Science.gov

Sample records for marine coastal communities

  1. Short-term degradation of terrestrial DOM in the coastal ocean: Implications for nutrient subsidies and marine microbial community structure

    NASA Astrophysics Data System (ADS)

    Oliver, A. A.; Tank, S. E.; Kellogg, C.

    2015-12-01

    The export of riverine dissolved organic matter (DOM) to the coastal ocean provides an important link between terrestrial and aquatic ecosystems. The coastal temperate rainforests of British Columbia contain extensive freshwater networks that export significant amounts of water and DOM to the ocean, representing significant cross-system hydrologic and biogeochemical linkages. To better understand the importance of these linkages and implications for ecosystem structure and function, we used an experimental approach to investigate the role of microbial and photodegradation transformations of DOM exported from small coastal catchments to the marine environment. At two time periods (August 2014, March 2015), stream water from the outlets of two coastal watersheds was filtered (<0.2 μm), and treated with microbial inoculums from across a salinity gradient (i.e., freshwater, estuarine, and marine). Treatments were incubated in the ocean under light and dark conditions for 8 days. At 0, 3 and 8 days, samples were analyzed for DOC, TDN, DIN, and DON. Changes in DOM composition were determined with optical characterization techniques such as absorbance (SUVA, S, Sr) and fluorescence (EEM). Microbial community response was measured using cell counts and DNA/RNA amplicon sequencing to determine changes in bacterial abundance and community composition. General patterns indicated that microbial communities from the high salinity treatment (i.e. most marine) were the most effective at utilizing freshwater DOM, especially under light conditions. In some treatments, DOM appeared as a potential source of inorganic nitrogen with corresponding shifts in microbial community composition. Incubations using inoculum from low and mid salinity levels demonstrated smaller changes, indicating that DOM exported from these streams may not be extensively utilized until exposed to higher salinity environments further from stream outlets. These results suggest a role for terrestrial sourced

  2. Effect of physical sediments reworking on hydrocarbon degradation and bacterial community structure in marine coastal sediments.

    PubMed

    Duran, Robert; Bonin, Patricia; Jezequel, Ronan; Dubosc, Karine; Gassie, Claire; Terrisse, Fanny; Abella, Justine; Cagnon, Christine; Militon, Cecile; Michotey, Valérie; Gilbert, Franck; Cuny, Philippe; Cravo-Laureau, Cristiana

    2015-10-01

    The present study aimed to examine whether the physical reworking of sediments by harrowing would be suitable for favouring the hydrocarbon degradation in coastal marine sediments. Mudflat sediments were maintained in mesocosms under conditions as closer as possible to those prevailing in natural environments with tidal cycles. Sediments were contaminated with Ural blend crude oil, and in half of them, harrowing treatment was applied in order to mimic physical reworking of surface sediments. Hydrocarbon distribution within the sediment and its removal was followed during 286 days. The harrowing treatment allowed hydrocarbon compounds to penetrate the first 6 cm of the sediments, and biodegradation indexes (such as n-C18/phytane) indicated that biodegradation started 90 days before that observed in untreated control mesocosms. However, the harrowing treatment had a severe impact on benthic organisms reducing drastically the macrofaunal abundance and diversity. In the harrowing-treated mesocosms, the bacterial abundance, determined by 16S rRNA gene Q-PCR, was slightly increased; and terminal restriction fragment length polymorphism (T-RFLP) analyses of 16S rRNA genes showed distinct and specific bacterial community structure. Co-occurrence network and canonical correspondence analyses (CCA) based on T-RFLP data indicated the main correlations between bacterial operational taxonomic units (OTUs) as well as the associations between OTUs and hydrocarbon compound contents further supported by clustered correlation (ClusCor) analysis. The analyses highlighted the OTUs constituting the network structural bases involved in hydrocarbon degradation. Negative correlations indicated the possible shifts in bacterial communities that occurred during the ecological succession.

  3. Quorum quenching in cultivable bacteria from dense marine coastal microbial communities.

    PubMed

    Romero, Manuel; Martin-Cuadrado, Ana-Belen; Roca-Rivada, Arturo; Cabello, Ana María; Otero, Ana

    2011-02-01

    Acylhomoserine lactone (AHLs)-mediated quorum-sensing (QS) processes seem to be common in the marine environment and among marine pathogenic bacteria, but no data are available on the prevalence of bacteria capable of interfering with QS in the sea, a process that has been generally termed 'quorum quenching' (QQ). One hundred and sixty-six strains isolated from different marine dense microbial communities were screened for their ability to interfere with AHL activity. Twenty-four strains (14.4%) were able to eliminate or significantly reduce N-hexanoyl-l-homoserine lactone activity as detected by the biosensor strain Chromobacterium violaceum CV026, a much higher percentage than that reported for soil isolates, which reinforces the ecological role of QS and QQ in the marine environment. Among these, 15 strains were also able to inhibit N-decanoyl-l-homoserine lactone activity and all of them were confirmed to enzymatically inactivate the AHL signals by HPLC-MS. Active isolates belonged to nine different genera of prevalently or exclusively marine origin, including members of the Alpha- and Gammaproteobacteria (8), Actinobacteria (2), Firmicutes (4) and Bacteroidetes (1). Whether the high frequency and diversity of cultivable bacteria with QQ activity found in near-shore marine isolates reflects their prevalence among pelagic marine bacterial communities deserves further investigation in order to understand the ecological importance of AHL-mediated QS and QQ processes in the marine environment.

  4. How does EPA help to improve fisheries, marine life, and coastal communities?

    EPA Science Inventory

    The U.S. Environmental Protection Agency has several roles in protecting and restoring coastal habitats and communities – through policy, regulation, assistance, and research. The agency’s mandates and actions promote clean air and clean water, control uses and disposal of toxic ...

  5. Metagenome Sequencing of a Coastal Marine Microbial Community from Monterey Bay, California

    DOE PAGES

    Mueller, Ryan S.; Bryson, Sam; Kieft, Brandon; ...

    2015-04-30

    Heterotrophic microbes are critical components of aquatic food webs. Linkages between populations and the substrates they utilize are not well defined. Here we present the metagenome of microbial communities from the coastal Pacific Ocean exposed to various nutrient additions in order to better understand substrate utilization and partitioning in this environment.

  6. Submarine groundwater discharges create unique benthic communities in a coastal sandy marine environment

    NASA Astrophysics Data System (ADS)

    Leitão, Francisco; Encarnação, João; Range, Pedro; Schmelz, Rüdiger M.; Teodósio, Maria A.; Chícharo, Luís

    2015-09-01

    In this study we assessed the small-scale effects of submarine groundwater discharges (SGD) on macrofaunal assemblages associated with shallow sandy sediments along the south coast of Portugal. Corer samples were collected in a (1) subtidal seep, (2) at the edge of the seep (periphery) and (3) in the surrounding area. Community structure varied across areas, with diversity, species richness and evenness generally low at seep relatively to the surrounding area. Community composition within the seep was reduced to a small number of taxa, although total abundance was similar between seeps and surrounding areas. The seep was characterized by a distinct hydrological environment, with lower salinity and pH, relative to the surroundings sandy areas. More than 93% of the benthic macrofauna in the seep was dominated by Lumbricillus lineatus (enchytraeid oligochaetes). This study is the first to record the presence of this euryaline species in Portuguese marine waters. In the surrounding area Spionidae Polychaetes and Bathyporeia sp. (Amphipoda) were the most frequent and abundant taxa. These findings provide evidence for a direct association between SGD effect and the composition of benthic marine assemblages. The patchy habitat created by groundwater seep allowed euryhaline species with short and fast recruitment times to occur in a fully marine environment. Whether this pattern is consistent, or only occurs when smooth favorable sea conditions are not superimposed on the groundwater effect remains uncertain.

  7. Dynamics of marine bacterial community diversity of the coastal waters of the reefs, inlets, and wastewater outfalls of southeast Florida.

    PubMed

    Campbell, Alexandra M; Fleisher, Jay; Sinigalliano, Christopher; White, James R; Lopez, Jose V

    2015-06-01

    Coastal waters adjacent to populated southeast Florida possess different habitats (reefs, oceanic inlets, sewage outfalls) that may affect the composition of their inherent microbiomes. To determine variation according to site, season, and depth, over the course of 1 year, we characterized the bacterioplankton communities within 38 nearshore seawater samples derived from the Florida Area Coastal Environment (FACE) water quality survey. Six distinct coastal locales were profiled - the Port Everglades and Hillsboro Inlets, Hollywood and Broward wastewater outfalls, and associated reef sites using culture-independent, high-throughput pyrosequencing of the 16S rRNA V4 region. More than 227,000 sequences helped describe longitudinal taxonomic profiles of marine bacteria and archaea. There were 4447 unique operational taxonomic units (OTUs) identified with a mean OTU count of 5986 OTUs across all sites. Bacterial taxa varied significantly by season and by site using weighted and unweighted Unifrac, but depth was only supported by weighted Unifrac, suggesting a change due to presence/absence of certain OTUs. Abundant microbial taxa across all samples included Synechococcus, Pelagibacteraceae, Bacteroidetes, and various Proteobacteria. Unifrac analysis confirmed significant differences at inlet sites relative to reef and outfalls. Inlet-based bacterioplankton significantly differed in greater abundances of Rhodobacteraceae and Cryomorphaceae, and depletion of SAR406 sequences. This study also found higher counts of Firmicutes, Chloroflexi, and wastewater associated SBR1093 bacteria at the outfall and reef sites compared to inlet sites. This study profiles local bacterioplankton populations in a much broader context, beyond culturing and quantitative PCR, and expands upon the work completed by the National Oceanic and Atmospheric Administration FACE program.

  8. Dynamics of marine bacterial community diversity of the coastal waters of the reefs, inlets, and wastewater outfalls of southeast Florida

    PubMed Central

    Campbell, Alexandra M; Fleisher, Jay; Sinigalliano, Christopher; White, James R; Lopez, Jose V

    2015-01-01

    Coastal waters adjacent to populated southeast Florida possess different habitats (reefs, oceanic inlets, sewage outfalls) that may affect the composition of their inherent microbiomes. To determine variation according to site, season, and depth, over the course of 1 year, we characterized the bacterioplankton communities within 38 nearshore seawater samples derived from the Florida Area Coastal Environment (FACE) water quality survey. Six distinct coastal locales were profiled – the Port Everglades and Hillsboro Inlets, Hollywood and Broward wastewater outfalls, and associated reef sites using culture-independent, high-throughput pyrosequencing of the 16S rRNA V4 region. More than 227,000 sequences helped describe longitudinal taxonomic profiles of marine bacteria and archaea. There were 4447 unique operational taxonomic units (OTUs) identified with a mean OTU count of 5986 OTUs across all sites. Bacterial taxa varied significantly by season and by site using weighted and unweighted Unifrac, but depth was only supported by weighted Unifrac, suggesting a change due to presence/absence of certain OTUs. Abundant microbial taxa across all samples included Synechococcus, Pelagibacteraceae, Bacteroidetes, and various Proteobacteria. Unifrac analysis confirmed significant differences at inlet sites relative to reef and outfalls. Inlet-based bacterioplankton significantly differed in greater abundances of Rhodobacteraceae and Cryomorphaceae, and depletion of SAR406 sequences. This study also found higher counts of Firmicutes, Chloroflexi, and wastewater associated SBR1093 bacteria at the outfall and reef sites compared to inlet sites. This study profiles local bacterioplankton populations in a much broader context, beyond culturing and quantitative PCR, and expands upon the work completed by the National Oceanic and Atmospheric Administration FACE program. PMID:25740409

  9. USGS St. Petersburg Coastal and Marine Science Center

    USGS Publications Warehouse

    2011-01-01

    Extreme storms, sea-level rise, and the health of marine communities are some of the major societal and environmental issues impacting our Nation's marine and coastal realm. The U.S. Geological Survey (USGS) in St. Petersburg, Fla., investigates processes related to these ecosystems and the societal implications of natural hazards and resource sustainability. As one of three centers nationwide conducting research within the USGS Coastal and Marine Geology Program, the center is integral towards developing an understanding of physical processes that will contribute to rational decisions regarding the use and stewardship of national coastal and marine environments.

  10. Ecological effects of a major oil spill on panamanian coastal marine communities.

    PubMed

    Jackson, J B; Cubit, J D; Keller, B D; Batista, V; Burns, K; Caffey, H M; Caldwell, R L; Garrity, S D; Getter, C D; Gonzalez, C; Guzman, H M; Kaufmann, K W; Knap, A H; Levings, S C; Marshall, M J; Steger, R; Thompson, R C; Weil, E

    1989-01-06

    In 1986 more than 8 million liters of crude oil spilled into a complex region of mangroves, seagrasses, and coral reefs just east of the Caribbean entrance to the Panama Canal. This was the largest recorded spill into coastal habitats in the tropical Americas. Many population of plants and animals in both oiled and unoiled sites had been studied previously, thereby providing an unprecedented measure of ecological variation before the spill. Documenation of the spread of oil and its biological begun immediately. Intertidal mangroves, algae, and associated invertebrates were covered by oil and died soon after. More surprisingly, there was also extensive mortality of shallow subtidal reef corals and infauna of seagrass beds. After 1.5 years only some organisms in areas exposed to the open sea have recovered.

  11. Ecological effects of a major oil spill on Panamanian coastal marine communities

    SciTech Connect

    Jackson, J.B.C.; Cubit, J.D.; Keller, B.D.; Batista, V.; Burns, K.; Caffey, H.M.; Caldwell, R.L.; Garrity, S.D.; Getter, C.D.; Gonzalez, C.; Guzman, H.M.; Kaufmann, K.W.; Knap, A.H.; Levings, S.C.; Marshall, M.J.; Steger, R.; Thompson, R.C.; Weil, E. )

    1989-01-06

    In 1986 more than 8 million liters of crude oil spilled into a complex region of mangroves, seagrasses, and coral reefs just east of the Caribbean entrance to the Panama Canal. This was the largest recorded spill into coastal habitats in the tropical Americas. Many populations of plants and animals in both oiled and unoiled sites had been studied previously, thereby providing an unprecedented measure of ecological variation before the spill. Documentation of the spread of oil and its biological effects begun immediately. Intertidal mangroves, seagrasses, algae, and associated invertebrates were covered by oil and died soon after. More surprisingly, there was also extensive mortality of shallow subtidal reef corals and infauna of seagrass beds. After 1.5 years only some organisms in areas exposed to the open sea have recovered.

  12. Bacterioplankton: a sink for carbon in a coastal marine plankton community

    SciTech Connect

    Ducklow, H.W.; Purdie, D.A.; Williams, P.J.LeB.; Davis, J.M.

    1986-05-16

    Recent determinations of high production rates (up to 30% of primary production in surface waters) implicate free-living marine bacterioplankton as a link in a microbial loop that supplements phytoplankton as food for herbivores. An enclosed water column of 300 cubic meters was used to test the microbial loop hypothesis by following the fate of carbon-14-labeled bacterioplankton for over 50 days. Only 2% of the label initially fixed from carbon-14-labeled glucose by bacteria was present in larger organisms after 13 days, at which time about 20% of the total label added remained in the particulate fraction. Most of the label appeared to pass directly from particles smaller than 1 micrometer (heterotrophic bacterioplankton and some bacteriovores) to respired labeled carbon dioxide or to regenerated dissolved organic carbon-14. Secondary (and, by implication, primary) production by organisms smaller than 1 micrometer may not be an important food source in marine food chains. Bacterioplankton can be a sink for carbon in planktonic food webs and may serve principally as agents of nutrient regeneration rather than as food.

  13. USGS Western Coastal and Marine Geology Team

    USGS Publications Warehouse

    Johnson, Sam; Gibbons, Helen

    2007-01-01

    The Western Coastal and Marine Geology Team of the U.S. Geological Survey (USGS) studies the coasts of the western United States, including Alaska and Hawai‘i. Team scientists conduct research, monitor processes, and develop information about coastal and marine geologic hazards, environmental conditions, habitats, and energy and mineral resources. This information helps managers at all levels of government and in the private sector make informed decisions about the use and protection of national coastal and marine resources.

  14. Assessing anthropogenic pressures on coastal marine ecosystems using stable CNS isotopes: State of the art, knowledge gaps, and community-scale perspectives

    NASA Astrophysics Data System (ADS)

    Mancinelli, Giorgio; Vizzini, Salvatrice

    2015-04-01

    In recent decades, the analysis of carbon, nitrogen and sulfur stable isotopes (SIA) has emerged as a powerful, viable methodology for examining food web structure and dynamics, as well as addressing a number of applied issues. Here, we provide a state-of-the-art review of the use of SIA for assessing anthropogenic pressures on natural ecosystems, in order to establish current knowledge gaps and identify promising applications for evaluating the ecological status of marine coastal waters. Specifically, the potential of SIA to provide food web-scale indicators for estimating cumulative anthropogenic pressures is addressed. The review indicates that the methodology has been used for virtually the whole spectrum of human pressures known to influence marine ecosystems. However, only the effects of chemical pollution, release of dissolved and particulate nutrients, and invasive species have been extensively investigated. For the first two pressures, substantial efforts have been made to implement isotopic quantitative approaches and metrics for inter-system comparisons; however, with the exception of nutrient release, the majority of aquatic studies have been carried out in freshwater systems, and only limited information is available on marine environments. In particular, the effects of invasive species on coastal habitats have received scant attention. Trophic position of indicator species emerges as the isotopic metric most ubiquitously adopted for measuring the impact of anthropogenic pressures. Conversely, the application of other recently implemented metrics, proven to be highly effective in integrating information on the spatial-temporal dynamics of aquatic food webs, is to date still limited. The potential of stable isotope analysis to provide a unifying methodological-theoretical framework for effective, inter-ecosystem comparisons of both single and multiple anthropogenic pressures is emphasised. Additionally, a plea for the implementation and intercalibration

  15. The role of epibenthic predators in structuring the marine invertebrate community of a British coastal salt marsh

    NASA Astrophysics Data System (ADS)

    Frid, C. L. J.; James, R.

    The marine fauna of salt marshes are subjected to predation by birds, tidally feeding flatfish, crabs, prawns and small gobiid fish. The role of these epibenthic predators in structuring the community was investigated using cages to exclude predators. A range of designs of cages and partial cages was employed to control for artefacts due to caging, and sufficient cages were employed so that each cage was only sampled once to prevent the compounding of disturbance due to predation and sampling. Two mesh sizes were employed, a fine mesh excluding epibenthic predators and a coarse mesh allowing access by small crabs, prawns and gobiid fish but excluding birds and larger fish. The exclusion was maintained for 2 years. The presence of any experimental structure had a significant effect on the sedimentary regime within the cage. Epibentic predator exclusion let to an increase in infaunal predator density, but had no significant effect on the infaunal deposit feeders. There was some evidence that predators limit the surface deposit feeding gastropood Hydrobia ulvae during the winter. The gastropod Littorina littorea responded positively to the presence of any caging structure; this may be the result of changes in the availability of food, as the sides of a cage support a diatom flora which this species can exploit. The lack of a response from the infaunal deposit feeders is attributed to their horizontal mobility within the sediment. The possible interactions between epibenthic and infaunal predators are discussed.

  16. Resolving coastal conflicts using marine spatial planning.

    PubMed

    Tuda, Arthur O; Stevens, Tim F; Rodwell, Lynda D

    2014-01-15

    We applied marine spatial planning (MSP) to manage conflicts in a multi-use coastal area of Kenya. MSP involves several steps which were supported by using geographical information systems (GISs), multi-criteria decision analysis (MCDA) and optimization. GIS was used in identifying overlapping coastal uses and mapping conflict hotspots. MCDA was used to incorporate the preferences of user groups and managers into a formal decision analysis procedure. Optimization was applied in generating optimal allocation alternatives to competing uses. Through this analysis three important objectives that build a foundation for future planning of Kenya's coastal waters were achieved: 1) engaging competing stakeholders; 2) illustrating how MSP can be adapted to aid decision-making in multi-use coastal regions; and 3) developing a draft coastal use allocation plan. The successful application of MSP to resolve conflicts in coastal regions depends on the level of stakeholder involvement, data availability and the existing knowledge base.

  17. Diversity, community structure, and bioremediation potential of mercury-resistant marine bacteria of estuarine and coastal environments of Odisha, India.

    PubMed

    Dash, Hirak R; Das, Surajit

    2016-04-01

    Both point and non-point sources increase the pollution status of mercury and increase the population of mercury-resistant marine bacteria (MRMB). They can be targeted as the indicator organism to access marine mercury pollution, besides utilization in bioremediation. Thus, sediment and water samples were collected for 2 years (2010-2012) along Odisha coast of Bay of Bengal, India. Mercury content of the study sites varied from 0.47 to 0.99 ppb irrespective of the seasons of sampling. A strong positive correlation was observed between mercury content and MRMB population (P < 0.05) suggesting the utilization of these bacteria to assess the level of mercury pollution in the marine environment. Seventy-eight percent of the MRMB isolates were under the phylum Firmicutes, and 36 and 31% of them could resist mercury by mer operon-mediated volatilization and mercury biosorption, respectively. In addition, most of the isolates could resist a number of antibiotics and toxic metals. All the MRMB isolates possess the potential of growth and survival at cardinal pH (4-8), temperature (25-37 °C), and salinity (5-35 psu). Enterobacteria repetitive intergenic consensus (ERIC) and repetitive element palindromic PCR (REP-PCR) produced fingerprints corroborating the results of 16S rRNA gene sequencing. Fourier transform infrared (FTIR) spectral analysis also revealed strain-level speciation and phylogenetic relationships.

  18. Spatio-Temporal Variations of Marine Biofilm Communities Colonizing Artificial Substrata Including Antifouling Coatings in Contrasted French Coastal Environments.

    PubMed

    Briand, Jean-François; Barani, Aude; Garnier, Cédric; Réhel, Karine; Urvois, Félix; LePoupon, Christophe; Bouchez, Agnès; Debroas, Didier; Bressy, Christine

    2017-04-03

    Surface colonization in seawater first corresponds to the selection of specific microbial biofilm communities. By coupling flow cytometry, microscopy and high throughput sequencing (HTS, 454 pyrosequencing) with artificial surfaces and environmental analyses, we intend to identify the contribution of biofilm community drivers at two contrasted French sites, one temperate and eutrophic (Lorient, Atlantic coast) and the other at a mesotrophic but highly contaminated bay (Toulon, North-Western Mediterranean Sea). Microbial communities were shaped by high temperatures, salinity and lead at Toulon by but nutrients and DOC at Lorient. Coatings including pyrithione exhibited a significant decrease of their microbial densities except for nanoeukaryotes. Clustering of communities was mainly based on the surface type and secondly the site, whereas seasons appeared of less importance. The in-depth HTS revealed that γ- and α-proteobacteria, but also Bacteroidetes, dominated highly diversified bacterial communities with a relative low β-diversity. Sensitivity to biocides released by the tested antifouling coatings could be noticed at different taxonomic levels: the percentage of Bacteroidetes overall decreased with the presence of pyrithione, whereas the α/γ-proteobacteria ratio decreased at Toulon when increased at Lorient. Small diatom cells (Amphora and Navicula spp.) dominated on all surfaces, whereas site-specific sub-dominant taxa appeared clearly more sensitive to biocides. This overall approach exhibited the critical significance of surface characteristics in biofilm community shaping.

  19. The cost and feasibility of marine coastal restoration.

    PubMed

    Bayraktarov, Elisa; Saunders, Megan I; Abdullah, Sabah; Mills, Morena; Beher, Jutta; Possingham, Hugh P; Mumby, Peter J; Lovelock, Catherine E

    2016-06-01

    Land-use change in the coastal zone has led to worldwide degradation of marine coastal ecosystems and a loss of the goods and services they provide. Restoration is the process of assisting the recovery of an ecosystem that has been degraded, damaged, or destroyed and is critical for habitats where natural recovery is hindered. Uncertainties about restoration cost and feasibility can impede decisions on whether, what, how, where, and how much to restore. Here, we perform a synthesis of 235 studies with 954 observations from restoration or rehabilitation projects of coral reefs, seagrass, mangroves, salt-marshes, and oyster reefs worldwide, and evaluate cost, survival of restored organisms, project duration, area, and techniques applied. Findings showed that while the median and average reported costs for restoration of one hectare of marine coastal habitat were around US$80000 (2010) and US$1600000 (2010), respectively, the real total costs (median) are likely to be two to four times higher. Coral reefs and seagrass were among the most expensive ecosystems to restore. Mangrove restoration projects were typically the largest and the least expensive per hectare. Most marine coastal restoration projects were conducted in Australia, Europe, and USA, while total restoration costs were significantly (up to 30 times) cheaper in countries with developing economies. Community- or volunteer-based marine restoration projects usually have lower costs. Median survival of restored marine and coastal organisms, often assessed only within the first one to two years after restoration, was highest for saltmarshes (64.8%) and coral reefs (64.5%) and lowest for seagrass (38.0%). However, success rates reported in the scientific literature could be biased towards publishing successes rather than failures. The majority of restoration projects were short-lived and seldom reported monitoring costs. Restoration success depended primarily on the ecosystem, site selection, and techniques

  20. Comparison between Atlantic and Pacific Tropical Marine Coastal Ecosystems: Community Structure, Ecological Processes, and Productivity. Results and Scientific Papers of a Unesco/COMAR Workshop (Suva, Fiji, March 24-29, 1986). Unesco Reports in Marine Science 46.

    ERIC Educational Resources Information Center

    Birkeland, Charles, Ed.

    This report presents the Unesco workshop conclusions concerning important differences among tropical seas in terms of ecological processes in coastal marine ecosystems, and the corresponding implications for resource management guidelines. The conclusions result from the presentation and discussion of eight review papers which are included in this…

  1. Comparing marine and terrestrial ecosystems: Implications for the design of coastal marine reserves

    USGS Publications Warehouse

    Carr, M.H.; Neigel, J.E.; Estes, J.A.; Andelman, S.; Warner, R.R.; Largier, J. L.

    2003-01-01

    Concepts and theory for the design and application of terrestrial reserves is based on our understanding of environmental, ecological, and evolutionary processes responsible for biological diversity and sustainability of terrestrial ecosystems and how humans have influenced these processes. How well this terrestrial-based theory can be applied toward the design and application of reserves in the coastal marine environment depends, in part, on the degree of similarity between these systems. Several marked differences in ecological and evolutionary processes exist between marine and terrestrial ecosystems as ramifications of fundamental differences in their physical environments (i.e., the relative prevalence of air and water) and contemporary patterns of human impacts. Most notably, the great extent and rate of dispersal of nutrients, materials, holoplanktonic organisms, and reproductive propagules of benthic organisms expand scales of connectivity among near-shore communities and ecosystems. Consequently, the "openness" of marine populations, communities, and ecosystems probably has marked influences on their spatial, genetic, and trophic structures and dynamics in ways experienced by only some terrestrial species. Such differences appear to be particularly significant for the kinds of organisms most exploited and targeted for protection in coastal marine ecosystems (fishes and macroinvertebrates). These and other differences imply some unique design criteria and application of reserves in the marine environment. In explaining the implications of these differences for marine reserve design and application, we identify many of the environmental and ecological processes and design criteria necessary for consideration in the development of the analytical approaches developed elsewhere in this Special Issue.

  2. Hyperspectral Imaging Sensors and the Marine Coastal Zone

    NASA Technical Reports Server (NTRS)

    Richardson, Laurie L.

    2000-01-01

    Hyperspectral imaging sensors greatly expand the potential of remote sensing to assess, map, and monitor marine coastal zones. Each pixel in a hyperspectral image contains an entire spectrum of information. As a result, hyperspectral image data can be processed in two very different ways: by image classification techniques, to produce mapped outputs of features in the image on a regional scale; and by use of spectral analysis of the spectral data embedded within each pixel of the image. The latter is particularly useful in marine coastal zones because of the spectral complexity of suspended as well as benthic features found in these environments. Spectral-based analysis of hyperspectral (AVIRIS) imagery was carried out to investigate a marine coastal zone of South Florida, USA. Florida Bay is a phytoplankton-rich estuary characterized by taxonomically distinct phytoplankton assemblages and extensive seagrass beds. End-member spectra were extracted from AVIRIS image data corresponding to ground-truth sample stations and well-known field sites. Spectral libraries were constructed from the AVIRIS end-member spectra and used to classify images using the Spectral Angle Mapper (SAM) algorithm, a spectral-based approach that compares the spectrum, in each pixel of an image with each spectrum in a spectral library. Using this approach different phytoplankton assemblages containing diatoms, cyanobacteria, and green microalgae, as well as benthic community (seagrasses), were mapped.

  3. Mapping marine debris across coastal communities in Belize: developing a baseline for understanding the distribution of litter on beaches using geographic information systems.

    PubMed

    Bennett-Martin, Paulita; Visaggi, Christy C; Hawthorne, Timothy L

    2015-10-01

    Monitoring of marine debris (also known as marine litter) is an essential step in the process to eradicate ecological dangers in marine ecosystems caused by humans. This study examines marine debris in the Caribbean country of Belize using geographic information systems (GIS) to develop (1) a detailed data library for use on handheld Global Positioning System (GPS) units and tablets with mobile mapping applications for deployment in the field and (2) a freely available, online mapping portal to share data with Belizeans to encourage future citizen science efforts. Four diverse communities were targeted ranging from larger more populated towns, to smaller villages across central and southern Belize: San Pedro, Caye Caulker, Punta Gorda, and Monkey River. Fieldwork was conducted over 1 month, during which data points were collected in 50-m surveys followed by debris cleanup and removal. Features in our database included material, quantity, item, brand, and condition. Over 6000 pieces of debris were recorded in GIS for further analysis, and 299 gal of debris were removed from the shores of Belize. The most abundant form of debris observed was plastic (commonly bottles) across all locations; plastic comprised 77.6 % of all debris items observed. Through GIS, a detailed snapshot understanding of debris patterns across multiple settings in Belize was documented. Ongoing collaborations with local organizations in Belize have demonstrated significant interest and utility for such GIS approaches in analyzing and managing marine debris. The data, methodology, visual representations, and online mapping platform resulting from this research are a first step in directly supporting local Belizean community advocacy and policy, while contributing to larger institutional strategies for addressing marine debris issues in the Caribbean.

  4. Carbohydrate sources in a coastal marine environment

    NASA Astrophysics Data System (ADS)

    Cowie, Gregory L.; Hedges, John I.

    1984-10-01

    Individual neutral sugars in sediments, sediment trap materials and major biological sources of a coastal marine environment (Dabob Bay, Washington State) were analyzed by capillary gas chromatography of equilibrated isomeric mixtures. Plankton, bacteria, and vascular plant tissues of different types yielded reproducible and biochemically consistent compositional patterns. These patterns, when expressed in simple parameters, allowed distinctions between marine and terrestrial carbohydrate sources as well as among the major different types of vascular plant tissues. Plankton and bacteria, due to their compositional diversity, were not further distinguishable by carbohydrate compositions alone. Carbohydrate compositions of Dabob Bay sediments and sediment trap materials, interpreted using source-indicator parameters, indicate a predominantly marine origin with increased relative input of terrestrially-derived carbohydrates in winter periods of low phytoplankton productivity. Both plankton and grasses are indicated as major carbohydrate sources during spring. Glucose yield enhancement factors, determined by comparative acid pretreatments, confirm the general predominance of α-cellulose-poor marine polysaccharides and increased levels of α-cellulose-rich vascular plant remains in winter sediment trap samples.

  5. Marine and Coastal Resources. Global Issues Education Packet.

    ERIC Educational Resources Information Center

    Holm, Amy E.

    At least 70% of the Earth is covered with water. This packet provides background information on eight areas of concern regarding marine and coastal resources. Considered are: (1) "Coastal Resources"; (2) "Mangroves"; (3) "Coral Reefs"; (4) "Ocean Resources"; (5) "Aquaculture"; (6) "Pollution"; (7) "Marine Debris"; and (8) "The Global Commons."…

  6. Coastal Bacterioplankton Community Dynamics in Response to a Natural Disturbance

    PubMed Central

    Rappé, Michael S.

    2013-01-01

    In order to characterize how disturbances to microbial communities are propagated over temporal and spatial scales in aquatic environments, the dynamics of bacterial assemblages throughout a subtropical coastal embayment were investigated via SSU rRNA gene analyses over an 8-month period, which encompassed a large storm event. During non-perturbed conditions, sampling sites clustered into three groups based on their microbial community composition: an offshore oceanic group, a freshwater group, and a distinct and persistent coastal group. Significant differences in measured environmental parameters or in the bacterial community due to the storm event were found only within the coastal cluster of sampling sites, and only at 5 of 12 locations; three of these sites showed a significant response in both environmental and bacterial community characteristics. These responses were most pronounced at sites close to the shoreline. During the storm event, otherwise common bacterioplankton community members such as marine Synechococcus sp. and members of the SAR11 clade of Alphaproteobacteria decreased in relative abundance in the affected coastal zone, whereas several lineages of Gammaproteobacteria, Betaproteobacteria, and members of the Roseobacter clade of Alphaproteobacteria increased. The complex spatial patterns in both environmental conditions and microbial community structure related to freshwater runoff and wind convection during the perturbation event leads us to conclude that spatial heterogeneity was an important factor influencing both the dynamics and the resistance of the bacterioplankton communities to disturbances throughout this complex subtropical coastal system. This heterogeneity may play a role in facilitating a rapid rebound of regions harboring distinctly coastal bacterioplankton communities to their pre-disturbed taxonomic composition. PMID:23409156

  7. Reducing Vulnerability of Coastal Communities to Coastal Hazards through Building Community Resilience

    NASA Astrophysics Data System (ADS)

    Bhj, Premathilake

    2010-05-01

    Reducing Vulnerability of Coastal Communities to Coastal Hazards through Building Community Resilience B H J Premathilake Coast Conservation Department Sri Lanka Email: bhjprem@yahoo.com This paper contains two parts; Part one describes the comprehensive approach adopted by our project to build social, economical, institutional and environmental resilience of the tsunami affected communities in Sri Lanka to cope with future natural disasters. Community development, Coastal resource management and Disaster management are the three pillars of this model and these were built simultaneously to bring the community into a higher level of resilience to coastal hazards. Second part describes the application of Coastal Community Resilience (CCR) Assessment framework to evaluate the progress achieved by the project in building overall resilience of the communities during its period. It further describes how to estimate the contribution of this specific project for the improved resilience status of the selected communities in a multi stakeholder environment.

  8. Development and validation of an experimental life support system for assessing the effects of global climate change and environmental contamination on estuarine and coastal marine benthic communities.

    PubMed

    Coelho, Francisco J R C; Rocha, Rui J M; Pires, Ana C C; Ladeiro, Bruno; Castanheira, José M; Costa, Rodrigo; Almeida, Adelaide; Cunha, Angela; Lillebø, Ana Isabel; Ribeiro, Rui; Pereira, Ruth; Lopes, Isabel; Marques, Catarina; Moreira-Santos, Matilde; Calado, Ricardo; Cleary, Daniel F R; Gomes, Newton C M

    2013-08-01

    An experimental life support system (ELSS) was constructed to study the interactive effects of multiple stressors on coastal and estuarine benthic communities, specifically perturbations driven by global climate change and anthropogenic environmental contamination. The ELSS allows researchers to control salinity, pH, temperature, ultraviolet radiation (UVR), tidal rhythms and exposure to selected contaminants. Unlike most microcosms previously described, our system enables true independent replication (including randomization). In addition to this, it can be assembled using commercially available materials and equipment, thereby facilitating the replication of identical experimental setups in different geographical locations. Here, we validate the reproducibility and environmental quality of the system by comparing chemical and biological parameters recorded in our ELSS with those prevalent in the natural environment. Water, sediment microbial community and ragworm (the polychaete Hediste diversicolor) samples were obtained from four microcosms after 57 days of operation. In general, average concentrations of dissolved inorganic nutrients (NO3 (-) ; NH4 (+) and PO4 (-3) ) in the water column of the ELSS experimental control units were within the range of concentrations recorded in the natural environment. While some shifts in bacterial community composition were observed between in situ and ELSS sediment samples, the relative abundance of most metabolically active bacterial taxa appeared to be stable. In addition, ELSS operation did not significantly affect survival, oxidative stress and neurological biomarkers of the model organism Hediste diversicolor. The validation data indicate that this system can be used to assess independent or interactive effects of climate change and environmental contamination on benthic communities. Researchers will be able to simulate the effects of these stressors on processes driven by microbial communities, sediment and seawater

  9. Smart Growth Implementation Assistance for Coastal Communities

    EPA Pesticide Factsheets

    The page describes the Smart Growth Implementation Assistance for Coastal Communities program and links to reports from projects in: Houston, TX; Marquette, MI; Pamlico County, NC; Porter County, IN; Sussex County, DE; and Wells, ME.

  10. Bacterial diversity in oil-polluted marine coastal sediments.

    PubMed

    Acosta-González, Alejandro; Marqués, Silvia

    2016-04-01

    Marine environments harbour a persistent microbial seed which can be shaped by changes of the environmental conditions such as contamination by petroleum components. Oil spills, together with small but continuous discharges of oil from transportation and recreational activities, are important sources of hydrocarbon pollution within the marine realm. Consequently, prokaryotic communities have become well pre-adapted toward oil pollution, and many microorganisms that are exposed to its presence develop an active degradative response. The natural attenuation of oil pollutants, as has been demonstrated in many sites, is modulated according to the intrinsic environmental properties such as the availability of terminal electron acceptors and elemental nutrients, together with the degree of pollution and the type of hydrocarbon fractions present. Whilst dynamics in the bacterial communities in the aerobic zones of coastal sediments are well characterized and the key players in hydrocarbon biodegradation have been identified, the subtidal ecology of the anaerobic community is still not well understood. However, current data suggest common patterns of response in these ecosystems.

  11. PREFACE: MARINE AND COASTAL APPLICATIONS IN LANDSCAPE ECOLOGY

    EPA Science Inventory

    Landscape ecology traditionally has been limited to the study of terrestrial systems; however, the questions and methods defining the science are equally relevant for marine and coastal systems. The reciprocal relationship between spatial pattern and ecological processes and the...

  12. Coastal and Marine Geology Program video and photograph portal

    USGS Publications Warehouse

    Golden, Nadine E.; Ackerman, Seth D.

    2015-01-01

    Search all Coastal and Marine Geology Program imagery by selecting "Explore Data Layers." Or select Pacific, Atlantic, or Gulf Coast to enter the portal by region. Or start with the tutorial then dive in!

  13. 75 FR 51838 - Public Review of Draft Coastal and Marine Ecological Classification Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... and Marine Ecological Classification Standard AGENCY: Department of the Interior, U.S. Geological Survey. ACTION: Notice; request for comments on draft Coastal and Marine Ecological Classification... Coastal and Marine Ecological Classification Standard (CMECS). CMECS provides a means of...

  14. Feeding type affects microplastic ingestion in a coastal invertebrate community.

    PubMed

    Setälä, Outi; Norkko, Joanna; Lehtiniemi, Maiju

    2016-01-15

    Marine litter is one of the problems marine ecosystems face at present, coastal habitats and food webs being the most vulnerable as they are closest to the sources of litter. A range of animals (bivalves, free swimming crustaceans and benthic, deposit-feeding animals), of a coastal community of the northern Baltic Sea were exposed to relatively low concentrations of 10 μm microbeads. The experiment was carried out as a small scale mesocosm study to mimic natural habitat. The beads were ingested by all animals in all experimental concentrations (5, 50 and 250 beads mL(-1)). Bivalves (Mytilus trossulus, Macoma balthica) contained significantly higher amounts of beads compared with the other groups. Free-swimming crustaceans ingested more beads compared with the benthic animals that were feeding only on the sediment surface. Ingestion of the beads was concluded to be the result of particle concentration, feeding mode and the encounter rate in a patchy environment.

  15. The Impact of Marine Organic Emissions on Coastal Air Quality of the Western US

    NASA Astrophysics Data System (ADS)

    Gantt, B.; Meskhidze, N.; Carlton, A. G.

    2009-12-01

    Several studies have shown that organic carbon aerosols (OC) are a major component of aerosols found in the marine boundary layer (MBL). Two distinct sources for these aerosols have been isolated using vertical gradients: 1) water insoluble OC aerosolized through bubble bursting of the organic surface layer, and 2) water soluble OC produced primarily from the oxidation of biogenic volatile organic compounds (BVOC) to form secondary organic aerosols (SOA). Additionally, these marine-source BVOC can also participate in ozone formation in coastal urban areas with high NOx concentrations. At the present, there has been little work quantifying the impact of marine BVOC emissions on coastal air quality, despite many coastal urban areas having some of the world’s most polluted air. In this work, we examine the impact of marine biogenic emissions to air quality over the Pacific coast of the US. Using the Community Multiscale Air Quality (CMAQ) model Version 4.7, we simulate both marine primary organic aerosols and SOA formed from phytoplankton-emitted isoprene. The CMAQ model simulations are performed for the months of June, July, and August 2005 over a domain including the western US at a horizontal resolution of 12 × 12 km2. A combination of remotely sensed data, laboratory measurements, and model meteorology are used to calculate the marine biogenic emissions, with marine isoprene added offline and primary OC simulated online. Our preliminary results show small increases in the surface concentrations of ozone and particulate matter less than 2.5 µm (PM2.5) near the coast when marine organic emissions are added. For coastal urban areas like Los Angeles and San Francisco, CA, average ozone concentrations increase ~0.1-0.2%, while PM2.5 concentrations increase up to 3% across much of the Pacific coastline. Organic aerosols with a marine source account for up to 50% (0.15 µg m-3) of the simulated average surface OC concentration over the open ocean, and contribute up

  16. Climate warming and estuarine and marine coastal ecosystems

    SciTech Connect

    Kennedy, V.S.

    1994-12-31

    Estuaries are physically controlled, resilient coastal ecosystems harboring environmentally tolerant species in diluted seawater. Marine coastal systems are less stressed physically and contain some environmentally less tolerant species. Both systems are biologically productive and economically significant. Because of their complex structure and function, it is difficult to predict accurately the effects of climate change, but some broad generalizations can be made. If climate warming occurs, it will raise sea-level, heat shallow waters, and modify precipitation, wind, and water circulation patterns. Rapid sea-level rise could cause the loss of salt marshes, mangrove swamps, and coral reefs, thus diminishing the ecological roles of these highly productive systems. Warmer waters could eliminate heat-sensitive species from part of their geographical range while allowing heat-tolerant species to expand their range, depending on their ability to disperse. Most thermally influenced losses of species will probably only be local, but changed distributions may lead to changed community function. It is more difficult to predict the effects of modified precipitation, wind, and water circulation patterns, but changes could affect organisms dependent on such patterns for food production (e.g., in upwelling regions) or for retention in estuaries. Aquacultural and fishery-related enterprises would be affected negatively in some regions and positively in others. 73 refs.

  17. Seagrasses and the Coastal Marine Environment

    ERIC Educational Resources Information Center

    Phillips, Ronald C.

    1978-01-01

    Coastal ecosystems are the most highly productive in the world. This article discusses seagrasses, major coastal producers, and provides information on their ecology, productivity, position in food chains, and role in sediment stabilization. Recent attempts to restore seagrasses in areas of massive kills are described. (MA)

  18. Marine geology and oceanography of Arabian Sea and coastal Pakistan

    SciTech Connect

    Haq, B.U.; Milliman, J.D.

    1985-01-01

    This volume is a collection of papers presented at the first US-Pakistan workshop in marine science held in Karachi, Pakistan, in November 1982. Of the twenty-four contributions in this book, fourteen cover topics specific to the Arabian Sea-coastal Pakistan region. These include six papers on the geology, tectonics, and petroleum potential of Pakistan, four papers on sedimentary processes in the Indus River delta-fan complex, and four papers on the biological oceanography of the Arabian Sea and coastal Pakistan. The additional ten papers are overviews of shelf sedimentation processes, paleoceanography, the marine nutrient cycle, and physical and chemical oceanography.

  19. Coastal Capers: A Marine Education Primer.

    ERIC Educational Resources Information Center

    Spence, Lundie; Cox, Vivian Barbee

    As a part of the University of North Carolina Sea Grant Marine Education Manual series, this document is intended to provide elementary grade teachers with activities (or capers) that introduce students to the marine environment. It may also be used with remedial or special education students, and by youth group leaders in such organizations as…

  20. Marine Occupations in the Texas Coastal Zone.

    ERIC Educational Resources Information Center

    McKinnerney, Beryl; Clark, Donald L.

    Marine career information is provided, intended for use by high school students, counselors, teachers, and curriculum developers. Material was gathered from a review of occupational publications, including extended use of the "Dictionary of Occupational Titles" (D.O.T.), and from interviews of persons employed in marine occupations in…

  1. The coastal marine Tardigrada of the Americas.

    PubMed

    Miller, William R; Perry, Emma S

    2016-06-20

    The Western Hemisphere or the New World, also known as the Americas (North, Central and South America, associated islands and included seas) have historically been divided into two Realms, the Nearctic and Neotropical based on terrestrial biogeography. The coasts of these two terrestrial realms are bordered by six marine realms, 14 marine provinces and 67 marine ecoregions. From current literature, a comprehensive list of the marine tardigrade fauna from the Americas is presented. Data on marine tardigrades were obtained from 385 published Records of the Occurrence (RoO) of a species, their location, tidal zone, and the substrates from which they were reported. Authors' identifications were accepted at face value unless subsequently amended. Thirty genera and 82 species or subspecies are reported from the Americas; 49 species are documented from margins of the terrestrial Nearctic realm (North America) and 48 from terrestrial Neotropical realm (South America) with only 17 species occurring in both. We define cosmopolitan distribution for marine tardigrades as occurring in or on the margins of five of the seven oceans, only two species of marine tardigrade meets this standard. From the Americas 39 species have been described as new to science, 32 species appear restricted to the hemisphere. Taxa were assigned to marine ecoregions based on adjacent geopolitical units (country, states, provinces, etc.) described in published records. Although tardigrades have been reported from all six marine realms, they are only known from 21 of the 67 ecoregions. Most marine tardigrade sampling in the Americas has focused on near shore substrate (sand, mud, barnacles); for some species no substrates have been reported. The west coasts of both continents have little or no data about tardigrade presence.

  2. THE MAJOR COASTAL COMMUNITIES OF NORTH CAROLINA.

    ERIC Educational Resources Information Center

    Marine Science Project, Beaufort, NC.

    IDENTIFIED IN THIS MARINE SCIENCE HANDBOOK ARE 5 MAJOR TYPES OF NATURAL HABITATS--(1) OPEN BEACH AND ANY OTHER SEAWARD-FACING, UNPROTECTED STRAND, (2) GROINS, JETTIES, PILINGS, AND ROCK BULKHEADS, (3) SAND AND/OR MUD FLAT, (4) SALT MARSH, AND (5) UPLAND COMMUNITIES. EACH HABITAT IS DESCRIBED IN TERMS OF TYPICAL PLANTS AND ANIMALS, ADAPTATIONS, AND…

  3. Ecological impacts of ocean acidification in coastal marine environments (Invited)

    NASA Astrophysics Data System (ADS)

    Harley, C.; Crim, R.; Gooding, R.; Nienhuis, S.; Tang, E.

    2010-12-01

    Rising atmospheric carbon dioxide concentrations are driving rapid and potentially unprecedented reductions in pH and carbonate ion availability in coastal marine environments. This process, known as ocean acidification (OA), has far-reaching implications for the performance and survival of marine organisms, particularly those with calcified shells and skeletons. Here, we highlight the ways in which OA impacts plants and animals in a coastal benthic food web, with an emphasis on what we know and what we don’t know about the ways in which the responses of individual organisms will scale up to long-term changes in community structure. Our system of interest is the rocky shore benthic community that is broadly represented from Alaska through California. Ecologically important species include producers (micro- and macro-algae), grazers (urchins and gastropods), filter feeders (mussels), and predators (sea stars). Although the direct effects of OA on coastal phytoplankton and kelps remain poorly understood, it appears as though elevated CO2 will increase the doubling rate of benthic diatoms. Small changes in food supply, however, may pale in comparison to the direct effects of OA on heavily calcified grazers and filter feeders. Sea urchin and mussel growth are both reduced by increased CO2 in the lab, and decadal-scale reductions in pH are associated with reduced turban snail growth in the field. Although adult abalone growth appears to be unaffected by CO2, larval development is impaired and larval survival is significantly reduced in acidified conditions. In contrast to the negative effects of OA on heavily calcified herbivores and filter feeders, lightly calcified sea stars actually grow faster when CO2 is experimentally increased. The acidification-induced changes described here are likely to result in substantial shifts in the benthic ecosystem. Increasing predation pressure may further reduce the abundance of grazers and filter feeders that are already suffering

  4. Disturbance Increases Microbial Community Diversity and Production in Marine Sediments

    PubMed Central

    Galand, Pierre E.; Lucas, Sabrina; Fagervold, Sonja K.; Peru, Erwan; Pruski, Audrey M.; Vétion, Gilles; Dupuy, Christine; Guizien, Katell

    2016-01-01

    Disturbance strongly impacts patterns of community diversity, yet the shape of the diversity-disturbance relationship remains a matter of debate. The topic has been of interest in theoretical ecology for decades as it has practical implications for the understanding of ecosystem services in nature. One of these processes is the remineralization of organic matter by microorganisms in coastal marine sediments, which are periodically impacted by disturbances across the sediment-water interface. Here we set up an experiment to test the hypothesis that disturbance impacts microbial diversity and function during the anaerobic degradation of organic matter in coastal sediments. We show that during the first 3 weeks of the experiment, disturbance increased both microbial production, derived from the increase in microbial abundance, and diversity of the active fraction of the community. Both community diversity and phylogenetic diversity increased, which suggests that disturbance promoted the cohabitation of ecologically different microorganisms. Metagenome analysis also showed that disturbance increased the relative abundance of genes diagnostic of metabolism associated with the sequential anaerobic degradation of organic matter. However, community composition was not impacted in a systematic way and changed over time. In nature, we can hypothesize that moderate storm disturbances, which impact coastal sediments, promote diverse, and productive communities. These events, rather than altering the decomposition of organic matter, may increase the substrate turnover and, ultimately, remineralization rates. PMID:27994581

  5. The Marine Realms Information Bank, a coastal and marine digital library at USGS

    USGS Publications Warehouse

    Marincioni, Fausto; Lightsom, Frances L.; Riall, Rebecca L.; Linck, Guthrie A.; Aldrich, Thomas C.

    2003-01-01

    The Marine Realms Information Bank (MRIB) is a distributed geolibrary of the USGS Coastal and Marine Geology Program that (1) prioritizes search and display of information by place (location on the Earth's surface), and (2) links information existing in distributed and independent sources. The MRIB aims to provide easy access to knowledge pertaining to the ocean and the associated atmospheric and terrestrial environments to scientists, decision-makers, and the interested members of the public.

  6. Marine kelp: energy resource in the coastal zone

    SciTech Connect

    Ritschard, R.L.; Haven, K.F.

    1980-11-01

    An ocean farm system is described. The analysis of the ocean farm system includes a description of the types of impacts that might occur if large scale operations become available, such as the production of environmental residuals, conflicts with the fishing and shipping industries, and other legal/institutional impacts. A discussion is given of the relationship of the marine biomass concept and coastal zone management plans.

  7. Levoglucosan and phenols in Antarctic marine, coastal and plateau aerosols.

    PubMed

    Zangrando, Roberta; Barbaro, Elena; Vecchiato, Marco; Kehrwald, Natalie M; Barbante, Carlo; Gambaro, Andrea

    2016-02-15

    Due to its isolated location, Antarctica is a natural laboratory for studying atmospheric aerosols and pollution in remote areas. Here, we determined levoglucosan and phenolic compounds (PCs) at diverse Antarctic sites: on the plateau, a coastal station and during an oceanographic cruise. Levoglucosan and PCs reached the Antarctic plateau where they were observed in accumulation mode aerosols (with median levoglucosan concentrations of 6.4 pg m(-3) and 4.1 pg m(-3), and median PC concentrations of 15.0 pg m(-3) and 7.3 pg m(-3)). Aged aerosols arrived at the coastal site through katabatic circulation with the majority of the levoglucosan mass distributed on larger particulates (24.8 pg m(-3)), while PCs were present in fine particles (34.0 pg m(-3)). The low levoglucosan/PC ratios in Antarctic aerosols suggest that biomass burning aerosols only had regional, rather than local, sources. General acid/aldehyde ratios were lower at the coastal site than on the plateau. Levoglucosan and PCs determined during the oceanographic cruise were 37.6 pg m(-3) and 58.5 pg m(-3) respectively. Unlike levoglucosan, which can only be produced by biomass burning, PCs have both biomass burning and other sources. Our comparisons of these two types of compounds across a range of Antarctic marine, coastal, and plateau sites demonstrate that local marine sources dominate Antarctic PC concentrations.

  8. Coastal marine eutrophication assessment: a review on data analysis.

    PubMed

    Kitsiou, Dimitra; Karydis, Michael

    2011-05-01

    A wide variety of data analysis techniques have been applied for quantitative assessment of coastal marine eutrophication. Indicators for assessing eutrophication and frequency distributions have been used to develop scales for characterizing oligotrophy and eutrophication. Numerical classification has also contributed to the assessment of eutrophic trends by grouping sampling sites of similar trophic conditions. Applications of eutrophication assessment based on Principal Component Analysis and Multidimensional Scaling have also been carried out. In addition, the rapid development of Geographical Information Systems has provided the framework for applications of spatial methods and mapping techniques on eutrophication studies. Satellite data have also contributed to eutrophication assessment especially at large scale. Multiple criteria analysis methods can integrate eutrophication variables together with socio-economic parameters providing a holistic approach particularly useful to policy makers. As the current concept of eutrophication problems is to be examined as part of a coastal management approach, more complex quantitative procedures are needed to provide a platform useful for implementation of environmental policy. The present work reviews methods of data analysis used for the assessment of coastal marine eutrophication. The difficulties in applying these methods on data collected from the marine environment are discussed as well as the future perspectives of spatial and multiple criteria choice methods.

  9. Marine aerosol as a possible source for endotoxins in coastal areas.

    PubMed

    Lang-Yona, Naama; Lehahn, Yoav; Herut, Barak; Burshtein, Noa; Rudich, Yinon

    2014-11-15

    Marine aerosols, that are very common in the highly populated coastal cities and communities, may contain biological constituents. Some of this biological fraction of marine aerosols, such as cyanobacteria and plankton debris, may influence human health by inflammation and allergic reactions when inhaled. In this study we identify and compare sources for endotoxins sampled on filters in an on-shore and more-inland site. Filter analysis included endotoxin content, total bacteria, gram-negative bacteria and cyanobacteria genome concentrations as well as ion content in order to identify possible sources for the endotoxins. Satellite images of chlorophyll-a levels and back trajectory analysis were used to further study the cyanobacteria blooms in the sea, close to the trajectory of the sampled air. The highest endotoxin concentrations found in the shoreline site were during winter (3.23±0.17 EU/m(3)), together with the highest cyanobacteria genome (1065.5 genome/m(3)). The elevated endotoxin concentrations were significantly correlated with cyanobacterial levels scaled to the presence of marine aerosol (r=0.90), as well as to chlorophyll-a (r=0.96). Filters sampled further inland showed lower and non-significant correlation between endotoxin and cyanobacteria (r=0.70, P value=0.19), suggesting decrease in marine-originated endotoxin, with possible contributions from other sources of gram-negative non-cyanobacteria. We conclude that marine cyanobacteria may be a dominant contributor to elevated endotoxin levels in coastal areas.

  10. Recreational impacts on the fauna of Australian coastal marine ecosystems.

    PubMed

    Hardiman, Nigel; Burgin, Shelley

    2010-11-01

    This paper reviews recent research into the ecological impacts of recreation and tourism on coastal marine fauna in Australia. Despite the high and growing importance of water-based recreation to the Australian economy, and the known fragility of many Australian ecosystems, there has been relatively limited research into the effects of marine tourism and recreation, infrastructure and activities, on aquatic resources. In this paper we have reviewed the ecological impacts on fauna that are caused by outdoor recreation (including tourism) in Australian coastal marine ecosystems. We predict that the single most potentially severe impact of recreation may be the introduction and/or dispersal of non-indigenous species of marine organisms by recreational vessels. Such introductions, together with other impacts due to human activities have the potential to increasingly degrade recreation destinations. In response, governments have introduced a wide range of legislative tools (e.g., impact assessment, protected area reservation) to manage the recreational industry. It would appear, however, that these instruments are not always appropriately applied.

  11. Intermittent Noise Induces Physiological Stress in a Coastal Marine Fish.

    PubMed

    Nichols, Tye A; Anderson, Todd W; Širović, Ana

    2015-01-01

    Anthropogenic noise in the ocean has increased substantially in recent decades, and motorized vessels produce what is likely the most common form of underwater noise pollution. Noise has the potential to induce physiological stress in marine fishes, which may have negative ecological consequences. In this study, physiological effects of increased noise (playback of boat noise recorded in the field) on a coastal marine fish (the giant kelpfish, Heterostichus rostratus) were investigated by measuring the stress responses (cortisol concentration) of fish to increased noise of various temporal dynamics and noise levels. Giant kelpfish exhibited acute stress responses when exposed to intermittent noise, but not to continuous noise or control conditions (playback of recorded natural ambient sound). These results suggest that variability in the acoustic environment may be more important than the period of noise exposure for inducing stress in a marine fish, and provide information regarding noise levels at which physiological responses occur.

  12. Intermittent Noise Induces Physiological Stress in a Coastal Marine Fish

    PubMed Central

    Nichols, Tye A.; Anderson, Todd W.; Širović, Ana

    2015-01-01

    Anthropogenic noise in the ocean has increased substantially in recent decades, and motorized vessels produce what is likely the most common form of underwater noise pollution. Noise has the potential to induce physiological stress in marine fishes, which may have negative ecological consequences. In this study, physiological effects of increased noise (playback of boat noise recorded in the field) on a coastal marine fish (the giant kelpfish, Heterostichus rostratus) were investigated by measuring the stress responses (cortisol concentration) of fish to increased noise of various temporal dynamics and noise levels. Giant kelpfish exhibited acute stress responses when exposed to intermittent noise, but not to continuous noise or control conditions (playback of recorded natural ambient sound). These results suggest that variability in the acoustic environment may be more important than the period of noise exposure for inducing stress in a marine fish, and provide information regarding noise levels at which physiological responses occur. PMID:26402068

  13. Recombination and microdiversity in coastal marine cyanophages.

    PubMed

    Marston, Marcia F; Amrich, Christopher G

    2009-11-01

    Genetic exchange is an important process in bacteriophage evolution. Here, we examine the role of homologous recombination in the divergence of closely related cyanophage isolates from natural marine populations. Four core-viral genes (coliphage T4 homologues g20, g23, g43 and a putative tail fibre gene) and four viral-encoded bacterial-derived genes (psbA, psbD, cobS and phoH) were analysed for 60 cyanophage isolates belonging to five Rhode Island Myovirus (RIM) strains. Phylogenetic analysis of the 60 concatenated sequences revealed well-resolved sequence clusters corresponding to the RIM strain designations. Viral isolates within a strain shared an average nucleotide identity of 99.3-99.8%. Nevertheless, extensive microdiversity was observed within each cyanophage strain; only three of the 60 isolates shared the same nucleotide haplotype. Microdiversity was generated by point mutations, homologous recombination within a strain, and intragenic recombination between RIM strains. Intragenic recombination events between distinct RIM strains were detected most often in host-derived photosystem II psbA and psbD genes, but were also identified in some major capsid protein g23 genes. Within a strain, more variability was observed at the psbA locus than at any of the other seven loci. Although most of the microdiversity within a strain was neutral, some amino acid substitutions were identified, and thus microdiversity within strains has the potential to influence the population dynamics of viral-host interactions.

  14. Community Involvement in Marine Protected Areas.

    ERIC Educational Resources Information Center

    Kaza, Stephanie

    1988-01-01

    Lists several key concepts in developing successful interpretive programs for marine protected areas with community involvement. Identifies educational tools that help foster community involvement in conservation and management. Cites three model programs. Sets standards and goals for international success including leadership, education,…

  15. An assessment of seabird influence on Arctic coastal benthic communities

    NASA Astrophysics Data System (ADS)

    Zmudczyńska-Skarbek, Katarzyna; Balazy, Piotr; Kuklinski, Piotr

    2015-04-01

    It is well recognized that seabirds, particularly those nesting in coastal colonies, can provide significant nutrient enrichment to Arctic terrestrial ecosystems. However, little is known about the fate of bird-derived nutrients that return to the marine environment and potentially concentrate below the colonies. To attempt to assess the influence of this potential nutrient enrichment of the coastal benthic community, samples of macroalgae, sea urchins (mainly algivores), and hermit crabs (scavengers) were collected at two Arctic localities (Spitsbergen), (1) below a mixed colony of guillemots and kittiwakes, and (2) in an adjacent geomorphologically similar location not influenced by the seabird colony. A much higher nitrogen stable isotope ratio (δ15N) and total nitrogen content were found in terrestrial plants sampled below the colony than away from it. In benthic macroalgae, however, there were no δ15N differences. This might result from the timing of an intensive growth period in macroalgae in late winter/early spring, when there is little or no runoff from the land, and/or ornithogenic nutrients being directly incorporated by phytoplankton. Sea urchins showed higher δ15N and total N in the control site comparing to the colony-influenced area, suggesting differential food sources in their diet and a role of scavenging/carnivory on higher trophic levels there. Opportunistically feeding hermit crabs showed δ15N and total N enrichment below the seabird colony, suggesting dependence on detritus derived from food chains originating from pelagic producers. Our results indicate that seabirds in the Arctic may fertilize coastal benthic communities through pelagic-benthic coupling, while having no direct impact on bottom primary production.

  16. Developing Partnerships with the Community for Coastal ESD

    ERIC Educational Resources Information Center

    Kawabe, Midori; Kohno, Hiroshi; Ikeda, Reiko; Ishimaru, Takashi; Baba, Osamu; Horimoto, Naho; Kanda, Jota; Matsuyam, Masaji; Moteki, Masato; Oshima, Yayoi; Sasaki, Tsuyoshi; Yap, Minlee

    2013-01-01

    Purpose: The purpose of this paper is to draw lessons for developing community-university partnerships from experiences in promoting coastal education for sustainable development (ESD). Design/methodology/approach: Qualitative data collected from two coastal community outreach projects were analyzed. Findings: The outreach projects improved the…

  17. The role of coastal fog in increased viability of marine microbial aerosols

    NASA Astrophysics Data System (ADS)

    Dueker, M.; O'Mullan, G. D.; Weathers, K. C.; Juhl, A. R.; Uriarte, M.

    2011-12-01

    Microbes in the atmosphere (microbial aerosols) play an important role in climate and provide an ecological and biogeochemical connection between oceanic, atmospheric, and terrestrial environments. Despite the ubiquity of these bacteria (concentration estimates range from 1 x 10^4 to 6 x 10^5 cells m-3), much is still being learned about their source, viability, and interactions with climatic controls. They can be attached to ambient aerosol particles or exist singly in the air. They affect climate by serving as ice, cloud, and fog nucleators, and have the metabolic potential to alter atmospheric chemistry. Fog presence in particular has been shown to greatly increase the deposition of viable microbial aerosols in both urban and coastal environments, but the mechanisms behind this are not fully understood. To address this gap, we examined the diversity of culturable microbial aerosols from a relatively pristine coastal environment in Maine (USA) and determined the effect of fog presence on viability and community composition of microbial aerosols. 16S rRNA sequencing of culturable ocean surface bacteria and depositing microbial aerosols (under clear and foggy conditions) resulted in the detection of 31 bacterial genera, with 5 dominant genera (Vibrio, Bacillus, Pseudoalteromonas, Psychrobacter, Salinibacterium) making up 66% of all sequences. Seventy-five percent of the viable microbial aerosols falling out under foggy conditions were most similar to GenBank-published sequences detected in marine environments. The fog and ocean surface sequence libraries were significantly more similar in microbial community composition than clear (non-foggy) and ocean surface libraries. These findings support a dual role for fog in enhancing the fallout of viable marine microbial aerosols via increased gravitational settling rates and decreased aerosolization stress on the organisms. The dominant presence of marine bacteria in coastal microbial aerosols provides a strong case for

  18. Aurelia aurita Ephyrae Reshape a Coastal Microbial Community.

    PubMed

    Zoccarato, Luca; Celussi, Mauro; Pallavicini, Alberto; Fonda Umani, Serena

    2016-01-01

    Over the last two decades, increasing attention has been paid to the impact of jellyfish blooms on marine communities. Aurelia aurita is one of the most studied of the Scyphozoans, and several studies have been carried out to describe its role as a top-down controller within the classical food web. However, little data are available to define the effects of these jellyfish on microbial communities. The aims of this study were to describe the predation impact of A. aurita ephyrae on a natural microplanktonic assemblage, and to determine any reshaping effects on the prokaryote community composition and functioning. Surface coastal water was used to set up a 24-h grazing experiment in microcosms. Samples were collected to determine the variations in prey biomass, heterotrophic carbon production (HCP), extracellular leucine aminopeptidase activity, and grazing pressure. A next-generation sequencing technique was used to investigate biodiversity shifts within the prokaryote and protist communities through the small subunit rRNA tag approach. This study shows that A. aurita ephyrae were responsible for large decreases in the abundances of the more motile microplankton groups, such as tintinnids, Dinophyceae, and aloricate ciliates. Bacillariophyceae and Mediophyceae showed smaller reductions. No evidence of selective predation emerged in the analysis of the community diversity down to the family level. The heterotrophic prokaryote biomass increased significantly (by up to 45%), in parallel with increases in HCP and leucine aminopeptidase activity (40%). Significant modifications were detected in prokaryotic community composition. Some classes of Gammaproteobacteria and Flavobacteriia showed higher relative abundances when exposed to A. aurita ephyrae, while there was a net decrease for Alphaproteobacteria. Overall, this study provides new insight into the effects of A. aurita on microbial communities, underlining their selective predation toward the more motile groups of

  19. Aurelia aurita Ephyrae Reshape a Coastal Microbial Community

    PubMed Central

    Zoccarato, Luca; Celussi, Mauro; Pallavicini, Alberto; Fonda Umani, Serena

    2016-01-01

    Over the last two decades, increasing attention has been paid to the impact of jellyfish blooms on marine communities. Aurelia aurita is one of the most studied of the Scyphozoans, and several studies have been carried out to describe its role as a top-down controller within the classical food web. However, little data are available to define the effects of these jellyfish on microbial communities. The aims of this study were to describe the predation impact of A. aurita ephyrae on a natural microplanktonic assemblage, and to determine any reshaping effects on the prokaryote community composition and functioning. Surface coastal water was used to set up a 24-h grazing experiment in microcosms. Samples were collected to determine the variations in prey biomass, heterotrophic carbon production (HCP), extracellular leucine aminopeptidase activity, and grazing pressure. A next-generation sequencing technique was used to investigate biodiversity shifts within the prokaryote and protist communities through the small subunit rRNA tag approach. This study shows that A. aurita ephyrae were responsible for large decreases in the abundances of the more motile microplankton groups, such as tintinnids, Dinophyceae, and aloricate ciliates. Bacillariophyceae and Mediophyceae showed smaller reductions. No evidence of selective predation emerged in the analysis of the community diversity down to the family level. The heterotrophic prokaryote biomass increased significantly (by up to 45%), in parallel with increases in HCP and leucine aminopeptidase activity (40%). Significant modifications were detected in prokaryotic community composition. Some classes of Gammaproteobacteria and Flavobacteriia showed higher relative abundances when exposed to A. aurita ephyrae, while there was a net decrease for Alphaproteobacteria. Overall, this study provides new insight into the effects of A. aurita on microbial communities, underlining their selective predation toward the more motile groups of

  20. Oceanic rafting by a coastal community.

    PubMed

    Fraser, Ceridwen I; Nikula, Raisa; Waters, Jonathan M

    2011-03-07

    Oceanic rafting is thought to play a fundamental role in assembling the biological communities of isolated coastal ecosystems. Direct observations of this key ecological and evolutionary process are, however, critically lacking. The importance of macroalgal rafting as a dispersal mechanism has remained uncertain, largely owing to lack of knowledge about the capacity of fauna to survive long voyages at sea and successfully make landfall and establish. Here, we directly document the rafting of a diverse assemblage of intertidal organisms across several hundred kilometres of open ocean, from the subantarctic to mainland New Zealand. Multispecies analyses using phylogeographic and ecological data indicate that 10 epifaunal invertebrate species rafted on six large bull kelp specimens for several weeks from the subantarctic Auckland and/or Snares Islands to the Otago coast of New Zealand, a minimum distance of some 400-600 km. These genetic data are the first to demonstrate that passive rafting can enable simultaneous trans-oceanic transport and landfall of numerous coastal taxa.

  1. Anthropogenic perturbations in marine microbial communities.

    PubMed

    Nogales, Balbina; Lanfranconi, Mariana P; Piña-Villalonga, Juana M; Bosch, Rafael

    2011-03-01

    Human activities impact marine ecosystems at a global scale and all levels of complexity of life. Despite their importance as key players in ecosystem processes, the stress caused to microorganisms has been greatly neglected. This fact is aggravated by difficulties in the analysis of microbial communities and their high diversity, making the definition of patterns difficult. In this review, we discuss the effects of nutrient increase, pollution by organic chemicals and heavy metals and the introduction of antibiotics and pathogens into the environment. Microbial communities respond positively to nutrients and chemical pollution by increasing cell numbers. There are also significant changes in community composition, increases in diversity and high temporal variability. These changes, which evidence the modification of the environmental conditions due to anthropogenic stress, usually alter community functionality, although this aspect has not been explored in depth. Altered microbial communities in human-impacted marine environments can in turn have detrimental effects on human health (i.e. spread of pathogens and antibiotic resistance). New threats to marine ecosystems, i.e. related to climate change, could also have an impact on microbial communities. Therefore, an effort dedicated to analyse the microbial compartment in detail should be made when studying the impact of anthropogenic activities on marine ecosystems.

  2. Assessing Flood Impacts in Rural Coastal Communities Using LIDAR

    NASA Astrophysics Data System (ADS)

    Johnson, E. S.

    2016-06-01

    Coastal communities are vulnerable to floods from storm events which are further exacerbated by storm surges. Additionally, coastal towns provide specific challenges during flood events as many coastal communities are peninsular and vulnerable to inundation of road access points. Publicly available lidar data has been used to model areas of inundation and resulting flood impacts on road networks. However, these models may overestimate areas that are inaccessible as they rely on publicly available Digital Terrain Models. Through incorporation of Digital Surface Models to estimate bridge height, a more accurate model of flood impacts on rural coastal residents can be estimated.

  3. The effect of marine isoprene emissions on secondary organic aerosol and ozone formation in the coastal United States

    NASA Astrophysics Data System (ADS)

    Gantt, Brett; Meskhidze, Nicholas; Zhang, Yang; Xu, Jun

    2010-01-01

    The impact of marine isoprene emissions on summertime surface concentrations of isoprene, secondary organic aerosols (SOA), and ozone (O 3) in the coastal areas of the continental United States is studied using the U.S. Environmental Protection Agency regional-scale Community Multiscale Air Quality (CMAQ) modeling system. Marine isoprene emission rates are based on the following five parameters: laboratory measurements of isoprene production from phytoplankton under a range of light conditions, remotely-sensed chlorophyll- a concentration ([Chl- a]), incoming solar radiation, surface wind speed, and sea-water optical properties. Model simulations show that marine isoprene emissions are sensitive to meteorology and ocean ecosystem productivity, with the highest rates simulated over the Gulf of Mexico. Simulated offshore surface layer marine isoprene concentration is less than 10 ppt and significantly dwarfed by terrestrial emissions over the continental United States. With the isoprene reactions included in this study, the average contribution of marine isoprene to SOA and O 3 concentrations is predicted to be small, up to 0.004 μg m -3 for SOA and 0.2 ppb for O 3 in coastal urban areas. The light-sensitivity of isoprene production from phytoplankton results in a midday maximum for marine isoprene emissions and a corresponding daytime increase in isoprene and O 3 concentrations in coastal locations. The potential impact of the daily variability in [Chl- a] on O 3 and SOA concentrations is simulated in a sensitivity study with [Chl- a] increased and decreased by a factor of five. Our results indicate that marine emissions of isoprene cause minor changes to coastal SOA and O 3 concentrations. Comparison of model simulations with few available measurements shows that the model underestimates marine boundary layer isoprene concentration. This underestimation is likely due to the limitations in current treatment of marine isoprene emission and a coarse spatial

  4. nirS-Encoding denitrifier community composition, distribution, and abundance along the coastal wetlands of China.

    PubMed

    Gao, Juan; Hou, Lijun; Zheng, Yanling; Liu, Min; Yin, Guoyu; Li, Xiaofei; Lin, Xianbiao; Yu, Chendi; Wang, Rong; Jiang, Xiaofen; Sun, Xiuru

    2016-10-01

    For the past few decades, human activities have intensively increased the reactive nitrogen enrichment in China's coastal wetlands. Although denitrification is a critical pathway of nitrogen removal, the understanding of denitrifier community dynamics driving denitrification remains limited in the coastal wetlands. In this study, the diversity, abundance, and community composition of nirS-encoding denitrifiers were analyzed to reveal their variations in China's coastal wetlands. Diverse nirS sequences were obtained and more than 98 % of them shared considerable phylogenetic similarity with sequences obtained from aquatic systems (marine/estuarine/coastal sediments and hypoxia sea water). Clone library analysis revealed that the distribution and composition of nirS-harboring denitrifiers had a significant latitudinal differentiation, but without a seasonal shift. Canonical correspondence analysis showed that the community structure of nirS-encoding denitrifiers was significantly related to temperature and ammonium concentration. The nirS gene abundance ranged from 4.3 × 10(5) to 3.7 × 10(7) copies g(-1) dry sediment, with a significant spatial heterogeneity. Among all detected environmental factors, temperature was a key factor affecting not only the nirS gene abundance but also the community structure of nirS-type denitrifiers. Overall, this study significantly enhances our understanding of the structure and dynamics of denitrifying communities in the coastal wetlands of China.

  5. Prevalence of microplastics in Singapore's coastal marine environment.

    PubMed

    Ng, K L; Obbard, J P

    2006-07-01

    Microplastics have been recently identified as marine pollutants of significant concern due to their persistence, ubiquity and potential to act as vectors for the transfer and exposure of persistent organic pollutants to marine organisms. This study documents, for the first time, the presence and abundance of microplastics (>1.6 microm) in Singapore's coastal environment. An optimized sampling protocol for the collection and analysis of microplastics was developed, and beach sediments and seawater (surface microlayer and subsurface layer) samples were collected from nine different locations around the coastline. Low density microplastics were separated from sediments by flotation and polymer types were identified using Fourier transform infrared (FTIR) spectrometry. Synthetic polymer microplastics identified in beach sediments included polyethylene, polypropylene, polystyrene, nylon, polyvinyl alcohol and acrylonitrile butadiene styrene. Microplastics were detected in samples from four out of seven beach environments, with the greatest quantity found in sediments from two popular beaches in the eastern part of Singapore. Polyethylene, polypropylene and polystyrene microplastics were also found in the surface microlayer (50-60 microm) and subsurface layer (1m) of coastal waters. The presence of microplastics in sediments and seawater is likely due to on-going waste disposal practices from industries and recreational activities, and discharge from shipping.

  6. Natural Shorelines Promote the Stability of Fish Communities in an Urbanized Coastal System

    PubMed Central

    Scyphers, Steven B.; Gouhier, Tarik C.; Grabowski, Jonathan H.; Beck, Michael W.; Mareska, John; Powers, Sean P.

    2015-01-01

    Habitat loss and fragmentation are leading causes of species extinctions in terrestrial, aquatic and marine systems. Along coastlines, natural habitats support high biodiversity and valuable ecosystem services but are often replaced with engineered structures for coastal protection or erosion control. We coupled high-resolution shoreline condition data with an eleven-year time series of fish community structure to examine how coastal protection structures impact community stability. Our analyses revealed that the most stable fish communities were nearest natural shorelines. Structurally complex engineered shorelines appeared to promote greater stability than simpler alternatives as communities nearest vertical walls, which are among the most prevalent structures, were most dissimilar from natural shorelines and had the lowest stability. We conclude that conserving and restoring natural habitats is essential for promoting ecological stability. However, in scenarios when natural habitats are not viable, engineered landscapes designed to mimic the complexity of natural habitats may provide similar ecological functions. PMID:26039407

  7. Remote sensing in the coastal and marine environment. Proceedings of the US North Atlantic Regional Workshop

    NASA Technical Reports Server (NTRS)

    Zaitzeff, J. B. (Editor); Cornillon, P. (Editor); Aubrey, D. A. (Editor)

    1980-01-01

    Presentations were grouped in the following categories: (1) a technical orientation of Earth resources remote sensing including data sources and processing; (2) a review of the present status of remote sensing technology applicable to the coastal and marine environment; (3) a description of data and information needs of selected coastal and marine activities; and (4) an outline of plans for marine monitoring systems for the east coast and a concept for an east coast remote sensing facility. Also discussed were user needs and remote sensing potentials in the areas of coastal processes and management, commercial and recreational fisheries, and marine physical processes.

  8. Increasing Risk Awareness: The Coastal Community Resilience Index

    ERIC Educational Resources Information Center

    Thompson, Jody A.; Sempier, Tracie; Swann, LaDon

    2012-01-01

    As the number of people moving to the Gulf Coast increases, so does the risk of exposure to floods, hurricanes, and other storm-related events. In an effort to assist communities in preparing for future storm events, the Coastal Community Resilience Index was created. The end result is for communities to take actions to address the weaknesses they…

  9. Marine invertebrates: communities at risk.

    PubMed

    Mather, Jennifer

    2013-06-10

    Our definition of the word 'animal' centers on vertebrates, yet 99% of the animals on the planet are invertebrates, about which we know little. In addition, although the Census of Marine Life (COML.org) has recently conducted an extensive audit of marine ecosystems, we still do not understand much about the animals of the seas. Surveys of the best-known ecosystems, in which invertebrate populations often play a key role, show that the invertebrate populations are affected by human impact. Coral animals are the foundation of coral reef systems, which are estimated to contain 30% of the species in the ocean. Physical impact and chemical changes on the water severely damage these reefs, and may lead to the removal of these important habitats. Tiny pteropod molluscs live in huge numbers in the polar seas, and their fragile shells are particularly vulnerable to ocean acidification. Their removal would mean that fishes on which we depend would have a hugely diminished food supply. In the North Sea, warming is leading to replacement of colder water copepods by warmer water species which contain less fat. This is having an effect on the birds which eat them, who enrich the otherwise poor land on which they nest. Conversely, the warming of the water and the loss of top predators such as whales and sharks has led to an explosion of the jumbo squid of the Pacific coast of North America. This is positive in the development of a squid fishery, yet negative because the squid eat fish that have been the mainstay of the fishery along that coast. These examples show how invertebrates are key in the oceans, and what might happen when global changes impact them.

  10. Marine Invertebrates: Communities at Risk

    PubMed Central

    Mather, Jennifer

    2013-01-01

    Our definition of the word ‘animal’ centers on vertebrates, yet 99% of the animals on the planet are invertebrates, about which we know little. In addition, although the Census of Marine Life (COML.org) has recently conducted an extensive audit of marine ecosystems, we still do not understand much about the animals of the seas. Surveys of the best-known ecosystems, in which invertebrate populations often play a key role, show that the invertebrate populations are affected by human impact. Coral animals are the foundation of coral reef systems, which are estimated to contain 30% of the species in the ocean. Physical impact and chemical changes on the water severely damage these reefs, and may lead to the removal of these important habitats. Tiny pteropod molluscs live in huge numbers in the polar seas, and their fragile shells are particularly vulnerable to ocean acidification. Their removal would mean that fishes on which we depend would have a hugely diminished food supply. In the North Sea, warming is leading to replacement of colder water copepods by warmer water species which contain less fat. This is having an effect on the birds which eat them, who enrich the otherwise poor land on which they nest. Conversely, the warming of the water and the loss of top predators such as whales and sharks has led to an explosion of the jumbo squid of the Pacific coast of North America. This is positive in the development of a squid fishery, yet negative because the squid eat fish that have been the mainstay of the fishery along that coast. These examples show how invertebrates are key in the oceans, and what might happen when global changes impact them. PMID:24832811

  11. Marine coastal sediments microbial hydrocarbon degradation processes: contribution of experimental ecology in the omics’era

    PubMed Central

    Cravo-Laureau, Cristiana; Duran, Robert

    2014-01-01

    Coastal marine sediments, where important biological processes take place, supply essential ecosystem services. By their location, such ecosystems are particularly exposed to human activities as evidenced by the recent Deepwater Horizon disaster. This catastrophe revealed the importance to better understand the microbial processes involved on hydrocarbon degradation in marine sediments raising strong interests of the scientific community. During the last decade, several studies have shown the key role played by microorganisms in determining the fate of hydrocarbons in oil-polluted sediments but only few have taken into consideration the whole sediment’s complexity. Marine coastal sediment ecosystems are characterized by remarkable heterogeneity, owning high biodiversity and are subjected to fluctuations in environmental conditions, especially to important oxygen oscillations due to tides. Thus, for understanding the fate of hydrocarbons in such environments, it is crucial to study microbial activities, taking into account sediment characteristics, physical-chemical factors (electron acceptors, temperature), nutrients, co-metabolites availability as well as sediment’s reworking due to bioturbation activities. Key information could be collected from in situ studies, which provide an overview of microbial processes, but it is difficult to integrate all parameters involved. Microcosm experiments allow to dissect in-depth some mechanisms involved in hydrocarbon degradation but exclude environmental complexity. To overcome these lacks, strategies have been developed, by creating experiments as close as possible to environmental conditions, for studying natural microbial communities subjected to oil pollution. We present here a review of these approaches, their results and limitation, as well as the promising future of applying “omics” approaches to characterize in-depth microbial communities and metabolic networks involved in hydrocarbon degradation. In addition

  12. Marine coastal sediments microbial hydrocarbon degradation processes: contribution of experimental ecology in the omics'era.

    PubMed

    Cravo-Laureau, Cristiana; Duran, Robert

    2014-01-01

    Coastal marine sediments, where important biological processes take place, supply essential ecosystem services. By their location, such ecosystems are particularly exposed to human activities as evidenced by the recent Deepwater Horizon disaster. This catastrophe revealed the importance to better understand the microbial processes involved on hydrocarbon degradation in marine sediments raising strong interests of the scientific community. During the last decade, several studies have shown the key role played by microorganisms in determining the fate of hydrocarbons in oil-polluted sediments but only few have taken into consideration the whole sediment's complexity. Marine coastal sediment ecosystems are characterized by remarkable heterogeneity, owning high biodiversity and are subjected to fluctuations in environmental conditions, especially to important oxygen oscillations due to tides. Thus, for understanding the fate of hydrocarbons in such environments, it is crucial to study microbial activities, taking into account sediment characteristics, physical-chemical factors (electron acceptors, temperature), nutrients, co-metabolites availability as well as sediment's reworking due to bioturbation activities. Key information could be collected from in situ studies, which provide an overview of microbial processes, but it is difficult to integrate all parameters involved. Microcosm experiments allow to dissect in-depth some mechanisms involved in hydrocarbon degradation but exclude environmental complexity. To overcome these lacks, strategies have been developed, by creating experiments as close as possible to environmental conditions, for studying natural microbial communities subjected to oil pollution. We present here a review of these approaches, their results and limitation, as well as the promising future of applying "omics" approaches to characterize in-depth microbial communities and metabolic networks involved in hydrocarbon degradation. In addition, we

  13. Extraintestinal Escherichia coli carrying virulence genes in coastal marine sediments.

    PubMed

    Luna, G M; Vignaroli, C; Rinaldi, C; Pusceddu, A; Nicoletti, L; Gabellini, M; Danovaro, R; Biavasco, F

    2010-09-01

    Despite the recognized potential of long-term survival or even growth of fecal indicators bacteria (FIB) in marine sediments, this compartment is largely ignored by health protection authorities. We conducted a large-scale study over approximately 50 km of the Marche coasts (Adriatic Sea) at depths ranging from 2 to 5 m. Total and fecal coliforms (FC) were counted by culture-based methods. Escherichia coli was also quantified using fluorescence in situ hybridization targeting specific 16S rRNA sequences, which yielded significantly higher abundances than culture-based methods, suggesting the potential importance of viable but nonculturable E. coli cells. Fecal coliforms displayed high abundances at most sites and showed a prevalence of E. coli. FC isolates (n = 113) were identified by API 20E, additional biochemical tests, and internal transcribed spacer-PCR. E. coli strains, representing 96% of isolates, were then characterized for genomic relatedness and phylogenetic group (A, B1, B2, and D) of origin by randomly amplified polymorphic DNA and multiplex-PCR. The results indicated that E. coli displayed a wide genotypic diversity, also among isolates from the same station, and that 44 of the 109 E. coli isolates belonged to groups B2 and D. Further characterization of B2 and D isolates for the presence of 11 virulence factor genes (pap, sfa/foc, afa, eaeA, ibeA, traT, hlyA, stx(1), stx(2), aer, and fyuA) showed that 90% of B2 and 65% of D isolates were positive for at least one of these. Most of the variance of both E. coli abundance and assemblage composition (>62%) was explained by a combination of physical-chemical and trophic variables. These findings indicate that coastal sediments could represent a potential reservoir for commensal and pathogenic E. coli and that E. coli distribution in marine coastal sediments largely depends upon the physical and trophic status of the sediment. We conclude that future sampling designs aimed at monitoring the microbiological

  14. Navigating transformations in governance of Chilean marine coastal resources

    PubMed Central

    Gelcich, Stefan; Hughes, Terry P.; Olsson, Per; Folke, Carl; Defeo, Omar; Fernández, Miriam; Foale, Simon; Gunderson, Lance H.; Rodríguez-Sickert, Carlos; Scheffer, Marten; Steneck, Robert S.; Castilla, Juan C.

    2010-01-01

    Marine ecosystems are in decline. New transformational changes in governance are urgently required to cope with overfishing, pollution, global changes, and other drivers of degradation. Here we explore social, political, and ecological aspects of a transformation in governance of Chile's coastal marine resources, from 1980 to today. Critical elements in the initial preparatory phase of the transformation were (i) recognition of the depletion of resource stocks, (ii) scientific knowledge on the ecology and resilience of targeted species and their role in ecosystem dynamics, and (iii) demonstration-scale experimental trials, building on smaller-scale scientific experiments, which identified new management pathways. The trials improved cooperation among scientists and fishers, integrating knowledge and establishing trust. Political turbulence and resource stock collapse provided a window of opportunity that triggered the transformation, supported by new enabling legislation. Essential elements to navigate this transformation were the ability to network knowledge from the local level to influence the decision-making processes at the national level, and a preexisting social network of fishers that provided political leverage through a national confederation of artisanal fishing collectives. The resultant governance scheme includes a revolutionary national system of marine tenure that allocates user rights and responsibilities to fisher collectives. Although fine tuning is necessary to build resilience of this new regime, this transformation has improved the sustainability of the interconnected social–ecological system. Our analysis of how this transformation unfolded provides insights into how the Chilean system could be further developed and identifies generalized pathways for improved governance of marine resources around the world. PMID:20837530

  15. Navigating transformations in governance of Chilean marine coastal resources.

    PubMed

    Gelcich, Stefan; Hughes, Terry P; Olsson, Per; Folke, Carl; Defeo, Omar; Fernández, Miriam; Foale, Simon; Gunderson, Lance H; Rodríguez-Sickert, Carlos; Scheffer, Marten; Steneck, Robert S; Castilla, Juan C

    2010-09-28

    Marine ecosystems are in decline. New transformational changes in governance are urgently required to cope with overfishing, pollution, global changes, and other drivers of degradation. Here we explore social, political, and ecological aspects of a transformation in governance of Chile's coastal marine resources, from 1980 to today. Critical elements in the initial preparatory phase of the transformation were (i) recognition of the depletion of resource stocks, (ii) scientific knowledge on the ecology and resilience of targeted species and their role in ecosystem dynamics, and (iii) demonstration-scale experimental trials, building on smaller-scale scientific experiments, which identified new management pathways. The trials improved cooperation among scientists and fishers, integrating knowledge and establishing trust. Political turbulence and resource stock collapse provided a window of opportunity that triggered the transformation, supported by new enabling legislation. Essential elements to navigate this transformation were the ability to network knowledge from the local level to influence the decision-making processes at the national level, and a preexisting social network of fishers that provided political leverage through a national confederation of artisanal fishing collectives. The resultant governance scheme includes a revolutionary national system of marine tenure that allocates user rights and responsibilities to fisher collectives. Although fine tuning is necessary to build resilience of this new regime, this transformation has improved the sustainability of the interconnected social-ecological system. Our analysis of how this transformation unfolded provides insights into how the Chilean system could be further developed and identifies generalized pathways for improved governance of marine resources around the world.

  16. Top-Down Regulation, Climate and Multi-Decadal Changes in Coastal Zoobenthos Communities in Two Baltic Sea Areas

    PubMed Central

    Olsson, Jens; Bergström, Lena; Gårdmark, Anna

    2013-01-01

    The structure of many marine ecosystems has changed substantially during recent decades, as a result of overexploitation, climate change and eutrophication. Despite of the apparent ecological and economical importance of coastal areas and communities, this aspect has received relatively little attention in coastal systems. Here we assess the temporal development of zoobenthos communities in two areas on the Swedish Baltic Sea coast during 30 years, and relate their development to changes in climate, eutrophication and top-down regulation from fish. Both communities show substantial structural changes, with a decrease in marine polychaetes and species sensitive to increased water temperatures. Concurrently, opportunistic species tolerant to environmental perturbation have increased in abundance. Species composition show a similar temporal development in both communities and significant changes in species composition occurred in both data sets in the late 1980s and early 1990s. The change in species composition was associated with large scale changes in climate (salinity and water temperature) and to the structure of the local fish community, whereas we found no effects of nutrient loading or ambient nutrient concentrations. Our results suggest that these coastal zoobenthos communities have gone through substantial structural changes over the last 30 years, resulting in communities of different species composition with potentially different ecological functions. We hence suggest that the temporal development of coastal zoobenthos communities should be assessed in light of prevailing climatic conditions considering the potential for top-down effects exerted by local fish communities. PMID:23737998

  17. Engaging Communities Where They Are: New Hampshire's Coastal Adaptation Workgroup

    NASA Astrophysics Data System (ADS)

    Wake, C. P.; Godlewski, S.; Howard, K.; Labranche, J.; Miller, S.; Peterson, J.; Ashcraft, C.

    2015-12-01

    Rising seas are expected to have significant impacts on infrastructure and natural and cultural resources on New Hampshire's 18 mile open-ocean coastline and 235 miles of tidal shoreline. However, most coastal municipalities in NH lack financial and human resources to even assess vulnerability, let alone plan for climate change. This gap has been filled since 2010 by the NH Coastal Adaptation Workgroup (CAW), composed of 21 regional, state, and federal agencies, businesses, municipalities, academics, and NGOs that bring together stakeholders to discuss climate change challenges and collaboratively develop and implement effective coastal adaptation strategies. Our grassroot efforts serve to nurture existing and build new relationships, disseminate coastal watershed climate assessments, and tap into state, federal, and foundation funds for specific coastal adaptation projects. CAW has achieved collective impact in by connecting federal and state resources to communities by raising money and facilitating projects, translating climate science, educating community members, providing direct technical assistance and general capacity, and sharing success stories and lessons learned. Indicators of success include: 12 coastal communities improved their technical, financial, and human resources for climate adaptation; 80% of the 300 participants in the eleven CAW 'Water, Weather, Climate, and Community Workshops' have increased knowledge, motivation, and capacity to address climate adaptation; $3 million in grants to help communities with climate adaptation; winner of the 2015 EPA Region 1 Environmental Merit Award; and ongoing support for community-led adaptation efforts. In addition, the NH Climate Summit attracts over 100 participants each year, over 90% whom attest to the applicability of what they learn there. CAW also plays a central role in the Coastal Risks and Hazards Commission (established by the state legislature in 2013) to help communities and businesses prepare

  18. Marine reserves help coastal ecosystems cope with extreme weather.

    PubMed

    Olds, Andrew D; Pitt, Kylie A; Maxwell, Paul S; Babcock, Russell C; Rissik, David; Connolly, Rod M

    2014-10-01

    Natural ecosystems have experienced widespread degradation due to human activities. Consequently, enhancing resilience has become a primary objective for conservation. Nature reserves are a favored management tool, but we need clearer empirical tests of whether they can impart resilience. Catastrophic flooding in early 2011 impacted coastal ecosystems across eastern Australia. We demonstrate that marine reserves enhanced the capacity of coral reefs to withstand flood impacts. Reserve reefs resisted the impact of perturbation, whilst fished reefs did not. Changes on fished reefs were correlated with the magnitude of flood impact, whereas variation on reserve reefs was related to ecological variables. Herbivory and coral recruitment are critical ecological processes that underpin reef resilience, and were greater in reserves and further enhanced on reserve reefs near mangroves. The capacity of reserves to mitigate external disturbances and promote ecological resilience will be critical to resisting an increased frequency of climate-related disturbance.

  19. Baseline hydrocarbon levels in New Zealand coastal and marine avifauna.

    PubMed

    McConnell, H M; Gartrell, B D; Chilvers, B L; Finlayson, S T; Bridgen, P C E; Morgan, K J

    2015-05-15

    The external effects of oil on wildlife can be obvious and acute. Internal effects are more difficult to detect and can occur without any external signs. To quantify internal effects from oil ingestion by wildlife during an oil spill, baseline levels of ubiquitous hydrocarbon fractions, like polycyclic aromatic hydrocarbons (PAHs), need to be established. With these baseline values the extent of impact from exposure during a spill can be determined. This research represents the first investigation of baseline levels for 22 PAHs in New Zealand coastal and marine avian wildlife. Eighty-five liver samples were tested from 18 species. PAHs were identified in 98% of livers sampled with concentrations ranging from 0 to 1341.6 ng/g lipid wt or on wet wt basis, 0 to 29.5 ng/g. Overall, concentrations were low relative to other globally reported avian values. PAH concentration variability was linked with species foraging habitat and migratory patterns.

  20. A coastal and marine digital library at USGS

    USGS Publications Warehouse

    Lightsom, Fran

    2003-01-01

    The Marine Realms Information Bank (MRIB) is a distributed geolibrary [NRC, 1999] from the U.S. Geological Survey (USGS) and the Woods Hole Oceanographic Institution (WHOI), whose purpose is to classify, integrate, and facilitate access to Earth systems science information about ocean, lake, and coastal environments. Core MRIB services are: (1) the search and display of information holdings by place and subject, and (2) linking of information assets that exist in remote physical locations. The design of the MRIB features a classification system to integrate information from remotely maintained sources. This centralized catalogue organizes information using 12 criteria: locations, geologic time, physiographic features, biota, disciplines, research methods, hot topics, project names, agency names, authors, content type, and file type. For many of these fields, MRIB has developed classification hierarchies.

  1. Sources, impacts and trends of pharmaceuticals in the marine and coastal environment.

    PubMed

    Gaw, Sally; Thomas, Kevin V; Hutchinson, Thomas H

    2014-11-19

    There has been a significant investment in research to define exposures and potential hazards of pharmaceuticals in freshwater and terrestrial ecosystems. A substantial number of integrated environmental risk assessments have been developed in Europe, North America and many other regions for these situations. In contrast, comparatively few empirical studies have been conducted for human and veterinary pharmaceuticals that are likely to enter coastal and marine ecosystems. This is a critical knowledge gap given the significant increase in coastal human populations around the globe and the growth of coastal megacities, together with the increasing importance of coastal aquaculture around the world. There is increasing evidence that pharmaceuticals are present and are impacting on marine and coastal environments. This paper reviews the sources, impacts and concentrations of pharmaceuticals in marine and coastal environments to identify knowledge gaps and suggests focused case studies as a priority for future research.

  2. Sources, impacts and trends of pharmaceuticals in the marine and coastal environment

    PubMed Central

    Gaw, Sally; Thomas, Kevin V.; Hutchinson, Thomas H.

    2014-01-01

    There has been a significant investment in research to define exposures and potential hazards of pharmaceuticals in freshwater and terrestrial ecosystems. A substantial number of integrated environmental risk assessments have been developed in Europe, North America and many other regions for these situations. In contrast, comparatively few empirical studies have been conducted for human and veterinary pharmaceuticals that are likely to enter coastal and marine ecosystems. This is a critical knowledge gap given the significant increase in coastal human populations around the globe and the growth of coastal megacities, together with the increasing importance of coastal aquaculture around the world. There is increasing evidence that pharmaceuticals are present and are impacting on marine and coastal environments. This paper reviews the sources, impacts and concentrations of pharmaceuticals in marine and coastal environments to identify knowledge gaps and suggests focused case studies as a priority for future research. PMID:25405962

  3. Integrating digital information for coastal and marine sciences

    USGS Publications Warehouse

    Marincioni, Fausto; Lightsom, Frances L.; Riall, Rebecca L.; Linck, Guthrie A.; Aldrich, Thomas C.; Caruso, Michael J.

    2004-01-01

    A pilot distributed geolibrary, the Marine Realms Information Bank (MRIB), was developed by the U.S. Geological Survey Coastal and Marine Geology Program and the Woods Hole Oceanographic Institution, to classify, integrate, and facilitate access to scientific information about oceans, coasts, and lakes. The MRIB is composed of a categorization scheme, a metadata database, and a specialized software backend, capable of drawing together information from remote sources without modifying their original format or content. Twelve facets are used to classify information: location, geologic time, feature type, biota, discipline, research method, hot topics, project, agency, author, content type, and file type. The MRIB approach allows easy and flexible organization of large or growing document collections for which centralized repositories would be impractical. Geographic searching based on the gazetteer and map interface is the centerpiece of the MRIB distributed geolibrary. The MRIB is one of a very few digital libraries that employ georeferencing -- a fundamentally different way to structure information from the traditional author/title/subject/keyword approach employed by most digital libraries. Lessons learned in developing the MRIB will be useful as other digital libraries confront the challenges of georeferencing.

  4. Night-time lighting alters the composition of marine epifaunal communities.

    PubMed

    Davies, Thomas W; Coleman, Matthew; Griffith, Katherine M; Jenkins, Stuart R

    2015-04-01

    Marine benthic communities face multiple anthropogenic pressures that compromise the future of some of the most biodiverse and functionally important ecosystems in the world. Yet one of the pressures these ecosystems face, night-time lighting, remains unstudied. Light is an important cue in guiding the settlement of invertebrate larvae, and altering natural regimes of nocturnal illumination could modify patterns of recruitment among sessile epifauna. We present the first evidence of night-time lighting changing the composition of temperate epifaunal marine invertebrate communities. Illuminating settlement surfaces with white light-emitting diode lighting at night, to levels experienced by these communities locally, both inhibited and encouraged the colonization of 39% of the taxa analysed, including three sessile and two mobile species. Our results indicate that ecological light pollution from coastal development, shipping and offshore infrastructure could be changing the composition of marine epifaunal communities.

  5. Night-time lighting alters the composition of marine epifaunal communities

    PubMed Central

    Davies, Thomas W.; Coleman, Matthew; Griffith, Katherine M.; Jenkins, Stuart R.

    2015-01-01

    Marine benthic communities face multiple anthropogenic pressures that compromise the future of some of the most biodiverse and functionally important ecosystems in the world. Yet one of the pressures these ecosystems face, night-time lighting, remains unstudied. Light is an important cue in guiding the settlement of invertebrate larvae, and altering natural regimes of nocturnal illumination could modify patterns of recruitment among sessile epifauna. We present the first evidence of night-time lighting changing the composition of temperate epifaunal marine invertebrate communities. Illuminating settlement surfaces with white light-emitting diode lighting at night, to levels experienced by these communities locally, both inhibited and encouraged the colonization of 39% of the taxa analysed, including three sessile and two mobile species. Our results indicate that ecological light pollution from coastal development, shipping and offshore infrastructure could be changing the composition of marine epifaunal communities. PMID:25926694

  6. Marine oil spill risk mapping for accidental pollution and its application in a coastal city.

    PubMed

    Lan, Dongdong; Liang, Bin; Bao, Chenguang; Ma, Minghui; Xu, Yan; Yu, Chunyan

    2015-07-15

    Accidental marine oil spill pollution can result in severe environmental, ecological, economic and other consequences. This paper discussed the model of Marine Oil Spill Risk Mapping (MOSRM), which was constructed as follows: (1) proposing a marine oil spill risk system based on the typical marine oil spill pollution accidents and prevailing risk theories; (2) identifying suitable indexes that are supported by quantitative sub-indexes; (3) constructing the risk measuring models according to the actual interactions between the factors in the risk system; and (4) assessing marine oil spill risk on coastal city scale with GIS to map the overall risk. The case study of accidental marine oil spill pollution in the coastal area of Dalian, China was used to demonstrate the effectiveness of the model. The coastal areas of Dalian were divided into three zones with risk degrees of high, medium, and low. And detailed countermeasures were proposed for specific risk zones.

  7. Community Education in Eastern Chinese Coastal Cities: Issues and Development

    ERIC Educational Resources Information Center

    Lu, Suju

    2009-01-01

    This paper first reviews the development of community education in Shanghai, one of China's eastern coastal cities. Then the development of community education in the Xuhui District of Shanghai, especially its management system and operational mechanisms, school operating systems and networks, curriculum systems, and team building are presented.…

  8. Contributions of Participatory Modeling to Development and Support of Coastal and Marine Management Plans

    EPA Science Inventory

    The role of participatory modeling- at various scales- to assist in developing shared visions, understanding the decision landscape, identifying and selecting management options, and monitoring outcomes will be explored in the context of coastal and marine planning, ecosystem ser...

  9. Mapping of Florida's Coastal and Marine Resources: Setting Priorities Workshop

    USGS Publications Warehouse

    Robbins, Lisa; Wolfe, Steven; Raabe, Ellen

    2008-01-01

    The importance of mapping habitats and bioregions as a means to improve resource management has become increasingly clear. Large areas of the waters surrounding Florida are unmapped or incompletely mapped, possibly hindering proper management and good decisionmaking. Mapping of these ecosystems is among the top priorities identified by the Florida Oceans and Coastal Council in their Annual Science Research Plan. However, lack of prioritization among the coastal and marine areas and lack of coordination of agency efforts impede efficient, cost-effective mapping. A workshop on Mapping of Florida's Coastal and Marine Resources was sponsored by the U.S. Geological Survey (USGS), Florida Department of Environmental Protection (FDEP), and Southeastern Regional Partnership for Planning and Sustainability (SERPPAS). The workshop was held at the USGS Florida Integrated Science Center (FISC) in St. Petersburg, FL, on February 7-8, 2007. The workshop was designed to provide State, Federal, university, and non-governmental organizations (NGOs) the opportunity to discuss their existing data coverage and create a prioritization of areas for new mapping data in Florida. Specific goals of the workshop were multifold, including to: * provide information to agencies on state-of-the-art technology for collecting data; * inform participants of the ongoing mapping programs in waters off Florida; * present the mapping needs and priorities of the State and Federal agencies and entities operating in Florida; * work with State of Florida agencies to establish an overall priority for areas needing mapping; * initiate discussion of a unified classification of habitat and bioregions; * discuss and examine the need to standardize terminology and data collection/storage so that data, in particular habitat data, can be shared; 9 identify opportunities for partnering and leveraging mapping efforts among agencies and entities; * identify impediments and organizational gaps that hinder collection

  10. The impacts of climate change in coastal marine systems.

    PubMed

    Harley, Christopher D G; Randall Hughes, A; Hultgren, Kristin M; Miner, Benjamin G; Sorte, Cascade J B; Thornber, Carol S; Rodriguez, Laura F; Tomanek, Lars; Williams, Susan L

    2006-02-01

    Anthropogenically induced global climate change has profound implications for marine ecosystems and the economic and social systems that depend upon them. The relationship between temperature and individual performance is reasonably well understood, and much climate-related research has focused on potential shifts in distribution and abundance driven directly by temperature. However, recent work has revealed that both abiotic changes and biological responses in the ocean will be substantially more complex. For example, changes in ocean chemistry may be more important than changes in temperature for the performance and survival of many organisms. Ocean circulation, which drives larval transport, will also change, with important consequences for population dynamics. Furthermore, climatic impacts on one or a few 'leverage species' may result in sweeping community-level changes. Finally, synergistic effects between climate and other anthropogenic variables, particularly fishing pressure, will likely exacerbate climate-induced changes. Efforts to manage and conserve living marine systems in the face of climate change will require improvements to the existing predictive framework. Key directions for future research include identifying key demographic transitions that influence population dynamics, predicting changes in the community-level impacts of ecologically dominant species, incorporating populations' ability to evolve (adapt), and understanding the scales over which climate will change and living systems will respond.

  11. 15 CFR 921.4 - Relationship to other provisions of the Coastal Zone Management Act, and to the Marine Protection...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the Coastal Zone Management Act, and to the Marine Protection, Research and Sanctuaries Act. 921.4... provisions of the Coastal Zone Management Act, and to the Marine Protection, Research and Sanctuaries Act. (a... affecting the state's coastal zone, must be undertaken in a manner consistent to the maximum...

  12. 15 CFR 921.4 - Relationship to other provisions of the Coastal Zone Management Act, and to the Marine Protection...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the Coastal Zone Management Act, and to the Marine Protection, Research and Sanctuaries Act. 921.4... provisions of the Coastal Zone Management Act, and to the Marine Protection, Research and Sanctuaries Act. (a... affecting the state's coastal zone, must be undertaken in a manner consistent to the maximum...

  13. 15 CFR 921.4 - Relationship to other provisions of the Coastal Zone Management Act, and to the Marine Protection...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the Coastal Zone Management Act, and to the Marine Protection, Research and Sanctuaries Act. 921.4... provisions of the Coastal Zone Management Act, and to the Marine Protection, Research and Sanctuaries Act. (a... affecting the state's coastal zone, must be undertaken in a manner consistent to the maximum...

  14. 15 CFR 921.4 - Relationship to other provisions of the Coastal Zone Management Act, and to the Marine Protection...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the Coastal Zone Management Act, and to the Marine Protection, Research and Sanctuaries Act. 921.4... provisions of the Coastal Zone Management Act, and to the Marine Protection, Research and Sanctuaries Act. (a... affecting the state's coastal zone, must be undertaken in a manner consistent to the maximum...

  15. 15 CFR 921.4 - Relationship to other provisions of the Coastal Zone Management Act, and to the Marine Protection...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the Coastal Zone Management Act, and to the Marine Protection, Research and Sanctuaries Act. 921.4... provisions of the Coastal Zone Management Act, and to the Marine Protection, Research and Sanctuaries Act. (a... affecting the state's coastal zone, must be undertaken in a manner consistent to the maximum...

  16. Perceptions of risk among households in two Australian coastal communities

    DOE PAGES

    Elrick-Barr, Carmen E.; Smith, Timothy F.; Thomsen, Dana C.; ...

    2015-04-20

    There is limited knowledge of risk perceptions in coastal communities despite their vulnerability to a range of risks including the impacts of climate change. A survey of 400 households in two Australian coastal communities, combined with semi-structured interviews, provides insight into household perceptions of the relative importance of climatic and non-climatic risks and the subsequent risk priorities that may inform household adaptive action. In contrast to previous research, the results demonstrated that geographic location and household characteristics might not affect perceptions of vulnerability to environmental hazards. However, past experience was a significant influence, raising the priority of environmental concerns. Overall,more » the results highlight the priority concerns of coastal households (from finance, to health and environment) and suggest to increase the profile of climate issues in coastal communities climate change strategies need to better demonstrate links between climate vulnerability and other household concerns. Moreover, promoting generic capacities in isolation from understanding the context in which households construe climate risks is unlikely to yield the changes required to decrease the vulnerability of coastal communities.« less

  17. Perceptions of risk among households in two Australian coastal communities

    SciTech Connect

    Elrick-Barr, Carmen E.; Smith, Timothy F.; Thomsen, Dana C.; Preston, Benjamin L.

    2015-04-20

    There is limited knowledge of risk perceptions in coastal communities despite their vulnerability to a range of risks including the impacts of climate change. A survey of 400 households in two Australian coastal communities, combined with semi-structured interviews, provides insight into household perceptions of the relative importance of climatic and non-climatic risks and the subsequent risk priorities that may inform household adaptive action. In contrast to previous research, the results demonstrated that geographic location and household characteristics might not affect perceptions of vulnerability to environmental hazards. However, past experience was a significant influence, raising the priority of environmental concerns. Overall, the results highlight the priority concerns of coastal households (from finance, to health and environment) and suggest to increase the profile of climate issues in coastal communities climate change strategies need to better demonstrate links between climate vulnerability and other household concerns. Moreover, promoting generic capacities in isolation from understanding the context in which households construe climate risks is unlikely to yield the changes required to decrease the vulnerability of coastal communities.

  18. 75 FR 5765 - NOAA Coastal and Marine Habitat Restoration Project Supplemental Funding

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-04

    ... National Oceanic and Atmospheric Administration RIN 0648-ZC05 NOAA Coastal and Marine Habitat Restoration... Atmospheric Administration (NOAA), Commerce. ACTION: Notice of supplemental funding for NOAA Coastal and... FURTHER INFORMATION CONTACT: Melanie Gange at (301) 713-0174, or by e-mail at...

  19. Vulnerability of Coastal Communities from Storm Surge and Flood Disasters.

    PubMed

    Bathi, Jejal Reddy; Das, Himangshu S

    2016-02-19

    Disasters in the form of coastal storms and hurricanes can be very destructive. Preparing for anticipated effects of such disasters can help reduce the public health and economic burden. Identifying vulnerable population groups can help prioritize resources for the most needed communities. This paper presents a quantitative framework for vulnerability measurement that incorporates both socioeconomic and flood inundation vulnerability. The approach is demonstrated for three coastal communities in Mississippi with census tracts being the study unit. The vulnerability results are illustrated as thematic maps for easy usage by planners and emergency responders to assist in prioritizing their actions to vulnerable populations during storm surge and flood disasters.

  20. Vulnerability of Coastal Communities from Storm Surge and Flood Disasters

    PubMed Central

    Bathi, Jejal Reddy; Das, Himangshu S.

    2016-01-01

    Disasters in the form of coastal storms and hurricanes can be very destructive. Preparing for anticipated effects of such disasters can help reduce the public health and economic burden. Identifying vulnerable population groups can help prioritize resources for the most needed communities. This paper presents a quantitative framework for vulnerability measurement that incorporates both socioeconomic and flood inundation vulnerability. The approach is demonstrated for three coastal communities in Mississippi with census tracts being the study unit. The vulnerability results are illustrated as thematic maps for easy usage by planners and emergency responders to assist in prioritizing their actions to vulnerable populations during storm surge and flood disasters. PMID:26907313

  1. Microbial processes and organic priority substances in marine coastal sediments (Adriatic Sea, Italy)

    NASA Astrophysics Data System (ADS)

    Zoppini, Annamaria; Ademollo, Nicoletta; Amalfitano, Stefano; Dellisanti, Walter; Lungarini, Silvia; Miserocchi, Stefano; Patrolecco, Luisa; Langone, Leonardo

    2015-04-01

    PERSEUS EU FP7 Project aims to identify the interacting patterns of natural and human-derived pressures to assess their impact on marine ecosystems and, using the objectives and principles of the Marine Strategy Framework Directive (MSFD) as a vehicle, to design an effective and innovative research governance framework based on sound scientific knowledge. In the frame of this Project (subtask 1.3.3 ADREX: Adriatic and Ionian Seas Experiment), monitoring surveys were conducted in the Adriatic Sea (Italy) in order to study the variation of structural and functional characteristics of native bacterial communities and the occurrence of selected classes of organic priority substances in sediments. The study area represents a good natural laboratory sensitive to climate variability and human pressure, owing to the semi-enclosed nature of the Adriatic Sea and to the increasing trend of human activities in the coastal regions. During the cruise ADRI-13 (November 2013) and ADRI-14 (October 2014) we sampled several coastal sites from the mouth of the Po River to the Otranto strait. Surface sediments were collected in all areas, while sediment cores were sampled in selected sites. Microbes associated with marine sediments play an important role in the C-flux being responsible for the transformation of organic detritus (autochthonous and allochthonous) into biomass. The sediment bacterial abundance was determined by epifluorescence microscopy and the rate of bacterial carbon production by measuring the 3H-leucine uptake rates. The community respiration rate was estimated by the measurement of the electron transport system (ETS) activity. The sediment contamination level was determined by measuring the concentration of contaminants included in the list of organic priority substances: PAHs, bisphenol A (BPA), alkylphenols (APs). The extraction/clean-up of PAHs, BPA and APs was performed by ultrasonic bath with the appropriate solvents, followed by analytical determination with

  2. Regime shifts in coastal lagoons: Evidence from free-living marine nematodes.

    PubMed

    Netto, Sergio A; Fonseca, Gustavo

    2017-01-01

    We test the validity of using the regime shift theory to account for differences in environmental state of coastal lagoons as a response to variation in connectivity with the sea, using free-living nematodes as a surrogate. The study is based on sediment samples from the inner and outer portions of 15 coastal lagoons (5 open to the sea, 5 intermittently open/closed, and 5 permanently closed lakes) along the southern coast of Brazil. Environmental data suggested that there are two contrasting environmental conditions, with coastal lakes being significantly different from open and intermittent lagoons. Marine nematode assemblages corroborate these two mutually exclusive alternative stable states (open vs. closed systems), but assemblages from the intermittently open/closed lagoons showed a gradual change in species composition between both systems independently of the environmental conditions. The gradient in the structural connectivity among lagoons and the sea, due to their regime shifts, changes the movement of resources and consumers and the internal physico-chemical gradients, directly affecting regional species diversity. Whereas openness to the sea increased similarity in nematode assemblage composition among connected lagoons, isolation increased dissimilarity among closed lagoons. Our results from a large-scale sampling program indicated that as lagoons lose connectivity with the sea, shifting the environmental state, local processes within individual intermittently open/closed lagoons and particularly within coastal lakes become increasingly more important in structuring these communities. The main implication of these findings is that depending on the local stable state we may end up with alternative regional patterns of biodiversity.

  3. Regime shifts in coastal lagoons: Evidence from free-living marine nematodes

    PubMed Central

    2017-01-01

    We test the validity of using the regime shift theory to account for differences in environmental state of coastal lagoons as a response to variation in connectivity with the sea, using free-living nematodes as a surrogate. The study is based on sediment samples from the inner and outer portions of 15 coastal lagoons (5 open to the sea, 5 intermittently open/closed, and 5 permanently closed lakes) along the southern coast of Brazil. Environmental data suggested that there are two contrasting environmental conditions, with coastal lakes being significantly different from open and intermittent lagoons. Marine nematode assemblages corroborate these two mutually exclusive alternative stable states (open vs. closed systems), but assemblages from the intermittently open/closed lagoons showed a gradual change in species composition between both systems independently of the environmental conditions. The gradient in the structural connectivity among lagoons and the sea, due to their regime shifts, changes the movement of resources and consumers and the internal physico-chemical gradients, directly affecting regional species diversity. Whereas openness to the sea increased similarity in nematode assemblage composition among connected lagoons, isolation increased dissimilarity among closed lagoons. Our results from a large-scale sampling program indicated that as lagoons lose connectivity with the sea, shifting the environmental state, local processes within individual intermittently open/closed lagoons and particularly within coastal lakes become increasingly more important in structuring these communities. The main implication of these findings is that depending on the local stable state we may end up with alternative regional patterns of biodiversity. PMID:28235030

  4. Sources of atmospheric methane from coastal marine wetlands

    NASA Technical Reports Server (NTRS)

    Harriss, R. C.; Sebacher, D. I.; Bartlett, K. B.; Bartlett, D. S.

    1982-01-01

    Biological methanogenesis in wetlands is believed to be one of the major sources of global tropospheric methane. The present paper reports measurements of methane distribution in the soils, sediments, water and vegetation of coastal marine wetlands. Measurements, carried out in the salt marshes Bay Tree Creek in Virginia and Panacea in northwest Florida, reveal methane concentrations in soils and sediments to vary with depth below the surface and with soil temperature. The fluxes of methane from marsh soils to the atmosphere at the soil-air interface are estimated to range from -0.00067 g CH4/sq m per day (methane sink) to 0.024 g CH4/sq m per day, with an average value of 0.0066 g CH4/sq m per day. Data also demonstrate the important role of tidal waters percolating through marsh soils in removing methane from the soils and releasing it to the atmosphere. The information obtained, together with previous studies, provides a framework for the design of a program based on in situ and remote sensing measurements to study the global methane cycle.

  5. St. Petersburg Coastal and Marine Science Center's Core Archive Portal

    USGS Publications Warehouse

    Reich, Chris; Streubert, Matt; Dwyer, Brendan; Godbout, Meg; Muslic, Adis; Umberger, Dan

    2012-01-01

    This Web site contains information on rock cores archived at the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC). Archived cores consist of 3- to 4-inch-diameter coral cores, 1- to 2-inch-diameter rock cores, and a few unlabeled loose coral and rock samples. This document - and specifically the archive Web site portal - is intended to be a 'living' document that will be updated continually as additional cores are collected and archived. This document may also contain future references and links to a catalog of sediment cores. Sediment cores will include vibracores, pushcores, and other loose sediment samples collected for research purposes. This document will: (1) serve as a database for locating core material currently archived at the USGS SPCMSC facility; (2) provide a protocol for entry of new core material into the archive system; and, (3) set the procedures necessary for checking out core material for scientific purposes. Core material may be loaned to other governmental agencies, academia, or non-governmental organizations at the discretion of the USGS SPCMSC curator.

  6. Recent Trends in Marine Phycotoxins from Australian Coastal Waters

    PubMed Central

    Ajani, Penelope; Harwood, D. Tim; Murray, Shauna A.

    2017-01-01

    Phycotoxins, which are produced by harmful microalgae and bioaccumulate in the marine food web, are of growing concern for Australia. These harmful algae pose a threat to ecosystem and human health, as well as constraining the progress of aquaculture, one of the fastest growing food sectors in the world. With better monitoring, advanced analytical skills and an increase in microalgal expertise, many phycotoxins have been identified in Australian coastal waters in recent years. The most concerning of these toxins are ciguatoxin, paralytic shellfish toxins, okadaic acid and domoic acid, with palytoxin and karlotoxin increasing in significance. The potential for tetrodotoxin, maitotoxin and palytoxin to contaminate seafood is also of concern, warranting future investigation. The largest and most significant toxic bloom in Tasmania in 2012 resulted in an estimated total economic loss of ~AUD$23M, indicating that there is an imperative to improve toxin and organism detection methods, clarify the toxin profiles of species of phytoplankton and carry out both intra- and inter-species toxicity comparisons. Future work also includes the application of rapid, real-time molecular assays for the detection of harmful species and toxin genes. This information, in conjunction with a better understanding of the life histories and ecology of harmful bloom species, may lead to more appropriate management of environmental, health and economic resources. PMID:28208796

  7. Arctic in Rapid Transition: Priorities for the future of marine and coastal research in the Arctic

    NASA Astrophysics Data System (ADS)

    Werner, Kirstin; Fritz, Michael; Morata, Nathalie; Keil, Kathrin; Pavlov, Alexey; Peeken, Ilka; Nikolopoulos, Anna; Findlay, Helen S.; Kędra, Monika; Majaneva, Sanna; Renner, Angelika; Hendricks, Stefan; Jacquot, Mathilde; Nicolaus, Marcel; O'Regan, Matt; Sampei, Makoto; Wegner, Carolyn

    2016-09-01

    Understanding and responding to the rapidly occurring environmental changes in the Arctic over the past few decades require new approaches in science. This includes improved collaborations within the scientific community but also enhanced dialogue between scientists and societal stakeholders, especially with Arctic communities. As a contribution to the Third International Conference on Arctic Research Planning (ICARPIII), the Arctic in Rapid Transition (ART) network held an international workshop in France, in October 2014, in order to discuss high-priority requirements for future Arctic marine and coastal research from an early-career scientists (ECS) perspective. The discussion encompassed a variety of research fields, including topics of oceanographic conditions, sea-ice monitoring, marine biodiversity, land-ocean interactions, and geological reconstructions, as well as law and governance issues. Participants of the workshop strongly agreed on the need to enhance interdisciplinarity in order to collect comprehensive knowledge about the modern and past Arctic Ocean's geo-ecological dynamics. Such knowledge enables improved predictions of Arctic developments and provides the basis for elaborate decision-making on future actions under plausible environmental and climate scenarios in the high northern latitudes. Priority research sheets resulting from the workshop's discussions were distributed during the ICARPIII meetings in April 2015 in Japan, and are publicly available online.

  8. An integrated approach to manage coastal ecosystems and prevent marine pollution effects

    NASA Astrophysics Data System (ADS)

    Marcelli, Marco; Bonamano, Simone; Carli, Filippo Maria; Giovacchini, Monica; Madonia, Alice; Mancini, Emanuele; Molino, Chiara; Piermattei, Viviana; Manfredi Frattarelli, Francesco

    2016-04-01

    This work focuses an integrated approach based on Sea-Use-Map (SUM), backed by a permanent monitoring system (C-CEMS-Civitavecchia Coastal Environmental Monitoring System). This tool supports the management of the marine coastal area, contributing substantially to ecosystem benefits evaluation and to minimize pollution impacts. Within the Blue Growth strategy, the protection of marine ecosystems is considered a priority for the sustainable growth of marine and maritime sectors. To face this issue, the European MSP and MSFD directives (2014/89/EU; 2008/56/EC) strongly promote the adoption of an ecosystem-based approach, paying particular attention to the support of monitoring networks that use L-TER (long-term ecological research) observations and integrate multi-disciplinary data sets. Although not largely used in Europe yet, the Environmental Sensitivity Index (ESI), developed in 1979 by NOAA (and promoted by IMO in 2010), can be considered an excellent example of ecosystem-based approach to reduce the environmental consequences of an oil spill event in a coastal area. SUM is an ecosystem oriented cartographic tool specifically designed to support the sustainable management of the coastal areas, such as the selection of the best sites for the introduction of new uses or the identification of the coastal areas subjected to potential impacts. It also enables a rapid evaluation of the benefits produced by marine areas as well as of their anthropogenic disturbance. SUM integrates C-CEMS dataset, geomorphological and ecological features and knowledge on the coastal and maritime space uses. The SUM appliance allowed to obtain relevant operational results in the Civitavecchia coastal area (Latium, Italy), characterized by high variability of marine and coastal environments, historical heritage and affected by the presence of a big harbour, relevant industrial infrastructures, and touristic features. In particular, the valuation of marine ecosystem services based on

  9. High tolerance of protozooplankton to ocean acidification in an Arctic coastal plankton community

    NASA Astrophysics Data System (ADS)

    Aberle, N.; Schulz, K. G.; Stuhr, A.; Ludwig, A.; Riebesell, U.

    2012-09-01

    Impacts of ocean acidification (OA) on marine biota have been observed in a wide range of marine systems. We used a mesocosm approach to study the response of a high Arctic coastal protozooplankton (PZP in the following) community during the post-bloom period in the Kongsfjorden (Svalbard) to direct and indirect effects of high pCO2/low pH. We found almost no direct effects of OA on PZP composition and diversity. Both, the relative shares of ciliates and heterotrophic dinoflagellates as well as the taxonomic composition of protozoans remained unaffected by changes in pCO2/pH. The different pCO2 treatments did not have any effect on food availability and phytoplankton composition and thus no indirect effects e.g. on the total carrying capacity and phenology of PZP could be observed. Our data points at a high tolerance of this Arctic PZP community to changes in pCO2/pH. Future studies on the impact of OA on plankton communities should include PZP in order to test whether the observed low sensitivity of protozoans to OA is typical for coastal communities where changes in seawater pH occur frequently.

  10. High tolerance of microzooplankton to ocean acidification in an Arctic coastal plankton community

    NASA Astrophysics Data System (ADS)

    Aberle, N.; Schulz, K. G.; Stuhr, A.; Malzahn, A. M.; Ludwig, A.; Riebesell, U.

    2013-03-01

    Impacts of ocean acidification (OA) on marine biota have been observed in a wide range of marine systems. We used a mesocosm approach to study the response of a high Arctic coastal microzooplankton community during the post-bloom period in Kongsfjorden (Svalbard) to direct and indirect effects of high pCO2/low pH. We found almost no direct effects of OA on microzooplankton composition and diversity. Both the relative shares of ciliates and heterotrophic dinoflagellates as well as the taxonomic composition of microzooplankton remained unaffected by changes in pCO2/pH. Although the different pCO2 treatments affected food availability and phytoplankton composition, no indirect effects (e.g. on the total carrying capacity and phenology of microzooplankton) could be observed. Our data point to a high tolerance of this Arctic microzooplankton community to changes in pCO2/pH. Future studies on the impact of OA on plankton communities should include microzooplankton in order to test whether the observed low sensitivity to OA is typical for coastal communities where changes in seawater pH occur frequently.

  11. Best Practices in Marine and Coastal Science Education: Lessons Learned from a National Estuarine Research Reserve.

    ERIC Educational Resources Information Center

    McDonnell, Janice D.

    The Jacques Cousteau National Estuarine Research Reserve (JC NERR) program has successfully capitalized on human fascination with the ocean by using the marine environment to develop interest and capability in science. The Institute of Marine & Coastal Sciences, as the managing agency of the JC NERR, makes its faculty, staff resources, and…

  12. Photochemical Control of Organic Carbon Availability to Coastal Microbial Communities

    NASA Astrophysics Data System (ADS)

    Miller, W. L.; Reader, H. E.; Powers, L. C.

    2010-12-01

    Chromophoric dissolved organic matter (CDOM) is the fraction of dissolved organic matter that absorbs solar radiation. In terrestrially influenced locations high concentrations of CDOM help to shield the biological community from harmful UV radiation. Although CDOM is largely biologically refractory in nature, photochemistry has the potential to transform biologically refractory carbon into more biolabile forms. Studies suggest that in marine systems, the effect of UVR on carbon availability and subsequent bacterial production varies widely, ranging from a +200% increase to a -75% decrease (Mopper and Kieber, 2002). Evidence suggests that the largely negative or “no-effect” samples are from oligotrophic waters and that terrestrially influenced samples experience a more positive effect on the biolability of carbon after irradiation. To quantify the effects of photochemistry on the biolability of DOC in a terrestrially influenced system, a quarterly sampling effort was undertaken at three estuarine locations off the coast of Georgia, USA for a total of 14 apparent quantum yield (AQY) determinations. Large expanses of salt marsh on the coast of Georgia, create a large non-point source of DOC to the coastal ocean. Sapelo Sound, the northernmost sampling site, is dominated by offshore waters and receives little to no freshwater input throughout the year. Altamaha Sound, the southernmost sampling site, is strongly influenced by the Altamaha River, which drains the largest watershed in the state of Georgia. Doboy Sound, situated between these two sites, is largely marine dominated but is influenced by fresh water during periods of high river flow. Each sample was 0.2um filter-sterilized before irradiation in a Suntest Solar Simulator; using optical filters to create 7 distinct radiance spectra in 15 samples for determination of AQY spectra for release of biolabile DOC. Irradiated samples were consequently inoculated with the natural microbial community concentrated

  13. Coupling of fog and marine microbial content in the near-shore coastal environment

    NASA Astrophysics Data System (ADS)

    Dueker, M. E.; O'Mullan, G. D.; Weathers, K. C.; Juhl, A. R.; Uriarte, M.

    2012-02-01

    Microbes in the atmosphere (microbial aerosols) play an important role in climate and provide an ecological and biogeochemical connection between oceanic, atmospheric, and terrestrial environments. However, the sources and environmental factors controlling the concentration, diversity, transport, and viability of microbial aerosols are poorly understood. This study examined culturable microbial aerosols from a coastal environment in Maine (USA) and determined the effect of onshore wind speed and fog presence on deposition rate, source, and community composition. During fog events with low onshore winds (<2 m s-1) the near-shore deposition of microbial aerosols (microbial fallout) decreased with increasing wind speeds, whereas microbial fallout rates under clear conditions and comparable low wind speeds showed no wind speed dependence. Mean aerosol particle size also increased with onshore wind speed when fog was present, indicating increased shoreward transport of larger aerosol particles. 16S rRNA sequencing of culturable ocean surface bacteria and microbial aerosols deposited onshore resulted in the detection of 31 bacterial genera, with 5 dominant genera (Vibrio, Bacillus, Pseudoalteromonas, Psychrobacter, Salinibacterium) making up 66 % of all sequences. The sequence library from microbial aerosol isolates, as with libraries found in other coastal/marine aerosol studies, was dominated at the phylum level by Proteobacteria, with additional representation from Firmicutes, Actinobacteria and Bacteroidetes. Seventy-five percent of the culturable microbial aerosols falling out under foggy conditions were most similar to GenBank-published sequences detected in marine environments. Using a 97 % similarity cut-off, sequence libraries from ocean surface and fog isolates shared eight operational taxonomic units (OTU's) in total, three of which were the most dominant OTU's in the library, representing large fractions of the ocean (28 %) and fog (21 %) libraries. The fog

  14. Coupling of fog and marine microbial content in the near-shore coastal environment

    NASA Astrophysics Data System (ADS)

    Dueker, M. E.; O'Mullan, G. D.; Weathers, K. C.; Juhl, A. R.; Uriarte, M.

    2011-09-01

    Microbes in the atmosphere (microbial aerosols) play an important role in climate and provide an ecological and biogeochemical connection between oceanic, atmospheric, and terrestrial environments. However, the sources and environmental factors controlling the concentration, diversity, transport, and viability of microbial aerosols are poorly understood. This study examined culturable microbial aerosols from a coastal environment in Maine (USA) and determined the effect of onshore wind speed and fog presence on deposition rate, source, and community composition. During fog events with low onshore winds (< 2 m s-1) the near-shore deposition of microbial aerosols (microbial fallout) decreased with increasing wind speeds, whereas microbial fallout rates under clear conditions and comparable low wind speeds showed no wind speed dependence. Mean aerosol particle size also increased with onshore wind speed when fog was present, indicating increased shoreward transport of larger aerosol particles. 16S rRNA sequencing of culturable ocean surface bacteria and microbial aerosols deposited onshore resulted in the detection of 31 bacterial genera, with 5 dominant genera (Vibrio, Bacillus, Pseudoalteromonas, Psychrobacter, Salinibacterium) making up 66% of all sequences. The microbial aerosol sequence library, as with libraries found in other coastal/marine aerosol studies, was dominated at the phylum level by Proteobacteria, with additional representation from Firmicutes, Actinobacteria and Bacteroidetes. Seventy-five percent of the viable microbial aerosols falling out under foggy conditions were most similar to GenBank-published sequences detected in marine environments. Using a 97% similarity cut-off, ocean surface and fog sequence libraries shared eight operational taxonomic units (OTU's) in total, three of which were the most dominant OTU's in the library, representing large fractions of the ocean (28%) and fog (21%) libraries. The fog and ocean surface libraries were

  15. Pole-to-pole biogeography of surface and deep marine bacterial communities.

    PubMed

    Ghiglione, Jean-François; Galand, Pierre E; Pommier, Thomas; Pedrós-Alió, Carlos; Maas, Elizabeth W; Bakker, Kevin; Bertilson, Stefan; Kirchmanj, David L; Lovejoy, Connie; Yager, Patricia L; Murray, Alison E

    2012-10-23

    The Antarctic and Arctic regions offer a unique opportunity to test factors shaping biogeography of marine microbial communities because these regions are geographically far apart, yet share similar selection pressures. Here, we report a comprehensive comparison of bacterioplankton diversity between polar oceans, using standardized methods for pyrosequencing the V6 region of the small subunit ribosomal (SSU) rRNA gene. Bacterial communities from lower latitude oceans were included, providing a global perspective. A clear difference between Southern and Arctic Ocean surface communities was evident, with 78% of operational taxonomic units (OTUs) unique to the Southern Ocean and 70% unique to the Arctic Ocean. Although polar ocean bacterial communities were more similar to each other than to lower latitude pelagic communities, analyses of depths, seasons, and coastal vs. open waters, the Southern and Arctic Ocean bacterioplankton communities consistently clustered separately from each other. Coastal surface Southern and Arctic Ocean communities were more dissimilar from their respective open ocean communities. In contrast, deep ocean communities differed less between poles and lower latitude deep waters and displayed different diversity patterns compared with the surface. In addition, estimated diversity (Chao1) for surface and deep communities did not correlate significantly with latitude or temperature. Our results suggest differences in environmental conditions at the poles and different selection mechanisms controlling surface and deep ocean community structure and diversity. Surface bacterioplankton may be subjected to more short-term, variable conditions, whereas deep communities appear to be structured by longer water-mass residence time and connectivity through ocean circulation.

  16. [Concentration and community diversity of microbes in bioaerosols in the Qingdao coastal region].

    PubMed

    Qi, Jian-Hua; Wu, Li-Jing; Gao, Dong-Mei; Jin, Chuan

    2014-03-01

    Bioaerosol samples were collected in Qingdao coastal region during July 2009 - June 2010 to investigate the concentration and community diversity of microbes in bioaerosols. Microbe concentrations (bacteria and fungi) in marine and terrestrial bioaerosols were determined and diversity indices including Shannon-Weiner index, Simpson's index and Pielou index were calculated in this study. Monthly average concentrations of terrestrial bacteria, marine bacteria, terrestrial fungi and marine fungi were in the ranges of 12-436 CFU x m(-3), 25-561 CFU x m(-3), 0-817 CFU x m(-3) and 11-1346 CFU x m(-3), respectively. There were consistent seasonal variations of these four types of microbe, with higher concentrations in spring and summer and lowest during winter, especially in February. Compared to terrestrial microbes, marine microbes account for higher proportion to the total culturable microbes, with a percentage of 63%. The number of microbial species varied from 17 to 102, and was partially correlated with microbial concentrations, however, it did not show obvious seasonal variation. Based on the analysis of calculated diversity indices, we found that the community diversities of four types of microbe were much higher in January, November and May than in February. The community diversity varied with the season, space and different microbial species, and showed a different seasonal variation from the microbial concentration.

  17. Engaging a community towards marine cyberinfrastructure: Lessons Learned from The Marine Metadata Interoperability initiative

    NASA Astrophysics Data System (ADS)

    Galbraith, N. R.; Graybeal, J.; Bermudez, L. E.; Wright, D.

    2005-12-01

    The Marine Metadata Interoperability (MMI) initiative promotes the exchange, integration and use of marine data through enhanced data publishing, discovery, documentation and accessibility. The project, operating since late 2004, presents several cultural organizational challenges because of the diversity of participants: scientists, technical experts, and data managers from around the world, all working in organizations with different corporate cultures, funding structures, and systems of decision-making. MMI provides educational resources at several levels. For instance, short introductions to metadata concepts are available, as well as guides and "cookbooks" for the quick and efficient preparation of marine metadata. For those who are building major marine data systems, including ocean-observing capabilities, there are training materials, marine metadata content examples, and resources for mapping elements between different metadata standards. The MMI also provides examples of good metadata practices in existing data systems, including the EU's Marine XML project, and functioning ocean/coastal clearinghouses and atlases developed by MMI team members. Communication tools that help build community: 1) Website, used to introduce the initiative to new visitors, and to provide in-depth guidance and resources to members and visitors. The site is built using Plone, an open source web content management system. Plone allows the site to serve as a wiki, to which every user can contribute material. This keeps the membership engaged and spreads the responsibility for the tasks of updating and expanding the site. 2) Email-lists, to engage the broad ocean sciences community. The discussion forums "news," "ask," and "site-help" are available for receiving regular updates on MMI activities, seeking advice or support on projects and standards, or for assistance with using the MMI site. Internal email lists are provided for the Technical Team, the Steering Committee and

  18. Phytoplankton community composition in nearshore coastal waters of Louisiana

    EPA Science Inventory

    Phytoplankton community compositions within near-shore coastal and estuarine waters of Louisiana were characterized by relative abundance, biovolume, and taxonomic identification to genus and species when possible. The range of total nitrogen was 0.5 to 1.3 mg L-1 and total phos...

  19. Interactions of aquaculture, marine coastal ecosystems, and near-shore waters: A bibliography. Bibliographies and literature of agriculture (Final)

    SciTech Connect

    Hanfman, D.T.; Coleman, D.E.; Tibbitt, S.J.

    1991-01-01

    The bibliography contains selected literature citations on the interactions of aquaculture and marine coastal ecosystems. The focus is on aquaculture effluents and their impact on marine coastal ecosystems and waterways as well as the impact of pollutants on aquaculture development. Factors affecting these issues include domestic and industrial wastes, thermal discharges, acid rain, heavy metals, oil spills, and microbial contamination of marine waters and aquatic species. Coastal zone management, environmenal impact of aquaculture, and water quality issues are also included in the bibliography.

  20. Coupling Bacterioplankton Populations and Environment to Community Function in Coastal Temperate Waters

    PubMed Central

    Traving, Sachia J.; Bentzon-Tilia, Mikkel; Knudsen-Leerbeck, Helle; Mantikci, Mustafa; Hansen, Jørgen L. S.; Stedmon, Colin A.; Sørensen, Helle; Markager, Stiig; Riemann, Lasse

    2016-01-01

    Bacterioplankton play a key role in marine waters facilitating processes important for carbon cycling. However, the influence of specific bacterial populations and environmental conditions on bacterioplankton community performance remains unclear. The aim of the present study was to identify drivers of bacterioplankton community functions, taking into account the variability in community composition and environmental conditions over seasons, in two contrasting coastal systems. A Least Absolute Shrinkage and Selection Operator (LASSO) analysis of the biological and chemical data obtained from surface waters over a full year indicated that specific bacterial populations were linked to measured functions. Namely, Synechococcus (Cyanobacteria) was strongly correlated with protease activity. Both function and community composition showed seasonal variation. However, the pattern of substrate utilization capacity could not be directly linked to the community dynamics. The overall importance of dissolved organic matter (DOM) parameters in the LASSO models indicate that bacterioplankton respond to the present substrate landscape, with a particular importance of nitrogenous DOM. The identification of common drivers of bacterioplankton community functions in two different systems indicates that the drivers may be of broader relevance in coastal temperate waters. PMID:27729909

  1. A Robot for Coastal Marine Studies Under Hostile Conditions

    NASA Astrophysics Data System (ADS)

    Consi, T. R.

    2012-12-01

    Robots have long been used for scientific exploration of extremely remote environments such as planetary surfaces and the deep ocean. In addition to these physically remote places, there are many environments that are transiently remote in the sense that they are inaccessible to humans for a period of time. Coastal marine environments fall into this category. While quite accessible (and enjoyable) during good weather, the coast can become as remote as the moon when it is impacted by severe storms or hurricanes. For near shore and shallow water marine science unmanned underwater ground vehicles (UUGVs) are the robots of choice for reliable access under a variety of conditions. Ground vehicles are inherently amphibious being able to operate in complex coastal environments that can range from the completely dry beach, through the transiently wet swash zone, into the surf zone and beyond. During storms, UUGVs provide stable sensor platforms resistant to waves and currents by virtue of being locked to the substrate. In such situations free-swimming robots would be swept away. Mobility during storms enables a UUGV to orient itself to optimally resist forces that would dislodge fixed, moored platforms. Mobility can also enable a UUGV to either avoid burial, or unbury itself after a storm. Finally, the ability to submerge provides a great advantage over buoys and surface vehicles which would be smashed by heavy wave action. We have developed a prototype UUGV to enable new science in the surf zone and other shallow water environments. Named LMAR for Lake Michigan Amphibious Robot, it is designed to be deployed from the dry beach, enter the water to perform a near-shore survey, and return to the deployment point for recovery. The body of the robot is a heavy flattened box (base dimensions: 1.07 m X 1.10 m X .393 m, dry weight: ~127 kg, displacement: ~ 45 kg) with a low center of gravity for stability and robust construction to withstand waves and currents. It is topped by a

  2. Suspended marine particulate proteins in coastal and oligotrophic waters

    NASA Astrophysics Data System (ADS)

    Bridoux, Maxime C.; Neibauer, Jaqui; Ingalls, Anitra E.; Nunn, Brook L.; Keil, Richard G.

    2015-03-01

    Metaproteomic analyses were performed on suspended sediments collected in one coastal environment (Washington margin, Pacific Ocean, n = 5) and two oligotrophic environments (Atlantic Ocean near BATS, n = 5, and Pacific Ocean near HOTS, n = 5). Using a database of 2.3 million marine proteins developed using the NCBI database, 443 unique peptides were detected from which 363 unique proteins were identified. Samples from the euphotic zone contained on average 2-3x more identifiable proteins than deeper waters (150-1500 m) and these proteins were predominately from photosynthetic organisms. Diatom peptides dominate the spectra of the Washington margin while peptides from cyanobacteria, such as Synechococcus sp. dominated the spectra of both oligotrophic sites. Despite differences in the exact proteins identified at each location, there is good agreement for protein function and cellular location. Proteins in surface waters code for a variety of cellular functions including photosynthesis (24% of detected proteins), energy production (10%), membrane production (9%) and genetic coding and reading (9%), and are split 60-40 between membrane proteins and intracellular cytoplasmic proteins. Sargasso Sea surface waters contain a suite of peptides consistent with proteins involved in circadian rhythms that promote both C and N fixation at night. At depth in the Sargasso Sea, both muscle-derived myosin protein and the muscle-hydrolyzing proteases deseasin MCP-01 and metalloprotease Mcp02 from γ-proteobacteria were observed. Deeper waters contain peptides predominately sourced from γ-proteobacteria (37% of detected proteins) and α-proteobacteria (26%), although peptides from membrane and photosynthetic proteins attributable to phytoplankton were still observed (13%). Relative to surface values, detection frequencies for bacterial membrane proteins and extracellular enzymes rose from 9 to 16 and 2 to 4% respectively below the thermocline and the overall balance between

  3. Marine wildlife entanglement: Assessing knowledge, attitudes, and relevant behaviour in the Australian community.

    PubMed

    Pearson, Elissa; Mellish, Sarah; Sanders, Ben; Litchfield, Carla

    2014-12-15

    Marine debris remains a global challenge, with significant impacts on wildlife. Despite this, there is a paucity of research examining public understanding about marine wildlife entanglement [MWE], particularly within an Australian context. The present study surveyed two hundred and thirteen participants across three coastal sites to assess familiarity with MWE and the effectiveness of a new community education initiative 'Seal the Loop' [STL]. Results revealed attitudes toward marine wildlife were very positive (M 40.5, SD 4.12); however 32% of participants were unable to correctly explain what MWE is and risks to wildlife were under-estimated. STL may be one method to enhance public understanding and engagement-if community familiarity with the program can be increased. For those aware of STL (<13% of the sample at the time of the study), findings revealed this was having a positive impact (e.g. learning something new, changed waste disposal behaviours).

  4. Complete oxidation of linear alkylbenzene sulfonate by bacterial communities selected from coastal seawater.

    PubMed Central

    Sigoillot, J C; Nguyen, M H

    1992-01-01

    Anionic surfactants, especially alkylbenzene sulfonates, are discharged into marine areas in great quantities. Because of their poor biodegradability, linear alkylbenzene sulfonates accumulate in seawater and sediments. Bacterial communities that can degrade surfactants were selected from coastal seawater contaminated by urban sewage. All the isolated strains consisted of gram-negative, strictly aerobic rods or helical bacteria. Some of these, though isolated from coastal seawater, did not need sodium for growth and appeared to be related to the genera Alcaligenes and Pseudomonas. Complete surfactant biodegradation was achieved by three important steps: terminal oxidation of the alkyl chain, desulfonation, and aromatic-ring cleavage. Only a few strains were able to carry out the first two steps. The aromatic ring was then cleaved by other strains that possess very specific enzymatic activities. Finally, a number of strains grew on short acids that were end-of-metabolism products of the others. PMID:1599249

  5. Marine debris ingestion by coastal dolphins: what drives differences between sympatric species?

    PubMed

    Di Beneditto, Ana Paula Madeira; Ramos, Renata Maria Arruda

    2014-06-15

    This study compared marine debris ingestion of the coastal dolphins Pontoporia blainvillei and Sotalia guianensis in a sympatric area in Atlantic Ocean. Among the 89 stomach contents samples of P. blainvillei, 14 (15.7%) contained marine debris. For S. guianensis, 77 stomach contents samples were analyzed and only one of which (1.30%) contained marine debris. The debris recovered was plastic material: nylon yarns and flexible plastics. Differences in feeding habits between the coastal dolphins were found to drive their differences regarding marine debris ingestion. The feeding activity of P. blainvillei is mainly near the sea bottom, which increases its chances of ingesting debris deposited on the seabed. In contrast, S. guianensis has a near-surface feeding habit. In the study area, the seabed is the main zone of accumulation of debris, and species with some degree of association with the sea bottom may be local bioindicators of marine debris pollution.

  6. Following the flow of ornithogenic nutrients through the Arctic marine coastal food webs

    NASA Astrophysics Data System (ADS)

    Zmudczyńska-Skarbek, Katarzyna; Balazy, Piotr

    2017-04-01

    Arctic colonial seabirds are recognized as effective fertilizers of terrestrial ecosystems by delivering marine-origin nutrients to the vicinities of their nesting sites. A proportion of this ornithogenic matter is then thought to return to the sea and, concentrated within a smaller area, locally provides additional nutrients for the nearshore marine communities. The aim of this study was to assess the presence and impact of local ornithogenic enrichment on two important elements of the Arctic coastal food web: (1) the planktonic pathway originating in the surface water, and (2) the benthic pathway based on benthic primary production. We sampled two areas in Isfjorden (Spitsbergen): one located below a coastal mixed breeding colony of guillemots and kittiwakes, and a control area not influenced by the colony. Slightly higher nitrogen stable isotope ratios (δ15N) were found in particulate organic matter suspended in the surface water (POM), sedimentary organic matter (SOM) from outside the zone of dense kelp forest, and the predatory/scavenging whelks Buccinum sp. collected below the seabird colony (the components recognized as following the planktonic path). In contrast, no ornithogenic isotopic enrichment was detected in the herbivorous gastropod Margarites helicinus or in SOM from the kelp zone (benthic path). The data are compatible with those obtained from the same location a year before, showing δ15N enrichment in predatory/scavenging hermit crabs Pagurus pubescens below the seabird, and no such changes in kelps Saccharina latissima or their presumed consumers, sea urchins Strongylocentrotus droebachiensis (Zmudczyńska-Skarbek et al., 2015a). The results suggest that, in the conditions of periodic, short-term pulses of ornithogenic nutrient inputs to the local marine environment, which typify the short High Arctic summer, planktonic organisms are the initial organisms to incorporate these nutrients before transfer to the benthic food web via pelagic

  7. Exploring the Impacts of Anthropogenic Disturbance on Seawater and Sediment Microbial Communities in Korean Coastal Waters Using Metagenomics Analysis

    PubMed Central

    Won, Nam-Il; Kim, Ki-Hwan; Kang, Ji Hyoun; Park, Sang Rul; Lee, Hyuk Je

    2017-01-01

    The coastal ecosystems are considered as one of the most dynamic and vulnerable environments under various anthropogenic developments and the effects of climate change. Variations in the composition and diversity of microbial communities may be a good indicator for determining whether the marine ecosystems are affected by complex forcing stressors. DNA sequence-based metagenomics has recently emerged as a promising tool for analyzing the structure and diversity of microbial communities based on environmental DNA (eDNA). However, few studies have so far been performed using this approach to assess the impacts of human activities on the microbial communities in marine systems. In this study, using metagenomic DNA sequencing (16S ribosomal RNA gene), we analyzed and compared seawater and sediment communities between sand mining and control (natural) sites in southern coastal waters of Korea to assess whether anthropogenic activities have significantly affected the microbial communities. The sand mining sites harbored considerably lower levels of microbial diversities in the surface seawater community during spring compared with control sites. Moreover, the sand mining areas had distinct microbial taxonomic group compositions, particularly during spring season. The microbial groups detected solely in the sediment load/dredging areas (e.g., Marinobacter, Alcanivorax, Novosphingobium) are known to be involved in degradation of toxic chemicals such as hydrocarbon, oil, and aromatic compounds, and they also contain potential pathogens. This study highlights the versatility of metagenomics in monitoring and diagnosing the impacts of human disturbance on the environmental health of marine ecosystems from eDNA. PMID:28134828

  8. Coastal Resilience: Using interactive decision support to address the needs of natural and human communities in Long Island Sound, USA

    NASA Astrophysics Data System (ADS)

    Gilmer, B.; Whelchel, A.; Newkirk, S.; Beck, M.; Shepard, C.; Ferdana, Z.

    2010-12-01

    Coastal Resilience (www.coastalresilience.org) is an ecosystem-based, coastal and marine spatial planning framework and web mapping application that illustrates ecological, socioeconomic, and coastal hazards information in Long Island Sound (New York and Connecticut), USA. Much of Long Island Sound’s private property is only inches above sea level, placing millions of dollars in public and private funds at risk to rising sea levels and other coastal hazards. These impacts also threaten wetlands and other coastal ecosystems that provide habitat, natural buffers to storms, and other ecosystem services. Despite a growing awareness of global climate change, local decision makers still lack the tools to examine different management objectives as sea levels rise and coastal hazards increase. The Coastal Resilience project provides tools and information to better inform decision-making with a primary goal of identifying vulnerable human and natural communities, while illustrating the important role that ecosystems will play in the face of sea level rise and increased storm intensity. This study focuses on The Nature Conservancy’s use of innovative spatial analysis techniques and community engagement to identify and plan for the protection of vulnerable coastal communities and ecosystems, natural resource migration, and economic risk. This work is intended to help identify ecosystem based adaptation solutions in the face of global climate change. The Nature Conservancy, working with multiple partners such as the NASA Goddard Institute for Space Studies and NOAA’s Coastal Services Center, deliver this information via the internet to help local decision makers keep the environment and public safety in mind.

  9. The role of infectious disease in marine communities: chapter 5

    USGS Publications Warehouse

    Lafferty, Kevin D.; Harvell, C. Drew

    2014-01-01

    Marine ecologists recognize that infectious diseases play and important role in ocean ecosystems. This role may have increased in some host taxa over time (Ward and Lafferty 2004). We begin this chapter by introducing infectious agents and their relationships with their hosts in marine systems. We then put infectious disease agents with their hosts in marine systems. We then put infectious disease agents in the perspective of marine biodiversity and discuss the various factors that affect parasites. Specifically, we introduce some basin epidemiological concepts, including the effects of stress and free-living diversity on parasites. Following this, we give brief consideration to communities of parasites within their hosts, particularly as these can lead to general insights into community ecology. We also give examples of how infectious diseases affect host populations, scaling up to marine communities. Finally, we present examples of marine infectious disease that impair conservation and fisheries.

  10. Diagenesis of conifer needles in a coastal marine environment

    NASA Astrophysics Data System (ADS)

    Hedges, John I.; Weliky, K.

    1989-10-01

    Physically intact fir, hemlock and cedar needles were isolated from different horizons of a sediment core from a coastal marine bay (Dabob Bay, Washington State, U.S.A.) and from nearby trees and forest litter. Green fir, hemlock and cedar needles were all characterized by glucose-rich aldose mixtures (~30% of tissue carbon), the production of vanillyl and cinnamyl CuO-derived phenols (~8% of tissue carbon) and the presence of both pinitol and myo-inositol (1-2% of tissue carbon). Needles from forest litter were enriched in lignin phenols and non-glucose aldoses and depleted in glucose and cyclitols. The sediment core contained an average of 10 mg/1 of physically intact fir, hemlock and cedar needles, which occurred in similar relative abundances and accounted for less than 1% of the total nonwoody gymnosperm tissue. Compared to the green and litter counterparts, all sedimentary needles were greatly depleted in cyclitols, glucose and p-coumaric acid and enriched in vanillyl phenol precursors. The degree of elevation of vanillyl phenol yield from the degraded needles was used to estimate minimal carbon losses from the samples, which ranged from near 40% for needle litter to almost 70% for the deepest (~100 years old) sedimentary fir/hemlock samples. Although downcore increases in carbon loss and refractory organic components indicated in situ diagenesis, the bulk of overall degradation occurred either on land or during the first 10-20 years after deposition. Atomic C/N ratios of degraded needles were lower than for green counterparts, but nitrogen was lost overall. These relative changes indicate the following stability series: vanillyl phenols > N > ferulic acid, p-hydroxy phenols, most aldoses and bulk tissue > glucose and p-coumaric acid > cyclitols (near 100% loss). Vanillic acid to vanillin ratios, (Ad/Al)v, of the green fir and hemlock needles were unusually high (0.36-0.38) and decreased downcore. Diagenesis also decreased the cinnamyl/vanillyl phenol ratio

  11. Proteomic Stable Isotope Probing Reveals Taxonomically Distinct Patterns in Amino Acid Assimilation by Coastal Marine Bacterioplankton

    PubMed Central

    Bryson, Samuel; Li, Zhou; Pett-Ridge, Jennifer; Hettich, Robert L.; Mayali, Xavier; Pan, Chongle

    2016-01-01

    . IMPORTANCE An estimated 50 gigatons of carbon is annually fixed within marine systems, of which heterotrophic microbial populations process nearly half. These communities vary in composition and activity across spatial and temporal scales, so understanding how these changes affect global processes requires the delineation of functional roles for individual members. In a step toward ascertaining these roles, we applied proteomic stable isotope probing to quantify the assimilation of organic carbon from DFAAs into microbial protein biomass, since the turnover of DFAAs accounts for a substantial fraction of marine microbial carbon metabolism that is directed into biomass production. We conducted experiments at two coastal North Pacific locations and found taxonomically distinct responses. This approach allowed us to compare amino acid assimilation by specific bacterioplankton populations and characterize their allocation of this substrate among cellular functions. PMID:27822523

  12. Proteomic Stable Isotope Probing Reveals Taxonomically Distinct Patterns in Amino Acid Assimilation by Coastal Marine Bacterioplankton.

    PubMed

    Bryson, Samuel; Li, Zhou; Pett-Ridge, Jennifer; Hettich, Robert L; Mayali, Xavier; Pan, Chongle; Mueller, Ryan S

    2016-01-01

    . IMPORTANCE An estimated 50 gigatons of carbon is annually fixed within marine systems, of which heterotrophic microbial populations process nearly half. These communities vary in composition and activity across spatial and temporal scales, so understanding how these changes affect global processes requires the delineation of functional roles for individual members. In a step toward ascertaining these roles, we applied proteomic stable isotope probing to quantify the assimilation of organic carbon from DFAAs into microbial protein biomass, since the turnover of DFAAs accounts for a substantial fraction of marine microbial carbon metabolism that is directed into biomass production. We conducted experiments at two coastal North Pacific locations and found taxonomically distinct responses. This approach allowed us to compare amino acid assimilation by specific bacterioplankton populations and characterize their allocation of this substrate among cellular functions.

  13. Patterns and processes influencing helminth parasites of Arctic coastal communities during climate change.

    PubMed

    Galaktionov, K V

    2017-03-22

    This review analyses the scarce available data on biodiversity and transmission of helminths in Arctic coastal ecosystems and the potential impact of climate changes on them. The focus is on the helminths of seabirds, dominant parasites in coastal ecosystems. Their fauna in the Arctic is depauperate because of the lack of suitable intermediate hosts and unfavourable conditions for species with free-living larvae. An increasing proportion of crustaceans in the diet of Arctic seabirds would result in a higher infection intensity of cestodes and acanthocephalans, and may also promote the infection of seabirds with non-specific helminths. In this way, the latter may find favourable conditions for colonization of new hosts. Climate changes may alter the composition of the helminth fauna, their infection levels in hosts and ways of transmission in coastal communities. Immigration of boreal invertebrates and fish into Arctic seas may allow the circulation of helminths using them as intermediate hosts. Changing migratory routes of animals would alter the distribution of their parasites, facilitating, in particular, their trans-Arctic transfer. Prolongation of the seasonal 'transmission window' may increase the parasitic load on host populations. Changes in Arctic marine food webs would have an overriding influence on the helminths' circulation. This process may be influenced by the predicted decreased of salinity in Arctic seas, increased storm activity, coastal erosion, ocean acidification, decline of Arctic ice, etc. Greater parasitological research efforts are needed to assess the influence of factors related to Arctic climate change on the transmission of helminths.

  14. Building Community Based Initiatives in Rural Coastal Communities. Staff Paper 95.2.

    ERIC Educational Resources Information Center

    Behr, Chris; Lamb, Greg; Miller, Al; Sadowske, Sue; Shaffer, Ron

    In rural coastal communities, trade-offs between conserving and developing environmentally sensitive resources are acute. At the community level, part-time volunteers and citizen officials are asked to make complex decisions based on ambiguous and frequently contradictory "scientific" evidence of economic and environmental relationships.…

  15. Variability in bacterial community structure during upwelling in the coastal ocean

    USGS Publications Warehouse

    Kerkhof, L.J.; Voytek, M.A.; Sherrell, Robert M.; Millie, D.; Schofield, O.

    1999-01-01

    Over the last 30 years, investigations at the community level of marine bacteria and phytoplankton populations suggest they are tightly coupled. However, traditional oceanographic approaches cannot assess whether associations between specific bacteria and phytoplankton exist. Recently, molecular based approaches have been implemented to characterize specific members of different marine bacterial communities. Yet, few molecular-based studies have examined coastal upwelling situations. This is important since upwelling systems provide a unique opportunity for analyzing the association between specific bacteria and specific phytoplankton in the ocean. It is widely believed that upwelling can lead to changes in phytoplankton populations (blooms). Thus, if specific associations exist, we would expect to observe changes in the bacterial population triggered by the bloom. In this paper, we present preliminary data from coastal waters off New Jersey that confirm a shift in bacterial communities during a 1995 upwelling event recorded at a long-term earth observatory (LEO-15) in the Mid-Atlantic Bight. Using PCR amplification and cloning, specific bacterial 16S ribosomal RNA sequences were found which were present in upwelling samples during a phytoplankton bloom, but were not detected in non-bloom samples (surface seawater, offshore sites or sediment samples) collected at the same time or in the same area. These findings are consistent with the notion of specific associations between bacteria and phytoplankton in the ocean. However, further examination of episodic events, such as coastal upwelling, are needed to confirm the existence of specific associations. Additionally, experiments need to be performed to elucidate the mechanisms leading to the specific linkages between a group of bacteria and a group of phytoplankton.

  16. Community Composition of Photosynthetic Picoeukaryotes in a Subtropical Coastal Ecosystem, with Particular Emphasis on Micromonas.

    PubMed

    Lin, Yun-Chi; Chung, Chih-Ching; Chen, Liang-Yin; Gong, Gwo-Ching; Huang, Chin-Yi; Chiang, Kuo-Ping

    2016-09-16

    Photosynthetic picoeukaryotes (PPEs) are important constituents in picoplankton communities in many marine ecosystems. However, little is known about their community composition in the subtropical coastal waters of the Northwestern Pacific Ocean. In order to study their taxonomic composition, this study constructed 18S rRNA gene libraries using flow cytometric sorting during the warm season. The results show that, after diatoms, prasinophyte clones are numerically dominant. Within prasinophytes, Micromonas produced the most common sequences, and included clades II, III, IV, and VI. We are establishing the new Micromonas clade VI based on our phylogenetic analysis. Sequences of this clade have previously been retrieved from the South China Sea and Red Sea, indicating a worldwide distribution, but this is the first study to detect clade VI in the coastal waters of Taiwan. The TSA-FISH results indicated that Micromonas clade VI peaked in the summer (~4 × 10(2)  cells/ml), accounting for one-fifth of Micromonas abundance on average. Overall, Micromonas contributed half of Mamiellophyceae abundance, while Mamiellophyceae contributed 40% of PPE abundance. This study demonstrates the importance of Micromonas within the Mamiellophyceae in a subtropical coastal ecosystem.

  17. Assessing the effect of marine reserves on household food security in Kenyan coral reef fishing communities.

    PubMed

    Darling, Emily S

    2014-01-01

    Measuring the success or failure of natural resource management is a key challenge to evaluate the impact of conservation for ecological, economic and social outcomes. Marine reserves are a popular tool for managing coastal ecosystems and resources yet surprisingly few studies have quantified the social-economic impacts of marine reserves on food security despite the critical importance of this outcome for fisheries management in developing countries. Here, I conducted semi-structured household surveys with 113 women heads-of-households to investigate the influence of two old, well-enforced, no-take marine reserves on food security in four coastal fishing communities in Kenya, East Africa. Multi-model information-theoretic inference and matching methods found that marine reserves did not influence household food security, as measured by protein consumption, diet diversity and food coping strategies. Instead, food security was strongly influenced by fishing livelihoods and household wealth: fishing families and wealthier households were more food secure than non-fishing and poorer households. These findings highlight the importance of complex social and economic landscapes of livelihoods, urbanization, power and gender dynamics that can drive the outcomes of marine conservation and management.

  18. Assessing the Effect of Marine Reserves on Household Food Security in Kenyan Coral Reef Fishing Communities

    PubMed Central

    Darling, Emily S.

    2014-01-01

    Measuring the success or failure of natural resource management is a key challenge to evaluate the impact of conservation for ecological, economic and social outcomes. Marine reserves are a popular tool for managing coastal ecosystems and resources yet surprisingly few studies have quantified the social-economic impacts of marine reserves on food security despite the critical importance of this outcome for fisheries management in developing countries. Here, I conducted semi-structured household surveys with 113 women heads-of-households to investigate the influence of two old, well-enforced, no-take marine reserves on food security in four coastal fishing communities in Kenya, East Africa. Multi-model information-theoretic inference and matching methods found that marine reserves did not influence household food security, as measured by protein consumption, diet diversity and food coping strategies. Instead, food security was strongly influenced by fishing livelihoods and household wealth: fishing families and wealthier households were more food secure than non-fishing and poorer households. These findings highlight the importance of complex social and economic landscapes of livelihoods, urbanization, power and gender dynamics that can drive the outcomes of marine conservation and management. PMID:25422888

  19. Decoding Size Distribution Patterns in Marine and Transitional Water Phytoplankton: From Community to Species Level

    PubMed Central

    Roselli, Leonilde; Basset, Alberto

    2015-01-01

    Understanding the mechanisms of phytoplankton community assembly is a fundamental issue of aquatic ecology. Here, we use field data from transitional (e.g. coastal lagoons) and coastal water environments to decode patterns of phytoplankton size distribution into organization and adaptive mechanisms. Transitional waters are characterized by higher resource availability and shallower well-mixed water column than coastal marine environments. Differences in physico-chemical regime between the two environments have been hypothesized to exert contrasting selective pressures on phytoplankton cell morphology (size and shape). We tested the hypothesis focusing on resource availability (nutrients and light) and mixed layer depth as ecological axes that define ecological niches of phytoplankton. We report fundamental differences in size distributions of marine and freshwater diatoms, with transitional water phytoplankton significantly smaller and with higher surface to volume ratio than marine species. Here, we hypothesize that mixing condition affecting size-dependent sinking may drive phytoplankton size and shape distributions. The interplay between shallow mixed layer depth and frequent and complete mixing of transitional waters may likely increase the competitive advantage of small phytoplankton limiting large cell fitness. The nutrient regime appears to explain the size distribution within both marine and transitional water environments, while it seem does not explain the pattern observed across the two environments. In addition, difference in light availability across the two environments appear do not explain the occurrence of asymmetric size distribution at each hierarchical level. We hypothesize that such competitive equilibria and adaptive strategies in resource exploitation may drive by organism’s behavior which exploring patch resources in transitional and marine phytoplankton communities. PMID:25974052

  20. Decoding size distribution patterns in marine and transitional water phytoplankton: from community to species level.

    PubMed

    Roselli, Leonilde; Basset, Alberto

    2015-01-01

    Understanding the mechanisms of phytoplankton community assembly is a fundamental issue of aquatic ecology. Here, we use field data from transitional (e.g. coastal lagoons) and coastal water environments to decode patterns of phytoplankton size distribution into organization and adaptive mechanisms. Transitional waters are characterized by higher resource availability and shallower well-mixed water column than coastal marine environments. Differences in physico-chemical regime between the two environments have been hypothesized to exert contrasting selective pressures on phytoplankton cell morphology (size and shape). We tested the hypothesis focusing on resource availability (nutrients and light) and mixed layer depth as ecological axes that define ecological niches of phytoplankton. We report fundamental differences in size distributions of marine and freshwater diatoms, with transitional water phytoplankton significantly smaller and with higher surface to volume ratio than marine species. Here, we hypothesize that mixing condition affecting size-dependent sinking may drive phytoplankton size and shape distributions. The interplay between shallow mixed layer depth and frequent and complete mixing of transitional waters may likely increase the competitive advantage of small phytoplankton limiting large cell fitness. The nutrient regime appears to explain the size distribution within both marine and transitional water environments, while it seem does not explain the pattern observed across the two environments. In addition, difference in light availability across the two environments appear do not explain the occurrence of asymmetric size distribution at each hierarchical level. We hypothesize that such competitive equilibria and adaptive strategies in resource exploitation may drive by organism's behavior which exploring patch resources in transitional and marine phytoplankton communities.

  1. Cabled observatories: Connecting coastal communities to local ocean data

    NASA Astrophysics Data System (ADS)

    Pelz, M.; Hoeberechts, M.; Brown, J. C. K.; McLean, M. A.; Ewing, N.; Moran, K.

    2015-12-01

    Coastal communities are facing a wide range of rapid changes due to anthropogenic and natural environmental influences. Communities are under pressure to adapt to effects of climate change, including altered shorelines, changes in availability of seafood, and in northern regions, changes to the extent, formation and break-up of land-fast and sea-ice. Access to up-to-date scientific data and basic climate literacy are essential tools to enable community members to make informed decisions about their own coast. Ocean Networks Canada (ONC) operates the world-leading NEPTUNE and VENUS cabled ocean observatories off the west coast of British Columbia (BC). ONC also operates smaller, coastal community observatories which provide data for both scientific and educational initiatives.The first Arctic community observatory, deployed in 2012, is located in Cambridge Bay, Nunavut. Real-time data flowing from the platform are collected by a range of instruments, including a conductivity-temperature-depth sensor (CTD), hydrophone, video camera, and an ice profiler. There is also a meteorological station and time lapse camera on the dock. Five additional community observatories are being installed over the next year along the coast of BC. Indigenous communities, including the Inuit population in Cambridge Bay and First Nations on BC's north and central coast, are key partners and collaborators of this initiative.Benefits to communities from cabled observatory ocean monitoring can only be achieved if the data collected are relevant to community members and contribute to research priorities identified within the community. The data must be easily accessible and complement existing environmental monitoring initiatives. Community members must possess knowledge and tools to analyze and interpret the data for their purposes. For these reasons, community involvement is critical to the project, including the design of user interfaces for data access, development of educational programs

  2. Studies of the DOM aqueous extracts from coastal marine sediments

    NASA Astrophysics Data System (ADS)

    Sakellariadou, F.

    2012-04-01

    Dissolved organic matter (DOM) represents a major exchangeable organic pool playing an outstanding role in the ocean carbon cycle. It has a complex chemical structure made up of a wide range of organic molecules. The composition of DOM depends on the sources proximity and the exposure to any sort of degradation mechanism. The coloured (or chromophoric) dissolved organic matter (CDOM), representing the optically active fraction of DOM, consists of aromatic rings able to absorb light in the visible and UV regions (Kirk, 1994) and fluorophoric molecules that emit light. The main fluorophoric moieties of CDOM are humic material with a blue fluorescence and protein material with an ultraviolet (UV) fluorescence (Mopper and Schultz, 1993). Dissolved organic matter interacts with pollutants either by enhancing their bioavailability or by influencing their transportation to the soluble phase. In addition, DOM affects the remineralisation of carbon and its preservation in marine sediments. Referring to its origin, it can be terrestrial, freshwater or marine one. Fluorescence spectroscopy is a technique widely applied for the identification and characterization of organic matter, being fast, simple, non-destructive and sensitive. In addition, the fluorescence analysis for the physico-chemical characterization of organic matter requires a small amount of aqueous sample at a low concentration, in comparison with the large sample volumes needed for conventional techniques. At the present study coastal sediment samples were collected from Messiniakos gulf in the south western Peloponnese in South Greece. Messiniakos gulf has a seabed dominated by very abrupt inclinations reaching depths of more than 1000m. All samples, according to their grain size, are classified as fine clayey silt. Dissolved organic matter was extracted under gentle extraction conditions (4 mM CaCl2 solution). The various classes of organic components present at the DOM aqueous extracts were characterised by

  3. The epipelagic fish community of Beaufort Sea coastal waters, Alaska

    USGS Publications Warehouse

    Jarvela, L.E.; Thorsteinson, L.K.

    1999-01-01

    A three-year study of epipelagic fishes inhabiting Beaufort Sea coastal waters in Alaska documented spatial and temporal patterns in fish distribution and abundance and examined their relationships to thermohaline features during summer. Significant interannual, seasonal, and geographical differences in surface water temperatures and salinities were observed. In 1990, sea ice was absent and marine conditions prevailed, whereas in 1988 and 1991, heavy pack ice was present and the dissolution of the brackish water mass along the coast proceeded more slowly. Arctic cod, capelin, and liparids were the most abundant marine fishes in the catches, while arctic cisco was the only abundant diadromous freshwater species. Age-0 arctic cod were exceptionally abundant and large in 1990, while age-0 capelin dominated in the other years. The alternating numerical dominances of arctic cod and age-0 capelin may represent differing species' responses to wind-driven oceanographic processes affecting growth and survival. The only captures of age-0 arctic cisco occurred during 1990. Catch patterns indicate they use a broad coastal migratory corridor and tolerate high salinities. As in the oceanographic data, geographical anti temporal patterns were apparent in the fish catch data, but in most cases these patterns were not statistically testable because of excessive zero catches. The negative binomial distribution appeared to be a suitable statistical descriptor of the aggregated catch patterns for the more common species.

  4. Socio-ecological studies on marine fishing villages in the selective south coastal districts of Andhra Pradesh.

    PubMed

    Jacob, M Jaya Kumar; Rao, P Brahmaji

    2016-12-01

    Coasts are an amazing gift of nature. Industrialization, infrastructure development, urbanisation, tourism, mechanized fishing, disposal of industrial and urban wastes and effluents, are all ringing the death-knell of the sensitive coastal ecosystems of recently separated State of Andhra Pradesh. These modern interventions have been violent, disregarding both nature's rejuvenating mechanisms, and the symbiotic relationship that exist between the coast and traditional marine fishing communities. Modern fishing tecnologies using mechanized trawlers and small meshed nets lead directly to overexploitation, which is not sustainable. It is evident that fish have to breed successfully and need to have time to grow if the yield has to be used sustainably. Multiple pressures and excessive technological invasion on these marine fishing villages had created an environment in which life has become physically and mentally unhealthy. The focus of this paper is to emphasize that investing in large-scale industrial fishing, building bigger boats, and giving subsidies for pursuing deep sea fishing would be a waste of resources as the fish hauls in these selelctive districts i.e. Krishna, Guntur, Prakasam and Nellore coastal communities have dropped off alarmingly in recent years. It is essential and crucial to focus research and scientific analysis and establish awareness and education to provide a means of distinguishing responses between improvements in quality of ecosystem and those of damages. The study is to elaborate that long-term ecological gains cannot be sacrificed for short-term economic gains that unfortunately lead to environmental damage. Investigating coastal regulations, policies, and their implementation is an urgent social need for the sake of socio-ecological safety and security of coasts and host communities.

  5. [Identification of marine and coastal biodiversity conservation priorities in Costa Rica].

    PubMed

    Alvarado, Juan José; Herrera, Bernal; Corrales, Lenin; Asch, Jenny; Paaby, Pía

    2011-06-01

    Costa Rica is recognized as one of the most diverse countries in species and ecosystems, in their terrestrial realm as well as in the marine. Besides this relevance, the country presents a delay on conservation and management of marine and coastal biodiversity, with respect to terrestrial. For 2006, the marine protected surface was 5,208.8 km2, with 331.5 km of coastline, in 20 protected areas. The country has made progress on the conservation priority sites identification for terrestrial and freshwater biodiversity, with few efforts on marine planning. This research presents the analysis and results of the gap identification process, for marine and coastal biodiversity conservation in the protected areas system of Costa Rica. The analysis was built with the spatial information available on the presence and distribution of coastal and marine biodiversity, the establishment of the conservation goals and a threat analysis over the ecological integrity of this biodiversity. The selection of high-priority sites was carried out using spatial optimization techniques and the superposition over the current shape of marine protected areas, in order to identify representation gaps. A total of 19,076 km2 of conservation gaps were indentified, with 1,323 km2 in the Caribbean and 17,753 km2 in the Pacific. Recommendations are aimed at planning and strengthening the marine protected areas system, using the gaps identified as a framework. It is expected that the results of this study would be the scientific base needed for planning and sustainable use of marine biodiversity in the country.

  6. Coral microbial communities, zooxanthellae and mucus along gradients of seawater depth and coastal pollution.

    PubMed

    Klaus, James S; Janse, Ingmar; Heikoop, Jeffrey M; Sanford, Robert A; Fouke, Bruce W

    2007-05-01

    The high incidence of coral disease in shallow coastal marine environments suggests seawater depth and coastal pollution have an impact on the microbial communities inhabiting healthy coral tissues. A study was undertaken to determine how bacterial communities inhabiting tissues of the coral Montastraea annularis change at 5 m, 10 m and 20 m water depth in varying proximity to the urban centre and seaport of Willemstad, Curaçao, Netherlands Antilles. Analyses of terminal restriction fragment length polymorphisms (TRFLP) of 16S rRNA gene sequences show significant differences in bacterial communities of polluted and control localities only at the shallowest seawater depth. Furthermore, distinct differences in bacterial communities were found with increasing water depth. Comparisons of TRFLP peaks with sequenced clone libraries indicate the black band disease cyanobacterium clone CD1C11 is common and most abundant on healthy corals in less than 10 m water depth. Similarly, sequences belonging to a previously unrecognized group of likely phototrophic bacteria, herein referred to as CAB-I, were also more common in shallow water. To assess the influence of environmental and physiologic factors on bacterial community structure, canonical correspondence analysis was performed using explanatory variables associated with: (i) light availability; (ii) seawater pollution; (iii) coral mucus composition; (iv) the community structure of symbiotic algae; and (v) the photosynthetic activity of symbiotic algae. Eleven per cent of the variation in bacterial communities was accounted for by covariation with these variables; the most important being photosynthetically active radiation (sunlight) and the coral uptake of sewage-derived compounds as recorded by the delta(15)N of coral tissue.

  7. Phylogenetic analysis suggests that habitat filtering is structuring marine bacterial communities across the globe.

    PubMed

    Pontarp, Mikael; Canbäck, Björn; Tunlid, Anders; Lundberg, Per

    2012-07-01

    The phylogenetic structure and community composition were analysed in an existing data set of marine bacterioplankton communities to elucidate the evolutionary and ecological processes dictating the assembly. The communities were sampled from coastal waters at nine locations distributed worldwide and were examined through the use of comprehensive clone libraries of 16S ribosomal RNA genes. The analyses show that the local communities are phylogenetically different from each other and that a majority of them are phylogenetically clustered, i.e. the species (operational taxonomic units) were more related to each other than expected by chance. Accordingly, the local communities were assembled non-randomly from the global pool of available bacterioplankton. Further, the phylogenetic structures of the communities were related to the water temperature at the locations. In agreement with similar studies, including both macroorganisms and bacteria, these results suggest that marine bacterial communities are structured by “habitat filtering”, i.e. through non-random colonization and invasion determined by environmental characteristics. Different bacterial types seem to have different ecological niches that dictate their survival in different habitats. Other eco-evolutionary processes that may contribute to the observed phylogenetic patterns are discussed. The results also imply a mapping between phenotype and phylogenetic relatedness which facilitates the use of community phylogenetic structure analysis to infer ecological and evolutionary assembly processes.

  8. Commentary: Radioactive Wastes and Damage to Marine Communities

    ERIC Educational Resources Information Center

    Wallace, Bruce

    1974-01-01

    Discusses the effects of radioactive wastes on marine communities, with particular reference to the fitness of populations and the need for field and laboratory studies to provide evidence of ecological change. (JR)

  9. Barium in southern california coastal waters: a potential indicator of marine drilling contamination.

    PubMed

    Chow, T J

    1976-07-02

    The present barium content of Southern California coastal waters was determined to be 11 to 22 micrograms per kilogram of seawater. These values may be used as base-line concentrations to monitor marine contamination during future off-shore oil and gas explorations.

  10. Directory of Facilities. Development Activities in the Marine Environment of the Coastal Plains Region.

    ERIC Educational Resources Information Center

    Hill, Philip G.

    Described in this directory are marine activities on the coasts of North Carolina, South Carolina, and Georgia, and the adjacent offshore area, known administratively as the Coastal Plains Region. The facilities for each state are described within these categories: educational institutions, state agencies, federal agencies, and industrial…

  11. Marine ecosystem modeling beyond the box: using GIS to study carbon fluxes in a coastal ecosystem.

    PubMed

    Wijnbladh, Erik; Jönsson, Bror Fredrik; Kumblad, Linda

    2006-12-01

    Studies of carbon fluxes in marine ecosystems are often done by using box model approaches with basin size boxes, or highly resolved 3D models, and an emphasis on the pelagic component of the ecosystem. Those approaches work well in the ocean proper, but can give rise to considerable problems when applied to coastal systems, because of the scale of certain ecological niches and the fact that benthic organisms are the dominant functional group of the ecosystem. In addition, 3D models require an extensive modeling effort. In this project, an intermediate approach based on a high resolution (20x20 m) GIS data-grid has been developed for the coastal ecosystem in the Laxemar area (Baltic Sea, Sweden) based on a number of different site investigations. The model has been developed in the context of a safety assessment project for a proposed nuclear waste repository, in which the fate of hypothetically released radionuclides from the planned repository is estimated. The assessment project requires not only a good understanding of the ecosystem dynamics at the site, but also quantification of stocks and flows of matter in the system. The data-grid was then used to set up a carbon budget describing the spatial distribution of biomass, primary production, net ecosystem production and thus where carbon sinks and sources are located in the area. From these results, it was clear that there was a large variation in ecosystem characteristics within the basins and, on a larger scale, that the inner areas are net producing and the outer areas net respiring, even in shallow phytobenthic communities. Benthic processes had a similar or larger influence on carbon fluxes as advective processes in inner areas, whereas the opposite appears to be true in the outer basins. As many radionuclides are expected to follow the pathways of organic matter in the environment, these findings enhance our abilities to realistically describe and predict their fate in the ecosystem.

  12. The Marine Realms Information Bank family of digital libraries: access to free online information for coastal and marine science

    USGS Publications Warehouse

    Lightsom, Frances L.; Allwardt, Alan O.

    2007-01-01

    Searching the World Wide Web for reliable information about specific topics or locations can be frustrating: too many hits, too little relevance. A well-designed digital library, offering a carefully selected collection of online resources, is an attractive alternative to web search engines. The U.S. Geological Survey (USGS) provides three digital libraries for coastal and marine science to serve the needs of a diverse audience--scientists, public servants, educators, and the public.

  13. The impacts of tourism on coral reef conservation awareness and support in coastal communities in Belize

    NASA Astrophysics Data System (ADS)

    Diedrich, A.

    2007-12-01

    Marine recreational tourism is one of a number of threats to the Belize Barrier Reef but, conversely, represents both a motivation and source of resources for its conservation. The growth of tourism in Belize has resulted in the fact that many coastal communities are in varying stages of a socio-economic shift from dependence on fishing to dependence on tourism. In a nation becoming increasingly dependent on the health of its coral reef ecosystems for economic prosperity, a shift from extractive uses to their preservation is both necessary and logical. Through examining local perception data in five coastal communities in Belize, each attracting different levels of coral reef related tourism, this analysis is intended to explore the relationship between tourism development and local coral reef conservation awareness and support. The results of the analysis show a positive correlation between tourism development and coral reef conservation awareness and support in the study communities. The results also show a positive correlation between tourism development and local perceptions of quality of life, a trend that is most likely the source of the observed relationship between tourism and conservation. The study concludes that, because the observed relationship may be dependent on continued benefits from tourism as opposed to a perceived crisis in coral reef health, Belize must pay close attention to tourism impacts in the future. Failure to do this could result in a destructive feedback loop that would contribute to the degradation of the reef and, ultimately, Belize’s diminished competitiveness in the ecotourism market.

  14. [Characteristics of Pahs pollution in sediments from Leizhou coastal marine area, Liusha Bay and Shenzhen Bay].

    PubMed

    Zhao, Li-Rong; Sun, Sheng-Li; Ke, Sheng

    2012-04-01

    Leizhou coastal marine area, Liusha Bay and Shenzhen Bay represented open coastal area and half-closed bay, respectively. This study discussed the differences of PAHs concentration levels, spatial distribution and sources in sediments from these three marine areas. The results showed that detected ratios of 15 PAHs were 100%, and major compounds were 3-ring and 4-ring PAHs, especialy Phe, Fla, Pry and Bbf; Sigma PAHs concentration was Leizhou < Shenzhen < Liusha. In spatial distribution, PAHs concentrations were the east < the south < the west in Leizhou; the inside > the outside, and the aquaculture > the non-aquaculture in Liusha Bay and Shenzhen Bay. It suggested that large-scale mariculture inside bay played an important role in PAHs pollution and might make it serious. Oil, fossil fuels and biomass burning were the dominant sources of PAHs in sediments from Leizhou coastal area, Liusha Bay and Shenzhen Bay.

  15. Application of space remote sensing technology to living marine resources in coastal zones

    NASA Technical Reports Server (NTRS)

    Tilton, E. L., III

    1978-01-01

    This paper describes a compilation of new Landsat satellite remote sensing techniques for treatment of Coastal Zone Living Marine Resource problems. The techniques have been developed over the past three to five years using optimized digital analysis procedures and evaluated in limited coastal areas of the United States. However, most of the techniques are directly applicable to other areas of the world, particularly in those areas where Landsat satellite data are available. Each technique presented herein has been documented and published separately as a NASA report within the last three years. The data required to substantiate the conclusion that 'significant new space remote sensing techniques are now available for the treatment of Coastal Zone Living Marine Resource problems' are contained within these reports and are referenced herein.

  16. Cyclobacterium halophilum sp. nov., a marine bacterium isolated from a coastal-marine wetland.

    PubMed

    Shahinpei, Azadeh; Amoozegar, Mohammad Ali; Sepahy, Abbas Akhavan; Schumann, Peter; Ventosa, Antonio

    2014-03-01

    A novel Gram-stain-negative, slightly halophilic bacterium, designated strain GASx41(T), was isolated from soil of the coastal-marine wetland Gomishan in Iran. Cells of strain GASx41(T) were curved, ring-like or horseshoe-shaped rods and non-motile. Strain GASx41(T) was strictly aerobic, and catalase- and oxidase-positive. The strain was able to grow at NaCl concentrations of 1-10% (w/v), with optimum growth occurring at 2.5-3% (w/v) NaCl. The optimum temperature and pH for growth were 25-30 °C and pH 7.5-8.0. On the basis of 16S rRNA gene sequence analysis, strain GASx41(T) was shown to belong to the genus Cyclobacterium within the phylum Bacteroidetes and showed closest phylogenetic similarity to 'Cyclobacterium jeungdonense' HMD3055 (98.0%). The DNA G+C content of strain GASx41(T) was 48.1 mol%. The major cellular fatty acids of strain GASx41(T) were iso-C15 : 0, summed feature 4 (iso-C15 : 0 2-OH and/or C16 : 1ω7c), anteiso-C15 : 0 2-OH, anteiso-C15 : 0 and iso-C17 : 0 3-OH, and its polar lipid pattern consisted of phosphatidylethanolamine, phosphatidylcholine and 12 unknown lipids. The only quinone present was menaquinone 7 (MK-7). All these features confirmed the placement of isolate GASx41(T) within the genus Cyclobacterium. On the basis of evidence from this study, a novel species of the genus Cyclobacterium, Cyclobacterium halophilum sp. nov., is proposed, with strain GASx41(T) ( = IBRC-M 10761(T) = CECT 8341(T)) as the type strain.

  17. Predicting Effects of Coastal Acidification on Marine Bivalve Populations

    EPA Science Inventory

    The partial pressure of carbon dioxide (pCO2) is increasing in the oceans and causing changes in seawater pH commonly described as ocean or coastal acidification. It is now well-established that, when reproduced in laboratory experiments, these increases in pCO2 can reduce survi...

  18. North Carolina Marine Education Manual, Unit Three: Coastal Ecology.

    ERIC Educational Resources Information Center

    Mauldin, Lundie; Frankenberg, Dirk

    Two dozen activities on the ecology of coastal areas, with special emphasis on North Carolina's coastline, comprise this manual for junior high school science teachers. Provided are a table correlating these lessons with state curriculum guidelines, and a summary of the unit's goals and behavioral objectives. Among the topics included are coastal…

  19. Megacities and large urban agglomerations in the coastal zone: interactions between atmosphere, land, and marine ecosystems.

    PubMed

    von Glasow, Roland; Jickells, Tim D; Baklanov, Alexander; Carmichael, Gregory R; Church, Tom M; Gallardo, Laura; Hughes, Claire; Kanakidou, Maria; Liss, Peter S; Mee, Laurence; Raine, Robin; Ramachandran, Purvaja; Ramesh, R; Sundseth, Kyrre; Tsunogai, Urumu; Uematsu, Mitsuo; Zhu, Tong

    2013-02-01

    Megacities are not only important drivers for socio-economic development but also sources of environmental challenges. Many megacities and large urban agglomerations are located in the coastal zone where land, atmosphere, and ocean meet, posing multiple environmental challenges which we consider here. The atmospheric flow around megacities is complicated by urban heat island effects and topographic flows and sea breezes and influences air pollution and human health. The outflow of polluted air over the ocean perturbs biogeochemical processes. Contaminant inputs can damage downstream coastal zone ecosystem function and resources including fisheries, induce harmful algal blooms and feedback to the atmosphere via marine emissions. The scale of influence of megacities in the coastal zone is hundreds to thousands of kilometers in the atmosphere and tens to hundreds of kilometers in the ocean. We list research needs to further our understanding of coastal megacities with the ultimate aim to improve their environmental management.

  20. Pole-to-pole biogeography of surface and deep marine bacterial communities

    PubMed Central

    Ghiglione, Jean-François; Galand, Pierre E.; Pommier, Thomas; Pedrós-Alió, Carlos; Maas, Elizabeth W.; Bakker, Kevin; Bertilson, Stefan; Kirchman, David L.; Lovejoy, Connie; Yager, Patricia L.; Murray, Alison E.

    2012-01-01

    The Antarctic and Arctic regions offer a unique opportunity to test factors shaping biogeography of marine microbial communities because these regions are geographically far apart, yet share similar selection pressures. Here, we report a comprehensive comparison of bacterioplankton diversity between polar oceans, using standardized methods for pyrosequencing the V6 region of the small subunit ribosomal (SSU) rRNA gene. Bacterial communities from lower latitude oceans were included, providing a global perspective. A clear difference between Southern and Arctic Ocean surface communities was evident, with 78% of operational taxonomic units (OTUs) unique to the Southern Ocean and 70% unique to the Arctic Ocean. Although polar ocean bacterial communities were more similar to each other than to lower latitude pelagic communities, analyses of depths, seasons, and coastal vs. open waters, the Southern and Arctic Ocean bacterioplankton communities consistently clustered separately from each other. Coastal surface Southern and Arctic Ocean communities were more dissimilar from their respective open ocean communities. In contrast, deep ocean communities differed less between poles and lower latitude deep waters and displayed different diversity patterns compared with the surface. In addition, estimated diversity (Chao1) for surface and deep communities did not correlate significantly with latitude or temperature. Our results suggest differences in environmental conditions at the poles and different selection mechanisms controlling surface and deep ocean community structure and diversity. Surface bacterioplankton may be subjected to more short-term, variable conditions, whereas deep communities appear to be structured by longer water-mass residence time and connectivity through ocean circulation. PMID:23045668

  1. Differentiating littering, urban runoff and marine transport as sources of marine debris in coastal and estuarine environments

    NASA Astrophysics Data System (ADS)

    Willis, Kathryn; Denise Hardesty, Britta; Kriwoken, Lorne; Wilcox, Chris

    2017-03-01

    Marine debris is a burgeoning global issue with economic, ecological and aesthetic impacts. While there are many studies now addressing this topic, the influence of urbanisation factors such as local population density, stormwater drains and roads on the distribution of coastal litter remains poorly understood. To address this knowledge gap, we carried out standardized surveys at 224 transect surveys at 67 sites in two estuaries and along the open coast in Tasmania, Australia. We explored the relative support for three hypotheses regarding the sources of the debris; direct deposition by beachgoers, transport from surrounding areas via storm water drains and coastal runoff, and onshore transport from the marine system. We found strong support for all three mechanisms, however, onshore transport from the marine reservoir was the most important mechanism. Overall, the three models together explained 45.8 percent of the variation in our observations. Our results also suggest that most debris released into the marine environment is deposited locally, which may be the answer to where all the missing plastic is in the ocean. Furthermore, local interventions are likely to be most effective in reducing land-based inputs into the ocean.

  2. Differentiating littering, urban runoff and marine transport as sources of marine debris in coastal and estuarine environments

    PubMed Central

    Willis, Kathryn; Denise Hardesty, Britta; Kriwoken, Lorne; Wilcox, Chris

    2017-01-01

    Marine debris is a burgeoning global issue with economic, ecological and aesthetic impacts. While there are many studies now addressing this topic, the influence of urbanisation factors such as local population density, stormwater drains and roads on the distribution of coastal litter remains poorly understood. To address this knowledge gap, we carried out standardized surveys at 224 transect surveys at 67 sites in two estuaries and along the open coast in Tasmania, Australia. We explored the relative support for three hypotheses regarding the sources of the debris; direct deposition by beachgoers, transport from surrounding areas via storm water drains and coastal runoff, and onshore transport from the marine system. We found strong support for all three mechanisms, however, onshore transport from the marine reservoir was the most important mechanism. Overall, the three models together explained 45.8 percent of the variation in our observations. Our results also suggest that most debris released into the marine environment is deposited locally, which may be the answer to where all the missing plastic is in the ocean. Furthermore, local interventions are likely to be most effective in reducing land-based inputs into the ocean. PMID:28281667

  3. Differentiating littering, urban runoff and marine transport as sources of marine debris in coastal and estuarine environments.

    PubMed

    Willis, Kathryn; Denise Hardesty, Britta; Kriwoken, Lorne; Wilcox, Chris

    2017-03-10

    Marine debris is a burgeoning global issue with economic, ecological and aesthetic impacts. While there are many studies now addressing this topic, the influence of urbanisation factors such as local population density, stormwater drains and roads on the distribution of coastal litter remains poorly understood. To address this knowledge gap, we carried out standardized surveys at 224 transect surveys at 67 sites in two estuaries and along the open coast in Tasmania, Australia. We explored the relative support for three hypotheses regarding the sources of the debris; direct deposition by beachgoers, transport from surrounding areas via storm water drains and coastal runoff, and onshore transport from the marine system. We found strong support for all three mechanisms, however, onshore transport from the marine reservoir was the most important mechanism. Overall, the three models together explained 45.8 percent of the variation in our observations. Our results also suggest that most debris released into the marine environment is deposited locally, which may be the answer to where all the missing plastic is in the ocean. Furthermore, local interventions are likely to be most effective in reducing land-based inputs into the ocean.

  4. Biogeochemical Insights into B-Vitamins in the Coastal Marine Sediments of San Pedro Basin, CA

    NASA Astrophysics Data System (ADS)

    Monteverde, D.; Berelson, W.; Baronas, J. J.; Sanudo-Wilhelmy, S. A.

    2015-12-01

    Coastal marine sediments support a high abundance of mircoorganisms which play key roles in the cycling of nutrients, trace metals, and carbon, yet little is known about many of the cofactors essential for their growth, such as the B-vitamins. The suite of B-vitamins (B1, B2, B6, B7, B12) are essential across all domains of life for both primary and secondary metabolism. Therefore, studying sediment concentrations of B-vitamins can provide a biochemical link between microbial processes and sediment geochemistry. Here we present B-vitamin pore water concentrations from suboxic sediment cores collected in September 2014 from San Pedro Basin, a silled, low oxygen, ~900 m deep coastal basin in the California Borderlands. We compare the B-vitamin concentrations (measured via LCMS) to a set of geochemical profiles including dissolved Fe (65-160 μM), dissolved Mn (30-300 nM), TCO2, solid phase organic carbon, and δ13C. Our results show high concentrations (0.8-3nM) of biotin (B7), commonly used for CO2 fixation as a cofactor in carboxylase enzymes. Thiamin (B1) concentrations were elevated (20-700nM), consistent with previous pore water measurements showing sediments could be a source of B1 to the ocean. Cobalamin (B12), a cofactor required for methyl transfers in methanogens, was also detected in pore waters (~4-40pM). The flavins (riboflavin [B2] and flavin mononucleotide[FMN]), molecules utilized in external electron transfer, showed a distinct increase with depth (10-90nM). Interestingly, the flavin profiles showed an inverse trend to dissolved Fe (Fe decreases with depth) providing a potential link to culture experiments which have shown extracellular flavin release to be a common trait in some metal reducers. As some of the first B-vitamin measurements made in marine sediments, these results illustrate the complex interaction between the microbial community and surrounding geochemical environment and provide exciting avenues for future research.

  5. Marine protected areas increase resilience among coral reef communities.

    PubMed

    Mellin, Camille; Aaron MacNeil, M; Cheal, Alistair J; Emslie, Michael J; Julian Caley, M

    2016-06-01

    With marine biodiversity declining globally at accelerating rates, maximising the effectiveness of conservation has become a key goal for local, national and international regulators. Marine protected areas (MPAs) have been widely advocated for conserving and managing marine biodiversity yet, despite extensive research, their benefits for conserving non-target species and wider ecosystem functions remain unclear. Here, we demonstrate that MPAs can increase the resilience of coral reef communities to natural disturbances, including coral bleaching, coral diseases, Acanthaster planci outbreaks and storms. Using a 20-year time series from Australia's Great Barrier Reef, we show that within MPAs, (1) reef community composition was 21-38% more stable; (2) the magnitude of disturbance impacts was 30% lower and (3) subsequent recovery was 20% faster that in adjacent unprotected habitats. Our results demonstrate that MPAs can increase the resilience of marine communities to natural disturbance possibly through herbivory, trophic cascades and portfolio effects.

  6. Coastal habitats as surrogates for taxonomic, functional and trophic structures of benthic faunal communities.

    PubMed

    Törnroos, Anna; Nordström, Marie C; Bonsdorff, Erik

    2013-01-01

    Due to human impact, there is extensive degradation and loss of marine habitats, which calls for measures that incorporate taxonomic as well as functional and trophic aspects of biodiversity. Since such data is less easily quantifiable in nature, the use of habitats as surrogates or proxies for biodiversity is on the rise in marine conservation and management. However, there is a critical gap in knowledge of whether pre-defined habitat units adequately represent the functional and trophic structure of communities. We also lack comparisons of different measures of community structure in terms of both between- (β) and within-habitat (α) variability when accounting for species densities. Thus, we evaluated a priori defined coastal habitats as surrogates for traditional taxonomic, functional and trophic zoobenthic community structure. We focused on four habitats (bare sand, canopy-forming algae, seagrass above- and belowground), all easily delineated in nature and defined through classification systems. We analyzed uni- and multivariate data on species and trait diversity as well as stable isotope ratios of benthic macrofauna. A good fit between habitat types and taxonomic and functional structure was found, although habitats were more similar functionally. This was attributed to within-habitat heterogeneity so when habitat divisions matched the taxonomic structure, only bare sand was functionally distinct. The pre-defined habitats did not meet the variability of trophic structure, which also proved to differentiate on a smaller spatial scale. The quantification of trophic structure using species density only identified an epi- and an infaunal unit. To summarize the results we present a conceptual model illustrating the match between pre-defined habitat types and the taxonomic, functional and trophic community structure. Our results show the importance of including functional and trophic aspects more comprehensively in marine management and spatial planning.

  7. Coastal Habitats as Surrogates for Taxonomic, Functional and Trophic Structures of Benthic Faunal Communities

    PubMed Central

    Törnroos, Anna; Nordström, Marie C.; Bonsdorff, Erik

    2013-01-01

    Due to human impact, there is extensive degradation and loss of marine habitats, which calls for measures that incorporate taxonomic as well as functional and trophic aspects of biodiversity. Since such data is less easily quantifiable in nature, the use of habitats as surrogates or proxies for biodiversity is on the rise in marine conservation and management. However, there is a critical gap in knowledge of whether pre-defined habitat units adequately represent the functional and trophic structure of communities. We also lack comparisons of different measures of community structure in terms of both between- (β) and within-habitat (α) variability when accounting for species densities. Thus, we evaluated a priori defined coastal habitats as surrogates for traditional taxonomic, functional and trophic zoobenthic community structure. We focused on four habitats (bare sand, canopy-forming algae, seagrass above- and belowground), all easily delineated in nature and defined through classification systems. We analyzed uni- and multivariate data on species and trait diversity as well as stable isotope ratios of benthic macrofauna. A good fit between habitat types and taxonomic and functional structure was found, although habitats were more similar functionally. This was attributed to within-habitat heterogeneity so when habitat divisions matched the taxonomic structure, only bare sand was functionally distinct. The pre-defined habitats did not meet the variability of trophic structure, which also proved to differentiate on a smaller spatial scale. The quantification of trophic structure using species density only identified an epi- and an infaunal unit. To summarize the results we present a conceptual model illustrating the match between pre-defined habitat types and the taxonomic, functional and trophic community structure. Our results show the importance of including functional and trophic aspects more comprehensively in marine management and spatial planning. PMID

  8. Proceedings of the fourth international conference on remote sensing for marine and coastal environments. Technology and applications: Volume I

    SciTech Connect

    1997-06-01

    The conference proceedings contain papers which focus on the application of remote sensing technology and geographic information systems to solve problems in marine and coastal environments. Sixty-nine papers were selected for the database from Volume 1 of the proceedings. The topics included in the proceedings are: natural resource management, coastal hazards, oceanographic applications, mapping and charting, data access, coastal ocean color, radar satellites/coastal radars, underwater remote sensing, and new sensors and systems. Subtopics of papers in Volume 1 include: oil spills and marine pollution; Florida ecosystems; air-sea interaction and sea ice; living resources; optics and models; hyperspectral sensors and applications; and charting and mapping.

  9. Accumulation of radionuclides in selected marine biota from Manjung coastal area

    NASA Astrophysics Data System (ADS)

    Abdullah, Anisa; Hamzah, Zaini; Saat, Ahmad; Wood, Ab. Khalik; Alias, Masitah

    2015-04-01

    Distribution of radionuclides from anthropogenic activities has been intensively studied due to the accumulation of radionuclides in marine ecosystem. Manjung area is affected by rapid population growth and socio-economic development such as heavy industrial activities including coal fired power plant, iron foundries, port development and factories, agricultural runoff, waste and toxic discharge from factories.It has radiological risk and toxic effect when effluent from the industries in the area containing radioactive materials either being transported to the atmosphere and deposited back over the land or by run off to the river and flow into coastal area and being absorbed by marine biota. Radionuclides presence in the marine ecosystem can be adversely affect human health when it enters the food chain. This study is focusing on the radionuclides [thorium (Th), uranium (U), radium-226 (226Ra), radium-228 (228Ra) and potassium-40 (40K)] content in marine biota and sea water from Manjung coastal area. Five species of marine biota including Johnius dussumieri (Ikan Gelama), Pseudorhombus malayanus (Ikan Sebelah), Arius maculatus (Ikan Duri), Portunus pelagicus (Ketam Renjong) and Charybdis natator (Ketam Salib) were collected during rainy and dry seasons. Measurements were carried out using Inductively Coupled Plasma Mass Spectrometer (ICPMS). The results show that the concentration of radionuclides varies depends on ecological environment of respective marine biota species. The concentrations and activity concentrations are used for the assessment of potential internal hazard index (Hin), transfer factor (TF), ingestion dose rate (D) and health risk index (HRI) to monitor radiological risk for human consumption.

  10. Carbon budgets and potential blue carbon stores in Scotland's coastal and marine environment

    NASA Astrophysics Data System (ADS)

    Howe, John; austin, william

    2016-04-01

    The role of marine ecosystems in storing blue carbon has increasingly become a topic of interest to both scientists and politicians. This is the first multidisciplinary study to assess Scotland's marine blue carbon stores, using GIS to collate habitat information based on existing data. Relevant scientific information on primary habitats for carbon uptake and storage has been reviewed, and quantitative rates of production and storage were obtained. Habitats reviewed include kelp, phytoplankton, saltmarshes, biogenic reefs (including maerl), marine sediments (coastal and shelf), and postglacial geological sediments. Each habitat has been individually assessed for any specific threats to its carbon sequestration ability. Here we present an ecosystem-scale inventory of the key rates and ultimate sequestration capacity of each habitat. Coastal and offshore sediments are the main repositories for carbon in Scotland's marine environment. Habitat-forming species on the coast (seagrasses, saltmarsh, bivalve beds, coralline algae), are highly productive but their contribution to the overall carbon budget is very small because of the limited extent of each habitat. This study highlights the importance of marine carbon stores in global carbon cycles, and the implications of climate change on the ability of marine ecosystems to sequester carbon.

  11. Remote Sensing and Prediction of the Coastal Marine Boundary Layer

    DTIC Science & Technology

    2001-09-30

    CIMMS LES model and the efforts are concentrating on debugging and testing the fidelity of formulation of each process by contrasting solutions with...explicit and bulk microphysics. 5. COAMPS, equipped with the CIMMS bulk drizzle scheme, is able to produce breakup of marine stratocumulus for

  12. Organization of marine phenology data in support of planning and conservation in ocean and coastal ecosystems

    USGS Publications Warehouse

    Thomas, Kathryn A.; Fornwall, Mark D.; Weltzin, Jake F.; Griffis, R.B.

    2014-01-01

    Among the many effects of climate change is its influence on the phenology of biota. In marine and coastal ecosystems, phenological shifts have been documented for multiple life forms; however, biological data related to marine species' phenology remain difficult to access and is under-used. We conducted an assessment of potential sources of biological data for marine species and their availability for use in phenological analyses and assessments. Our evaluations showed that data potentially related to understanding marine species' phenology are available through online resources of governmental, academic, and non-governmental organizations, but appropriate datasets are often difficult to discover and access, presenting opportunities for scientific infrastructure improvement. The developing Federal Marine Data Architecture when fully implemented will improve data flow and standardization for marine data within major federal repositories and provide an archival repository for collaborating academic and public data contributors. Another opportunity, largely untapped, is the engagement of citizen scientists in standardized collection of marine phenology data and contribution of these data to established data flows. Use of metadata with marine phenology related keywords could improve discovery and access to appropriate datasets. When data originators choose to self-publish, publication of research datasets with a digital object identifier, linked to metadata, will also improve subsequent discovery and access. Phenological changes in the marine environment will affect human economics, food systems, and recreation. No one source of data will be sufficient to understand these changes. The collective attention of marine data collectors is needed—whether with an agency, an educational institution, or a citizen scientist group—toward adopting the data management processes and standards needed to ensure availability of sufficient and useable marine data to understand

  13. Microplastics in coastal and marine environments of the western tropical and sub-tropical Atlantic Ocean.

    PubMed

    Costa, Monica F; Barletta, Mário

    2015-11-01

    Microplastic pollution is a global issue. It is present even in remote and pristine coastal and marine environments, likely causing impacts of unknown scale. Microplastics are primary- and secondary-sourced plastics with diameters of 5 mm or less that are either free in the water column or mixed in sandy and muddy sediments. Since the early 1970s, they have been reported to pollute marine environments; recently, concern has increased as soaring amounts of microplastics in the oceans were detected and because the development of unprecedented processes involving this pollutant at sea is being unveiled. Coastal and marine environments of the western tropical and sub-tropical Atlantic Ocean (WTAO) are contaminated with microplastics at different quantities and from a variety of types. The main environmental compartments (water, sediments and biota) are contaminated, but the consequences are still poorly understood. Rivers and all scales of fishery activities are identified as the most likely sources of this pollutant to coastal waters; however, based on the types of microplastics observed, other maritime operations are also possible sources. Ingestion by marine biota occurs in the vertebrate groups (fish, birds, and turtles) in these environments. In addition, the presence of microplastics in plankton samples from different habitats of estuaries and oceanic islands is confirmed. The connectivity among environmental compartments regarding microplastic pollution is a new research frontier in the region.

  14. Bulk elastic moduli and solute potentials in leaves of freshwater, coastal and marine hydrophytes. Are marine plants more rigid?

    PubMed Central

    Touchette, Brant W.; Marcus, Sarah E.; Adams, Emily C.

    2014-01-01

    Bulk modulus of elasticity (ɛ), depicting the flexibility of plant tissues, is recognized as an important component in maintaining internal water balance. Elevated ɛ and comparatively low osmotic potential (Ψπ) may work in concert to effectively maintain vital cellular water content. This concept, termed the ‘cell water conservation hypothesis’, may foster tolerance for lower soil-water potentials in plants while minimizing cell dehydration and shrinkage. Therefore, the accumulation of solutes in marine plants, causing decreases in Ψπ, play an important role in plant–water relations and likely works with higher ɛ to achieve favourable cell volumes. While it is generally held that plants residing in marine systems have higher leaf tissue ɛ, to our knowledge no study has specifically addressed this notion in aquatic and wetland plants residing in marine and freshwater systems. Therefore, we compared ɛ and Ψπ in leaf tissues of 38 freshwater, coastal and marine plant species using data collected in our laboratory, with additional values from the literature. Overall, 8 of the 10 highest ɛ values were observed in marine plants, and 20 of the lowest 25 ɛ values were recorded in freshwater plants. As expected, marine plants often had lower Ψπ, wherein the majority of marine plants were below −1.0 MPa and the majority of freshwater plants were above −1.0 MPa. While there were no differences among habitat type and symplastic water content (θsym), we did observe higher θsym in shrubs when compared with graminoids, and believe that the comparatively low θsym observed in aquatic grasses may be attributed to their tendency to develop aerenchyma that hold apoplastic water. These results, with few exceptions, support the premise that leaf tissues of plants acclimated to marine environments tend to have higher ɛ and lower Ψπ, and agree with the general tenets of the cell water conservation hypothesis. PMID:24876296

  15. Bulk elastic moduli and solute potentials in leaves of freshwater, coastal and marine hydrophytes. Are marine plants more rigid?

    PubMed

    Touchette, Brant W; Marcus, Sarah E; Adams, Emily C

    2014-03-28

    Bulk modulus of elasticity (ɛ), depicting the flexibility of plant tissues, is recognized as an important component in maintaining internal water balance. Elevated ɛ and comparatively low osmotic potential (Ψπ) may work in concert to effectively maintain vital cellular water content. This concept, termed the 'cell water conservation hypothesis', may foster tolerance for lower soil-water potentials in plants while minimizing cell dehydration and shrinkage. Therefore, the accumulation of solutes in marine plants, causing decreases in Ψπ, play an important role in plant-water relations and likely works with higher ɛ to achieve favourable cell volumes. While it is generally held that plants residing in marine systems have higher leaf tissue ɛ, to our knowledge no study has specifically addressed this notion in aquatic and wetland plants residing in marine and freshwater systems. Therefore, we compared ɛ and Ψπ in leaf tissues of 38 freshwater, coastal and marine plant species using data collected in our laboratory, with additional values from the literature. Overall, 8 of the 10 highest ɛ values were observed in marine plants, and 20 of the lowest 25 ɛ values were recorded in freshwater plants. As expected, marine plants often had lower Ψπ, wherein the majority of marine plants were below -1.0 MPa and the majority of freshwater plants were above -1.0 MPa. While there were no differences among habitat type and symplastic water content (θsym), we did observe higher θsym in shrubs when compared with graminoids, and believe that the comparatively low θsym observed in aquatic grasses may be attributed to their tendency to develop aerenchyma that hold apoplastic water. These results, with few exceptions, support the premise that leaf tissues of plants acclimated to marine environments tend to have higher ɛ and lower Ψπ, and agree with the general tenets of the cell water conservation hypothesis.

  16. Effects of trampling limitation on coastal dune plant communities.

    PubMed

    Santoro, Riccardo; Jucker, Tommaso; Prisco, Irene; Carboni, Marta; Battisti, Corrado; Acosta, Alicia T R

    2012-03-01

    Sandy coastlines are sensitive ecosystems where human activities can have considerable negative impacts. In particular, trampling by beach visitors is a disturbance that affects dune vegetation both at the species and community level. In this study we assess the effects of the limitation of human trampling on dune vegetation in a coastal protected area of Central Italy. We compare plant species diversity in two recently fenced sectors with that of an unfenced area (and therefore subject to human trampling) using rarefaction curves and a diversity/dominance approach during a two year study period. Our results indicate that limiting human trampling seems to be a key factor in driving changes in the plant diversity of dune systems. In 2007 the regression lines of species abundance as a function of rank showed steep slopes and high Y-intercept values in all sectors, indicating a comparable level of stress and dominance across the entire study site. On the contrary, in 2009 the regression lines of the two fenced sectors clearly diverge from that of the open sector, showing less steep slopes. This change in the slopes of the tendency lines, evidenced by the diversity/dominance diagrams and related to an increase in species diversity, suggests the recovery of plant communities in the two fences between 2007 and 2009. In general, plant communities subject to trampling tended to be poorer in species and less structured, since only dominant and tolerant plant species persisted. Furthermore, limiting trampling appears to have produced positive changes in the dune vegetation assemblage after a period of only two years. These results are encouraging for the management of coastal dune systems. They highlight how a simple and cost-effective management strategy, based on passive recovery conservation measures (i.e., fence building), can be a quick (1–2 years) and effective method for improving and safeguarding the diversity of dune plant communities.

  17. Levels of toxic metals in marine organisms collected from Southern California coastal waters.

    PubMed Central

    Fowler, B A; Fay, R C; Walter, R L; Willis, R D; Gutknecht, W F

    1975-01-01

    Emission of toxic trace metals into southern California coastal waters has resulted in the extensive accumulation of the elements within marine sediments. The current study was undertaken to evaluate concentrations of trace metals in bottom-dwelling marine fauna collected from two sampling areas. Analyses carried out on muscle samples of the dover sole (Microstomus pacificus) and the crab (Cancer anthonyi) by proton-induced x-ray emission analysis showed considerable concentrations of arsenic and selenium. Samples of gonads, digestive gland, and muscle from the crab Mursia gaudichaudii analyzed by atomic absorption spectroscopy showed elemental concentrations in muscle similar to the crab Cancer anthonyi and much higher metal levels in gonad and digestive gland. These findings suggest the need for further studies concerning the relationship between emission of metals into the marine environment and their abundance in marine fauna. PMID:1227863

  18. The Whale Pump: Marine Mammals Enhance Primary Productivity in a Coastal Basin

    PubMed Central

    Roman, Joe; McCarthy, James J.

    2010-01-01

    It is well known that microbes, zooplankton, and fish are important sources of recycled nitrogen in coastal waters, yet marine mammals have largely been ignored or dismissed in this cycle. Using field measurements and population data, we find that marine mammals can enhance primary productivity in their feeding areas by concentrating nitrogen near the surface through the release of flocculent fecal plumes. Whales and seals may be responsible for replenishing 2.3×104 metric tons of N per year in the Gulf of Maine's euphotic zone, more than the input of all rivers combined. This upward “whale pump” played a much larger role before commercial harvest, when marine mammal recycling of nitrogen was likely more than three times atmospheric N input. Even with reduced populations, marine mammals provide an important ecosystem service by sustaining productivity in regions where they occur in high densities. PMID:20949007

  19. Monitoring ship noise to assess the impact of coastal developments on marine mammals.

    PubMed

    Merchant, Nathan D; Pirotta, Enrico; Barton, Tim R; Thompson, Paul M

    2014-01-15

    The potential impacts of underwater noise on marine mammals are widely recognised, but uncertainty over variability in baseline noise levels often constrains efforts to manage these impacts. This paper characterises natural and anthropogenic contributors to underwater noise at two sites in the Moray Firth Special Area of Conservation, an important marine mammal habitat that may be exposed to increased shipping activity from proposed offshore energy developments. We aimed to establish a pre-development baseline, and to develop ship noise monitoring methods using Automatic Identification System (AIS) and time-lapse video to record trends in noise levels and shipping activity. Our results detail the noise levels currently experienced by a locally protected bottlenose dolphin population, explore the relationship between broadband sound exposure levels and the indicators proposed in response to the EU Marine Strategy Framework Directive, and provide a ship noise assessment toolkit which can be applied in other coastal marine environments.

  20. Microbial Community Composition in the Marine Sediments of Jeju Island: Next-Generation Sequencing Surveys.

    PubMed

    Choi, Heebok; Koh, Hyeon-Woo; Kim, Hongik; Chae, Jong-Chan; Park, Soo-Je

    2016-05-28

    Marine sediments are a microbial biosphere with an unknown physiology, and the sediments harbor numerous distinct phylogenetic lineages of Bacteria and Archaea that are at present uncultured. In this study, the structure of the archaeal and bacterial communities was investigated in the surface and subsurface sediments of Jeju Island using a next-generation sequencing method. The microbial communities in the surface sediments were distinct from those in the subsurface sediments; the relative abundance of sequences for Thaumarchaeota, Actinobacteria, Bacteroides, Alphaproteobacteria, and Gammaproteobacteria were higher in the surface than subsurface sediments, whereas the sequences for Euryarchaeota, Acidobacteria, Firmicutes, and Deltaproteobacteria were relatively more abundant in the subsurface than surface sediments. This study presents detailed characterization of the spatial distribution of benthic microbial communities of Jeju Island and provides fundamental information on the potential interactions mediated by microorganisms with the different biogeochemical cycles in coastal sediments.

  1. Understanding and mitigating tsunami risk for coastal structures and communities

    NASA Astrophysics Data System (ADS)

    Park, Sangki

    Tsunamis have attracted the world's attention over the last decade due to their destructive power and the vast areas they can affect. The 2004 Indian Ocean Tsunami, killed more than 200,000 people, and the 2011 Great Tohoku Japan Earthquake and Tsunami, resulted in 15,000 deaths and an estimated US $300B in damage, are recent examples. An improved understanding of tsunamis and their interactive effects on the built environment will significantly reduce loss of life in tsunamis. In addition, it is important to consider both the effect of the earthquake ground motion and the tsunami it creates for certain coastal regions. A numerical model to predict structural behavior of buildings subjected to successive earthquakes and the tsunamis was developed. Collapse fragilities for structures were obtained by subjecting a structure to a suite of earthquake ground motions. After each motion the numerically damaged structural model was subjected to tsunami wave loading as defined by FEMA P646. This approach was then extended to the community level; a methodology to determine the probability of fatalities for a community as a function of the number of vertical evacuation shelters was computed. Such an approach also considered the location and number of vertical evacuation sites as an optimization problem. Both the single structure cases and the community analyses were presented in terms of fragilities as a function of the earthquake intensity level and evacuation time available. It is envisioned that the approach may be extended to any type of structure as they are typically modeled nonlinearly with strength and stiffness degradation. A logical fragility-based, or performance-based, procedure for vertical evacuation for coastal buildings and for whole communities was developed. A mechanism to obtain a reduction in the collapse risk of structure and more critically maximize the survival rate for a community was a major outcome of this dissertation. The proposed tsunami vertical

  2. Seasonal and spatial diversity of microbial communities in marine sediments of the South China Sea.

    PubMed

    Du, Jikun; Xiao, Kai; Huang, Yali; Li, Huixian; Tan, Hongming; Cao, Lixiang; Lu, Yongjun; Zhou, Shining

    2011-10-01

    This study was conducted to characterize the diversity of microbial communities in marine sediments of the South China Sea by means of 16S rRNA gene clone libraries. The results revealed that the sediment samples collected in summer harboured a more diverse microbial community than that collected in winter, Deltaproteobacteria dominated 16S rRNA gene clone libraries from both seasons, followed by Gammaproteobacteria, Acidobacteria, Nitrospirae, Planctomycetes, Firmicutes. Archaea phylotypes were also found. The majority of clone sequences shared greatest similarity to uncultured organisms, mainly from hydrothermal sediments and cold seep sediments. In addition, the sedimentary microbial communities in the coastal sea appears to be much more diverse than that of the open sea. A spatial pattern in the sediment samples was observed that the sediment samples collected from the coastal sea and the open sea clustered separately, a novel microbial community dominated the open sea. The data indicate that changes in environmental conditions are accompanied by significant variations in diversity of microbial communities at the South China Sea.

  3. Coastal Community Adaptation to Future Potential Climate Change

    NASA Astrophysics Data System (ADS)

    Prime, Thomas

    2014-05-01

    This research project aims to determine the physical and economic resilience of coastal communities. This translates into identifying how such communities can adapt to potential future climate change in the most efficient cost effective way. Fleetwood in Lancashire has been chosen as a case study site, with recently refurbished sea defences. This research is interested in the best way to maintain resilience of the defences over long time horizons and against low probability high impact events as the coastal defences deteriorate. We assess coastal flood risk using a flood inundation model called LISFLOOD-FP, this is a 2D hydrodynamic model designed to simulate flood inundation over complex topography. LISFLOOD-FP predicts water depths in each grid cell at each time step, simulating the dynamic propagation of flood waves over fluvial, coastal and estuarine floodplains. The model is forced at the boundary with an extreme water level that has a defined probability of occurring, e.g. 1 in 100 years. This is combined with a scaled surge curve for the area, a high spring tidal curve and the addition of a sea level rise parameter, which is dependent on the defined time horizon and future carbon emissions scenarios. LISFLOOD-FP has been extended to simulate wave over-topping of sea defences, this is achieved by using a Shallow Water And Boussinesq (SWAB) 1D model which models wave over-topping of sea defences. The outputs from this model can be added into LISFLOOD as a flow of water that originates from the top of the sea defences and simulates the over topping. The simulation has also been extended further by adding a river component. The flow within the river channel has been added into the model as a 1D vector with bed elevation and width, the river flow vector consists of a hydro-graph of a high flow event. Return period analysis will be applied to the river peaks over threshold data and the example hydro-graph can then be tailored to the peak return period flow rate

  4. Evolution of a Mediterranean Coastal Zone: Human Impacts on the Marine Environment of Cape Creus

    NASA Astrophysics Data System (ADS)

    Lloret, Josep; Riera, Victòria

    2008-12-01

    This study presents an integrated analysis of the evolution of the marine environment and the human uses in Cape Creus, a Mediterranean coastal area where intense commercial fisheries and recreational uses have coexisted over the last fifty years. The investigation synthesizes the documented impacts of human activities on the marine environment of Cap de Creus and integrates them with new data. In particular, the evolution of vulnerable, exploited species is used to evaluate the fishing impacts. The effects of area protection through the establishment of a marine reserve in the late 1990s and the potential climate change impacts are also considered. The evolution of the human uses is marked by the increasing socioeconomic importance of recreational activities (which affect species and habitats) in detriment to artisanal and red coral fisheries (which principally affect at a species level). Overall, populations of sedentary, vulnerable exploited species, hard sessile benthic invertebrates, and ecologically fragile habitats, such as seagrass meadows, the coralligenous and infralittoral algal assemblages have been the most negatively impacted by anthropogenic activities. Albeit human uses currently constitute the largest negative impact on the marine environment of Cap de Creus, climate change is emerging as a key factor that could have considerable implications for the marine environment and tourism activities. The establishment of the marine reserve appears to have had little socioeconomic impact, but there is some evidence that it had some positive biological effects on sedentary, littoral fishes. Results demonstrate that the declaration of a marine reserve alone does not guarantee the sustainability of marine resources and habitats but should be accompanied with an integrated coastal management plan.

  5. Evolution of a Mediterranean coastal zone: human impacts on the marine environment of Cape Creus.

    PubMed

    Lloret, Josep; Riera, Victòria

    2008-12-01

    This study presents an integrated analysis of the evolution of the marine environment and the human uses in Cape Creus, a Mediterranean coastal area where intense commercial fisheries and recreational uses have coexisted over the last fifty years. The investigation synthesizes the documented impacts of human activities on the marine environment of Cap de Creus and integrates them with new data. In particular, the evolution of vulnerable, exploited species is used to evaluate the fishing impacts. The effects of area protection through the establishment of a marine reserve in the late 1990s and the potential climate change impacts are also considered. The evolution of the human uses is marked by the increasing socioeconomic importance of recreational activities (which affect species and habitats) in detriment to artisanal and red coral fisheries (which principally affect at a species level). Overall, populations of sedentary, vulnerable exploited species, hard sessile benthic invertebrates, and ecologically fragile habitats, such as seagrass meadows, the coralligenous and infralittoral algal assemblages have been the most negatively impacted by anthropogenic activities. Albeit human uses currently constitute the largest negative impact on the marine environment of Cap de Creus, climate change is emerging as a key factor that could have considerable implications for the marine environment and tourism activities. The establishment of the marine reserve appears to have had little socioeconomic impact, but there is some evidence that it had some positive biological effects on sedentary, littoral fishes. Results demonstrate that the declaration of a marine reserve alone does not guarantee the sustainability of marine resources and habitats but should be accompanied with an integrated coastal management plan.

  6. Helminth communities in eels Anguilla anguilla from Adriatic coastal lagoons in Italy.

    PubMed

    Di Cave, D; Berrilli, F; De Liberato, C; Orecchia, P; Kennedy, C R

    2001-03-01

    The composition and diversity of the total and intestinal component and infra-communities were determined in eels Anguilla anguilla from three shallow lagoons on the Adriatic coast of Italy to determine whether the helminth communities would differ in composition and structure from those in eels from lagoons on the Tyrrhenian coast. The lagoons differed in respect of their management regimes and the extent of freshwater influx. Both freshwater and marine species of helminths were found in the eels in all three lagoons, but the freshwater component was richer in Valle Figheri. A suite of three digenean eel specialist species occurred in all three lagoons, of which any two members dominated each community. This conferred a high degree of similarity between the communities of the three lagoons. The same three species also dominated helminth communities in eels in lagoons along the Tyrrhenian coast of Italy, and compositional similarity levels were similar within and between western and eastern groups. Species richness was higher in the component communities of the eels of the Adriatic lagoons when compared to the Tyrrhenian ones, but diversity and dominance indices were of a similar order of magnitude and range. Intestinal helminth communities were richer and more diverse in two of the Adriatic lagoons because the proportion of eels with zero or one helminth species was, unusually, in the minority. It was nevertheless concluded that infracommunity structure was similar in eels from both western and eastern lagoons and that the hypothesis that it would differ in Adriatic lagoons could not be supported. The findings provide further evidence of the similarity in composition and structure of helminth communities in eels from coastal lagoons throughout Europe.

  7. Skewed distribution of hypothyroidism in the coastal communities of Newfoundland, Canada.

    PubMed

    Sarkar, Atanu; Knight, John C; Babichuk, Nicole A; Mulay, Shree

    2015-10-01

    Several studies published in the recent past have shown that rising levels of thyroid disrupting chemicals (TDCs) in the environment affect thyroid function in humans. These TDCs are the anthropogenic organic compounds that enter the human body mostly by ingestion and may trigger autoimmune thyroiditis, the most common cause of hypothyroidism. The studies also show the presence of high levels of TDCs in marine animals; therefore, consumption of contaminated seafood might trigger hypothyroidism. So far, there is no readily available population-based data, showing the regional distribution of hypothyroidism cases. We collected administrative data from the Newfoundland and Labrador Centre for Health Information on hospitalizations with hypothyroidism (from 1998 to 2012) in 41 coastal communities of Newfoundland and found that mean hypothyroidism rates of west and south coasts were significantly higher than in the east coast (1.8 and 1.9 times respectively). A one-way analysis of variance was used to test for regional differences in rates. A significant between-group difference in the rate of hypothyroidism was found (F2,38 = 8.309; p = 0.001). The St. Lawrence River, its estuary and the Gulf of St. Lawrence are heavily polluted with TDCs from industries, their effluents, and urbanization in the Great Lakes Watershed and along the river. Environment Canada has already identified this river along with the Great Lakes Watershed as one of the top TDCs polluted water sources in the country. The west and south coasts are in contact with the Gulf of St. Lawrence. Local marine products are a regular diet of the coastal communities of Newfoundland. Based on these available evidence, we hypothesize the role of TDCs in the rise of hypothyroidism on the western and southern coasts. However, further study will be needed to establish any association between abnormally high rates of hypothyroidism and exposure to TDCs.

  8. Bubble Stripping as a Tool To Reduce High Dissolved CO2 in Coastal Marine Ecosystems.

    PubMed

    Koweek, David A; Mucciarone, David A; Dunbar, Robert B

    2016-04-05

    High dissolved CO2 concentrations in coastal ecosystems are a common occurrence due to a combination of large ecosystem metabolism, shallow water, and long residence times. Many important coastal species may have adapted to this natural variability over time, but eutrophication and ocean acidification may be perturbing the water chemistry beyond the bounds of tolerance for these organisms. We are currently limited in our ability to deal with the geochemical changes unfolding in our coastal ocean. This study helps to address this deficit of solutions by introducing bubble stripping as a novel geochemical engineering approach to reducing high CO2 in coastal marine ecosystems. We use a process-based model to find that air/sea gas exchange rates within a bubbled system are 1-2 orders of magnitude higher than within a nonbubbled system. By coupling bubbling-enhanced ventilation to a coastal ecosystem metabolism model, we demonstrate that strategically timed bubble plumes can mitigate exposure to high CO2 under present-day conditions and that exposure mitigation is enhanced in the more acidic conditions predicted by the end of the century. We argue that shallow water CO2 bubble stripping should be considered among the growing list of engineering approaches intended to increase coastal resilience in a changing ocean.

  9. Sampling sufficiency for analyzing taxonomic relatedness of periphytic ciliate communities using an artificial substratum in coastal waters

    NASA Astrophysics Data System (ADS)

    Xu, Henglong; Zhang, Wei; Jiang, Yong; Zhu, Mingzhuang; Al-Rasheid, Khaled A. S.

    2012-08-01

    Taxonomic relatedness measures of ciliated protozoan communities have successively been used as useful indicators for assessing water quality in marine ecosystems with a number of desirable properties. Sampling sufficiency for analyzing taxonomic relatedness indices of periphytic ciliate communities was studied in coastal waters of the Yellow Sea, northern China, from May to June, 2010. Samples were collected at two depths of 1 m and 3 m using an artificial substratum (glass slides), and were analyzed based on different sampling strategies (slide replicates). For achieving a dissimilarity of < 10%, more slide replicates were required with shortening community ages: 3-10 slide replicates were sufficient for the young (1-7 days) communities while 2-4 slide replicates were for the mature (10-28 days). The standard errors of four taxonomic relatedness indices due to the sample sizes were increased only in the young communities with shortening colonization times. For achieving a standard error of < 10%, 1 slide replicate was generally sufficient for the mature communities, whereas 4-10 were required for the young. These findings suggested that low slide replicates were required for measuring taxonomic relatedness indices compared to analyzing the community patterns, and that these indices were more sensitive to the sample sizes of a young community than a mature one of periphytic ciliates in marine ecosystems.

  10. Measuring Coastal Boating Noise to Assess Potential Impacts on Marine Life

    SciTech Connect

    Matzner, Shari; Jones, Mark E.

    2011-07-01

    Article requested for submission in Sea Technology Magazine describing the Underwater Noise From Small Boats. An Overlooked Component of the Acoustic Environment in Coastal Areas. Underwater noise and its effects on marine life deserve attention as human activity in the marine environment increases. Noise can affect fish and marine mammals in ways that are physiological, as in auditory threshold shifts, and behavioral, as in changes in foraging habits. One anthropogenic source of underwater noise that has received little attention to date is recreational boating. Coastal areas and archipelago regions, which play a crucial role in the marine ecosystem, are often subject to high levels of boat traffic. In order to better understand the noise produced by a small powerboat, a test was conducted in Sequim Bay, Washington, using an instrumented research vessel and multiple acoustic sensors. The broadband noise and narrowband peak levels were observed from two different locations while the boat was operated under various conditions. The results, combined with background noise levels, sound propagation and local boat traffic patterns, can provide a picture of the total boating noise to which marine life may be subjected.

  11. Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea

    PubMed Central

    Yamamoto, Satoshi; Masuda, Reiji; Sato, Yukuto; Sado, Tetsuya; Araki, Hitoshi; Kondoh, Michio; Minamoto, Toshifumi; Miya, Masaki

    2017-01-01

    Environmental DNA (eDNA) metabarcoding has emerged as a potentially powerful tool to assess aquatic community structures. However, the method has hitherto lacked field tests that evaluate its effectiveness and practical properties as a biodiversity monitoring tool. Here, we evaluated the ability of eDNA metabarcoding to reveal fish community structures in species-rich coastal waters. High-performance fish-universal primers and systematic spatial water sampling at 47 stations covering ~11 km2 revealed the fish community structure at a species resolution. The eDNA metabarcoding based on a 6-h collection of water samples detected 128 fish species, of which 62.5% (40 species) were also observed by underwater visual censuses conducted over a 14-year period. This method also detected other local fishes (≥23 species) that were not observed by the visual censuses. These eDNA metabarcoding features will enhance marine ecosystem-related research, and the method will potentially become a standard tool for surveying fish communities. PMID:28079122

  12. Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea.

    PubMed

    Yamamoto, Satoshi; Masuda, Reiji; Sato, Yukuto; Sado, Tetsuya; Araki, Hitoshi; Kondoh, Michio; Minamoto, Toshifumi; Miya, Masaki

    2017-01-12

    Environmental DNA (eDNA) metabarcoding has emerged as a potentially powerful tool to assess aquatic community structures. However, the method has hitherto lacked field tests that evaluate its effectiveness and practical properties as a biodiversity monitoring tool. Here, we evaluated the ability of eDNA metabarcoding to reveal fish community structures in species-rich coastal waters. High-performance fish-universal primers and systematic spatial water sampling at 47 stations covering ~11 km(2) revealed the fish community structure at a species resolution. The eDNA metabarcoding based on a 6-h collection of water samples detected 128 fish species, of which 62.5% (40 species) were also observed by underwater visual censuses conducted over a 14-year period. This method also detected other local fishes (≥23 species) that were not observed by the visual censuses. These eDNA metabarcoding features will enhance marine ecosystem-related research, and the method will potentially become a standard tool for surveying fish communities.

  13. U.S. Geological Survey coastal and marine geology research; recent highlights and achievements

    USGS Publications Warehouse

    Williams, S. Jeffress; Barnes, Peter W.; Prager, Ellen J.

    2000-01-01

    The USGS Coastal and Marine Geology Program has large-scale national and regional research projects that focus on environmental quality, geologic hazards, natural resources, and information transfer. This Circular highlights recent scientific findings of the program, which play a vital role in the USGS endeavor to understand human interactions with the natural environment and to determine how the fundamental geologic processes controlling the Earth work. The scientific knowledge acquired through USGS research and monitoring is critically needed by planners, government agencies, and the public. Effective communication of the results of this research will enable the USGS Coastal and Marine Geology Program to play an integral part in assisting the Nation in responding the pressing Earth science challenges of the 21st century.

  14. Impact of a harbour construction on the benthic community of two shallow marine caves.

    PubMed

    Nepote, Ettore; Bianchi, Carlo Nike; Morri, Carla; Ferrari, Marco; Montefalcone, Monica

    2017-01-15

    Marine caves are unique and vulnerable habitats, threatened by multiple global and local disturbances. Whilst the effects of climate change on marine caves have already been investigated, no information exists about the effects of local human impacts, such as coastal development, on these habitats. This study investigated the impact of the construction of a touristic harbour on two shallow underwater marine caves in the Ligurian Sea (NW Mediterranean). As a standard methodology for monitoring marine caves does not exist yet, changes over time on the benthic community were assessed adopting two different non-taxonomic descriptors: trophic guilds and growth forms. Harbour construction caused an increase of sediment load within the caves, with a consequent decline of filter feeder organisms. Abundance of small organisms, such as encrusting and flattened sponges, was greatly reduced in comparison to organisms with larger and erect growth forms, such as domed mounds and pedunculated sponges. Our study indicated that growth forms and trophic guilds are effective descriptors for evaluating changes over time in marine caves, and could be easily standardised and applied in monitoring plans. In addition, as the harbour construction impacted differently according to the cave topography, the use of a systematic sampling in different zones of an underwater cave is recommended.

  15. Coastal Marsh Sediments from Bodega Harbor: Archives of Environmental Changes at the Terrestrial-Marine Interface

    NASA Astrophysics Data System (ADS)

    Rademacher, L. K.; Rong, Y.; Hill, T. M.; Hiromoto, C.; Fisher, A.

    2010-12-01

    Coastal marsh sediments provide an important archive of environmental changes at the terrestrial-marine interface. Over the last century, humans have significantly altered the coastal environment near Bodega Bay, California, through changes in hydrology, sediment sources, and the dominant ecosystem. Previous investigations of recent coastal marsh sediments (< 50 years) suggest that physical barriers, such as roads, which limit the connection between Bodega Bay and the marshes, alters biogeochemical cycling (including carbon storage) in the coastal environment. The present study extends the record of changes in biogeochemical cycling in the coastal marshes back more than 100 years (approximately 90 cm) through the use of grain size analysis, C and N isotopes, and age dating. Sediments were analyzed for grain size distribution, the amount of carbon and nitrogen, and the stable isotopes of carbon and nitrogen in 1 cm intervals throughout the core. In addition, a subset of eight samples was analyzed for sediment age using a combination of Pb-210 and Cs-137 techniques. Sediments from >40 cm and <55 cm depth have a higher percentage of fine-grained sediment (>2%). In addition, these sediments also contain higher levels of total organic carbon and nitrogen, higher C:N ratios, we well as heavier carbon and nitrogen isotopic signatures. The sediments likely correspond to a pre-1900 depositional environment based on Pb-210 dates, when development in the region was increasing. These results suggest a stronger influence of the marine environment during that time. Interestingly, smaller transitions in sediment properties toward what appears to reflect a more marine environment also occur near the top of the core (<10 cm depth) and near the bottom of the core (>75 cm depth). Although these transitions are less pronounced, the significant shift in sediment properties suggests a less stable environment with greater communication between the terrestrial and marine environments

  16. Report of the USGS Coastal and Marine Geology Modeling Workshop, Pacific Marine Science Center, Santa Cruz, CA, March 22-23, 2005

    USGS Publications Warehouse

    Sherwood, Christopher R.

    2006-01-01

    A U.S. Geological Survey (USGS) Coastal and Marine Geology (CMG) Modeling Workshop was held to discuss the general topic of coastal modeling, defined broadly to include circulation, waves, sediment transport, water quality, ecology, sediment diagenesis, morphology change, and coastal evolution, on scales ranging from seconds and a few centimeters (individual ripples) to centuries (coastal evolution) and thousands of kilometers (tsunami propagation). The workshop was convened at the suggestion of CMG Program Management to improve communication among modelers and model users, assess modeling-related activities being conducted at the three centers (Florida Integrated Science Center, FISC; Pacific Marine Science Center; PMSC; and Woods Hole Science Center; WHSC), and develop goals, strategies, and plans for future modeling activities. The workshop represents a step toward developing a five-year strategic plan, and was timed to provide input for the FY06 prospectus. The workshop was held at the USGS Pacific Marine Science Center in Santa Cruz on March 22-23, 2005.

  17. Influence of deglaciation on microbial communities in marine sediments off the coast of Svalbard, Arctic Circle.

    PubMed

    Park, Soo-Je; Park, Byoung-Joon; Jung, Man-Young; Kim, So-Jeong; Chae, Jong-Chan; Roh, Yul; Forwick, Matthias; Yoon, Ho-Il; Rhee, Sung-Keun

    2011-10-01

    Increases in global temperatures have been shown to enhance glacier melting in the Arctic region. Here, we have evaluated the effects of meltwater runoff on the microbial communities of coastal marine sediment located along a transect of Temelfjorden, in Svalbard. As close to the glacier front, the sediment properties were clearly influenced by deglaciation. Denaturing gradient gel electrophoresis profiles showed that the sediment microbial communities of the stations of glacier front (stations 188-178) were distinguishable from that of outer fjord region (station 176). Canonical correspondence analysis indicated that total carbon and calcium carbonate in sediment and chlorophyll a in bottom water were key factors driving the change of microbial communities. Analysis of 16S rRNA gene clone libraries suggested that microbial diversity was higher within the glacier-proximal zone (station 188) directly affected by the runoffs than in the outer fjord region. While the crenarchaeotal group I.1a dominated at station 176 (62%), Marine Benthic Group-B and other Crenarchaeota groups were proportionally abundant. With regard to the bacterial community, alpha-Proteobacteria and Flavobacteria lineages prevailed (60%) at station 188, whereas delta-Proteobacteria (largely sulfate-reducers) predominated (32%) at station 176. Considering no clone sequences related to sulfate-reducers, station 188 may be more oxic compared to station 176. The distance-wise compositional variation in the microbial communities is attributable to their adaptations to the sediment environments which are differentially affected by melting glaciers.

  18. Ecological succession reveals potential signatures of marine-terrestrial transition in salt marsh fungal communities.

    PubMed

    Dini-Andreote, Francisco; Pylro, Victor Satler; Baldrian, Petr; van Elsas, Jan Dirk; Salles, Joana Falcão

    2016-08-01

    Marine-to-terrestrial transition represents one of the most fundamental shifts in microbial life. Understanding the distribution and drivers of soil microbial communities across coastal ecosystems is critical given the roles of microbes in soil biogeochemistry and their multifaceted influence on landscape succession. Here, we studied the fungal community dynamics in a well-established salt marsh chronosequence that spans over a century of ecosystem development. We focussed on providing high-resolution assessments of community composition, diversity and ecophysiological shifts that yielded patterns of ecological succession through soil formation. Notably, despite containing 10- to 100-fold lower fungal internal transcribed spacer abundances, early-successional sites revealed fungal richnesses comparable to those of more mature soils. These newly formed sites also exhibited significant temporal variations in β-diversity that may be attributed to the highly dynamic nature of the system imposed by the tidal regime. The fungal community compositions and ecophysiological assignments changed substantially along the successional gradient, revealing a clear signature of ecological replacement and gradually transforming the environment from a marine into a terrestrial system. Moreover, distance-based linear modelling revealed soil physical structure and organic matter to be the best predictors of the shifts in fungal β-diversity along the chronosequence. Taken together, our study lays the basis for a better understanding of the spatiotemporally determined fungal community dynamics in salt marshes and highlights their ecophysiological traits and adaptation in an evolving ecosystem.

  19. Baseline monitoring of organic sunscreen compounds along South Carolina's coastal marine environment.

    PubMed

    Bratkovics, Stephanie; Wirth, Edward; Sapozhnikova, Yelena; Pennington, Paul; Sanger, Denise

    2015-12-15

    Organic ultraviolet filters (UV-F) are increasingly being used in personal care products to protect skin and other products from the damaging effects of UV radiation. In this study, marine water was collected monthly for approximately one year from six coastal South Carolina, USA sites and analyzed for the occurrence of seven organic chemicals used as UV filters (avobenzone, dioxybenzone, octocrylene, octinoxate, oxybenzone, padimate-o and sulisobenzone). The results were used to examine the relationship between beach use and the distribution of UV-F compounds along coastal South Carolina, USA. Five of the seven target analytes were detected in seawater along coastal South Carolina during this study. Dioxybenzone and sulisobenzone were not detected. The highest concentrations measured were >3700 ng octocrylene/L and ~2200 ng oxybenzone/L and beach use was greatest at this site; a local beach front park. Patterns in concentrations were assessed based on season and a measure of beach use.

  20. Progress in marine science supported by European joint coastal observation systems: The JERICO-RI research infrastructure

    NASA Astrophysics Data System (ADS)

    Puillat, I.; Farcy, P.; Durand, D.; Karlson, B.; Petihakis, G.; Seppälä, J.; Sparnocchia, S.

    2016-10-01

    Coastal systems are of the most productive ones although they are the most impacted by direct pressures from human activities. These ecosystems exhibit a high level of complexity with many different and interconnected processes operating at various spatial and temporal scales and providing a range of ecosystem services. Coastal observations are tremendous importance in order to understand those complex marine processes. Moreover, they support the use and further development of coastal ocean numerical models, including physical models and coupled physical-biogeochemical models. Coastal data have also many applications in the domain of coastal engineering such as for instance in the design of a coastal structure, or in the prevention of extreme events (e.g. flooding). As a consequence, the number of marine observing systems has quickly increased around European coastal seas, under the pressure of both monitoring requirements and marine research. Present demands for such observing systems include reliable, high-quality and comprehensive observations of key environmental parameters, automated platforms and sensors systems for continuous observations, as well as autonomy over long time periods. In-situ data collected can be combined with remote sensing and/or models to detect, understand and/or forecast the most crucial coastal processes over extensive areas within the various marine environments.

  1. Ubiquitous dissolved inorganic carbon assimilation by marine bacteria in the Pacific Northwest coastal ocean as determined by stable isotope probing.

    PubMed

    DeLorenzo, Suzanne; Bräuer, Suzanna L; Edgmont, Chelsea A; Herfort, Lydie; Tebo, Bradley M; Zuber, Peter

    2012-01-01

    In order to identify bacteria that assimilate dissolved inorganic carbon (DIC) in the northeast Pacific Ocean, stable isotope probing (SIP) experiments were conducted on water collected from 3 different sites off the Oregon and Washington coasts in May 2010, and one site off the Oregon Coast in September 2008 and March 2009. Samples were incubated in the dark with 2 mM (13)C-NaHCO(3), doubling the average concentration of DIC typically found in the ocean. Our results revealed a surprising diversity of marine bacteria actively assimilating DIC in the dark within the Pacific Northwest coastal waters, indicating that DIC fixation is relevant for the metabolism of different marine bacterial lineages, including putatively heterotrophic taxa. Furthermore, dark DIC-assimilating assemblages were widespread among diverse bacterial classes. Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes dominated the active DIC-assimilating communities across the samples. Actinobacteria, Betaproteobacteria, Deltaproteobacteria, Planctomycetes, and Verrucomicrobia were also implicated in DIC assimilation. Alteromonadales and Oceanospirillales contributed significantly to the DIC-assimilating Gammaproteobacteria within May 2010 clone libraries. 16S rRNA gene sequences related to the sulfur-oxidizing symbionts Arctic96BD-19 were observed in all active DIC assimilating clone libraries. Among the Alphaproteobacteria, clones related to the ubiquitous SAR11 clade were found actively assimilating DIC in all samples. Although not a dominant contributor to our active clone libraries, Betaproteobacteria, when identified, were predominantly comprised of Burkholderia. DIC-assimilating bacteria among Deltaproteobacteria included members of the SAR324 cluster. Our research suggests that DIC assimilation is ubiquitous among many bacterial groups in the coastal waters of the Pacific Northwest marine environment and may represent a significant metabolic process.

  2. An ecological approach supporting the management of sea-uses and natural capital in marine coastal areas

    NASA Astrophysics Data System (ADS)

    Marcelli, Marco; Carli, Filippo M.; Bonamano, Simone; Frattarelli, Francesco; Mancini, Emanuele; Paladini de Mendoza, Francesco; Peviani, Maximo; Piermattei, Viviana

    2015-04-01

    The purpose of our work is to create a multi-layer map of marine areas and adjacent territories (SeaUseMap), which takes into account both the different sea uses and the value of marine ecosystems, calculated on the basis of services and benefits produced by the different biocenosis. Marine coastal areas are characterized by the simultaneous presence of ecological conditions favorable to life and, at the same time, they are home to many human activities of particular economic relevance. Ecological processes occurring in coastal areas are particularly important and when we consider their contribution to the value of the "natural capital" (Costanza et Al. 1997, 2008, 2014), we can observe that this is often higher than the contribution from terrestrial ecosystems. Our work is done in northern Lazio (Civitavecchia), a highly populated area where many uses of the sea are superimposed: tourism, fisheries, industry, shipping and ports, historical and cultural heritage. Our goal is to create a tool to support decision-making, where ecosystem values and uses of the sea can be simultaneously represented. The ecosystem values are calculated based on an analysis of benthic biocoenoses: the basic ecological units that, in the Mediterranean Sea, have been identified, defined, analyzed and used since the 60s (Perez & Picard 1964) to date as a working tool (Boudouresque & Fresi 1976). Land surface, instead, was analyzed from available maps, produced within the Corine Land Cover project. Some application examples to support the decision-making are shown, with particular reference to the localization of suitable areas for wave energy production and the esteem of ecological damages generated in case of maritime accidents (e.g., Costa Concordia). According to Costanza 2008, we have developed our own operational method, which is suitable for this specific case of benefit assessment from benthic communities. In this framework, we base our strategy on the ability of the benthic

  3. Biodiversity of benthic microbial communities in bioturbated coastal sediments is controlled by geochemical microniches.

    PubMed

    Bertics, Victoria J; Ziebis, Wiebke

    2009-11-01

    We used a combination of field and laboratory approaches to address how the bioturbation activity of two crustaceans, the ghost shrimp Neotrypaea californiensis and the fiddler crab Uca crenulata, affects the microbial diversity in the seabed of a coastal lagoon (Catalina Harbor, Santa Catalina Island, CA, USA). Detailed geochemical analyses, including oxygen microsensor measurements, were performed to characterize environmental parameters. We used a whole-assemblage fingerprinting approach (ARISA: amplified ribosomal intergenic spacer analysis) to compare bacterial diversity along geochemical gradients and in relation to subsurface microniches. The two crustaceans have different burrowing behaviors. The ghost shrimp maintains complex, deep-reaching burrows and permanently lives subterranean, supplying its burrow with oxygen-rich water. In contrast, the fiddler crab constructs simpler, J-shaped burrows, which it does not inhabit permanently and does not actively ventilate. Our goal was to address how varying environmental parameters affect benthic microbial communities. An important question in benthic microbial ecology has been whether burrows support similar or unique communities compared with the sediment surface. Our results showed that sediment surface microbial communities are distinct from subsurface assemblages and that different burrow types support diverse bacterial taxa. Statistical comparisons by canonical correspondence analysis indicated that the availability of oxidants (oxygen, nitrate, ferric iron) play a key role in determining the presence and abundance of different taxa. When geochemical parameters were alike, microbial communities associated with burrows showed significant similarity to sediment surface communities. Our study provides implications on the community structure of microbial communities in marine sediments and the factors controlling their distribution.

  4. Effects of Land Use Change on Tropical Coastal Systems are Exacerbated by the Decline of Marine Mega-Herbivores

    NASA Astrophysics Data System (ADS)

    Lamers, L. P.; Christianen, M. J.; Govers, L. L.; Kiswara, W.; Bouma, T.; Roelofs, J. G.; Van Katwijk, M. M.

    2011-12-01

    Land use changes in tropical regions such as deforestation, mining activities, and shrimp farming, not only affect freshwater and terrestrial ecosystems, but also have a strong impact on coastal marine ecosystems. The increased influx of sediments and nutrients affects these ecosystems in multiple ways. Seagrass meadows that line coastal marine ecosystems provide important ecosystem services, e.g. sediment trapping, coastal protection and fisheries. Based on studies in East Kalimantan (Indonesia) we have shown that seagrass meadow parameters may provide more reliable indicators of land use change than the sampling of either marine sediments or water quality chemical parameters. Observations of changes in ecosystem functioning are particularly valuable for those areas where flux values are lacking and rapid surveys are needed. Time series of estuarine seagrass transects can show not only the intensity, but also the radius of action of land use change on coastal marine systems. Marine mega-herbivores pose a strong top-down control in seagrass ecosystems. We will provide a conceptual model, based on experimental evidence, to show that the global decline of marine mega-herbivore populations (as a result of large-scale poaching) may decrease the resilience of seagrass systems to increased anthropogenic forcing including land use changes. These outcomes not only urge the need for better regulation of land use change, but also for the establishment of marine protected areas (MPA's) in tropical coastal regions.

  5. Life in the "plastisphere": microbial communities on plastic marine debris.

    PubMed

    Zettler, Erik R; Mincer, Tracy J; Amaral-Zettler, Linda A

    2013-07-02

    Plastics are the most abundant form of marine debris, with global production rising and documented impacts in some marine environments, but the influence of plastic on open ocean ecosystems is poorly understood, particularly for microbial communities. Plastic marine debris (PMD) collected at multiple locations in the North Atlantic was analyzed with scanning electron microscopy (SEM) and next-generation sequencing to characterize the attached microbial communities. We unveiled a diverse microbial community of heterotrophs, autotrophs, predators, and symbionts, a community we refer to as the "Plastisphere". Pits visualized in the PMD surface conformed to bacterial shapes suggesting active hydrolysis of the hydrocarbon polymer. Small-subunit rRNA gene surveys identified several hydrocarbon-degrading bacteria, supporting the possibility that microbes play a role in degrading PMD. Some Plastisphere members may be opportunistic pathogens (the authors, unpublished data) such as specific members of the genus Vibrio that dominated one of our plastic samples. Plastisphere communities are distinct from surrounding surface water, implying that plastic serves as a novel ecological habitat in the open ocean. Plastic has a longer half-life than most natural floating marine substrates, and a hydrophobic surface that promotes microbial colonization and biofilm formation, differing from autochthonous substrates in the upper layers of the ocean.

  6. Proteomic-based stable isotope probing reveals taxonomically Distinct Patterns in Amino Acid Assimilation by Coastal Marine Bacterioplankton

    DOE PAGES

    Bryson, Samuel; Li, Zhou; Pett-Ridge, Jennifer; ...

    2016-04-26

    Heterotrophic marine bacterioplankton are a critical component of the carbon cycle, processing nearly a quarter of annual global primary production, yet defining how substrate utilization preferences and resource partitioning structure these microbial communities remains a challenge. In this study, we utilized proteomics-based stable isotope probing (proteomic SIP) to characterize the assimilation of amino acids by coastal marine bacterioplankton populations. We incubated microcosms of seawater collected from Newport, OR and Monterey Bay, CA with 1 M 13C-amino acids for 15 and 32 hours. Subsequent analysis of 13C incorporation into protein biomass quantified the frequency and extent of isotope enrichment for identifiedmore » proteins. Using these metrics we tested whether amino acid assimilation patterns were different for specific bacterioplankton populations. Proteins associated with Rhodobacterales and Alteromonadales tended to have a significantly high number of tandem mass spectra from 13C-enriched peptides, while Flavobacteriales and SAR11 proteins generally had significantly low numbers of 13C-enriched spectra. Rhodobacterales proteins associated with amino acid transport and metabolism had an increased frequency of 13C-enriched spectra at time-point 2, while Alteromonadales ribosomal proteins were 13C- enriched across time-points. Overall, proteomic SIP facilitated quantitative comparisons of dissolved free amino acids assimilation by specific taxa, both between sympatric populations and between protein functional groups within discrete populations, allowing an unprecedented examination of population-level metabolic responses to resource acquisition in complex microbial communities.« less

  7. Marine Riparian Vegetation Communities of Puget Sound

    DTIC Science & Technology

    2007-02-01

    important wildlife habitats and improvements in water quality. The importance of marine riparian areas typically falls into two categories...qualities. These values overlap. For example, if good water quality were not valued by society, it would likely not be considered an important func...addition to living vegetation, large woody debris (LWD), often derived from riparian forests, is an important part of estuarine and oceanic habitats

  8. Documenting the Density of Subtidal Marine Debris across Multiple Marine and Coastal Habitats

    PubMed Central

    Smith, Stephen D. A.; Edgar, Robert J.

    2014-01-01

    Marine debris is recognised globally as a key threatening process to marine life, but efforts to address the issue are hampered by the lack of data for many marine habitats. By developing standardised protocols and providing training in their application, we worked with >300 volunteer divers from 11 underwater research groups to document the scale of the subtidal marine debris problem at 120 sites across >1000 km of the coast of NSW, Australia. Sampling consisted of replicated 25×5 m transects in which all debris was identified, counted, and, where appropriate, removed. Sites ranged from estuarine settings adjacent to major population centres, to offshore islands within marine parks. Estuaries and embayments were consistently found to be the most contaminated habitats. Fishing-related items (and especially monofilament and braided fishing line) were most prevalent at the majority of sites, although food and drink items were important contributors at sites adjacent to population centres. The results identified damaging interactions between marine debris and marine biota at some key locations, highlighting the need for management intervention to ensure habitat sustainability. This study reinforces the important contribution that volunteers can make to assessing conservation issues requiring broad-scale data collection. In this case, citizen scientists delivered data that will inform, and help to prioritise, management approaches at both statewide and local scales. These initial data also provide an important baseline for longer-term, volunteer-based monitoring programs. PMID:24743690

  9. MarineMap: Web-Based Technology for Coastal and Marine Spatial Planning

    NASA Astrophysics Data System (ADS)

    McClintock, W.; Ferdana, Z.; Merrifield, M.; Steinback, C.; Marinemap Consortium

    2010-12-01

    Science, technology and stakeholder engagement are at the heart of marine spatial planning (MSP). Yet, most stakeholders are not scientists or technologists. MarineMap (http://northcoast.marinemap.org) is a web-based decision support tool developed specifically for use by non-technical stakeholders in marine protected area (MPA) planning. However, MarineMap has been developed so that it may be extended to virtually any MSP project where there is a need for (a) visualization and analysis of geospatial data, (b) siting prospective use areas (e.g., for wind or wave energy sites, MPAs, transportation routes), (c) collaboration and communication amongst stakeholders, and (d) transparency of the process to the public. MarineMap is extremely well documented, is based on free and open source technologies and, therefore, may be implemented by anyone without licensing fees. Furthermore, the underlying technologies are extremely flexible and extensible, making it ideal for incorporating new models (e.g., tradeoff analyses, cumulative impacts, etc.) as they are identified for specific MSP projects. We will demonstrate how MarineMap has been developed for MPA planning in California, human impact assessment and MSP on the West Coast, energy and conservation planning in Oregon, and explain how interested parties may access MarineMap's source code and contribute to development.

  10. Documenting the density of subtidal marine debris across multiple marine and coastal habitats.

    PubMed

    Smith, Stephen D A; Edgar, Robert J

    2014-01-01

    Marine debris is recognised globally as a key threatening process to marine life, but efforts to address the issue are hampered by the lack of data for many marine habitats. By developing standardised protocols and providing training in their application, we worked with >300 volunteer divers from 11 underwater research groups to document the scale of the subtidal marine debris problem at 120 sites across >1000 km of the coast of NSW, Australia. Sampling consisted of replicated 25×5 m transects in which all debris was identified, counted, and, where appropriate, removed. Sites ranged from estuarine settings adjacent to major population centres, to offshore islands within marine parks. Estuaries and embayments were consistently found to be the most contaminated habitats. Fishing-related items (and especially monofilament and braided fishing line) were most prevalent at the majority of sites, although food and drink items were important contributors at sites adjacent to population centres. The results identified damaging interactions between marine debris and marine biota at some key locations, highlighting the need for management intervention to ensure habitat sustainability. This study reinforces the important contribution that volunteers can make to assessing conservation issues requiring broad-scale data collection. In this case, citizen scientists delivered data that will inform, and help to prioritise, management approaches at both statewide and local scales. These initial data also provide an important baseline for longer-term, volunteer-based monitoring programs.

  11. Predicting Effects of Coastal Acidification on Marine Bivalve ...

    EPA Pesticide Factsheets

    The partial pressure of carbon dioxide (pCO2) is increasing in the oceans and causing changes in seawater pH commonly described as ocean or coastal acidification. It is now well-established that, when reproduced in laboratory experiments, these increases in pCO2 can reduce survival and growth of early life stage bivalves. However, the effects that these impairments would have on whole populations of bivalves are unknown. In this study, these laboratory responses were incorporated into field-parameterized population models to assess population-level sensitivities to acidification for two northeast bivalve species with different life histories: Mercenaria mercenaria (hard clam) and Argopecten irradians (bay scallop). The resulting models permitted translation of laboratory pCO2 response functions into population-level responses to examine population sensitivity to future pCO2 changes. Preliminary results from our models indicate that if the current M. mercenaria negative population growth rate was attributed to the effects of pCO2 on early life stages, the population would decline at a rate of 50% per ten years at 420 microatmospheres (µatm) pCO2. If the current population growth rate was attributed to other additive factors (e.g., harvest, harmful algal blooms), M. mercenaria populations were predicted to decline at a rate of 50% per ten years at the preliminary estimate of 1010 µatm pCO2. The estimated population growth rate was positive for A. irradians,

  12. Spatial distribution of fallout 137Cs in the coastal marine environment of India.

    PubMed

    Jha, S K; Gothankar, S S; Sartandel, S; Pote, M B; Hemalatha, P; Rajan, M P; Vidyasagar, D; Indumati, S P; Shrivastava, R; Puranik, V D

    2012-11-01

    The data on the fallout (137)Cs in the coastal marine environment assume significance in view of massive expansion of nuclear power plants in the Asia-Pacific region and to fulfill the benchmark study required to evaluate the possible impact of the Fukushima radioactive releases in the Asia-Pacific region. Measurements of (137)Cs in sea water, along with salinity and temperature, were carried out at 30 locations covering the coastal area of the Arabian Sea and the Bay of Bengal. For the present study the Indian coastal area is divided in three different regions. The (137)Cs concentration in sea water of the entire Indian coastal region varies from 0.30 to 1.25 Bq m(-3). The data obtained in the present study was compared with the North Indian Ocean data and it was observed that there is a 33% decrease in the Arabian Sea (region I), 50% in the high rainfall coastal area (region II) and 24% in the Bay of Bengal (region III).

  13. Heavy metals in molluscan, crustacean, and other commercially important Chilean marine coastal water species

    SciTech Connect

    Ober, A.G.; Gonzalez, M.; Santa Maria, I.

    1987-03-01

    The work reported here is part of a general program to monitor the marine chemical pollution along the Chilean coast. The present investigation was designated to provide information on the nature and levels of the heavy metals present in the marine species commonly consumed by the population, and to learn whether these levels may constitute a hazard to consumers. The authors report here the typical contents of 10 heavy metals in 12 commercially significant marine species from the Chilean coastal waters (Valparaiso, Concepcion and Puerto Montt). The analyzed species included 7 molluscs, 3 curstacea, and 2 other shellfish species of wide consumption. The metals chosen for analysis were copper, zinc, cadmium, lead, mercury, nickel, antimony, selenium, iron and chromium.

  14. Optimal management of a Hawaiian Coastal aquifer with nearshore marine ecological interactions

    NASA Astrophysics Data System (ADS)

    Duarte, Thomas Kaeo; Pongkijvorasin, Sittidaj; Roumasset, James; Amato, Daniel; Burnett, Kimberly

    2010-11-01

    We optimize groundwater management in the presence of marine consequences of submarine groundwater discharge (SGD). Concern for marine biota increases the optimal steady-state head level of the aquifer. The model is discussed in general terms for any coastal groundwater resource where SGD has a positive impact on valuable nearshore resources. Our application focuses on the Kona Coast of Hawai`i, where SGD is being actively studied and where both nearshore ecology and groundwater resources are serious sociopolitical issues. To incorporate the consequences of water extraction on nearshore resources, we impose a safe minimum standard for the quantity of SGD. Efficient pumping rates fluctuate according to various growth requirements on the keystone marine algae and different assumptions regarding recharge rates. Desalination is required under average recharge conditions and a strict minimum standard and under low recharge conditions regardless of minimum standards of growth.

  15. Measuring disaster-resilient communities: a case study of coastal communities in Indonesia.

    PubMed

    Kafle, Shesh Kanta

    2012-01-01

    Vulnerability reduction and resilience building of communities are central concepts in recent policy debates. Although there are fundamental linkages, and complementarities exist between the two concepts, recent policy and programming has focused more on the latter. It is assumed here that reducing underlying causes of vulnerabilities and their interactions with resilience elements is a prerequisite for obtaining resilience capabilities. An integrated approach, incorporating both the vulnerability and resilience considerations, has been taken while developing an index for measuring disaster-resilient communities. This study outlines a method for measuring community resilience capabilities using process and outcome indicators in 43 coastal communities in Indonesia. An index was developed using ten process and 25 outcome indicators, selected on the basis of the ten steps of the Integrated Community Based Risk Reduction (ICBRR) process, and key characteristics of disaster resilient communities were taken from various literatures. The overall index value of all 43 communities was 63, whereas the process and outcome indicator values were measured as 63 and 61.5 respectively. The core components of this index are process and outcome indicators. The tool has been developed with an assumption that both the process and outcome indicators are equally important in building disaster-resilient communities. The combination of both indicators is an impetus to quality change in the community. Process indicators are important for community understanding, ownership and the sustainability of the programme; whereas outcome indicators are important for the real achievements in terms of community empowerment and capacity development. The process of ICBRR approach varies by country and location as per the level of community awareness and organisational strategy. However, core elements such as the formation of community groups, mobilising those groups in risk assessment and planning

  16. Environmental contamination and marine mammals in coastal waters from Argentina: an overview.

    PubMed

    Marcovecchio, J E; Gerpe, M S; Bastida, R O; Rodríguez, D H; Morón, S G

    1994-09-16

    Environmental contamination become an increasing global problem. Different scientific strategies have been developed in order to assess the impact of pollutants on marine ecosystems. The distribution of toxic contaminants in tissues of different marine mammal species--both cetaceans and pinnipeds--has been studied in many ecosystems, as well as several related ecological processes, like pollutant accumulation or transfer through the food web. A research program directed towards evaluating the occurrence of pollutants in marine mammals from the coastal waters of Argentina (southwestern Atlantic Ocean) has been developed since 1985, and includes the study of heavy metal contents in stranded or incidentally caught animals. The marine mammal species studied during this period were: the seals Otaria flavescens and Arctocephalus australis, and small cetaceans Tursiops gephyreus, Pontoporia blainvillei, Kogia breviceps and Ziphius cavirostris. In most of the cases, high contents of heavy metals (total mercury, cadmium, zinc, and copper) have been recorded. Moreover, liver showed the maximum capability for accumulation of heavy metals in all studied species. The biological and ecological characteristics of each species of the above-mentioned marine mammals (feeding habits, age, migratory pathways, or sex) contributed to the understanding of the metal sources. Considering the results as obtained during the study period it can be assumed that: (1) The global distribution of toxic contaminants also affects the southwestern Atlantic Ocean ecosystems, and (2) Marine mammals could be appropriate bioindicator species in order to assess this kind of environmental problem.

  17. The sociological perspective in coastal management and geoengineering approach: effects of hydraulic structures on the resilience of fishing communities (NW Portugal)

    NASA Astrophysics Data System (ADS)

    Rocha, Fernando; Pires, Ana; Chamine, Helder

    2014-05-01

    The coast plays an important role in global transportation and is the most popular tourist destination around the world. During the years coastal scientists "walking on the shore", have tried to understand the shoreline in relation to the processes that shape it, and its interrelationships with the contiguous superficial marine and terrestrial hinterland environments. Those factors encourage the need for Integrated Coastal Zone Management (ICZM), because of its possible use in identifying coastal management issues to take into account in policy strategies, measures and planning. Therefore this research presents an integrated strategy and a holistic approach to researching and studying coastal areas involving a wide number of sciences including sociology. Because of the numerous types of hazards in coastal areas the only possible response involves a holistic, integrated and long term approach. Combining marine sociological research, resilience and flexibility of a particular coastal community with other scientific fields will help to understand and manage marine social problems. This study also shows an integrative and "eclectic" methodology and adapts it to coastal management. Hence a new integrated coastal geoengineering approach for maritime environments was proposed, which is the core foundation of this approach. Also it was important to incorporate in a broader sense coastal geosciences and geoengineering GIS mapping to this final equation resulting in conceptual models. In Portugal there are several areas buffeted by sea invasions, coastal erosion and severe storms. The Portuguese coastal zone is one of Europe's most vulnerable regarding coastal erosion. The case study presented herein is an example of one of the most vulnerable sites in Portugal in terms of coastal erosion and sea invasions and how the meeting of local fishing community and coastal projects are extremely important. The coastal stretch between Figueira da Foz and Espinho (Centre and NW

  18. Accumulation of radionuclides in selected marine biota from Manjung coastal area

    SciTech Connect

    Abdullah, Anisa Hamzah, Zaini; Wood, Ab. Khalik; Saat, Ahmad; Alias, Masitah

    2015-04-29

    Distribution of radionuclides from anthropogenic activities has been intensively studied due to the accumulation of radionuclides in marine ecosystem. Manjung area is affected by rapid population growth and socio-economic development such as heavy industrial activities including coal fired power plant, iron foundries, port development and factories, agricultural runoff, waste and toxic discharge from factories.It has radiological risk and toxic effect when effluent from the industries in the area containing radioactive materials either being transported to the atmosphere and deposited back over the land or by run off to the river and flow into coastal area and being absorbed by marine biota. Radionuclides presence in the marine ecosystem can be adversely affect human health when it enters the food chain. This study is focusing on the radionuclides [thorium (Th), uranium (U), radium-226 ({sup 226}Ra), radium-228 ({sup 228}Ra) and potassium-40 ({sup 40}K)] content in marine biota and sea water from Manjung coastal area. Five species of marine biota including Johnius dussumieri (Ikan Gelama), Pseudorhombus malayanus (Ikan Sebelah), Arius maculatus (Ikan Duri), Portunus pelagicus (Ketam Renjong) and Charybdis natator (Ketam Salib) were collected during rainy and dry seasons. Measurements were carried out using Inductively Coupled Plasma Mass Spectrometer (ICPMS). The results show that the concentration of radionuclides varies depends on ecological environment of respective marine biota species. The concentrations and activity concentrations are used for the assessment of potential internal hazard index (H{sub in}), transfer factor (TF), ingestion dose rate (D) and health risk index (HRI) to monitor radiological risk for human consumption.

  19. Restoration of marine coastal ecosystem health as a new goal for integrated catchment management in Tolo Harbor, Hong Kong, China.

    PubMed

    Xu, Fu-Liu; Hao, Jun-Yi; Tao, Shu; Dawson, Richard W; Lam, K C; Chen, Yongqin David

    2006-04-01

    This article demonstrates why it is necessary to have the restoration of marine coastal ecosystem health as a new goal for integrated catchment management in the coastal area of Tolo Harbor. The present goal of integrated catchment management (ICM) in the Tolo Harbor is based on water quality objectives. The performance of the ICM plan, the Tolo Harbor Action Plan (THAP), was evaluated using marine coastal ecosystem health indicators including both stress and response indicators. Since the implementation of THAP in 1988, some significant reductions in pollution loading have been observed: reduction of 83% of biological oxygen demand load and 82% of total nitrogen between 1988 and 1999. There has also been an improvement in the health of Tolo Harbor's marine coastal ecosystem as evidenced by trends in physical, chemical, and biological indicators, although reverse fluctuations in some periods exist. However, such improvement can only be considered as the first sign of complete ecosystem health restoration, because ecosystem health covers not only physical, chemical, and biological aspects of an ecosystem, but also ecosystem service functions. The findings support the need to take the restoration and protection of marine coastal ecosystem health as a new goal rather than using water quality objectives. Steps necessary to further improve Tolo Harbor's marine coastal ecosystem health are also discussed.

  20. Temporal stability of the microbial community in sewage-polluted seawater exposed to natural sunlight cycles and marine microbiota.

    PubMed

    Sassoubre, Lauren M; Yamahara, Kevan M; Boehm, Alexandria B

    2015-03-01

    Billions of gallons of untreated wastewater enter the coastal ocean each year. Once sewage microorganisms are in the marine environment, they are exposed to environmental stressors, such as sunlight and predation. Previous research has investigated the fate of individual sewage microorganisms in seawater but not the entire sewage microbial community. The present study used next-generation sequencing (NGS) to examine how the microbial community in sewage-impacted seawater changes over 48 h when exposed to natural sunlight cycles and marine microbiota. We compared the results from microcosms composed of unfiltered seawater (containing naturally occurring marine microbiota) and filtered seawater (containing no marine microbiota) to investigate the effect of marine microbiota. We also compared the results from microcosms that were exposed to natural sunlight cycles with those from microcosms kept in the dark to investigate the effect of sunlight. The microbial community composition and the relative abundance of operational taxonomic units (OTUs) changed over 48 h in all microcosms. Exposure to sunlight had a significant effect on both community composition and OTU abundance. The effect of marine microbiota, however, was minimal. The proportion of sewage-derived microorganisms present in the microcosms decreased rapidly within 48 h, and the decrease was the most pronounced in the presence of both sunlight and marine microbiota, where the proportion decreased from 85% to 3% of the total microbial community. The results from this study demonstrate the strong effect that sunlight has on microbial community composition, as measured by NGS, and the importance of considering temporal effects in future applications of NGS to identify microbial pollution sources.

  1. Temporal Stability of the Microbial Community in Sewage-Polluted Seawater Exposed to Natural Sunlight Cycles and Marine Microbiota

    PubMed Central

    Sassoubre, Lauren M.; Yamahara, Kevan M.

    2015-01-01

    Billions of gallons of untreated wastewater enter the coastal ocean each year. Once sewage microorganisms are in the marine environment, they are exposed to environmental stressors, such as sunlight and predation. Previous research has investigated the fate of individual sewage microorganisms in seawater but not the entire sewage microbial community. The present study used next-generation sequencing (NGS) to examine how the microbial community in sewage-impacted seawater changes over 48 h when exposed to natural sunlight cycles and marine microbiota. We compared the results from microcosms composed of unfiltered seawater (containing naturally occurring marine microbiota) and filtered seawater (containing no marine microbiota) to investigate the effect of marine microbiota. We also compared the results from microcosms that were exposed to natural sunlight cycles with those from microcosms kept in the dark to investigate the effect of sunlight. The microbial community composition and the relative abundance of operational taxonomic units (OTUs) changed over 48 h in all microcosms. Exposure to sunlight had a significant effect on both community composition and OTU abundance. The effect of marine microbiota, however, was minimal. The proportion of sewage-derived microorganisms present in the microcosms decreased rapidly within 48 h, and the decrease was the most pronounced in the presence of both sunlight and marine microbiota, where the proportion decreased from 85% to 3% of the total microbial community. The results from this study demonstrate the strong effect that sunlight has on microbial community composition, as measured by NGS, and the importance of considering temporal effects in future applications of NGS to identify microbial pollution sources. PMID:25576619

  2. Spatiotemporal drivers of energy expenditure in a coastal marine fish.

    PubMed

    Brownscombe, Jacob W; Cooke, Steven J; Danylchuk, Andy J

    2017-03-01

    Animal behavior and energy expenditure often vary significantly across the landscape, and quantifying energy expenditure over space and time provides mechanistic insight into ecological dynamics. Yet, spatiotemporal variability in energy expenditure has rarely been explored in fully aquatic species such as fish. Our objective was to quantify spatially explicit energy expenditure for a tropical marine teleost fish, bonefish (Albula vulpes), to examine how bonefish energetics vary across landscape features and temporal factors. Using a swim tunnel respirometer, we calibrated acoustic accelerometer transmitters implanted in bonefish to estimate their metabolic rates and energy expenditure, and applied this technology in situ using a fine-scale telemetry system on a heterogeneous reef flat in Puerto Rico. Bonefish energy expenditure varied most among habitats, with significant interactions between habitat and temporal factors (i.e., diel period, tide state, season). The energy expenditure was generally highest in shallow water habitats (i.e., seagrass and reef crest). Variation in activity levels was the main driver of these differences in energy expenditure, which in shallow, nearshore habitats is likely related to foraging. Bonefish moderate energy expenditure across seasonal fluctuations in temperature, by selectively using shallow nearshore habitats at moderate water temperatures that correspond with their scope for activity. Quantifying how animals expend energy in association with environmental and ecological factors can provide important insight into behavioral ecology, with implications for bioenergetics models.

  3. 76 FR 46753 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Coastal Commercial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ..., California sea lions (Zalophus californianus) and harbor seals (Phoca vitulina). Specified Activities Since... MMPA. Numbers of California sea lions and harbor seals, the species that may be subject to harassment... projects that as many as 20 coastal displays per year may be conducted in, or adjacent to, MBNMS...

  4. Multiple stressors, nonlinear effects and the implications of climate change impacts on marine coastal ecosystems.

    PubMed

    Hewitt, Judi E; Ellis, Joanne I; Thrush, Simon F

    2016-08-01

    Global climate change will undoubtedly be a pressure on coastal marine ecosystems, affecting not only species distributions and physiology but also ecosystem functioning. In the coastal zone, the environmental variables that may drive ecological responses to climate change include temperature, wave energy, upwelling events and freshwater inputs, and all act and interact at a variety of spatial and temporal scales. To date, we have a poor understanding of how climate-related environmental changes may affect coastal marine ecosystems or which environmental variables are likely to produce priority effects. Here we use time series data (17 years) of coastal benthic macrofauna to investigate responses to a range of climate-influenced variables including sea-surface temperature, southern oscillation indices (SOI, Z4), wind-wave exposure, freshwater inputs and rainfall. We investigate responses from the abundances of individual species to abundances of functional traits and test whether species that are near the edge of their tolerance to another stressor (in this case sedimentation) may exhibit stronger responses. The responses we observed were all nonlinear and some exhibited thresholds. While temperature was most frequently an important predictor, wave exposure and ENSO-related variables were also frequently important and most ecological variables responded to interactions between environmental variables. There were also indications that species sensitive to another stressor responded more strongly to weaker climate-related environmental change at the stressed site than the unstressed site. The observed interactions between climate variables, effects on key species or functional traits, and synergistic effects of additional anthropogenic stressors have important implications for understanding and predicting the ecological consequences of climate change to coastal ecosystems.

  5. Polybrominated diphenyl ethers and polychlorinated biphenyls in a marine foodweb of coastal Florida.

    PubMed

    Johnson-Restrepo, Boris; Kannan, Kurunthachalam; Addink, Rudolf; Adams, Douglas H

    2005-11-01

    Nine species of marine fish, including teleost fishes, sharks, and stingrays, and two species of marine mammals (dolphins) collected from Florida coastal waters were analyzed for polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) to evaluate biomagnification factors (BMF) of these contaminants in a coastal foodweb. In addition, bottlenose dolphins and bull sharks collected from the Florida coast during the 1990s and the 2000s were analyzed for evaluation of temporal trends in PBDE and PCB levels in coastal ecosystems. Mean concentrations of PBDEs in muscle tissues of teleost fishes ranged from 8.0 ng/g, lipid wt (in silver perch), to 88 ng/g, lipid wt (in hardhead catfish), with an overall mean concentration of 43 +/- 30 ng/g, lipid wt. Mean concentrations of PBDEs in muscle of sharks ranged from 37.8 ng/g, lipid wt, in spiny dogfish to 1630 ng/g, lipid wt, in bull sharks. Mean concentrations of PBDEs in the blubber of bottlenose dolphins and striped dolphins were 1190 +/- 1580 and 660 ng/g, lipid wt, respectively. Tetra-BDE 47 (2,2',4,4'-) was the major congener detected in teleost fishes and dolphin samples, followed by BDE-99, BDE-153, BDE-100, and BDE-154. In contrast, BDE-209 was the most abundant congener in sharks. Concentrations of PBDEs and PCBs in dolphins and sharks were 1-2 orders of magnitude greater than those in lower trophic-level fish species, indicating biomagnification of both of these contaminants in the marine foodweb. Based on the analysis of sharks and dolphins collected over a 10-year period, an exponential increase in the concentrations of PBDEs and PCBs has occurred in these marine predators. The doubling time of PBDE and PCB concentrations was estimated to be 2-3 years for bull sharks and 3-4 years for bottlenose dolphin.

  6. North Carolina Marine Education Manual. Connections: Guide to Marine Resources, Living Marine Systems and Coastal Field Trips.

    ERIC Educational Resources Information Center

    Spence, L.; Medlicott, J.

    This collection of teaching and resource materials is designed to help middle school teachers put marine perspectives into their lessons. Materials are organized into three parts. Part 1 describes the preparation and maintenance of brackish water aquariums, marine aquariums, and touch tanks. Activities related to and sources of information on…

  7. Bioluminescence to reveal structure and interaction of coastal planktonic communities

    NASA Astrophysics Data System (ADS)

    Moline, Mark A.; Blackwell, Shelley M.; Case, James F.; Haddock, Steven H. D.; Herren, Christen M.; Orrico, Cristina M.; Terrill, Eric

    2009-02-01

    Ecosystem function will in large part be determined by functional groups present in biological communities. The simplest distinction with respect to functional groups of an ecosystem is the differentiation between primary and secondary producers. A challenge thus far has been to examine these groups simultaneously with sufficient temporal and spatial resolution for observations to be relevant to the scales of change in coastal oceans. This study takes advantage of general differences in the bioluminescence flash kinetics between planktonic dinoflagellates and zooplankton to measure relative abundances of the two groups within the same-time space volume. This novel approach for distinguishing these general classifications using a single sensor is validated using fluorescence data and exclusion experiments. The approach is then applied to data collected from an autonomous underwater vehicle surveying >500 km in Monterey Bay and San Luis Obispo Bay, CA during the summers of 2002-2004. The approach also reveals that identifying trophic interaction between the two planktonic communities may also be possible.

  8. Atmospheric aerosol deposition influences marine microbial communities in oligotrophic surface waters of the western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Maki, Teruya; Ishikawa, Akira; Mastunaga, Tomoki; Pointing, Stephen B.; Saito, Yuuki; Kasai, Tomoaki; Watanabe, Koichi; Aoki, Kazuma; Horiuchi, Amane; Lee, Kevin C.; Hasegawa, Hiroshi; Iwasaka, Yasunobu

    2016-12-01

    Atmospheric aerosols contain particulates that are deposited to oceanic surface waters. These can represent a major source of nutrients, trace metals, and organic compounds for the marine environment. The Japan Sea and the western Pacific Ocean are particularly affected by aerosols due to the transport of desert dust and industrially derived particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5) from continental Asia. We hypothesized that supplementing seawater with aerosol particulates would lead to measurable changes in surface water nutrient composition as well as shifts in the marine microbial community. Shipboard experiments in the Pacific Ocean involved the recovery of oligotrophic oceanic surface water and subsequent supplementation with aerosol particulates obtained from the nearby coastal mountains, to simulate marine particulate input in this region. Initial increases in nitrates due to the addition of aerosol particulates were followed by a decrease correlated with the increase in phytoplankton biomass, which was composed largely of Bacillariophyta (diatoms), including Pseudo-nitzschia and Chaetoceros species. This shift was accompanied by changes in the bacterial community, with apparent increases in the relative abundance of heterotrophic Rhodobacteraceae and Colwelliaceae in aerosol particulate treated seawater. Our findings provide empirical evidence revealing the impact of aerosol particulates on oceanic surface water microbiology by alleviating nitrogen limitation in the organisms.

  9. Assessment of marine debris in beaches or seawaters around the China Seas and coastal provinces.

    PubMed

    Zhou, Changchun; Liu, Xu; Wang, Zhengwen; Yang, Tiantian; Shi, Linna; Wang, Linlin; You, Suwen; Li, Min; Zhang, Cuicui

    2016-02-01

    Compared with United States of America (USA), Brazil, Chile, Australia, limited attention has been paid to marine debris research in China and few studies have attempted to quantify the abundance and mass of marine debris. In this study, firstly the general status and sources of marine debris in China were assessed in the time period between 2007 and 2014, and secondly marine debris situation was evaluated in three China Sea Areas (the North China Sea, the East China Sea and the South China Sea) from 2009 to 2013, and finally marine debris conditions and sources were analyzed in beaches or seawaters around some coastal provinces of China during 2007-2013. Based on above analysis, the primary conclusions were as follows: (1) The mean number and weight densities of beached marine debris (BMD) and submerged marine debris (SMD) were 4.30, 0.13items/100m(2) and 133.80, 22.60g/100m(2) in China from 2007 to 2014, respectively. The average number density of the large size FMD (LOSFMD) was 0.0024items/100m(2) and that of the small and medium size FMD (SMSFMD) was 0.30items/100m(2), and the mean weight density of the SMSFMD was 1.40g/100m(2) from 2008 to 2014. The SMD and FMD densities were at the low level and the BMD density was at the high level in China. (2) The marine debris primarily was comprised of plastic, Styrofoam, wood, glass, rubber, fabric/fiber and metal, which included almost all major categories of marine debris. (3) Sources of BMD and FMD were as follows: the first source was coastal/recreational activities, followed by other disposal sources, navigation/fishing activities and the activities related smoking, and the least source being those associated with medical/sanitary activities, while the source of SMD remained unknown. (4) The mean number and weight densities of BMD were the biggest in the North China Sea, while those of FMD and SMD were the highest in the northern South China Sea. The results of this study were beneficial to the establishment of

  10. How Can the Deactivation of the Marine Prowler Community Best Serve the Marine Corps?

    DTIC Science & Technology

    2010-03-01

    Electronic Counter Measure Officers ( ECMO ) transitioning to new communities. Before the Prowler community deactivation begins it will undergo some...Prowler squadron consists of 180 Marines. Eight are pilots, twenty are Electronic Counter Measure Officers ( ECMO ), twenty seven are Sta:ffNon-Commissioned...three operational squadrons and an FRS. The FRS activation would be used to facilitate the production of any remaining pilots and ECMOs needed to

  11. Unified classical formula for non-cohesive total-load sediment transport in marine coastal zones

    NASA Astrophysics Data System (ADS)

    Khorram, Saeed; Ergil, Mustafa

    2016-11-01

    This paper proposes the concept of a significant transport rate, in coastal environments that contains different spatial and temporal scales and multiple interacting forces (e.g., waves, tides, wave-current, and wind density currents) as well as, the complex physical processes of total-load sediment which is not easy to calculate for practical needs due to restricted range of applicability. The present study develops a unified classical formula for non-cohesive total-load sediment transport in marine coastal zones by using dimensional analysis and self-similarity concepts where a set of independent variables considered. A dataset of total-load collected at both field observation stations and from the laboratory flume conditions and the six well-known relevant formulas were used to evaluate the predictive capability of the proposed formula. Since the results show that, the new formula is in good agreement with both field and flume data sets measures, the authors are suggesting the use of it for the sediment-carrying capacity predictions of total-load sediment transport in marine coastal zones.

  12. State of knowledge of coastal and marine biodiversity of Indian Ocean countries.

    PubMed

    Wafar, Mohideen; Venkataraman, Krishnamurthy; Ingole, Baban; Ajmal Khan, Syed; Lokabharathi, Ponnapakkam

    2011-01-31

    The Indian Ocean (IO) extends over 30% of the global ocean area and is rimmed by 36 littoral and 11 hinterland nations sustaining about 30% of the world's population. The landlocked character of the ocean along its northern boundary and the resultant seasonally reversing wind and sea surface circulation patterns are features unique to the IO. The IO also accounts for 30% of the global coral reef cover, 40,000 km² of mangroves,some of the world's largest estuaries, and 9 large marine ecosystems. Numerous expeditions and institutional efforts in the last two centuries have contributed greatly to our knowledge of coastal and marine biodiversity within the IO. The current inventory, as seen from the Ocean Biogeographic Information System, stands at 34,989 species, but the status of knowledge is not uniform among countries. Lack of human, institutional, and technical capabilities in some IO countries is the main cause for the heterogeneous level of growth in our understanding of the biodiversity of the IO. The gaps in knowledge extend to several smaller taxa and to large parts of the shelf and deep-sea ecosystems, including seamounts. Habitat loss, uncontrolled developmental activities in the coastal zone, over extraction of resources, and coastal pollution are serious constraints on maintenance of highly diverse biota, especially in countries like those of the IO, where environmental regulations are weak.

  13. Downscaling and extrapolating dynamic seasonal marine forecasts for coastal ocean users

    NASA Astrophysics Data System (ADS)

    Vanhatalo, Jarno; Hobday, Alistair J.; Little, L. Richard; Spillman, Claire M.

    2016-04-01

    Marine weather and climate forecasts are essential in planning strategies and activities on a range of temporal and spatial scales. However, seasonal dynamical forecast models, that provide forecasts in monthly scale, often have low offshore resolution and limited information for inshore coastal areas. Hence, there is increasing demand for methods capable of fine scale seasonal forecasts covering coastal waters. Here, we have developed a method to combine observational data with dynamical forecasts from POAMA (Predictive Ocean Atmosphere Model for Australia; Australian Bureau of Meteorology) in order to produce seasonal downscaled, corrected forecasts, extrapolated to include inshore regions that POAMA does not cover. We demonstrate the method in forecasting the monthly sea surface temperature anomalies in the Great Australian Bight (GAB) region. The resolution of POAMA in the GAB is approximately 2° × 1° (lon. × lat.) and the resolution of our downscaled forecast is approximately 1° × 0.25°. We use data and model hindcasts for the period 1994-2010 for forecast validation. The predictive performance of our statistical downscaling model improves on the original POAMA forecast. Additionally, this statistical downscaling model extrapolates forecasts to coastal regions not covered by POAMA and its forecasts are probabilistic which allows straightforward assessment of uncertainty in downscaling and prediction. A range of marine users will benefit from access to downscaled and nearshore forecasts at seasonal timescales.

  14. Marine Chemical Ecology: Chemical Signals and Cues Structure Marine Populations, Communities, and Ecosystems

    PubMed Central

    Hay, Mark E.

    2012-01-01

    Chemical cues constitute much of the language of life in the sea. Our understanding of biotic interactions and their effects on marine ecosystems will advance more rapidly if this language is studied and understood. Here, I review how chemical cues regulate critical aspects of the behavior of marine organisms from bacteria to phytoplankton to benthic invertebrates and water column fishes. These chemically mediated interactions strongly affect population structure, community organization, and ecosystem function. Chemical cues determine foraging strategies, feeding choices, commensal associations, selection of mates and habitats, competitive interactions, and transfer of energy and nutrients within and among ecosystems. In numerous cases, the indirect effects of chemical signals on behavior have as much or more effect on community structure and function as the direct effects of consumers and pathogens. Chemical cues are critical for understanding marine systems, but their omnipresence and impact are inadequately recognized. PMID:21141035

  15. Structuring factors and recent changes in subtidal macrozoobenthic communities of a coastal lagoon, Arcachon Bay (France)

    NASA Astrophysics Data System (ADS)

    Blanchet, Hugues; de Montaudouin, Xavier; Chardy, Pierre; Bachelet, Guy

    2005-09-01

    Fourteen years after a previous investigation in Arcachon Bay (SW France), the quantitative distribution of subtidal macrozoobenthic communities was assessed in 2002 through a stratified sampling strategy involving a larger number of stations (89 vs. 18) than in 1988. A total of 226 taxa were recorded. Cluster Analysis and Correspondence Analysis identified nine station groups corresponding to benthic faunal assemblages and their characteristic species. Multiple Discriminant Analysis showed that the main environmental factors influencing the distribution of faunal assemblages were sediment parameters and distance from the ocean. Depth was a minor structuring factor. At the scale of the lagoon, biogenic structures such as Zostera marina beds, Crepidula fornicata-dominated bottoms or dead oyster shell bottoms did not display any particular assemblage of infauna. Comparison with previous quantitative data from the 1988 survey provided more precision on the distribution of benthic assemblages and revealed community changes at a 14-year scale. These modifications reflected a general increase of silt and clay content in the sediment in the internal parts of channels, inducing community change. These changes can be correlated to the recent first signs of a moderate eutrophication process which have appeared, since 1988, through the development of green macroalgae in some parts of the lagoon. This trend was enhanced in transverse channels with reduced hydrodynamics and led to muddy areas where green macroalgae tended to accumulate. Locally, the dredging of sandbanks induced stronger currents and allowed the marine influence to occur, and also induced community change. These observations confirm that surveys of macrobenthic communities are useful tools to assess coastal ecosystem change even in moderately disturbed environments.

  16. Petroleum hydrocarbon concentrations in marine sediments along Nagapattinam - Pondicherry coastal waters, Southeast coast of India.

    PubMed

    Kamalakannan, K; Balakrishnan, S; Sampathkumar, P

    2017-01-30

    In this present study, petroleum hydrocarbons were statistically analyzed in three different coastal sediment cores viz., (N1, P1 and P2) from the Southeast coast of Tamil Nadu, India to examine the viability of PHCs. The significant positive relationship between mud (silt+clay+sand) and PHC unveiled that high specific surface of area of mud content raise the level of PHCs. Cluster analysis was used to discriminate the sediment samples based on their degree of contamination. The present study shows that instead of expensive and destructive PHC chemical methods, magnetic susceptibility is found to be a suitable, cheap and rapid method for detailed study of PHC in marine sediments. This baseline PHCs data can be used for regular ecological monitoring and effective management for the mining and tourism related activities in the coastal ecosystem.

  17. Natural trace metal concentrations in estuarine and coastal marine sediments of the southeastern United States

    SciTech Connect

    Windom, H.L.; Schropp, S.J.; Calder, F.D.; Ryan, J.D.; Smith, R.G. Jr.; Burney, L.C.; Lewis, F.G.; Rawlinson, C.H.

    1989-03-01

    Over 450 sediment samples from estuarine and coastal marine areas of the southeastern US remote from contaminant sources were analyzed for trace metals. Although these sediments are compositionally diverse, As, Co, Cr, Cu, Fe, Pb, Mn, Ni, and Zn concentrations covary significantly with aluminum, suggesting that natural aluminosilicate minerals are the dominant natural metal bearing phases. Cd and Hg do not covary with aluminum apparently due to the importance of the contribution of natural organic phases to their concentration in sediments. It is suggested that the covariance of metals with aluminum provides a useful basis for identification and comparison of anthropogenic inputs to southeastern US coastal/estuarine sediments. By use of this approach sediments from the Savannah River, Biscayne Bay, and Pensacola Bay are compared.

  18. Halogenated phenolic contaminants in the blood of marine mammals from Japanese coastal waters.

    PubMed

    Nomiyama, Kei; Kanbara, Chika; Ochiai, Mari; Eguchi, Akifumi; Mizukawa, Hazuki; Isobe, Tomohiko; Matsuishi, Takashi; Yamada, Tadasu K; Tanabe, Shinsuke

    2014-02-01

    Information on accumulation of halogenated phenolic contaminants in the blood of marine mammal is limited. The present study, we determined the residue levels and patterns of chlorinated and brominated phenolic contaminants (OH-PCBs, OH-PBDEs and bromophenols) in the blood collected from pinnipeds (northern fur seal, spotted seal, Steller sea lion and ribbon seal) and small cetaceans (harbor porpoise and Dall's porpoise) from Japanese coastal waters. Concentrations of PCBs and OH-PCBs found in pinnipeds were the same as in small cetaceans living in the same coastal area. However, significantly lower concentrations of brominated compounds (PBDEs, MeO-PBDEs, OH-PBDEs) were found in the blood of pinnipeds than the levels found in cetacean species which live same area (p < 0.05). This difference of accumulation pattern suggested pinnipeds have an enhanced capability to degrade organobromine compounds relative to cetaceans.

  19. Low mercury levels in marine fish from estuarine and coastal environments in southern China.

    PubMed

    Pan, Ke; Chan, Heidi; Tam, Yin Ki; Wang, Wen-Xiong

    2014-02-01

    This study is the first comprehensive evaluation of total Hg and methylmercury (MeHg) concentrations in wild marine fish from an estuarine and a coastal ecosystem in southern China. A total of 571 fish from 54 different species were examined. Our results showed that the Hg levels were generally low in the fish, and the Hg levels were below 30 ng g(-1) (wet weight) for 82% of the samples, which may be related to the reduced size of the fish and altered food web structure due to overfishing. Decreased coastal wetland coverage and different carbon sources may be responsible for the habitat-specific Hg concentrations. The degree of biomagnification was relatively low in the two systems.

  20. COASTAL WETLAND INSECT COMMUNITIES ALONG A TROPHIC GRADIENT IN GREEN BAY, LAKE MICHIGAN

    EPA Science Inventory

    Insects of Great Lakes coastal wetlands have received little attention in spite of their importance in food webs and sensitivity to anthropogenic stressors. We characterized insect communities from four coastal wetlands that spanned the length of a trophic gradient in Green Bay d...

  1. Habitat type and nursery function for coastal marine fish species, with emphasis on the Eastern Cape region, South Africa

    NASA Astrophysics Data System (ADS)

    Whitfield, Alan K.; Pattrick, Paula

    2015-07-01

    A considerable amount of research has been undertaken to document and assess the nursery function of a variety of coastal habitats for marine fish species around the world. Most of these studies have focused on particular habitats and have generally been confined to a limited range of fish species associated with specific nursery areas. In this review we conduct a general assessment of the state of knowledge of coastal habitats in fulfilling the nursery-role concept for marine fishes, with particular emphasis on biotic and abiotic factors that influence nursery value. A primary aim was to synthesize information that can be used to drive sound conservation planning and provide a conceptual framework so that new marine protected areas (MPAs) incorporate the full range of nursery areas that are present within the coastal zone. We also use published data from a coastal section in the Eastern Cape Province, South Africa, to highlight the differential use of shallow aquatic habitats by a range of juvenile marine fish species within this region. Although the Eastern Cape case study does not assess the relative growth, food availability or predation in nursery and non-nursery areas within the coastal zone, it does document which habitats are important to the juveniles of dominant marine species within each area. These habitats, which range from intertidal pools, subtidal gulleys and surf zones to estuaries, do appear to perform a key role in the biological success of species assemblages, with the juveniles of particular marine fishes tending to favour specific nursery areas. According to a multivariate analysis of nursery habitat use within this region, marine species using estuaries tend to differ considerably from those using nearshore coastal waters, with a similar pattern likely to occur elsewhere in the world.

  2. Short- and long-term conditioning of a temperate marine diatom community to acidification and warming.

    PubMed

    Tatters, Avery O; Roleda, Michael Y; Schnetzer, Astrid; Fu, Feixue; Hurd, Catriona L; Boyd, Philip W; Caron, David A; Lie, Alle A Y; Hoffmann, Linn J; Hutchins, David A

    2013-01-01

    Ocean acidification and greenhouse warming will interactively influence competitive success of key phytoplankton groups such as diatoms, but how long-term responses to global change will affect community structure is unknown. We incubated a mixed natural diatom community from coastal New Zealand waters in a short-term (two-week) incubation experiment using a factorial matrix of warming and/or elevated pCO2 and measured effects on community structure. We then isolated the dominant diatoms in clonal cultures and conditioned them for 1 year under the same temperature and pCO2 conditions from which they were isolated, in order to allow for extended selection or acclimation by these abiotic environmental change factors in the absence of interspecific interactions. These conditioned isolates were then recombined into 'artificial' communities modelled after the original natural assemblage and allowed to compete under conditions identical to those in the short-term natural community experiment. In general, the resulting structure of both the unconditioned natural community and conditioned 'artificial' community experiments was similar, despite differences such as the loss of two species in the latter. pCO2 and temperature had both individual and interactive effects on community structure, but temperature was more influential, as warming significantly reduced species richness. In this case, our short-term manipulative experiment with a mixed natural assemblage spanning weeks served as a reasonable proxy to predict the effects of global change forcing on diatom community structure after the component species were conditioned in isolation over an extended timescale. Future studies will be required to assess whether or not this is also the case for other types of algal communities from other marine regimes.

  3. The role of coastal plant communities for climate change mitigation and adaptation

    NASA Astrophysics Data System (ADS)

    Duarte, Carlos M.; Losada, Iñigo J.; Hendriks, Iris E.; Mazarrasa, Inés; Marbà, Núria

    2013-11-01

    Marine vegetated habitats (seagrasses, salt-marshes, macroalgae and mangroves) occupy 0.2% of the ocean surface, but contribute 50% of carbon burial in marine sediments. Their canopies dissipate wave energy and high burial rates raise the seafloor, buffering the impacts of rising sea level and wave action that are associated with climate change. The loss of a third of the global cover of these ecosystems involves a loss of CO2 sinks and the emission of 1 Pg CO2 annually. The conservation, restoration and use of vegetated coastal habitats in eco-engineering solutions for coastal protection provide a promising strategy, delivering significant capacity for climate change mitigation and adaption.

  4. Multiresolution in CROCO (Coastal and Regional Ocean Community model)

    NASA Astrophysics Data System (ADS)

    Debreu, Laurent; Auclair, Francis; Benshila, Rachid; Capet, Xavier; Dumas, Franck; Julien, Swen; Marchesiello, Patrick

    2016-04-01

    CROCO (Coastal and Regional Ocean Community model [1]) is a new oceanic modeling system built upon ROMS_AGRIF and the non-hydrostatic kernel of SNH, gradually including algorithms from MARS3D (sediments)and HYCOM (vertical coordinates). An important objective of CROCO is to provide the possibility of running truly multiresolution simulations. Our previous work on structured mesh refinement [2] allowed us to run two-way nesting with the following major features: conservation, spatial and temporal refinement, coupling at the barotropic level. In this presentation, we will expose the current developments in CROCO towards multiresolution simulations: connection between neighboring grids at the same level of resolution and load balancing on parallel computers. Results of preliminary experiments will be given both on an idealized test case and on a realistic simulation of the Bay of Biscay with high resolution along the coast. References: [1] : CROCO : http://www.croco-ocean.org [2] : Debreu, L., P. Marchesiello, P. Penven, and G. Cambon, 2012: Two-way nesting in split-explicit ocean models: algorithms, implementation and validation. Ocean Modelling, 49-50, 1-21.

  5. Community and household determinants of water quality in coastal Ghana.

    PubMed

    McGarvey, Stephen T; Buszin, Justin; Reed, Holly; Smith, David C; Rahman, Zarah; Andrzejewski, Catherine; Awusabo-Asare, Kofi; White, Michael J

    2008-09-01

    Associations between water sources, socio-demographic characteristics and household drinking water quality are described in a representative sample of six coastal districts of Ghana's Central Region. Thirty-six enumeration areas (EAs) were randomly chosen from a representative survey of 90 EAs in rural, semi-urban and urban residence strata. In each EA, 24 households were randomly chosen for water quality sampling and socio-demographic interview. Escherichia coli per 100 ml H2O was quantified using the IDEXX Colilert system and multi-stage regression models estimated cross-sectional associations between water sources, sanitation and socio-demographic factors. Almost three quarters, 74%, of the households have > 2 E. coli /100 ml H2O. Tap water has significantly lower E. coli levels compared with surface or rainwater and well water had the highest levels. Households with a water closet toilet have significantly lower E. coli compared with those using pit latrines or no toilets. Household size is positively associated, and a possessions index is negatively associated, with E. coli. Variations in community and household socio-demographic and behavioural factors are key determinants of drinking water quality. These factors should be included in planning health education associated with investments in water systems.

  6. Why is Coastal Community Resilience Important in the Gulf of Mexico Region?

    EPA Pesticide Factsheets

    The Gulf of Mexico Program supports the regional collaborative approach and efforts of the Coastal Community Resilience Priority Issue Team of the Gulf of Mexico Governors’ Alliance and its broad spectrum of partners and stakeholders.

  7. STRUCTURE AND FUNCTION OF ANTHROPOGENICALLY ALTERED MICROBIAL COMMUNITIES IN COASTAL WATERS. (R825243)

    EPA Science Inventory

    Human-based (anthropogenic) nutrient and other pollutant enrichment of the world's coastal waters is causing unprecedented changes in microbial community structure and function. Symptoms of these changes include accelerating eutrophication, the proliferation of harmful microal...

  8. Impact of Stormwater Discharges on Water Quality in Coastal Marine Protected Areas.

    PubMed

    Schiff, Kenneth; Luk, Brenda; Gregorio, Dominic

    2015-09-01

    Marine protected areas worldwide limit harvest to protect sensitive fisheries, but rarely do they address water quality goals that may have equally demonstrable impacts. California has over 500 coastal shoreline miles of marine protected areas designated as Areas of Special Biological Significance (ASBS), but receives untreated wet weather runoff discharges from over 1600 storm drain outfalls. The goal of this study was to assess the extent and magnitude of water quality impacts in ASBS following storm events. A stratified probabilistic design was used for sampling receiving water shorelines near (discharge) and far (non-discharge) from storm drain outfalls. In general, reasonably good water quality exists in California's ASBS following storm events. Many of the target analytes measured did not exceed water quality standards. The post-storm concentrations of most constituents in discharge and non-discharge strata of ASBS were similar. The three potentially problematic parameters identified were total PAH, chromium, and copper.

  9. Is the Coastal Ocean a Source of Mercury to Marine Advective Fog

    NASA Astrophysics Data System (ADS)

    Heim, W. A.; Weiss-Penzias, P. S.; Fernandez, D.; Byington, A.; Bonnema, A.; Beebe, C.; Chiswell, H.; Olson, A.; Coale, K. H.

    2014-12-01

    Marine advective fog is a common feature along the California coast during the summer season. This fog provides an important water source to many endemic fauna and flora. Studies are underway to better understand the chemical makeup of Pacific marine fog as it is an important input to the hydrologic cycle. We report results from our study focused on investigating the potential for coastal ocean upwelling to contribute volatile organic mercury to the overlying atmosphere where it could be incorporated into cloud droplets as monomethyl mercury (MMHg). Preliminary research by this group has indicated that fog water inputs to certain coastal locations may contribute up to 99% of the MMHg flux to land compared to the MMHg flux in rain. Mercury measurements, including total mercury (Hgt), MMHg, elemental mercury (Hg0), and dimethyl mercury (DMHg), were made to unfiltered water collected from depth profiles at 12 stations from Big Sur to Trinidad Head over the California shelf during summer 2014. Profiles of Hgt ranged from 0.3-2.4 pM and were similar to other reported measurements of Hgt for the North Pacific. A large range in concentration was observed for MMHg (10-540 fM) with elevated values generally occurring below the oxycline (>50m). Concentrations of Hg0 were 0.06 to 0.57 pM with elevated concentrations at depth relative to surface values. Depth profiles of DMHg were similar to MMHg and concentrations were measured from 10-295 fM with highest concentrations observed below the oxycline. Surface concentrations of DMHg averaged 40 ± 22 fM. Given the observed profiles for DMHg and the fact that it is sparingly soluble in water, a net flux of DMHg to the atmosphere is likely occurring. Based on these findings and the fact that MMHg and DMHg concentrations in the coastal ocean were highest in the low oxygen zone, we speculate that mercury is methylated in the water column and/or sediments as DMHg and that this water is upwelled seasonally in the coastal zones and

  10. Toward a community coastal sediment transport modeling system: the second workshop

    USGS Publications Warehouse

    Sherwood, Christopher R.; Harris, Courtney K.; Geyer, W. Rockwell; Butman, Bradford

    2002-01-01

    Models for transport and the long-term fate of particles in coastal waters are essential for a variety of applications related to commerce, defense, public health, and the quality of the marine environment. Examples include: analysis of waste disposal and transport and the fate of contaminated materials; evaluation of burial rates for naval mines or archaeological artifacts; prediction of water-column optical properties; analysis of transport and the fate of biological particles; prediction of coastal flooding and coastal erosion; evaluation of impacts of sea-level or wave-climate changes and coastal development; planning for construction and maintenance of navigable waterways; evaluation of habitat for commercial fisheries; evaluation of impacts of natural or anthropogenic changes in coastal conditions on recreational activities; and design of intakes and outfalls for sewage treatment, cooling systems, and desalination plants.

  11. Communities of sediment ammonia-oxidizing bacteria along a coastal pollution gradient in the East China Sea.

    PubMed

    Hou, Manhua; Xiong, Jinbo; Wang, Kai; Ye, Xiansen; Ye, Ran; Wang, Qiong; Hu, Changju; Zhang, Demin

    2014-09-15

    Anthropogenic nitrogen (N) discharges has caused eutrophication in coastal zones. Ammonia-oxidizing bacteria (AOB) convert ammonia to nitrite and play important roles in N transformation. Here, we used pyrosequencing based on the amoA gene to investigate the response of the sediment AOB community to an N pollution gradient in the East China Sea. The results showed that AOB assemblages were primarily affiliated with Nitrosospira-like lineages, and only 0.4% of those belonged to Nitrosomonas-like lineage. The Nitrosospira-like lineage was separated into four clusters that were most similar to the sediment AOB communities detected in adjacent marine regions. Additionally, one clade was out grouped from the AOB lineages, which shared the high similarities with pmoA gene. The AOB community structures substantially changed along the pollution gradient, which were primarily shaped by NH4(+)-N, NO3(-)-N, SO4(2)(-)-S, TP and Eh. These results demonstrated that coastal pollution could dramatically influence AOB communities, which, in turn, may change ecosystem function.

  12. Occurrence of synthetic musk fragrances in marine mammals and sharks from Japanese coastal waters.

    PubMed

    Nakata, Haruhiko

    2005-05-15

    In this study, the occurrence of the polycyclic musk fragrances HHCB (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta[g]-2-benzopyran) and AHTN (7-acetyl-1,1,3,4,4,6-hexamethyltetrahydeonaphthalene) in marine mammals and sharks collected from Japanese coastal waters is reported. HHCB was present in the blubbers of all finless porpoises (Neophocaena phocaenoides) analyzed (n = 8), at levels ranging from 13 to 149 ng/g on a wet weight basis. A fetus sample of finless porpoise contained a notable concentration of HHCB (26 ng/g wet wt), suggesting transplacental transfer of this compound. Among 12 tissues and organs of a finless porpoise analyzed, the highest HHCB concentration was found in blubber, followed by kidney. This indicates that HHCB accumulates in lipid-rich tissues in marine mammals, which is similar to the accumulation profiles of persistent organochlorines, such as PCBs and DDTs. In general, the residue levels of AHTN and nitro musks were low or below the detection limits in finless porpoises, implying either less usage in Japan or high metabolic capacity of these compounds in this animal. HHCB was also found in the livers of five hammerhead sharks (Sphrna lewini) from Japanese coastal waters, at concentrations ranging from 16 to 48 ng/g wet wt. Occurrence of HHCB in higher trophic organisms strongly suggests that it is less degradable in the environment and accumulates in the top predators of marine food chains. This is the first report on the accumulation of synthetic musk fragrances in marine mammals and sharks.

  13. Marine bacterial community structure resilience to changes in protist predation under phytoplankton bloom conditions.

    PubMed

    Baltar, Federico; Palovaara, Joakim; Unrein, Fernando; Catala, Philippe; Horňák, Karel; Šimek, Karel; Vaqué, Dolors; Massana, Ramon; Gasol, Josep M; Pinhassi, Jarone

    2016-03-01

    To test whether protist grazing selectively affects the composition of aquatic bacterial communities, we combined high-throughput sequencing to determine bacterial community composition with analyses of grazing rates, protist and bacterial abundances and bacterial cell sizes and physiological states in a mesocosm experiment in which nutrients were added to stimulate a phytoplankton bloom. A large variability was observed in the abundances of bacteria (from 0.7 to 2.4 × 10(6) cells per ml), heterotrophic nanoflagellates (from 0.063 to 2.7 × 10(4) cells per ml) and ciliates (from 100 to 3000 cells per l) during the experiment (∼3-, 45- and 30-fold, respectively), as well as in bulk grazing rates (from 1 to 13 × 10(6) bacteria per ml per day) and bacterial production (from 3 to 379 μg per C l per day) (1 and 2 orders of magnitude, respectively). However, these strong changes in predation pressure did not induce comparable responses in bacterial community composition, indicating that bacterial community structure was resilient to changes in protist predation pressure. Overall, our results indicate that peaks in protist predation (at least those associated with phytoplankton blooms) do not necessarily trigger substantial changes in the composition of coastal marine bacterioplankton communities.

  14. Marine bacterial community structure resilience to changes in protist predation under phytoplankton bloom conditions

    PubMed Central

    Baltar, Federico; Palovaara, Joakim; Unrein, Fernando; Catala, Philippe; Horňák, Karel; Šimek, Karel; Vaqué, Dolors; Massana, Ramon; Gasol, Josep M; Pinhassi, Jarone

    2016-01-01

    To test whether protist grazing selectively affects the composition of aquatic bacterial communities, we combined high-throughput sequencing to determine bacterial community composition with analyses of grazing rates, protist and bacterial abundances and bacterial cell sizes and physiological states in a mesocosm experiment in which nutrients were added to stimulate a phytoplankton bloom. A large variability was observed in the abundances of bacteria (from 0.7 to 2.4 × 106 cells per ml), heterotrophic nanoflagellates (from 0.063 to 2.7 × 104 cells per ml) and ciliates (from 100 to 3000 cells per l) during the experiment (∼3-, 45- and 30-fold, respectively), as well as in bulk grazing rates (from 1 to 13 × 106 bacteria per ml per day) and bacterial production (from 3 to 379 μg per C l per day) (1 and 2 orders of magnitude, respectively). However, these strong changes in predation pressure did not induce comparable responses in bacterial community composition, indicating that bacterial community structure was resilient to changes in protist predation pressure. Overall, our results indicate that peaks in protist predation (at least those associated with phytoplankton blooms) do not necessarily trigger substantial changes in the composition of coastal marine bacterioplankton communities. PMID:26262814

  15. Climate change impacts on U.S. coastal and marine ecosystems

    USGS Publications Warehouse

    Scavia, Donald; Field, John C.; Boesch, Donald F.; Buddemeier, Robert W.; Burkett, Virginia; Cayan, Daniel R.; Fogarty, Michael; Harwell, Mark A.; Howarth, Robert W.; Mason, Curt; Reed, Denise J.; Royer, Thomas C.; Sallenger, Asbury H.; Titus, James G.

    2002-01-01

    Increases in concentrations of greenhouse gases projected for the 21st century are expected to lead to increased mean global air and ocean temperatures. The National Assessment of Potential Consequences of Climate Variability and Change (NAST 2001) was based on a series of regional and sector assessments. This paper is a summary of the coastal and marine resources sector review of potential impacts on shorelines, estuaries, coastal wetlands, coral reefs, and ocean margin ecosystems. The assessment considered the impacts of several key drivers of climate change: sea level change; alterations in precipitation patterns and subsequent delivery of freshwater, nutrients, and sediment; increased ocean temperature; alterations in circulation patterns; changes in frequency and intensity of coastal storms; and increased levels of atmospheric CO2. Increasing rates of sea-level rise and intensity and frequency of coastal storms and hurricanes over the next decades will increase threats to shorelines, wetlands, and coastal development. Estuarine productivity will change in response to alteration in the timing and amount of freshwater, nutrients, and sediment delivery. Higher water temperatures and changes in freshwater delivery will alter estuarine stratification, residence time, and eutrophication. Increased ocean temperatures are expected to increase coral bleaching and higher CO2 levels may reduce coral calcification, making it more difficult for corals to recover from other disturbances, and inhibiting poleward shifts. Ocean warming is expected to cause poleward shifts in the ranges of many other organisms, including commercial species, and these shifts may have secondary effects on their predators and prey. Although these potential impacts of climate change and variability will vary from system to system, it is important to recognize that they will be superimposed upon, and in many cases intensify, other ecosystem stresses (pollution, harvesting, habitat destruction

  16. Overview of the Coastal Marine Discovery Service: data discovery, visualization, and understanding

    NASA Astrophysics Data System (ADS)

    Armstrong, E. M.; Mattmann, C. A.; Cinquini, L.; O'Brien, F. J.; Resneck, G.; Siegrist, Z.

    2012-12-01

    Many resources available for coastal ocean research and management remain underutilized. Typically, the emphasis in the past has been on increasing access and usability of remote sensing satellite products from NASA data centers. Significant progress has been made in this regard although access and discovery mechanisms still remain disjointed. Less attention has been paid to discovery and usability to ocean in situ records and circulation model products, because typically these are organized and maintained on a smaller regional level such as a university or smaller division of a larger national agency. The NASA Coastal Marine Discovery Service, a NASA ACCESS funded activity, focuses on improving discovery of these regional coastal ocean web services and data portals, including databases for satellite imagery, in situ and field measurements, ocean circulation models, and GIS coverages as a few examples. Beyond resource discovery, the CMDS integrated system (http://cmds.jpl.nasa.gov) leverages open source technology for unifying coastal ocean data within the framework on a GIS web client, the Easy GIS Net Viewer. In sum, CMDS consists of an online catalog of coastal resources that allows users to quickly discover the availability of data for their region of interest, physical parameter of interest or specific regional project of interest, or any combination of these. After discovery, data can be transparently linked to Netviewer client to view, overlay and interrogate products, and make GIS-like queries on the data layers to investigate statistical relationships. In this presentation, we will review the CMDS system, it architecture and resource harvesting approach, and more importantly demonstrate real world use of cases of data exploration, visualization and ultimately understanding.

  17. Spring bloom community change modifies carbon pathways and C : N : P : Chl a stoichiometry of coastal material fluxes

    NASA Astrophysics Data System (ADS)

    Spilling, K.; Kremp, A.; Klais, R.; Olli, K.; Tamminen, T.

    2014-12-01

    Diatoms and dinoflagellates are major bloom-forming phytoplankton groups competing for resources in the oceans and coastal seas. Recent evidence suggests that their competition is significantly affected by climatic factors under ongoing change, modifying especially the conditions for cold-water, spring bloom communities in temperate and Arctic regions. We investigated the effects of phytoplankton community composition on spring bloom carbon flows and nutrient stoichiometry in multiyear mesocosm experiments. Comparison of differing communities showed that community structure significantly affected C accumulation parameters, with highest particulate organic carbon (POC) buildup and dissolved organic carbon (DOC) release in diatom-dominated communities. In terms of inorganic nutrient drawdown and bloom accumulation phase, the dominating groups behaved as functional surrogates. Dominance patterns, however, significantly affected C : N : P : Chl a ratios over the whole bloom event: when diatoms were dominant, these ratios increased compared to dinoflagellate dominance or mixed communities. Diatom-dominated communities sequestered carbon up to 3.6-fold higher than the expectation based on the Redfield ratio, and 2-fold higher compared to dinoflagellate dominance. To our knowledge, this is the first experimental report of consequences of climatically driven shifts in phytoplankton dominance patterns for carbon sequestration and related biogeochemical cycles in coastal seas. Our results also highlight the need for remote sensing technologies with taxonomical resolution, as the C : Chl a ratio was strongly dependent on community composition and bloom stage. Climate-driven changes in phytoplankton dominance patterns will have far-reaching consequences for major biogeochemical cycles and need to be considered in climate change scenarios for marine systems.

  18. Spring bloom community change modifies carbon pathways and C : N : P : Chl a stoichiometry of coastal material fluxes

    NASA Astrophysics Data System (ADS)

    Spilling, K.; Kremp, A.; Klais, R.; Olli, K.; Tamminen, T.

    2014-08-01

    Diatoms and dinoflagellates are major bloom-forming phytoplankton groups competing for resources in the oceans and coastal seas. Recent evidence suggests that their competition is significantly affected by climatic factors under ongoing change, modifying especially the conditions for cold-water, spring bloom communities in temperate and arctic regions. We investigated the effects of phytoplankton community composition on spring bloom carbon flows and nutrient stoichiometry in multi-year mesocosm experiments. Comparison of differing communities showed that community structure significantly affected C accumulation parameters, with highest particulate organic carbon (POC) build-up and dissolved organic carbon (DOC) release in diatom-dominated communities. In terms of inorganic nutrient drawdown and bloom accumulation phase, the dominating groups behaved as functional surrogates. Dominance patterns, however, significantly affected C : N : P : Chl a ratios over the whole bloom event: when diatoms were dominant, these ratios increased compared to dinoflagellate dominance or mixed communities. Diatom-dominated communities sequestered carbon up to 3.6-fold higher than the expectation based on the Redfield ratio, and 2-fold higher compared to dinoflagellate dominance. To our knowledge, this is the first experimental report of consequences of climatically driven shifts in phytoplankton dominance patterns for carbon sequestration and related biogeochemical cycles in coastal seas. Our results also highlight the need for remote sensing technologies with taxonomical resolution, as the C : Chl a ratio was strongly dependent on community composition and bloom stage. Climate-driven changes in phytoplankton dominance patterns will have far-reaching consequences for major biogeochemical cycles and need to be considered in climate change scenarios for marine systems.

  19. USGS St. Petersburg Coastal and Marine Science Center--Research activities in the U.S. Virgin Islands

    USGS Publications Warehouse

    Cimitile, Matthew

    2011-01-01

    The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center in Florida investigates earth-science processes related to coastal and marine environments as well as to societal implications of natural hazards, resource sustainability, and environmental change. The Center is conducting ongoing research in and around the U.S. Virgin Islands that is providing baseline information for resource management and for assessing the health of and environmental changes to vital ecosystems such as coral reefs. In particular, projects are improving the understanding of coral health, advancing the ability to forecast future changes in coral reef ecosystems, and acquiring topographic data for use in inventorying, monitoring, and conserving coastal and marine environments.

  20. Hydrologic signals and patterns in coastal mangrove communities using space-borne remote sensing

    NASA Astrophysics Data System (ADS)

    Lagomasino, D.; Price, R. M.

    2013-05-01

    The coastal mangrove ecotone, along the southern edge of the Florida Everglades, is the transition zone between the marine waters of the Gulf of Mexico and Florida Bay, and the freshwater from the "River of Grass". Hydrologically-dependent ecosystems, like the Florida Everglades, have been experiencing greater threats in the past decade from climate change, increased fresh water demand, and urban growth and development. Identifying changes to water chemistry and evapotranspiration (ET) over the coastal landscape is important to understanding the ecosystem response and adaptation with respect to environmental restoration projects, water management practices and sea-level rise. Space-borne remote sensing can be a cost-effective tool to remotely measure water chemistry and ET changes in remote areas of the coastal Everglades on a regional scale. The objectives of this research were to; 1) to measure surface and subsurface water chemistry by building relationships between satellite-based mangrove reflectance data and the ionic and nutrient concentrations in the surface water and groundwater across the coastal mangrove ecotone; and 2) to estimate ET across the coastal everglades. Water chemistry and Landsat 5TM satellite data were used to develop a linear model to quantitatively predict water chemistry on the landscape scale within the coastal mangrove communities of south Florida on seasonal and annual timescales. A satellite-based energy balance approach was used to determine regional scale ET estimates. Using this satellite-energy balance approach, we were able to account for the spatial variability in surface temperature, changes in albedo, and vegetation reflectance. Water samples were collected from the surface water and groundwater from five Long-term Ecological Research (LTER) sites that spanned a variety of mangrove communities and biomass production. Surface water samples were collected from 2008-2012 and groundwater samples were collected from 2009-2012. All

  1. Elevated Accumulation of Parabens and their Metabolites in Marine Mammals from the United States Coastal Waters.

    PubMed

    Xue, Jingchuan; Sasaki, Nozomi; Elangovan, Madhavan; Diamond, Guthrie; Kannan, Kurunthachalam

    2015-10-20

    The widespread exposure of humans to parabens present in personal care products is well-known. Nevertheless, little is known about the accumulation of parabens in marine organisms. In this study, six parabens and four common metabolites of parabens were measured in 121 tissue samples from eight species of marine mammals collected along the coastal waters of Florida, California, Washington, and Alaska. Methyl paraben (MeP) was the predominant compound found in the majority of the marine mammal tissues analyzed, and the highest concentration found was 865 ng/g (wet weight [wet wt]) in the livers of bottlenose dolphins from Sarasota Bay, FL. 4-Hydroxybenzoic acid (4-HB) was the predominant paraben metabolite found in all tissue samples. The measured concentrations of 4-HB were on the order of hundreds to thousands of ng/g tissue, and these values are some of the highest ever reported in the literature. MeP and 4-HB concentrations showed a significant positive correlation (p < 0.05), which suggested a common source of exposure to these compounds in marine mammals. Trace concentrations of MeP and 4-HB were found in the livers of polar bears from the Chuckchi Sea and Beaufort Sea, which suggested widespread distribution of MeP and 4-HB in the oceanic environment.

  2. Victims or vectors: a survey of marine vertebrate zoonoses from coastal waters of the Northwest Atlantic.

    PubMed

    Bogomolni, Andrea L; Gast, Rebecca J; Ellis, Julie C; Dennett, Mark; Pugliares, Katie R; Lentell, Betty J; Moore, Michael J

    2008-08-19

    Surveillance of zoonotic pathogens in marine birds and mammals in the Northwest Atlantic revealed a diversity of zoonotic agents. We found amplicons to sequences from Brucella spp., Leptospira spp., Giardia spp. and Cryptosporidium spp. in both marine mammals and birds. Avian influenza was detected in a harp seal and a herring gull. Routine aerobic and anaerobic culture showed a broad range of bacteria resistant to multiple antibiotics. Of 1460 isolates, 797 were tested for resistance, and 468 were resistant to one or more anti-microbials. 73% (341/468) were resistant to 1-4 drugs and 27% (128/468) resistant to 5-13 drugs. The high prevalence of resistance suggests that many of these isolates could have been acquired from medical and agricultural sources and inter-microbial gene transfer. Combining birds and mammals, 45% (63/141) of stranded and 8% (2/26) of by-caught animals in this study exhibited histopathological and/or gross pathological findings associated with the presence of these pathogens. Our findings indicate that marine mammals and birds in the Northwest Atlantic are reservoirs for potentially zoonotic pathogens, which they may transmit to beachgoers, fishermen and wildlife health personnel. Conversely, zoonotic pathogens found in marine vertebrates may have been acquired via contamination of coastal waters by sewage, run-off and agricultural and medical waste. In either case these animals are not limited by political boundaries and are therefore important indicators of regional and global ocean health.

  3. Sea Level Rise: Vulnerability of California's Coastal Communities and Adaptation Strategies for Reducing Future Impacts Gary Griggs Director Institute of Marine Sciences University of California Santa Cruz Nicole L. Russell Ph.D. Student Department of Earth and Planetary Sciences University of California Santa Cruz

    NASA Astrophysics Data System (ADS)

    Griggs, G. B.; Russell, N.

    2010-12-01

    California’s coastal communities are vulnerable to the effects of rising sea levels, which may be 11 to 18 inches higher by 2050 and 23 to 55 inches higher by 2100 than in 2000. Local governments will need to plan for progressive inundation of low-lying areas, as well as increased erosion and storm damage. Although there is extensive research on climate change and sea level rise, local government staff is typically removed from this information and often lack the time or resources necessary for keeping up with the most recent information. Specifically, there is a disconnect between the latest science and the practice of coastal planners in dealing with sea level rise issues. Improving the transfer of relevant information and resources from scientists to decision-makers should encourage and assist local governments in their responses to this developing issue. Designing and implementing adaptation plans and developing policies for sea level rise are challenging. Each coastal community is unique in its geographic setting and demographics and therefore faces vulnerabilities that differ from those of other communities. Uplift and subsidence, for example, cause regional variations in the rate of sea level rise. Planning staff needs to understand the local impacts of sea level rise in order to take appropriate actions. Even when the potential threats are reasonably well understood, the gradual nature of sea level rise can make it hard to formulate, approve and implement policies that may not affect communities for decades to come. Fortunately, there are tools and resources available to assist planners. Several communities in California have recently completed climate change adaptation plans or are in the process of preparing such plans. However, these documents are not focused solely upon the specific issues associated with sea level rise. A study is underway to fill that void, which includes the development of an informative guide for local government agencies to use

  4. Endophytic bacterial community of a Mediterranean marine angiosperm (Posidonia oceanica)

    PubMed Central

    Garcias-Bonet, Neus; Arrieta, Jesus M.; de Santana, Charles N.; Duarte, Carlos M.; Marbà, Núria

    2012-01-01

    Bacterial endophytes are crucial for the survival of many terrestrial plants, but little is known about the presence and importance of bacterial endophytes of marine plants. We conducted a survey of the endophytic bacterial community of the long-living Mediterranean marine angiosperm Posidonia oceanica in surface-sterilized tissues (roots, rhizomes, and leaves) by Denaturing Gradient Gel Electrophoresis (DGGE). A total of 26 Posidonia oceanica meadows around the Balearic Islands were sampled, and the band patterns obtained for each meadow were compared for the three sampled tissues. Endophytic bacterial sequences were detected in most of the samples analyzed. A total of 34 OTUs (Operational Taxonomic Units) were detected. The main OTUs of endophytic bacteria present in P. oceanica tissues belonged primarily to Proteobacteria (α, γ, and δ subclasses) and Bacteroidetes. The OTUs found in roots significantly differed from those of rhizomes and leaves. Moreover, some OTUs were found to be associated to each type of tissue. Bipartite network analysis revealed differences in the bacterial endophyte communities present on different islands. The results of this study provide a pioneering step toward the characterization of the endophytic bacterial community associated with tissues of a marine angiosperm and reveal the presence of bacterial endophytes that differed among locations and tissue types. PMID:23049528

  5. Ecotoxicologically based marine acute water quality criteria for metals intended for protection of coastal areas.

    PubMed

    Durán, I; Beiras, R

    2013-10-01

    Acute water quality criteria (WQC) for the protection of coastal ecosystems are developed on the basis of short-term ecotoxicological data using the most sensitive life stages of representative species from the main taxa of marine water column organisms. A probabilistic approach based on species sensitivity distribution (SSD) curves has been chosen and compared to the WQC obtained applying an assessment factor to the critical toxicity values, i.e. the 'deterministic' approach. The criteria obtained from HC5 values (5th percentile of the SSD) were 1.01 μg/l for Hg, 1.39 μg/l for Cu, 3.83 μg/l for Cd, 25.3 μg/l for Pb and 8.24 μg/l for Zn. Using sensitive early life stages and very sensitive endpoints allowed calculation of WQC for marine coastal ecosystems. These probabilistic WQC, intended to protect 95% of the species in 95% of the cases, were calculated on the basis of a limited ecotoxicological dataset, avoiding the use of large and uncertain assessment factors.

  6. Groundwater Modeling in Coastal Arid Regions Under the Influence of Marine Saltwater Intrusion

    NASA Astrophysics Data System (ADS)

    Walther, Marc; Kolditz, Olaf; Grundmann, Jens; Liedl, Rudolf

    2010-05-01

    The optimization of an aquifer's "safe yield", especially within agriculturally used regions, is one of the fundamental tasks for nowaday's groundwater management. Due to the limited water ressources in arid regions, conflict of interests arise that need to be evaluated using scenario analysis and multicriterial optimization approaches. In the context of the government-financed research project "International Water Research Alliance Saxony" (IWAS), the groundwater quality for near-coastal, agriculturally used areas is investigated under the influence of marine saltwater intrusion. Within the near-coastal areas of the study region, i.e. the Batinah plains of Northern Oman, an increasing agricultural development could be observed during the recent decades. Simultaneously, a constant lowering of the groundwater table was registered, which is primarily due to the uncontrolled and unsupervised mining of the aquifers for the local agricultural irrigation. Intensively decreased groundwater levels, however, cause an inversion of the hydraulic gradient which is naturally aligned towards the coast. This, in turn,leads to an intrusion of marine saltwater flowing inland, endangering the productivity of farms near the coast. Utilizing the modeling software package OpenGeoSys, which has been developed and constantly enhanced by the Department of Environmental Informatics at the Helmholtz Centre for Environmental Research Leipzig (UFZ; Kolditz et al., 2008), a three-dimensional, density-dependent model including groundwater flow and mass transport is currently being built up. The model, comprehending three selected coastal wadis of interest, shall be used to investigate different management scenarios. The main focus of the groundwater modelling are the optimization of well positions and pumping schemes as well as the coupling with a surface runoff model, which is also used for the determination of the groundwater recharge due to wadi runoff downstream of retention dams. Based on

  7. Proteomic-based stable isotope probing reveals taxonomically Distinct Patterns in Amino Acid Assimilation by Coastal Marine Bacterioplankton

    SciTech Connect

    Bryson, Samuel; Li, Zhou; Pett-Ridge, Jennifer; Robert L. Hettich; Mayali, Xavier; Pan, Chongle; Mueller, Ryan S.

    2016-04-26

    Heterotrophic marine bacterioplankton are a critical component of the carbon cycle, processing nearly a quarter of annual global primary production, yet defining how substrate utilization preferences and resource partitioning structure these microbial communities remains a challenge. In this study, we utilized proteomics-based stable isotope probing (proteomic SIP) to characterize the assimilation of amino acids by coastal marine bacterioplankton populations. We incubated microcosms of seawater collected from Newport, OR and Monterey Bay, CA with 1 M 13C-amino acids for 15 and 32 hours. Subsequent analysis of 13C incorporation into protein biomass quantified the frequency and extent of isotope enrichment for identified proteins. Using these metrics we tested whether amino acid assimilation patterns were different for specific bacterioplankton populations. Proteins associated with Rhodobacterales and Alteromonadales tended to have a significantly high number of tandem mass spectra from 13C-enriched peptides, while Flavobacteriales and SAR11 proteins generally had significantly low numbers of 13C-enriched spectra. Rhodobacterales proteins associated with amino acid transport and metabolism had an increased frequency of 13C-enriched spectra at time-point 2, while Alteromonadales ribosomal proteins were 13C- enriched across time-points. Overall, proteomic SIP facilitated quantitative comparisons of dissolved free amino acids assimilation by specific taxa, both between sympatric populations and between protein functional groups within discrete populations, allowing an unprecedented examination of population-level metabolic responses to resource acquisition in complex microbial communities.

  8. Spillover Effects of a Community-Managed Marine Reserve

    PubMed Central

    da Silva, Isabel Marques; Hill, Nick; Shimadzu, Hideyasu; Soares, Amadeu M. V. M.; Dornelas, Maria

    2015-01-01

    The value of no-take marine reserves as fisheries-management tools is controversial, particularly in high-poverty areas where human populations depend heavily on fish as a source of protein. Spillover, the net export of adult fish, is one mechanism by which no-take marine reserves may have a positive influence on adjacent fisheries. Spillover can contribute to poverty alleviation, although its effect is modulated by the number of fishermen and fishing intensity. In this study, we quantify the effects of a community-managed marine reserve in a high poverty area of Northern Mozambique. For this purpose, underwater visual censuses of reef fish were undertaken at three different times: 3 years before (2003), at the time of establishment (2006) and 6 years after the marine reserve establishment (2012). The survey locations were chosen inside, outside and on the border of the marine reserve. Benthic cover composition was quantified at the same sites in 2006 and 2012. After the reserve establishment, fish sizes were also estimated. Regression tree models show that the distance from the border and the time after reserve establishment were the variables with the strongest effect on fish abundance. The extent and direction of the spillover depends on trophic group and fish size. Poisson Generalized Linear Models show that, prior to the reserve establishment, the survey sites did not differ but, after 6 years, the abundance of all fish inside the reserve has increased and caused spillover of herbivorous fish. Spillover was detected 1km beyond the limit of the reserve for small herbivorous fishes. Six years after the establishment of a community-managed reserve, the fish assemblages have changed dramatically inside the reserve, and spillover is benefitting fish assemblages outside the reserve. PMID:25927235

  9. Tropical coastal habitats as surrogates of fish community structure, grazing, and fisheries value.

    PubMed

    Harborne, Alastair R; Mumby, Peter J; Kappel, Carrie V; Dahlgren, Craig P; Micheli, Fiorenza; Holmes, Katherine E; Brumbaugh, Daniel R

    2008-10-01

    Habitat maps are frequently invoked as surrogates of biodiversity to aid the design of networks of marine reserves. Maps are used to maximize habitat heterogeneity in reserves because this is likely to maximize the number of species protected. However, the technique's efficacy is limited by intra-habitat variability in the species present and their abundances. Although communities are expected to vary among patches of the same habitat, this variability is poorly documented and rarely incorporated into reserve planning. To examine intra-habitat variability in coral-reef fishes, we generated a data set from eight tropical coastal habitats and six islands in the Bahamian archipelago using underwater visual censuses. Firstly, we provide further support for habitat heterogeneity as a surrogate of biodiversity as each predefined habitat type supported a distinct assemblage of fishes. Intra-habitat variability in fish community structure at scales of hundreds of kilometers (among islands) was significant in at least 75% of the habitats studied, depending on whether presence/absence, density, or biomass data were used. Intra-habitat variability was positively correlated with the mean number of species in that habitat when density and biomass data were used. Such relationships provide a proxy for the assessment of intra-habitat variability when detailed quantitative data are scarce. Intra-habitat variability was examined in more detail for one habitat (forereefs visually dominated by Montastraea corals). Variability in community structure among islands was driven by small, demersal families (e.g., territorial pomacentrid and labrid fishes). Finally, we examined the ecological and economic significance of intra-habitat variability in fish assemblages on Montastraea reefs by identifying how this variability affects the composition and abundances of fishes in different functional groups, the key ecosystem process of parrotfish grazing, and the ecosystem service of value of

  10. Phytoplankton community structure in local water types at a coastal site in north-western Bay of Bengal.

    PubMed

    Baliarsingh, S K; Srichandan, Suchismita; Lotliker, Aneesh A; Sahu, K C; Srinivasa Kumar, T

    2016-07-01

    A comprehensive analysis on seasonal distribution of phytoplankton community structure and their interaction with environmental variables was carried out in two local water types (type 1 < 30 m isobath and Type 2 > 30 m isobath) at a coastal site in north-western Bay of Bengal. Phytoplankton community was represented by 211 taxa (146 marine, 37 fresh, 2 brackish, 20 marine-fresh, and 6 marine-brackish-fresh) belonging to seven major groups including 45 potential bloom forming and 22 potential toxin producing species. The seasonal variability depicted enrichment of phytoplankton during pre-monsoon in both water types. Total phytoplankton abundance pattern observed with inter-annual shift during monsoon and post-monsoon period at both water types. In both water types, diatom predominance was observed in terms of species richness and abundance comprising of centric (82 sp.) and pennate (58 sp.) forms. Pennate diatoms, Thalassiothrix longissima and Skeletonema costatum preponderated in both the water types. The diatom abundance was higher in type 1 in comparison to type 2. In general, SiO4 found to fuel growth of the dominant phytoplankton group, diatom in both the water types despite comparative lower concentration of other macronutrients in type 2.

  11. Prenatal exposure to manganese in South African coastal communities.

    PubMed

    Röllin, Halina B; Kootbodien, Tahira; Theodorou, Penny; Odland, Jon Ø

    2014-08-01

    Exposure to environmental sources and altered physiological processes of manganese uptake during pregnancy and its possible effect on prenatal and postnatal development are of concern. This study investigates manganese blood levels at the time of delivery across four cohorts of pregnant women residing in coastal communities of South Africa and examines birth outcomes and environmental factors that could influence manganese levels in the study population. The geometric mean (GM) manganese blood levels (MnB) for all women at delivery was 15.2 μg L(-1). Collectively, rural women reported higher MnB concentrations (GM, 16.1 μg L(-1)) than urban women (GM, 13.5 μg L(-1), p < 0.001). Of the 302 cord blood samples drawn from the study participants (rural women only), GM MnB levels reported for three rural sites were 25.8 μg L(-1) (Rural 1), 33.4 μg L(-1) (Rural 2) and 43.0 μg L(-1) (Rural 3) and were twice as high as their respective maternal levels. However, no significant correlations were found between maternal and cord MnB levels across the 3 study areas. Factors associated with elevated maternal MnB levels, after adjusting for gestational age were: women living in a rural area (Rural 2) (p = 0.021); women drinking potable water from an outdoor/communal tap sourced from municipality (p = 0.021); drinking water from river/stream (p = 0.036); younger maternal age (p = 0.026); consuming leafy vegetables once a week (p = 0.034); and elevated maternal blood lead concentrations (PbB) (p = 0.002). The results indicate that MnB concentration in rural women during pregnancy is higher compared to urban women and increases with manganese intake from food and water.

  12. The diversity and structure of marine protists in the coastal waters of China revealed by morphological observation and 454 pyrosequencing

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Song, Shuqun; Chen, Tiantian; Li, Caiwen

    2017-04-01

    Pyrosequencing of the 18S rRNA gene has been widely adopted to study the eukaryotic diversity in various types of environments, and has an advantage over traditional morphology methods in exploring unknown microbial communities. To comprehensively assess the diversity and community composition of marine protists in the coastal waters of China, we applied both morphological observations and high-throughput sequencing of the V2 and V3 regions of 18S rDNA simultaneously to analyze samples collected from the surface layer of the Yellow and East China Seas. Dinoflagellates, diatoms and ciliates were the three dominant protistan groups as revealed by the two methods. Diatoms were the first dominant protistan group in the microscopic observations, with Skeletonema mainly distributed in the nearshore eutrophic waters and Chaetoceros in higher temperature and higher pH waters. The mixotrophic dinoflagellates, Gymnodinium and Gyrodinium, were more competitive in the oligotrophic waters. The pyrosequencing method revealed an extensive diversity of dinoflagellates. Chaetoceros was the only dominant diatom group in the pyrosequencing dataset. Gyrodinium represented the most abundant reads and dominated the offshore oligotrophic protistan community as they were in the microscopic observations. The dominance of parasitic dinoflagellates in the pyrosequencing dataset, which were overlooked in the morphological observations, indicates more attention should be paid to explore the potential role of this group. Both methods provide coherent clustering of samples. Nutrient levels, salinity and pH were the main factors influencing the distribution of protists. This study demonstrates that different primer pairs used in the pyrosequencing will indicate different protistan community structures. A suitable marker may reveal more comprehensive composition of protists and provide valuable information on environmental drivers.

  13. The kelp highway hypothesis: marine ecology, the coastal migration theory, and the peopling of the Americas

    USGS Publications Warehouse

    Erlandson, Jon M.; Graham, Michael H.; Bourque, Bruce J.; Corbett, Debra; Estes, James A.; Steneck, Robert S.

    2007-01-01

    In this article, a collaborative effort between archaeologists and marine ecologists, we discuss the role kelp forest ecosystems may have played in facilitating the movement of maritime peoples from Asia to the Americas near the end of the Pleistocene. Growing in cool nearshore waters along rocky coastlines, kelp forests offer some of the most productive habitats on earth, with high primary productivity, magnified secondary productivity, and three-dimensional habitat supporting a diverse array of marine organisms. Today, extensive kelp forests are found around the North Pacific from Japan to Baja California. After a break in the tropicswhere nearshore mangrove forests and coral reefs are highly productivekelp forests are also found along the Andean Coast of South America. These Pacific Rim kelp forests support or shelter a wealth of shellfish, fish, marine mammals, seabirds, and seaweeds, resources heavily used historically by coastal peoples. By about 16,000 years ago, the North Pacific Coast offered a linear migration route, essentially unobstructed and entirely at sea level, from northeast Asia into the Americas. Recent reconstructions suggest that rising sea levels early in the postglacial created a highly convoluted and island-rich coast along Beringia's southern shore, conditions highly favorable to maritime hunter-gatherers. Along with the terrestrial resources available in adjacent landscapes, kelp forests and other nearshore habitats sheltered similar suites of food resources that required minimal adaptive adjustments for migrating coastal peoples. With reduced wave energy, holdfasts for boats, and productive fishing, these linear kelp forest ecosystems may have provided a kind of kelp highway for early maritime peoples colonizing the New World.

  14. Marine and giant viruses as indicators of a marine microbial community in a riverine system.

    PubMed

    Dann, Lisa M; Rosales, Stephanie; McKerral, Jody; Paterson, James S; Smith, Renee J; Jeffries, Thomas C; Oliver, Rod L; Mitchell, James G

    2016-12-01

    Viral communities are important for ecosystem function as they are involved in critical biogeochemical cycles and controlling host abundance. This study investigates riverine viral communities around a small rural town that influences local water inputs. Myoviridae, Siphoviridae, Phycodnaviridae, Mimiviridae, Herpesviridae, and Podoviridae were the most abundant families. Viral species upstream and downstream of the town were similar, with Synechoccocus phage, salinus, Prochlorococcus phage, Mimivirus A, and Human herpes 6A virus most abundant, contributing to 4.9-38.2% of average abundance within the metagenomic profiles, with Synechococcus and Prochlorococcus present in metagenomes as the expected hosts for the phage. Overall, the majority of abundant viral species were or were most similar to those of marine origin. At over 60 km to the river mouth, the presence of marine communities provides some support for the Baas-Becking hypothesis "everything is everywhere, but, the environment selects." We conclude marine microbial species may occur more frequently in freshwater systems than previously assumed, and hence may play important roles in some freshwater ecosystems within tens to a hundred kilometers from the sea.

  15. Comparison of New Prticle Formation in Marine and Coastal Atmosphere under Outflow of City Clusters in North China

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Li, K.; Guo, T.; Yu, P.; Hu, Q.; Gao, H.; Yao, X.

    2015-12-01

    Simultaneous measurements of new particle formation (NPF) events were conducted during two cruises over China Seas and at a coastal site. NPF events occurred in thirteen days out of 38 sampling days over China Seas, and the NPF events in eleven days were confirmed to be regional occurred with the spatial scale at least 47 km-475 km. The formation rates of new particles were 5.3±5.0 particles cm-3s-1 in marine NPF events while 2.4±1.2 particles cm-3s-1 in coastal NPF events. The reason for the lower formation rates in coastal atmosphere might be the higher number concentration of pre-existing particles and larger condensation sinks. However, the growth rates of new particles in marine NPF events (3.3±2.2 nm h-1) were lower than in coastal NPF events (4.3±2.2 nm h-1), which might be caused by more precursors for new particles growth in the coastal city. In the marine atmosphere, new particles can grow from nucleation mode (<30 nm) to Aitken mode (30-100 nm) in seven days. However, the largest geometric median diameter of new particles (Dpg) was 50 nm in two days with the low number concentration, indicating the negligible contribution of marine new particles to CCN production. In the coastal atmosphere, new particles can grow to about 100 nm in two days, but the second-stage growth of new particles seemed to be generated from mixing process with pre-existing particles rather than gas-particle condensation. The measurement of particular chemical composition during the marine NPF days showed the important role of organic acids in new particles.

  16. Bacterial communities in sediment of a Mediterranean marine protected area.

    PubMed

    Catania, Valentina; Sarà, Gianluca; Settanni, Luca; Quatrini, Paola

    2016-12-08

    Biodiversity is crucial in preservation of ecosystems, and bacterial communities play an indispensable role for the functioning of marine ecosystems. The Mediterranean marine protected area (MPA) "Capo Gallo-Isola delle Femmine" was instituted to preserve marine biodiversity. The bacterial diversity associated with MPA sediment was compared with that from sediment of an adjacent harbour exposed to intense nautical traffic. The MPA sediment showed higher diversity with respect to the impacted site. A 16S rDNA clone library of the MPA sediment allowed the identification of 7 phyla: Proteobacteria (78%), Firmicutes (11%), Acidobacteria (3%), Actinobacteria (3%), Bacteroidetes (2%), Planctomycetes (2%), and Cyanobacteria (1%). Analysis of the hydrocarbon (HC)-degrading bacteria was performed using enrichment cultures. Most of the MPA sediment isolates were affiliated with Gram-positive G+C rich bacteria, whereas the majority of taxa in the harbour sediment clustered with Alpha- and Gammaproteobacteria; no Gram-positive HC degraders were isolated from the harbour sediment. Our results show that protection probably has an influence on bacterial diversity, and suggest the importance of monitoring the effects of protection at microbial level as well. This study creates a baseline of data that can be used to assess changes over time in bacterial communities associated with a Mediterranean MPA.

  17. The composition of nucleation and Aitken modes particles during coastal nucleation events: evidence for marine secondary organic contribution

    NASA Astrophysics Data System (ADS)

    Vaattovaara, P.; Huttunen, P. E.; Yoon, Y. J.; Joutsensaari, J.; Lehtinen, K. E. J.; O'Dowd, C. D.; Laaksonen, A.

    2006-04-01

    Newly-formed nanometer-sized particles have been observed at coastal and marine environments worldwide. Interestingly, organic species have so far not been detected in those newly-formed nucleation mode particles. In this study, we applied the UFO-TDMA (ultrafine organic tandem differential mobility analyzer) method to study the possible existence of an organic fraction in recently formed coastal nucleation mode particles (d<20 nm) at the Mace Head research station. Furthermore, effects of those nucleation events to potential CCN (cloud condensation nuclei) were studied. The coastal events were typical for the Mace Head region and they occurred at low tide conditions during efficient solar radiation and high biological activity (HBA, i.e. a high mass concentration of chlorophyll a of the ocean) in spring 2002. Additionally, a PHA-UCPC (pulse height analyzer ultrafine condensation particle counter) technique was used to study the composition of newly-formed particles formed in low tide conditions during a lower biological activity (LBA, i.e. a lower mass concentration of chlorophyll a of the ocean) in October 2002. The overall results of the UFO-TDMA and the PHA-UCPC measurements indicate that those coastally/marinely formed nucleation mode particles include a remarkable fraction of secondary organic products, beside iodine oxides, which are likely to be responsible for the nucleation. During clean marine air mass conditions, the origin of those secondary organic oxidation compounds can be related to marine/coastal biota and thus a major fraction of the organics may originate from biosynthetic production of alkenes such as isoprene and their oxidation by iodine, hydroxyl radical, and ozone. During modified marine conditions, also anthropogenic secondary organic compounds may contribute to the nucleation mode organic mass, in addition to biogenic secondary organic compounds. Thus, the UFO-TDMA results suggest that the secondary organic compounds may, in addition to

  18. Visible and infrared extinction of atmospheric aerosol in the marine and coastal environment.

    PubMed

    Kaloshin, Gennady A

    2011-05-10

    The microphysical model Marine Aerosol Extinction Profiles (MaexPro) for surface layer marine and coastal atmospheric aerosols, which is based on long-term observations of size distributions for 0.01-100 μm particles, is presented. The fundamental feature of the model is a parameterization of amplitudes and widths for aerosol modes of the aerosol size distribution function (ASDF) as functions of fetch and wind speed. The shape of the ASDF and its dependence on meteorological parameters, altitudes above the sea level (H), fetch (X), wind speed (U), and relative humidity is investigated. The model is primarily to characterize aerosols for the near-surface layer (within 25 m). The model is also applicable to higher altitudes within the atmospheric boundary layer, where the change in the vertical profile of aerosol is not very large. In this case, it is only valid for "clean" marine environments, in the absence of air pollution or any other major sources of continental aerosols, such desert dust or smoke from biomass burning. The spectral profiles of the aerosol extinction coefficients calculated by MaexPro are in good agreement with observational data and the numerical results obtained by the well-known Navy Aerosol Model and Advanced Navy Aerosol Model codes. Moreover, MaexPro was found to be an accurate and reliable instrument for investigation of the optical properties of atmospheric aerosols.

  19. Shifting sources of productivity in the coastal marine tropics during the Cenozoic era.

    PubMed

    Vermeij, Geerat J

    2011-08-07

    Changes in the rates and sources of marine primary production over time are difficult to document owing to the absence of direct estimates of past productivity. Here, I use the maximum body sizes of the largest species in each of 23 tropical shallow-water marine molluscan guilds (groups of species with similar habits and trophic roles) to trace the relative importance of planktonic and benthic primary productivity from the Eocene (55 Ma) onwards. The largest members of guilds are least constrained in exploiting resources and therefore reflect the availability and accessibility of those resources most accurately. Maximum sizes of suspension-feeders and predators increased by a factor of 2.3 and 4.0, respectively, whereas those in four out of five herbivorous guilds declined. I interpret these patterns, which are discernible throughout the coastal tropics, to mean that primary production in the Eocene marine tropics was concentrated on the seafloor, as is the case today on offshore reefs and islands, and that the Miocene to the recent interval witnessed a dramatic increase in planktonic productivity along continental margins. The rise in planktonic fertility is best explained by an increase in nutrient supply from the land associated with intense global tectonic activity and more vigorous ocean mixing owing to cooling.

  20. University of Alaska Coastal Marine Institute annual report number 5, fiscal year 1998

    SciTech Connect

    Alexander, V.

    1998-12-18

    The University of Alaska Coastal Marine Institute (CMI) was created by a cooperative agreement between the University of Alaska and the Minerals Management Service (MMS) in June 1993 and the first full funding cycle began late in (federal) fiscal year 1994. CMI is pleased to present this 1998 Annual Report for studies ongoing in Oct 1997--Sep 1998. Only abstracts and study products for ongoing projects are included here. They include: An Economic Assessment of the Marine Biotechnology; Kachemak Bay Experimental and Monitoring Studies; Historical Changes in Trace Metals and Hydrocarbons in the Inner Shelf Sediments; Beaufort Sea: Prior and Subsequent to Petroleum-Related Industrial Developments; Physical-Biological Numerical Modeling on Alaskan Arctic Shelves; Defining Habitats for Juvenile Flatfishes in Southcentral Alaska; Relationship of Diet to Habitat Preferences of Juvenile Flatfishes, Phase 1; Subsistence Economies and North Slope Oil Development; Wind Field Representations and Their Effect on Shelf Circulation Models: A Case Study in the Chukchi Sea; Interaction between Marine Humic Matter and Polycyclic Aromatic Hydrocarbons in Lower Cook Inlet and Port Valdez, Alaska; Correction Factor for Ringed Seal Surveys in Northern Alaska; Feeding Ecology of Maturing Sockeye Salmon (Oncorhynchus nerka) in Nearshore Waters of the Kodiak Archipelago; and Circulation, Thermohaline Structure, and Cross-Shelf Transport in the Alaskan Beaufort Sea.

  1. Nitrogen fixation and the diazotroph community in the temperate coastal region of the northwestern North Pacific

    NASA Astrophysics Data System (ADS)

    Shiozaki, T.; Nagata, T.; Ijichi, M.; Furuya, K.

    2015-08-01

    Nitrogen fixation in temperate oceans is a potentially important, but poorly understood process that may influence the marine nitrogen budget. This study determined seasonal variations in nitrogen fixation and the diazotroph community within the euphotic zone in the temperate coastal region of the northwestern North Pacific. Nitrogen fixation as high as 13.6 nmol N L-1 d-1 was measured from early summer to fall when the surface temperature exceeded 14.2 °C (but was lower than 24.3 °C) and the surface nitrate concentration was low (≤ 0.30 μM), although we also detected nitrogen fixation in subsurface layers (42-62 m) where nitrate concentrations were high (> 1 μM). Clone library analysis results indicated that nifH gene sequences were omnipresent throughout the investigation period. During the period when nitrogen fixation was detected (early summer to fall), the genes affiliated with UCYN-A, Trichodesmium, and γ-proteobacterial phylotype γ-24774A11 were frequently recovered. In contrast, when nitrogen fixation was undetectable (winter to spring), many sequences affiliated with Cluster III diazotrophs (putative anaerobic bacteria) were recovered. Quantitative PCR analysis revealed that UCYN-A was relatively abundant from early to late summer compared with Trichodesmium and γ-24774A11, whereas Trichodesmium abundance was the highest among the three groups during fall.

  2. Phytoplankton Communities in Louisiana coastal waters and the continental shelf

    EPA Science Inventory

    Louisiana coastal waters and the adjacent continental shelf receive large freshwater and nutrient inputs from the Mississippi and Atchafalaya Rivers, creating favorable conditions for increased phytoplankton productivity. To examine inshore-offshore patterns in phytoplankton comm...

  3. Assessing societal vulnerability of U.S. Pacific Northwest communities to storm-induced coastal change

    USGS Publications Warehouse

    Baron, Heather M.; Wood, Nathan J.; Ruggerio, Peter; Allan, Jonathan; Corcoran, Patrick

    2010-01-01

    Progressive increases in storm intensities and extreme wave heights have been documented along the U.S. West Coast. Paired with global sea level rise and the potential for an increase in El Niño occurrences, these trends have substantial implications for the vulnerability of coastal communities to natural coastal hazards. Community vulnerability to hazards is characterized by the exposure, sensitivity, and adaptive capacity of human-environmental systems that influence potential impacts. To demonstrate how societal vulnerability to coastal hazards varies with both physical and social factors, we compared community exposure and sensitivity to storm-induced coastal change scenarios in Tillamook (Oregon) and Pacific (Washington) Counties. While both are backed by low-lying coastal dunes, communities in these two counties have experienced different shoreline change histories and have chosen to use the adjacent land in different ways. Therefore, community vulnerability varies significantly between the two counties. Identifying the reasons for this variability can help land-use managers make decisions to increase community resilience and reduce vulnerability in spite of a changing climate.

  4. Strong Seasonality and Interannual Recurrence in Marine Myovirus Communities

    PubMed Central

    Chow, C.-E. T.; Johannessen, T.; Fuhrman, J. A.; Thingstad, T. F.; Sandaa, R. A.

    2013-01-01

    The temporal community dynamics and persistence of different viral types in the marine environment are still mostly obscure. Polymorphism of the major capsid protein gene, g23, was used to investigate the community composition dynamics of T4-like myoviruses in a North Atlantic fjord for a period of 2 years. A total of 160 unique operational taxonomic units (OTUs) were identified by terminal restriction fragment length polymorphism (TRFLP) of the gene g23. Three major community profiles were identified (winter-spring, summer, and autumn), which resulted in a clear seasonal succession pattern. These seasonal transitions were recurrent over the 2 years and significantly correlated with progression of seawater temperature, Synechococcus abundance, and turbidity. The appearance of the autumn viral communities was concomitant with the occurrence of prominent Synechococcus blooms. As a whole, we found a highly dynamic T4-like viral community with strong seasonality and recurrence patterns. These communities were unexpectedly dominated by a group of persistently abundant viruses. PMID:23913432

  5. Coastal Freshwater Wetland Plant Community Response to Seasonal Drought and Flooding in Northwestern Costa Rica

    EPA Science Inventory

    In tropical wet-dry climates, seasonal hydrologic cycles drive wetland plant community change and produce distinct seasonal plant assemblages. In this study, we examined the plant community response to seasonal flooding and drought in a large coastal freshwater wetland in northwe...

  6. Learning To Leave: The Irony of Schooling in a Coastal Community...Some Preliminary Findings.

    ERIC Educational Resources Information Center

    Corbett, Mike

    A study examined the role of education in outmigration from the rural coastal community of Digby Neck, Nova Scotia. Data gathered on 756 Grade 6 students who left Digby Neck Consolidated School between 1957 and 1992 were supplemented by in-depth interviews with 36 of those former students, 12 area educators, and community members. Findings…

  7. Impact of lengthening open water season on food security in Alaska coastal communities: Global impacts may outweigh local "frontline" effects

    NASA Astrophysics Data System (ADS)

    Rolph, R.; Mahoney, A. R.

    2015-12-01

    Using ice concentration data from the Alaska Sea Ice Atlas from 1953-2013 for selected communities in Alaska, we find a consistent trend toward later freeze up and earlier breakup, leading a lengthened open water period. Such changes are often considered to bring a variety of "frontline" local impacts to Arctic coastal communities such as increased rates of coastal erosion. However, direct consequences of these changes to local food security (e.g. through impacts on subsistence activities and marine transport of goods) may be outweighed at least in the short term by the effects of large scale Arctic sea ice change coupled with global oil markets. For example, a later freeze-up might delay local hunters' transition from boats to snow-machines, but whether this trend will affect hunting success, especially in the next few years, is uncertain. Likewise, the magnitude of change in open water season length is unlikely to be sufficient to increase the frequency with which communities are served by barges. However, an expanding open water season throughout the Arctic has implications for the global economy, which can have indirect effects on local communities. In the Chukchi and Beaufort Seas, where rapid sea ice change has been accompanied by increased interest in oil and gas development, the U.S. Bureau of Ocean Energy Management currently requires drilling operations to cease 38 days prior to freeze up. Taking this into account, the lengthening open water season has effectively extended the drilling season for oil companies by 184% since the 1950s. If oil development goes ahead, local communities will likely experience a range of indirect impacts on food security due to increased vessel traffic and demand on infrastructure coupled with changes in local economies and employment opportunities. Increased likelihood of an oil spill in coastal waters also poses a significant threat to local food security. Thus, while Arctic coastal communities are already experiencing

  8. Palaeoecology and evolution of marine hard substrate communities

    NASA Astrophysics Data System (ADS)

    Taylor, P. D.; Wilson, M. A.

    2003-07-01

    Marine organisms have occupied hard substrates since the Archaean. Shells, rocks, wood and sedimentary hardgrounds offer relatively stable habitats compared to unconsolidated sediments, but the plants and animals which inhabit them must develop means to gain and defend this premium attachment space. Hard substrate communities are formed by organisms with a variety of strategies for adhering to and/or excavating the substrates they inhabit. While mobile grazers, organically attached and even soft-bodied organisms may leave evidence of their former presence in ancient hard substrate communities, a superior fossil record is left by sessile encrusters with mineralised skeletons and by borers which leave trace fossils. Furthermore, encrusters and borers are preserved in situ, retaining their spatial relationships to one another and to the substrate. Spatial competition, ecological succession, oriented growth, and differential utilisation of exposed vs. hidden substrate surfaces can all be observed or inferred. Hard substrate communities are thus excellent systems with which to study community evolution over hundreds of millions of years. Here we review the research on modern and ancient hard substrate communities, and point to some changes that have affected them over geological time scales. Such changes include a general increase in bioerosion of hard substrates, particularly carbonate surfaces, through the Phanerozoic. This is, at least in part, analogous to the infaunalisation trends seen in soft substrate communities. Encrusting forms show an increase in skeletalisation from the Palaeozoic into the Mesozoic and Cenozoic, which may be a response to increasing levels of predation. Hard substrate communities, considering borers and encrusters together, show a rough increase in tiering through the Phanerozoic which again parallels trends seen in soft substrate communities. This extensive review of the literature on living and fossil hard substrate organisms shows that

  9. The effects of coastal development on sponge abundance, diversity, and community composition on Jamaican coral reefs.

    PubMed

    Stubler, Amber D; Duckworth, Alan R; Peterson, Bradley J

    2015-07-15

    Over the past decade, development along the northern coast of Jamaica has accelerated, resulting in elevated levels of sedimentation on adjacent reefs. To understand the effects of this development on sponge community dynamics, we conducted surveys at three locations with varying degrees of adjacent coastal development to quantify species richness, abundance and diversity at two depths (8-10 m and 15-18 m). Sediment accumulation rate, total suspended solids and other water quality parameters were also quantified. The sponge community at the location with the least coastal development and anthropogenic influence was often significantly different from the other two locations, and exhibited higher sponge abundance, richness, and diversity. Sponge community composition and size distribution were statistically different among locations. This study provides correlative evidence that coastal development affects aspects of sponge community ecology, although the precise mechanisms are still unclear.

  10. Diversity of oligotrichia and choreotrichia ciliates in coastal marine sediments and in overlying plankton.

    PubMed

    Doherty, Mary; Tamura, Maiko; Vriezen, Jan A C; McManus, George B; Katz, Laura A

    2010-06-01

    Elucidating the relationship between ciliate communities in the benthos and the plankton is critical to understanding ciliate diversity in marine systems. Although data for many lineages are sparse, at least some members of the dominant marine ciliate clades Oligotrichia and Choreotrichia can be found in both plankton and benthos, in the latter either as cysts or active forms. In this study, we developed a molecular approach to address the relationship between the diversity of ciliates in the plankton and those of the underlying benthos in the same locations. Samples from plankton and sediments were compared across three sites along the New England coast, and additional subsamples were analyzed to assess reproducibility of methods. We found that sediment and plankton subsamples differed in their robustness to repeated subsampling. Sediment subsamples (i.e., 1-g aliquots from a single approximately 20-g sample) gave variable estimates of diversity, while plankton subsamples produced consistent results. These results indicate the need for additional study to determine the spatial scale over which diversity varies in marine sediments. Clustering of phylogenetic types indicates that benthic assemblages of oligotrichs and choreotrichs appear to be more like those from spatially remote benthic communities than the ciliate communities sampled in the water above them.

  11. On the Response of pH to Inorganic Nutrient Enrichment in Well-Mixed Coastal Marine Waters

    EPA Science Inventory

    Recent concerns about declining pH in the surface ocean in response to anthropogenic increases of CO2 in the atmosphere have raised the question of how this declining baseline of oceanic pH might interact with the much larger diel and seasonal variations of pH in coastal marine e...

  12. Coastal and Marine Operators Group Receives Second-Place Gulf Guardian Award in Business and Industry Category

    EPA Pesticide Factsheets

    DALLAS - (July 30, 2015) The Gulf of Mexico Program recently announced Coastal and Marine Operations (CAMO) Group will receive a Second Place 2015 Gulf Guardian Award in the Business and Industry Category. The awards ceremony will be held on July 30

  13. Location, Location, Location: Management Uses of Marine Benthic Biogeographical Information in Coastal Waters of the Northeastern USA

    EPA Science Inventory

    Ecosystem-based management practices, along with coastal and marine spatial planning, have been adopted as foundational principles for ocean management in the United States. The success of these practices depends in large measure on a solid foundation of biogeographical informati...

  14. Anthropogenic and natural disturbances to marine benthic communities in Antarctica

    SciTech Connect

    Lenihan, H.; Oliver, J.S.

    1995-05-01

    Sampling and field experiments were conducted from 1975 to 1990 to test how the structure of marine benthic communities around McMurdo Station, Antarctica varied with levels of anthropogenic contaminants in marine sediments. The structure of communities (e.g., infauna density, species composition, and life history characteristics) in contaminated and uncontaminated areas were compared with the structure of communities influenced by two large-scale natural disturbances, anchor ice formation and uplift or iceberg scour. Benthic communities changed radically along a steep spatial gradient of anthropogenic hydrocarbon, metal, and PCB contamination around McMurdo Station. The heavily contaminated end of the gradient, Winter Quarters Bay, was low in infaunal and epifaunal abundance and was dominated by a few opportunistic species of polychaete worms. The edge of the heavily contaminated bay, the transition area, contained several motile polychaete species with less opportunistic life histories. Uncontaminated sedimentary habitats harbored dense tube mats of infaunal animals numerically dominated by populations of polychaete worms, crustaceans, and a large suspension feeding bivalve. These species are generally large and relatively sessile, except for several crustacean species living among the tubes. Although the community patterns around anthropogenic and natural disturbances were similar, particularly motile and opportunistic species at heavily disturbed and marginal areas, the natural disturbances cover much greater areas of the sea floor about the entire Antarctic continent. On the other hand, recovery from chemical contamination is likely to take many more decades than recovery from natural disturbances as contaminant degradation is a slow process. 77 refs., 6 figs., 5 tabs.

  15. Peripatric differentiation among adjacent marine lake and lagoon populations of a coastal fish, Sphaeramia orbicularis (Apogonidae, Perciformes, Teleostei).

    PubMed

    Gotoh, Ryo O; Sekimoto, Hidekatsu; Chiba, Satoru N; Hanzawa, Naoto

    2009-08-01

    The effect of geographical isolation on speciation, particularly within short geographical ranges, is poorly understood among marine organisms. Focusing on marine lakes of the Palau Islands, we investigated the effect of geographical isolation on Sphaeramia orbicularis, a coastal fish inhabiting marine lakes and lagoons. We collected a total of 157 individuals from three meromictic marine lakes and three lagoon sites, and analyzed the genetic diversity and differentiation of the populations based on complete sequences of the mitochondrial control region (824 bp). The analyses show that the genetic diversity of marine lake populations is much lower than that of lagoon populations. Moreover, a mismatch distribution analysis suggests that marine lake populations have experienced a decrease followed by a rapid expansion of their population size. These results reveal that marine lake populations have experienced severe founder and/or bottleneck events during the last thousand to tens of thousand years. Pairwise Phi(ST )values ranged from 0.531 to 0.848 between marine lake and lagoon populations and from 0.429 to 0.870 among marine lake populations, indicating a high degree of genetic differentiation. We speculate that such peripatric differentiation between marine lake and lagoon populations was caused by a small number of individuals colonizing the lakes from the lagoon (founder event) followed by repetitive bottleneck events, such as those generated by the El Niño-Southern Oscillation (ENSO). So far, such high genetic divergences in extremely short geographical ranges (approximately 150-250 m) have scarcely been reported for marine organisms. We suggest that the marine lake is one of the good model of geographical isolation in marine organisms and each marine lake population is in the early stages of speciation.

  16. High resolution numerical wave propagation in coastal area : benefits in assessment of the marine submersion

    NASA Astrophysics Data System (ADS)

    Dorville, Jean-François; Cayol, Claude; Palany, Philippe

    2016-04-01

    Many numerical models based on equation of action conservation (N = E/σ) enables the simulation of sea states (WAM, WW3,...). They allow through parametric equations to define sources and sinks of wave energy (E(f,σ)) in spectral form. Statistics of the sea states can be predicted at medium or long term as the significant wave height, the wave pic direction, mean wave period, etc. Those predictions are better if initials and boundaries conditions together with 10m wind field are well defined. Basically the more homogeneous the marine area bathymetry is the more accurate the prediction will be. Météo-France for French West Indies and French Guiana (MF-DIRAG) is in charge of the safety of persons and goods tries to improve knowledge and capacity to evaluate the sea state at the coast and the marine submersion height using among other statistical methods (as return periods) and numerical simulations. The area of responsibility is large and includes different territory, type of coast and sea wave climate. Up today most part of the daily simulations were done for large areas and with large meshes (10km). The needs of more accurate values in the assessment of the marine submersion pushed to develop new strategies to estimate the level of the sea water on the coast line and therefore characterize the marine submersion hazard. Since 2013 new data are available to enhance the capacity to simulate the mechanical process at the coast. High resolution DEM Litto 3D for Guadeloupe and Martinique coasts with grid-spacing of 5m up to 5km of the coast are free of use. The study presents the methodology applied at MF-DIRAG in study mode to evaluate effects of wave breaking on coastline. The method is based on wave simulation downscaling form the Atlantic basin to the coastal area using MF-WAM to an sub kilometric unstructured WW3 or SWAN depending to the domain studied. At the final step a non-hydrostatic wave flow as SWASH is used on the coast completed by an analytical method

  17. Current Status and Future Prospects for the Assessment of Marine and Coastal Ecosystem Services: A Systematic Review

    PubMed Central

    Liquete, Camino; Piroddi, Chiara; Drakou, Evangelia G.; Gurney, Leigh; Katsanevakis, Stelios; Charef, Aymen; Egoh, Benis

    2013-01-01

    Background Research on ecosystem services has grown exponentially during the last decade. Most of the studies have focused on assessing and mapping terrestrial ecosystem services highlighting a knowledge gap on marine and coastal ecosystem services (MCES) and an urgent need to assess them. Methodology/Principal Findings We reviewed and summarized existing scientific literature related to MCES with the aim of extracting and classifying indicators used to assess and map them. We found 145 papers that specifically assessed marine and coastal ecosystem services from which we extracted 476 indicators. Food provision, in particular fisheries, was the most extensively analyzed MCES while water purification and coastal protection were the most frequently studied regulating and maintenance services. Also recreation and tourism under the cultural services was relatively well assessed. We highlight knowledge gaps regarding the availability of indicators that measure the capacity, flow or benefit derived from each ecosystem service. The majority of the case studies was found in mangroves and coastal wetlands and was mainly concentrated in Europe and North America. Our systematic review highlighted the need of an improved ecosystem service classification for marine and coastal systems, which is herein proposed with definitions and links to previous classifications. Conclusions/Significance This review summarizes the state of available information related to ecosystem services associated with marine and coastal ecosystems. The cataloging of MCES indicators and the integrated classification of MCES provided in this paper establish a background that can facilitate the planning and integration of future assessments. The final goal is to establish a consistent structure and populate it with information able to support the implementation of biodiversity conservation policies. PMID:23844080

  18. Phenotypic plasticity in heterotrophic marine microbial communities in continuous cultures

    PubMed Central

    Beier, Sara; Rivers, Adam R; Moran, Mary Ann; Obernosterer, Ingrid

    2015-01-01

    Phenotypic plasticity (PP) is the development of alternate phenotypes of a given taxon as an adaptation to environmental conditions. Methodological limitations have restricted the quantification of PP to the measurement of a few traits in single organisms. We used metatranscriptomic libraries to overcome these challenges and estimate PP using the expressed genes of multiple heterotrophic organisms as a proxy for traits in a microbial community. The metatranscriptomes captured the expression response of natural marine bacterial communities grown on differing carbon resource regimes in continuous cultures. We found that taxa with different magnitudes of PP coexisted in the same cultures, and that members of the order Rhodobacterales had the highest levels of PP. In agreement with previous studies, our results suggest that continuous culturing may have specifically selected for taxa featuring a rather high range of PP. On average, PP and abundance changes within a taxon contributed equally to the organism's change in functional gene abundance, implying that both PP and abundance mediated observed differences in community function. However, not all functional changes due to PP were directly reflected in the bulk community functional response: gene expression changes in individual taxa due to PP were partly masked by counterbalanced expression of the same gene in other taxa. This observation demonstrates that PP had a stabilizing effect on a community's functional response to environmental change. PMID:25397947

  19. Effects of dredged sediment disposal on the coastal marine macrobenthic assemblage in Southern Brazil.

    PubMed

    Angonesi, L G; Bemvenuti, C E; Gandra, M S

    2006-05-01

    The aim of this study was to evaluate the deposition impact of dredged material from Patos lagoon estuary on a benthic macroinvertebrate assemblage structure in an adjacent coastal marine area. Nine sampling stations were chosen at random in the disposal area, and nine others in the same way in an adjacent control area. Samples were collected at a 19 m depth before sediment disposal (11 July 2000), during dredging and disposal operations (25 Oct. 2000), and three months thereafter (24 Aug. 2001). Statistical analysis indicated that sampling periods presented similar characteristics in both the control and disposal sites. Disposal of dredged sediment from Patos lagoon had no detectable detrimental effects upon macrobenthic faunal assemblage at the dumping site. This result is attributed both to adaptation of resident biota to dynamic sedimentary conditions and to the fine estuarine sediment dredged, the dispersion of which in the water column might have minimized sediment deposition and consequent damage to the benthic fauna.

  20. Integrated chemical and biological assessment of contaminant impacts in selected European coastal and offshore marine areas.

    PubMed

    Hylland, Ketil; Robinson, Craig D; Burgeot, Thierry; Martínez-Gómez, Concepción; Lang, Thomas; Svavarsson, Jörundur; Thain, John E; Vethaak, A Dick; Gubbins, Mattew J

    2017-03-01

    This paper reports a full assessment of results from ICON, an international workshop on marine integrated contaminant monitoring, encompassing different matrices (sediment, fish, mussels, gastropods), areas (Iceland, North Sea, Baltic, Wadden Sea, Seine estuary and the western Mediterranean) and endpoints (chemical analyses, biological effects). ICON has demonstrated the use of a framework for integrated contaminant assessment on European coastal and offshore areas. The assessment showed that chemical contamination did not always correspond with biological effects, indicating that both are required. The framework can be used to develop assessments for EU directives. If a 95% target were to be used as a regional indicator of MSFD GES, Iceland and offshore North Sea would achieve the target using the ICON dataset, but inshore North Sea, Baltic and Spanish Mediterranean regions would fail.

  1. Holocene melt-water variations recorded in Antarctic coastal marine benthic assemblages

    SciTech Connect

    Berkman, P.A.

    1992-03-01

    Climate changes can influence the input of meltwater from the polar ice sheets. In Antarctica, signatures of meltwater input during the Holocene may be recorded in the benthic fossils which exist at similar altitudes above sea level in emerged beaches around the continent Interpreting the fossils as meltwater proxy records would be enhanced by understanding the modern ecology of the species in adjacent marine environments. Characteristics of an extant scallop assemblage in West McMurdo Sound, Antarctica, have been evaluated across a summer meltwater gradient to provide examples of meltwater records that may be contained in proximal scallop fossils. Integrating environmental proxies from coastal benthic assemblages around Antarctica, over ecological and geological time scales, is a necessary step in evaluating the marginal responses of the ice sheets to climate changes during the Holocene.

  2. Proceedings of a Coastal and Marine Spatial Planning Workshop for the Western United States

    USGS Publications Warehouse

    Thorsteinson, Lyman; Hirsch, Derrick; Helweg, David; Dhanju, Amardeep; Barmenski, Joan; Ferrero, Richard

    2011-01-01

    Recent scientific and ocean policy assessments demonstrate that a fundamental change in our current management system is required to achieve the long-term health of our ocean, coasts, and Great Lakes in order to sustain the services and benefits they provide to society. The present (2011) species- and sector-centric way we manage these ecosystems cannot account properly for cumulative effects, sustaining multiple ecosystem services, and holistically and explicitly evaluating the tradeoffs associated with proposed alternative and multiple human uses. A transition to an ecosystem-based approach to management and conservation of coastal and marine resources is needed. Competing uses and activities such as commerce, recreation, cultural practices, energy development, conservation, and national security are increasing pressure for new and expanded resource usage in coastal marine ecosystems. Current management efforts use a sector-by-sector approach that mostly focuses on a limited range of tools and outcomes [for example, oil and gas leases, fishery management plans, and Marine Protected Areas (MPAs)]. A comprehensive, ecosystem-based, and proactive approach to planning and managing these uses and activities is needed. Further, scientific understanding and information are essential to achieve an integrated decision-making process that includes knowledge of ecosystem services, existing and possible future conditions, and potential consequences of natural and anthropogenic events. Because no single government agency has executive authority for coastal or ocean resources, conflicting objectives around competing uses abound. In recent years, regional- and state-level initiatives in Coastal and Marine Spatial Planning (CMSP) have emerged to coordinate management activities. In some respects, the components and steps of the overall CMSP process are similar to how existing ocean resources are regulated and managed. For example, the Bureau of Ocean Energy Management Regulation

  3. Diversity of bacteria in the marine sponge Aplysina fulva in Brazilian coastal waters.

    PubMed

    Hardoim, C C P; Costa, R; Araújo, F V; Hajdu, E; Peixoto, R; Lins, U; Rosado, A S; van Elsas, J D

    2009-05-01

    Microorganisms can account for up to 60% of the fresh weight of marine sponges. Marine sponges have been hypothesized to serve as accumulation spots of particular microbial communities, but it is unknown to what extent these communities are directed by the organism or the site or occur randomly. To address this question, we assessed the composition of specific bacterial communities associated with Aplysina fulva, one of the prevalent sponge species inhabiting Brazilian waters. Specimens of A. fulva and surrounding seawater were collected in triplicate in shallow water at two sites, Caboclo Island and Tartaruga beach, Búzios, Brazil. Total community DNA was extracted from the samples using "direct" and "indirect" approaches. 16S rRNA-based PCR-denaturing gradient gel electrophoresis (PCR-DGGE) analyses of the total bacterial community and of specific bacterial groups--Pseudomonas and Actinobacteria--revealed that the structure of these assemblages in A. fulva differed drastically from that observed in seawater. The DNA extraction methodology and sampling site were determinative for the composition of actinobacterial communities in A. fulva. However, no such effects could be gleaned from total bacterial and Pseudomonas PCR-DGGE profiles. Bacterial 16S rRNA gene clone libraries constructed from directly and indirectly extracted DNA did not differ significantly with respect to diversity and composition. Altogether, the libraries encompassed 15 bacterial phyla and the candidate division TM7. Clone sequences affiliated with the Cyanobacteria, Chloroflexi, Gamma- and Alphaproteobacteria, Actinobacteria, Bacteroidetes, and Acidobacteria were, in this order, most abundant. The bacterial communities associated with the A. fulva specimens were distinct and differed from those described in studies of sponge-associated microbiota performed with other sponge species.

  4. Diversity of Bacteria in the Marine Sponge Aplysina fulva in Brazilian Coastal Waters▿ †

    PubMed Central

    Hardoim, C. C. P.; Costa, R.; Araújo, F. V.; Hajdu, E.; Peixoto, R.; Lins, U.; Rosado, A. S.; van Elsas, J. D.

    2009-01-01

    Microorganisms can account for up to 60% of the fresh weight of marine sponges. Marine sponges have been hypothesized to serve as accumulation spots of particular microbial communities, but it is unknown to what extent these communities are directed by the organism or the site or occur randomly. To address this question, we assessed the composition of specific bacterial communities associated with Aplysina fulva, one of the prevalent sponge species inhabiting Brazilian waters. Specimens of A. fulva and surrounding seawater were collected in triplicate in shallow water at two sites, Caboclo Island and Tartaruga beach, Búzios, Brazil. Total community DNA was extracted from the samples using “direct” and “indirect” approaches. 16S rRNA-based PCR-denaturing gradient gel electrophoresis (PCR-DGGE) analyses of the total bacterial community and of specific bacterial groups—Pseudomonas and Actinobacteria—revealed that the structure of these assemblages in A. fulva differed drastically from that observed in seawater. The DNA extraction methodology and sampling site were determinative for the composition of actinobacterial communities in A. fulva. However, no such effects could be gleaned from total bacterial and Pseudomonas PCR-DGGE profiles. Bacterial 16S rRNA gene clone libraries constructed from directly and indirectly extracted DNA did not differ significantly with respect to diversity and composition. Altogether, the libraries encompassed 15 bacterial phyla and the candidate division TM7. Clone sequences affiliated with the Cyanobacteria, Chloroflexi, Gamma- and Alphaproteobacteria, Actinobacteria, Bacteroidetes, and Acidobacteria were, in this order, most abundant. The bacterial communities associated with the A. fulva specimens were distinct and differed from those described in studies of sponge-associated microbiota performed with other sponge species. PMID:19304829

  5. Ectoenzyme activity in coastal marine waters: response to temperature and metal ion availability

    NASA Astrophysics Data System (ADS)

    Wiedenbeck, J. K.; Neino, V.; Allison, S. D.; Martiny, A.

    2009-12-01

    Ectoenzymes in the ocean are vital for the breakdown of complex organic substrates and for the uptake of nutrients by marine organisms. The activity levels of these enzymes affect the turnover rate of nutrient pools within the ocean, and thus have a significant impact on global biogeochemical nutrient cycles. This study measured the activity of extracellular enzymes from seawater samples under different environmental conditions. Samples were collected daily from coastal waters in the subtropical North Pacific (Lat.: 33°). Ambient seawater temperatures were between 18° and 20° C for the duration of the study. The activity response of four enzymes (alkaline phosphatase, β-glucosidase, β-N-acetyl glucosaminidase, and leucine aminopeptidase) was measured over a range of temperatures (4° to 40° C). The optimal temperatures of all four enzymes were above the ambient seawater temperature of the samples: optimal temperatures of β-glucosidase, β-N-acetyl glucosaminidase, and leucine aminopeptidase in the seawater samples were between 28° and 34° C, while alkaline phosphatase activity increased with the temperature over the range tested. Enzymatic activity of alkaline phosphatase was further investigated under several metal ion conditions. Activity was highest in the presence of Co2+ ions, while the availability of other ions (Ca2+ and Mg2+/Zn2+) had a lesser effect. The influence of Co2+ on alkaline phosphatase activity indicates the presence of a Co2+-dependent alkaline phosphatase in coastal marine waters. These results suggest that variations in environmental conditions (such as temperature and ion concentration) have discernable effects on enzyme activity, and thus affect turnover rates of nutrient pools in the ocean.

  6. Effects of eutrophication on the planktonic food web dynamics of marine coastal ecosystems: The case study of two tropical inlets.

    PubMed

    Schmoker, Claire; Russo, Francesca; Drillet, Guillaume; Trottet, Aurore; Mahjoub, Mohamed-Sofiane; Hsiao, Shih-Hui; Larsen, Ole; Tun, Karenne; Calbet, Albert

    2016-08-01

    We studied the plankton dynamics of two semi-enclosed marine coastal inlets of the north of Jurong Island separated by a causeway (SW Singapore; May 2012-April 2013). The west side of the causeway (west station) has residence times of ca. one year and is markedly eutrophic. The east side (east station) has residence times of one month and presents lower nutrient concentrations throughout the year. The higher nutrient concentrations at the west station did not translate into significantly higher concentrations of chlorophyll a, with the exception of some peaks at the end of the South West Monsoon. Microzooplankton were more abundant at the west station. The west station exhibited more variable abundances of copepods during the year than did the east station, which showed a more stable pattern and higher diversity. Despite the higher nutrient concentrations at the west station (never limiting phytoplankton growth), the instantaneous phytoplankton growth rates there were generally lower than at the east station. The phytoplankton communities at the west station were top-down controlled, largely by microzooplankton grazing, whereas those of the east station alternated between top-down and bottom-up control, with mesozooplankton being the major grazers. Overall, the trophic transfer efficiency from nutrients to mesozooplankton in the eutrophic west station was less efficient than in the east station, but this was mostly because a poor use of inorganic nutrients by phytoplankton rather than an inefficient trophic transfer of carbon. Some hypotheses explaining this result are discussed.

  7. Occurrence and antibiotic susceptibility profiles of Burkholderia cepacia complex in coastal marine environment.

    PubMed

    Maravić, Ana; Skočibušić, Mirjana; Sprung, Matilda; Samanić, Ivica; Puizina, Jasna; Pavela-Vrančić, Maja

    2012-01-01

    During an environmental study of bacterial resistance to antibiotics in coastal waters of the Kaštela Bay, Adriatic Sea, Croatia, 47 Burkholderia cepacia complex (Bcc) isolates were recovered from seawater and mussel (Mytilus galloprovincialis) samples. All isolates showed multiple antibiotic resistance. Among the isolates, two Burkholderia cenocepacia isolates produced chromosomally encoded TEM-116 extended-spectrum β-lactamase (ESBL). Analysis of outer membrane proteins revealed that decreased expression of a 36-kDa protein could be associated with a high level of β-lactam resistance in both isolates. Phenotypic study of efflux system also indicated an over-expression of Resistance-Nodulation-Cell Division (RND) efflux-mediated mechanism in one of the isolates. This study demonstrated the presence of Bcc in seawater and M. galloprovincialis, which gives evidence that coastal marine environment, including mussels, could be considered as a reservoir for Bcc species. Detection of ESBL-encoding genes indicates the potential role of these bacteria in the maintenance and dispersion of antibiotic resistance genes.

  8. The growing need for sustainable ecological management of marine communities of the Persian Gulf.

    PubMed

    Sale, Peter F; Feary, David A; Burt, John A; Bauman, Andrew G; Cavalcante, Geórgenes H; Drouillard, Kenneth G; Kjerfve, Björn; Marquis, Elise; Trick, Charles G; Usseglio, Paolo; Van Lavieren, Hanneke

    2011-02-01

    The Persian Gulf is a semi-enclosed marine system surrounded by eight countries, many of which are experiencing substantial development. It is also a major center for the oil industry. The increasing array of anthropogenic disturbances may have substantial negative impacts on marine ecosystems, but this has received little attention until recently. We review the available literature on the Gulfs marine environment and detail our recent experience in the United Arab Emirates (U.A.E.) to evaluate the role of anthropogenic disturbance in this marine ecosystem. Extensive coastal development may now be the single most important anthropogenic stressor. We offer suggestions for how to build awareness of environmental risks of current practices, enhance regional capacity for coastal management, and build cooperative management of this important, shared marine system. An excellent opportunity exists for one or more of the bordering countries to initiate a bold and effective, long-term, international collaboration in environmental management for the Gulf.

  9. Predictive occurrence models for coastal wetland plant communities: delineating hydrologic response surfaces with multinomial logistic regression

    USGS Publications Warehouse

    Snedden, Gregg A.; Steyer, Gregory D.

    2013-01-01

    Understanding plant community zonation along estuarine stress gradients is critical for effective conservation and restoration of coastal wetland ecosystems. We related the presence of plant community types to estuarine hydrology at 173 sites across coastal Louisiana. Percent relative cover by species was assessed at each site near the end of the growing season in 2008, and hourly water level and salinity were recorded at each site Oct 2007–Sep 2008. Nine plant community types were delineated with k-means clustering, and indicator species were identified for each of the community types with indicator species analysis. An inverse relation between salinity and species diversity was observed. Canonical correspondence analysis (CCA) effectively segregated the sites across ordination space by community type, and indicated that salinity and tidal amplitude were both important drivers of vegetation composition. Multinomial logistic regression (MLR) and Akaike's Information Criterion (AIC) were used to predict the probability of occurrence of the nine vegetation communities as a function of salinity and tidal amplitude, and probability surfaces obtained from the MLR model corroborated the CCA results. The weighted kappa statistic, calculated from the confusion matrix of predicted versus actual community types, was 0.7 and indicated good agreement between observed community types and model predictions. Our results suggest that models based on a few key hydrologic variables can be valuable tools for predicting vegetation community development when restoring and managing coastal wetlands.

  10. Biogeochemical processes and buffering capacity concurrently affect acidification in a seasonally hypoxic coastal marine basin

    NASA Astrophysics Data System (ADS)

    Hagens, M.; Slomp, C. P.; Meysman, F. J. R.; Seitaj, D.; Harlay, J.; Borges, A. V.; Middelburg, J. J.

    2014-11-01

    Coastal areas are impacted by multiple natural and anthropogenic processes and experience stronger pH fluctuations than the open ocean. These variations can weaken or intensify the ocean acidification signal induced by increasing atmospheric pCO2. The development of eutrophication-induced hypoxia intensifies coastal acidification, since the CO2 produced during respiration decreases the buffering capacity of the hypoxic bottom water. To assess the combined ecosystem impacts of acidification and hypoxia, we quantified the seasonal variation in pH and oxygen dynamics in the water column of a seasonally stratified coastal basin (Lake Grevelingen, the Netherlands). Monthly water column chemistry measurements were complemented with estimates of primary production and respiration using O2 light-dark incubations, in addition to sediment-water fluxes of dissolved inorganic carbon (DIC) and total alkalinity (TA). The resulting dataset was used to set up a proton budget on a seasonal scale. Temperature-induced seasonal stratification combined with a high community respiration was responsible for the depletion of oxygen in the bottom water in summer. The surface water showed strong seasonal variation in process rates (primary production, CO2 air-sea exchange), but relatively small seasonal pH fluctuations (0.46 units on the total hydrogen ion scale). In contrast, the bottom water showed less seasonality in biogeochemical rates (respiration, sediment-water exchange), but stronger pH fluctuations (0.60 units). This marked difference in pH dynamics could be attributed to a substantial reduction in the acid-base buffering capacity of the hypoxic bottom water in the summer period. Our results highlight the importance of acid-base buffering in the pH dynamics of coastal systems and illustrate the increasing vulnerability of hypoxic, CO2-rich waters to any acidifying process.

  11. Biogeochemical processes and buffering capacity concurrently affect acidification in a seasonally hypoxic coastal marine basin

    NASA Astrophysics Data System (ADS)

    Hagens, M.; Slomp, C. P.; Meysman, F. J. R.; Seitaj, D.; Harlay, J.; Borges, A. V.; Middelburg, J. J.

    2015-03-01

    Coastal areas are impacted by multiple natural and anthropogenic processes and experience stronger pH fluctuations than the open ocean. These variations can weaken or intensify the ocean acidification signal induced by increasing atmospheric pCO2. The development of eutrophication-induced hypoxia intensifies coastal acidification, since the CO2 produced during respiration decreases the buffering capacity in any hypoxic bottom water. To assess the combined ecosystem impacts of acidification and hypoxia, we quantified the seasonal variation in pH and oxygen dynamics in the water column of a seasonally stratified coastal basin (Lake Grevelingen, the Netherlands). Monthly water-column chemistry measurements were complemented with estimates of primary production and respiration using O2 light-dark incubations, in addition to sediment-water fluxes of dissolved inorganic carbon (DIC) and total alkalinity (TA). The resulting data set was used to set up a proton budget on a seasonal scale. Temperature-induced seasonal stratification combined with a high community respiration was responsible for the depletion of oxygen in the bottom water in summer. The surface water showed strong seasonal variation in process rates (primary production, CO2 air-sea exchange), but relatively small seasonal pH fluctuations (0.46 units on the total hydrogen ion scale). In contrast, the bottom water showed less seasonality in biogeochemical rates (respiration, sediment-water exchange), but stronger pH fluctuations (0.60 units). This marked difference in pH dynamics could be attributed to a substantial reduction in the acid-base buffering capacity of the hypoxic bottom water in the summer period. Our results highlight the importance of acid-base buffering in the pH dynamics of coastal systems and illustrate the increasing vulnerability of hypoxic, CO2-rich waters to any acidifying process.

  12. Phylogenetically and Spatially Close Marine Sponges Harbour Divergent Bacterial Communities

    PubMed Central

    Hardoim, Cristiane C. P.; Esteves, Ana I. S.; Pires, Francisco R.; Gonçalves, Jorge M. S.; Cox, Cymon J.; Xavier, Joana R.; Costa, Rodrigo

    2012-01-01

    Recent studies have unravelled the diversity of sponge-associated bacteria that may play essential roles in sponge health and metabolism. Nevertheless, our understanding of this microbiota remains limited to a few host species found in restricted geographical localities, and the extent to which the sponge host determines the composition of its own microbiome remains a matter of debate. We address bacterial abundance and diversity of two temperate marine sponges belonging to the Irciniidae family - Sarcotragus spinosulus and Ircinia variabilis – in the Northeast Atlantic. Epifluorescence microscopy revealed that S. spinosulus hosted significantly more prokaryotic cells than I. variabilis and that prokaryotic abundance in both species was about 4 orders of magnitude higher than in seawater. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) profiles of S. spinosulus and I. variabilis differed markedly from each other – with higher number of ribotypes observed in S. spinosulus – and from those of seawater. Four PCR-DGGE bands, two specific to S. spinosulus, one specific to I. variabilis, and one present in both sponge species, affiliated with an uncultured sponge-specific phylogenetic cluster in the order Acidimicrobiales (Actinobacteria). Two PCR-DGGE bands present exclusively in S. spinosulus fingerprints affiliated with one sponge-specific phylogenetic cluster in the phylum Chloroflexi and with sponge-derived sequences in the order Chromatiales (Gammaproteobacteria), respectively. One Alphaproteobacteria band specific to S. spinosulus was placed in an uncultured sponge-specific phylogenetic cluster with a close relationship to the genus Rhodovulum. Our results confirm the hypothesized host-specific composition of bacterial communities between phylogenetically and spatially close sponge species in the Irciniidae family, with S. spinosulus displaying higher bacterial community diversity and distinctiveness than I. variabilis. These

  13. The Behavior of Environmentally Friendly Corrosion Preventative Compounds in an Aggressive Coastal Marine Environment

    NASA Technical Reports Server (NTRS)

    Montgomery, Eliza L.; Calle, Luz Marina; Curran Jerome C.; Kolody, Mark R.

    2013-01-01

    The shift to use environmentally friendly technologies throughout future space-related launch programs prompted a study aimed at replacing current petroleum and solvent-based Corrosion Preventive Compounds (CPCs) with environmentally friendly alternatives. The work in this paper focused on the identification and evaluation of environmentally friendly CPCs for use in protecting flight hardware and ground support equipment from atmospheric corrosion. The CPCs, while a temporary protective coating, must survive in the aggressive coastal marine environment that exists throughout the Kennedy Space Center, Florida. The different protection behaviors of fifteen different soft film CPCs, both common petroleum-based and newer environmentally friendly types, were evaluated on various steel and aluminum substrates. The CPC and substrate systems were subjected to atmospheric testing at the Kennedy Space Center's Beachside Atmospheric Corrosion Test Site, as well as cyclic accelerated corrosion testing. Each CPC also underwent physical characterization and launch-related compatibility testing . The initial results for the fifteen CPC systems are reported : Key words: corrosion preventive compound, CPC, spaceport, environmentally friendly, atmospheric exposure, marine, carbon steel, aluminum alloy, galvanic corrosion, wire on bolt.

  14. Marine organic geochemistry in industrially affected coastal areas in Greece: Hydrocarbons in surface sediments

    NASA Astrophysics Data System (ADS)

    Hatzianestis, Ioannis

    2015-04-01

    Hydrocarbons are abundant components of the organic material in coastal zones. Their sources are mainly anthropogenic, but several natural ones have also been recognized. Among hydrocarbons, the polycyclic aromatic ones (PAHs) have received special attention since they considered as hazardous environmental chemicals and are included in priority pollutant lists. The purpose of this study was to investigate the distribution, sources and transport pathways of hydrocarbons in marine areas in Greece directly influenced from the operation of major industrial units in the coastal zone by using a molecular marker approach, characteristic compositional patterns and related indices and also to evaluate their potential toxicity. Thirty two surface sediment samples were collected from three marine areas: a) Antikyra bay in Korinthiakos gulf, affected from the operation of an alumina and production plant b) Larymna bay in Noth Evoikos, affected from the operation of a nickel production plant and c) Aliveri bay in South Evoikos Gulf, affected from a cement production plant. In all the studied areas aquaculture and fishing activities have been also developed in the coastal zone. High aliphatic hydrocarbon (AHC) concentrations (~500 μg/g), indicating significant petroleum related inputs, were measured only in Antikyra bay. In all the other samples, AHC values were below 100 μg/g. N-alkanes were the most prominent resolved components (R) with an elevated odd to even carbon number preference, revealing the high importance of terrestrial inputs in the study areas. The unresolved complex mixture (UCM) was the major component of the aliphatic fraction (UCM/R > 4), indicating a chronic oil pollution. A series of hopanes were also identified, with patterns characteristic of oil-derived hydrocarbons, further confirming the presence of pollutant inputs from fossil fuel products. Extremely high PAH concentrations (> 100,000 ng/g) were found in the close vicinity of the alumina production

  15. Novel aromatic ring-hydroxylating dioxygenase genes from coastal marine sediments of Patagonia

    PubMed Central

    Lozada, Mariana; Riva Mercadal, Juan P; Guerrero, Leandro D; Di Marzio, Walter D; Ferrero, Marcela A; Dionisi, Hebe M

    2008-01-01

    Background Polycyclic aromatic hydrocarbons (PAHs), widespread pollutants in the marine environment, can produce adverse effects in marine organisms and can be transferred to humans through seafood. Our knowledge of PAH-degrading bacterial populations in the marine environment is still very limited, and mainly originates from studies of cultured bacteria. In this work, genes coding catabolic enzymes from PAH-biodegradation pathways were characterized in coastal sediments of Patagonia with different levels of PAH contamination. Results Genes encoding for the catalytic alpha subunit of aromatic ring-hydroxylating dioxygenases (ARHDs) were amplified from intertidal sediment samples using two different primer sets. Products were cloned and screened by restriction fragment length polymorphism analysis. Clones representing each restriction pattern were selected in each library for sequencing. A total of 500 clones were screened in 9 gene libraries, and 193 clones were sequenced. Libraries contained one to five different ARHD gene types, and this number was correlated with the number of PAHs found in the samples above the quantification limit (r = 0.834, p < 0.05). Overall, eight different ARHD gene types were detected in the sediments. In five of them, their deduced amino acid sequences formed deeply rooted branches with previously described ARHD peptide sequences, exhibiting less than 70% identity to them. They contain consensus sequences of the Rieske type [2Fe-2S] cluster binding site, suggesting that these gene fragments encode for ARHDs. On the other hand, three gene types were closely related to previously described ARHDs: archetypical nahAc-like genes, phnAc-like genes as identified in Alcaligenes faecalis AFK2, and phnA1-like genes from marine PAH-degraders from the genus Cycloclasticus. Conclusion These results show the presence of hitherto unidentified ARHD genes in this sub-Antarctic marine environment exposed to anthropogenic contamination. This information

  16. Trophic transfer of methyl siloxanes in the marine food web from coastal area of Northern China.

    PubMed

    Jia, Hongliang; Zhang, Zifeng; Wang, Chaoqun; Hong, Wen-Jun; Sun, Yeqing; Li, Yi-Fan

    2015-03-03

    Methyl siloxanes, which belong to organic silicon compounds and have linear and cyclic structures, are of particular concern because of their potential characteristic of persistent, bioaccumulated, toxic, and ecological harm. This study investigated the trophic transfer of four cyclic methyl siloxanes (octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), dodecamethylcyclohexasiloxane (D6), and tetradecamethylcycloheptasiloxane (D7)) in a marine food web from coastal area of Northern China. Trophic magnification of D4, D5, D6, and D7 were assessed as the slope of lipid equivalent concentrations regressed against trophic levels of marine food web configurations. A significant positive correlation (R = 0.44, p < 0.0001) was found between lipid normalized D5 concentrations and trophic levels in organisms, showing the trophic magnification potential of this chemical in the marine food web. The trophic magnification factor (TMF) of D5 was estimated to be 1.77 (95% confidence interval (CI): 1.41-2.24, 99.8% probability of the observing TMF > 1). Such a significant link, however, was not found for D4 (R = 0.14 and p = 0.16), D6 (R = 0.01 and p = 0.92), and D7 (R = -0.15 and p = 0.12); and the estimated values of TMFs (95% CI, probability of the observing TMF > 1) were 1.16 (0.94-1.44, 94.7%), 1.01 (0.84-1.22, 66.9%) and 0.85 (0.69-1.04, 48.6%) for D4, D6, and D7, respectively. The TMF value for the legacy contaminant BDE-99 was also estimated as a benchmark, and a significant positive correlation (R = 0.65, p < 0.0001) was found between lipid normalized concentrations and trophic levels in organisms. The TMF value of BDE-99 was 3.27 (95% CI: 2.49-4.30, 99.7% probability of the observing TMF > 1), showing the strong magnification in marine food webs. To the best of our knowledge, this is the first report on the trophic magnification of methyl siloxanes in China, which provided important information for trophic transformation of these compounds in marine

  17. Investigation of processes controlling summertime gaseous elemental mercury oxidation at midlatitudinal marine, coastal, and inland sites

    NASA Astrophysics Data System (ADS)

    Ye, Zhuyun; Mao, Huiting; Lin, Che-Jen; Kim, Su Youn

    2016-07-01

    A box model incorporating a state-of-the-art chemical mechanism for atmospheric mercury (Hg) cycling was developed to investigate the oxidation of gaseous elemental mercury (GEM) at three locations in the northeastern United States: Appledore Island (AI; marine), Thompson Farm (TF; coastal, rural), and Pack Monadnock (PM; inland, rural, elevated). The chemical mechanism in this box model included the most up-to-date Hg and halogen chemistry. As a result, the box model was able to simulate reasonably the observed diurnal cycles of gaseous oxidized mercury (GOM) and chemical speciation bearing distinct differences between the three sites. In agreement with observations, simulated GOM diurnal cycles at AI and TF showed significant daytime peaks in the afternoon and nighttime minimums compared to flat GOM diurnal cycles at PM. Moreover, significant differences in the magnitude of GOM diurnal amplitude (AI > TF > PM) were captured in modeled results. At the coastal and inland sites, GEM oxidation was predominated by O3 and OH, contributing 80-99 % of total GOM production during daytime. H2O2-initiated GEM oxidation was significant (˜ 33 % of the total GOM) at the inland site during nighttime. In the marine boundary layer (MBL) atmosphere, Br and BrO became dominant GEM oxidants, with mixing ratios reaching 0.1 and 1 pptv, respectively, and contributing ˜ 70 % of the total GOM production during midday, while O3 dominated GEM oxidation (50-90 % of GOM production) over the remaining day when Br and BrO mixing ratios were diminished. The majority of HgBr produced from GEM+Br was oxidized by NO2 and HO2 to form brominated GOM species. Relative humidity and products of the CH3O2+BrO reaction possibly significantly affected the mixing ratios of Br or BrO radicals and subsequently GOM formation. Gas-particle partitioning could potentially be important in the production of GOM as well as Br and BrO at the marine site.

  18. Effects of near-future ocean acidification, fishing, and marine protection on a temperate coastal ecosystem.

    PubMed

    Cornwall, Christopher E; Eddy, Tyler D

    2015-02-01

    Understanding ecosystem responses to global and local anthropogenic impacts is paramount to predicting future ecosystem states. We used an ecosystem modeling approach to investigate the independent and cumulative effects of fishing, marine protection, and ocean acidification on a coastal ecosystem. To quantify the effects of ocean acidification at the ecosystem level, we used information from the peer-reviewed literature on the effects of ocean acidification. Using an Ecopath with Ecosim ecosystem model for the Wellington south coast, including the Taputeranga Marine Reserve (MR), New Zealand, we predicted ecosystem responses under 4 scenarios: ocean acidification + fishing; ocean acidification + MR (no fishing); no ocean acidification + fishing; no ocean acidification + MR for the year 2050. Fishing had a larger effect on trophic group biomasses and trophic structure than ocean acidification, whereas the effects of ocean acidification were only large in the absence of fishing. Mortality by fishing had large, negative effects on trophic group biomasses. These effects were similar regardless of the presence of ocean acidification. Ocean acidification was predicted to indirectly benefit certain species in the MR scenario. This was because lobster (Jasus edwardsii) only recovered to 58% of the MR biomass in the ocean acidification + MR scenario, a situation that benefited the trophic groups lobsters prey on. Most trophic groups responded antagonistically to the interactive effects of ocean acidification and marine protection (46%; reduced response); however, many groups responded synergistically (33%; amplified response). Conservation and fisheries management strategies need to account for the reduced recovery potential of some exploited species under ocean acidification, nonadditive interactions of multiple factors, and indirect responses of species to ocean acidification caused by declines in calcareous predators.

  19. Key geochemical factors regulating Mn(IV)-catalyzed anaerobic nitrification in coastal marine sediments

    NASA Astrophysics Data System (ADS)

    Lin, Hui; Taillefert, Martial

    2014-05-01

    The reduction of Mn(IV) oxides coupled to the anaerobic oxidation of NH4+ has been proposed for more than a decade to contribute to the fixed nitrogen pool in marine sediments, yet the existence of this process is still under debate. In this study, surface sediments from an intertidal salt marsh were incubated with MnO2 in the presence of elevated concentrations of NH4+ to test the hypothesis that the reduction of Mn(IV) oxides catalyzes anaerobic NH4+ oxidation to NO2- or NO3-. Geochemical factors such as the ratio of Mn(IV) to NH4+, the type of Mn(IV) oxides (amorphous or colloidal MnO2), and the redox potential of the sediment significantly affect the activity of anaerobic nitrification. Incubations show that the net production of NO3- is stimulated under anaerobic conditions with external addition of colloidal but not amorphous MnO2 and is facilitated by the presence of high concentrations of NH4+. Mass balance calculations demonstrate that anaerobic NH4+ oxidation contributes to the net consumption of NH4+, providing another piece of evidence for the occurrence of Mn(IV)-catalyzed anaerobic nitrification in coastal marine sediments. Finally, anaerobic nitrification is stimulated by the amendment of small concentrations of NO3- or the absence of sulfate reduction, suggesting that moderately reducing conditions favor anaerobic NH4+ oxidation. Overall, these findings suggest that Mn(IV)-catalyzed anaerobic nitrification in suboxic sediments with high N/Mn concentration ratios and highly reactive manganese oxides may be an important source of NO2- and NO3- for subsequent marine nitrogen loss via denitrification or anammox.

  20. Screening for Viral Hemorrhagic Septicemia Virus in Marine Fish along the Norwegian Coastal Line

    PubMed Central

    Sandlund, Nina; Gjerset, Britt; Bergh, Øivind; Modahl, Ingebjørg; Olesen, Niels Jørgen; Johansen, Renate

    2014-01-01

    Viral hemorrhagic septicemia virus (VHSV) infects a wide range of marine fish species. To study the occurrence of VHSV in wild marine fish populations in Norwegian coastal waters and fjord systems a total of 1927 fish from 39 different species were sampled through 5 research cruises conducted in 2009 to 2011. In total, VHSV was detected by rRT-PCR in twelve samples originating from Atlantic herring (Clupea harengus), haddock (Melanogrammus aeglefinus), whiting (Merlangius merlangus) and silvery pout (Gadiculus argenteus). All fish tested positive in gills while four herring and one silvery pout also tested positive in internal organs. Successful virus isolation in cell culture was only obtained from one pooled Atlantic herring sample which shows that today's PCR methodology have a much higher sensitivity than cell culture for detection of VHSV. Sequencing revealed that the positive samples belonged to VHSV genotype Ib and phylogenetic analysis shows that the isolate from Atlantic herring and silvery pout are closely related. All positive fish were sampled in the same area in the northern county of Finnmark. This is the first detection of VHSV in Atlantic herring this far north, and to our knowledge the first detection of VHSV in silvery pout. However, low prevalence of VHSV genotype Ib in Atlantic herring and other wild marine fish are well known in other parts of Europe. Earlier there have been a few reports of disease outbreaks in farmed rainbow trout with VHSV of genotype Ib, and our results show that there is a possibility of transfer of VHSV from wild to farmed fish along the Norwegian coast line. The impact of VHSV on wild fish is not well documented. PMID:25248078

  1. The vertical turbulence structure of the coastal marine atmospheric boundary layer

    SciTech Connect

    Tjernstroem, M.; Smedman, A.S. )

    1993-03-15

    The vertical turbulence structure in the marine atmosphere along a shoreline has been investigated using data from tower and aircraft measurements performed along the Baltic coast in the southeast of Sweden. Two properties make the Baltic Sea particularly interesting. It is surrounded by land in all directions within moderate advection distances, and it features a significant annual lag in sea surface temperature as compared with inland surface temperature. The present data were collected mostly during spring or early summer, when the water is cool, i.e., with a stably or neutrally stratified marine boundary layer usually capped by an inversion. Substantial daytime heating over the land area results in a considerable horizontal thermal contrast. Measurements were made on a small island, on a tower with a good sea fetch, and with an airborne instrument package. The profile data from the aircraft is from 25 slant soundings performed in connection to low level boundary layer flights. The results from the profiles are extracted through filtering techniques on individual time (space) series (individual profiles), applying different normalization and finally averaging over all or over groups of profiles. The land-based data are from a low tower situated on the shoreline of a small island with a wide sector of unobstructed sea fetch. Several factors are found that add to the apparent complexity of the coastal marine environment: the state of the sea appears to have a major impact on the turbulence structure of the surface layer, jet-shaped wind speed profiles were very common at the top of the boundary layer (in about 50% of the cases) and distinct layers with increased turbulence were frequently found well above the boundary layer (in about 80% of the cases). The present paper will concentrate on a description of the experiment, the analysis methods, and a general description of the boundary layer turbulence structure over the Baltic Sea. 40 refs., 16 figs., 2 tabs.

  2. Sea Level Rise Decision Support Tools for Adaptation Planning in Vulnerable Coastal Communities

    NASA Astrophysics Data System (ADS)

    Rozum, J. S.; Marcy, D.

    2015-12-01

    NOAA is involved in a myriad of climate related research and projects that help decision makers and the public understand climate science as well as climate change impacts. The NOAA Office for Coastal Management (OCM) provides data, tools, trainings and technical assistance to coastal resource managers. Beginning in 2011, NOAA OCM began developing a sea level rise and coastal flooding impacts viewer which provides nationally consistent data sets and analyses to help communities with coastal management goals such as: understanding and communicating coastal flood hazards, performing vulnerability assessments and increasing coastal resilience, and prioritizing actions for different inundation/flooding scenarios. The Viewer is available on NOAA's Digital Coast platform: (coast.noaa.gov/ditgitalcoast/tools/slr). In this presentation we will share the lessons learned from our work with coastal decision-makers on the role of coastal flood risk data and tools in helping to shape future land use decisions and policies. We will also focus on a recent effort in California to help users understand the similarities and differences of a growing array of sea level rise decision support tools. NOAA staff and other partners convened a workshop entitled, "Lifting the Fog: Bringing Clarity to Sea Level Rise and Shoreline Change Models and Tools," which was attended by tool develops, science translators and coastal managers with the goal to create a collaborative communication framework to help California coastal decision-makers navigate the range of available sea level rise planning tools, and to inform tool developers of future planning needs. A sea level rise tools comparison matrix will be demonstrated. This matrix was developed as part of this effort and has been expanded to many other states via a partnership with NOAA, Climate Central, and The Nature Conservancy.

  3. Integrated network modelling for identifying microbial mechanisms of particulate organic carbon accumulation in coastal marine systems

    NASA Astrophysics Data System (ADS)

    McDonald, Karlie; Turk, Valentina; Mozetič, Patricija; Tinta, Tinkara; Malfatti, Francesca; Hannah, David; Krause, Stefan

    2016-04-01

    Accumulation of particulate organic carbon (POC) has the potential to change the structure and function of marine ecosystems. High abidance of POC can develop into aggregates, known as marine snow or mucus aggregates that can impair essential marine ecosystem functioning and services. Currently marine POC formation, accumulation and sedimentation processes are being explored as potential pathways to remove CO2 from the atmosphere by CO2 sequestration via fixation into biomass by phytoplankton. However, the current ability of scientists, environmental managers and regulators to analyse and predict high POC concentrations is restricted by the limited understanding of the dynamic nature of the microbial mechanisms regulating POC accumulation events in marine environments. We present a proof of concept study that applies a novel Bayesian Networks (BN) approach to integrate relevant biological and physical-chemical variables across spatial and temporal scales in order to identify the interactions of the main contributing microbial mechanisms regulating POC accumulation in the northern Adriatic Sea. Where previous models have characterised only the POC formed, the BN approach provides a probabilistic framework for predicting the occurrence of POC accumulation by linking biotic factors with prevailing environmental conditions. In this paper the BN was used to test three scenarios (diatom, nanoflagellate, and dinoflagellate blooms). The scenarios predicted diatom blooms to produce high chlorophyll a at the water surface while nanoflagellate blooms were predicted to occur at lower depths (> 6m) in the water column and produce lower chlorophyll a concentrations. A sensitivity analysis identified the variables with the greatest influence on POC accumulation being the enzymes protease and alkaline phosphatase, which highlights the importance of microbial community interactions. The developed proof of concept BN model allows for the first time to quantify the impacts of

  4. Changes in microbial communities in coastal sediments along natural CO2 gradients at a volcanic vent in Papua New Guinea.

    PubMed

    Raulf, Felix F; Fabricius, Katharina; Uthicke, Sven; de Beer, Dirk; Abed, Raeid M M; Ramette, Alban

    2015-10-01

    Natural CO2 venting systems can mimic conditions that resemble intermediate to high pCO2 levels as predicted for our future oceans. They represent ideal sites to investigate potential long-term effects of ocean acidification on marine life. To test whether microbes are affected by prolonged exposure to pCO2 levels, we examined the composition and diversity of microbial communities in oxic sandy sediments along a natural CO2 gradient. Increasing pCO2 was accompanied by higher bacterial richness and by a strong increase in rare members in both bacterial and archaeal communities. Microbial communities from sites with CO2 concentrations close to today's conditions had different structures than those of sites with elevated CO2 levels. We also observed increasing sequence abundance of several organic matter degrading types of Flavobacteriaceae and Rhodobacteraceae, which paralleled concurrent shifts in benthic cover and enhanced primary productivity. With increasing pCO2 , sequences related to bacterial nitrifying organisms such as Nitrosococcus and Nitrospirales decreased, and sequences affiliated to the archaeal ammonia-oxidizing Thaumarchaeota Nitrosopumilus maritimus increased. Our study suggests that microbial community structure and diversity, and likely key ecosystem functions, may be altered in coastal sediments by long-term CO2 exposure to levels predicted for the end of the century.

  5. Inventory of non-federally funded marine-pollution research, development, and monitoring activities: South Atlantic and Gulf coastal region

    SciTech Connect

    Not Available

    1984-11-01

    In 1980, NMPPO published a summary of non-Federally funded projects. This inventory report includes projects in or related to the states of North Carolina, South Carolina, Georgia, Florida, Alabama, Mississippi, Louisiana, and Texas, as well as the Commonwealth of Puerto Rico. In addition to oceanic, coastal, and estuarine studies, projects specific to freshwater areas have been included if these areas are being studied for the purpose of determining sources of pollutants to estuarine and coastal areas or the effects of changes in freshwater areas on the marine environment.

  6. Hurricane Influences on Vegetation Community Change in Coastal Louisiana

    USGS Publications Warehouse

    Steyer, Gregory D.; Cretini, Kari Foster; Piazza, Sarai C.; Sharp, Leigh A.; Snedden, Gregg A.; Sapkota, Sijan

    2010-01-01

    The impacts of Hurricanes Katrina and Rita in 2005 on wetland vegetation were investigated in Louisiana coastal marshes. Vegetation cover, pore-water salinity, and nutrients data from 100 marsh sites covering the entire Louisiana coast were sampled for two consecutive growing seasons after the storms. A mixed-model nested ANOVA with Tukey's HSD test for post-ANOVA multiple comparisons was used to analyze the data. Significantly (p<0.05) lower vegetation cover was observed within brackish and fresh marshes in the west as compared to the east and central regions throughout 2006, but considerable increase in vegetation cover was noticed in fall 2007 data. Marshes in the west were stressed by prolonged saltwater logging and increased sulfide content. High salinity levels persisted throughout the study period for all marsh types, especially in the west. The marshes of coastal Louisiana are still recovering after the hurricanes; however, changes in the species composition have increased in these marshes.

  7. Evidence for Distinct Coastal and Offshore Communities of Bottlenose Dolphins in the North East Atlantic

    PubMed Central

    Oudejans, Machiel G.; Visser, Fleur; Englund, Anneli; Rogan, Emer; Ingram, Simon N.

    2015-01-01

    Bottlenose dolphin stock structure in the northeast Atlantic remains poorly understood. However, fine scale photo-id data have shown that populations can comprise multiple overlapping social communities. These social communities form structural elements of bottlenose dolphin (Tursiops truncatus) populations, reflecting specific ecological and behavioural adaptations to local habitats. We investigated the social structure of bottlenose dolphins in the waters of northwest Ireland and present evidence for distinct inshore and offshore social communities. Individuals of the inshore community had a coastal distribution restricted to waters within 3 km from shore. These animals exhibited a cohesive, fission-fusion social organisation, with repeated resightings within the research area, within a larger coastal home range. The offshore community comprised one or more distinct groups, found significantly further offshore (>4 km) than the inshore animals. In addition, dorsal fin scarring patterns differed significantly between inshore and offshore communities with individuals of the offshore community having more distinctly marked dorsal fins. Specifically, almost half of the individuals in the offshore community (48%) had characteristic stereotyped damage to the tip of the dorsal fin, rarely recorded in the inshore community (7%). We propose that this characteristic is likely due to interactions with pelagic fisheries. Social segregation and scarring differences found here indicate that the distinct communities are likely to be spatially and behaviourally segregated. Together with recent genetic evidence of distinct offshore and coastal population structures, this provides evidence for bottlenose dolphin inshore/offshore community differentiation in the northeast Atlantic. We recommend that social communities should be considered as fundamental units for the management and conservation of bottlenose dolphins and their habitat specialisations. PMID:25853823

  8. Evidence for distinct coastal and offshore communities of bottlenose dolphins in the north east Atlantic.

    PubMed

    Oudejans, Machiel G; Visser, Fleur; Englund, Anneli; Rogan, Emer; Ingram, Simon N

    2015-01-01

    Bottlenose dolphin stock structure in the northeast Atlantic remains poorly understood. However, fine scale photo-id data have shown that populations can comprise multiple overlapping social communities. These social communities form structural elements of bottlenose dolphin (Tursiops truncatus) [corrected] populations, reflecting specific ecological and behavioural adaptations to local habitats. We investigated the social structure of bottlenose dolphins in the waters of northwest Ireland and present evidence for distinct inshore and offshore social communities. Individuals of the inshore community had a coastal distribution restricted to waters within 3 km from shore. These animals exhibited a cohesive, fission-fusion social organisation, with repeated resightings within the research area, within a larger coastal home range. The offshore community comprised one or more distinct groups, found significantly further offshore (>4 km) than the inshore animals. In addition, dorsal fin scarring patterns differed significantly between inshore and offshore communities with individuals of the offshore community having more distinctly marked dorsal fins. Specifically, almost half of the individuals in the offshore community (48%) had characteristic stereotyped damage to the tip of the dorsal fin, rarely recorded in the inshore community (7%). We propose that this characteristic is likely due to interactions with pelagic fisheries. Social segregation and scarring differences found here indicate that the distinct communities are likely to be spatially and behaviourally segregated. Together with recent genetic evidence of distinct offshore and coastal population structures, this provides evidence for bottlenose dolphin inshore/offshore community differentiation in the northeast Atlantic. We recommend that social communities should be considered as fundamental units for the management and conservation of bottlenose dolphins and their habitat specialisations.

  9. Differential responses of marine communities to natural and anthropogenic changes

    PubMed Central

    Kowalewski, Michał; Wittmer, Jacalyn M.; Dexter, Troy A.; Amorosi, Alessandro; Scarponi, Daniele

    2015-01-01

    Responses of ecosystems to environmental changes vary greatly across habitats, organisms and observational scales. The Quaternary fossil record of the Po Basin demonstrates that marine communities of the northern Adriatic re-emerged unchanged following the most recent glaciation, which lasted approximately 100 000 years. The Late Pleistocene and Holocene interglacial ecosystems were both dominated by the same species, species turnover rates approximated predictions of resampling models of a homogeneous system, and comparable bathymetric gradients in species composition, sample-level diversity, dominance and specimen abundance were observed in both time intervals. The interglacial Adriatic ecosystems appear to have been impervious to natural climate change either owing to their persistence during those long-term perturbations or their resilient recovery during interglacial phases of climate oscillations. By contrast, present-day communities of the northern Adriatic differ notably from their Holocene counterparts. The recent ecosystem shift stands in contrast to the long-term endurance of interglacial communities in face of climate-driven environmental changes. PMID:25673689

  10. Differential responses of marine communities to natural and anthropogenic changes.

    PubMed

    Kowalewski, Michał; Wittmer, Jacalyn M; Dexter, Troy A; Amorosi, Alessandro; Scarponi, Daniele

    2015-03-22

    Responses of ecosystems to environmental changes vary greatly across habitats, organisms and observational scales. The Quaternary fossil record of the Po Basin demonstrates that marine communities of the northern Adriatic re-emerged unchanged following the most recent glaciation, which lasted approximately 100,000 years. The Late Pleistocene and Holocene interglacial ecosystems were both dominated by the same species, species turnover rates approximated predictions of resampling models of a homogeneous system, and comparable bathymetric gradients in species composition, sample-level diversity, dominance and specimen abundance were observed in both time intervals. The interglacial Adriatic ecosystems appear to have been impervious to natural climate change either owing to their persistence during those long-term perturbations or their resilient recovery during interglacial phases of climate oscillations. By contrast, present-day communities of the northern Adriatic differ notably from their Holocene counterparts. The recent ecosystem shift stands in contrast to the long-term endurance of interglacial communities in face of climate-driven environmental changes.

  11. Community composition has greater impact on the functioning of marine phytoplankton communities than ocean acidification.

    PubMed

    Eggers, Sarah L; Lewandowska, Aleksandra M; Barcelos E Ramos, Joana; Blanco-Ameijeiras, Sonia; Gallo, Francesca; Matthiessen, Birte

    2014-03-01

    Ecosystem functioning is simultaneously affected by changes in community composition and environmental change such as increasing atmospheric carbon dioxide (CO2 ) and subsequent ocean acidification. However, it largely remains uncertain how the effects of these factors compare to each other. Addressing this question, we experimentally tested the hypothesis that initial community composition and elevated CO2 are equally important to the regulation of phytoplankton biomass. We full-factorially exposed three compositionally different marine phytoplankton communities to two different CO2 levels and examined the effects and relative importance (ω(2) ) of the two factors and their interaction on phytoplankton biomass at bloom peak. The results showed that initial community composition had a significantly greater impact than elevated CO2 on phytoplankton biomass, which varied largely among communities. We suggest that the different initial ratios between cyanobacteria, diatoms, and dinoflagellates might be the key for the varying competitive and thus functional outcome among communities. Furthermore, the results showed that depending on initial community composition elevated CO2 selected for larger sized diatoms, which led to increased total phytoplankton biomass. This study highlights the relevance of initial community composition, which strongly drives the functional outcome, when assessing impacts of climate change on ecosystem functioning. In particular, the increase in phytoplankton biomass driven by the gain of larger sized diatoms in response to elevated CO2 potentially has strong implications for nutrient cycling and carbon export in future oceans.

  12. A novel approach to model exposure of coastal-marine ecosystems to riverine flood plumes based on remote sensing techniques.

    PubMed

    Álvarez-Romero, Jorge G; Devlin, Michelle; Teixeira da Silva, Eduardo; Petus, Caroline; Ban, Natalie C; Pressey, Robert L; Kool, Johnathan; Roberts, Jason J; Cerdeira-Estrada, Sergio; Wenger, Amelia S; Brodie, Jon

    2013-04-15

    Increased loads of land-based pollutants are a major threat to coastal-marine ecosystems. Identifying the affected marine areas and the scale of influence on ecosystems is critical to assess the impacts of degraded water quality and to inform planning for catchment management and marine conservation. Studies using remotely-sensed data have contributed to our understanding of the occurrence and influence of river plumes, and to our ability to assess exposure of marine ecosystems to land-based pollutants. However, refinement of plume modeling techniques is required to improve risk assessments. We developed a novel, complementary, approach to model exposure of coastal-marine ecosystems to land-based pollutants. We used supervised classification of MODIS-Aqua true-color satellite imagery to map the extent of plumes and to qualitatively assess the dispersal of pollutants in plumes. We used the Great Barrier Reef (GBR), the world's largest coral reef system, to test our approach. We combined frequency of plume occurrence with spatially distributed loads (based on a cost-distance function) to create maps of exposure to suspended sediment and dissolved inorganic nitrogen. We then compared annual exposure maps (2007-2011) to assess inter-annual variability in the exposure of coral reefs and seagrass beds to these pollutants. We found this method useful to map plumes and qualitatively assess exposure to land-based pollutants. We observed inter-annual variation in exposure of ecosystems to pollutants in the GBR, stressing the need to incorporate a temporal component into plume exposure/risk models. Our study contributes to our understanding of plume spatial-temporal dynamics of the GBR and offers a method that can also be applied to monitor exposure of coastal-marine ecosystems to plumes and explore their ecological influences.

  13. Relative sea level and coastal environments in arctic Alaska during Marine Isotope Stage 5

    NASA Astrophysics Data System (ADS)

    Farquharson, L. M.; Mann, D. H.; Jones, B. M.; Rittenour, T. M.; Grosse, G.; Groves, P.

    2015-12-01

    Marine Isotope Stage (MIS) 5 was characterized by marked fluctuations in climate, the warmest being MIS 5e (124-119 ka) when relative sea level (RSL) stood 2-10 m higher than today along many coastlines. In northern Alaska, marine deposits now 5-10 m above modern sea level are assigned to this time period and termed the Pelukian transgression (PT). Complicating this interpretation is the possibility that an intra-Stage 5 ice shelf extended along the Alaskan coast, causing isostatic depression along its grounded margins, which caused RSL highs even during periods of low, global RSL. Here we use optically stimulated luminescence (OSL) to date inferred PT deposits on the Beaufort Sea coastal plain. A transition from what we interpret to be lagoonal mud to sandy tidal flat deposits lying ~ 2.75 m asl dates to 113+/-18 ka. Above this, a 5-m thick gravelly barrier beach dates to 95 +/- 20 ka. This beach contains well-preserved marine molluscs, whale vertebrae, and walrus tusks. Pleistocene-aged ice-rich eolian silt (yedoma) blanket the marine deposits and date to 57.6 +/-10.9 ka. Our interpretation of this chronostratigraphy is that RSL was several meters higher than today during MIS 5e, and lagoons or brackish lakes were prevalent. Gravel barrier beaches moved onshore as local RSL rose further after MIS 5e. The error range of the OSL age of the barrier-beach unit spans the remaining four substages of MIS 5; however, the highstand of RSL on this arctic coastline appears to occurr after the warmest part of the last interglacial and appears not to be coeval with the eustatic maximum reached at lower latitudes during MIS 5. One possibility is that RSL along the Beaufort Sea coast was affected by isostatic depression caused by an ice shelf associated with widespread, intra-Stage 5 glaciation that was out of phase with lower latitude glaciation and whose extent and timing remains enigmatic.

  14. Measuring revealed and emergent vulnerabilities of coastal communities to tsunami in Sri Lanka.

    PubMed

    Birkmann, Jörn; Fernando, Nishara

    2008-03-01

    This paper presents the important findings of a study undertaken in two selected tsunami-affected coastal cities in Sri Lanka (Batticaloa and Galle) to measure the revealed and emergent vulnerability of coastal communities. International risk studies have failed to demonstrate the high vulnerability of coastal communities to tsunami in Sri Lanka. Therefore, indirect assessment tools to measure pre-event vulnerability have to be complemented by assessment tools that analyse revealed and emergent vulnerability in looking at the aftermath and impact patterns of a real scenario, as well as in examining the dynamics of disaster recovery in which different vulnerabilities can be identified. The paper first presents a conceptual framework for capturing vulnerability within a process-oriented approach linked to sustainable development. Next, it highlights selected indicators and methods to measure revealed and emergent vulnerability at the local level using the examples of Batticaloa and Galle. Finally, it discusses the usefulness and application of vulnerability indicators within the framework of reconstruction.

  15. Temporal and spatial diversity of bacterial communities in coastal waters of the South china sea.

    PubMed

    Du, Jikun; Xiao, Kai; Li, Li; Ding, Xian; Liu, Helu; Lu, Yongjun; Zhou, Shining

    2013-01-01

    Bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems. Temporal and geographical patterns in ocean bacterial communities have been observed in many studies, but the temporal and spatial patterns in the bacterial communities from the South China Sea remained unexplored. To determine the spatiotemporal patterns, we generated 16S rRNA datasets for 15 samples collected from the five regularly distributed sites of the South China Sea in three seasons (spring, summer, winter). A total of 491 representative sequences were analyzed by MOTHUR, yielding 282 operational taxonomic units (OTUs) grouped at 97% stringency. Significant temporal variations of bacterial diversity were observed. Richness and diversity indices indicated that summer samples were the most diverse. The main bacterial group in spring and summer samples was Alphaproteobacteria, followed by Cyanobacteria and Gammaproteobacteria, whereas Cyanobacteria dominated the winter samples. Spatial patterns in the samples were observed that samples collected from the coastal (D151, D221) waters and offshore (D157, D1512, D224) waters clustered separately, the coastal samples harbored more diverse bacterial communities. However, the temporal pattern of the coastal site D151 was contrary to that of the coastal site D221. The LIBSHUFF statistics revealed noticeable differences among the spring, summer and winter libraries collected at five sites. The UPGMA tree showed there were temporal and spatial heterogeneity of bacterial community composition in coastal waters of the South China Sea. The water salinity (P=0.001) contributed significantly to the bacteria-environment relationship. Our results revealed that bacterial community structures were influenced by environmental factors and community-level changes in 16S-based diversity were better explained by spatial patterns than by temporal patterns.

  16. The abundance, composition and sources of marine debris in coastal seawaters or beaches around the northern South China Sea (China).

    PubMed

    Zhou, Peng; Huang, Chuguang; Fang, Hongda; Cai, Weixu; Li, Dongmei; Li, Xiaomin; Yu, Hansheng

    2011-09-01

    The abundance and composition of marine debris including floating marine debris (FMD), seafloor marine debris (SMD) and beached marine debris (BMD) were investigated in coastal seawaters/beaches around the northern South China Sea during 2009 and 2010. The FMD density was 4.947 (0.282-16.891) items/km², with plastics (44.9%) and Styrofoam (23.2%) dominating. More than 99.0% of FMD was small or medium size floating marine debris. The SMD and BMD densities of were 0.693 (0.147-5.000) and 32.82 (2.83-375.00) items/km², respectively. SMD was composed of plastics (47.0%), wood (15.2%), fabric/fiber (13.6%) and glass (12.1%), while BMD was composed of plastics (42.0%) and wood (33.7%). More than 90% of FMD, 75% of SMD and 95% of BMD were not ocean-based sources but land-based sources, mostly attributed to coastal/recreational activity, because of the effect of human activities in the areas.

  17. The Gut Bacterial Community of Mammals from Marine and Terrestrial Habitats

    PubMed Central

    Nelson, Tiffanie M.; Rogers, Tracey L.; Brown, Mark V.

    2013-01-01

    After birth, mammals acquire a community of bacteria in their gastro-intestinal tract, which harvests energy and provides nutrients for the host. Comparative studies of numerous terrestrial mammal hosts have identified host phylogeny, diet and gut morphology as primary drivers of the gut bacterial community composition. To date, marine mammals have been excluded from these comparative studies, yet they represent distinct examples of evolutionary history, diet and lifestyle traits. To provide an updated understanding of the gut bacterial community of mammals, we compared bacterial 16S rRNA gene sequence data generated from faecal material of 151 marine and terrestrial mammal hosts. This included 42 hosts from a marine habitat. When compared to terrestrial mammals, marine mammals clustered separately and displayed a significantly greater average relative abundance of the phylum Fusobacteria. The marine carnivores (Antarctic and Arctic seals) and the marine herbivore (dugong) possessed significantly richer gut bacterial community than terrestrial carnivores and terrestrial herbivores, respectively. This suggests that evolutionary history and dietary items specific to the marine environment may have resulted in a gut bacterial community distinct to that identified in terrestrial mammals. Finally we hypothesize that reduced marine trophic webs, whereby marine carnivores (and herbivores) feed directly on lower trophic levels, may expose this group to high levels of secondary metabolites and influence gut microbial community richness. PMID:24386245

  18. The gut bacterial community of mammals from marine and terrestrial habitats.

    PubMed

    Nelson, Tiffanie M; Rogers, Tracey L; Brown, Mark V

    2013-01-01

    After birth, mammals acquire a community of bacteria in their gastro-intestinal tract, which harvests energy and provides nutrients for the host. Comparative studies of numerous terrestrial mammal hosts have identified host phylogeny, diet and gut morphology as primary drivers of the gut bacterial community composition. To date, marine mammals have been excluded from these comparative studies, yet they represent distinct examples of evolutionary history, diet and lifestyle traits. To provide an updated understanding of the gut bacterial community of mammals, we compared bacterial 16S rRNA gene sequence data generated from faecal material of 151 marine and terrestrial mammal hosts. This included 42 hosts from a marine habitat. When compared to terrestrial mammals, marine mammals clustered separately and displayed a significantly greater average relative abundance of the phylum Fusobacteria. The marine carnivores (Antarctic and Arctic seals) and the marine herbivore (dugong) possessed significantly richer gut bacterial community than terrestrial carnivores and terrestrial herbivores, respectively. This suggests that evolutionary history and dietary items specific to the marine environment may have resulted in a gut bacterial community distinct to that identified in terrestrial mammals. Finally we hypothesize that reduced marine trophic webs, whereby marine carnivores (and herbivores) feed directly on lower trophic levels, may expose this group to high levels of secondary metabolites and influence gut microbial community richness.

  19. Development of a cost-effective metabarcoding strategy for analysis of the marine phytoplankton community

    PubMed Central

    Yoon, Tae-Ho; Kang, Hye-Eun; Kang, Chang-Keun; Lee, Sang Heon; Ahn, Do-Hwan

    2016-01-01

    We developed a cost-effective metabarcoding strategy to analyze phytoplankton community structure using the Illumina MiSeq system. The amplicons (404–411 bp) obtained by end-pairing of two reads were sufficiently long to distinguish algal species and provided barcode data equivalent to those generated with the Roche 454 system, but at less than 1/20th of the cost. The original universal primer sequences targeting the 23S rDNA region and the PCR strategy were both modified, and this resulted in higher numbers of eukaryotic algal sequences by excluding non-photosynthetic proteobacterial sequences supporting effectiveness of this strategy. The novel strategy was used to analyze the phytoplankton community structure of six water samples from the East/Japan Sea: surface and 50 m depths at coastal and open-sea sites, with collections in May and July 2014. In total, 345 operational taxonomic units (OTUs) were identified, which covered most of the prokaryotic and eukaryotic algal phyla, including Dinophyta, Rhodophyta, Ochrophyta, Chlorophyta, Streptophyta, Cryptophyta, Haptophyta, and Cyanophyta. This highlights the importance of plastid 23S primers, which perform better than the currently used 16S primers for phytoplankton community surveys. The findings also revealed that more efforts should be made to update 23S rDNA sequences as well as those of 16S in the databases. Analysis of algal proportions in the six samples showed that community structure differed depending on location, depth and season. Across the six samples evaluated, the numbers of OTUs in each phylum were similar but their relative proportions varied. This novel strategy would allow laboratories to analyze large numbers of samples at reasonable expense, whereas this has not been possible to date due to cost and time. In addition, we expect that this strategy will generate a large amount of novel data that could potentially change established methods and tools that are currently used in the realms of

  20. Community exposure to potential climate-driven changes to coastal-inundation hazards for six communities in Essex County, Massachusetts

    USGS Publications Warehouse

    Abdollahian, Nina; Ratliff, Jamie L.; Wood, Nathan J.

    2016-11-09

    IntroductionUnderstanding if and how community exposure to coastal hazards may change over time is crucial information for coastal managers tasked with developing climate adaptation plans. This report summarizes estimates of population and asset exposure to coastal-inundation hazards associated with sea-level-rise and storm scenarios in six coastal communities of the Great Marsh region of Essex County, Massachusetts. This U.S. Geological Survey (USGS) analysis was conducted in collaboration with National Wildlife Federation (NWF) representatives, who are working with local stakeholders to develop local climate adaptation plans for the Towns of Salisbury, Newbury, Rowley, Ipswich, and Essex and the City of Newburyport (hereafter referred to as communities). Community exposure was characterized by integrating various community indicators (land cover and land use, population, economic assets, critical facilities, and infrastructure) with coastal-hazard zones that estimate inundation extents and water depth for three time periods.Estimates of community exposure are based on the presence of people, businesses, and assets in hazard zones that are calculated from geospatial datasets using geographic-information-system (GIS) tools. Results are based on current distributions of people and assets in hazard zones and do not take into account projections of human population, asset, or land-use changes over time. Results are not loss estimates based on engineering analysis or field surveys for any particular facility and do not take into account aspects of individual and household preparedness before an extreme event, adaptive capacity of a community during an event, or long-term resilience of individuals and communities after an event. Potential losses would match reported inventories only if all residents, business owners, public managers, and elected officials were unaware of what to do if warned of an imminent threat, failed to take protective measures during an extreme

  1. Marine habitat mapping, classification and monitoring in the coastal North Sea: Scientific vs. stakeholder interests

    NASA Astrophysics Data System (ADS)

    Hass, H. Christian; Mielck, Finn; Papenmeier, Svenja; Fiorentino, Dario

    2016-04-01

    Producing detailed maps of the seafloor that include both, water depth and simple textural characteristics has always been a challenge to scientists. In this context, marine habitat maps are an essential tool to comprehend the complexity, the spatial distribution and the ecological status of different seafloor types. The increasing need for more detail demands additional information on the texture of the sediment, bedforms and information on benthic sessile life. For long time, taking samples and videos/photographs followed by interpolation over larger distances was the only feasible way to gain information about sedimentary features such as grain-size distribution and bedforms. While ground truthing is still necessary, swath systems such as multibeam echo sounders (MBES) and sidescan sonars (SSS), as well as single beam acoustic ground discrimination systems (AGDS) became available to map the seafloor area-wide (MBES, SSS), fast and in great detail. Where area-wide measurements are impossible or unavailable point measurements are interpolated, classified and modeled. To keep pace with environmental change in the highly dynamic coastal areas of the North Sea (here: German Bight) monitoring that utilizes all of the mentioned techniques is a necessity. Since monitoring of larger areas is quite expensive, concepts for monitoring strategies were developed in scientific projects such as "WIMO" ("Scientific monitoring concepts for the German Bight, SE North Sea"). While instrumentation becomes better and better and interdisciplinary methods are being developed, the gap between basic scientific interests and stakeholder needs often seem to move in opposite directions. There are two main tendencies: the need to better understand nature systems (for theoretical purposes) and the one to simplify nature (for applied purposes). Science trends to resolve the most detail in highest precision employing soft gradients and/or fuzzy borders instead of crisp demarcations and

  2. Vegetation associations in a rare community type - Coastal tallgrass prairie

    USGS Publications Warehouse

    Grace, J.B.; Allain, L.; Allen, C.

    2000-01-01

    The coastal prairie ecoregion is located along the northwestern coastal plain of the Gulf of Mexico in North America. Because of agricultural and urban development, less than 1% of the original 3.4 million ha of this ecosystem type remains in native condition, making it one of the most endangered ecosystems in North America. The objective of this study was to characterize the vegetation and environmental relationships in a relatively pristine example of lowland coastal prairie in order to provide information for use in conservation and restoration. The study area was a small, isolated prairie located near the southern boundary of the coastal prairie region. Samples were taken along three parallel transects that spanned the prairie. Parameters measured included species composition, elevation, soil characteristics, indications of recent disturbance, above-ground biomass, and light penetration through the plant canopy. Fifty-four species were found in the 107 0.25-m2 plots and a total of 96 species were found at the site. Only two non-native species occurred in sample plots, both of which were uncommon. Cluster analysis was used to identify six vegetation groups, which were primarily dominated by members of the Poaceae or Asteraceae. A conspicuous, natural edaphic feature of the prairie was the presence of 'mima' mounds, which are raised areas approximately 0.5 to 1 m high and 5 to 10 m across. Indicator species analysis revealed a significant number of species that were largely restricted to mounds and these were predominately upland and colonizing species. Ordination was performed using nonmetric, multidimensional scaling. The dominant environmental influence on species composition was found to be elevation and a host of correlated factors including those associated with soil organic content. A secondary group of factors, consisting primarily of soil cations, was found to explain additional variance among plots. Overall, this prairie was found to contain plant

  3. Photochemical Transformations of the Structural and Optical Properties of Marine Colored Dissolved Organic Material in Coastal Waters

    DTIC Science & Technology

    2001-09-30

    characterization of CDOM in fresh to marine transition zones in South Florida (with Rod Zika (RSMAS, UM)); 2) set up instrumentation and accumulate water...results from recent ONR-funded cruises at the 2002 Ocean Sciences meeting. APPROACH In collaboration with Dr. Rod Zika and Eliete Zanardi...laboratory in collaboration with Dr. Bob Chen, U. Mass. Boston and Rod Zika , RSMAS. Field studies and sampling of local salt marshes and coastal waters

  4. Modelling accumulation of marine plastics in the coastal zone; what are the dominant physical processes?

    NASA Astrophysics Data System (ADS)

    Critchell, Kay; Lambrechts, Jonathan

    2016-03-01

    Anthropogenic marine debris, mainly of plastic origin, is accumulating in estuarine and coastal environments around the world causing damage to fauna, flora and habitats. Plastics also have the potential to accumulate in the food web, as well as causing economic losses to tourism and sea-going industries. If we are to manage this increasing threat, we must first understand where debris is accumulating and why these locations are different to others that do not accumulate large amounts of marine debris. This paper demonstrates an advection-diffusion model that includes beaching, settling, resuspension/re-floating, degradation and topographic effects on the wind in nearshore waters to quantify the relative importance of these physical processes governing plastic debris accumulation. The aim of this paper is to prioritise research that will improve modelling outputs in the future. We have found that the physical characteristic of the source location has by far the largest effect on the fate of the debris. The diffusivity, used to parameterise the sub-grid scale movements, and the relationship between debris resuspension/re-floating from beaches and the wind shadow created by high islands also has a dramatic impact on the modelling results. The rate of degradation of macroplastics into microplastics also have a large influence in the result of the modelling. The other processes presented (settling, wind drift velocity) also help determine the fate of debris, but to a lesser degree. These findings may help prioritise research on physical processes that affect plastic accumulation, leading to more accurate modelling, and subsequently management in the future.

  5. Mollusk-isotope records of Plio-Pleistocene marine paleoclimate, U. S. Middle Atlantic Coastal Plain

    SciTech Connect

    Krantz, D.E. )

    1990-08-01

    Stable oxygen and carbon isotope profiles from fossil scallop shells provide detailed paleoenvironmental information for the Pliocene and early Pleistocene of the Middle Atlantic Coastal Plain. Scallop specimens were collected from strata which represent at least five major marine transgressions. Minimum and maximum paleotemperatures were calculated from the {delta}{sup 18}O ranges recorded in each shell profile, after adjusting for changes in seawater {delta}{sup 18}O related to changes in global ice volume. Paleotemperature ranges from each stratigraphic unit were compared with modern conditions on the shelves of the Middle and South Atlantic Bight, and with paleotemperatures estimated by Hazel (1971b, 1988) from the ostracode faunas. The mollusk-isotope records indicate that the marine climate of the Atlantic Shelf was mild temperate during the deposition of the Sunken Meadow Member of the Yorktown Formation in the early Pliocene. The climate became warm temperate during the middle and late Pliocene transgressions which deposited the Rushmere, Morgarts Beach and Moore House Members of the Yorktown Formation and the Chowan River Formation. During the deposition of the James City Formation in the early Pleistocene, temperatures returned to a mild temperate climate similar to that of the modern Virginia Bight shelf. The character of the isotope profiles indicates that hydrographic conditions were generally stable and similar to those of the modern Middle Atlantic Bight. The {delta}{sup 13}C profiles of most of the shells show trends suggestive of spring phytoplankton blooms and summer water-column stratification. Anomalies in several profiles are interpreted as reduced salinity events, probably related to river discharge, which most commonly occur in the spring. There is no convincing evidence in the shell profiles for upwelling.

  6. Hydrodynamic Based Decision Making Framework for Impact Assessment of Extreme Storm Events on Coastal Communities

    NASA Astrophysics Data System (ADS)

    Nazari, R.; Miller, K.; Hurler, C.

    2015-12-01

    Coastal and inland flooding has been a problematic occurrence, specifically over the past century. Global warming has caused an 8 inch sea level rise since 1990, which made the coastal flood zone wider, deeper and more damaging. Additionally, riverine flooding is extremely damaging to the country's substructure and economy as well which causes river banks to overflow, inundating low-lying areas. New Jersey and New York are two areas at severe risk for flood hazard, sea level rise, land depletion and economic loss which are the main study area of this work. A decision making framework is being built to help mitigate the impacts of the environmental and economical dangers of storm surges, sea level rise, flashfloods and inland flooding. With vigorous research and the use of innovative hydrologic modeling software, this tool can be built and utilized to form resiliency for coastal communities. This will allow the individuals living in a coastal community to understand the details of climatic hazards in their area and risks associated to their communities. This tool will also suggest the best solution for the problem each community faces. Atlantic City and New York City has been modeled and compared using potential storm events and the outcomes have been analyzed. The tool offers all the possible solutions for the type of flooding that occurs. Green infrastructure such as rain gardens, detention basins and green roofs can be used as small scale solutions. Greater scale solutions such as removable flood barriers, concrete walls and height adjustable walls will also be displayed if that poses as the best solution. The results and benefits from the simulation and modeling techniques, will allow coastal communities to choose the most appropriate method for building a long lasting and sustainable resilience plan in the future.

  7. Palaeotsunamis and their significance for prehistoric coastal communities

    NASA Astrophysics Data System (ADS)

    Goff, J. R.

    2011-12-01

    The damage caused by large tsunamis to human populations at the coast has been all too evident over the past few years. However, while we have seen the immediate after-effects of such events, we are less familiar with the longer term changes associated with them. Using prehistoric New Zealand as a case study, the talk first addresses the wider geological context associated with a tsunami - what caused it and what were the consequences for the physical environment? Prehistoric Maori lived predominantly in coastal settlements, particularly during their early settlement period. They had far ranging canoe trade routes and made widespread use of intertidal and coastal resources. As such it is possible to determine much of the ecological and societal ramifications of a 15th century tsunami inundation. The 15th century tsunami is recorded in numerous purakau or oral recordings. These form part of Maori Traditional Environmental Knowledge (TEK), but the event can also be identified through archaeological, geological and palaeo-ecological indicators. One of several purakau from the 15th century refers to the "Coming of the Sand". This centres on a place called Potiki-taua, where Potiki and his group settled. Mango-huruhuru, the old priest, built a large house on low land near the sea while Potiki-roa and his wife put theirs on higher ground further inland. Mango-huruhuru's house had a rocky beach in front of it that was unsuitable for landing canoes and so he decided to use his powers to bring sand from Hawaiki. After sunset he sat on his roof and recited a karakia (prayer/chant). On conclusion a dark cloud with its burden of sand reached the shore. The women called out "A! The sea rises; the waves and the sand will overwhelm us". The people fell where they stood and were buried in the sand along with the house and cultivations and all the surrounding country, and with them, the old priest and his youngest daughter (memorialised and turned into a rock which stands there

  8. The relationship between Holocene cultural site distribution and marine terrace uplift on the coast fringing Coastal Range, Taiwan

    NASA Astrophysics Data System (ADS)

    Yang, Hsiaochin; Chen, Wenshan

    2013-04-01

    According to the collision of Philippine Sea plate and Eurasia plate, a series of left-lateral active faults with reverse sense exists in the Longitudinal Valley of east Taiwan. The Holocene marine terraces along the east coast of the Coastal Range in Taiwan are well known for their very rapid uplift and record tectonic history of this active collision boundary. The Holocene marine terrace sequence resulting from successive sea level change and tectonic activation is subdivided into several steps where the highest and oldest terrace, back to ca 13,000yr BP, reaches up to ca 80 m above sea level, and the lower terraces are mostly erosional ones, overlain by less than 1m thick coral beds in situ. The uplift of the coast is very high, ranging from 5 to 10 m/ka. According to the fabrics of potsherds and geochronological data, the prehistoric cultures in eastern Taiwan could be classified into three stages: Fushan (ca 5000-3500yr BP), Peinan/Chilin (ca3500-2000yr BP), Kweishan (ca2000-1000 yr BP) and Jinpu (ca 1000-400yr BP) cultural assemblages respectively. A great difference exists between the various cultural stage, not only the pottery making techniques, but also the distributions of archaeological sites. Combined with the dynamic geomorphic evolution of marine terraces and the distribution of prehistoric culture sites on the east coast of the Coastal Range, a coastal migration trend could be established.

  9. Assessment of Metal Toxicity in Marine Ecosystems: Comparative Toxicity Potentials for Nine Cationic Metals in Coastal Seawater.

    PubMed

    Dong, Yan; Rosenbaum, Ralph K; Hauschild, Michael Z

    2016-01-05

    This study is a first attempt to develop globally applicable and spatially differentiated marine comparative toxicity potentials (CTPs) or ecotoxicity characterization factors for metals in coastal seawater for use in life cycle assessment. The toxicity potentials are based exclusively on marine ecotoxicity data and take account of metal speciation and bioavailability. CTPs were developed for nine cationic metals (Cd, Cr(III), Co, Cu(II), Fe(III), Mn, Ni, Pb, and Zn) in 64 large marine ecosystems (LMEs) covering all coastal waters in the world. The results showed that the CTP of a specific metal varies 3-4 orders of magnitude across LMEs, largely due to different seawater residence times. Therefore, the highest toxicity potential for metals was found in the LMEs with the longest seawater residence times. Across metals, the highest CTPs were observed for Cd, Pb, and Zn. At the concentration levels occurring in coastal seawaters, Fe acts not as a toxic agent but as an essential nutrient and thus has CTPs of zero.

  10. Ascaridoid parasites infecting in the frequently consumed marine fishes in the coastal area of China: A preliminary investigation.

    PubMed

    Zhao, Wen-Ting; Lü, Liang; Chen, Hui-Xia; Yang, Yue; Zhang, Lu-Ping; Li, Liang

    2016-04-01

    Marine fishes represent the important components of the diet in the coastal areas of China and they are also natural hosts of various parasites. However, to date, little is known about the occurrence of ascaridoid parasites in the frequently consumed marine fishes in China. In order to determine the presence of ascaridoid parasites in the frequently consumed marine fishes in the coastal town Huizhou, Guangdong Province, China, 211 fish representing 45 species caught from the South China Sea (off Daya Gulf) were examined. Five species of ascaridoid nematodes at different developmental stages were detected in the marine fishes examined herein, including third-stage larva of Anisakis typica (Diesing, 1860), third and fourth-stage larvae of Hysterothylacium sp. IV-A of Shamsi, Gasser & Beveridge, 2013, adult and third-stage larvae of Hysterothylacium zhoushanense Li, Liu & Zhang, 2014, adults and third-stage larvae of Raphidascaris lophii (Wu, 1949) and adults of Raphidascaris longispicula Li, Liu & Zhang, 2012. The overall prevalence of infection is 18.0%. Of them, Hysterothylacium sp. IV-A with the highest prevalence (17.5%) and intensity (mean=14.6) of infection was the predominant species. The prevalence and intensity of A. typica were very low (1/211 of marine fish infected with an intensity of one parasite per fish). The morphological and molecular characterization of all nematode species was provided. A cladistic analysis based on ITS sequence was constructed in order to determine the phylogenetic relationships of these ascaridoid parasites obtained herein. The present study provided important information on the occurrence and diagnosis of ascaridoid nematodes in the commercially important marine fishes from the South China Sea. The low level of infection and the species composition of ascaridoid nematodes seem to indicate the presence of low risk of human anisakidosis when local population consumed these marine fishes examined herein.

  11. Alteration in successional trajectories of bacterioplankton communities in response to co-exposure of cadmium and phenanthrene in coastal water microcosms.

    PubMed

    Qian, Jie; Ding, Qifang; Guo, Annan; Zhang, Demin; Wang, Kai

    2017-02-01

    Coexistence of heavy metals and organic contaminants in coastal ecosystems may lead to complicated circumstances in ecotoxicological assessment for biological communities due to potential interactions of contaminants. Consequences of metals and polycyclic aromatic hydrocarbons (PAHs) co-contamination on coastal marine microbes at the community level were paid less attention. We chose cadmium (Cd) and phenanthrene (PHE) as representatives of metals and PAHs, respectively, and mimicked contaminations using coastal water microcosms spiked with Cd (1 mg/L), PHE (1 mg/L), and their mixture over two weeks. 16S rRNA gene amplicon sequencing was used to compare individual and cumulative effects of Cd and PHE on temporal succession of bacterioplankton communities. Although we found dramatic impacts of dimethylsulfoxide (DMSO, used as a carrier solvent for PHE) on bacterial α-diversity and composition, the individual and cumulative effects of Cd and PHE on bacterial α-diversity were temporally variable showing an antagonistic pattern at early stage in the presence of DMSO. Temporal succession of bacterial community composition (BCC) was associated with temporal variability of water physicochemical parameters, each of which explained more variation in BCC than two target contaminants did. However, Cd, PHE, and their mixture distinctly altered the successional trajectories of BCC, while only the effect of Cd was retained at the end of experiment, suggesting certain resilience in BCC after the complete dissipation of PHE along the temporal trajectory. Moreover, bacterial assemblages at the genus level associated with the target contaminants were highly time-dependent and more unpredictable in the co-contamination group, in which some genera possessing hydrocarbon-degrading members might contribute to PHE degradation. These results provide preliminary insights into how co-exposure of Cd and PHE phylogenetically alters successional trajectories of bacterioplankton communities

  12. Contribution of Marine Group II Euryarchaeota to cyclopentyl tetraethers in the Pearl River estuary and coastal South China Sea: impact on the TEX86 paleothermometer

    NASA Astrophysics Data System (ADS)

    Wang, J. X.; Zhang, C. L.; Xie, W.; Zhang, Y. G.; Wang, P.

    2015-08-01

    TEX86 (TetraEther indeX of glycerol dialkyl glycerol tetraethers (GDGTs) with 86 carbon atoms) has been widely applied to reconstruct (paleo-) sea surface temperature (SST). While Marine Group I (MG I) Thaumarchaeota have been commonly believed to be the source for GDGTs, Marine Group II (MG II Euryarchaeota) have recently been suggested to contribute significantly to the GDGT pool in the ocean. However, little is known how the MG II Euryarchaeota-derived GDGTs may influence TEX86 in marine sediment record. In this study, we characterize MG II Euryarchaeota-produced GDGTs and assess the likely effect of these tetraether lipids on TEX86. Analyses of core lipid (CL-) and intact polar lipid (IPL-) based GDGTs, 454 sequencing and quantitative polymerase chain reaction (qPCR) targeting MG II Euryarchaeota were performed on suspended particulate matter (SPM) and surface sediments collected along a salinity gradient from the lower Pearl River (river water) and its estuary (mixing water) to the coastal South China Sea (seawater). The results showed that the community composition varied along the salinity gradient with MG II Euryarchaeota as the second dominant group in the mixing water and seawater. qPCR data indicated that the abundance of MG II Euryarchaeota in the mixing water was three to four orders of magnitude higher than the river water and seawater. Significant linear correlations were observed between the gene abundance ratio of MG II Euryarchaeota vs. total archaea and the relative abundance of GDGTs-1, -2, -3, or -4 as well as the ring index based on these compounds, which collectively suggest that MG II Euryarchaeota may actively produce GDGTs in the water column. These results also show strong evidence that MG II Euryarchaeota synthesizing GDGTs with 1-4 cyclopentane moieties may bias TEX86 in the water column and sediments. This study highlights that valid interpretation of TEX86 in sediment record, particularly in coastal oceans, needs to consider the

  13. Environmental gradients explain species richness and community composition of coastal breeding birds in the Baltic Sea.

    PubMed

    Nord, Maria; Forslund, Pär

    2015-01-01

    Scientifically-based systematic conservation planning for reserve design requires knowledge of species richness patterns and how these are related to environmental gradients. In this study, we explore a large inventory of coastal breeding birds, in total 48 species, sampled in 4646 1 km2 squares which covered a large archipelago in the Baltic Sea on the east coast of Sweden. We analysed how species richness (α diversity) and community composition (β diversity) of two groups of coastal breeding birds (specialists, i.e. obligate coastal breeders; generalists, i.e. facultative coastal breeders) were affected by distance to open sea, land area, shoreline length and archipelago width. The total number of species per square increased with increasing shoreline length, but increasing land area counteracted this effect in specialists. The number of specialist bird species per square increased with decreasing distance to open sea, while the opposite was true for the generalists. Differences in community composition between squares were associated with differences in land area and distance to open sea, both when considering all species pooled and each group separately. Fourteen species were nationally red-listed, and showed similar relationships to the environmental gradients as did all species, specialists and generalists. We suggest that availability of suitable breeding habitats, and probably also proximity to feeding areas, explain much of the observed spatial distributions of coastal birds in this study. Our findings have important implications for systematic conservation planning of coastal breeding birds. In particular, we provide information on where coastal breeding birds occur and which environments they seem to prefer. Small land areas with long shorelines are highly valuable both in general and for red-listed species. Thus, such areas should be prioritized for protection against human disturbance and used by management in reserve selection.

  14. Environmental Gradients Explain Species Richness and Community Composition of Coastal Breeding Birds in the Baltic Sea

    PubMed Central

    Nord, Maria; Forslund, Pär

    2015-01-01

    Scientifically-based systematic conservation planning for reserve design requires knowledge of species richness patterns and how these are related to environmental gradients. In this study, we explore a large inventory of coastal breeding birds, in total 48 species, sampled in 4646 1 km2 squares which covered a large archipelago in the Baltic Sea on the east coast of Sweden. We analysed how species richness (α diversity) and community composition (β diversity) of two groups of coastal breeding birds (specialists, i.e. obligate coastal breeders; generalists, i.e. facultative coastal breeders) were affected by distance to open sea, land area, shoreline length and archipelago width. The total number of species per square increased with increasing shoreline length, but increasing land area counteracted this effect in specialists. The number of specialist bird species per square increased with decreasing distance to open sea, while the opposite was true for the generalists. Differences in community composition between squares were associated with differences in land area and distance to open sea, both when considering all species pooled and each group separately. Fourteen species were nationally red-listed, and showed similar relationships to the environmental gradients as did all species, specialists and generalists. We suggest that availability of suitable breeding habitats, and probably also proximity to feeding areas, explain much of the observed spatial distributions of coastal birds in this study. Our findings have important implications for systematic conservation planning of coastal breeding birds. In particular, we provide information on where coastal breeding birds occur and which environments they seem to prefer. Small land areas with long shorelines are highly valuable both in general and for red-listed species. Thus, such areas should be prioritized for protection against human disturbance and used by management in reserve selection. PMID:25714432

  15. Effects of olive oil wastes on river basins and an oligotrophic coastal marine ecosystem: a case study in Greece.

    PubMed

    Pavlidou, A; Anastasopoulou, E; Dassenakis, M; Hatzianestis, I; Paraskevopoulou, V; Simboura, N; Rousselaki, E; Drakopoulou, P

    2014-11-01

    This work aims to contribute to the knowledge of the impacts of olive oil waste discharge to freshwater and oligotrophic marine environments, since the ecological impact of olive oil wastes in riverine and coastal marine ecosystems, which are the final repositories of the pollutants, is a great environmental problem on a global scale, mostly concerning all the Mediterranean countries with olive oil production. Messinia, in southwestern Greece, is one of the greatest olive oil production areas in Europe. During the last decade around 1.4×10(6)tons of olive oil mill wastewater has been disposed in the rivers of Messinia and finally entered the marine ecosystem of Messiniakos gulf. The pollution from olive oil mill wastewater in the main rivers of Messinia and the oligotrophic coastal zone of Messiniakos gulf and its effects on marine organisms were evaluated, before, during and after the olive oil production period. Elevated amounts of phenols (36.2-178 mg L(-1)) and high concentrations of ammonium (7.29-18.9 mmol L(-1)) and inorganic phosphorus (0.5-7.48 mmol L(-1)) were measured in small streams where the liquid disposals from several olive oil industries were gathered before their discharge in the major rivers of Messinia. The large number of olive oil units has downgraded the riverine and marine ecosystems during the productive period and a period more than five months is needed for the recovery of the ecosystem. Statistical analysis showed that the enrichment of freshwater and the coastal zone of Messiniakos gulf in ammonia, nitrite, phenols, total organic carbon, copper, manganese and nickel was directly correlated with the wastes from olive oil. Toxicity tests using 24h LC50 Palaemonidae shrimp confirm that olive mill wastewater possesses very high toxicity in the aquatic environment.

  16. Microbial Communities from Methane Hydrate-Bearing Deep Marine Sediments

    SciTech Connect

    Reed, David William; Fujita, Yoshiko; Delwiche, Mark Edmond; Blackwelder, David Bradley; Colwell, Frederick Scott; Uchida, T.

    2002-08-01

    Microbial communities in cores obtained from methane hydrate-bearing deep marine sediments (down to more than 300 m below the seafloor) in the forearc basin of the Nankai Trough near Japan were characterized with cultivation-dependent and -independent techniques. Acridine orange direct count data indicated that cell numbers generally decreased with sediment depth. Lipid biomarker analyses indicated the presence of viable biomass at concentrations greater than previously reported for terrestrial subsurface environments at similar depths. Archaeal lipids were more abundant than bacterial lipids. Methane was produced from both acetate and hydrogen in enrichments inoculated with sediment from all depths evaluated, at both 10 and 35°C. Characterization of 16S rRNA genes amplified from the sediments indicated that archaeal clones could be discretely grouped within the Euryarchaeota and Crenarchaeota domains. The bacterial clones exhibited greater overall diversity than the archaeal clones, with sequences related to the Bacteroidetes, Planctomycetes, Actinobacteria, Proteobacteria, and green nonsulfur groups. The majority of the bacterial clones were either members of a novel lineage or most closely related to uncultured clones. The results of these analyses suggest that the microbial community in this environment is distinct from those in previously characterized methane hydrate-bearing sediments.

  17. The Fate of Marine Bacterial Exopolysaccharide in Natural Marine Microbial Communities

    PubMed Central

    Zhang, Zilian; Chen, Yi; Wang, Rui; Cai, Ruanhong; Fu, Yingnan; Jiao, Nianzhi

    2015-01-01

    Most marine bacteria produce exopolysaccharides (EPS), and bacterial EPS represent an important source of dissolved organic carbon in marine ecosystems. It was proposed that bacterial EPS rich in uronic acid is resistant to mineralization by microbes and thus has a long residence time in global oceans. To confirm this hypothesis, bacterial EPS rich in galacturonic acid was isolated from Alteromonas sp. JL2810. The EPS was used to amend natural seawater to investigate the bioavailability of this EPS by native populations, in the presence and absence of ammonium and phosphate amendment. The data indicated that the bacterial EPS could not be completely consumed during the cultivation period and that the bioavailability of EPS was not only determined by its intrinsic properties, but was also determined by other factors such as the availability of inorganic nutrients. During the experiment, the humic-like component of fluorescent dissolved organic matter (FDOM) was freshly produced. Bacterial community structure analysis indicated that the class Flavobacteria of the phylum Bacteroidetes was the major contributor for the utilization of EPS. This report is the first to indicate that Flavobacteria are a major contributor to bacterial EPS degradation. The fraction of EPS that could not be completely utilized and the FDOM (e.g., humic acid-like substances) produced de novo may be refractory and may contribute to the carbon storage in the oceans. PMID:26571122

  18. The Fate of Marine Bacterial Exopolysaccharide in Natural Marine Microbial Communities

    DOE PAGES

    Zhang, Zilian; Chen, Yi; Wang, Rui; ...

    2015-11-16

    Most marine bacteria produce exopolysaccharides (EPS), and bacterial EPS represent an important source of dissolved organic carbon in marine ecosystems. It was proposed that bacterial EPS rich in uronic acid is resistant to mineralization by microbes and thus has a long residence time in global oceans. To confirm this hypothesis, bacterial EPS rich in galacturonic acid was isolated from Alteromonas sp. JL2810. The EPS was used to amend natural seawater to investigate the bioavailability of this EPS by native populations, in the presence and absence of ammonium and phosphate amendment. The data indicated that the bacterial EPS could not bemore » completely consumed during the cultivation period and that the bioavailability of EPS was not only determined by its intrinsic properties, but was also determined by other factors such as the availability of inorganic nutrients. During the experiment, the humic-like component of fluorescent dissolved organic matter (FDOM) was freshly produced. Bacterial community structure analysis indicated that the class Flavobacteria of the phylum Bacteroidetes was the major contributor for the utilization of EPS. This report is the first to indicate that Flavobacteria are a major contributor to bacterial EPS degradation. Finally, the fraction of EPS that could not be completely utilized and the FDOM (e.g., humic acid-like substances) produced de novo may be refractory and may contribute to the carbon storage in the oceans.« less

  19. The Fate of Marine Bacterial Exopolysaccharide in Natural Marine Microbial Communities

    SciTech Connect

    Zhang, Zilian; Chen, Yi; Wang, Rui; Cai, Ruanhong; Fu, Yingnan; Jiao, Nianzhi; Quigg, Antonietta

    2015-11-16

    Most marine bacteria produce exopolysaccharides (EPS), and bacterial EPS represent an important source of dissolved organic carbon in marine ecosystems. It was proposed that bacterial EPS rich in uronic acid is resistant to mineralization by microbes and thus has a long residence time in global oceans. To confirm this hypothesis, bacterial EPS rich in galacturonic acid was isolated from Alteromonas sp. JL2810. The EPS was used to amend natural seawater to investigate the bioavailability of this EPS by native populations, in the presence and absence of ammonium and phosphate amendment. The data indicated that the bacterial EPS could not be completely consumed during the cultivation period and that the bioavailability of EPS was not only determined by its intrinsic properties, but was also determined by other factors such as the availability of inorganic nutrients. During the experiment, the humic-like component of fluorescent dissolved organic matter (FDOM) was freshly produced. Bacterial community structure analysis indicated that the class Flavobacteria of the phylum Bacteroidetes was the major contributor for the utilization of EPS. This report is the first to indicate that Flavobacteria are a major contributor to bacterial EPS degradation. Finally, the fraction of EPS that could not be completely utilized and the FDOM (e.g., humic acid-like substances) produced de novo may be refractory and may contribute to the carbon storage in the oceans.

  20. Ecosystem Services Transcend Boundaries: Estuaries Provide Resource Subsidies and Influence Functional Diversity in Coastal Benthic Communities

    PubMed Central

    Savage, Candida; Thrush, Simon F.; Lohrer, Andrew M.; Hewitt, Judi E.

    2012-01-01

    Background Estuaries are highly productive ecosystems that can export organic matter to coastal seas (the ‘outwelling hypothesis’). However the role of this food resource subsidy on coastal ecosystem functioning has not been examined. Methodology/Principal Findings We investigated the influence of estuarine primary production as a resource subsidy and the influence of estuaries on biodiversity and ecosystem functioning in coastal mollusk-dominated sediment communities. Stable isotope values (δ13C, δ15N) demonstrated that estuarine primary production was exported to the adjacent coast and contributed to secondary production up to 4 km from the estuary mouth. Further, isotope signatures of suspension feeding bivalves on the adjacent coast (Dosinia subrosea) closely mirrored the isotope values of the dominant bivalves inside the estuaries (Austrovenus stutchburyi), indicating utilization of similar organic matter sources. However, the food subsidies varied between estuaries; with estuarine suspended particulate organic matter (SPOM) dominant at Tairua estuary, while seagrass and fringing vegetation detritus was proportionately more important at Whangapoua estuary, with lesser contributions of estuarine SPOM. Distance from the estuary mouth and the size and density of large bivalves (Dosinia spp.) had a significant influence on the composition of biological traits in the coastal macrobenthic communities, signaling the potential influence of these spatial subsidies on ecosystem functioning. Conclusions/Significance Our study demonstrated that the locations where ecosystem services like productivity are generated are not necessarily where the services are utilized. Further, we identified indirect positive effects of the nutrient subsidies on biodiversity (the estuarine subsidies influenced the bivalves, which in turn affected the diversity and functional trait composition of the coastal sediment macrofaunal communities). These findings highlight the importance of

  1. Adjustment of the summertime marine atmospheric boundary layer to the western Iberia coastal morphology

    NASA Astrophysics Data System (ADS)

    Monteiro, Isabel T.; Santos, Aires J.; Belo-Pereira, Margarida; Oliveira, Paulo B.

    2016-04-01

    During summer (June, July, and August), northerly winds driven by the Azores anticyclone are prevalent over western Iberia. The Quick Scatterometer Satellite 2000 to 2009 summertime estimates reveal a broad high wind speed (≥7 ms-1) area extending about 300 km from shore and along the entire Iberian west coast. Nested in this large high-speed region, preferred maximum regions anchored in the Iberian major capes, Finisterre, Roca, and S. Vicente, are found. Composite analyses of wind maxima were performed to diagnose the typical summertime synoptic-scale pressure distribution associated with these smaller size high-speed regions. The flow low-level structure was further studied with a mesoscale numerical prediction model for three northerly events characterized by typical summertime synoptic conditions. A low-level coastal jet, setting the background conditions to the marine atmospheric boundary layer (MABL) response to topography, was found in the three cases. The causes for wind maximum downwind capes were investigated, focusing on the hypothesis that western Iberia MABL responds to hydraulic forcing. For the three events supercritical and transcritical flow conditions were identified and expansion fan signatures were found downwind each cape. Aircraft measurements, performed during one of the events, gave additional evidence of the expansion fan leeward Cape Roca. The importance of other forcing mechanisms was also assessed by considering the hypothesis of downslope wind acceleration and found to be in direct conflict with soundings and surface observations.

  2. Do pharmaceuticals bioaccumulate in marine molluscs and fish from a coastal lagoon?

    PubMed

    Moreno-González, R; Rodríguez-Mozaz, S; Huerta, B; Barceló, D; León, V M

    2016-04-01

    The bioaccumulation of 20 pharmaceuticals in cockle (Cerastodema glaucum), noble pen shell (Pinna nobilis), sea snail (Murex trunculus), golden grey mullet (Liza aurata) and black goby (Gobius niger) was evaluated, considering their distribution throughout the Mar Menor lagoon and their variations in spring and autumn 2010. The analytical procedure was adapted for the different matrices as being sensitive and reproducible. Eighteen out of the 20 compounds analysed were found at low ngg(-1) in these species throughout the lagoon. Hydrochlorothiazide and carbamazepine were detected in all species considered. The bioaccumulation of pharmaceuticals was heterogeneous in the lagoon, with a higher number of pharmaceuticals being detected in fish (18) than in wild molluscs (8), particularly in golden grey mullet muscle (16). В-blockers and psychiatric drugs were preferentially bioccumulated in fish and hydrochlorothiazide was also confirmed in caged clams. The higher detection frequency and concentrations found in golden grey mullet suggested that mugilids could be used as an indicator of contamination by pharmaceuticals in coastal areas. To the best of our knowledge, this is the first study that shows data about hydrochlorothiazide, levamisole and codeine in wild marine biota.

  3. Massive marine methane emissions from near-shore shallow coastal areas

    NASA Astrophysics Data System (ADS)

    Borges, Alberto V.; Champenois, Willy; Gypens, Nathalie; Delille, Bruno; Harlay, Jérôme

    2016-06-01

    Methane is the second most important greenhouse gas contributing to climate warming. The open ocean is a minor source of methane to the atmosphere. We report intense methane emissions from the near-shore southern region of the North Sea characterized by the presence of extensive areas with gassy sediments. The average flux intensities (~130 μmol m‑2 d‑1) are one order of magnitude higher than values characteristic of continental shelves (~30 μmol m‑2 d‑1) and three orders of magnitude higher than values characteristic of the open ocean (~0.4 μmol m‑2 d‑1). The high methane concentrations (up to 1,128 nmol L‑1) that sustain these fluxes are related to the shallow and well-mixed water column that allows an efficient transfer of methane from the seafloor to surface waters. This differs from deeper and stratified seep areas where there is a large decrease of methane between bottom and surface by microbial oxidation or physical transport. Shallow well-mixed continental shelves represent about 33% of the total continental shelf area, so that marine coastal methane emissions are probably under-estimated. Near-shore and shallow seep areas are hot spots of methane emission, and our data also suggest that emissions could increase in response to warming of surface waters.

  4. Levels and distribution of polybrominated diphenyl ethers (PBDEs) in marine fishes from Chinese coastal waters.

    PubMed

    Xia, Chonghuan; Lam, James C W; Wu, Xiaoguo; Sun, Liguang; Xie, Zhouqing; Lam, Paul K S

    2011-01-01

    Concentrations of polybrominated diphenyl ethers (PBDEs) in yellow croakers (Pseudosciaena crocea) and silver pomfrets (Pampus argenteus) collected from nine coastal cities along the eastern China coastline were investigated. PBDE congeners with mono- to hexa-brominated substitutions were detected in the samples, indicating their ubiquitous distribution in the marine environment of China. The total PBDE concentration averaged 3.04 ng g⁻¹ lipid wt, a level that was relatively lower than in other regions of the world, especially North America where Penta-BDE was extensively used. Geographically, the highest concentration of PBDEs was found in Xiamen, and the PBDE levels in yellow croakers were significantly higher than those in pomfrets in most of the selected cities, a pattern which may be related to the different feeding habits of the two species. The congener profiles of PBDEs were found to be different from the commonly detected pattern in fishes from other regions of the world (i.e., BDE47>BDE99, BDE100>BDE153, BDE154). BDE47 and BDE154 were the predominant congeners in both species, accounting for more than 60% of the total PBDE concentrations. The reasons for the relatively high proportion of BDE154 may be due to the debromination of higher brominated congeners such as BDE183 and BDE209 by these two species.

  5. Massive marine methane emissions from near-shore shallow coastal areas

    PubMed Central

    Borges, Alberto V.; Champenois, Willy; Gypens, Nathalie; Delille, Bruno; Harlay, Jérôme

    2016-01-01

    Methane is the second most important greenhouse gas contributing to climate warming. The open ocean is a minor source of methane to the atmosphere. We report intense methane emissions from the near-shore southern region of the North Sea characterized by the presence of extensive areas with gassy sediments. The average flux intensities (~130 μmol m−2 d−1) are one order of magnitude higher than values characteristic of continental shelves (~30 μmol m−2 d−1) and three orders of magnitude higher than values characteristic of the open ocean (~0.4 μmol m−2 d−1). The high methane concentrations (up to 1,128 nmol L−1) that sustain these fluxes are related to the shallow and well-mixed water column that allows an efficient transfer of methane from the seafloor to surface waters. This differs from deeper and stratified seep areas where there is a large decrease of methane between bottom and surface by microbial oxidation or physical transport. Shallow well-mixed continental shelves represent about 33% of the total continental shelf area, so that marine coastal methane emissions are probably under-estimated. Near-shore and shallow seep areas are hot spots of methane emission, and our data also suggest that emissions could increase in response to warming of surface waters. PMID:27283125

  6. Visual assessment of redoxcline compared to electron potential in coastal marine sediments

    NASA Astrophysics Data System (ADS)

    Simone, Michelle; Grant, Jon

    2017-03-01

    A geochemical proxy often utilized in marine benthic health assessment is the depth of the apparent redox potential discontinuity (aRPD), a visual signature representing the transition from lighter oxidized to darker reduced sediments. Traditionally this boundary is defined by the redox potential discontinuity (RPD), a 0 mV isovolt measured by platinum electrodes. In order to verify the use of visual transitions as a proxy for electrochemical RPD, these measurements were compared in subtidal sandy muds (13.5 m depth) in coastal Nova Scotia, Canada. The apparent RPD was measured from sediment profile imagery (SPI) images and diver-retrieved cores. Pre-drilled cores with vertical holes allowed for the coupling of electrochemical and visual boundary measurements in the same sample. The mean discrepancy of the RPD is 0.6 ± 2.6 cm (mean ± maximum variation) above the aRPD depth. The Eh range at the aRPD, -14.94 ± 52.21 mV, encompassed the 0 mV isovolt, suggesting the aRPD can be applied as a sound proxy for the transition between redox states.

  7. Remote sensing and in situ observations of marine slicks associated with inhomogeneous coastal currents

    NASA Astrophysics Data System (ADS)

    Ermakov, S.; Kapustin, I.; Sergievskaya, I.

    2011-11-01

    Field observations co-located and simultaneous with satellite radar imagery of biogenic slick bands on the sea surface aimed to study relation between slicks and marine stream currents were carried out in the coastal zone of the Black Sea. Measurements of the current velocities at different depths were performed using an acoustic Doppler current profiler (ADCP) and surface floats. Samples of surfactant films inside/outside slick bands were collected from the water surface with nets. The sampled films were reconstructed in laboratory conditions and measurements of the damping coefficient of gravity-capillary waves and the surface tension were carried out using an original parametric wave method. It is obtained that the banded slicks are characterized by enhanced concentration of surfactants due to their compression by convergent current components. The slicks are revealed to be oriented along the stream currents and are located in the zones of current shears. Small convergent transverse velocity components are observed near slick boundaries and are responsible for slick formation in stream shear currents. Different examples of slicks formed by stream shear current are described. Results of a case study of two streams of different directions merging and forming a banded slick in a shear zone with convergent transverse current components are presented. Another case study is when a flow below a thermocline coming to the shore meets a bottom slope and a vertical current occurs resulting in horizontal divergence and convergence on the surface.

  8. Vertical activity distribution of dissimilatory nitrate reduction in coastal marine sediments

    NASA Astrophysics Data System (ADS)

    Behrendt, A.; de Beer, D.; Stief, P.

    2013-05-01

    The relative importance of two dissimilatory nitrate reduction pathways, denitrification (DEN) and dissimilatory nitrate reduction to ammonium (DNRA), was investigated in intact sediment cores from five different coastal marine field sites. The vertical distribution of DEN activity was examined using the acetylene inhibition technique combined with N2O microsensor measurements, whereas NH4+ production via DNRA was measured with a recently developed gel probe-stable isotope technique. At all field sites, dissimilatory nitrate reduction was clearly dominated by DEN (> 59% of the total NO3- reduced) rather than by DNRA, irrespective of the sedimentary inventories of electron donors such as organic carbon, sulfide, and iron. Ammonium production via DNRA (8.9% of the total NO3- reduced) was exclusively found at one site with very high concentrations of total sulfide and NH4+ in the layer of NO3- reduction and below. Sediment from two field sites, one with and one without DNRA activity in the core incubations, was also used for slurry incubations. Now, in both sediments high DNRA activity was detected accounting for 37-77% of the total NO3- reduced. These contradictory results can be explained by enhanced NO3- availability for DNRA bacteria in the sediment slurries compared to the core-incubated sediments. It can be argued that the gel probe technique gives more realistic estimates of DNRA activity in diffusion-dominated sediments, while slurry incubations are more suitable for advection-dominated sediments.

  9. Selenium: an essential element for growth of the coastal marine diatom Thalassiosira pseudonana (bacillariophyceae)

    SciTech Connect

    Price, N.M.; Thompson, P.A.; Harrison, P.J.

    1987-03-01

    An obligate requirement for selenium is demonstrated in axenic culture of the coastal marine diatom Thalassiosira pseudonana (clone 3H) (Hust.) Hasle and Heimdal grown in artificial seawater medium. Selenium deficiency was characterized by a reduction in growth rate and eventually by a cessation of cell division. The addition of 10 M Na2SeO3 to nutrient enriched artificial seawater resulted in excellent growth of T. pseudonana and only a slight inhibition of growth occurred at Na2SeO3 concentrations of 10 T and 10 S M. By contrast, Na2SeO4 failed to support growth of T. pseudonana when supplied at concentrations less than 10 X M and the growth rate at this concentration was only one quarter of the maximum growth rate. The addition of 10 T and 10 S M Na2SeO4 to the culture medium was toxic and cell growth was completely inhibited. Eleven trace elements were tested for their ability to replace the selenium requirement by this alga and all were without effect. In selenium-deficient and selenium-starved cultures of T. pseudonana cell volume increased as much as 10-fold as a result of an increase in cell length (along the pervalvar axis) but cell width was constant. It is concluded that selenium is an indispensable element for the growth of T. pseudonana and it should be included as a nutrient enrichment to artificial seawater medium when culturing this alga.

  10. Short-term elevated CO2 exposure stimulated photochemical performance of a coastal marine diatom.

    PubMed

    Wu, Yaping; Campbell, Douglas A; Gao, Kunshan

    2017-04-01

    Ocean acidification changes seawater chemistry, with increased CO2 and decreased pH regarded as the most important factors that impact marine organisms. This study employed an unconventional methodology to distinguish the independent effects of pH versus CO2. Changes in CO2 dominated the photochemical responses of the coastal diatom Phaeodactylum tricornutum to short-term ocean acidification. Increased CO2 lowered non-photochemical quenching of excitation and stimulated the electron transport rates of photosynthesis, with the largest effects on both parameters when CO2 and pH were altered simultaneously. Changes in pH alone did not show significant effects upon non-photochemical quenching (NPQ) nor upon electron transport rates, but can synergistically amplify CO2 effects under low light. Maximal induction of NPQ after illumination showed only a limited response to increasing CO2 under stable pH, across a range of increasing light levels, but maximal induced NPQ declined rapidly with increasing CO2 under variable pH, when measured under exposure to sub-saturating light, but not under saturating light. These findings show that aqueous CO2 and pH affect different physiological processes independently or interactively, which should be taken into account in future research for better understanding of responses to ocean acidification at the mechanistic level.

  11. PAH content, toxicity and genotoxicity of coastal marine sediments from the Rovinj area, Northern Adriatic, Croatia.

    PubMed

    Bihari, Nevenka; Fafandel, Maja; Hamer, Bojan; Kralj-Bilen, Blanka

    2006-08-01

    Surface marine sediments collected from 8 sampling sites within the Rovinj coastal area, Northern Adriatic, Croatia, were used for determining priority pollutant polycyclic aromatic hydrocarbons (PAHs) and toxic/genotoxic potential of sediment organic extracts. Total PAH concentrations ranged from 32 microg/kg (protected area) to 13.2 mg/kg dry weight (harbor) and showed clear differences between pristine, urban industrial and harbor areas. PAHs distribution revealed their pyrogenic origin with some biogenic influence in harbor. At all sampling sites sediment extracts showed toxic potential that was consistent with the sediment type. No correlation between toxicity measured by Microtox assay and concentrations of individual or total PAHs was found. Noncytotoxic dose of sediment extracts showed no genotoxic potential in bacterial umu-test. DNA damage is positively related to total PAHs at 4 sampling sites (S-1, S-2, S-3, S-6), but the highest DNA damage was not observed at the site with the highest total sediment PAH content (S-5).

  12. The National Association of Marine Laboratories: a connected web for studying long-term changes in U.S. coastal and marine waters.

    PubMed

    Feller, R J; Karl, D M

    1996-04-01

    Long-term time-series measurements provide data that test specific hypotheses or suggest new avenues of study. Such studies are widely acknowledged as important for differentiating the influence of human activities from natural background variability. Several long-term research or monitoring programs are active in coastal and marine environments around the world and serve as models for development of new studies. The spatial array of U.S. coastal laboratories is suitable for resolving latitudinal trends and for many types of comparative studies. However, establishing a network of coastal laboratories focused on long-term monitoring and research problems presents special challenges in setting research priorities at appropriate scales, in data management, and in coordination of the scientific effort. The National Association of Marine Laboratories (NAML) is uniquely positioned to promote long-term studies among networks of its member institutions. The NAML can play an effective role in publicizing the importance of long-term studies, in providing access to expertise in this type of research, and in promoting its continuance for periods longer than the length of individual scientific careers.

  13. Ecology of delta marshes of coastal Louisiana: a community profile

    SciTech Connect

    Gosselink, J.G.

    1984-05-01

    This report reviews and synthesizes ecological information and data on the extensive marshes of the Mississippi River Deltaic Plain. Over the past 6000 years the river has built a delta onto the Continental Shelf of the Gulf of Mexico covering about 23,900 km/sup 2/. This low land is primarily marshes and represents about 22% of the total coastal wetland area of the 48 conterminous United States. The delta is notable for its high primary productivity, its valuable fishery and fur industry, and the recreational fishing and hunting it supports. The Mississippi River delta marshes are subject to the unique problem of extremely rapid marsh degradation due to a complex mixture of natural processes and human activities that include worldwide sea-level rise; subsidence; navigation and extractive industry canal dredging; flood control measures that channel the river; and pollution from domestic sewage, exotic organic chemicals, and heavy metals. 262 references, 75 figures, 34 tables.

  14. Variations of phytoplankton community structure related to water quality trends in a tropical karstic coastal zone.

    PubMed

    Alvarez-Góngora, Cynthia; Herrera-Silveira, Jorge A

    2006-01-01

    Phytoplankton community structure in coastal areas is a result of various environmental factors such as nutrients, light, grazing, temperature, and salinity. The Yucatan Peninsula is a karstic tropical region that is strongly influenced by submerged groundwater discharge (SGD) into the coastal zone. Phytoplankton community structure and its relationship with regional and local water quality variables were studied in four ports of the northwestern Yucatan Peninsula. Water quality was strongly related to SGD, and variations in phytoplankton community structure were related to local nutrient loading and hydrographic conditions, turbulence, and human impacts. Our study provides an ecological baseline for the Yucatan Peninsula and serves as a basis for establishing monitoring programs to predict changes at sites with high hydrological variation and in developing an early alert system for harmful toxic algal blooms.

  15. Hypernatremia in Dice snakes (Natrix tessellata) from a coastal population: implications for osmoregulation in marine snake prototypes.

    PubMed

    Brischoux, François; Kornilev, Yurii V

    2014-01-01

    The widespread relationship between salt excreting structures (e.g., salt glands) and marine life strongly suggests that the ability to regulate salt balance has been crucial during the transition to marine life in tetrapods. Elevated natremia (plasma sodium) recorded in several marine snakes species suggests that the development of a tolerance toward hypernatremia, in addition to salt gland development, has been a critical feature in the evolution of marine snakes. However, data from intermediate stage (species lacking salt glands but occasionally using salty environments) are lacking to draw a comprehensive picture of the evolution of an euryhaline physiology in these organisms. In this study, we assessed natremia of free-ranging Dice snakes (Natrix tessellata, a predominantly fresh water natricine lacking salt glands) from a coastal population in Bulgaria. Our results show that coastal N. tessellata can display hypernatremia (up to 195.5 mmol x l(-1)) without any apparent effect on several physiological and behavioural traits (e.g., hematocrit, body condition, foraging). More generally, a review of natremia in species situated along a continuum of habitat use between fresh- and seawater shows that snake species display a concomitant tolerance toward hypernatremia, even in species lacking salt glands. Collectively, these data suggest that a physiological tolerance toward hypernatremia has been critical during the evolution of an euryhaline physiology, and may well have preceded the evolution of salt glands.

  16. Hypernatremia in Dice Snakes (Natrix tessellata) from a Coastal Population: Implications for Osmoregulation in Marine Snake Prototypes

    PubMed Central

    Brischoux, François; Kornilev, Yurii V.

    2014-01-01

    The widespread relationship between salt excreting structures (e.g., salt glands) and marine life strongly suggests that the ability to regulate salt balance has been crucial during the transition to marine life in tetrapods. Elevated natremia (plasma sodium) recorded in several marine snakes species suggests that the development of a tolerance toward hypernatremia, in addition to salt gland development, has been a critical feature in the evolution of marine snakes. However, data from intermediate stage (species lacking salt glands but occasionally using salty environments) are lacking to draw a comprehensive picture of the evolution of an euryhaline physiology in these organisms. In this study, we assessed natremia of free-ranging Dice snakes (Natrix tessellata, a predominantly fresh water natricine lacking salt glands) from a coastal population in Bulgaria. Our results show that coastal N. tessellata can display hypernatremia (up to 195.5 mmol.l−1) without any apparent effect on several physiological and behavioural traits (e.g., hematocrit, body condition, foraging). More generally, a review of natremia in species situated along a continuum of habitat use between fresh- and seawater shows that snake species display a concomitant tolerance toward hypernatremia, even in species lacking salt glands. Collectively, these data suggest that a physiological tolerance toward hypernatremia has been critical during the evolution of an euryhaline physiology, and may well have preceded the evolution of salt glands. PMID:24658047

  17. Dynamics of bacterial assemblages and removal of polycyclic aromatic hydrocarbons in oil-contaminated coastal marine sediments subjected to contrasted oxygen regimes.

    PubMed

    Militon, Cécile; Jézéquel, Ronan; Gilbert, Franck; Corsellis, Yannick; Sylvi, Léa; Cravo-Laureau, Cristiana; Duran, Robert; Cuny, Philippe

    2015-10-01

    To study the impact of oxygen regimes on the removal of polycylic aromatic hydrocarbons (PAHs) in oil-spill-affected coastal marine sediments, we used a thin-layer incubation method to ensure that the incubated sediment was fully oxic, anoxic, or was influenced by oxic-anoxic switches without sediment stirring. Hydrocarbon content and microbial assemblages were followed during 60 days to determine PAH degradation kinetics and microbial community dynamics according to the oxygenation regimes. The highest PAH removal, with 69 % reduction, was obtained at the end of the experiment under oxic conditions, whereas weaker removals were obtained under oscillating and anoxic conditions (18 and 12 %, respectively). Bacterial community structure during the experiment was determined using a dual 16S rRNA genes/16S rRNA transcripts approach, allowing the characterization of metabolically active bacteria responsible for the functioning of the bacterial community in the contaminated sediment. The shift of the metabolically active bacterial communities showed that the selection of first responders belonged to Pseudomonas spp. and Labrenzia sp. and included an unidentified Deltaproteobacteria-irrespective of the oxygen regime-followed by the selection of late responders adapted to the oxygen regime. A novel unaffiliated phylotype (B38) was highly active during the last stage of the experiment, at which time, the low-molecular-weight (LMW) PAH biodegradation rates were significant for permanent oxic- and oxygen-oscillating conditions, suggesting that this novel phylotype plays an active role during the restoration phase of the studied ecosystem.

  18. Observational and numerical studies of the boundary layer, cloud, and aerosol variability in the southeast Pacific coastal marine stratocumulus

    NASA Astrophysics Data System (ADS)

    Zheng, Xue

    This dissertation investigates the impacts of meteorological factors and aerosol indirect effects on the costal marine stratocumulus (Sc) variations in the southeast Pacific, a region that has been largely unexplored and is a major challenge of the modeling community, through both observational and numerical studies. This study provides a unique dataset for documenting the characteristics of the marine Sc-topped BL off the coast of Northern Chile. The observational study shows that the boundary layer (BL) over this region was well mixed and topped by a thin and non-drizzling Sc layer on days synoptically-quiescent with little variability between this region and the coast. The surface wind, the surface fluxes and the BL turbulence appeared to be weaker than those over other ocean regions where stratocumulus clouds exist. The weaker turbulence in the BL may contribute to a relatively low entrainment rate calculated from the near cloud top fluxes. This in-situ data set can help us better understand cloud processes within this coastal regime, and also be valuable for the calibration of the satellite retrievals and the evaluation of numerical models operating at a variety of scales. A strong positive correlation between the liquid water path (LWP) and the cloud condensation nuclei (CCN) was observed under similar boundary layer conditions. This correlation cannot be explained by some of the hypotheses based on previous modeling studies. The satellite retrievals obtained upstream one day prior to the flight observations reveal some sign that the clouds under the high CCN concentrations have minimal LWP loss due to precipitation suppression effects. The results from large eddy simulations with a two-momentum bulk microphysics scheme under different idealized environment scenarios based on aircraft observations indicate that (1) the simulated Sc responds more quickly to changes in large-scale subsidence than to those changes in surface fluxes, free-tropospheric humidity

  19. Experimental Warming Decreases the Average Size and Nucleic Acid Content of Marine Bacterial Communities.

    PubMed

    Huete-Stauffer, Tamara M; Arandia-Gorostidi, Nestor; Alonso-Sáez, Laura; Morán, Xosé Anxelu G

    2016-01-01

    Organism size reduction with increasing temperature has been suggested as a universal response to global warming. Since genome size is usually correlated to cell size, reduction of genome size in unicells could be a parallel outcome of warming at ecological and evolutionary time scales. In this study, the short-term response of cell size and nucleic acid content of coastal marine prokaryotic communities to temperature was studied over a full annual cycle at a NE Atlantic temperate site. We used flow cytometry and experimental warming incubations, spanning a 6°C range, to analyze the hypothesized reduction with temperature in the size of the widespread flow cytometric bacterial groups of high and low nucleic acid content (HNA and LNA bacteria, respectively). Our results showed decreases in size in response to experimental warming, which were more marked in 0.8 μm pre-filtered treatment rather than in the whole community treatment, thus excluding the role of protistan grazers in our findings. Interestingly, a significant effect of temperature on reducing the average nucleic acid content (NAC) of prokaryotic cells in the communities was also observed. Cell size and nucleic acid decrease with temperature were correlated, showing a common mean decrease of 0.4% per °C. The usually larger HNA bacteria consistently showed a greater reduction in cell and NAC compared with their LNA counterparts, especially during the spring phytoplankton bloom period associated to maximum bacterial growth rates in response to nutrient availability. Our results show that the already smallest planktonic microbes, yet with key roles in global biogeochemical cycling, are likely undergoing important structural shrinkage in response to rising temperatures.

  20. Experimental Warming Decreases the Average Size and Nucleic Acid Content of Marine Bacterial Communities

    PubMed Central

    Huete-Stauffer, Tamara M.; Arandia-Gorostidi, Nestor; Alonso-Sáez, Laura; Morán, Xosé Anxelu G.

    2016-01-01

    Organism size reduction with increasing temperature has been suggested as a universal response to global warming. Since genome size is usually correlated to cell size, reduction of genome size in unicells could be a parallel outcome of warming at ecological and evolutionary time scales. In this study, the short-term response of cell size and nucleic acid content of coastal marine prokaryotic communities to temperature was studied over a full annual cycle at a NE Atlantic temperate site. We used flow cytometry and experimental warming incubations, spanning a 6°C range, to analyze the hypothesized reduction with temperature in the size of the widespread flow cytometric bacterial groups of high and low nucleic acid content (HNA and LNA bacteria, respectively). Our results showed decreases in size in response to experimental warming, which were more marked in 0.8 μm pre-filtered treatment rather than in the whole community treatment, thus excluding the role of protistan grazers in our findings. Interestingly, a significant effect of temperature on reducing the average nucleic acid content (NAC) of prokaryotic cells in the communities was also observed. Cell size and nucleic acid decrease with temperature were correlated, showing a common mean decrease of 0.4% per °C. The usually larger HNA bacteria consistently showed a greater reduction in cell and NAC compared with their LNA counterparts, especially during the spring phytoplankton bloom period associated to maximum bacterial growth rates in response to nutrient availability. Our results show that the already smallest planktonic microbes, yet with key roles in global biogeochemical cycling, are likely undergoing important structural shrinkage in response to rising temperatures. PMID:27242747

  1. Global Coastal and Marine Spatial Planning (CMSP) from Space Based AIS Ship Tracking

    NASA Astrophysics Data System (ADS)

    Schwehr, K. D.; Foulkes, J. A.; Lorenzini, D.; Kanawati, M.

    2011-12-01

    All nations need to be developing long term integrated strategies for how to use and preserve our natural resources. As a part of these strategies, we must evalutate how communities of users react to changes in rules and regulations of ocean use. Global characterization of the vessel traffic on our Earth's oceans is essential to understanding the existing uses to develop international Coast and Marine Spatial Planning (CMSP). Ship traffic within 100-200km is beginning to be effectively covered in low latitudes by ground based receivers collecting position reports from the maritime Automatic Identification System (AIS). Unfortunately, remote islands, high latitudes, and open ocean Marine Protected Areas (MPA) are not covered by these ground systems. Deploying enough autonomous airborne (UAV) and surface (USV) vessels and buoys to provide adequate coverage is a difficult task. While the individual device costs are plummeting, a large fleet of AIS receivers is expensive to maintain. The global AIS coverage from SpaceQuest's low Earth orbit satellite receivers combined with the visualization and data storage infrastructure of Google (e.g. Maps, Earth, and Fusion Tables) provide a platform that enables researchers and resource managers to begin answer the question of how ocean resources are being utilized. Near real-time vessel traffic data will allow managers of marine resources to understand how changes to education, enforcement, rules, and regulations alter usage and compliance patterns. We will demonstrate the potential for this system using a sample SpaceQuest data set processed with libais which stores the results in a Fusion Table. From there, the data is imported to PyKML and visualized in Google Earth with a custom gx:Track visualization utilizing KML's extended data functionality to facilitate ship track interrogation. Analysts can then annotate and discuss vessel tracks in Fusion Tables.

  2. Decision-making in Coastal Management and a Collaborative Governance Framework

    EPA Science Inventory

    Over half of the US population lives in coastal watersheds, creating a regional pressure for coastal ecosystems to provide a broad spectrum of services while continuing to support healthy communities and economies. The National Ocean Policy, issued in 2010, and Coastal and Marin...

  3. Identification and bioactive potential of marine microorganisms from selected Florida coastal areas.

    PubMed

    Christensen, Anna; Martin, Glenroy D A

    2017-01-26

    The ocean, with its rich untapped chemical biodiversity, continues to serve as a source of potentially new therapeutic agents. The evaluation of the diversity of cultivable microorganisms from the marine sponge Halichondria panicea and ocean sediment samples were examined and their potential as sources of antimicrobial and antiproliferative agents were investigated. The marine sponge and sediments were collected at different depths (0.9-6 meters) and locations in Florida, including Florida Keys, Port St. Joe in Pensacola, Pensacola Bay, Pensacola Beach, and Fort Pickens. Twenty-one cultivatable isolates were grouped according to their morphology and identified using 16S rRNA molecular taxonomy. The bacterial community identified consisted of members belonging to the Actinobacteria, Bacteroidetes, Proteobacteria (Alpha- and Gamma-classes) and Firmicutes phylogeny. Seven of the microbes exhibited mild to significant cytotoxic activities against five microbial indicators but no significant cytotoxic activities were observed against the pancreatic (PANC-1) nor the multidrug-resistant ovarian cancer cell lines (NCI/ADR). This work reaffirms the phyla Actinobacteria and Proteobacteria as sources of potential bioactive natural product candidates for drug discovery and development.

  4. Spatio-temporal distribution patterns of the epibenthic community in the coastal waters of Suriname

    NASA Astrophysics Data System (ADS)

    Willems, Tomas; De Backer, Annelies; Wan Tong You, Kenneth; Vincx, Magda; Hostens, Kris

    2015-10-01

    This study aimed to characterize the spatio-temporal patterns of the epibenthic community in the coastal waters of Suriname. Data were collected on a (bi)monthly basis in 2012-2013 at 15 locations in the shallow (<40 m) coastal area, revealing three spatially distinct species assemblages, related to clear gradients in some environmental parameters. A species-poor coastal assemblage was discerned within the muddy, turbid-water zone (6-20 m depth), dominated by Atlantic seabob shrimp Xiphopenaeus kroyeri (Crustacea: Penaeoidea). Near the 30 m isobath, sediments were much coarser (median grain size on average 345±103 μm vs. 128±53 μm in the coastal assemblage) and water transparency was much higher (on average 7.6±3.5 m vs. 2.4±2.1 m in the coastal assemblage). In this zone, a diverse offshore assemblage was found, characterized by brittle stars (mainly Ophioderma brevispina and Ophiolepis elegans) and a variety of crabs, sea stars and hermit crabs. In between both zones, a transition assemblage was noted, with epibenthic species typically found in either the coastal or offshore assemblages, but mainly characterized by the absence of X. kroyeri. Although the epibenthic community was primarily structured in an on-offshore gradient related to depth, sediment grain size and sediment total organic carbon content, a longitudinal (west-east) gradient was apparent as well. The zones in the eastern part of the Suriname coastal shelf seemed to be more widely stretched along the on-offshore gradient. Although clear seasonal differences were noted in the environmental characteristics (e.g. dry vs. rainy season), this was not reflected in the epibenthic community structure. X. kroyeri reached very high densities (up to 1383 ind 1000 m-²) in the shallow coastal waters of Suriname. As X. kroyeri is increasingly exploited throughout its range, the current study provides the ecological context for its presence and abundance, which is crucial for an ecosystem approach and the

  5. Assessing habitat risk from human activities to inform coastal and marine spatial planning: a demonstration in Belize

    NASA Astrophysics Data System (ADS)

    Arkema, Katie K.; Verutes, Gregory; Bernhardt, Joanna R.; Clarke, Chantalle; Rosado, Samir; Canto, Maritza; Wood, Spencer A.; Ruckelshaus, Mary; Rosenthal, Amy; McField, Melanie; de Zegher, Joann

    2014-11-01

    Integrated coastal and ocean management requires transparent and accessible approaches for understanding the influence of human activities on marine environments. Here we introduce a model for assessing the combined risk to habitats from multiple ocean uses. We apply the model to coral reefs, mangrove forests and seagrass beds in Belize to inform the design of the country’s first Integrated Coastal Zone Management (ICZM) Plan. Based on extensive stakeholder engagement, review of existing legislation and data collected from diverse sources, we map the current distribution of coastal and ocean activities and develop three scenarios for zoning these activities in the future. We then estimate ecosystem risk under the current and three future scenarios. Current levels of risk vary spatially among the nine coastal planning regions in Belize. Empirical tests of the model are strong—three-quarters of the measured data for coral reef health lie within the 95% confidence interval of interpolated model data and 79% of the predicted mangrove occurrences are associated with observed responses. The future scenario that harmonizes conservation and development goals results in a 20% reduction in the area of high-risk habitat compared to the current scenario, while increasing the extent of several ocean uses. Our results are a component of the ICZM Plan for Belize that will undergo review by the national legislature in 2015. This application of our model to marine spatial planning in Belize illustrates an approach that can be used broadly by coastal and ocean planners to assess risk to habitats under current and future management scenarios.

  6. Effects of organic pollution and physical stress on benthic macroinvertebrate communities from two intermittently closed and open coastal lagoons (ICOLLs)

    NASA Astrophysics Data System (ADS)

    Coelho, Susana; Pérez-Ruzafa, Angel; Gamito, Sofia

    2015-12-01

    Benthic macroinvertebrate communities and environmental conditions were studied in two intermittently closed and open coastal lakes and lagoons (ICOLLs), located in southern Algarve (Foz do Almargem e Salgados), with the purpose of evaluating the effects of organic pollution, originated mainly from wastewater discharges, and the physical stress caused by the irregular opening of the lagoons. Most of the year, lagoons were isolated from the sea, receiving the freshwater inputs from small rivers and in Salgados, also from the effluents of a wastewater plant. According to environmental and biotic conditions, Foz do Almargem presented a greater marine influence and a lower trophic state (mesotrophic) than Salgados (hypereutrophic). Benthic macroinvertebrate communities in the lagoons were distinct, just as their relations with environmental parameters. Mollusca were the most abundant macroinvertebrates in Foz do Almargem, while Insecta, Oligochaeta and Crustacea were more relevant in Salgados. Corophium multisetosum occurred exclusively in Salgados stations and, just as Chironomus sp., other Insecta and Oligochaeta, densities were positively related to total phosphorus, clay content and chlorophyll a concentration in the sediment, chlorophyll a concentration in water and with total dissolved inorganic nitrogen. Abra segmentum, Cerastoderma glaucum, Peringia ulvae and Ecrobia ventrosa occurred only in Foz do Almargem, with lower values of the above mentioned parameters. Both lagoons were dominated by deposit feeders and taxa tolerant to environmental stress, although in Salgados there was a greater occurrence of opportunistic taxa associated to pronounced unbalanced situations, due to excess organic matter enrichment.

  7. Long-term changes in fish communities of the Ria Formosa coastal lagoon (southern Portugal) based on two studies made 20 years apart

    NASA Astrophysics Data System (ADS)

    Ribeiro, Joaquim; Monteiro, Carlos C.; Monteiro, Pedro; Bentes, Luis; Coelho, Rui; Gonçalves, Jorge M. S.; Lino, Pedro G.; Erzini, Karim

    2008-01-01

    Fish communities of the Ria Formosa coastal lagoon (south Portugal) were sampled on a monthly basis with a beach seine at 4 sites, during two different time periods: 1980-1986 and 2001-2002. Community indices, species ranking and multivariate analysis were used in order to identify changes in the fish community between the two time periods. A total of 153,511 fish representing 57 taxa were recorded. Although species composition was very similar for both sampling periods, multivariate analysis performed on annual species abundance in number and weight revealed differences in fish community structure between the two periods. Structural changes in fish community were related mostly to a sharp decrease in the abundance of Mugilidae from 1980-1986 to 2001-2002. These changes were probably associated to a decrease in organic matter contents and nutrients concentrations due to improvements in sewage treatment and better water circulation inside the lagoon. The changes in fish community structure are more evident in the inner areas of the lagoon than near the inlet. The association between changes in sewage patterns and changes in the ichthyofaunal community structure reinforces the importance of fish communities as a biological indicator of human induced changes in marine systems.

  8. Metabolism of a nitrogen-enriched coastal marine lagoon during the summertime

    USGS Publications Warehouse

    Howarth, Robert W.; Hayn, Melanie; Marino, Roxanne M.; Ganju, Neil; Foreman, Kenneth H.; McGlathery, Karen; Giblin, Anne E.; Berg, Peter; Walker, Jeffrey D.

    2014-01-01

    We measured metabolism rates in a shallow, nitrogen-enriched coastal marine ecosystem on Cape Cod (MA, USA) during seven summers using an open-water diel oxygen method. We compared two basins, one directly receiving most of the nitrogen (N) load (“Snug Harbor”) and another further removed from the N load and better flushed (“Outer Harbor”). Both dissolved oxygen and pH varied greatly over the day, increasing in daylight and decreasing at night. The more N-enriched basin frequently went hypoxic during the night, and the pH in both basins was low (compared to standard seawater) when the oxygen levels were low, due to elevated carbon dioxide. Day-to-day variation in gross primary production (GPP) was high and linked in part to variation in light. Whole-ecosystem respiration tended to track this short-term variation in GPP, suggesting that respiration by the primary producers often dominated whole-system respiration. GPP was higher in the more N-loaded Snug Harbor. Seagrasses covered over 60 % of the area of the better-flushed, Outer Harbor throughout our study and were the major contributors to GPP there. Seagrasses covered 20 % of the area in Snug Harbor for the first 5 years of our study, and their contribution to GPP was relatively small. The seagrasses in Snug Harbor died off completely in the 6th year, but GPP remained high then and in the subsequent year. Overall, rates of phytoplankton GPP were relatively low, suggesting that benthic micro- and macro-algae may be the dominant primary producers in Snug Harbor in most years. Net ecosystem production in both Snug Harbor and the Outer Harbor was variable from year to year, showing net heterotrophy in some years and net autotrophy in others, with a trend towards increasing autotrophy over the 7 years reported here.

  9. Vertical activity distribution of dissimilatory nitrate reduction in coastal marine sediments

    NASA Astrophysics Data System (ADS)

    Behrendt, A.; de Beer, D.; Stief, P.

    2013-11-01

    The relative importance of two dissimilatory nitrate reduction pathways, denitrification (DEN) and dissimilatory nitrate reduction to ammonium (DNRA), was investigated in intact sediment cores from five different coastal marine field sites (Dorum, Aarhus Bight, Mississippi Delta, Limfjord and Janssand). The vertical distribution of DEN activity was examined using the acetylene inhibition technique combined with N2O microsensor measurements, whereas NH4+ production via DNRA was measured with a recently developed gel probe-stable isotope technique. At all field sites, dissimilatory nitrate reduction was clearly dominated by DEN (59-131% of the total NO3- reduced) rather than by DNRA, irrespective of the sedimentary inventories of electron donors such as organic carbon, sulfide, and iron. Highest ammonium production via DNRA, accounting for up to 8.9% of the total NO3- reduced, was found at a site with very high concentrations of total sulfide and NH4+ within and below the layer in which NO3- reduction occurred. Sediment from two field sites, one with low and one with high DNRA activity in the core incubations, was also used for slurry incubations. Now, in both sediments high DNRA activity was detected accounting for 37-77% of the total NO3- reduced. These contradictory results might be explained by enhanced NO3- availability for DNRA bacteria in the sediment slurries compared to the core-incubated sediments in which diffusion of NO3- from the water column may only reach DEN bacteria, but not DNRA bacteria. The true partitioning of dissimilatory nitrate reduction between DNRA and DEN may thus lie in between the values found in whole core (underestimation of DNRA) and slurry incubations (overestimation of DNRA).

  10. Meteo-marine parameters for highly variable environment in coastal regions from satellite radar images

    NASA Astrophysics Data System (ADS)

    Pleskachevsky, A. L.; Rosenthal, W.; Lehner, S.

    2016-09-01

    The German Bight of the North Sea is the area with highly variable sea state conditions, intensive ship traffic and with a high density of offshore installations, e.g. wind farms in use and under construction. Ship navigation and the docking on offshore constructions is impeded by significant wave heights HS > 1.3 m. For these reasons, improvements are required in recognition and forecasting of sea state HS in the range 0-3 m. Thus, this necessitates the development of new methods to determine the distribution of meteo-marine parameters from remote sensing data with an accuracy of decimetres for HS. The operationalization of these methods then allows the robust automatic processing in near real time (NRT) to support forecast agencies by providing validations for model results. A new empirical algorithm XWAVE_C (C = coastal) for estimation of significant wave height from X-band satellite-borne Synthetic Aperture Radar (SAR) data has been developed, adopted for coastal applications using TerraSAR-X (TS-X) and Tandem-X (TD-X) satellites in the German Bight and implemented into the Sea Sate Processor (SSP) for fully automatic processing for NRT services. The algorithm is based on the spectral analysis of subscenes and the model function uses integrated image spectra parameters as well as local wind information from the analyzed subscene. The algorithm is able to recognize and remove the influence of non-sea state produced signals in the Wadden Sea areas such as dry sandbars as well as nonlinear SAR image distortions produced by e.g. short wind waves and breaking waves. Also parameters of very short waves, which are not visible in SAR images and produce only unsystematic clutter, can be accurately estimated. The SSP includes XWAVE_C, a pre-filtering procedure for removing artefacts such as ships, seamarks, buoys, offshore constructions and slicks, and an additional procedure performing a check of results based on the statistics of the whole scene. The SSP allows an

  11. Marine communities on oil platforms in Gabon, West Africa: high biodiversity oases in a low biodiversity environment.

    PubMed

    Friedlander, Alan M; Ballesteros, Enric; Fay, Michael; Sala, Enric

    2014-01-01

    The marine biodiversity of Gabon, West Africa has not been well studied and is largely unknown. Our examination of marine communities associated with oil platforms in Gabon is the first scientific investigation of these structures and highlights the unique ecosystems associated with them. A number of species previously unknown to Gabonese waters were recorded during our surveys on these platforms. Clear distinctions in benthic communities were observed between older, larger platforms in the north and newer platforms to the south or closer to shore. The former were dominated by a solitary cup coral, Tubastraea sp., whereas the latter were dominated by the barnacle Megabalanus tintinnabulum, but with more diverse benthic assemblages compared to the northerly platforms. Previous work documented the presence of limited zooxanthellated scleractinian corals on natural rocky substrate in Gabon but none were recorded on platforms. Total estimated fish biomass on these platforms exceeded one ton at some locations and was dominated by barracuda (Sphyraena spp.), jacks (Carangids), and rainbow runner (Elagatis bipinnulata). Thirty-four percent of fish species observed on these platforms are new records for Gabon and 6% are new to tropical West Africa. Fish assemblages closely associated with platforms had distinct amphi-Atlantic affinities and platforms likely extend the distribution of these species into coastal West Africa. At least one potential invasive species, the snowflake coral (Carijoa riisei), was observed on the platforms. Oil platforms may act as stepping stones, increasing regional biodiversity and production but they may also be vectors for invasive species. Gabon is a world leader in terrestrial conservation with a network of protected areas covering >10% of the country. Oil exploration and biodiversity conservation currently co-exist in terrestrial and freshwater ecosystems in Gabon. Efforts to increase marine protection in Gabon may benefit by including oil

  12. Marine Communities on Oil Platforms in Gabon, West Africa: High Biodiversity Oases in a Low Biodiversity Environment

    PubMed Central

    Friedlander, Alan M.; Ballesteros, Enric; Fay, Michael; Sala, Enric

    2014-01-01

    The marine biodiversity of Gabon, West Africa has not been well studied and is largely unknown. Our examination of marine communities associated with oil platforms in Gabon is the first scientific investigation of these structures and highlights the unique ecosystems associated with them. A number of species previously unknown to Gabonese waters were recorded during our surveys on these platforms. Clear distinctions in benthic communities were observed between older, larger platforms in the north and newer platforms to the south or closer to shore. The former were dominated by a solitary cup coral, Tubastraea sp., whereas the latter were dominated by the barnacle Megabalanus tintinnabulum, but with more diverse benthic assemblages compared to the northerly platforms. Previous work documented the presence of limited zooxanthellated scleractinian corals on natural rocky substrate in Gabon but none were recorded on platforms. Total estimated fish biomass on these platforms exceeded one ton at some locations and was dominated by barracuda (Sphyraena spp.), jacks (Carangids), and rainbow runner (Elagatis bipinnulata). Thirty-four percent of fish species observed on these platforms are new records for Gabon and 6% are new to tropical West Africa. Fish assemblages closely associated with platforms had distinct amphi-Atlantic affinities and platforms likely extend the distribution of these species into coastal West Africa. At least one potential invasive species, the snowflake coral (Carijoa riisei), was observed on the platforms. Oil platforms may act as stepping stones, increasing regional biodiversity and production but they may also be vectors for invasive species. Gabon is a world leader in terrestrial conservation with a network of protected areas covering >10% of the country. Oil exploration and biodiversity conservation currently co-exist in terrestrial and freshwater ecosystems in Gabon. Efforts to increase marine protection in Gabon may benefit by including oil

  13. Community exposure in California to coastal flooding hazards enhanced by climate change, reference year 2010

    USGS Publications Warehouse

    Jones, Jeanne M.; Wood, Nathan J.; Ng, Peter; Henry, Kevin; Jones, J.L.; Peters, Jeff; Jamieson, Matthew

    2016-01-01

    The data set contains information on potential population, economic, land cover, and infrastructure flooding exposure for San Francisco Bay and coastal communities of the state of California, USA. The type of information includes U.S. Census data on the number and types of residents, InfoGroup data on numbers and types of employees, county parcel values, HAZUS building replacement values, NLCD land cover estimates, and infrastructure data on roads, rail, and critical facilities from a variety of sources.

  14. The Role of Pre-Existing Disturbances in the Effect of Marine Reserves on Coastal Ecosystems: A Modelling Approach

    PubMed Central

    Savina, Marie; Condie, Scott A.; Fulton, Elizabeth A.

    2013-01-01

    We have used an end-to-end ecosystem model to explore responses over 30 years to coastal no-take reserves covering up to 6% of the fifty thousand square kilometres of continental shelf and slope off the coast of New South Wales (Australia). The model is based on the Atlantis framework, which includes a deterministic, spatially resolved three-dimensional biophysical model that tracks nutrient flows through key biological groups, as well as extraction by a range of fisheries. The model results support previous empirical studies in finding clear benefits of reserves to top predators such as sharks and rays throughout the region, while also showing how many of their major prey groups (including commercial species) experienced significant declines. It was found that the net impact of marine reserves was dependent on the pre-existing levels of disturbance (i.e. fishing pressure), and to a lesser extent on the size of the marine reserves. The high fishing scenario resulted in a strongly perturbed system, where the introduction of marine reserves had clear and mostly direct effects on biomass and functional biodiversity. However, under the lower fishing pressure scenario, the introduction of marine reserves caused both direct positive effects, mainly on shark groups, and indirect negative effects through trophic cascades. Our study illustrates the need to carefully align the design and implementation of marine reserves with policy and management objectives. Trade-offs may exist not only between fisheries and conservation objectives, but also among conservation objectives. PMID:23593432

  15. Modelling marine community responses to climate-driven species redistribution to guide monitoring and adaptive ecosystem-based management.

    PubMed

    Marzloff, Martin Pierre; Melbourne-Thomas, Jessica; Hamon, Katell G; Hoshino, Eriko; Jennings, Sarah; van Putten, Ingrid E; Pecl, Gretta T

    2016-07-01

    As a consequence of global climate-driven changes, marine ecosystems are experiencing polewards redistributions of species - or range shifts - across taxa and throughout latitudes worldwide. Research on these range shifts largely focuses on understanding and predicting changes in the distribution of individual species. The ecological effects of marine range shifts on ecosystem structure and functioning, as well as human coastal communities, can be large, yet remain difficult to anticipate and manage. Here, we use qualitative modelling of system feedback to understand the cumulative impacts of multiple species shifts in south-eastern Australia, a global hotspot for ocean warming. We identify range-shifting species that can induce trophic cascades and affect ecosystem dynamics and productivity, and evaluate the potential effectiveness of alternative management interventions to mitigate these impacts. Our results suggest that the negative ecological impacts of multiple simultaneous range shifts generally add up. Thus, implementing whole-of-ecosystem management strategies and regular monitoring of range-shifting species of ecological concern are necessary to effectively intervene against undesirable consequences of marine range shifts at the regional scale. Our study illustrates how modelling system feedback with only limited qualitative information about ecosystem structure and range-shifting species can predict ecological consequences of multiple co-occurring range shifts, guide ecosystem-based adaptation to climate change and help prioritise future research and monitoring.

  16. Characterization of arbuscular mycorrhizal fungal communities with respect to zonal vegetation in a coastal dune ecosystem.

    PubMed

    Kawahara, Ai; Ezawa, Tatsuhiro

    2013-10-01

    Coastal dune vegetation distributes zonally along the environmental gradients of, e.g., soil disturbance. In the preset study, arbuscular mycorrhizal fungal communities in a coastal dune ecosystem were characterized with respect to tolerance to soil disturbance. Two grass species, Elymus mollis and Miscanthus sinensis, are distributed zonally in the seaward and landward slopes, respectively, in the primary dunes in Ishikari, Japan. The seaward slope is severely disturbed by wind, while the landward slope is stabilized by the thick root system of M. sinensis. The roots and rhizosphere soils of the two grasses were collected from the slopes. The soils were sieved to destruct the fungal hyphal networks, and soil trap culture was conducted to assess tolerance of the communities to disturbance, with parallel analysis of the field communities using a molecular ecological tool. In the landward communities, large shifts in the composition and increases in diversity were observed in the trap culture compared with the field, but in the seaward communities, the impact of trap culture was minimal. The landward field community was significantly nested within the landward trap culture community, implying that most members in the field community did not disappear in the trap culture. No nestedness was observed in the seaward communities. These observations suggest that disturbance-tolerant fungi have been preferentially selected in the seaward slope due to severe disturbance in the habitat. Whereas a limited number of fungi, which are not necessarily disturbance-sensitive, dominate in the stable landward slope, but high-potential diversity has been maintained in the habitat.

  17. Changes in bacterial community metabolism and composition during the degradation of dissolved organic matter from the jellyfish Aurelia aurita in a Mediterranean coastal lagoon.

    PubMed

    Blanchet, Marine; Pringault, Olivier; Bouvy, Marc; Catala, Philippe; Oriol, Louise; Caparros, Jocelyne; Ortega-Retuerta, Eva; Intertaglia, Laurent; West, Nyree; Agis, Martin; Got, Patrice; Joux, Fabien

    2015-09-01

    Spatial increases and temporal shifts in outbreaks of gelatinous plankton have been observed over the past several decades in many estuarine and coastal ecosystems. The effects of these blooms on marine ecosystem functioning and particularly on the dynamics of the heterotrophic bacteria are still unclear. The response of the bacterial community from a Mediterranean coastal lagoon to the addition of dissolved organic matter (DOM) from the jellyfish Aurelia aurita, corresponding to an enrichment of dissolved organic carbon (DOC) by 1.4, was assessed for 22 days in microcosms (8 l). The high bioavailability of this material led to (i) a rapid mineralization of the DOC and dissolved organic nitrogen from the jellyfish and (ii) the accumulation of high concentrations of ammonium and orthophosphate in the water column. DOM from jellyfish greatly stimulated heterotrophic prokaryotic production and respiration rates during the first 2 days; then, these activities showed a continuous decay until reaching those measured in the control microcosms (lagoon water only) at the end of the experiment. Bacterial growth efficiency remained below 20%, indicating that most of the DOM was respired and a minor part was channeled to biomass production. Changes in bacterial diversity were assessed by tag pyrosequencing of partial bacterial 16S rRNA genes, DNA fingerprints, and a cultivation approach. While bacterial diversity in control microcosms showed little changes during the experiment, the addition of DOM from the jellyfish induced a rapid growth of Pseudoalteromonas and Vibrio species that were isolated. After 9 days, the bacterial community was dominated by Bacteroidetes, which appeared more adapted to metabolize high-molecular-weight DOM. At the end of the experiment, the bacterial community shifted toward a higher proportion of Alphaproteobacteria. Resilience of the bacterial community after the addition of DOM from the jellyfish was higher for metabolic functions than diversity

  18. Complex community of nitrite-dependent anaerobic methane oxidation bacteria in coastal sediments of the Mai Po wetland by PCR amplification of both 16S rRNA and pmoA genes.

    PubMed

    Chen, Jing; Zhou, Zhichao; Gu, Ji-Dong

    2015-02-01

    In the present work, both 16S rRNA and pmoA gene-based PCR primers were employed successfully to study the diversity and distribution of n-damo bacteria in the surface and lower layer sediments at the coastal Mai Po wetland. The occurrence of n-damo bacteria in both the surface and subsurface sediments with high diversity was confirmed in this study. Unlike the two other known n-damo communities from coastal areas, the pmoA gene-amplified sequences in the present work clustered not only with some freshwater subclusters but also within three newly erected marine subclusters mostly, indicating the unique niche specificity of n-damo bacteria in this wetland. Results suggested vegetation affected the distribution and community structures of n-damo bacteria in the sediments and n-damo could coexist with sulfate-reducing methanotrophs in the coastal ecosystem. Community structures of the Mai Po n-damo bacteria based on 16S rRNA gene were different from those of either the freshwater or the marine. In contrast, structures of the Mai Po n-damo communities based on pmoA gene grouped with the marine ones and were clearly distinguished from the freshwater ones. The abundance of n-damo bacteria at this wetland was quantified using 16S rRNA gene PCR primers to be 2.65-6.71 × 10(5) copies/g dry sediment. Ammonium and nitrite strongly affected the community structures and distribution of n-damo bacteria in the coastal Mai Po wetland sediments.

  19. Simultaneous Retrieval of Aerosol and Marine Parameters in Coastal Areas Using a Coupled Atmosphere-Ocean Radiative Transfer Model

    NASA Astrophysics Data System (ADS)

    Fan, Yongzhen; Li, Wei; Stamnes, Knut; Stamnes, Jakob J.; Sorensen, Kai

    2015-12-01

    Simultaneous retrieval of aerosol and marine parameters using inverse techniques based on a coupled atmosphere-ocean radiative transfer model (CRTM) and optimal estimation can yield considerably improved retrieval accuracy based on radiances measured by MERIS, MODIS, and future instruments like OLCI compared with traditional methods. As an example, we discuss simultaneous retrieval in a Norwegian coastal environment from MERIS and MODIS data using a one-step nonlinear optimal estimation method instead of the traditional two-step look up table approach. To increase retrieval speed without loss of accuracy we replace the forward CRTM by a radial basis function neural network. Five parameters are obtained from the retrieval: aerosol optical depth, aerosol bimodal fraction, chlorophyll concentration, absorption by colored dissolved organic matter, and backscattering coefficient. The water leaving radiance is provided as a by-product. We demonstrate the accuracy of this simultaneous retrieval approach through a comparison with match-ups from a Norwegian coastal area.

  20. A survey of fish viruses isolated from wild marine fishes from the coastal waters of southern Korea.

    PubMed

    Kim, Wi-Sik; Choi, Shin-Young; Kim, Do-Hyung; Oh, Myung-Joo

    2013-11-01

    A survey was conducted to investigate viral infection in 253 wild marine fishes harvested in the southern coastal area of Korea from 2010 to 2012. The fish that were captured by local anglers were randomly bought and sampled for virus examination. The samples were tested for presence of virus by virus isolation with FHM, FSP, and BF-2 cells and molecular methods (polymerase chain reaction and sequencing). Of the 253 fish sampled, 9 fish were infected with virus. Aquabirnaviruses (ABVs), Viral hemorrhagic septicemia virus (VHSV), and Red seabream iridovirus (RSIV) were detected in 7, 1, and 1 fish, respectively. Molecular phylogenies demonstrated the detected viruses (ABV, VHSV, and RSIV) were more closely related to viruses reported of the same type from Korea and Japan than from other countries, suggesting these viruses may be indigenous to Korean and Japanese coastal waters.

  1. Use of biofilm-dwelling ciliate communities to determine environmental quality status of coastal waters.

    PubMed

    Xu, Henglong; Zhang, Wei; Jiang, Yong; Yang, Eun Jin

    2014-02-01

    It has increasingly been recognized that the ecological features of protozoan communities have many advantages as a favorable bioindicator to evaluate environmental stress and anthropogenic impact in many aquatic ecosystems. The ability of biofilm-dwelling ciliate communities for assessing environmental quality status was studied, using glass slides as an artificial substratum, during a 1-year cycle (August 2011-July 2012) in coastal waters of the Yellow Sea, northern China. The samples were collected monthly at a depth of 1m from four sampling stations with a spatial gradient of environmental stress. Environmental variables, e.g., salinity, dissolved oxygen (DO), chemical oxygen demand (COD), nitrate nitrogen (NO3-N), ammonium nitrogen (NH4-N) and soluble reactive phosphates (SRP), were measured synchronously for comparison with biotic parameters. Results showed that: (1) the community structures of the ciliates represented significant differences among the four sampling stations; (2) spatial patterns of the ciliate communities were significantly correlated with environmental variables, especially COD and the nutrients; (3) five dominant species (Hartmannula angustipilosa, Metaurostylopsis sp.1, Discocephalus ehrenbergi, Stephanopogon minuta and Pseudovorticella paracratera) were significantly correlated with nutrients or COD; and (4) the species richness measure was significantly correlated with the nutrient NO3-N. It is suggested that biofilm-dwelling ciliate communities might be used as a potentially robust bioindicator for discriminating environmental quality status in coastal waters.

  2. Community structure and PAH ring-hydroxylating dioxygenase genes of a marine pyrene-degrading microbial consortium.

    PubMed

    Gallego, Sara; Vila, Joaquim; Tauler, Margalida; Nieto, José María; Breugelmans, Philip; Springael, Dirk; Grifoll, Magdalena

    2014-07-01

    Marine microbial consortium UBF, enriched from a beach polluted by the Prestige oil spill and highly efficient in degrading this heavy fuel, was subcultured in pyrene minimal medium. The pyrene-degrading subpopulation (UBF-Py) mineralized 31 % of pyrene without accumulation of partially oxidized intermediates indicating the cooperation of different microbial components in substrate mineralization. The microbial community composition was characterized by culture dependent and PCR based methods (PCR-DGGE and clone libraries). Molecular analyses showed a highly stable community composed by Alphaproteobacteria (84 %, Breoghania, Thalassospira, Paracoccus, and Martelella) and Actinobacteria (16 %, Gordonia). The members of Thalasosspira and Gordonia were not recovered as pure cultures, but five additional strains, not detected in the molecular analysis, that classified within the genera Novosphingobium, Sphingopyxis, Aurantimonas (Alphaproteobacteria), Alcanivorax (Gammaproteobacteria) and Micrococcus (Actinobacteria), were isolated. None of the isolates degraded pyrene or other PAHs in pure culture. PCR amplification of Gram-positive and Gram-negative dioxygenase genes did not produce results with any of the cultured strains. However, sequences related to the NidA3 pyrene dioxygenase present in mycobacterial strains were detected in UBF-Py consortium, suggesting the representative of Gordonia as the key pyrene degrader, which is consistent with a preeminent role of actinobacteria in pyrene removal in coastal environments affected by marine oil spills.

  3. Different Bacterial Communities Involved in Peptide Decomposition between Normoxic and Hypoxic Coastal Waters

    PubMed Central

    Liu, Shuting; Wawrik, Boris; Liu, Zhanfei

    2017-01-01

    Proteins and peptides are key components of the labile dissolved organic matter pool in marine environments. Knowing which types of bacteria metabolize peptides can inform the factors that govern peptide decomposition and further carbon and nitrogen remineralization in marine environments. A 13C-labeled tetrapeptide, alanine-valine-phenylalanine-alanine (AVFA), was added to both surface (normoxic) and bottom (hypoxic) seawater from a coastal station in the northern Gulf of Mexico for a 2-day incubation experiment, and bacteria that incorporated the peptide were identified using DNA stable isotope probing (SIP). The decomposition rate of AVFA in the bottom hypoxic seawater (0.018–0.035 μM h-1) was twice as fast as that in the surface normoxic seawater (0.011–0.017 μM h-1). SIP experiments indicated that incorporation of 13C was highest among the Flavobacteria, Sphingobacteria, Alphaproteobacteria, Acidimicrobiia, Verrucomicrobiae, Cyanobacteria, and Actinobacteria in surface waters. In contrast, highest 13C-enrichment was mainly observed in several Alphaproteobacteria (Thalassococcus, Rhodobacteraceae, Ruegeria) and Gammaproteobacteria genera (Colwellia, Balneatrix, Thalassomonas) in the bottom water. These data suggest that a more diverse group of both oligotrophic and copiotrophic bacteria may be involved in metabolizing labile organic matter such as peptides in normoxic coastal waters, and several copiotrophic genera belonging to Alphaproteobacteria and Gammaproteobacteria and known to be widely distributed may contribute to faster peptide decomposition in the hypoxic waters. PMID:28326069

  4. In Situ Microbial Community Succession on Mild Steel in Estuarine and Marine Environments: Exploring the Role of Iron-Oxidizing Bacteria.

    PubMed

    McBeth, Joyce M; Emerson, David

    2016-01-01

    Microbiologically influenced corrosion (MIC) is a complex biogeochemical process involving interactions between microbes, metals, minerals, and their environment. We hypothesized that sediment-derived iron-oxidizing bacteria (FeOB) would colonize and become numerically abundant on steel surfaces incubated in coastal marine environments. To test this, steel coupons were incubated on sediments over 40 days, and samples were taken at regular intervals to examine microbial community succession. The experiments were conducted at two locations: (1) a brackish salt marsh stream and (2) a coastal marine bay. We analyzed DNA extracted from the MIC biofilms for bacterial diversity using high-throughput amplicon sequencing of the SSU rRNA gene, and two coupons from the coastal site were single cell sorted and screened for the SSU rRNA gene. We quantified communities of Zetaproteobacteria, sulfate-reducing bacteria (SRB), and total bacteria and archaea using qPCR analyses. Zetaproteobacteria and SRB were identified in the sequencing data and qPCR analyses for samples collected throughout the incubations and were also present in adjacent sediments. At the brackish site, the diversity of Zetaproteobacteria was lower on the steel compared to sediments, consistent with the expected enrichment of FeOB on steel. Their numbers increased rapidly over the first 10 days. At the marine site, Zetaproteobacteria and other known FeOB were not detected in sediments; however, the numbers of Zetaproteobacteria increased dramatically within 10 days on the steel surface, although their diversity was nearly clonal. Iron oxyhydroxide stalk biosignatures were observed on the steel and in earlier enrichment culture studies; this is evidence that the Zetaproteobacteria identified in the qPCR, pyrosequencing, and single cell data were likely FeOB. In the brackish environment, members of freshwater FeOB were also present, but were absent in the fully marine site. This work indicates there is a

  5. In Situ Microbial Community Succession on Mild Steel in Estuarine and Marine Environments: Exploring the Role of Iron-Oxidizing Bacteria

    PubMed Central

    McBeth, Joyce M.; Emerson, David

    2016-01-01

    Microbiologically influenced corrosion (MIC) is a complex biogeochemical process involving interactions between microbes, metals, minerals, and their environment. We hypothesized that sediment-derived iron-oxidizing bacteria (FeOB) would colonize and become numerically abundant on steel surfaces incubated in coastal marine environments. To test this, steel coupons were incubated on sediments over 40 days, and samples were taken at regular intervals to examine microbial community succession. The experiments were conducted at two locations: (1) a brackish salt marsh stream and (2) a coastal marine bay. We analyzed DNA extracted from the MIC biofilms for bacterial diversity using high-throughput amplicon sequencing of the SSU rRNA gene, and two coupons from the coastal site were single cell sorted and screened for the SSU rRNA gene. We quantified communities of Zetaproteobacteria, sulfate-reducing bacteria (SRB), and total bacteria and archaea using qPCR analyses. Zetaproteobacteria and SRB were identified in the sequencing data and qPCR analyses for samples collected throughout the incubations and were also present in adjacent sediments. At the brackish site, the diversity of Zetaproteobacteria was lower on the steel compared to sediments, consistent with the expected enrichment of FeOB on steel. Their numbers increased rapidly over the first 10 days. At the marine site, Zetaproteobacteria and other known FeOB were not detected in sediments; however, the numbers of Zetaproteobacteria increased dramatically within 10 days on the steel surface, although their diversity was nearly clonal. Iron oxyhydroxide stalk biosignatures were observed on the steel and in earlier enrichment culture studies; this is evidence that the Zetaproteobacteria identified in the qPCR, pyrosequencing, and single cell data were likely FeOB. In the brackish environment, members of freshwater FeOB were also present, but were absent in the fully marine site. This work indicates there is a

  6. Distribution and bioaccumulation of heavy metals in marine organisms in east and west Guangdong coastal regions, South China.

    PubMed

    Zhang, Ling; Shi, Zhen; Jiang, Zhijian; Zhang, Jingping; Wang, Fei; Huang, Xiaoping

    2015-12-30

    Heavy metal (Cu, Pb, Zn, Cr, Cd, As) concentrations, distribution and bioaccumulation were studied in marine organisms in Guangdong coastal regions. Heavy metal concentrations and distribution in organisms showed characteristics according to areas and species. Heavy metal concentrations in most organisms were higher in west than in east, tightly related to the local industry structure and the disequilibrium of metal discharge. Generally, high heavy metal concentrations were detected in molluscs and low concentrations were detected in fish. Bioaccumulation factor was used to assess the accumulation level of marine organisms to heavy metals, of which Cd, Cu and As were the most accumulated elements. Accumulation abilities to heavy metals varied among organism species, such as Distorsio reticulate accumulating Cu, Zn, Cd, As, Loligo beka Sasaki accumulating Pb, Cu, Cr, and Turritella bacillum Kiener accumulating Zn, Cd, As. By comparison, Johnius belengeri, Argyrosomus argentatus, Cynoglossus sinicus Wu had relatively low accumulation abilities.

  7. Geothermal Energy Resources of Navy/Marine Corps Installations on the Atlantic and Gulf Coastal Plain.

    DTIC Science & Technology

    1980-03-01

    East Gulf Coastal Plain .............................................. 10 5. Generalized Outcrop Pattern of Mesozoic, Cenozoic , and Paleozoic Units on...deposits and associated karat features. Florida possesses a variable coastline, which is characterized by barrier beaches, coral reefs , and mangrove...elevated Pleistocene terrace features. Figure 5 shows a generalized out- crop pattern of Mesozoic, Cenozoic , and Paleozoic units on the coastal plain

  8. Dom Export from Coastal Temperate Bog Forest Watersheds to Marine Ecosystems: Improving Understanding of Watershed Processes and Terrestrial-Marine Linkages on the Central Coast of British Columbia

    NASA Astrophysics Data System (ADS)

    Oliver, A. A.; Giesbrecht, I.; Tank, S. E.; Hunt, B. P.; Lertzman, K. P.

    2014-12-01

    The coastal temperate bog forests of British Columbia, Canada, export high amounts of dissolved organic matter (DOM) relative to the global average. Little is known about the factors influencing the quantity and quality of DOM exported from these forests or the role of this terrestrially-derived DOM in near-shore marine ecosystems. The objectives of this study are to better understand patterns and controls of DOM being exported from bog forest watersheds and its potential role in near-shore marine ecosystems. In 2013, the Kwakshua Watershed Ecosystems Study at Hakai Beach Institute (Calvert Island, BC) began year-round routine collection and analysis of DOM, nutrients, and environmental variables (e.g. conductivity, pH, temperature, dissolved oxygen) of freshwater grab samples from the outlets of seven watersheds draining directly to the ocean, as well as near-shore marine samples adjacent to freshwater outflows. Dissolved organic carbon (DOC) varied across watersheds (mean= 11.45 mg L-1, sd± 4.22) and fluctuated synchronously with seasons and storm events. In general, higher DOC was associated with lower specific UV absorbance (SUVA254; mean= 4.59 L mg-1 m-1, sd± 0.55). The relationship between DOC and SUVA254 differed between watersheds, suggesting exports in DOM are regulated by individual watershed attributes (e.g. landscape classification, flow paths) as well as precipitation. We are using LiDAR and other remote sensing data to examine watershed controls on DOC export. At near-shore marine sites, coupled CTD (Conductivity Temperature Depth) and optical measures (e.g. spectral slopes, slope ratios (SR), EEMs), showed a clear freshwater DOM signature within the system following rainfall events. Ongoing work will explore the relationship between bog forest watershed attributes and DOM flux and composition, with implications for further studies on biogeochemical cycling, carbon budgets, marine food webs, and climate change.

  9. Reactive transport modeling of the impact of ocean acidification on global carbon fluxes in coastal marine sediments

    NASA Astrophysics Data System (ADS)

    Krumins, Valdis; van Cappellen, Philippe; Regnier, Pierre

    2010-05-01

    Because of relatively high productivity of both calcifying and non-calcifying phytoplankton in coastal zones, coastal sediments can act as a significant carbon sink. Ocean acidification is likely to impact productivity of these groups differently, raising the question of the overall effect of ocean acidification on carbon burial in coastal sediments. We modeled the effect of varying depositional fluxes of particulate organic carbon (POC) and particulate inorganic carbon (PIC) on carbon cycling in coastal marine sediments using a one-dimensional reactive transport model. Transport processes include sediment burial, advection, diffusion, bioturbation and bioirrigation. The model incorporates the hydrolysis of macromolecular organic matter, the redox pathways of POC oxidation, re-oxidation reactions of the reduced compounds produced during POC decomposition, the acid-base chemical equilibria, and the dissolution of PIC (calcite, aragonite, and Mg-calcite) in the upper 50 cm of sediment. The following processes are also included: precipitation of iron sulfide and iron carbonate, sorption of Fe(II), ammonium and phosphate, sulfidization of organic matter, and pyritization. The global return fluxes of dissolved inorganic carbon (DIC) and alkalinity are estimated by modeling sediments at 25 m, 75 m, and 150 m depths, and multiplying by the global area of seafloor depths 0-50 m, 50-100 m, and 100-200 m, respectively. We determined the sensitivity of carbon and nutrient return fluxes to changes in pH, PIC and POC fluxes, as well as to poorly constrained Fe(III) deposition fluxes. Inorganic carbon return fluxes are influenced most by the particulate organic and inorganic carbon depositional fluxes; the seawater pH has a limited effect. Modeled sediment pH profiles and PIC dissolution are also sensitive to the iron deposition flux. The overreaching goal of the research is to forecast the global response of coastal sediment return fluxes as a result of anthropogenic ocean

  10. Diversity and population structure of a near-shore marine-sediment viral community.

    PubMed Central

    Breitbart, Mya; Felts, Ben; Kelley, Scott; Mahaffy, Joseph M.; Nulton, James; Salamon, Peter; Rohwer, Forest

    2004-01-01

    Viruses, most of which are phage, are extremely abundant in marine sediments, yet almost nothing is known about their identity or diversity. We present the metagenomic analysis of an uncultured near-shore marine-sediment viral community. Three-quarters of the sequences in the sample were not related to anything previously reported. Among the sequences that could be identified, the majority belonged to double-stranded DNA phage. Temperate phage were more common than lytic phage, suggesting that lysogeny may be an important lifestyle for sediment viruses. Comparisons between the sediment sample and previously sequenced seawater viral communities showed that certain phage phylogenetic groups were abundant in all marine viral communities, while other phage groups were under-represented or absent. This 'marineness' suggests that marine phage are derived from a common set of ancestors. Several independent mathematical models, based on the distribution of overlapping shotgun sequence fragments from the library, were used to show that the diversity of the viral community was extremely high, with at least 10(4) viral genotypes per kilogram of sediment and a Shannon index greater than 9 nats. Based on these observations we propose that marine-sediment viral communities are one of the largest unexplored reservoirs of sequence space on the planet. PMID:15156913

  11. Coastal marine basins as records of continental palaeoenvironments (Gulf of Guinea and Iullemmeden cretaceous and tertiary basins)

    NASA Astrophysics Data System (ADS)

    Rat, P.; Lang, J.; Alzouma, K.; Dikouma, M.; Johnson, A.; Laurin, B.; Mathey, B.; Pascal, A.

    Deposits in nearshore marine basins provide data about the adjacent emerged lands. Examples are taken from the Togo coastal basin, on an ocean margin, and the Iullemmeden intracratonic basin (Niger). A continental landscape is fossilized by the onlapping layers of the transgressions: an eroded crystalline basement (Togo) or a broad and complex alluvial plain (Iullemmeden). Clastics, trapped in the marine deposits, provide information on the source area. Two types of information can be obtained from the sands: the nature of the parent rocks, and the environment at the time of genesis, storage and transportation (tectonic and climatic stability or change). The significance of clays is more complex; they can be formed or modified in the marine environment. However their elastic or chemical components originate from biochemical weathering and provide information on climate, morphology, vegetation cover and drainage of the emerged lands. In the Iullemmeden basin, the important change between Maastrichtian and Paleocene probably reflects a change to a drier climate in accordance with a slight shift of the equator to the south. The properties of marine waters are dependent on climate and morphology of the emergent lands which determines runoff. These properties may be inferred from the analysis of the clastic/carbonate conflict and indicators of salinity (mangrove). In conclusion, the Togo and Iullemmeden basins were located downstream of tectonically quiecent, large continental areas of gentle relief. Transgressions were migrations of a broad littoral system upon very flat continental surfaces caused by erosion or river-dominated deposition.

  12. Phytoplankton community dynamics in an intermittently open hypereutrophic coastal lagoon in southern Portugal

    NASA Astrophysics Data System (ADS)

    Coelho, Susana; Pérez-Ruzafa, Angel; Gamito, Sofia

    2015-12-01

    Phytoplankton community' dynamics were studied in Salgados coastal lagoon in order to evaluate the effects of excessive organic loads and also physical stress caused by the irregular opening of the lagoon. Salgados is a hypereutrophic intermittently open coastal lagoon, which received freshwater inputs from small rivers and from a wastewater treatment plant. Cyanophyceae dominated the phytoplankton communities most of the time; Bacillariophyceae became the main taxonomic group in winter when the lagoon was closed; Chlorophyceae was the major class in early summer; pico-nano flagellate algae accounted for a high percentage of total phytoplankton during spring. Potentially harmful taxa were observed during most of the sampling periods, forming blooms and accounting for a considerable percentage of total phytoplankton abundance. A strong differentiation among dry and wet seasons could be noticed. The dry season was dominated by Microsystis aeruginosa, Rhodomonas sp., pico-nano flagellate algae, Cyclotella spp. and Planktothrix sp., while the wet season, although still with the presence of Microsystis aeruginosa, was dominated by Dolichospermum spiroides. The best environmental variables explaining stations patterns and based on phytoplankton taxa were days of isolation, pH, and salinity. Temperature, cumulative rain and total phosphorus were also related with species and stations patterns. The high nutrient load in Salgados lagoon promoted the development and persistence of harmful algae blooms. Proper management of coastal lagoons involves not only the control of direct discharges of nutrients, but also of other factors, including water level and communication with the sea.

  13. Microbial Community Analysis of a Coastal Salt Marsh Affected by the Deepwater Horizon Oil Spill

    PubMed Central

    Beazley, Melanie J.; Martinez, Robert J.; Rajan, Suja; Powell, Jessica; Piceno, Yvette M.; Tom, Lauren M.; Andersen, Gary L.; Hazen, Terry C.; Van Nostrand, Joy D.; Zhou, Jizhong; Mortazavi, Behzad; Sobecky, Patricia A.

    2012-01-01

    Coastal salt marshes are highly sensitive wetland ecosystems that can sustain long-term impacts from anthropogenic events such as oil spills. In this study, we examined the microbial communities of a Gulf of Mexico coastal salt marsh during and after the influx of petroleum hydrocarbons following the Deepwater Horizon oil spill. Total hydrocarbon concentrations in salt marsh sediments were highest in June and July 2010 and decreased in September 2010. Coupled PhyloChip and GeoChip microarray analyses demonstrated that the microbial community structure and function of the extant salt marsh hydrocarbon-degrading microbial populations changed significantly during the study. The relative richness and abundance of phyla containing previously described hydrocarbon-degrading bacteria (Proteobacteria, Bacteroidetes, and Actinobacteria) increased in hydrocarbon-contaminated sediments and then decreased once hydrocarbons were below detection. Firmicutes, however, continued to increase in relative richness and abundance after hydrocarbon concentrations were below detection. Functional genes involved in hydrocarbon degradation were enriched in hydrocarbon-contaminated sediments then declined significantly (p<0.05) once hydrocarbon concentrations decreased. A greater decrease in hydrocarbon concentrations among marsh grass sediments compared to inlet sediments (lacking marsh grass) suggests that the marsh rhizosphere microbial communities could also be contributing to hydrocarbon degradation. The results of this study provide a comprehensive view of microbial community structural and functional dynamics within perturbed salt marsh ecosystems. PMID:22815990

  14. Spatio-temporal dynamics of species richness in coastal fish communities

    USGS Publications Warehouse

    Lekve, K.; Boulinier, T.; Stenseth, N.C.; Gjøsaeter, J.; Fromentin, J-M.; Hines, J.E.; Nichols, J.D.

    2002-01-01

    Determining patterns of change in species richness and the processes underlying the dynamics of biodiversity are of key interest within the field of ecology, but few studies have investigated the dynamics of vertebrate communities at a decadal temporal scale. Here, we report findings on the spado-temporal variability in the richness and composition of fish communities along the Norwegian Skagerrak coast having been surveyed for more than half a century. Using statistical models incorporating non-detection and associated sampling variance, we estimate local species richness and changes in species composition allowing us to compute temporal variability in species richness. We tested whether temporal variation could be related to distance to the open sea and to local levels of pollution. Clear differences in mean species richness and temporal variability are observed between fjords that were and were not exposed to the effects of pollution. Altogether this indicates that the fjord is an appropriate scale for studying changes in coastal fish communities in space and time. The year-to-year rates of local extinction and turnover were found to be smaller than spatial differences in community composition. At the regional level, exposure to the open sea plays a homogenizing role, possibly due to coastal currents and advection.

  15. Assessing Habitat Use by Snapper (Chrysophrys auratus) from Baited Underwater Video Data in a Coastal Marine Park

    PubMed Central

    Terres, Maria A.; Lawrence, Emma; Hosack, Geoffrey R.; Haywood, Michael D. E.; Babcock, Russell C.

    2015-01-01

    Baited Underwater Video (BUV) systems have become increasingly popular for assessing marine biodiversity. These systems provide video footage from which biologists can identify the individual fish species present. Here we explore the relevance of spatial dependence and marine park boundaries while estimating the distribution and habitat associations of the commercially and recreationally important snapper species Chrysophrys auratus in Moreton Bay Marine Park during a period when new Marine National Parks zoned as no-take or “green” areas (i.e., areas with no legal fishing) were introduced. BUV studies typically enforce a minimum distance among BUV sites, and then assume that observations from different sites are independent conditional on the measured covariates. In this study, we additionally incorporated the spatial dependence among BUV sites into the modelling framework. This modelling approach allowed us to test whether or not the incorporation of highly correlated environmental covariates or the geographic placement of BUV sites produced spatial dependence, which if unaccounted for could lead to model bias. We fitted Bayesian logistic models with and without spatial random effects to determine if the Marine National Park boundaries and available environmental covariates had an effect on snapper presence and habitat preference. Adding the spatial dependence component had little effect on the resulting model parameter estimates that emphasized positive association for particular coastal habitat types by snapper. Strong positive relationships between the presence of snapper and rock habitat, particularly rocky substrate composed of indurated freshwater sediments known as coffee rock, and kelp habitat reinforce the consideration of habitat availability in marine reserve design and the design of any associated monitoring programs. PMID:26317655

  16. Interaction of the Marine Atmosphere, Coastal Topography and Sea Surface Temperature on Marine Fog Distribution Along the West Coast of North America

    NASA Astrophysics Data System (ADS)

    Dorman, C. E.; Mejia, J.; Koracin, D. R.; McEvoy, D.

    2014-12-01

    ICOADS ship observations for 1950-2007 were used to examine the distribution of marine fog along the West Coast of North America between 20°N and 50°N. Quarterly (June-August, JJA; Sept-Nov, SON; Dec-Feb, DJF; March-May, MAM) long-term means were obtained and gridded using a 1°x 1° degree-arc mesh. The ship observation includes a subjective assessment of the weather that is codified into 100 categories. The most important and relevant are deep fog at the time of observation with the visibility less than or equal to 1 km. The most frequent deep fog is during JJA, with the highest values in the grid points closest to shore. There is a general fog frequency maximum along the coast between 34°N - 44°N that decreases offshore. More frequent occurrences tend to occur at major capes. The maximum JJA occurrences are at Cape Blanco and Pt Arena. In contrast, deep fog is infrequent along Baja California. In SON, deep fog occurrences are lowest with a narrower coastal maximum. In DJF, there is a broad, uneven fog maximum along the coast between 35°N-39°N. The frequency of deep fog occurrence is intermediate in MAM, with a weak, broad area north of 35°N. The distribution of the occurrence of deep fog in JJA is determined by a three way interaction between the atmosphere, the land and the ocean. The southbound marine layer is channeled by the coastal mountains and interacts with land topography via hydraulic dynamics. The marine layer flow accelerates on the downwind side of major capes, forces greater wind driven upwelling and colder sea surface temperatures along the coast of Southern Oregon and Northern California. However, the fast southbound winds are largely free of marine fog. Marine fog tends to occur along the inner coast when the southbound winds decay or reverse direction for 1-3 days, with the densest fog downwind of a major cape where the sea surface temperatures are lowest.

  17. Magnetic properties of marine magnetotactic bacteria in a seasonally stratified coastal pond (Salt Pond, MA, USA)

    NASA Astrophysics Data System (ADS)

    Moskowitz, Bruce M.; Bazylinski, Dennis A.; Egli, Ramon; Frankel, Richard B.; Edwards, Katrina J.

    2008-07-01

    Magnetic properties of suspended material in the water columns of freshwater and marine environments provide snapshots of magnetic biomineralization that have yet to be affected by the eventual time-integration and early diagenetic effects that occur after sediment deposition. Here, we report on the magnetism, geochemistry and geobiology of uncultured magnetite- and greigite-producing magnetotactic bacteria (MB) and magnetically responsive protists (MRP) in Salt Pond (Falmouth, MA, USA), a small coastal, marine basin (~5 m deep) that becomes chemically stratified during the summer months. At this time, strong inverse O2 and H2S concentration gradients form in the water column and a well-defined oxic-anoxic interface (OAI) is established at a water depth of about 3.5 m. At least four morphological types of MB, both magnetite and greigite producers, and several species of magnetically responsive protists are found associated with the OAI and the lower sulphidic hypolimnion. Magnetic properties of filtered water were determined through the water column across the OAI and were consistent with the occurrence of magnetite- and greigite-producing MB at different depths. Sharp peaks in anhysteretic remanent magnetization (ARM) and saturation isothermal remanent magnetization (SIRM) and single-domain (SD) values of ARM/SIRM occur within the OAI corresponding to high concentrations of MB and MRP with magnetically derived cell densities of 104-106 ml-1. Low-temperature (<300 K) remanence indicated that while only magnetite producers inhabit the OAI, both magnetite and greigite producers inhabit the sulphidic hypolimnion below the OAI. Magnetic measurements also show that the amount of Fe sequestered in magnetite magnetosomes within the OAI is no more than 3.3 per cent of the total available dissolved Fe(II) in the water column. However, below the OAI, magnetic minerals constitute a much larger fraction of the total dissolved Fe(II) ranging from 13.6 to 32.2 per cent depending

  18. Chemical composition and sources of coastal marine aerosol particles during the 2008 VOCALS-REx campaign

    SciTech Connect

    Lee, Y. -N.; Springston, S.; Jayne, J.; Wang, J.; Hubbe, J.; Senum, G.; Kleinman, L.; Daum, P. H.

    2014-01-01

    The chemical composition of aerosol particles (Dp ≤ 1.5 μm) was measured over the southeast Pacific Ocean during the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-Rex) between 16 October and 15 November 2008 using the US Department of Energy (DOE) G-1 aircraft. The objective of these flights was to gain an understanding of the sources and evolution of these aerosols, and of how they interact with the marine stratus cloud layer that prevails in this region of the globe. Our measurements showed that the marine boundary layer (MBL) aerosol mass was dominated by non-sea-salt SO42−, followed by Na+, Cl, Org (total organics), NH4+, and NO3, in decreasing order of importance; CH3SO3 (MSA), Ca2+, and K+ rarely exceeded their limits of detection. Aerosols were strongly acidic with a NH4+ to SO42− equivalents ratio typically < 0.3. Sea-salt aerosol (SSA) particles, represented by NaCl, exhibited Cl deficits caused by both HNO3 and H2SO4, but for the most part were externally mixed with particles, mainly SO42−. SSA contributed only a small fraction of the total accumulation mode particle number concentration. It was inferred that all aerosol species (except SSA) were of predominantly continental origin because of their strong land-to-sea concentration gradient. Comparison of relative changes in median values suggests that (1) an oceanic source of NH3 is present between 72° W and 76° W, (2) additional organic aerosols from biomass burns or biogenic precursors were emitted from coastal regions south of 31° S, with possible cloud processing, and (3) free tropospheric (FT) contributions to MBL gas and aerosol

  19. Polycyclic aromatic hydrocarbon (PAH) metabolites in marine fishes as a specific biomarker to indicate PAH pollution in the marine coastal environment.

    PubMed

    Wang, Xin H; Hong, Hua S; Mu, Jing L; Lin, Jian Q; Wang, Shong H

    2008-02-15

    In this study, analysis methods for the PAH metabolites of naphthalene (Na), pyrene (Py) and benzo(a)pyrene (BaP) with different benzo-rings (2-4-5 rings respectively) were developed and the metabolism kinetics of Py and BaP in marine fishes were studied. Two PAH metabolites of Na and Py, namely 1-naphthol (1-OH Na) and 1-hydroxy pyrene (1-OH Py), were determined using the fixed wavelength fluorescence (FF) method, and the BaP metabolite, 3-hydroxy benzo(a)pyrene (3-OH BaP), was determined using reverse-phase HPLC with fluorescence detection. The dose- and time-response of Lateolabrax japonicus to Py metabolites and Sparus macrocephalus to BaP metabolites were studied in order to evaluate the use of PAH metabolites as a means of assessing exposure to PAHs. The results showed that both fishes could be induced to metabolize and eliminate their metabolites in vivo with increasing Py and BaP exposure concentrations in seawater. As Py and BaP concentrations increased, metabolite concentrations in the fish bile also increased. A significant dose-response of biliary PAH metabolites was observed after exposure for 1, 3 and 7 days for Py and 2, 4 and 7 days for BaP, respectively. These results provide the proof necessary for using PAH metabolites in marine fishes as a specific biomarker or early warning signal of PAH pollution in the marine coastal environment.

  20. Effects of flooding, salinity and herbivory on coastal plant communities, Louisiana, United States

    USGS Publications Warehouse

    Gough, L.; Grace, J.B.

    1998-01-01

    Flooding and salinity stress are predicted to increase in coastal Louisiana as relative sea level rise (RSLR) continues in the Gulf of Mexico region. Although wetland plant species are adapted to these stressors, questions persist as to how marshes may respond to changed abiotic variables caused by RSLR, and how herbivory by native and non-native mammals may affect this response. The effects of altered flooding and salinity on coastal marsh communities were examined in two field experiments that simultaneously manipulated herbivore pressure. Marsh sods subjected to increased or decreased flooding (by lowering or raising sods, respectively), and increased or decreased salinity (by reciprocally transplanting sods between a brackish and fresh marsh), were monitored inside and outside mammalian herbivore exclosures for three growing seasons. Increased flooding stress reduced species numbers and biomass; alleviating flooding stress did not significantly alter species numbers while community biomass increased. Increased salinity reduced species numbers and biomass, more so if herbivores were present. Decreasing salinity had an unexpected effect: herbivores selectively consumed plants transplanted from the higher-salinity site. In plots protected from herbivory, decreased salinity had little effect on species numbers or biomass, but community composition changed. Overall, herbivore pressure further reduced species richness and biomass under conditions of increased flooding and increased salinity, supporting other findings that coastal marsh species can tolerate increasingly stressful conditions unless another factor, e.g., herbivory, is also present. Also, species dropped out of more stressful treatments much faster than they were added when stresses were alleviated, likely due to restrictions on dispersal. The rate at which plant communities will shift as a result of changed abiotic variables will determine if marshes remain viable when subjected to RSLR.

  1. Coastal Navigation Portfolio Management

    DTIC Science & Technology

    2015-02-19

    CIRP.aspx Coastal Inlets Research Program Coastal Navigation Portfolio Management The Coastal Navigatoin Portfolio Management work unit...across the vast coastal navigation portfolio of projects. The USACE maintains a vast infrastructure portfolio of deep-draft coastal entrance...the Corps needs to be able to direct resources at the navigation projects that are most critical to overall marine transportation system performance

  2. Coastal urbanization leads to remarkable seaweed species loss and community shifts along the SW Atlantic.

    PubMed

    Scherner, Fernando; Horta, Paulo Antunes; de Oliveira, Eurico Cabral; Simonassi, José Carlos; Hall-Spencer, Jason M; Chow, Fungyi; Nunes, José Marcos C; Pereira, Sonia Maria Barreto

    2013-11-15

    Coastal urbanization is rapidly expanding worldwide while its impacts on seaweed communities remain poorly understood. We assessed the impact of urbanization along an extensive latitudinal gradient encompassing three phycogeographical regions in the SW Atlantic. Human population density, number of dwellings, and terrestrial vegetation cover were determined for each survey area and correlated with diversity indices calculated from seaweed percent cover data. Urban areas had significantly lower calcareous algal cover (-38%), and there was significantly less carbonate in the sediment off urban areas than off reference areas. Seaweed richness averaged 26% less in urban areas than in areas with higher vegetation cover. We observed a remarkable decline in Phaeophyceae and a substantial increase of Chlorophyta in urban areas across a wide latitudinal gradient. Our data show that coastal urbanization is causing substantial loss of seaweed biodiversity in the SW Atlantic, and is considerably changing seaweed assemblages.

  3. The role of benthic macrophytes and their associated macroinvertebrate community in coastal lagoon resistance to eutrophication.

    PubMed

    Lloret, Javier; Marín, Arnaldo

    2009-12-01

    Eutrophication is widely recognised as one of the major menaces to coastal environments, particularly enclosed bays and lagoons. Although there is a general understanding of the consequences of eutrophication in these systems, there is a lack of sufficient knowledge concerning biotic feedbacks that influence eutrophication patterns and the resistance capacity of coastal environments. In this paper, the isotope ratios of main producers and consumers of a Mediterranean lagoon were examined in order to elucidate the fate of anthropogenic inputs from the main watercourse flowing into the lagoon. The results of the study of stable isotope data in the Mar Menor lagoon reflected that the whole benthic community plays an important role as a natural 'filter' that removes excess nutrients from the water column and stores them in the sediments, thereby enhancing lagoon resistance to eutrophication.

  4. Phylogenetic Differences in Attached and Free-Living Bacterial Communities in a Temperate Coastal Lagoon during Summer, Revealed via High-Throughput 16S rRNA Gene Sequencing

    PubMed Central

    Mohit, Vani; Archambault, Philippe; Toupoint, Nicolas

    2014-01-01

    Most of what is known about coastal free-living and attached bacterial diversity is based on open coasts, with high particulate and nutrient riverine supply, terrestrial runoffs, and anthropogenic activities. The Magdalen Islands in the Gulf of St. Lawrence (Canada) are dominated by shallow lagoons with small, relatively pristine catchments and no freshwater input apart from rain. Such conditions provided an opportunity to investigate coastal free-living and attached marine bacterial diversity in the absence of confounding effects of steep freshwater gradients. We found significant differences between the two communities and marked temporal patterns in both. Taxonomic richness and diversity were greater in the attached than in the free-living community, increasing over summer, especially within the least abundant bacterial phyla. The highest number of reads fell within the SAR 11 clade (Pelagibacter, Alphaproteobacteria), which dominated free-living communities. The attached communities had deeper phylum-level diversity than the free-living fraction. Distance-based redundancy analysis indicated that the particulate organic matter (POM) concentration was the main variable separating early and late summer samples with salinity and temperature changes also significantly correlated to bacterial community structure. Our approach using high-throughput sequencing detected differences in free-living versus attached bacteria in the absence of riverine input, in keeping with the concept that marine attached communities are distinct from cooccurring free-living taxa. This diversity likely reflects the diverse microhabitats of available particles, implying that the total bacterial diversity in coastal systems is linked to particle supply and variability, with implications for understanding microbial biodiversity in marine systems. PMID:24463966

  5. Is economic valuation of ecosystem services useful to decision-makers? Lessons learned from Australian coastal and marine management.

    PubMed

    Marre, Jean-Baptiste; Thébaud, Olivier; Pascoe, Sean; Jennings, Sarah; Boncoeur, Jean; Coglan, Louisa

    2016-08-01

    Economic valuation of ecosystem services is widely advocated as being useful to support ecosystem management decision-making. However, the extent to which it is actually used or considered useful in decision-making is poorly documented. This literature blindspot is explored with an application to coastal and marine ecosystems management in Australia. Based on a nation-wide survey of eighty-eight decision-makers representing a diversity of management organizations, the perceived usefulness and level of use of economic valuation of ecosystem services, in support of coastal and marine management, are examined. A large majority of decision-makers are found to be familiar with economic valuation and consider it useful - even necessary - in decision-making, although this varies across groups of decision-makers. However, most decision-makers never or rarely use economic valuation. The perceived level of importance and trust in estimated dollar values differ across ecosystem services, and are especially high for values that relate to commercial activities. A number of factors are also found to influence respondent's use of economic valuation. Such findings concur with conclusions from other studies on the usefulness and use of ESV in environmental management decision-making. They also demonstrate the strength of the survey-based approach developed in this application to examine this issue in a variety of contexts.

  6. Mosquito fauna and arbovirus surveillance in a coastal Mississippi community after Hurricane Katrina.

    PubMed

    Foppa, Ivo M; Evans, Christopher L; Wozniak, Arthur; Wills, William

    2007-06-01

    Hurricane Katrina caused massive destruction and flooding along the Gulf Coast in August 2005. We collected mosquitoes and tested them for arboviral infection in a severely hurricane-damaged community to determine species composition and to assess the risk of a mosquito-borne epidemic disease in that community about 6 wk after the landfall of Hurricane Katrina. Light-trap collections yielded 8,215 mosquitoes representing 19 species, while limited gravid-trap collections were not productive. The most abundant mosquito species was Culex nigripalpus, which constituted 73.6% of all specimens. No arboviruses were detected in any of the mosquitoes collected in this survey, which did not support the assertion that human risk for arboviral infection was increased in the coastal community 6 wk after the hurricane.

  7. Salinity-dominated change in community structure and ecological function of Archaea from the lower Pearl River to coastal South China Sea.

    PubMed

    Xie, Wei; Zhang, Chuanlun; Zhou, Xuedan; Wang, Peng

    2014-09-01

    Archaea have multiple roles in global biogeochemical cycles. However, we still have limited knowledge about how environmental factors affect the diversity and function of different archaeal lineages. The goal of this study was to examine the change in the abundance and community structure of Archaea in the sediments collected from the lower Pearl River (mainly North River tributary), its estuary, and coastal South China Sea (SCS) in order to evaluate how archaeal ecological function might change along the salinity gradient. Pyrosequencing of the 16S rDNA gene of Archaea was performed on sediment samples from Feilaixia Dam on the North River tributary to Wanshan islands, which have a salinity range of 0.1 to 31.2‰. Consistent with the salt tolerance of cultivated representatives, methanogens in the genera Methanoregula, Methanosaeta, and Methanosarcina and Nitrososphaera within Thaumarchaeota of the ammonia-oxidizing Archaea (AOA) were abundant in freshwater sediments of the North River tributary, whereas the marine-associated genera Methanococcoides and Nitrosopumilus were the most abundant methanogens and AOA, respectively, in the estuary and coastal SCS. However, the percentages of total methanogens decreased and Thaumarchaeota increased with salinity, respectively. The phylum Crenarchaeota was largely represented by class-level lineages with no cultivated representatives, which collectively were more abundant in the estuary and coastal SCS in comparison to freshwater sites. This study indicates that salinity is the dominating factor affecting archaeal community structure and ecological function from the North River tributary of the Pearl River, its estuary, and coastal SCS, which is consistent with salinity control on microbial diversity in other regions of the world.

  8. Marine protected communities against biological invasions: A case study from an offshore island.

    PubMed

    Gestoso, I; Ramalhosa, P; Oliveira, P; Canning-Clode, J

    2017-03-21

    Biological invasions are a major threat to the world's biota and are considered a major cause of biodiversity loss. Therefore, world marine policy has recognized the need for more marine protected areas (MPAs) as a major tool for biodiversity conservation. The present work experimentally evaluated how protected communities from an offshore island can face the settlement and/or expansion of nonindigenous species (NIS). First, NIS colonization success in marine protected and marina communities was compared by deploying PVC settling plates at the Garajau MPA and Funchal marina (SW Madeira Island). Then, the settling plates from the MPA were transferred to Funchal marina to test their resistance to NIS invasion under high levels of NIS pressure. Results indicated that the structure and composition of fouling communities from the MPA differed from those collected in the marina. Interestingly, communities from the protected area showed lower NIS colonization success, suggesting some degree of biotic resistance against NIS invasion.

  9. Regulatory Assistance, Stakeholder Outreach, and Coastal and Marine Spatial Planning Activities in Support of Marine and Hydrokinetic Energy Deployment

    SciTech Connect

    Geerlofs, Simon H.; Copping, Andrea E.; Van Cleve, Frances B.; Blake, Kara M.; Hanna, Luke A.

    2011-09-01

    This fiscal year 2011 progress report summarizes activities carried out under DOE Water Power Task 2.1.7, Permitting and Planning. Activities under Task 2.1.7 address the concerns of a wide range of stakeholders with an interest in the development of the marine and hydrokinetic (MHK) energy industry, including regulatory and resource management agencies, tribes, nongovernmental organizations, and industry.

  10. Impact of a coastal disposal site for inert wastes on the physical marine environment, Barcola-Bovedo, Trieste, Italy

    NASA Astrophysics Data System (ADS)

    Colizza, E.; Fontolan, G.; Brambati, A.

    1996-06-01

    . Sediments in the marine area surrounding the Barcola-Bovedo coastal disposal site for inert wastes show a textural adjustment as a response to the new morphology due to construction of a 150-wide × 350-long landfill. Relatively coarse-sized deposits were found along the nearshore area facing the central landfill face, while pelitic sediments transported in suspension settle deeper, mainly in the northwestern sector of the study area, according to the cyclonic circulation scheme. Geochemical comparison between disposed material and sea-bottom sediments, normalized taking in account the regional variability of the elements contents, shows: (1) Cr concentrations in the coastal samples twice as high as in the offshore ones, with the former characterizing the whole coastal and port area of Trieste, and (2) “anomalous” enrichments of Zn, Cu, and Pb, located mainly in the southern stretch of the investigated area, where dumping work is in progress in order to connect the landfill with the port area. Although the new morphology of the sea bottom is reflected in the grain-size redistribution, the sediments were not altered as far as their geochemical properties are concerned. In contrast, the recent discharge of material in the southern area is easily discernible because of its high heavy-metal content.

  11. Impact of a coastal disposal site for inert wastes on the physical marine environment, Barcola-Bovedo, Trieste, Italy

    SciTech Connect

    Colizza, E.; Fontolan, G.; Brambati, A.

    1996-06-01

    Sediments in the marine area surrounding the Barcola-Bovedo coastal disposal site for inert wastes show a textural adjustment as a response to the new morphology due to construction of a 150-m-wide x 350-m-long landfill. Relatively coarse-sized deposits were found along the nearshore area facing the central landfill face, while pelitic sediments transported in suspension settle deeper, mainly in the northwestern sector of the study area, according to the cyclonic circulation scheme. Geochemical comparison between disposed material and sea-bottom sediments, normalized taking in account the regional variability of the element contents, shows: (1) Cr concentrations in the coastal samples twice as high as in the offshore ones, with the former characterizing the whole coastal and port area of Trieste, and (2) {open_quotes}anomalous{close_quotes} enrichments of Zn, Cu, and Pb, located mainly in the southern stretch of the investigated area, where dumping work is in progress in order to connect the landfill with the port area. Although the new morphology of the sea bottom is reflected in the grain-size redistribution, the sediments were not altered as far as their geochemical properieties are concerned. In contrast, the recent discharge of material in the southern area is easily discernible because of its high heavy-metal content. 30 refs., 10 figs., 6 tabs.

  12. Information Needs Assessment for Coastal and Marine Management and Policy: Ecosystem Services Under Changing Climatic, Land Use, and Demographic Conditions

    NASA Astrophysics Data System (ADS)

    Goldsmith, Kaitlin A.; Granek, Elise F.; Lubitow, Amy

    2015-12-01

    Changing climatic, demographic, and land use conditions are projected to alter the provisioning of ecosystem services in estuarine, coastal, and nearshore marine ecosystems, necessitating mitigation and adaptation policies and management. The current paradigm of research efforts occurring in parallel to, rather than in collaboration with, decision makers will be insufficient for the rapid responses required to adapt to and mitigate for projected changing conditions. Here, we suggest a different paradigm: one where research begins by engaging decision makers in the identification of priority data needs (biophysical, economic, and social). This paper uses synthesized interview data to provide insight into the varied demands for scientific research as described by decision makers working on coastal issues in Oregon, USA. The findings highlight the need to recognize (1) the differing framing of ecosystem services by decision makers versus scientists; and (2) the differing data priorities relevant to inland versus coastal decision makers. The findings further serve to highlight the need for decision makers, scientists, and funders to engage in increased communication. This research is an important first step in advancing efforts toward evidence-based decision making in Oregon and provides a template for further research across the US.

  13. Information Needs Assessment for Coastal and Marine Management and Policy: Ecosystem Services Under Changing Climatic, Land Use, and Demographic Conditions.

    PubMed

    Goldsmith, Kaitlin A; Granek, Elise F; Lubitow, Amy

    2015-12-01

    Changing climatic, demographic, and land use conditions are projected to alter the provisioning of ecosystem services in estuarine, coastal, and nearshore marine ecosystems, necessitating mitigation and adaptation policies and management. The current paradigm of research efforts occurring in parallel to, rather than in collaboration with, decision makers will be insufficient for the rapid responses required to adapt to and mitigate for projected changing conditions. Here, we suggest a different paradigm: one where research begins by engaging decision makers in the identification of priority data needs (biophysical, economic, and social). This paper uses synthesized interview data to provide insight into the varied demands for scientific research as described by decision makers working on coastal issues in Oregon, USA. The findings highlight the need to recognize (1) the differing framing of ecosystem services by decision makers versus scientists; and (2) the differing data priorities relevant to inland versus coastal decision makers. The findings further serve to highlight the need for decision makers, scientists, and funders to engage in increased communication. This research is an important first step in advancing efforts toward evidence-based decision making in Oregon and provides a template for further research across the US.

  14. Marine Ship Automatic Identification System (AIS) for Enhanced Coastal Security Capabilities: An Oil Spill Tracking Application

    DTIC Science & Technology

    2007-09-01

    MARPOL ( Marine Pollution ) Convention is a combination of two treaties put forward in 1973 and 1978, largely in response to several catastrophic oil...spills. This Convention, sometimes referred to as MARPOL 73/78, governs international shipping regulations with regard to marine pollution , and has...to address by the IMO and other organizations concerned with marine pollution . However illegal high seas oil discharges have increasingly become a

  15. The Impacts of Human Visitation on Mussel Bed Communities Along the California Coast: Are Regulatory Marine Reserves Effective in Protecting These Communities?

    NASA Astrophysics Data System (ADS)

    Smith, Jayson R.; Fong, Peggy; Ambrose, Richard F.

    2008-04-01

    Rocky intertidal habitats frequently are used by humans for recreational, educational, and subsistence-harvesting purposes, with intertidal populations damaged by visitation activities such as extraction, trampling, and handling. California Marine Managed Areas, particularly regulatory marine reserves (MRs), were established to provide legal protection and enhancement of coastal resources and include prohibitions on harvesting intertidal populations. However, the effectiveness of MRs is unclear as enforcement of no-take laws is weak and no regulations protect intertidal species from other detrimental visitor impacts such as trampling. The goal of this study was two-fold: (1) to determine impacts from human visitation on California mussel populations ( Mytilus californianus) and mussel bed community diversity; and (2) to investigate the effectiveness of regulatory MRs in reducing visitor impacts on these populations. Surveys of mussel populations and bed-associated diversity were compared: (1) at sites subjected to either high or low levels of human use, and (2) at sites either unprotected or with regulatory protection banning collecting. At sites subjected to higher levels of human visitation, mussel populations were significantly lower than low-use sites. Comparisons of mussel populations inside and outside of regulatory MRs revealed no consistent pattern suggesting that California no-take regulatory reserves may have limited effectiveness in protecting mussel communities. In areas where many people visit intertidal habitats for purposes other than collecting, many organisms will be affected by trampling, turning of rocks, and handling. In these cases, effective protection of rocky intertidal communities requires an approach that goes beyond the singular focus on collecting to reduce the full suite of impacts.

  16. Changes in northern Gulf of Mexico sediment bacterial and archaeal communities exposed to hypoxia

    EPA Science Inventory

    Biogeochemical changes in marine sediments during coastal water hypoxia are well described, but less is known about underlying changes in microbial communities. Bacterial and archaeal communities in Louisiana continental shelf (LCS) hypoxic zone sediments were characterized by py...

  17. Ice nucleating particles at a coastal marine boundary layer site: correlations with aerosol type and meteorological conditions

    NASA Astrophysics Data System (ADS)

    Mason, R. H.; Si, M.; Li, J.; Chou, C.; Dickie, R.; Toom-Sauntry, D.; Pöhlker, C.; Yakobi-Hancock, J. D.; Ladino, L. A.; Jones, K.; Leaitch, W. R.; Schiller, C. L.; Abbatt, J. P. D.; Huffman, J. A.; Bertram, A. K.

    2015-06-01

    Information on what aerosol particle types are the major sources of ice nucleating particles (INPs) in the atmosphere is needed for climate predictions. To determine which aerosol particles are the major sources of immersion-mode INPs at a coastal site in Western Canada, we investigated correlations between INP number concentrations and both concentrations of different atmospheric particles and meteorological conditions. We show that INP number concentrations are strongly correlated with the number concentrations of fluorescent bioparticles between -15 and -25 °C, and that the size distribution of INPs is most consistent with the size distribution of fluorescent bioparticles. We conclude that biological particles were likely the major source of ice nuclei at freezing temperatures between -15 and -25 °C at this site for the time period studied. At -30 °C, INP number concentrations are also well correlated with number concentrations of the total aerosol particles ≥ 0.5 μm, suggesting that non-biological particles may have an important contribution to the population of INPs active at this temperature. As we found that black carbon particles were unlikely to be a major source of ice nuclei during this study, these non-biological INPs may include mineral dust. Furthermore, correlations involving tracers of marine aerosols and marine biological activity indicate that the majority of INPs measured at the coastal site likely originated from terrestrial rather than marine sources. Finally, six existing empirical parameterizations of ice nucleation were tested to determine if they accurately predict the measured INP number concentrations. We found that none of the parameterizations selected are capable of predicting INP number concentrations with high accuracy over the entire temperature range investigated.

  18. Ice nucleating particles at a coastal marine boundary layer site: correlations with aerosol type and meteorological conditions

    NASA Astrophysics Data System (ADS)

    Mason, R. H.; Si, M.; Li, J.; Chou, C.; Dickie, R.; Toom-Sauntry, D.; Pöhlker, C.; Yakobi-Hancock, J. D.; Ladino, L. A.; Jones, K.; Leaitch, W. R.; Schiller, C. L.; Abbatt, J. P. D.; Huffman, J. A.; Bertram, A. K.

    2015-11-01

    Information on what aerosol particle types are the major sources of ice nucleating particles (INPs) in the atmosphere is needed for climate predictions. To determine which aerosol particles are the major sources of immersion-mode INPs at a coastal site in Western Canada, we investigated correlations between INP number concentrations and both concentrations of different atmospheric particles and meteorological conditions. We show that INP number concentrations are strongly correlated with the number concentrations of fluorescent bioparticles between -15 and -25 °C, and that the size distribution of INPs is most consistent with the size distribution of fluorescent bioparticles. We conclude that biological particles were likely the major source of ice nuclei at freezing temperatures between -15 and -25 °C at this site for the time period studied. At -30 °C, INP number concentrations are also well correlated with number concentrations of the total aerosol particles ≥ 0.5 μm, suggesting that non-biological particles may have an important contribution to the population of INPs active at this temperature. As we found that black carbon particles were unlikely to be a major source of ice nuclei during this study, these non-biological INPs may include mineral dust. Furthermore, correlations involving chemical tracers of marine aerosols and marine biological activity, sodium and methanesulfonic acid, indicate that the majority of INPs measured at the coastal site likely originated from terrestrial rather than marine sources. Finally, six existing empirical parameterizations of ice nucleation were tested to determine if they accurately predict the measured INP number concentrations. We found that none of the parameterizations selected are capable of predicting INP number concentrations with high accuracy over the entire temperature range investigated. This finding illustrates that additional measurements are needed to improve parameterizations of INPs and their

  19. Robustness of surrogates of biodiversity in marine benthic communities.

    PubMed

    Magierowski, Regina H; Johnson, Craig R

    2006-12-01

    The usefulness of surrogates to estimate complex variables describing community structure, such as the various components of biodiversity, is long established. Most attention has been given to surrogates of species richness and species diversity and has focused on identifying a subset of taxa as a surrogate of total community richness or diversity. In adopting a surrogate measure, it is assumed that the relationship between the surrogate(s) and total richness or diversity is consistent in both space and time. These assumptions are rarely examined explicitly. We examined the robustness of potential surrogates of familial richness and multivariate community structure for macrofauna communities inhabiting artificial kelp holdfasts by comparing among communities of dissimilar ages and among communities established at different times of the year. This is important because most benthic "landscapes" will be a mosaic of patches reflecting different intensities, frequencies, and timing of disturbances. The total abundance of organisms and familial richness of crustaceans or polychaetes were all good predictors of total familial richness (R2 > 0.68). In contrast, while the familial richness of other groups, such as mollusks and echinoderms, were well correlated with total familial richness for communities at an early stage of development, the strength of these relationships declined with community age. For multivariate community structure, carefully selected subsets of approximately 10% of the total taxa yielded similar patterns to the total suite of taxa, irrespective of the age of the community. Thus, useful surrogates of both familial richness and multivariate community structure can be identified for this type of community. However, the choice of technique for selecting surrogate taxa largely depends on the nature of the pilot data available, and careful selection is required to ensure that surrogates perform consistently across different-aged communities. While the

  20. Aspergillus Sydowii Marine Fungal Bloom in Australian Coastal Waters, Its Metabolites and Potential Impact on Symbiodinium Dinoflagellates

    PubMed Central

    Hayashi, Aiko; Crombie, Andrew; Lacey, Ernest; Richardson, Anthony J.; Vuong, Daniel; Piggott, Andrew M.; Hallegraeff, Gustaaf

    2016-01-01

    Dust has been widely recognised as an important source of nutrients in the marine environment and as a vector for transporting pathogenic microorganisms. Disturbingly, in the wake of a dust storm event along the eastern Australian coast line in 2009, the Continuous Plankton Recorder collected masses of fungal spores and mycelia (~150,000 spores/m3) forming a floating raft that covered a coastal area equivalent to 25 times the surface of England. Cultured A. sydowii strains exhibited varying metabolite profiles, but all produced sydonic acid, a chemotaxonomic marker for A. sydowii. The Australian marine fungal strains share major metabolites and display comparable metabolic diversity to Australian terrestrial strains and to strains pathogenic to Caribbean coral. Secondary colonisation of the rafts by other fungi, including strains of Cladosporium, Penicillium and other Aspergillus species with distinct secondary metabolite profiles, was also encountered. Our bioassays revealed that the dust-derived marine fungal extracts and known A. sydowii metabolites such as sydowic acid, sydowinol and sydowinin A adversely affect photophysiological performance (Fv/Fm) of the coral reef dinoflagellate endosymbiont Symbiodinium. Different Symbiodinium clades exhibited varying sensitivities, mimicking sensitivity to coral bleaching phenomena. The detection of such large amounts of A. sydowii following this dust storm event has potential implications for the health of coral environments such as the Great Barrier Reef. PMID:26999164