-6-cyclopropylamino-s-triazine), and diuron (1-(3,4-dichlorophenyl)-3,3-dimethylurea), which are designed to inhibit algal photosynthesis. Previous research has been directed at the effects of these compounds in marine and estuarine environments. In 2001 we sampled the main rivers and shallow freshwater lakes (Broads) of East Anglia UK for Irgarol 1051, its metabolite GS26575 (2-methylamino-4-tert-butylamino-6-amino-s-triazine) and diuron in order to establish the baseline environmental concentrations of these compounds in freshwater systems of eastern UK and to investigate their possible effects on aquatic plants. Irgarol 1051, GS26575 and diuron were found in water samples collected from 21 locations. The highest concentrations were found in the Norfolk and Suffolk Broads in May. The rivers Great Ouse, Wissey, Bure and Yare also contained all three compounds, as did the Great Ouse Cut-off Channel. The toxicity of these biocides to three macrophyte species (Apium nodiflorum, Chara vulgaris, and Myriophyllum spicatum) was investigated. Deleterious effects on relative growth rate, the maximum quantum efficiency (Fv/Fm) of photosystem II and, for Apium, root mass production were found. C. vulgaris was generally most sensitive; growth, especially of roots, was strongly affected in A. nodiflorum; growth rate of M. spicatum was sensitive to diuron. No observed effect concentrations (NOEC) were interpolated using standard toxicological analysis. These were compared with measured environmental concentrations (MEC) to determine the ranges of risk quotients (MEC/NOEC). Both Irgarol 1051 and diuron represented significant risks to A. nodiflorum and C. vulgaris in this area.

  10. Effects of seven antifouling compounds on photosynthesis and inorganic carbon use in sugar kelp Saccharina latissima (Linnaeus).

    PubMed

    Johansson, Per; Eriksson, Karl Martin; Axelsson, Lennart; Blanck, Hans

    2012-10-01

    Macroalgae depend on carbon-concentrating mechanisms (CCMs) to maintain a high photosynthetic activity under conditions of low carbon dioxide (CO(2)) availability. Because such conditions are prevalent in marine environments, CCMs are important for upholding the macroalgal primary productivity in coastal zones. This study evaluated the effects of seven antifouling compounds-chlorothalonil, DCOIT, dichlofluanid, diuron, irgarol, tolylfluanid, and zinc pyrithione (ZnTP)-on the photosynthesis and CCM of sugar kelp (Saccharina latissima (L.)). Concentration-response curves of these toxicants were established using inhibition of carbon incorporation, whereas their effects over time and their inhibition of the CCM were studied using inhibition of O(2) evolution. We demonstrate that exposure to all compounds except ZnTP (< 1000 nM) resulted in toxicity to photosynthesis of S. latissima. However, carbon incorporation and O(2) evolution differed in their ability to detect toxicity from some of the compounds. Diuron, irgarol, DCOIT, tolylfluanid, and, to some extent, dichlofluanid inhibited carbon incorporation. Chlorothalonil did not inhibit carbon incorporation but clearly inhibited oxygen (O(2)) evolution. Photosynthesis showed only little recovery during the 2-h postexposure period. Inhibition of photosynthesis even increased after the end of exposure to chlorothalonil and tolylfluanid. Through changes in pH of the medium, toxic effects on the CCM could be studied isolated from photosynthesis effects. The CCM of S. latissima was inhibited by chlorothalonil, DCOIT, dichlofluanid, and tolylfluanid. Such inhibition of the CCM, or the absence thereof, deepens the understanding the mechanism of action of the studied compounds. PMID:22743627

  11. Antifouling Block Copolymer Surfaces that Resist Settlement of Barnacle Larvae

    SciTech Connect

    Weinman,C.; Krishnan, S.; Park, D.; Paik, M.; Wong, K.; Fischer, D.; Handlin, D.; Kowalke, G.; Wendt, D.; et al

    2007-01-01

    Marine biofouling is a serious problem caused by the accumulation and settlement of barnacles, macroalgae, and microbial slimes on the hulls of seafaring vessels. Biofouling can significantly increase drag, leading to startling consequences with regards to fuel consumption. Environmentally compatible solutions to biofouling are being sought as traditional metal-based systems of fouling control are being phased out due to their inherent toxicity. Further exasperating the problem of biofouling is the vast range of fouling organisms and environmental conditions experienced throughout the world. This renders the development of a universal biofouling coating a significant challenge.

  12. The impact of coating hardness on the anti-barnacle efficacy of an embedded antifouling biocide.

    PubMed

    Pinori, Emiliano; Elwing, Hans; Berglin, Mattias

    2013-01-01

    The efficacy of antifouling coatings designed to minimise the release of biocide, either by embedded (non-covalent) or tethered (covalently bonded) biocides, relies on sufficient bioavailability of the active compound upon contact between the organism and the coating. This investigation is focused on whether coating hardness affects the efficacy of embedded coating systems. Two experimental, non-eroding and waterborne latex paint formulations composed mainly of polystyrene (PS) or polyvinyl versatate (PV) were chosen for their difference in mechanical properties measured in terms of Buchholz indentation resistance. Ivermectin was added to both formulations to a final concentration of 0.1% (w/v) and the steady state release rate was measured according to ISO 15181 at between 34 and 70 ng cm(-2) day(-1) for both formulations. Field trials conducted over 3 months showed significant differences in anti-barnacle efficacy between the formulations despite their similar release profiles. The softer PV coating showed complete anti-barnacle efficacy, ie no barnacles were detected, while the harder PS coating showed no efficacy against barnacle colonisation during the same time period. The results indicate a new antifouling strategy whereby a route of intoxication is triggered by the organism itself upon interaction with the coating and its embedded biocide. This finding opens new possibilities in controlling macrofouling by low emission antifouling coatings.

  13. Antifouling gold surfaces grafted with aspartic acid and glutamic acid based zwitterionic polymer brushes.

    PubMed

    Li, Wenchen; Liu, Qingsheng; Liu, Lingyun

    2014-10-28

    We report two new amino acid based antifouling zwitterionic polymers, poly(N(4)-(2-methacrylamidoethyl)asparagine) (pAspAA) and poly(N(5)-(2-methacrylamidoethyl)glutamine) (pGluAA). The vinyl monomers were developed from aspartic acid and glutamic acid. Surface-initiated photoiniferter-mediated polymerization was employed to graft polymer brushes from gold surfaces. Different thickness of polymer brushes was controlled by varying UV irradiation time. The nonspecific adsorption from undiluted human blood serum and plasma was studied by surface plasmon resonance (SPR). With the polymer film as thin as 11-12 nm, the adsorption on pAspAA from serum and plasma was as low as 0.75 and 5.18 ng/cm(2), respectively, and 1.88 and 10.15 ng/cm(2), respectively, for pGluAA. The adsorption amount is comparable to or even better than other amino acid based zwitterionic polymers such as poly(serine methacrylate), poly(lysine methacrylamide), and poly(ornithine methacrylamide) and other widely used antifouling polymers such as poly(sulfobetaine methacrylate), even under thinner polymer film thickness. The pAspAA and pGluAA grafted surfaces also showed strong resistance to endothelial cell attachment. The possession of both zwitterionic structure and hydrophilic amide groups, biomimetic property, and multifunctionality make pAspAA and pGluAA promising candidates for biocompatible antifouling functionalizable materials. PMID:25262768

  14. Universal surface-initiated polymerization of antifouling zwitterionic brushes using a mussel-mimetic peptide initiator.

    PubMed

    Kuang, Jinghao; Messersmith, Phillip B

    2012-05-01

    We report a universal method for the surface-initated polymerization (SIP) of an antifouling polymer brush on various classes of surfaces, including noble metals, metal oxides, and inert polymers. Inspired by the versatility of mussel adhesive proteins, we synthesized a novel bifunctional tripeptide bromide (BrYKY) that combines atom-transfer radical polymerization (ATRP) initiating alkyl bromide with l-3,4-dihydroxyphenylalanine (DOPA) and lysine. The simple dip-coating of substrates with variable wetting properties and compositions, including Teflon, in a BrYKY solution at pH 8.5 led to the formation of a thin film of cross-linked BrYKY. Subsequently, we showed that the BrYKY layer initiated the ATRP of a zwitterionic monomer, sulfobetaine methacrylate (SBMA), on all substrates, resulting in high-density antifouling pSBMA brushes. Both BrYKY deposition and pSBMA grafting were unambiguously confirmed by ellipsometry, X-ray photoelectron spectroscopy, and goniometry. All substrates that were coated with BrYKY/pSBMA dramatically reduced bacterial adhesion for 24 h and also resisted mammalian cell adhesion for at least 4 months, demonstrating the long-term stability of the BrYKY anchoring and antifouling properties of pSBMA. The use of BrYKY as a primer and polymerization initiator has the potential to be widely employed in surface-grafted polymer brush modifications for biomedical and other applications. PMID:22506651

  15. Universal Surface-initiated Polymerization of Antifouling Zwitterionic Brushes Using A Mussel-Mimetic Peptide Initiator

    PubMed Central

    Kuang, Jinghao; Messersmith, Phillip B.

    2012-01-01

    We report a universal method for the surface-initated polymerization (SIP) of a antifouling polymer brush on various classes of surfaces, including noble metals, metal oxides and inert polymers. Inspired by the versatility of mussel adhesive proteins, we synthesized a novel bifunctional tripeptide bromide (BrYKY) which combines an atom transfer radical polymerization (ATRP) initiating alkyl bromide with l-3,4-dihydroxyphenylalanine (DOPA) and lysine. Simple dip-coating of substrates with variable wetting properties and compositions, including Teflon®, in a BrYKY solution at pH 8.5 led to formation of a thin film of cross-linked BrYKY. Subsequently, we showed that the BrYKY layer initiated the ATRP of a zwitterionic monomer, sulfobetaine methacrylate (SBMA) on all substrates, resulting in high density antifouling pSBMA brushes. Both BrYKY deposition and pSBMA grafting were unambiguously confirmed by ellipsometry, X-ray photoelectron spectroscopy and goniometry. All substrates that were coated with BrYKY/pSBMA dramatically reduced bacterial adhesion for 24 h and also resisted mammalian cell adhesion for at least 4 months, demonstrating the long-term stability of the BrYKY anchoring and antifouling properties of pSBMA. The use of BrYKY as a primer and polymerization initiator has the potential to be widely employed in surface grafted polymer brush modifications for biomedical and other applications. PMID:22506651

  16. Design of hemocompatible and antifouling PET sheets with synergistic zwitterionic surfaces.

    PubMed

    Wang, Yanfang; Shen, Jian; Yuan, Jiang

    2016-10-15

    Zwitterionic surface has been proven to be a good candidate for improving hemocompatible and antibiofouling properties. However, it can only passively repel the adsorption of microbes and is unable to kill the adherent or trapped microbes. The purpose of our study is to develop a facile method based on synergy "repel and kill" strategy and prepare dual antifouling and antibacterial surface. Herein, the poly(2-(dimethylamino) ethyl methacrylate) (PDMAEMA) was first constructed via surface-initiated activators regenerated by electron transfer atom transfer radical polymerization (ARGET-ATRP) method, followed by partial quaternization in order to form polycarboxybetaine and polysulfobetaine. The conversion rates of PDMAEMA to polyzwitterions were evaluated by X-ray photoelectron spectroscopy analysis (XPS). Surface characterizations by ATR-FTIR, XPS, and AFM demonstrated that zwitterionic polymer brushes were successfully grafted. The remained PDMAEMA(weak cationic) and formed zwitterions(neutral) endowed the surface with the synergetic antibacterial and antifouling properties. The resulting PET sheets showed outstanding antifouling property featured by the reduced adhesion of 3T3 fibroblast cells and E. coli. Additionally, these sheets displayed excellent hemocompatibility such as non-cytotoxicity, repelled protein adsorption, reduced platelet adhesion, and prolonged blood blotting time. These synergistic surfaces with neutral zwitterions and weak cations are promising for biomedical applications. PMID:27442148

  17. Periodic feedwater reversal and air sparging as antifouling strategies in reverse electrodialysis.

    PubMed

    Vermaas, David A; Kunteng, Damnearn; Veerman, Joost; Saakes, Michel; Nijmeijer, Kitty

    2014-01-01

    Renewable energy can be generated using natural streams of seawater and river water in reverse electrodialysis (RED). The potential for electricity production of this technology is huge, but fouling of the membranes and the membrane stack reduces the potential for large scale applications. This research shows that, without any specific antifouling strategies, the power density decreases in the first 4 h of operation to 40% of the originally obtained power density. It slowly decreases further in the remaining 67 days of operation. Using antifouling strategies, a significantly higher power density can be maintained. Periodically switching the feedwaters (i.e., changing seawater for river water and vice versa) generates the highest power density in the first hours of operation, probably due to a removal of multivalent ions and organic foulants from the membrane when the electrical current reverses. In the long term, colloidal fouling is observed in the stack without treatment and the stack with periodic feedwater switching, and preferential channeling is observed in the latter. This decreases the power density further. This decrease in power density is partly reversible. Only a stack with periodic air sparging has a minimum of colloidal fouling, resulting in a higher power density in the long term. A combination of the discussed antifouling strategies, together with the use of monovalent selective membranes, is recommended to maintain a high power density in RED in short-term and long-term operations.

  18. Hydrophilicity and antifouling property of membrane materials from cellulose acetate/polyethersulfone in DMAc.

    PubMed

    Sun, Zhonghua; Chen, Fushan

    2016-10-01

    In this study, cellulose acetate (CA) was blended with polyethersulfone (PES) to endow the ultrafiltration membrane with the improved hydrophilicity and antifouling property by using N,N-dimethylacetamide (DMAc) as the solvent. The effects of blend composition and evaporation time on the mechanical strength and pure water flux were investigated. It was found that the optimal composition of the casting solution was: 18wt% (PES), 4wt% (Polyvinylpyrrolidone K30), 3wt% (CA) and 20s (Evaporation time). The characteristics of CA-PES blend membranes were investigated through the methods of contact angle goniometer, antifouling property, compatibility, thermo gravimetric analysis and SEM. The results showed that the hydrophilicity and antifouling property of CA-PES ultrafiltration membranes were enhanced in comparison with the pure PES membranes. The CA-PES membranes exhibited semi-compatibility and good thermal stability below 270°C. This study provided a potential industrial application prospect of CA-PES membranes prepared in DMAc. PMID:27211301

  19. Dual functionality of antimicrobial and antifouling of poly(N-hydroxyethylacrylamide)/salicylate hydrogels.

    PubMed

    Zhao, Chao; Li, Xiaosi; Li, Lingyan; Cheng, Gang; Gong, Xiong; Zheng, Jie

    2013-02-01

    The emergence and reemergence of microbial infection demand an urgent response to develop effective biomaterials that prevent biofilm formation and associated bacterial infection. In this work, we have synthesized and characterized hybrid poly(N-hydroxyethylacrylamide) (polyHEAA)/salicylate (SA) hydrogels with integrated antifouling and antimicrobial capacities. The antifouling efficacy of polyHEAA hydrogels was examined via exposure to proteins, cells, and bacteria, while the antimicrobial activity of SA-treated polyHEAA hydrogels was investigated against both gram-negative Escherichia coli RP437 and gram-positive Staphylococcus epidermidis. The results showed that polyHEAA/SA hydrogels exhibited high surface resistance to protein adsorption, cell adhesion, and bacteria attachment. The polyHEAA hydrogels were also characterized by their water content and state of water, revealing a strong ability to contain and retain high nonfreezable water content. This work demonstrates that the hybrid polyHEAA/SA hydrogels can be engineered to possess both antifouling and antimicrobial properties, which can be used for different in vitro and in vivo applications against bacterial infection.

  20. Antifouling gold surfaces grafted with aspartic acid and glutamic acid based zwitterionic polymer brushes.

    PubMed

    Li, Wenchen; Liu, Qingsheng; Liu, Lingyun

    2014-10-28

    We report two new amino acid based antifouling zwitterionic polymers, poly(N(4)-(2-methacrylamidoethyl)asparagine) (pAspAA) and poly(N(5)-(2-methacrylamidoethyl)glutamine) (pGluAA). The vinyl monomers were developed from aspartic acid and glutamic acid. Surface-initiated photoiniferter-mediated polymerization was employed to graft polymer brushes from gold surfaces. Different thickness of polymer brushes was controlled by varying UV irradiation time. The nonspecific adsorption from undiluted human blood serum and plasma was studied by surface plasmon resonance (SPR). With the polymer film as thin as 11-12 nm, the adsorption on pAspAA from serum and plasma was as low as 0.75 and 5.18 ng/cm(2), respectively, and 1.88 and 10.15 ng/cm(2), respectively, for pGluAA. The adsorption amount is comparable to or even better than other amino acid based zwitterionic polymers such as poly(serine methacrylate), poly(lysine methacrylamide), and poly(ornithine methacrylamide) and other widely used antifouling polymers such as poly(sulfobetaine methacrylate), even under thinner polymer film thickness. The pAspAA and pGluAA grafted surfaces also showed strong resistance to endothelial cell attachment. The possession of both zwitterionic structure and hydrophilic amide groups, biomimetic property, and multifunctionality make pAspAA and pGluAA promising candidates for biocompatible antifouling functionalizable materials.

  1. Bioconcentration of two pharmaceuticals (benzodiazepines) and two personal care products (UV filters) in marine mussels (Mytilus galloprovincialis) under controlled laboratory conditions.

    PubMed

    Gomez, Elena; Bachelot, Morgane; Boillot, Clotilde; Munaron, Dominique; Chiron, Serge; Casellas, Claude; Fenet, Hélène

    2011-08-01

    Bioaccumulation is essential for gaining insight into the impact of exposure to organic micropollutants in aquatic fauna. Data are currently available on the bioaccumulation of persistent organic pollutants, but there is very little documentation on the bioaccumulation of pharmaceuticals and personal care products (PPCPs). The bioconcentration of selected PPCPs was studied in marine mussels (Mytilus galloprovincialis). The selected PPCPs were two organic UV filters, i.e., 2-ethylhexyl-4-trimethoxycinnamate (EHMC) and octocrylene (OC), and two benzodiazepines (BZP), i.e., diazepam (DZP) and tetrazepam (TZP). Laboratory experiments were performed in which M. galloprovincialis was exposed to these compounds either directly from water, for the less lipophilic substances (BZP) or via spiked food for lipophilic UV filters. M. galloprovincialis uptook and eliminated BZP following first-order kinetics. The biological half-life (t (1/2)) of TZP was 1.4 days, resulting in a bioconcentration factor of 64 and 99 mL g(-1) dry weight (dw), respectively, for 2.3 and 14.5 μg L(-1) of exposure, while the biological half-life (t (1/2)) of DZP was 0.4 days, resulting in a bioconcentration factor of 51 mL g(-1) dw for 13.2 μg L(-1) of exposure. The uptake of UV filter was rapid in mussels, followed by elimination within 24 h. EHMC increased from 15 to 138 ng g(-1) dw in 1 h and decreased to 25 ng g(-1) after 24 h for 11.9 μg L(-1) exposure. OC reached 839 ng g(-1) dw after 1 h and decreased to 33 ng g(-1) after 24 h for 11.6 μg L(-1) exposure. However, EHMC and OC were slightly accumulated in 48 h, i.e., 38 and 60 ng g(-1) dw, respectively. PMID:22828885

  2. Synthesis of polyethylene glycol- and sulfobetaine-conjugated zwitterionic poly(L-lactide) and assay of its antifouling properties.

    PubMed

    Tu, Qin; Wang, Jian-Chun; Liu, Rui; Zhang, Yanrong; Xu, Juan; Liu, Jianjun; Yuan, Mao-Sen; Liu, Wenming; Wang, Jinyi

    2013-02-01

    A new antifouling polyester monomethoxy-poly(ethylene glycol)-b-poly(L-lactide)-b-poly(sulfobetaine methacrylate) (MPEG-PLA-PSBMA) was obtained by ring-opening polymerization of L-lactide, and subsequent click chemistry to graft the azide end-functionalized poly(sulfobetaine methacrylate) (polySBMA) moieties onto the alkyne end-functionalized MPEG-PLA (MPEG-PLA-alkyne). The chemical structure of the polymer was characterized using (1)H nuclear magnetic resonance and Fourier-transform infrared spectroscopy, and its physical properties (including molecular weight, glass transition temperature, and melting point) were determined using gel permeation chromatography and differential scanning calorimetry. To investigate its hydrophilicity and stability, as well as its antifouling properties, the polymer was also prepared as a surface coating on glass substrates. The wettability and stability of this polyester was examined by contact angle measurements. Furthermore, its antifouling properties were investigated via protein adsorption, cell adhesion studies, and bacterial attachment assays. The results suggest that the prepared zwitterionic polyester exhibits durable wettability and stability, as well as significant antifouling properties. The new zwitterionic polyester MPEG-PLA-PSBMA could be developed as a promising antifouling material with extensive biomedical applications. PMID:23044209

  3. Zwitterionic polymer functionalization of polysulfone membrane with improved antifouling property and blood compatibility by combination of ATRP and click chemistry.

    PubMed

    Xiang, Tao; Lu, Ting; Xie, Yi; Zhao, Wei-Feng; Sun, Shu-Dong; Zhao, Chang-Sheng

    2016-08-01

    The chemical compositions are very important for designing blood-contacting membranes with good antifouling property and blood compatibility. In this study, we propose a method combining ATRP and click chemistry to introduce zwitterionic polymer of poly(sulfobetaine methacrylate) (PSBMA), negatively charged polymers of poly(sodium methacrylate) (PNaMAA) and/or poly(sodium p-styrene sulfonate) (PNaSS), to improve the antifouling property and blood compatibility of polysulfone (PSf) membranes. Attenuated total reflectance-Fourier transform infrared spectra, X-ray photoelectron spectroscopy and water contact angle results confirmed the successful grafting of the functional polymers. The antifouling property and blood compatibility of the modified membranes were systematically investigated. The zwitterionic polymer (PSBMA) grafted membranes showed good resistance to protein adsorption and bacterial adhesion; the negatively charged polymer (PNaSS or PNaMAA) grafted membranes showed improved blood compatibility, especially the anticoagulant property. Moreover, the PSBMA/PNaMAA modified membrane showed both antifouling property and anticoagulant property, and exhibited a synergistic effect in inhibiting blood coagulation. The functionalization of membrane surfaces by a combination of ATRP and click chemistry is demonstrated as an effective route to improve the antifouling property and blood compatibility of membranes in blood-contact. PMID:27039977

  4. Adhesion of marine fouling organisms on hydrophilic and amphiphilic polysaccharides.

    PubMed

    Bauer, Stella; Arpa-Sancet, Maria Pilar; Finlay, John A; Callow, Maureen E; Callow, James A; Rosenhahn, Axel

    2013-03-26

    Polysaccharides are a promising material for nonfouling surfaces because their chemical composition makes them highly hydrophilic and able to form water-storing hydrogels. Here we investigated the nonfouling properties of hyaluronic acid (HA) and chondroitin sulfate (CS) against marine fouling organisms. Additionally, the free carboxyl groups of HA and CS were postmodified with the hydrophobic trifluoroethylamine (TFEA) to block free carboxyl groups and render the surfaces amphiphilic. All coatings were tested with respect to their protein resistance and against settlement and adhesion of different marine fouling species. Both the settlement and adhesion strength of a marine bacterium (Cobetia marina), zoospores of the seaweed Ulva linza, and cells of a diatom (Navicula incerta) were reduced compared to glass control surfaces. In most cases, TFEA capping increased or maintained the performance of the HA coatings, whereas for the very well performing CS coatings the antifouling performance was reduced after capping. PMID:23425225

  5. Non-toxic antifouling activity of polymeric 3-alkylpyridinium salts from the Mediterranean sponge Reniera sarai (Pulitzer-Finali).

    PubMed

    Faimali, Marco; Sepcić, Kristina; Turk, Tom; Geraci, Sebastiano

    2003-02-01

    The antifouling activity and toxicity of polymeric 3-alkylpyridinium salts (poly-APS) isolated from the Mediterranean sponge Reniera sarai were studied. The activity of these natural products was compared to that of zinc and copper complexes of pyrithione, two non-persistent booster biocides successfully used in current antifouling coatings. Larvae of Balanus amphitrite (cyprids and nauplii) were used to monitor settlement inhibition and the extent to which inhibition was due to toxicity. The microalga Tetraselmis suecica and larvae of the mussel Mytilus galloprovincialis were used in toxicity bioassays. Compared to the booster biocides, poly-APS were less effective at inhibiting cyprid settlement, but their effects were non toxic and reversible, with very low toxicity against the organisms used in the toxicity bioassays. Although encouraging, these results are not enough to warrant the use of poly-APS as a potential commercial antifoulant. They however justify possible future efforts to chemically synthesize poly-APS analogues for further tests. PMID:14618688

  6. Marine Careers.

    ERIC Educational Resources Information Center

    Gordon, Bernard L.

    The five papers in this publication on marine careers were selected so that science teachers, guidance councilors, and students could benefit from the experience and knowledge of individuals active in marine science. The areas considered are indicated by the titles: Professional Careers in Marine Science with the Federal Government, Marine Science…

  7. Silicon Quantum Dot Nanoparticles with Antifouling Coatings for Immunostaining on Live Cancer Cells.

    PubMed

    Tu, Chang-Ching; Chen, Kuang-Po; Yang, Tsu-An; Chou, Min-Yuan; Lin, Lih Y; Li, Yaw-Kuen

    2016-06-01

    Fluorescent silicon quantum dots (SiQDs) have shown a great potential as antiphotobleaching, nontoxic and biodegradable labels for various in vitro and in vivo applications. However, fabricating SiQDs with high water-solubility and high photoluminescence quantum yield (PLQY) remains a challenge. Furthermore, for targeted imaging, their surface chemistry has to be capable of conjugating to antibodies, as well as sufficiently antifouling. Herein, antibody-conjugated SiQD nanoparticles (SiQD-NPs) with antifouling coatings composed of bovine serum albumin (BSA) and polyethylene glycol (PEG) are demonstrated for immunostaining on live cancer cells. The monodisperse SiQD-NPs of diameter about 130 nm are synthesized by a novel top-down method, including electrochemical etching, photochemical hydrosilylation, high energy ball milling, and "selective-etching" in HNO3 and HF. Subsequently, the BSA and PEG are covalently grafted on to the SiQD-NP surface through presynthesized chemical linkers, resulting in a stable, hydrophilic, and antifouling organic capping layer with isothiocyanates as the terminal functional groups for facile conjugation to the antibodies. The in vitro cell viability assay reveals that the BSA-coated SiQD-NPs had exceptional biocompatibility, with minimal cytotoxicity at concentration up to 1600 μg mL(-1). Under 365 nm excitation, the SiQD-NP colloid emits bright reddish photoluminescence with PLQY = 45-55% in organic solvent and 5-10% in aqueous buffer. Finally, through confocal fluorescent imaging and flow cytometry analysis, the anti-HER2 conjugated SiQD-NPs show obvious specific binding to the HER2-overexpressing SKOV3 cells and negligible nonspecific binding to the HER2-nonexpressing CHO cells. Under similar experimental conditions, the immunofluorescence results obtained with the SiQD-NPs are comparable to those using conventional fluorescein isothiocyanate (FITC).

  8. Preparation of PES ultrafiltration membranes with natural amino acids based zwitterionic antifouling surfaces

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Liu, Xiaojiu; Xie, Binbin; Yao, Chen; Hu, Wenhan; Li, Yi; Li, Xinsong

    2016-11-01

    In this report, a simple and facile approach to enhance the antifouling property of poly(ether sulfone) (PES) ultrafiltration membrane was developed by grafting natural amino acids onto surface. First of all, poly(ether sulfone) composite membranes blended with poly(glycidyl methacrylate) were fabricated by phase inversion method followed by grafting of different types of natural amino acids onto the membrane surface through epoxy ring opening reaction. The analysis of attenuated total reflectance Fourier transform infrared spectroscopy (ATR/FTIR) and X-ray photoelectron spectroscopy (XPS) verified the substantial enrichment of amino acids onto the surface of PES membranes. The hydrophilicity of the PES membranes was improved after grafting amino acids. The mechanical property and morphologies of the PES membranes proved that their basic performances were not obviously affected by grafting reaction, and these parameters were all still in the typical range for ultrafiltration membranes. The antifouling property of the grafted PES membranes against bovine serum albumin (BSA) and lysozyme (Lyz) was investigated in detail. It was found that PES membranes incorporated with neutral amino acids exhibited higher fouling resistance to both BSA and Lyz than the parent PES membrane. It can be ascribed to the formation of zwitterionic structure on the surface consisting of protonated secondary amino cations and carboxyl anions. Meanwhile, PES membranes grafted with charged amino acids had better antifouling properties against protein with same electric charges and improved adsorption related to protein with opposite electric charges. Furthermore, the ultrafiltration performance of the zwitterionic PES membranes was evaluated. The results showed that the modified membranes possessed of enhanced pure water flux, relative flux recovery and mildly lower rejection. The Darcy's Law analysis illustrated that the acidic amino acid grafted PES membranes had much lower permeation

  9. Optimisation and Characterisation of Anti-Fouling Ternary SAM Layers for Impedance-Based Aptasensors

    PubMed Central

    Miodek, Anna; Regan, Edward M.; Bhalla, Nikhil; Hopkins, Neal A.E.; Goodchild, Sarah A.; Estrela, Pedro

    2015-01-01

    An aptasensor with enhanced anti-fouling properties has been developed. As a case study, the aptasensor was designed with specificity for human thrombin. The sensing platform was developed on screen printed electrodes and is composed of a self-assembled monolayer made from a ternary mixture of 15-base thiolated DNA aptamers specific for human thrombin co-immobilised with 1,6-hexanedithiol (HDT) and further passivated with 1-mercapto-6-hexanol (MCH). HDT binds to the surface by two of its thiol groups forming alkyl chain bridges and this architecture protects from non-specific attachment of molecules to the electrode surface. Using Electrochemical Impedance Spectroscopy (EIS), the aptasensor is able to detect human thrombin as variations in charge transfer resistance (Rct) upon protein binding. After exposure to a high concentration of non-specific Bovine Serum Albumin (BSA) solution, no changes in the Rct value were observed, highlighting the bio-fouling resistance of the surface generated. In this paper, we present the optimisation and characterisation of the aptasensor based on the ternary self-assembled monolayer (SAM) layer. We show that anti-fouling properties depend on the type of gold surface used for biosensor construction, which was also confirmed by contact angle measurements. We further studied the ratio between aptamers and HDT, which can determine the specificity and selectivity of the sensing layer. We also report the influence of buffer pH and temperature used for incubation of electrodes with proteins on detection and anti-fouling properties. Finally, the stability of the aptasensor was studied by storage of modified electrodes for up to 28 days in different buffers and atmospheric conditions. Aptasensors based on ternary SAM layers are highly promising for clinical applications for detection of a range of proteins in real biological samples. PMID:26426017

  10. Library of Antifouling Surfaces Derived From Natural Amino Acids by Click Reaction.

    PubMed

    Xu, Chen; Hu, Xin; Wang, Jie; Zhang, Ye-Min; Liu, Xiao-Jiu; Xie, Bin-Bin; Yao, Chen; Li, Yi; Li, Xin-Song

    2015-08-12

    Biofouling is of great concern in numerous applications ranging from ophthalmological implants to catheters, and from bioseparation to biosensors. In this report, a general and facile strategy to combat surface fouling is developed by grafting of amino acids onto polymer substrates to form zwitterionic structure through amino groups induced epoxy ring opening click reaction. First of all, a library of poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) hydrogels with zwitterionic surfaces were prepared, resulting in the formation of pairs of carboxyl anions and protonated secondary amino cations. The analysis of attenuated total reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirmed the successful immobilization of amino acids on the hydrogel surfaces. After that, the contact angle and equilibrium water content of the modified hydrogels showed that the hydrogels exhibited improved hydrophilicity compared with the parent hydrogel. Furthermore, the protein deposition was evaluated by bicinchoninic acid assay using bovine serum albumin (BSA) and lysozyme as models. The results indicated that the performance of the hydrogels was determined by the nature of incorporated amino acid: the hydrogels incorporated with neutral amino acids had nonspecific antiadsorption capability to both BSA and lysozyme; the hydrogels incorporated with charged amino acids showed antiadsorption behaviors against protein with same charge and enhanced adsorption to the protein with opposite charge; the optimal antiadsorption performance was observed on the hydrogels incorporated with polar amino acids with a hydroxyl residual. The improvement of antiprotein fouling of the neutral amino acids grafted hydrogels can be ascribed to the formation of zwitterionic surfaces. Finally, a couple of soft contact lenses grafted with amino acids were fabricated having improved antifouling property and hydrophilicity. The result demonstrated the success of

  11. Fabrication of transparent antifouling thin films with fractal structure by atmospheric pressure cold plasma deposition.

    PubMed

    Miyagawa, Hayato; Yamauchi, Koji; Kim, Yoon-Kee; Ogawa, Kazufumi; Yamaguchi, Kenzo; Suzaki, Yoshifumi

    2012-12-21

    Antifouling surface with both superhydrophobicity and oil-repellency has been fabricated on glass substrate by forming fractal microstructure(s). The fractal microstructure was constituted by transparent silica particles of 100 nm diameter and transparent zinc-oxide columns grown on silica particles by atmospheric pressure cold plasma deposition. The sample surface was coated with a chemically adsorbed monomolecular layer. We found that one sample has the superhydrophobic ability with a water droplet contact angle of more than 150°, while another sample has a high transmittance of more than 85% in a wavelength range from 400 to 800 nm. PMID:23186100

  12. Fabrication of transparent antifouling thin films with fractal structure by atmospheric pressure cold plasma deposition.

    PubMed

    Miyagawa, Hayato; Yamauchi, Koji; Kim, Yoon-Kee; Ogawa, Kazufumi; Yamaguchi, Kenzo; Suzaki, Yoshifumi

    2012-12-21

    Antifouling surface with both superhydrophobicity and oil-repellency has been fabricated on glass substrate by forming fractal microstructure(s). The fractal microstructure was constituted by transparent silica particles of 100 nm diameter and transparent zinc-oxide columns grown on silica particles by atmospheric pressure cold plasma deposition. The sample surface was coated with a chemically adsorbed monomolecular layer. We found that one sample has the superhydrophobic ability with a water droplet contact angle of more than 150°, while another sample has a high transmittance of more than 85% in a wavelength range from 400 to 800 nm.

  13. Current and emerging environmentally-friendly systems for fouling control in the marine environment.

    PubMed

    Gittens, Jeanette E; Smith, Thomas J; Suleiman, Rami; Akid, Robert

    2013-12-01

    Following the ban in 2003 on the use of tributyl-tin compounds in antifouling coatings, the search for an environmentally-friendly alternative has accelerated. Biocidal TBT alternatives, such as diuron and Irgarol 1051®, have proved to be environmentally damaging to marine organisms. The issue regarding the use of biocides is that concerning the half-life of the compounds which allow a perpetuation of the toxic effects into the marine food chain, and initiate changes in the early stages of the organisms' life-cycle. In addition, the break-down of biocides can result in metabolites with greater toxicity and longevity than the parent compound. Functionalized coatings have been designed to repel the settlement and permanent attachment of fouling organisms via modification of either or both surface topography and surface chemistry, or by interfering with the natural mechanisms via which fouling organisms settle upon and adhere to surfaces. A large number of technologies are being developed towards producing new coatings that will be able to resist biofouling over a period of years and thus truly replace biocides as antifouling systems. In addition urgent research is directed towards the exploitation of mechanisms used by living organisms designed to repel the settlement of fouling organisms. These biomimetic strategies include the production of antifouling enzymes and novel surface topography that are incompatible with permanent attachment, for example, by mimicking the microstructure of shark skin. Other research seeks to exploit chemical signals and antimicrobial agents produced by diverse living organisms in the environment to prevent settlement and growth of fouling organisms on vulnerable surfaces. Novel polymer-based technologies may prevent fouling by means of unfavourable surface chemical and physical properties or by concentrating antifouling compounds around surfaces.

  14. 76 FR 72681 - Marine Mammals

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-25

    ... (75 FR 27300), authorizes the permit holder to take ribbon seals (Phoca fasciata), spotted seals (P... National Oceanic and Atmospheric Administration RIN 0648-XU87 Marine Mammals AGENCY: National Marine... Mammal Laboratory, (Responsible Party: Dr. John Bengtson, Director), Seattle, WA, has applied for...

  15. Chitosan-based ultrathin films as antifouling, anticoagulant and antibacterial protective coatings.

    PubMed

    Bulwan, Maria; Wójcik, Kinga; Zapotoczny, Szczepan; Nowakowska, Maria

    2012-01-01

    Ultrathin antifouling and antibacterial protective nanocoatings were prepared from ionic derivatives of chitosan using layer-by-layer deposition methodology. The surfaces of silicon, and glass protected by these nanocoatings were resistant to non-specific adsorption of proteins disregarding their net charges at physiological conditions (positively charged TGF-β1 growth factor and negatively charged bovine serum albumin) as well as human plasma components. The coatings also preserved surfaces from the formation of bacterial (Staphylococcus aureus) biofilm as shown using microscopic studies (SEM, AFM) and the MTT viability test. Moreover, the chitosan-based films adsorbed onto glass surface demonstrated the anticoagulant activity towards the human blood. The antifouling and antibacterial actions of the coatings were correlated with their physicochemical properties. The studied biologically relevant properties were also found to be dependent on the thickness of those nanocoatings. These materials are promising for biomedical applications, e.g., as protective coatings for medical devices, anticoagulant coatings and protective layers in membranes. PMID:21967904

  16. Anti-fouling properties of Fab' fragments immobilized on silane-based adlayers

    NASA Astrophysics Data System (ADS)

    Crivianu-Gaita, Victor; Romaschin, Alexander; Thompson, Michael

    2015-12-01

    Biosensors require surfaces that are highly specific towards the target analyte and that are minimally fouling. However, surface tuning to minimize fouling is a difficult task. The last decade has seen an increase in the use of immobilized antigen-binding antibody fragments (Fab') in biosensors. One Fab' linker compound S-(11-trichlorosilyl-undecanyl)-benzothiosulfonate (TUBTS) and three spacers were used to create the silane-based adlayers. The ultra-high frequency electromagnetic piezoelectric acoustic sensor (EMPAS) was used to gauge the fouling properties of the various surfaces using bovine serum albumin (BSA), goat IgG, and mouse serum. X-ray photoelectron spectroscopy (XPS), contact angle, and atomic force microscopy (AFM) were employed to characterize the surfaces. It was discovered that immobilized oriented Fab' fragments reduced the fouling levels of surfaces up to 80% compared to the surfaces without fragments. An explanation for this phenomenon is that the antibody fragments increase the hydration of the surfaces and aid in the formation of an anti-fouling water barrier. The anti-fouling effect of the Fab' fragments is at its maximum when there is an even distribution of fragments across the surfaces. Finally, using Fab'-covered surfaces, a cancer biomarker was detected from serum, showing the applicability of this work to the field of biodetection.

  17. Immunotoxicity in ascidians: antifouling compounds alternative to organotins-IV. The case of zinc pyrithione.

    PubMed

    Cima, Francesca; Ballarin, Loriano

    2015-03-01

    New biocides such as the organometallic compound zinc pyrithione (ZnP) have been massively introduced by many countries in formulations of antifouling paints following the ban on tributyltin (TBT). The effects of sublethal concentrations (LC50=82.5 μM, i.e., 26.2 mg/l) on cultured haemocytes of the ascidian Botryllus schlosseri have been investigated and compared with TBT. The percentage of haemocytes with amoeboid morphology and containing phagocytised yeast cells were significantly (p<0.05) reduced after exposure to 0.1 (31.7 μg/l) and 0.5 μM (158 μg/l), respectively. An antagonistic interaction in inducing cytoskeletal alterations was observed when ZnP and TBT were co-present in the exposure medium. ZnP affected only the actin component. As caused by TBT, ZnP induced apoptosis and inhibited both oxidative phosphorylation and lysosomal activities. In contrast to the case of TBT, a decrement in Ca(2+)-ATPase activity and a decrease in cytosolic Ca(2+) were detected after incubation at the highest concentration (1 μM, i.e., 317.7 μg/l) used. In comparison with other antifouling compounds, ZnP shows as much toxicity as TBT to cultured haemocytes at extremely low concentrations interfering with fundamental cell activities. PMID:25576186

  18. Novel antifouling surface with improved hemocompatibility by immobilization of polyzwitterions onto silicon via click chemistry

    NASA Astrophysics Data System (ADS)

    Zheng, Sunxiang; Yang, Qian; Mi, Baoxia

    2016-02-01

    A novel procedure is presented to develop an antifouling silicon surface with improved hemocompatibility by using a zwitterionic polymer, poly(sulfobetaine methacrylate) (polySBMA). Functionalization of the silicon surface with polySBMA involved the following three steps: (1) an alkyne terminated polySBMA was synthesized by RAFT polymerization; (2) a self-assembled monolayer with bromine end groups was constructed on the silicon surface, and then the bromine end groups were replaced by azide groups; and (3) the polySBMA was attached to the silicon surface by azide-alkyne cycloaddition click reaction. Membrane characterization confirmed a successful silicon surface modification with almost 100% coverage by polySBMA and an extremely hydrophilic surface after such modification. The polySBMA-modified silicon surface was found to have excellent anti-nonspecific adsorption properties for both bovine serum albumin (BSA) protein and model bacterial cells. Whole blood adsorption experiments showed that the polySBMA-modified silicon surface exhibited excellent hemocompatibility and effective anti-adhesion to blood cells. Silicon membranes with such antifouling and hemocompatible surfaces can be advantageously used to drastically extend the service life of implantable medical devices such as artificial kidney devices.

  19. Spin-Casting Polymer Brush Films for Stimuli-Responsive and Anti-Fouling Surfaces.

    PubMed

    Xu, Binbin; Feng, Chun; Hu, Jianhua; Shi, Ping; Gu, Guangxin; Wang, Lei; Huang, Xiaoyu

    2016-03-01

    Surfaces modified with amphiphilic polymers can dynamically alter their physicochemical properties in response to changes of their environmental conditions; meanwhile, amphiphilic polymer coatings with molecular hydrophilic and hydrophobic patches, which can mitigate biofouling effectively, are being actively explored as advanced coatings for antifouling materials. Herein, a series of well-defined amphiphilic asymmetric polymer brushes containing hetero side chains, hydrophobic polystyrene (PS) and hydrophilic poly(ethylene glycol) (PEG), was employed to prepare uniform thin films by spin-casting. The properties of these films were investigated by water contact angle, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and quartz crystal microbalance (QCM). AFM showed smooth surfaces for all films with the roughness less than 2 nm. The changes in water contact angle and C/O ratio (XPS) evidenced the enrichment of PEG or PS chains at film surface after exposed to selective solvents, indicative of stimuli- responsiveness. The adsorption of proteins on PEG functionalized surface was quantified by QCM and the results verified that amphiphilic polymer brush films bearing PEG chains could lower or eliminate protein-material interactions and resist to protein adsorption. Cell adhesion experiments were performed by using HaCaT cells and it was found that polymer brush films possess good antifouling ability. PMID:26905980

  20. Salt-Responsive Zwitterionic Polymer Brushes with Tunable Friction and Antifouling Properties.

    PubMed

    Yang, Jintao; Chen, Hong; Xiao, Shengwei; Shen, Mingxue; Chen, Feng; Fan, Ping; Zhong, Mingqiang; Zheng, Jie

    2015-08-25

    Development of smart, multifunction materials is challenging but important for many fundamental and industrial applications. Here, we synthesized and characterized zwitterionic poly(3-(1-(4-vinylbenzyl)-1H-imidazol-3-ium-3-yl)propane-1-sulfonate) (polyVBIPS) brushes as ion-responsive smart surfaces via the surface-initiated atom transfer radical polymerization. PolyVBIPS brushes were carefully characterized for their surface morphologies, compositions, wettability, and film thicknesses by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), contact angle, and ellipsometer, respectively. Salt-responsive, switching properties of polyVBIPS brushes on surface hydration, friction, and antifouling properties were further examined and compared both in water and in salt solutions with different salt concentrations and counterion types. Collective data showed that polyVBIPS brushes exhibited reversible surface wettability switching between in water and saturated NaCl solution. PolyVBIPS brushes in water induced the larger protein absorption, higher surface friction, and lower surface hydration than those in salt solutions, exhibiting "anti-polyelectrolyte effect" salt responsive behaviors. At appropriate ionic conditions, polyVBIPs brushes were able to switch to superlow fouling surfaces (<0.3 ng/cm(2) protein adsorption) and superlow friction surfaces (u ∼ 10(-3)). The relationship between brush structure and its salt-responsive performance was also discussed. This work provides new zwitterionic surface-responsive materials with controllable antifouling and friction capabilities for multifunctional applications.

  1. Bioaccessibility and mobilisation of copper and zinc in estuarine sediment contaminated by antifouling paint particles

    NASA Astrophysics Data System (ADS)

    Jones, David E.; Turner, Andrew

    2010-04-01

    Clean estuarine sediment amended with antifouling paint particles has been digested in biologically relevant reagents in order to evaluate the bioaccessibilities of Cu and Zn to deposit feeders in coastal environments where boat maintenance is important. Concentrations of Cu and Zn in the estuarine sediment of about 20 and 70 μg g -1, respectively, increased to about 930 and 330 μg g -1, respectively, on addition of 1.3% of a composite of fractionated paint particles collected from a boat repair facility. Seawater containing the vertebrate bile salt, sodium taurocholate, representative of surfactants in the digestive environment of deposit feeders, mobilised significantly greater quantities of metal (up to about 2 μg g -1 of both Cu and Zn) than seawater alone, presumably through complexation and exchange reactions. Seawater solutions of the protein, bovine serum albumin (BSA), a surrogate for proteinaceous material and amino acids encountered in the digestive tract, mobilised even greater quantities of metal (up to about 80 and 40 μg g -1 of Cu and Zn, respectively) via strong complexation, although addition of taurocholate reduced this capacity through interactions between the two reagents. Overall, and through feeding, burrowing and bioirrigation, infaunal invertebrates are predicted to greatly accelerate the rate of mobilisation and local dispersal of metals in sediment contaminated by antifouling paint particles.

  2. Improved antifouling properties of polyamide nanofiltration membranes by reducing the density of surface carboxyl groups.

    PubMed

    Mo, Yinghui; Tiraferri, Alberto; Yip, Ngai Yin; Adout, Atar; Huang, Xia; Elimelech, Menachem

    2012-12-18

    Carboxyls are inherent functional groups of thin-film composite polyamide nanofiltration (NF) membranes, which may play a role in membrane performance and fouling. Their surface presence is attributed to incomplete reaction of acyl chloride monomers during the membrane active layer synthesis by interfacial polymerization. In order to unravel the effect of carboxyl group density on organic fouling, NF membranes were fabricated by reacting piperazine (PIP) with either isophthaloyl chloride (IPC) or the more commonly used trimesoyl chloride (TMC). Fouling experiments were conducted with alginate as a model hydrophilic organic foulant in a solution, simulating the composition of municipal secondary effluent. Improved antifouling properties were observed for the IPC membrane, which exhibited lower flux decline (40%) and significantly greater fouling reversibility or cleaning efficiency (74%) than the TMC membrane (51% flux decline and 40% cleaning efficiency). Surface characterization revealed that there was a substantial difference in the density of surface carboxyl groups between the IPC and TMC membranes, while other surface properties were comparable. The role of carboxyl groups was elucidated by measurements of foulant-surface intermolecular forces by atomic force microscopy, which showed lower adhesion forces and rupture distances for the IPC membrane compared to TMC membranes in the presence of calcium ions in solution. Our results demonstrated that a decrease in surface carboxyl group density of polyamide membranes fabricated with IPC monomers can prevent calcium bridging with alginate and, thus, improve membrane antifouling properties. PMID:23205860

  3. Development of antifouling reverse osmosis membranes for water treatment: A review.

    PubMed

    Kang, Guo-dong; Cao, Yi-ming

    2012-03-01

    With the rapidly increasing demands on water resources, fresh water shortage has become an important issue affecting the economic and social development in many countries. As one of the main technologies for producing fresh water from saline water and other wastewater sources, reverse osmosis (RO) has been widely used so far. However, a major challenge facing widespread application of RO technology is membrane fouling, which results in reduced production capacity and increased operation costs. Therefore, many researches have been focused on enhancing the RO membrane resistance to fouling. This paper presents a review of developing antifouling RO membranes in recent years, including the selection of new starting monomers, improvement of interfacial polymerization process, surface modification of conventional RO membrane by physical and chemical methods as well as the hybrid organic/inorganic RO membrane. The review of research progress in this article may provide an insight for the development of antifouling RO membranes and extend the applications of RO technology in water treatment in the future.

  4. Effective antifouling using quorum-quenching acylase stabilized in magnetically-separable mesoporous silica.

    PubMed

    Lee, Byoungsoo; Yeon, Kyung-Min; Shim, Jongmin; Kim, Sang-Ryoung; Lee, Chung-Hak; Lee, Jinwoo; Kim, Jungbae

    2014-04-14

    Highly effective antifouling was achieved by immobilizing and stabilizing an acylase, disrupting bacterial cell-to-cell communication, in the form of cross-linked enzymes in magnetically separable mesoporous silica. This so-called "quorum-quenching" acylase (AC) was adsorbed into spherical mesoporous silica (S-MPS) with magnetic nanoparticles (Mag-S-MPS), and further cross-linked for the preparation of nanoscale enzyme reactors of AC in Mag-S-MPS (NER-AC/Mag-S-MPS). NER-AC effectively stabilized the AC activity under rigorous shaking at 200 rpm for 1 month, while free and adsorbed AC lost more than 90% of their initial activities in the same condition within 1 and 10 days, respectively. When applied to the membrane filtration for advanced water treatment, NER-AC efficiently alleviated the biofilm maturation of Pseudomonas aeruginosa PAO1 on the membrane surface, thereby enhancing the filtration performance by preventing membrane fouling. Highly stable and magnetically separable NER-AC, as an effective and sustainable antifouling material, has a great potential to be used in the membrane filtration for water reclamation.

  5. Toward Cell Selective Surfaces: Cell Adhesion and Proliferation on Breath Figures with Antifouling Surface Chemistry.

    PubMed

    Martínez-Campos, Enrique; Elzein, Tamara; Bejjani, Alice; García-Granda, Maria Jesús; Santos-Coquillat, Ana; Ramos, Viviana; Muñoz-Bonilla, Alexandra; Rodríguez-Hernández, Juan

    2016-03-01

    We report the preparation of microporous functional polymer surfaces that have been proven to be selective surfaces toward eukaryotic cells while maintaining antifouling properties against bacteria. The fabrication of functional porous films has been carried out by the breath figures approach that allowed us to create porous interfaces with either poly(ethylene glycol) methyl ether methacrylate (PEGMA) or 2,3,4,5,6-pentafluorostyrene (5FS). For this purpose, blends of block copolymers in a polystyrene homopolymer matrix have been employed. In contrast to the case of single functional polymer, using blends enables us to vary the chemical distribution of the functional groups inside and outside the formed pores. In particular, fluorinated groups were positioned at the edges while the hydrophilic PEGMA groups were selectively located inside the pores, as demonstrated by TOF-SIMS. More interestingly, studies of cell adhesion, growth, and proliferation on these surfaces confirmed that PEGMA functionalized interfaces are excellent candidates to selectively allow cell growth and proliferation while maintaining antifouling properties. PMID:26909529

  6. Light-Emitting Diodes with Hierarchical and Multifunctional Surface Structures for High Light Extraction and an Antifouling Effect.

    PubMed

    Leem, Young-Chul; Park, Jung Su; Kim, Joon Heon; Myoung, NoSoung; Yim, Sang-Youp; Jeong, Sehee; Lim, Wantae; Kim, Sung-Tae; Park, Seong-Ju

    2016-01-13

    Bioinspired hierarchical structures on the surface of vertical light-emitting diodes (VLEDs) are demonstrated by combining a self-assembled dip-coating process and nanopatterning transfer method using thermal release tape. This versatile surface structure can efficiently reduce the total internal reflection and add functions, such as superhydrophobicity and high oleophobicity, to achieve an antifouling effect for VLEDs.

  7. Antimicrobial and antifouling hydrogels formed in situ from polycarbonate and poly(ethylene glycol) via Michael addition.

    PubMed

    Liu, Shao Qiong; Yang, Chuan; Huang, Yuan; Ding, Xin; Li, Yan; Fan, Wei Min; Hedrick, James L; Yang, Yi-Yan

    2012-12-18

    A novel class of antimicrobial cationic polycarbonate/PEG hydrogels are designed and synthesized by Michael addition chemistry. These hydrogels demonstrate strong broad-spectrum antimicrobial activities against various clinically isolated multidrug-resistant microbes. Moreover, they exhibit nonfouling properties and prevent the substrate from microbial adhesion. These antimicrobial and antifouling gels are promising materials as catheter coatings and wound dressings to prevent infections.

  8. Effectiveness of sodium benzoate as a freshwater low toxicity antifoulant when dispersed in solution and entrapped in silicone coatings.

    PubMed

    Haque, Haroon; Cutright, Teresa J; Newby, Bi-Min Zhang

    2005-01-01

    The traditional solution for preventing organisms from attaching to submerged surfaces is to apply antifouling coatings or biocides. Based on the varied defence mechanisms exhibited by biofilms, the antifoulant needs to prevent bacterial attachment during the early stages of biofilm formation. The potential of benzoic acid and sodium benzoate (NaB) as antifoulants for deterring freshwater bacterial attachment was evaluated with the antifoulants dispersed in solution or entrapped in silicone coatings. Effectiveness was based on the decrease in microbial attachment, limited toxicity, and minimum alteration of the properties of the coatings. The optimal NaB concentration when dispersed in solution, 700 mg l-1, resulted in a biofilm surface coverage of only 3.34% after four weeks. The model silicone, Sylgard 184, demonstrated a better overall performance than the commercial coating, RTV11. Sylgard 184 containing sodium benzoate had 41-52% less biofilm in comparison to the control Sylgard 184, whereas both the control and NaB-entrapped RTV11 coatings had significant biofilm coverage.

  9. Marine Science Comes Alive.

    ERIC Educational Resources Information Center

    Wright, Dorothy

    1996-01-01

    A new state-of-the-art marine science laboratory at Eckerd College (Florida) is a study in the power of research, teamwork, attention to detail, and cost control. A redundant piping system brings sea water directly to the students. Once a week the pipes that previously held sea water are flushed and refilled with fresh water. (MLF)

  10. Multilayers of fluorinated amphiphilic polyions for marine fouling prevention.

    PubMed

    Zhu, Xiaoying; Guo, Shifeng; Jańczewski, Dominik; Velandia, Fernando Jose Parra; Teo, Serena Lay-Ming; Vancso, G Julius

    2014-01-14

    Sequential layer-by-layer (LbL) deposition of polyelectrolytes followed by chemical cross-linking was investigated as a method to fabricate functional amphiphilic surfaces for marine biofouling prevention applications. A novel polyanion, grafted with amphiphilic perfluoroalkyl polyethylene glycol (fPEG) side chains, was synthesized and subsequently used to introduce amphiphilic character to the LbL film. The structure of the polyanion was confirmed by FTIR and NMR. Amphiphilicity of the film assembly was demonstrated by both water and hexadecane static contact angles. XPS studies of the cross-linked and annealed amphiphilic LbL films revealed the increased concentration of fPEG content at the film interface. In antifouling assays, the amphiphilic LbL films effectively prevented the adhesion of the marine bacterium Pseudomonas (NCIMB 2021).

  11. Hydration and chain entanglement determines the optimum thickness of poly(HEMA-co-PEG₁₀MA) brushes for effective resistance to settlement and adhesion of marine fouling organisms.

    PubMed

    Yandi, Wetra; Mieszkin, Sophie; Martin-Tanchereau, Pierre; Callow, Maureen E; Callow, James A; Tyson, Lyndsey; Liedberg, Bo; Ederth, Thomas

    2014-07-23

    Understanding how surface physicochemical properties influence the settlement and adhesion of marine fouling organisms is important for the development of effective and environmentally benign marine antifouling coatings. We demonstrate that the thickness of random poly(HEMA-co-PEG10MA) copolymer brushes affect antifouling behavior. Films of thicknesses ranging from 50 to 1000 Å were prepared via surface-initiated atom-transfer radical polymerization and characterized using infrared spectroscopy, ellipsometry, atomic force microscopy and contact angle measurements. The fouling resistance of these films was investigated by protein adsorption, attachment of the marine bacterium Cobetia marina, settlement and strength of attachment tests of zoospores of the marine alga Ulva linza and static immersion field tests. These assays show that the polymer film thickness influenced the antifouling performance, in that there is an optimum thickness range, 200-400 Å (dry thickness), where fouling of all types, as well as algal spore adhesion, was lower. Field test results also showed lower fouling within the same thickness range after 2 weeks of immersion. Studies by quartz crystal microbalance with dissipation and underwater captive bubble contact angle measurements show a strong correlation between lower fouling and higher hydration, viscosity and surface energy of the poly(HEMA-co-PEG10MA) brushes at thicknesses around 200-400 Å. We hypothesize that the reduced antifouling performance is caused by a lower hydration capacity of the polymer for thinner films, and that entanglement and crowding in the film reduces the conformational freedom, hydration capacity and fouling resistance for thicker films.

  12. Hydration and chain entanglement determines the optimum thickness of poly(HEMA-co-PEG₁₀MA) brushes for effective resistance to settlement and adhesion of marine fouling organisms.

    PubMed

    Yandi, Wetra; Mieszkin, Sophie; Martin-Tanchereau, Pierre; Callow, Maureen E; Callow, James A; Tyson, Lyndsey; Liedberg, Bo; Ederth, Thomas

    2014-07-23

    Understanding how surface physicochemical properties influence the settlement and adhesion of marine fouling organisms is important for the development of effective and environmentally benign marine antifouling coatings. We demonstrate that the thickness of random poly(HEMA-co-PEG10MA) copolymer brushes affect antifouling behavior. Films of thicknesses ranging from 50 to 1000 Å were prepared via surface-initiated atom-transfer radical polymerization and characterized using infrared spectroscopy, ellipsometry, atomic force microscopy and contact angle measurements. The fouling resistance of these films was investigated by protein adsorption, attachment of the marine bacterium Cobetia marina, settlement and strength of attachment tests of zoospores of the marine alga Ulva linza and static immersion field tests. These assays show that the polymer film thickness influenced the antifouling performance, in that there is an optimum thickness range, 200-400 Å (dry thickness), where fouling of all types, as well as algal spore adhesion, was lower. Field test results also showed lower fouling within the same thickness range after 2 weeks of immersion. Studies by quartz crystal microbalance with dissipation and underwater captive bubble contact angle measurements show a strong correlation between lower fouling and higher hydration, viscosity and surface energy of the poly(HEMA-co-PEG10MA) brushes at thicknesses around 200-400 Å. We hypothesize that the reduced antifouling performance is caused by a lower hydration capacity of the polymer for thinner films, and that entanglement and crowding in the film reduces the conformational freedom, hydration capacity and fouling resistance for thicker films. PMID:24945705

  13. Mini-review: Inhibition of biofouling by marine microorganisms.

    PubMed

    Dobretsov, Sergey; Abed, Raeid M M; Teplitski, Max

    2013-01-01

    Any natural or artificial substratum exposed to seawater is quickly fouled by marine microorganisms and later by macrofouling species. Microfouling organisms on the surface of a substratum form heterogenic biofilms, which are composed of multiple species of heterotrophic bacteria, cyanobacteria, diatoms, protozoa and fungi. Biofilms on artificial structures create serious problems for industries worldwide, with effects including an increase in drag force and metal corrosion as well as a reduction in heat transfer efficiency. Additionally, microorganisms produce chemical compounds that may induce or inhibit settlement and growth of other fouling organisms. Since the last review by the first author on inhibition of biofouling by marine microbes in 2006, significant progress has been made in the field. Several antimicrobial, antialgal and antilarval compounds have been isolated from heterotrophic marine bacteria, cyanobacteria and fungi. Some of these compounds have multiple bioactivities. Microorganisms are able to disrupt biofilms by inhibition of bacterial signalling and production of enzymes that degrade bacterial signals and polymers. Epibiotic microorganisms associated with marine algae and invertebrates have a high antifouling (AF) potential, which can be used to solve biofouling problems in industry. However, more information about the production of AF compounds by marine microorganisms in situ and their mechanisms of action needs to be obtained. This review focuses on the AF activity of marine heterotrophic bacteria, cyanobacteria and fungi and covers publications from 2006 up to the end of 2012.

  14. Immense Essence of Excellence: Marine Microbial Bioactive Compounds

    PubMed Central

    Bhatnagar, Ira; Kim, Se-Kwon

    2010-01-01

    Oceans have borne most of the biological activities on our planet. A number of biologically active compounds with varying degrees of action, such as anti-tumor, anti-cancer, anti-microtubule, anti-proliferative, cytotoxic, photo protective, as well as antibiotic and antifouling properties, have been isolated to date from marine sources. The marine environment also represents a largely unexplored source for isolation of new microbes (bacteria, fungi, actinomycetes, microalgae-cyanobacteria and diatoms) that are potent producers of bioactive secondary metabolites. Extensive research has been done to unveil the bioactive potential of marine microbes (free living and symbiotic) and the results are amazingly diverse and productive. Some of these bioactive secondary metabolites of microbial origin with strong antibacterial and antifungal activities are being intensely used as antibiotics and may be effective against infectious diseases such as HIV, conditions of multiple bacterial infections (penicillin, cephalosporines, streptomycin, and vancomycin) or neuropsychiatric sequelae. Research is also being conducted on the general aspects of biophysical and biochemical properties, chemical structures and biotechnological applications of the bioactive substances derived from marine microorganisms, and their potential use as cosmeceuticals and nutraceuticals. This review is an attempt to consolidate the latest studies and critical research in this field, and to showcase the immense competence of marine microbial flora as bioactive metabolite producers. In addition, the present review addresses some effective and novel approaches of procuring marine microbial compounds utilizing the latest screening strategies of drug discovery. PMID:21116414

  15. Marine & hydrokinetic technology development.

    SciTech Connect

    LiVecchi, Al; Jepsen, Richard Alan

    2010-06-01

    The Wind and Water Power Program supports the development of marine and hydrokinetic devices, which capture energy from waves, tides, ocean currents, the natural flow of water in rivers, and marine thermal gradients, without building new dams or diversions. The program works closely with industry and the Department of Energy's national laboratories to advance the development and testing of marine and hydrokinetic devices. In 2008, the program funded projects to develop and test point absorber, oscillating wave column, and tidal turbine technologies. The program also funds component design, such as techniques for manufacturing and installing coldwater pipes critical for ocean thermal energy conversion (OTEC) systems. Rigorous device testing is necessary to validate and optimize prototypes before beginning full-scale demonstration and deployment. The program supports device testing by providing technology developers with information on testing facilities. Technology developers require access to facilities capable of simulating open-water conditions in order to refine and validate device operability. The program has identified more than 20 tank testing operators in the United States with capabilities suited to the marine and hydrokinetic technology industry. This information is available to the public in the program's Hydrodynamic Testing Facilities Database. The program also supports the development of open-water, grid-connected testing facilities, as well as resource assessments that will improve simulations done in dry-dock and closed-water testing facilities. The program has established two university-led National Marine Renewable Energy Centers to be used for device testing. These centers are located on coasts and will have open-water testing berths, allowing researchers to investigate marine and estuary conditions. Optimal array design, development, modeling and testing are needed to maximize efficiency and electricity generation at marine and hydrokinetic power

  16. Lethal and sublethal toxicity of the antifoulant compound Irgarol 1051 to the mud snail Ilyanassa obsoleta.

    PubMed

    Finnegan, Meaghean C; Pittman, Sherry; DeLorenzo, Marie E

    2009-01-01

    Irgarol 1051 is an algistatic compound used in copper-based antifoulant paints. It is a widespread and persistent pollutant of the estuarine environment. Ilyanassa obsoleta, the Eastern mud snail, is a common intertidal gastropod that inhabits mud flats and salt marshes along the east coast of North America. It is an important inhabitant of the estuarine environment; contributing to nutrient regeneration and regulating microbial processes in the sediments. The toxicity of irgarol to estuarine gastropods has not been previously examined, although they have the potential to be exposed to antifoulants through both aqueous and sediment routes. The objectives of this study were to evaluate irgarol's effects on I. obsoleta survival, reproductive status (imposex occurrence and testosterone levels), chemoreceptive function, and cellular respiration (cytochrome-c oxidase activity). Irgarol was moderately toxic to I. obsoleta; adult aqueous 96-h LC(50) = 3.73 mg/L, larval aqueous 96-h LC(50) = 3.16 mg/L, and adult sediment 10-day LC(50) = 12.21 mg/kg. Larval snails were not significantly more sensitive to irgarol than adult snails. A chronic 45-day aqueous irgarol exposure (0.005-2.5 mg/L) did not induce imposex or affect free-testosterone levels. The 45-day chronic LC(50 )of 1.88 mg/L was significantly lower than the 96-h acute value. A 96-h acute aqueous irgarol exposure (0.375-1.5 mg/L) caused a decrease in normal response to chemosensory cues such as the presence of food or predators. There was a significant increase in cytochrome-c oxidase activity at 2.5 mg/L, which might indicate irgarol's disruption of the mitochondrial membrane and subsequently ATP synthesis. Although the toxicity values determined for I. obsoleta exceeded irgarol concentrations measured in surface waters, results from this toxicity assessment will provide valuable information to environmental resource managers faced with decisions regarding the use and regulation of antifoulant paints in the

  17. Antifouling activity in some benthic Antarctic invertebrates by "in situ" experiments at Deception Island, Antarctica.

    PubMed

    Angulo-Preckler, Carlos; Cid, Cristina; Oliva, Francesc; Avila, Conxita

    2015-04-01

    Competition for space is a remarkable ecological force, comparable to predation, producing a strong selective pressure on benthic invertebrates. Some invertebrates, thus, possess antimicrobial compounds to reduce surface bacterial growth. Antimicrobial inhibition is the first step in avoiding being overgrown by other organisms, which may have a negative impact in feeding, respiration, reproduction … The in situ inhibition of bacterial biofilm was used here as an indicator of antifouling activity by testing hydrophilic extracts of twelve Antarctic invertebrates. Using two different approaches (genetics and confocal techniques) different levels of activity were found in the tested organisms. In fact, differences within body parts of the studied organisms were determined, in agreement with the Optimal Defense Theory. Eight out of 15 extracts tested had negative effects on fouling after 28 days submerged in Antarctic waters. Thus, although chemical defenses may be quite species-specific in their ecological roles, these results suggest that different chemical strategies exist to deal with space competition.

  18. Antifouling steroids from the South China Sea gorgonian coral Subergorgia suberosa.

    PubMed

    Zhang, Jun; Liang, Yan; Wang, Kai-Ling; Liao, Xiao-Jian; Deng, Zhou; Xu, Shi-Hai

    2014-01-01

    Two new unusual cholestane derivatives, pentacyclic steroid 16,22-epoxy-20β,23S-dihydroxycholest-1-ene-3-one (1) and 20β,23S-dihydroxycholest-1-ene-3,22-dione (2), along with two new pregnane derivatives, 15β,17α-dihydroxypregna-4,6-diene-3,20-dione (3) and 11α-hydroxypregna-4-ene-3,6,20-trione (4), were isolated from the South China Sea gorgonian coral Subergorgia suberosa. Their structures were established based on the extensive analyses of 2D NMR, IR, and HRMS. Antifouling tests against Balanus amphitrite larvae settlement indicated that 1 and 2 exhibited inhibitory effect with EC50 values of 5.3, and 14.5 μg/mL, respectively.

  19. 76 FR 30309 - Marine Mammals; File No. 16087

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ... the Federal Register (76 FR 13603) that a request for a permit to conduct research on marine mammals... National Oceanic and Atmospheric Administration RIN 0648-XA292 Marine Mammals; File No. 16087 AGENCY... National Marine Mammal Laboratory, Seattle, WA, to conduct research on marine mammals. ADDRESSES:...

  20. The effects of copper pyrithione, an antifouling agent, on developing zebrafish embryos.

    PubMed

    Almond, Kelly M; Trombetta, Louis D

    2016-03-01

    A substitute for the organotins has been the use of metal pyrithiones, principally zinc and copper (CuPT) as antifouling agents. Zebrafish, Danio rerio, embryos were exposed after fertilization to increasing concentrations of CuPT (2, 4, 8, 12, 16, 32 and 64 μg/L) for 24 h. Morphological abnormalities at 30, 96 and 120 hours post fertilization (hpf) were recorded. Abnormalities at concentrations of 12 μg/L and higher were observed. Notochords became severely twisted as concentrations increased. These distortions of the notochord originated in the tail at the lower concentrations and proceeded rostrally with increasing dose. Edema was observed in the cardiac and yolk sac regions at the 12 and 16 μg/L CuPT concentrations. Light microscopy showed disorganization of muscle fibers, disruption and distortion of the transverse myoseptum and vacuolization of the myocyte. Hatching was measured every 12 h for 5 days following the 24 h exposure. Hatching decreased in a dose dependent manner. At 120 hpf, 47 % of the 64 μg/L CuPT treated embryos hatched. Inductively coupled plasma atomic absorbance spectrophotometry (ICPAAS) revealed copper bioaccumulation in whole embryo tissue and was significantly elevated in 32 and 64 μg/L CuPT treatment groups as compared to controls. Lipid peroxidation end products were significantly increased in animals exposed to 32 and 64 μg/L of CuPT. These data demonstrate that oxidative stress may play a role in the toxicity. The abnormalities and deformities observed in fish larvae would significantly decrease survival in polluted aqua-systems and question the use of this product as an antifouling agent. PMID:26686506

  1. Antifouling polyethersulfone hemodialysis membranes incorporated with poly (citric acid) polymerized multi-walled carbon nanotubes.

    PubMed

    Abidin, Muhammad Nidzhom Zainol; Goh, Pei Sean; Ismail, Ahmad Fauzi; Othman, Mohd Hafiz Dzarfan; Hasbullah, Hasrinah; Said, Noresah; Kadir, Siti Hamimah Sheikh Abdul; Kamal, Fatmawati; Abdullah, Mohd Sohaimi; Ng, Be Cheer

    2016-11-01

    Poly (citric acid)-grafted-MWCNT (PCA-g-MWCNT) was incorporated as nanofiller in polyethersulfone (PES) to produce hemodialysis mixed matrix membrane (MMM). Citric acid monohydrate was polymerized onto the surface of MWCNTs by polycondensation. Neat PES membrane and PES/MWCNTs MMMs were fabricated by dry-wet spinning technique. The membranes were characterized in terms of morphology, pure water flux (PWF) and bovine serum albumin (BSA) protein rejection. The grafting yield of PCA onto MWCNTs was calculated as 149.2%. The decrease of contact angle from 77.56° to 56.06° for PES/PCA-g-MWCNTs membrane indicated the increase in surface hydrophilicity, which rendered positive impacts on the PWF and BSA rejection of the membrane. The PWF increased from 15.8Lm(-2)h(-1) to 95.36Lm(-2)h(-1) upon the incorporation of PCA-g-MWCNTs due to the attachment of abundant hydrophilic groups that present on the MWCNTs, which have improved the affinity of membrane towards the water molecules. For protein rejection, the PES/PCA-g-MWCNTs MMM rejected 95.2% of BSA whereas neat PES membrane demonstrated protein rejection of 90.2%. Compared to commercial PES hemodialysis membrane, the PES/PCA-g-MWCNTs MMMs showed less flux decline behavior and better PWF recovery ratio, suggesting that the membrane antifouling performance was improved. The incorporation of PCA-g-MWCNTs enhanced the separation features and antifouling capabilities of the PES membrane for hemodialysis application. PMID:27524052

  2. Significance of antifouling paint flakes to the distribution of dichlorodiphenyltrichloroethanes (DDTs) in estuarine sediment.

    PubMed

    Wu, Chen-Chou; Bao, Lian-Jun; Tao, Shu; Zeng, Eddy Y

    2016-03-01

    Recently published literature indicated that dichlorodiphenyltrichloroethane (DDT)-containing antifouling paint flakes were heterogeneously distributed within estuarine sediments. However, the significance of antifouling paint flakes in the fate and transport of DDT compounds and other organic pollutants in estuarine sediment is yet to be adequately addressed. To fill this knowledge gap, estuarine sediment and paint flakes from cabin and boat surfaces were collected from a fishery base in Guangdong Province of South China and analyzed for DDT compounds. Coarse fractioned samples collected from the vicinity of boat maintenance facilities contained appreciable amounts of colorful particles, which were identified as paint flakes by Fourier transform infrared spectroscopy. The highest concentrations of DDXs (sum of DDTs and its metabolites) occurred in the heavy-density (>1.7 g cm(-3)) fraction of coarse-size (200-2000 μm) sediments from near the boat maintenance facilities, suggesting the importance of paint flakes in the distribution pattern of "hot spots" in estuarine sediment. Moreover, the desorption rates of DDT compounds from paint flakes and the heavy-density fraction of coarse-size sediment were both extremely slow. Apparently, unevenly distributed paint flakes in sediment can artificially inflate the sorption capacity of heavy-density sediment for DDT compounds, and therefore can substantially change the environmental fate and behavior of hydrophobic organic chemicals in estuarine sediment. Finally, commonly used source diagnostic indices of DDT compounds were mostly grain-size and density dependent in sediment, as a result of the occurrence of paint flakes, which may strongly compromise the outcome of any source diagnostics efforts.

  3. Degradation of triphenylborane-pyridine antifouling agent in water by copper ions.

    PubMed

    Tsuboi, Ai; Okamura, Hideo; Kaewchuay, Netnapit; Fukushi, Keiichi; Zhou, Xiaojian; Nishida, Tomoaki

    2013-01-01

    Triphenylborane-pyridine (TPBP) is an antifouling compound used in Asian countries, including Japan, and its residue has not been detected in aquatic environments to date. There are limited data on its fate for environmental management. The purpose of this study was to evaluate whether TPBP is degraded by metal ions in aquatic environments. TPBP with metal ions in 20 mM sodium acetate buffer at pH 8.0 was placed at 25 degrees C in the dark for 24 h. The concentrations of TPBP and its degradation products, such as diphenylboronic acid, phenylboronic acid (MPB), phenol, benzene, biphenyl, and boron were determined. The presence of copper ions (50 mg/l), but not zinc or manganese ions, resulted in complete degradation of TPBP in 24 h. The TPBP degradation was much faster than the boron production in the initial reaction (0-1 h) with copper salts, depending on the copper salts tested. TPBP was degraded by copper ions (5 mg/l) in 24 h, producing phenol, MPB, biphenyl, and borate. Cu2+ as copper(II) chloride or copper(II) acetate led to complete degradation of TPBP, and thylenediaminetetraacetic acid disodium salt addition suppressed the TPBP degradation. Cu+ as copper(I) acetate also completely degraded TPBP, and bathocuproine addition suppressed the TPBP degradation. This suggests that copper ions existing in natural environments might degrade TPBP released from antifouling paint into water, and this could be one of the important mechanisms to dissipate TPBP residues in aquatic environments. PMID:24527648

  4. Incorporating bioavailability into management limits for copper in sediments contaminated by antifouling paint used in aquaculture.

    PubMed

    Simpson, Stuart L; Spadaro, David A; O'Brien, Dom

    2013-11-01

    Although now well embedded within many risk-based sediment quality guideline (SQG) frameworks, contaminant bioavailability is still often overlooked in assessment and management of contaminated sediments. To optimise management limits for metal contaminated sediments, we assess the appropriateness of a range methods for modifying SQGs based on bioavailability considerations. The impairment of reproduction of the amphipod, Melita plumulosa, and harpacticoid copepod, Nitocra spinipes, was assessed for sediments contaminated with copper from antifouling paint, located below aquaculture cages. The measurement of dilute acid-extractable copper (AE-Cu) was found to provide the most useful means for monitoring the risks posed by sediment copper and setting management limits. Acid-volatile sulfide was found to be ineffective as a SQG-modifying factor as these organisms live mostly at the more oxidised sediment water interface. SQGs normalised to %-silt/organic carbon were effective, but the benefits gained were too small to justify this approach. The effectiveness of SQGs based on AE-Cu was attributed to a small portion of the total copper being present in potentially bioavailable forms (typically<10% of the total). Much of the non-bioavailable form of copper was likely present as paint flakes in the form of copper (I) oxide, the active ingredient of the antifoulant formulation. While the concentrations of paint-associated copper are very high in some sediments, as the transformation of this form of copper to AE-Cu appears slow, monitoring and management limits should assess the more bioavailable AE-Cu forms, and further efforts be made to limit the release of paint particles into the environment.

  5. Marine biology

    SciTech Connect

    Thurman, H.V.; Webber, H.H.

    1984-01-01

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index.

  6. High flux and antifouling filtration membrane based on non-woven fabric with chitosan coating for membrane bioreactors.

    PubMed

    Wang, Chanchan; Yang, Fenglin; Meng, Fangang; Zhang, Hanmin; Xue, Yuan; Fu, Gang

    2010-07-01

    To prepare a high flux and antifouling filtration membrane used for submerged membrane bioreactors, non-woven fabric (NWF) was modified by coating chitosan (CS) on both internal and outer surface. Chemical structural and morphological changes were characterized. The changes of surface free energy were monitored by dynamic contact angle, which showed an increase after modification. The CS/NWF composite membranes were found to be with high flux, high effluent quality and excellent antifouling property. The results of fouling resistance distribution indicated that irreversible fouling resistance was decreased by coating CS. Especially, there were fewer gel layers existing on the outer surface. The adsorption of EPS on the NWF membrane internal surface decreased after being coated with CS. Modification improved filtration performance, and made fouling less troublesome and membrane regeneration efficient.

  7. Incorporation of Nicotine into Silicone Coatings for Marine Applications

    NASA Astrophysics Data System (ADS)

    Jaramillo, Sandy Tuyet

    PDMS-based marine coatings presently used are limited by their inability to mitigate microfouling which limits their application to high speed vessels. PDMS coatings are favored when viable, due to their foul release properties of macrofouling organisms. Natural products have been investigated for antifouling properties for potential use in these marine antifouling coatings but few have incorporated natural products into coatings or coating systems. The purpose of the research was to establish the corrosion inhibiting properties of nicotine and to incorporate nicotine, a biodegradable and readily available natural product, into a PDMS coating to demonstrate the use of a natural product in a coating for marine applications. The corrosion inhibiting properties of nicotine was examined using potentiodynamic polarization scans, material characterization techniques such as scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction, quartz crystal microbalance and electrochemical impedance spectroscopy. Nicotine was determined to be an anodic corrosion inhibitor for mild steel immersed in simulated seawater with the ability to precipitate a protective calcium carbonate film. Electrochemical impedance spectroscopy was used to evaluate the performance of the developed nicotine incorporated coatings on mild steel immersed in simulated seawater over 21 days of immersion. The coatings with 2 wt.% of nicotine incorporated in the coating with a ratio of 1:30 of additional platinum catalyst to nicotine exhibited the best performance for intact coatings. This coating had the most favorable balance of the amount of nicotine and platinum catalyst of all the coatings evaluated. Overall, all nicotine incorporated coatings had a performance improvement when compared to the control PDMS coating. Of the nicotine incorporated coatings that were tested with an artificial pin-hole defect, the 2PDMS coating also exhibited the best performance with significant

  8. Evaluation of cationic micropeptides derived from the innate immune system as inhibitors of marine biofouling.

    PubMed

    Trepos, Rozenn; Cervin, Gunnar; Pile, Claire; Pavia, Henrik; Hellio, Claire; Svenson, Johan

    2015-01-01

    A series of 13 short synthetic amphiphilic cationic micropeptides, derived from the antimicrobial iron-binding innate defence protein lactoferrin, have been evaluated for their capacity to inhibit the marine fouling process. The whole biofouling process was studied and microfouling organisms such as marine bacteria and microalgae were included as well as the macrofouling barnacle Balanus improvisus. In total 19 different marine fouling organisms (18 microfoulers and one macrofouler) were included and both the adhesion and growth of the microfoulers were investigated. It was shown that the majority of the peptides inhibited barnacle cyprid settlement via a reversible nontoxic mechanism, with IC50 values as low as 0.5 μg ml(-1). Six peptides inhibited adhesion and growth of microorganisms. Two of these were particularly active against the microfoulers with MIC-values ranging between 0.01 and 1 μg ml(-1), which is comparable with the commercial reference antifoulant SeaNine.

  9. Versatile antifouling polyethersulfone filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive.

    PubMed

    Zhao, Yi-Fan; Zhang, Pei-Bin; Sun, Jian; Liu, Cui-Jing; Yi, Zhuan; Zhu, Li-Ping; Xu, You-Yi

    2015-06-15

    Here we describe the development of versatile antifouling polyethersulfone (PES) filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive. Amphiphilic polyethersulfone-block-poly(2-hydroxyethyl methacrylate) (PES-b-PHEMA) was beforehand designed and used as the blending additive of PES membranes prepared by phase inversion technique. The surface enriched PHEMA blocks on membrane surface acted as an anchor to immobilize the initiating site. Poly(sulfobetaine methacrylate) (PSBMA) were subsequently grafted onto the PES blend membranes by surface-initiated atom transfer radical polymerization (SI-ATRP). The analysis of surface chemistry confirmed the successful grafting of zwitterionic PSBMA brushes on PES membrane surface. The resulted PES-g-PSBMA membranes were capable of separating proteins from protein solution and oil from oil/water emulsion efficiently. Furthermore, the modified membranes showed high hydrophilicity and strongly antifouling properties due to the incorporation of well-defined PSBMA layer. In addition, the PES-g-PSBMA membranes exhibited excellent blood compatibility and durability during the washing process. The developed antifouling PES membranes are versatile and can find their applications in protein filtration, blood purification and oil/water separation, etc. PMID:25752579

  10. Sunlight-Sensitive Anti-Fouling Nanostructured TiO2 coated Cu Meshes for Ultrafast Oily Water Treatment

    PubMed Central

    Liu, HaoRan; Raza, Aikifa; Aili, Abulimiti; Lu, JinYou; AlGhaferi, Amal; Zhang, TieJun

    2016-01-01

    Nanostructured materials with desired wettability and optical property can play an important role in reducing the energy consumption of oily water treatment technologies. For effective oily water treatment, membrane materials with high strength, sunlight-sensitive anti-fouling, relative low fabrication cost, and controllable wettability are being explored. In the proposed oily water treatment approach, nanostructured TiO2-coated copper (TNS-Cu) meshes are used. These TNS-Cu meshes exhibit robust superhydrophilicity and underwater oleophobicity (high oil intrusion pressure) as well as excellent chemical and thermal stability (≈250 °C). They have demonstrated high separation efficiency (oil residue in the filtrate ≤21.3 ppm), remarkable filtration flux (≥400 kL h−1 m−2), and sunlight-sensitive anti-fouling properties. Both our theoretical analysis and experimental characterization have confirmed the enhanced light absorption property of TNS-Cu meshes in the visible region (40% of the solar spectrum) and consequently strong anti-fouling capability upon direct solar light illumination. With these features, the proposed approach promises great potential in treating produced oily wastewater from industry and daily life. PMID:27160349

  11. Antifouling Coatings Influence both Abundance and Community Structure of Colonizing Biofilms: a Case Study in the Northwestern Mediterranean Sea

    PubMed Central

    Camps, Mercedes; Barani, Aude; Gregori, Gérald; Bouchez, Agnès; Le Berre, Brigitte; Bressy, Christine; Blache, Yves

    2014-01-01

    When immersed in seawater, substrates are rapidly colonized by both micro- and macroorganisms. This process is responsible for important economic and ecological prejudices, particularly when related to ship hulls or aquaculture nets. Commercial antifouling coatings are supposed to reduce biofouling, i.e., micro- and macrofoulers. In this study, biofilms that primarily settled on seven different coatings (polyvinyl chloride [PVC], a fouling release coating [FRC], and five self-polishing copolymer coatings [SPC], including four commercial ones) were quantitatively studied, after 1 month of immersion in summer in the Toulon Bay (Northwestern Mediterranean Sea, France), by using flow cytometry (FCM), microscopy, and denaturing gradient gel electrophoresis. FCM was used after a pretreatment to separate cells from the biofilm matrix, in order to determine densities of heterotrophic bacteria, picocyanobacteria, and pico- and nanoeukaryotes on these coatings. Among diatoms, the only microphytobenthic class identified by microscopy, Licmophora, Navicula, and Nitzschia were determined to be the dominant taxa. Overall, biocide-free coatings showed higher densities than all other coatings, except for one biocidal coating, whatever the group of microorganisms. Heterotrophic bacteria always showed the highest densities, and diatoms showed the lowest, but the relative abundances of these groups varied depending on the coating. In particular, the copper-free SPC failed to prevent diatom settlement, whereas the pyrithione-free SPC exhibited high picocyanobacterial density. These results highlight the interest in FCM for antifouling coating assessment as well as specific selection among microbial communities by antifouling coatings. PMID:24907329

  12. Antifouling coatings influence both abundance and community structure of colonizing biofilms: a case study in the Northwestern Mediterranean Sea.

    PubMed

    Camps, Mercedes; Barani, Aude; Gregori, Gérald; Bouchez, Agnès; Le Berre, Brigitte; Bressy, Christine; Blache, Yves; Briand, Jean-François

    2014-08-01

    When immersed in seawater, substrates are rapidly colonized by both micro- and macroorganisms. This process is responsible for important economic and ecological prejudices, particularly when related to ship hulls or aquaculture nets. Commercial antifouling coatings are supposed to reduce biofouling, i.e., micro- and macrofoulers. In this study, biofilms that primarily settled on seven different coatings (polyvinyl chloride [PVC], a fouling release coating [FRC], and five self-polishing copolymer coatings [SPC], including four commercial ones) were quantitatively studied, after 1 month of immersion in summer in the Toulon Bay (Northwestern Mediterranean Sea, France), by using flow cytometry (FCM), microscopy, and denaturing gradient gel electrophoresis. FCM was used after a pretreatment to separate cells from the biofilm matrix, in order to determine densities of heterotrophic bacteria, picocyanobacteria, and pico- and nanoeukaryotes on these coatings. Among diatoms, the only microphytobenthic class identified by microscopy, Licmophora, Navicula, and Nitzschia were determined to be the dominant taxa. Overall, biocide-free coatings showed higher densities than all other coatings, except for one biocidal coating, whatever the group of microorganisms. Heterotrophic bacteria always showed the highest densities, and diatoms showed the lowest, but the relative abundances of these groups varied depending on the coating. In particular, the copper-free SPC failed to prevent diatom settlement, whereas the pyrithione-free SPC exhibited high picocyanobacterial density. These results highlight the interest in FCM for antifouling coating assessment as well as specific selection among microbial communities by antifouling coatings. PMID:24907329

  13. Sunlight-Sensitive Anti-Fouling Nanostructured TiO2 coated Cu Meshes for Ultrafast Oily Water Treatment

    NASA Astrophysics Data System (ADS)

    Liu, Haoran; Raza, Aikifa; Aili, Abulimiti; Lu, Jinyou; Alghaferi, Amal; Zhang, Tiejun

    2016-05-01

    Nanostructured materials with desired wettability and optical property can play an important role in reducing the energy consumption of oily water treatment technologies. For effective oily water treatment, membrane materials with high strength, sunlight-sensitive anti-fouling, relative low fabrication cost, and controllable wettability are being explored. In the proposed oily water treatment approach, nanostructured TiO2-coated copper (TNS-Cu) meshes are used. These TNS-Cu meshes exhibit robust superhydrophilicity and underwater oleophobicity (high oil intrusion pressure) as well as excellent chemical and thermal stability (≈250 °C). They have demonstrated high separation efficiency (oil residue in the filtrate ≤21.3 ppm), remarkable filtration flux (≥400 kL h‑1 m‑2), and sunlight-sensitive anti-fouling properties. Both our theoretical analysis and experimental characterization have confirmed the enhanced light absorption property of TNS-Cu meshes in the visible region (40% of the solar spectrum) and consequently strong anti-fouling capability upon direct solar light illumination. With these features, the proposed approach promises great potential in treating produced oily wastewater from industry and daily life.

  14. Sunlight-Sensitive Anti-Fouling Nanostructured TiO2 coated Cu Meshes for Ultrafast Oily Water Treatment.

    PubMed

    Liu, HaoRan; Raza, Aikifa; Aili, Abulimiti; Lu, JinYou; AlGhaferi, Amal; Zhang, TieJun

    2016-01-01

    Nanostructured materials with desired wettability and optical property can play an important role in reducing the energy consumption of oily water treatment technologies. For effective oily water treatment, membrane materials with high strength, sunlight-sensitive anti-fouling, relative low fabrication cost, and controllable wettability are being explored. In the proposed oily water treatment approach, nanostructured TiO2-coated copper (TNS-Cu) meshes are used. These TNS-Cu meshes exhibit robust superhydrophilicity and underwater oleophobicity (high oil intrusion pressure) as well as excellent chemical and thermal stability (≈250 °C). They have demonstrated high separation efficiency (oil residue in the filtrate ≤21.3 ppm), remarkable filtration flux (≥400 kL h(-1 )m(-2)), and sunlight-sensitive anti-fouling properties. Both our theoretical analysis and experimental characterization have confirmed the enhanced light absorption property of TNS-Cu meshes in the visible region (40% of the solar spectrum) and consequently strong anti-fouling capability upon direct solar light illumination. With these features, the proposed approach promises great potential in treating produced oily wastewater from industry and daily life. PMID:27160349

  15. Hydration effects and antifouling properties of poly(vinyl chloride-co-PEGMA) membranes studied using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Shaikh, Abdul Rajjak; Rajabzadeh, Saeid; Matsuo, Ryuichi; Takaba, Hiromitsu; Matsuyama, Hideto

    2016-04-01

    Polyvinyl chloride (PVC) membranes are widely used in water treatment because of their low cost and chemical stability. However, PVC membranes can become fouled, and this restricts their applications in membrane technology. In order to enhance the antifouling property of PVC membranes, copolymers such as poly(vinyl chloride-co-poly(ethylene glycol)methyl ether methacrylate) (poly(VC-co-PEGMA)) with different PEGMA segment percentages were synthesized in our previous work. Experimentally, it was observed that the poly(VC-co-PEGMA) copolymer has better antifouling properties than those of PVC membranes. Here, we explore effect of the PEGMA segment percentage on the surface hydration properties of poly(VC-co-PEGMA) copolymers. Density functional theory calculations and molecular dynamics simulations were carried out to understand the interactions between PVC and PEGMA. Model structures of these systems were validated by comparing the simulated values of their volumetric properties with the experimental values. MD studies showed that increasing PEGMA percentage in the copolymer increases the interaction with water molecules, leading to improved resistance to fouling. The antifouling mechanism is also discussed with respect to surface hydration and water dynamicity. This study could form a basis for the systematic studies of polymeric membranes as well as their stability from the extent of solvent-polymer, solvent-solvent, and polymer-polymer interactions.

  16. Sunlight-Sensitive Anti-Fouling Nanostructured TiO2 coated Cu Meshes for Ultrafast Oily Water Treatment.

    PubMed

    Liu, HaoRan; Raza, Aikifa; Aili, Abulimiti; Lu, JinYou; AlGhaferi, Amal; Zhang, TieJun

    2016-05-10

    Nanostructured materials with desired wettability and optical property can play an important role in reducing the energy consumption of oily water treatment technologies. For effective oily water treatment, membrane materials with high strength, sunlight-sensitive anti-fouling, relative low fabrication cost, and controllable wettability are being explored. In the proposed oily water treatment approach, nanostructured TiO2-coated copper (TNS-Cu) meshes are used. These TNS-Cu meshes exhibit robust superhydrophilicity and underwater oleophobicity (high oil intrusion pressure) as well as excellent chemical and thermal stability (≈250 °C). They have demonstrated high separation efficiency (oil residue in the filtrate ≤21.3 ppm), remarkable filtration flux (≥400 kL h(-1 )m(-2)), and sunlight-sensitive anti-fouling properties. Both our theoretical analysis and experimental characterization have confirmed the enhanced light absorption property of TNS-Cu meshes in the visible region (40% of the solar spectrum) and consequently strong anti-fouling capability upon direct solar light illumination. With these features, the proposed approach promises great potential in treating produced oily wastewater from industry and daily life.

  17. Enhanced antifouling behaviours of polyvinylidene fluoride membrane modified through blending with nano-TiO2/polyethylene glycol mixture

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Wang, Zhiwei; Zhang, Xingran; Zheng, Xiang; Wu, Zhichao

    2015-08-01

    Titanium dioxide (TiO2) nanoparticles/polyethylene glycol (PEG) mixture was used to modify polyvinylidene fluoride (PVDF) membranes aiming to improve their antifouling ability. The use of PEG could improve the dispersion of nanoparticles thanks to steric hindrance effects. Test results showed that compared to the original PVDF membrane, the modified membranes had higher hydrophilicity and lower negative Zeta potential, facilitating membrane fouling control. The extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) analysis indicated that the addition of TiO2 nanoparticles improved their electron donor monopolarity, i.e., enhanced electron-donating ability. The interaction energy barrier between soluble microbial products (SMP) and membrane surfaces was also improved, indicating that anti-fouling ability of the modified membrane was elevated. The optimal dosage of nano-TiO2 was found to be 0.15%, and further increase of dosage resulted in the aggregation of nanoparticles which consequently impaired the modification efficiency. Quartz crystal microbalance with dissipation (QCM-D) monitoring and SMP filtration tests confirmed the antifouling ability of the modified membrane.

  18. Marine Biomedicine

    ERIC Educational Resources Information Center

    Bang, Frederik B.

    1977-01-01

    Describes early scientific research involving marine invertebrate pathologic processes that may have led to new insights into human disease. Discussed are inquiries of Metchnikoff, Loeb, and Cantacuzene (immunolgic responses in sea stars, horseshoe crabs, and marine worms, respectively). Describes current research stemming from these early…

  19. Marine Biology

    ERIC Educational Resources Information Center

    Dewees, Christopher M.; Hooper, Jon K.

    1976-01-01

    A variety of informational material for a course in marine biology or oceanology at the secondary level is presented. Among the topics discussed are: food webs and pyramids, planktonic blooms, marine life, plankton nets, food chains, phytoplankton, zooplankton, larval plankton and filter feeders. (BT)

  20. A laboratory-incubated redox oscillation experiment to investigate Hg fluxes from highly contaminated coastal marine sediments (Gulf of Trieste, Northern Adriatic Sea).

    PubMed

    Emili, A; Carrasco, L; Acquavita, A; Covelli, S

    2014-03-01

    Mercury (Hg) mobility at the sediment-water interface was investigated during a laboratory incubation experiment conducted with highly contaminated sediments (13 μg g(-1)) of the Gulf of Trieste. Undisturbed sediment was collected in front of the Isonzo River mouth, which inflows Hg-rich suspended material originating from the Idrija (NW Slovenia) mining district. Since hypoxic and anoxic conditions at the bottom are frequently observed and can influence the Hg biogeochemical behavior, a redox oscillation was simulated in the laboratory, at in situ temperature, using a dark flux chamber. Temporal variations of several parameters were monitored simultaneously: dissolved Hg (DHg) and methylmercury (MeHg), O2, NH4 (+), NO3 (-) + NO2 (-), PO4 (3-), H2S, dissolved Mn(2+), dissolved inorganic and organic carbon (DIC and DOC). Under anoxic conditions, both Hg (665 ng m(2) day(-1)) and MeHg (550 ng m(2) day(-1)) fluxed from sediments into the water column, whereas re-oxygenation caused concentrations of MeHg and Hg to rapidly drop, probably due to re-adsorption onto Fe/Mn-oxyhydroxides and enhanced demethylation processes. Hence, during anoxic events, sediments of the Gulf of Trieste may be considered as an important source of DHg species for the water column. On the contrary, re-oxygenation of the bottom compartment mitigates Hg and MeHg release from the sediment, thus acting as a natural "defence" from possible interaction between the metal and the aquatic organisms.

  1. An Ocean of Discovery: Biodiversity Beyond the Census of Marine Life.

    PubMed

    Snelgrove, Paul V R

    2016-06-01

    The 70 % of Earth's surface covered by oceans supports significant biological diversity and immense untapped potential for marine bioproducts. The recently completed international Census of Marine Life (2000-2010) invested heavily in evaluating the diversity, abundance, and distribution of life in the ocean but concluded that at least 50 % and potentially > 90 % of marine species remain undescribed by science. Despite this potential, and numerous successes spanning pharmaceuticals, nutraceuticals, anti-foulants and adhesives, biofuels, biocatalysts (enzymes), and cosmetics, several impediments have slowed marine bioproduct development. First, the sheer size of the ocean constrains comprehensive exploration. Second, marine taxonomists and ecologists generally do not focus on the most promising groups for bioproduct development. Third, the geographic mismatch between (often remote) biodiversity hotspots and science capacity limit discovery. Despite these challenges, new ocean sampling tools (digital imaging, remote vehicles, genetic approaches, in situ samplers), many developed or improved during the Census of Marine Life, should enhance future marine biodiversity and thus marine bioproduct discovery.

  2. New pharmaceuticals from marine organisms.

    PubMed

    Fenical, W

    1997-09-01

    Definitions of 'marine biotechnology' often refer to the vast potential of the oceans to lead to new cures for human and animal disease; the exploitation of natural drugs has always been the most basic form of biotechnology. Although only initiated in the late 1970s, natural drug discovery from the world's oceans has been accelerated by the chemical uniqueness of marine organisms and by the need to develop drugs for contemporary, difficult to cure, diseases. Current research activities, while primarily within the academic laboratories, have generated convincing evidence that marine drug discovery has an exceedingly bright future.

  3. Developing antifouling biointerfaces based on bioinspired zwitterionic dopamine through pH-modulated assembly.

    PubMed

    Huang, Chun-Jen; Wang, Lin-Chuan; Shyue, Jing-Jong; Chang, Ying-Chih

    2014-10-28

    The use of synthetic biomaterials as implantable devices typically is accompanied by considerable nonspecific adsorption of proteins, cells, and bacteria. These may eventually induce adverse pathogenic problems in clinical practice, such as thrombosis and biomaterial-associated infection. Thus, an effective surface coating for medical devices has been pursued to repel nonspecific adsorption from surfaces. In this study, we employ an adhesive dopamine molecule conjugated with zwitterionic sulfobetaine moiety (SB-DA), developed based on natural mussels, as a surface ligand for the modification of TiO2. The electrochemical study shows that the SB-DA exhibits fully reversible reduction-oxidation behavior at pH 3, but it is irreversible at pH 8. A contact angle goniometer and X-ray photoelectron spectroscopy were utilized to explore the surface hydration, chemical states, and bonding mechanism of SB-DA. The results indicate that the binding between hydroxyl groups of SB-DA and TiO2 converts from hydrogen bonds to bidentate binding upon the pH transition from pH 3 to 8. In order to examine the antifouling properties of SB-DA thin films, the modified substrates were brought into contact with bovine serum albumin and bacteria solutions. The fouling levels were monitored using a quartz crystal microbalance with dissipation sensor and fluorescence optical microscope. Tests showed that the sample prepared via the pH transition approach provides the best resistance to nonspecific adsorption due to the high coverage and stability of the SB-DA films. These findings support the mechanism of the pH-modulated assembly of SB-DA molecules, and for the first time we demonstrate the antifouling properties of the SB-DA to be comparable with traditional thiol-based zwitterionic self-assemblies. The success of modification with SB-DA opens an avenue for developing a biologically inspired surface chemistry and can have applications over a wide spectrum of bioapplications. The strategy of

  4. A Novel Surface Structure Consisting of Contact-active Antibacterial Upper-layer and Antifouling Sub-layer Derived from Gemini Quaternary Ammonium Salt Polyurethanes

    PubMed Central

    He, Wei; Zhang, Yi; Li, Jiehua; Gao, Yunlong; Luo, Feng; Tan, Hong; Wang, Kunjie; Fu, Qiang

    2016-01-01

    Contact-active antibacterial surfaces play a vital role in preventing bacterial contamination of artificial surfaces. In the past, numerous researches have been focused on antibacterial surfaces comprising of antifouling upper-layer and antibacterial sub-layer. In this work, we demonstrate a reversed surface structure which integrate antibacterial upper-layer and antifouling sub-layer. These surfaces are prepared by simply casting gemini quaternary ammonium salt waterborne polyurethanes (GWPU) and their blends. Due to the high interfacial energy of gemini quaternary ammonium salt (GQAS), chain segments containing GQAS can accumulate at polymer/air interface to form an antibacterial upper-layer spontaneously during the film formation. Meanwhile, the soft segments composed of polyethylene glycol (PEG) formed the antifouling sub-layer. Our findings indicate that the combination of antibacterial upper-layer and antifouling sub-layer endow these surfaces strong, long-lasting antifouling and contact-active antibacterial properties, with a more than 99.99% killing efficiency against both gram-positive and gram-negative bacteria attached to them. PMID:27561546

  5. A Novel Surface Structure Consisting of Contact-active Antibacterial Upper-layer and Antifouling Sub-layer Derived from Gemini Quaternary Ammonium Salt Polyurethanes

    NASA Astrophysics Data System (ADS)

    He, Wei; Zhang, Yi; Li, Jiehua; Gao, Yunlong; Luo, Feng; Tan, Hong; Wang, Kunjie; Fu, Qiang

    2016-08-01

    Contact-active antibacterial surfaces play a vital role in preventing bacterial contamination of artificial surfaces. In the past, numerous researches have been focused on antibacterial surfaces comprising of antifouling upper-layer and antibacterial sub-layer. In this work, we demonstrate a reversed surface structure which integrate antibacterial upper-layer and antifouling sub-layer. These surfaces are prepared by simply casting gemini quaternary ammonium salt waterborne polyurethanes (GWPU) and their blends. Due to the high interfacial energy of gemini quaternary ammonium salt (GQAS), chain segments containing GQAS can accumulate at polymer/air interface to form an antibacterial upper-layer spontaneously during the film formation. Meanwhile, the soft segments composed of polyethylene glycol (PEG) formed the antifouling sub-layer. Our findings indicate that the combination of antibacterial upper-layer and antifouling sub-layer endow these surfaces strong, long-lasting antifouling and contact-active antibacterial properties, with a more than 99.99% killing efficiency against both gram-positive and gram-negative bacteria attached to them.

  6. A Novel Surface Structure Consisting of Contact-active Antibacterial Upper-layer and Antifouling Sub-layer Derived from Gemini Quaternary Ammonium Salt Polyurethanes.

    PubMed

    He, Wei; Zhang, Yi; Li, Jiehua; Gao, Yunlong; Luo, Feng; Tan, Hong; Wang, Kunjie; Fu, Qiang

    2016-01-01

    Contact-active antibacterial surfaces play a vital role in preventing bacterial contamination of artificial surfaces. In the past, numerous researches have been focused on antibacterial surfaces comprising of antifouling upper-layer and antibacterial sub-layer. In this work, we demonstrate a reversed surface structure which integrate antibacterial upper-layer and antifouling sub-layer. These surfaces are prepared by simply casting gemini quaternary ammonium salt waterborne polyurethanes (GWPU) and their blends. Due to the high interfacial energy of gemini quaternary ammonium salt (GQAS), chain segments containing GQAS can accumulate at polymer/air interface to form an antibacterial upper-layer spontaneously during the film formation. Meanwhile, the soft segments composed of polyethylene glycol (PEG) formed the antifouling sub-layer. Our findings indicate that the combination of antibacterial upper-layer and antifouling sub-layer endow these surfaces strong, long-lasting antifouling and contact-active antibacterial properties, with a more than 99.99% killing efficiency against both gram-positive and gram-negative bacteria attached to them. PMID:27561546

  7. Zwitterionic Antifouling Coatings for the Purification of High-Salinity Shale Gas Produced Water.

    PubMed

    Yang, Rong; Goktekin, Esma; Gleason, Karen K

    2015-11-01

    Fouling refers to the undesirable attachment of organic molecules and microorganisms to submerged surfaces. It is an obstacle to the purification of shale gas produced water and is currently without an effective solution due to the highly contaminated nature of produced water. Here, we demonstrate the direct vapor application of a robust zwitterionic coating to a variety of substrates. The coating remains unprecedentedly hydrophilic, smooth, and effectively antifouling in extremely high salinity solutions (with salt concentration of 200,000 ppm). The fouling resistance is assessed rapidly and quantitatively with a molecular force spectroscopy-based method and corroborated using quartz crystal microbalance system with dissipation monitoring. Grazing angle attenuated total reflectance Fourier transform infrared is used in combination with X-ray photoelectron spectroscopy, atomic force microscope, and in situ spectroscopic ellipsometry to lend insight into the underlying mechanism for the exceptional stability and effectiveness of the zwitterionic coating under high-salinity conditions. A unique coating architecture, where the surface is concentrated with mobile zwitterionic moieties while the bulk is cross-linked to enhance coating durability, was discovered to be the origin of its stable fouling resistance under high salinity. Combined with previously reported exceptional stability in highly oxidative environments and strong fouling resistance to oil and grease, the zwitterionic surface here has the potential to enable low-cost, membrane-based techniques for the purification of produced water and to eventually balance the favorable economics and the concerning environmental impacts of the hydraulic fracturing industry.

  8. Probing the weak interaction of proteins with neutral and zwitterionic antifouling polymers.

    PubMed

    Wu, Jiang; Zhao, Chao; Hu, Rundong; Lin, Weifeng; Wang, Qiuming; Zhao, Jun; Bilinovich, Stephanie M; Leeper, Thomas C; Li, Lingyan; Cheung, Harry M; Chen, Shengfu; Zheng, Jie

    2014-02-01

    Protein-polymer interactions are of great interest in a wide range of scientific and technological applications. Neutral poly(ethylene glycol) (PEG) and zwitterionic poly(sulfobetaine methacrylate) (pSBMA) are two well-known nonfouling materials that exhibit strong surface resistance to proteins. However, it still remains unclear or unexplored how PEG and pSBMA interact with proteins in solution. In this work, we examine the interactions between two model proteins (bovine serum albumin and lysozyme) and two typical antifouling polymers of PEG and pSBMA in aqueous solution using fluorescence spectroscopy, atomic force microscopy and nuclear magnetic resonance. The effect of protein:polymer mass ratios on the interactions is also examined. Collective data clearly demonstrate the existence of weak hydrophobic interactions between PEG and proteins, while there are no detectable interactions between pSBMA and proteins. The elimination of protein interaction with pSBMA could be due to an enhanced surface hydration of zwitterionic groups in pSBMA. New evidence is given to demonstrate the interactions between PEG and proteins, which are often neglected in the literature because the PEG-protein interactions are weak and reversible, as well as the structural change caused by hydrophobic interaction. This work provides a better fundamental understanding of the intrinsic structure-activity relationship of polymers underlying polymer-protein interactions, which are important for designing new biomaterials for biosensor, medical diagnostics and drug delivery applications. PMID:24120846

  9. PES Surface Modification Using Green Chemistry: New Generation of Antifouling Membranes.

    PubMed

    Nady, Norhan

    2016-01-01

    A major limitation in using membrane-based separation processes is the loss of performance due to membrane fouling. This drawback can be addressed thanks to surface modification treatments. A new and promising surface modification using green chemistry has been recently investigated. This modification is carried out at room temperature and in aqueous medium using green catalyst (enzyme) and nontoxic modifier, which can be safely labelled "green surface modification". This modification can be considered as a nucleus of new generation of antifouling membranes and surfaces. In the current research, ferulic acid modifier and laccase bio-catalyst were used to make poly(ethersulfone) (PES) membrane less vulnerable to protein adsorption. The blank and modified PES membranes are evaluated based on e.g., their flux and protein repellence. Both the blank and the modified PES membranes (or laminated PES on silicon dioxide surface) are characterized using many techniques e.g., SEM, EDX, XPS and SPM, etc. The pure water flux of the most modified membranes was reduced by 10% on average relative to the blank membrane, and around a 94% reduction in protein adsorption was determined. In the conclusions section, a comparison between three modifiers-ferulic acid, and two other previously used modifiers (4-hydroxybenzoic acid and gallic acid)-is presented. PMID:27096873

  10. PES Surface Modification Using Green Chemistry: New Generation of Antifouling Membranes

    PubMed Central

    Nady, Norhan

    2016-01-01

    A major limitation in using membrane-based separation processes is the loss of performance due to membrane fouling. This drawback can be addressed thanks to surface modification treatments. A new and promising surface modification using green chemistry has been recently investigated. This modification is carried out at room temperature and in aqueous medium using green catalyst (enzyme) and nontoxic modifier, which can be safely labelled “green surface modification”. This modification can be considered as a nucleus of new generation of antifouling membranes and surfaces. In the current research, ferulic acid modifier and laccase bio-catalyst were used to make poly(ethersulfone) (PES) membrane less vulnerable to protein adsorption. The blank and modified PES membranes are evaluated based on e.g., their flux and protein repellence. Both the blank and the modified PES membranes (or laminated PES on silicon dioxide surface) are characterized using many techniques e.g., SEM, EDX, XPS and SPM, etc. The pure water flux of the most modified membranes was reduced by 10% on average relative to the blank membrane, and around a 94% reduction in protein adsorption was determined. In the conclusions section, a comparison between three modifiers—ferulic acid, and two other previously used modifiers (4-hydroxybenzoic acid and gallic acid)—is presented. PMID:27096873

  11. Corals Like It Waxed: Paraffin-Based Antifouling Technology Enhances Coral Spat Survival

    PubMed Central

    Tebben, Jan; Guest, James R.; Sin, Tsai M.; Steinberg, Peter D.; Harder, Tilmann

    2014-01-01

    The early post-settlement stage is the most sensitive during the life history of reef building corals. However, few studies have examined the factors that influence coral mortality during this period. Here, the impact of fouling on the survival of newly settled coral spat of Acropora millepora was investigated by manipulating the extent of fouling cover on settlement tiles using non-toxic, wax antifouling coatings. Survival of spat on coated tiles was double that on control tiles. Moreover, there was a significant negative correlation between percentage cover of fouling and spat survival across all tiles types, suggesting that fouling in direct proximity to settled corals has detrimental effects on early post-settlement survival. While previous studies have shown that increased fouling negatively affects coral larval settlement and health of juvenile and adult corals, to the best of our knowledge, this is the first study to show a direct relationship between fouling and early post-settlement survival for a broadcast spawning scleractinian coral. The negative effects of fouling on this sensitive life history stage may become more pronounced in the future as coastal eutrophication increases. Our results further suggest that targeted seeding of coral spat on artificial surfaces in combination with fouling control could prove useful to improve the efficiency of sexual reproduction-based coral propagation for reef rehabilitation. PMID:24489936

  12. Acetylcholinesterase in Biofouling Species: Characterization and Mode of Action of Cyanobacteria-Derived Antifouling Agents.

    PubMed

    Almeida, Joana R; Freitas, Micaela; Cruz, Susana; Leão, Pedro N; Vasconcelos, Vitor; Cunha, Isabel

    2015-07-24

    Effective and ecofriendly antifouling (AF) compounds have been arising from naturally produced chemicals. The objective of this study is to use cyanobacteria-derived agents to investigate the role of acetylcholinesterase (AChE) activity as an effect and/or mode of action of promising AF compounds, since AChE inhibitors were found to inhibit invertebrate larval settlement. To pursue this objective, in vitro quantification of AChE activity under the effect of several cyanobacterial strain extracts as potential AF agents was performed along with in vivo AF (anti-settlement) screening tests. Pre-characterization of different cholinesterases (ChEs) forms present in selected tissues of important biofouling species was performed to confirm the predominance of AChE, and an in vitro AF test using pure AChE activity was developed. Eighteen cyanobacteria strains were tested as source of potential AF and AChE inhibitor agents. Results showed effectiveness in selecting promising eco-friendly AF agents, allowing the understanding of the AF biochemical mode of action induced by different compounds. This study also highlights the potential of cyanobacteria as source of AF agents towards invertebrate macrofouling species.

  13. Trypsin-enabled construction of anti-fouling and self-cleaning polyethersulfone membrane.

    PubMed

    Shi, Qing; Su, Yanlei; Ning, Xue; Chen, Wenjuan; Peng, Jinming; Jiang, Zhongyi

    2011-01-01

    Constructing anti-fouling and self-cleaning membrane surfaces based on covalent attachment of trypsin on poly(methacrylic acid)-graft-polyethersulfone (PMAA-g-PES) membrane was reported. The carboxylic acid groups enriched on asymmetric PMAA-g-PES membrane surface were activated with 1-ethyl-(3-3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) and employed as chemical anchors for the conjugation with amino groups of trypsin. Activity assays showed that such chemically immobilized trypsin was much more active and stable than that of the physically adsorbed counterpart. Trypsin covalently attached on membrane surface could substantially resist protein fouling in dynamic flow process. The considerable enhancement of protein solution permeation flux was observed as a consequence of rapid enzymatic degradation of protein deposited onto membrane surface. The permeation flux of the membrane could be recovered upon simple hydraulic flush after protein filtration, suggesting superior self-cleaning property. After multi-cycle BSA filtration over 15-day period, the active self-cleaning membrane maintained more than 95.0% of its initial flux.

  14. Zwitterionic Antifouling Coatings for the Purification of High-Salinity Shale Gas Produced Water.

    PubMed

    Yang, Rong; Goktekin, Esma; Gleason, Karen K

    2015-11-01

    Fouling refers to the undesirable attachment of organic molecules and microorganisms to submerged surfaces. It is an obstacle to the purification of shale gas produced water and is currently without an effective solution due to the highly contaminated nature of produced water. Here, we demonstrate the direct vapor application of a robust zwitterionic coating to a variety of substrates. The coating remains unprecedentedly hydrophilic, smooth, and effectively antifouling in extremely high salinity solutions (with salt concentration of 200,000 ppm). The fouling resistance is assessed rapidly and quantitatively with a molecular force spectroscopy-based method and corroborated using quartz crystal microbalance system with dissipation monitoring. Grazing angle attenuated total reflectance Fourier transform infrared is used in combination with X-ray photoelectron spectroscopy, atomic force microscope, and in situ spectroscopic ellipsometry to lend insight into the underlying mechanism for the exceptional stability and effectiveness of the zwitterionic coating under high-salinity conditions. A unique coating architecture, where the surface is concentrated with mobile zwitterionic moieties while the bulk is cross-linked to enhance coating durability, was discovered to be the origin of its stable fouling resistance under high salinity. Combined with previously reported exceptional stability in highly oxidative environments and strong fouling resistance to oil and grease, the zwitterionic surface here has the potential to enable low-cost, membrane-based techniques for the purification of produced water and to eventually balance the favorable economics and the concerning environmental impacts of the hydraulic fracturing industry. PMID:26449686

  15. Mobile Interfaces: Liquids as a Perfect Structural Material for Multifunctional, Antifouling Surfaces

    SciTech Connect

    Grinthal, A; Aizenberg, J

    2014-01-14

    Life creates some of its most robust, extreme surface materials not from solids but from liquids: a purely liquid interface, stabilized by underlying nanotexture, makes carnivorous plant leaves ultraslippery, the eye optically perfect and dirt-resistant, our knees lubricated and pressure-tolerant, and insect feet reversibly adhesive and shape-adaptive. Novel liquid surfaces based on this idea have recently been shown to display unprecedented omniphobic, self-healing, anti-ice, antifouling, optical, and adaptive properties. In this Perspective, we present a framework and a path forward for developing and designing such liquid surfaces into sophisticated, versatile multifunctional materials. Drawing on concepts from solid materials design and fluid dynamics, we outline how the continuous dynamics, responsiveness, and multiscale patternability of a liquid surface layer can be harnessed to create a wide range of unique, active interfacial functions able to operate in harsh, changing environments not achievable with static solids. We discuss how, in partnership with the underlying substrate, the liquid surface can be programmed to adaptively and reversibly reconfigure from a defect-free, molecularly smooth, transparent interface through a range of finely tuned liquid topographies in response to environmental stimuli. With nearly unlimited design possibilities and unmatched interfacial properties, liquid materials as long-term stable interfaces yet in their fully liquid state may potentially transform surface design everywhere from medicine to architecture to energy infrastructure.

  16. Identification of a new degradation product of the antifouling agent Irgarol 1051 in natural samples

    USGS Publications Warehouse

    Ferrer, I.; Barcelo, D.

    2001-01-01

    A main degradation product of Irgarol [2-(methylthio)-4-(tert-butylamino)-6-(cyclopropylamino)-s-triazine], one of the most widely used compounds in antifouling paints, was detected at trace levels in seawater and sediment samples collected from several marinas on the Mediterranean coast. This degradation product was identified as 2-methylthio-4-tert-butylamino-s-triazine. The unequivocal identification of this compound in seawater samples was carried out by solid-phase extraction (SPE) coupled on-line with liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (LC-APCI-MS). SPE was carried out by passing 150 ml of seawater sample through a cartridge containing a polymeric phase (PLRP-s), with recoveries ranging from 92 to 108% (n=5). Using LC-MS detection in positive ion mode, useful structural information was obtained by increasing the fragmentor voltage, thus permitting the unequivocal identification of this compound in natural samples. Method detection limits were in the range of 0.002 to 0.005 ??g/l. Overall, the combination of on-line SPE and LC-APCI-MS represents an important advance in environmental analysis of herbicide degradation products in seawater, since it demonstrates that trace amounts of new polar metabolites may be determined rapidly. This paper reports the LC-MS identification of the main degradation product of Irgarol in seawater and sediment samples. ?? 2001 Elsevier Science B.V. All rights reserved.

  17. Corals like it waxed: paraffin-based antifouling technology enhances coral spat survival.

    PubMed

    Tebben, Jan; Guest, James R; Sin, Tsai M; Steinberg, Peter D; Harder, Tilmann

    2014-01-01

    The early post-settlement stage is the most sensitive during the life history of reef building corals. However, few studies have examined the factors that influence coral mortality during this period. Here, the impact of fouling on the survival of newly settled coral spat of Acropora millepora was investigated by manipulating the extent of fouling cover on settlement tiles using non-toxic, wax antifouling coatings. Survival of spat on coated tiles was double that on control tiles. Moreover, there was a significant negative correlation between percentage cover of fouling and spat survival across all tiles types, suggesting that fouling in direct proximity to settled corals has detrimental effects on early post-settlement survival. While previous studies have shown that increased fouling negatively affects coral larval settlement and health of juvenile and adult corals, to the best of our knowledge, this is the first study to show a direct relationship between fouling and early post-settlement survival for a broadcast spawning scleractinian coral. The negative effects of fouling on this sensitive life history stage may become more pronounced in the future as coastal eutrophication increases. Our results further suggest that targeted seeding of coral spat on artificial surfaces in combination with fouling control could prove useful to improve the efficiency of sexual reproduction-based coral propagation for reef rehabilitation.

  18. Synthesis and characterization of poly(N-hydroxyethylacrylamide) for long-term antifouling ability.

    PubMed

    Zhao, Chao; Zheng, Jie

    2011-11-14

    Development of biomaterials with long-term biocompatibility, durability, and stability remains a critical challenge for biomedical devices. Here, we synthesize, characterize, and graft poly(N-(2-hydroxyethyl)acrylamide) (polyHEAA) onto both gold surfaces and gold nanoparticles (AuNPs) via surface-initiated atom transfer radical polymerization (SI-ATRP) to form a stable antifouling coating to resist nonspecific protein adsorption and bacterial attachment. Surface plasmon resonance (SPR) results demonstrate that all of polyHEAA brushes coated on the gold substrate at a wide range of film thickness of ~10-40 nm can achieve almost zero protein adsorption from undiluted blood plasma and serum for 1 h, while static bacteria assay results show that polyHEAA brushes prohibit long-term bacterial colonization by Staphylococcus epidermidis and Escherichia coli RP437 up to 3 days. Moreover, the polyHEAA-coated AuNPs with different diameters remain their hydrodynamic sizes unchanged in human blood plasma and serum for up to 7 days. All these data indicate that polyHEAA can serve as promising biomaterials with long-term biocompatibility and durability suitable for applications in complex biological media. PMID:21972885

  19. Building an antifouling zwitterionic coating on urinary catheters using an enzymatically triggered bottom-up approach.

    PubMed

    Diaz Blanco, Carlos; Ortner, Andreas; Dimitrov, Radostin; Navarro, Antonio; Mendoza, Ernest; Tzanov, Tzanko

    2014-07-23

    Catheter associated urinary tract infections are common during hospitalization due to the formation of bacterial biofilms on the indwelling device. In this study, we report an innovative biotechnology-based approach for the covalent functionalization of silicone catheters with antifouling zwitterionic moieties to prevent biofilm formation. Our approach combines the potential bioactivity of a natural phenolics layer biocatalytically conjugated to sulfobetaine-acrylic residues in an enzymatically initiated surface radical polymerization with laccase. To ensure sufficient coating stability in urine, the silicone catheter is plasma-activated. In contrast to industrial chemical methods, the methacrylate-containing zwitterionic monomers are polymerized at pH 5 and 50 °C using as an initiator the phenoxy radicals solely generated by laccase on the phenolics-coated catheter surface. The coated catheters are characterized by X-ray photoelectron spectroscopy (XPS), Fourier transformed infrared (FTIR) analysis, atomic force microscopy (AFM), and colorimetrically. Contact angle and protein adsorption measurements, coupled with in vitro tests with the Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus in static and dynamic conditions, mimicking the operational conditions to be faced by the catheters, demonstrate reduced biofilm formation by about 80% when compared to that of unmodified urinary catheters. The zwitterionic coating did not affect the viability of the human fibroblasts (BJ-5ta) over seven days, corresponding to the extended useful life of urinary catheters. PMID:24955478

  20. Ultrathin antifouling coatings with stable surface zwitterionic functionality by initiated chemical vapor deposition (iCVD).

    PubMed

    Yang, Rong; Gleason, Karen K

    2012-08-21

    Antifouling thin films of poly[N,N-dimethyl-N-methacryloxyethyl-N-(3-sulfopropyl)-co-2-(dimethylamino)ethyl methacrylate-co-ethylene glycol dimethacrylate] (PDDE) were synthesized via a substrate-independent and all-dry-initiated chemical vapor deposition (iCVD) technique followed by a diffusion-limited vapor-phase reaction with 1,3-propane sultone. Coated surfaces exhibited very low absorption of various foulants including bovine serum albumin (BSA), humic acid (HA), and sodium alginate (SA), as measured with the quartz crystal microbalance with dissipation monitoring (QCM-D). The fouling by humic acid was dependent on the presence of divalent cations such as Ca(2+). Both depth profiling and angle-resolved X-ray photoelectron spectroscopy (XPS) measurements indicated that the zwitterionic groups were highly concentrated in the top ~3 nm of the film. The contact angle measurements revealed a limited degree of surface chain reorganization upon contacting water. The dynamic contact angles remained unchanged after 100 days of storage in air, indicating the stability of the interface. The coating was substrate-independent, and the film was conformal on surface nanostructures including trenches, reverse osmosis membranes, and electrospun nanofiber mats. PMID:22873558

  1. Antifouling coatings for dental implants: Polyethylene glycol-like coatings on titanium by plasma polymerization.

    PubMed

    Buxadera-Palomero, Judit; Canal, Cristina; Torrent-Camarero, Sergi; Garrido, Beatriz; Javier Gil, Francisco; Rodríguez, Daniel

    2015-06-12

    Titanium dental implants are commonly used for the replacement of lost teeth, but they present a considerable number of failures due to the infection on surrounding tissues. The aim of this paper is the development of a polyethylene glycol-like (PEG-like) coating on the titanium surface by plasma polymerization to obtain a novel improved surface with suitable low bacterial adhesion and adequate cell response. Surface analysis data of these coatings are presented, in particular, water contact angle, surface roughness, and film chemistry, demonstrating the presence of a PEG-like coating. Streptococcus sanguinis and Lactobacillus salivarius bacterial adhesion assays showed a decreased adhesion on the plasma polymerized samples, while cell adhesion of fibroblasts and osteoblasts on the treated surfaces was similar to control surfaces. Thus, the PEG-like antifouling coating obtained by plasma polymerization on Ti confers this biomaterial's highly suitable properties for dental applications, as they reduce the possibility of infection while allowing the tissue integration around the implant.

  2. PES Surface Modification Using Green Chemistry: New Generation of Antifouling Membranes.

    PubMed

    Nady, Norhan

    2016-04-18

    A major limitation in using membrane-based separation processes is the loss of performance due to membrane fouling. This drawback can be addressed thanks to surface modification treatments. A new and promising surface modification using green chemistry has been recently investigated. This modification is carried out at room temperature and in aqueous medium using green catalyst (enzyme) and nontoxic modifier, which can be safely labelled "green surface modification". This modification can be considered as a nucleus of new generation of antifouling membranes and surfaces. In the current research, ferulic acid modifier and laccase bio-catalyst were used to make poly(ethersulfone) (PES) membrane less vulnerable to protein adsorption. The blank and modified PES membranes are evaluated based on e.g., their flux and protein repellence. Both the blank and the modified PES membranes (or laminated PES on silicon dioxide surface) are characterized using many techniques e.g., SEM, EDX, XPS and SPM, etc. The pure water flux of the most modified membranes was reduced by 10% on average relative to the blank membrane, and around a 94% reduction in protein adsorption was determined. In the conclusions section, a comparison between three modifiers-ferulic acid, and two other previously used modifiers (4-hydroxybenzoic acid and gallic acid)-is presented.

  3. Acetylcholinesterase in Biofouling Species: Characterization and Mode of Action of Cyanobacteria-Derived Antifouling Agents.

    PubMed

    Almeida, Joana R; Freitas, Micaela; Cruz, Susana; Leão, Pedro N; Vasconcelos, Vitor; Cunha, Isabel

    2015-08-01

    Effective and ecofriendly antifouling (AF) compounds have been arising from naturally produced chemicals. The objective of this study is to use cyanobacteria-derived agents to investigate the role of acetylcholinesterase (AChE) activity as an effect and/or mode of action of promising AF compounds, since AChE inhibitors were found to inhibit invertebrate larval settlement. To pursue this objective, in vitro quantification of AChE activity under the effect of several cyanobacterial strain extracts as potential AF agents was performed along with in vivo AF (anti-settlement) screening tests. Pre-characterization of different cholinesterases (ChEs) forms present in selected tissues of important biofouling species was performed to confirm the predominance of AChE, and an in vitro AF test using pure AChE activity was developed. Eighteen cyanobacteria strains were tested as source of potential AF and AChE inhibitor agents. Results showed effectiveness in selecting promising eco-friendly AF agents, allowing the understanding of the AF biochemical mode of action induced by different compounds. This study also highlights the potential of cyanobacteria as source of AF agents towards invertebrate macrofouling species. PMID:26213967

  4. Antifouling assessments on biogenic nanoparticles: A field study from polluted offshore platform.

    PubMed

    Krishnan, Muthukumar; Sivanandham, Vignesh; Hans-Uwe, Dahms; Murugaiah, Santhosh Gokul; Seeni, Palanichamy; Gopalan, Subramanian; Rathinam, Arthur James

    2015-12-30

    Turbinaria ornata mediated silver nanoparticles (TOAg-NPs) were evaluated for antibacterial activity against 15 biofilm forming bacterial isolates. A field study in natural seawater for 60 days showed antifouling activity of TOAg-NPs on stainless steel coupons (SS-304) coated with Apcomin zinc chrome (AZC) primer. Though TOAg-NPs showed broad spectrum of antibacterial activity, the maximum zone of inhibition was with Escherichiacoli (71.9%) and a minimum with Micrococcus sp. (40%) due to the EPS secretion from Gram-positive bacteria. Compared to control coupons (18.9 [ × 10(3)], 67.0 [× 10(3)], 13.5 [ × 10(4)] and 24.7 [ × 10(4)]CFU/cm(2)), experimental biocide coupons (71.0 [ × 10(2)], 32.0 [ × 10(3)], 82.0 [ × 10(3)] and 11.3 [ × 10(4)]CFU/cm(2)) displayed lesser bacterial population density. Toxicity studies revealed 100% mortality for Balanus amphitrite larvae at 250 μg ml(-1) concentration within 24h, while 56.6% recorded for Artemia marina at the same concentration indicating less toxicity to non target species. It proved that AZC+TOAg-NPs prevent biofouling by its Ag-NS affinity and antimicrobial effectivity. PMID:26581814

  5. Mobile interfaces: Liquids as a perfect structural material for multifunctional, antifouling surfaces

    SciTech Connect

    Grinthal, Alison; Aizenberg, Joanna

    2013-10-14

    Life creates some of its most robust, extreme surface materials not from solids but from liquids: a purely liquid interface, stabilized by underlying nanotexture, makes carnivorous plant leaves ultraslippery, the eye optically perfect and dirt-resistant, our knees lubricated and pressure-tolerant, and insect feet reversibly adhesive and shape-adaptive. Novel liquid surfaces based on this idea have recently been shown to display unprecedented omniphobic, self-healing, anti-ice, antifouling, optical, and adaptive properties. In this Perspective, we present a framework and a path forward for developing and designing such liquid surfaces into sophisticated, versatile multifunctional materials. Drawing on concepts from solid materials design and fluid dynamics, we outline how the continuous dynamics, responsiveness, and multiscale patternability of a liquid surface layer can be harnessed to create a wide range of unique, active interfacial functions-able to operate in harsh, changing environments-not achievable with static solids. We discuss how, in partnership with the underlying substrate, the liquid surface can be programmed to adaptively and reversibly reconfigure from a defect-free, molecularly smooth, transparent interface through a range of finely tuned liquid topographies in response to environmental stimuli. In conclusion, with nearly unlimited design possibilities and unmatched interfacial properties, liquid materials-as long-term stable interfaces yet in their fully liquid state-may potentially transform surface design everywhere from medicine to architecture to energy infrastructure.

  6. Mobile interfaces: Liquids as a perfect structural material for multifunctional, antifouling surfaces

    DOE PAGES

    Grinthal, Alison; Aizenberg, Joanna

    2013-10-14

    Life creates some of its most robust, extreme surface materials not from solids but from liquids: a purely liquid interface, stabilized by underlying nanotexture, makes carnivorous plant leaves ultraslippery, the eye optically perfect and dirt-resistant, our knees lubricated and pressure-tolerant, and insect feet reversibly adhesive and shape-adaptive. Novel liquid surfaces based on this idea have recently been shown to display unprecedented omniphobic, self-healing, anti-ice, antifouling, optical, and adaptive properties. In this Perspective, we present a framework and a path forward for developing and designing such liquid surfaces into sophisticated, versatile multifunctional materials. Drawing on concepts from solid materials design andmore » fluid dynamics, we outline how the continuous dynamics, responsiveness, and multiscale patternability of a liquid surface layer can be harnessed to create a wide range of unique, active interfacial functions-able to operate in harsh, changing environments-not achievable with static solids. We discuss how, in partnership with the underlying substrate, the liquid surface can be programmed to adaptively and reversibly reconfigure from a defect-free, molecularly smooth, transparent interface through a range of finely tuned liquid topographies in response to environmental stimuli. In conclusion, with nearly unlimited design possibilities and unmatched interfacial properties, liquid materials-as long-term stable interfaces yet in their fully liquid state-may potentially transform surface design everywhere from medicine to architecture to energy infrastructure.« less

  7. Potent antifouling resorcylic acid lactones from the gorgonian-derived fungus Cochliobolus lunatus.

    PubMed

    Shao, Chang-Lun; Wu, Hui-Xian; Wang, Chang-Yun; Liu, Qing-Ai; Xu, Ying; Wei, Mei-Yan; Qian, Pei-Yuan; Gu, Yu-Cheng; Zheng, Cai-Juan; She, Zhi-Gang; Lin, Yong-Cheng

    2011-04-25

    Three new 14-membered resorcylic acid lactones, two with a rare natural acetonide group and one with a 5-chloro-substituted lactone, named cochliomycins A-C (1-3), together with four known analogues, zeaenol (4), LL-Z1640-1 (5), LL-Z1640-2 (6), and paecilomycin F (7), were isolated from the culture broth of Cochliobolus lunatus, a fungus obtained from the gorgonian Dichotella gemmacea collected in the South China Sea. Their structures and the relative configurations of 1-3 were elucidated using comprehensive spectroscopic methods including NOESY spectra and chemical conversions. A transetherification reaction was also observed in which cochliomycin B (2) in a solution of CDCl(3) slowly rearranged to give cochliomycin A (1) at room temperature. These resorcylic acid lactones were evaluated against the larval settlement of barnacle Balanus amphitrite, and antifouling activity was detected for the first time for this class of metabolites. The antibacterial and cytotoxic activities of these compounds were also examined.

  8. Acetylcholinesterase in Biofouling Species: Characterization and Mode of Action of Cyanobacteria-Derived Antifouling Agents

    PubMed Central

    Almeida, Joana R.; Freitas, Micaela; Cruz, Susana; Leão, Pedro N.; Vasconcelos, Vitor; Cunha, Isabel

    2015-01-01

    Effective and ecofriendly antifouling (AF) compounds have been arising from naturally produced chemicals. The objective of this study is to use cyanobacteria-derived agents to investigate the role of acetylcholinesterase (AChE) activity as an effect and/or mode of action of promising AF compounds, since AChE inhibitors were found to inhibit invertebrate larval settlement. To pursue this objective, in vitro quantification of AChE activity under the effect of several cyanobacterial strain extracts as potential AF agents was performed along with in vivo AF (anti-settlement) screening tests. Pre-characterization of different cholinesterases (ChEs) forms present in selected tissues of important biofouling species was performed to confirm the predominance of AChE, and an in vitro AF test using pure AChE activity was developed. Eighteen cyanobacteria strains were tested as source of potential AF and AChE inhibitor agents. Results showed effectiveness in selecting promising eco-friendly AF agents, allowing the understanding of the AF biochemical mode of action induced by different compounds. This study also highlights the potential of cyanobacteria as source of AF agents towards invertebrate macrofouling species. PMID:26213967

  9. Ecological roles and biotechnological applications of marine and intertidal microbial biofilms.

    PubMed

    Mitra, Sayani; Sana, Barindra; Mukherjee, Joydeep

    2014-01-01

    This review is a retrospective of ecological effects of bioactivities produced by biofilms of surface-dwelling marine/intertidal microbes as well as of the industrial and environmental biotechnologies developed exploiting the knowledge of biofilm formation. Some examples of significant interest pertaining to the ecological aspects of biofilm-forming species belonging to the Roseobacter clade include autochthonous bacteria from turbot larvae-rearing units with potential application as a probiotic as well as production of tropodithietic acid and indigoidine. Species of the Pseudoalteromonas genus are important examples of successful surface colonizers through elaboration of the AlpP protein and antimicrobial agents possessing broad-spectrum antagonistic activity against medical and environmental isolates. Further examples of significance comprise antiprotozoan activity of Pseudoalteromonas tunicata elicited by violacein, inhibition of fungal colonization, antifouling activities, inhibition of algal spore germination, and 2-n-pentyl-4-quinolinol production. Nitrous oxide, an important greenhouse gas, emanates from surface-attached microbial activity of marine animals. Marine and intertidal biofilms have been applied in the biotechnological production of violacein, phenylnannolones, and exopolysaccharides from marine and tropical intertidal environments. More examples of importance encompass production of protease, cellulase, and xylanase, melanin, and riboflavin. Antifouling activity of Bacillus sp. and application of anammox bacterial biofilms in bioremediation are described. Marine biofilms have been used as anodes and cathodes in microbial fuel cells. Some of the reaction vessels for biofilm cultivation reviewed are roller bottle, rotating disc bioreactor, polymethylmethacrylate conico-cylindrical flask, fixed bed reactor, artificial microbial mats, packed-bed bioreactors, and the Tanaka photobioreactor. PMID:24817086

  10. Production and use of DDT containing antifouling paint resulted in high DDTs residue in three paint factory sites and two shipyard sites, China.

    PubMed

    Xin, Jia; Liu, Xiang; Liu, Wei; Jiang, Lu; Wang, Jihua; Niu, Jia

    2011-06-01

    This study provides the first intensive investigation of Dichlorodiphenyltrichloroethanes (DDT) distribution in typical paint factories and shipyards in China where DDT containing antifouling paint were mass produced and used respectively. DDTs were analyzed in soil, sludge and sediment samples collected from three major paint factories and two shipyards. The results showed that the total DDTs concentrations detected in paint factory and shipyard sites ranged from 0.06 to 8387.24 mg kg(-1). In comparison with paint factory sites, the shipyard sites were much more seriously contaminated. However, for both kinds of sites, the DDTs level was found to be largely affected by history and capacity of production and use of DDT containing antifouling paint. (DDE+DDD)/DDT ratios indicated that DDT containing antifouling paint could serve as important fresh input sources for DDTs. It can be seen that most samples in shipyards were in ranges where heavy contamination and potential ecological risk were identified.

  11. Marine Optical Characterizations

    NASA Technical Reports Server (NTRS)

    Clark, Dennis K.

    1996-01-01

    The team's major emphasis during this reporting period has been focused on the completion of the operational versions of the Marine Optical Buoys (MOBY's). Other work areas consisted of designing and testing bio-optical instrumentation, evaluating several of the SeaWiFS bio-optical protocols, processing data collected during field experiments, and reprocessing several of the Marine Optical Characteristics Experiment (MOCE) 2 and 3 bio-optical data sets. The team conducted one trip to the operations site in Honolulu, Hawaii, making necessary preparations for future field experiments. Part of the team also traveled to Moss Landing Marine Laboratories, Salinas, CA, and to American Holographic Co. Fitchburg MA, to assist with the fabrication of the next generation Marine Optical Buoys. Technical memoranda are being written to address the remote sensing reflectance, and instrument self-shading protocols. During the Ocean Color 96 meeting discussions with the Spanish on acquiring research vessel support during the MODIS validation period were conducted. A proposal will be generated towards this purpose for an experiment to be conducted off the North African coast during the summer of 1999.

  12. The Source Book of Marine Sciences.

    ERIC Educational Resources Information Center

    Bergen, Bob; And Others

    Intended primarily for the secondary level, this manual presents 35 laboratory and field activities in marine science. Also included are chapters which cover field trip logistics, marine science centers, films, and reference materials. Typical amonq the lessons are "Charting Local Current Systems,""Salinity,""Living World Within a…

  13. Coral skeletal Tin and Copper Concentration at Pohnpei, Micronesia, as a potential proxy for marine pollution

    NASA Astrophysics Data System (ADS)

    Inoue, M.; Suzuki, A.; Nohara, M.; Kan, H.; Edward, A.; Kawahata, H.

    2002-12-01

    Coral reefs are increasingly threatened by human activities such as industrialization, sewage discharge, dredging, deforestation and so on. The annually-banded coral (Porites sp.) collected from Pohnpei Island, Micronesia, recorded fluctuations of copper (Cu) and tin (Sn) contents in ambient seawater for about last 40 years. Both the elements are present in antifouling marine paints. Especially, Sn has often been used in the form of tributyltin (TBT) compound. In general, pretreatment of coral skeleton is conducted in order to remove contaminations due to coral coring and/or sample storage and then lattice-bound metals are determined as a potential proxy for marine pollution. We conducted a preliminary experimental treatment consisting of 9 cleaning steps. Based on a stepwise pretreatment examination, we found that skeletal Sn and Cu, not only inside but also outside of aragonite lattice, have potential for use as pollution indicators. High values of extra-skeletal Cu/Ca and Sn/Ca atomic ratios were found between late 1960s and late 1980s during a period of active use of TBT-based antifouling paints worldwide. However, significant decrease in both the ratios since the beginning of 1990s can be attributed to regulation of use of TBT on cargo ships by the developed countries such as the USA, Japan and Australia.

  14. Butenolide inhibits marine fouling by altering the primary metabolism of three target organisms.

    PubMed

    Zhang, Yi-Fan; Zhang, Huoming; He, Lisheng; Liu, Changdong; Xu, Ying; Qian, Pei-Yuan

    2012-06-15

    Butenolide is a very promising antifouling compound that inhibits ship hull fouling by a variety of marine organisms, but its antifouling mechanism was previously unknown. Here we report the first study of butenolide's molecular targets in three representative fouling organisms. In the barnacle Balanus (=Amphibalanus) amphitrite, butenolide bound to acetyl-CoA acetyltransferase 1 (ACAT1), which is involved in ketone body metabolism. Both the substrate and the product of ACAT1 increased larval settlement under butenolide treatment, suggesting its functional involvement. In the bryozoan Bugula neritina, butenolide bound to very long chain acyl-CoA dehydrogenase (ACADVL), actin, and glutathione S-transferases (GSTs). ACADVL is the first enzyme in the very long chain fatty acid β-oxidation pathway. The inhibition of this primary pathway for energy production in larvae by butenolide was supported by the finding that alternative energy sources (acetoacetate and pyruvate) increased larval attachment under butenolide treatment. In marine bacterium Vibrio sp. UST020129-010, butenolide bound to succinyl-CoA synthetase β subunit (SCSβ) and inhibited bacterial growth. ACAT1, ACADVL, and SCSβ are all involved in primary metabolism for energy production. These findings suggest that butenolide inhibits fouling by influencing the primary metabolism of target organisms.

  15. Nano-silica fabricated with silver nanoparticles: antifouling adsorbent for efficient dye removal, effective water disinfection and biofouling control

    NASA Astrophysics Data System (ADS)

    Das, Sujoy K.; Khan, Md. Motiar R.; Parandhaman, T.; Laffir, Fathima; Guha, Arun K.; Sekaran, G.; Mandal, Asit Baran

    2013-05-01

    A nano-silica-AgNPs composite material is proposed as a novel antifouling adsorbent for cost-effective and ecofriendly water purification. Fabrication of well-dispersed AgNPs on the nano-silica surface, designated as NSAgNP, has been achieved through protein mediated reduction of silver ions at ambient temperature for development of sustainable nanotechnology. The coated proteins on AgNPs led to the formation of stable NSAgNP and protected the AgNPs from oxidation and other ions commonly present in water. The NSAgNP exhibited excellent dye adsorption capacity both in single and multicomponent systems, and demonstrated satisfactory tolerance against variations in pH and dye concentration. The adsorption mainly occurred through electrostatic interaction, though π-π interaction and pore diffusion also contributed to the process. Moreover, the NSAgNP showed long-term antibacterial activity against both planktonic cells and biofilms of Gram-negative Escherichia coli and Pseudomonas aeruginosa. The antibacterial activity of AgNPs retarded the initial attachment of bacteria on NSAgNP and thus significantly improved the antifouling properties of the nanomaterial, which further inhibited biofilm formation. Scanning electron and fluorescence microscopic studies revealed that cell death occurred due to irreversible damage of the cell membrane upon electrostatic interaction of positively charged NSAgNP with the negatively charged bacterial cell membrane. The high adsorption capacity, reusability, good tolerance, removal of multicomponent dyes and E. coli from the simulated contaminated water and antifouling properties of NSAgNP will provide new opportunities to develop cost-effective and ecofriendly water purification processes.A nano-silica-AgNPs composite material is proposed as a novel antifouling adsorbent for cost-effective and ecofriendly water purification. Fabrication of well-dispersed AgNPs on the nano-silica surface, designated as NSAgNP, has been achieved through

  16. In Situ Synthesis of Antimicrobial Silver Nanoparticles within Antifouling Zwitterionic Hydrogels by Catecholic Redox Chemistry for Wound Healing Application.

    PubMed

    GhavamiNejad, Amin; Park, Chan Hee; Kim, Cheol Sang

    2016-03-14

    A multifunctional hydrogel that combines the dual functionality of both antifouling and antimicrobial capacities holds great potential for many bioapplications. Many approaches and different materials have been employed to synthesize such a material. However, a systematic study, including in vitro and in vivo evaluation, on such a material as wound dressings is highly scarce at present. Herein, we report on a new strategy that uses catecholic chemistry to synthesize antimicrobial silver nanoparticles impregnated into antifouling zwitterionic hydrogels. For this purpose, hydrophobic dopamine methacrylamide monomer (DMA) was mixed in an aqueous solution of sodium tetraborate decahydrate and DMA monomer became soluble after increasing pH to 9 due to the complexation between catechol groups and boron. Then, cross-linking polymerization of zwitterionic monomer was carried out with the solution of the protected dopamine monomer to produce a new hydrogel. When this new hydrogel comes in contact with a silver nitrate solution, silver nanoparticles (AgNPs) are formed in its structure as a result of the redox property of the catechol groups and in the absence of any other external reducing agent. The results obtained from TEM and XRD measurements indicate that AgNPs with diameters of around 20 nm had formed within the networks. FESEM images confirmed that the silver nanoparticles were homogeneously incorporated throughout the hydrogel network, and FTIR spectroscopy demonstrated that the catechol moiety in the polymeric backbone of the hydrogel is responsible for the reduction of silver ions into the AgNPs. Finally, the in vitro and in vivo experiments suggest that these mussel-inspired, antifouling, antibacterial hydrogels have great potential for use in wound healing applications.

  17. Nano-silica fabricated with silver nanoparticles: antifouling adsorbent for efficient dye removal, effective water disinfection and biofouling control.

    PubMed

    Das, Sujoy K; Khan, Md Motiar R; Parandhaman, T; Laffir, Fathima; Guha, Arun K; Sekaran, G; Mandal, Asit Baran

    2013-06-21

    A nano-silica-AgNPs composite material is proposed as a novel antifouling adsorbent for cost-effective and ecofriendly water purification. Fabrication of well-dispersed AgNPs on the nano-silica surface, designated as NSAgNP, has been achieved through protein mediated reduction of silver ions at ambient temperature for development of sustainable nanotechnology. The coated proteins on AgNPs led to the formation of stable NSAgNP and protected the AgNPs from oxidation and other ions commonly present in water. The NSAgNP exhibited excellent dye adsorption capacity both in single and multicomponent systems, and demonstrated satisfactory tolerance against variations in pH and dye concentration. The adsorption mainly occurred through electrostatic interaction, though π-π interaction and pore diffusion also contributed to the process. Moreover, the NSAgNP showed long-term antibacterial activity against both planktonic cells and biofilms of Gram-negative Escherichia coli and Pseudomonas aeruginosa. The antibacterial activity of AgNPs retarded the initial attachment of bacteria on NSAgNP and thus significantly improved the antifouling properties of the nanomaterial, which further inhibited biofilm formation. Scanning electron and fluorescence microscopic studies revealed that cell death occurred due to irreversible damage of the cell membrane upon electrostatic interaction of positively charged NSAgNP with the negatively charged bacterial cell membrane. The high adsorption capacity, reusability, good tolerance, removal of multicomponent dyes and E. coli from the simulated contaminated water and antifouling properties of NSAgNP will provide new opportunities to develop cost-effective and ecofriendly water purification processes.

  18. 46 CFR 162.039-4 - Marine type label.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 6 2012-10-01 2012-10-01 false Marine type label. 162.039-4 Section 162.039-4 Shipping... Marine type label. (a) In addition to all other marking, every semiportable extinguisher shall bear a label containing the “marine type” listing manifest issued by a recognized laboratory. This label...

  19. 46 CFR 162.039-4 - Marine type label.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Marine type label. 162.039-4 Section 162.039-4 Shipping... Marine type label. (a) In addition to all other marking, every semiportable extinguisher shall bear a label containing the “marine type” listing manifest issued by a recognized laboratory. This label...

  20. 46 CFR 162.039-4 - Marine type label.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Marine type label. 162.039-4 Section 162.039-4 Shipping... Marine type label. (a) In addition to all other marking, every semiportable extinguisher shall bear a label containing the “marine type” listing manifest issued by a recognized laboratory. This label...

  1. 46 CFR 162.039-4 - Marine type label.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 6 2013-10-01 2013-10-01 false Marine type label. 162.039-4 Section 162.039-4 Shipping... Marine type label. (a) In addition to all other marking, every semiportable extinguisher shall bear a label containing the “marine type” listing manifest issued by a recognized laboratory. This label...

  2. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour

    SciTech Connect

    Hou, Xu; Hu, Yuhang; Grinthal, Alison; Khan, Mughees; Aizenberg, Joanna

    2015-03-04

    Living organisms make extensive use of micro- and nanometre-sized pores as gatekeepers for controlling the movement of fluids, vapours and solids between complex environments. In addition, the ability of such pores to coordinate multiphase transport, in a highly selective and subtly triggered fashion and without clogging, has inspired interest in synthetic gated pores for applications ranging from fluid processing to 3D printing and lab-on-chip systems1-10.But although specific gating and transport behaviours have been realized by precisely tailoring pore surface chemistries and pore geometries6,11–17, a single system capable of controlling complex, selective multiphase transport has remained a distant prospect, and fouling is nearly inevitable.Here we introduce a gating mechanism that uses a capillary-stabilized liquid as a reversible, reconfigurable gate that fills and seals pores in the closed state, and creates a non-fouling, liquid-lined pore in the open state.Theoretical modelling and experiments demonstrate that for each transport substance, the gating threshold—the pressure needed to open the pores—can be rationally tuned over a wide pressure range. This enables us to realize in one system differential response profiles for a variety of liquids and gases, even letting liquids flow through the pore while preventing gas from escaping.These capabilities allow us to dynamically modulate gas–liquid sorting in a microfluidic flow and to separate a three-phase air water–oil mixture, with the liquid lining ensuring sustained antifouling behaviour. Because the liquid gating strategy enables efficient long-term operation and can be applied to a variety of pore structures and membrane materials, and to micro- as well as macroscale fluid systems, we expect it to prove useful in a wide range of applications.

  3. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour

    DOE PAGES

    Hou, Xu; Hu, Yuhang; Grinthal, Alison; Khan, Mughees; Aizenberg, Joanna

    2015-03-04

    Living organisms make extensive use of micro- and nanometre-sized pores as gatekeepers for controlling the movement of fluids, vapours and solids between complex environments. In addition, the ability of such pores to coordinate multiphase transport, in a highly selective and subtly triggered fashion and without clogging, has inspired interest in synthetic gated pores for applications ranging from fluid processing to 3D printing and lab-on-chip systems1-10.But although specific gating and transport behaviours have been realized by precisely tailoring pore surface chemistries and pore geometries6,11–17, a single system capable of controlling complex, selective multiphase transport has remained a distant prospect, and foulingmore » is nearly inevitable.Here we introduce a gating mechanism that uses a capillary-stabilized liquid as a reversible, reconfigurable gate that fills and seals pores in the closed state, and creates a non-fouling, liquid-lined pore in the open state.Theoretical modelling and experiments demonstrate that for each transport substance, the gating threshold—the pressure needed to open the pores—can be rationally tuned over a wide pressure range. This enables us to realize in one system differential response profiles for a variety of liquids and gases, even letting liquids flow through the pore while preventing gas from escaping.These capabilities allow us to dynamically modulate gas–liquid sorting in a microfluidic flow and to separate a three-phase air water–oil mixture, with the liquid lining ensuring sustained antifouling behaviour. Because the liquid gating strategy enables efficient long-term operation and can be applied to a variety of pore structures and membrane materials, and to micro- as well as macroscale fluid systems, we expect it to prove useful in a wide range of applications.« less

  4. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour

    NASA Astrophysics Data System (ADS)

    Hou, Xu; Hu, Yuhang; Grinthal, Alison; Khan, Mughees; Aizenberg, Joanna

    2015-03-01

    Living organisms make extensive use of micro- and nanometre-sized pores as gatekeepers for controlling the movement of fluids, vapours and solids between complex environments. The ability of such pores to coordinate multiphase transport, in a highly selective and subtly triggered fashion and without clogging, has inspired interest in synthetic gated pores for applications ranging from fluid processing to 3D printing and lab-on-chip systems. But although specific gating and transport behaviours have been realized by precisely tailoring pore surface chemistries and pore geometries, a single system capable of controlling complex, selective multiphase transport has remained a distant prospect, and fouling is nearly inevitable. Here we introduce a gating mechanism that uses a capillary-stabilized liquid as a reversible, reconfigurable gate that fills and seals pores in the closed state, and creates a non-fouling, liquid-lined pore in the open state. Theoretical modelling and experiments demonstrate that for each transport substance, the gating threshold--the pressure needed to open the pores--can be rationally tuned over a wide pressure range. This enables us to realize in one system differential response profiles for a variety of liquids and gases, even letting liquids flow through the pore while preventing gas from escaping. These capabilities allow us to dynamically modulate gas-liquid sorting in a microfluidic flow and to separate a three-phase air-water-oil mixture, with the liquid lining ensuring sustained antifouling behaviour. Because the liquid gating strategy enables efficient long-term operation and can be applied to a variety of pore structures and membrane materials, and to micro- as well as macroscale fluid systems, we expect it to prove useful in a wide range of applications.

  5. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour

    SciTech Connect

    Hou, X; Hu, YH; Grinthal, A; Khan, M; Aizenberg, J

    2015-03-04

    Living organisms make extensive use of micro- and nanometre-sized pores as gatekeepers for controlling the movement of fluids, vapours and solids between complex environments. The ability of such pores to coordinate multiphase transport, in a highly selective and subtly triggered fashion and without clogging, has inspired interest in synthetic gated pores for applications ranging from fluid processing to 3D printing and lab-on-chip systems(1-10). But although specific gating and transport behaviours have been realized by precisely tailoring pore surface chemistries and pore geometries(6,11-17), a single system capable of controlling complex, selective multiphase transport has remained a distant prospect, and fouling is nearly inevitable(11,12). Here we introduce a gating mechanism that uses a capillary-stabilized liquid as a reversible, reconfigurable gate that fills and seals pores in the closed state, and creates a non-fouling, liquid-lined pore in the open state. Theoretical modelling and experiments demonstrate that for each transport substance, the gating threshold-the pressure needed to open the pores-can be rationally tuned over a wide pressure range. This enables us to realize in one system differential response profiles for a variety of liquids and gases, even letting liquids flow through the pore while preventing gas from escaping. These capabilities allow us to dynamically modulate gas-liquid sorting in a microfluidic flow and to separate a three-phase air-water-oil mixture, with the liquid lining ensuring sustained antifouling behaviour. Because the liquid gating strategy enables efficient long-term operation and can be applied to a variety of pore structures and membrane materials, and to micro- as well as macroscale fluid systems, we expect it to prove useful in a wide range of applications.

  6. Marine energy.

    PubMed

    Kerr, David

    2007-04-15

    Marine energy is renewable and carbon free and has the potential to make a significant contribution to energy supplies in the future. In the UK, tidal power barrages and wave energy could make the largest contribution, and tidal stream energy could make a smaller but still a useful contribution. This paper provides an overview of the current status and prospects for electrical generation from marine energy. It concludes that a realistic potential contribution to UK electricity supplies is approximately 80 TWh per year but that many years of development and investment will be required if this potential is to be realized. PMID:17272244

  7. Bioassay for assessing marine contamination

    SciTech Connect

    Lapota, D.; Copeland, H.; Mastny, G.; Rosenberger, D.; Duckworth, D.

    1996-03-01

    The Qwiklite bioassay, developed by the laboratory at NCCOSC, is used as a biological tool to gauge the extent of environmental contamination. Some species of marine phytoplankton produce bioluminescence. The Qwiklite bioassay determines acute response and chronic effects of a wide variety of toxicants upon bioluminescent dinotlagellates by measuring their light output after exposure.

  8. Affinity states of biocides determine bioavailability and release rates in marine paints.

    PubMed

    Dahlström, Mia; Sjögren, Martin; Jonsson, Per R; Göransson, Ulf; Lindh, Liselott; Arnebrant, Thomas; Pinori, Emiliano; Elwing, Hans; Berglin, Mattias

    2015-01-01

    A challenge for the next generation marine antifouling (AF) paints is to deliver minimum amounts of biocides to the environment. The candidate AF compound medetomidine is here shown to be released at very low concentrations, ie ng ml(-1) day(-1). Moreover, the release rate of medetomidine differs substantially depending on the formulation of the paint, while inhibition of barnacle settlement is independent of release to the ambient water, ie the paint with the lowest release rate was the most effective in impeding barnacle colonisation. This highlights the critical role of chemical interactions between biocide, paint carrier and the solid/aqueous interface for release rate and AF performance. The results are discussed in the light of differential affinity states of the biocide, predicting AF activity in terms of a high surface affinity and preserved bioavailability. This may offer a general framework for the design of low-release paint systems using biocides for protection against biofouling on marine surfaces. PMID:25775096

  9. Marine Resources

    NASA Technical Reports Server (NTRS)

    Sherman, J. W., III

    1975-01-01

    The papers presented in the marine session may be broadly grouped into several classes: microwave region instruments compared to infrared and visible region sensors, satellite techniques compared to aircraft techniques, open ocean applications compared to coastal region applications, and basic research and understanding of ocean phenomena compared to research techniques that offer immediate applications.

  10. Marine Mammals.

    ERIC Educational Resources Information Center

    Meith, Nikki

    Marine mammals have not only fascinated and inspired human beings for thousands of years, but they also support a big business by providing flesh for sea-borne factories, sustaining Arctic lifestyles and traditions, and attracting tourists to ocean aquaria. While they are being harpooned, bludgeoned, shot, netted, and trained to jump through…

  11. Marine envenomations.

    PubMed

    Balhara, Kamna S; Stolbach, Andrew

    2014-02-01

    This article describes the epidemiology and presentation of human envenomation from marine organisms. Venom pathophysiology, envenomation presentation, and treatment options are discussed for sea snake, stingray, spiny fish, jellyfish, octopus, cone snail, sea urchin, and sponge envenomation. The authors describe the management of common exposures that cause morbidity as well as the keys to recognition and treatment of life-threatening exposures. PMID:24275176

  12. Marine Trades.

    ERIC Educational Resources Information Center

    Abbott, Alan

    This curriculum guide provides materials for a competency-based course in marine trades at the secondary level. The curriculum design uses the curriculum infused model for the teaching of basic skills as part of vocational education and demonstrates the relationship of vocationally related skills to communication, mathematics, and science…

  13. Environmental and health effects resulting from marine bulk liquid transport.

    PubMed

    Höfer, T

    1998-01-01

    There are a number of harmful effects that have been induced by emissions from large vessels carrying bulk liquids. These are reviewed. A number of hazards are cargo-specific. Of special concern are liquids which after discharge or spillage float on the surface of the sea. Sea birds are regularly victims of discharged oil, most of which, however, is discharged from machinery spaces from all kinds of ships. Marine mammals have been contaminated or killed after tankship spills. Water soluble discharges may accumulate in fish and shellfish, thus tainting or contaminating seafood. Spills and discharges of toxic substances create direct hazards to human health. There are also hazards which are not connected with the cargo. Tankships have large hulls which are covered with antifouling paint and consequently emit toxic chemicals. Empty sea-going tankships have to be ballasted with large quantities of water. By discharging the ballast water before loading, foreign material is introduced into that remote marine environment. Connected with this are hazards for the marine environment as well as for human health. PMID:19002637

  14. Adsorption of pH-responsive amphiphilic copolymer micelles and gel on membrane surface as an approach for antifouling coating

    NASA Astrophysics Data System (ADS)

    Muppalla, Ravikumar; Rana, Harpalsinh H.; Devi, Sadhna; Jewrajka, Suresh K.

    2013-03-01

    A new approach for the surface modification of polymer membranes prepared by phase inversion technique for antifouling properties is reported. Direct deposition of poly(2-dimethylaminoethyl methacrylate)-b-poly(methyl methacrylate)-b-poly(2-dimethylaminoethyl methacrylate) (PDMA-b-PMMA-b-PDMA) copolymer micelles (core-shell) and gel formed from mixture of polyvinyl alcohol (PVA) and PDMA-b-PMMA-b-PDMA on the polysulfone (PSf-virgin) ultrafiltration membrane surface successfully provides modified membranes with improved antifouling properties and pH-responsive behaviour during both water and protein filtrations. Successful deposition and adsorption of such type of micelle and gel particles on the membrane surface was assessed by combination of SEM, AFM, contact angle, ATR-IR, and zeta potential measurements. The micelle and gel particles preferentially remained on the membranes surface due to their bigger size than the pores on the skin layer and also due to adsorption on the membrane surface by hydrophobic interaction. The modified membranes exhibited much higher rejection of macromolecules and almost steady trend in flux compared to corresponding virgin membranes during filtration operation. The major advantage of this protocol is that the deposited micelles and gel remained on the membrane surface even after filtration and storage of the membrane in water and the modified membranes retained similar performance. The effect of all the micelles and gel components on the membrane performance has been elucidated.

  15. One-Step Transformation from Hierarchical-Structured Superhydrophilic NF Membrane into Superhydrophobic OSN Membrane with Improved Antifouling Effect.

    PubMed

    Guo, Hongxia; Ma, Yiwen; Qin, Zhenping; Gu, Zhaoxiang; Cui, Suping; Zhang, Guojun

    2016-09-01

    The hierarchical-structured superhydrophilic poly(ethylenimine)/poly(acrylic acid) (PEI/PAA)calcium silicate hydrate (CSH) multilayered membranes (PEI/PAA-CSH)n were prepared as aqueous nanofiltration (NF) membrane, and then they were transformed into superhydrophobic organic solvent nanofiltration (OSN) membranes by one-step modification of trimethylperfluorinatedsilane (PFTS). Investigation on surface structures and properties of these multilayered membranes (PEI/PAA-CSH)n indicated that the hierarchical-structured (PEI/PAA-CSH)n multilayered membrane produced by in situ incorporation of CSH aggregates into PEI/PAA multilayers facilitated its one-step transformation from superhydrophilicity into superhydrophobicity. Both of the superwetting membranes showed better nanofiltration performances for retention of dyes of water and ethanol solution, respectively. Moreover, the long-term performance and antifouling behaviors, investigated by retention of methyl blue (MB), bovine serum albumin (BSA), and humic acid (HA) aqueous water solution and nonaqueous ethanol solution indicated that both of the superhydrophilic and superhydrophobic membrane showed higher stability and excellent antifouling property.

  16. Triblock Copolymers with Grafted Fluorine-Free Amphiphilic Non-Ionic Side Chains for Antifouling and Fouling-Release Applications

    SciTech Connect

    Y Cho; H Sundaram; C Weinman; M Paik; M Dimitriou; J Finlay; M Callow; J Callow; E Kramer; C Ober

    2011-12-31

    Fluorine-free, amphiphilic, nonionic surface active block copolymers (SABCs) were synthesized through chemical modification of a polystyrene-block-poly(ethylene-ran-butylene)-block-polyisoprene triblock copolymer precursor with selected amphiphilic nonionic Brij and other surfactants. Amphiphilicity was imparted by a hydrophobic aliphatic group combined with a hydrophilic poly(ethylene glycol) (PEG) group-containing moiety. The surfaces were characterized by dynamic water contact angle, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and near edge X-ray absorption fine structure (NEXAFS) analysis. In biofouling assays, settlement (attachment) of both spores of the green alga Ulva and cells of the diatom Navicula on SABCs modified with Brij nonionic side chains was significantly reduced relative to a PDMS standard, with a nonionic surfactant combining a PEG group and an aliphatic moiety demonstrating the best performance. Additionally, a fouling-release assay using sporelings (young plants) of Ulva and Navicula suggested that the SABC derived from nonionic Brij side chains also out-performed PDMS as a fouling-release material. Good antifouling and fouling-release properties were not demonstrated for the other two amphiphilic surfaces derived from silicone and aromatic group containing nonionic surfactants included in this study. The results suggest that small differences in chemical surface functionality impart more significant changes with respect to the antifouling settlement and fouling-release performance of materials than overall wettability behavior.

  17. Preparation and characterization of a novel highly hydrophilic and antifouling polysulfone/nanoporous TiO2 nanocomposite membrane

    NASA Astrophysics Data System (ADS)

    Cheraghi Bidsorkhi, H.; Riazi, H.; Emadzadeh, D.; Ghanbari, M.; Matsuura, T.; Lau, W. J.; Ismail, A. F.

    2016-10-01

    In this research, novel ultrafiltration nanocomposite membranes were prepared by incorporating self-synthesized nanoporous titanium dioxide (NTiO2) nanoparticles into polysulfone. The surface of the nanoparticle was treated with a silane-based modifier to improve its distribution in the host polymer. Atomic-force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller, transmission electron microscopy, energy-dispersive x-ray spectroscopy, porosity and contact angle tests were conducted to characterize the properties of the particles as well as the fabricated nanocomposite membranes. The effects of the nanoparticle incorporation were evaluated by conducting ultrafiltration experiments. It was reported that the membrane pure water flux was increased with increasing NTiO2 loading owing to the high porosity of the nanoparticles embedded and/or formation of enlarged pores upon addition of them. The antifouling capacity of the membranes was also tested by ultrafiltration of bovine serum albumin fouling solution. It was found that both water flux and antifouling capacity tended to reach desired level if the NTiO2 added was at optimized loading.

  18. Exploration of structure-antifouling relationships of capsaicin-like compounds that inhibit zebra mussel (Dreissena polymorpha) macrofouling.

    PubMed

    Angarano, Maj-Britt; McMahon, Robert F; Hawkins, Doyle L; Schetz, John A

    2007-01-01

    Macrofouling of aquatic man-made structures by zebra mussels (Dreissena polymorpha) poses significant economic burdens on commercial freshwater shipping and facilities utilising raw water. The negative environmental impact of some current antifouling technologies has limited their use and prompted investigation of non-organometallic and non-oxidising antifoulants as possible environment-friendly alternatives. The plant-derived natural product capsaicin and 18 other compounds with one or more capsaicin-like structural features were tested for their potential to inhibit zebra mussel byssal attachment at a single high concentration of 30 microM. Of these, three compounds displaying the highest levels of attachment inhibition where selected for further concentration-response testing. This testing revealed that capsaicin (8-methyl-N-vanillyl-trans-6-nonenamide), N-vanillylnonanamide, and N-benzoylmonoethanolamine benzoate all inhibited byssal attachment with potency values (EC(50)) in the micromolar range. None of these compounds were lethal to adult specimens of the water flea, Daphnia magna, at concentrations that inhibited mussel byssal attachment.

  19. Preparation and characterization of a novel highly hydrophilic and antifouling polysulfone/nanoporous TiO2 nanocomposite membrane.

    PubMed

    Bidsorkhi, H Cheraghi; Riazi, H; Emadzadeh, D; Ghanbari, M; Matsuura, T; Lau, W J; Ismail, A F

    2016-10-14

    In this research, novel ultrafiltration nanocomposite membranes were prepared by incorporating self-synthesized nanoporous titanium dioxide (NTiO2) nanoparticles into polysulfone. The surface of the nanoparticle was treated with a silane-based modifier to improve its distribution in the host polymer. Atomic-force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller, transmission electron microscopy, energy-dispersive x-ray spectroscopy, porosity and contact angle tests were conducted to characterize the properties of the particles as well as the fabricated nanocomposite membranes. The effects of the nanoparticle incorporation were evaluated by conducting ultrafiltration experiments. It was reported that the membrane pure water flux was increased with increasing NTiO2 loading owing to the high porosity of the nanoparticles embedded and/or formation of enlarged pores upon addition of them. The antifouling capacity of the membranes was also tested by ultrafiltration of bovine serum albumin fouling solution. It was found that both water flux and antifouling capacity tended to reach desired level if the NTiO2 added was at optimized loading. PMID:27607307

  20. One-Step Transformation from Hierarchical-Structured Superhydrophilic NF Membrane into Superhydrophobic OSN Membrane with Improved Antifouling Effect.

    PubMed

    Guo, Hongxia; Ma, Yiwen; Qin, Zhenping; Gu, Zhaoxiang; Cui, Suping; Zhang, Guojun

    2016-09-01

    The hierarchical-structured superhydrophilic poly(ethylenimine)/poly(acrylic acid) (PEI/PAA)calcium silicate hydrate (CSH) multilayered membranes (PEI/PAA-CSH)n were prepared as aqueous nanofiltration (NF) membrane, and then they were transformed into superhydrophobic organic solvent nanofiltration (OSN) membranes by one-step modification of trimethylperfluorinatedsilane (PFTS). Investigation on surface structures and properties of these multilayered membranes (PEI/PAA-CSH)n indicated that the hierarchical-structured (PEI/PAA-CSH)n multilayered membrane produced by in situ incorporation of CSH aggregates into PEI/PAA multilayers facilitated its one-step transformation from superhydrophilicity into superhydrophobicity. Both of the superwetting membranes showed better nanofiltration performances for retention of dyes of water and ethanol solution, respectively. Moreover, the long-term performance and antifouling behaviors, investigated by retention of methyl blue (MB), bovine serum albumin (BSA), and humic acid (HA) aqueous water solution and nonaqueous ethanol solution indicated that both of the superhydrophilic and superhydrophobic membrane showed higher stability and excellent antifouling property. PMID:27537337

  1. Preparation and characterization of a novel highly hydrophilic and antifouling polysulfone/nanoporous TiO2 nanocomposite membrane.

    PubMed

    Bidsorkhi, H Cheraghi; Riazi, H; Emadzadeh, D; Ghanbari, M; Matsuura, T; Lau, W J; Ismail, A F

    2016-10-14

    In this research, novel ultrafiltration nanocomposite membranes were prepared by incorporating self-synthesized nanoporous titanium dioxide (NTiO2) nanoparticles into polysulfone. The surface of the nanoparticle was treated with a silane-based modifier to improve its distribution in the host polymer. Atomic-force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller, transmission electron microscopy, energy-dispersive x-ray spectroscopy, porosity and contact angle tests were conducted to characterize the properties of the particles as well as the fabricated nanocomposite membranes. The effects of the nanoparticle incorporation were evaluated by conducting ultrafiltration experiments. It was reported that the membrane pure water flux was increased with increasing NTiO2 loading owing to the high porosity of the nanoparticles embedded and/or formation of enlarged pores upon addition of them. The antifouling capacity of the membranes was also tested by ultrafiltration of bovine serum albumin fouling solution. It was found that both water flux and antifouling capacity tended to reach desired level if the NTiO2 added was at optimized loading.

  2. Total Synthesis of Sarcophytonolide H and Isosarcophytonolide D: Structural Revision of Isosarcophytonolide D and Structure-Antifouling Activity Relationship of Sarcophytonolide H.

    PubMed

    Takamura, Hiroyoshi; Kikuchi, Takahiro; Endo, Noriyuki; Fukuda, Yuji; Kadota, Isao

    2016-05-01

    The first total syntheses of sarcophytonolide H and the originally proposed and correct structures of isosarcophytonolide D have been achieved via transannular ring-closing metathesis (RCM). These total syntheses culminated in the stereostructural confirmation of sarcophytonolide H and the reassignment of isosarcophytonolide D, respectively. The antifouling activity of the synthetic sarcophytonolide H and its analogues was also evaluated. PMID:27093115

  3. Marine Geology

    NASA Astrophysics Data System (ADS)

    van Andel, Tjeerd H.

    Marine geology was blessed early, about 30 years ago, with two great textbooks, one by P.H. Kuenen, the other by Francis P. Shepard, but in more recent years, no one has dared synthesize a field that has become so diverse and is growing so rapidly. There are many texts written for the beginning undergraduate student, mostly by marine geologists, but none can be handed conveniently to a serious advanced student or given to a colleague interested in what the field has wrought. The reason for this regrettable state is obvious; only an active, major scholar could hope to write such a book well, but the years would pass, his students dwindle, his grants vanish. He himself might be out of date before his book was. Kennett has earned a large measure of gratitude for his attempt to undertake this task. His personal price must have been high but so are our rewards.

  4. Marine Education: Progress and Promise.

    ERIC Educational Resources Information Center

    Fortner, Rosanne; Wildman, Terry M.

    1980-01-01

    Examined are the scope and status of precollege marine education, including history of marine education, present interdisciplinary marine education, informal approaches to marine education, marine awareness studies, and some implications of marine education. (Author/DS)

  5. Recent Articles, Activities, and Other Documents in the Marine Education Field.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    This annotated bibliography of marine education contains 35 documents published in 1976-1977 and an unpublished masters thesis (1969). The majority of the works are laboratory projects in marine science for students at the elementary and secondary school level. Other entries include marine science units for science teachers, marine education grant…

  6. Pollution of the marine environment

    SciTech Connect

    Malins, D.C.

    1980-01-01

    An interdisciplinary approach to identifying chemical pollution in the marine environment and assessing the effects of such pollution on living marine resources is described. Such a study requires knowing: what pollutants organisms are exposed to, which pollutants are accumulated; the fate of pollutants taken up by organisms, and biological changes caused by the pollutants. Analytical limitations of such studies are noted. Examples of specific interdisciplinary laboratory and field investigations are presented, for instance, the finding of liver tumors in flatfish that accumulated sediment-bound naphthalene.

  7. Antifouling and Antibacterial Multifunctional Polyzwitterion/Enzyme Coating on Silicone Catheter Material Prepared by Electrostatic Layer-by-Layer Assembly.

    PubMed

    Vaterrodt, Anne; Thallinger, Barbara; Daumann, Kevin; Koch, Dereck; Guebitz, Georg M; Ulbricht, Mathias

    2016-02-01

    The formation of bacterial biofilms on indwelling medical devices generally causes high risks for adverse complications such as catheter-associated urinary tract infections. In this work, a strategy for synthesizing innovative coatings of poly(dimethylsiloxane) (PDMS) catheter material, using layer-by-layer assembly with three novel functional polymeric building blocks, is reported, i.e., an antifouling copolymer with zwitterionic and quaternary ammonium side groups, a contact biocidal derivative of that polymer with octyl groups, and the antibacterial hydrogen peroxide (H2O2) producing enzyme cellobiose dehydrogenase (CDH). CDH oxidizes oligosaccharides by transferring electrons to oxygen, resulting in the production of H2O2. The design and synthesis of random copolymers which combine segments that have antifouling properties by zwitterionic groups and can be used for electrostatically driven layer-by-layer (LbL) assembly at the same time were based on the atom-transfer radical polymerization of dimethylaminoethyl methacrylate and subsequent partial sulfobetainization with 1,3-propane sultone followed by quaternization with methyl iodide only or octyl bromide and thereafter methyl iodide. The alternating multilayer systems were formed by consecutive adsorption of the novel polycations with up to 50% zwitterionic groups and of poly(styrenesulfonate) as the polyanion. Due to its negative charge, enzyme CDH was also firmly embedded as a polyanionic layer in the multilayer system. This LbL coating procedure was first performed on prefunctionalized silicon wafers and studied in detail with ellipsometry as well as contact angle (CA) and zetapotential (ZP) measurements before it was transferred to prefunctionalized PDMS and analyzed by CA and ZP measurements as well as atomic force microscopy. The coatings comprising six layers were stable and yielded a more neutral and hydrophilic surface than did PDMS, the polycation with 50% zwitterionic groups having the largest

  8. Long-Term Spatio-Temporal Trends of Organotin Contaminations in the Marine Environment of Hong Kong.

    PubMed

    Ho, Kevin K Y; Zhou, Guang-Jie; Xu, Elvis G B; Wang, Xinhong; Leung, Kenneth M Y

    2016-01-01

    Hong Kong imposed a partial restriction on application of organotin-based antifouling paints in 1992. Since September 2008, the International Maritime Organization prohibited the use of such antifouling systems on all sea-going vessels globally. Therefore, it is anticipated a gradual reduction of organotin contamination in Hong Kong's marine waters. Using the rock shell Reishia clavigera as a biomonitor, we evaluated the organotin contamination along Hong Kong's coastal waters over the past two decades (1990-2015). In 2010 and 2015, adult R. clavigera were examined for imposex status and analysed for tissue concentrations of six organotins. We consistently found 100% imposex incidence in female R. clavigera across all sites. Tissue triphenyltin (TPT) concentrations were high in most samples. A probabilistic risk assessment showed that there were over 69% of chance that local R. clavigera would be at risk due to exposure to phenyltins. Comparing with those of previous surveys (2004-2010), both imposex levels and tissue concentrations of organotins did not decline, while the ecological risks due to exposure to organotins were increasing. We also observed high concentrations of monobutyltin and TPT in seawater and sediment from locations with intense shipping activities and from stormwater or sewage discharge. Overall, organotins are still prevalent in Hong Kong's marine waters showing that the global convention alone may be inadequate in reducing organotin contamination in a busy international port like Hong Kong. Appropriate management actions should be taken to control the use and release of organotins in Hong Kong and South China. PMID:27176721

  9. Long-Term Spatio-Temporal Trends of Organotin Contaminations in the Marine Environment of Hong Kong.

    PubMed

    Ho, Kevin K Y; Zhou, Guang-Jie; Xu, Elvis G B; Wang, Xinhong; Leung, Kenneth M Y

    2016-01-01

    Hong Kong imposed a partial restriction on application of organotin-based antifouling paints in 1992. Since September 2008, the International Maritime Organization prohibited the use of such antifouling systems on all sea-going vessels globally. Therefore, it is anticipated a gradual reduction of organotin contamination in Hong Kong's marine waters. Using the rock shell Reishia clavigera as a biomonitor, we evaluated the organotin contamination along Hong Kong's coastal waters over the past two decades (1990-2015). In 2010 and 2015, adult R. clavigera were examined for imposex status and analysed for tissue concentrations of six organotins. We consistently found 100% imposex incidence in female R. clavigera across all sites. Tissue triphenyltin (TPT) concentrations were high in most samples. A probabilistic risk assessment showed that there were over 69% of chance that local R. clavigera would be at risk due to exposure to phenyltins. Comparing with those of previous surveys (2004-2010), both imposex levels and tissue concentrations of organotins did not decline, while the ecological risks due to exposure to organotins were increasing. We also observed high concentrations of monobutyltin and TPT in seawater and sediment from locations with intense shipping activities and from stormwater or sewage discharge. Overall, organotins are still prevalent in Hong Kong's marine waters showing that the global convention alone may be inadequate in reducing organotin contamination in a busy international port like Hong Kong. Appropriate management actions should be taken to control the use and release of organotins in Hong Kong and South China.

  10. Isolation of marine natural products.

    PubMed

    Houssen, Wael E; Jaspars, Marcel

    2012-01-01

    Marine macro- and micro-biota offer a wealth of chemically diverse compounds that have been evolutionary preselected to modulate biochemical pathways. Many industrial and academic groups are accessing this source using advanced technology platforms. The previous edition of this chapter offered some practical guidance in the process of extraction and isolation of marine natural products with more emphasis on the procedures adapted to the physical and chemical characteristics of the isolated compounds. Automation and direct integration of the isolation technology into high-throughput screening (HTS) systems were also reported. In this edition, we refer to some new topics which are heavily represented in the literature. These include methods for sampling the deep ocean and the procedures for culturing high-pressure-adapted (piezophilic) marine microorganisms to be amenable to laboratory investigation. A brief discussion on genomic-guided approaches to detect the presence of biosynthetic loci even those that are silent or cryptic is also included.

  11. The impact and control of biofouling in marine aquaculture: a review.

    PubMed

    Fitridge, Isla; Dempster, Tim; Guenther, Jana; de Nys, Rocky

    2012-01-01

    Biofouling in marine aquaculture is a specific problem where both the target culture species and/or infrastructure are exposed to a diverse array of fouling organisms, with significant production impacts. In shellfish aquaculture the key impact is the direct fouling of stock causing physical damage, mechanical interference, biological competition and environmental modification, while infrastructure is also impacted. In contrast, the key impact in finfish aquaculture is the fouling of infrastructure which restricts water exchange, increases disease risk and causes deformation of cages and structures. Consequently, the economic costs associated with biofouling control are substantial. Conservative estimates are consistently between 5-10% of production costs (equivalent to US$ 1.5 to 3 billion yr(-1)), illustrating the need for effective mitigation methods and technologies. The control of biofouling in aquaculture is achieved through the avoidance of natural recruitment, physical removal and the use of antifoulants. However, the continued rise and expansion of the aquaculture industry and the increasingly stringent legislation for biocides in food production necessitates the development of innovative antifouling strategies. These must meet environmental, societal, and economic benchmarks while effectively preventing the settlement and growth of resilient multi-species consortia of biofouling organisms.

  12. Territrem and butyrolactone derivatives from a marine-derived fungus Aspergillus terreus.

    PubMed

    Nong, Xu-Hua; Wang, Yi-Fei; Zhang, Xiao-Yong; Zhou, Mu-Ping; Xu, Xin-Ya; Qi, Shu-Hua

    2014-12-01

    Seventeen lactones including eight territrem derivatives (1-8) and nine butyrolactone derivatives (9-17) were isolated from a marine-derived fungus Aspergillus terreus SCSGAF0162 under solid-state fermentation of rice. Compounds 1-3 and 9-10 were new, and their structures were elucidated by spectroscopic analysis. The acetylcholinesterase inhibitory activity and antiviral activity of compounds 1-17 were evaluated. Among them, compounds 1 and 2 showed strong inhibitory activity against acetylcholinesterase with IC50 values of 4.2 ± 0.6, 4.5 ± 0.6 nM, respectively. This is the first time it has been reported that 3, 6, 10, 12 had evident antiviral activity towards HSV-1 with IC50 values of 16.4 ± 0.6, 6.34 ± 0.4, 21.8 ± 0.8 and 28.9 ± 0.8 μg·mL-1, respectively. Antifouling bioassay tests showed that compounds 1, 11, 12, 15 had potent antifouling activity with EC50 values of 12.9 ± 0.5, 22.1 ± 0.8, 7.4 ± 0.6, 16.1 ± 0.6 μg·mL-1 toward barnacle Balanus amphitrite larvae, respectively.

  13. Bioassay-guided fractionation of antifouling compounds using computer-assisted motion analysis of brown algal spore swimming.

    PubMed

    Greer, Stephen P; Iken, Katrin; McClintock, James B; Amsler, Charles D

    2006-01-01

    Antifouling extracts from the sea stars Astropecten articulatus and Luidia clathrata and from the brittle star Astrocyclus caecilia were fractionated by solid phase extraction and high performance liquid chromatography. Bioactive fractions were identified with the use of computer-assisted motion analysis-based bioassays utilising previously described Hincksia irregularis spore swimming behaviour parameters. Quantified parameters of spore movement were rate of change of direction (RCD) and speed (SPEE). The methods used initially required only 10 microg equivalent amounts of total crude extract and each resultant resolving step (normalised to 1 mg ml(-1) of crude, unfractionated extract) required far less material. Statistical analyses of RCD and ratios of RCD:SPEE values in experiments comparing swimming in the presence of extract fractions to controls revealed that both parameters were useful individually and in combination for efficiently following compound bioactivity throughout the fractionation procedure. This technique was also able to detect synergistic or additive interactions between compounds.

  14. Coumarins from the Herb Cnidium monnieri and Chemically Modified Derivatives as Antifoulants against Balanus albicostatus and Bugula neritina Larvae

    PubMed Central

    Wang, Zhan-Chang; Feng, Dan-Qing; Ke, Cai-Huan

    2013-01-01

    In the search for new environmental friendly antifouling (AF) agents, four coumarins were isolated from the herbal plant Cnidium monnieri, known as osthole (1), imperatorin (2), isopimpinellin (3) and auraptenol (4). Furthermore, five coumarin derivatives, namely 8-epoxypentylcoumarin (5), meranzin hydrate (6), 2′-deoxymetranzin hydrate (7), 8-methylbutenalcoumarin (8), and micromarin-F (9) were synthesized from osthole. Compounds 1, 2, 4, 7 showed high inhibitory activities against larval settlement of Balanus albicostatus with EC50 values of 4.64, 3.39, 3.38, 4.67 μg mL−1. Compound 8 could significantly inhibit larval settlement of Bugula neritina with an EC50 value of 3.87 μg mL−1. The impact of functional groups on anti-larval settlement activities suggested that the groups on C-5′ and C-2′/C-3′ of isoamylene chian could affect the AF activities. PMID:23303279

  15. Impacts of desalination plant discharges on the marine environment: A critical review of published studies.

    PubMed

    Roberts, David A; Johnston, Emma L; Knott, Nathan A

    2010-10-01

    Desalination of seawater is an increasingly common means by which nations satisfy demand for water. Desalination has a long history in the Middle East and Mediterranean, but expanding capacities can be found in the United States, Europe and Australia. There is therefore increasing global interest in understanding the environmental impacts of desalination plants and their discharges on the marine environment. Here we review environmental, ecological and toxicological research in this arena including monitoring and assessment of water quality and ecological attributes in receiving environments. The greatest environmental and ecological impacts have occurred around older multi-stage flash (MSF) plants discharging to water bodies with little flushing. These discharge scenarios can lead to substantial increases in salinity and temperature, and the accumulation of metals, hydrocarbons and toxic anti-fouling compounds in receiving waters. Experiments in the field and laboratory clearly demonstrate the potential for acute and chronic toxicity, and small-scale alterations to community structure following exposures to environmentally realistic concentrations of desalination brines. A clear consensus across many of the reviewed articles is that discharge site selection is the primary factor that determines the extent of ecological impacts of desalination plants. Ecological monitoring studies have found variable effects ranging from no significant impacts to benthic communities, through to widespread alterations to community structure in seagrass, coral reef and soft-sediment ecosystems when discharges are released to poorly flushed environments. In most other cases environmental effects appear to be limited to within 10s of meters of outfalls. It must be noted that a large proportion of the published work is descriptive and provides little quantitative data that we could assess independently. Many of the monitoring studies lacked sufficient detail with respect to study design

  16. Marine Lubricants

    NASA Astrophysics Data System (ADS)

    Carter, B. H.; Green, D.

    Marine diesel engines are classified by speed, either large (medium speed) or very large (slow speed) with high efficiencies and burning low-quality fuel. Slow-speed engines, up to 200 rpm, are two-stroke with separate combustion chamber and sump connected by a crosshead, with trunk and system oil lubricants for each. Medium-speed diesels, 300-1500 rpm, are of conventional automotive design with one lubricant. Slow-speed engines use heavy fuel oil of much lower quality than conventional diesel with problems of deposit cleanliness, acidity production and oxidation. Lubricants are mainly SAE 30/40/50 monogrades using paraffinic basestocks. The main types of additives are detergents/dispersants, antioxidants, corrosion inhibitors, anti-wear/load-carrying/ep, pour-point depressants and anti-foam compounds. There are no simple systems for classifying marine lubricants, as for automotive, because of the wide range of engine design, ratings and service applications they serve. There are no standard tests; lubricant suppliers use their own tests or the Bolnes 3DNL, with final proof from field tests. Frequent lubricant analyses safeguard engines and require standard sampling procedures before determination of density, viscosity, flash point, insolubles, base number, water and wear metal content.

  17. Acute and chronic toxicities of Irgarol alone and in combination with copper to the marine copepod Tigriopus japonicus.

    PubMed

    Bao, Vivien W W; Leung, Kenneth M Y; Lui, Gilbert C S; Lam, Michael H W

    2013-01-01

    Irgarol 1051 has been widely used as a booster biocide in combination with copper (Cu) in antifouling paints. The combined toxicity of Irgarol with Cu on marine organisms, however, has not been fully investigated. This study investigated the acute and chronic toxicities of binary mixtures of Irgarol and CuSO(4) to the marine copepod Tigriopus japonicus. The acute combined toxicity of Irgarol and Cu was simple additive as revealed by two response surface models and their contours. However, based on chronic full life-cycle tests, when Irgarol was combined with Cu at an environmentally realistic concentration (10 μg L(-1)), a slightly synergistic effect was observed at a high Irgarol concentration (940 μg L(-1)), as shown by a significant increase in larval mortality. As Cu contamination is widespread in coastal environments, our results entail the importance of considering the combined toxic effect of the booster biocide and Cu for setting ecologically realistic water quality criteria.

  18. Heritable pollution tolerance in a marine invader.

    PubMed

    McKenzie, Louise A; Brooks, Rob; Johnston, Emma L

    2011-10-01

    The global spread of fouling invasive species is continuing despite the use of antifouling biocides. Furthermore, previous evidence suggests that non-indigenous species introduced via hull fouling may be capable of adapting to metal-polluted environments. Using a laboratory based toxicity assay, we investigated tolerance to copper in the non-indigenous bryozoan Watersipora subtorquata from four source populations. Individual colonies were collected from four sites within Port Hacking (Sydney, Australia) and their offspring exposed to a range of copper concentrations. This approach, using a full-sib, split-family design, tests for a genotype by environment (G×E) interaction. Settlement and complete metamorphosis (recruitment) were measured as ecologically relevant endpoints. Larval sizes were also measured for each colony. Successful recruitment was significantly reduced by the highest copper concentration of 80μgL(-1). While there was no difference in pollution tolerance between sites, there was a significant G×E interaction, with large variation in the response of colony offspring within sites. Larval size differed significantly both between sites and between colonies and was positively correlated with tolerance. The high level of variation in copper tolerance between colonies suggests that there is considerable potential within populations to adapt to elevated copper levels, as tolerance is a heritable trait. Also, colonies that produce large larvae are more tolerant to copper, suggesting that tolerance may be a direct consequence of larger size. PMID:21295292

  19. Production of metabolites as bacterial responses to the marine environment.

    PubMed

    de Carvalho, Carla C C R; Fernandes, Pedro

    2010-01-01

    -contaminated sites. Siderophores are necessary e.g., in the treatment of diseases with metal ion imbalance, while antifouling compounds could be used to treat man-made surfaces that are used in marine environments. New classes of antibiotics could efficiently combat bacteria resistant to the existing antibiotics. The present work aims to provide a comprehensive review of the metabolites produced by marine bacteria in order to cope with intrusive environments, and to illustrate how such metabolites can be advantageously used in several relevant areas, from bioremediation to health and pharmaceutical sectors. PMID:20411122

  20. Production of Metabolites as Bacterial Responses to the Marine Environment

    PubMed Central

    de Carvalho, Carla C. C. R.; Fernandes, Pedro

    2010-01-01

    -contaminated sites. Siderophores are necessary e.g., in the treatment of diseases with metal ion imbalance, while antifouling compounds could be used to treat man-made surfaces that are used in marine environments. New classes of antibiotics could efficiently combat bacteria resistant to the existing antibiotics. The present work aims to provide a comprehensive review of the metabolites produced by marine bacteria in order to cope with intrusive environments, and to illustrate how such metabolites can be advantageously used in several relevant areas, from bioremediation to health and pharmaceutical sectors. PMID:20411122

  1. Imposex occurrence in marine whelks at a military facility in the high Arctic.

    PubMed

    Strand, Jakob; Glahder, Christian M; Asmund, Gert

    2006-07-01

    Imposex was found in the Arctic whelk Buccinum finmarkianum at several marine stations off Thule Air Base, an US military facility in Northwest Greenland. This indicates a widespread contamination with the antifouling agents, tributyltin (TBT) or triphenyltin (TPhT) in the area, but such contamination was not supported by the organotin analyses in sediments, whelks and clams, which in general was below the analytical detection limit. Organotin concentrations above the detection limit were found only at one station close to a quay, where the highest frequency of imposex also occurred. This suggests that imposex in B. finmarkianum is a biomarker of TBT more sensitive than the detection limits, which the analytical chemistry could achieve in this study. PMID:16280189

  2. Imposex occurrence in marine whelks at a military facility in the high Arctic.

    PubMed

    Strand, Jakob; Glahder, Christian M; Asmund, Gert

    2006-07-01

    Imposex was found in the Arctic whelk Buccinum finmarkianum at several marine stations off Thule Air Base, an US military facility in Northwest Greenland. This indicates a widespread contamination with the antifouling agents, tributyltin (TBT) or triphenyltin (TPhT) in the area, but such contamination was not supported by the organotin analyses in sediments, whelks and clams, which in general was below the analytical detection limit. Organotin concentrations above the detection limit were found only at one station close to a quay, where the highest frequency of imposex also occurred. This suggests that imposex in B. finmarkianum is a biomarker of TBT more sensitive than the detection limits, which the analytical chemistry could achieve in this study.

  3. Marine antivenoms.

    PubMed

    Currie, Bart J

    2003-01-01

    There is an enormous diversity and complexity of venoms and poisons in marine animals. Fatalities have occurred from envenoming by sea snakes, jellyfish, venomous fish such as stonefish, cone snails, and blue-ringed octopus. Deaths have also followed ingestion of toxins in shellfish, puffer fish (Fugu), and ciguatoxin-containing fish. However antivenoms are generally only available for envenoming by certain sea snakes, the major Australian box jellyfish (Chironex fleckeri) and stonefish. There have been difficulties in characterizing the toxins of C. fleckeri venom, and there are conflicting animals studies on the efficacy of C. fleckeri antivenom. The vast majority of C. fleckeri stings are not life-threatening, with painful skin welts the major finding. However fatalities that do occur usually do so within 5 to 20 minutes of the sting. This unprecedented rapid onset of cardiotoxicity in clinical envenoming suggests that antivenom may need to be given very early (within minutes) and possibly in large doses if a life is to be saved. Forty years of anecdotal experience supports the beneficial effect of stonefish antivenom in relieving the excruciating pain after stonefish spine penetration. It remains uncertain whether stonefish antivenom is efficacious in stings from spines of other venomous fish, and the recommendation of giving the antivenom intramuscularly needs reassessment. PMID:12807313

  4. Engineering Water Analysis Laboratory Activity.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    The purposes of water treatment in a marine steam power plant are to prevent damage to boilers, steam-operated equipment, and steam and condensate lives, and to keep all equipment operating at the highest level of efficiency. This laboratory exercise is designed to provide students with experiences in making accurate boiler water tests and to…

  5. Control of marine biofouling and medical biofilm formation with engineered topography

    NASA Astrophysics Data System (ADS)

    Schumacher, James Frederick

    Biofouling is the unwanted accumulation and growth of cells and organisms on clean surfaces. This process occurs readily on unprotected surfaces in both the marine and physiological environments. Surface protection in both systems has typically relied upon toxic materials and biocides. Metallic paints, based on tin and copper, have been extremely successful as antifouling coatings for the hulls of ships by killing the majority of fouling species. Similarly, antibacterial medical coatings incorporate metal-containing compounds such as silver or antibiotics that kill the bacteria. The environmental concerns over the use of toxic paints and biocides in the ocean, the developed antibiotic resistance of bacterial biofilms, and the toxicity concerns with silver suggest the need for non-toxic and non-kill solutions for these systems. The manipulation of surface topography on non-toxic materials at the size scale of the fouling species or bacteria is one approach for the development of alternative coatings. These surfaces would function simply as a physical deterrent of settlement of fouling organisms or a physical obstacle for the adequate formation of a bacterial biofilm without the need to kill the targeted microorganisms. Species-specific topographical designs called engineered topographies have been designed, fabricated and evaluated for potential applications as antifouling marine coatings and material surfaces capable of reducing biofilm formation. Engineered topographies fabricated on the surface of a non-toxic, polydimethylsiloxane elastomer, or silicone, were shown to significantly reduce the attachment of zoospores of a common ship fouling green algae (Ulva) in standard bioassays versus a smooth substrate. Other engineered topographies were effective at significantly deterring the settlement of the cyprids of barnacles (Balanus amphitrite). These results indicate the potential use of engineered topography applied to non-toxic materials as an environmentally

  6. Comparison between polyethylene glycol and zwitterionic polymers as antifouling coatings on wearable devices for selective antigen capture from biological tissue.

    PubMed

    Robinson, Kye J; Coffey, Jacob W; Muller, David A; Young, Paul R; Kendall, Mark A F; Thurecht, Kristofer J; Grøndahl, Lisbeth; Corrie, Simon R

    2015-01-01

    Selective capture of disease-related proteins in complex biological fluids and tissues is an important aim in developing sensitive protein biosensors for in vivo applications. Microprojection arrays are biomedical devices whose mechanical and chemical properties can be tuned to allow efficient penetration of skin, coupled with highly selective biomarker capture from the complex biological environment of skin tissue. Herein, the authors describe an improved surface modification strategy to produce amine-modified polycarbonate arrays, followed by the attachment of an antifouling poly(sulfobetaine-methacrylate) (pSBMA) polymer or a linear polyethylene glycol (PEG) polymer of comparative molecular weight and hydrodynamic radius. Using a "grafting to" approach, pSBMA and linear PEG coatings yielded comparative antifouling behavior in single protein solutions, diluted plasma, or when applied to mouse flank skin penetrating into the vascularized dermal tissue. Interestingly, the density of immobilized immunoglobulin G (IgG) or bovine serum albumin protein on pSBMA surfaces was significantly higher than that on the PEG surfaces, while the nonspecific adsorption was comparable for each protein. When incubated in buffer or plasma solutions containing dengue non-structural protein 1 (NS1), anti-NS1-IgG-coated pSBMA surfaces captured significantly more NS1 in comparison to PEG-coated devices. Similarly, when wearable microprojection arrays were applied to the skin of dengue-infected mice using the same coatings, the pSBMA-coated devices showed significantly higher capture efficiency (>2-fold increase in signal) than the PEG-coated substrates, which showed comparative signal when applied to naïve mice. In conclusion, zwitterionic pSBMA polymers (of equivalent hydrodynamic radii to PEG) allowed detection of dengue NS1 disease biomarker in a preclinical model of dengue infection, showing significantly higher signal-to-noise ratio in comparison to the PEG controls. The results of

  7. Marine mammal neoplasia: a review.

    PubMed

    Newman, S J; Smith, S A

    2006-11-01

    A review of the published literature indicates that marine mammal neoplasia includes the types and distributions of tumors seen in domestic species. A routine collection of samples from marine mammal species is hampered, and, hence, the literature is principally composed of reports from early whaling expeditions, captive zoo mammals, and epizootics that affect larger numbers of animals from a specific geographic location. The latter instances are most important, because many of these long-lived, free-ranging marine mammals may act as environmental sentinels for the health of the oceans. Examination of large numbers of mortalities reveals incidental proliferative and neoplastic conditions and, less commonly, identifies specific malignant cancers that can alter population dynamics. The best example of these is the presumptive herpesvirus-associated metastatic genital carcinomas found in California sea lions. Studies of tissues from St. Lawrence estuary beluga whales have demonstrated a high incidence of neoplasia and produced evidence that environmental contamination with high levels of polychlorinated biphenols and dichlorophenyl trichloroethane might be the cause. In addition, viruses are suspected to be the cause of gastric papillomas in belugas and cutaneous papillomas in Florida manatees and harbor porpoises. While experimental laboratory procedures can further elucidate mechanisms of neoplasia, continued pathologic examination of marine mammals will also be necessary to follow trends in wild populations. PMID:17099143

  8. 46 CFR 160.064-7 - Recognized laboratory.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 6 2013-10-01 2013-10-01 false Recognized laboratory. 160.064-7 Section 160.064-7...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Marine Buoyant Devices § 160.064-7 Recognized laboratory. (a) A... laboratory. The following laboratories are recognized under § 159.010-7 of this part, to perform testing...

  9. 46 CFR 160.064-7 - Recognized laboratory.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 6 2012-10-01 2012-10-01 false Recognized laboratory. 160.064-7 Section 160.064-7...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Marine Buoyant Devices § 160.064-7 Recognized laboratory. (a) A... laboratory. The following laboratories are recognized under § 159.010-7 of this part, to perform testing...

  10. 46 CFR 160.064-7 - Recognized laboratory.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Recognized laboratory. 160.064-7 Section 160.064-7...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Marine Buoyant Devices § 160.064-7 Recognized laboratory. (a) A... laboratory. The following laboratories are recognized under § 159.010-7 of this part, to perform testing...

  11. 46 CFR 160.064-7 - Recognized laboratory.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Recognized laboratory. 160.064-7 Section 160.064-7...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Marine Buoyant Devices § 160.064-7 Recognized laboratory. (a) A... laboratory. The following laboratories are recognized under § 159.010-7 of this part, to perform testing...

  12. 46 CFR 160.064-7 - Recognized laboratory.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Recognized laboratory. 160.064-7 Section 160.064-7...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Marine Buoyant Devices § 160.064-7 Recognized laboratory. (a) A... laboratory. The following laboratories are recognized under § 159.010-7 of this part, to perform testing...

  13. 75 FR 64247 - Marine Mammals; File No. 15543

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-19

    ... (Principal Investigator), Sarasota Dolphin Research Program, c/o Mote Marine Laboratory, 1600 Ken Thompson... dolphins (Tursiops truncatus). DATES: Written, telefaxed, or e-mail comments must be received on or before... marine mammals (50 CFR part 216). The applicant requests a five-year permit to take bottlenose...

  14. 46 CFR 162.028-4 - Marine type label.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 6 2012-10-01 2012-10-01 false Marine type label. 162.028-4 Section 162.028-4 Shipping... type label. (a) In addition to all other marking, every portable extinguisher shall bear a label containing the “marine type” listing manifest issued by a recognized laboratory. This label will include...

  15. 46 CFR 162.028-4 - Marine type label.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 6 2013-10-01 2013-10-01 false Marine type label. 162.028-4 Section 162.028-4 Shipping... type label. (a) In addition to all other marking, every portable extinguisher shall bear a label containing the “marine type” listing manifest issued by a recognized laboratory. This label will include...

  16. 46 CFR 162.028-4 - Marine type label.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Marine type label. 162.028-4 Section 162.028-4 Shipping... type label. (a) In addition to all other marking, every portable extinguisher shall bear a label containing the “marine type” listing manifest issued by a recognized laboratory. This label will include...

  17. 46 CFR 162.028-4 - Marine type label.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Marine type label. 162.028-4 Section 162.028-4 Shipping... type label. (a) In addition to all other marking, every portable extinguisher shall bear a label containing the “marine type” listing manifest issued by a recognized laboratory. This label will include...

  18. 76 FR 16442 - Endangered Species; Marine Mammals; Issuance of Permits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-23

    ... FR 62139; October March 10, 2011. Wildlife. 07, 2010. 781606 Wildlife Conservation 75 FR 82409; December March 8, 2011. Society. 30, 2010. 25983A Mote Marine Laboratory. 75 FR 82409; December March 11... 76 FR 7580; February March 17, 2011. 10, 2011. Marine Mammals 046081 U.S. Fish and Wildlife 75...

  19. Hazardous Materials in Marine Transportation: A Practical Course.

    ERIC Educational Resources Information Center

    Haas, Thomas J.; Kichner, Jerzy J.

    1987-01-01

    Describes a course offered at the United States Coast Guard Academy that deals with the marine transportation of hazardous materials. Outlines the major topics covered in the course, including marine transportation regulations. Discusses the use of lectures, laboratory demonstrations, and "hands-on" activities in the instructional sequences. (TW)

  20. EFFECTS OF MARINE ALGAL TOXINS ON THERMOREGULATION IN MICE.

    EPA Science Inventory

    Hypothermia is often seen in mice and rats exposed acutely to marine algal toxins, but the mechanism of action of these toxins on thermoregulation is not well understood. Our laboratory has assessed the thermoregulatory mechanisms of two marine algal toxins, maitotoxin and brevet...

  1. 76 FR 63609 - Marine Mammals; File No. 16443

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... David Honig, Nicholas School of the Environment, Duke University Marine Laboratory, 135 Marine Lab Road... specimens for scientific research. ADDRESSES: The permit and related documents are available for review upon... Federal Register (76 FR 45232) that a request for a permit to collect and import specimens for...

  2. HMSS (Hawaii Marine Science Studies) Sampler: Summer 1978 Draft Edition.

    ERIC Educational Resources Information Center

    Chave, E. H.; And Others

    The Hawaii Marine Science Studies (HMSS) Project has developed over twenty instructional units, which include student laboratory and field investigations, teacher guides and supplementary reference materials. HMSS units can be taught as a one or two semester course in high school marine science, or selected portions can be combined as marine…

  3. IAEA programme on the quality of marine radioactivity data.

    PubMed

    Sanchez-Cabeza, J A; Pham, M K; Povinec, P P

    2008-10-01

    Society's growing interest in environmental issues requires the production of reliable information for policy-makers, stakeholders and society in general. This information must be based on accurate data produced by qualified laboratories and data need to be comparable between numerous laboratories for joint assessments, e.g. in International Conventions. The Marine Environment Laboratories of the International Atomic Energy Agency has been providing Quality Assurance services to laboratories involved in marine radioactivity studies for the past 30 years. This has included training, organization of laboratory intercomparison exercises, production of Reference Materials (RMs) and more recently, production of Certified Reference Materials (CRMs) that comply with relevant ISO standards. Here, the overall process of Certification of Reference Materials is reviewed, past work summarized and future needs of marine radioactivity laboratories briefly discussed.

  4. 75 FR 13257 - Marine Mammals; File No. 87-1743

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... (50 CFR part 216). Permit No. 87-1743-05, issued on September 29, 2009 (74 FR 52184), authorizes the... P. Costa, Ph.D., Long Marine Laboratory, University of California at Santa Cruz, 100 Shaffer...

  5. 75 FR 58352 - Marine Mammals; File No. 14535

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ....D., University of California at Santa Cruz, Long Marine Laboratory, 100 Shaffer Road, Santa Cruz, CA..., 2010, notice was published in the Federal Register (75 FR 37388) that a request for a permit...

  6. Commentary: Radioactive Wastes and Damage to Marine Communities

    ERIC Educational Resources Information Center

    Wallace, Bruce

    1974-01-01

    Discusses the effects of radioactive wastes on marine communities, with particular reference to the fitness of populations and the need for field and laboratory studies to provide evidence of ecological change. (JR)

  7. PERFORMANCE EVALUATION OF TYPE I MARINE SANITATION DEVICES

    EPA Science Inventory

    This performance test was designed to evaluate the effectiveness of two Type I Marine Sanitation Devices (MSDs): the Electro Scan Model EST 12, manufactured by Raritan Engineering Company, Inc., and the Thermopure-2, manufactured by Gross Mechanical Laboratories, Inc. Performance...

  8. 75 FR 11132 - Marine Mammals; File No. 555-1870

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ..., notice was published in the Federal Register (74 FR 64686) that a request for an amendment to Permit No.... Harvey, Ph.D., Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, CA 95039, has...

  9. 75 FR 54093 - Marine Mammals; File No. 555-1870

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ..., notice was published in the Federal Register (75 FR 39206) that a request for an amendment to Permit No...., Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, CA ] 95039, has been issued...

  10. Environmentally Benign and Permanent Modifications to Prevent Biofouling on Marine and Hydrokinetic Devices

    SciTech Connect

    Zheng Zhang

    2012-04-19

    Semprus Biosciences is developing environmentally benign and permanent modifications to prevent biofouling on Marine and Hydrokinetic (MHK) devices. Biofouling, including growth on external surfaces by bacteria, algae, barnacles, mussels, and other marine organisms, accumulate quickly on MHK devices, causing mechanical wear and changes in performance. Biofouling on crucial components of hydrokinetic devices, such as rotors, generators, and turbines, imposes substantial mass and hydrodynamic loading with associated efficiency loss and maintenance costs. Most antifouling coatings leach toxic ingredients, such as copper and tributyltin, through an eroding process, but increasingly stringent regulation of biocides has led to interest in the development of non-biocidal technologies to control fouling. Semprus Biosciences research team is developing modifications to prevent fouling from a broad spectrum of organisms on devices of all shapes, sizes, and materials for the life of the product. The research team designed and developed betaine-based polymers as novel underwater coatings to resist the attachment of marine organisms. Different betaine-based monomers and polymers were synthesized and incorporated within various coating formulations. The formulations and application methods were developed on aluminum panels with required adhesion strength and mechanical properties. The coating polymers were chemically stable under UV, hydrolytic and oxidative environments. The sulfobetaine formulations are applicable as nonleaching and stable underwater coatings. For the first time, coating formulations modified with highly packed sulfobetaine polymers were prepared and demonstrated resistance to a broad spectrum of marine organisms. Assays for comparing nonfouling performance were developed to evaluate protein adsorption and bacteria attachment. Barnacle settlement and removal were evaluated and a 60-day field test was performed. Silicone substrates including a commercial

  11. PROTOCOL FOR LABORATORY TESTING OF CRUDE-OIL BIOREMEDIATION PRODUCTS IN FRESHWATER CONDITIONS

    EPA Science Inventory

    In 1993, the Environmental Protection Agency, National Risk Management Research Laboratory (EPA, NRMRL), with the National Environmental Technology Application Center (NETAC), developed a protocol for evaluation of bioremediation products in marine environments. The marine proto...

  12. A novel composite conductive microfiltration membrane and its anti-fouling performance with an external electric field in membrane bioreactors

    PubMed Central

    Huang, Jian; Wang, Zhiwei; Zhang, Junyao; Zhang, Xingran; Ma, Jinxing; Wu, Zhichao

    2015-01-01

    Membrane fouling remains an obstacle to wide-spread applications of membrane bioreactors (MBRs) for wastewater treatment and reclamation. Herein, we report a simple method to prepare a composite conductive microfiltration (MF) membrane by introducing a stainless steel mesh into a polymeric MF membrane and to effectively control its fouling by applying an external electric field. Linear sweep voltammetry and electrochemical impedance spectroscopy analyses showed that this conductive membrane had very good electrochemical properties. Batch tests demonstrated its anti-fouling ability in filtration of bovine serum albumin, sodium alginate, humic acid and silicon dioxide particles as model foulants. The fouling rate in continuous-flow MBRs treating wastewater was also decreased by about 50% for this conductive membrane with 2 V/cm electric field compared to the control test during long-term operation. The enhanced electrostatic repulsive force between foulants and membrane, in-situ cleaning by H2O2 generated from oxygen reduction, and decreased production of soluble microbial products and extracellular polymeric substances contributed to fouling mitigation in this MBR. The results of this study shed light on the control strategy of membrane fouling for achieving a sustainable operation of MBRs. PMID:25784160

  13. Beads-on-String Structured Nanofibers for Smart and Reversible Oil/Water Separation with Outstanding Antifouling Property.

    PubMed

    Wang, Yuanfeng; Lai, Chuilin; Wang, Xiaowen; Liu, Yang; Hu, Huawen; Guo, Yujuan; Ma, Kaikai; Fei, Bin; Xin, John H

    2016-09-28

    It is challenging to explore a unified solution for the treatment of oily wastewater from complex sources. Thus, membrane materials with flexible separation schemes are highly desired. Herein, we fabricated a smart membrane by electrospinning TiO2 doped polyvinylidene fluoride (PVDF) nanofibers. The as-formed beads-on-string structure and hierarchical roughness of the nanofibers contribute to its superwetting/resisting property to liquids, which is desirable in oil/water separation. Switched simply by UV (or sunlight) irradiation and heating treatment, the smart membrane can realize reversible separation of oil/water mixtures by selectively allowing water or oil to pass through alone. Most importantly, the as-prepared nanofiber membrane possesses outstanding antifouling and self-cleaning performance resulting from the photocatalytic property of TiO2, which has practical significance in saving solvents and recycling materials. This work provides a route for fabricating cost-effective, easily scaled up, and recyclable membranes for on-demand oil/water separation in versatile situations, which can be of great usage in the new green separation technology. PMID:27588341

  14. Screening for antioxidant and detoxification responses in Perna canaliculus Gmelin exposed to an antifouling bioactive intended for use in aquaculture.

    PubMed

    Cahill, Patrick Louis; Burritt, David; Heasman, Kevin; Jeffs, Andrew; Kuhajek, Jeanne

    2013-10-01

    Polygodial is a drimane sesquiterpene dialdehyde derived from certain terrestrial plant species that potently inhibits ascidian metamorphosis, and thus has potential for controlling fouling ascidians in bivalve aquaculture. The current study examined the effects of polygodial on a range of biochemical biomarkers of oxidative stress and detoxification effort in the gills of adult Perna canaliculus Gmelin. Despite high statistical power and the success of positive controls, the antioxidant enzymes glutathione reductase (GR), glutathione peroxidase (GPOX), catalase (CAT), and superoxide dismutase (SOD); thiol status, as measured by total glutathione (GSH-t), glutathione disulphide (GSSG), and GSH-t/GSSG ratio; end products of oxidative damage, lipid hydroperoxides (LHPO) and protein carbonyls; and detoxification pathways, represented by GSH-t and glutathione S-transferase (GST), were unaffected in the gills of adult P. canaliculus exposed to polygodial at 0.1 or 1 × the 99% effective dose in fouling ascidians (IC₉₉). Similarly, GR levels, thiol status, and detoxification activities were unaffected in mussels exposed to polygodial at 10 × the IC₉₉, although GPOX, CAT, and SOD activities increased. However, the increases were small relative to positive controls, no corresponding oxidative damage was detected, and this concentration greatly exceeds effective doses required to inhibit fouling ascidians in aquaculture. These findings compliment a previous study that established the insensitivity to polygodial of P. canaliculus growth, condition, and mitochondrial functioning, providing additional support for the suitability of polygodial for use as an antifouling agent in bivalve aquaculture.

  15. Portable, Easy-to-Operate, and Antifouling Microcapsule Array Chips Fabricated by 3D Ice Printing for Visual Target Detection.

    PubMed

    Zhang, Hong-Ze; Zhang, Fang-Ting; Zhang, Xiao-Hui; Huang, Dong; Zhou, Ying-Lin; Li, Zhi-Hong; Zhang, Xin-Xiang

    2015-06-16

    Herein, we proposed a portable, easy-to-operate, and antifouling microcapsule array chip for target detection. This prepackaged chip was fabricated by innovative and cost-effective 3D ice printing integrating with photopolymerization sealing which could eliminate complicated preparation of wet chemistry and effectively resist outside contaminants. Only a small volume of sample (2 μL for each microcapsule) was consumed to fulfill the assay. All the reagents required for the analysis were stored in ice form within the microcapsule before use, which guaranteed the long-term stability of microcapsule array chips. Nitrite and glucose were chosen as models for proof of concept to achieve an instant quantitative detection by naked eyes without the need of external sophisticated instruments. The simplicity, low cost, and small sample consumption endowed ice-printing microcapsule array chips with potential commercial value in the fields of on-site environmental monitoring, medical diagnostics, and rapid high-throughput point-of-care quantitative assay. PMID:25970032

  16. Portable, Easy-to-Operate, and Antifouling Microcapsule Array Chips Fabricated by 3D Ice Printing for Visual Target Detection.

    PubMed

    Zhang, Hong-Ze; Zhang, Fang-Ting; Zhang, Xiao-Hui; Huang, Dong; Zhou, Ying-Lin; Li, Zhi-Hong; Zhang, Xin-Xiang

    2015-06-16

    Herein, we proposed a portable, easy-to-operate, and antifouling microcapsule array chip for target detection. This prepackaged chip was fabricated by innovative and cost-effective 3D ice printing integrating with photopolymerization sealing which could eliminate complicated preparation of wet chemistry and effectively resist outside contaminants. Only a small volume of sample (2 μL for each microcapsule) was consumed to fulfill the assay. All the reagents required for the analysis were stored in ice form within the microcapsule before use, which guaranteed the long-term stability of microcapsule array chips. Nitrite and glucose were chosen as models for proof of concept to achieve an instant quantitative detection by naked eyes without the need of external sophisticated instruments. The simplicity, low cost, and small sample consumption endowed ice-printing microcapsule array chips with potential commercial value in the fields of on-site environmental monitoring, medical diagnostics, and rapid high-throughput point-of-care quantitative assay.

  17. Acute toxicity and synergism of binary mixtures of antifouling biocides with heavy metals to embryos of sea urchin Glyptocidaris crenularis.

    PubMed

    Xu, Xue; Wang, Xia; Li, Yan; Wang, Yonghua; Wang, Yuan

    2011-08-01

    Acute toxicity and synergism of four antifouling biocides (Irgarol 1051, dichlofluanid, tolylfluanid and Sea-Nine 211) and five heavy metals (Ni, Pb, Zn, Cd and Cu) are investigated using the sea urchin embryos of Glyptocidaris crenularis (G. crenularis) at six typical developmental stages, that is, 2-cell, 4-cell, 8-cell, blastula, gastrula and 4-arm pluteus. Our results show that the toxicity of the four biocides is in an order of Sea-Nine 211 > tolylfluanid > dichlofluanid > Irgarol 1051 and their -log EC(50) values at all stages are strongly linearly correlated with the 1-octanol/water partition coefficient (log P) values (correlation coefficients R > 0.72) indicating the importance of hydrophobicity for the embryonic toxicity. For the five heavy metals, the EC(50) ranges from 0.36 to 30.78 μM and the toxicity follows an order of Cu > Pb > Zn > Cd >Ni. The significant correlation (R > 0.79) between the -log EC50 and the bioconcentration factor (log BCF) values of metals also indicate that the bioaccumulation property of metals contributes to their aquatic toxicity. In addition, the joint effects of the biocides with the heavy metals in embryonic development are assessed by using a concentration addition model. Synergistic effects are observed in almost all 25 mixtures, showing that Cu yields the strongest while Ni the weakest synergistic toxic effects on the embryos development. PMID:20930027

  18. Superhydrophilic thin-film composite forward osmosis membranes for organic fouling control: fouling behavior and antifouling mechanisms.

    PubMed

    Tiraferri, Alberto; Kang, Yan; Giannelis, Emmanuel P; Elimelech, Menachem

    2012-10-16

    This study investigates the fouling behavior and fouling resistance of superhydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles. Fouling experiments in both forward osmosis and reverse osmosis modes are performed with three model organic foulants: alginate, bovine serum albumin, and Suwannee river natural organic matter. A solution comprising monovalent and divalent salts is employed to simulate the solution chemistry of typical wastewater effluents. Reduced fouling is consistently observed for the superhydrophilic membranes compared to control thin-film composite polyamide membranes, in both reverse and forward osmosis modes. The fouling resistance and cleaning efficiency of the functionalized membranes is particularly outstanding in forward osmosis mode where the driving force for water flux is an osmotic pressure difference. To understand the mechanism of fouling, the intermolecular interactions between the foulants and the membrane surface are analyzed by direct force measurement using atomic force microscopy. Lower adhesion forces are observed for the superhydrophilic membranes compared to the control thin-film composite polyamide membranes. The magnitude and distribution of adhesion forces for the different membrane surfaces suggest that the antifouling properties of the superhydrophilic membranes originate from the barrier provided by the tightly bound hydration layer at their surface, as well as from the neutralization of the native carboxyl groups of thin-film composite polyamide membranes.

  19. A novel composite conductive microfiltration membrane and its anti-fouling performance with an external electric field in membrane bioreactors.

    PubMed

    Huang, Jian; Wang, Zhiwei; Zhang, Junyao; Zhang, Xingran; Ma, Jinxing; Wu, Zhichao

    2015-01-01

    Membrane fouling remains an obstacle to wide-spread applications of membrane bioreactors (MBRs) for wastewater treatment and reclamation. Herein, we report a simple method to prepare a composite conductive microfiltration (MF) membrane by introducing a stainless steel mesh into a polymeric MF membrane and to effectively control its fouling by applying an external electric field. Linear sweep voltammetry and electrochemical impedance spectroscopy analyses showed that this conductive membrane had very good electrochemical properties. Batch tests demonstrated its anti-fouling ability in filtration of bovine serum albumin, sodium alginate, humic acid and silicon dioxide particles as model foulants. The fouling rate in continuous-flow MBRs treating wastewater was also decreased by about 50% for this conductive membrane with 2 V/cm electric field compared to the control test during long-term operation. The enhanced electrostatic repulsive force between foulants and membrane, in-situ cleaning by H2O2 generated from oxygen reduction, and decreased production of soluble microbial products and extracellular polymeric substances contributed to fouling mitigation in this MBR. The results of this study shed light on the control strategy of membrane fouling for achieving a sustainable operation of MBRs. PMID:25784160

  20. A novel composite conductive microfiltration membrane and its anti-fouling performance with an external electric field in membrane bioreactors

    NASA Astrophysics Data System (ADS)

    Huang, Jian; Wang, Zhiwei; Zhang, Junyao; Zhang, Xingran; Ma, Jinxing; Wu, Zhichao

    2015-03-01

    Membrane fouling remains an obstacle to wide-spread applications of membrane bioreactors (MBRs) for wastewater treatment and reclamation. Herein, we report a simple method to prepare a composite conductive microfiltration (MF) membrane by introducing a stainless steel mesh into a polymeric MF membrane and to effectively control its fouling by applying an external electric field. Linear sweep voltammetry and electrochemical impedance spectroscopy analyses showed that this conductive membrane had very good electrochemical properties. Batch tests demonstrated its anti-fouling ability in filtration of bovine serum albumin, sodium alginate, humic acid and silicon dioxide particles as model foulants. The fouling rate in continuous-flow MBRs treating wastewater was also decreased by about 50% for this conductive membrane with 2 V/cm electric field compared to the control test during long-term operation. The enhanced electrostatic repulsive force between foulants and membrane, in-situ cleaning by H2O2 generated from oxygen reduction, and decreased production of soluble microbial products and extracellular polymeric substances contributed to fouling mitigation in this MBR. The results of this study shed light on the control strategy of membrane fouling for achieving a sustainable operation of MBRs.

  1. A Novel Antifouling Defense Strategy from Red Seaweed: Exocytosis and Deposition of Fatty Acid Derivatives at the Cell Wall Surface.

    PubMed

    Paradas, Wladimir Costa; Tavares Salgado, Leonardo; Pereira, Renato Crespo; Hellio, Claire; Atella, Georgia Correa; de Lima Moreira, Davyson; do Carmo, Ana Paula Barbosa; Soares, Angélica Ribeiro; Menezes Amado-Filho, Gilberto

    2016-05-01

    We investigated the organelles involved in the biosynthesis of fatty acid (FA) derivatives in the cortical cells of Laurencia translucida (Rhodophyta) and the effect of these compounds as antifouling (AF) agents. A bluish autofluorescence (with emission at 500 nm) within L. translucida cortical cells was observed above the thallus surface via laser scanning confocal microscopy (LSCM). A hexanic extract (HE) from L. translucida was split into two isolated fractions called hydrocarbon (HC) and lipid (LI), which were subjected to HPLC coupled to a fluorescence detector, and the same autofluorescence pattern as observed by LSCM analyses (emission at 500 nm) was revealed in the LI fraction. These fractions were analyzed by gas chromatography-mass spectrometry (GC-MS), which revealed that docosane is the primary constituent of HC, and hexadecanoic acid and cholesterol trimethylsilyl ether are the primary components of LI. Nile red (NR) labeling (lipid fluorochrome) presented a similar cellular localization to that of the autofluorescent molecules. Transmission and scanning electron microscopy (TEM and SEM) revealed vesicle transport processes involving small electron-lucent vesicles, from vacuoles to the inner cell wall. Both fractions (HC and LI) inhibited micro-fouling [HC, lower minimum inhibitory concentration (MIC) values of 0.1 µg ml(-1); LI, lower MIC value of 10 µg ml(-1)]. The results suggested that L. translucida cortical cells can produce FA derivatives (e.g. HCs and FAs) and secrete them to the thallus surface, providing a unique and novel protective mechanism against microfouling colonization in red algae.

  2. Anti-fouling behavior of hyperbranched polyglycerol-grafted poly(ether sulfone) hollow fiber membranes for osmotic power generation.

    PubMed

    Li, Xue; Cai, Tao; Chung, Tai-Shung

    2014-08-19

    To sustain high performance of osmotic power generation by pressure-retarded osmosis (PRO) processes, fouling on PRO membranes must be mitigated. This is especially true for the porous support of PRO membranes because its porous structure is very prone to fouling by feeding river water. For the first time, we have successfully designed antifouling PRO thin-film composite (TFC) membranes by synthesizing a dendritic hydrophilic polymer with well-controlled grafting sites, hyperbranched polyglycerol (HPG), and then grafting it on poly(ether sulfone) (PES) hollow fiber membrane supports. Compared to the pristine PES membranes, polydopamine modified membranes, and conventional poly(ethylene glycol) (PEG)-grafted membranes, the HPG grafted membranes show much superior fouling resistance against bovine serum albumin (BSA) adsorption, E. coli adhesion, and S. aureus attachment. In high-pressure PRO tests, the PES TFC membranes are badly fouled by model protein foulants, causing a water flux decline of 31%. In comparison, the PES TFC membrane grafted by HPG not only has an inherently higher water flux and a higher power density but also exhibits better flux recovery up to 94% after cleaning and hydraulic pressure impulsion. Clearly, by grafting the properly designed dendritic polymers to the membrane support, one may substantially sustain PRO hollow fiber membranes for power generation. PMID:25019605

  3. Assessing the antifouling properties of cold-spray metal embedment using loading density gradients of metal particles.

    PubMed

    Vucko, M J; King, P C; Poole, A J; Hu, Y; Jahedi, M Z; de Nys, R

    2014-01-01

    Particles of copper, bronze and zinc were embedded into a polymer using cold-spray technology to produce loading density gradients of metal particles. The gradients were used to identify the species with the highest tolerance to the release of copper and zinc ions. The gradients also established the minimum effective release rates (MERRs) of copper and zinc ions needed to prevent the recruitment of fouling under field conditions. Watersipora sp. and Simplaria pseudomilitaris had the highest tolerances to the release of metal ions. Copper and bronze gradient tubes were similar in their MERRs of copper ions against Watersipora sp. (0.058 g m(-2) h(-1) and 0.054 g m(-2) h(-1), respectively) and against S. pseudomilitaris (0.030 g m(-2) h(-1) and 0.025 g m(-2) h(-1), respectively). Zinc was not an effective antifoulant, with failure within two weeks. In conclusion, cold-spray gradients were effective in determining MERRs and these outcomes provide the basis for the development of cold-spray surfaces with pre-determined life-spans using controlled MERRs.

  4. Superhydrophilic thin-film composite forward osmosis membranes for organic fouling control: fouling behavior and antifouling mechanisms.

    PubMed

    Tiraferri, Alberto; Kang, Yan; Giannelis, Emmanuel P; Elimelech, Menachem

    2012-10-16

    This study investigates the fouling behavior and fouling resistance of superhydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles. Fouling experiments in both forward osmosis and reverse osmosis modes are performed with three model organic foulants: alginate, bovine serum albumin, and Suwannee river natural organic matter. A solution comprising monovalent and divalent salts is employed to simulate the solution chemistry of typical wastewater effluents. Reduced fouling is consistently observed for the superhydrophilic membranes compared to control thin-film composite polyamide membranes, in both reverse and forward osmosis modes. The fouling resistance and cleaning efficiency of the functionalized membranes is particularly outstanding in forward osmosis mode where the driving force for water flux is an osmotic pressure difference. To understand the mechanism of fouling, the intermolecular interactions between the foulants and the membrane surface are analyzed by direct force measurement using atomic force microscopy. Lower adhesion forces are observed for the superhydrophilic membranes compared to the control thin-film composite polyamide membranes. The magnitude and distribution of adhesion forces for the different membrane surfaces suggest that the antifouling properties of the superhydrophilic membranes originate from the barrier provided by the tightly bound hydration layer at their surface, as well as from the neutralization of the native carboxyl groups of thin-film composite polyamide membranes. PMID:23002900

  5. Anti-fouling behavior of hyperbranched polyglycerol-grafted poly(ether sulfone) hollow fiber membranes for osmotic power generation.

    PubMed

    Li, Xue; Cai, Tao; Chung, Tai-Shung

    2014-08-19

    To sustain high performance of osmotic power generation by pressure-retarded osmosis (PRO) processes, fouling on PRO membranes must be mitigated. This is especially true for the porous support of PRO membranes because its porous structure is very prone to fouling by feeding river water. For the first time, we have successfully designed antifouling PRO thin-film composite (TFC) membranes by synthesizing a dendritic hydrophilic polymer with well-controlled grafting sites, hyperbranched polyglycerol (HPG), and then grafting it on poly(ether sulfone) (PES) hollow fiber membrane supports. Compared to the pristine PES membranes, polydopamine modified membranes, and conventional poly(ethylene glycol) (PEG)-grafted membranes, the HPG grafted membranes show much superior fouling resistance against bovine serum albumin (BSA) adsorption, E. coli adhesion, and S. aureus attachment. In high-pressure PRO tests, the PES TFC membranes are badly fouled by model protein foulants, causing a water flux decline of 31%. In comparison, the PES TFC membrane grafted by HPG not only has an inherently higher water flux and a higher power density but also exhibits better flux recovery up to 94% after cleaning and hydraulic pressure impulsion. Clearly, by grafting the properly designed dendritic polymers to the membrane support, one may substantially sustain PRO hollow fiber membranes for power generation.

  6. Nucella lapillus L. imposex levels after legislation prohibiting TBT antifoulants: temporal trends from 2003 to 2008 along the Portuguese coast.

    PubMed

    Galante-Oliveira, Susana; Oliveira, Isabel; Ferreira, Nelson; Santos, José António; Pacheco, Mário; Barroso, Carlos

    2011-02-01

    Nucella lapillus (dog whelk) imposex levels were assessed along the mainland Portuguese coast in 2006 and 2008 and were compared with available data from 2003 for the same area. Given that specimen size has been described as a factor inducing variation in some of the imposex assessment indices, and thus resulting in less reliable results, new monitoring and data analysis procedures are described and applied to study change of imposex levels from 2003 to 2008. A significant decline in imposex intensity was observed in the study area during the study period, and the Portuguese coast ecological status (under the terms defined by the OSPAR Commission) notably improved after 2003, confirming the effectiveness of the Regulation (EC) No. 782/2003 in reducing TBT pollution. Nevertheless, N. lapillus populations are still extensively affected by imposex, and fresh TBT inputs were detected in seawater throughout the coast in 2006. These recent inputs are attributed to vessels still carrying TBT antifoulants applied before 2003, as their presence in vessels was only forbidden in 2008. Considering that Regulation (EC) No. 782/2003 is an anticipation of the IMO global ban entered into force in September 2008, a worldwide-scale decrease in TBT pollution can be expected in the near future. PMID:21125098

  7. Impact of thermal annealing on wettability and antifouling characteristics of alginate poly-l-lysine polyelectrolyte multilayer films.

    PubMed

    Diamanti, Eleftheria; Muzzio, Nicolas; Gregurec, Danijela; Irigoyen, Joseba; Pasquale, Miguel; Azzaroni, Omar; Brinkmann, Martin; Moya, Sergio Enrique

    2016-09-01

    Polyelectrolyte multilayers (PEMs) of poly-l-lysine (PLL) and alginic acid sodium salt (Alg) are fabricated applying the layer by layer technique and annealed at a constant temperature; 37, 50 and 80°C, for 72h. Atomic force microscopy reveals changes in the topography of the PEM, which is changing from a fibrillar to a smooth surface. Advancing contact angle in water varies from 36° before annealing to 93°, 77° and 95° after annealing at 37, 50 and 80°C, respectively. Surface energy changes after annealing were calculated from contact angle measurements performed with organic solvents. Quartz crystal microbalance with dissipation, contact angle and fluorescence spectroscopy measurements show a significant decrease in the adsorption of the bovine serum albumin protein to the PEMs after annealing. Changes in the physical properties of the PEMs are interpreted as a result of the reorganization of the polyelectrolytes in the PEMs from a layered structure into complexes where the interaction of polycations and polyanions is enhanced. This work proposes a simple method to endow bio-PEMs with antifouling characteristics and tune their wettability.

  8. Environmental risks associated with booster biocides leaching from spent anti-fouling paint particles in coastal environments.

    PubMed

    Hasan, Chowdhury K; Turner, Andrew; Readman, James; Frickers, Trish

    2014-12-01

    Boat maintenance facilities in coastal areas contribute a significant amount of antifouling paint particles (APP) to coastal environments. Very few studies have concentrated on the leaching of booster biocides embedded in old paint particles. Therefore, this study attempted to assess the leaching of Dichlofluanid and Irgarol 1051 from APP collected from Mayflower Marina in southwest England. They were analyzed by GC-MS. A leaching experiment revealed that a considerable amount of Dichlofluanid (ca. 24 μg/L) leached from 0.4 g/L of APP after the first hour, followed by a marked decline in the amount measured in the water over time, almost degrading after 24 h in seawater, affording less of an environmental threat to non-target organisms. Conversely, Irgarol 1051 appeared to be persistent and continuously leached from the 0.4 g/L of APP even after 10 days, yielding a concentration of 0.61 μg/L in seawater, potentially posing a significant threat to the aquatic environment through leaching from APP.

  9. A novel composite conductive microfiltration membrane and its anti-fouling performance with an external electric field in membrane bioreactors.

    PubMed

    Huang, Jian; Wang, Zhiwei; Zhang, Junyao; Zhang, Xingran; Ma, Jinxing; Wu, Zhichao

    2015-03-18

    Membrane fouling remains an obstacle to wide-spread applications of membrane bioreactors (MBRs) for wastewater treatment and reclamation. Herein, we report a simple method to prepare a composite conductive microfiltration (MF) membrane by introducing a stainless steel mesh into a polymeric MF membrane and to effectively control its fouling by applying an external electric field. Linear sweep voltammetry and electrochemical impedance spectroscopy analyses showed that this conductive membrane had very good electrochemical properties. Batch tests demonstrated its anti-fouling ability in filtration of bovine serum albumin, sodium alginate, humic acid and silicon dioxide particles as model foulants. The fouling rate in continuous-flow MBRs treating wastewater was also decreased by about 50% for this conductive membrane with 2 V/cm electric field compared to the control test during long-term operation. The enhanced electrostatic repulsive force between foulants and membrane, in-situ cleaning by H2O2 generated from oxygen reduction, and decreased production of soluble microbial products and extracellular polymeric substances contributed to fouling mitigation in this MBR. The results of this study shed light on the control strategy of membrane fouling for achieving a sustainable operation of MBRs.

  10. Beads-on-String Structured Nanofibers for Smart and Reversible Oil/Water Separation with Outstanding Antifouling Property.

    PubMed

    Wang, Yuanfeng; Lai, Chuilin; Wang, Xiaowen; Liu, Yang; Hu, Huawen; Guo, Yujuan; Ma, Kaikai; Fei, Bin; Xin, John H

    2016-09-28

    It is challenging to explore a unified solution for the treatment of oily wastewater from complex sources. Thus, membrane materials with flexible separation schemes are highly desired. Herein, we fabricated a smart membrane by electrospinning TiO2 doped polyvinylidene fluoride (PVDF) nanofibers. The as-formed beads-on-string structure and hierarchical roughness of the nanofibers contribute to its superwetting/resisting property to liquids, which is desirable in oil/water separation. Switched simply by UV (or sunlight) irradiation and heating treatment, the smart membrane can realize reversible separation of oil/water mixtures by selectively allowing water or oil to pass through alone. Most importantly, the as-prepared nanofiber membrane possesses outstanding antifouling and self-cleaning performance resulting from the photocatalytic property of TiO2, which has practical significance in saving solvents and recycling materials. This work provides a route for fabricating cost-effective, easily scaled up, and recyclable membranes for on-demand oil/water separation in versatile situations, which can be of great usage in the new green separation technology.

  11. Assessing the antifouling properties of cold-spray metal embedment using loading density gradients of metal particles.

    PubMed

    Vucko, M J; King, P C; Poole, A J; Hu, Y; Jahedi, M Z; de Nys, R

    2014-01-01

    Particles of copper, bronze and zinc were embedded into a polymer using cold-spray technology to produce loading density gradients of metal particles. The gradients were used to identify the species with the highest tolerance to the release of copper and zinc ions. The gradients also established the minimum effective release rates (MERRs) of copper and zinc ions needed to prevent the recruitment of fouling under field conditions. Watersipora sp. and Simplaria pseudomilitaris had the highest tolerances to the release of metal ions. Copper and bronze gradient tubes were similar in their MERRs of copper ions against Watersipora sp. (0.058 g m(-2) h(-1) and 0.054 g m(-2) h(-1), respectively) and against S. pseudomilitaris (0.030 g m(-2) h(-1) and 0.025 g m(-2) h(-1), respectively). Zinc was not an effective antifoulant, with failure within two weeks. In conclusion, cold-spray gradients were effective in determining MERRs and these outcomes provide the basis for the development of cold-spray surfaces with pre-determined life-spans using controlled MERRs. PMID:24738882

  12. 76 FR 38666 - Food and Drug Administration (FDA) and Marine Environmental Sciences Consortium/Dauphin Island...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... Nutrition (CFSAN) and the Marine Environmental Sciences Consortium/Dauphin Island Sea Lab (DISL). The goal... Marine Environmental Science Consortium-Dauphin Island Sea Lab (DISL) will greatly contribute to FDA's... Objectives FDA Gulf Coast Seafood Laboratory (GCSL) and the Marine Environmental Science Consortium of...

  13. Supermarket Marine Biology.

    ERIC Educational Resources Information Center

    Colby, Jennifer A.; And Others

    1995-01-01

    Describes a survey used to determine the availability of intact marine vertebrates and live invertebrates in supermarkets. Results shows that local supermarkets frequently provide a variety of intact marine organisms suitable for demonstrations, experiments, or dissections. (ZWH)

  14. Controlled Synthesis and Photocatalytic Antifouling Properties of BiVO4 with Tunable Morphologies

    NASA Astrophysics Data System (ADS)

    Xiang, Zhenbo; Wang, Yi; Ju, Peng; Zhang, Dun

    2016-09-01

    Monoclinic BiVO4 with different nanostructures were prepared via a facile and rapid route by adding different surfactants. Ethylenediaminetetraacetic acid, polyvinylpyrrolidone, and sodium dodecyl sulfate surfactants were selected as morphology controlling agents. The crystal phase, morphology, and diffuse reflectance spectra of BiVO4 were characterized by x-ray diffraction, scanning electron microscopy, and UV-visible diffuse reflectance spectra techniques, respectively. The photocatalytic activities of BiVO4 were investigated by killing the typical marine fouling bacteria Pseudomonas aeruginosa (P. aeruginosa) under visible light irradiation. BiVO4 with grape-like nanostructure exhibited the best photocatalytic bactericidal activity. The sterilization rate of P. aeruginosa could reach up to 99.9% in 120 min. The photocatalytic mechanism was studied by captive species trapping experiments. The result revealed that photogenerated hole (h+) is the main reactive specie for killing P. aeruginosa under visible light irradiation. In addition, after five recycles, BiVO4 does not exhibit significant loss of photocatalytic sterilization activity. The results confirm that the synthesized BiVO4 photocatalyst has long-time reusability and good photocatalytic stability.

  15. Marine Education Knowledge Inventory.

    ERIC Educational Resources Information Center

    Hounshell, Paul B.; Hampton, Carolyn

    This 35-item, multiple-choice Marine Education Knowledge Inventory was developed for use in upper elementary/middle schools to measure a student's knowledge of marine science. Content of test items is drawn from oceanography, ecology, earth science, navigation, and the biological sciences (focusing on marine animals). Steps in the construction of…

  16. Marine Education Materials System.

    ERIC Educational Resources Information Center

    Gammisch, Sue; Gray, Kevin

    1980-01-01

    Described is a marine education materials clearinghouse, the Marine Education Materials System (MEMS). MEMS classifies marine education documents and reproduces them on microfiche for distribution. There are 25 distribution centers, each of which has a collection of documents and provides assistance on a request basis to teachers. (Author/DS)

  17. Marine Education for Inlanders.

    ERIC Educational Resources Information Center

    Broussard, Amy

    1981-01-01

    Under a U.S. Department of Commerce Sea Grant, Texas teachers have developed a three-book series designed to expose elementary and secondary students to the marine world. Book titles include "Marine Organisms in Science Teaching,""Children's Literature--Passage to the Sea," and "Investigating the Marine Environment and Its Resources." (LRA)

  18. Marine vehicle ride quality

    NASA Technical Reports Server (NTRS)

    Gornstein, R. J.; Shultz, W. M.; Stair, L. D.

    1972-01-01

    The effects of marine vehicle design on passenger exposure to vibration and discomfort are discussed. The ride quality of advanced marine vehicles is examined. as a basis for marine vehicle selection in modern water transport systems. The physiological effects of rough water on passengers are identified as requiring investigation in order to determine the acceptable limits.

  19. Laboratory Tests

    MedlinePlus

    Laboratory tests check a sample of your blood, urine, or body tissues. A technician or your doctor ... compare your results to results from previous tests. Laboratory tests are often part of a routine checkup ...

  20. Evaluation of cationic micropeptides derived from the innate immune system as inhibitors of marine biofouling.

    PubMed

    Trepos, Rozenn; Cervin, Gunnar; Pile, Claire; Pavia, Henrik; Hellio, Claire; Svenson, Johan

    2015-01-01

    A series of 13 short synthetic amphiphilic cationic micropeptides, derived from the antimicrobial iron-binding innate defence protein lactoferrin, have been evaluated for their capacity to inhibit the marine fouling process. The whole biofouling process was studied and microfouling organisms such as marine bacteria and microalgae were included as well as the macrofouling barnacle Balanus improvisus. In total 19 different marine fouling organisms (18 microfoulers and one macrofouler) were included and both the adhesion and growth of the microfoulers were investigated. It was shown that the majority of the peptides inhibited barnacle cyprid settlement via a reversible nontoxic mechanism, with IC50 values as low as 0.5 μg ml(-1). Six peptides inhibited adhesion and growth of microorganisms. Two of these were particularly active against the microfoulers with MIC-values ranging between 0.01 and 1 μg ml(-1), which is comparable with the commercial reference antifoulant SeaNine. PMID:26057499

  1. Tributyltin accumulation and effects in marine molluscs from West Greenland.

    PubMed

    Strand, Jakob; Asmund, Gert

    2003-01-01

    The levels of the antifouling agent tributyltin (TBT) and its breakdown products in bivalves were investigated in 1999-2000 at six areas along the west coast of Greenland with focus on locations inside and outside harbours. In addition female gastropods were examined for the development of TBT-induced masculine characteristics in form of imposex or intersex. The highest TBT concentration, 254 ng x g(-1) ww, was found in the bivalve Mytilus edulis sampled inside Nuuk harbour, but significant TBT concentrations were also present in bivalves from the other harbour areas. Only low levels of TBT were detected in bivalves sampled outside the harbours and in several of the samples the TBT level was below the detection limit. The examination of neogastropods like Buccinum revealed that imposex development occurred in all the harbours. In contrast, imposex was not found in any neogastropods sampled outside the harbour areas. However, the value of marine neogastropods as indicators of TBT contamination in West Greenland seems limited, because of large species diversity and the difficulties in sampling enough specimens at least with the current sampling strategy. No effects, which could be related to TBT contamination, were found in the most abundant tidal gastropod in West Greenland, Littorina saxatilis.

  2. Hybrid xerogel films as novel coatings for antifouling and fouling release.

    PubMed

    Tang, Ying; Finlay, John A; Kowalke, Gregory L; Meyer, Anne E; Bright, Frank V; Callow, Maureen E; Callow, James A; Wendt, Dean E; Detty, Michael R

    2005-01-01

    Hybrid sol-gel-derived xerogel films prepared from 45/55 (mol ratio) n-propyltrimethoxysilane (C3-TMOS)/tetramethylorthosilane (TMOS), 2/98 (mol ratio) bis[3-(trimethoxysilyl)propyl]-ethylenediamine (enTMOS)/tetraethylorthosilane (TEOS), 50/50 (mol ratio) n-octyltriethoxysilane (C8-TEOS)/TMOS, and 50/50 (mol ratio) 3,3,3-trifluoropropyltrimethoxysilane (TFP-TMOS)/TMOS were found to inhibit settlement of zoospores of the marine fouling alga Ulva (syn. Enteromorpha) relative to settlement on acid-washed glass and give greater release of settled zoospores relative to glass upon exposure to pressure from a water jet. The more hydrophobic 50/50 C8-TEOS/TMOS xerogel films had the lowest critical surface tension by comprehensive contact angle analysis and gave significantly greater release of 8-day Ulva sporeling biomass after exposure to turbulent flow generated by a flow channel than the other xerogel surfaces or glass. The 50/50 C8-TEOS/TMOS xerogel was also a fouling release surface for juveniles of the tropical barnacle Balanus amphitrite. X-ray photon electron data indicated that the alkylsilyl residues of the C3-TMOS-, C8-TEOS-, and TFP-TMOS-containing xerogels were located on the surface of the xerogel films (in a vacuum), which contributes to the film hydrophobicity. Similarly, the amine-containing silyl residues of the enTMOS/TEOS films were located at the surface of the xerogel films, which contributes to the more hydrophilic character and increased critical surface tension of these films.

  3. Complex shaped ZnO nano- and microstructure based polymer composites: mechanically stable and environmentally friendly coatings for potential antifouling applications.

    PubMed

    Hölken, Iris; Hoppe, Mathias; Mishra, Yogendra K; Gorb, Stanislav N; Adelung, Rainer; Baum, Martina J

    2016-03-14

    Since the prohibition of tributyltin (TBT)-based antifouling paints in 2008, the development of environmentally compatible and commercially realizable alternatives is a crucial issue. Cost effective fabrication of antifouling paints with desired physical and biocompatible features is simultaneously required and recent developments in the direction of inorganic nanomaterials could play a major role. In the present work, a solvent free polymer/particle-composite coating based on two component polythiourethane (PTU) and tetrapodal shaped ZnO (t-ZnO) nano- and microstructures has been synthesized and studied with respect to mechanical, chemical and biocompatibility properties. Furthermore, antifouling tests have been carried out in artificial seawater tanks. Four different PTU/t-ZnO composites with various t-ZnO filling fractions (0 wt%, 1 wt%, 5 wt%, 10 wt%) were prepared and the corresponding tensile, hardness, and pull-off test results revealed that the composite filled with 5 wt% t-ZnO exhibits the strongest mechanical properties. Surface free energy (SFE) studies using contact angle measurements showed that the SFE value decreases with an increase in t-ZnO filler amounts. The influence of t-ZnO on the polymerization reaction was confirmed by Fourier transform infrared-spectroscopy measurements and thermogravimetric analysis. The immersion tests demonstrated that fouling behavior of the PTU/t-ZnO composite with a 1 wt% t-ZnO filler has been decreased in comparison to pure PTU. The composite with a 5 wt% t-ZnO filler showed almost no biofouling.

  4. Protection of Marine Mammals.

    PubMed

    Knoll, Michaela; Ciaccia, Ettore; Dekeling, René; Kvadsheim, Petter; Liddell, Kate; Gunnarsson, Stig-Lennart; Ludwig, Stefan; Nissen, Ivor; Lorenzen, Dirk; Kreimeyer, Roman; Pavan, Gianni; Meneghetti, Nello; Nordlund, Nina; Benders, Frank; van der Zwan, Timo; van Zon, Tim; Fraser, Leanne; Johansson, Torbjörn; Garmelius, Martin

    2016-01-01

    Within the European Defense Agency (EDA), the Protection of Marine Mammals (PoMM) project, a comprehensive common marine mammal database essential for risk mitigation tools, was established. The database, built on an extensive dataset collection with the focus on areas of operational interest for European navies, consists of annual and seasonal distribution and density maps, random and systematic sightings, an encyclopedia providing knowledge on the characteristics of 126 marine mammal species, data on marine mammal protection areas, and audio information including numerous examples of various vocalizations. Special investigations on marine mammal acoustics were carried out to improve the detection and classification capabilities.

  5. Protection of Marine Mammals.

    PubMed

    Knoll, Michaela; Ciaccia, Ettore; Dekeling, René; Kvadsheim, Petter; Liddell, Kate; Gunnarsson, Stig-Lennart; Ludwig, Stefan; Nissen, Ivor; Lorenzen, Dirk; Kreimeyer, Roman; Pavan, Gianni; Meneghetti, Nello; Nordlund, Nina; Benders, Frank; van der Zwan, Timo; van Zon, Tim; Fraser, Leanne; Johansson, Torbjörn; Garmelius, Martin

    2016-01-01

    Within the European Defense Agency (EDA), the Protection of Marine Mammals (PoMM) project, a comprehensive common marine mammal database essential for risk mitigation tools, was established. The database, built on an extensive dataset collection with the focus on areas of operational interest for European navies, consists of annual and seasonal distribution and density maps, random and systematic sightings, an encyclopedia providing knowledge on the characteristics of 126 marine mammal species, data on marine mammal protection areas, and audio information including numerous examples of various vocalizations. Special investigations on marine mammal acoustics were carried out to improve the detection and classification capabilities. PMID:26611003

  6. Carotenoids in Marine Animals

    PubMed Central

    Maoka, Takashi

    2011-01-01

    Marine animals contain various carotenoids that show structural diversity. These marine animals accumulate carotenoids from foods such as algae and other animals and modify them through metabolic reactions. Many of the carotenoids present in marine animals are metabolites of β-carotene, fucoxanthin, peridinin, diatoxanthin, alloxanthin, and astaxanthin, etc. Carotenoids found in these animals provide the food chain as well as metabolic pathways. In the present review, I will describe marine animal carotenoids from natural product chemistry, metabolism, food chain, and chemosystematic viewpoints, and also describe new structural carotenoids isolated from marine animals over the last decade. PMID:21566799

  7. The role of "inert" surface chemistry in marine biofouling prevention.

    PubMed

    Rosenhahn, Axel; Schilp, Sören; Kreuzer, Hans Jürgen; Grunze, Michael

    2010-05-01

    The settlement and colonization of marine organisms on submerged man-made surfaces is a major economic problem for many marine industries. The most apparent detrimental effects of biofouling are increased fuel consumption of ships, clogging of membranes and heat exchangers, disabled underwater sensors, and growth of biofoulers in aquaculture systems. The presently common-but environmentally very problematic-way to deal with marine biofouling is to incorporate biocides, which use biocidal products in the surface coatings to kill the colonizing organisms, into the surface coatings. Since the implementation of the International Maritime Organization Treaty on biocides in 2008, the use of tributyltin (TBT) is restricted and thus environmentally benign but effective surface coatings are required. In this short review, we summarize the different strategies which are pursued in academia and industry to better understand the mechanisms of biofouling and to develop strategies which can be used for industrial products. Our focus will be on chemically "inert" model surface coatings, in particular oligo- and poly(ethylene glycol) (OEG and PEG) functionalized surface films. The reasons for choosing this class of chemistry as an example are three-fold: Firstly, experiments on spore settlement on OEG and PEG coatings help to understand the mechanism of non-fouling of highly hydrated interfaces; secondly, these studies defy the common assumption that surface hydrophilicity-as measured by water contact angles-is an unambiguous and predictive tool to determine the fouling behavior on the surface; and thirdly, choosing this system is a good example for "interfacial systems chemistry": it connects the behavior of unicellular marine organisms with the antifouling properties of a hydrated surface coating with structural and electronic properties as derived from ab initio quantum mechanical calculations using the electronic wave functions of oxygen, hydrogen, and carbon. This short

  8. Overview of the chemical ecology of benthic marine invertebrates along the western Antarctic peninsula.

    PubMed

    McClintock, James B; Amsler, Charles D; Baker, Bill J

    2010-12-01

    Thirteen years ago in a review that appeared in the American Zoologist, we presented the first survey of the chemical and ecological bioactivity of Antarctic shallow-water marine invertebrates. In essence, we reported that despite theoretical predictions to the contrary the incidence of chemical defenses among sessile and sluggish Antarctic marine invertebrates was widespread. Since that time we and others have significantly expanded upon the base of knowledge of Antarctic marine invertebrates' chemical ecology, both from the perspective of examining marine invertebrates in new, distinct geographic provinces, as well as broadening the evaluation of the ecological significance of secondary metabolites. Importantly, many of these studies have been framed within established theoretical constructs, particularly the Optimal Defense Theory. In the present article, we review the current knowledge of chemical ecology of benthic marine invertebrates comprising communities along the Western Antarctic Peninsula (WAP), a region of Antarctica that is both physically and biologically distinct from the rest of the continent. Our overview indicates that, similar to other regions of Antarctica, anti-predator chemical defenses are widespread among species occurring along the WAP. In some groups, such as the sponges, the incidence of chemical defenses against predation is comparable to, or even slightly higher than, that found in tropical marine systems. While there is substantial knowledge of the chemical defenses of benthic marine invertebrates against predators, much less is known about chemical anti-foulants. The sole survey conducted to date suggests that secondary metabolites in benthic sponges are likely to be important in the prevention of fouling by benthic diatoms, yet generally lack activity against marine bacteria. Our understanding of the sensory ecology of Antarctic benthic marine invertebrates, despite its great potential, remains in its infancy. For example, along the

  9. Development of High-Antifouling PPSU Ultrafiltration Membrane by Using Compound Additives: Preparation, Morphologies, and Filtration Resistant Properties.

    PubMed

    Liu, Jie; Zhong, Zhencheng; Ma, Rui; Zhang, Weichen; Li, Jiding

    2016-01-01

    In this study, flat sheet asymmetric polyphenylsulfone (PPSU) ultrafiltration membranes with enhanced antifouling properties were prepared with a non-solvent induced phase separation (NIPS) method through compound additives containing a polymeric pore-forming agent, a small molecular non-solvent and a surfactant. The formation processes of the porous asymmetric membranes with different kinds of additives were studied in detail, and the microstructure controllable preparation of membrane was achieved by establishing a bridge between the membrane preparation parameters and separation performances. All prepared membranes were characterized by using a scanning electron microscope (SEM), contact angle analysis, porosity, maximum pore size, water and BSA solution permeability studies. The performance efficiency of the membrane was evaluated by using BSA as a model foulant in terms of permeability, solute rejection (R), Rm (membrane inherent resistance), Rc (cake layer resistance), and Rp (pore plugging resistance). The results showed that when the compound additives were used, the inter-connected pores were observed, maximum pore size, contact angle and membrane filtration resistance decreased, while the porosity increased. When PVP compound additives were added, the water flux increased from 80.4 to 148.1 L/(m²·h), the BSA rejection increased from 53.2% to 81.5%. A similar trend was observed for membranes with added PEG compound additives; the water flux and BSA rejection simultaneously increased. The filtration resistance decreased as a result of compound additives. The uniformity of membrane and the number of effective pores could be enhanced by adding compound additives through the cooperation of different additives.

  10. Development of High-Antifouling PPSU Ultrafiltration Membrane by Using Compound Additives: Preparation, Morphologies, and Filtration Resistant Properties.

    PubMed

    Liu, Jie; Zhong, Zhencheng; Ma, Rui; Zhang, Weichen; Li, Jiding

    2016-01-01

    In this study, flat sheet asymmetric polyphenylsulfone (PPSU) ultrafiltration membranes with enhanced antifouling properties were prepared with a non-solvent induced phase separation (NIPS) method through compound additives containing a polymeric pore-forming agent, a small molecular non-solvent and a surfactant. The formation processes of the porous asymmetric membranes with different kinds of additives were studied in detail, and the microstructure controllable preparation of membrane was achieved by establishing a bridge between the membrane preparation parameters and separation performances. All prepared membranes were characterized by using a scanning electron microscope (SEM), contact angle analysis, porosity, maximum pore size, water and BSA solution permeability studies. The performance efficiency of the membrane was evaluated by using BSA as a model foulant in terms of permeability, solute rejection (R), Rm (membrane inherent resistance), Rc (cake layer resistance), and Rp (pore plugging resistance). The results showed that when the compound additives were used, the inter-connected pores were observed, maximum pore size, contact angle and membrane filtration resistance decreased, while the porosity increased. When PVP compound additives were added, the water flux increased from 80.4 to 148.1 L/(m²·h), the BSA rejection increased from 53.2% to 81.5%. A similar trend was observed for membranes with added PEG compound additives; the water flux and BSA rejection simultaneously increased. The filtration resistance decreased as a result of compound additives. The uniformity of membrane and the number of effective pores could be enhanced by adding compound additives through the cooperation of different additives. PMID:27338487

  11. Development of High-Antifouling PPSU Ultrafiltration Membrane by Using Compound Additives: Preparation, Morphologies, and Filtration Resistant Properties

    PubMed Central

    Liu, Jie; Zhong, Zhencheng; Ma, Rui; Zhang, Weichen; Li, Jiding

    2016-01-01

    In this study, flat sheet asymmetric polyphenylsulfone (PPSU) ultrafiltration membranes with enhanced antifouling properties were prepared with a non-solvent induced phase separation (NIPS) method through compound additives containing a polymeric pore-forming agent, a small molecular non-solvent and a surfactant. The formation processes of the porous asymmetric membranes with different kinds of additives were studied in detail, and the microstructure controllable preparation of membrane was achieved by establishing a bridge between the membrane preparation parameters and separation performances. All prepared membranes were characterized by using a scanning electron microscope (SEM), contact angle analysis, porosity, maximum pore size, water and BSA solution permeability studies. The performance efficiency of the membrane was evaluated by using BSA as a model foulant in terms of permeability, solute rejection (R), Rm (membrane inherent resistance), Rc (cake layer resistance), and Rp (pore plugging resistance). The results showed that when the compound additives were used, the inter-connected pores were observed, maximum pore size, contact angle and membrane filtration resistance decreased, while the porosity increased. When PVP compound additives were added, the water flux increased from 80.4 to 148.1 L/(m2·h), the BSA rejection increased from 53.2% to 81.5%. A similar trend was observed for membranes with added PEG compound additives; the water flux and BSA rejection simultaneously increased. The filtration resistance decreased as a result of compound additives. The uniformity of membrane and the number of effective pores could be enhanced by adding compound additives through the cooperation of different additives. PMID:27338487

  12. Enhancement of retention and antifouling capability for PVDF UF membrane modified by nano-TiO2 sol

    NASA Astrophysics Data System (ADS)

    Jia, Li M.; Wen, Chen; Xu, Jing Y.; Xiao, Chang F.

    2009-07-01

    Novel PVDF/TiO2 hybrid membranes were prepared by phase inversion process from a PVDF/DMAc/PVP/tetrabutyltitanate/water system. The membrane characteristics such as morphology, thermal properties, porosity, water contact angle, tensile strength and separability were investigated by a series of analytical methods including atomic force microscope (AFM), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and zeta potential measurements. The performances and surface properties of hybrid and PVDF membranes were tested by the removal of bovine serum albumin (BSA) from aqueous solution, evaluated by using two dyes with different charge (congo red and methylene blue). Based on the experimental results, TiO2 nanoparticles of a quantum size (~8 nm or less) in anatase crystal structure were obtained from the controlled hydrolysis of tetrabutyltitanate. Besides, TiO2 sol was introduced into polymer molecule for the hybrid membrane with less than 12 vol % TiO2 sol to PVDF and contributed to a smooth surface and more apertures due to both the interaction and compatibility between polymer and TiO2 sol, to which the improvement in hydrophilicity, thermal stability, mechanical strength and antifouling ability is attributed. The observed rejections were optimized for PVDF/TiO2 hybrid membrane with respect to PVDF membrane. In particular, the pure water permeation flux was increased from126.6 to166.7 L/m2•h for hybrid membrane with a relative flux of 80 % compared to 50 % of relative flux observed for PVDF membrane.

  13. Development of a novel antifouling platform for biosensing probe immobilization from methacryloyloxyethyl phosphorylcholine-containing copolymer brushes.

    PubMed

    Akkahat, Piyaporn; Kiatkamjornwong, Suda; Yusa, Shin-ichi; Hoven, Voravee P; Iwasaki, Yasuhiko

    2012-04-01

    The immobilization of thiol-terminated poly[(methacrylic acid)-ran-(2-methacryloyloxyethyl phosphorylcholine)] (PMAMPC-SH) brushes on gold-coated surface plasmon resonance (SPR) chips was performed using the "grafting to" approach via self-assembly formation. The copolymer brushes provide both functionalizability and antifouling characteristics, desirable features mandatorily required for the development of an effective platform for probe immobilization in biosensing applications. The carboxyl groups from the methacrylic acid (MA) units were employed for attaching active biomolecules that can act as sensing probes for biospecific detection of target molecules, whereas the 2-methacryloyloxyethyl phosphorylcholine (MPC) units were introduced to suppress unwanted nonspecific adsorption. The detection efficiency of the biotin-immobilized PMAMPC brushes with the target molecule, avidin (AVD), was evaluated in blood plasma in comparison with the conventional 2D monolayer of 11-mercaptoundecanoic acid (MUA) and homopolymer brushes of poly(methacrylic acid) (PMA) also immobilized with biotin using the SPR technique. Copolymer brushes with 79 mol % MPC composition and a molecular weight of 49.3 kDa yielded the platform for probe immobilization with the best performance considering its high S/N ratio as compared with platforms based on MUA and PMA brushes. In addition, the detection limit for detecting AVD in blood plasma solution was found to be 1.5 nM (equivalent to 100 ng/mL). The results have demonstrated the potential for using these newly developed surface-attached PMAMPC brushes for probe immobilization and subsequent detection of designated target molecules in complex matrices such as blood plasma and clinical samples.

  14. A novel bioassay for evaluating the efficacy of biocides to inhibit settling and early establishment of marine biofilms.

    PubMed

    Arrhenius, Åsa; Backhaus, Thomas; Hilvarsson, Annelie; Wendt, Ida; Zgrundo, Aleksandra; Blanck, Hans

    2014-10-15

    This paper presents a novel assay that allows a quick and robust assessment of the effects of biocides on the initial settling and establishment of marine photoautotrophic biofilms including the multitude of indigenous fouling organisms. Briefly, biofilms are established in the field, sampled, comminuted and re-settled on clean surfaces, after 72h chlorophyll a is measured as an integrating endpoint to reflect both settling and growth. Eight antifoulants were used to evaluate the assay. Efficacy ranking, based on EC98 values from most to least efficacious compound is: copper pyrithione>TPBP>DCOIT>tolylfluanid>zinc pyrithione>medetomidine>copper (Cu(2+)), while ecotoxicological ranking (based on EC10 values) is irgarol, copper pyrithione>zinc pyrithione>TPBP>tolylfluanid>DCOIT>copper (Cu(2+))>medetomidine. The algaecide irgarol did not cause full inhibition. Instead the inhibition leveled out at 95% effect at 30 nmoll(-)(1), a concentration that was clearly lower than for any other of the tested biocides. PMID:25150894

  15. Laboratory Building.

    SciTech Connect

    Herrera, Joshua M.

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  16. Omics of the marine medaka (Oryzias melastigma) and its relevance to marine environmental research.

    PubMed

    Kim, Bo-Mi; Kim, Jaebum; Choi, Ik-Young; Raisuddin, Sheikh; Au, Doris W T; Leung, Kenneth M Y; Wu, Rudolf S S; Rhee, Jae-Sung; Lee, Jae-Seong

    2016-02-01

    In recent years, the marine medaka (Oryzias melastigma), also known as the Indian medaka or brackish medaka, has been recognized as a model fish species for ecotoxicology and environmental research in the Asian region. O. melastigma has several promising features for research, which include a short generation period (3-4 months), daily spawning, small size (3-4 cm), transparent embryos, sexual dimorphism, and ease of mass culture in the laboratory. There have been extensive transcriptome and genome studies on the marine medaka in the past decade. Such omics data can be useful in understanding the signal transduction pathways of small teleosts in response to environmental stressors. An omics-integrated approach in the study of the marine medaka is important for strengthening its role as a small fish model for marine environmental studies. In this review, we present current omics information about the marine medaka and discuss its potential applications in the study of various molecular pathways that can be targets of marine environmental stressors, such as chemical pollutants. We believe that this review will encourage the use of this small fish as a model species in marine environmental research.

  17. Long-Term Spatio-Temporal Trends of Organotin Contaminations in the Marine Environment of Hong Kong

    PubMed Central

    Ho, Kevin K. Y.; Zhou, Guang-Jie; Xu, Elvis G. B.; Wang, Xinhong; Leung, Kenneth M. Y.

    2016-01-01

    Hong Kong imposed a partial restriction on application of organotin-based antifouling paints in 1992. Since September 2008, the International Maritime Organization prohibited the use of such antifouling systems on all sea-going vessels globally. Therefore, it is anticipated a gradual reduction of organotin contamination in Hong Kong’s marine waters. Using the rock shell Reishia clavigera as a biomonitor, we evaluated the organotin contamination along Hong Kong’s coastal waters over the past two decades (1990–2015). In 2010 and 2015, adult R. clavigera were examined for imposex status and analysed for tissue concentrations of six organotins. We consistently found 100% imposex incidence in female R. clavigera across all sites. Tissue triphenyltin (TPT) concentrations were high in most samples. A probabilistic risk assessment showed that there were over 69% of chance that local R. clavigera would be at risk due to exposure to phenyltins. Comparing with those of previous surveys (2004–2010), both imposex levels and tissue concentrations of organotins did not decline, while the ecological risks due to exposure to organotins were increasing. We also observed high concentrations of monobutyltin and TPT in seawater and sediment from locations with intense shipping activities and from stormwater or sewage discharge. Overall, organotins are still prevalent in Hong Kong’s marine waters showing that the global convention alone may be inadequate in reducing organotin contamination in a busy international port like Hong Kong. Appropriate management actions should be taken to control the use and release of organotins in Hong Kong and South China. PMID:27176721

  18. Click synthesis of neutral, cationic, and zwitterionic poly(propargyl glycolide)-co-poly(ɛ-caprolactone)-based aliphatic polyesters as antifouling biomaterials.

    PubMed

    Tu, Qin; Wang, Jian-Chun; Liu, Rui; Chen, Yun; Zhang, Yanrong; Wang, Dong-En; Yuan, Mao-Sen; Xu, Juan; Wang, Jinyi

    2013-08-01

    With the development of polymer-based biomaterials, aliphatic polyesters have attracted considerable interest because of their non-toxicity, non-allergenic property, and good biocompatibility. However, the hydrophobic nature and the lack of side chain functionalities of aliphatic polyesters limit their biomedical applications. In this study, we prepared four new polyesters: poly(sulfobetaine methacrylate)-, poly(2-methacryloyloxyethyl phosphotidylcholine)-, poly(ethylene glycol)-, and quaternized poly[(2-dimethylamino)ethyl methacrylate]-grafted poly(propargyl glycolide)-co-poly(ɛ-caprolactone). Their synthesis was conducted through ring-opening polymerization of acetylene-functionalized lactones and subsequent graft of bioactive units using click chemistry. The chemical structures of the polyesters were characterized through nuclear magnetic resonance and Fourier-transform infrared spectroscopy, and their physical properties (including molecular weight, glass transition temperature, and melting point) were determined using gel permeation chromatography and differential scanning calorimetry. For studies on their hydrophilicity, stability, and anti-bioadhesive property, a series of polymeric surfaces of these polyesters was prepared by coating them onto glass substrates. The hydrophilicity and stability of these polyester surfaces were examined by contact angle measurements and attenuated total reflection Fourier-transform infrared spectroscopy. Their anti-bioadhesive property was investigated through protein adsorption, as well as cellular and bacterial adhesion assays. The prepared polyesters showed good hydrophilicity and long-lasting stability, as well as significant anti-fouling property. The newly prepared polyesters could be developed as promising anti-fouling materials with extensive biomedical applications. PMID:23511626

  19. Investigations of inorganic and organic fouling behaviors, antifouling and cleaning strategies for pressure retarded osmosis (PRO) membrane using seawater desalination brine and wastewater.

    PubMed

    Han, Gang; Zhou, Jieliang; Wan, Chunfeng; Yang, Tianshi; Chung, Tai-Shung

    2016-10-15

    By employing seawater desalination brine (SWBr) and wastewater brine (WWBr) as the feed pair, membrane fouling behaviors as well as antifouling and cleaning strategies for the state-of-the-art thin-film composite polyethersulfone (TFC-PES) hollow fiber membrane have been systematically investigated under pressure retarded osmosis (PRO) operations. Fouling on the polyamide selective layer induced by the SWBr draw solution is relatively mild because of the outstanding membrane rejection and the hydration antifouling layer formed by the permeating water. However, using WWBr as the feed causes fast and severe internal concentration polarization (ICP) and fouling within the porous PES substrate, which result in dramatic flux and power density declines. In addition, the PRO fouling upon and within the porous substrate is highly irreversible. Experimental data show that both anti-scalant pretreatment and pH adjustment of WWBr could effectively mitigate inorganic fouling, while increasing feed flow velocity along the substrate surface is ineffective for fouling control. To clean the fouled membranes, hydraulic-pressure induced backwash and flushing with alkaline and NaOCl solutions on the fouled surface are effective strategies to remove foulants and regenerate membranes with a flux recovery of 83-90%. However, osmotic backwash shows low cleaning efficiency in PRO. In summary, a proper combination of feed pretreatment and membrane cleaning strategies has been demonstrated in this study to sustain PRO operations with a high water flux and power density.

  20. Layer-by-layer assembly of graphene oxide on polypropylene macroporous membranes via click chemistry to improve antibacterial and antifouling performance

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen-Bei; Wu, Jing-Jing; Su, Yu; Zhou, Jin; Gao, Yong; Yu, Hai-Yin; Gu, Jia-Shan

    2015-03-01

    Polypropylene is an extensively used membrane material; yet, polypropylene membranes exhibit extremely poor resistance to protein fouling. To ameliorate this issue, graphene oxide (GO) nanosheets were used to modify macroporous polypropylene membrane (MPPM) via layer-by-layer assembly technique through click reaction. First, alkyne-terminated GO was prepared through esterification between carboxyl groups in GO and amide groups in propargylamine; azide-terminated GO was synthesized by the ring-opening reaction of epoxy groups in GO with sodium azide. Second, GO was introduced to the membrane by click chemistry. Characterizations of infrared spectra and X-ray photoelectron spectroscopy confirmed the modification. The sharply decreasing of static water contact angle indicated the improvement of the surface hydrophilicity for GO modified membrane. Introducing GO to the membrane results in a dramatic increase of water flux, improvements in the antifouling characteristics and antibacterial property for the membranes. The pure water flux through the 5-layered GO modified membrane is 1.82 times that through the unmodified one. The water flux restores to 43.0% for the unmodified membrane while to 79.8% for the modified membrane. The relative flux reduction decreases by 32.1% due to GO modification. The antibacterial property was also enhanced by two-thirds. These results demonstrate that the antifouling and antibacterial characteristics can be raised by tethering GO to the membrane surface.

  1. Investigations of inorganic and organic fouling behaviors, antifouling and cleaning strategies for pressure retarded osmosis (PRO) membrane using seawater desalination brine and wastewater.

    PubMed

    Han, Gang; Zhou, Jieliang; Wan, Chunfeng; Yang, Tianshi; Chung, Tai-Shung

    2016-10-15

    By employing seawater desalination brine (SWBr) and wastewater brine (WWBr) as the feed pair, membrane fouling behaviors as well as antifouling and cleaning strategies for the state-of-the-art thin-film composite polyethersulfone (TFC-PES) hollow fiber membrane have been systematically investigated under pressure retarded osmosis (PRO) operations. Fouling on the polyamide selective layer induced by the SWBr draw solution is relatively mild because of the outstanding membrane rejection and the hydration antifouling layer formed by the permeating water. However, using WWBr as the feed causes fast and severe internal concentration polarization (ICP) and fouling within the porous PES substrate, which result in dramatic flux and power density declines. In addition, the PRO fouling upon and within the porous substrate is highly irreversible. Experimental data show that both anti-scalant pretreatment and pH adjustment of WWBr could effectively mitigate inorganic fouling, while increasing feed flow velocity along the substrate surface is ineffective for fouling control. To clean the fouled membranes, hydraulic-pressure induced backwash and flushing with alkaline and NaOCl solutions on the fouled surface are effective strategies to remove foulants and regenerate membranes with a flux recovery of 83-90%. However, osmotic backwash shows low cleaning efficiency in PRO. In summary, a proper combination of feed pretreatment and membrane cleaning strategies has been demonstrated in this study to sustain PRO operations with a high water flux and power density. PMID:27470469

  2. Biotechnology of marine fungi.

    PubMed

    Damare, Samir; Singh, Purnima; Raghukumar, Seshagiri

    2012-01-01

    Filamentous fungi are the most widely used eukaryotes in industrial and pharmaceutical applications. Their biotechnological uses include the production of enzymes, vitamins, polysaccharides, pigments, lipids and others. Marine fungi are a still relatively unexplored group in biotechnology. Taxonomic and habitat diversity form the basis for exploration of marine fungal biotechnology. This review covers what is known of the potential applications of obligate and marine-derived fungi obtained from coastal to the oceanic and shallow water to the deep-sea habitats. Recent studies indicate that marine fungi are potential candidates for novel enzymes, bioremediation, biosurfactants, polysaccharides, polyunsaturated fatty acids and secondary metabolites. Future studies that focus on culturing rare and novel marine fungi, combined with knowledge of their physiology and biochemistry will provide a firm basis for marine mycotechnology. PMID:22222837

  3. ORGANIC CONTAMINANT DISTRIBUTION IN SEDIMENTS, POLYCHAETES (NEREIS VIRENS) AND THE AMERICAN LOBSTER, HOMARUS AMERICANUS IN A LABORATORY FOOD CHAIN EXPERIMENT

    EPA Science Inventory

    A laboratory experiment was conducted to investigate the transfer of organic contaminants from an environmentally contaminated marine sediment through a simple marine food chain. The infaunal polychaete, Nereis virens, was exposed to contaminated sediment collected from the Passa...

  4. Marine Indole Alkaloids

    PubMed Central

    Netz, Natalie; Opatz, Till

    2015-01-01

    Marine indole alkaloids comprise a large and steadily growing group of secondary metabolites. Their diverse biological activities make many compounds of this class attractive starting points for pharmaceutical development. Several marine-derived indoles were found to possess cytotoxic, antineoplastic, antibacterial and antimicrobial activities, in addition to the action on human enzymes and receptors. The newly isolated indole alkaloids of marine origin since the last comprehensive review in 2003 are reported, and biological aspects will be discussed. PMID:26287214

  5. LANGUAGE LABORATORIES.

    ERIC Educational Resources Information Center

    BRUBAKER, CHARLES WILLIAM

    THE USE OF THE LANGUAGE LABORATORY HAS GIVEN MANY THOUSANDS OF INDIVIDUALS GOOD LISTENING AND SPEAKING PRACTICE AND HAS BECOME AN EFFECTIVE LEARNING TOOL. THE BASIC PIECE OF EQUIPMENT OF THE LANGUAGE LABORATORY IS THE TAPE RECORDER-AND-PLAYBACK, DESIGNED TO BE USED WITH AUDIOPASSIVE STUDY, AUDIOACTIVE STUDY, AUDIOACTIVE-COMPARATIVE STUDY, AND…

  6. Learning Laboratory.

    ERIC Educational Resources Information Center

    Hay, Lyn; Callison, Daniel

    2000-01-01

    Considers the school library media center as an information learning laboratory. Topics include information literacy; Kuhlthau's Information Search Process model; inquiry theory and approach; discovery learning; process skills of laboratory science; the information scientist; attitudes of media specialists, teachers, and students; displays and Web…

  7. Characterizing Marine Soundscapes.

    PubMed

    Erbe, Christine; McCauley, Robert; Gavrilov, Alexander

    2016-01-01

    The study of marine soundscapes is becoming widespread and the amount of data collected is increasing rapidly. Data owners (typically academia, industry, government, and defense) are negotiating data sharing and generating potential for data syntheses, comparative studies, analyses of trends, and large-scale and long-term acoustic ecology research. A problem is the lack of standards and commonly agreed protocols for the recording of marine soundscapes, data analysis, and reporting that make a synthesis and comparison of results difficult. We provide a brief overview of the components in a marine soundscape, the hard- and software tools for recording and analyzing marine soundscapes, and common reporting formats. PMID:26610968

  8. Parasites and marine invasions

    USGS Publications Warehouse

    Torchin, M.E.; Lafferty, K.D.; Kuris, A.M.

    2002-01-01

    Introduced marine species are a major environmental and economic problem. The rate of these biological invasions has substantially increased in recent years due to the globalization of the world's economies. The damage caused by invasive species is often a result of the higher densities and larger sizes they attain compared to where they are native. A prominent hypothesis explaining the success of introduced species is that they are relatively free of the effects of natural enemies. Most notably, they may encounter fewer parasites in their introduced range compared to their native range. Parasites are ubiquitous and pervasive in marine systems, yet their role in marine invasions is relatively unexplored. Although data on parasites of marine organisms exist, the extent to which parasites can mediate marine invasions, or the extent to which invasive parasites and pathogens are responsible for infecting or potentially decimating native marine species have not been examined. In this review, we present a theoretical framework to model invasion success and examine the evidence for a relationship between parasite presence and the success of introduced marine species. For this, we compare the prevalence and species richness of parasites in several introduced populations of marine species with populations where they are native. We also discuss the potential impacts of introduced marine parasites on native ecosystems.

  9. [Marine microbial metagenomics: progress and prospect].

    PubMed

    Li, Xiang; Qin, Ling; Dai, Shi-kun; Jiang, Shu-mei; Liu, Zhi-heng

    2007-06-01

    Preliminary statistics showed that there are more than one million species of microbes in marine environments that formed a dynamic genetic reservoir, among which the majority are not revealed and categorized due to barrier in cultivation techniques. However, the situation has changed in recent years because of the rapid development of phylogenetic studies based on small ribosomal RNA and rDNA sequencing independent to standard laboratory cultivation. These changes have significantly altered our understanding about microbial diversity and microbial ecology. In this review, we highlight some of recent progress and innovation in research on microbial diversity, and propose a metagenomic scheme as an alternative to overcome some of the barriers that still remain for exploitation of marine microbial diversity for its enormous potential in pharmaceutical applications. We believe that rapid progress in marine metagenomics allows direct access to the genomes of numerous non-cultivable microorganisms for their associated chemical prosperity.

  10. "Marinating" Our Urban Youth.

    ERIC Educational Resources Information Center

    Ascher, Alan

    1981-01-01

    Describes marine education programs at the elementary and secondary levels in the New York City area. The city's extensive coastline and numerous learning centers comprise one of the richest educational resources in the country for studying the marine environment. (Author/WB)

  11. Marine Attitude Survey

    ERIC Educational Resources Information Center

    Hounshell, Paul B.; Hampton, Carolyn

    This 22-item Marine Attitude Survey was developed for use in elementary/middle schools to measure students' attitudes about various aspects of marine science. Students are asked if they agree, are not sure, or disagree with such items as: (1) the seashore is a fun place to visit; (2) if all sharks were killed, the world would be a better place;…

  12. Monitoring Marine Microbial Fouling

    NASA Technical Reports Server (NTRS)

    Colwell, R.

    1985-01-01

    Two techniques developed for studying marine fouling. Methods originally developed to study fouling of materials used in Space Shuttle solid fuel booster rockets. Methods used to determine both relative fouling rates and efficacy of cleaning methods to remove fouling on various surfaces including paints, metals, and sealants intended for marine use.

  13. Laboratory Tests

    MedlinePlus

    ... Home Medical Devices Products and Medical Procedures In Vitro Diagnostics Lab Tests Laboratory Tests Share Tweet Linkedin ... Approved Home and Lab Tests Find All In Vitro Diagnostic Products and Decision Summaries Since November 2003 ...

  14. Marin Tsunami (video)

    USGS Publications Warehouse

    Filmed and edited by: Loeffler, Kurt; Gesell, Justine

    2010-01-01

    Tsunamis are a constant threat to the coasts of our world. Although tsunamis are infrequent along the West coast of the United States, it is possible and necessary to prepare for potential tsunami hazards to minimize loss of life and property. Community awareness programs are important, as they strive to create an informed society by providing education and training. The Marin coast could be struck by a tsunami. Whether you live in Marin County, visit the beaches, or rent or own a home near the coast, it is vital to understand the tsunami threat and take preparation seriously. Marin Tsunami tells the story of what several West Marin communities are doing to be prepared. This video was produced by the US Geological Survey (USGS) in cooperation with the Marin Office of Emergency Services.

  15. Neurotoxic marine poisoning.

    PubMed

    Isbister, Geoffrey K; Kiernan, Matthew C

    2005-04-01

    Marine poisoning results from the ingestion of marine animals that contain toxic substances and causes substantial illness in coastal regions. Three main clinical syndromes of marine poisoning have important neurological symptoms-ciguatera, tetrodotoxin poisoning, and paralytic shellfish poisoning. Ciguatera is the commonest syndrome of marine poisoning and is characterised by moderate to severe gastrointestinal effects (vomiting, diarrhoea, and abdominal cramps) and neurological effects (myalgia, paraesthesia, cold allodynia, and ataxia), but is rarely lethal. Tetrodotoxin poisoning and paralytic shellfish poisoning are less common but have a higher fatality rate than ciguatera. Mild gastrointestinal effects and a descending paralysis are characteristic of these types of poisoning. In severe poisoning, paralysis rapidly progresses to respiratory failure. Diagnosis of all types of marine poisoning is made from the circumstances of ingestion (type of fish and location) and the clinical effects. Because there are no antidotes, supportive care, including mechanical ventilation in patients with severe paralysis, is the mainstay of treatment.

  16. Mariner 9 polarimetry of Phobos and Deimos

    NASA Technical Reports Server (NTRS)

    Noland, M.; Veverka, J.; Pollack, J. B.

    1973-01-01

    Polarization measurements were carried out in orange light for Phobos and Deimos on the Mariner 9 A-camera system at large phase angles. The presence of regoliths on the satellites is indicated by a comparison of the measurement data with the results of laboratory measurements on powdered rock samples. Four different sets of assumptions concerning the filter factors were taken into account in the data reduction process.

  17. Attachment of marine fasteners utilizing portable friction stud welding systems

    SciTech Connect

    Grey, I.C.; Steel, R.L.

    1995-10-01

    A fast, economical and structurally reliable method for attachment of fasteners in marine environments has long been sought by engineers and marine structure owners. A new portable friction stud welding system is one possible solution. The paper will present an explanation of friction welding, a description of portable friction stud welding equipment, as well as laboratory test results evidencing the integrity of this method of material joining. A method of providing improved electrical continuity is also presented.

  18. Marine fragrance chemistry.

    PubMed

    Hügel, Helmut M; Drevermann, Britta; Lingham, Anthony R; Marriott, Philip J

    2008-06-01

    The main marine message in perfumery is projected by Calone 1951 (7-methyl-2H-1,5-benzodioxepin-3(4H)-one). Kraft (Givaudan) and Gaudin (Firmenich) further maximized the marine fragrance molecular membership by extending the carbon chain of the 7-Me group. Our research targeted the polar group of the benzodioxepinone parent compound to investigate how this region of molecular makeup resonates with the dominant marine fragrance of the Calone 1951 structure. The olfactory evaluation of analogues prepared by chemical modification or removal of the CO group resulted in the introduction of aldehydic, sweet and floral-fruity notes with a diluted/diminished potency of the marine odor. To further analyze the olfactory properties of benzodioxepinones containing a diverse range of aromatic ring substituents, a novel synthesis route was developed. We found that a 7-alkyl group in Calone 1951 was essential for the maintenance of the significant marine odor characteristic, and our studies support the concept that the odorant structure occupying the hydrophobic binding pocket adjacent to the aromatic ring-binding site of the olfactory receptor is pivotal in the design and discovery of more potent and characteristic marine fragrances. How the structure of benzodioxepinones connects to marine sea-breeze fragrances is our continuing challenging research focus at the chemistry-biology interface.

  19. Analysis of long-term mechanical grooming on large-scale test panels coated with an antifouling and a fouling-release coating.

    PubMed

    Hearin, John; Hunsucker, Kelli Z; Swain, Geoffrey; Stephens, Abraham; Gardner, Harrison; Lieberman, Kody; Harper, Michael

    2015-01-01

    Long-term grooming tests were conducted on two large-scale test panels, one coated with a fluorosilicone fouling-release (FR) coating, and one coated with a copper based ablative antifouling (AF) coating. Mechanical grooming was performed weekly or bi-weekly using a hand operated, electrically powered, rotating brush tool. The results indicate that weekly grooming was effective at removing loose or heavy biofilm settlement from both coatings, but could not prevent the permanent establishment of low-profile tenacious biofilms. Weekly grooming was very effective at preventing macrofouling establishment on the AF coating. The effectiveness of weekly grooming at preventing macrofouling establishment on the FR coating varied seasonally. The results suggest that frequent mechanical grooming is a viable method to reduce the fouling rating of ships' hulls with minimal impact to the coating. Frequent grooming could offer significant fuel savings while reducing hull cleaning frequencies and dry dock maintenance requirements.

  20. Direct patterning of probe proteins on an antifouling PLL-g-dextran coating for reducing the background signal of fluorescent immunoassays.

    PubMed

    Egea, Amandine M C; Trévisiol, Emmanuelle; Vieu, Christophe

    2013-12-01

    The limit of detection of advanced immunoassays, biochips and micro/nano biodetection devices is impacted by the non-specific adsorption of target molecules at the sample surface. In this paper, we present a simple and versatile low cost method for generating active surfaces composed of antibodies arrays surrounded by an efficient anti-fouling layer, capable to decrease drastically the fluorescence background signal obtained after interaction with a solution to be analyzed. The technological process involves the direct micro-contact printing of the antibodies probe molecules on a pre-coated PLL-g-dextran thin layer obtained by contact printing using a flat PDMS stamp. Compared to other blocking strategies (ethanolamine blocking treatment, PLL-g-PEG incubation, PLL-g-dextran incubation, printing on a plasma-deposited PEO layer), our surface chemistry method is more efficient for reducing non-specific interactions responsible for a degraded signal/noise ratio.