Science.gov

Sample records for marine dinoflagellate alexandrium

  1. Comparative gene expression in toxic versus non-toxic strains of the marine dinoflagellate Alexandrium minutum

    PubMed Central

    2010-01-01

    Background The dinoflagellate Alexandrium minutum typically produces paralytic shellfish poisoning (PSP) toxins, which are known only from cyanobacteria and dinoflagellates. While a PSP toxin gene cluster has recently been characterized in cyanobacteria, the genetic background of PSP toxin production in dinoflagellates remains elusive. Results We constructed and analysed an expressed sequence tag (EST) library of A. minutum, which contained 15,703 read sequences yielding a total of 4,320 unique expressed clusters. Of these clusters, 72% combined the forward-and reverse reads of at least one bacterial clone. This sequence resource was then used to construct an oligonucleotide microarray. We analysed the expression of all clusters in three different strains. While the cyanobacterial PSP toxin genes were not found among the A. minutum sequences, 192 genes were differentially expressed between toxic and non-toxic strains. Conclusions Based on this study and on the lack of identified PSP synthesis genes in the two existent Alexandrium tamarense EST libraries, we propose that the PSP toxin genes in dinoflagellates might be more different from their cyanobacterial counterparts than would be expected in the case of a recent gene transfer. As a starting point to identify possible PSP toxin-associated genes in dinoflagellates without relying on a priori sequence information, the sequences only present in mRNA pools of the toxic strain can be seen as putative candidates involved in toxin synthesis and regulation, or acclimation to intracellular PSP toxins. PMID:20403159

  2. Preliminary Characterization of Extracellular Allelochemicals of the Toxic Marine Dinoflagellate Alexandrium tamarense Using a Rhodomonas salina Bioassay

    PubMed Central

    Ma, Haiyan; Krock, Bernd; Tillmann, Urban; Cembella, Allan

    2009-01-01

    Members of the marine dinoflagellate genus Alexandrium are known to exude allelochemicals, unrelated to well-known neurotoxins (PSP-toxins, spirolides), with negative effects on other phytoplankton and marine grazers. Physico/chemical characterization of extracellular lytic compounds of A. tamarense, quantified by Rhodomonas salina bioassay, showed that the lytic activity, and hence presumably the compounds were stable over wide ranges of temperatures and pH and were refractory to bacterial degradation. Two distinct lytic fractions were collected by reversed-phase solid-phase extraction. The more hydrophilic fraction accounted for about 2% of the whole lytic activity of the A. tamarense culture supernatant, while the less hydrophilic one accounted for about 98% of activity. Although temporal stability of the compounds is high, substantial losses were evident during purification. Lytic activity was best removed from aqueous phase with chloroform-methanol (3:1). A “pseudo-loss” of lytic activity in undisturbed and low-concentrated samples and high activity of an emulsion between aqueous and n-hexane phase after liquid-liquid partition are strong evidence for the presence of amphipathic compounds. Lytic activity in the early fraction of gel permeation chromatography and lack of activity after 5 kD ultrafiltration indicate that the lytic agents form large aggregates or macromolecular complexes. PMID:20098594

  3. Photosynthetic Carbon Isotope Fractionation of the Marine Dinoflagellate Alexandrium tamarense: A Chemostat Investigation of Taxonomic and Physiological Controls on the Stable Carbon Isotope Record

    NASA Astrophysics Data System (ADS)

    Wilkes, E.; Carter, S. J.; Pearson, A.

    2015-12-01

    Interpretations of stable carbon isotope excursions in the sedimentary record are strengthened by laboratory culture studies investigating the photosynthetic carbon isotope fractionation (ɛp) of marine phytoplankton taxa with long geological records. These studies are essential for understanding organic matter δ13C signals in terms of environmental changes (e.g., atmospheric pCO2 and nutrient availability) or taxonomic changes (e.g., algal species succession and community composition). Dinoflagellates are among the most widespread and ecologically dominant primary producers in modern oceans and throughout the Mesozoic and Cenozoic. Compared to more recently evolved phytoplankton taxa, however, dinoflagellate carbon isotope fractionation has received relatively little mechanistic study. Several dilute batch culture experiments with dinoflagellates have investigated ɛp as a function of CO2 availability, but the influences of changing growth rates, nutrient limitation, pH, and irradiance require further systematic exploration. We investigated stable carbon isotope fractionation in the marine dinoflagellate Alexandrium tamarense under nitrate-limited conditions in a chemostat culture system in which full DIC system parameters, including the concentration and δ13C value of CO2, were determined. Growth rates were varied between experiments, and cells were grown under continuous light. Previously reported ɛp values for seven dinoflagellate species including A. tamarense ranged from approximately -1 to 14‰ in nutrient-replete batch culture studies ([CO2] = 0-50 µmol kg-1). In contrast, in chemostat conditions we measured ɛp values on the order of 20‰ ([CO2] = 20-30 µmol kg-1). These experiments provide an initial step toward understanding the physiological controls on ɛp in dinoflagellates and illuminating the role of algal taxonomy in shaping the Phanerozoic stable carbon isotope record.

  4. Genome sequence of the Roseovarius mucosus type strain (DSM 17069T), a bacteriochlorophyll a-containing representative of the marine Roseobacter group isolated from the dinoflagellate Alexandrium ostenfeldii

    PubMed Central

    2015-01-01

    Roseovarius mucosus Biebl et al. 2005 is a bacteriochlorophyll a-producing representative of the marine Roseobacter group within the alphaproteobacterial family Rhodobacteraceae, which was isolated from the dinoflagellate Alexandrium ostenfeldii. The marine Roseobacter group was found to be abundant in the ocean and plays an important role for global and biogeochemical processes. Here we describe the features of the R. mucosus strain DFL-24T together with its genome sequence and annotation generated from a culture of DSM 17069T. The 4,247,724 bp containing genome sequence encodes 4,194 protein-coding genes and 57 RNA genes. In addition to the presence of four plasmids, genome analysis revealed the presence of genes associated with host colonization, DMSP utilization, cytotoxins, and quorum sensing that could play a role in the interrelationship of R. mucosus with the dinoflagellate A. ostenfeldii and other marine organisms. Furthermore, the genome encodes genes associated with mixotrophic growth, where both reduced inorganic compounds for lithotrophic growth and a photoheterotrophic lifestyle using light as additional energy source could be used. PMID:26203330

  5. Copper and cadmium effects on growth and extracellular exudation of the marine toxic dinoflagellate Alexandrium catenella: 3D-fluorescence spectroscopy approach.

    PubMed

    Herzi, Faouzi; Jean, Natacha; Zhao, Huiyu; Mounier, Stéphane; Mabrouk, Hassine Hadj; Hlaili, Asma Sakka

    2013-10-01

    In this study, metal contamination experiments were conducted to investigate the effects of copper and cadmium on the growth of the marine toxic dinoflagellate Alexandrium catenella and on the production of dissolved organic matter (Dissolved Organic Carbon: DOC; Fluorescent Dissolved Organic Matter: FDOM). This species was exposed to increasing concentrations of Cu(2+) (9.93 × 10(-10)-1.00 × 10(-7)M) or Cd(2+) (1.30 × 10(-8)-4.38 × 10(-7)M), to simulate polluted environments. The drastic effects were observed at pCu(2+)=7.96 (Cu(2+): 1.08 × 10(-8)M) and pCd(2+)=7.28 (Cd(2+): 5.19 × 10(-8)M), where cyst formation occurred. Lower levels of Cu(2+) (pCu(2+)>9.00) and Cd(2+) (pCd(2+)>7.28) had no effect on growth. However, when levels of Cu(2+) and Cd(2+) were beyond 10(-7)M, the growth was totally inhibited. The DOC released per cell (DOC/Cell) was different depending on the exposure time and the metal contamination, with higher DOC/Cell values in response to Cu(2+) and Cd(2+), comparatively to the control. Samples were also analyzed by 3D-fluorescence spectroscopy, using the Parallel Factor Analysis (PARAFAC) algorithm to characterize the FDOM. The PARAFAC analytical treatment revealed four components (C1, C2, C3 and C4) that could be associated with two contributions: one, related to the biological activity; the other, linked to the decomposition of organic matter. The C1 component combined a tryptophan peak and a characteristic humic substances response, and the C2 component was considered as a tryptophan protein fluorophore. The C3 and C4 components were associated to marine organic matter production.

  6. SxtA gene sequence analysis of dinoflagellate Alexandrium minutum

    NASA Astrophysics Data System (ADS)

    Norshaha, Safida Anira; Latib, Norhidayu Abdul; Usup, Gires; Yusof, Nurul Yuziana Mohd

    2015-09-01

    The dinoflagellate Alexandrium minutum is typically known for the production of potent neurotoxins such as saxitoxin, affecting the health of human seafood consumers via paralytic shellfish poisoning (PSP). These phenomena is related to the harmful algal blooms (HABs) that is believed to be influenced by environmental and nutritional factors. Previous study has revealed that SxtA gene is a starting gene that involved in the saxitoxin production pathway. The aim of this study was to analyse the sequence of the sxtA gene in A. minutum. The dinoflagellates culture was cultured at temperature 26°C with 16:8-hour light:dark photocycle. After the samples were harvested, RNA was extracted, complementary DNA (cDNA) was synthesised and amplified by polymerase chain reaction (PCR). The PCR products were then purified and cloned before sequenced. The SxtA sequence obtained was then analyzed in order to identify the presence of SxtA gene in Alexandrium minutum.

  7. Specific detection of the toxic dinoflagellates Alexandrium tamarense and Alexandrium catenella from single vegetative cells by a loop-mediated isothermal amplification method.

    PubMed

    Nagai, Satoshi; Itakura, Shigeru

    2012-09-01

    In this study, we succeeded in developing a loop-mediated isothermal amplification (LAMP) method that enables sensitive and specific detection of the toxic marine dinoflagellates Alexandrium tamarense and Alexandrium catenella from single cells of both laboratory cultures and naturally blooming cells within 25 min, by monitoring the turbidimeter from the start of the LAMP reaction. The fluorescence intensity was strong enough to allow discrimination between positive and negative results by naked eye under a UV lamp, even in amplified samples from a single cell, by using the LAMP method. Unambiguous detection by naked eye was possible even in half the volume of LAMP cocktail recommended by the manufacturer, suggesting the potential to significantly reduce the cost of Alexandrium monitoring. Therefore, we can conclude that this method is one of the most convenient, sensitive, and cost-effective molecular tools for Alexandrium monitoring. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Global transcriptional profiling of the toxic dinoflagellate Alexandrium fundyense using Massively Parallel Signature Sequencing

    PubMed Central

    Erdner, Deana L; Anderson, Donald M

    2006-01-01

    Background Dinoflagellates are one of the most important classes of marine and freshwater algae, notable both for their functional diversity and ecological significance. They occur naturally as free-living cells, as endosymbionts of marine invertebrates and are well known for their involvement in "red tides". Dinoflagellates are also notable for their unusual genome content and structure, which suggests that the organization and regulation of dinoflagellate genes may be very different from that of most eukaryotes. To investigate the content and regulation of the dinoflagellate genome, we performed a global analysis of the transcriptome of the toxic dinoflagellate Alexandrium fundyense under nitrate- and phosphate-limited conditions using Massively Parallel Signature Sequencing (MPSS). Results Data from the two MPSS libraries showed that the number of unique signatures found in A. fundyense cells is similar to that of humans and Arabidopsis thaliana, two eukaryotes that have been extensively analyzed using this method. The general distribution, abundance and expression patterns of the A. fundyense signatures were also quite similar to other eukaryotes, and at least 10% of the A. fundyense signatures were differentially expressed between the two conditions. RACE amplification and sequencing of a subset of signatures showed that multiple signatures arose from sequence variants of a single gene. Single signatures also mapped to different sequence variants of the same gene. Conclusion The MPSS data presented here provide a quantitative view of the transcriptome and its regulation in these unusual single-celled eukaryotes. The observed signature abundance and distribution in Alexandrium is similar to that of other eukaryotes that have been analyzed using MPSS. Results of signature mapping via RACE indicate that many signatures result from sequence variants of individual genes. These data add to the growing body of evidence for widespread gene duplication in

  9. Three-dimensional (3-D) fluorescence spectroscopy analysis of the fluorescent dissolved organic matter released by the marine toxic dinoflagellate Alexandrium catenella exposed to metal stress by zinc or lead.

    PubMed

    Herzi, Faouzi; Jean, Natacha; Sakka Hlaili, Asma; Mounier, Stéphane

    2014-08-01

    We investigated the effects of zinc or lead on growth and on exudation of fluorescent dissolved organic matter (FDOM) by the marine toxic dinoflagellate Alexandrium catenella (Whedon & Kofoid) Balech. The species was exposed to increasing free zinc (1.34 × 10(-7) M-3.98 × 10(-6) M) or lead (5.13 × 10(-9) M-1.82 × 10(-7) M) concentra-tions. Low metal levels ([Zn(2+) ] = 1.34 × 10(-7) M; [Pb(2+) ] = 5.13 × 10(-9) M) had no effect on cell growth. Toxic effects were observed from higher metal contamination ([Zn(2+) ] = 3.98 × 10(-6) M; [Pb(2+) ] = 6.54 × 10(-8) M), as a conversion of vegetative cells into cysts. Analysis of the released FDOM by three-dimensional (3-D) fluorescence spectroscopy was achieved, using the parallel factor analysis (PARAFAC). The PARAFAC modeling revealed four components associated with two contributions: one related to the biological activity; the other linked to the organic matter decomposition in the culture medium. The C1 component combined a tryptophan peak and characteristics of humic substances, whereas the C2 component was considered as a tryptophan protein fluorophore. The two others C3 and C4 components were associated with marine organic matter production. Relea-sed fluorescent substances were induced by low ([Zn(2+) ]= 1.34 × 10(-7) M; [Pb(2+) ] = 5.13 × 10(-9) M) and moderate ([Zn(2+) ] = 6.21 × 10(-7) M; [Pb(2+) ] = 2.64× 10(-9) M) metal concentrations, suggesting the activation of cellular mechanisms in response to metal stress, to exudate FDOM that could complex metal cations and reduce their toxicity toward A. catenella cells.

  10. Gene expression and molecular evolution of sxtA4 in a saxitoxin producing dinoflagellate Alexandrium catenella.

    PubMed

    Wiese, Maria; Murray, Shauna A; Alvin, Alfonsus; Neilan, Brett A

    2014-12-15

    Dinoflagellates of the genus Alexandrium produce the neurotoxin saxitoxin (STX), responsible for paralytic shellfish poisoning (PSP) and accumulates in marine invertebrates. The recent identification of STX biosynthesis genes allowed us to investigate the expression of sxtA4 at different growth stages in Alexandrium catenella Group IV. We found no significant differences in expression of sxtA4, despite significant differences in STX levels at different growth stages (P < 0.023). Three reference genes were tested for normalisation: actin, cytochrome b (cob), and the large subunit ribosomal RNA (LSU rDNA). cob was most stably expressed but the combination of two reference genes, actin and cob, resulted in the best stability factor. Most genomic sequences of sxtA4 from A. catenella were in a clade that included sequences from Alexandrium fundyense Group I, however, one paralogue was not related to the others, suggesting recombination or lateral transfer. A comparison of the sxtA4 cDNA sequences with genomic DNA sequences indicated the possibility of transcript editing and the preferential transcription of certain genomic DNA loci. The results show that, in dinoflagellates, post-transcriptional mechanisms play a major role in the regulation of saxitoxin biosynthesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. GROWTH RATES AND ELEMENTAL COMPOSITION OF ALEXANDRIUM MONILATUM, A REDTIDE DINOFLAGELLATE

    EPA Science Inventory

    The combined effects of temperature and salinity on growth of Alexandrium monilatum were studied in laboratory cultures. This toxic, red-tide dinoflagellate grew faster with higher temperatures, up to a maximum of approximately 1 division d-1 at 31 C. Salinities above 15 psu had ...

  12. THE RED-TIDE DINOFLAGELLATE, ALEXANDRIUM MONILATUM, SUPPRESSES GROWTH OF MIXED NATURAL PHYTOPLANKTON

    EPA Science Inventory

    Alexandrium monilatum is a large, chain-forming, autotrophic dinoflagellate associated with red-tides and fish kills along the US Gulf of Mexico coast. When cultured inocula of A. monilatum were added to nutrient-amended seawater samples, growth rates and biomass yields of the na...

  13. GROWTH RATES, PHYSIOLOGICAL INDICATORS AND ELEMENTAL COMPOSITION OF THE RED-TIDE DINOFLAGELLATE, ALEXANDRIUM MONILATUM

    EPA Science Inventory

    Alexandrium monilatum is a thecate, autotrophic, bioluminescent and chain-forming dinoflagellate. Although it has been known to be associated with red tides and fish kills along the US Gulf of Mexico coast for almost 50 years, little basic physiological information is available f...

  14. THE RED-TIDE DINOFLAGELLATE, ALEXANDRIUM MONILATUM, SUPPRESSES GROWTH OF MIXED NATURAL PHYTOPLANKTON

    EPA Science Inventory

    Alexandrium monilatum is a large, chain-forming, autotrophic dinoflagellate associated with red-tides and fish kills along the US Gulf of Mexico coast. When cultured inocula of A. monilatum were added to nutrient-amended seawater samples, growth rates and biomass yields of the na...

  15. GROWTH RATES AND ELEMENTAL COMPOSITION OF ALEXANDRIUM MONILATUM, A REDTIDE DINOFLAGELLATE

    EPA Science Inventory

    The combined effects of temperature and salinity on growth of Alexandrium monilatum were studied in laboratory cultures. This toxic, red-tide dinoflagellate grew faster with higher temperatures, up to a maximum of approximately 1 division d-1 at 31 C. Salinities above 15 psu had ...

  16. Effect of the endoparasite Amoebophrya sp. on toxin content and composition in the paralytic shellfish poisoning dinoflagellate Alexandrium fundyense (Dinophyceae).

    PubMed

    Kim, Sunju; Park, Myung Gil

    2016-01-01

    Members of the Amoebophrya ceratii complex are endoparasitic dinoflagellates that parasitize a number of their dinoflagellate relatives, including toxic and/or harmful algal bloom-forming species. Despite many studies on the occurrence, prevalence, biology and molecular phylogeny of Amoebophrya spp., little attention has been given to toxin dynamics of host population following parasitism. Using Amoebophrya sp. infecting the paralytic shellfish toxin (PSP)-producing dinoflagellate Alexandrium fundyense, we addressed the following questions: (1) does parasitism by Amoebophrya sp. alter toxin content and toxin profiles of the dinoflagellate A. fundyense over the infection cycle? and (2) do parasite dinospores produced at the end of the infection cycle retain host toxins and thus potentially act as a vector to convey PSP toxin through the marine microbial food-web? Toxin time-course experiments showed that the PSP toxin contents did not vary significantly over the infection cycle, but mean toxin content for infected cultures was significantly higher than that for uninfected cultures. Host toxins were not detected in the free-living, dinospore stage of the parasite. Therefore, our results indicate that Amoebophrya sp. does not function as a vector for transferring PSP toxins to higher trophic levels. Rather, Amoebophrya infections appear to play an important role in maintaining healthy ecosystems by transforming potent toxins-producing dinoflagellates into non-toxic dinospores, representing "edible food" for consumers of the marine microbial food-web during toxic algal bloom event. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Whole Transcriptomic Analysis Provides Insights into Molecular Mechanisms for Toxin Biosynthesis in a Toxic Dinoflagellate Alexandrium catenella (ACHK-T)

    PubMed Central

    Zhang, Yong; Zhang, Shu-Fei; Lin, Lin

    2017-01-01

    Paralytic shellfish toxins (PSTs), a group of neurotoxic alkaloids, are the most potent biotoxins for aquatic ecosystems and human health. Marine dinoflagellates and freshwater cyanobacteria are two producers of PSTs. The biosynthesis mechanism of PSTs has been well elucidated in cyanobacteria; however, it remains ambiguous in dinoflagellates. Here, we compared the transcriptome profiles of a toxin-producing dinoflagellate Alexandrium catenella (ACHK-T) at different toxin biosynthesis stages within the cell cycle using RNA-seq. The intracellular toxin content increased gradually in the middle G1 phase and rapidly in the late G1 phase, and then remained relatively stable in other phases. Samples from four toxin biosynthesis stages were selected for sequencing, and finally yielded 110,370 unigenes, of which 66,141 were successfully annotated in the known databases. An analysis of differentially expressed genes revealed that 2866 genes altered significantly and 297 were co-expressed throughout the four stages. These genes participated mainly in protein metabolism, carbohydrate metabolism, and the oxidation-reduction process. A total of 138 homologues of toxin genes were identified, but they altered insignificantly among different stages, indicating that toxin biosynthesis might be regulated translationally or post-translationally. Our results will serve as an important transcriptomic resource to characterize key molecular processes underlying dinoflagellate toxin biosynthesis. PMID:28678186

  18. CO2-dependent carbon isotope fractionation in the dinoflagellate Alexandrium tamarense

    NASA Astrophysics Data System (ADS)

    Wilkes, Elise B.; Carter, Susan J.; Pearson, Ann

    2017-09-01

    The carbon isotopic composition of marine sedimentary organic matter is used to resolve long-term histories of pCO2 based on studies indicating a CO2-dependence of photosynthetic carbon isotope fractionation (εP). It recently was proposed that the δ13C values of dinoflagellates, as recorded in fossil dinocysts, might be used as a proxy for pCO2. However, significant questions remain regarding carbon isotope fractionation in dinoflagellates and how such fractionation may impact sedimentary records throughout the Phanerozoic. Here we investigate εP as a function of CO2 concentration and growth rate in the dinoflagellate Alexandrium tamarense. Experiments were conducted in nitrate-limited chemostat cultures. Values of εP were measured on cells having growth rates (μ) of 0.14-0.35 d-1 and aqueous carbon dioxide concentrations of 10.2-63 μmol kg-1 and were found to correlate linearly with μ/[CO2(aq)] (r2 = 0.94) in accord with prior, analogous chemostat investigations with eukaryotic phytoplankton. A maximum fractionation (εf) value of 27‰ was characterized from the intercept of the experiments, representing the first value of εf determined for an algal species employing Form II RubisCO-a structurally and catalytically distinct form of the carbon-fixing enzyme. This value is larger than theoretical predictions for Form II RubisCO and not significantly different from the ∼25‰ εf values observed for taxa employing Form ID RubisCO. We also measured the carbon isotope contents of dinosterol, hexadecanoic acid, and phytol from each experiment, finding that each class of biomarker exhibits different isotopic behavior. The apparent CO2-dependence of εP values in our experiments strengthens the proposal to use dinocyst δ13C values as a pCO2 proxy. Moreover, the similarity between the εf value for A. tamarense and the consensus value of ∼25‰ indicates that the CO2-sensitivity of carbon isotope fractionation saturates at similar CO2 levels across all three

  19. Genome Sequence of Bacillus sp. Strain UMTAT18 Isolated from the Dinoflagellate Alexandrium tamiyavanichii Found in the Straits of Malacca

    PubMed Central

    Ming, Gan Han; Mohd Noor, Mohd Ezhar; Sung, Yeong Yik; Usup, Gires

    2016-01-01

    Bacillus sp. strain UMTAT18 was isolated from the harmful dinoflagellate Alexandrium tamiyavanichii. Its genome consists of 5,479,367 bp with 5,546 open reading frames, 102 tRNAs, and 29 rRNAs. Gene clusters for biosynthesis of nonribosomal peptides, bacteriocin, and lantipeptide were identified. It also contains siderophore and genes related to stress tolerance. PMID:27795265

  20. Copepods induce paralytic shellfish toxin production in marine dinoflagellates

    PubMed Central

    Selander, Erik; Thor, Peter; Toth, Gunilla; Pavia, Henrik

    2006-01-01

    Among the thousands of unicellular phytoplankton species described in the sea, some frequently occurring and bloom-forming marine dinoflagellates are known to produce the potent neurotoxins causing paralytic shellfish poisoning. The natural function of these toxins is not clear, although they have been hypothesized to act as a chemical defence towards grazers. Here, we show that waterborne cues from the copepod Acartia tonsa induce paralytic shellfish toxin (PST) production in the harmful algal bloom-forming dinoflagellate Alexandrium minutum. Induced A. minutum contained up to 2.5 times more toxins than controls and was more resistant to further copepod grazing. Ingestion of non-toxic alternative prey was not affected by the presence of induced A. minutum. The ability of A. minutum to sense and respond to the presence of grazers by increased PST production and increased resistance to grazing may facilitate the formation of harmful algal blooms in the sea. PMID:16769640

  1. Diel vertical distributions of the red tide dinoflagellate Alexandrium fundyense in the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Townsend, David W.; Bennett, Stephanie L.; Thomas, Maura A.

    2005-09-01

    Two 24-h experiments, designed to test whether the toxic dinoflagellate Alexandrium fundyense exhibited significant changes in vertical distribution, were performed in offshore waters of the Gulf of Maine in June 2000. Standard hydrocasts with a CTD/carousel water sampler package were made hourly on-station while following a drogue set at 25 m depth. Continuous measurements of T, S, and chlorophyll fluorescence were made on each down cast, and discrete water samples were collected at 5-m intervals from 55 m depth to the surface on the up cast, for analyses of extracted phytoplankton chlorophyll, inorganic nutrients and cell densities of Alexandrium In the first experiment we observed a bimodal vertical distribution of cells, with relatively high cell densities near the surface (<15 m depth) and a second peak of relatively high cell densities at depths between 25 and 40 m, coincident with the depth of the pycnocline and nitricline. Internal waves of 10-15 m amplitude appeared to exert control over the depth distribution of the deep population. Approximately 12 h into the first experiment, a relatively warm surface water mass with low Alexandrium cell densities intruded over the drogue station, leaving only the deep population. In the second experiment overall cell densities of Alexandrium were much lower, but again we observed initially a bimodal depth distribution of cells. As in the first experiment, the surface population effectively disappeared after a few hours, leaving only the deep population; in this case, however, there was some evidence of an initial downward movement of the surface population prior to its complete disappearance. Evidence for intrusion of a surface-water layer was not as clear in the second experiment as in the first. In addition to higher-frequency internal waves, as was observed in the first experiment, we also observed a low-frequency internal tidal wave of greater than 20 m amplitude that controlled the vertical distribution of the

  2. Environmental Barcoding Reveals Massive Dinoflagellate Diversity in Marine Environments

    PubMed Central

    Stern, Rowena F.; Horak, Ales; Andrew, Rose L.; Coffroth, Mary-Alice; Andersen, Robert A.; Küpper, Frithjof C.; Jameson, Ian; Hoppenrath, Mona; Véron, Benoît; Kasai, Fumai; Brand, Jerry; James, Erick R.; Keeling, Patrick J.

    2010-01-01

    Background Dinoflagellates are an ecologically important group of protists with important functions as primary producers, coral symbionts and in toxic red tides. Although widely studied, the natural diversity of dinoflagellates is not well known. DNA barcoding has been utilized successfully for many protist groups. We used this approach to systematically sample known “species”, as a reference to measure the natural diversity in three marine environments. Methodology/Principal Findings In this study, we assembled a large cytochrome c oxidase 1 (COI) barcode database from 8 public algal culture collections plus 3 private collections worldwide resulting in 336 individual barcodes linked to specific cultures. We demonstrate that COI can identify to the species level in 15 dinoflagellate genera, generally in agreement with existing species names. Exceptions were found in species belonging to genera that were generally already known to be taxonomically challenging, such as Alexandrium or Symbiodinium. Using this barcode database as a baseline for cultured dinoflagellate diversity, we investigated the natural diversity in three diverse marine environments (Northeast Pacific, Northwest Atlantic, and Caribbean), including an evaluation of single-cell barcoding to identify uncultivated groups. From all three environments, the great majority of barcodes were not represented by any known cultured dinoflagellate, and we also observed an explosion in the diversity of genera that previously contained a modest number of known species, belonging to Kareniaceae. In total, 91.5% of non-identical environmental barcodes represent distinct species, but only 51 out of 603 unique environmental barcodes could be linked to cultured species using a conservative cut-off based on distances between cultured species. Conclusions/Significance COI barcoding was successful in identifying species from 70% of cultured genera. When applied to environmental samples, it revealed a massive amount of

  3. Transcriptomic responses of the calanoid copepod Calanus finmarchicus to the saxitoxin producing dinoflagellate Alexandrium fundyense

    NASA Astrophysics Data System (ADS)

    Roncalli, Vittoria; Cieslak, Matthew C.; Lenz, Petra H.

    2016-05-01

    In the Gulf of Maine, the copepod Calanus finmarchicus co-occurs with the neurotoxin-producing dinoflagellate, Alexandrium fundyense. The copepod is resistant to this toxic alga, but little is known about other effects. Gene expression profiles were used to investigate the physiological response of females feeding for two and five days on a control diet or a diet containing either a low or a high dose of A. fundyense. The physiological responses to the two experimental diets were similar, but changed between the time points. At 5-days the response was characterized by down-regulated genes involved in energy metabolism. Detoxification was not a major component of the response. Instead, genes involved in digestion were consistently regulated, suggesting that food assimilation may have been affected. Thus, predicted increases in the frequency of blooms of A. fundyense could affect C. finmarchicus populations by changing the individuals’ energy budget and reducing their ability to build lipid reserves.

  4. Dynamics of late spring and summer phytoplankton communities on Georges Bank, with emphasis on diatoms, Alexandrium spp., and other dinoflagellates

    NASA Astrophysics Data System (ADS)

    Gettings, Rachel M.; Townsend, David W.; Thomas, Maura A.; Karp-Boss, Lee

    2014-05-01

    We analyzed the distribution, abundance, and succession patterns of major phytoplankton taxa on Georges Bank in relation to hydrography, nutrients, and size-fractionated chlorophyll concentrations (>20 μm; <20 μm) on three oceanographic cruises from late spring through summer 2008 (28 April-5 May, 27 May-4 June, and 27 June-3 July). The April-May phytoplankton community was dominated numerically by the diatoms Skeletonema spp., Thalassiosira spp., Coscinodiscus spp., and Chaetoceros spp., with highest total diatom cell densities exceeding 200,000 cells l-1 on the Northeast Peak. In May-June, low nitrate and silicate concentrations over the Bank, along with patches of slightly elevated ammonium, were apparently supporting a predominantly dinoflagellate population; the toxic dinoflagellate Alexandrium spp. reached 13,000 cells l-1. Diatom cell densities on the second cruise in May-June were less than 60,000 cells l-1 and their spatial distributions did not overlap with the highest cell densities of Alexandrium spp. or other dinoflagellates. On the third and last cruise, in June-July, reduced nitrate and silicate concentrations were accompanied by a shift in the phytoplankton community: Alexandrium spp. cell densities were lower and heterotrophic and mixotrophic dinoflagellates, notably Polykrikos spp., Gyrodinium spp., Gymnodinium spp., and Prorocentrum spp., had become more abundant. Patches of regenerated silicate during the June-July period appeared to support a post-spring-bloom diatom community on the central crest of the Bank (total diatom cell densities >180,000 cellsl-1) of Leptocylindrus spp., Dactyliosolen spp., and Guinardia flaccida. Multivariate statistical analyses of phytoplankton taxa and station locations revealed distinct assemblages of diatom and dinoflagellate taxa on the Bank throughout the late spring and summer. Results are interpreted in the ecological context of earlier-reported laboratory culture experiments on the competitive interactions

  5. The Hidden Sexuality of Alexandrium Minutum: An Example of Overlooked Sex in Dinoflagellates

    PubMed Central

    Figueroa, Rosa I.; Dapena, Carlos; Bravo, Isabel; Cuadrado, Angeles

    2015-01-01

    Dinoflagellates are haploid eukaryotic microalgae in which rapid proliferation causes dense blooms, with harmful health and economic effects to humans. The proliferation mode is mainly asexual, as the sexual cycle is believed to be rare and restricted to stressful environmental conditions. However, sexuality is key to explaining the recurrence of many dinoflagellate blooms because in many species the fate of the planktonic zygotes (planozygotes) is the formation of resistant cysts in the seabed (encystment). Nevertheless, recent research has shown that individually isolated planozygotes in the lab can enter other routes besides encystment, a behavior of which the relevance has not been explored at the population level. In this study, using imaging flow cytometry, cell sorting, and Fluorescence In Situ Hybridization (FISH), we followed DNA content and nuclear changes in a population of the toxic dinoflagellate Alexandrium minutum that was induced to encystment. Our results first show that planozygotes behave like a population with an “encystment-independent” division cycle, which is light-controlled and follows the same Light:Dark (L:D) pattern as the cycle governing the haploid mitosis. Resting cyst formation was the fate of just a small fraction of the planozygotes formed and was restricted to a period of strongly limited nutrient conditions. The diploid-haploid turnover between L:D cycles was consistent with two-step meiosis. However, the diel and morphological division pattern of the planozygote division also suggests mitosis, which would imply that this species is not haplontic, as previously considered, but biphasic, because individuals could undergo mitotic divisions in both the sexual (diploid) and the asexual (haploid) phases. We also report incomplete genome duplication processes. Our work calls for a reconsideration of the dogma of rare sex in dinoflagellates. PMID:26599692

  6. CHARACTERIZATION OF 17 NEW MICROSATELLITE MARKERS FOR THE DINOFLAGELLATE ALEXANDRIUM FUNDYENSE (DINOPHYCEAE), A HARMFUL ALGAL BLOOM SPECIES

    PubMed Central

    Sehein, Taylor; Richlen, Mindy L.; Nagai, Satoshi; Yasuike, Motoshige; Nakamura, Yoji; Anderson, Donald M.

    2016-01-01

    Alexandrium fundyense is the toxic marine dinoflagellate responsible for “red tide” events in temperate and sub-arctic waters worldwide. In the Gulf of Maine (GOM) and Bay of Fundy in the Northwest Atlantic, blooms of A. fundyense recur annually, and are associated with major health and ecosystem impacts. In this region, microsatellite markers have been used to investigate genetic structure and gene flow; however, the loci currently available for this species were isolated from populations from Japan and the North Sea, and only a subset are suitable for the analysis of A. fundyense populations in the Northwest Atlantic. To facilitate future studies of A. fundyense blooms, both in this region and globally, we isolated and characterized 17 polymorphic microsatellite loci from 31 isolates collected from the GOM and from the Nauset Marsh System, an estuary on Cape Cod, MA, USA. These loci yielded between two and 15 alleles per locus, with an average of 7.1. Gene diversities ranged from 0.297 to 0.952. We then analyzed these same 31 isolates using previously published markers for comparison. We determined the new markers are sufficiently variable and better suited for the investigation of genetic structure, bloom dynamics, and diversity in the Northwest Atlantic. PMID:27274617

  7. Rapid growth and concerted sexual transitions by a bloom of the harmful dinoflagellate Alexandrium fundyense (Dinophyceae)

    PubMed Central

    Velo‐Suárez, Lourdes; Ralston, David K.; Fox, Sophia E.; Sehein, Taylor R.; Shalapyonok, Alexi; Sosik, Heidi M.; Olson, Robert J.; Anderson, Donald M.

    2015-01-01

    Abstract Transitions between life cycle stages by the harmful dinoflagellate Alexandrium fundyense are critical for the initiation and termination of its blooms. To quantify these transitions in a single population, an Imaging FlowCytobot (IFCB), was deployed in Salt Pond (Eastham, Massachusetts), a small, tidally flushed kettle pond that hosts near annual, localized A. fundyense blooms. Machine‐based image classifiers differentiating A. fundyense life cycle stages were developed and results were compared to manually corrected IFCB samples, manual microscopy‐based estimates of A. fundyense abundance, previously published data describing prevalence of the parasite Amoebophrya, and a continuous culture of A. fundyense infected with Amoebophrya. In Salt Pond, a development phase of sustained vegetative division lasted approximately 3 weeks and was followed by a rapid and near complete conversion to small, gamete cells. The gametic period (∼3 d) coincided with a spike in the frequency of fusing gametes (up to 5% of A. fundyense images) and was followed by a zygotic phase (∼4 d) during which cell sizes returned to their normal range but cell division and diel vertical migration ceased. Cell division during bloom development was strongly phased, enabling estimation of daily rates of division, which were more than twice those predicted from batch cultures grown at similar temperatures in replete medium. Data from the Salt Pond deployment provide the first continuous record of an A. fundyense population through its complete bloom cycle and demonstrate growth and sexual induction rates much higher than are typically observed in culture. PMID:27667858

  8. Toxic dinoflagellate Alexandrium tamarense induces oxidative stress and apoptosis in hepatopancreas of shrimp ( Fenneropenaeus chinensis)

    NASA Astrophysics Data System (ADS)

    Liang, Zhongxiu; Li, Jian; Li, Jitao; Tan, Zhijun; Ren, Hai; Zhao, Fazhen

    2014-12-01

    This study investigated the inductive effect of Alexandrium tamarense, a toxic dinoflagellate producing paralytic shellfish poison, on oxidative stress and apoptosis in hepatopancreas of Chinese shrimp, Fenneropenaeus chinensis. The individuals of F. chinensis were exposed to 200 and 1000 cells mL-1 of A. tamarense with their superoxide dismutase (SOD), glutathione S-transferase (GST) activities, malonyldialdehyde (MDA) concentration, and caspase gene ( FcCasp) expression in hepatopancreas determined at 12, 24, 48, 72 and 96 h. In addition, apoptosis in hepatopancreas of F. chinensis at 96 h after exposure was determined through terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. The hepatopancreatic SOD and GST activities of F. chinensis exposed to 1000 cells mL-1 of A. tamarense showed a bell-shaped response to exposure time. The hepatopancreatic MDA concentration of F. chinensis exposed to 1000 cells mL-1 of A. tamarense increased gradually from 48 to 96 h, and such a trend corresponded to the decrease of GST activity. The hepatopancreatic FcCasp transcript abundance of F. chinensis exposed to 1000 cells mL-1 of A. tamarense was positively and linearly correlated to MDA concentration. Results of TUNEL assay showed that exposure to 1000 cells mL-1 of A. tamarense induced apoptosis in the hepatopancreas of F. chinensis. Our study revealed that A. tamarense exposure influenced the antioxidative status of F. chinensis and caused lipid peroxidation and apoptosis in the hepatopancreas of shrimp.

  9. 2D-PAGE protein analysis of dinoflagellate Alexandrium minutum based on three different temperatures

    NASA Astrophysics Data System (ADS)

    Latib, Norhidayu Abdul; Norshaha, Safida Anira; Usup, Gires; Yusof, Nurul Yuziana Mohd

    2015-09-01

    Harmful algae bloom or red tide seems to be considered as threat to ecosystem, especially to human consumption because of the production of neurotoxin by dinoflagellates species such as Alexandrium minutum which can lead to paralytic shellfish poisoning. The aim of this study is to determine the most suitable method for protein extraction of A. minutum followed by determination of differential protein expression of A. minutum on three different temperatures (15°C, 26°C and 31.5°C). After the optimization, the protein extract was subjected to two-dimensional polyacrylamide gel electrophoresis (2-DE) to compare the intensity and distribution of the protein spots. Based on quantitative and qualitative protein assessment, use of Trizol reagent is the most suitable method to extract protein from A. minutum. 2-DE analysis of the samples results in different distribution and intensity of the protein spots were compared between 15°C, 26°C and 31.5°C.

  10. Immunological and physiological responses of the periwinkle Littorina littorea during and after exposure to the toxic dinoflagellate Alexandrium minutum.

    PubMed

    Neves, Raquel A F; Figueiredo, Gisela M; Valentin, Jean Louis; da Silva Scardua, Patricia Mirella; Hégaret, Hélène

    2015-03-01

    Species of the dinoflagellate genus Alexandrium produce phycotoxins responsible for paralytic shellfish poisoning. Blooms of Alexandrium minutum reach very high concentrations of vegetative cells in the water column; and when these blooms occur, large numbers of toxic cysts can be produced and deposited on sediments becoming available to benthic species. The present study investigated the potential effect of exposure to toxic cysts of A. minutum on the periwinkle Littorinalittorea. Snails were exposed for nine days to pellicle cysts of toxic and non-toxic dinoflagellates, A. minutum and Heterocapsa triquetra, respectively, followed by six days of depuration while they were fed only H. triquetra. Toxin accumulation, condition index, immune and histopathological responses were analyzed. Histological alterations were also monitored in snails exposed to a harmful A. minutum bloom, which naturally occurred in the Bay of Brest. Snails exposed to toxic cysts showed abnormal behavior that seems to be toxin-induced and possibly related to muscle paralysis. Periwinkles accumulated toxins by preying on toxic cysts and accumulation appeared dependent on the time of exposure, increasing during intoxication period but tending to stabilize during depuration period. Toxic exposure also seemed to negatively affect hemocyte viability and functions, as ROS production and phagocytosis. Histological analyses revealed that toxic exposure induced damages on digestive organs of snails, both in laboratory and natural systems. This study demonstrates that an exposure to the toxic dinoflagellate A. minutum leads to sublethal effects on L. littorea, which may alter individual fitness and increase the susceptibility of snails to pathogens and diseases.

  11. Comparative Transcriptome Analysis of a Toxin-Producing Dinoflagellate Alexandrium catenella and Its Non-Toxic Mutant

    PubMed Central

    Zhang, Yong; Zhang, Shu-Fei; Lin, Lin; Wang, Da-Zhi

    2014-01-01

    The dinoflagellates and cyanobacteria are two major kingdoms of life producing paralytic shellfish toxins (PSTs), a large group of neurotoxic alkaloids causing paralytic shellfish poisonings around the world. In contrast to the well elucidated PST biosynthetic genes in cyanobacteria, little is known about the dinoflagellates. This study compared transcriptome profiles of a toxin-producing dinoflagellate, Alexandrium catenella (ACHK-T), and its non-toxic mutant form (ACHK-NT) using RNA-seq. All clean reads were assembled de novo into a total of 113,674 unigenes, and 66,812 unigenes were annotated in the known databases. Out of them, 35 genes were found to express differentially between the two strains. The up-regulated genes in ACHK-NT were involved in photosynthesis, carbon fixation and amino acid metabolism processes, indicating that more carbon and energy were utilized for cell growth. Among the down-regulated genes, expression of a unigene assigned to the long isoform of sxtA, the initiator of toxin biosynthesis in cyanobacteria, was significantly depressed, suggesting that this long transcript of sxtA might be directly involved in toxin biosynthesis and its depression resulted in the loss of the ability to synthesize PSTs in ACHK-NT. In addition, 101 putative homologs of 12 cyanobacterial sxt genes were identified, and the sxtO and sxtZ genes were identified in dinoflagellates for the first time. The findings of this study should shed light on the biosynthesis of PSTs in the dinoflagellates. PMID:25421324

  12. Historical records from dated sediment cores reveal the multidecadal dynamic of the toxic dinoflagellate Alexandrium minutum in the Bay of Brest (France).

    PubMed

    Klouch, Khadidja Z; Schmidt, Sabine; Andrieux-Loyer, Françoise; Le Gac, Mickaël; Hervio-Heath, Dominique; Qui-Minet, Zujaila N; Quéré, Julien; Bigeard, Estelle; Guillou, Laure; Siano, Raffaele

    2016-07-01

    The multiannual dynamic of the cyst-forming and toxic marine dinoflagellate Alexandrium minutum was studied over a time scale of about 150 years by a paleoecological approach based on ancient DNA (aDNA) quantification and cyst revivification data obtained from two dated sediment cores of the Bay of Brest (Brittany, France). The first genetic traces of the species presence in the study area dated back to 1873 ± 6. Specific aDNA could be quantified by a newly developed real-time PCR assay in the upper core layers, in which the germination of the species (in up to 17-19-year-old sediments) was also obtained. In both cores studied, our quantitative paleogenetic data showed a statistically significant increasing trend in the abundance of A. minutum ITS1 rDNA copies over time, corroborating three decades of local plankton data that have documented an increasing trend in the species cell abundance. By comparison, paleogenetic data of the dinoflagellate Scrippsiella donghaienis did not show a coherent trend between the cores studied, supporting the hypothesis of the existence of a species-specific dynamic of A. minutum in the study area. This work contributes to the development of paleoecological research, further showing its potential for biogeographical, ecological and evolutionary studies on marine microbes. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Role of resting cysts in Chilean Alexandrium catenella dinoflagellate blooms revisited.

    PubMed

    Mardones, Jorge I; Bolch, Chris; Guzmán, Leonardo; Paredes, Javier; Varela, Daniel; Hallegraeff, Gustaaf M

    2016-05-01

    The detection of sparse Alexandrium catenella-resting cysts in sediments of southern Chilean fjords has cast doubts on their importance in the recurrence of massive toxic dinoflagellate blooms in the region. The role of resting cysts and the existence of different regional Chilean populations was studied by culturing and genetic approaches to define: (1) cyst production; (2) dormancy period; (3) excystment success; (4) offspring viability and (5) strain mating compatibility. This study newly revealed a short cyst dormancy (minimum 69 days), the role of key abiotic factors (in decreasing order salinity, irradiance, temperature and nutrients) controlling cyst germination (max. 60%) and germling growth rates (up to 0.36-0.52div.day(-1)). Amplified fragment length polymorphism (AFLP) characterization showed significant differences in genetic distances (GD) among A. catenella populations that were primarily determined by the geographical origin of isolates and most likely driven by oceanographic dispersal barriers. A complex heterothallic mating system pointed to variable reproductive compatibility (RCs) among Chilean strains that was high among northern (Los Lagos/North Aysén) and southern populations (Magallanes), but limited among the genetically differentiated central (South Aysén) populations. Field cyst surveys after a massive 2009 bloom event revealed the existence of exceptional high cyst densities in particular areas of the fjords (max. 14.627cystscm(-3)), which contrast with low cyst concentrations (<221.3cystscm(-3)) detected by previous oceanographic campaigns. In conclusion, the present study suggests that A. catenella resting cysts play a more important role in the success of this species in Chilean fjords than previously thought. Results from in vitro experiments suggest that pelagic-benthic processes can maintain year-round low vegetative cell concentrations in the water column, but also can explain the detection of high cysts aggregations after the

  14. Hoeflea alexandrii sp. nov., isolated from the toxic dinoflagellate Alexandrium minutum AL1V.

    PubMed

    Palacios, Lucía; Arahal, David R; Reguera, Beatriz; Marín, Irma

    2006-08-01

    A Gram-negative, aerobic, non-symbiotic bacterium (AM1V30(T)) was isolated from the toxic dinoflagellate Alexandrium minutum AL1V. On the basis of 16S rRNA gene sequence similarity, strain AM1V30(T) was most closely related (97.4 % similarity) to the type strain of Hoeflea marina, which belongs to the family Phyllobacteriaceae within the order Rhizobiales of the class Alphaproteobacteria. A polyphasic approach was used to clarify the taxonomic position of strain AM1V30(T). During the course of this study, a second species was described by others as belonging to the genus Hoeflea, namely Hoeflea phototrophica; it showed a somewhat higher level of 16S rRNA gene sequence similarity with respect to strain AM1V30(T) (98.2 %) and was also taken into account. The fatty acid profiles, physiological and biochemical data and DNA G+C content (59.7 mol%) support the classification of strain AM1V30(T) as a member of the genus Hoeflea. The characteristics of the novel strain were sufficiently distinct to indicate that it represents a separate species. To confirm this conclusion, DNA-DNA hybridizations were performed: low values (between 15.8 and 29.8 %) were obtained in all cases. Thus, AM1V30(T) represents a novel species within the genus Hoeflea, for which the name Hoeflea alexandrii sp. nov. is proposed. Strain AM1V30(T) (=CECT 5682(T)=DSM 16655(T)) is the type strain.

  15. Molecular analysis of complete ssu to lsu rdna sequence in the harmful dinoflagellate alexandrium tamarense (korean isolate, HY970328M)

    NASA Astrophysics Data System (ADS)

    Ki, Jang-Seu; Han, Myung-Soo

    2005-09-01

    New PCR primers (N=18) were designed for the isolation of complete SSU to LSU rDNA sequences from the dinoflagellate Alexandrium tamarense. Standard PCR, employing each primer set selected for amplifications of less than 1.5 kb, successfully amplified the expected rDNA regions of A. tamarense (Korean isolate, HY970328M). Complete SSU, LSU rDNAs and ITS sequences, including 5.8S rDNA, were recorded at 1,800 bp, 520 bp and 3,393 bp, respectively. The LSU rDNA sequence was the first report in Alexandrium genus. No intron was found in the LSU rRNA coding region. Twelve D-domains within the LSU rDNA were put together into 1,879 bp (44.4% G+C), and cores into 1514 bp (42.8% G+C). The core sequence was significantly different (0.0867 of genetic distance, 91% sequence similarity) in comparison with Prorocentrum micans (GenBank access. no. X16108). The D2 region was the longest in length (300 bp) and highly variable among the 12 D-domains. In a phylogenetic analysis using complete LSU rDNA sequences of a variety of phytoplankton, A tamarense was clearly separated with high resolution against other species. The result suggests that the sequence may resolve the taxonomic ambiguities of Alexandrium genus, particularly of the tamarensis complex.

  16. Dinomyces arenysensis gen. et sp. nov. (Rhizophydiales, Dinomycetaceae fam. nov.), a chytrid infecting marine dinoflagellates.

    PubMed

    Lepelletier, Frédéric; Karpov, Sergey A; Alacid, Elisabet; Le Panse, Sophie; Bigeard, Estelle; Garcés, Esther; Jeanthon, Christian; Guillou, Laure

    2014-03-01

    Environmental 18S rRNA gene surveys of microbial eukaryotes have recently revealed the diversity of major parasitic agents in pelagic freshwater systems, consisting primarily of chytrid fungi. To date, only a few studies have reported the presence of chydrids in the marine environment and a limited number of marine chytrids have been properly identified and characterized. Here, we report the isolation and cultivation of a marine chytrid from samples taken during a bloom of the toxic dinoflagellate Alexandrium minutum in the Arenys de Mar harbour (Mediterranean Sea, Spain). Cross-infections using cultures and natural phytoplankton communities revealed that this chytrid is only able to infect certain species of dinoflagellates, with a rather wide host range but with a relative preference for Alexandrium species. Phylogenetic analyses showed that it belongs to the order Rhizophydiales, but cannot be included in any of the existing families within this order. Several ultrastructural characters confirmed the placement of this taxon within the Rhizophydiales as well its novelty notably in terms of zoospore structure. This marine chytridial parasitoid is described as a new genus and species, Dinomyces arenysensis, within the Dinomycetaceae fam. nov. Copyright © 2014 Elsevier GmbH. All rights reserved.

  17. LIPID BIOMARKER ANALYSIS OF MARINE DINOFLAGELLATES

    EPA Science Inventory

    Many marine eukaryotic algae have been shown to possess characteristic chemotaxonomic lipid biomarkers. Dinoflagellates in particular are often characterized by the presence of sterols and pigments that are rarely found in other classes of algae. To evaluate the utility of chemic...

  18. LIPID BIOMARKER ANALYSIS OF MARINE DINOFLAGELLATES

    EPA Science Inventory

    Many marine eukaryotic algae have been shown to possess characteristic chemotaxonomic lipid biomarkers. Dinoflagellates in particular are often characterized by the presence of sterols and pigments that are rarely found in other classes of algae. To evaluate the utility of chemic...

  19. The globally distributed genus Alexandrium: multifaceted roles in marine ecosystems and impacts on human health

    PubMed Central

    Alpermann, Tilman J.; Cembella, Allan D.; Collos, Yves; Masseret, Estelle; Montresor, Marina

    2011-01-01

    The dinoflagellate genus Alexandrium is one of the major harmful algal bloom (HAB) genera with respect to the diversity, magnitude and consequences of blooms. The ability of Alexandrium to colonize multiple habitats and to persist over large regions through time is testimony to the adaptability and resilience of this group of species. Three different families of toxins, as well as an as yet incompletely characterized suite of allelochemicals are produced among Alexandrium species. Nutritional strategies are equally diverse, including the ability to utilize a range of inorganic and organic nutrient sources, and feeding by ingestion of other organisms. Many Alexandrium species have complex life histories that include sexuality and often, but not always, cyst formation, which is characteristic of a meroplanktonic life strategy and offers considerable ecological advantages. Due to the public health and ecosystem impacts of Alexandrium blooms, the genus has been extensively studied, and there exists a broad knowledge base that ranges from taxonomy and phylogeny through genomics and toxin biosynthesis to bloom dynamics and modeling. Here we present a review of the genus Alexandrium, focusing on the major toxic and otherwise harmful species. PMID:22308102

  20. The globally distributed genus Alexandrium: multifaceted roles in marine ecosystems and impacts on human health.

    PubMed

    Anderson, Donald M; Alpermann, Tilman J; Cembella, Allan D; Collos, Yves; Masseret, Estelle; Montresor, Marina

    2012-02-01

    The dinoflagellate genus Alexandrium is one of the major harmful algal bloom (HAB) genera with respect to the diversity, magnitude and consequences of blooms. The ability of Alexandrium to colonize multiple habitats and to persist over large regions through time is testimony to the adaptability and resilience of this group of species. Three different families of toxins, as well as an as yet incompletely characterized suite of allelochemicals are produced among Alexandrium species. Nutritional strategies are equally diverse, including the ability to utilize a range of inorganic and organic nutrient sources, and feeding by ingestion of other organisms. Many Alexandrium species have complex life histories that include sexuality and often, but not always, cyst formation, which is characteristic of a meroplanktonic life strategy and offers considerable ecological advantages. Due to the public health and ecosystem impacts of Alexandrium blooms, the genus has been extensively studied, and there exists a broad knowledge base that ranges from taxonomy and phylogeny through genomics and toxin biosynthesis to bloom dynamics and modeling. Here we present a review of the genus Alexandrium, focusing on the major toxic and otherwise harmful species.

  1. The effects of elevated CO2 on the growth and toxicity of field populations and cultures of the saxitoxin-producing dinoflagellate, Alexandrium fundyense

    PubMed Central

    Hattenrath-Lehmann, Theresa K.; Smith, Juliette L.; Wallace, Ryan B.; Merlo, Lucas; Koch, Florian; Mittelsdorf, Heidi; Goleski, Jennifer A.; Anderson, Donald M.; Gobler, Christopher J.

    2016-01-01

    The effects of coastal acidification on the growth and toxicity of the saxitoxin-producing dinoflagellate Alexandrium fundyense were examined in culture and ecosystem studies. In culture experiments, Alexandrium strains isolated from Northport Bay NY, USA, and the Bay of Fundy, Canada, grew significantly faster (16 -190%; p<0.05) when exposed to elevated levels of pCO2 (~ 800- 1900μatm) compared to lower levels (~390μatm). Exposure to higher levels of pCO2 also resulted in significant increases (71 – 81%) in total cellular toxicity (fg STX eq. cell−1) in the Northport Bay strain, while no changes in toxicity were detected in the Bay of Fundy strain. The positive relationship between pCO2 enhancement and elevated growth was reproducible using natural populations from Northport; Alexandrium densities were significantly and consistently enhanced when natural populations were incubated at 1500 μatm pCO2, a value at the upper range of those recorded in Northport Bay, 390 – 1500 µatm. During natural Alexandrium blooms in Northport Bay, pCO2 concentrations increased over the course of a bloom to more than 1700μatm and were highest in regions with the greatest Alexandrium abundances, suggesting Alexandrium may be further exacerbating acidification or be especially adapted to these extreme, acidified conditions. The co-occurrence of Alexandrium blooms and elevated pCO2 represents a previously unrecognized, compounding environmental threat to coastal ecosystems. The ability of elevated pCO2 to enhance the growth and toxicity of Alexandrium indicates that acidification promoted by eutrophication or climate change can intensify these, and perhaps other, harmful algal blooms. PMID:27721521

  2. "Dinoflagellate Sterols" in marine diatoms.

    PubMed

    Giner, José-Luis; Wikfors, Gary H

    2011-10-01

    Sterol compositions for three diatom species, recently shown to contain sterols with side chains typically found in dinoflagellates, were determined by HPLC and ¹H NMR spectroscopic analyses. The centric diatom Triceratium dubium (=Biddulphia sp., CCMP 147) contained the highest percentage of 23-methylated sterols (37.2% (24R)-23-methylergosta-5,22-dienol), whereas the pennate diatom Delphineis sp. (CCMP 1095) contained the cyclopropyl sterol gorgosterol, as well as the 27-norsterol occelasterol. The sterol composition of Ditylum brightwellii (CCMP 358) was the most complex, containing Δ⁰- and Δ⁷-sterols, in addition to the predominant Δ⁵-sterols. A pair of previously unknown sterols, stigmasta-5,24,28-trienol and stigmasta-24,28-dienol, were detected in D. brightwellii and their structures were determined by NMR spectroscopic analysis and by synthesis of the former sterol from saringosterol. Also detected in D. brightwellii was the previously unknown 23-methylcholesta-7,22-dienol. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. The effect of the toxic dinoflagellate Alexandrium fundyense on the fitness of the calanoid copepod Calanus finmarchicus

    PubMed Central

    Roncalli, Vittoria; Turner, Jefferson T.; Kulis, David; Anderson, Donald M.; Lenz, Petra H.

    2016-01-01

    Inshore and offshore waters of the Gulf of Maine (USA) have spring/summer harmful algal blooms (HABs) of the toxic dinoflagellate Alexandrium fundyense, which is responsible for paralytic shellfish poisoning (PSP) in humans. The calanoid copepod Calanus finmarchicus co-occurs with A. fundyense during the seasonal blooms. At that time, C. finmarchicus population abundances are high, dominated by immature copepods preparing for diapause, and by actively-reproducing adults. High survival has been reported for copepods exposed to toxic A. fundyense, but little is known about possible sublethal effects. In this study, C. finmarchicus adult females were fed either a control diet of non-toxic Rhodomonas spp. or one of two diets containing either low dose (LD) or high dose (HD) levels (50 and 200 cells mL−1, respectively) of toxic A. fundyense for a total of 7 days in two independent experiments. As expected, ingestion of the dinoflagellate had no effect on copepod survival and grazing activity. However, significant reductions of egg production and egg viability were observed in C. finmarchicus females fed on either experimental diet. After the 7-day experiment, total nauplius production by females on the LD and HD diets was reduced by 35% to 75% compared to the control females. These results suggest that blooms of A. fundyense in the Gulf of Maine may be an environmental challenge for C. finmarchicus populations, with a potential negative effect on copepod recruitment. PMID:27721677

  4. [The red tide caused by the dinoflagellate Alexandrium tamarense in the Colombian Pacific coast (2001)].

    PubMed

    García-Hansen, Ingrid; Cortés-Altamirano, Roberto; Sierra-Beltrán, Arturo P

    2004-09-01

    From April 26th to May 15th 2001, a large algae bloom was observed off Tumaco Bay on the Pacific coast of Colombia. This was the first harmful algae bloom (HAB) reported in the region, and reached Gorgona Island, about 120 km north. A year later, starting March 2002, an offshore HAB developed from Cabo Corrientes North to Solano Bay. The typical abundance during the blooms reached 7.5 x 10(6) cells l(-1) for the 2001 event and 1.6 x 10(6) cells l(-1) for the 2002 event. During both events, low temperature and high salinity were recorded. Typical measurements in the area are 27-27.5 degrees C and 30-31.5 psu. Values observed during the two events were 24-24.6 degrees C and 33-34 psu; 3 degrees C below normal and more than 2.5 psu above average values. These conditions are indicative of local upwelling processes at the time of the events. On both occasions, cells corresponding to the Alexandrium catenella/fundeyense/tamarense complex represented 99-100% of the biomass. It was difficult to differentiate the cells from A. catenella, but the presence of short chains of only 4 cells (single cells represented most of the biomass) was suggestive of A. tamarense. Shape, dimensions, and detailed structure of the apical pore complex, first apical plate, posterior sulcal plate, and position of the ventral pore on plate 1' of cells were consistent with the description of A. tamarense, which has not been reported in the tropical East Pacific. The Control Center of Pacific Contamination of the Maritime General Direction of the Colombian Navy has been monitoring the area since 1994 without finding this species or HABs. This leads us to consider the two events as caused by recently introduced species, where local upwelling processes favor permanent and cyclic HABs. However, during these two events, there were no reports of effects on marine biota or of human poisoning, probably because the blooms occurred some distance offshore and far from exploited shellfish beds.

  5. Application of rRNA probes and fluorescence in situ hybridization for rapid detection of the toxic dinoflagellate Alexandrium minutum

    NASA Astrophysics Data System (ADS)

    Tang, Xianghai; Yu, Rencheng; Zhou, Mingjiang; Yu, Zhigang

    2012-03-01

    The dinoflagellate Alexandrium minutum is often associated with harmful algal blooms (HABs). This species consists of many strains that differ in their ability to produce toxins but have similar morphology, making identification difficult. In this study, species-specific rRNA probes were designed for whole-cell fluorescence in situ hybridization (FISH) to distinguish A. minutum from two phylogenetic clades. We acquired the complete SSU to LSU rDNA sequences (GenBank accession numbers JF906989-JF906999) of 11 Alexandrium strains and used these to design rRNA targeted oligonucleotide probes. Three ribotype-specific probes, M-GC-1, M-PC-2, and M-PC-3, were designed. The former is specific for the GC clade ("Global clade") of A. minutum, the majority of which have been found non-toxic, and the latter two are specific for the PSP (paralytic shellfish poisoning)-producing PC clade ("Pacific clade"). The specificity of these three probes was confirmed by FISH. All cells in observed fields of view were fluorescently labeled when probes and target species were incubated under optimized FISH conditions. However, the accessibility of rRNA molecules in ribosomes varied among the probe binding positions. Thus, there was variation in the distribution of positive signals in labeled cells within nucleolus and cytosol (M-GC-1, M-PC-3), or just nucleolus (M-PC-2). Our results provide a methodological basis for studying the biogeography and population dynamics of A. minutum, and providing an early warning of toxic HABs.

  6. Comprehensive insights into the response of Alexandrium tamarense to algicidal component secreted by a marine bacterium

    PubMed Central

    Lei, Xueqian; Li, Dong; Li, Yi; Chen, Zhangran; Chen, Yao; Cai, Guanjing; Yang, Xujun; Zheng, Wei; Zheng, Tianling

    2015-01-01

    Harmful algal blooms occur throughout the world, threatening human health, and destroying marine ecosystems. Alexandrium tamarense is a globally distributed and notoriously toxic dinoflagellate that is responsible for most paralytic shellfish poisoning incidents. The culture supernatant of the marine algicidal bacterium BS02 showed potent algicidal effects on A. tamarense ATGD98-006. In this study, we investigated the effects of this supernatant on A. tamarense at physiological and biochemical levels to elucidate the mechanism involved in the inhibition of algal growth by the supernatant of the strain BS02. Reactive oxygen species (ROS) levels increased following exposure to the BS02 supernatant, indicating that the algal cells had suffered from oxidative damage. The levels of cellular pigments, including chlorophyll a and carotenoids, were significantly decreased, which indicated that the accumulation of ROS destroyed pigment synthesis. The decline of the maximum photochemical quantum yield (Fv/Fm) and relative electron transport rate (rETR) suggested that the photosynthesis systems of algal cells were attacked by the BS02 supernatant. To eliminate the ROS, the activities of antioxidant enzymes, including superoxide dismutase (SOD) and catalase (CAT), increased significantly within a short period of time. Real-time PCR revealed changes in the transcript abundances of two target photosynthesis-related genes (psbA and psbD) and two target respiration-related genes (cob and cox). The transcription of the respiration-related genes was significantly inhibited by the treatments, which indicated that the respiratory system was disturbed. Our results demonstrate that the BS02 supernatant can affect the photosynthesis process and might block the PS II electron transport chain, leading to the production of excessive ROS. The increased ROS can further destroy membrane integrity and pigments, ultimately inducing algal cell death. PMID:25667582

  7. Distinctly different behavioral responses of a copepod, Temora longicornis, to different strains of toxic dinoflagellates, Alexandrium spp.

    PubMed

    Xu, Jiayi; Hansen, Per Juel; Nielsen, Lasse Tor; Krock, Bernd; Tillmann, Urban; Kiørboe, Thomas

    2017-02-01

    Zooplankton responses to toxic algae are highly variable, even towards taxonomically closely related species or different strains of the same species. Here, the individual level feeding behavior of a copepod, Temora longicornis, was examined which offered 4 similarly sized strains of toxic dinoflagellate Alexandrium spp. and a non-toxic control strain of the dinoflagellate Protoceratium reticulatum. The strains varied in their cellular toxin concentration and composition and in lytic activity. High-speed video observations revealed four distinctly different strain-specific feeding responses of the copepod during 4h incubations: (i) the 'normal' feeding behavior, in which the feeding appendages were beating almost constantly to produce a feeding current and most (90%) of the captured algae were ingested; (ii) the beating activity of the feeding appendages was reduced by ca. 80% during the initial 60min of exposure, after which very few algae were captured and ingested; (iii) capture and ingestion rates remained high, but ingested cells were regurgitated; and (iv) the copepod continued beating its appendages and captured cells at a high rate, but after 60min, most captured cells were rejected. The various prey aversion responses observed may have very different implications to the prey and their ability to form blooms: consumed but regurgitated cells are dead, captured but rejected cells survive and may give the prey a competitive advantage, while reduced feeding activity of the grazer may be equally beneficial to the prey and its competitors. These behaviors were not related to lytic activity or overall paralytic shellfish toxins (PSTs) content and composition and suggest that other cues are responsible for the responses.

  8. Isolation and characterization of calmodulin gene of Alexandrium catenella (Dinoflagellate) and its performance in cell growth and heat stress

    NASA Astrophysics Data System (ADS)

    Wen, Ruobing; Sui, Zhenghong; Bao, Zhenmin; Zhou, Wei; Wang, Chunyan

    2013-11-01

    Harmful algal blooms (HABs) can occur and then disappear quickly, corresponding to consistent growing and declining of heavy biomasses. The molecular mechanism of blooming remains unclear. In this study, calmodulin gene (cam) of HAB causing species Alexandrium catenella was isolated and characterized. The expression of calmodulin gene was profiled at different growth rates and in heat stress. The full cDNA of cam was 597 nucleotides (nt) in length, including a 25 nt 5' untranslated region (UTR), an 122 nt 3' UTR, and a 450 nt open reading frame (ORF) encoding 149 amino acids. The deduced calmodulin (CaM) was highly conserved in comparison with those of other organisms. As was determined with real-time RT PCR, the abundance of cam transcript varied in a pattern similar to cell growth rate during the whole growing period. The abundance of cam transcript increased by more than 8 folds from lag growth phase to exponential growth phase, and then obviously decreased from exponential growth phase to stationary/decline growth phase. In addition, the relative abundance of cam transcript significantly declined with time during heat shock. Taking CaM function described in other organisms into account, we believe that Ca2+-involved signal transduction, methylation of DNA and toxin precursors underlined the cell growth of this species. The response of cam gene to heat stress in dinoflagellate suggested restrictions in Ca2+ signal transduction and methylation. These findings are helpful to understand the relationships among growth, cell signal transduction, bloom formation and interaction with environmental stimuli in dinoflagellates.

  9. Control of toxic marine dinoflagellate blooms by serial parasitic killers.

    PubMed

    Chambouvet, Aurelie; Morin, Pascal; Marie, Dominique; Guillou, Laure

    2008-11-21

    The marine dinoflagellates commonly responsible for toxic red tides are parasitized by other dinoflagellate species. Using culture-independent environmental ribosomal RNA sequences and fluorescence markers, we identified host-specific infections among several species. Each parasitoid produces 60 to 400 offspring, leading to extraordinarily rapid control of the host's population. During 3 consecutive years of observation in a natural estuary, all dinoflagellates observed were chronically infected, and a given host species was infected by a single genetically distinct parasite year after year. Our observations in natural ecosystems suggest that although bloom-forming dinoflagellates may escape control by grazing organisms, they eventually succumb to parasite attack.

  10. Grazer cues induce stealth behavior in marine dinoflagellates

    PubMed Central

    Selander, Erik; Jakobsen, Hans H.; Lombard, Fabien; Kiørboe, Thomas

    2011-01-01

    Chain formation is common among phytoplankton organisms but the underlying reasons and consequences are poorly understood. Here we show that chain formation is strongly impaired by waterborne cues from copepod grazers in the dinoflagellate Alexandrium tamarense. Chains of Alexandrium cells exposed to copepod cues responded by splitting into single cells or shorter chains. Motion analysis revealed significantly lower swimming velocities for single cells compared with chains, with two- to fivefold higher simulated predator encounter rates for two- and four-cell chains, respectively. In addition, the few remaining two-cell chains in grazed treatments were swimming at approximately half the speed of two-cell chains in treatments without grazers, which reduced encounter rates with grazers to values similar to that of single cells. Chain length plasticity and swimming behavior constitute unique mechanisms to reduce encounters with grazers. We argue that dinoflagellates can regulate the balance between motility and predator avoidance by adjusting chain length. The high predator encounter rate for motile chains may have contributed to the low prevalence of chain formation in motile phytoplankton compared with in nonmotile phytoplankton where chain formation is more common. PMID:21368128

  11. Population genetic structure and connectivity of the harmful dinoflagellate Alexandrium minutum in the Mediterranean Sea.

    PubMed

    Casabianca, Silvia; Penna, Antonella; Pecchioli, Elena; Jordi, Antoni; Basterretxea, Gotzon; Vernesi, Cristiano

    2012-01-07

    The toxin-producing microbial species Alexandrium minutum has a wide distribution in the Mediterranean Sea and causes high biomass blooms with consequences on the environment, human health and coastal-related economic activities. Comprehension of algal genetic differences and associated connectivity is fundamental to understand the geographical scale of adaptation and dispersal pathways of harmful microalgal species. In the present study, we combine A. minutum population genetic analyses based on microsatellites with indirect connectivity (C(i)) estimations derived from a general circulation model of the Mediterranean sea. Our results show that four major clusters of genetically homogeneous groups can be identified, loosely corresponding to four regional seas: Adriatic, Ionian, Tyrrhenian and Catalan. Each of the four clusters included a small fraction of mixed and allochthonous genotypes from other Mediterranean areas, but the assignment to one of the four clusters was sufficiently robust as proved by the high ancestry coefficient values displayed by most of the individuals (>84%). The population structure of A. minutum on this scale can be explained by microalgal dispersion following the main regional circulation patterns over successive generations. We hypothesize that limited connectivity among the A. minutum populations results in low gene flow but not in the erosion of variability within the population, as indicated by the high gene diversity values. This study represents a first and new integrated approach, combining both genetic and numerical methods, to characterize and interpret the population structure of a toxic microalgal species. This approach of characterizing genetic population structure and connectivity at a regional scale holds promise for the control and management of the harmful algal bloom events in the Mediterranean Sea.

  12. Study of DNA extraction methods for use in loop-mediated isothermal amplification detection of single resting cysts in the toxic dinoflagellates Alexandrium tamarense and A. catenella.

    PubMed

    Nagai, Satoshi; Yamamoto, Keigo; Hata, Naotugu; Itakura, Shigeru

    2012-09-01

    In a previous study, we experienced instable amplification and a low amplification success in loop-mediated isothermal amplification (LAMP) reactions from naturally occurring vegetative cells or resting cysts of the toxic dinoflagellates Alexandrium tamarense and Alexandrium catenella. In this study, we examined 4 methods for extracting DNA from single resting cysts of A. tamarense and A. catenella to obtain more stable and better amplification success and to facilitate unambiguous detection using the LAMP method. Apart from comparing the 4 different DNA extraction methods, namely, (1) boiling in Tris-EDTA (TE) buffer, (2) heating at 65 °C in hexadecyltrimethylammonium bromide buffer, (3) boiling in 0.5% Chelex buffer, and (4) boiling in 5% Chelex buffer, we also examined the need for homogenization to crush the resting cysts before DNA extraction in each method. Homogenization of resting cysts was found to be essential for DNA extraction in all 4 methods. The detection time was significantly shorter in 5% Chelex buffer than in the other buffers and the amplification success was 100% (65/65), indicating the importance of DNA extraction and the effectiveness of 5% Chelex buffer in the Alexandrium LAMP. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Identification and Characterization of Three Differentially Expressed Genes, Encoding S-Adenosylhomocysteine Hydrolase, Methionine Aminopeptidase, and a Histone-Like Protein, in the Toxic Dinoflagellate Alexandrium fundyense†

    PubMed Central

    Taroncher-Oldenburg, Gaspar; Anderson, Donald M.

    2000-01-01

    Genes showing differential expression related to the early G1 phase of the cell cycle during synchronized circadian growth of the toxic dinoflagellate Alexandrium fundyense were identified and characterized by differential display (DD). The determination in our previous work that toxin production in Alexandrium is relegated to a narrow time frame in early G1 led to the hypothesis that transcriptionally up- or downregulated genes during this subphase of the cell cycle might be related to toxin biosynthesis. Three genes, encoding S-adenosylhomocysteine hydrolase (Sahh), methionine aminopeptidase (Map), and a histone-like protein (HAf), were isolated. Sahh was downregulated, while Map and HAf were upregulated, during the early G1 phase of the cell cycle. Sahh and Map encoded amino acid sequences with about 90 and 70% similarity to those encoded by several eukaryotic and prokaryotic Sahh and Map genes, respectively. The partial Map sequence also contained three cobalt binding motifs characteristic of all Map genes. HAf encoded an amino acid sequence with 60% similarity to those of two histone-like proteins from the dinoflagellate Crypthecodinium cohnii Biecheler. This study documents the potential of applying DD to the identification of genes that are related to physiological processes or cell cycle events in phytoplankton under conditions where small sample volumes represent an experimental constraint. The identification of an additional 21 genes with various cell cycle-related DD patterns also provides evidence for the importance of pretranslational or transcriptional regulation in dinoflagellates, contrary to previous reports suggesting the possibility that translational mechanisms are the primary means of circadian regulation in this group of organisms. PMID:10788388

  14. Changes in marine dinoflagellate and diatom abundance under climate change

    NASA Astrophysics Data System (ADS)

    Hinder, Stephanie L.; Hays, Graeme C.; Edwards, Martin; Roberts, Emily C.; Walne, Anthony W.; Gravenor, Mike B.

    2012-04-01

    Marine diatoms and dinoflagellates play a variety of key ecosystem roles as important primary producers (diatoms and some dinoflagellates) and grazers (some dinoflagellates). Additionally some are harmful algal bloom (HAB) species and there is widespread concern that HAB species may be increasing accompanied by major negative socio-economic impacts, including threats to human health and marine harvesting. Using 92,263 samples from the Continuous Plankton Recorder survey, we generated a 50-year (1960-2009) time series of diatom and dinoflagellate occurrence in the northeast Atlantic and North Sea. Dinoflagellates, including both HAB taxa (for example, Prorocentrum spp.) and non-HAB taxa (for example, Ceratium furca), have declined in abundance, particularly since 2006. In contrast, diatom abundance has not shown this decline with some common diatoms, including both HAB (for example, Pseudo-nitzschia spp.) and non-HAB (for example, Thalassiosira spp.) taxa, increasing in abundance. Overall these changes have led to a marked increase in the relative abundance of diatoms versus dinoflagellates. Our analyses, including Granger tests to identify criteria of causality, indicate that this switch is driven by an interaction effect of both increasing sea surface temperatures combined with increasingly windy conditions in summer.

  15. EFFECT OF FLUID SHEAR AND IRRADIANCE ON POPULATION GROWTH AND CELLULAR TOXIN CONTENT OF THE DINOFLAGELLATE ALEXANDRIUM FUNDYENSE.

    EPA Science Inventory

    The potential for in situ turbulence to inhibit dinoflagellate population growth has been demonstrated by experimentally exposing dinoflagellate cultures to quantified shear flow. However, despite interest in understanding environmental factors that affect the growth of toxic din...

  16. No evidence for induction or selection of mutant sodium channel expression in the copepod Acartia husdsonica challenged with the toxic dinoflagellate Alexandrium fundyense

    PubMed Central

    Finiguerra, Michael; Avery, David E; Dam, Hans G

    2014-01-01

    Some species in the dinoflagellate genus Alexandrium spp. produce a suite of neurotoxins that block sodium channels, known as paralytic shellfish toxins (PST), which have deleterious effects on grazers. Populations of the ubiquitous copepod grazer Acartia hudsonica that have co-occurred with toxic Alexandrium spp. are better adapted than naïve populations. The mechanism of adaptation is currently unknown. We hypothesized that a mutation in the sodium channel could account for the grazer adaptation. We tested two hypotheses: (1) Expression of the mutant sodium channel could be induced by exposure to toxic Alexandrium fundyense; (2) in the absence of induction, selection exerted by toxic A. fundyense would favor copepods that predominantly express the mutant isoform. In the copepod A. hudsonica, both isoforms are expressed in all individuals in varying proportions. Thus, in addition to comparing expression ratios of wild-type to mutant isoforms for individual copepods, we also partitioned copepods into three groups: those that predominantly express the mutant (PMI) isoform, the wild-type (PWI) isoform, or both isoforms approximately equally (EI). There were no differences in isoform expression between individuals that were fed toxic and nontoxic food after three and 6 days; induction of mutant isoform expression did not occur. Furthermore, the hypothesis that mutant isoform expression responds to toxic food was also rejected. That is, no consistent evidence showed that the wild-type to mutant isoform ratios decreased, or that the relative proportion of PMI individuals increased, due to the consumption of toxic food over four generations. However, in the selected line that was continuously exposed to toxic food sources, egg production rate increased, which suggested that adaptation occurred but was unrelated to sodium channel isoform expression. PMID:25535562

  17. [Toxicity and toxin profile of the dinoflagellate Alexandrium tamiyavanichii and toxic mussels in Harima-Nada of Seto Inland Sea, Japan].

    PubMed

    Sagara, Takefumi; Taniyama, Shigeto; Yoshimatsu, Sadaaki; Takatani, Tomohiro; Hashimoto, Tamiko; Nishibori, Naoyoshi; Nishio, Sachio; Arakawa, Osamu

    2010-01-01

    From October to November 2004, the paralytic shellfish poison (PSP)-producing dinoflagellate Alexandrium tamiyavanichii was observed at Harima-Nada, Seto Inland Sea at a maximum cell density of 4,960 cells/L. The wild cells of the dinoflagellate collected from the same seawaters, and cultured cells derived from them showed toxicity scores of 6.25-15.4 x 10(-4) and 2.7-3.5 x 10(-4) MU/cell, respectively, both of which were much higher than those of previously reported strains. PSP of the wild cells was mainly composed of gonyautoxin (GTX) 5 (40.6-52.4 mol%) and GTX4 (15.6-24.8 mol%), showing a unique composition that was greatly different from those of the previously reported strains, or of the cultured cells, whose main toxin component was GTX3 (average 37.6 mol%). The mussel Mytilus galloprovincialis collected from the same area in the same period accumulated a relatively high level of PSP (13-28 MU/g), suggesting a risk that A. tamiyavanichii may induce high-level PSP contamination of bivalves even at a cell density as low as around 5,000 cells/L.

  18. Identification of microRNAs in the Toxigenic Dinoflagellate Alexandrium catenella by High-Throughput Illumina Sequencing and Bioinformatic Analysis.

    PubMed

    Geng, Huili; Sui, Zhenghong; Zhang, Shu; Du, Qingwei; Ren, Yuanyuan; Liu, Yuan; Kong, Fanna; Zhong, Jie; Ma, Qingxia

    2015-01-01

    Micro-ribonucleic acids (miRNAs) are a large group of endogenous, tiny, non-coding RNAs consisting of 19-25 nucleotides that regulate gene expression at either the transcriptional or post-transcriptional level by mediating gene silencing in eukaryotes. They are considered to be important regulators that affect growth, development, and response to various stresses in plants. Alexandrium catenella is an important marine toxic phytoplankton species that can cause harmful algal blooms (HABs). To date, identification and function analysis of miRNAs in A. catenella remain largely unexamined. In this study, high-throughput sequencing was performed on A. catenella to identify and quantitatively profile the repertoire of small RNAs from two different growth phases. A total of 38,092,056 and 32,969,156 raw reads were obtained from the two small RNA libraries, respectively. In total, 88 mature miRNAs belonging to 32 miRNA families were identified. Significant differences were found in the member number, expression level of various families, and expression abundance of each member within a family. A total of 15 potentially novel miRNAs were identified. Comparative profiling showed that 12 known miRNAs exhibited differential expression between the lag phase and the logarithmic phase. Real-time quantitative RT-PCR (qPCR) was performed to confirm the expression of two differentially expressed miRNAs that were one up-regulated novel miRNA (aca-miR-3p-456915), and one down-regulated conserved miRNA (tae-miR159a). The expression trend of the qPCR assay was generally consistent with the deep sequencing result. Target predictions of the 12 differentially expressed miRNAs resulted in 1813 target genes. Gene ontology (GO) analysis and the Kyoto Encyclopedia of Genes and Genomes pathway database (KEGG) annotations revealed that some miRNAs were associated with growth and developmental processes of the alga. These results provide insights into the roles that miRNAs play in the growth of A

  19. Identification of microRNAs in the Toxigenic Dinoflagellate Alexandrium catenella by High-Throughput Illumina Sequencing and Bioinformatic Analysis

    PubMed Central

    Geng, Huili; Sui, Zhenghong; Zhang, Shu; Du, Qingwei; Ren, Yuanyuan; Liu, Yuan; Kong, Fanna; Zhong, Jie; Ma, Qingxia

    2015-01-01

    Micro-ribonucleic acids (miRNAs) are a large group of endogenous, tiny, non-coding RNAs consisting of 19–25 nucleotides that regulate gene expression at either the transcriptional or post-transcriptional level by mediating gene silencing in eukaryotes. They are considered to be important regulators that affect growth, development, and response to various stresses in plants. Alexandrium catenella is an important marine toxic phytoplankton species that can cause harmful algal blooms (HABs). To date, identification and function analysis of miRNAs in A. catenella remain largely unexamined. In this study, high-throughput sequencing was performed on A. catenella to identify and quantitatively profile the repertoire of small RNAs from two different growth phases. A total of 38,092,056 and 32,969,156 raw reads were obtained from the two small RNA libraries, respectively. In total, 88 mature miRNAs belonging to 32 miRNA families were identified. Significant differences were found in the member number, expression level of various families, and expression abundance of each member within a family. A total of 15 potentially novel miRNAs were identified. Comparative profiling showed that 12 known miRNAs exhibited differential expression between the lag phase and the logarithmic phase. Real-time quantitative RT-PCR (qPCR) was performed to confirm the expression of two differentially expressed miRNAs that were one up-regulated novel miRNA (aca-miR-3p-456915), and one down-regulated conserved miRNA (tae-miR159a). The expression trend of the qPCR assay was generally consistent with the deep sequencing result. Target predictions of the 12 differentially expressed miRNAs resulted in 1813target genes. Gene ontology (GO) analysis and the Kyoto Encyclopedia of Genes and Genomes pathway database (KEGG) annotations revealed that some miRNAs were associated with growth and developmental processes of the alga. These results provide insights into the roles that miRNAs play in the growth of

  20. The intricacies of dinoflagellate pellicle cysts: The example of Alexandrium minutum cysts from a bloom-recurrent area (Bay of Baiona, NW Spain)

    NASA Astrophysics Data System (ADS)

    Bravo, Isabel; Isabel Figueroa, Rosa; Garcés, Esther; Fraga, Santiago; Massanet, Ana

    2010-02-01

    The terms "temporary", "pellicle", and "ecdysal" cyst have been employed arbitrarily in the literature of the dinoflagellate life cycle to describe a non-motile and single-layered-wall stage with no mandatory dormancy period, of asexual or sexual origin. These three terms have been used more or less synonymously, but more specific definitions, taking into account morphological and physiological aspects and their roles in dinoflagellate population dynamics, are still needed. To clarify the current terminology, we examine and discuss the usages and foundations of those terms. The background for this discussion is provided by a comparison of the morphology and germination times of three different types of Alexandrium minutum cysts collected during a seasonal bloom in the Bay of Baiona (NW Spain). The double-walled cysts were similar to the resting cysts reported for this species, but other, thin-walled and thecate cysts were also observed. These latter cyst types needed between 1 and 17 days to germinate and were therefore considered as short-term cysts, in contrast to the 1.5-month dormancy period of resting (hypnozygotic) cysts. Our results showed that the temporal distribution of these short-term cysts during the bloom period followed a pattern very similar to that of vegetative cells. However, resting cysts were only detected at the end of the bloom. In the context of our present knowledge regarding the dormancy and quiescence of dinoflagellate cysts, "temporary" is a very misleading and uncertain term and must be rejected. The term "ecdysal" has been used in reference to thin-walled cysts when ecdysis has been proven; however, ecdysis is not unique to this type of cysts as thick-walled zygotic cysts can be formed thorough ecdysis of a thecate planozygote. In conclusion, based on our current understanding of cysts, the term "pellicle" more appropriately describes single-layered-wall stages.

  1. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs

    NASA Astrophysics Data System (ADS)

    Jeong, Hae Jin; Yoo, Yeong Du; Kim, Jae Seong; Seong, Kyeong Ah; Kang, Nam Seon; Kim, Tae Hoon

    2010-06-01

    Planktonic mixotrophic and heterotrophic dinoflagellates are ubiquitous protists and often abundant in marine environments. Recently many phototrophic dinoflagellate species have been revealed to be mixotrophic organisms and also it is suggested that most dinoflagellates may be mixotrophic or heterotrophic protists. The mixotrophic and heterotrophic dinoflagellates are able to feed on diverse prey items including bacteria, picoeukaryotes, nanoflagellates, diatoms, other dinoflagellates, heterotrophic protists, and metazoans due to their diverse feeding mechanisms. In turn they are ingested by many kinds of predators. Thus, the roles of the dinoflagellates in marine planktonic food webs are very diverse. The present paper reviewed the kind of prey which mixotrophic and heterotrophic dinoflagellates are able to feed on, feeding mechanisms, growth and ingestion rates of dinoflagellates, grazing impact by dinoflagellate predators on natural prey populations, predators on dinoflagellates, and red tides dominated by dinoflagellates. Based on this information, we suggested a new marine planktonic food web focusing on mixotrophic and heterotrophic dinoflagellates and provided an insight on the roles of dinoflagellates in the food web.

  2. Biosynthesis and Molecular Genetics of Polyketides in Marine Dinoflagellates

    PubMed Central

    Kellmann, Ralf; Stüken, Anke; Orr, Russell J. S.; Svendsen, Helene M.; Jakobsen, Kjetill S.

    2010-01-01

    Marine dinoflagellates are the single most important group of algae that produce toxins, which have a global impact on human activities. The toxins are chemically diverse, and include macrolides, cyclic polyethers, spirolides and purine alkaloids. Whereas there is a multitude of studies describing the pharmacology of these toxins, there is limited or no knowledge regarding the biochemistry and molecular genetics involved in their biosynthesis. Recently, however, exciting advances have been made. Expressed sequence tag sequencing studies have revealed important insights into the transcriptomes of dinoflagellates, whereas other studies have implicated polyketide synthase genes in the biosynthesis of cyclic polyether toxins, and the molecular genetic basis for the biosynthesis of paralytic shellfish toxins has been elucidated in cyanobacteria. This review summarises the recent progress that has been made regarding the unusual genomes of dinoflagellates, the biosynthesis and molecular genetics of dinoflagellate toxins. In addition, the evolution of these metabolic pathways will be discussed, and an outlook for future research and possible applications is provided. PMID:20479965

  3. Occurrence of PSP-producing dinoflagellate Alexandrium tamiyavanichii in Bingo-Nada, the central coastal water of the Seto Inland Sea, Hiroshima Prefecture, Japan.

    PubMed

    Beppu, Rieko; Nojima, Kanako; Tsuruda, Shintaro; Gomez-Delan, Gloria; Barte-Quilantang, Mercy; Taniyama, Shigeto; Sagara, Takefumi; Nishio, Sachio; Takayama, Haruyoshi; Miyazawa, Keisuke; Asakawa, Manabu

    2008-04-01

    During surveillance of the distribution of the paralytic shellfish poison (PSP)-producing dinoflagellate in 2003, 2004 and 2005 along the coastlines of the Seto Inland Sea, Hiroshima Prefecture, Japan, some species of toxic phytoplankton were isolated from the eastern coasts, Bingo-Nada, the central regions of the Seto Inland Sea. It was rather unexpectedly revealed from the basis of the morphological characteristics that they were unambiguously identified as Alexandrium tamiyavanichii and Alexandrium catenella. Two strains (ATY041106, ATY051018) of A. tamiyavanichii showed a specific toxicity of 38.7 x 10(-6) and 111.5 x 10(-6)MU/cell, respectively. These values seemed to be several times or much higher than that of A. catenella (AC030816, AC040614), having a specific toxicity of 4.5 x 10(-6) and 4.1 x 10(-6)MU/cell, respectively, isolated in the same area. From the results of HPLC-furuorometric analysis, it revealed that the toxins in ATY041106 exist almost exclusively as beta-epimers (C2, GTX3, GTX4), which accounted for 72.7 mol%. The toxin profiles of this strain are featured by the presence of a large amount of GTX3 (59.1 mol%) and a small amount (20.6%) of C1 and 2 in comparison with the PSP compositions of A. tamarense, which is isolated as the main responsible species in Hiroshima Bay, a western part of coastal sea in Hiroshima Prefecture. On the other hand, it revealed that the toxin profiles of two strains (AC030816, AC040614) of A. catenella exist almost exclusively as beta-epimers (C2, GTX3, GTX4), which accounted for 81.8 and 56.5 mol%, as the same manner. The toxin profiles of these two strains are featured by the presence of a large amount of C2 (80.5 and 46.3 mol%) in comparison with the PSP compositions of A. tamiyavanichii. To our knowledge, this is the first record to show the distribution and harmful influence of A. tamiyavanichii and A. catenella in Bingo-Nada in Hiroshima Prefecture. Though contamination of bivalves with these PSP

  4. Detection and quantification of cultured marine Alexandrium species by real-time PCR.

    PubMed

    Zhang, Fengli; Li, Zhiyong

    2012-12-01

    The occurrence of harmful algal blooms (HABs) throughout the world has increased and poses a large threat to human health, fishery resources and tourism industries. The genus Alexandrium includes a number of toxic species associated with HABs. Therefore, it is very important to rapidly detect and monitor the harmful algae, such as Alexandrium genus. In this study, a standard curve of plasmid containing 18S rDNA-28S rDNA region from Alexandrium catenella was constructed and 5.8S rDNA sequence served as the primer of the real-time PCR. Cultured A. catenella, Alexandrium affine, Alexandrium lusitanicum and Alexandrium minutum samples were analyzed by real-time PCR using the same set of primers simultaneously. Using microscopy cells counts, 5.8S rDNA copies per cell and total DNA per cell were estimated. This assay method is promising for rapid detection of large number of Alexandrium samples.

  5. Rapid detection and quantification of the marine toxic algae, Alexandrium minutum, using a super-paramagnetic immunochromatographic strip test.

    PubMed

    Gas, Fabienne; Baus, Béatrice; Queré, Julien; Chapelle, Annie; Dreanno, Catherine

    2016-01-15

    The dinoflagellates of Alexandrium genus are known to be producers of paralytic shellfish toxins that regularly impact the shellfish aquaculture industry and fisheries. Accurate detection of Alexandrium including Alexandrium minutum is crucial for environmental monitoring and sanitary issues. In this study, we firstly developed a quantitative lateral flow immunoassay (LFIA) using super-paramagnetic nanobeads for A. minutum whole cells. This dipstick assay relies on two distinct monoclonal antibodies used in a sandwich format and directed against surface antigens of this organism. No sample preparation is required. Either frozen or live cells can be detected and quantified. The specificity and sensitivity are assessed by using phytoplankton culture and field samples spiked with a known amount of cultured A. minutum cells. This LFIA is shown to be highly specific for A. minutum and able to detect reproducibly 10(5)cells/L within 30min. The test is applied to environmental samples already characterized by light microscopy counting. No significant difference is observed between the cell densities obtained by these two methods. This handy super-paramagnetic lateral flow immnunoassay biosensor can greatly assist water quality monitoring programs as well as ecological research.

  6. Exposure to the toxic dinoflagellate Alexandrium catenella modulates juvenile oyster Crassostrea gigas hemocyte variables subjected to different biotic conditions.

    PubMed

    Lassudrie, Malwenn; Soudant, Philippe; Nicolas, Jean-Louis; Miner, Philippe; Le Grand, Jacqueline; Lambert, Christophe; Le Goïc, Nelly; Hégaret, Hélène; Fabioux, Caroline

    2016-04-01

    The Pacific oyster Crassostrea gigas is an important commercial species cultured throughout the world. Oyster production practices often include transfers of animals into new environments that can be stressful, especially at young ages. This study was undertaken to determine if a toxic Alexandrium bloom, occurring repeatedly in French oyster beds, could modulate juvenile oyster cellular immune responses (i.e. hemocyte variables). We simulated planting on commercial beds by conducting a cohabitation exposure of juvenile, "specific pathogen-free" (SPF) oysters (naïve from the environment) with previously field-exposed oysters to induce interactions with new microorganisms. Indeed, toxic Alexandrium spp. exposures have been reported to modulate bivalve interaction with specific pathogens, as well as physiological and immunological variables in bivalves. In summary, SPF oysters were subjected to an artificial bloom of Alexandrium catenella, simultaneously with a cohabitation challenge. Exposure to A. catenella, and thus to the paralytic shellfish toxins (PSTs) and extracellular bioactive compounds produced by this alga, induced higher concentration, size, complexity and reactive oxygen species (ROS) production of circulating hemocytes. Challenge by cohabitation with field-exposed oysters also activated these hemocyte responses, suggesting a defense response to new microorganism exposure. These hemocyte responses to cohabitation challenge, however, were partially inhibited by A. catenella exposure, which enhanced hemocyte mortality, suggesting either detrimental effects of the interaction of both stressors on immune capacity, or the implementation of an alternative immune strategy through apoptosis. Indeed, no infection with specific pathogens (herpesvirus OsHV-1 or Vibrio aesturianus) was detected. Additionally, lower PST accumulation in challenged oysters suggests a physiological impairment through alteration of feeding-related processes. Overall, results of this

  7. Photoresponse in the heterotrophic marine dinoflagellate Oxyrrhis marina.

    PubMed

    Hartz, Aaron J; Sherr, Barry F; Sherr, Evelyn B

    2011-01-01

    Expressed rhodopsins were detected by proteomic analysis in an investigation of potential signal receptors in the cell membrane of the marine heterotrophic dinoflagellate Oxyrrhis marina (CCMP604). We inferred these to be sensory rhodopsins, a type of G-protein-coupled receptor trans-membrane signaling molecule. Because phototactic behavior based on sensory rhodopsins has been reported in other protists, we investigated the photosensory response of O. marina. This dinoflagellate exhibited strongest positive phototaxis at low levels (2-3 μE/m(2)/s) of white light when the cells were previously light adapted and well fed. Positive phototaxis was also found for blue (450 nm), green (525 nm), and red (680 nm) wavelengths. In a further test, O. marina showed significantly greater phototaxis toward concentrated algal food illuminated by blue light to stimulate red chlorophyll-a autofluorescence in the prey, compared with using bleached algae as prey. Concentration of a cytoplasmic downstream messenger molecule, cyclic adenosine monophosphate, a component of the signaling pathway of G-protein-coupled receptor molecules, rapidly increased in O. marina cells after exposure to white light. In addition, treatment with hydroxylamine, a rhodopsin signaling inhibitor, significantly decreased their phototactic response. Our results demonstrate that a heterotrophic marine dinoflagellate can orient to light based on rhodopsins present in the outer cell membrane and may be able to use photosensory response to detect algal prey based on chlorophyll autofluorescence. © 2011 The Author(s). Journal of Eukaryotic Microbiology© 2011 International Society of Protistologists.

  8. A Kinetic and Factorial Approach to Study the Effects of Temperature and Salinity on Growth and Toxin Production by the Dinoflagellate Alexandrium ostenfeldii from the Baltic Sea.

    PubMed

    Salgado, Pablo; Vázquez, José A; Riobó, Pilar; Franco, José M; Figueroa, Rosa I; Kremp, Anke; Bravo, Isabel

    2015-01-01

    Alexandrium ostenfeldii is present in a wide variety of environments in coastal areas worldwide and is the only dinoflagellate known species that produces paralytic shellfish poisoning (PSP) toxins and two types of cyclic imines, spirolides (SPXs) and gymnodimines (GYMs). The increasing frequency of A. ostenfeldii blooms in the Baltic Sea has been attributed to the warming water in this region. To learn more about the optimal environmental conditions favoring the proliferation of A. ostenfeldii and its complex toxicity, the effects of temperature and salinity on the kinetics of both the growth and the net toxin production of this species were examined using a factorial design and a response-surface analysis (RSA). The results showed that the growth of Baltic A. ostenfeldii occurs over a wide range of temperatures and salinities (12.5-25.5°C and 5-21, respectively), with optimal growth conditions achieved at a temperature of 25.5°C and a salinity of 11.2. Together with the finding that a salinity > 21 was the only growth-limiting factor detected for this strain, this study provides important insights into the autecology and population distribution of this species in the Baltic Sea. The presence of PSP toxins, including gonyautoxin (GTX)-3, GTX-2, and saxitoxin (STX), and GYMs (GYM-A and GYM-B/-C analogues) was detected under all temperature and salinity conditions tested and in the majority of the cases was concomitant with both the exponential growth and stationary phases of the dinoflagellate's growth cycle. Toxin concentrations were maximal at temperatures and salinities of 20.9°C and 17 for the GYM-A analogue and > 19°C and 15 for PSP toxins, respectively. The ecological implications of the optimal conditions for growth and toxin production of A. ostenfeldii in the Baltic Sea are discussed.

  9. Effects of adaptation, chance, and history on the evolution of the toxic dinoflagellate Alexandrium minutum under selection of increased temperature and acidification

    PubMed Central

    Flores-Moya, Antonio; Rouco, Mónica; García-Sánchez, María Jesús; García-Balboa, Camino; González, Raquel; Costas, Eduardo; López-Rodas, Victoria

    2012-01-01

    The roles of adaptation, chance, and history on evolution of the toxic dinoflagellate Alexandrium minutum Halim, under selective conditions simulating global change, have been addressed. Two toxic strains (AL1V and AL2V), previously acclimated for two years at pH 8.0 and 20°C, were transferred to selective conditions: pH 7.5 to simulate acidification and 25°C. Cultures under selective conditions were propagated until growth rate and toxin cell quota achieved an invariant mean value at 720 days (ca. 250 and ca. 180 generations for strains AL1V and AL2V, respectively). Historical contingencies strongly constrained the evolution of growth rate and toxin cell quota, but the forces involved in the evolution were not the same for both traits. Growth rate was 1.5–1.6 times higher than the one measured in ancestral conditions. Genetic adaptation explained two-thirds of total adaptation while one-third was a consequence of physiological adaptation. On the other hand, the evolution of toxin cell quota showed a pattern attributable to neutral mutations because the final variances were significantly higher than those measured at the start of the experiment. It has been hypothesized that harmful algal blooms will increase under the future scenario of global change. Although this study might be considered an oversimplification of the reality, it can be hypothesized that toxic blooms will increase but no predictions can be advanced about toxicity. PMID:22833798

  10. Complexities of bloom dynamics in the toxic dinoflagellate Alexandrium fundyense revealed through DNA measurements by imaging flow cytometry coupled with species-specific rRNA probes

    PubMed Central

    Brosnahan, Michael L.; Farzan, Shahla; Keafer, Bruce A.; Sosik, Heidi M.; Olson, Robert J.; Anderson, Donald M.

    2013-01-01

    Measurements of the DNA content of different protist populations can shed light on a variety of processes, including cell division, sex, prey ingestion, and parasite invasion. Here, we modified an Imaging FlowCytobot (IFCB), a custom-built flow cytometer that records images of microplankton, to measure the DNA content of large dinoflagellates and other high-DNA content species. The IFCB was also configured to measure fluorescence from Cy3-labeled rRNA probes, aiding the identification of Alexandrium fundyense (syn. A. tamarense Group I), a photosynthetic dinoflagellate that causes paralytic shellfish poisoning (PSP). The modified IFCB was used to analyze samples from the development, peak and termination phases of an inshore A. fundyense bloom (Salt Pond, Eastham, MA USA), and from a rare A. fundyense ‘red tide’ that occurred in the western Gulf of Maine, offshore of Portsmouth, NH (USA). Diploid or G2 phase (‘2C’) A. fundyense cells were frequently enriched at the near-surface, suggesting an important role for aggregation at the air-sea interface during sexual events. Also, our analysis showed that large proportions of A. fundyense cells in both the Salt Pond and red tide blooms were planozygotes during bloom decline, highlighting the importance of sexual fusion to bloom termination. At Salt Pond, bloom decline also coincided with a dramatic rise in infections by the parasite genus Amoebophrya. The samples that were most heavily infected contained many large cells with higher DNA-associated fluorescence than 2C vegetative cells, but these cells’ nuclei were also frequently consumed by Amoebophrya trophonts. Neither large cell size nor increased DNA-associated fluorescence could be replicated by infecting an A. fundyense culture of vegetative cells. Therefore we attribute these characteristics of the large Salt Pond cells to planozygote maturation rather than Amoebophrya infection, though an interaction between infection and planozygote maturation may

  11. Complexities of bloom dynamics in the toxic dinoflagellate Alexandrium fundyense revealed through DNA measurements by imaging flow cytometry coupled with species-specific rRNA probes

    NASA Astrophysics Data System (ADS)

    Brosnahan, Michael L.; Farzan, Shahla; Keafer, Bruce A.; Sosik, Heidi M.; Olson, Robert J.; Anderson, Donald M.

    2014-05-01

    Measurements of the DNA content of different protist populations can shed light on a variety of processes, including cell division, sex, prey ingestion, and parasite invasion. Here, we modified an Imaging FlowCytobot (IFCB), a custom-built flow cytometer that records images of microplankton, to measure the DNA content of large dinoflagellates and other high-DNA content species. The IFCB was also configured to measure fluorescence from Cy3-labeled rRNA probes, aiding the identification of Alexandrium fundyense (syn. A. tamarense Group I), a photosynthetic dinoflagellate that causes paralytic shellfish poisoning (PSP). The modified IFCB was used to analyze samples from the development, peak and termination phases of an inshore A. fundyense bloom (Salt Pond, Eastham, MA, USA), and from a rare A. fundyense ‘red tide’ that occurred in the western Gulf of Maine, offshore of Portsmouth, NH (USA). Diploid or G2 phase (‘2C’) A. fundyense cells were frequently enriched at the near-surface, suggesting an important role for aggregation at the air-sea interface during sexual events. Also, our analysis showed that large proportions of A. fundyense cells in both the Salt Pond and red tide blooms were planozygotes during bloom decline, highlighting the importance of sexual fusion to bloom termination. At Salt Pond, bloom decline also coincided with a dramatic rise in infections by the parasite genus Amoebophrya. The samples that were most heavily infected contained many large cells with higher DNA-associated fluorescence than 2C vegetative cells, but these cells' nuclei were also frequently consumed by Amoebophrya trophonts. Neither large cell size nor increased DNA-associated fluorescence could be replicated by infecting an A. fundyense culture of vegetative cells. Therefore, we attribute these characteristics of the large Salt Pond cells to planozygote maturation rather than Amoebophrya infection, though an interaction between infection and planozygote maturation may

  12. Experimental and computational studies on molecularly imprinted solid-phase extraction for gonyautoxins 2,3 from dinoflagellate Alexandrium minutum.

    PubMed

    Lian, Ziru; Li, Hai-Bei; Wang, Jiangtao

    2016-08-01

    An innovative and effective extraction procedure based on molecularly imprinted solid-phase extraction (MISPE) was developed for the isolation of gonyautoxins 2,3 (GTX2,3) from Alexandrium minutum sample. Molecularly imprinted polymer microspheres were prepared by suspension polymerization and and were employed as sorbents for the solid-phase extraction of GTX2,3. An off-line MISPE protocol was optimized. Subsequently, the extract samples from A. minutum were analyzed. The results showed that the interference matrices in the extract were obviously cleaned up by MISPE procedures. This outcome enabled the direct extraction of GTX2,3 in A. minutum samples with extraction efficiency as high as 83 %, rather significantly, without any need for a cleanup step prior to the extraction. Furthermore, computational approach also provided direct evidences of the high selective isolation of GTX2,3 from the microalgal extracts.

  13. Photosynthetic characteristics and organization of chlorophyll in marine dinoflagellates

    PubMed Central

    Prézelin, Barbara B.; Alberte, Randall S.

    1978-01-01

    The photosystem I reaction center complex, the P-700-chlorophyll a-protein, has been isolated from the photosynthetic membranes of two marine dinoflagellates, Gonyaulax polyedra and Glenodinium sp., by detergent solubilization with Triton X-100. The complexes isolated from the two species were indistinguishable, exhibiting identical absorption properties (400-700 nm) at both room (300 K) and low (77 K) temperature. The room temperature, red wavelength maximum was at 675 nm. The absorption properties, kinetics of photobleaching, sodium dodecyl sulfate electrophoretic mobilities, and chlorophyll a/P-700 ratio (50 ± 10) of the P-700-chlorophyll a-protein complexes from the two species also were essentially the same and similar to those properties characterizing P-700-chlorophyll a-protein complexes of higher plants and green algae. Photosynthetic unit sizes were determined for cells grown at 1000 μW/cm2. Both dinoflagellates had unit sizes (total chlorophyll/P-700 ratios) of about 600, even though the distribution of chlorophyll a, chlorophyll c, and peridinin in the light-harvesting components differed in Gonyaulax and Glenodinium. The number of photosynthetic units per cell in the two species correlates directly with their photosynthetic activities. A model is presented for the distribution of chlorophyll in the photosynthetic apparatus of these dinoflagellates which accounts for the known role of the isolated pigment-protein complexes and for the known photoadaptive physiology in pigmentation and photosynthesis for these species. PMID:16592518

  14. Examination of the Seasonal Dynamics of the Toxic Dinoflagellate Alexandrium catenella at Redondo Beach, California, by Quantitative PCR▿

    PubMed Central

    Garneau, Marie-Ève; Schnetzer, Astrid; Countway, Peter D.; Jones, Adriane C.; Seubert, Erica L.; Caron, David A.

    2011-01-01

    The presence of neurotoxic species within the genus Alexandrium along the U.S. coastline has raised concern of potential poisoning through the consumption of contaminated seafood. Paralytic shellfish toxins (PSTs) detected in shellfish provide evidence that these harmful events have increased in frequency and severity along the California coast during the past 25 years, but the timing and location of these occurrences have been highly variable. We conducted a 4-year survey in King Harbor, CA, to investigate the seasonal dynamics of Alexandrium catenella and the presence of a particulate saxitoxin (STX), the parent compound of the PSTs. A quantitative PCR (qPCR) assay was developed for quantifying A. catenella in environmental microbial assemblages. This approach allowed for the detection of abundances as low as 12 cells liter−1, 2 orders of magnitude below threshold abundances that can impact food webs. A. catenella was found repeatedly during the study, particularly in spring, when cells were detected in 38% of the samples (27 to 5,680 cells liter−1). This peak in cell abundances was observed in 2006 and corresponded to a particulate STX concentration of 12 ng liter−1, whereas the maximum STX concentration of 26 ng liter−1 occurred in April 2008. Total cell abundances and toxin levels varied strongly throughout each year, but A. catenella was less abundant during summer, fall, and winter, when only 2 to 11% of the samples yielded positive qPCR results. The qPCR method developed here provides a useful tool for investigating the ecology of A. catenella at subbloom and bloom abundances. PMID:21926210

  15. The first evidence of deinoxanthin from Deinococcus sp. Y35 with strong algicidal effect on the toxic dinoflagellate Alexandrium tamarense.

    PubMed

    Li, Yi; Zhu, Hong; Lei, Xueqian; Zhang, Huajun; Guan, Chengwei; Chen, Zhangran; Zheng, Wei; Xu, Hong; Tian, Yun; Yu, Zhiming; Zheng, Tianling

    2015-06-15

    Harmful algal blooms (HABs) could be deemed hazardous materials in aquatic environment. Alexandrium tamarense is a toxic HAB causing alga, which causes serious economic losses and health problems. In this study, the bacterium Deinococcus xianganensis Y35 produced a new algicide, showing a high algicidal effect on A. tamarense. The algicidal compound was identified as deinoxanthin, a red pigment, based on high resolution mass spectrometry and NMR after the active compound was isolated and purified. Deinoxanthin exhibited an obvious inhibitory effect on algal growth, and showed algicidal activity against A. tamarense with an EC50 of 5.636 μg/mL with 12h treatment time. Based on the unique structure and characteristics of deinoxanthin, the content of reactive oxygen species (ROS) increased after 0.5h exposure, the structure of organelles including chloroplasts and mitochondria were seriously damaged. All these results firstly confirmed that deinoxanthin as the efficient and eco-environmental algicidal compound has potential to be used for controlling harmful algal blooms through overproduction of ROS.

  16. Exposure to the Neurotoxic Dinoflagellate, Alexandrium catenella, Induces Apoptosis of the Hemocytes of the Oyster, Crassostrea gigas

    PubMed Central

    Medhioub, Walid; Ramondenc, Simon; Vanhove, Audrey Sophie; Vergnes, Agnes; Masseret, Estelle; Savar, Veronique; Amzil, Zouher; Laabir, Mohamed; Rolland, Jean Luc

    2013-01-01

    This study assessed the apoptotic process occurring in the hemocytes of the Pacific oyster, Crassostrea gigas, exposed to Alexandrium catenella, a paralytic shellfish toxins (PSTs) producer. Oysters were experimentally exposed during 48 h to the toxic algae. PSTs accumulation, the expression of 12 key apoptotic-related genes, as well as the variation of the number of hemocytes in apoptosis was measured at time intervals during the experiment. Results show a significant increase of the number of hemocytes in apoptosis after 29 h of exposure. Two pro-apoptotic genes (Bax and Bax-like) implicated in the mitochondrial pathway were significantly upregulated at 21 h followed by the overexpression of two caspase executor genes (caspase-3 and caspase-7) at 29 h, suggesting that the intrinsic pathway was activated. No modulation of the expression of genes implicated in the cell signaling Fas-Associated protein with Death Domain (FADD) and initiation-phase (caspase-2) was observed, suggesting that only the extrinsic pathway was not activated. Moreover, the clear time-dependent upregulation of five (Bcl2, BI-1, IAP1, IAP7B and Hsp70) inhibitors of apoptosis-related genes associated with the return to the initial number of hemocytes in apoptosis at 48 h of exposure suggests the involvement of strong regulatory mechanisms of apoptosis occurring in the hemocytes of the Pacific oyster. PMID:24317471

  17. Blooms of the toxic dinoflagellate Alexandrium fundyense in the western Gulf of Maine in 1993 and 1994: A comparative modeling study

    NASA Astrophysics Data System (ADS)

    Stock, Charles A.; McGillicuddy, Dennis J.; Anderson, Donald M.; Solow, Andrew R.; Signell, Richard P.

    2007-11-01

    Blooms of the toxic dinoflagellate Alexandrium fundyense commonly occur in the western Gulf of Maine but the amount of toxin observed in coastal shellfish is highly variable. In this study, a coupled physical-biological model is used to investigate the dynamics underlying the observed A. fundyense abundance and shellfish toxicity in 1993 (a high toxicity year) and 1994 (low toxicity year). The physical model simulates the spring circulation, while the biological model estimates the germination and population dynamics of A. fundyense based on laboratory and field data. The model captures the large-scale aspects of the initiation and development of A. fundyense blooms during both years, but small-scale patchiness and the dynamics of bloom termination remain problematic. In both cases, the germination of resting cysts accounts for the magnitude of A. fundyense populations early in the spring. Simulations with low net A. fundyense growth rates capture the mean observed concentration during the bloom peak, which is of similar magnitude during both years. There is little evidence that large-scale changes in biological dynamics between 1993 and 1994 were a primary driver of the differences in shellfish toxicity. Results instead suggest that the persistent southwesterly flow of the western Maine Coastal Current led to A. fundyense populations of similar alongshore extent by late May of both years. This period coincides with peak cell abundance in the region. Variations in wind forcing (downwelling favorable in 1993, upwelling favorable in 1994) and subsequent cell transport (inshore in 1993, offshore in 1994) in early June then provides a plausible explanation for the dramatic mid-June differences in shellfish toxicity throughout the western Gulf of Maine.

  18. A Kinetic and Factorial Approach to Study the Effects of Temperature and Salinity on Growth and Toxin Production by the Dinoflagellate Alexandrium ostenfeldii from the Baltic Sea

    PubMed Central

    Salgado, Pablo; Vázquez, José A.; Riobó, Pilar; Franco, José M.; Figueroa, Rosa I.; Kremp, Anke; Bravo, Isabel

    2015-01-01

    Alexandrium ostenfeldii is present in a wide variety of environments in coastal areas worldwide and is the only dinoflagellate known species that produces paralytic shellfish poisoning (PSP) toxins and two types of cyclic imines, spirolides (SPXs) and gymnodimines (GYMs). The increasing frequency of A. ostenfeldii blooms in the Baltic Sea has been attributed to the warming water in this region. To learn more about the optimal environmental conditions favoring the proliferation of A. ostenfeldii and its complex toxicity, the effects of temperature and salinity on the kinetics of both the growth and the net toxin production of this species were examined using a factorial design and a response-surface analysis (RSA). The results showed that the growth of Baltic A. ostenfeldii occurs over a wide range of temperatures and salinities (12.5–25.5°C and 5–21, respectively), with optimal growth conditions achieved at a temperature of 25.5°C and a salinity of 11.2. Together with the finding that a salinity > 21 was the only growth-limiting factor detected for this strain, this study provides important insights into the autecology and population distribution of this species in the Baltic Sea. The presence of PSP toxins, including gonyautoxin (GTX)-3, GTX-2, and saxitoxin (STX), and GYMs (GYM-A and GYM-B/-C analogues) was detected under all temperature and salinity conditions tested and in the majority of the cases was concomitant with both the exponential growth and stationary phases of the dinoflagellate’s growth cycle. Toxin concentrations were maximal at temperatures and salinities of 20.9°C and 17 for the GYM-A analogue and > 19°C and 15 for PSP toxins, respectively. The ecological implications of the optimal conditions for growth and toxin production of A. ostenfeldii in the Baltic Sea are discussed. PMID:26636674

  19. Blooms of the toxic dinoflagellate Alexandrium fundyense in the western Gulf of Maine in 1993 and 1994: A comparative modeling study

    USGS Publications Warehouse

    Stock, C.A.; McGillicuddy, D.J.; Anderson, D.M.; Solow, A.R.; Signell, R.P.

    2007-01-01

    Blooms of the toxic dinoflagellate Alexandrium fundyense commonly occur in the western Gulf of Maine but the amount of toxin observed in coastal shellfish is highly variable. In this study, a coupled physical-biological model is used to investigate the dynamics underlying the observed A. fundyense abundance and shellfish toxicity in 1993 (a high toxicity year) and 1994 (low toxicity year). The physical model simulates the spring circulation, while the biological model estimates the germination and population dynamics of A. fundyense based on laboratory and field data. The model captures the large-scale aspects of the initiation and development of A. fundyense blooms during both years, but small-scale patchiness and the dynamics of bloom termination remain problematic. In both cases, the germination of resting cysts accounts for the magnitude of A. fundyense populations early in the spring. Simulations with low net A. fundyense growth rates capture the mean observed concentration during the bloom peak, which is of similar magnitude during both years. There is little evidence that large-scale changes in biological dynamics between 1993 and 1994 were a primary driver of the differences in shellfish toxicity. Results instead suggest that the persistent southwesterly flow of the western Maine Coastal Current led to A. fundyense populations of similar alongshore extent by late May of both years. This period coincides with peak cell abundance in the region. Variations in wind forcing (downwelling favorable in 1993, upwelling favorable in 1994) and subsequent cell transport (inshore in 1993, offshore in 1994) in early June then provides a plausible explanation for the dramatic mid-June differences in shellfish toxicity throughout the western Gulf of Maine. ?? 2007 Elsevier Ltd. All rights reserved.

  20. Physiological and pathological changes in the eastern oyster Crassostrea virginica infested with the trematode Bucephalus sp. and exposed to the toxic dinoflagellate Alexandrium fundyense.

    PubMed

    Lassudrie, Malwenn; Wikfors, Gary H; Sunila, Inke; Alix, Jennifer H; Dixon, Mark S; Combot, Doriane; Soudant, Philippe; Fabioux, Caroline; Hégaret, Hélène

    2015-03-01

    Effects of experimental exposure to Alexandrium fundyense, a Paralytic Shellfish Toxin (PST) producer known to affect bivalve physiological condition, upon eastern oysters, Crassostrea virginica with a variable natural infestation of the digenetic trematode Bucephalus sp. were determined. After a three-week exposure to cultured A. fundyense or to a control algal treatment with a non-toxic dinoflagellate, adult oysters were assessed for a suite of variables: histopathological condition, hematological variables (total and differential hemocyte counts, morphology), hemocyte functions (Reactive Oxygen Species (ROS) production and mitochondrial membrane potential), and expression in gills of genes involved in immune responses and cellular protection (MnSOD, CAT, GPX, MT-IV, galectin CvGal) or suspected to be (Dominin, Segon). By comparing individual oysters infested heavily with Bucephalus sp. and uninfested individuals, we found altered gonad and digestive gland tissue and an inflammatory response (increased hemocyte concentration in circulating hemolymph and hemocyte infiltrations in tissues) associated with trematode infestation. Exposure to A. fundyense led to a higher weighted prevalence of infection by the protozoan parasite Perkinsus marinus, responsible for Dermo disease. Additionally, exposure to A. fundyense in trematode-infested oysters was associated with the highest prevalence of P. marinus infection. These observations suggest that the development of P. marinus infection was advanced by A. fundyense exposure, and that, in trematode-infested oysters, P. marinus risk of infection was higher when exposed to A. fundyense. These effects were associated with suppression of the inflammatory response to trematode infestation by A. fundyense exposure. Additionally, the combination of trematode infestation and A. fundyense exposure caused degeneration of adductor muscle fibers, suggesting alteration of valve movements and catch state, which could increase

  1. Recent radiation in a marine and freshwater dinoflagellate species flock

    PubMed Central

    Annenkova, Nataliia V; Hansen, Gert; Moestrup, Øjvind; Rengefors, Karin

    2015-01-01

    Processes of rapid radiation among unicellular eukaryotes are much less studied than among multicellular organisms. We have investigated a lineage of cold-water microeukaryotes (protists) that appear to have diverged recently. This lineage stands in stark contrast to known examples of phylogenetically closely related protists, in which genetic difference is typically larger than morphological differences. We found that the group not only consists of the marine-brackish dinoflagellate species Scrippsiella hangoei and the freshwater species Peridinium aciculiferum as discovered previously but also of a whole species flock. The additional species include Peridinium euryceps and Peridinium baicalense, which are restricted to a few lakes, in particular to the ancient Lake Baikal, Russia, and freshwater S. hangoei from Lake Baikal. These species are characterized by relatively large conspicuous morphological differences, which have given rise to the different species descriptions. However, our scanning electron microscopic studies indicate that they belong to a single genus according to traditional morphological characterization of dinoflagellates (thecal plate patterns). Moreover, we found that they have identical SSU (small subunit) rDNA fragments and distinct but very small differences in the DNA markers LSU (large subunit) rDNA, ITS2 (internal transcribed spacer 2) and COB (cytochrome b) gene, which are used to delineate dinoflagellates species. As some of the species co-occur, and all four have small but species–specific sequence differences, we suggest that these taxa are not a case of phenotypic plasticity but originated via recent adaptive radiation. We propose that this is the first clear example among free-living microeukaryotes of recent rapid diversification into several species followed by dispersion to environments with different ecological conditions. PMID:25603395

  2. Impact of zooplankton grazing on Alexandrium blooms in the offshore Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Turner, Jefferson T.; Borkman, David G.

    2005-09-01

    Zooplankton grazing was investigated by shipboard experiments during natural blooms of Alexandrium spp. in the offshore Gulf of Maine in spring and/or summer of 1998, 2000, and 2001. Grazing studies were done in conjunction with studies of accumulation of Alexandrium toxins in the zooplankton, as part of the ECOHAB-Gulf of Maine regional program. Several species of copepods, marine cladocerans, and appendicularians were allowed to graze upon natural phytoplankton assemblages, at ambient temperatures (14-17 °C). Grazing was measured by quantitative microscopic analyses of disappearance of phytoplankton cells in initial, control, and experimental food suspensions. Thus, we were able to examine grazing upon Alexandrium in comparison to grazing on other co-occurring phytoplankton taxa. Even during Alexandrium "blooms," this dinoflagellate was a minor component of the overall phytoplankton assemblage. It was present at stations where grazing experiments were conducted at levels of 0.12-7.57×10 3 cells l -1, or 0.03-3.93% of total phytoplankton cells. Maximum ingestion of Alexandrium accounted for only up to 3.2% of total cells ingested. Phytoplankton assemblages were dominated by athecate microflagellates, and to a lesser extent by diatoms and non-toxic dinoflagellates. Microflagellates were present at abundances of 159.62-793.93 cells ml -1, or 60.6-95.56% of total cells. Grazing on microflagellates accounted for 35.59-98.21% of total grazing. Grazing on Alexandrium spp. and microflagellates was generally non-selective, with these taxa being ingested in similar proportions to their availability in food assemblages. Grazing on diatoms was selective, with diatoms being disproportionately ingested, compared to their proportions in food assemblages. There were no apparent adverse effects of Alexandrium on grazers during incubations of 18-24 h, and grazer survival was 100%. Estimated daily zooplankton grazing impact on Alexandrium spp. field populations by field

  3. STRATEGIES OF MARINE DINOFLAGELLATE SURVIVAL AND SOME RULES OF ASSEMBLY. (R829368)

    EPA Science Inventory

    Dinoflagellate ecology is based on multiple adaptive strategies and species having diverse habitat preferences. Nine types of mixing-irradiance-nutrient habitats selecting for specific marine dinoflagellate life-form types are recognised, with five rules of assembly proposed t...

  4. Nutrients and water masses in the Gulf of Maine-Georges Bank region: Variability and importance to blooms of the toxic dinoflagellate Alexandrium fundyense

    NASA Astrophysics Data System (ADS)

    Townsend, D. W.; McGillicuddy, D. J.; Thomas, M. A.; Rebuck, N. D.

    2014-05-01

    We report here the results of ten oceanographic survey cruises carried out in the Gulf of Maine-Georges Bank region of the Northwest Atlantic during the late spring to summer period in 2007, 2008 and 2010, for which we examine and characterize relationships among dissolved inorganic nutrient fields, water mass dynamics and cell densities of the toxic dinoflagellate Alexandrium fundyense. Nutrients are supplied to continental shelf waters of the Gulf of Maine-Georges Bank region by inflows of deep offshore water masses; once in the Gulf they are transported with the residual circulation and mix with surface waters, both in the Gulf and on the Bank. Those fluxes of offshore water masses and their nutrient loads are the major source of nutrients for phytoplankton production in the region, including annual blooms of A. fundyense in the Gulf and on Georges Bank. This much is already known. We suggest here that the locations and magnitude of A. fundyense blooms are controlled in part by variable nutrient fluxes to the interior Gulf of Maine from offshore, and, those interior Gulf of Maine waters are, in turn, the main nutrient source to Georges Bank, which are brought onto the Bank by tidal pumping on the Northern Flank. We present evidence that nitrate is the initial form of nitrogenous nutrient for A. fundyense blooms, but it is quickly depleted to limiting concentrations of less than 0.5 μM, at which time continued growth and maintenance of the population is likely fueled by recycled ammonium. We also show that phosphate may be the limiting nutrient over much of Georges Bank in summer, allowing recycled ammonium concentrations to increase. Our temperature-salinity analyses reveal spatial and temporal (seasonal and interannual) variability in the relative proportions of two deep source waters that enter the Gulf of Maine at depth through the Northeast Channel: Warm Slope Water (WSW) and Labrador Slope Water (LSW). Those two source waters are known to vary in their

  5. Nutrients and water masses in the Gulf of Maine - Georges Bank region: Variability and importance to blooms of the toxic dinoflagellate Alexandrium fundyense

    PubMed Central

    Townsend, D.W.; McGillicuddy, D.J.; Thomas, M.A.; Rebuck, N.R.

    2015-01-01

    We report here the results of ten oceanographic survey cruises carried out in the Gulf of Maine - Georges Bank region of the Northwest Atlantic during the late spring to summer period in 2007, 2008 and 2010, for which we examine and characterize relationships among dissolved inorganic nutrient fields, water mass dynamics and cell densities of the toxic dinoflagellate Alexandrium fundyense. Nutrients are supplied to continental shelf waters of the Gulf of Maine - Georges Bank region by inflows of deep offshore water masses; once in the Gulf they are transported with the residual circulation and mix with surface waters, both in the Gulf and on the Bank. Those fluxes of offshore water masses and their nutrient loads are the major source of nutrients for phytoplankton production in the region, including annual blooms of A. fundyense in the Gulf and on Georges Bank. This much is already known. We suggest here that the locations and magnitude of A. fundyense blooms are controlled in part by variable nutrient fluxes to the interior Gulf of Maine from offshore, and, those interior Gulf of Maine waters are, in turn, the main nutrient source to Georges Bank, which are brought onto the Bank by tidal pumping on the Northern Flank. We present evidence that nitrate is the initial form of nitrogenous nutrient for A. fundyense blooms, but it is quickly depleted to limiting concentrations of less than 0.5 μM, at which time continued growth and maintenance of the population is likely fueled by recycled ammonium. We also show that phosphate may be the limiting nutrient over much of Georges Bank in summer, allowing recycled ammonium concentrations to increase. Our temperature-salinity analyses reveal spatial and temporal (seasonal and interannual) variability in the relative proportions of two deep source waters that enter the Gulf of Maine at depth through the Northeast Channel: Warm Slope Water (WSW) and Labrador Slope Water (LSW). Those two source waters are known to vary in their

  6. Nutrients and water masses in the Gulf of Maine - Georges Bank region: Variability and importance to blooms of the toxic dinoflagellate Alexandrium fundyense.

    PubMed

    Townsend, D W; McGillicuddy, D J; Thomas, M A; Rebuck, N R

    2014-05-01

    We report here the results of ten oceanographic survey cruises carried out in the Gulf of Maine - Georges Bank region of the Northwest Atlantic during the late spring to summer period in 2007, 2008 and 2010, for which we examine and characterize relationships among dissolved inorganic nutrient fields, water mass dynamics and cell densities of the toxic dinoflagellate Alexandrium fundyense. Nutrients are supplied to continental shelf waters of the Gulf of Maine - Georges Bank region by inflows of deep offshore water masses; once in the Gulf they are transported with the residual circulation and mix with surface waters, both in the Gulf and on the Bank. Those fluxes of offshore water masses and their nutrient loads are the major source of nutrients for phytoplankton production in the region, including annual blooms of A. fundyense in the Gulf and on Georges Bank. This much is already known. We suggest here that the locations and magnitude of A. fundyense blooms are controlled in part by variable nutrient fluxes to the interior Gulf of Maine from offshore, and, those interior Gulf of Maine waters are, in turn, the main nutrient source to Georges Bank, which are brought onto the Bank by tidal pumping on the Northern Flank. We present evidence that nitrate is the initial form of nitrogenous nutrient for A. fundyense blooms, but it is quickly depleted to limiting concentrations of less than 0.5 μM, at which time continued growth and maintenance of the population is likely fueled by recycled ammonium. We also show that phosphate may be the limiting nutrient over much of Georges Bank in summer, allowing recycled ammonium concentrations to increase. Our temperature-salinity analyses reveal spatial and temporal (seasonal and interannual) variability in the relative proportions of two deep source waters that enter the Gulf of Maine at depth through the Northeast Channel: Warm Slope Water (WSW) and Labrador Slope Water (LSW). Those two source waters are known to vary in their

  7. Fungal community dynamics during a marine dinoflagellate (Noctiluca scintillans) bloom.

    PubMed

    Sun, Jing-Yun; Song, Yu; Ma, Zhi-Ping; Zhang, Huai-Jing; Yang, Zhong-Duo; Cai, Zhong-Hua; Zhou, Jin

    2017-10-04

    Contamination and eutrophication have caused serious ecological events (such as algal bloom) in coastal area. During this ecological process, microbial community structure is critical for algal bloom succession. The diversity and composition of bacteria and archaea communities in algal blooms have been widely investigated; however, those of fungi are poorly understood. To fill this gap, we used pyrosequencing and correlation approaches to assess fungal patterns and associations during a dinoflagellate (Noctiluca scintillans) bloom. Phylum level fungal types were predominated by Ascomycota, Chytridiomycota, Mucoromycotina, and Basidiomycota. At the genus level drastic changes were observed with Hysteropatella, Malassezia and Saitoella dominating during the initial bloom stage, while Malassezia was most abundant (>50%) during onset and peak-bloom stages. Saitoella and Lipomyces gradually became more abundant and, in the decline stage, contributed almost 70% of sequences. In the terminal stage of the bloom, Rozella increased rapidly to a maximum of 50-60%. Fungal population structure was significantly influenced by temperature and substrate (N and P) availability (P < 0.05). Inter-specific network analyses demonstrated that Rozella and Saitoella fungi strongly impacted the ecological trajectory of N. scintillans. The functional prediction show that symbiotrophic fungi was dominated in the onset stage; saprotroph type was the primary member present during the exponential growth period; whereas pathogentroph type fungi enriched in decline phase. Overall, fungal communities and functions correlated significantly with N. scintillans processes, suggesting that they may regulate dinoflagellate bloom fates. Our results will facilitate deeper understanding of the ecological importance of marine fungi and their roles in algal bloom formation and collapse. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Ocean acidification reduces growth and calcification in a marine dinoflagellate.

    PubMed

    Van de Waal, Dedmer B; John, Uwe; Ziveri, Patrizia; Reichart, Gert-Jan; Hoins, Mirja; Sluijs, Appy; Rost, Björn

    2013-01-01

    Ocean acidification is considered a major threat to marine ecosystems and may particularly affect calcifying organisms such as corals, foraminifera and coccolithophores. Here we investigate the impact of elevated pCO2 and lowered pH on growth and calcification in the common calcareous dinoflagellate Thoracosphaera heimii. We observe a substantial reduction in growth rate, calcification and cyst stability of T. heimii under elevated pCO2. Furthermore, transcriptomic analyses reveal CO2 sensitive regulation of many genes, particularly those being associated to inorganic carbon acquisition and calcification. Stable carbon isotope fractionation for organic carbon production increased with increasing pCO2 whereas it decreased for calcification, which suggests interdependence between both processes. We also found a strong effect of pCO2 on the stable oxygen isotopic composition of calcite, in line with earlier observations concerning another T. heimii strain. The observed changes in stable oxygen and carbon isotope composition of T. heimii cysts may provide an ideal tool for reconstructing past seawater carbonate chemistry, and ultimately past pCO2. Although the function of calcification in T. heimii remains unresolved, this trait likely plays an important role in the ecological and evolutionary success of this species. Acting on calcification as well as growth, ocean acidification may therefore impose a great threat for T. heimii.

  9. PSP toxin levels and plankton community composition and abundance in size-fractionated vertical profiles during spring/summer blooms of the toxic dinoflagellate Alexandrium fundyense in the Gulf of Maine and on Georges Bank, 2007, 2008, and 2010: 2. Plankton community composition and abundance

    PubMed Central

    Petitpas, Christian M.; Turner, Jefferson T.; Deeds, Jonathan R.; Keafer, Bruce A.; McGillicuddy, Dennis J.; Milligan, Peter J.; Shue, Vangie; White, Kevin D.; Anderson, Donald M.

    2015-01-01

    As part of the Gulf of Maine Toxicity (GOMTOX1) project, we determined Alexandrium fundyense abundance, paralytic shellfish poisoning (PSP) toxin levels in various plankton size fractions, and the community composition of potential grazers of A. fundyense in plankton size fractions during blooms of this toxic dinoflagellate in the coastal Gulf of Maine and on Georges Bank in spring and summer of 2007, 2008, and 2010. PSP toxins and A. fundyense cells were found throughout the sampled water column (down to 50 m) in the 20–64 μm size fractions. While PSP toxins were widespread throughout all size classes of the zooplankton grazing community, the majority of the toxin was measured in the 20–64 μm size fraction. A. fundyense cellular toxin content estimated from field samples was significantly higher in the coastal Gulf of Maine than on Georges Bank. Most samples containing PSP toxins in the present study had diverse assemblages of grazers. However, some samples clearly suggested PSP toxin accumulation in several different grazer taxa including tintinnids, heterotrophic dinoflagellates of the genus Protoperidinium, barnacle nauplii, the harpacticoid copepod Microsetella norvegica, the calanoid copepods Calanus finmarchicus and Pseudocalanus spp., the marine cladoceran Evadne nordmanni, and hydroids of the genus Clytia. Thus, a diverse assemblage of zooplankton grazers accumulated PSP toxins through food-web interactions. This raises the question of whether PSP toxins pose a potential human health risk not only from nearshore bivalve shellfish, but also potentially from fish and other upper-level consumers in zooplankton-based pelagic food webs. PMID:26236112

  10. PSP toxin levels and plankton community composition and abundance in size-fractionated vertical profiles during spring/summer blooms of the toxic dinoflagellate Alexandrium fundyense in the Gulf of Maine and on Georges Bank, 2007, 2008, and 2010: 2. Plankton community composition and abundance.

    PubMed

    Petitpas, Christian M; Turner, Jefferson T; Deeds, Jonathan R; Keafer, Bruce A; McGillicuddy, Dennis J; Milligan, Peter J; Shue, Vangie; White, Kevin D; Anderson, Donald M

    2014-05-01

    As part of the Gulf of Maine Toxicity (GOMTOX) project, we determined Alexandrium fundyense abundance, paralytic shellfish poisoning (PSP) toxin levels in various plankton size fractions, and the community composition of potential grazers of A. fundyense in plankton size fractions during blooms of this toxic dinoflagellate in the coastal Gulf of Maine and on Georges Bank in spring and summer of 2007, 2008, and 2010. PSP toxins and A. fundyense cells were found throughout the sampled water column (down to 50 m) in the 20-64 μm size fractions. While PSP toxins were widespread throughout all size classes of the zooplankton grazing community, the majority of the toxin was measured in the 20-64 μm size fraction. A. fundyense cellular toxin content estimated from field samples was significantly higher in the coastal Gulf of Maine than on Georges Bank. Most samples containing PSP toxins in the present study had diverse assemblages of grazers. However, some samples clearly suggested PSP toxin accumulation in several different grazer taxa including tintinnids, heterotrophic dinoflagellates of the genus Protoperidinium, barnacle nauplii, the harpacticoid copepod Microsetella norvegica, the calanoid copepods Calanus finmarchicus and Pseudocalanus spp., the marine cladoceran Evadne nordmanni, and hydroids of the genus Clytia. Thus, a diverse assemblage of zooplankton grazers accumulated PSP toxins through food-web interactions. This raises the question of whether PSP toxins pose a potential human health risk not only from nearshore bivalve shellfish, but also potentially from fish and other upper-level consumers in zooplankton-based pelagic food webs.

  11. A quantitative real-time PCR assay for the identification and enumeration of Alexandrium cysts in marine sediments

    NASA Astrophysics Data System (ADS)

    Erdner, D. L.; Percy, L.; Keafer, B.; Lewis, J.; Anderson, D. M.

    2010-02-01

    Harmful algal blooms (HABs) are a global problem that affects both human and ecosystem health. One of the most serious and widespread HAB poisoning syndromes is paralytic shellfish poisoning, commonly caused by Alexandrium spp. dinoflagellates. Like many toxic dinoflagellates, Alexandrium produces resistant resting cysts as part of its life cycle. These cysts play a key role in bloom initiation and decline, as well as dispersal and colonization of new areas. Information on cyst numbers and identity is essential for understanding and predicting blooms, yet comprehensive cyst surveys are extremely time- and labor-intensive. Here we describe the development and validation of a quantitative real-time PCR (qPCR) technique for the enumeration of cysts of A. tamarense of the toxic North American/Group I ribotype. The method uses a cloned fragment of the large subunit ribosomal RNA gene as a standard for cyst quantification, with an experimentally determined conversion factor of 28,402±6152 LSU ribosomal gene copies per cyst. Tests of DNA extraction and PCR efficiency show that mechanical breakage is required for adequate cyst lysis, and that it was necessary to dilute our DNA extracts 50-fold in order to abolish PCR inhibition from compounds co-extracted from the sediment. The resulting assay shows a linear response over 6 orders of magnitude and can reliably quantify ≥10 cysts/cm 3 sediment. For method validation, 129 natural sediment samples were split and analyzed in parallel, using both the qPCR and primulin-staining techniques. Overall, there is a significant correlation ( p<0.001) between the cyst abundances determined by the two methods, although the qPCR counts tend to be lower than the primulin values. This underestimation is less pronounced in those samples collected from the top 1 cm of sediment, and more pronounced in those derived from the next 1-3 cm of the core. These differences may be due to the condition of the cysts in the different layers, as the

  12. A Molecular and Co-Evolutionary Context for Grazer Induced Toxin Production in Alexandrium tamarense

    PubMed Central

    Wohlrab, Sylke; Iversen, Morten H.; John, Uwe

    2010-01-01

    Marine dinoflagellates of the genus Alexandrium are the proximal source of neurotoxins associated with Paralytic Shellfish Poisoning. The production of these toxins, the toxin biosynthesis and, thus, the cellular toxicity can be influenced by abiotic and biotic factors. There is, however, a lack of substantial evidence concerning the toxins' ecological function such as grazing defense. Waterborne cues from copepods have been previously found to induce a species-specific increase in toxin content in Alexandrium minutum. However, it remains speculative in which context these species-specific responses evolved and if it occurs in other Alexandrium species as well. In this study we exposed Alexandrium tamarense to three copepod species (Calanus helgolandicus, Acartia clausii, and Oithona similis) and their corresponding cues. We show that the species-specific response towards copepod-cues is not restricted to one Alexandrium species and that co-evolutionary processes might be involved in these responses, thus giving additional evidence for the defensive role of phycotoxins. Through a functional genomic approach we gained insights into the underlying molecular processes which could trigger the different outcomes of these species-specific responses and consequently lead to increased toxin content in Alexandrium tamarense. We propose that the regulation of serine/threonine kinase signaling pathways has a major influence in directing the external stimuli i.e. copepod-cues, into different intracellular cascades and networks in A. tamarense. Our results show that A. tamarense can sense potential predating copepods and respond to the received information by increasing its toxin production. Furthermore, we demonstrate how a functional genomic approach can be used to investigate species interactions within the plankton community. PMID:21124775

  13. A molecular and co-evolutionary context for grazer induced toxin production in Alexandrium tamarense.

    PubMed

    Wohlrab, Sylke; Iversen, Morten H; John, Uwe

    2010-11-29

    Marine dinoflagellates of the genus Alexandrium are the proximal source of neurotoxins associated with Paralytic Shellfish Poisoning. The production of these toxins, the toxin biosynthesis and, thus, the cellular toxicity can be influenced by abiotic and biotic factors. There is, however, a lack of substantial evidence concerning the toxins' ecological function such as grazing defense. Waterborne cues from copepods have been previously found to induce a species-specific increase in toxin content in Alexandrium minutum. However, it remains speculative in which context these species-specific responses evolved and if it occurs in other Alexandrium species as well. In this study we exposed Alexandrium tamarense to three copepod species (Calanus helgolandicus, Acartia clausii, and Oithona similis) and their corresponding cues. We show that the species-specific response towards copepod-cues is not restricted to one Alexandrium species and that co-evolutionary processes might be involved in these responses, thus giving additional evidence for the defensive role of phycotoxins. Through a functional genomic approach we gained insights into the underlying molecular processes which could trigger the different outcomes of these species-specific responses and consequently lead to increased toxin content in Alexandrium tamarense. We propose that the regulation of serine/threonine kinase signaling pathways has a major influence in directing the external stimuli i.e. copepod-cues, into different intracellular cascades and networks in A. tamarense. Our results show that A. tamarense can sense potential predating copepods and respond to the received information by increasing its toxin production. Furthermore, we demonstrate how a functional genomic approach can be used to investigate species interactions within the plankton community.

  14. Study of molecularly imprinted solid-phase extraction of gonyautoxins 2,3 in the cultured dinoflagellate Alexandrium tamarense by high-performance liquid chromatography with fluorescence detection.

    PubMed

    Lian, Zi-Ru; Wang, Jiang-Tao

    2013-11-01

    A highly selective sample cleanup procedure combined with molecularly imprinted solid-phase extraction (MISPE) was developed for the isolation of gonyautoxins 2,3 (GTX2,3) from Alexandrium tamarense sample. The molecularly imprinted polymer microspheres (MIPMs) were prepared by suspension polymerization using caffeine as the dummy template molecule, methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linker and polyvinyl alcohol as the dispersive reagent. The polymer microspheres were used as a selective sorbent for the solid-phase extraction of gonyautoxins 2,3. An off-line MISPE method followed by high-performance liquid chromatography (HPLC) with fluorescence detection for the analysis of gonyautoxins 2,3 was established. Finally, the extract samples from Alexandrium tamarense were analyzed. The results showed the imprinted polymer microspheres exhibited high affinity and selectivity for gonyautoxins 2,3. The interference matrix in the extract were obviously cleaned by MISPE and the extraction efficiency of gonyautoxins 2,3 in the sample ranged from 81.74% to 85.86%.

  15. The variability in DMSP content and DMSP lyase activity in marine dinoflagellates

    NASA Astrophysics Data System (ADS)

    Caruana, Amandine M. N.; Malin, Gill

    2014-01-01

    More than 20 years ago Maureen Keller and co-workers published a study that identified dinoflagellates as an important marine phytoplankton group with respect to the production of dimethylsulphoniopropionate (DMSP). Here, we present a synthesis and analysis of all the DMSP and DMSP lyase activity (DLA) measurements currently available for dinoflagellates. The data cover 110 species and strains and reveal over 6 orders of magnitude variability in intracellular DMSP concentrations and substantial variations in DLA in 23 strains. Inter-specific variability was explored with reference to a range of biological characteristics. The presence of a theca did not appear to be related to DMSP concentration but there was a potential relationship with toxicity (P = 0.06) and bioluminescent species produced significantly lower concentrations (P < 0.01) than non-bioluminescent ones. DMSP concentrations were related to plastid types (P < 0.05); dinoflagellates with haptophyte-like plastids contained lower amounts of DMSP than those with peridinin plastids (P < 0.01), whereas those containing cryptomonad-like plastids tended to have higher DMSP concentrations. Heterotrophic dinoflagellates were also considered given their importance in the natural environment. They are the only heterotrophs known to synthesise DMSP and this ability may support the theory that they are of photosynthetic origin. However, the heterotrophic species investigated so far suggest wide variability in DMSP content and the species Oxyrrhis marina had no detectable DMSP. The oceanic province of origin significantly affected the DMSP concentrations (P < 0.05) with higher DMSP content observed in dinoflagellates from the Mediterranean province, the Kuroshio Current province and the East Coastal Australian province. Overall this study supports the concept that DMSP-containing dinoflagellates are an important potential source of DMS to the global atmosphere and highlights current gaps in knowledge.

  16. Biology of the Marine Heterotrophic Dinoflagellate Oxyrrhis marina: Current Status and Future Directions

    PubMed Central

    Guo, Zhiling; Zhang, Huan; Liu, Sheng; Lin, Senjie

    2013-01-01

    Heterotrophic dinoflagellates are prevalent protists in marine environments, which play an important role in the carbon cycling and energy flow in the marine planktonic community. Oxyrrhis marina (Dinophyceae), a widespread heterotrophic dinoflagellate, is a model species used for a broad range of ecological, biogeographic, and evolutionary studies. Despite the increasing research effort on this species, there lacks a synthesis of the existing data and a coherent picture of this organism. Here we reviewed the literature to provide an overview of what is known regarding the biology of O. marina, and identify areas where further studies are needed. As an early branch of the dinoflagellate lineage, O. marina shares similarity with typical dinoflagellates in permanent condensed chromosomes, less abundant nucleosome proteins compared to other eukaryotes, multiple gene copies, the occurrence of trans-splicing in nucleus-encoded mRNAs, highly fragmented mitochondrial genome, and disuse of ATG as a start codon for mitochondrial genes. On the other hand, O. marina also exhibits some distinct cytological features (e.g., different flagellar structure, absence of girdle and sulcus or pustules, use of intranuclear spindle in mitosis, presence of nuclear plaque, and absence of birefringent periodic banded chromosomal structure) and genetic features (e.g., a single histone-like DNA-associated protein, cob-cox3 gene fusion, 5′ oligo-U cap in the mitochondrial transcripts of protein-coding genes, the absence of mRNA editing, the presence of stop codon in the fused cob-cox3 mRNA produced by post-transcriptional oligoadenylation, and vestigial plastid genes). The best-studied biology of this dinoflagellate is probably the prey and predators types, which include a wide range of organisms. On the other hand, the abundance of this species in the natural waters and its controlling factors, genome organization and gene expression regulation that underlie the unusual cytological and

  17. Biology of the Marine Heterotrophic Dinoflagellate Oxyrrhis marina: Current Status and Future Directions.

    PubMed

    Guo, Zhiling; Zhang, Huan; Liu, Sheng; Lin, Senjie

    2013-10-21

    Heterotrophic dinoflagellates are prevalent protists in marine environments, which play an important role in the carbon cycling and energy flow in the marine planktonic community. Oxyrrhismarina (Dinophyceae), a widespread heterotrophic dinoflagellate, is a model species used for a broad range of ecological, biogeographic, and evolutionary studies. Despite the increasing research effort on this species, there lacks a synthesis of the existing data and a coherent picture of this organism. Here we reviewed the literature to provide an overview of what is known regarding the biology of O. marina, and identify areas where further studies are needed. As an early branch of the dinoflagellate lineage, O. marina shares similarity with typical dinoflagellates in permanent condensed chromosomes, less abundant nucleosome proteins compared to other eukaryotes, multiple gene copies, the occurrence of trans-splicing in nucleus-encoded mRNAs, highly fragmented mitochondrial genome, and disuse of ATG as a start codon for mitochondrial genes. On the other hand, O. marina also exhibits some distinct cytological features (e.g., different flagellar structure, absence of girdle and sulcus or pustules, use of intranuclear spindle in mitosis, presence of nuclear plaque, and absence of birefringent periodic banded chromosomal structure) and genetic features (e.g., a single histone-like DNA-associated protein, cob-cox3 gene fusion, 5' oligo-U cap in the mitochondrial transcripts of protein-coding genes, the absence of mRNA editing, the presence of stop codon in the fused cob-cox3 mRNA produced by post-transcriptional oligoadenylation, and vestigial plastid genes). The best-studied biology of this dinoflagellate is probably the prey and predators types, which include a wide range of organisms. On the other hand, the abundance of this species in the natural waters and its controlling factors, genome organization and gene expression regulation that underlie the unusual cytological and

  18. Intraspecific facilitation by allelochemical mediated grazing protection within a toxigenic dinoflagellate population.

    PubMed

    John, Uwe; Tillmann, Urban; Hülskötter, Jennifer; Alpermann, Tilman J; Wohlrab, Sylke; Van de Waal, Dedmer B

    2015-01-07

    Dinoflagellates are a major cause of harmful algal blooms (HABs), with consequences for coastal marine ecosystem functioning and services. Alexandrium fundyense (previously Alexandrium tamarense) is one of the most abundant and widespread toxigenic species in the temperate Northern and Southern Hemisphere and produces paralytic shellfish poisoning toxins as well as lytic allelochemical substances. These bioactive compounds may support the success of A. fundyense and its ability to form blooms. Here we investigate the impact of grazing on monoclonal and mixed set-ups of highly (Alex2) and moderately (Alex4) allelochemically active A. fundyense strains and a non-allelochemically active conspecific (Alex5) by the heterotrophic dinoflagellate Polykrikos kofoidii. While Alex4 and particularly Alex5 were strongly grazed by P. kofoidii when offered alone, both strains grew well in the mixed assemblages (Alex4 + Alex5 and Alex2 + Alex5). Hence, the allelochemical active strains facilitated growth of the non-active strain by protecting the population as a whole against grazing. Based on our results, we argue that facilitation among clonal lineages within a species may partly explain the high genotypic and phenotypic diversity of Alexandrium populations. Populations of Alexandrium may comprise multiple cooperative traits that act in concert with intraspecific facilitation, and hence promote the success of this notorious HAB species. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. Immobilized growth of the peridinin-producing marine dinoflagellate Symbiodinium in a simple biofilm photobioreactor.

    PubMed

    Benstein, Ruben Maximilian; Cebi, Zehra; Podola, Björn; Melkonian, Michael

    2014-12-01

    Products from phototrophic dinoflagellates such as toxins or pigments are potentially important for applications in the biomedical sciences, especially in drug development. However, the technical cultivation of these organisms is often problematic due to their sensitivity to hydrodynamic (shear) stress that is a characteristic of suspension-based closed photobioreactors (PBRs). It is thus often thought that most species of dinoflagellates are non-cultivable at a technical scale. Recent advances in the development of biofilm PBRs that rely on immobilization of microalgae may hold potential to circumvent this major technical problem in dinoflagellate cultivation. In the present study, the dinoflagellate Symbiodinium voratum was grown immobilized on a Twin-Layer PBR for isolation of the carotenoid peridinin, an anti-cancerogenic compound. Biomass productivities ranged from 1.0 to 11.0 g m(-2) day(-1) dry matter per vertical growth surface and a maximal biomass yield of 114.5 g m(-2), depending on light intensity, supplementary CO2, and type of substrate (paper or polycarbonate membrane) used. Compared to a suspension culture, the performance of the Twin-Layer PBRs exhibited significantly higher growth rates and maximal biomass yield. In the Twin-Layer PBR a maximal peridinin productivity of 24 mg m(-2) day(-1) was determined at a light intensity of 74 μmol m(-2) s(-1), although the highest peridinin content per dry weight (1.7 % w/w) was attained at lower light intensities. The results demonstrate that a biofilm-based PBR that minimizes hydrodynamic shear forces is applicable to technical-scale cultivation of dinoflagellates and may foster biotechnological applications of these abundant marine protists.

  20. Putative Monofunctional Type I Polyketide Synthase Units: A Dinoflagellate-Specific Feature?

    PubMed Central

    Eichholz, Karsten; Beszteri, Bánk; John, Uwe

    2012-01-01

    Marine dinoflagellates (alveolata) are microalgae of which some cause harmful algal blooms and produce a broad variety of most likely polyketide synthesis derived phycotoxins. Recently, novel polyketide synthesase (PKS) transcripts have been described from the Florida red tide dinoflagellate Karenia brevis (gymnodiniales) which are evolutionarily related to Type I PKS but were apparently expressed as monofunctional proteins, a feature typical of Type II PKS. Here, we investigated expression units of PKS I-like sequences in Alexandrium ostenfeldii (gonyaulacales) and Heterocapsa triquetra (peridiniales) at the transcript and protein level. The five full length transcripts we obtained were all characterized by polyadenylation, a 3′ UTR and the dinoflagellate specific spliced leader sequence at the 5′end. Each of the five transcripts encoded a single ketoacylsynthase (KS) domain showing high similarity to K. brevis KS sequences. The monofunctional structure was also confirmed using dinoflagellate specific KS antibodies in Western Blots. In a maximum likelihood phylogenetic analysis of KS domains from diverse PKSs, dinoflagellate KSs formed a clade placed well within the protist Type I PKS clade between apicomplexa, haptophytes and chlorophytes. These findings indicate that the atypical PKS I structure, i.e., expression as putative monofunctional units, might be a dinoflagellate specific feature. In addition, the sequenced transcripts harbored a previously unknown, apparently dinoflagellate specific conserved N-terminal domain. We discuss the implications of this novel region with regard to the putative monofunctional organization of Type I PKS in dinoflagellates. PMID:23139807

  1. Circannual excystment of resting cysts of Alexandrium spp. from eastern Gulf of Maine populations

    NASA Astrophysics Data System (ADS)

    Matrai, P.; Thompson, B.; Keller, M.

    2005-09-01

    Species of the marine dinoflagellate Alexandrium, present in most of the Gulf of Maine (GOM), Bay of Fundy and Gulf of St. Lawrence as well as in many other areas of the world, are known to cause toxicity to marine organisms and humans alike. Excystment of Alexandrium fundyense from the eastern region of the GOM (Penobscot Bay to Bay of Fundy) was followed through four germination cycles (4 years). An annual, free-running oscillation in germination was observed under constant environmental conditions, indicating control by an endogenous clock for these eastern cysts, as shown earlier for cysts from the western region of the GOM. This circannual endogenous clock had an average period of 11 months. The phase of germination remained constant for cysts from all three stations sampled. Cysts did not germinate, despite favorable growth conditions, in summer-to-fall and this timing was consistent among cysts from all stations. The timing of cyst germination is highly relevant to modeling of Alexandrium sp. bloom initiation and depletion, as there are cyst "seed beds" near shore and offshore in the eastern and western regions of the GOM.

  2. Effect of associated bacteria on the growth and toxicity of Alexandrium catenella.

    PubMed

    Uribe, Paulina; Espejo, Romilio T

    2003-01-01

    Saprophytic bacteria in cultures of the marine dinoflagellate Alexandrium catenella were removed to assess their effect on growth and paralytic shellfish poisoning toxin production of this dinoflagellate. The actual axenic status was demonstrated by the lack of observable bacteria both immediately after treatment and following extended incubation in the absence of antibiotics. Bacteria were measured by counting CFU and also by epifluorescence microscopy and PCR amplification of bacterial 16S-23S spacer ribosomal DNA to detect noncultivable bacteria. Removal of bacteria did not have any effect on the growth of the dinoflagellate except for the inhibition of A. catenella disintegration after reaching the stationary phase. Toxicity was determined in dinoflagellate cell extracts by different methods: high-performance liquid chromatography (HPLC); an electrophysiological test called the Electrotest, which measures the inhibition of saxitoxin-sensitive Na(+) channels expressed in a cell line; and a mouse bioassay, which measures the toxic effect on the whole mammal neuromuscular system. A lower toxicity of the dinoflagellates in axenic culture was observed by these three methods, though the difference was significant only by the mouse bioassay and HPLC methods. Altogether the results indicate that axenic cultures of A. catenella are able to produce toxin, though the total toxicity is probably diminished to about one-fifth of that in nonaxenic cultures.

  3. Effect of Associated Bacteria on the Growth and Toxicity of Alexandrium catenella

    PubMed Central

    Uribe, Paulina; Espejo, Romilio T.

    2003-01-01

    Saprophytic bacteria in cultures of the marine dinoflagellate Alexandrium catenella were removed to assess their effect on growth and paralytic shellfish poisoning toxin production of this dinoflagellate. The actual axenic status was demonstrated by the lack of observable bacteria both immediately after treatment and following extended incubation in the absence of antibiotics. Bacteria were measured by counting CFU and also by epifluorescence microscopy and PCR amplification of bacterial 16S-23S spacer ribosomal DNA to detect noncultivable bacteria. Removal of bacteria did not have any effect on the growth of the dinoflagellate except for the inhibition of A. catenella disintegration after reaching the stationary phase. Toxicity was determined in dinoflagellate cell extracts by different methods: high-performance liquid chromatography (HPLC); an electrophysiological test called the Electrotest, which measures the inhibition of saxitoxin-sensitive Na+ channels expressed in a cell line; and a mouse bioassay, which measures the toxic effect on the whole mammal neuromuscular system. A lower toxicity of the dinoflagellates in axenic culture was observed by these three methods, though the difference was significant only by the mouse bioassay and HPLC methods. Altogether the results indicate that axenic cultures of A. catenella are able to produce toxin, though the total toxicity is probably diminished to about one-fifth of that in nonaxenic cultures. PMID:12514056

  4. Syltodinium listii gen. et spec. nov., a marine ectoparasitic dinoflagellate on eggs of copepods and rotifers

    NASA Astrophysics Data System (ADS)

    Drebes, Gerhard

    1988-09-01

    Syltodinium listii is described as a new marine ectoparasitic dinoflagellate. In culture experiments the species was found feeding on eggs of planktonic copepods and rotifers. The dinospore penetrates the host by a peduncle, and transforms into a trophont by sucking out the egg contents phagotrophically. After detaching from the host, the mature trophont settles down to become a palmelloid multiplication stage. By repeated binary fission, up to 16 or 32 gymnodinoid, colourless dinospores are formed inside a gelatinous envelope. The parasite retains its dinoflagellate (monadoid) nature throughout its whole vegetative life cycle. Even during the trophic and multiplication phase the species remains latently motile. Despite some resemblance to Dissodinium, there are sufficient reasons for the establishment of the new genus Syltodinium.

  5. Dinoflagellate species and organic facies evidence of marine transgression and regression in the atlantic coastal plain

    USGS Publications Warehouse

    Habib, D.; Miller, J.A.

    1989-01-01

    Palynological evidence is used to date and interpret depositional environments of sediments of Campanian, Maestrichtian and early Danian ages cored in three wells from South Carolina and Georgia. The evidence is usefil for distinguishing environments which lithofacies evidence indicates a range from nonmarine to coastal to inner neritic shallow shelf. Numerous dinoflagellate species and an organic facies defined abundant amoprphous debris (amorphous debris facies) distinguish shallow shelf sediments deposited during marine transgression. The nearshore amorphous debris facies of late Campanian age consists of heterogenous assemblages dominated by Palaeohystrichophora infusorioides Deflandre or Hystrichosphaerina varians (May). The farther offshore amorphous debris facies of late early Maestrichtian to late Maestrichtian age consists of heterogenous assemblages dominated by Glaphyrocysta retiintexta (Cookson) and/or Areoligera medusettiformis (Wetzel). The larger number of dinoflagellate species in the offshore facies represents the maximum transgression detected in the investigated interval. A multiple occurrence datum defined by the combination of first appearance, klast appearances and sole occurrence of dinoflagellate species at the base of each interval distinguished by the amorphous debris facies provides the first evidence of marine transgression. Relatively small organic residues consisting of intertinite and few or no palynomorphs define the inertinite facies in nonmarine deltaic and in coastal (lagoonal, tidal flat, interdistributary bary) sediments. Dinocyt{star, open}s are absent in the nonmarine sediments and are represented by few species and few specimens in the coastal inertinite faceis. A third organic facies (vascular tissue facies) is defined by the abundance of land plant tissue. Sporomorph species, including those of the Normapolles pollen group and of pteridophyte spores, comprise a large proportion of the total palynomorph flora in the

  6. Multispecies mass mortality of marine fauna linked to a toxic dinoflagellate bloom

    PubMed Central

    Starr, Michel; Lair, Stéphane; Michaud, Sonia; Scarratt, Michael; Quilliam, Michael; Lefaivre, Denis; Robert, Michel; Wotherspoon, Andrew; Michaud, Robert; Ménard, Nadia; Sauvé, Gilbert; Lessard, Sylvie; Béland, Pierre; Measures, Lena

    2017-01-01

    Following heavy precipitation, we observed an intense algal bloom in the St. Lawrence Estuary (SLE) that coincided with an unusually high mortality of several species of marine fish, birds and mammals, including species designated at risk. The algal species was identified as Alexandrium tamarense and was determined to contain a potent mixture of paralytic shellfish toxins (PST). Significant levels of PST were found in the liver and/or gastrointestinal contents of several carcasses tested as well as in live planktivorous fish, molluscs and plankton samples collected during the bloom. This provided strong evidence for the trophic transfer of PST resulting in mortalities of multiple wildlife species. This conclusion was strengthened by the sequence of mortalities, which followed the drift of the bloom along the coast of the St. Lawrence Estuary. No other cause of mortality was identified in the majority of animals examined at necropsy. Reports of marine fauna presenting signs of neurological dysfunction were also supportive of exposure to these neurotoxins. The event reported here represents the first well-documented case of multispecies mass mortality of marine fish, birds and mammals linked to a PST-producing algal bloom. PMID:28472048

  7. Mixotrophy in the phototrophic dinoflagellate Takayama helix (family Kareniaceae): Predator of diverse toxic and harmful dinoflagellates.

    PubMed

    Jeong, Hae Jin; Ok, Jin Hee; Lim, An Suk; Kwon, Ji Eun; Kim, So Jin; Lee, Sung Yeon

    2016-12-01

    Takayama spp. are phototrophic dinoflagellates belonging to the family Kareniaceae and have caused fish kills in several countries. Understanding their trophic mode and interactions with co-occurring phytoplankton species are critical steps in comprehending their ecological roles in marine ecosystems, bloom dynamics, and dinoflagellate evolution. To investigate the trophic mode and interactions of Takayama spp., the ability of Takayama helix to feed on diverse algal species was examined, and the mechanisms of prey ingestion were determined. Furthermore, growth and ingestion rates of T. helix feeding on the dinoflagellates Alexandrium lusitanicum and Alexandrium tamarense, which are two optimal prey items, were determined as a function of prey concentration. T. helix ingested large dinoflagellates ≥15μm in size, except for the dinoflagellates Karenia mikimotoi, Akashiwo sanguinea, and Prorocentrum micans (i.e., it fed on Alexandrium minutum, A. lusitanicum, A. tamarense, A. pacificum, A. insuetum, Cochlodinium polykrikoides, Coolia canariensis, Coolia malayensis, Gambierdiscus caribaeus, Gymnodinium aureolum, Gymnodinium catenatum, Gymnodinium instriatum, Heterocapsa triquetra, Lingulodinium polyedrum, and Scrippsiella trochoidea). All these edible prey items are dinoflagellates that have diverse eco-physiology such as toxic and non-toxic, single and chain forming, and planktonic and benthic forms. However, T. helix did not feed on small flagellates and dinoflagellates <13μm in size (i.e., the prymnesiophyte Isochrysis galbana; the cryptophytes Teleaulax sp., Storeatula major, and Rhodomonas salina; the raphidophyte Heterosigma akashiwo; the dinoflagellates Heterocapsa rotundata, Amphidinium carterae, Prorocentrum minimum; or the small diatom Skeletonema costatum). T. helix ingested Heterocapsa triquetra by direct engulfment, but sucked materials from the rest of the edible prey species through the intercingular region of the sulcus. With increasing mean prey

  8. Combined Effects of Ocean Acidification and Light or Nitrogen Availabilities on 13C Fractionation in Marine Dinoflagellates

    PubMed Central

    Hoins, Mirja; Eberlein, Tim; Groβmann, Christian H.; Brandenburg, Karen; Reichart, Gert-Jan; Rost, Björn; Sluijs, Appy; Van de Waal, Dedmer B.

    2016-01-01

    Along with increasing oceanic CO2 concentrations, enhanced stratification constrains phytoplankton to shallower upper mixed layers with altered light regimes and nutrient concentrations. Here, we investigate the effects of elevated pCO2 in combination with light or nitrogen-limitation on 13C fractionation (εp) in four dinoflagellate species. We cultured Gonyaulax spinifera and Protoceratium reticulatum in dilute batches under low-light (‘LL’) and high-light (‘HL’) conditions, and grew Alexandrium fundyense and Scrippsiella trochoidea in nitrogen-limited continuous cultures (‘LN’) and nitrogen-replete batches (‘HN’). The observed CO2-dependency of εp remained unaffected by the availability of light for both G. spinifera and P. reticulatum, though at HL εp was consistently lower by about 2.7‰ over the tested CO2 range for P. reticulatum. This may reflect increased uptake of (13C-enriched) bicarbonate fueled by increased ATP production under HL conditions. The observed CO2-dependency of εp disappeared under LN conditions in both A. fundyense and S. trochoidea. The generally higher εp under LN may be associated with lower organic carbon production rates and/or higher ATP:NADPH ratios. CO2-dependent εp under non-limiting conditions has been observed in several dinoflagellate species, showing potential for a new CO2-proxy. Our results however demonstrate that light- and nitrogen-limitation also affect εp, thereby illustrating the need to carefully consider prevailing environmental conditions. PMID:27153107

  9. Combined Effects of Ocean Acidification and Light or Nitrogen Availabilities on 13C Fractionation in Marine Dinoflagellates.

    PubMed

    Hoins, Mirja; Eberlein, Tim; Groβmann, Christian H; Brandenburg, Karen; Reichart, Gert-Jan; Rost, Björn; Sluijs, Appy; Van de Waal, Dedmer B

    2016-01-01

    Along with increasing oceanic CO2 concentrations, enhanced stratification constrains phytoplankton to shallower upper mixed layers with altered light regimes and nutrient concentrations. Here, we investigate the effects of elevated pCO2 in combination with light or nitrogen-limitation on 13C fractionation (εp) in four dinoflagellate species. We cultured Gonyaulax spinifera and Protoceratium reticulatum in dilute batches under low-light ('LL') and high-light ('HL') conditions, and grew Alexandrium fundyense and Scrippsiella trochoidea in nitrogen-limited continuous cultures ('LN') and nitrogen-replete batches ('HN'). The observed CO2-dependency of εp remained unaffected by the availability of light for both G. spinifera and P. reticulatum, though at HL εp was consistently lower by about 2.7‰ over the tested CO2 range for P. reticulatum. This may reflect increased uptake of (13C-enriched) bicarbonate fueled by increased ATP production under HL conditions. The observed CO2-dependency of εp disappeared under LN conditions in both A. fundyense and S. trochoidea. The generally higher εp under LN may be associated with lower organic carbon production rates and/or higher ATP:NADPH ratios. CO2-dependent εp under non-limiting conditions has been observed in several dinoflagellate species, showing potential for a new CO2-proxy. Our results however demonstrate that light- and nitrogen-limitation also affect εp, thereby illustrating the need to carefully consider prevailing environmental conditions.

  10. Holocene dinoflagellate cyst record of climate and marine primary productivity change in the Santa Barbara Basin, southern California.

    NASA Astrophysics Data System (ADS)

    Pospelova, Vera; Mertens, Kenneth N.; Hendy, Ingrid, L.; Pedersen, Thomas F.

    2015-04-01

    High-resolution sedimentary records of dinoflagellate cysts and other marine palynomorphs from the Santa Barbara Basin (Ocean Drilling Program Hole 893A) demonstrate large variability of primary productivity during the Holocene, as the California Current System responded to climate change. Throughout the sequence, dinoflagellate cyst assemblages are characterized by the dominance of cysts produced by heterotrophic dinoflagellates, and particularly by Brigantedinium, accompanied by other upwelling-related taxa such as Echinidinium and cysts of Protoperidinium americanum. During the early Holocene (~12-7 ka), the species richness is relatively low (16 taxa) and genius Brigantedinium reaches the highest relative abundance, thus indicating nutrient-rich and highly productive waters. The middle Holocene (~7-3.5 ka) is characterized by relatively constant cyst concentrations, and dinoflagellate cyst assemblages are indicative of a slight decrease in sea-surface temperature. A noticeable increase and greater range of fluctuations in the cyst concentrations during the late Holocene (~3.5-1 ka) indicate enhanced marine primary productivity and increased climatic variability, most likely related to the intensification of El Niño-like conditions. Keywords: dinoflagellate cysts, Holocene, North Pacific, climate, primary productivity.

  11. Rapidly diverging evolution of an atypical alkaline phosphatase (PhoAaty) in marine phytoplankton: insights from dinoflagellate alkaline phosphatases

    PubMed Central

    Lin, Xin; Wang, Lu; Shi, Xinguo; Lin, Senjie

    2015-01-01

    Alkaline phosphatase (AP) is a key enzyme that enables marine phytoplankton to scavenge phosphorus (P) from dissolved organic phosphorus (DOP) when inorganic phosphate is scarce in the ocean. Yet how the AP gene has evolved in phytoplankton, particularly dinoflagellates, is poorly understood. We sequenced full-length AP genes and corresponding complementary DNA (cDNA) from 15 strains (10 species), representing four classes of the core dinoflagellate lineage, Gymnodiniales, Prorocentrales, Suessiales, and Gonyaulacales. Dinoflagellate AP gene sequences exhibited high variability, containing variable introns, pseudogenes, single nucleotide polymorphisms and consequent variations in amino acid sequence, indicative of gene duplication events and consistent with the “birth-and-death” model of gene evolution. Further sequence comparison showed that dinoflagellate APs likely belong to an atypical type AP (PhoAaty), which shares conserved motifs with counterparts in marine bacteria, cyanobacteria, green algae, haptophytes, and stramenopiles. Phylogenetic analysis suggested that PhoAaty probably originated from an ancestral gene in bacteria and evolved divergently in marine phytoplankton. Because variations in AP amino acid sequences may lead to differential subcellular localization and potentially different metal ion requirements, the multiple types of APs in algae may have resulted from selection for diversifying strategies to utilize DOP in the P variable marine environment. PMID:26379645

  12. Termination of a toxic Alexandrium bloom with hydrogen peroxide.

    PubMed

    Burson, Amanda; Matthijs, Hans C P; de Bruijne, Wilco; Talens, Renee; Hoogenboom, Ron; Gerssen, Arjen; Visser, Petra M; Stomp, Maayke; Steur, Kees; van Scheppingen, Yvonne; Huisman, Jef

    2014-01-01

    The dinoflagellate Alexandrium ostenfeldii is a well-known harmful algal species that can potentially cause paralytic shellfish poisoning (PSP). Usually A. ostenfeldii occurs in low background concentrations only, but in August of 2012 an exceptionally dense bloom of more than 1millioncellsL(-1) occurred in the brackish Ouwerkerkse Kreek in The Netherlands. The A. ostenfeldii bloom produced both saxitoxins and spirolides, and is held responsible for the death of a dog with a high saxitoxin stomach content. The Ouwerkerkse Kreek routinely discharges its water into the adjacent Oosterschelde estuary, and an immediate reduction of the bloom was required to avoid contamination of extensive shellfish grounds. Previously, treatment of infected waters with hydrogen peroxide (H2O2) successfully suppressed cyanobacterial blooms in lakes. Therefore, we adapted this treatment to eradicate the Alexandrium bloom using a three-step approach. First, we investigated the required H2O2 dosage in laboratory experiments with A. ostenfeldii. Second, we tested the method in a small, isolated canal adjacent to the Ouwerkerkse Kreek. Finally, we brought 50mgL(-1) of H2O2 into the entire creek system with a special device, called a water harrow, for optimal dispersal of the added H2O2. Concentrations of both vegetative cells and pellicle cysts declined by 99.8% within 48h, and PSP toxin concentrations in the water were reduced below local regulatory levels of 15μgL(-1). Zooplankton were strongly affected by the H2O2 treatment, but impacts on macroinvertebrates and fish were minimal. A key advantage of this method is that the added H2O2 decays to water and oxygen within a few days, which enables rapid recovery of the system after the treatment. This is the first successful field application of H2O2 to suppress a marine harmful algal bloom, although Alexandrium spp. reoccurred at lower concentrations in the following year. The results show that H2O2 treatment provides an effective emergency

  13. Recording High Resolution 3D Lagrangian Motions In Marine Dinoflagellates using Digital Holographic Microscopic Cinematography

    NASA Astrophysics Data System (ADS)

    Sheng, J.; Malkiel, E.; Katz, J.; Place, A. R.; Belas, R.

    2006-11-01

    Detailed data on swimming behavior and locomotion for dense population of dinoflagellates constitutes a key component to understanding cell migration, cell-cell interactions and predator-prey dynamics, all of which affect algae bloom dynamics. Due to the multi-dimensional nature of flagellated cell motions, spatial-temporal Lagrangian measurements of multiple cells in high concentration are very limited. Here we present detailed data on 3D Lagrangian motions for three marine dinoflagellates: Oxyrrhis marina, Karlodinium veneficum, and Pfiesteria piscicida, using digital holographic microscopic cinematography. The measurements are performed in a 5x5x25mm cuvette with cell densities varying from 50,000 ˜ 90,000 cells/ml. Approximately 200-500 cells are tracked simultaneously for 12s at 60fps in a sample volume of 1x1x5 mm at a spatial resolution of 0.4x0.4x2 μm. We fully resolve the longitudinal flagella (˜200nm) along with the Lagrangian trajectory of each organism. Species dependent swimming behavior are identified and categorized quantitatively by velocities, radii of curvature, and rotations of pitch. Statistics on locomotion, temporal & spatial scales, and diffusion rate show substantial differences between species. The scaling between turning radius and cell dimension can be explained by a distributed stokeslet model for a self-propelled body.

  14. Antialgal and antilarval activities of bioactive compounds extracted from the marine dinoflagellate Amphidinium carterae

    NASA Astrophysics Data System (ADS)

    Kong, Xianyu; Han, Xiurong; Gao, Min; Su, Rongguo; Wang, Ke; Li, Xuzhao; Lu, Wei

    2016-12-01

    With the global ban on the application of organotin-based marine coatings by the International Maritime Organization, the development of environmentally friendly, low-toxic and nontoxic antifouling compounds for marine industries has become an urgent need. Marine microorganisms have been considered as a potential source of natural antifoulants. In this study, the antifouling potential of marine dinoflagellate Amphidinium carterae, the toxic and red-tide microalgae, was investigated. We performed a series of operations to extract the bioactive substances from Amphidinium carterae and tested their antialgal and antilarval activities. The crude extract of Amphidinium carterae showed significant antialgal activity and the EC50 value against Skeletonema costatum was 55.4 μg mL-1. After purification, the isolated bioactive substances (the organic extract C) exhibited much higher antialgal and antilarval activities with EC50 of 12.9 μg mL-1 against Skeletonema costatum and LC50 of 15.1 μg mL-1 against Amphibalanus amphitrite larvae. Subsequently, IR, Q-TOFMS, and GC-MS were utilized for the structural elucidation of the bioactive compounds, and a series of unsaturated and saturated 16- to 22-carbon fatty acids were detected. The data suggested the bioactive compounds isolated from Amphidinium carterae exhibited a significant inhibiting effect against the diatom Skeletonema costatum and Amphibalanus amphitrite larvae, and could be substitutes for persistent, toxic antifouling compounds.

  15. Karmitoxin: An Amine-Containing Polyhydroxy-Polyene Toxin from the Marine Dinoflagellate Karlodinium armiger.

    PubMed

    Rasmussen, Silas Anselm; Binzer, Sofie Bjørnholt; Hoeck, Casper; Meier, Sebastian; de Medeiros, Livia Soman; Andersen, Nikolaj Gedsted; Place, Allen; Nielsen, Kristian Fog; Hansen, Per Juel; Larsen, Thomas Ostenfeld

    2017-04-05

    Marine algae from the genus Karlodinium are known to be involved in fish-killing events worldwide. Here we report for the first time the chemistry and bioactivity of a natural product from the newly described mixotrophic dinoflagellate Karlodinium armiger. Our work describes the isolation and structural characterization of a new polyhydroxy-polyene named karmitoxin. The structure elucidation work was facilitated by use of (13)C enrichment and high-field 2D NMR spectroscopy, where (1)H-(13)C long-range correlations turned out to be very informative. Karmitoxin is structurally related to amphidinols and karlotoxins; however it differs by containing the longest carbon-carbon backbone discovered for this class of compounds, as well as a primary amino group. Karmitoxin showed potent nanomolar cytotoxic activity in an RTgill-W1 cell assay as well as rapid immobilization and eventual mortality of the copepod Acartia tonsa, a natural grazer of K. armiger.

  16. Characterization of a planctomycete associated with the marine dinoflagellate Prorocentrum micans Her.

    PubMed

    Lage, Olga Maria

    2013-10-01

    During attempts to obtain axenic the cultures of the marine dinoflagellate Prorocentrum micans, a microorganism with peculiar features was isolated. This contaminant resisted the physical and antibiotic treatments performed. Subsequent characterization showed that in agar plates this microorganism develops round granular pink colonies. It is a salt-dependent mesophilic and chemoheterotrophic Gram negative bacterium with a rod to ovoid shape, presenting cell motility in young cultures. Cell division occurs by cell budding. The bacterium forms aggregates with a variable number of cells that are stacked by fibrillar glycoproteic material, the holdfast. A tuft of numerous short glycoproteic fimbriae emerges from one pole of the cell. Preeminent granular inclusions, also of glycoproteic nature, are present in the cytoplasm. Several structural and compositional aspects of the cell envelope and cytoplasm are provided. The production of fibrillar material and the existence of the polar appendages suggest that this microorganism should occur in aquatic environments bound to substrates and could be associated with P. micans in natural marine habitats. Based on the characteristics displayed, this microorganism is a member of the Planctomycetes, order Planctomycetales.

  17. DESCRIPTION OF TYRANNODINIUM GEN. NOV., A FRESHWATER DINOFLAGELLATE CLOSELY RELATED TO THE MARINE PFIESTERIA-LIKE SPECIES(1).

    PubMed

    Calado, António J; Craveiro, Sandra C; Daugbjerg, Niels; Moestrup, Øjvind

    2009-10-01

    On the basis of morphological (light and electron microscopy) as well molecular data, we show that the widely distributed freshwater dinoflagellate presently known as Peridiniopsis berolinensis is a member of the family Pfiesteriaceae, an otherwise marine and estuarine family of dinoflagellates. P. berolinensis is a close relative of the marine species, which it resembles in morphology, mode of swimming, food-uptake mechanism, and partial LSU rRNA sequences. It differs from all known genera of the family in plate tabulation. P. berolinensis is only distantly related to the type species of Peridiniopsis, P. borgei, and is therefore transferred to the new genus Tyrannodinium as T. berolinense comb. nov. T. berolinense is a very common freshwater flagellate that feeds vigorously on other protists and is able to consume injured metazoans much larger than itself. Production of toxins has not been reported. © 2009 Phycological Society of America.

  18. The chemical mimicking of the mechanical stimulation, photoinhibition, and recovery from photoinhibition of bioluminescence in the marine dinoflagellate, Gonyaulax polyedra

    SciTech Connect

    Hamman, J.P.; Seliger, H.H.

    1982-06-01

    Mechanically stimulable bioluminescence and photoinhibition of sensitivity to mechanical stimulation in the marine dinoflagellate Gonyaulax polyedra can be mimicked by a number of cations, proportional to the logarithm of their external concentrations. The data are consistent with mechanical stimulability as a membrane depolarization resulting in an increase in H/sup +/ ions at bioluminescence sites and with photoinhibition as a hyperpolarization of the cell membrane.

  19. The chemical mimicking of the mechanical stimulation, photoinhibition, and recovery from photoinhibition of bioluminescence in the marine dinoflagellate, Gonyaulax polyedra

    SciTech Connect

    Hamman, J.P.; Seliger, H.H.

    1982-01-01

    Mechanically stimulable bioluminescence and photoinhibition of sensitivity to mechanical stimulation in the marine dinoflagellate Gonyaulax polyedra can be mimicked by a number of cations, proportional to the logarithm of their external concentrations. The data are consistent with mechanical stimulability as a membrane depolarization resulting in an increase in H/sup +/ ions at bioluminescence sites and with photoinhibition as a hyperpolarization of the cell membrane.

  20. Characterization of tamulamides A and B, polyethers isolated from the marine dinoflagellate Karenia brevis.

    PubMed

    Truxal, Laura T; Bourdelais, Andrea J; Jacocks, Henry; Abraham, William M; Baden, Daniel G

    2010-04-23

    Florida red tides occur as the result of blooms of the marine dinoflagellate Karenia brevis. K. brevis is known to produce several families of fused polyether ladder compounds. The most notable compounds are the brevetoxins, potent neurotoxins that activate mammalian sodium channels. Additional fused polyether ladder compounds produced by K. brevis include brevenal, brevisin, and hemibrevetoxin B, all with varying affinities for the same binding site on voltage-sensitive sodium channels. The structure elucidation and biological activity of two additional fused polyether ladder compounds containing seven fused ether rings will be described in this paper. Tamulamide A (MW = 638.30) and tamulamide B (MW = 624.29) were isolated from K. brevis cultures, and their structures elucidated using a combination of NMR spectroscopy and high-resolution mass spectrometry. Tamulamides A and B were both found to compete with tritiated brevetoxin-3 ([(3)H]-PbTx-3) for its binding site on rat brain synaptosomes. However, unlike the brevetoxins, tamulamides A and B showed no toxicity to fish at doses up to 200 nM and did not cause significant bronchoconstriction in sheep pulmonary assays.

  1. Light-Promoted Rhodopsin Expression and Starvation Survival in the Marine Dinoflagellate Oxyrrhis marina

    PubMed Central

    Guo, Zhiling; Zhang, Huan; Lin, Senjie

    2014-01-01

    The discovery of microbial rhodopsins in marine proteobacteria changed the dogma that photosynthesis is the only pathway to use the solar energy for biological utilization in the marine environment. Although homologs of these rhodopsins have been identified in dinoflagellates, the diversity of the encoding genes and their physiological roles remain unexplored. As an initial step toward addressing the gap, we conducted high-throughput transcriptome sequencing on Oxyrrhis marina to retrieve rhodopsin transcripts, rapid amplification of cDNA ends to isolate full-length cDNAs of dominant representatives, and quantitative reverse-transcription PCR to investigate their expression under varying conditions. Our phylogenetic analyses showed that O. marina contained both the proton-pumping type (PR) and sensory type (SR) rhodopsins, and the transcriptome data showed that the PR type dominated over the SR type. We compared rhodopsin gene expression for cultures kept under light: dark cycle and continuous darkness in a time course of 24 days without feeding. Although both types of rhodopsin were expressed under the two conditions, the expression levels of PR were much higher than SR, consistent with the transcriptomic data. Furthermore, relative to cultures kept in the dark, rhodopsin expression levels and cell survival rate were both higher in cultures grown in the light. This is the first report of light-dependent promotion of starvation survival and concomitant promotion of PR expression in a eukaryote. While direct evidence needs to come from functional test on rhodopsins in vitro or gene knockout/knockdown experiments, our results suggest that the proton-pumping rhodopsin might be responsible for the light-enhanced survival of O. marina, as previously demonstrated in bacteria. PMID:25506945

  2. Alexandrium minutum growth controlled by phosphorus . An applied model

    NASA Astrophysics Data System (ADS)

    Chapelle, A.; Labry, C.; Sourisseau, M.; Lebreton, C.; Youenou, A.; Crassous, M. P.

    2010-11-01

    Toxic algae are a worldwide problem threatening aquaculture, public health and tourism. Alexandrium, a toxic dinoflagellate proliferates in Northwest France estuaries (i.e. the Penzé estuary) causing Paralytic Shellfish Poisoning events. Vegetative growth, and in particular the role of nutrient uptake and growth rate, are crucial parameters to understand toxic blooms. With the goal of modelling in situ Alexandrium blooms related to environmental parameters, we first try to calibrate a zero-dimensional box model of Alexandrium growth. This work focuses on phosphorus nutrition. Our objective is to calibrate Alexandrium minutum as well as Heterocapsa triquetra (a non-toxic dinoflagellate) growth under different rates of phosphorus supply, other factors being optimal and constant. Laboratory experiments are used to calibrate two growth models and three uptake models for each species. Models are then used to simulate monospecific batch and semi-continuous experiments as well as competition between the two algae (mixed cultures). Results show that the Droop growth model together with linear uptake versus quota can represent most of our observations, although a power law uptake function can more accurately simulate our phosphorus uptake data. We note that such models have limitations in non steady-state situations and cell quotas can depend on a variety of factors, so care must be taken in extrapolating these results beyond the specific conditions studied.

  3. Insights into a dinoflagellate genome through expressed sequence tag analysis

    PubMed Central

    Hackett, Jeremiah D; Scheetz, Todd E; Yoon, Hwan Su; Soares, Marcelo B; Bonaldo, Maria F; Casavant, Thomas L; Bhattacharya, Debashish

    2005-01-01

    Background Dinoflagellates are important marine primary producers and grazers and cause toxic "red tides". These taxa are characterized by many unique features such as immense genomes, the absence of nucleosomes, and photosynthetic organelles (plastids) that have been gained and lost multiple times. We generated EST sequences from non-normalized and normalized cDNA libraries from a culture of the toxic species Alexandrium tamarense to elucidate dinoflagellate evolution. Previous analyses of these data have clarified plastid origin and here we study the gene content, annotate the ESTs, and analyze the genes that are putatively involved in DNA packaging. Results Approximately 20% of the 6,723 unique (11,171 total 3'-reads) ESTs data could be annotated using Blast searches against GenBank. Several putative dinoflagellate-specific mRNAs were identified, including one novel plastid protein. Dinoflagellate genes, similar to other eukaryotes, have a high GC-content that is reflected in the amino acid codon usage. Highly represented transcripts include histone-like (HLP) and luciferin binding proteins and several genes occur in families that encode nearly identical proteins. We also identified rare transcripts encoding a predicted protein highly similar to histone H2A.X. We speculate this histone may be retained for its role in DNA double-strand break repair. Conclusion This is the most extensive collection to date of ESTs from a toxic dinoflagellate. These data will be instrumental to future research to understand the unique and complex cell biology of these organisms and for potentially identifying the genes involved in toxin production. PMID:15921535

  4. Brevisulcatic acids, marine ladder-frame polyethers from the red tide dinoflagellate Karenia brevisulcata in New Zealand.

    PubMed

    Suzuki, Rina; Irie, Raku; Harntaweesup, Yanit; Tachibana, Kazuo; Holland, Patrick T; Harwood, D Tim; Shi, Feng; Beuzenberg, Veronica; Itoh, Yoshiyuki; Pascal, Steven; Edwards, Patrick J B; Satake, Masayuki

    2014-11-21

    The isolation and structural determination of new marine ladder-frame polyethers, brevisulcatic acids-1 (1) and -4 (2) are reported. Brevisulcatic acids were isolated from the dinoflagellate Karenia brevisulcata, which was identified as the causative species of a major red tide event in New Zealand in 1998. The ether ring composition and a β-hydroxy, γ-methylene valeric acid side chain of 1 and 2 are common, but 2 has a γ-lactone as the 5-membered A-ring while 1 is the seco acid analogue. Compound 2 has structural and bioactivity similarities to brevetoxin A.

  5. Effect of different solvents extracts and mode of action of Loktanella spp. Gb03 on toxic dinoflagellate

    NASA Astrophysics Data System (ADS)

    Hameed, Anmar; Usup, Gires; Ahmad, Asmat

    2016-11-01

    This study was aimed to evaluate the algicidal activity of Loktanella sp. Gb-03 bacterial extracts against toxic dinoflagellate, using various polar and non-polar solvents. For this purpose, six different solvent extracts were prepared (i.e. methanol, ethyl acetate, hexane, chloroform, acetonitrile and water). Ratio of 1:100 (v:v) (extract to dinoflagellate culture) of each extract was used for preliminary algicidal activity screening against toxic dinoflagellate Coolia malaynesis. Dinoflagellate cells at the stationary phase (1.0 × 103 cells/ mL) were treated with 1% (v/v) of each extract by using 24-well microplate. The plates were then incubated for 24 hours at dinoflagellate culture condition (under a light intensity of 140 µmol m-2s-1 and 12:12 hours light:dark photoperiod). The result of algicidal activity screening showed that all 6 extracts from Loktanella sp. Gb-03 had different ranges of algicidal activity against the toxic dinoflagellates. Ethyl acetate extract showed the highest activity against C. malaynesis and also other harmful dinoflagellate (Alexandrium sp. Alexandrium leei, Alexandrium affine, Alexandrium tamiyavanichi, Alexandrium tamarense, Gambierdiscus belizeanus, and Ostreopsis). This study was the first to explore the algicidal activity of Loktanella sp. Gb-03 extracts against toxic dinoflagellate with ethyl acetate as the best solvent to extract algicidal active compounds.

  6. LIPID CLASS DISTRIBUTION OF HIGHLY UNSATURATED LONG-CHAIN FATTY ACIDS IN MARINE DINOFLAGELLATES

    EPA Science Inventory

    Very-long-chain highly unsaturated C28 fatty acids (HUFAs), found in a number of dinoflagellates, are released as methyl esters from phospholipids obtained by fractionation of lipid extracts. By contrast, the highly unsaturated C18 fatty acid octadecapentaenoic acid (18:5n-3), co...

  7. LIPID CLASS DISTRIBUTION OF HIGHLY UNSATURATED LONG-CHAIN FATTY ACIDS IN MARINE DINOFLAGELLATES

    EPA Science Inventory

    Very-long-chain highly unsaturated C28 fatty acids (HUFAs), found in a number of dinoflagellates, are released as methyl esters from phospholipids obtained by fractionation of lipid extracts. By contrast, the highly unsaturated C18 fatty acid octadecapentaenoic acid (18:5n-3), co...

  8. Remarkable sequence similarity between the dinoflagellate-infecting marine girus and the terrestrial pathogen African swine fever virus

    PubMed Central

    Ogata, Hiroyuki; Toyoda, Kensuke; Tomaru, Yuji; Nakayama, Natsuko; Shirai, Yoko; Claverie, Jean-Michel; Nagasaki, Keizo

    2009-01-01

    Heterocapsa circularisquama DNA virus (HcDNAV; previously designated as HcV) is a giant virus (girus) with a ~356-kbp double-stranded DNA (dsDNA) genome. HcDNAV lytically infects the bivalve-killing marine dinoflagellate H. circularisquama, and currently represents the sole DNA virus isolated from dinoflagellates, one of the most abundant protists in marine ecosystems. Its morphological features, genome type, and host range previously suggested that HcDNAV might be a member of the family Phycodnaviridae of Nucleo-Cytoplasmic Large DNA Viruses (NCLDVs), though no supporting sequence data was available. NCLDVs currently include two families found in aquatic environments (Phycodnaviridae, Mimiviridae), one mostly infecting terrestrial animals (Poxviridae), another isolated from fish, amphibians and insects (Iridoviridae), and the last one (Asfarviridae) exclusively represented by the animal pathogen African swine fever virus (ASFV), the agent of a fatal hemorrhagic disease in domestic swine. In this study, we determined the complete sequence of the type B DNA polymerase (PolB) gene of HcDNAV. The viral PolB was transcribed at least from 6 h post inoculation (hpi), suggesting its crucial function for viral replication. Most unexpectedly, the HcDNAV PolB sequence was found to be closely related to the PolB sequence of ASFV. In addition, the amino acid sequence of HcDNAV PolB showed a rare amino acid substitution within a motif containing highly conserved motif: YSDTDS was found in HcDNAV PolB instead of YGDTDS in most dsDNA viruses. Together with the previous observation of ASFV-like sequences in the Sorcerer II Global Ocean Sampling metagenomic datasets, our results further reinforce the ideas that the terrestrial ASFV has its evolutionary origin in marine environments. PMID:19860921

  9. Aspergillus Sydowii Marine Fungal Bloom in Australian Coastal Waters, Its Metabolites and Potential Impact on Symbiodinium Dinoflagellates

    PubMed Central

    Hayashi, Aiko; Crombie, Andrew; Lacey, Ernest; Richardson, Anthony J.; Vuong, Daniel; Piggott, Andrew M.; Hallegraeff, Gustaaf

    2016-01-01

    Dust has been widely recognised as an important source of nutrients in the marine environment and as a vector for transporting pathogenic microorganisms. Disturbingly, in the wake of a dust storm event along the eastern Australian coast line in 2009, the Continuous Plankton Recorder collected masses of fungal spores and mycelia (~150,000 spores/m3) forming a floating raft that covered a coastal area equivalent to 25 times the surface of England. Cultured A. sydowii strains exhibited varying metabolite profiles, but all produced sydonic acid, a chemotaxonomic marker for A. sydowii. The Australian marine fungal strains share major metabolites and display comparable metabolic diversity to Australian terrestrial strains and to strains pathogenic to Caribbean coral. Secondary colonisation of the rafts by other fungi, including strains of Cladosporium, Penicillium and other Aspergillus species with distinct secondary metabolite profiles, was also encountered. Our bioassays revealed that the dust-derived marine fungal extracts and known A. sydowii metabolites such as sydowic acid, sydowinol and sydowinin A adversely affect photophysiological performance (Fv/Fm) of the coral reef dinoflagellate endosymbiont Symbiodinium. Different Symbiodinium clades exhibited varying sensitivities, mimicking sensitivity to coral bleaching phenomena. The detection of such large amounts of A. sydowii following this dust storm event has potential implications for the health of coral environments such as the Great Barrier Reef. PMID:26999164

  10. Aspergillus Sydowii Marine Fungal Bloom in Australian Coastal Waters, Its Metabolites and Potential Impact on Symbiodinium Dinoflagellates.

    PubMed

    Hayashi, Aiko; Crombie, Andrew; Lacey, Ernest; Richardson, Anthony J; Vuong, Daniel; Piggott, Andrew M; Hallegraeff, Gustaaf

    2016-03-16

    Dust has been widely recognised as an important source of nutrients in the marine environment and as a vector for transporting pathogenic microorganisms. Disturbingly, in the wake of a dust storm event along the eastern Australian coast line in 2009, the Continuous Plankton Recorder collected masses of fungal spores and mycelia (~150,000 spores/m³) forming a floating raft that covered a coastal area equivalent to 25 times the surface of England. Cultured A. sydowii strains exhibited varying metabolite profiles, but all produced sydonic acid, a chemotaxonomic marker for A. sydowii. The Australian marine fungal strains share major metabolites and display comparable metabolic diversity to Australian terrestrial strains and to strains pathogenic to Caribbean coral. Secondary colonisation of the rafts by other fungi, including strains of Cladosporium, Penicillium and other Aspergillus species with distinct secondary metabolite profiles, was also encountered. Our bioassays revealed that the dust-derived marine fungal extracts and known A. sydowii metabolites such as sydowic acid, sydowinol and sydowinin A adversely affect photophysiological performance (Fv/Fm) of the coral reef dinoflagellate endosymbiont Symbiodinium. Different Symbiodinium clades exhibited varying sensitivities, mimicking sensitivity to coral bleaching phenomena. The detection of such large amounts of A. sydowii following this dust storm event has potential implications for the health of coral environments such as the Great Barrier Reef.

  11. Molecular detection and species identification of Alexandrium (Dinophyceae) causing harmful algal blooms along the Chilean coastline

    PubMed Central

    Jedlicki, Ana; Fernández, Gonzalo; Astorga, Marcela; Oyarzún, Pablo; Toro, Jorge E.; Navarro, Jorge M.; Martínez, Víctor

    2012-01-01

    Background and aims On the basis of morphological evidence, the species involved in South American Pacific coast harmful algal blooms (HABs) has been traditionally recognized as Alexandrium catenella (Dinophyceae). However, these observations have not been confirmed using evidence based on genomic sequence variability. Our principal objective was to accurately determine the species of Alexandrium involved in local HABs in order to implement a real-time polymerase chain reaction (PCR) assay for its rapid and easy detection on filter-feeding shellfish, such as mussels. Methodology For species-specific determination, the intergenic spacer 1 (ITS1), 5.8S subunit, ITS2 and the hypervariable genomic regions D1–D5 of the large ribosomal subunit of local strains were sequenced and compared with two data sets of other Alexandrium sequences. Species-specific primers were used to amplify signature sequences within the genomic DNA of the studied species by conventional and real-time PCR. Principal results Phylogenetic analysis determined that the Chilean strain falls into Group I of the tamarensis complex. Our results support the allocation of the Chilean Alexandrium species as a toxic Alexandrium tamarense rather than A. catenella, as currently defined. Once local species were determined to belong to Group I of the tamarensis complex, a highly sensitive and accurate real-time PCR procedure was developed to detect dinoflagellate presence in Mytilus spp. (Bivalvia) samples after being fed (challenged) in vitro with the Chilean Alexandrium strain. The results show that real-time PCR is useful to detect Alexandrium intake in filter-feeding molluscs. Conclusions It has been shown that the classification of local Alexandrium using morphological evidence is not very accurate. Molecular methods enabled the HAB dinoflagellate species of the Chilean coast to be assigned as A. tamarense rather than A. catenella. Real-time PCR analysis based on A. tamarense primers allowed the

  12. Theoretical Study of Dinoflagellate Bioluminescence.

    PubMed

    Wang, Ming-Yu; Liu, Ya-Jun

    2017-03-01

    Dinoflagellates are the most ubiquitous luminescent protists in the marine environment and have drawn much attention for their crucial roles in marine ecosystems. Dinoflagellate bioluminescence has been applied in underwater target detection. The luminescent system of dinoflagellates is a typical luciferin-luciferase one. However, the excited-state oxyluciferin is not the light emitter of dinoflagellate bioluminescence as in most luciferin-luciferase bioluminescent organisms. The oxyluciferin of bioluminescent dinoflagellates is not fluorescent, whereas its luciferin emits bright fluorescence with similar wavelength of the bioluminescence. What is the light emitter of dinoflagellate bioluminescence and what is the chemical process of the light emission like? These questions have not been answered by the limited experimental evidence so far. In this study, for the first time, the density functional calculation is employed to investigate the geometries and properties of luciferin and oxyluciferin of bioluminescent dinoflagellate. The calculated results agree with the experimental observations and indicate the luciferin or its analogue, rather than oxyluciferin, is the bioluminophore of dinoflagellate bioluminescence. A rough mechanism involving energy transfer is proposed for dinoflagellate bioluminescence.

  13. Molecular topology of the photosynthetic light-harvesting pigment complex, peridinin-chlorophyll a-protein, from marine dinoflagellates.

    PubMed

    Song, P S; Koka, P; Prézelin, B B; Haxo, F T

    1976-10-05

    The photosynthetic light-harvesting complex, peridinin-chlorophyll a-protein, was isolated from several marine dinoflagellates including Glenodinium sp. by Sephadex and ion-exchange chromatography. The carotenoid (peridinin)-chlorophyll a ratio in the complex is estimated to be 4:1. The fluorescence excitation spectrum of the complex indicates that energy absorbed by the carotenoid is transferred to the chlorophyll a molecule with 100% efficiency. Fluorescence lifetime measurements indicate that the energy transfer is much faster than fluorescence emission from chlorophyll a. The four peridinin molecules within the complex appear to form two allowed exciton bands which split the main absorption band of the carotenoid into two circular dichronic bands (with negative ellipticity band at 538 nm and positive band at 463 nm in the case of peridinin-chlorophyl a-protein complex from Glenodinium sp.). The fluorescence polarization of chlorophyll a in the complex at 200 K is about 0.1 in both circular dichroic excitation bands of the carotenoid chromophore. From these circular dichroic and fluorescence polarization data, a possible molecular arrangement of the four peridinin and chlorophyll molecules has been deduced for the complex. The structure of the complex deduced is also consistent with the magnitude of the exciton spliting (ca. greater than 3000 cm-1) at the intermolecular distance in the dimer pair of peridinin (ca. 12 A). This structural feature accounts for the efficient light-harvesting process of dinoflagellates as the exciton interaction lengthens the lifetime of peridinin (radiative) and the complex topology increases the energy transfer probability. The complex is, therefore, a useful molecular model for elucidating the mechanism and efficiency of solar energy conversion in vivo as well as in vitro.

  14. Profile of Citrobacter freundii ST2, a Multi-acyl-homoserine Lactone Producer Associated with Marine Dinoflagellates.

    PubMed

    Huang, Xinqi; Gao, Yan; Ma, Zhiping; Lin, Guanghui; Cai, Zhonghua; Zhou, Jin

    2017-01-01

    Marine algae provide a unique niche termed the phycosphere for microorganism inhabitation. The phycosphere environment is an important niche for mutualistic and competitive interactions between algae and bacteria. Quorum sensing (QS) serves as a gene regulatory system in the microbial biosphere that allows bacteria to sense the population density with signaling molecules, such as acyl-homoserine lactone (AHL), and adapt their physiological activities to their surroundings. Understanding the QS system is important to elucidate the interactions between algal-associated microbial communities in the phycosphere condition. In this study, we isolated an epidermal bacterium (ST2) from the marine dinoflagellate Scrippsiella trochoidea and evaluated its AHL production profile. Strain ST2 was classified as a member of the genus Citrobacter closely related to Citrobacter freundii by 16S rRNA gene sequence analysis. Thin-layer chromatography revealed that C. freundii ST2 secreted three active AHL compounds into the culture supernatant. Specific compounds, such as N-butyryl-L-homoserine lactone (C4-AHL), N-octanoyl-DL-homoserine lactone (C8-AHL), and N-decanoyl-DL-homoserine lactone (C10-AHL), were identified by high-resolution tandem mass spectrometry. Carbon metabolic profiling with Biolog EcoPlate™ indicated that C. freundii ST2 was widely used as a carbon source and preferred carbohydrates, amino acids, and carboxylic acids as carbon substrates. Our results demonstrated that C. freundii ST2 is a multi-AHL producer that participates in the phycosphere carbon cycle.

  15. Blooms of the toxic dinoflagellate, Alexandrium fundyense in the Casco Bay region of the western Gulf of Maine: Advection from offshore source populations and interactions with the Kennebec River plume

    NASA Astrophysics Data System (ADS)

    Keafer, Bruce A.; Churchill, James H.; Anderson, Donald M.

    2005-09-01

    The Casco Bay region, an embayment adjacent to the Kennebec River, has been suggested as a source region for Alexandrium fundyense bloom development in the western Gulf of Maine (GOM). In this study, shipboard observations were acquired within Casco Bay and the nearby coastal waters during the spring of 1998 and 2000. In the early bloom season, low A. fundyense abundances (<100 cells l -1) were observed within the bay, sometimes isolated from A. fundyense populations observed in adjacent coastal waters. When high abundances of A. fundyense (>500 cells l -1) were observed within Casco Bay, they were contiguous with coastal populations observed within the Kennebec/Penobscot river plume and within offshore waters of the western segment of the Maine Coastal Current (WMCC). This general distributional pattern occurred during both study years. Wind directly affected the pathway of the incoming coastal populations. Downwelling-favorable winds generally facilitated bloom formation (and outbreaks of shellfish toxicity) within Casco Bay by enhancing the connection with offshore populations via alongshore and onshore transport of cells from the upstream coastal waters. In contrast, persistent upwelling-favorable winds were associated with low A. fundyense cell abundances (and shellfish toxicity) in Casco Bay by slowing the advance of the coastal population and shifting it offshore with the Kennebec plume front. The striking difference between late season (June) population abundances of the two study years can be explained by a combination of the wind pre-history and interannual differences in large-scale (Gulf-wide) circulation patterns, as evidenced by higher salinities in the coastal waters in 2000 vs. 1998. Advection of A. fundyense cells into Casco Bay and retention, not local growth within the Bay, are likely the dominant processes that typically result in the accumulation of high populations and shellfish toxicity in the Bay. A variety of mechanisms (e.g., circulation

  16. Marine dinoflagellate cysts as indicators of eutrophication and industrial pollution: a discussion.

    PubMed

    Dale, B

    2001-01-17

    The results from an investigation of dinoflagellate cysts as indicators of eutrophication in Tokyo Bay, Japan, by Matsuoka [Sci Total Environ 231 (1999) 17] are discussed with reference to other pertinent literature not discussed in the original article. Both the Japanese study and previous work from Norwegian fjords show that pollution (including cultural eutrophication) may produce changes in the phytoplankton reflected by a shift from more autotrophic--to more heterotrophic--dominance of cyst assemblages. However, this is a proportional change that seems likely to result from reduced autotrophic production rather than the increased heterotrophic production suggested by Matsuoka. This is not unequivocal evidence of eutrophication, since Tokyo Bay is impacted also by heavy industrial pollution, the possible effects of which cannot be distinguished, and the quantitative method used for estimating changes in cyst productivity is flawed.

  17. Simultaneous Effect of Temperature and Irradiance on Growth and Okadaic Acid Production from the Marine Dinoflagellate Prorocentrum belizeanum

    PubMed Central

    López-Rosales, Lorenzo; Gallardo-Rodríguez, Juan Jose; Sánchez-Mirón, Asterio; Cerón-García, María del Carmen; Belarbi, El Hassan; García-Camacho, Francisco; Molina-Grima, Emilio

    2014-01-01

    Benthic marine dioflagellate microalgae belonging to the genus Prorocentrum are a major source of okadaic acid (OA), OA analogues and polyketides. However, dinoflagellates produce these valuable toxins and bioactives in tiny quantities, and they grow slowly compared to other commercially used microalgae. This hinders evaluation in possible large-scale applications. The careful selection of producer species is therefore crucial for success in a hypothetical scale-up of culture, as are appropriate environmental conditions for optimal growth. A clone of the marine toxic dinoflagellate P. belizeanum was studied in vitro to evaluate its capacities to grow and produce OA as an indicator of general polyketide toxin production under the simultaneous influence of temperature (T) and irradiance (I0). Three temperatures and four irradiance levels were tested (18, 25 and 28 °C; 20, 40, 80 and 120 µE·m−2·s−1), and the response variables measured were concentration of cells, maximum photochemical yield of photosystem II (PSII), pigments and OA. Experiments were conducted in T-flasks, since their parallelepipedal geometry proved ideal to ensure optically thin cultures, which are essential for reliable modeling of growth-irradiance curves. The net maximum specific growth rate (µm) was 0.204 day−1 at 25 °C and 40 µE·m−2·s−1. Photo-inhibition was observed at I0 > 40 μEm−2s−1, leading to culture death at 120 µE·m−2·s−1 and 28 °C. Cells at I0 ≥ 80 µE·m−2·s−1 were photoinhibited irrespective of the temperature assayed. A mechanistic model for µm-I0 curves and another empirical model for relating µm-T satisfactorily interpreted the growth kinetics obtained. ANOVA for responses of PSII maximum photochemical yield and pigment profile has demonstrated that P. belizeanum is extremely light sensitive. The pool of photoprotective pigments (diadinoxanthin and dinoxanthin) and peridinin was not able to regulate the excessive light-absorption at high I0

  18. Speciation and symbiotic dinoflagellates.

    PubMed

    Blank, R J; Trench, R K

    1985-08-16

    Morphometric analyses based on three-dimensional reconstruction of the nuclei of four different strains of the symbiotic dinoflagellate Symbiodinium microadriaticum, the algae that inhabit corals, giant clams, and other marine invertebrates, revealed marked differences in chromosome numbers and chromosome volumes. The differences are not consistent with different ploidy states within the same species, but can most easily be interpreted as indicating different species.

  19. Circadian rhythms of cell cycle processes in the marine dinoflagellate Gonyaulax polyedra.

    PubMed

    Vicker, M G; Becker, J; Gebauer, G; Schill, W; Rensing, L

    1988-01-01

    The circadian expression of several growth properties was examined in the dinoflagellate Gonyaulax polyedra under constant light and light-dark conditions. The cell concentration, mean cell volume and rate of DNA synthesis varied in a circadian rhythm, with the primary maximum of cytokinesis and DNA synthesis at about dawn. High rates of cell mortality also occurred during phases related to events of cytokinesis, and may be important in the expression of the other rhythms and in "red tide" generation. Flow-cytofluorimetric analysis indicated that cells of a population contain either a relatively high or a low amount of DNA, but the proportion of cells in each of these classes and the absolute amount of DNA in each cell varied rhythmically depending on the circadian time. This DNA-distribution pattern was unlike the usual G1-S-G2+M pattern typical of eukaryotic cell populations. Isotopically labelled thymidine, used as a marker of DNA synthesis, was continuously incorporated; but the incorporation rate fluctuated in a regular pattern that repeated each circadian period.

  20. Peridinin from the Marine Symbiotic Dinoflagellate, Symbiodinium sp., Regulates Eosinophilia in Mice

    PubMed Central

    Onodera, Ken-ichi; Konishi, Yuko; Taguchi, Takahiro; Kiyoto, Sumio; Tominaga, Akira

    2014-01-01

    Peridinin and fucoxanthin, which are natural carotenoids isolated from a symbiotic dinoflagellate, Symbiodinium sp., and a brown alga, Petalonia fascia, respectively, were compared for inhibitory effects on delayed-type hypersensitivity in mice. The number of eosinophils at the site of inflammation and in peripheral blood was compared for the administration of peridinin and fucoxanthin applied by painting and intraperitoneally. Peridinin, but not the structurally-related fucoxanthin, significantly suppressed the number of eosinophils in both the ear lobe and peripheral blood. Furthermore, peridinin applied topically, but not administered intraperitoneally, suppressed the level of eotaxin in the ears of sensitized mice. Fucoxanthin weakly suppressed the concentration of eotaxin in ears only by intraperitoneal administration. Although both carotenoids inhibited the migration of eosinophils toward eotaxin, the inhibitory effect of peridinin was higher than that of fucoxanthin. Peridinin may be a potential agent for suppressing allergic inflammatory responses, such as atopic dermatitis, in which eosinophils play a major role in the increase of inflammation. PMID:24681630

  1. BMAA in shellfish from two Portuguese transitional water bodies suggests the marine dinoflagellate Gymnodinium catenatum as a potential BMAA source.

    PubMed

    Lage, Sandra; Costa, Pedro Reis; Moita, Teresa; Eriksson, Johan; Rasmussen, Ulla; Rydberg, Sara Jonasson

    2014-07-01

    The neurotoxin β-N-methylamino-l-alanine (BMAA) and its putative role in multiple neurodegenerative diseases have been intensely studied since 2005 when the toxin was discovered to be produced by worldwide-distributed cyanobacterial species inhabiting terrestrial, marine, brackish, and freshwater ecosystems. Recently, BMAA production was also associated with one eukaryotic group, namely, diatoms, raising questions about its production by other phytoplanktonic groups. To test for BMAA bioavailability in ecosystems where abundant phytoplanktonic blooms regularly occur, samples of filter-feeding shellfish were collected in two Portuguese transitional water bodies. BMAA content in cockles (Cerastoderma edule) collected weekly between September and November 2009 from Ria de Aveiro and at least once a month from May to November from Ria Formosa, fluctuated from 0.079±0.055 to 0.354±0.066μg/g DW and from below the limit of detection to 0.434±0.110μg/g DW, respectively. Simultaneously to BMAA occurrence in cockles, paralytic shellfish toxins were detected in shellfish as a result of Gymnodinium catenatum blooms indicating a possible link between this marine dinoflagellate and BMAA production. Moreover, considerable high BMAA levels, 0.457±0.186μg/g DW, were then determined in a laboratory grown culture of G. catenatum. This work reveals for the first time the presence of BMAA in shellfish from Atlantic transitional water bodies and consubstantiate evidences of G. catenatum as one of the main sources of BMAA in these ecosystems.

  2. The newly described heterotrophic dinoflagellate Gyrodinium moestrupii, an effective protistan grazer of toxic dinoflagellates.

    PubMed

    Yoo, Yeong Du; Yoon, Eun Young; Jeong, Hae Jin; Lee, Kyung Ha; Hwang, Yeong Jong; Seong, Kyeong Ah; Kim, Jae Seong; Park, Jae Yeon

    2013-01-01

    Few protistan grazers feed on toxic dinoflagellates, and low grazing pressure on toxic dinoflagellates allows these dinoflagellates to form red-tide patches. We explored the feeding ecology of the newly described heterotrophic dinoflagellate Gyrodinium moestrupii when it fed on toxic strains of Alexandrium minutum, Alexandrium tamarense, and Karenia brevis and on nontoxic strains of A. tamarense, Prorocentrum minimum, and Scrippsiella trochoidea. Specific growth rates of G. moestrupii feeding on each of these dinoflagellates either increased continuously or became saturated with increasing mean prey concentration. The maximum specific growth rate of G. moestrupii feeding on toxic A. minutum (1.60/d) was higher than that when feeding on nontoxic S. trochoidea (1.50/d) or P. minimum (1.07/d). In addition, the maximum growth rate of G. moestrupii feeding on the toxic strain of A. tamarense (0.68/d) was similar to that when feeding on the nontoxic strain of A. tamarense (0.71/d). Furthermore, the maximum ingestion rate of G. moestrupii on A. minutum (2.6 ng C/grazer/d) was comparable to that of S. trochoidea (3.0 ng C/grazer/d). Additionally, the maximum ingestion rate of G. moestrupii on the toxic strain of A. tamarense (2.1 ng C/grazer/d) was higher than that when feeding on the nontoxic strain of A. tamarense (1.3 ng C/grazer/d). Thus, feeding by G. moestrupii is not suppressed by toxic dinoflagellate prey, suggesting that it is an effective protistan grazer of toxic dinoflagellates. © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists.

  3. The Parasitic Dinoflagellates Blastodinium spp. Inhabiting the Gut of Marine, Planktonic Copepods: Morphology, Ecology, and Unrecognized Species Diversity

    PubMed Central

    Skovgaard, Alf; Karpov, Sergey A.; Guillou, Laure

    2012-01-01

    Blastodinium is a genus of dinoflagellates that live as parasites in the gut of marine, planktonic copepods in the World’s oceans and coastal waters. The taxonomy, phylogeny, and physiology of the genus have only been explored to a limited degree and, based on recent investigations, we hypothesize that the morphological and genetic diversity within this genus may be considerably larger than presently recognized. To address these issues, we obtained 18S rDNA and ITS gene sequences for Blastodinium specimens of different geographical origins, including representatives of the type species. This genetic information was in some cases complemented with new morphological, ultrastructural, physiological, and ecological data. Because most current knowledge about Blastodinium and its effects on copepod hosts stem from publications more than half a century old, we here summarize and discuss the existing knowledge in relation to the new data generated. Most Blastodinium species possess functional chloroplasts, but the parasitic stage, the trophocyte, has etioplasts and probably a limited photosynthetic activity. Sporocytes and swarmer cells have well-developed plastids and plausibly acquire part of their organic carbon needs through photosynthesis. A few species are nearly colorless with no functional chloroplasts. The photosynthetic species are almost exclusively found in warm, oligotrophic waters, indicating a life strategy that may benefit from copepods as microhabitats for acquiring nutrients in a nutrient-limited environment. As reported in the literature, monophyly of the genus is moderately supported, but the three main groups proposed by Chatton in 1920 are consistent with molecular data. However, we demonstrate an important genetic diversity within the genus and provide evidences for new groups and the presence of cryptic species. Finally, we discuss the current knowledge on the occurrence of Blastodinium spp. and their potential impact on natural copepod

  4. Structural Confirmation of a Unique Carotenoid Lactoside, P457, in Symbiodinium sp. Strain nbrc 104787 Isolated from a Sea Anemone and its Distribution in Dinoflagellates and Various Marine Organisms.

    PubMed

    Wakahama, Takahiro; Laza-Martínez, Aitor; Bin Haji Mohd Taha, Ahmad Iskandar; Okuyama, Hidetoshi; Yoshida, Kiyohito; Kogame, Kazuhiro; Awai, Koichiro; Kawachi, Masanobu; Maoka, Takashi; Takaichi, Shinichi

    2012-12-01

    The molecular structure of the carotenoid lactoside P457, (3S,5R,6R,3'S,5'R,6'S)-13'-cis-5,6-epoxy-3',5'-dihydroxy-3-(β-d-galactosyl-(1→4)-β-d-glucosyl)oxy-6',7'-didehydro-5,6,7,8,5',6'-hexahydro-β,β-caroten-20-al, was confirmed by spectroscopic methods using Symbiodinium sp. strain NBRC 104787 cells isolated from a sea anemone. Among various algae, cyanobacteria, land plants, and marine invertebrates, the distribution of this unique diglycosyl carotenoid was restricted to free-living peridinin-containing dinoflagellates and marine invertebrates that harbor peridinin-containing zooxanthellae. Neoxanthin appeared to be a common precursor for biosynthesis of peridinin and P457, although neoxanthin was not found in peridinin-containing dinoflagellates. Fucoxanthin-containing dinoflagellates did not possess peridinin or P457; green dinoflagellates, which contain chlorophyll a and b, did not contain peridinin, fucoxanthin, or P457; and no unicellular algae containing both peridinin and P457, other than peridinin-containing dinoflagellates, have been observed. Therefore, the biosynthetic pathways for peridinin and P457 may have been coestablished during the evolution of dinoflagellates after the host heterotrophic eukaryotic microorganism formed a symbiotic association with red alga that does not contain peridinin or P457.

  5. Evolutionary Acquisition and Loss of Saxitoxin Biosynthesis in Dinoflagellates: the Second “Core” Gene, sxtG

    PubMed Central

    Orr, Russell J. S.; Stüken, Anke; Murray, Shauna A.

    2013-01-01

    Saxitoxin and its derivatives are potent neurotoxins produced by several cyanobacteria and dinoflagellate species. SxtA is the initial enzyme in the biosynthesis of saxitoxin. The dinoflagellate full mRNA and partial genomic sequences have previously been characterized, and it appears that sxtA originated in dinoflagellates through a horizontal gene transfer from a bacterium. So far, little is known about the remaining genes involved in this pathway in dinoflagellates. Here we characterize sxtG, an amidinotransferase enzyme gene that putatively encodes the second step in saxitoxin biosynthesis. In this study, the entire sxtG transcripts from Alexandrium fundyense CCMP1719 and Alexandrium minutum CCMP113 were amplified and sequenced. The transcripts contained typical dinoflagellate spliced leader sequences and eukaryotic poly(A) tails. In addition, partial sxtG transcript fragments were amplified from four additional Alexandrium species and Gymnodinium catenatum. The phylogenetic inference of dinoflagellate sxtG, congruent with sxtA, revealed a bacterial origin. However, it is not known if sxtG was acquired independently of sxtA. Amplification and sequencing of the corresponding genomic sxtG region revealed noncanonical introns. These introns show a high interspecies and low intraspecies variance, suggesting multiple independent acquisitions and losses. Unlike sxtA, sxtG was also amplified from Alexandrium species not known to synthesize saxitoxin. However, amplification was not observed for 22 non-saxitoxin-producing dinoflagellate species other than those of the genus Alexandrium or G. catenatum. This result strengthens our hypothesis that saxitoxin synthesis has been secondarily lost in conjunction with sxtA for some descendant species. PMID:23335767

  6. Suspended Alexandrium spp. hypnozygote cysts in the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Kirn, Sarah L.; Townsend, David W.; Pettigrew, Neal R.

    2005-09-01

    The life cycle of dinoflagellates of the genus Alexandrium includes sexual reproduction followed by the formation of a dormant hypnozygote cyst, which serves as a resting stage. Negatively buoyant cysts purportedly fall to the benthos where they undergo a mandatory period of quiescence. Previous reports of cysts in the surficial sediments of the Gulf of Maine, where Alexandrium blooms are well documented, show a broad distribution of cysts, with highest concentrations generally in sediments below 100 m depth. We report here an exploration of cysts suspended in the water column, where they would be better positioned to inoculate springtime Alexandrium populations. During cruises in February, April, and June of 2000, water samples were collected at depths just off the bottom (within 5 m), at the top of the bottom nepheloid layer, and near the surface (1 m) and examined for cyst concentrations. Suspended cysts were found throughout the Gulf of Maine and westernmost Bay of Fundy. Planktonic cyst densities were generally greater in near-bottom and top of the bottom nepheloid layer samples than in near-surface water samples; densities were of the order of 10 2 cysts m -3 in surface waters, and 10 2-10 3 cysts m -3 at near-bottom depths. Temporally, they were most abundant in February and least abundant in April. Reports by earlier workers of cysts in the underlying sediments were on the order of 10 3 cysts cm -3. We present calculations that demonstrate the likelihood of cyst resuspension from bottom sediments forced by swell and tidal currents, and propose that such resuspended cysts are important in inoculating the seasonal bloom. We estimate that suspended cysts may contribute significantly to the annual vegetative cell population in the Gulf of Maine.

  7. Transcriptomic profiling of Alexandrium fundyense during physical interaction with or exposure to chemical signals from the parasite Amoebophrya.

    PubMed

    Lu, Yameng; Wohlrab, Sylke; Groth, Marco; Glöckner, Gernot; Guillou, Laure; John, Uwe

    2016-03-01

    Toxic microalgae have their own pathogens, and understanding the way in which these microalgae respond to antagonistic attacks may provide information about their capacity to persist during harmful algal bloom events. Here, we compared the effects of the physical presence of the parasite Amoebophrya sp. and exposure to waterborne cues from cultures infected with this parasite, on gene expression by the toxic dinoflagellates, Alexandrium fundyense. Compared with control samples, a total of 14,882 Alexandrium genes were differentially expressed over the whole-parasite infection cycle at three different time points (0, 6 and 96 h). RNA sequencing analyses indicated that exposure to the parasite and parasitic waterborne cues produced significant changes in the expression levels of Alexandrium genes associated with specific metabolic pathways. The observed upregulation of genes associated with glycolysis, the tricarboxylic acid cycle, fatty acid β-oxidation, oxidative phosphorylation and photosynthesis suggests that parasite infection increases the energy demand of the host. The observed upregulation of genes correlated with signal transduction indicates that Alexandrium could be sensitized by parasite attacks. This response might prime the defence of the host, as indicated by the increased expression of several genes associated with defence and stress. Our findings provide a molecular overview of the response of a dinoflagellate to parasite infection.

  8. Factors regulating excystment of Alexandrium in Puget Sound, WA, USA

    PubMed Central

    Moore, Stephanie K.; Bill, Brian D.; Hay, Levi R.; Emenegger, Jennifer; Eldred, Kiara C.; Greengrove, Cheryl L.; Masura, Julie E.; Anderson, Donald M.

    2015-01-01

    Factors regulating excystment of a toxic dinoflagellate in the genus Alexandrium were investigated in cysts from Puget Sound, Washington State, USA. Experiments were carried out in the laboratory using cysts collected from benthic seedbeds to determine if excystment is controlled by internal or environmental factors. The results suggest that the timing of germination is not tightly controlled by an endogenous clock, though there is a suggestion of a cyclical pattern. This was explored using cysts that had been stored under cold (4 °C), anoxic conditions in the dark and then incubated for 6 weeks at constant favorable environmental conditions. Excystment occurred during all months of the year, with variable excystment success ranging from 31–90%. When cysts were isolated directly from freshly collected sediments every month and incubated at the in situ bottom water temperature, a seasonal pattern in excystment was observed that was independent of temperature. This pattern may be consistent with secondary dormancy, an externally modulated pattern that prevents excystment during periods that are not favorable for sustained vegetative growth. However, observation over more annual cycles is required and the duration of the mandatory dormancy period of these cysts must be determined before the seasonality of germination can be fully characterized in Alexandrium from Puget Sound. Both temperature and light were found to be important environmental factors regulating excystment, with the highest rates of excystment observed for the warmest temperature treatment (20 °C) and in the light. PMID:26109923

  9. The death mechanism of the harmful algal bloom species Alexandrium tamarense induced by algicidal bacterium Deinococcus sp. Y35

    PubMed Central

    Li, Yi; Zhu, Hong; Lei, Xueqian; Zhang, Huajun; Cai, Guanjing; Chen, Zhangran; Fu, Lijun; Xu, Hong; Zheng, Tianling

    2015-01-01

    Harmful algal blooms (HABs) cause a variety of deleterious effects on aquatic ecosystems, especially the toxic dinoflagellate Alexandrium tamarense, which poses a serious threat to marine economic and human health based on releasing paralytic shellfish poison into the environment. The algicidal bacterium Deinococcus sp. Y35 which can induce growth inhibition on A. tamarense was used to investigate the functional mechanism. The growth status, reactive oxygen species (ROS) content, photosynthetic system and the nuclear system of algal cells were determined under algicidal activity. A culture of strain Y35 not only induced overproduction of ROS in algal cells within only 0.5 h of treatment, also decrease the total protein content as well as the response of the antioxidant enzyme. Meanwhile, lipid peroxidation was induced and cell membrane integrity was lost. Photosynthetic pigments including chlorophyll a and carotenoid decreased along with the photosynthetic efficiency being significantly inhibited. At the same time, photosynthesis-related gene expression showed down-regulation. More than, the destruction of cell nuclear structure and inhibition of proliferating cell nuclear antigen (PCNA) related gene expression were confirmed. The potential functional mechanism of the algicidal bacterium on A. tamarense was investigated and provided a novel viewpoint which could be used in HABs control. PMID:26441921

  10. The death mechanism of the harmful algal bloom species Alexandrium tamarense induced by algicidal bacterium Deinococcus sp. Y35.

    PubMed

    Li, Yi; Zhu, Hong; Lei, Xueqian; Zhang, Huajun; Cai, Guanjing; Chen, Zhangran; Fu, Lijun; Xu, Hong; Zheng, Tianling

    2015-01-01

    Harmful algal blooms (HABs) cause a variety of deleterious effects on aquatic ecosystems, especially the toxic dinoflagellate Alexandrium tamarense, which poses a serious threat to marine economic and human health based on releasing paralytic shellfish poison into the environment. The algicidal bacterium Deinococcus sp. Y35 which can induce growth inhibition on A. tamarense was used to investigate the functional mechanism. The growth status, reactive oxygen species (ROS) content, photosynthetic system and the nuclear system of algal cells were determined under algicidal activity. A culture of strain Y35 not only induced overproduction of ROS in algal cells within only 0.5 h of treatment, also decrease the total protein content as well as the response of the antioxidant enzyme. Meanwhile, lipid peroxidation was induced and cell membrane integrity was lost. Photosynthetic pigments including chlorophyll a and carotenoid decreased along with the photosynthetic efficiency being significantly inhibited. At the same time, photosynthesis-related gene expression showed down-regulation. More than, the destruction of cell nuclear structure and inhibition of proliferating cell nuclear antigen (PCNA) related gene expression were confirmed. The potential functional mechanism of the algicidal bacterium on A. tamarense was investigated and provided a novel viewpoint which could be used in HABs control.

  11. When Naked Became Armored: An Eight-Gene Phylogeny Reveals Monophyletic Origin of Theca in Dinoflagellates

    PubMed Central

    Orr, Russell J. S.; Murray, Shauna A.; Stüken, Anke; Rhodes, Lesley; Jakobsen, Kjetill S.

    2012-01-01

    The dinoflagellates are a diverse lineage of microbial eukaryotes. Dinoflagellate monophyly and their position within the group Alveolata are well established. However, phylogenetic relationships between dinoflagellate orders remain unresolved. To date, only a limited number of dinoflagellate studies have used a broad taxon sample with more than two concatenated markers. This lack of resolution makes it difficult to determine the evolution of major phenotypic characters such as morphological features or toxin production e.g. saxitoxin. Here we present an improved dinoflagellate phylogeny, based on eight genes, with the broadest taxon sampling to date. Fifty-five sequences for eight phylogenetic markers from nuclear and mitochondrial regions were amplified from 13 species, four orders, and concatenated phylogenetic inferences were conducted with orthologous sequences. Phylogenetic resolution is increased with addition of support for the deepest branches, though can be improved yet further. We show for the first time that the characteristic dinoflagellate thecal plates, cellulosic material that is present within the sub-cuticular alveoli, appears to have had a single origin. In addition, the monophyly of most dinoflagellate orders is confirmed: the Dinophysiales, the Gonyaulacales, the Prorocentrales, the Suessiales, and the Syndiniales. Our improved phylogeny, along with results of PCR to detect the sxtA gene in various lineages, allows us to suggest that this gene was probably acquired separately in Gymnodinium and the common ancestor of Alexandrium and Pyrodinium and subsequently lost in some descendent species of Alexandrium. PMID:23185516

  12. Exposure to the Paralytic Shellfish Toxin Producer Alexandrium catenella Increases the Susceptibility of the Oyster Crassostrea gigas to Pathogenic Vibrios

    PubMed Central

    Abi-Khalil, Celina; Lopez-Joven, Carmen; Abadie, Eric; Savar, Veronique; Amzil, Zouher; Laabir, Mohamed; Rolland, Jean-Luc

    2016-01-01

    The multifactorial etiology of massive Crassostrea gigas summer mortalities results from complex interactions between oysters, opportunistic pathogens and environmental factors. In a field survey conducted in 2014 in the Mediterranean Thau Lagoon (France), we evidenced that the development of the toxic dinoflagellate Alexandrium catenella, which produces paralytic shellfish toxins (PSTs), was concomitant with the accumulation of PSTs in oyster flesh and the occurrence of C. gigas mortalities. In order to investigate the possible role of toxic algae in this complex disease, we experimentally infected C. gigas oyster juveniles with Vibrio tasmaniensis strain LGP32, a strain associated with oyster summer mortalities, after oysters were exposed to Alexandrium catenella. Exposure of oysters to A. catenella significantly increased the susceptibility of oysters to V. tasmaniensis LGP32. On the contrary, exposure to the non-toxic dinoflagellate Alexandrium tamarense or to the haptophyte Tisochrysis lutea used as a foraging alga did not increase susceptibility to V. tasmaniensis LGP32. This study shows for the first time that A. catenella increases the susceptibility of Crassostrea gigas to pathogenic vibrios. Therefore, in addition to complex environmental factors explaining the mass mortalities of bivalve mollusks, feeding on neurotoxic dinoflagellates should now be considered as an environmental factor that potentially increases the severity of oyster mortality events. PMID:26784228

  13. RNA Sequencing Revealed Numerous Polyketide Synthase Genes in the Harmful Dinoflagellate Karenia mikimotoi

    PubMed Central

    Kimura, Kei; Okuda, Shujiro; Nakayama, Kei; Shikata, Tomoyuki; Takahashi, Fumio; Yamaguchi, Haruo; Skamoto, Setsuko; Yamaguchi, Mineo; Tomaru, Yuji

    2015-01-01

    The dinoflagellate Karenia mikimotoi forms blooms in the coastal waters of temperate regions and occasionally causes massive fish and invertebrate mortality. This study aimed to elucidate the toxic effect of K. mikimotoi on marine organisms by using the genomics approach; RNA-sequence libraries were constructed, and data were analyzed to identify toxin-related genes. Next-generation sequencing produced 153,406 transcript contigs from the axenic culture of K. mikimotoi. BLASTX analysis against all assembled contigs revealed that 208 contigs were polyketide synthase (PKS) sequences. Thus, K. mikimotoi was thought to have several genes encoding PKS metabolites and to likely produce toxin-like polyketide molecules. Of all the sequences, approximately 30 encoded eight PKS genes, which were remarkably similar to those of Karenia brevis. Our phylogenetic analyses showed that these genes belonged to a new group of PKS type-I genes. Phylogenetic and active domain analyses showed that the amino acid sequence of four among eight Karenia PKS genes was not similar to any of the reported PKS genes. These PKS genes might possibly be associated with the synthesis of polyketide toxins produced by Karenia species. Further, a homology search revealed 10 contigs that were similar to a toxin gene responsible for the synthesis of saxitoxin (sxtA) in the toxic dinoflagellate Alexandrium fundyense. These contigs encoded A1–A3 domains of sxtA genes. Thus, this study identified some transcripts in K. mikimotoi that might be associated with several putative toxin-related genes. The findings of this study might help understand the mechanism of toxicity of K. mikimotoi and other dinoflagellates. PMID:26561394

  14. Nutrient conditions during Alexandrium fundyense blooms in the western Gulf of Maine, USA

    NASA Astrophysics Data System (ADS)

    Love, Rebecca C.; Loder, Theodore C.; Keafer, Bruce A.

    2005-09-01

    Inorganic nutrients and organic nitrogen were measured in April-June of 1998 and 2000 near Casco Bay, Maine and the adjacent coastal waters as part of the Ecology and Oceanography of Harmful Algal Blooms—Gulf of Maine (ECOHAB-GOM) program. The samples were collected during development of toxic Alexandrium fundyense blooms [ Keafer, B.A., Churchill, J.H., Anderson, D.M., 2005. Blooms of the toxic dinoflagellate, Alexandrium fundyense in the Casco Bay region of the western Gulf of Maine: advection from offshore source populations and interactions with the Kennebec River plume. Deep Sea Research II, this issue [ doi:10.1016/j.dsr2.2005.06.017

  15. The use of flow cytometry for species identification and life-cycle studies in dinoflagellates

    NASA Astrophysics Data System (ADS)

    Figueroa, Rosa Isabel; Garcés, E.; Bravo, I.

    2010-02-01

    The difficulties encountered in attempts to differentiate between dinoflagellate species of the genera Alexandrium and Karlodinium using morphological characteristics are well-known. For this reason, species of these genera were analyzed by flow cytometry to determine whether haploid DNA content served as a valid criterion for species identification. The DNA content of species often confused with each other due to their overlapping size and geographical occurrence, such as Alexandrium ostenfeldii and the complexes Alexandriumcatenella, Alexandrium tamarense, Alexandrium minutum and Alexandrium tamutum, and Karlodinium veneficum and Karlodinium armiger were analyzed. These species differed greatly in DNA content, which provided a means of distinguishing among them. The only cases of DNA overlap involved A. ostenfeldii with Alexandrium peruvianum, and A. catenella with A. tamarense, two groups not yet clearly established either morphologically or genetically. Variability in intraspecies DNA content was observed only in the species K. veneficum. Significant differences between the two A. tamarense strains analyzed were not detected, and the haploid DNA content (63 pg cell -1) was very different from the one reported previously for this species (103.5 pg cell -1), suggesting cryptic speciation within this group. Flow-cytometric analysis of field samples identified K. veneficum as the causative species of a bloom, suggesting this method as a tool to readily identify species responsible for natural blooms. Additionally, after clonal cultures had been established, cytometric analyses corroborated the variability in the haploid DNA content of this species.

  16. Marine downscaling of a future climate scenario in the North Sea and possible effects on dinoflagellate harmful algal blooms.

    PubMed

    Friocourt, Y F; Skogen, M; Stolte, W; Albretsen, J

    2012-01-01

    Two hydrodynamic and ecological models were used to investigate the effects of climate change-according to the IPCC A1b emission scenario - on the primary productivity of the North Sea and on harmful algal blooms. Both models were forced with atmospheric fields from a regional downscaling of General Circulation Models to compare two sets of 20-year simulations representative of present climate (1984-2004) conditions and of the 2040s. Both models indicated a general warming of the North Sea by up to 0.8°C and a slight freshening by the 2040s. The models suggested that the eastern North Sea would be subjected to more temperature and salinity changes than the western part. In addition, the ecological modules of the models indicated that the warming up of the sea would result in a slightly earlier spring bloom. The one model that also computes the distribution of four different phytoplankton groups suggests an increase in the abundance of dinoflagellates, whereas the abundance of diatoms, flagellates and Phaeocystis sp. remains comparable to current levels, or decrease. Assuming that Dinophysis spp. would experience a similar increase in abundance as the modelled group of dinoflagellates, it is hypothesised that blooms of Dinophysis spp. may occur more frequently in the North Sea by 2040. However, implications for shellfish toxicity remain unclear.

  17. Dinoflagellates associated with freshwater sponges from the ancient lake baikal.

    PubMed

    Annenkova, Natalia V; Lavrov, Dennis V; Belikov, Sergey I

    2011-04-01

    Dinoflagellates are a diverse group of protists that are common in both marine and freshwater environments. While the biology of marine dinoflagellates has been the focus of several recent studies, their freshwater relatives remain little-investigated. In the present study we explore the diversity of dinoflagellates in Lake Baikal by identifying and analyzing dinoflagellate sequences for 18S rDNA and ITS-2 from total DNA extracted from three species of endemic Baikalian sponges (Baikalospongia intermedia,Baikalospongia rectaand Lubomirskia incrustans). Phylogenetic analyses of these sequences revealed extensive dinoflagellate diversity in Lake Baikal. We found two groups of sequences clustering within the order Suessiales, known for its symbiotic relationships with various invertebrates. Thus they may be regarded as potential symbionts of Baikalian sponges. In addition,Gyrodinium helveticum, representatives from the genus Gymnodinium, dinoflagellates close to the family Pfiesteriaceae, and a few dinoflagellates without definite affiliation were detected. No pronounced difference in the distribution of dinoflagellates among the studied sponges was found, except for the absence of the Piscinoodinium-like dinoflagellates inL. incrustans. To the best of our knowledge, this is the first study of the diversity of dinoflagellates in freshwater sponges, the first systematic investigation of dinoflagellate molecular diversity in Lake Baikal and the first finding of members of the order Suessiales as symbionts of freshwater invertebrates.

  18. Zooplankton Community Grazing Impact on a Toxic Bloom of Alexandrium fundyense in the Nauset Marsh System, Cape Cod, Massachusetts, USA

    PubMed Central

    Petitpas, Christian M.; Turner, Jefferson T.; Keafer, Bruce A.; McGillicuddy, Dennis J.; Anderson, Donald M.

    2016-01-01

    Embayments and salt ponds along the coast of Massachusetts can host localized blooms of the toxic dinoflagellate Alexandrium fundyense. One such system, exhibiting a long history of toxicity and annual closures of shellfish beds, is the Nauset Marsh System (NMS) on Cape Cod. In order measure net growth rates of natural A. fundyense populations in the NMS during spring 2012, incubation experiments were conducted on seawater samples from two salt ponds within the NMS (Salt Pond and Mill Pond). Seawater samples containing natural populations of grazers and A. fundyense were incubated at ambient temperatures. Concentrations of A. fundyense after incubations were compared to initial abundances to determine net increases from population growth, or decreases presumed to be primarily due to grazing losses. Abundances of both microzooplankton (ciliates, rotifers, copepod nauplii and heterotrophic dinoflagellates) and mesozooplankton (copepodites and adult copepods, marine cladocerans, and meroplankton) grazers were also determined. This study documented net growth rates that were highly variable throughout the bloom, calculated from weekly bloom cell counts from the start of sampling to bloom peak in both ponds (Mill Pond range = 0.12 – 0.46 d−1; Salt Pond range = −0.02 – 0.44 d−1). Microzooplankton grazers that were observed with ingested A. fundyense cells included polychaete larvae, rotifers, tintinnids, and heterotrophic dinoflagellates of the genera Polykrikos and Gymnodinium. Significant A. fundyense net growth was observed in two incubation experiments, and only a single experiment exhibited significant population losses. For the majority of experiments, due to high variability in data, net changes in A. fundyense abundance were not significant after the 24-hr incubations. However, experimental net growth rates through bloom peak were not statistically distinguishable from estimated long-term average net growth rates of natural populations in each pond

  19. Zooplankton Community Grazing Impact on a Toxic Bloom of Alexandrium fundyense in the Nauset Marsh System, Cape Cod, Massachusetts, USA.

    PubMed

    Petitpas, Christian M; Turner, Jefferson T; Keafer, Bruce A; McGillicuddy, Dennis J; Anderson, Donald M

    2015-07-01

    Embayments and salt ponds along the coast of Massachusetts can host localized blooms of the toxic dinoflagellate Alexandrium fundyense. One such system, exhibiting a long history of toxicity and annual closures of shellfish beds, is the Nauset Marsh System (NMS) on Cape Cod. In order measure net growth rates of natural A. fundyense populations in the NMS during spring 2012, incubation experiments were conducted on seawater samples from two salt ponds within the NMS (Salt Pond and Mill Pond). Seawater samples containing natural populations of grazers and A. fundyense were incubated at ambient temperatures. Concentrations of A. fundyense after incubations were compared to initial abundances to determine net increases from population growth, or decreases presumed to be primarily due to grazing losses. Abundances of both microzooplankton (ciliates, rotifers, copepod nauplii and heterotrophic dinoflagellates) and mesozooplankton (copepodites and adult copepods, marine cladocerans, and meroplankton) grazers were also determined. This study documented net growth rates that were highly variable throughout the bloom, calculated from weekly bloom cell counts from the start of sampling to bloom peak in both ponds (Mill Pond range = 0.12 - 0.46 d(-1); Salt Pond range = -0.02 - 0.44 d(-1)). Microzooplankton grazers that were observed with ingested A. fundyense cells included polychaete larvae, rotifers, tintinnids, and heterotrophic dinoflagellates of the genera Polykrikos and Gymnodinium. Significant A. fundyense net growth was observed in two incubation experiments, and only a single experiment exhibited significant population losses. For the majority of experiments, due to high variability in data, net changes in A. fundyense abundance were not significant after the 24-hr incubations. However, experimental net growth rates through bloom peak were not statistically distinguishable from estimated long-term average net growth rates of natural populations in each pond (Mill Pond

  20. An Alexandrium Spp. Cyst Record from Sequim Bay, Washington State, USA, and its Relation to Past Climate Variability(1).

    PubMed

    Feifel, Kirsten M; Moore, Stephanie K; Horner, Rita A

    2012-06-01

    Since the 1970s, Puget Sound, Washington State, USA, has experienced an increase in detections of paralytic shellfish toxins (PSTs) in shellfish due to blooms of the harmful dinoflagellate Alexandrium. Natural patterns of climate variability, such as the Pacific Decadal Oscillation (PDO), and changes in local environmental factors, such as sea surface temperature (SST) and air temperature, have been linked to the observed increase in PSTs. However, the lack of observations of PSTs in shellfish prior to the 1950s has inhibited statistical assessments of longer-term trends in climate and environmental conditions on Alexandrium blooms. After a bloom, Alexandrium cells can enter a dormant cyst stage, which settles on the seafloor and then becomes entrained into the sedimentary record. In this study, we created a record of Alexandrium spp. cysts from a sediment core obtained from Sequim Bay, Puget Sound. Cyst abundances ranged from 0 to 400 cysts · cm(-3) and were detected down-core to a depth of 100 cm, indicating that Alexandrium has been present in Sequim Bay since at least the late 1800s. The cyst record allowed us to statistically examine relationships with available environmental parameters over the past century. Local air temperature and sea surface temperature were positively and significantly correlated with cyst abundances from the late 1800s to 2005; no significant relationship was found between PDO and cyst abundances. This finding suggests that local environmental variations more strongly influence Alexandrium population dynamics in Puget Sound when compared to large-scale changes. © 2012 Phycological Society of America.

  1. Evolution and Distribution of Saxitoxin Biosynthesis in Dinoflagellates

    PubMed Central

    Orr, Russell J. S.; Stüken, Anke; Murray, Shauna A.; Jakobsen, Kjetill S.

    2013-01-01

    Numerous species of marine dinoflagellates synthesize the potent environmental neurotoxic alkaloid, saxitoxin, the agent of the human illness, paralytic shellfish poisoning. In addition, certain freshwater species of cyanobacteria also synthesize the same toxic compound, with the biosynthetic pathway and genes responsible being recently reported. Three theories have been postulated to explain the origin of saxitoxin in dinoflagellates: The production of saxitoxin by co-cultured bacteria rather than the dinoflagellates themselves, convergent evolution within both dinoflagellates and bacteria and horizontal gene transfer between dinoflagellates and bacteria. The discovery of cyanobacterial saxitoxin homologs in dinoflagellates has enabled us for the first time to evaluate these theories. Here, we review the distribution of saxitoxin within the dinoflagellates and our knowledge of its genetic basis to determine the likely evolutionary origins of this potent neurotoxin. PMID:23966031

  2. Rubisco in marine symbiotic dinoflagellates: form II enzymes in eukaryotic oxygenic phototrophs encoded by a nuclear multigene family.

    PubMed Central

    Rowan, R; Whitney, S M; Fowler, A; Yellowlees, D

    1996-01-01

    Genes encoding ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) were cloned from dinoflagellate symbionts (Symbiodinium spp) of the giant clam Tridacna gigas and characterized. Strikingly, Symbiodinium Rubisco is completely different from other eukaryotic (form I) Rubiscos: it is a form II enzyme that is approximately 65% identical to Rubisco from Rhodospirillum rubrum (Rubisco forms I and II are approximately 25 to 30% identical); it is nuclear encoded by a multigene family; and the predominantly expressed Rubisco is encoded as a precursor polyprotein. One clone appears to contain a predominantly expressed Rubisco locus (rbcA), as determined by RNA gel blot analysis of Symbiodinium RNA and sequencing of purified Rubisco protein. Another contains an enigmatic locus (rbcG) that exhibits an unprecedented pattern of amino acid replacement but does not appear to be a pseudogene. The expression of rbcG has not been analyzed; it was detected only in the minor of two taxa of Symbiodinium that occur together in T. gigas. This study confirms and describes a previously unrecognized branch of Rubisco's evolution: a eukaryotic form II enzyme that participates in oxygenic photosynthesis and is encoded by a diverse, nuclear multigene family. PMID:8721755

  3. Structural analysis and cellular localization of polyunsaturated C₂₇ hydrocarbons in the marine dinoflagellate, Pyrocystis lunula (Dinophyceae).

    PubMed

    Dahmen, Jeremy L; Leblond, Jeffrey D

    2013-03-01

    A neutral lipid fraction obtained from two strains of the permanently sheathed dinoflagellate, Pyrocystis lunula, was found to contain three polyunsaturated C₂₇ hydrocarbons as abundant lipid components. A combination of mass spectrometry techniques was used to identify these compounds as n-heptacosa-3,6,9,12,15,18-hexaene (C₂₇:₆), approx. 0.7 ng/sheathed cell), n-heptacosa-3,6,9,12,15,18,21-heptaene (C₂₇:₇), approx. 2 ng/sheathed cell), and n-heptacosa-3,6,9,12,15,18,21,24-octaene (C₂₇:₈), approx. 2 ng/sheathed cell). Polyunsaturated C₂₁, C₂₃, and C₂₅ hydrocarbons were also found at lesser amounts of approximately 0.2-0.5 ng/sheathed cell. Fluorescent microscopy revealed Nile red staining in both the vegetative cell and structures within the outer sheath surrounding the cell. These hydrocarbons were not present in two other species of Pyrocystis, P. fusiformis and P. noctiluca. Although their function(s) is not known, previous studies have shown and hypothesized that similar hydrocarbons function in carbon storage, buoyancy regulation, or signaling. Copyright © 2012 Elsevier GmbH. All rights reserved.

  4. Genomic Insights into Processes Driving the Infection of Alexandrium tamarense by the Parasitoid Amoebophrya sp.

    PubMed Central

    Wohlrab, Sylke; Glöckner, Gernot; Guillou, Laure; John, Uwe

    2014-01-01

    The regulatory circuits during infection of dinoflagellates by their parasites are largely unknown on the molecular level. Here we provide molecular insights into these infection dynamics. Alexandrium tamarense is one of the most prominent harmful algal bloom dinoflagellates. Its pathogen, the dinoflagellate parasitoid Amoebophrya sp., has been observed to infect and control the blooms of this species. We generated a data set of transcripts from three time points (0, 6, and 96 h) during the infection of this parasite-host system. Assembly of all transcript data from the parasitoid (>900,000 reads/313 Mbp with 454/Roche next-generation sequencing [NGS]) yielded 14,455 contigs, to which we mapped the raw transcript reads of each time point of the infection cycle. We show that particular surface lectins are expressed at the beginning of the infection cycle which likely mediate the attachment to the host cell. In a later phase, signal transduction-related genes together with transmembrane transport and cytoskeleton proteins point to a high integration of processes involved in host recognition, adhesion, and invasion. At the final maturation stage, cell division- and proliferation-related genes were highly expressed, reflecting the fast cell growth and nuclear division of the parasitoid. Our molecular insights into dinoflagellate parasitoid interactions point to general mechanisms also known from other eukaryotic parasites, especially from the Alveolata. These similarities indicate the presence of fundamental processes of parasitoid infection that have remained stable throughout evolution within different phyla. PMID:25239978

  5. Improvement of Omega-3 Docosahexaenoic Acid Production by Marine Dinoflagellate Crypthecodinium cohnii Using Rapeseed Meal Hydrolysate and Waste Molasses as Feedstock.

    PubMed

    Gong, Yangmin; Liu, Jiao; Jiang, Mulan; Liang, Zhuo; Jin, Hu; Hu, Xiaojia; Wan, Xia; Hu, Chuanjiong

    2015-01-01

    Rapeseed meal and waste molasses are two important agro-industrial by-products which are produced in large quantities. In this study, solid state fermentation and fungal autolysis were performed to produce rapeseed meal hydrolysate (RMH) using fungal strains of Aspergillus oryzae, Penicillium oxalicum and Neurospora crassa. The hydrolysate was used as fermentation feedstock for heterotrophic growth of microalga Crypthecodinium cohnii that produce docosahexaenoic acid (DHA). The addition of waste molasses as a supplementary carbon source greatly increased the biomass and DHA yield. In the batch fermentations using media composed of diluted RMH (7%) and 1-9% waste molasses, the highest biomass concentration and DHA yield reached 3.43 g/L and 8.72 mg/L, respectively. The algal biomass produced from RMH and molasses medium also had a high percentage of DHA (22-34%) in total fatty acids similar to that of commercial algal biomass. RMH was shown to be rich in nitrogen supply comparable to the commercial nitrogen feedstock like yeast extract. Using RMH as sole nitrogen source, waste molasses excelled other carbon sources and produced the highest concentration of biomass. This study suggests that DHA production of the marine dinoflagellate C. cohnii could be greatly improved by concomitantly using the cheap by-products rapeseed meal hydrolysate and molasses as alternative feedstock.

  6. Improvement of Omega-3 Docosahexaenoic Acid Production by Marine Dinoflagellate Crypthecodinium cohnii Using Rapeseed Meal Hydrolysate and Waste Molasses as Feedstock

    PubMed Central

    Gong, Yangmin; Liu, Jiao; Jiang, Mulan; Liang, Zhuo; Jin, Hu; Hu, Xiaojia; Wan, Xia; Hu, Chuanjiong

    2015-01-01

    Rapeseed meal and waste molasses are two important agro-industrial by-products which are produced in large quantities. In this study, solid state fermentation and fungal autolysis were performed to produce rapeseed meal hydrolysate (RMH) using fungal strains of Aspergillus oryzae, Penicillium oxalicum and Neurospora crassa. The hydrolysate was used as fermentation feedstock for heterotrophic growth of microalga Crypthecodinium cohnii that produce docosahexaenoic acid (DHA). The addition of waste molasses as a supplementary carbon source greatly increased the biomass and DHA yield. In the batch fermentations using media composed of diluted RMH (7%) and 1-9% waste molasses, the highest biomass concentration and DHA yield reached 3.43 g/L and 8.72 mg/L, respectively. The algal biomass produced from RMH and molasses medium also had a high percentage of DHA (22-34%) in total fatty acids similar to that of commercial algal biomass. RMH was shown to be rich in nitrogen supply comparable to the commercial nitrogen feedstock like yeast extract. Using RMH as sole nitrogen source, waste molasses excelled other carbon sources and produced the highest concentration of biomass. This study suggests that DHA production of the marine dinoflagellate C. cohnii could be greatly improved by concomitantly using the cheap by-products rapeseed meal hydrolysate and molasses as alternative feedstock. PMID:25942565

  7. Docking Simulation of the Binding Interactions of Saxitoxin Analogs Produced by the Marine Dinoflagellate Gymnodinium catenatum to the Voltage-Gated Sodium Channel Nav1.4

    PubMed Central

    Durán-Riveroll, Lorena M.; Cembella, Allan D.; Band-Schmidt, Christine J.; Bustillos-Guzmán, José J.; Correa-Basurto, José

    2016-01-01

    Saxitoxin (STX) and its analogs are paralytic alkaloid neurotoxins that block the voltage-gated sodium channel pore (Nav), impeding passage of Na+ ions into the intracellular space, and thereby preventing the action potential in the peripheral nervous system and skeletal muscle. The marine dinoflagellate Gymnodinium catenatum produces an array of such toxins, including the recently discovered benzoyl analogs, for which the mammalian toxicities are essentially unknown. We subjected STX and its analogs to a theoretical docking simulation based upon two alternative tri-dimensional models of the Nav1.4 to find a relationship between the binding properties and the known mammalian toxicity of selected STX analogs. We inferred hypothetical toxicities for the benzoyl analogs from the modeled values. We demonstrate that these toxins exhibit different binding modes with similar free binding energies and that these alternative binding modes are equally probable. We propose that the principal binding that governs ligand recognition is mediated by electrostatic interactions. Our simulation constitutes the first in silico modeling study on benzoyl-type paralytic toxins and provides an approach towards a better understanding of the mode of action of STX and its analogs. PMID:27164145

  8. Discovery of an algicidal compound from Brevibacterium sp. BS01 and its effect on a harmful algal bloom-causing species, Alexandrium tamarense

    PubMed Central

    An, Xinli; Zhang, Bangzhou; Zhang, Huajun; Li, Yi; Zheng, Wei; Yu, Zhiming; Fu, Lijun; Zheng, Tianling

    2015-01-01

    Blooms of the dinoflagellate Alexandrium tamarense have become worldwide phenomena and have detrimental impacts on aquatic ecosystems and human health. In this study, a culture supernatant of the marine actinomycete BS01 exerted a strong algicidal effect on A. tamarense (ATGD98-006). The target algicide from BS01 was separated by adsorption chromatography and identified by MALDI-TOF-MS and NMR analysis. The results suggested that the purified algicidal component corresponded to a hydrophobic compound (2-isobutoxyphenyl)amine (C10H15NO) with a molecular weight of 165 Da, which exhibited a significant algicidal effect (64.5%) on A. tamarense. After incubation in 5 μg/mL of (2-isobutoxyphenyl)amine for 24 h, the algae lost mobility and sank to the bottom of the flasks, and 56.5% of the algae cells lost vitality at a concentration of 20 μg/mL (p < 0.01) despite having intact cell profiles. Morphological analysis revealed that the cell structure of A. tamarense was altered by (2-isobutoxyphenyl)amine resulting in cytoplasm degradation and the loss of organelle integrity. The images following propidium iodide staining suggested that the algal nucleus was also severely damaged and eventually degraded due to exposure to the algicidal compound. All of the results indicate that (2-isobutoxyphenyl)amine from the actinomycete might be a candidate for the control of bloom-forming A. tamarense. PMID:26594205

  9. Formal Revision of the Alexandrium tamarense Species Complex (Dinophyceae) Taxonomy: The Introduction of Five Species with Emphasis on Molecular-based (rDNA) Classification

    PubMed Central

    John, Uwe; Litaker, R. Wayne; Montresor, Marina; Murray, Shauna; Brosnahan, Michael L.; Anderson, Donald M.

    2015-01-01

    The Alexandrium tamarense species complex is one of the most studied marine dinoflagellate groups due to its ecological, toxicological and economic importance. Several members of this complex produce saxitoxin and its congeners – potent neurotoxins that cause paralytic shellfish poisoning. Isolates from this complex are assigned to A. tamarense, A. fundyense, or A. catenella based on two main morphological characters: the ability to form chains and the presence/absence of a ventral pore between Plates 1′ and 4′. However, studies have shown that these characters are not consistent and/or distinctive. Further, phylogenies based on multiple regions in the rDNA operon indicate that the sequences from morphologically indistinguishable isolates partition into five clades. These clades were initially named based on their presumed geographic distribution, but recently were renamed as Groups I–V following the discovery of sympatry among some groups. In this study we present data on morphology, ITS/5.8S genetic distances, ITS2 compensatory base changes, mating incompatibilities, toxicity, the sxtA toxin synthesis gene, and rDNA phylogenies. All results were consistent with each group representing a distinct cryptic species. Accordingly, the groups were assigned species names as follows: Group I, A. fundyense; Group II, A. mediterraneum; Group III, A. tamarense; Group IV, A. pacificum; Group V, A. australiense. PMID:25460230

  10. RNA sequencing and de novo assembly of the digestive gland transcriptome in Mytilus galloprovincialis fed with toxinogenic and non-toxic strains of Alexandrium minutum.

    PubMed

    Gerdol, Marco; De Moro, Gianluca; Manfrin, Chiara; Milandri, Anna; Riccardi, Elena; Beran, Alfred; Venier, Paola; Pallavicini, Alberto

    2014-10-14

    The Mediterranean mussel Mytilus galloprovincialis is marine bivalve with a relevant commercial importance as well as a key sentinel organism for the biomonitoring of environmental pollution. Here we report the RNA sequencing of the mussel digestive gland, performed with the aim: a) to produce a high quality de novo transcriptome assembly, thus improving the genetic and molecular knowledge of this organism b) to provide an initial assessment of the response to paralytic shellfish poisoning (PSP) on a molecular level, in order to identify possible molecular markers of toxin accumulation. The comprehensive de novo assembly and annotation of the transcriptome yielded a collection of 12,079 non-redundant consensus sequences with an average length of 958 bp, with a high percentage of full-length transcripts. The whole-transcriptome gene expression study indicated that the accumulation of paralytic toxins produced by the dinoflagellate Alexandrium minutum over a time span of 5 days scarcely affected gene expression, but the results need further validation with a greater number of biological samples and naturally contaminated specimens. The digestive gland reference transcriptome we produced significantly improves the data collected from previous sequencing efforts and provides a basic resource for expanding functional genomics investigations in M. galloprovincialis. Although not conclusive, the results of the RNA-seq gene expression analysis support the classification of mussels as bivalves refractory to paralytic shellfish poisoning and point out that the identification molecular biomarkers of PSP in the digestive gland of this organism is problematic.

  11. Formal revision of the Alexandrium tamarense species complex (Dinophyceae) taxonomy: the introduction of five species with emphasis on molecular-based (rDNA) classification.

    PubMed

    John, Uwe; Litaker, R Wayne; Montresor, Marina; Murray, Shauna; Brosnahan, Michael L; Anderson, Donald M

    2014-12-01

    The Alexandrium tamarense species complex is one of the most studied marine dinoflagellate groups due to its ecological, toxicological and economic importance. Several members of this complex produce saxitoxin and its congeners - potent neurotoxins that cause paralytic shellfish poisoning. Isolates from this complex are assigned to A. tamarense, A. fundyense, or A. catenella based on two main morphological characters: the ability to form chains and the presence/absence of a ventral pore between Plates 1' and 4'. However, studies have shown that these characters are not consistent and/or distinctive. Further, phylogenies based on multiple regions in the rDNA operon indicate that the sequences from morphologically indistinguishable isolates partition into five clades. These clades were initially named based on their presumed geographic distribution, but recently were renamed as Groups I-V following the discovery of sympatry among some groups. In this study we present data on morphology, ITS/5.8S genetic distances, ITS2 compensatory base changes, mating incompatibilities, toxicity, the sxtA toxin synthesis gene, and rDNA phylogenies. All results were consistent with each group representing a distinct cryptic species. Accordingly, the groups were assigned species names as follows: Group I, A. fundyense; Group II, A. mediterraneum; Group III, A. tamarense; Group IV, A. pacificum; Group V, A. australiense. Copyright © 2014 Elsevier GmbH. All rights reserved.

  12. Genome of the R-body producing marine alphaproteobacterium Labrenzia alexandrii type strain (DFL-11T)

    PubMed Central

    Fiebig, Anne; Pradella, Silke; Petersen, Jörn; Päuker, Orsola; Michael, Victoria; Lünsdorf, Heinrich; Göker, Markus; Klenk, Hans-Peter; Wagner-Döbler, Irene

    2013-01-01

    Labrenzia alexandrii Biebl et al. 2007 is a marine member of the family Rhodobacteraceae in the order Rhodobacterales, which has thus far only partially been characterized at the genome level. The bacterium is of interest because it lives in close association with the toxic dinoflagellate Alexandrium lusitanicum. Ultrastructural analysis reveals R-bodies within the bacterial cells, which are primarily known from obligate endosymbionts that trigger “killing traits” in ciliates (Paramecium spp.). Genomic traits of L. alexandrii DFL-11T are in accordance with these findings, as they include the reb genes putatively involved in R-body synthesis. Analysis of the two extrachromosomal elements suggests a role in heavy-metal resistance and exopolysaccharide formation, respectively. The 5,461,856 bp long genome with its 5,071 protein-coding and 73 RNA genes consists of one chromosome and two plasmids, and has been sequenced in the context of the Marine Microbial Initiative. PMID:24019989

  13. Paralytic shellfish toxin content is related to genomic sxtA4 copy number in Alexandrium minutum strains.

    PubMed

    Stüken, Anke; Riobó, Pilar; Franco, José; Jakobsen, Kjetill S; Guillou, Laure; Figueroa, Rosa I

    2015-01-01

    Dinoflagellates are microscopic aquatic eukaryotes with huge genomes and an unusual cell regulation. For example, most genes are present in numerous copies and all copies seem to be obligatorily transcribed. The consequence of the gene copy number (CPN) for final protein synthesis is, however, not clear. One such gene is sxtA, the starting gene of paralytic shellfish toxin (PST) synthesis. PSTs are small neurotoxic compounds that can accumulate in the food chain and cause serious poisoning incidences when ingested. They are produced by dinoflagellates of the genera Alexandrium, Gymnodium, and Pyrodinium. Here we investigated if the genomic CPN of sxtA4 is related to PST content in Alexandrium minutum cells. SxtA4 is the 4th domain of the sxtA gene and its presence is essential for PST synthesis in dinoflagellates. We used PST and genome size measurements as well as quantitative PCR to analyze sxtA4 CPN and toxin content in 15 A. minutum strains. Our results show a strong positive correlation between the sxtA4 CPN and the total amount of PST produced in actively growing A. minutum cells. This correlation was independent of the toxin profile produced, as long as the strain contained the genomic domains sxtA1 and sxtA4.

  14. Paralytic shellfish toxin content is related to genomic sxtA4 copy number in Alexandrium minutum strains

    PubMed Central

    Stüken, Anke; Riobó, Pilar; Franco, José; Jakobsen, Kjetill S.; Guillou, Laure; Figueroa, Rosa I.

    2015-01-01

    Dinoflagellates are microscopic aquatic eukaryotes with huge genomes and an unusual cell regulation. For example, most genes are present in numerous copies and all copies seem to be obligatorily transcribed. The consequence of the gene copy number (CPN) for final protein synthesis is, however, not clear. One such gene is sxtA, the starting gene of paralytic shellfish toxin (PST) synthesis. PSTs are small neurotoxic compounds that can accumulate in the food chain and cause serious poisoning incidences when ingested. They are produced by dinoflagellates of the genera Alexandrium, Gymnodium, and Pyrodinium. Here we investigated if the genomic CPN of sxtA4 is related to PST content in Alexandrium minutum cells. SxtA4 is the 4th domain of the sxtA gene and its presence is essential for PST synthesis in dinoflagellates. We used PST and genome size measurements as well as quantitative PCR to analyze sxtA4 CPN and toxin content in 15 A. minutum strains. Our results show a strong positive correlation between the sxtA4 CPN and the total amount of PST produced in actively growing A. minutum cells. This correlation was independent of the toxin profile produced, as long as the strain contained the genomic domains sxtA1 and sxtA4. PMID:25983733

  15. A marine dinoflagellate, Amphidinium eilatiensis n. sp., from the benthos of a mariculture sedimentation pond in Eilat, Israel.

    PubMed

    Lee, John J; Olea, Raul; Cevasco, Megan; Pochon, Xavier; Correia, Maria; Shpigel, Muki; Pawlowski, Jan

    2003-01-01

    A species of Amphidinium bloomed in a mariculture sedimentation pond that was used to grow bivalves near the Gulf of Eilat, Israel. Its overall length averaged 13 microm, the hypocone was 11 microm, and its width was 8 microm. It has a ventral ridge. The sulcus begins at the longitudinal flagellar pore and does not project forward in the apex toward the transverse flagellar pore and left margin of the cingulum. The sulcus is a very shallow groove that projects variably about a third of the body length toward the antapex. The cingulum is a deep groove as it circles the cell from the left ventral side to the dorsal side and then becomes very shallow on the right ventral side as it arches posterior toward the longitudinal flagellar pore. Using a modified method for studying dinoflagellate chromosomes in the SEM, we observed 31 chromosomes. The plastid is dorsal and peripheral with 6 ventrally projecting peripheral digital lobes that wrap around the sides of the ventral and posterior nucleus. Amphidinium eilatiensis n. sp. is morphologically closest to Amphidinium carterae and Amphidinium rhynchocephalum, but it does not have the obvious thecal plates or polygonal units described for the former species. Instead, it has a series of spicules, bumps, and ridges on its surface. It differs from A. rhynchocephalum by two morphological characters: surface morphology and gross plastid architecture. The amplified fragments of the rDNA from A. eilatiensis n. sp. isolated from 2 separate sedimentation ponds in Eilat include the 3'- end of the SSU rDNA (about 100 nt), the whole ITS region (ITS1 + 5.8S + ITS2) and the 5'-end of the LSU rDNA (about 900 nts). The total length of the sequences ranged from 1,460 nt. (A. eilatiensis isolate #1) to 1,461 nts. (A. eilatiensis isolate #2). The latter sequences are identical, the difference in length being due to three insertions. Amphidinium eilatiensis is genetically more closely related to A. carterae than to A. klebsii, with

  16. PHYLOGENETIC RELATIONSHIP OF ALEXANDRIUM MONILATUM (DINOPHYCEAE) TO OTHER ALEXANDRIUM SPECIES BASED ON 18S RIBOSOMAL RNA GENE SEQUENCES

    EPA Science Inventory

    The phylogenetic relationship of Alexandrium monilatum to other Alexandrium spp. was explored using 18S rDNA sequences. Maximum likelilhood phylogenetic analysis of the combined rDNA sequences established that A. monilatum paired with Alexandrium taylori and that the pair was the...

  17. Transcription and Maturation of mRNA in Dinoflagellates

    PubMed Central

    Roy, Sougata; Morse, David

    2013-01-01

    Dinoflagellates are of great importance to the marine ecosystem, yet scant details of how gene expression is regulated at the transcriptional level are available. Transcription is of interest in the context of the chromatin structure in the dinoflagellates as it shows many differences from more typical eukaryotic cells. Here we canvas recent transcriptome profiles to identify the molecular building blocks available for the construction of the transcriptional machinery and contrast these with those used by other systems. Dinoflagellates display a clear paucity of specific transcription factors, although surprisingly, the rest of the basic transcriptional machinery is not markedly different from what is found in the close relatives to the dinoflagellates. PMID:27694765

  18. Georges Bank: A leaky incubator of Alexandrium fundyense blooms

    NASA Astrophysics Data System (ADS)

    McGillicuddy, D. J.; Townsend, D. W.; Keafer, B. A.; Thomas, M. A.; Anderson, D. M.

    2014-05-01

    A series of oceanographic surveys on Georges Bank document variability of populations of the toxic dinoflagellate Alexandrium fundyense on time scales ranging from synoptic to seasonal to interannual. Blooms of A. fundyense on Georges Bank can reach concentrations on the order of 104 cells l-1, and are generally bank-wide in extent. Georges Bank populations of A. fundyense appear to be quasi-independent of those in the adjacent coastal Gulf of Maine, insofar as they occupy a hydrographic niche that is colder and saltier than their coastal counterparts. In contrast to coastal populations that rely on abundant resting cysts for bloom initiation, very few cysts are present in the sediments on Georges Bank. Bloom dynamics must therefore be largely controlled by the balance between growth and mortality processes, which are at present largely unknown for this population. Based on correlations between cell abundance and nutrient distributions, ammonium appears to be an important source of nitrogen for A. fundyense blooms on Georges Bank.

  19. Georges Bank: a leaky incubator of Alexandrium fundyense blooms

    PubMed Central

    McGillicuddy, D.J.; Townsend, D.W.; Keafer, B.A.; Thomas, M.A.; Anderson, D.M.

    2012-01-01

    A series of oceanographic surveys on Georges Bank document variability of populations of the toxic dinoflagellate Alexandrium fundyense on time scales ranging from synoptic to seasonal to interannual. Blooms of A. fundyense on Georges Bank can reach concentrations on the order of 104 cells l−1, and are generally bank-wide in extent. Georges Bank populations of A. fundyense appear to be quasi-independent of those in the adjacent coastal Gulf of Maine, insofar as they occupy a hydrographic niche that is colder and saltier than their coastal counterparts. In contrast to coastal populations that rely on abundant resting cysts for bloom initiation, very few cysts are present in the sediments on Georges Bank. Bloom dynamics must therefore be largely controlled by the balance between growth and mortality processes, which are at present largely unknown for this population. Based on correlations between cell abundance and nutrient distributions, ammonium appears to be an important source of nitrogen for A. fundyense blooms on Georges Bank. PMID:24976691

  20. Major transitions in dinoflagellate evolution unveiled by phylotranscriptomics.

    PubMed

    Janouškovec, Jan; Gavelis, Gregory S; Burki, Fabien; Dinh, Donna; Bachvaroff, Tsvetan R; Gornik, Sebastian G; Bright, Kelley J; Imanian, Behzad; Strom, Suzanne L; Delwiche, Charles F; Waller, Ross F; Fensome, Robert A; Leander, Brian S; Rohwer, Forest L; Saldarriaga, Juan F

    2017-01-10

    Dinoflagellates are key species in marine environments, but they remain poorly understood in part because of their large, complex genomes, unique molecular biology, and unresolved in-group relationships. We created a taxonomically representative dataset of dinoflagellate transcriptomes and used this to infer a strongly supported phylogeny to map major morphological and molecular transitions in dinoflagellate evolution. Our results show an early-branching position of Noctiluca, monophyly of thecate (plate-bearing) dinoflagellates, and paraphyly of athecate ones. This represents unambiguous phylogenetic evidence for a single origin of the group's cellulosic theca, which we show coincided with a radiation of cellulases implicated in cell division. By integrating dinoflagellate molecular, fossil, and biogeochemical evidence, we propose a revised model for the evolution of thecal tabulations and suggest that the late acquisition of dinosterol in the group is inconsistent with dinoflagellates being the source of this biomarker in pre-Mesozoic strata. Three distantly related, fundamentally nonphotosynthetic dinoflagellates, Noctiluca, Oxyrrhis, and Dinophysis, contain cryptic plastidial metabolisms and lack alternative cytosolic pathways, suggesting that all free-living dinoflagellates are metabolically dependent on plastids. This finding led us to propose general mechanisms of dependency on plastid organelles in eukaryotes that have lost photosynthesis; it also suggests that the evolutionary origin of bioluminescence in nonphotosynthetic dinoflagellates may be linked to plastidic tetrapyrrole biosynthesis. Finally, we use our phylogenetic framework to show that dinoflagellate nuclei have recruited DNA-binding proteins in three distinct evolutionary waves, which included two independent acquisitions of bacterial histone-like proteins.

  1. Bacterial community associated with Pfiesteria-like dinoflagellate cultures.

    PubMed

    Alavi, M; Miller, T; Erlandson, K; Schneider, R; Belas, R

    2001-06-01

    Dinoflagellates (Eukaryota; Alveolata; Dinophyceae) are single-cell eukaryotic microorganisms implicated in many toxic outbreaks in the marine and estuarine environment. Co-existing with dinoflagellate communities are bacterial assemblages that undergo changes in species composition, compete for nutrients and produce bioactive compounds, including toxins. As part of an investigation to understand the role of the bacteria in dinoflagellate physiology and toxigenesis, we have characterized the bacterial community associated with laboratory cultures of four 'Pfiesteria-like' dinoflagellates isolated from 1997 fish killing events in Chesapeake Bay. A polymerase chain reaction with oligonucleotide primers specific to prokaryotic 16S rDNA gene sequences was used to characterize the total bacterial population, including culturable and non-culturable species, as well as possible endosymbiotic bacteria. The results indicate a diverse group of over 30 bacteria species co-existing in the dinoflagellate cultures. The broad phylogenetic types of dinoflagellate-associated bacteria were generally similar, although not identical, to those bacterial types found in association with other harmful algal species. Dinoflagellates were made axenic, and the culturable bacteria were added back to determine the contribution of the bacteria to dinoflagellate growth. Confocal scanning laser fluorescence microscopy with 16S rDNA probes was used to demonstrate a physical association of a subset of the bacteria and the dinoflagellate cells. These data point to a key component in the bacterial community being species in the marine alpha-proteobacteria group, most closely associated with the alpha-3 or SAR83 cluster.

  2. Prominent Human Health Impacts from Several Marine Microbes: History, Ecology, and Public Health Implications

    PubMed Central

    Bienfang, P. K.; DeFelice, S. V.; Laws, E. A.; Brand, L. E.; Bidigare, R. R.; Christensen, S.; Trapido-Rosenthal, H.; Hemscheidt, T. K.; McGillicuddy, D. J.; Anderson, D. M.; Solo-Gabriele, H. M.; Boehm, A. B.; Backer, L. C.

    2011-01-01

    This paper overviews several examples of important public health impacts by marine microbes and directs readers to the extensive literature germane to these maladies. These examples include three types of dinoflagellates (Gambierdiscus spp., Karenia brevis, and Alexandrium fundyense), BMAA-producing cyanobacteria, and infectious microbes. The dinoflagellates are responsible for ciguatera fish poisoning, neurotoxic shellfish poisoning, and paralytic shellfish poisoning, respectively, that have plagued coastal populations over time. Research interest on the potential for marine cyanobacteria to contribute BMAA into human food supplies has been derived by BMAA's discovery in cycad seeds and subsequent implication as the putative cause of amyotrophic lateral sclerosis/parkinsonism dementia complex among the Chamorro people of Guam. Recent UPLC/MS analyses indicate that recent reports that BMAA is prolifically distributed among marine cyanobacteria at high concentrations may be due to analyte misidentification in the analytical protocols being applied for BMAA. Common infectious microbes (including enterovirus, norovirus, Salmonella, Campylobacter, Shigella, Staphylococcus aureus, Cryptosporidium, and Giardia) cause gastrointestinal and skin-related illness. These microbes can be introduced from external human and animal sources, or they can be indigenous to the marine environment. PMID:20976073

  3. Combined heat shock protein 90 and ribosomal RNA sequence phylogeny supports multiple replacements of dinoflagellate plastids.

    PubMed

    Shalchian-Tabrizi, Kamran; Minge, Marianne A; Cavalier-Smith, Tom; Nedreklepp, Joachim M; Klaveness, Dag; Jakobsen, Kjetill S

    2006-01-01

    Dinoflagellates harbour diverse plastids obtained from several algal groups, including haptophytes, diatoms, cryptophytes, and prasinophytes. Their major plastid type with the accessory pigment peridinin is found in the vast majority of photosynthetic species. Some species of dinoflagellates have other aberrantly pigmented plastids. We sequenced the nuclear small subunit (SSU) ribosomal RNA (rRNA) gene of the "green" dinoflagellate Gymnodinium chlorophorum and show that it is sister to Lepidodinium viride, indicating that their common ancestor obtained the prasinophyte (or other green alga) plastid in one event. As the placement of dinoflagellate species that acquired green algal or haptophyte plastids is unclear from small and large subunit (LSU) rRNA trees, we tested the usefulness of the heat shock protein (Hsp) 90 gene for dinoflagellate phylogeny by sequencing it from four species with aberrant plastids (G. chlorophorum, Karlodinium micrum, Karenia brevis, and Karenia mikimotoi) plus Alexandrium tamarense, and constructing phylogenetic trees for Hsp90 and rRNAs, separately and together. Analyses of the Hsp90 and concatenated data suggest an ancestral origin of the peridinin-containing plastid, and two independent replacements of the peridinin plastid soon after the early radiation of the dinoflagellates. Thus, the Hsp90 gene seems to be a promising phylogenetic marker for dinoflagellate phylogeny.

  4. The distribution of organic-walled dinoflagellate cysts in marine surface samples of the eastern Indian Ocean in relation to environmental conditions

    NASA Astrophysics Data System (ADS)

    Hessler, I.; Young, M.; Mohtadi, M.; Lückge, A.; Behling, H.

    2012-04-01

    The eastern Indian Ocean is characterised by a complex system of surface currents that move according to the monsoon-dominated wind regime and show a strong seasonality. The Indonesian Throughflow, which originates in the northwestern and tropical Pacific and passes through the Indonesian archipelago into the Indian Ocean, is the only low-latitude oceanic connection between the Pacific and Indian Oceans and represents a key element in the global thermohaline circulation and hence the global climate system. In recent decades it has become increasingly important to understand the atmospheric and oceanographic processes involved in climate variations. Assemblages of organic-walled dinoflagellate cysts (dinocysts) from marine surface samples provide insights into the relationship between the spatial distribution of dinocysts and modern local environmental conditions (e.g. sea surface temperature, sea surface salinity, productivity). These information are of great value for the interpretation of past variations in surface water conditions. We present an extensive data-set of marine surface samples (n=116) from the Eastern Indian Ocean. The conducted Principal Component Analysis (PCA) illustrates the variation of species association between the sites and reveals a geographical affinity of the samples to the regions of (1) Western Indonesia, (2) Java, (3) the Indonesian Throughflow and (4) Western Australia including the Timor Sea. The results of the PCA further indicate the existence of two environmental gradients in the study area, a nutrient gradient increasing from Western Indonesia towards the Indonesian Throughflow region and a temperature gradient increasing from Western Australia towards Western Indonesia. The Redundancy Analysis indicates the presence of three dominating taxa in the sample set, namely Spiniferites spp., Operculodinium centrocarpum and Brigantedinium spp., and reveals significant correlations of the three dominant taxa to specific environmental

  5. LIPID BIOMARKER CHARACTERIZATION OF BLOOM-RELATED DINOFLAGELLATES

    EPA Science Inventory

    Marine eukaryotic algae synthesize an array of lipids of chemotaxonomic utility that are potentially valuable in characterizing phytoplankton communities. Sterols and photopigments characteristic of dinoflagellates are rarely found in other algal classes. Long chain (C28) highly ...

  6. LIPID BIOMARKER CHARACTERIZATION OF BLOOM-RELATED DINOFLAGELLATES

    EPA Science Inventory

    Marine eukaryotic algae synthesize an array of lipids of chemotaxonomic utility that are potentially valuable in characterizing phytoplankton communities. Sterols and photopigments characteristic of dinoflagellates are rarely found in other algal classes. Long chain (C28) highly ...

  7. Predator/prey interaction between Pfiesteria piscicida and Rhodomonas mediated by a marine alpha proteobacterium.

    PubMed

    Alavi, M R

    2004-01-01

    The dinoflagellate Pfiesteria piscicida coexists with bacteria in aquatic environments and as such, may interact with them at the physiological level. This study was designed to investigate the influence of bacteria, present in a clonal culture of Pfiesteria piscicida, on the predator/prey relationship of this dinoflagellate with the alga Rhodomonas. A series of replenishment experiments with bacteria isolated from P. piscicida clonal culture and the bacteria-free P. piscicida derived from the same culture were carried out. In the presence of bacteria, the number of P. piscicida increased significantly when incubated with alga Rhodomonas. This enhanced growth was almost entirely due to the increased consumption rate of Rhodomonas by P. piscicida since in bacteria-free (axenic) cultures Rhodomonas were consumed at significantly reduced rates relative to cultures with bacteria. Subsequent replenishment experiments with individual bacterial isolates showed that a single isolate was responsible for the increased predation rate of P. piscicida. The presence or absence of this specific bacterium determined the outcome of the interaction between P. piscicida and Rhodomonas. Partial sequence analysis of the 16S rDNA of this isolate indicated that it was a novel marine alpha proteobacterium with sequence similarities to a Roseobacter sp. and a bacterium recently isolated from a toxic dinoflagellate Alexandrium sp.

  8. Dinoflagellates, a new proxy for evidencing (paleo)tsunamis

    NASA Astrophysics Data System (ADS)

    Popescu, S.; Do Couto, D.; Suc, J.; Gorini, C.

    2012-12-01

    As a preliminary investigation, dinoflagellates have been searched in the Sri Lanka tsunami deposits (2004, Sumatra earthquake). The goals of this analysis were (1) to establish if dinoflagellate cysts (marine algae) are preserved in such types of deposits, and (2) to delimit the inland flooded surface. This work was performed on only 1-2 grams of sands, which had been sterilized at 121°C to prevent any microbial activity. The analysis points out the presence of several marine dinoflagellate cysts with a poor to moderate preservation, allowing to estimate the extent of the flooded area. In addition, a sample provided two dinoflagellate thecae, an exceptional occurrence because the cellulosic form of a dinoflagellate (i.e. the theca) is generally considered as unable to be preserved within sediments. In laboratory experiments, thecae are known to persist between 2 and 72 hours, depending of the species. If we accept a possible preservation of thecae in "peculiar" conditions, their presence in a tsunami sedimentary sequence may sign a precise instant of a tsunami event. Dinoflagellates have been searched in sedimentary basins affected by intense seismic activity: the Black Sea (Quaternary) and Alboran Sea (Messinian - Zanclean), two areas marked by important environmental changes. Marine dinoflagellate cysts are recorded in the Black Sea before its Holocene connection with Mediterranean through the Bosphorus Strait. Their occurrence constitutes a robust support for tsunamis already described in the region. In Late Messinian and Early Pliocene deposits from the Sorbas and Malaga basins (Alboran Sea region), cysts and thecae of marine dinoflagellates have been evidenced for the first time, maybe in relation with possible tsunamis. This new approach is to be developed on other recent tsunami deposits in order to contribute to identify past tsunami events. One must mention that dinoflagellates may help in reconstruction of past sea-surface physical parameters (salinity

  9. Direct and fast detection of Alexandrium minutum algae by using high frequency microbalance.

    PubMed

    Sousa, Célia; Compère, Chantal; Dreanno, Catherine; Crassous, Marie-Pierre; Gas, Fabienne; Baus, Beatrice; Perrot, Hubert

    2014-09-01

    In this paper, a simple detection of a toxic algae, Alexandrium minutum, was developed using highly sensitive quartz crystal microbalance. In terms of performance, compared with other conventional analytical tools, the main interest of our immunosensor is based on a fast and direct detection of these living cells. This system requires the use of one monoclonal antibody directed against the surface antigen of A. minutum. We demonstrate that the whole living and motile algae are caught and detected. The high specificity of the biosensor is also demonstrated by testing several other dinoflagellate species. The frequency shift is correlated to the A. minutum cell concentration. This simple system is potentially promising for environmental monitoring purposes.

  10. Combined physical, chemical and biological factors shape Alexandrium ostenfeldii blooms in The Netherlands.

    PubMed

    Brandenburg, Karen M; Domis, Lisette N de Senerpont; Wohlrab, Sylke; Krock, Bernd; John, Uwe; van Scheppingen, Yvonne; van Donk, Ellen; Van de Waal, Dedmer B

    2017-03-01

    Harmful algal blooms (HABs) are globally expanding, compromising water quality worldwide. HAB dynamics are determined by a complex interplay of abiotic and biotic factors, and their emergence has often been linked to eutrophication, and more recently to climate change. The dinoflagellate Alexandrium is one of the most widespread HAB genera and its success is based on key functional traits like allelopathy, mixotrophy, cyst formation and nutrient retrieval migrations. Since 2012, dense Alexandrium ostenfeldii blooms (up to 4500cellsmL(-1)) have recurred annually in a creek located in the southwest of the Netherlands, an area characterized by intense agriculture and aquaculture. We investigated how physical, chemical and biological factors influenced A. ostenfeldii bloom dynamics over three consecutive years (2013-2015). Overall, we found a decrease in the magnitude of the bloom over the years that could largely be linked to changing weather conditions during summer. More specifically, low salinities due to excessive rainfall and increased wind speed corresponded to a delayed A. ostenfeldii bloom with reduced population densities in 2015. Within each year, highest population densities generally corresponded to high temperatures, low DIN:DIP ratios and low grazer densities. Together, our results demonstrate an important role of nutrient availability, absence of grazing, and particularly of the physical environment on the magnitude and duration of A. ostenfeldii blooms. Our results suggest that predicted changes in the physical environment may enhance bloom development in future coastal waters and embayments. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Toxicity of Alexandrium lusitanicum to gastropod larvae is not caused by paralytic-shellfish-poisoning toxins

    PubMed Central

    Juhl, A. R.; Martins, C. A.; Anderson, D. M.

    2017-01-01

    Laboratory grazing experiments compared ingestion of two subclones of the dinoflagellate Alexandrium lusitanicum by gastropod veliger larvae (Nassarius sp.). While the two prey subclones originated from the same monoclonal isolate of A. lusitanicum, one possessed the ability to produce paralytic-shellfish-poisoning toxins (PSTs), while the other did not. Ingestion rates on the two Alexandrium subclones were not significantly different over a range of prey concentrations (approximately 100 – 660 cells ml-1), indicating that PSTs did not serve as a grazing deterrent for these larvae. However, ingestion rates on both subclones were low at the higher prey concentrations tested. Mortality of the predators also increased linearly with concentration of either subclone. These observations indicated that both A. lusitanicum subclones produced an unknown substance that inhibited and killed the grazers. Veliger mortality was not induced by culture filtrates or lysates, suggesting either that the substance was either highly labile or that contact with intact cells was required. Because toxic algae can produce multiple bioactive substances, experimental demonstrations of alleopathic effects of toxic species should not be assigned to known toxins without supporting evidence. In addition, the results show that the effectiveness of algal grazing deterrents can increase with cell concentration, which may have implications for bloom dynamics. PMID:28729816

  12. PSP toxin levels and plankton community composition and abundance in size-fractionated vertical profiles during spring/summer blooms of the toxic dinoflagellate Alexandrium fundyense in the Gulf of Maine and on Georges Bank, 2007, 2008, and 2010: 1. Toxin levels

    PubMed Central

    Deeds, Jonathan R.; Petitpas, Christian M.; Shue, Vangie; White, Kevin D.; Keafer, Bruce A.; McGillicuddy, Dennis J.; Milligan, Peter J.; Anderson, Donald M.; Turner, Jefferson T.

    2014-01-01

    As part of the NOAA ECOHAB funded Gulf of Maine Toxicity (GOMTOX)1 project, we determined Alexandrium fundyense abundance, paralytic shellfish poisoning (PSP) toxin composition, and concentration in quantitatively-sampled size-fractionated (20–64, 64–100, 100–200, 200–500, and > 500 μm) particulate water samples, and the community composition of potential grazers of A. fundyense in these size fractions, at multiple depths (typically 1, 10, 20 m, and near-bottom) during 10 large-scale sampling cruises during the A. fundyense bloom season (May–August) in the coastal Gulf of Maine and on Georges Bank in 2007, 2008, and 2010. Our findings were as follows: (1) when all sampling stations and all depths were summed by year, the majority (94% ± 4%) of total PSP toxicity was contained in the 20–64 μm size fraction; (2) when further analyzed by depth, the 20–64 μm size fraction was the primary source of toxin for 97% of the stations and depths samples over three years; (3) overall PSP toxin profiles were fairly consistent during the three seasons of sampling with gonyautoxins (1, 2, 3, and 4) dominating (90.7% ± 5.5%), followed by the carbamate toxins saxitoxin (STX) and neosaxitoxin (NEO) (7.7% ± 4.5%), followed by n-sulfocarbamoyl toxins (C1 and 2, GTX5) (1.3% ± 0.6%), followed by all decarbamoyl toxins (dcSTX, dcNEO, dcGTX2&3) (< 1%), although differences were noted between PSP toxin compositions for nearshore coastal Gulf of Maine sampling stations compared to offshore Georges Bank sampling stations for 2 out of 3 years; (4) surface cell counts of A. fundyense were a fairly reliable predictor of the presence of toxins throughout the water column; and (5) nearshore surface cell counts of A. fundyense in the coastal Gulf of Maine were not a reliable predictor of A. fundyense populations offshore on Georges Bank for 2 out of the 3 years sampled. PMID:25076816

  13. PSP toxin levels and plankton community composition and abundance in size-fractionated vertical profiles during spring/summer blooms of the toxic dinoflagellate Alexandrium fundyense in the Gulf of Maine and on Georges Bank, 2007, 2008, and 2010: 1. Toxin levels.

    PubMed

    Deeds, Jonathan R; Petitpas, Christian M; Shue, Vangie; White, Kevin D; Keafer, Bruce A; McGillicuddy, Dennis J; Milligan, Peter J; Anderson, Donald M; Turner, Jefferson T

    2014-05-01

    As part of the NOAA ECOHAB funded Gulf of Maine Toxicity (GOMTOX) project, we determined Alexandrium fundyense abundance, paralytic shellfish poisoning (PSP) toxin composition, and concentration in quantitatively-sampled size-fractionated (20-64, 64-100, 100-200, 200-500, and > 500 μm) particulate water samples, and the community composition of potential grazers of A. fundyense in these size fractions, at multiple depths (typically 1, 10, 20 m, and near-bottom) during 10 large-scale sampling cruises during the A. fundyense bloom season (May-August) in the coastal Gulf of Maine and on Georges Bank in 2007, 2008, and 2010. Our findings were as follows: (1) when all sampling stations and all depths were summed by year, the majority (94% ± 4%) of total PSP toxicity was contained in the 20-64 μm size fraction; (2) when further analyzed by depth, the 20-64 μm size fraction was the primary source of toxin for 97% of the stations and depths samples over three years; (3) overall PSP toxin profiles were fairly consistent during the three seasons of sampling with gonyautoxins (1, 2, 3, and 4) dominating (90.7% ± 5.5%), followed by the carbamate toxins saxitoxin (STX) and neosaxitoxin (NEO) (7.7% ± 4.5%), followed by n-sulfocarbamoyl toxins (C1 and 2, GTX5) (1.3% ± 0.6%), followed by all decarbamoyl toxins (dcSTX, dcNEO, dcGTX2&3) (< 1%), although differences were noted between PSP toxin compositions for nearshore coastal Gulf of Maine sampling stations compared to offshore Georges Bank sampling stations for 2 out of 3 years; (4) surface cell counts of A. fundyense were a fairly reliable predictor of the presence of toxins throughout the water column; and (5) nearshore surface cell counts of A. fundyense in the coastal Gulf of Maine were not a reliable predictor of A. fundyense populations offshore on Georges Bank for 2 out of the 3 years sampled.

  14. Marine Biotoxins: Occurrence, Toxicity, and Detection Methods

    NASA Astrophysics Data System (ADS)

    Asakawa, M.

    2017-04-01

    This review summarizes the role of marine organisms as vectors of marine biotoxins, and discusses the need for surveillance to protect public health and ensure the quality of seafood. I Paralytic shellfish poison (PSP) and PSP-bearing organisms-PSP is produced by toxic dinoflagellates species belonging to the genera Alexandrium, Gymnodinium, and Pyrodinium. Traditionally, PSP monitoring programs have only considered filter-feeding molluscs that concentrate these toxic algae, however, increasing attention is now being paid to higher-order predators that carry PSP, such as carnivorous gastropods and crustaceans. II. Tetrodotoxin (TTX) and TTX-bearing organisms - TTX is the most common natural marine toxin that causes food poisonings in Japan, and poses a serious public health risk. TTX was long believed to be present only in pufferfish. However, TTX was detected in the eggs of California newt Taricha torosa in 1964, and since then it has been detected in a wide variety of species belonging to several different phyla. In this study, the main toxic components in the highly toxic ribbon worm Cephalothrix simula and the greater blue-ringed octopus Hapalochlaena lunulata from Japan were purified and analysed.

  15. A new class of transcription initiation factors, intermediate between TATA box-binding proteins (TBPs) and TBP-like factors (TLFs), is present in the marine unicellular organism, the dinoflagellate Crypthecodinium cohnii.

    PubMed

    Guillebault, Delphine; Sasorith, Souphatta; Derelle, Evelyne; Wurtz, Jean-Marie; Lozano, Jean-Claude; Bingham, Scott; Tora, Laszlo; Moreau, Hervé

    2002-10-25

    Dinoflagellates are marine unicellular eukaryotes that exhibit unique features including a very low level of basic proteins bound to the chromatin and the complete absence of histones and nucleosomal structure. A cDNA encoding a protein with a strong homology to the TATA box-binding proteins (TBP) has been isolated from an expressed sequence tag library of the dinoflagellate Crypthecodinium cohnii. The typical TBP repeat signature and the amino acid motives involved in TFIIA and TFIIB interactions were conserved in this new TBP-like protein. However, the four phenylalanines known to interact with the TATA box were substituted with hydrophilic residues (His(77), Arg(94), Tyr(171), Thr(188)) as has been described for TBP-like factors (TLF)/TBP-related proteins (TRP). A phylogenetic analysis showed that cTBP is intermediate between TBP and TLF/TRP protein families, and the structural similarity of cTBP with TLF was confirmed by low affinity binding to a consensus' TATA box in an equivalent manner to that usually observed for TLFs. Six 5'-upstream gene regions of dinoflagellate genes have been analyzed and neither a TATA box nor a consensus-promoting element could be found within these different sequences. Our results showed that cTBP could bind stronger to a TTTT box sequence than to the canonical TATA box, especially at high salt concentration. Same binding results were obtained with a mutated cTBP (mcTBP), in which the four phenylalanines were restored. To our knowledge, this is the first description of a TBP-like protein in a unicellular organism, which also appears as the major form of TBP present in C. cohnii.

  16. Molecular phylogeny of noctilucoid dinoflagellates (Noctilucales, Dinophyceae).

    PubMed

    Gómez, Fernando; Moreira, David; López-García, Purificación

    2010-07-01

    The order Noctilucales or class Noctiluciphyceae encompasses three families of aberrant dinoflagellates (Noctilucaceae, Leptodiscaceae and Kofoidiniaceae) that, at least in some life stages, lack typical dinoflagellate characters such as the ribbon-like transversal flagellum or condensed chromosomes. Noctiluca scintillans, the first dinoflagellate to be described, has been intensively investigated. However, its phylogenetic position based on the small subunit ribosomal DNA (SSU rDNA) sequence is unstable and controversial. Noctiluca has been placed either as an early diverging lineage that diverged after Oxyrrhis and before the dinokaryotes -core dinoflagellates- or as a recent lineage branching from unarmoured dino fl agellates in the order Gymnodiniales. So far, the lack of other noctilucoid sequences has hampered the elucidation of their phylogenetic relationships to other dino fl agellates. Furthermore, even the monophyly of the noctilucoids remained uncertain. We have determined SSU rRNA gene sequences for Kofoidiniaceae, those of the type Spatulodinium (=Gymnodinium) pseudonoctiluca and another Spatulodinium species, as well as of two species of Kofoidinium, and the first gene sequence of Leptodiscaceae, that of Abedinium (=Leptophyllus) dasypus. These taxa were collected from their type localities, the English Channel and the NW Mediterranean Sea, respectively. Phylogenetic analyses place the Noctilucales as a monophyletic group at a basal position close to parasites of the Marine Alveolate Group I (MAGI) and the Syndiniales (MAGII), before the core of dinokaryotic dinoflagellates, although with moderate support. 2010 Elsevier GmbH. All rights reserved.

  17. Alexandrium minutum resting cyst distribution dynamics in a confined site

    NASA Astrophysics Data System (ADS)

    Anglès, Sílvia; Jordi, Antoni; Garcés, Esther; Basterretxea, Gotzon; Palanques, Albert

    2010-02-01

    The life cycle of the toxic dinoflagellate Alexandrium minutum consists of an asexual stage, characterized by motile vegetative cells, and a sexual stage, a resting cyst that once formed remains dormant in the sediment. Insight into the factors that determine the distribution and abundance of resting cysts is essential to understanding the dynamics of the vegetative phase. In investigations carried out between January 2005 and January 2008 in Arenys de Mar harbor (northwestern Mediterranean Sea), the spatial and temporal distribution patterns of A. minutum resting cysts and of the sediments were studied during different bloom stages of the vegetative population. Maximum cyst abundance was recorded mainly in the innermost part of the harbor while the lowest abundance always occurred near the harbor entrance, consistent with the distribution of silt-clay sediment fractions. The tendency of cysts in sediments to increase after bloom periods was clearly associated with new cyst formation, while cyst abundance decreased during non-bloom periods. Exceptions to this trend were observed in stations dominated by the deposition of coarse sediments. High correlation between the presence of cysts and clays during non-bloom periods indicates that cysts behave as passive sediment particles and are influenced by the same hydrodynamic processes as clays. In Arenys de Mar, the main physical forcing affecting sediment resuspension is the seiche, which was studied using in situ measurements and numerical models to interpret the observed distribution patterns. During non-bloom periods, cyst losses were smaller when the seiche was more active and at the station where the seiche-induced current was larger. Thus, seiche-forced resuspension appears to reduce cyst losses by reallocating cysts back to the sediment surface such that their burial in the sediment is avoided. The observed vertical profiles of the cysts were consistent with this process.

  18. Spatial distribution and viability of Alexandrium tamarense resting cysts in surface sediments from the St. Lawrence Estuary, Eastern Canada

    NASA Astrophysics Data System (ADS)

    Gracia, Stéphanie; Roy, Suzanne; Starr, Michel

    2013-04-01

    The dinoflagellate Alexandrium tamarense Group 1 (as defined by Lilly et al., 2007) is responsible for recurrent outbreaks of paralytic shellfish poisoning (PSP) in the St. Lawrence Estuary (SLE), Eastern Canada. In August 2008, a major bloom of A. tamarense developed in the SLE and caused major mortality of fish, seabirds and marine mammals notably in the vicinity of a marine park. Eleven months later, surface (0-5 cm) and deeper (5-10 cm) sediments were sampled to determine resting cysts concentrations, locate prospective cyst seedbeds and examine if these had changed following this major bloom. This information is thought to be important to understand inter-annual patterns in algal toxicity, cyst abundance being a good predictor of subsequent bloom magnitude in some regions. Surface cyst distribution was heterogeneous and it confirmed the location of the cyst seedbed previously reported on the north shore near the Manicouagan/aux-Outardes Rivers (>500 cysts cm-3). A zone of cyst accumulation was also observed on the south shore of the SLE (maximum of 1200 cysts cm-3), with higher concentrations relative to previous cyst mapping in the 1980s. A mismatch was observed between the zones with high surface cyst concentrations and those where the highest PSP toxins were detected (used as a proxy for vegetative cells in the water column). Cyst concentrations were negatively correlated with PSP levels from the same sites, suggesting that cysts were formed and deposited away from the major sites of toxicity. Deposition likely took place near the end of the bloom, once it had reached the eastern boundary of the SLE. PSP toxicity was worse near the peak of the bloom, which occurred westward of this region. This highlights the dynamic behaviour of local blooms, influenced by the estuarine and mesoscale circulation. Interestingly, the major bloom of August 2008 was not followed by particularly large cyst deposition or by any major bloom in 2009 in this region. Cyst viability

  19. Use of stimulable bioluminescence from dinoflagellates as a means of detecting toxicity in the marine environment. (Reannouncement with new availability information). Professional paper

    SciTech Connect

    Lapota, D.; Moskowitz, G.; Grovhoug, J.

    1993-03-01

    Phytoplankton bioassays have been used as biological tools in assessing environmental contamination. In our laboratory, a simple bioassay has been developed which measures the light output from bioluminescence dinoflagellates for assessment of toxic effects when exposed to a single toxicant or mixture. Successful use of this type of bioassay has provided data on the acute response and has demonstrated the chronic effects, from hours up to 11 days, on dinoflagellate cells of Pyrocystis lunula and Gonyaulax polyedra upon exposure to several metals and storm drain effluent. Dinoflagellate cells were exposed to various concentrations of tributyltin chloride (TBTCI), copper (11) sulfate (CUS04), zinc sulfate (ZnSO4), or storm drain effluent. Stimulable bioluminescence was measured at each test period (3 or 4 h, 24 h, 48 h, 72 h, etc.) following setup for all assays. Cells were kept in the dark for 3 or 4 h prior to testing. Stirring the cells within the chamber stimulated maximum bioluminescence from the dinoflagellates. An IC50 (an estimated concentration that is likely to cause a 50% reduction in light output) was estimated for all assays. The trend of light reduction as a response to increasing dose level of test article was observed in all assays. A reduction in light output was measured from cells exposed to 1.6, 4.2, and 12.8 ug/L TBTCI. The IC50 decreased from 8.5 ug/L at 120 h to 3.0 ug/L at 264 h. The cells exposed to 6.25%, 12.5%, and 25.0% storm drain effluent exhibited a statistically significant (P=0.05) reduction in light output in as little as 3 h exposure....Plankton, Oceanography, Bioluminescence.

  20. Dynamics of co-occurring Alexandrium minutum (Global Clade) and A. tamarense (West European) (Dinophyceae) during a summer bloom in Cork Harbour, Ireland (2006)

    NASA Astrophysics Data System (ADS)

    Touzet, N.; Farrell, H.; Ní Rathaille, A.; Rodriguez, P.; Alfonso, A.; Botana, L. M.; Raine, R.

    2010-02-01

    The dinoflagellate genus Alexandrium contains neurotoxin-producing species, which have adversely affected the aquaculture industry and fisheries worldwide. Seasonal toxic blooms of Alexandrium spp. occur on an annual basis in the North Channel area of Cork Harbour, Ireland, where resident populations of non-toxic A. tamarense (West European ribotype) and PSP toxin-producing A. minutum (Global Clade) co-occur. Field surveys were carried out throughout a bloom of Alexandrium spp. in the summer of 2006. Taxa-specific fluorescently labelled probes were used in a dual whole-cell fluorescent in situ hybridization (WC-FISH) assay for the simultaneous discrimination and quantification of A. minutum and A. tamarense in the water column. The bloom occurred following a weak spring tide in early June and Alexandrium cell concentrations exceeded 3×10 4 cells L -1. A. minutum dominated numerically over A. tamarense throughout the sampling period (74% on average). The maximum cell concentration was ˜3.3×10 5 cells L -1 at the peak of the bloom and was localized at the eastern end of the North Channel. The bloom collapse coincided with increasing tidal flushing and significantly changing meteorological conditions (wind speed increase, lesser irradiance), which led to a water temperature drop of ˜3 °C within a period of 7 days. GTX3 was the dominant PSP toxin variant and C-toxins were at times observed in samples. Assuming that A. minutum was the only microorganism synthesising PSP toxins, the internal toxin quota was on average 13.4 fmol cell -1, a value similar to that observed in laboratory experiments. Monitoring of toxic Alexandrium species in Ireland will require the use of molecular methods for reliable discrimination and quantification.

  1. Refining the Niche of Harmful Dinoflagellates through Intensive Observation of Blooms within a Retentive, Inshore Embayment

    NASA Astrophysics Data System (ADS)

    Brosnahan, M.; Ralston, D. K.; Jiang, H.; Anderson, D. M.

    2016-02-01

    Harmful algal bloom dinoflagellates are among the most extensively studied species of marine phytoplankton both in situ and in laboratory settings through the growth and manipulation of cultures. Among many other applications, cultures are commonly used to explore changes in growth and behavioral responses across a broad range of physical and chemical parameters. Our own research group has published an extensive set of laboratory experiments to establish the growth and behavioral responses by the PSP species Alexandrium fundyense to changes in temperature and nutrient availability among other factors. In turn, results from these studies have been the basis of a biological sub-model within spatially explicit, coupled physical-biological models of A. fundyense bloom development in the Gulf of Maine and the Nauset Marsh estuary (Cape Cod, MA). More recently, through integrated observation and modeling of blooms within the Nauset Marsh estuary, our work has indicated that this culture-based approach grossly underestimates the physiological performance of A. fundyense cells in situ. Natural populations of A. fundyense divide faster, swim faster, and are inducted into the sexual phase of their life cycle at much higher rates than has been reported from studies of laboratory cultures. In spite of these flaws, assessments of the Gulf of Maine and Nauset models have demonstrated surprising skill at replicating large-scale patterns observed in field studies of this organism. One explanation may be that current models apply unrealistic grazing rates and other loss processes associated with species-species and cell-cell interactions. In situ observations by automated instruments provide a means to address these deficiencies by providing new ways to evaluate model performance, including comparisons of modeled and observed rates of division and broader consideration of species dynamics within the phytoplankton assemblage.

  2. ANALYSIS OF ALEXANDRIUM TAMARENSE (DINOPHYCEAE) GENES REVEALS THE COMPLEX EVOLUTIONARY HISTORY OF A MICROBIAL EUKARYOTE1

    PubMed Central

    Chan, Cheong Xin; Soares, Marcelo B.; Bonaldo, Maria F.; Wisecaver, Jennifer H.; Hackett, Jeremiah D.; Anderson, Donald M.; Erdner, Deana L.; Bhattacharya, Debashish

    2012-01-01

    Microbial eukaryotes may extinguish much of their nuclear phylogenetic history due to endosymbiotic/horizontal gene transfer (E/HGT). We studied E/HGT in 32,110 contigs of expressed sequence tags (ESTs) from the dinoflagellate Alexandrium tamarense (Dinophyceae) using a conservative phylogenomic approach. The vast majority of predicted proteins (86.4%) in this alga are novel or dinoflagellate-specific. We searched for putative homologs of these predicted proteins against a taxonomically broadly sampled protein database that includes all currently available data from algae and protists and reconstructed a phylogeny from each of the putative homologous protein sets. Of the 2,523 resulting phylogenies, 14-17% are potentially impacted by E/HGT involving both prokaryote and eukaryote lineages, with 2-4% showing clear evidence of reticulate evolution. The complex evolutionary histories of the remaining proteins, many of which may also have been affected by E/HGT, cannot be interpreted using our approach with currently available gene data. We present empirical evidence of reticulate genome evolution that combined with inadequate or highly complex phylogenetic signal in many proteins may impede genome-wide approaches to infer the tree of microbial eukaryotes. PMID:23066170

  3. Major transitions in dinoflagellate evolution unveiled by phylotranscriptomics

    PubMed Central

    Gavelis, Gregory S.; Burki, Fabien; Dinh, Donna; Bachvaroff, Tsvetan R.; Gornik, Sebastian G.; Bright, Kelley J.; Imanian, Behzad; Strom, Suzanne L.; Waller, Ross F.; Fensome, Robert A.; Leander, Brian S.; Rohwer, Forest L.; Saldarriaga, Juan F.

    2017-01-01

    Dinoflagellates are key species in marine environments, but they remain poorly understood in part because of their large, complex genomes, unique molecular biology, and unresolved in-group relationships. We created a taxonomically representative dataset of dinoflagellate transcriptomes and used this to infer a strongly supported phylogeny to map major morphological and molecular transitions in dinoflagellate evolution. Our results show an early-branching position of Noctiluca, monophyly of thecate (plate-bearing) dinoflagellates, and paraphyly of athecate ones. This represents unambiguous phylogenetic evidence for a single origin of the group’s cellulosic theca, which we show coincided with a radiation of cellulases implicated in cell division. By integrating dinoflagellate molecular, fossil, and biogeochemical evidence, we propose a revised model for the evolution of thecal tabulations and suggest that the late acquisition of dinosterol in the group is inconsistent with dinoflagellates being the source of this biomarker in pre-Mesozoic strata. Three distantly related, fundamentally nonphotosynthetic dinoflagellates, Noctiluca, Oxyrrhis, and Dinophysis, contain cryptic plastidial metabolisms and lack alternative cytosolic pathways, suggesting that all free-living dinoflagellates are metabolically dependent on plastids. This finding led us to propose general mechanisms of dependency on plastid organelles in eukaryotes that have lost photosynthesis; it also suggests that the evolutionary origin of bioluminescence in nonphotosynthetic dinoflagellates may be linked to plastidic tetrapyrrole biosynthesis. Finally, we use our phylogenetic framework to show that dinoflagellate nuclei have recruited DNA-binding proteins in three distinct evolutionary waves, which included two independent acquisitions of bacterial histone-like proteins. PMID:28028238

  4. Horizontal Gene Transfer is a Significant Driver of Gene Innovation in Dinoflagellates

    PubMed Central

    Wisecaver, Jennifer H.; Brosnahan, Michael L.; Hackett, Jeremiah D.

    2013-01-01

    The dinoflagellates are an evolutionarily and ecologically important group of microbial eukaryotes. Previous work suggests that horizontal gene transfer (HGT) is an important source of gene innovation in these organisms. However, dinoflagellate genomes are notoriously large and complex, making genomic investigation of this phenomenon impractical with currently available sequencing technology. Fortunately, de novo transcriptome sequencing and assembly provides an alternative approach for investigating HGT. We sequenced the transcriptome of the dinoflagellate Alexandrium tamarense Group IV to investigate how HGT has contributed to gene innovation in this group. Our comprehensive A. tamarense Group IV gene set was compared with those of 16 other eukaryotic genomes. Ancestral gene content reconstruction of ortholog groups shows that A. tamarense Group IV has the largest number of gene families gained (314–1,563 depending on inference method) relative to all other organisms in the analysis (0–782). Phylogenomic analysis indicates that genes horizontally acquired from bacteria are a significant proportion of this gene influx, as are genes transferred from other eukaryotes either through HGT or endosymbiosis. The dinoflagellates also display curious cases of gene loss associated with mitochondrial metabolism including the entire Complex I of oxidative phosphorylation. Some of these missing genes have been functionally replaced by bacterial and eukaryotic xenologs. The transcriptome of A. tamarense Group IV lends strong support to a growing body of evidence that dinoflagellate genomes are extraordinarily impacted by HGT. PMID:24259313

  5. The Vitamin B1 and B12 Required by the Marine Dinoflagellate Lingulodinium polyedrum Can be Provided by its Associated Bacterial Community in Culture.

    PubMed

    Cruz-López, Ricardo; Maske, Helmut

    2016-01-01

    In this study we established the B1 and B12 vitamin requirement of the dinoflagellate Lingulodinium polyedrum and the vitamin supply by its associated bacterial community. In previous field studies the B1 and B12 demand of this species was suggested but not experimentally verified. When the axenic vitamin un-supplemented culture (B-ns) of L. polyedrum was inoculated with a coastal bacterial community, the dinoflagellate's vitamin growth limitation was overcome, reaching the same growth rates as the culture growing in vitamin B1B7B12-supplemented (B-s) medium. Measured B12 concentrations in the B-s and B-ns cultures were both higher than typical coastal concentrations and B12 in the B-s culture was higher than in the B-ns culture. In both B-s and B-ns cultures, the probability of dinoflagellate cells having bacteria attached to the cell surface was similar and in both cultures an average of six bacteria were attached to each dinoflagellate cell. In the B-ns culture the free bacterial community showed significantly higher cell abundance suggesting that unattached bacteria supplied the vitamins. The fluorescence in situ hybridization (FISH) protocol allowed the quantification and identification of three bacterial groups in the same samples of the free and attached epibiotic bacteria for both treatments. The relative composition of these groups was not significantly different and was dominated by Alphaproteobacteria (>89%). To complement the FISH counts, 16S rDNA sequencing targeting the V3-V4 regions was performed using Illumina-MiSeq technology. For both vitamin amendments, the dominant group found was Alphaproteobacteria similar to FISH, but the percentage of Alphaproteobacteria varied between 50 and 95%. Alphaproteobacteria were mainly represented by Marivita sp., a member of the Roseobacter clade, followed by the Gammaproteobacterium Marinobacter flavimaris. Our results show that L. polyedrum is a B1 and B12 auxotroph, and acquire both vitamins from the associated

  6. Enzymatic digestive activity and absorption efficiency in Tagelus dombeii upon Alexandrium catenella exposure

    NASA Astrophysics Data System (ADS)

    Fernández-Reiriz, M. J.; Navarro, J. M.; Cisternas, B. A.; Babarro, J. M. F.; Labarta, U.

    2013-12-01

    We analyzed absorption efficiency (AE) and digestive enzyme activity (amylase, cellulase complex, and laminarinase) of the infaunal bivalve Tagelus dombeii originating from two geographic sites, Corral-Valdivia and Melinka-Aysén, which have different long-term paralytic shellfish poisoning (PSP) exposure rates. We report the effects of past feeding history (origin) on T. dombeii exposed to a mixed diet containing the toxic dinoflagellate Alexandrium catenella and another dinoflagellate-free control diet over a 12-day period in the laboratory. Absorption efficiency values of T. dombeii individuals that experienced PSP exposure in their habitat (Melinka-Aysén) remained unchanged during exposure to toxic food in the laboratory. In contrast, T. dombeii from a non-PSP exposure field site (Corral-Valdivia) showed a significant reduction in AE with toxic exposure time. This study established that the amylase and cellulase complexes were the most important enzymes in the digestive glands of Tagelus from both sites. The temporal evolution of enzymatic activity under toxic diet was fitted to exponential (amylase and cellulase) and to a logarithmic (laminarinase) models. In all fits, we found significant effect of origin in the model parameters. At the beginning of the experiment, higher enzymatic activity was observed for clams from Corral-Valdivia. The amylase activity decreased with time exposure for individuals from Corral and increased for individuals from Melinka. Cellulase activity did not vary over time for clams from Corral, but increased for individuals from Melinka and laminarinase activity decreased over time for individuals from Corral and remained unchanged over time for Melinka. A feeding history of exposure to the dinoflagellate A. catenella was reflected in the digestive responses of both T. dombeii populations.

  7. Bacterial diversity in toxic Alexandrium tamarense blooms off the Orkney Isles and the Firth of Forth

    NASA Astrophysics Data System (ADS)

    Wichels, Antje; Hummert, Christian; Elbrächter, Malte; Luckas, Bernd; Schütt, Christian; Gerdts, Gunnar

    2004-04-01

    The genetic diversity of the bacterial community associated with Alexandrium tamarense blooms was studied in blooms of the toxic dinoflagellates in the waters around the Orkney Isles and the Firth of Forth (Scotland). For toxin and molecular analysis of the bacterial communities associated with the toxic bloom, water samples were taken in 1998 and 1999 from A. tamarense blooms. The bacterial community structure, as determined by DGGE (denaturing gradient gel electrophoresis) showed clear differences between all three investigated size fractions (dinoflagellate-associated bacteria, attached bacteria and free-living bacteria), with high diversity within each sample. DNA sequence analysis of the dominant and most frequent DGGE bands revealed the dominance of α Proteobacteria, mainly of the Roseobacter clade, with similarities of 91-99%. Moreover, DGGE bands occurring at the same position in the gel throughout in most samples corroborate the presence of several specific α Proteobacteria of the Roseobacter clade. Overall, 500 bacteria were isolated from the bloom and partly phylogenetically analysed. They were members of two prokaryotic phyla, the Proteobacteria and the Bacteroidetes, related to Proteobacteria of the α and γ subdivisions (Alteromonas, Pseudoalteromonas and Colwellia). All bacteria were tested for the production of sodium channel blocking (SCB) toxins using mouse neuroblastoma assay. No production of SCB toxins was found and high performance liquid chromatography (HPLC) analysis confirmed these results. The content of total paralytic shellfish poisoning (PSP) toxin in the water samples, as measured within the toxic dinoflagellate blooms using HPLC, ranged from 53 to 2191 ng PSP l-1 in 1998 and from 0 to 478 ng PSP l-1 in 1999. Changes in PSP toxin content were not accompanied by changes of DGGE band patterns. We therefore presume that the bacterial groups identified in this study were not exclusively associated with toxic A. tamarense, but were

  8. Development and validation of an ultrasensitive fluorescence planar waveguide biosensor for the detection of paralytic shellfish toxins in marine algae.

    PubMed

    Meneely, Julie P; Campbell, Katrina; Greef, Charles; Lochhead, Michael J; Elliott, Christopher T

    2013-03-15

    Marine dinoflagellates of the genera Alexandrium are well known producers of the potent neurotoxic paralytic shellfish toxins that can enter the food web and ultimately present a serious risk to public health in addition to causing huge economic losses. Direct coastal monitoring of Alexandrium spp. can provide early warning of potential shellfish contamination and risks to consumers and so a rapid, sensitive, portable and easy-to-use assay has been developed for this purpose using an innovative planar waveguide device. The disposable planar waveguide is comprised of a transparent substrate onto which an array of toxin-protein conjugates is deposited, assembled in a cartridge allowing the introduction of sample, and detection reagents. The competitive assay format uses a high affinity antibody to paralytic shellfish toxins with a detection signal generated via a fluorescently labelled secondary antibody. The waveguide cartridge is analysed by a simple reader device and results are displayed on a laptop computer. Assay speed has been optimised to enable measurement within 15 min. A rapid, portable sample preparation technique was developed for Alexandrium spp. in seawater to ensure analysis was completed within a short period of time. The assay was validated and the LOD and CCβ were determined as 12 pg/mL and 20 pg/mL respectively with an intra-assay CV of 11.3% at the CCβ and an average recovery of 106%. The highly innovative assay was proven to accurately detect toxin presence in algae sampled from the US and European waters at an unprecedented cell density of 10 cells/L. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Trophic accumulation of PSP toxins in zooplankton during Alexandrium fundyense blooms in Casco Bay, Gulf of Maine, April-June 1998. II. . Zooplankton abundance and size-fractionated community composition

    NASA Astrophysics Data System (ADS)

    Turner, Jefferson T.; Doucette, Gregory J.; Keafer, Bruce A.; Anderson, Donald M.

    2005-09-01

    During spring blooms of the toxic dinoflagellate Alexandrium fundyense in Casco Bay, Maine in 1998, we investigated vectorial intoxication of various zooplankton size fractions with PSP toxins, including zooplankton community composition from quantitative zooplankton samples (>102 μm), as well as zooplankton composition in relation to toxin levels in various size fractions (20-64, 64-100, 100-200, 200-500, >500 μm). Zooplankton abundance in 102 μm mesh samples was low (most values<10,000 animals m -3) from early April through early May, but increased to maxima in mid-June (cruise mean=121,500 animals m -3). Quantitative zooplankton samples (>102 μm) were dominated by copepod nauplii, and Oithona similis copepodites and adults at most locations except for those furthest inshore. At these inshore locations, Acartia hudsonica copepodites and adults were usually dominant. Larger copepods such as Calanus finmarchicus, Centropages typicus, and Pseudocalanus spp. were found primarily offshore, and at much lower abundances than O. similis. Rotifers, mainly present from late April to late May, were most abundant inshore. The marine cladoceran Evadne nordmani was sporadically abundant, particularly in mid-June. Microplankton in 20-64 μm size fractions was generally dominated by A. fundyense, non-toxic dinoflagellates, and tintinnids. Microplankton in 64-100 μm size fractions was generally dominated by larger non-toxic dinoflagellates, tintinnids, aloricate ciliates, and copepod nauplii, and in early May, rotifers. Some samples (23%) in the 64-100 μm size fractions contained abundant cells of A. fundyense, presumably due to sieve clogging, but most did not contain A. fundyense cells. This suggests that PSP toxin levels in those samples were due to vectorial intoxication of microzooplankters such as heterotrophic dinoflagellates, tintinnids, aloricate ciliates, rotifers, and copepod nauplii via feeding on A. fundyense cells. Dominant taxa in zooplankton fractions varied

  10. Preliminary identification of three new isolates in genus Alexandrium (Dinophyceae) from China sea area

    NASA Astrophysics Data System (ADS)

    Fan, Lijing; Sui, Zhenghong; Mao, Yunxiang; Guo, Hao

    2007-01-01

    The 5.8S ribosomal DNA sequences (5.8S rDNA) and their flanking regions, internal transcribed spacer 1 and spacer 2 (ITS1 and ITS2) of three new isolates in genus Alexandrium ( Alexandrium sp. qd1, Alexandrium sp. qd2, Alexandrium sp. gz) from China were amplified, sequenced, and subjected to phylogenetic analysis. Alexandrium sp. gz and Alexandrium sp. qd1 were grouped with high bootstrap values with four strains/species, i.e., A. catenella South Korea strain, A. catenella Japan strain, and two from China, Alexandrium sp. AC03 and Alexandrium sp. AN01 being proposed to be A. catenalla in a previous study. Then Alexandrium sp. gz and Alexandrium sp. qd1 were identified as Alexandrium catenella. As A. catenella was isolated from Qingdao and Guangzhou sea areas, it supposedly distributed at least in these two areas and was genetically different. Alexandrium sp. qd2 differed greatly from species in Alexandrium. It clustered with Symbiodinium californium, Symbiodinium sp. G15 and Gymnodinium sp. Zhao 01 with 100% bootstrap value; so Alexandrium sp. qd2 affiliates to genus Symbiodinium, and is probably a free-living Symbiodinium species.

  11. Viable cell sorting of dinoflagellates by multi-parametric flow cytometry.

    USDA-ARS?s Scientific Manuscript database

    Electronic cell sorting for isolation and culture of dinoflagellates and other marine eukaryotic phytoplankton was compared to the traditional method of manually picking of cells using a micropipette. Trauma to electronically sorted cells was not a limiting factor as fragile dinoflagellates, such a...

  12. The Vitamin B1 and B12 Required by the Marine Dinoflagellate Lingulodinium polyedrum Can be Provided by its Associated Bacterial Community in Culture

    PubMed Central

    Cruz-López, Ricardo; Maske, Helmut

    2016-01-01

    In this study we established the B1 and B12 vitamin requirement of the dinoflagellate Lingulodinium polyedrum and the vitamin supply by its associated bacterial community. In previous field studies the B1 and B12 demand of this species was suggested but not experimentally verified. When the axenic vitamin un-supplemented culture (B-ns) of L. polyedrum was inoculated with a coastal bacterial community, the dinoflagellate’s vitamin growth limitation was overcome, reaching the same growth rates as the culture growing in vitamin B1B7B12-supplemented (B-s) medium. Measured B12 concentrations in the B-s and B-ns cultures were both higher than typical coastal concentrations and B12 in the B-s culture was higher than in the B-ns culture. In both B-s and B-ns cultures, the probability of dinoflagellate cells having bacteria attached to the cell surface was similar and in both cultures an average of six bacteria were attached to each dinoflagellate cell. In the B-ns culture the free bacterial community showed significantly higher cell abundance suggesting that unattached bacteria supplied the vitamins. The fluorescence in situ hybridization (FISH) protocol allowed the quantification and identification of three bacterial groups in the same samples of the free and attached epibiotic bacteria for both treatments. The relative composition of these groups was not significantly different and was dominated by Alphaproteobacteria (>89%). To complement the FISH counts, 16S rDNA sequencing targeting the V3–V4 regions was performed using Illumina-MiSeq technology. For both vitamin amendments, the dominant group found was Alphaproteobacteria similar to FISH, but the percentage of Alphaproteobacteria varied between 50 and 95%. Alphaproteobacteria were mainly represented by Marivita sp., a member of the Roseobacter clade, followed by the Gammaproteobacterium Marinobacter flavimaris. Our results show that L. polyedrum is a B1 and B12 auxotroph, and acquire both vitamins from the

  13. Photoacclimation and the effect of the symbiotic environment on the photosynthetic response of symbiotic dinoflagellates in the tropical marine hydroid Myrionema amboinense.

    PubMed

    Fitt; Cook

    2001-01-01

    Symbiotic dinoflagellates of the genus Symbiodinium and residing in the tropical hydroid Myrionema amboinense acclimate to low photon flux associated with low light 'shade' environments by increasing the amount of photosynthetic pigments per algal cell. The photosynthetic light intensity (PI) curves suggested that the low-light pigment response involved an increase in the number of photosynthetic units (PSU) in the chloroplast in addition to any increases in PSU size. Comparisons of light-dependent portion of the P-I curves of freshly isolated zooxanthellae (FIZ) with those from symbionts within the intact animal suggest that the host cell environment reduced average light levels reaching the symbiotic algae by more than half. This phenomenon may protect the algae from photobleaching of pigments and/or photoinhibition of photosynthesis at high light intensities present in shallow water habitats. In addition, maximum photosynthesis (P(max)) of symbionts removed from the host cell was higher than that recorded from dinoflagellates in the intact association, suggesting that the availability of carbon dioxide for photosynthesis may be limited in the intact hydroid. Shaded polyps contained fewer zooxanthellae and had less tissue biomass (measured as protein) than unshaded polyps. However symbionts from shaded polyps acclimated to the low light intensities by increasing chlorophyll levels and photosynthetic rates. The higher photosynthetic rates may have resulted from increased availability of carbon dioxide associated with lower symbiont density. Calculations of the contribution of zooxanthellae carbon to the host animal's respiratory demand (CZAR) showed that zooxanthellae from shaded polyps living in the field potentially provide about the same amount of carbon to their host as zooxanthellae from polyps living in the field in unshaded high light intensities.

  14. Distribution of Alexandrium fundyense (Dinophyceae) cysts in Greenland and Iceland, with an emphasis on viability and growth in the Arctic

    PubMed Central

    Richlen, Mindy L.; Zielinski, Oliver; Holinde, Lars; Tillmann, Urban; Cembella, Allan; Lyu, Yihua; Anderson, Donald M.

    2016-01-01

    The bloom-forming dinoflagellate Alexandrium fundyense has been extensively studied due its toxin-producing capabilities and consequent impacts to human health and economies. This study investigated the prevalence of resting cysts of A. fundyense in western Greenland and Iceland to assess the historical presence and magnitude of bloom populations in the region, and to characterize environmental conditions during summer, when bloom development may occur. Analysis of sediments collected from these locations showed that Alexandrium cysts were present at low to moderate densities in most areas surveyed, with highest densities observed in western Iceland. Additionally, laboratory experiments were conducted on clonal cultures established from isolated cysts or vegetative cells from Greenland, Iceland, and the Chukchi Sea (near Alaska) to examine the effects of photoperiod interval and irradiance levels on growth. Growth rates in response to the experimental treatments varied among isolates, but were generally highest under conditions that included both the shortest photoperiod interval (16h:8h light:dark) and higher irradiance levels (~146–366 μmol photons m−2 s−1), followed by growth under an extended photoperiod interval and low irradiance level (~37 μmol photons m−2 s−1). Based on field and laboratory data, we hypothesize that blooms in Greenland are primarily derived from advected Alexandrium populations, as low bottom temperatures and limited light availability would likely preclude in situ bloom development. In contrast, the bays and fjords in Iceland may provide more favorable habitat for germling cell survival and growth, and therefore may support indigenous, self-seeding blooms. PMID:27721528

  15. Evolution of saxitoxin synthesis in cyanobacteria and dinoflagellates.

    PubMed

    Hackett, Jeremiah D; Wisecaver, Jennifer H; Brosnahan, Michael L; Kulis, David M; Anderson, Donald M; Bhattacharya, Debashish; Plumley, F Gerald; Erdner, Deana L

    2013-01-01

    Dinoflagellates produce a variety of toxic secondary metabolites that have a significant impact on marine ecosystems and fisheries. Saxitoxin (STX), the cause of paralytic shellfish poisoning, is produced by three marine dinoflagellate genera and is also made by some freshwater cyanobacteria. Genes involved in STX synthesis have been identified in cyanobacteria but are yet to be reported in the massive genomes of dinoflagellates. We have assembled comprehensive transcriptome data sets for several STX-producing dinoflagellates and a related non-toxic species and have identified 265 putative homologs of 13 cyanobacterial STX synthesis genes, including all of the genes directly involved in toxin synthesis. Putative homologs of four proteins group closely in phylogenies with cyanobacteria and are likely the functional homologs of sxtA, sxtG, and sxtB in dinoflagellates. However, the phylogenies do not support the transfer of these genes directly between toxic cyanobacteria and dinoflagellates. SxtA is split into two proteins in the dinoflagellates corresponding to the N-terminal portion containing the methyltransferase and acyl carrier protein domains and a C-terminal portion with the aminotransferase domain. Homologs of sxtB and N-terminal sxtA are present in non-toxic strains, suggesting their functions may not be limited to saxitoxin production. Only homologs of the C-terminus of sxtA and sxtG were found exclusively in toxic strains. A more thorough survey of STX+ dinoflagellates will be needed to determine if these two genes may be specific to SXT production in dinoflagellates. The A. tamarense transcriptome does not contain homologs for the remaining STX genes. Nevertheless, we identified candidate genes with similar predicted biochemical activities that account for the missing functions. These results suggest that the STX synthesis pathway was likely assembled independently in the distantly related cyanobacteria and dinoflagellates, although using some

  16. A Feedback Mechanism to Control Apoptosis Occurs in the Digestive Gland of the Oyster Crassostrea gigas Exposed to the Paralytic Shellfish Toxins Producer Alexandrium catenella

    PubMed Central

    Rolland, Jean-Luc; Medhioub, Walid; Vergnes, Agnes; Abi-khalil, Celina; Savar, Véronique; Abadie, Eric; Masseret, Estelle; Amzil, Zouher; Laabir, Mohamed

    2014-01-01

    To better understand the effect of Paralytic Shellfish Toxins (PSTs) accumulation in the digestive gland of the Pacific oyster, Crassostrea gigas, we experimentally exposed individual oysters for 48 h to a PSTs producer, the dinoflagellate Alexandrium catenella. In comparison to the effect of the non-toxic Alexandrium tamarense, on the eight apoptotic related genes tested, Bax and BI.1 were significantly upregulated in oysters exposed 48 h to A. catenella. Among the five detoxification related genes tested, the expression of cytochrome P450 (CYP1A) was shown to be correlated with toxin concentration in the digestive gland of oysters exposed to the toxic dinoflagellate. Beside this, we observed a significant increase in ROS production, a decrease in caspase-3/7 activity and normal percentage of apoptotic cells in this tissue. Taken together, these results suggest a feedback mechanism, which may occur in the digestive gland where BI.1 could play a key role in preventing the induction of apoptosis by PSTs. Moreover, the expression of CYP1A, Bax and BI.1 were found to be significantly correlated to the occurrence of natural toxic events, suggesting that the expression of these genes together could be used as biomarker to assess the biological responses of oysters to stress caused by PSTs. PMID:25257788

  17. A feedback mechanism to control apoptosis occurs in the digestive gland of the oyster crassostrea gigas exposed to the paralytic shellfish toxins producer Alexandrium catenella.

    PubMed

    Rolland, Jean-Luc; Medhioub, Walid; Vergnes, Agnes; Abi-Khalil, Celina; Savar, Véronique; Abadie, Eric; Masseret, Estelle; Amzil, Zouher; Laabir, Mohamed

    2014-09-25

    To better understand the effect of Paralytic Shellfish Toxins (PSTs) accumulation in the digestive gland of the Pacific oyster, Crassostrea gigas, we experimentally exposed individual oysters for 48 h to a PSTs producer, the dinoflagellate Alexandrium catenella. In comparison to the effect of the non-toxic Alexandrium tamarense, on the eight apoptotic related genes tested, Bax and BI.1 were significantly upregulated in oysters exposed 48 h to A. catenella. Among the five detoxification related genes tested, the expression of cytochrome P450 (CYP1A) was shown to be correlated with toxin concentration in the digestive gland of oysters exposed to the toxic dinoflagellate. Beside this, we observed a significant increase in ROS production, a decrease in caspase-3/7 activity and normal percentage of apoptotic cells in this tissue. Taken together, these results suggest a feedback mechanism, which may occur in the digestive gland where BI.1 could play a key role in preventing the induction of apoptosis by PSTs. Moreover, the expression of CYP1A, Bax and BI.1 were found to be significantly correlated to the occurrence of natural toxic events, suggesting that the expression of these genes together could be used as biomarker to assess the biological responses of oysters to stress caused by PSTs.

  18. LIPID BIOMARKER CHARACTERIZATION OF BLOOM-RELATED DINOFLAGELLATES AND OTHER EUKARYOTIC ALGAE

    EPA Science Inventory

    Marine eukaryotic algae synthesize an array of lipids of chemotaxonomic utility that are potentially valuable in characterizing phytoplankton communities. Sterols and photopigments characteristic of dinoflagellates are rarely found in other algal classes. Long chain (C28) highly ...

  19. LIPID BIOMARKER CHARACTERIZATION OF BLOOM-RELATED DINOFLAGELLATES AND OTHER EUKARYOTIC ALGAE

    EPA Science Inventory

    Marine eukaryotic algae synthesize an array of lipids of chemotaxonomic utility that are potentially valuable in characterizing phytoplankton communities. Sterols and photopigments characteristic of dinoflagellates are rarely found in other algal classes. Long chain (C28) highly ...

  20. High sequence variability, diverse subcellular localizations, and ecological implications of alkaline phosphatase in dinoflagellates and other eukaryotic phytoplankton.

    PubMed

    Lin, Xin; Zhang, Huan; Cui, Yudong; Lin, Senjie

    2012-01-01

    Alkaline phosphatase (AP) is a key enzyme for phytoplankton to utilize dissolved organic phosphorus (DOP) when dissolved inorganic phosphorus is limited. While three major types of AP and their correspondingly diverse subcellular localization have been recognized in bacteria, little is known about AP in eukaryotic phytoplankton such as dinoflagellates. Here, we isolated a full-length AP cDNA from a latest-diverging dinoflagellate genus Alexandrium, and conducted comparative analyses with homologs from a relatively basal (Amphidinium carterae) and late-diverging (Karenia brevis) lineage of dinoflagellates as well as other eukaryotic algae. New data and previous studies indicate that AP is common in dinoflagellates and most other major eukaryotic groups of phytoplankton. AP sequences are more variable than many other genes studied in dinoflagellates, and are divergent among different eukaryotic phytoplankton lineages. Sequence comparison to the other characterized APs suggests that dinoflagellates and some other eukaryotic phytoplankton possess the putative AP as phoA type, but some other eukaryotic phytoplankton seem to have other types. Phylogenetic analyses based on AP amino acid sequences indicated that the "red-type" eukaryotic lineages formed a monophyletic group, suggesting a common origin of their APs. As different amino acid sequences have been found to predictably determine different spatial distribution in the cells, which may facilitate access to different pools of DOP, existing computational models were adopted to predict the subcellular localizations of putative AP in the three dinoflagellates and other eukaryotic phytoplankton. Results showed different subcellular localizations of APs in different dinoflagellates and other lineages. The linkage between AP sequence divergence, subcellular localization, and ecological niche differentiation requires rigorous experimental verification, and this study now provides a framework for such a future effort.

  1. High Sequence Variability, Diverse Subcellular Localizations, and Ecological Implications of Alkaline Phosphatase in Dinoflagellates and Other Eukaryotic Phytoplankton

    PubMed Central

    Lin, Xin; Zhang, Huan; Cui, Yudong; Lin, Senjie

    2012-01-01

    Alkaline phosphatase (AP) is a key enzyme for phytoplankton to utilize dissolved organic phosphorus (DOP) when dissolved inorganic phosphorus is limited. While three major types of AP and their correspondingly diverse subcellular localization have been recognized in bacteria, little is known about AP in eukaryotic phytoplankton such as dinoflagellates. Here, we isolated a full-length AP cDNA from a latest-diverging dinoflagellate genus Alexandrium, and conducted comparative analyses with homologs from a relatively basal (Amphidinium carterae) and late-diverging (Karenia brevis) lineage of dinoflagellates as well as other eukaryotic algae. New data and previous studies indicate that AP is common in dinoflagellates and most other major eukaryotic groups of phytoplankton. AP sequences are more variable than many other genes studied in dinoflagellates, and are divergent among different eukaryotic phytoplankton lineages. Sequence comparison to the other characterized APs suggests that dinoflagellates and some other eukaryotic phytoplankton possess the putative AP as phoA type, but some other eukaryotic phytoplankton seem to have other types. Phylogenetic analyses based on AP amino acid sequences indicated that the “red-type” eukaryotic lineages formed a monophyletic group, suggesting a common origin of their APs. As different amino acid sequences have been found to predictably determine different spatial distribution in the cells, which may facilitate access to different pools of DOP, existing computational models were adopted to predict the subcellular localizations of putative AP in the three dinoflagellates and other eukaryotic phytoplankton. Results showed different subcellular localizations of APs in different dinoflagellates and other lineages. The linkage between AP sequence divergence, subcellular localization, and ecological niche differentiation requires rigorous experimental verification, and this study now provides a framework for such a future effort

  2. Effects of salinity, pH and temperature on the re-establishment of bioluminescence and copper or SDS toxicity in the marine dinoflagellate Pyrocystis lunula using bioluminescence as an endpoint

    USGS Publications Warehouse

    Craig, J.M.; Klerks, P.L.; Heimann, K.; Waits, J.L.

    2003-01-01

    Pyrocystis lunula is a unicellular, marine, photoautotrophic, bioluminescent dinoflagellate. This organism is used in the Lumitox ?? bioassay with inhibition of bioluminescence re-establishment as the endpoint. Experiments determined if acute changes in pH, salinity, or temperature had an effect on the organisms' ability to re-establish bioluminescence, or on the bioassay's potential to detect sodium dodecyl sulfate (SDS) and copper toxicity. The re-establishment of bioluminescence itself was not very sensitive to changes in pH within the pH 6-10 range, though reducing pH from 8 to levels below 6 decreased this capacity. Increasing the pH had little effect on Cu or SDS toxicity, but decreasing the pH below 7 virtually eliminated the toxicity of either compound in the bioassay. Lowering the salinity from 33 to 27??? or less resulted in a substantial decrease in re-establishment of bioluminescence, while increasing the salinity to 43 or 48 ??? resulted in a small decline. Salinity had little influence on the bioassay's quantification of Cu toxicity, while the data showed a weak negative relationship between SDS toxicity and salinity. Re-establishment of bioluminescence showed a direct dependence on temperature, but only at 10??C did temperature have an obvious effect on the toxicity of Cu in this bioassay. ?? 2003 Elsevier Science Ltd. All rights reserved.

  3. Effects of salinity, pH and temperature on the re-establishment of bioluminescence and copper or SDS toxicity in the marine dinoflagellate Pyrocystis lunula using bioluminescence as an endpoint.

    PubMed

    Craig, Jaquelyn M; Klerks, Paul L; Heimann, Kirsten; Waits, Juliann L

    2003-01-01

    Pyrocystis lunula is a unicellular, marine, photoautotrophic, bioluminescent dinoflagellate. This organism is used in the Lumitox bioassay with inhibition of bioluminescence re-establishment as the endpoint. Experiments determined if acute changes in pH, salinity, or temperature had an effect on the organisms' ability to re-establish bioluminescence, or on the bioassay's potential to detect sodium dodecyl sulfate (SDS) and copper toxicity. The re-establishment of bioluminescence itself was not very sensitive to changes in pH within the pH 6-10 range, though reducing pH from 8 to levels below 6 decreased this capacity. Increasing the pH had little effect on Cu or SDS toxicity, but decreasing the pH below 7 virtually eliminated the toxicity of either compound in the bioassay. Lowering the salinity from 33 to 27 per thousandth or less resulted in a substantial decrease in re-establishment of bioluminescence, while increasing the salinity to 43 or 48 per thousandth resulted in a small decline. Salinity had little influence on the bioassay's quantification of Cu toxicity, while the data showed a weak negative relationship between SDS toxicity and salinity. Re-establishment of bioluminescence showed a direct dependence on temperature, but only at 10 degrees C did temperature have an obvious effect on the toxicity of Cu in this bioassay.

  4. Toxin variability in natural populations of Alexandrium fundyense in Casco Bay, Maine—evidence of nitrogen limitation

    NASA Astrophysics Data System (ADS)

    Poulton, N. J.; Keafer, B. A.; Anderson, D. M.

    2005-09-01

    The dinoflagellate Alexandrium fundyense is a common, recurring harmful algal bloom (HAB) species in the Gulf of Maine. To date, most physiological measurements of phytoplankton in the field provide data on the entire community, yet efforts to obtain species-specific data are particularly important for understanding the ecological and physiological dynamics of HAB species, such as, Alexandrium. Alexandrium spp., do not usually dominate the planktonic community in the Gulf of Maine, but are of great interest due to the potent toxins produced. In order to determine the nutritional status of Alexandrium spp. in natural populations, indicators of nutrient deprivation need to be identified that are specific to that one species. To date, the saxitoxin content of A. fundyense is known to vary under different environmental conditions such as nitrogen and phosphorous limitation. However, in batch culture the composition of the toxin (the relative amounts of each saxitoxin derivative per cell) appears to be a stable quantity and thus is sometimes viewed as a biochemical marker of individual strains. In more recent studies, toxin composition has been shown to vary during progressive N- and P- limitation, once the cells are given time to achieve steady state in semi-continuous, nutrient-limited cultures. Using both the absolute toxin concentrations and relative proportion (mole % total toxin) of each toxin derivative, N- and P-limitation can be distinguished based on the observed trends in the different saxitoxin derivatives. In this study, we examine the toxin content and composition in natural A. fundyense populations during a spring bloom in Casco Bay, ME from April-June of 1998. This allows us to examine whether A. fundyense populations in the western Gulf of Maine are sufficiently homogenous to permit the detection of toxin composition and toxin content differences through time and space, and if so, to determine whether those changes are indicative of a particular

  5. Quantitative PCR Method for Enumeration of Cells of Cryptic Species of the Toxic Marine Dinoflagellate Ostreopsis spp. in Coastal Waters of Japan

    PubMed Central

    Hariganeya, Naohito; Tanimoto, Yuko; Yamaguchi, Haruo; Nishimura, Tomohiro; Tawong, Wittaya; Sakanari, Hiroshi; Yoshimatsu, Takamichi; Sato, Shinya; Preston, Christina M.; Adachi, Masao

    2013-01-01

    Monitoring of harmful algal bloom (HAB) species in coastal waters is important for assessment of environmental impacts associated with HABs. Co-occurrence of multiple cryptic species such as toxic dinoflagellate Ostreopsis species make reliable microscopic identification difficult, so the employment of molecular tools is often necessary. Here we developed new qPCR method by which cells of cryptic species can be enumerated based on actual gene number of target species. The qPCR assay targets the LSU rDNA of Ostreopsis spp. from Japan. First, we constructed standard curves with a linearized plasmid containing the target rDNA. We then determined the number of rDNA copies per cell of target species from a single cell isolated from environmental samples using the qPCR assay. Differences in the DNA recovery efficiency was calculated by adding exogenous plasmid to a portion of the sample lysate before and after DNA extraction followed by qPCR. Then, the number of cells of each species was calculated by division of the total number of rDNA copies of each species in the samples by the number of rDNA copies per cell. To test our procedure, we determined the total number of rDNA copies using environmental samples containing no target cells but spiked with cultured cells of several species of Ostreopsis. The numbers estimated by the qPCR method closely approximated total numbers of cells added. Finally, the numbers of cells of target species in environmental samples containing cryptic species were enumerated by the qPCR method and the total numbers also closely approximated the microscopy cell counts. We developed a qPCR method that provides accurate enumeration of each cryptic species in environments. This method is expected to be a powerful tool for monitoring the various HAB species that occur as cryptic species in coastal waters. PMID:23593102

  6. Biogeography of dinoflagellate cysts in northwest Atlantic ...

    EPA Pesticide Factsheets

    Few biogeographic studies of dinoflagellate cysts include the near-shore estuarine environment. We determine the effect of estuary type, biogeography, and water quality on the spatial distribution of organic-walled dinoflagellate cysts from the Northeast USA (Maine to Delaware) and Canada (Prince Edward Island). A total of 69 surface sediment samples were collected from 27 estuaries, from sites with surface salinities >20. Dinoflagellate cysts were examined microscopically and compared to environmental parameters using multivariate ordination techniques. The spatial distribution of cyst taxa reflects biogeographic provinces established by other marine organisms, with Cape Cod separating the northern Acadian Province from the southern Virginian Province. Species such as Lingulodinium machaerophorum and Polysphaeridinium zoharyi were found almost exclusively in the Virginian Province, while others such as Dubridinium spp. and Islandinium? cezare were more abundant in the Acadian Province. Tidal range, sea surface temperature (SST), and sea surface salinity (SSS) are statistically significant parameters influencing cyst assemblages. Samples from the same type of estuary cluster together in canonical correspondence analysis when the estuaries are within the same biogeographic province. The large geographic extent of this study, encompassing four main estuary types (riverine, lagoon, coastal embayment, and fjord), allowed us to determine that the type of estuary has

  7. Do the levels of industrial pollutants influence the distribution and abundance of dinoflagellate cysts in the recently-deposited sediment of a Mediterranean coastal ecosystem?

    PubMed

    Triki, Habiba Zmerli; Laabir, Mohamed; Lafabrie, Céline; Malouche, Dhafer; Bancon-Montigny, Chrystelle; Gonzalez, Catherine; Deidun, Alan; Pringault, Olivier; Daly-Yahia, Ons Kéfi

    2017-10-01

    We studied the relationships between sediment industrial pollutants concentrations, sediment characteristics and the dinoflagellate cyst abundance within a coastal lagoon by investigating a total of 55 sampling stations within the Bizerte lagoon, a highly anthropized Mediterranean ecosystem. The sediment of Bizerte lagoon is characterized by a high dinocyst abundance, reaching a maximum value of 2742cysts·g(-1) of dry sediment. The investigated cyst diversity was characterized by the presence of 22 dominant dinocyst morphotypes belonging to 11 genera. Two dinoflagellate species dominated the assemblage: Alexandrium pseudogonyaulax and Protoperidinium claudicans, representing 29 to 89% and 5 to 38% of the total cyst abundance, respectively, depending on the station. Seven morphotypes belonging to potentially toxic species were detected, including Alexandrium minutum, A. pseudogonyaulax, Alexandrium catenella/tamarense species complex, Lingulodinium polyedrum, Gonyaulax cf. spinifera complex, Prorocentrum micans and Protoceratium reticulatum. Pearson correlation values showed a positive correlation (α=0.05) between cyst abundance and both water content and fine silt sediment content. Clustering revealed that the highest abundance of cysts corresponds to stations presenting the higher amounts of heavy metals. The simultaneous autoregressive model (SAM) highlighted a significant correlation (α=0.05) between cyst accumulation and two main factors: sediment water content and sediment content for several heavy metals, including Hg, Cd, Cu, Ni and Cr. These results suggest that the degree of heavy metal pollution could influence cyst accumulation patterns. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A red tide of Alexandrium fundyense in the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    McGillicuddy, D. J.; Brosnahan, M. L.; Couture, D. A.; He, R.; Keafer, B. A.; Manning, J. P.; Martin, J. L.; Pilskaln, C. H.; Townsend, D. W.; Anderson, D. M.

    2014-05-01

    In early July 2009, an unusually high concentration of the toxic dinoflagellate Alexandrium fundyense occurred in the western Gulf of Maine, causing surface waters to appear reddish brown to the human eye. The discolored water appeared to be the southern terminus of a large-scale event that caused shellfish toxicity along the entire coast of Maine to the Canadian border. Rapid-response shipboard sampling efforts together with satellite data suggest the water discoloration in the western Gulf of Maine was a highly ephemeral feature of less than two weeks in duration. Flow cytometric analysis of surface samples from the red water indicated the population was undergoing sexual reproduction. Cyst fluxes downstream of the discolored water were the highest ever measured in the Gulf of Maine, and a large deposit of new cysts was observed that fall. Although the mechanisms causing this event remain unknown, its timing coincided with an anomalous period of downwelling-favorable winds that could have played a role in aggregating upward-swimming cells. Regardless of the underlying causes, this event highlights the importance of short-term episodic phenomena on regional population dynamics of A. fundyense.

  9. A red tide of Alexandrium fundyense in the Gulf of Maine

    PubMed Central

    McGillicuddy, D.J.; Brosnahan, M.L.; Couture, D.A.; He, R.; Keafer, B.A.; Manning, J.P.; Martin, J.L.; Pilskaln, C.H.; Townsend, D.W.; Anderson, D.M.

    2013-01-01

    In early July 2009, an unusually high concentration of the toxic dinoflagellate Alexandrium fundyense occurred in the western Gulf of Maine, causing surface waters to appear reddish brown to the human eye. The discolored water appeared to be the southern terminus of a large-scale event that caused shellfish toxicity along the entire coast of Maine to the Canadian border. Rapid-response shipboard sampling efforts together with satellite data suggest the water discoloration in the western Gulf of Maine was a highly ephemeral feature of less than two weeks in duration. Flow cytometric analysis of surface samples from the red water indicated the population was undergoing sexual reproduction. Cyst fluxes downstream of the discolored water were the highest ever measured in the Gulf of Maine, and a large deposit of new cysts was observed that fall. Although the mechanisms causing this event remain unknown, its timing coincided with an anomalous period of downwelling-favorable winds that could have played a role in aggregating upward-swimming cells. Regardless of the underlying causes, this event highlights the importance of short-term episodic phenomena on regional population dynamics of A. fundyense. PMID:25170191

  10. A red tide of Alexandrium fundyense in the Gulf of Maine.

    PubMed

    McGillicuddy, D J; Brosnahan, M L; Couture, D A; He, R; Keafer, B A; Manning, J P; Martin, J L; Pilskaln, C H; Townsend, D W; Anderson, D M

    2014-05-01

    In early July 2009, an unusually high concentration of the toxic dinoflagellate Alexandrium fundyense occurred in the western Gulf of Maine, causing surface waters to appear reddish brown to the human eye. The discolored water appeared to be the southern terminus of a large-scale event that caused shellfish toxicity along the entire coast of Maine to the Canadian border. Rapid-response shipboard sampling efforts together with satellite data suggest the water discoloration in the western Gulf of Maine was a highly ephemeral feature of less than two weeks in duration. Flow cytometric analysis of surface samples from the red water indicated the population was undergoing sexual reproduction. Cyst fluxes downstream of the discolored water were the highest ever measured in the Gulf of Maine, and a large deposit of new cysts was observed that fall. Although the mechanisms causing this event remain unknown, its timing coincided with an anomalous period of downwelling-favorable winds that could have played a role in aggregating upward-swimming cells. Regardless of the underlying causes, this event highlights the importance of short-term episodic phenomena on regional population dynamics of A. fundyense.

  11. SURVEY OF THE STEROL COMPOSITION OF THE MARINE DINOFLAGELLATES KARENIA BREVIS, KARENIA MIKIMOTOI, AND KARLODINIUM MICRUM: DISTRIBUTION OF STEROLS WITHIN OTHER MEMBERS OF THE CLASS DINOPHYCEAE

    EPA Science Inventory

    The sterol composition of different marine microalgae was examined to determine the utility of sterols as biomarkers to distinguish members of various algal classes. For example, members of the class Dinophyceae possess certain 4-methyl sterols, such as dinosterol, which are rare...

  12. SURVEY OF THE STEROL COMPOSITION OF THE MARINE DINOFLAGELLATES KARENIA BREVIS, KARENIA MIKIMOTOI, AND KARLODINIUM MICRUM: DISTRIBUTION OF STEROLS WITHIN OTHER MEMBERS OF THE CLASS DINOPHYCEAE

    EPA Science Inventory

    The sterol composition of different marine microalgae was examined to determine the utility of sterols as biomarkers to distinguish members of various algal classes. For example, members of the class Dinophyceae possess certain 4-methyl sterols, such as dinosterol, which are rare...

  13. Isolation, purification and spectrometric analysis of PSP toxins from moraxella sp., a bacterium associated with a toxic dinoflagellate

    SciTech Connect

    Boyce, S.D.; Doucette, G.J.

    1994-12-31

    Paralytic shellfish poisoning (PSP) is a seafood intoxication syndrome caused by the injestion of shellfish contaminated with toxins produced by algae known as dinoflagellates. The PSP toxins, saxitoxin and its derivatives, act to block voltage-dependent sodium channels and can cause paralysis and even death at higher doses. It is well documented that bacteria coexist with many harmful or toxic algal species, though the exact nature of the association in relation to toxin production is unknown. Recently, the bacterium Moraxella sp. was isolated from the PSP toxin producing dinoflagellate Alexandrium tamarense. Through HPLC analysis and saxitoxin receptor binding assays performed on crude bacterial extracts, it appears that Moraxella sp. is capable of producing saxitoxin and several of its derivatives. However, physical confirmation (e.g. mass spectrometry) of these results is still needed.

  14. Alexandrium fundyense cyst dynamics in the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Anderson, Donald M.; Stock, Charles A.; Keafer, Bruce A.; Bronzino Nelson, Amy; Thompson, Brian; McGillicuddy, Dennis J.; Keller, Maureen; Matrai, Patricia A.; Martin, Jennifer

    2005-09-01

    The flux of cells from germinated cysts is critical in the population dynamics of many dinoflagellates. Here, data from a large-scale cyst survey are combined with surveys in other years to yield an Alexandrium fundyense cyst distribution map for the Gulf of Maine that is massive in geographic extent and cyst abundance. The benthic cyst population extends nearly 500 km alongshore. Embedded within it are several distinct accumulation zones or "seedbeds," each 3000-5000 km 2 in area. Maximal cyst abundances range from 2-20×10 6 cysts m -2. Cysts are equally or more abundant in deeper sediment layers; nearshore, cysts are fewer by a factor of 10 or more. This cyst distribution reflects sedimentary dynamics and the location of blooms in overlying surface waters. The flux of germinated cells from sediments was estimated using a combination of laboratory measurements of cyst germination and autofluorescence and observations of cyst autofluorescence in the field. These measurements constrained a germination function that, when applied to the cyst distribution map, provided an estimate of the germination inoculum for a physical/biological numerical model. In the laboratory studies, virtually all cysts incubated at different temperatures and light regimes became autofluorescent, but the rate of development was slower at lower temperatures, with no difference between light and dark incubations. Germination rates were highest at elevated temperatures, and were 2-fold greater in the light than in the dark. Laboratory and field fluorescence measurements suggest that>70% of the cysts in the top cm of sediment would germinate over a 60-90 day period in offshore waters. The combination of laboratory germination experiments and numerical modeling predicts nearly 100% germination of cysts in the top cm of sediment and resulting early season cell concentrations that are comparable in magnitude to observed cell distributions. It cannot account for late-season peaks in cell abundance

  15. Adaptations and selection of harmful and other dinoflagellate species in upwelling systems. 2. Motility and migratory behaviour

    NASA Astrophysics Data System (ADS)

    Smayda, T. J.

    2010-04-01

    The motility and migrational behaviour of upwelling dinoflagellates as adaptations for growth in upwelling systems is evaluated. Traits considered include hydrodynamic streamlining; chain formation; motility rates of single cells and chains; adaptations to turbulence; turbulence sensing; and migrational scattering to avoid turbulence, including its role in the maintenance of indigenous populations. Motility rates are compared to vertical mixing and upwelling rates. Diverse combinations of cell shape, size and motility rates characterize the dinoflagellate species selected for growth in physically energetic upwelling systems. Specific or unique combinations of cell shape, size, propulsion system and swimming rate are not evident. The traits are shared with dinoflagellates generally, and probably reflect their swim-based ecology. Experimental evidence - primarily from Alexandrium catenella - suggests upwelling dinoflagellates can sense turbulence leading to three distinct, but coherent, adaptive responses: chain formation (in such species); increased swimming speed (including non-chain-forming species); and the capacity to re-orient swimming trajectory in response to changes in turbulence, and at time-scales appropriate to survival and growth in the turbulence field being experienced. The added swimming power that dinoflagellates gain through chain formation does not appear to be a major requirement for their selection or success in upwelling systems. Only three of the 42 most prominent dinoflagellates that bloom in eastern boundary upwelling systems form chains, a representation far below expectations. Most chain-forming dinoflagellates are excluded from those upwelling systems. The role of temperature in this exclusion is evaluated. Field and experimental evidence suggests that strong turbulence would be required to overwhelm the swimming-based ecology of the upwelling dinoflagellates and deter their blooms. The Yamazaki-Kamykowski model demonstrating that the

  16. Toxin Variability Estimations of 68 Alexandrium ostenfeldii (Dinophyceae) Strains from The Netherlands Reveal a Novel Abundant Gymnodimine

    PubMed Central

    Martens, Helge; Tillmann, Urban; Harju, Kirsi; Dell’Aversano, Carmela; Tartaglione, Luciana; Krock, Bernd

    2017-01-01

    Alexandrium ostenfeldii is a toxic dinoflagellate that has recently bloomed in Ouwerkerkse Kreek, The Netherlands, and which is able to cause a serious threat to shellfish consumers and aquacultures. We used a large set of 68 strains to the aim of fully characterizing the toxin profiles of the Dutch A. ostenfeldii in consideration of recent reports of novel toxins. Alexandrium ostenfeldii is known as a causative species of paralytic shellfish poisoning, and consistently in the Dutch population we determined the presence of several paralytic shellfish toxins (PST) including saxitoxin (STX), GTX2/3 (gonyautoxins), B1 and C1/C2. We also examined the production of spiroimine toxins by the Dutch A. ostenfeldii strains. An extensive liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed a high intraspecific variability of spirolides (SPX) and gymnodimines (GYM). Spirolides included 13-desMethyl-spirolide C generally as the major compound and several other mostly unknown SPX-like compounds that were detected and characterized. Besides spirolides, the presence of gymnodimine A and 12-Methyl-gymnodimine A was confirmed, together with two new gymnodimines. One of these was tentatively identified as an analogue of gymnodimine D and was the most abundant gymnodimine (calculated cell quota up to 274 pg cell−1, expressed as GYM A equivalents). Our multi-clonal approach adds new analogues to the increasing number of compounds in these toxin classes and revealed a high strain variability in cell quota and in toxin profile of toxic compounds within a single population. PMID:28587138

  17. Factors determining the dynamics of toxic blooms of Alexandrium minutum during a 10-year study along the shallow southwestern Mediterranean coasts

    NASA Astrophysics Data System (ADS)

    Abdenadher, Moufida; Hamza, Asma; Fekih, Wafa; Hannachi, Imen; Zouari Bellaaj, Amel; Bradai, Mohamed Nejmeddine; Aleya, Lotfi

    2012-06-01

    Many blooms of the toxic dinoflagellate Alexandrium minutum have been recorded since 1990 in the Gulf of Gabes (southwestern Mediterranean Sea). To understand the determining factors of bloom formation, we studied the distribution of A. minutum in relation to environmental factors in samples taken at shallow sandy (<1 m) beach stations and a lagoon between 1997 and 2006. This was accompanied by laboratory experiments to identify A. minutum. The species forms harmful algal blooms (HABs) in stations subjected to anthropogenic eutrophication and in confined lagoons, living under conditions of varying salinity which gives it a unique opportunity to broaden its physiological tolerance and increase its colonisation potential. Increases in phosphorus appear to be more important than nitrogen or temperature in the control of A. minutum. The stations sampled all along the coast present specific hydrographic properties (shallowness, turbulence) suggesting that factors other than temperature and nutrients influence Alexandrium distribution, the exception being Boughrara Lagoon where the species developed in accordance with published data. Our findings and their interpretations indicate that the mechanism of the sudden A. minutum blooms along the nearshore of the Gulf of Gabes was complex and differed from that of true coastal ecosystems.

  18. A comparative analysis of Alexandrium catenella/tamarense blooms in Annaba Bay (Algeria) and Thau lagoon (France); phosphorus limitation as a trigger.

    PubMed

    Hadjadji, Imene; Frehi, Hocine; Ayada, Lembarek; Abadie, Eric; Collos, Yves

    2014-02-01

    Environmental conditions ultimately leading to blooms of the toxic dinoflagellate Alexandrium catenella/tamarense were investigated at two Mediterranean sites (Annaba Bay, Algeria and Thau lagoon, France). Three years were examined in details: 1992 (a pre-Alexandrium period), 2002 (a year with the first bloom in Annaba) and 2010 (a year with a major bloom in Annaba). Most conditions were similar, but ammonium concentrations were much higher in Annaba (up to 100μM) than in Thau (up to 10μM). First records of A. catenella/tamarense were in 1995 for Thau and 2002 for Annaba, and coincided with soluble reactive phosphorus (SRP) decreasing below a concentration of about 1μM. No other environmental variable could be related to those blooms. Thus, it is likely that the large reductions in SRP at both sites led to phosphorus limitation of a certain number of phytoplankton species and favored the development of A. catenella/tamarense. Copyright © 2013 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  19. Differences in the toxin profiles of Alexandrium ostenfeldii (Dinophyceae) strains isolated from different geographic origins: Evidence of paralytic toxin, spirolide, and gymnodimine.

    PubMed

    Salgado, Pablo; Riobó, Pilar; Rodríguez, Francisco; Franco, José M; Bravo, Isabel

    2015-09-01

    Among toxin-producing dinoflagellates of the genus Alexandrium, Alexandrium ostenfeldii is the only species able to produce paralytic shellfish poisoning (PSP) toxins, spirolides (SPXs) and gymnodimines (GYMs). In this study we characterized and compared three A. ostenfeldii strains isolated from the Baltic, Mediterranean, and southern Chile Seas with respect to their toxin profiles, morphology, and phylogeny. Toxin analyses by HPLC-FD and LC-HRMS revealed differences in the toxin profiles of the three strains. The PSP toxin profiles of the southern Chile and Baltic strains were largely the same and included gonyautoxin (GTX)-3, GTX-2, and saxitoxin (STX), although the total PSP toxin content of the Chilean strain (105.83 ± 72.15 pg cell(-1)) was much higher than that of the Baltic strain (4.04 ± 1.93 pg cell(-1)). However, the Baltic strain was the only strain that expressed detectable amounts of analogues of GYM-A and GYM-B/-C (48.27 ± 26.12 pg GYM-A equivalents cell(-1)). The only toxin expressed by the Mediterranean strain was 13-desmethyl SPX-C (13dMeC; 2.85 ± 4.76 pg cell(-1)). Phylogenetic analysis based on the LSU rRNA showed that the studied strains belonged to distinct molecular clades. The toxin profiles determined in this study provide further evidence of the taxonomic complexity of this species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Spliced leader-based metatranscriptomic analyses lead to recognition of hidden genomic features in dinoflagellates.

    PubMed

    Lin, Senjie; Zhang, Huan; Zhuang, Yunyun; Tran, Bao; Gill, John

    2010-11-16

    Environmental transcriptomics (metatranscriptomics) for a specific lineage of eukaryotic microbes (e.g., Dinoflagellata) would be instrumental for unraveling the genetic mechanisms by which these microbes respond to the natural environment, but it has not been exploited because of technical difficulties. Using the recently discovered dinoflagellate mRNA-specific spliced leader as a selective primer, we constructed cDNA libraries (e-cDNAs) from one marine and two freshwater plankton assemblages. Small-scale sequencing of the e-cDNAs revealed functionally diverse transcriptomes proven to be of dinoflagellate origin. A set of dinoflagellate common genes and transcripts of dominant dinoflagellate species were identified. Further analyses of the dataset prompted us to delve into the existing, largely unannotated dinoflagellate EST datasets (DinoEST). Consequently, all four nucleosome core histones, two histone modification proteins, and a nucleosome assembly protein were detected, clearly indicating the presence of nucleosome-like machinery long thought not to exist in dinoflagellates. The isolation of rhodopsin from taxonomically and ecotypically diverse dinoflagellates and its structural similarity and phylogenetic affinity to xanthorhodopsin suggest a common genetic potential in dinoflagellates to use solar energy nonphotosynthetically. Furthermore, we found 55 cytoplasmic ribosomal proteins (RPs) from the e-cDNAs and 24 more from DinoEST, showing that the dinoflagellate phylum possesses all 79 eukaryotic RPs. Our results suggest that a sophisticated eukaryotic molecular machine operates in dinoflagellates that likely encodes many more unsuspected physiological capabilities and, meanwhile, demonstrate that unique spliced leaders are useful for profiling lineage-specific microbial transcriptomes in situ.

  1. Spliced leader–based metatranscriptomic analyses lead to recognition of hidden genomic features in dinoflagellates

    PubMed Central

    Lin, Senjie; Zhang, Huan; Zhuang, Yunyun; Tran, Bao; Gill, John

    2010-01-01

    Environmental transcriptomics (metatranscriptomics) for a specific lineage of eukaryotic microbes (e.g., Dinoflagellata) would be instrumental for unraveling the genetic mechanisms by which these microbes respond to the natural environment, but it has not been exploited because of technical difficulties. Using the recently discovered dinoflagellate mRNA-specific spliced leader as a selective primer, we constructed cDNA libraries (e-cDNAs) from one marine and two freshwater plankton assemblages. Small-scale sequencing of the e-cDNAs revealed functionally diverse transcriptomes proven to be of dinoflagellate origin. A set of dinoflagellate common genes and transcripts of dominant dinoflagellate species were identified. Further analyses of the dataset prompted us to delve into the existing, largely unannotated dinoflagellate EST datasets (DinoEST). Consequently, all four nucleosome core histones, two histone modification proteins, and a nucleosome assembly protein were detected, clearly indicating the presence of nucleosome-like machinery long thought not to exist in dinoflagellates. The isolation of rhodopsin from taxonomically and ecotypically diverse dinoflagellates and its structural similarity and phylogenetic affinity to xanthorhodopsin suggest a common genetic potential in dinoflagellates to use solar energy nonphotosynthetically. Furthermore, we found 55 cytoplasmic ribosomal proteins (RPs) from the e-cDNAs and 24 more from DinoEST, showing that the dinoflagellate phylum possesses all 79 eukaryotic RPs. Our results suggest that a sophisticated eukaryotic molecular machine operates in dinoflagellates that likely encodes many more unsuspected physiological capabilities and, meanwhile, demonstrate that unique spliced leaders are useful for profiling lineage-specific microbial transcriptomes in situ. PMID:21041634

  2. Chemostratigraphic reconstruction of biofacies: Molecular evidence linking cyst-forming dinoflagellates with pre-Triassic ancestors

    NASA Astrophysics Data System (ADS)

    Moldowan, J. Michael; Dahl, Jeremy; Jacobson, Stephen R.; Huizinga, Bradley J.; Fago, Frederick J.; Shetty, Rupa; Watt, David S.; Peters, Kenneth E.

    1996-02-01

    New data from numerous detailed mass-spectrometric studies have detected triaromatic dinosteroids in Precambrian to Cenozoic rock samples. Triaromatic dinosteroids are organic geochemicals derived from dinosterols, compounds known in modern organisms to be the nearly exclusive widely occurring products of dinoflagellates. We observed the ubiquitous occurrence of these dinosteroids in 49 Late Triassic through Cretaceous marine source rocks and the absence of them in 13 Permian-Carboniferous source rocks synergistic with the dinoflagellate cyst record. However, finding dinosteroids in lower Paleozoic and Precambrian strata presents challenging results for molecular paleontologists, evolutionary biologists, palynologists, and especially for those concerned with the food web at various times of biological crisis. Other than the few species known as parasites and symbionts, many other dinoflagellate species are important as primary producers. The presence of Precambrian to Devonian triaromatic dinosteroids gives chemostratigraphic evidence of dinoflagellates (or other organisms with similar chemosynthetic capabilities) in rocks significantly older than the oldest undisputed dinoflagellate fossils (dinoflagellate cysts from the Middle Triassic, ˜ 240 Ma), and older than the putative Silurian ˜ 420 Ma) dinocyst,Arpylorus antiquus (Calandra) Sargent, from Tunisia. This systematic chemostratigraphic approach can shed light not only on lineages of dinoflagellates and their precursors, but potentially on many other lineages, especially bacteria, algae, plants, and possibly some metazoans.

  3. Toxic Alexandrium blooms in the western Gulf of Maine: The plume advection hypothesis revisited

    USGS Publications Warehouse

    Anderson, D.M.; Keafer, B.A.; Geyer, W.R.; Signell, R.P.; Loder, T.C.

    2005-01-01

    The plume advection hypothesis links blooms of the toxic dinoflagellate Alexandrium fundyense in the western Gulf of Maine (GOM) to a buoyant plume derived from river outflows. This hypothesis was examined with cruise and moored-instrument observations in 1993 when levels of paralytic shellfish poisoning (PSP) toxins were high, and in 1994 when toxicity was low. A coupled physical-biological model simulated hydrography and A. fundyense distributions. Initial A. fundyense populations were restricted to low-salinity nearshore waters near Casco Bay, but also occurred in higher salinity waters along the plume boundary. This suggests two sources of cells - those from shallow-water cyst populations and those transported to shore from offshore blooms in the eastern segment of the Maine coastal current (EMCC). Observations confirm the role of the plume in A. fundyense transport and growth. Downwelling-favorable winds in 1993 transported the plume and its cells rapidly alongshore, enhancing toxicity and propagating PSP to the south. In 1994, sustained upwelling moved the plume offshore, resulting in low toxicity in intertidal shellfish. A. fundyense blooms were likely nutrient limited, leading to low growth rates and moderate cell abundances. These observations and mechanisms were reproduced by coupled physical-biological model simulations. The plume advection hypothesis provides a viable explanation for outbreaks of PSP in the western GOM, but should be refined to include two sources for cells that populate the plume and two major pathways for transport: one within the low-salinity plume and another where A. fundyense cells originating in the EMCC are transported along the outer boundary of the plume front with the western segment of the Maine coastal current.

  4. Benthic nepheloid layers in the Gulf of Maine and Alexandrium cyst inventories

    PubMed Central

    Pilskaln, C.H.; Hayashi, K.; Keafer, B.A.; Anderson, D.M.; McGillicuddy, D.J.

    2014-01-01

    Cysts residing in benthic nepheloid layers (BNLs) documented in the Gulf of Maine have been proposed as a possible source of inoculum for annual blooms of a toxic dinoflagellate in the region. Herein we present a spatially extensive data set of the distribution and thickness of benthic nepheloid layers in the Gulf of Maine and the abundance and inventories of suspended Alexandrium fundyense cysts within these near-bottom layers. BNLs are pervasive throughout the gulf and adjacent Bay of Fundy with maximum layer thicknesses of 50–60 m observed. Mean BNL thickness is 30 m in the eastern gulf and Bay of Fundy, and 20 m in the western gulf. Cyst densities in the near-bottom particle resuspension layers varied by three orders of magnitude across the gulf with maxima of 105 cysts m−3. An important interconnection of elevated BNL cyst densities is observed between the Bay of Fundy, the Maine Coastal Current and the south-central region of the gulf. BNL cyst inventories estimated for the eastern and western gulf are each on the order of 1015 cysts, whereas the BNL inventory in the Bay of Fundy is on the order of 1016 . Although BNL cyst inventories in the eastern and western gulf are 1–2 orders of magnitude smaller than the abundance of cysts in the upper 1 cm of sediment in those regions, BNL and sediment-bound cyst inventories are comparable in the Bay of Fundy. The existence of widespread BNLs containing substantial cyst inventories indicates that these near-bottom layers represent an important source of germinating A. fundyense cysts in the region. PMID:25419055

  5. Benthic nepheloid layers in the Gulf of Maine and Alexandrium cyst inventories.

    PubMed

    Pilskaln, C H; Hayashi, K; Keafer, B A; Anderson, D M; McGillicuddy, D J

    2014-05-01

    Cysts residing in benthic nepheloid layers (BNLs) documented in the Gulf of Maine have been proposed as a possible source of inoculum for annual blooms of a toxic dinoflagellate in the region. Herein we present a spatially extensive data set of the distribution and thickness of benthic nepheloid layers in the Gulf of Maine and the abundance and inventories of suspended Alexandrium fundyense cysts within these near-bottom layers. BNLs are pervasive throughout the gulf and adjacent Bay of Fundy with maximum layer thicknesses of 50-60 m observed. Mean BNL thickness is 30 m in the eastern gulf and Bay of Fundy, and 20 m in the western gulf. Cyst densities in the near-bottom particle resuspension layers varied by three orders of magnitude across the gulf with maxima of 10(5) cysts m(-3). An important interconnection of elevated BNL cyst densities is observed between the Bay of Fundy, the Maine Coastal Current and the south-central region of the gulf. BNL cyst inventories estimated for the eastern and western gulf are each on the order of 10(15) cysts, whereas the BNL inventory in the Bay of Fundy is on the order of 10(16) . Although BNL cyst inventories in the eastern and western gulf are 1-2 orders of magnitude smaller than the abundance of cysts in the upper 1 cm of sediment in those regions, BNL and sediment-bound cyst inventories are comparable in the Bay of Fundy. The existence of widespread BNLs containing substantial cyst inventories indicates that these near-bottom layers represent an important source of germinating A. fundyense cysts in the region.

  6. Analysis of Gambierdiscus transcriptome data supports ancient origins of mixotrophic pathways in dinoflagellates.

    PubMed

    Price, Dana C; Farinholt, Natalie; Gates, Colin; Shumaker, Alexander; Wagner, Nicole E; Bienfang, Paul; Bhattacharya, Debashish

    2016-12-01

    Toxic dinoflagellates pose serious threats to human health and to fisheries. The genus Gambierdiscus is significant in this respect because its members produce ciguatoxin that accumulates in predominantly tropical marine food webs and leads to ciguatera fish poisoning. Understanding the biology of toxic dinoflagellates is crucial to developing control strategies. To this end, we generated a de novo transcriptome library from G. caribaeus and studied its growth under different culture conditions to elucidate pathways of carbon (C) and nitrogen (N) utilization. We also gathered available dinoflagellate transcriptome data to trace the evolutionary history of C and N pathways in this phylum. We find that rather than being specific adaptations to the epiphytic lifestyle in G. caribaeus, the majority of dinoflagellates share a large array of genes that putatively confer mixotrophy and the ability to use N via the ornithine-urea cycle and nitric oxide synthase production. These results suggest that prior to plastid endosymbiosis, the dinoflagellate ancestor possessed complex pathways that linked metabolism, intercellular signaling, and stress responses to environmental cues that have been maintained by extant photosynthetic species. This metabolic flexibility likely explains the success of dinoflagellates in marine ecosystems and may presage difficulties in controlling the spread of toxic species.

  7. Physiological responses of Manila clams Venerupis (=Ruditapes) philippinarum with varying parasite Perkinsus olseni burden to toxic algal Alexandrium ostenfeldii exposure.

    PubMed

    Lassudrie, Malwenn; Soudant, Philippe; Richard, Gaëlle; Henry, Nicolas; Medhioub, Walid; da Silva, Patricia Mirella; Donval, Anne; Bunel, Mélanie; Le Goïc, Nelly; Lambert, Christophe; de Montaudouin, Xavier; Fabioux, Caroline; Hégaret, Hélène

    2014-09-01

    Manila clam stock from Arcachon Bay, France, is declining, as is commercial harvest. To understand the role of environmental biotic interactions in this decrease, effects of a toxic dinoflagellate, Alexandrium ostenfeldii, which blooms regularly in Arcachon bay, and the interaction with perkinsosis on clam physiology were investigated. Manila clams from Arcachon Bay, with variable natural levels of perkinsosis, were exposed for seven days to a mix of the nutritious microalga T-Iso and the toxic dinoflagellate A. ostenfeldii, a producer of spirolides, followed by seven days of depuration fed only T-Iso. Following sacrifice and quantification of protozoan parasite Perkinsus olseni burden, clams were divided into two groups according to intensity of the infection ("Light-Moderate" and "Moderate-Heavy"). Hemocyte and plasma responses, digestive enzyme activities, antioxidant enzyme activities in gills, and histopathological responses were analyzed. Reactive oxygen species (ROS) production in hemocytes and catalase (CAT) activity in gills increased with P. olseni intensity of infection in control clams fed T-Iso, but did not vary among A. ostenfeldii-exposed clams. Exposure to A. ostenfeldii caused tissue alterations associated with an inflammatory response and modifications in hemocyte morphology. In the gills, superoxide dismutase (SOD) activity decreased, and an increase in brown cell occurrence was seen, suggesting oxidative stress. Observations of hemocytes and brown cells in tissues during exposure and depuration suggest involvement of both cell types in detoxication processes. Results suggest that exposure to A. ostenfeldii disrupted the pro-/anti-oxidant response of clams to heavy P. olseni intensity. In addition, depressed mitochondrial membrane potential (MMP) in hemocytes of clams exposed to A. ostenfeldii suggests that mitochondrial functions are regulated to maintain homeostasis of digestive enzyme activity and condition index.

  8. Global dinoflagellate event associated with the late Paleocene thermal maximum

    NASA Astrophysics Data System (ADS)

    Crouch, Erica M.; Heilmann-Clausen, Claus; Brinkhuis, Henk; Morgans, Hugh E. G.; Rogers, Karyne M.; Egger, Hans; Schmitz, Birger

    2001-04-01

    The late Paleocene thermal maximum, or LPTM (ca. 55 Ma), represents a geologically brief time interval (˜220 k.y.) characterized by profound global warming and associated environmental change. The LPTM is marked by a prominent negative carbon isotope excursion (CIE) interpreted to reflect a massive and abrupt input of 12C-enriched carbon to the ocean-atmosphere reservoir, possibly as a result of catastrophic gas-hydrate release, on time scales equivalent to present-day rates of anthropogenic carbon input. The LPTM corresponds to important changes in the global distribution of biota, including mass extinction of marine benthic organisms. The dinoflagellate cyst record indicates that surface- dwelling marine plankton in marginal seas also underwent significant perturbations during the LPTM. We report on the dramatic response of representatives of the genus Apectodinium from two upper Paleocene lower Eocene sections in the Southern (New Zealand) and Northern (Austria) Hemispheres, where the dinoflagellate records are directly correlated with the CIE, benthic foraminifera extinction event, and calcareous nannofossil zonation. The results indicate that the inception of Apectodinium-dominated assemblages appears to be synchronous on a global scale, and that the event is precisely coincident with the beginning of the LPTM. Apectodinium markedly declined in abundance near the end of the LPTM. This Apectodinium event may be associated with (1) exceptionally high global sea-surface temperatures and/or (2) a significant increase in marginal-marine surface-water productivity. Such a globally synchronous acme of dinoflagellate cysts is unprecedented within the dinoflagellate cyst fossil record.

  9. Patterns of Post-Glacial Genetic Differentiation in Marginal Populations of a Marine Microalga

    PubMed Central

    Tahvanainen, Pia; Alpermann, Tilman J.; Figueroa, Rosa Isabel; John, Uwe; Hakanen, Päivi; Nagai, Satoshi; Blomster, Jaanika; Kremp, Anke

    2012-01-01

    This study investigates the genetic structure of an eukaryotic microorganism, the toxic dinoflagellate Alexandrium ostenfeldii, from the Baltic Sea, a geologically young and ecologically marginal brackish water estuary which is predicted to support evolution of distinct, genetically impoverished lineages of marine macroorganisms. Analyses of the internal transcribed spacer (ITS) sequences and Amplified Fragment Length Polymorphism (AFLP) of 84 A. ostenfeldii isolates from five different Baltic locations and multiple external sites revealed that Baltic A. ostenfeldii is phylogenetically differentiated from other lineages of the species and micro-geographically fragmented within the Baltic Sea. Significant genetic differentiation (FST) between northern and southern locations was correlated to geographical distance. However, instead of discrete genetic units or continuous genetic differentiation, the analysis of population structure suggests a complex and partially hierarchic pattern of genetic differentiation. The observed pattern suggests that initial colonization was followed by local differentiation and varying degrees of dispersal, most likely depending on local habitat conditions and prevailing current systems separating the Baltic Sea populations. Local subpopulations generally exhibited low levels of overall gene diversity. Association analysis suggests predominately asexual reproduction most likely accompanied by frequency shifts of clonal lineages during planktonic growth. Our results indicate that the general pattern of genetic differentiation and reduced genetic diversity of Baltic populations found in large organisms also applies to microscopic eukaryotic organisms. PMID:23300940

  10. Patterns of post-glacial genetic differentiation in marginal populations of a marine microalga.

    PubMed

    Tahvanainen, Pia; Alpermann, Tilman J; Figueroa, Rosa Isabel; John, Uwe; Hakanen, Päivi; Nagai, Satoshi; Blomster, Jaanika; Kremp, Anke

    2012-01-01

    This study investigates the genetic structure of an eukaryotic microorganism, the toxic dinoflagellate Alexandrium ostenfeldii, from the Baltic Sea, a geologically young and ecologically marginal brackish water estuary which is predicted to support evolution of distinct, genetically impoverished lineages of marine macroorganisms. Analyses of the internal transcribed spacer (ITS) sequences and Amplified Fragment Length Polymorphism (AFLP) of 84 A. ostenfeldii isolates from five different Baltic locations and multiple external sites revealed that Baltic A. ostenfeldii is phylogenetically differentiated from other lineages of the species and micro-geographically fragmented within the Baltic Sea. Significant genetic differentiation (F(ST)) between northern and southern locations was correlated to geographical distance. However, instead of discrete genetic units or continuous genetic differentiation, the analysis of population structure suggests a complex and partially hierarchic pattern of genetic differentiation. The observed pattern suggests that initial colonization was followed by local differentiation and varying degrees of dispersal, most likely depending on local habitat conditions and prevailing current systems separating the Baltic Sea populations. Local subpopulations generally exhibited low levels of overall gene diversity. Association analysis suggests predominately asexual reproduction most likely accompanied by frequency shifts of clonal lineages during planktonic growth. Our results indicate that the general pattern of genetic differentiation and reduced genetic diversity of Baltic populations found in large organisms also applies to microscopic eukaryotic organisms.

  11. Modulation of ecdysal cyst and toxin dynamics of two Alexandrium (Dinophyceae) species under small-scale turbulence

    NASA Astrophysics Data System (ADS)

    Bolli, L.; Llaveria, G.; Garcés, E.; Guadayol, Ó.; van Lenning, K.; Peters, F.; Berdalet, E.

    2007-03-01

    In some dinoflagellate species, physiological processes appear to be altered by exposure to certain turbulent conditions. Here we investigated how two levels of turbulent kinetic energy dissipation rates (ɛ = 0.4 and 27 cm2 s-3) affected the toxin and ecdysal cyst dynamics of two bloom forming species, Alexandrium minutum and A. catenella. The most striking responses were observed at the high ɛ generated by an orbital shaker. In A. catenella, lower cellular toxin content was measured in cultures shaken for more than 4 days. The same trend was observed in A. minutum, although variability masked statistical significance. For the two species, inhibition of ecdysal cyst production occurred immediately and during the period of exposure of the cultures to stirring (4 or more days) at any time during their growth curve. Recovery of cyst abundances was always observed when turbulence stopped. When turbulence persisted for more than 4 days the net growth rate significantly decreased and the final biomass yield was lower than in the unshaken cultures. This study suggests that high levels of small-scale turbulence would contribute to the modulation of the harmful bloom dynamics through the interaction at the level of toxin and encystment processes.

  12. SxtA and sxtG Gene Expression and Toxin Production in the Mediterranean Alexandrium minutum (Dinophyceae)

    PubMed Central

    Perini, Federico; Galluzzi, Luca; Dell’Aversano, Carmela; Dello Iacovo, Emma; Tartaglione, Luciana; Ricci, Fabio; Forino, Martino; Ciminiello, Patrizia; Penna, Antonella

    2014-01-01

    The dinoflagellate Alexandrium minutum is known for the production of potent neurotoxins affecting the health of human seafood consumers via paralytic shellfish poisoning (PSP). The aim of this study was to investigate the relationship between the toxin content and the expression level of the genes involved in paralytic shellfish toxin (PST) production. The algal cultures were grown both in standard f/2 medium and in phosphorus/nitrogen limitation. In our study, LC-HRMS analyses of PST profile and content in different Mediterranean A. minutum strains confirmed that this species was able to synthesize mainly the saxitoxin analogues Gonyautoxin-1 (GTX1) and Gonyautoxin-4 (GTX4). The average cellular toxin content varied among different strains, and between growth phases, highlighting a decreasing trend from exponential to stationary phase in all culture conditions tested. The absolute quantities of intracellular sxtA1 and sxtG mRNA were not correlated with the amount of intracellular toxins in the analysed A. minutum suggesting that the production of toxins may be regulated by post-transcriptional mechanisms and/or by the concerted actions of alternative genes belonging to the PST biosynthesis gene cluster. Therefore, it is likely that the sxtA1 and sxtG gene expression could not reflect the PST accumulation in the Mediterranean A. minutum populations under the examined standard and nutrient limiting conditions. PMID:25341029

  13. Cyclic imine toxins from dinoflagellates: a growing family of potent antagonists of the nicotinic acetylcholine receptors.

    PubMed

    Molgó, Jordi; Marchot, Pascale; Aráoz, Rómulo; Benoit, Evelyne; Iorga, Bogdan I; Zakarian, Armen; Taylor, Palmer; Bourne, Yves; Servent, Denis

    2017-08-01

    We present an overview of the toxicological profile of the fast-acting, lipophilic macrocyclic imine toxins, an emerging family of organic compounds associated with algal blooms, shellfish contamination and neurotoxicity. Worldwide, shellfish contamination incidents are expanding; therefore, the significance of these toxins for the shellfish food industry deserves further study. Emphasis is directed to the dinoflagellate species involved in their production, their chemical structures, and their specific mode of interaction with their principal natural molecular targets, the nicotinic acetylcholine receptors, or with the soluble acetylcholine-binding protein, used as a surrogate receptor model. The dinoflagellates Karenia selliformis and Alexandrium ostenfeldii / A. peruvianum have been implicated in the biosynthesis of gymnodimines and spirolides, while Vulcanodinium rugosum is the producer of pinnatoxins and portimine. The cyclic imine toxins are characterized by a macrocyclic skeleton comprising 14-27 carbon atoms, flanked by two conserved moieties, the cyclic imine and the spiroketal ring system. These phycotoxins generally display high affinity and broad specificity for the muscle type and neuronal nicotinic acetylcholine receptors, a feature consistent with their binding site at the receptor subunit interfaces, composed of residues highly conserved among all nAChRs, and explaining the diverse toxicity among animal species. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms. © 2017 International Society for Neurochemistry.

  14. Differences in the chemical composition of organic-walled dinoflagellate resting cysts from phototrophic and heterotrophic dinoflagellates.

    PubMed

    Bogus, Kara; Mertens, Kenneth Neil; Lauwaert, Johan; Harding, Ian C; Vrielinck, Henk; Zonneveld, Karin A F; Versteegh, Gerard J M

    2014-04-01

    Dinoflagellates constitute a large proportion of the planktonic biomass from marine to freshwater environments. Some species produce a preservable organic-walled resting cyst (dinocyst) during the sexual phase of their life cycle that is an important link between the organisms, the environment in which their parent motile theca grew, and the sedimentary record. Despite their abundance and widespread usage as proxy indicators for environmental conditions, there is a lack of knowledge regarding the dinocyst wall chemical composition. It is likely that numerous factors, including phylogeny and life strategy, determine the cyst wall chemistry. However, the extent to which this composition varies based on inherent (phylogenetic) or variable (ecological) factors has not been studied. To address this, we used micro-Fourier transform infrared spectroscopy to analyze nine cyst species produced by either phototrophic or heterotrophic dinoflagellates from the extant orders Gonyaulacales, Gymnodiniales, and Peridiniales. Based on the presence of characteristic functional groups, two significantly different cyst wall compositions are observed that correspond to the dinoflagellate's nutritional strategy. The dinocyst wall compositions analyzed appeared carbohydrate-based, but the cyst wall produced by phototrophic dinoflagellates suggested a cellulose-like glucan, while heterotrophic forms produced a nitrogen-rich glycan. This constitutes the first empirical evidence nutritional strategy is related to different dinocyst wall chemistries. Our results indicated phylogeny was less important for predicting composition than the nutritional strategy of the dinoflagellate, suggesting potential for cyst wall chemistry to infer past nutritional strategies of extinct taxa preserved in the sedimentary record. © 2014 Phycological Society of America.

  15. Genetic Diversity, Morphological Uniformity and Polyketide Production in Dinoflagellates (Amphidinium, Dinoflagellata)

    PubMed Central

    Hoppenrath, Mona; Neilan, Brett A.

    2012-01-01

    Dinoflagellates are an intriguing group of eukaryotes, showing many unusual morphological and genetic features. Some groups of dinoflagellates are morphologically highly uniform, despite indications of genetic diversity. The species Amphidinium carterae is abundant and cosmopolitan in marine environments, grows easily in culture, and has therefore been used as a ‘model’ dinoflagellate in research into dinoflagellate genetics, polyketide production and photosynthesis. We have investigated the diversity of ‘cryptic’ species of Amphidinium that are morphologically similar to A. carterae, including the very similar species Amphidinium massartii, based on light and electron microscopy, two nuclear gene regions (LSU rDNA and ITS rDNA) and one mitochondrial gene region (cytochrome b). We found that six genetically distinct cryptic species (clades) exist within the species A. massartii and four within A. carterae, and that these clades differ from one another in molecular sequences at levels comparable to other dinoflagellate species, genera or even families. Using primers based on an alignment of alveolate ketosynthase sequences, we isolated partial ketosynthase genes from several Amphidinium species. We compared these genes to known dinoflagellate ketosynthase genes and investigated the evolution and diversity of the strains of Amphidinium that produce them. PMID:22675531

  16. Genetic diversity, morphological uniformity and polyketide production in dinoflagellates (Amphidinium, Dinoflagellata).

    PubMed

    Murray, Shauna A; Garby, Tamsyn; Hoppenrath, Mona; Neilan, Brett A

    2012-01-01

    Dinoflagellates are an intriguing group of eukaryotes, showing many unusual morphological and genetic features. Some groups of dinoflagellates are morphologically highly uniform, despite indications of genetic diversity. The species Amphidinium carterae is abundant and cosmopolitan in marine environments, grows easily in culture, and has therefore been used as a 'model' dinoflagellate in research into dinoflagellate genetics, polyketide production and photosynthesis. We have investigated the diversity of 'cryptic' species of Amphidinium that are morphologically similar to A. carterae, including the very similar species Amphidinium massartii, based on light and electron microscopy, two nuclear gene regions (LSU rDNA and ITS rDNA) and one mitochondrial gene region (cytochrome b). We found that six genetically distinct cryptic species (clades) exist within the species A. massartii and four within A. carterae, and that these clades differ from one another in molecular sequences at levels comparable to other dinoflagellate species, genera or even families. Using primers based on an alignment of alveolate ketosynthase sequences, we isolated partial ketosynthase genes from several Amphidinium species. We compared these genes to known dinoflagellate ketosynthase genes and investigated the evolution and diversity of the strains of Amphidinium that produce them.

  17. Abundance of epiphytic dinoflagellates from coastal waters off Jeju Island, Korea During Autumn 2009

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Seop; Yih, Wonho; Kim, Jong Hyeok; Myung, Geumog; Jeong, Hae Jin

    2011-09-01

    The occurrence of harmful epiphytic dinoflagellates is of concern to scientists, the aquaculture industry, and government due to their toxicity not only to marine organisms but also to humans. There have been no studies on the abundance of the epiphytic dinoflagellates in Korean waters. We explored the presence of epiphytic dinoflagellates in the coastal waters off Jeju Island, southwestern Korea. Furthermore, we measured the abundance of epiphytic dinoflagellates on the thalli of 24 different macroalgae, collected from five different locations in October 2009. Five epiphytic dinoflagellate genera Amphidinium, Coolia, Gambierdiscus, Ostreopsis, and Prorocentrum were found. These five genera were observed on the thalli of the macroalgae Chordaria flagelliformis, Martensia sp., Padina arborescens, and Sargassum sp., while none were observed exceptionally on Codium fragile. The abundance of Ostreopsis spp. was highest on Derbesia sp. (8,660 cells/g wet weight), while that of Gambierdiscus spp. was highest on Martensia sp. (4,870 cells/g-ww). The maximum abundances of Amphidinium spp., Coolia spp., and Prorocentrum spp. were 410, 710, and 300 cells/g-ww, respectively. The maximum abundance of Coolia spp., Gambierdiscus spp., and Ostreopsis spp. obtained in the present study was lower than for other locations reported in literature. The results of the present study suggest that the presence and abundance of epiphytic dinoflagellates may be related to the macroalgal species of the coastal waters of Jeju Island.

  18. Short-Term Behavioural Responses of the Great Scallop Pecten maximus Exposed to the Toxic Alga Alexandrium minutum Measured by Accelerometry and Passive Acoustics

    PubMed Central

    Coquereau, Laura; Jolivet, Aurélie; Hégaret, Hélène; Chauvaud, Laurent

    2016-01-01

    Harmful algal blooms produced by toxic dinoflagellates have increased worldwide, impacting human health, the environment, and fisheries. Due to their potential sensitivity (e.g., environmental changes), bivalves through their valve movements can be monitored to detect harmful algal blooms. Methods that measure valve activity require bivalve-attached sensors and usually connected cables to data transfers, leading to stress animals and limit the use to sessile species. As a non-intrusive and continuously deployable tool, passive acoustics could be an effective approach to detecting harmful algal blooms in real time based on animal sound production. This study aimed to detect reaction changes in the valve movements of adult Pecten maximus exposed to the toxic dinoflagellate Alexandrium minutum using both accelerometry and passive acoustic methods. Scallops were experimentally exposed to three ecologically relevant concentrations of A. minutum for 2 hours. The number of each type of valve movement and their sound intensity, opening duration, and valve-opening amplitude were measured. Four behaviours were identified: closures, expulsion, displacement, and swimming. The response of P. maximus to A. minutum occurred rapidly at a high concentration. The valve activity of P. maximus was different when exposed to high concentrations (500 000 cells L-1) of A. minutum compared to the non-toxic dinoflagellate Heterocapsa triquetra; the number of valve movements increased, especially closure and expulsion, which were detected acoustically. Thus, this study demonstrates the potential for acoustics and sound production changes in the detection of harmful algal blooms. However, field trials and longer duration experiments are required to provide further evidence for the use of acoustics as a monitoring tool in the natural environment where several factors may interfere with valve behaviours. PMID:27508498

  19. Short-Term Behavioural Responses of the Great Scallop Pecten maximus Exposed to the Toxic Alga Alexandrium minutum Measured by Accelerometry and Passive Acoustics.

    PubMed

    Coquereau, Laura; Jolivet, Aurélie; Hégaret, Hélène; Chauvaud, Laurent

    2016-01-01

    Harmful algal blooms produced by toxic dinoflagellates have increased worldwide, impacting human health, the environment, and fisheries. Due to their potential sensitivity (e.g., environmental changes), bivalves through their valve movements can be monitored to detect harmful algal blooms. Methods that measure valve activity require bivalve-attached sensors and usually connected cables to data transfers, leading to stress animals and limit the use to sessile species. As a non-intrusive and continuously deployable tool, passive acoustics could be an effective approach to detecting harmful algal blooms in real time based on animal sound production. This study aimed to detect reaction changes in the valve movements of adult Pecten maximus exposed to the toxic dinoflagellate Alexandrium minutum using both accelerometry and passive acoustic methods. Scallops were experimentally exposed to three ecologically relevant concentrations of A. minutum for 2 hours. The number of each type of valve movement and their sound intensity, opening duration, and valve-opening amplitude were measured. Four behaviours were identified: closures, expulsion, displacement, and swimming. The response of P. maximus to A. minutum occurred rapidly at a high concentration. The valve activity of P. maximus was different when exposed to high concentrations (500 000 cells L-1) of A. minutum compared to the non-toxic dinoflagellate Heterocapsa triquetra; the number of valve movements increased, especially closure and expulsion, which were detected acoustically. Thus, this study demonstrates the potential for acoustics and sound production changes in the detection of harmful algal blooms. However, field trials and longer duration experiments are required to provide further evidence for the use of acoustics as a monitoring tool in the natural environment where several factors may interfere with valve behaviours.

  20. Morphological identification of Alexandrium Species (Dinophyceae) from Jinhae-Masan Bay, Korea

    NASA Astrophysics Data System (ADS)

    Kim, Eun Song; Li, Zhun; Oh, Seok Jin; Yoon, Yang Ho; Shin, Hyeon Ho

    2017-05-01

    Outbreaks of paralytic shellfish poisoning (PSP) and dense blooms caused by Alexandrium species in Jinhae-Masan Bay, Korea have been nearly annual events for many years. However, excluding some Alexandrium species responsible for PSP, there are no critical reports on the morphology of Alexandrium species in this bay. To identify the Alexandrium species based on detailed morphological features, vegetative cells collected water samples and established by the incubation of resting cysts isolated from sediment trap samples were analyzed. Four species of Alexandrium were identified: Alexandrium affine, A. fundyense, A. catenella, and A. insuetum. Morphological features of these species were basically consistent with those outlined in previous studies. However, the ventral pore and the connecting pore on the sulcal plate, which have been accepted as diagnostic characteristics for the identification of A. fundyense and A. catenella, need to be reevaluated, indicating that useful morphological features for identifying these two species should be recommended to avoid confusion in the classification of species in genus Alexandrium.

  1. Spiniferites cruciformis: a fresh water dinoflagellate cyst?

    PubMed

    Kouli, K; Brinkhuis, H; Dale, B

    2001-04-01

    Palynological studies of cored lacustrine sediments from the late Quaternary of Lake Kastoria, northern Greece, revealed a Late Glacial interval with abundant dinoflagellate cysts. Cyst assemblages include two identifiable species, Spiniferites cruciformis and Gonyaulax apiculata. The presence of the fresh water species G. apiculata is consistent with the lacustrine setting of these deposits, but that of S. cruciformis is anomalous. Previously, this species has only been recorded in abundance from presumed brackish marine sediments from the Black Sea and Marmara Sea sediments where geochemical data clearly record brackish salinities. Therefore, it has been regarded as a low salinity cyst type with a wide range of morphological variation that some workers have suggested to reflect salinity fluctuations. Specimens from Greece display only part of the range of morphological variability previously described from these (brackish) marine settings. Encountered morphological variation includes ellipsoidal/pentameral and cruciform endocyst shapes with rare intermediate shapes, and highly variable septa development. Specimens characterized by extremely reduced ornamentation known from (brackish) marine environments have not been recorded. Our records of S. cruciformis indicate that: (1) it could thrive in fresh water conditions; and (2) that apparently most of the strong morphological variations of the cysts are an intrinsic phenomenon for this taxon, and may only partly be linked to salinity variations as suggested earlier. We suggest that S. cruciformis essentially is a fresh water taxon, and that its records in (brackish) marine environments, with the exception of specimens with strongly reduced ornamentation, may be due to transportation, to short-lived fresh water surface conditions in such environments, or to tolerance of the species to brackish conditions.

  2. The influence of extracellular compounds produced by selected Baltic cyanobacteria, diatoms and dinoflagellates on growth of green algae Chlorella vulgaris

    NASA Astrophysics Data System (ADS)

    Żak, Adam; Kosakowska, Alicja

    2015-12-01

    Secondary metabolites produced by bacteria, fungi, algae and plants could affect the growth and development of biological and agricultural systems. This natural process that occurs worldwide is known as allelopathy. The main goal of this work was to investigate the influence of metabolites obtained from phytoplankton monocultures on the growth of green algae Chlorella vulgaris. We selected 6 species occurring in the Baltic Sea from 3 different taxonomic groups: cyanobacteria (Aphanizomenon flos-aquae; Planktothrix agardhii), diatoms (Thalassiosira pseudonana; Chaetoceros wighamii) and dinoflagellates (Alexandrium ostenfeldii; Prorocentrum minimum). In this study we have demonstrated that some of selected organisms caused allelopathic effects against microalgae. Both the negative and positive effects of collected cell-free filtrates on C. vulgaris growth, chlorophyll a concentration and fluorescence parameters (OJIP, QY, NPQ) have been observed. No evidence has been found for the impact on morphology and viability of C. vulgaris cells.

  3. Impacts of metal contamination and eutrophication on dinoflagellate cyst assemblages along the Guangdong coast of southern China.

    PubMed

    Lu, Xinxin; Wang, Zhaohui; Guo, Xin; Gu, Yangguang; Liang, Weibiao; Liu, Lei

    2017-07-15

    Fifty-one surface sediment samples were collected from eleven sea areas along the Guangdong coast in southern China. Biogenic elements, metals and dinoflagellate cysts were analyzed. Twenty-one cyst taxa in 12 genera were identified. The cyst concentrations ranged between 14 and 250 cysts/g, with an average of 69 cysts/g. The low cyst production was caused by coarse sediments, high sedimentation rates, and high anthropogenic disturbances. Biogenic elements were comparable with those reported. However, the metal concentrations were far lower than the sediment quality guidelines. Both biogenic elements and metals were higher in the Mid Coast and lower in the Western Coast. Eutrophication slightly enhanced the productivity of autotrophic dinocysts, and cysts of Scrippsiella indicated eutrophication. Cd had inhibitory effects on cyst production. Alexandrium and Diplopsalis cysts were sensitive to metal contamination; however, Gyrodinium, Pheopolykrikos, and Lingulodinium cysts had high resistance to metal contamination. Copyright © 2017. Published by Elsevier Ltd.

  4. Molecular Insights Into a Dinoflagellate Bloom Imply Bacterial Cultivation

    NASA Astrophysics Data System (ADS)

    Gong, W.; Hall, N.; Schruth, D.; Paerl, H. W.; Marchetti, A.

    2016-02-01

    In coastal waters, an increase in frequency and intensity of algal blooms worldwide has recently been observed primarily due to eutrophication, with further increases predicted as a consequence of climate change. In many marine habitats most impacted by human activities, efforts have been made to prevent conditions that promote harmful algal blooms, or HABs, although progress is limited, due in part to our current lack of understanding of the environmental and cellular processes that promote and propagate these blooms. Comparative metatranscriptomics was used to investigate the underlying molecular mechanisms associated with a dinoflagellate bloom in a highly eutrophied estuarine system. Here we show that under bloom conditions, there is increased expression of metabolic pathways indicative of rapidly growing cells, including energy production, carbon metabolism, transporters and synthesis of nucleic acids and cellular membrane components. In addition, there is a prominence of highly expressed genes involved in synthesis of membrane-associated molecules, including those for the production of glycosaminoglycans (GAGs), which may serve roles in nutrient acquisition and/or cell surface adhesion. Biotin and thiamine synthesis genes also increased expression along with several cobalamin biosynthesis-associated genes that suggests processing of B12 intermediates by dinoflagellates. The patterns in gene expression observed are consistent with bloom-forming dinoflagellates eliciting a cellular response to facilitate interactions with their surrounding bacterial consortium, possibly in an effort to cultivate for enhancement of vitamin and nutrient exchanges and/or direct consumption. Our findings provide potential molecular targets for HAB detection and remediation efforts.

  5. Putting the N in dinoflagellates

    PubMed Central

    Dagenais-Bellefeuille, Steve; Morse, David

    2013-01-01

    The cosmopolitan presence of dinoflagellates in aquatic habitats is now believed to be a direct consequence of the different trophic modes they have developed through evolution. While heterotrophs ingest food and photoautotrophs photosynthesize, mixotrophic species are able to use both strategies to harvest energy and nutrients. These different trophic modes are of particular importance when nitrogen nutrition is considered. Nitrogen is required for the synthesis of amino acids, nucleic acids, chlorophylls, and toxins, and thus changes in the concentrations of various nitrogenous compounds can strongly affect both primary and secondary metabolism. For example, high nitrogen concentration is correlated with rampant cell division resulting in the formation of the algal blooms commonly called red tides. Conversely, nitrogen starvation results in cell cycle arrest and induces a series of physiological, behavioral and transcriptomic modifications to ensure survival. This review will combine physiological, biochemical, and transcriptomic data to assess the mechanism and impact of nitrogen metabolism in dinoflagellates and to compare the dinoflagellate responses with those of diatoms. PMID:24363653

  6. Intra- and interannual dynamics of dinoflagellate bloom species in the James River, an urban tidal estuary in Virginia, USA

    NASA Astrophysics Data System (ADS)

    Echevarria, M. A.; Mulholland, M. R.; Filippino, K.; Egerton, T.

    2016-02-01

    Algal blooms occur throughout the year in the tidal tributaries of Chesapeake Bay. The James River is the largest river in Virginia and third largest tributary of the Bay. Of the nearly 1500 species found in the estuary, two dinoflagellates; Heterocapsa triquetra and Cochlodinium polykrikoides have historically formed large seasonal algal blooms in spring and summer respectively, lasting several weeks to months annually. Additionally, the toxic dinoflagellate Alexandrium monilatum has emerged as an annual late summer bloom producer with increasing abundance in the region over the last nine years. These blooms have occurred in the lower James River, including meso- and polyhaline waters. Presented here are comparisons of the temporal and spatial extent and magnitude of these three dinoflagellate species over a two-year period (2014-2015). In 2014 dinoflagellate abundance was low compared to prior years. In contrast, massive spring and summer blooms occurred in 2015 with extended durations. In 2015, H. triquetra reached a maximum concentration of >84,000 cells/ml, with densities >103 cells/mL observed over a six week period, compared to no visible bloom the year before and a maximum of only 6200 cells/ml. Similarly in 2015, C. polykrikoides reached maximum cell densities of >41,000 cells/ml, with densities >103 cells/mL observed over a seven week period, compared to a maximum the year before of <11,000 cells/ml. A. monilatum reached a maximum of >7,500 cells/ml over a three week period in August 2015, with no bloom recorded in 2014. Multiple environmental parameters likely contributed to the interannual variability in bloom formation and duration. Temperature appeared to be a significant factor, with cooler than average surface water during the summer of 2014. In addition, the effect of prevailing wind patterns, precipitation, salinity, nutrient concentrations and sediment re-suspension were examined.

  7. One step immunochromatographic assay for the rapid detection of Alexandrium minutum.

    PubMed

    Gas, Fabienne; Baus, Béatrice; Pinto, Laetitia; Compere, Chantal; Tanchou, Valérie; Quéméneur, Eric

    2010-01-15

    Harmful algal blooms represent a major threat to marine production, and particularly to shellfish farming. Current methods for analyzing environmental samples are tedious and time consuming because they require taxonomists and animal experiments. New rapid detection methods, such as immunoassays, are sought for alerting purposes and for the study of algal ecodynamics in their natural environment. Alexandrium minutum, which causes paralytic shellfish poisoning, occurs with increasing frequency along European coasts. We have developed a one step immunochromatographic assay which is based on the principle of immunochromatographic analysis and involves the use of two distinct monoclonal antibodies directed against surface antigens of A. minutum. The primary specific antibody was conjugated with colloidal gold, and the secondary antibody (capture reagent) is immobilized on a strip of nitrocellulose membrane. We could demonstrate that whole algae are able to diffuse without restriction in the porous material. The assay time for this qualitative but highly specific assay was less than 15 min, suitable for rapid on-site testing. Copyright 2009 Elsevier B.V. All rights reserved.

  8. Dozens of toxin-related genes are expressed in a nontoxic strain of the dinoflagellate Heterocapsa circularisquama.

    PubMed

    Salcedo, Tovah; Upadhyay, Ravi J; Nagasaki, Keizo; Bhattacharya, Debashish

    2012-06-01

    The dinoflagellate Heterocapsa circularisquama is lethal to a variety of marine organisms, in particular, commercially important farmed bivalves. Unlike most dinoflagellate toxins, which are polyketides, the only described toxin from H. circularisquama (H2-a) is a porphyrin derivative that functions in light. It is unknown whether H2-a is produced specifically for its lytic properties. We searched for toxin-related genes in the transcriptome of a nontoxic strain of H. circularisquama, and surprisingly found the richest set of toxin-related genes yet described in dinoflagellates. There are 87 distinct expressed sequence tag contigs that encode polyketide synthases and nonribosomal peptide synthases, as well as 8 contigs that are involved in porphyrin biosynthesis. Phylogenomic analysis shows that many toxin-related genes are widely distributed among dinoflagellates. Our data likely indicate a variety of unknown metabolic functions for the toxin-related genes in H. circularisquama because they were identified in a nontoxic strain raised in unialgal culture.

  9. Easy detection of multiple Alexandrium species using DNA chromatography chip.

    PubMed

    Nagai, Satoshi; Miyamoto, Shigehiko; Ino, Keita; Tajimi, Seisuke; Nishi, Hiromi; Tomono, Jun

    2016-01-01

    In this study, the Kaneka DNA chromatography chip (KDCC) for the Alexandrium species was successfully developed for simultaneous detection of five Alexandrium species. This method utilizes a DNA-DNA hybridization technology. In the PCR process, specifically designed tagged-primers are used, i.e. a forward primer consisting of a tag domain, which can conjugate with gold nanocolloids on the chip, and a primer domain, which can anneal/amplify the target sequence. However, the reverse primer consists of a tag domain, which can hybridize to the solid-phased capture probe on the chip, and a primer domain, which can anneal/amplify the target sequence. As a result, a red line that originates from gold nanocolloids appears as a positive signal on the chip, and the amplicon is detected visually by the naked eye. This technique is simple, because it is possible to visually detect the target species soon after (<5min) the application of 2μL of PCR amplicon and 65μL of development buffer to the sample pad of the chip. Further, this technique is relatively inexpensive and does not require expensive laboratory equipment, such as real-time Q-PCR machines or DNA microarray detectors, but a thermal cycler. Regarding the detection limit of KDCC for the five Alexandrium species, it varied among species and it was <0.1-10pg and equivalent to 5-500 copies of rRNA genes, indicating that the technique is sensitive enough for practical use to detect several cells of the target species from 1L of seawater. The detection sensitivity of KDCC was also evaluated with two different techniques, i.e. a multiplex-PCR and a digital DNA hybridization by digital DNA chip analyzer (DDCA), using natural plankton assemblages. There was no significant difference in the detection sensitivity among the three techniques, suggesting KDCC can be readily used to monitor the HAB species. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Isolation of peridinin-related norcarotenoids with cell growth-inhibitory activity from the cultured dinoflagellate of Symbiodinium sp., a symbiont of the Okinawan soft coral Clavularia viridis, and analysis of fatty acids of the dinoflagellate.

    PubMed

    Suzuki, Motoya; Watanabe, Kinzo; Fujiwara, Shoko; Kurasawa, Toshie; Wakabayashi, Takako; Tsuzuki, Mikio; Iguchi, Kazuo; Yamori, Takao

    2003-06-01

    Two norcarotenoids, 1 and 2, related to peridinin (3) were isolated from the cultured dinoflagellate of the genus Symbiodinium, a symbiont of the Okinawan soft coral Clavularia viridis, which contains in abundance antitumor marine prostanoids such as clavulones. The structures of 1 and 2 were elucidated on the basis of spectroscopic analysis. These compounds showed significant growth-inhibitory activity in vitro toward cancer cells. Analysis of fatty acids of the dinoflagellate was also carried out, suggesting that the marine prostanoids are produced by the host soft coral itself.

  11. The use of bioluminescent dinoflagellates as an environmental risk assessment tool.

    PubMed

    Lapota, David; Osorio, Alexandra Robayo; Liao, Connie; Bjorndal, Bryan

    2007-12-01

    A novel toxicity method to determine sublethal and lethal effects of manmade contaminants on the bioluminescence output from marine dinoflagellates has been developed and tested over the course of 16 years. The toxicity system, QwikLite, was developed for the sole purpose of evaluating the potential toxicity of various materials used in bay sediments, storm water discharges, industrial discharges from Naval facilities, and antifoulant paints. Bioluminescence inhibition was observed in the following dinoflagellates: Lingulodinium polyedrum (formerly known as Gonyaulax polyedra), Ceratocorys horrida, Pyrocystis noctiluca, Pyrocystis lunula, Pyrocystis fusiformis, and Pyrophacus steinii. Cultured cells were exposed to various concentrations of contaminants from hours through 10 days. Further application with bioluminescent dinoflagellates in a variety of toxicity testing schemes have shown that these species can be used as a screening assay organism in lieu of the more costly, labor intensive bioassays presently in use.

  12. Description of Two Species of Early Branching Dinoflagellates, Psammosa pacifica n. g., n. sp. and P. atlantica n. sp

    PubMed Central

    Okamoto, Noriko; Horák, Aleš; Keeling, Patrick J.

    2012-01-01

    In alveolate evolution, dinoflagellates have developed many unique features, including the cell that has epicone and hypocone, the undulating transverse flagellum. However, it remains unclear how these features evolved. The early branching dinoflagellates so far investigated such as Hematodinium, Amoebophrya and Oxyrrhis marina differ in many ways from of core dinoflagellates, or dinokaryotes. Except those handful of well studied taxa, the vast majority of early branching dinoflagellates are known only by environmental sequences, and remain enigmatic. In this study we describe two new species of the early branching dinoflagellates, Psammosa pacifica n. g., n. sp. and P. atlantica n. sp. from marine intertidal sandy beach. Molecular phylogeny of the small subunit (SSU) ribosomal RNA and Hsp90 gene places Psammosa spp. as an early branch among the dinoflagellates. Morphologically (1) they lack the typical dinoflagellate epicone–hypocone structure, and (2) undulation in either flagella. Instead they display a mosaïc of dinokaryotes traits, i.e. (3) presence of bi-partite trychocysts; Oxyrrhis marina–like traits, i.e. (4) presence of flagellar hairs, (5) presence of two-dimensional cobweb scales ornamenting both flagella (6) transversal cell division; a trait shared with some syndineansand Parvilucifera spp. i.e. (7) a nucleus with a conspicuous nucleolus and condensed chromatin distributed beneath the nuclear envelope; as well as Perkinsus marinus -like features i.e. (8) separate ventral grooves where flagella emerge and (9) lacking dinoflagellate-type undulating flagellum. Notably Psammosa retains an apical complex structure, which is shared between perkinsids, colpodellids, chromerids and apicomplexans, but is not found in dinokaryotic dinoflagellates. PMID:22719825

  13. Description of two species of early branching dinoflagellates, Psammosa pacifica n. g., n. sp. and P. atlantica n. sp.

    PubMed

    Okamoto, Noriko; Horák, Aleš; Keeling, Patrick J

    2012-01-01

    In alveolate evolution, dinoflagellates have developed many unique features, including the cell that has epicone and hypocone, the undulating transverse flagellum. However, it remains unclear how these features evolved. The early branching dinoflagellates so far investigated such as Hematodinium, Amoebophrya and Oxyrrhis marina differ in many ways from of core dinoflagellates, or dinokaryotes. Except those handful of well studied taxa, the vast majority of early branching dinoflagellates are known only by environmental sequences, and remain enigmatic. In this study we describe two new species of the early branching dinoflagellates, Psammosa pacifica n. g., n. sp. and P. atlantica n. sp. from marine intertidal sandy beach. Molecular phylogeny of the small subunit (SSU) ribosomal RNA and Hsp90 gene places Psammosa spp. as an early branch among the dinoflagellates. Morphologically (1) they lack the typical dinoflagellate epicone-hypocone structure, and (2) undulation in either flagella. Instead they display a mosaïc of dinokaryotes traits, i.e. (3) presence of bi-partite trychocysts; Oxyrrhis marina-like traits, i.e. (4) presence of flagellar hairs, (5) presence of two-dimensional cobweb scales ornamenting both flagella (6) transversal cell division; a trait shared with some syndineansand Parvilucifera spp. i.e. (7) a nucleus with a conspicuous nucleolus and condensed chromatin distributed beneath the nuclear envelope; as well as Perkinsus marinus -like features i.e. (8) separate ventral grooves where flagella emerge and (9) lacking dinoflagellate-type undulating flagellum. Notably Psammosa retains an apical complex structure, which is shared between perkinsids, colpodellids, chromerids and apicomplexans, but is not found in dinokaryotic dinoflagellates.

  14. Niche partitioning of closely related symbiotic dinoflagellates.

    PubMed

    Sampayo, Eugenia M; Franceschinis, Lorenzo; Hoegh-Guldberg, Ove; Dove, Sophie

    2007-09-01

    Reef-building corals are fundamental to the most diverse marine ecosystems, yet a detailed understanding of the processes involved in the establishment, persistence and ecology of the coral-dinoflagellate association remains largely unknown. This study explores symbiont diversity in relation to habitat by employing a broad-scale sampling regime using ITS2 and denaturing gradient gel electrophoresis. Samples from Pocillopora damicornis, Stylophora pistillata and Seriatopora hystrix all harboured host-specific clade C symbiont types at Heron Island (Great Barrier Reef, Australia). While Ser. hystrix associated with a single symbiont profile along its entire depth distribution, both P. damicornis and Sty. pistillata associated with multiple symbiont profiles that showed a strong zonation with depth. It is shown that, with an increased sampling effort, previously identified 'rare' symbiont types within this group of host species are in fact environmental specialists. A multivariate approach was used to expand on the common distinction of symbionts by a single genetic identity. It shows merit in its capacity not only to include all the variability present within the marker region but also to reliably represent ecological diversification of symbionts. Furthermore, the cohesive species concept is explored to explain how niche partitioning may drive diversification of closely related symbiont lineages. This study provides thus evidence that closely related symbionts are ecologically distinct and fulfil their own niche within the ecosystem provided by the host and external environment.

  15. Blooms of the Toxic Dinoflagellate Alexandrium fundyense in the Gulf of Maine: Investigations Using a Physical-Biological Model

    DTIC Science & Technology

    2005-02-01

    B. A., Bronzino , A. C., Matrai, P., Thompson, B., Keller, M., McGillicuddy, D. J., Hyatt, J., submitted. Experimental and modeling observations of...and Oceanography (submitted). Anderson, D. M., Stock, C. A., Keafer, B. A., Bronzino , A. C., Matrai, P., Thompson, B., Keller, M., McGillicuddy, D. J...submitted). Anderson, D. M., Stock, C. A., Keafer, B. A., Bronzino , A. C., Matrai, P., Thompson, B., Keller, M., McGillicuddy, D. J., Hyatt, J

  16. Interactions between the pathogenic bacterium Vibrio parahaemolyticus and red-tide dinoflagellates

    NASA Astrophysics Data System (ADS)

    Seong, Kyeong Ah; Jeong, Hae Jin

    2011-06-01

    Vibrio parahaemolyticus is a common pathogenic bacterium in marine and estuarine waters. To investigate interactions between V. parahaemolyticus and co-occurring redtide dinoflagellates, we monitored the daily abundance of 5 common red tide dinoflagellates in laboratory culture; Amphidinium carterae, Cochlodinium ploykrikoides, Gymnodinium impudicum, Prorocentrum micans, and P. minimum. Additionally, we measured the ingestion rate of each dinoflagellate on V. parahaemolyticus as a function of prey concentration. Each of the dinoflagellates responded differently to the abundance of V. parahaemolyticus. The abundances of A. carterae and P. micans were not lowered by V. parahaemolyticus, whereas that of C. polykrikodes was lowered considerably. The harmful effect depended on bacterial concentration and incubation time. Most C. polykrikoides cells died after 1 hour incubation when the V. parahaemolyticus concentration was 1.4×107 cells ml-1, while cells died within 2 days of incubation when the bacterial concentration was 1.5×106 cells ml-1. With increasing V. parahaemolyticus concentration, ingestion rates of P. micans, P. minimum, and A. carterae on the prey increased, whereas that on C. polykrikoides decreased. The maximum or highest ingestion rates of P. micans, P. minimum, and A. carterae on V. parahaemolyticus were 55, 5, and 2 cells alga-1 h-1, respectively. The results of the present study suggest that V. parahaemolyticus can be both the killer and prey for some red tide dinoflagellates.

  17. Phylogeny of five species of Nusuttodinium gen. nov. (Dinophyceae), a genus of unarmoured kleptoplastidic dinoflagellates.

    PubMed

    Takano, Yoshihito; Yamaguchi, Haruyo; Inouye, Isao; Moestrup, Øjvind; Horiguchi, Takeo

    2014-12-01

    Cells of five unarmoured kleptoplastidic dinoflagellates, Amphidinium latum, Amphidinium poecilochroum, Gymnodinium amphidinioides, Gymnodinium acidotum and Gymnodinium aeruginosum were observed under light and/or scanning electron microscopy and subjected to single-cell PCR. The SSU rDNA and the partial LSU rDNA of all the examined species were sequenced, and the SSU rDNA of G. myriopyrenoides was sequenced. Phylogenetic analyses revealed that the unarmoured kleptoplastidic species formed a monophyletic clade within the Gymnodinium-clade sensu Daugbjerg et al. (2000). The sister taxa for this clade were Gymnodinium palustre and Spiniferodinium galeiforme, both of which possess brown-coloured chloroplasts. The results indicated that acquisition of kleptoplastidy in these unarmoured dinoflagellates was a single event and that these unarmoured kleptoplastidic dinoflagellates may have evolved from a form with permanent chloroplasts. Molecular trees suggested that the acquisition of kleptoplastidy took place in a marine habitat and later some species colonized the freshwater habitat. Because these unarmoured kleptoplastidic dinoflagellates are monophyletic and characterized by distinct morphological and cytological features (including the presence of the same type of apical groove, absence of nuclear chambers in the nuclear envelope, absence of genuine chloroplasts, and the possession of kleptochloroplasts), we propose the establishment of a new genus, Nusuttodinium, to accommodate all these dinoflagellates. Copyright © 2014 Elsevier GmbH. All rights reserved.

  18. A dinoflagellate cyst record of Holocene climate and hydrological changes along the southeastern Swedish Baltic coast

    NASA Astrophysics Data System (ADS)

    Yu, Shi-Yong; Berglund, Björn E.

    2007-03-01

    A high-resolution, well-dated dinoflagellate cyst record from a lagoon of the southeastern Swedish Baltic Sea reveals climate and hydrological changes during the Holocene. Marine dinoflagellate cysts occurred initially at about 8600 cal yr BP, indicating the onset of the Littorina transgression in the southeastern Swedish lowland associated with global sea level rise, and thus the opening of the Danish straits. Both the species diversity and the total accumulation rates of dinoflagellate cysts continued to increase by 7000 cal yr BP and then decreased progressively. This pattern reveals the first-order change in local sea level as a function of ice-volume-equivalent sea level rise versus isostatic land uplift. Superimposed upon this local sea level trend, well-defined fluctuations of the total accumulation rates of dinoflagellate cysts occurred on quasi-1000- and 500-yr frequency bands particularly between 7500 and 4000 cal yr BP, when the connection between the Baltic basin and the North Atlantic was broader. A close correlation of the total accumulation rates of dinoflagellate cysts with GISP2 ice core sea-salt ions suggests that fluctuations of Baltic surface conditions during the middle Holocene might have been regulated by quasi-periodic variations of the prevailing southwesterly winds, most likely through a system similar to the dipole oscillation of the modern North Atlantic atmosphere.

  19. Dinoflagellate phylogeny revisited: Using ribosomal proteins to resolve deep branching dinoflagellate clades

    PubMed Central

    Bachvaroff, Tsvetan R.; Gornik, Sebastian G.; Concepcion, Gregory T.; Waller, Ross F.; Mendez, Gregory S.; Lippmeier, J. Casey; Delwiche, Charles F.

    2014-01-01

    The alveolates are composed of three major lineages, the ciliates, dinoflagellates, and apicomplexans. Together these ‘protist’ taxa play key roles in primary production and ecology, as well as in illness of humans and other animals. The interface between the dinoflagellate and apicomplexan clades has been an area of recent discovery, blurring the distinction between these two clades. Moreover, phylogenetic analysis has yet to determine the position of basal dinoflagellate clades hence the deepest branches of the dinoflagellate tree currently remain unresolved. Large-scale mRNA sequencing was applied to 11 species of dinoflagellates, including strains of the syndinean genera Hematodinium and Amoebophrya, parasites of crustaceans and dinoflagellates, respectively, to optimize and update the dinoflagellate tree. From the transcriptome-scale data a total of 73 ribosomal protein-coding genes were selected for phylogeny. After individual gene orthology assessment, the genes were concatenated into a >15,000 amino acid alignment with 76 taxa from dinoflagellates, apicomplexans, ciliates, and the outgroup heterokonts. Overall the tree was well resolved and supported, when the data was subsampled with gblocks or constraint trees were tested with the approximately unbiased test. The deepest branches of the dinoflagellate tree can now be resolved with strong support, and provides a clearer view of the evolution of the distinctive traits of dinoflagellates. PMID:24135237

  20. Effect of Alexandrium tamarense on three bloom-forming algae

    NASA Astrophysics Data System (ADS)

    Yin, Juan; Xie, Jin; Yang, Weidong; Li, Hongye; Liu, Jiesheng

    2010-07-01

    We investigated the allelopathic properties of Alexandrium tamarense (Laboar) Balech on the growth of Prorocentrum donghaiense Lu, Chattonella marina (Subrahmanyan) Hara et Chihara and Heterosigma akashiwo (Hada) Hada in a laboratory experiment. We examined the growth of A. tamarense, C. marina, P. donghaiense and H. Akashiwo in co-cultures and the effect of filtrates from A. tamarense cultures in various growth phases, on the three harmful algal bloom (HAB)-forming algae. In co-cultures with A. tamarense, both C. marina and H. akashiwo were dramatically suppressed at high cell densities; in contrast, the growth of P. donghaiense varied in different inoculative ratios of A. tamarense and P. donghaiense. When the ratio was 1:1 ( P. donghaiense: A. tamarense), growth of P. donghaiense was inhibited considerably, while the growth of P. donghaiense was almost the same as that of the control when the ratio was 9:1. The growth difference of P. donghaiense, C. marina and H. akashiwo when co-cultured with A. tamarense indicated that the allelopathic effect may be one of the important factors in algal competition and phytoplankton succession involving A. tamarense. In addition, the filtrate from A. tamarense culture had negative impacts on these three HAB algae, and such inhibition varied with different growth phases of A. tamarense in parallel with reported values of PSP toxin content in Alexandrium cells. This implied that PSP toxin was possibly involved in allelopathy of A. tamarense. However, the rapid decomposition and inactivation of PSP toxin above pH 7 weakened this possibility. Further studies on the allelochemicals responsible for the allelopathy of A. tamarense need to be carried out in future.

  1. Germination fluctuation of toxic Alexandrium fundyense and A. pacificum cysts and the relationship with bloom occurrences in Kesennuma Bay, Japan.

    PubMed

    Natsuike, Masafumi; Yokoyama, Katsuhide; Nishitani, Goh; Yamada, Yuichiro; Yoshinaga, Ikuo; Ishikawa, Akira

    2017-02-01

    While cyst germination may be an important factor for the initiation of harmful/toxic blooms, assessments of the fluctuation in phytoplankton cyst germination, from bottom sediments to water columns, are rare in situ due to lack of technology that can detect germinated cells in natural bottom sediments. This study introduces a simple mesocosm method, modeled after previous in situ methods, to measure the germination of plankton resting stage cells. Using this method, seasonal changes in germination fluxes of toxic dinoflagellates resting cysts, specifically Alexandrium fundyense (A. tamarense species complex Group I) and A. pacificum (A. tamarense species complex Group IV), were investigated at a fixed station in Kesennuma Bay, northeast Japan, from April 2014 to April 2015. This investigation was conducted in addition to the typical samplings of seawater and bottom sediments to detect the dinoflagellates vegetative cells and resting cysts. Bloom occurrences of A. fundyense were observed June 2014 and February 2015 with maximum cell densities reaching 3.6×10(6) cells m(-2) and 1.4×10(7) cells m(-2), respectively. The maximum germination fluxes of A. fundyense cysts occurred in April 2014 and December 2014 and were 9.3×10(3) cells m(-2)day(-1) and 1.4×10(4) cells m(-2)day(-1), respectively. For A. pacificum, the highest cell density was 7.3×10(7) cells m(-2) during the month of August, and the maximum germination fluxes occurred in July and August, reaching 5.8×10(2) cells m(-2)day(-1). Thus, this study revealed the seasonal dynamics of A. fundyense and A. pacificum cyst germination and their bloom occurrences in the water column. Blooms occurred one to two months after peak germination, which strongly suggests that both the formation of the initial population by cyst germination and its continuous growth in the water column most likely contributed to toxic bloom occurrences of A. fundyense and A. pacificum in the bay.

  2. Modulation of ecdysal cyst and toxin dynamics of two Alexandrium (Dinophyceae) species under small-scale turbulence

    NASA Astrophysics Data System (ADS)

    Bolli, L.; Llaveria, G.; Garcés, E.; Guadayol, Ò.; van Lenning, K.; Peters, F.; Berdalet, E.

    2007-08-01

    Some dinoflagellate species have shown different physiological responses to certain turbulent conditions. Here we investigate how two levels of turbulent kinetic energy dissipation rates (ɛ = 0.4 and 27 cm² s-3) affect the PSP toxins and ecdysal cyst dynamics of two bloom forming species, Alexandrium minutum and A. catenella. The most striking responses were observed at the high ɛ generated by an orbital shaker. In the cultures of the two species shaken for more than 4 days, the cellular GTX(1+4) toxin contents were significantly lower than in the still control cultures. In A. minutum this trend was also observed in the C(1+2) toxin content. For the two species, inhibition of ecdysal cyst production occurred during the period of exposure of the cultures to stirring (4 or more days) at any time during their growth curve. Recovery of cyst abundances was always observed when turbulence stopped. When shaking persisted for more than 4 days, the net growth rate significantly decreased in A. minutum (from 0.25±0.01 day-1 to 0.19±0.02 day-1) and the final cell numbers were lower (ca. 55.4%) than in the still control cultures. In A. catenella, the net growth rate was not markedly modified by turbulence although under long exposure to shaking, the cultures entered earlier in the stationary phase and the final cell numbers were significantly lower (ca. 23%) than in the control flasks. The described responses were not observed in the experiments performed at the low turbulence intensities with an orbital grid system, where the population development was favoured. In those conditions, cells appeared to escape from the zone of the influence of the grids and concentrated in calmer thin layers either at the top or at the bottom of the containers. This ecophysiological study provides new evidences about the sensitivity to high levels of small-scale turbulence by two life cycle related processes, toxin production and encystment, in dinoflagellates. This can contribute to the

  3. Uptake, distribution and depuration of paralytic shellfish toxins from Alexandrium minutum in Australian greenlip abalone, Haliotis laevigata.

    PubMed

    Dowsett, Natalie; Hallegraeff, Gustaaf; van Ruth, Paul; van Ginkel, Roel; McNabb, Paul; Hay, Brenda; O'Connor, Wayne; Kiermeier, Andreas; Deveney, Marty; McLeod, Catherine

    2011-07-01

    Farmed greenlip abalone Haliotis laevigata were fed commercial seaweed-based food pellets or feed pellets supplemented with 8 × 10⁵ Alexandrium minutum dinoflagellate cells g⁻¹ (containing 12 ± 3.0 μg STX-equivalent 100 g⁻¹, which was mainly GTX-1,4) every second day for 50 days. Exposure of abalone to PST supplemented feed for 50 days did not affect behaviour or survival but saw accumulation of up to 1.6 μg STX-equivalent 100 g⁻¹ in the abalone foot tissue (muscle, mouth without oesophagus and epipodial fringe), which is ∼50 times lower than the maximum permissible limit (80 μg 100 g⁻¹ tissue) for PSTs in molluscan shellfish. The PST levels in the foot were reduced to 0.48 μg STX-equivalent 100 g⁻¹ after scrubbing and removal of the pigment surrounding the epithelium of the epipodial fringe (confirmed by both HPLC and LC-MS/MS). Thus, scrubbing the epipodial fringe, a common procedure during commercial abalone canning, reduced PST levels by ∼70%. Only trace levels of PSTs were detected in the viscera (stomach, gut, heart, gonad, gills and mantle) of the abalone. A toxin reduction of approximately 73% was observed in STX-contaminated abalone held in clean water and fed uncontaminated food over 50 days. The low level of PST uptake when abalone were exposed to high numbers of A. minutum cells over a prolonged period may indicate a low risk of PSP poisoning to humans from the consumption of H. laevigata that has been exposed to a bloom of potentially toxic A. minutum in Australia. Further research is required to establish if non-dietary accumulation can result in significant levels of PSTs in abalone. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  4. Feeding by the Pfiesteria-like heterotrophic dinoflagellate Luciella masanensis.

    PubMed

    Jeong, Hae Jin; Ha, Jeong Hyun; Yoo, Yeong Du; Park, Jae Yeon; Kim, Jong Hyeok; Kang, Nam Seon; Kim, Tae Hoon; Kim, Hyung Seop; Yih, Won Ho

    2007-01-01

    maximum growth and ingestion rates of L. masanensis on perch blood cells, A. carterae, H. akashiwo, and the cryptophyte were considerably lower than those of P. piscicida. Therefore, these three dinoflagellates may occupy different ecological niches in marine planktonic communities, even though they have a similar size and shape and the same feeding mechanisms.

  5. Analysis of the hydrographic conditions and cyst beds in the San Jorge Gulf, Argentina, that favor dinoflagellate population development including toxigenic species and their toxins

    NASA Astrophysics Data System (ADS)

    Krock, Bernd; Borel, C. Marcela; Barrera, Facundo; Tillmann, Urban; Fabro, Elena; Almandoz, Gastón O.; Ferrario, Martha; Garzón Cardona, John E.; Koch, Boris P.; Alonso, Cecilia; Lara, Rubén

    2015-08-01

    The overlay of cooler nutrient enriched Beagle-Magellan water with warmer nutrient depleted shelf water and a strong stratification of the water column in the San Jorge Gulf region, Argentina, coincided with relatively high dinoflagellate abundances in April 2012, up to 34,000 cells L- 1. This dinoflagellate proliferation was dominated by Ceratium spp., but environmental conditions also favored to a lesser amount the occurrence of toxigenic dinoflagellates, such as Alexandrium tamarense and Protoceratium reticulatum, whose toxins were hardly detected in any other areas along the expedition transect of the R/V Puerto Deseado between 38 and 56°S (Ushuaia-Mar del Plata) in March/April 2012. Generally vegetative cells of A. tamarense and P. reticulatum co-occurred with their respective phycotoxins in the water column and their cysts in the upper sediment layers. Two strains of A. tamarense were isolated from the bloom sample and morphologically characterized. Their PSP toxin profiles consisted of C1/2, gonyautoxins 1/4 and to a lesser amount of neosaxitoxin and confirmed earlier data from this region. The ratios between autotrophic picoplankton and heterotrophic bacteria were higher in shelf waters in the north than in Beagle-Magellan waters in the south of San Jorge Gulf.

  6. Diversity and Divergence of Dinoflagellate Histone Proteins

    PubMed Central

    Marinov, Georgi K.; Lynch, Michael

    2015-01-01

    Histone proteins and the nucleosomal organization of chromatin are near-universal eukaroytic features, with the exception of dinoflagellates. Previous studies have suggested that histones do not play a major role in the packaging of dinoflagellate genomes, although several genomic and transcriptomic surveys have detected a full set of core histone genes. Here, transcriptomic and genomic sequence data from multiple dinoflagellate lineages are analyzed, and the diversity of histone proteins and their variants characterized, with particular focus on their potential post-translational modifications and the conservation of the histone code. In addition, the set of putative epigenetic mark readers and writers, chromatin remodelers and histone chaperones are examined. Dinoflagellates clearly express the most derived set of histones among all autonomous eukaryote nuclei, consistent with a combination of relaxation of sequence constraints imposed by the histone code and the presence of numerous specialized histone variants. The histone code itself appears to have diverged significantly in some of its components, yet others are conserved, implying conservation of the associated biochemical processes. Specifically, and with major implications for the function of histones in dinoflagellates, the results presented here strongly suggest that transcription through nucleosomal arrays happens in dinoflagellates. Finally, the plausible roles of histones in dinoflagellate nuclei are discussed. PMID:26646152

  7. Diversity and Divergence of Dinoflagellate Histone Proteins.

    PubMed

    Marinov, Georgi K; Lynch, Michael

    2015-12-08

    Histone proteins and the nucleosomal organization of chromatin are near-universal eukaroytic features, with the exception of dinoflagellates. Previous studies have suggested that histones do not play a major role in the packaging of dinoflagellate genomes, although several genomic and transcriptomic surveys have detected a full set of core histone genes. Here, transcriptomic and genomic sequence data from multiple dinoflagellate lineages are analyzed, and the diversity of histone proteins and their variants characterized, with particular focus on their potential post-translational modifications and the conservation of the histone code. In addition, the set of putative epigenetic mark readers and writers, chromatin remodelers and histone chaperones are examined. Dinoflagellates clearly express the most derived set of histones among all autonomous eukaryote nuclei, consistent with a combination of relaxation of sequence constraints imposed by the histone code and the presence of numerous specialized histone variants. The histone code itself appears to have diverged significantly in some of its components, yet others are conserved, implying conservation of the associated biochemical processes. Specifically, and with major implications for the function of histones in dinoflagellates, the results presented here strongly suggest that transcription through nucleosomal arrays happens in dinoflagellates. Finally, the plausible roles of histones in dinoflagellate nuclei are discussed.

  8. CO2-dependent carbon isotope fractionation in dinoflagellates relates to their inorganic carbon fluxes.

    PubMed

    Hoins, Mirja; Eberlein, Tim; Van de Waal, Dedmer B; Sluijs, Appy; Reichart, Gert-Jan; Rost, Björn

    2016-08-01

    Carbon isotope fractionation (εp) between the inorganic carbon source and organic matter has been proposed to be a function of pCO2. To understand the CO2-dependency of εp and species-specific differences therein, inorganic carbon fluxes in the four dinoflagellate species Alexandrium fundyense, Scrippsiella trochoidea, Gonyaulax spinifera and Protoceratium reticulatum have been measured by means of membrane-inlet mass spectrometry. In-vivo assays were carried out at different CO2 concentrations, representing a range of pCO2 from 180 to 1200 μatm. The relative bicarbonate contribution (i.e. the ratio of bicarbonate uptake to total inorganic carbon uptake) and leakage (i.e. the ratio of CO2 efflux to total inorganic carbon uptake) varied from 0.2 to 0.5 and 0.4 to 0.7, respectively, and differed significantly between species. These ratios were fed into a single-compartment model, and εp values were calculated and compared to carbon isotope fractionation measured under the same conditions. For all investigated species, modeled and measured εp values were comparable (A. fundyense, S. trochoidea, P. reticulatum) and/or showed similar trends with pCO2 (A. fundyense, G. spinifera, P. reticulatum). Offsets are attributed to biases in inorganic flux measurements, an overestimated fractionation factor for the CO2-fixing enzyme RubisCO, or the fact that intracellular inorganic carbon fluxes were not taken into account in the model. This study demonstrates that CO2-dependency in εp can largely be explained by the inorganic carbon fluxes of the individual dinoflagellates.

  9. Differential effects of ocean acidification on carbon acquisition in two bloom-forming dinoflagellate species.

    PubMed

    Eberlein, Tim; Van de Waal, Dedmer B; Rost, Björn

    2014-08-01

    Dinoflagellates represent a cosmopolitan group of phytoplankton with the ability to form harmful algal blooms. Featuring a Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) with very low CO2 affinities, photosynthesis of this group may be particularly prone to carbon limitation and thus benefit from rising atmospheric CO2 partial pressure (pCO2) under ocean acidification (OA). Here, we investigated the consequences of OA on two bloom-forming dinoflagellate species, the calcareous Scrippsiella trochoidea and the toxic Alexandrium tamarense. Using dilute batch incubations, we assessed growth characteristics over a range of pCO2 (i.e. 180-1200 µatm). To understand the underlying physiology, several aspects of inorganic carbon acquisition were investigated by membrane-inlet mass spectrometry. Our results show that both species kept growth rates constant over the tested pCO2 range, but we observed a number of species-specific responses. For instance, biomass production and cell size decreased in S. trochoidea, while A. tamarense was not responsive to OA in these measures. In terms of oxygen fluxes, rates of photosynthesis and respiration remained unaltered in S. trochoidea whereas respiration increased in A. tamarense under OA. Both species featured efficient carbon concentrating mechanisms (CCMs) with a CO2-dependent contribution of HCO3(-) uptake. In S. trochoidea, the CCM was further facilitated by exceptionally high and CO2-independent carbonic anhydrase activity. Comparing both species, a general trade-off between maximum rates of photosynthesis and respective affinities is indicated. In conclusion, our results demonstrate effective CCMs in both species, yet very different strategies to adjust their carbon acquisition. This regulation in CCMs enables both species to maintain growth over a wide range of ecologically relevant pCO2 . © 2013 The Authors. Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology

  10. Differential effects of ocean acidification on carbon acquisition in two bloom-forming dinoflagellate species

    PubMed Central

    Eberlein, Tim; Van de Waal, Dedmer B; Rost, Björn

    2014-01-01

    Dinoflagellates represent a cosmopolitan group of phytoplankton with the ability to form harmful algal blooms. Featuring a Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) with very low CO2 affinities, photosynthesis of this group may be particularly prone to carbon limitation and thus benefit from rising atmospheric CO2 partial pressure (pCO2) under ocean acidification (OA). Here, we investigated the consequences of OA on two bloom-forming dinoflagellate species, the calcareous Scrippsiella trochoidea and the toxic Alexandrium tamarense. Using dilute batch incubations, we assessed growth characteristics over a range of pCO2 (i.e. 180–1200 µatm). To understand the underlying physiology, several aspects of inorganic carbon acquisition were investigated by membrane-inlet mass spectrometry. Our results show that both species kept growth rates constant over the tested pCO2 range, but we observed a number of species-specific responses. For instance, biomass production and cell size decreased in S. trochoidea, while A. tamarense was not responsive to OA in these measures. In terms of oxygen fluxes, rates of photosynthesis and respiration remained unaltered in S. trochoidea whereas respiration increased in A. tamarense under OA. Both species featured efficient carbon concentrating mechanisms (CCMs) with a CO2-dependent contribution of HCO3− uptake. In S. trochoidea, the CCM was further facilitated by exceptionally high and CO2-independent carbonic anhydrase activity. Comparing both species, a general trade-off between maximum rates of photosynthesis and respective affinities is indicated. In conclusion, our results demonstrate effective CCMs in both species, yet very different strategies to adjust their carbon acquisition. This regulation in CCMs enables both species to maintain growth over a wide range of ecologically relevant pCO2. PMID:24320746

  11. Stable carbon isotope fractionation of organic cyst-forming dinoflagellates: Evaluating the potential for a CO2 proxy

    NASA Astrophysics Data System (ADS)

    Hoins, Mirja; Van de Waal, Dedmer B.; Eberlein, Tim; Reichart, Gert-Jan; Rost, Björn; Sluijs, Appy

    2015-07-01

    Over the past decades, significant progress has been made regarding the quantification and mechanistic understanding of stable carbon isotope fractionation (13C fractionation) in photosynthetic unicellular organisms in response to changes in the partial pressure of atmospheric CO2 (pCO2). However, hardly any data is available for organic cyst-forming dinoflagellates while this is an ecologically important group with a unique fossil record. We performed dilute batch experiments with four harmful dinoflagellate species known for their ability to form organic cysts: Alexandrium tamarense, Scrippsiella trochoidea, Gonyaulax spinifera and Protoceratium reticulatum. Cells were grown at a range of dissolved CO2 concentrations characterizing past, modern and projected future values (∼5-50 μmol L-1), representing atmospheric pCO2 of 180, 380, 800 and 1200 μatm. In all tested species, 13C fractionation depends on CO2 with a slope of up to 0.17‰ (μmol L)-1. Even more consistent correlations were found between 13C fractionation and the combined effects of particulate organic carbon quota (POC quota; pg C cell-1) and CO2. Carbon isotope fractionation as well as its response to CO2 is species-specific. These results may be interpreted as a first step towards a proxy for past pCO2 based on carbon isotope ratios of fossil organic dinoflagellate cysts. However, additional culture experiments focusing on environmental variables other than pCO2, physiological underpinning of the recorded response, testing for possible offsets in 13C values between cells and cysts, as well as field calibration studies are required to establish a reliable proxy.

  12. Response of photosynthesis and the antioxidant defense system of two microalgal species (Alexandrium minutum and Dunaliella salina) to the toxicity of BDE-47.

    PubMed

    Zhao, Yan; Wang, You; Li, Yijun; Santschi, Peter H; Quigg, Antonietta

    2017-08-03

    Polybrominated diphenyl ethers (PBDEs), a persistent organic pollutant are ubiquitous in aquatic ecosystems, which are causing serious environmental concerns. In this study, we chose BDE-47 as a representative PBDEs, to investigate its toxic effects on two microalgal species and the response of their antioxidant system. The results indicated Alexandrium minutum (a dinoflagellate) was more sensitive to BDE-47 than Dunaliella salina (a chlorophyte), as determined by growth rates, cellular structure and photosynthetic parameters. Cellular reactive oxygen species (ROS) levels were significantly elevated under the exposure of BDE-47 in both species, corresponding to an increase of superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) activities, while glutathione peroxidase (GPX) activities decreased in D. salina and increased in A. minutum. The different enzymes responses between the two species indicated different mechanisms in their antioxidant system, and we deduced that A. minutum might have a higher efficiency for scavenging H2O2 than D. salina. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A new insight into allelopathic effects of Alexandrium minutum on photosynthesis and respiration of the diatom Chaetoceros neogracile revealed by photosynthetic-performance analysis and flow cytometry.

    PubMed

    Lelong, Aurélie; Haberkorn, Hansy; Le Goïc, Nelly; Hégaret, Hélène; Soudant, Philippe

    2011-11-01

    The allelopathic effects of Alexandrium minutum, a toxic dinoflagellate, on the diatom Chaetoceros neogracile were evaluated using unialgal cultures evaluated by flow cytometry (FCM) and photosynthetic-performance analysis. Using FCM, we demonstrated that red chlorophyll fluorescence, relative cell size (Forward scatter of blue laser light, FSC) and cell complexity (Side scatter, 90°-angle scatter of blue laser light, SSC) significantly and rapidly decreased in C. neogracile cells exposed to A. minutum. Cells of C. neogracile exposed to A. minutum had fewer active photosynthetic reaction centers and sharply decreased photosynthetic efficiency. These effects were intensified with advancing A. minutum batch culture age and cell density. The supernatant of A. minutum contained the majority of the putative allelopathic compounds, and the biological activity of these compounds remained active less than 9 h after release. This paper describes for the first time specific effects of allelochemicals produced by A. minutum on the photosynthetic apparatus of microalgal target cells. The biochemical composition of A. minutum allelopathic agents, however, remains unknown and still needs to be investigated.

  14. Biogeography of dinoflagellate cysts in northwest Atlantic estuaries.

    PubMed

    Price, Andrea M; Pospelova, Vera; Coffin, Michael R S; Latimer, James S; Chmura, Gail L

    2016-08-01

    Few biogeographic studies of dinoflagellate cysts include the near-shore estuarine environment. We determine the effect of estuary type, biogeography, and water quality on the spatial distribution of organic-walled dinoflagellate cysts from the Northeast USA (Maine to Delaware) and Canada (Prince Edward Island). A total of 69 surface sediment samples were collected from 27 estuaries, from sites with surface salinities >20. Dinoflagellate cysts were examined microscopically and compared to environmental parameters using multivariate ordination techniques. The spatial distribution of cyst taxa reflects biogeographic provinces established by other marine organisms, with Cape Cod separating the northern Acadian Province from the southern Virginian Province. Species such as Lingulodinium machaerophorum and Polysphaeridinium zoharyi were found almost exclusively in the Virginian Province, while others such as Dubridinium spp. and Islandinium? cezare were more abundant in the Acadian Province. Tidal range, sea surface temperature (SST), and sea surface salinity (SSS) are statistically significant parameters influencing cyst assemblages. Samples from the same type of estuary cluster together in canonical correspondence analysis when the estuaries are within the same biogeographic province. The large geographic extent of this study, encompassing four main estuary types (riverine, lagoon, coastal embayment, and fjord), allowed us to determine that the type of estuary has an important influence on cyst assemblages. Due to greater seasonal variations in SSTs and SSSs in estuaries compared to the open ocean, cyst assemblages show distinct latitudinal trends. The estuarine context is important for understanding present-day species distribution, the factors controlling them, and to better predict how they may change in the future.

  15. New-old hemoglobin-like proteins of symbiotic dinoflagellates

    PubMed Central

    Rosic, Nedeljka N; Leggat, William; Kaniewska, Paulina; Dove, Sophie; Hoegh-Guldberg, Ove

    2013-01-01

    Symbiotic dinoflagellates are unicellular photosynthetic algae that live in mutualistic symbioses with many marine organisms. Within the transcriptome of coral endosymbionts Symbiodinium sp. (type C3), we discovered the sequences of two novel and highly polymorphic hemoglobin-like genes and proposed their 3D protein structures. At the protein level, four isoforms shared between 87 and 97% sequence identity for Hb-1 and 78–99% for Hb-2, whereas between Hb-1 and Hb-2 proteins, only 15–21% sequence homology has been preserved. Phylogenetic analyses of the dinoflagellate encoding Hb sequences have revealed a separate evolutionary origin of the discovered globin genes and indicated the possibility of horizontal gene transfer. Transcriptional regulation of the Hb-like genes was studied in the reef-building coral Acropora aspera exposed to elevated temperatures (6–7°C above average sea temperature) over a 24-h period and a 72-h period, as well as to nutrient stress. Exposure to elevated temperatures resulted in an increased Hb-1 gene expression of 31% after 72 h only, whereas transcript abundance of the Hb-2 gene was enhanced by up to 59% by both 1-day and 3-day thermal stress conditions. Nutrient stress also increased gene expression of Hb-2 gene by 70%. Our findings describe the differential expression patterns of two novel Hb genes from symbiotic dinoflagellates and their polymorphic nature. Furthermore, the inducible nature of Hb-2 gene by both thermal and nutrient stressors indicates a prospective role of this form of hemoglobin in the initial coral–algal responses to changes in environmental conditions. This novel hemoglobin has potential use as a stress biomarker. PMID:23610627

  16. Toxicity of benthic dinoflagellates on grazing, behavior and survival of the brine shrimp Artemia salina.

    PubMed

    Neves, Raquel A F; Fernandes, Tainá; Santos, Luciano Neves Dos; Nascimento, Silvia M

    2017-01-01

    Harmful algae may differently affect their primary grazers, causing sub-lethal effects and/or leading to their death. The present study aim to compare the effects of three toxic benthic dinoflagellates on clearance and grazing rates, behavioral changes, and survival of Artemia salina. Feeding assays consisted in 1-h incubations of brine shrimps with the toxic Prorocentrum lima, Gambierdiscus excentricus and Ostreopsis cf. ovata and the non-toxic Tetraselmis sp. Brine shrimps fed unselectively on all toxic and non-toxic algal preys, without significant differences in clearance and ingestion rates. Acute toxicity assays were performed with dinoflagellate cells in two growth phases during 7-h to assess differences in cell toxicity to A. salina. Additionally, exposure to cell-free medium was performed to evaluate its effects on A. salina survival. The behavior of brine shrimps significantly changed during exposure to the toxic dinoflagellates, becoming immobile at the bottom by the end of the trials. Dinoflagellates significantly affected A. salina survival with 100% mortality after 7-h exposure to cells in exponential phase (all treatments) and to P. lima in stationary phase. Mortality rates of brine shrimps exposed to O. cf. ovata and G. excentricus in stationary phase were 91% and 75%, respectively. However, incubations of the brine shrimps with cell-free medium did not affect A. salina survivorship. Significant differences in toxic effects between cell growth phases were only found in the survival rates of A. salina exposed to G. excentricus. Acute exposure to benthic toxic dinoflagellates induced harmful effects on behavior and survival of A. salina. Negative effects related to the toxicity of benthic dinoflagellates are thus expected on their primary grazers making them more vulnerable to predation and vectors of toxins through the marine food webs.

  17. Decadal variations in diatoms and dinoflagellates on the inner shelf of the East China Sea, China

    NASA Astrophysics Data System (ADS)

    Abate, Rediat; Gao, Yahui; Chen, Changping; Liang, Junrong; Mu, Wenhua; Kifile, Demeke; Chen, Yanghang

    2017-04-01

    Diatoms and dinoflagellates are two major groups of phytoplankton that flourish in the oceans, particularly in coastal zone and upwelling systems, and their contrasting production have been reported in several world seas. However, this information is not available in the coastal East China Sea (ECS). Thus, to investigate and compare the decadal trends in diatoms and dinoflagellates, a sediment core, 47 cm long, was collected from the coastal zone of the ECS. Sediment chlorophyll-a (Chl-a), phytoplankton-group specific pigment signatures of diatoms and dinoflagellates, and diatom valve concentrations were determined. The sediment core covered the period from 1961 to 2011 AD. The chlorophyll-a contents ranged from 2.32 to 73 µg/g dry sediment (dw) and averaged 9.81 µg/g dw. Diatom absolute abundance ranged from 29152 to 177501 valve/gram (v/g) dw and averaged 72137 v/g dw. Diatom valve and diatom specific pigment marker concentrations were not significantly correlated. Peridinin increased after the 1980s in line with intensified use of fertilizer and related increases in nutrient inputs into the marine environment. The increased occurrence of dinoflagellate dominance after the 1980s can be mostly explained by the increase in nutrients. However, the contribution of dinoflagellates to total phytoplankton production (Chl-a) decreased during the final decade of this study, probably because of the overwhelming increase in diatom production that corresponded with the construction of the Three Gorges Dam (TGD) and related light availability. Similarly, the mean ratio of fucoxanthin/peridinin for the period from 1982 to 2001 was 6% less than for 1961 to 1982, while the ratio for 2001 to 2011 was 45.3% greater than for 1982 to 2001. The decadal variation in the fucoxanthin/peridinin ratio implies that dinoflagellate production had been gradually increasing until 2001. We suggest that the observed changes can be explained by anthropogenic impacts, such as nutrient loading

  18. Toxicity of benthic dinoflagellates on grazing, behavior and survival of the brine shrimp Artemia salina

    PubMed Central

    Neves, Raquel A. F.; Fernandes, Tainá; dos Santos, Luciano Neves; Nascimento, Silvia M.

    2017-01-01

    Harmful algae may differently affect their primary grazers, causing sub-lethal effects and/or leading to their death. The present study aim to compare the effects of three toxic benthic dinoflagellates on clearance and grazing rates, behavioral changes, and survival of Artemia salina. Feeding assays consisted in 1-h incubations of brine shrimps with the toxic Prorocentrum lima, Gambierdiscus excentricus and Ostreopsis cf. ovata and the non-toxic Tetraselmis sp. Brine shrimps fed unselectively on all toxic and non-toxic algal preys, without significant differences in clearance and ingestion rates. Acute toxicity assays were performed with dinoflagellate cells in two growth phases during 7-h to assess differences in cell toxicity to A. salina. Additionally, exposure to cell-free medium was performed to evaluate its effects on A. salina survival. The behavior of brine shrimps significantly changed during exposure to the toxic dinoflagellates, becoming immobile at the bottom by the end of the trials. Dinoflagellates significantly affected A. salina survival with 100% mortality after 7-h exposure to cells in exponential phase (all treatments) and to P. lima in stationary phase. Mortality rates of brine shrimps exposed to O. cf. ovata and G. excentricus in stationary phase were 91% and 75%, respectively. However, incubations of the brine shrimps with cell-free medium did not affect A. salina survivorship. Significant differences in toxic effects between cell growth phases were only found in the survival rates of A. salina exposed to G. excentricus. Acute exposure to benthic toxic dinoflagellates induced harmful effects on behavior and survival of A. salina. Negative effects related to the toxicity of benthic dinoflagellates are thus expected on their primary grazers making them more vulnerable to predation and vectors of toxins through the marine food webs. PMID:28388672

  19. Symbiodinium Transcriptomes: Genome Insights into the Dinoflagellate Symbionts of Reef-Building Corals

    PubMed Central

    Sunagawa, Shinichi; Yum, Lauren K.; DeSalvo, Michael K.; Lindquist, Erika; Coffroth, Mary Alice; Voolstra, Christian R.; Medina, Mónica

    2012-01-01

    Dinoflagellates are unicellular algae that are ubiquitously abundant in aquatic environments. Species of the genus Symbiodinium form symbiotic relationships with reef-building corals and other marine invertebrates. Despite their ecologic importance, little is known about the genetics of dinoflagellates in general and Symbiodinium in particular. Here, we used 454 sequencing to generate transcriptome data from two Symbiodinium species from different clades (clade A and clade B). With more than 56,000 assembled sequences per species, these data represent the largest transcriptomic resource for dinoflagellates to date. Our results corroborate previous observations that dinoflagellates possess the complete nucleosome machinery. We found a complete set of core histones as well as several H3 variants and H2A.Z in one species. Furthermore, transcriptome analysis points toward a low number of transcription factors in Symbiodinium spp. that also differ in the distribution of DNA-binding domains relative to other eukaryotes. In particular the cold shock domain was predominant among transcription factors. Additionally, we found a high number of antioxidative genes in comparison to non-symbiotic but evolutionary related organisms. These findings might be of relevance in the context of the role that Symbiodinium spp. play as coral symbionts. Our data represent the most comprehensive dinoflagellate EST data set to date. This study provides a comprehensive resource to further analyze the genetic makeup, metabolic capacities, and gene repertoire of Symbiodinium and dinoflagellates. Overall, our findings indicate that Symbiodinium possesses some unique characteristics, in particular the transcriptional regulation in Symbiodinium may differ from the currently known mechanisms of eukaryotic gene regulation. PMID:22529998

  20. Distribution of diatom Pseudo-nitzschia and dinoflagellates of Dinophysis spp along coast off Goa.

    PubMed

    Alkawri, A A S; Ramaiah, N

    2011-01-01

    As a part of an annual analysis on the phytoplankton distribution and composition, regular monthly sampling carried out during October 2007- September 2008 from salinity gradient zones in the intertidal waters along the coast of Goa. Among the 179 species of phytoplankton observed during this study, as many as 11 of them are recognized, potentially toxic ones. The toxic diatom species, Pseudo-nitzschia pungens was quite preponderant, in particular during the pre-monsoon month of May 2008 off Chapora, a perennially low salinity location. Among the 10 toxic dinoflagellate species detected, the known toxic species, Alexandrium minutum followed by Dinophysis acuminata were found to attain maximum cell numbers in the study area. It is apparent from our results that the toxic species do occur in all salinity zones sampled and during many months of the year in coastal waters off Goa. Though directly governed by the variations in nutrient concentrations, some of these toxic phytoplankton species attain high cell numbers. It is reasonable for us to therefore caution that the toxic species do prevail in these waters.

  1. Biomass and lipid production of dinoflagellates and raphidophytes in indoor and outdoor photobioreactors.

    PubMed

    Fuentes-Grünewald, C; Garcés, E; Alacid, E; Rossi, S; Camp, J

    2013-02-01

    The principal fatty acids from the lipid profiles of two autochthonous dinoflagellates (Alexandrium minutum and Karlodinium veneficum) and one raphidophyte (Heterosigma akashiwo) maintained in bubble column photobioreactors under outdoor culture conditions are described for the first time. The biomass production, lipid content and lipid productivity of these three species were determined and the results compared to those obtained when the strains were cultured indoors. Under the latter condition, the biotic values did not significantly differ among species, whereas under outdoor conditions, differences in both duplication time and fatty acids content were observed. Specifically, A. minutum had higher biomass productivity (0.35 g·L⁻¹ day⁻¹), lipid productivity (80.7 mg lipid·L⁻¹ day⁻¹) and lipid concentration (252 mg lipid·L⁻¹) at harvest time (stationary phase) in outdoor conditions. In all three strains, the growth rate and physiological response to the light and temperature fluctuations of outdoor conditions greatly impacted the production parameters. Nonetheless, the species could be successfully grown in an outdoor photobioreactor and were of sufficient robustness to enable the establishment of long-term cultures yielding consistent biomass and lipid production.

  2. Novel insight into the role of heterotrophic dinoflagellates in the fate of crude oil in the sea

    NASA Astrophysics Data System (ADS)

    Almeda, Rodrigo; Connelly, Tara L.; Buskey, Edward J.

    2014-12-01

    Although planktonic protozoans are likely to interact with dispersed crude oil after a spill, protozoan-mediated processes affecting crude oil pollution in the sea are still not well known. Here, we present the first evidence of ingestion and defecation of physically or chemically dispersed crude oil droplets (1-86 μm in diameter) by heterotrophic dinoflagellates, major components of marine planktonic food webs. At a crude oil concentration commonly found after an oil spill (1 μL L-1), the heterotrophic dinoflagellates Noctiluca scintillans and Gyrodinium spirale grew and ingested ~0.37 μg-oil μg-Cdino-1 d-1, which could represent ~17% to 100% of dispersed oil in surface waters when heterotrophic dinoflagellates are abundant or bloom. Egestion of faecal pellets containing crude oil by heterotrophic dinoflagellates could contribute to the sinking and flux of toxic petroleum hydrocarbons in coastal waters. Our study indicates that crude oil ingestion by heterotrophic dinoflagellates is a noteworthy route by which petroleum enters marine food webs and a previously overlooked biological process influencing the fate of crude oil in the sea after spills.

  3. Novel insight into the role of heterotrophic dinoflagellates in the fate of crude oil in the sea.

    PubMed

    Almeda, Rodrigo; Connelly, Tara L; Buskey, Edward J

    2014-12-19

    Although planktonic protozoans are likely to interact with dispersed crude oil after a spill, protozoan-mediated processes affecting crude oil pollution in the sea are still not well known. Here, we present the first evidence of ingestion and defecation of physically or chemically dispersed crude oil droplets (1-86 μm in diameter) by heterotrophic dinoflagellates, major components of marine planktonic food webs. At a crude oil concentration commonly found after an oil spill (1 μL L(-1)), the heterotrophic dinoflagellates Noctiluca scintillans and Gyrodinium spirale grew and ingested ~0.37 μg-oil μg-C(dino)(-1) d(-1), which could represent ~17% to 100% of dispersed oil in surface waters when heterotrophic dinoflagellates are abundant or bloom. Egestion of faecal pellets containing crude oil by heterotrophic dinoflagellates could contribute to the sinking and flux of toxic petroleum hydrocarbons in coastal waters. Our study indicates that crude oil ingestion by heterotrophic dinoflagellates is a noteworthy route by which petroleum enters marine food webs and a previously overlooked biological process influencing the fate of crude oil in the sea after spills.

  4. Novel insight into the role of heterotrophic dinoflagellates in the fate of crude oil in the sea

    PubMed Central

    Almeda, Rodrigo; Connelly, Tara L.; Buskey, Edward J.

    2014-01-01

    Although planktonic protozoans are likely to interact with dispersed crude oil after a spill, protozoan-mediated processes affecting crude oil pollution in the sea are still not well known. Here, we present the first evidence of ingestion and defecation of physically or chemically dispersed crude oil droplets (1–86 μm in diameter) by heterotrophic dinoflagellates, major components of marine planktonic food webs. At a crude oil concentration commonly found after an oil spill (1 μL L−1), the heterotrophic dinoflagellates Noctiluca scintillans and Gyrodinium spirale grew and ingested ~0.37 μg-oil μg-Cdino−1 d−1, which could represent ~17% to 100% of dispersed oil in surface waters when heterotrophic dinoflagellates are abundant or bloom. Egestion of faecal pellets containing crude oil by heterotrophic dinoflagellates could contribute to the sinking and flux of toxic petroleum hydrocarbons in coastal waters. Our study indicates that crude oil ingestion by heterotrophic dinoflagellates is a noteworthy route by which petroleum enters marine food webs and a previously overlooked biological process influencing the fate of crude oil in the sea after spills. PMID:25523528

  5. BIOCHEMISTRY OF DINOFLAGELLATE LIPIDS, WITH PARTICULAR REFERENCE TO THE FATTY ACID AND STEROL COMPOSITION OF A KARENIA BREVIS BLOOM

    EPA Science Inventory

    Leblond, Jeffrey D., Terence J. Evens and Peter J. Chapman. 2003. Biochemistry of Dinoflagellate Lipids, with Particular Reference to the Fatty Acid and Sterol Composition of a Karenia brevis Bloom. Phycologia. 42(4):324-331. (ERL,GB 1160).

    The harmful marine dinoflagella...

  6. BIOCHEMISTRY OF DINOFLAGELLATE LIPIDS, WITH PARTICULAR REFERENCE TO THE FATTY ACID AND STEROL COMPOSITION OF A KARENIA BREVIS BLOOM

    EPA Science Inventory

    Leblond, Jeffrey D., Terence J. Evens and Peter J. Chapman. 2003. Biochemistry of Dinoflagellate Lipids, with Particular Reference to the Fatty Acid and Sterol Composition of a Karenia brevis Bloom. Phycologia. 42(4):324-331. (ERL,GB 1160).

    The harmful marine dinoflagella...

  7. Mycosporine-like amino acids from coral dinoflagellates.

    PubMed

    Rosic, Nedeljka N; Dove, Sophie

    2011-12-01

    Coral reefs are one of the most important marine ecosystems, providing habitat for approximately a quarter of all marine organisms. Within the foundation of this ecosystem, reef-building corals form mutualistic symbioses with unicellular photosynthetic dinoflagellates of the genus Symbiodinium. Exposure to UV radiation (UVR) (280 to 400 nm) especially when combined with thermal stress has been recognized as an important abiotic factor leading to the loss of algal symbionts from coral tissue and/or a reduction in their pigment concentration and coral bleaching. UVR may damage biological macromolecules, increase the level of mutagenesis in cells, and destabilize the symbiosis between the coral host and their dinoflagellate symbionts. In nature, corals and other marine organisms are protected from harmful UVR through several important photoprotective mechanisms that include the synthesis of UV-absorbing compounds such as mycosporine-like amino acids (MAAs). MAAs are small (<400-Da), colorless, water-soluble compounds made of a cyclohexenone or cyclohexenimine chromophore that is bound to an amino acid residue or its imino alcohol. These secondary metabolites are natural biological sunscreens characterized by a maximum absorbance in the UVA and UVB ranges of 310 to 362 nm. In addition to their photoprotective role, MAAs act as antioxidants scavenging reactive oxygen species (ROS) and suppressing singlet oxygen-induced damage. It has been proposed that MAAs are synthesized during the first part of the shikimate pathway, and recently, it has been suggested that they are synthesized in the pentose phosphate pathway. The shikimate pathway is not found in animals, but in plants and microbes, it connects the metabolism of carbohydrates to the biosynthesis of aromatic compounds. However, both the complete enzymatic pathway of MAA synthesis and the extent of their regulation by environmental conditions are not known. This minireview discusses the current knowledge of MAA

  8. A new polyether ladder compound produced by the dinoflagellate Karenia brevis.

    PubMed

    Bourdelais, Andrea J; Jacocks, Henry M; Wright, Jeffrey L C; Bigwarfe, Paul M; Baden, Daniel G

    2005-01-01

    A new ladder-frame polyether compound containing five fused ether rings was isolated from laboratory cultures of the marine dinoflagellate Karenia brevis. This compound, named brevenal, and its dimethyl acetal derivative both competitively displace brevetoxin from its binding site in rat brain synaptosomes. Significantly, these compounds are also nontoxic to fish and antagonize the toxic effects of brevetoxins in fish. The structure and biological activity of brevenal, as well as the dimethyl acetal derivative, are described in this paper.

  9. Distribution and toxicity of Alexandrium ostenfeldii (Dinophyceae) in the Gulf of Maine, USA

    NASA Astrophysics Data System (ADS)

    Gribble, Kristin E.; Keafer, Bruce A.; Quilliam, Michael A.; Cembella, Allan D.; Kulis, David M.; Manahan, Abigail; Anderson, Donald M.

    2005-09-01

    Alexandrium ostenfeldii is a thecate, mixotrophic dinoflagellate recently linked to a novel suite of toxins called spirolides. This study provides the first description of the regional distribution of A. ostenfeldii in the Gulf of Maine (GOM), and the first report and analysis of spirolide toxicity in A. ostenfeldii in waters south of Nova Scotia. Morphological examination of cells in field samples and of clonal cultures isolated from several stations in the GOM confirmed the presence of A. ostenfeldii. A genus-specific antibody probe, and an A. ostenfeldii species-specific oligonucleotide probe labeled these cells; a probe specific for the North American A. fundyense/tamarense/catenella species complex did not label A. ostenfeldii cells. Cell size ranged from 20 to nearly 90 μm, and most cells contained food vacuoles, with a total vacuole size from 1 to 48 μm. The hydrographic forcings controlling the distribution of A. ostenfeldii in the GOM are quite similar to those acting on the A. fundyense population at the same time of the year. The highest concentrations of A. ostenfeldii were observed nearshore, to the east of Penobscot Bay, at times with an offshore-turning branch of high cell concentration to the south of Penobscot Bay. Casco Bay appears to be an area of accumulation for A. ostenfeldii cells advected toward shore from the core of the population to the northeast. Concentrations of A. ostenfeldii were generally higher at the surface than deeper, except at locations where the pooling of lower-salinity water at the surface may have led to the subduction of the population flowing in from the east. PSP toxins were detected in field populations containing A. ostenfeldii and A. fundyense, but not in A. ostenfeldii cultures isolated from the GOM. Spirolide toxins were found in 36 of 60 field samples. More than 83% of samples containing A. ostenfeldii cells had one or more of spirolide congeners A, B, C2 and D2. The total concentration of spirolides per cell at

  10. Bioturbation, germination and deposition of Alexandrium fundyense cysts in the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Shull, David H.; Kremp, Anke; Mayer, Lawrence M.

    2014-05-01

    Like many other dinoflagellate species, Alexandrium fundyense possesses a benthic resting cyst which enables long-term persistence and annual blooms of this species in the Gulf of Maine. The size and extent of these harmful algal blooms are associated with high cyst concentrations in the top 1 cm of sediment. Despite the importance of this resting stage in the life history of A. fundyense, little work has been done on bioturbation of cysts in the deep-water cyst beds of the western Gulf of Maine. Our work intensively examined one site within a major regional “seedbed” from February 2003 until August 2005, a time span that included an extraordinarily large bloom of A. fundyense in 2005. Over the course of 2 years we collected samples for benthic infauna and cyst profiles down to a depth of 30 cm. We also measured sediment porosity, organic carbon, 210Pb, and porewater dissolved oxygen. On several dates we measured depth profiles of cyst autofluorescence. Profiles of cysts revealed large subsurface maxima peaking between 10 and 15 cm depth with cyst concentrations declining strongly toward the sediment surface. On one sampling date (August 2004) we observed a cyst concentration peak at the sediment surface. Using these data we constructed a mechanistic model of cyst bioturbation, mortality, germination, and deposition. Modeled bioturbation was calibrated using 210Pb and modeled cyst profiles were compared to measured profiles. Model runs with constant and interannually-varying rates of cyst deposition produced similar time-averaged cyst profiles. Results indicate that the deeper portions of cyst profiles are determined primarily by bioturbation, germination and cyst mortality and less so by interannual variation in cyst depositional history. This is due to the relatively low sedimentation rate at the study site compared to the rate of bioturbation, and the fact that the number of cysts deposited each year tends to be a small fraction of the total inventory

  11. Free sterol composition of species in the dinoflagellate genus Pyrocystis: a spectrum of sterol diversity.

    PubMed

    Dahmen, Jeremy L; Leblond, Jeffrey D

    2011-01-01

    The dinoflagellate genus Pyrocystis includes a small number of marine species, which spend the majority of their life cycles as nonmotile cells within a carbohydrate sheath, and which are found ubiquitously throughout the world's oceans. The biochemistry of this model dinoflagellate genus has been widely studied due to its ability to bioluminesce. However, Pyrocystis has been comparatively understudied with respect to its lipid biochemistry, in particular that of sterols. To date, examination of the sterols of Pyrocystis has focused primarily upon Pyrocystis lunula, which produces cholesterol and 4,24-dimethyl-5α-cholestan-3β-ol as its predominant sterols, while it lacks the common dinoflagellate sterol, dinosterol. We have examined the sterol composition of the two other commercially available species of Pyrocystis, Pyrocystis fusiformis and Pyrocystis noctiluca. Pyrocystis noctiluca possesses dinosterol as its most abundant sterol, while P. fusiformis possesses dinosterol and 4,24-dimethyl-5α-cholestan-3β-ol as the predominant sterols, placing it at an intermediate position between P. lunula and P. noctiluca, as based on sterol composition. The potential limitations of the dinoflagellate sterol biomarker dinosterol are also explored in this study due to its notable absence in P. lunula. © 2011 The Author(s). Journal of Eukaryotic Microbiology © 2011 International Society of Protistologists.

  12. Mixotrophy in the newly described dinoflagellate Yihiella yeosuensis: A small, fast dinoflagellate predator that grows mixotrophically, but not autotrophically.

    PubMed

    Jang, Se Hyeon; Jeong, Hae Jin; Kwon, Ji Eun; Lee, Kyung Ha

    2017-02-01

    To investigate tropical roles of the newly described Yihiella yeosuensis (ca. 8μm in cell size), one of the smallest phototrophic dinoflagellates in marine ecosystems, its trophic mode and the types of prey species that Y. yeosuensis can feed upon were explored. Growth and ingestion rates of Y. yeosuensis on its optimal prey, Pyramimonas sp. (Prasinophyceae), as a function of prey concentration were measured. Additionally, growth and ingestion rates of Y. yeosuensis on the other edible prey, Teleaulax sp. (Cryptophyceae), were also determined for a single prey concentration at which both these rates of Y. yeosuensis on Pyramimonas sp. were saturated. Among bacteria and diverse algal prey tested, Y. yeosuensis fed only on small Pyramimonas sp. and Teleaulax sp. (both cell sizes=5.6μm). With increasing mean prey concentrations, both specific growth and ingestion rates of Y. yeosuensis increased rapidly before saturating at a mean Pyramimonas concentration of 109ngCmL(-1) (2725cellsmL(-1)). The maximum growth rate (mixotrophic growth) of Y. yeosuensis fed with Pyramimonas sp. at 20°C under a 14:10-h light-dark cycle of 20μEm(-2)s(-1) was 1.32d(-1), whereas the growth rate of Y. yeosuensis without added prey was 0.026d(-1). The maximum ingestion rate of Y. yeosuensis fed with Pyramimonas sp. was 0.37ngCpredator(-1)d(-1) (9.3cellspredator(-1)d(-1)). At a Teleaulax concentration of 1130ngCmL(-1) (66,240cellsmL(-1)), growth and ingestion rates of Y. yeosuensis fed with Teleaulax sp. were 1.285d(-1) and 0.38ngCpredator(-1)d(-1) (22.4cellspredator(-1)d(-1)), respectively. Thus, Y. yeosuensis rarely grows without mixotrophy, and mixotrophy supports high growth rates in Y. yeosuensis. Y. yeosuensis has the highest maximum mixotrophic growth rate with the exception of Ansanella graniferaamong engulfment feeding mixotrophic dinoflagellates. However, the high swimming speed of Y. yeosuensis (1572μms(-1)), almost the highest among phototrophic dinoflagellates, may prevent

  13. Complex Ancestries of Isoprenoid Synthesis in Dinoflagellates.

    PubMed

    Bentlage, Bastian; Rogers, Travis S; Bachvaroff, Tsvetan R; Delwiche, Charles F

    2016-01-01

    Isoprenoid metabolism occupies a central position in the anabolic metabolism of all living cells. In plastid-bearing organisms, two pathways may be present for de novo isoprenoid synthesis, the cytosolic mevalonate pathway (MVA) and nuclear-encoded, plastid-targeted nonmevalonate pathway (DOXP). Using transcriptomic data we find that dinoflagellates apparently make exclusive use of the DOXP pathway. Using phylogenetic analyses of all DOXP genes we inferred the evolutionary origins of DOXP genes in dinoflagellates. Plastid replacements led to a DOXP pathway of multiple evolutionary origins. Dinoflagellates commonly referred to as dinotoms due to their relatively recent acquisition of a diatom plastid, express two completely redundant DOXP pathways. Dinoflagellates with a tertiary plastid of haptophyte origin, by contrast, express a hybrid pathway of dual evolutionary origin. Here, changes in the targeting motif of signal/transit peptide likely allow for targeting the new plastid by the proteins of core isoprenoid metabolism proteins. Parasitic dinoflagellates of the Amoebophyra species complex appear to have lost the DOXP pathway, suggesting that they may rely on their host for sterol synthesis. © 2015 The Author(s) Journal of Eukaryotic Microbiology © 2015 International Society of Protistologists.

  14. Kleptoplast Regulation by an Antarctic Dinoflagellate

    NASA Astrophysics Data System (ADS)

    Gast, R. J.; Hehenberger, E.; Keeling, P.

    2016-02-01

    We are studying the evolutionary history and expression of plastid- targeted genes in an Antarctic dinoflagellate that steals chloroplasts from the haptophyte, Phaeocystis. Our project seeks to determine whether the kleptoplastidic dinoflagellate utilizes ancestral plastid proteins to regulate its stolen plastid, and how their transcription is related to environmental factors that are relevant to the Southern Ocean environment (temperature and light). To accomplish our goals, we have utilized high throughput transciptome analysis and RNA-Seq experiments of the dinoflagellate and Phaeocystis. Analysis of the dinoflagellate transcriptome has revealed complete mevalonic acid-independent and heme plastid-associated pathways as well as petF and petH transcripts with peridinin-plastid targeting sequences. In contrast, the proteins psaE, petJ, petC show similarity to non-Phaeocystis haptophyte homologs in their respective trees, and potentially carry haptophyte transit peptides. Anaylsis of RNA-Seq temperature and light experiments for the dinoflagellate indicate that there are significant differences in gene expression under the different environmental conditions, and we are in the process of identifying the genes associated with these changes. This work will help us to understand the environmental success of this alternative nutritional strategy.

  15. Cell biology of cnidarian-dinoflagellate symbiosis.

    PubMed

    Davy, Simon K; Allemand, Denis; Weis, Virginia M

    2012-06-01

    The symbiosis between cnidarians (e.g., corals or sea anemones) and intracellular dinoflagellate algae of the genus Symbiodinium is of immense ecological importance. In particular, this symbiosis promotes the growth and survival of reef corals in nutrient-poor tropical waters; indeed, coral reefs could not exist without this symbiosis. However, our fundamental understanding of the cnidarian-dinoflagellate symbiosis and of its links to coral calcification remains poor. Here we review what we currently know about the cell biology of cnidarian-dinoflagellate symbiosis. In doing so, we aim to refocus attention on fundamental cellular aspects that have been somewhat neglected since the early to mid-1980s, when a more ecological approach began to dominate. We review the four major processes that we believe underlie the various phases of establishment and persistence in the cnidarian/coral-dinoflagellate symbiosis: (i) recognition and phagocytosis, (ii) regulation of host-symbiont biomass, (iii) metabolic exchange and nutrient trafficking, and (iv) calcification. Where appropriate, we draw upon examples from a range of cnidarian-alga symbioses, including the symbiosis between green Hydra and its intracellular chlorophyte symbiont, which has considerable potential to inform our understanding of the cnidarian-dinoflagellate symbiosis. Ultimately, we provide a comprehensive overview of the history of the field, its current status, and where it should be going in the future.

  16. Cell Biology of Cnidarian-Dinoflagellate Symbiosis

    PubMed Central

    Allemand, Denis; Weis, Virginia M.

    2012-01-01

    Summary: The symbiosis between cnidarians (e.g., corals or sea anemones) and intracellular dinoflagellate algae of the genus Symbiodinium is of immense ecological importance. In particular, this symbiosis promotes the growth and survival of reef corals in nutrient-poor tropical waters; indeed, coral reefs could not exist without this symbiosis. However, our fundamental understanding of the cnidarian-dinoflagellate symbiosis and of its links to coral calcification remains poor. Here we review what we currently know about the cell biology of cnidarian-dinoflagellate symbiosis. In doing so, we aim to refocus attention on fundamental cellular aspects that have been somewhat neglected since the early to mid-1980s, when a more ecological approach began to dominate. We review the four major processes that we believe underlie the various phases of establishment and persistence in the cnidarian/coral-dinoflagellate symbiosis: (i) recognition and phagocytosis, (ii) regulation of host-symbiont biomass, (iii) metabolic exchange and nutrient trafficking, and (iv) calcification. Where appropriate, we draw upon examples from a range of cnidarian-alga symbioses, including the symbiosis between green Hydra and its intracellular chlorophyte symbiont, which has considerable potential to inform our understanding of the cnidarian-dinoflagellate symbiosis. Ultimately, we provide a comprehensive overview of the history of the field, its current status, and where it should be going in the future. PMID:22688813

  17. Bioluminescence in Dinoflagellates: Evidence that the Adaptive Value of Bioluminescence in Dinoflagellates is Concentration Dependent.

    PubMed

    Hanley, Karen A; Widder, Edith A

    2017-03-01

    Three major hypotheses have been proposed to explain why dinoflagellate bioluminescence deters copepod grazing: startle response, aposematic warning, and burglar alarm. These hypotheses propose dinoflagellate bioluminescence (A) startles predatory copepods, (B) warns potential predators of toxicity, and (C) draws the attention of higher order visual predators to the copepod's location. While the burglar alarm is the most commonly accepted hypothesis, it requires a high concentration of bioluminescent dinoflagellates to be effective, meaning the bioluminescence selective advantage at lower, more commonly observed, dinoflagellate concentrations may result from another function (e.g. startle response or aposematic warning). Therefore, a series of experiments was conducted to evaluate copepod grazing (Acartia tonsa) on bioluminescent dinoflagellates (during bioluminescent and nonbioluminescent phases, corresponding to night and day, respectively) at different concentrations (10, 1000, and 3000 cells mL(-1) ), on toxic (Pyrodinium bahamense var. bahamense) and nontoxic (Lingulodinium polyedrum) bioluminescent dinoflagellates, and in the presence of nonluminescent diatoms (Thalassiosira eccentrica). Changes in copepod ingestion rates, clearance rates, and feeding preferences as a result of these experimental factors, particularly during the mixed trails with nonluminescent diatoms, indicate there is a concentration threshold at which the burglar alarm becomes effective and below which dinoflagellate bioluminescence functions as an aposematic warning.

  18. The Genetic Basis of Specificity in Dinoflagellate-Invertebrate Symbiosis

    DTIC Science & Technology

    1991-09-30

    dinoflagellates which appear to share a common ance~tiy with the Apicomplexa and the Ciliata. . 3is~urioNi avAit.A6ILuf OF LaBSTRAC- 21. ASSTRAC I...cladistic and phenetic methods show that the dinoflagellates are more closely affiliated with the Apicomplexa than with the Ciliaa. Among the dinoflagellates

  19. The role of resting cysts in Alexandrium minutum population dynamics

    NASA Astrophysics Data System (ADS)

    Estrada, Marta; Solé, Jordi; Anglès, Sílvia; Garcés, Esther

    2010-02-01

    The role of resting cysts on the development of Alexandrium minutum blooms in a typical Mediterranean semi-enclosed water body (Arenys de Mar Harbor, NW Mediterranean) was studied by means of matrix and dynamic population models. We used a series of scenarios, constrained when possible by experimentally measured parameters to test whether excystment and encystment fluxes and changes in the dormancy period had a major effect on bloom intensity and duration. The results of the simulations highlighted the importance of knowing not only the magnitude and variability of growth and life-cycle transition rates, but also those of loss rates (both in the water column and in the sediment) due to physical or biological factors. Given the maximum encystment rates determined for A. minutum in the study area (0.01 d -1), this process contributed to reduce the peak concentrations of vegetative cells but did not have a dominant effect on bloom termination. Excystment fluxes could contribute to enhance population densities of vegetative cells during times or low or negative net growth rate and during the initial phases of a bloom, but once exponential growth had started, additional excystment had negligible effect on bloom magnitude. However, even if cysts did not contribute to larger blooms, they could represent a safety mechanism for reintroduction of the species when the vegetative cell population went extinct due to unfavorable environmental conditions. Increasing the dormancy time exposed newly formed cysts to a longer period of losses in the sediment that reduced the concentration of excystment-ready sediment cysts and decreased excystment fluxes. More complex models will be needed to explore the implications of different life-cycle strategies in a wider natural ecological context.

  20. Evidence for the presence of cell-surface-bound and intracellular bactericidal toxins in the dinoflagellate Heterocapsa circularisquama.

    PubMed

    Cho, Kichul; Wencheng, Li; Takeshita, Satoshi; Seo, Jung-Kil; Chung, Young-Ho; Kim, Daekyung; Oda, Tatsuya

    2017-08-01

    Heterocapsa circularisquama, a harmful dinoflagellate, has multiple haemolytic toxins that are considered to be involved in the toxic mechanism against shellfish and certain species of zooplankton. To evaluate the further nature of the toxins of H. circularisquama, we investigated its effects on several species of bacteria. By colony formation assay, we found that H. circularisquama had antibacterial activity toward the marine bacterium Vibrio alginolyticus in a cell density-dependent manner. When the inoculated bacterial cells were co-cultured with H. circularisquama under dinoflagellate cell culture conditions, the bacterial growth was significantly suppressed, whereas the number of live bacterial cells increased when cultured in the medium alone. Since the cell-free culture supernatant and the ruptured dinoflagellate cell suspension showed no toxic effects on V. alginolyticus, it is speculated that direct cell-to-cell contact mediated by the live dinoflagellate cells may be the major toxic mechanism. The decrease in bactericidal activity of theca-removed dinoflagellate cells may further support this speculation. H. circularisquama also showed bactericidal activities towards Escherichia coli and Staphylococcus aureus. In the dinoflagellate/bacteria co-culture system, the number of live bacterial cells declined with increasing incubation time. Light-dependent antibacterial activity of the ruptured dinoflagellate cells against S. aureus was observed, whereas no such activity was detected against E. coli. These results suggest that intracellular photosensitising bactericidal toxins, which were previously found to be porphyrin derivatives, may have specificity towards gram-positive bacteria. Based on these results together with previous studies, it is obvious that H. circularisquama possesses antibacterial activity, which may be mediated through toxins located on its cell surface. It is likely that such toxins play a role in the defence mechanism against predators

  1. IDENTIFICATION AND TOXICITY OF ALEXANDRIUM TAMARENSE (DINOPHYCEAE) IN SCOTTISH WATERS(1).

    PubMed

    Collins, C; Graham, J; Brown, L; Bresnan, E; Lacaze, J-P; Turrell, E A

    2009-06-01

    Contamination of shellfish with paralytic shellfish poisoning (PSP) toxins produced by Alexandrium species poses a potential threat to the sustainability of the Scottish aquaculture industry. Routine LM analysis of water samples from around the Scottish coast has previously identified Alexandrium (Dinophyceae) as a regular part of the spring and summer phytoplankton communities in Scottish coastal waters. In this study, Alexandrium tamarense (M. Lebour) Balech isolated from sediment and water samples was established in laboratory culture. Species identification of these isolates was confirmed using thecal plate dissections and by molecular characterization based on their LSU and, in some cases, ITS rDNA sequence. Molecular characterization and phylogenetic analysis showed the presence of two ribotypes of A. tamarense: Group I (North American ribotype) and Group III (Western European ribotype). Assessment of PSP toxin production using hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) showed that A. tamarense Group I produced a complex array of toxins (∼2,000 fg STX equivalents · cell(-1) ) with the major toxins being C2, neosaxitoxin (NEO), saxitoxin (STX), gonyautoxin-4 (GTX-4), and GTX-3, while A. tamarense Group III did not produce toxins. Historically, it was considered that all Alexandrium species occurring in Scottish waters produce potent PSP toxins. This study has highlighted the presence of both PSP toxin-producing and benign species of A. tamarense and questions the ecological significance of this finding.

  2. Outbreeding lethality between toxic Group I and nontoxic Group III Alexandrium tamarense spp. isolates: Predominance of heterotypic encystment and implications for mating interactions and biogeography

    NASA Astrophysics Data System (ADS)

    Brosnahan, Michael L.; Kulis, David M.; Solow, Andrew R.; Erdner, Deana L.; Percy, Linda; Lewis, Jane; Anderson, Donald M.

    2010-02-01

    We report the zygotic encystment of geographically dispersed isolates in the dinoflagellate species complex Alexandrium tamarense, in particular, successful mating of toxic Group I and nontoxic Group III isolates. However, hypnozygotes produced in Group I/III co-cultures complete no more than three divisions after germinating. Previous reports have suggested a mate recognition mechanism whereby hypnozygotes produced in co-cultures could arise from either homotypic (inbred) or heterotypic (outbred) gamete pairs. To determine the extent to which each occurs, a nested PCR assay was developed to determine parentage of individual hypnozygotes. The vast majority of hypnozygotes from pairwise Group I/III co-cultures were outbred, so that inviability was a result of hybridization, not inbreeding. These findings support the assertion that complete speciation underlies the phylogenetic structure of the Alexandrium tamarense species complex. Additionally, the ribosomal DNA (rDNA) copy numbers of both hybrid and single ribotype hypnozygotes were reduced substantially from those of haploid motile cells. The destruction of rDNA loci may be crucial for the successful mating of genetically distant conjugants and appears integral to the process of encystment. The inviability of Group I/III hybrids is important for public health because the presence of hybrid cysts may indicate ongoing displacement of a nontoxic population by a toxic one (or vice versa). Hybrid inviability also suggests a bloom control strategy whereby persistent, toxic Group I blooms could be mitigated by introduction of nontoxic Group III cells. The potential for hybridization in nature was investigated by applying the nested PCR assay to hypnozygotes from Belfast Lough, Northern Ireland, a region where Group I and III populations co-occur. Two hybrid cysts were identified in 14 successful assays, demonstrating that Group I and III populations do interbreed in that region. However, an analysis of mating data

  3. The physiological adaptations and toxin profiles of the toxic Alexandrium fundyense on the eastern Bering Sea and Chukchi Sea shelves.

    PubMed

    Natsuike, Masafumi; Oikawa, Hiroshi; Matsuno, Kohei; Yamaguchi, Atsushi; Imai, Ichiro

    2017-03-01

    Abundant cyst distributions of the toxic dinoflagellate Alexandrium fundyense (previous A. tamarense north American clade) were recently observed on the north Chukchi Sea shelf and on the eastern Bering Sea shelf, suggesting that A. fundyense is both highly adapted to the local environments in the high latitude areas and might cause toxin contamination of plankton feeders. However, little is known about the physiological characteristics and toxin profiles of A. fundyense in these areas, which are characterized by low water temperatures, weak sunlight, and more or less permanent ice cover during winter. To clarify the physiological characteristics of A. fundyense, the effects of water temperature and light intensity on the vegetative growth and toxin profiles of this species were examined using A. fundyense strains isolated from one sediment sample collected from each area. Using the same sediments samples, seasonal changes of the cyst germination in different water temperatures were investigated. Vegetative cells grew at temperatures as low as 5°C and survived at 1°C under relatively low light intensity. They also grew at moderate water temperatures (10-15°C). Their cysts could germinate at low temperatures (1°C) and have an endogenous dormancy period from late summer to early spring, and warmer water temperatures (5-15°C) increased germination success. These physiological characteristics suggest that A. fundyense in the Chukchi Sea and eastern Bering Sea is adapted to the environments of high latitude areas. In addition, the results suggest that in the study areas A. fundyense has the potential to germinate and grow when water temperatures increase. Cellular toxin amounts of A. fundyense strains from the eastern Bering Sea and Chukchi Sea were ranged from 7.2 to 38.2 fmol cell(-1). These toxin amounts are comparable with A. fundyense strains isolated from other areas where PSP toxin contamination of bivalves occurs. The dominant toxin of the strains isolated

  4. Distribution of the genus Alexandrium (Halim) and paralytic shellfish toxins along the coastline of New South Wales, Australia.

    PubMed

    Farrell, Hazel; Brett, Steve; Ajani, Penelope; Murray, Shauna

    2013-07-15

    Blooms of Alexandrium species, in particular the species Alexandrium catenella, accounted for more than 50% of algal related, shellfish aquaculture harvest zone closures in New South Wales (NSW) Australia since 2005. While there are indications that species of Alexandrium are more abundant than they were formerly, there is little data available on the spatial and temporal distribution and abundance of the genus in NSW. A six and a half year dataset comprising a total of 8649 fortnightly samples from 31 estuaries spread over 2000 km of NSW coastline was analysed. The greatest abundances of Alexandrium spp. were observed during the austral Spring and Summer, in estuaries in the mid and southern latitudes of the state. In identifying these high risk zones, we propose variables such as season, temperature, rainfall and estuarine flushing to be targeted in intensive site specific studies, to support the development of predictive tools for resource managers.

  5. Sterols of the cultured dinoflagellate Pyrocystis lunula.

    PubMed

    Kokke, W C; Fenical, W; Djerassi, C

    1982-09-01

    Eighteen components of the sterol fraction of Pyrocystis lunula have been identified. In addition to 4 alpha-methyl sterols (typical dinoflagellate sterols), regular sterols, both with a saturated and delta 5-unsaturated skeleton, were isolated, together with delta 4-3-keto steroids including the hitherto unknown 23,24R-dimethyl-4,22E-cholestadien-3-one.

  6. The role of a PSP-producing Alexandrium bloom in an unprecedented diamondback terrapin (Malaclemys terrapin) mortality event in Flanders Bay, New York, USA.

    PubMed

    Hattenrath-Lehmann, Theresa K; Ossiboff, Robert J; Burnell, Craig A; Rauschenberg, Carlton D; Hynes, Kevin; Burke, Russell L; Bunting, Elizabeth M; Durham, Kim; Gobler, Christopher J

    2017-04-01

    Diamondback terrapins (Malaclemys terrapin) are a threatened or endangered species in much of their range along the U.S. Atlantic and Gulf coasts. Over an approximately three-week period from late April to mid-May 2015, hundreds of adult diamondback terrapins were found dead on the shores of Flanders Bay, Long Island, New York, USA. Concurrent with the mortality event, elevated densities of the paralytic shellfish toxin (PST)-producing dinoflagellate, Alexandrium fundyense (>10(4) cells L(-1)) and high levels of PST in bivalves (maximal levels = 540 μg STX eq. 100 g(-1) shellfish tissue) were observed in the Flanders Bay region, resulting in shellfish bed closures in regional tributaries. Gross and histologic postmortem examinations of terrapins revealed no physical trauma to individuals or a common, underlying disease process to explain the deaths. PST compounds (0.2-12.5 μg STX eq. 100 g(-1)) were present in various M. terrapin tissues collected over the duration of the mortality event. High-throughput sequencing revealed that the ribbed mussel (Geukensia demissa, a PST vector) was present in the gastrointestinal tracks of all terrapin samples tested. While the potential of PST to cause mortality in chelonians has not been well-characterized, in the absence of other significant findings from necropsies and pathological analyses, we provide evidence that PST in shellfish was likely high enough to cause or contribute to the mortality in these small (<2.0 kg) animals.

  7. Lidar monitoring of dinoflagellate algal bloom on the Swedish coast

    NASA Astrophysics Data System (ADS)

    Barbini, Roberto; Colao, Francesco; Fantoni, Roberta; Palucci, Antonio; Ribezzo, Sergio

    1997-05-01

    The ENEA group has participated to the second ICES/IOC workshop on in situ growth rates of dinoflagellates, held at the Kristineberg Marine Research Station. The laser induced fluorescence (LIF) emission of natural communities and cultures has been monitored in vivo to obtain information on the algae species, characterized by different pigments contents, and on their photosynthetic activity, which is related to the growth rate and biomass production. A laser fluorometer and a lidar system, used for local and remote LIF excitation of phytoplankton, have been operated during the marine campaign, both exciting the sea water in the UV. In particular, the lidar fluorosensor has been equipped with a laser transmitter specifically designed to operate differentially in the pump-and-probe mode, which allows to directly measure in vivo the chlorophyll fluorescence quantum yield. Experiments were conducted on two mesocosms containing the natural community with addition of nutrients. Chemical methods have been used for calibration of the two laser apparata. Results of the campaign are presented, together with the lidar data collected from the sea surface in crossing two nearby fjords along a selected sea transect.

  8. Dinoflagellate cyst production in Hudson Bay, the world's largest inland sea, based on monthly sediment trap data

    NASA Astrophysics Data System (ADS)

    Heikkilä, Maija; Pospelova, Vera; Forest, Alexandre; Stern, Gary

    2014-05-01

    Phytoplankters, microscopic primary producers of oceans are capable of responding rapidly to environmental fluctuations due to their high cell replication rates. Fast phytoplankton growth maybe balanced out by equally fast consumption by herbivorous grazers. In high-latitude marine systems, seasonal fluctuations in plankton biomass are essentially linked to light regime controlled by the waxing and waning sea-ice cover. In addition, nutrient limitation in surface waters, seasonal temperature fluctuations and changes in freshwater inputs may play important roles. In cold-water seas, many planktonic organisms cope with seasonal harshness by the production of benthic dormant stages. Dinoflagellates are a diverse group of single-celled plankton, constituting major marine primary producers, as well as herbivorous grazers of the microbial loop. Many dinoflagellate species produce highly resistant, organic-walled resting cysts that are archived in sediments and have been increasingly used to reconstruct past environmental conditions, e.g., sea-surface temperature and salinity, productivity, sea-ice cover and eutrophication. Marine sediment core sequences are characterized by slow accumulation rates and high mixing rates: the top centimeter of surface sediment from an arctic shelf may correspond to several years or decades of deposition. Consequently, sedimentary archives do not give direct information on long-term changes in seasonal bloom patterns or cues of annually recurring life-cycle events. We used two particle-intercepting sediment traps moored in eastern and western Hudson Bay, respectively, to study monthly fluctuations in dinoflagellate cyst production from October 2005 to September 2006. The traps were deployed close to the seafloor and recovered during the ArcticNet annual expeditions onboard the CCGS Amundsen in 2005 and the CCGS Pierre Radisson in 2006. We document the seasonal succession of dinoflagellate cyst taxa, together with cyst species composition

  9. Warm temperature acclimation impacts metabolism of paralytic shellfish toxins from Alexandrium minutum in commercial oysters.

    PubMed

    Farrell, Hazel; Seebacher, Frank; O'Connor, Wayne; Zammit, Anthony; Harwood, D Tim; Murray, Shauna

    2015-09-01

    Species of Alexandrium produce potent neurotoxins termed paralytic shellfish toxins and are expanding their ranges worldwide, concurrent with increases in sea surface temperature. The metabolism of molluscs is temperature dependent, and increases in ocean temperature may influence both the abundance and distribution of Alexandrium and the dynamics of toxin uptake and depuration in shellfish. Here, we conducted a large-scale study of the effect of temperature on the uptake and depuration of paralytic shellfish toxins in three commercial oysters (Saccostrea glomerata and diploid and triploid Crassostrea gigas, n = 252 per species/ploidy level). Oysters were acclimated to two constant temperatures, reflecting current and predicted climate scenarios (22 and 27 °C), and fed a diet including the paralytic shellfish toxin-producing species Alexandrium minutum. While the oysters fed on A. minutum in similar quantities, concentrations of the toxin analogue GTX1,4 were significantly lower in warm-acclimated S. glomerata and diploid C. gigas after 12 days. Following exposure to A. minutum, toxicity of triploid C. gigas was not affected by temperature. Generally, detoxification rates were reduced in warm-acclimated oysters. The routine metabolism of the oysters was not affected by the toxins, but a significant effect was found at a cellular level in diploid C. gigas. The increasing incidences of Alexandrium blooms worldwide are a challenge for shellfish food safety regulation. Our findings indicate that rising ocean temperatures may reduce paralytic shellfish toxin accumulation in two of the three oyster types; however, they may persist for longer periods in oyster tissue. © 2015 John Wiley & Sons Ltd.

  10. Isolation and structure of ciguatoxin-4A, a new ciguatoxin precursor, from cultures of dinoflagellate Gambierdiscus toxicus and parrotfish Scarus gibbus.

    PubMed

    Satake, M; Ishibashi, Y; Legrand, A M; Yasumoto, T

    1996-12-01

    A new ciguatoxin congener, ciguatoxin-4A (CTX4A), was isolated from cultures of marine dinoflagellate Gambierdiscus toxicus, and its structure was elucidated to be 52-epiciguatoxin-4B on the basis of spectroscopic data. Chromatographic and spectral comparisons indicated that CTX4A was identical with a structurally unelucidated congener known as scaritoxin or SG1.

  11. Isolation of symbiotic dinoflagellates by centrifugal elutriation

    SciTech Connect

    Bird, A.E.; Quinn, R.J.

    1986-01-01

    Centrifugal elutriation, a method combining centripetal liquid flow with centrifugal force, has been used to isolate symbiotic dinoflagellates from a cnidarian host. The elutriated cells were shown to be viable by photosynthetic incorporation of /sup 14/CO/sub 2/ and low release of photosynthetic products into the incubation medium. The level of contamination by clinging debris was low and by host solids was negligible.

  12. Dinoflagellate Toxins Responsible for Ciguatera Food Poisoning

    DTIC Science & Technology

    1987-12-10

    AD____ AD-A 194 466 DNOFLACU.ATh TOXINS RESIONSIBLE FOR CIGUATERA FOOD POISONING Annual Summary Report 0 Donald M. Miller 10 December 1987 Supported...21701-5012 62770A 162770A87] AA 7 7 A11. TITLE (Include Security Classification) DINOFLAGELLATE TOXINS RESPONSIBLE FOR CIGUATERA FOOD POISONING .12...occurring in humans who have become intoxicated from eating poison fish. Fish spontaneously accumulate the toxin through the food chain or directly from

  13. From Protist to Proxy: Dinoflagellates as signal carriers for past climate and carbon cycling

    NASA Astrophysics Data System (ADS)

    Sluijs, A.; Reichart, G. J.; Hoins, M.; Waal, D. V. D.; Rost, B.; Roij, L. V.

    2016-12-01

    The (paleo)ecology of dinoflagellates and their organic dinocysts that preserve in sediments are often employed as tracers of past ocean conditions, such as temperature, productivity, ocean circulation, salinity, and sea ice, for the late Triassic to the Modern. Over the past decade, such reconstructions, which are based on empirical information as well as extensive studies of modern systems, have made dinocyst paleoecology a pivotal tool that is complementary to other microfossil groups and (in)organic geochemical techniques. Building on this work, we have carried out culturing experiments to quantify and physiologically underpin CO2-dependent carbon isotope fractionation of several species of dinoflagellates. This work indicates potential for a new CO2 proxy based on fossil dinoflagellate cysts. Moreover, we developed a laser ablation nano combustion gas chromatography isotope ratio mass spectrometry (LA-nC-GC-IRMS) setup capable of measuring δ13C of organic particles of only 40 nanograms of carbon, with accuracy and precision of at most 0.4‰. This allows for the analyses of single to a few dinocyst specimens, setting the stage for a whole new research field investigating variability within populations of dinocysts, but also of pollen and other small scale carbon particles in geology, biology and other research fields. We present the first dinocyst δ13C results of the new method from modern systems and in the paleo-domain, particularly related to marine carbon cycling and CO2.

  14. DIVISION IN THE DINOFLAGELLATE GYRODINIUM COHNII (SCHILLER)

    PubMed Central

    Kubai, Donna F.; Ris, Hans

    1969-01-01

    Dinoflagellates are of interest because their chromosomes resemble the nucleoplasm of prokaryotes both chemically and ultrastructurally. We have studied nuclear division in the dinoflagellate Gyrodinium cohnii (Schiller), using cells obtained from cultures undergoing phasic growth. Electron micrographs of serial sections were used to prepare three-dimensional reconstructions of nuclei and chromosomes at various stages of nuclear division. During division, a complex process of invagination of the intact nuclear envelope takes place at one side of the nucleus and results in the formation of parallel cylindrical cytoplasmic channels through the nucleus. These invaginations contain bundles of microtubules, and each of the bundles comes to lie in the cytoplasm of a cylindrical channel. Nuclear constriction occurs perpendicular to these channels without displacement of the microtubules. There are no associations between chromosomes and the cytoplasmic microtubules. In dividing cells most chromosomes become V-shaped, and the apices of the V's make contact with the membrane surrounding cytoplasmic channels. It is proposed that the membrane surrounding cytoplasmic channels in the dividing nucleus may be involved in the separation of daughter chromosomes. Thus, dinoflagellates may resemble prokaryotes in the manner of genophore separation as well as in genophore chemistry and ultrastructure. PMID:5761923

  15. Functional diversity in coral-dinoflagellate symbiosis.

    PubMed

    Stat, Michael; Morris, Emily; Gates, Ruth D

    2008-07-08

    Symbioses are widespread in nature and occur along a continuum from parasitism to mutualism. Coral-dinoflagellate symbioses are defined as mutualistic because both partners receive benefit from the association via the exchange of nutrients. This successful interaction underpins the growth and formation of coral reefs. The symbiotic dinoflagellate genus Symbiodinium is genetically diverse containing eight divergent lineages (clades A-H). Corals predominantly associate with clade C Symbiodinium and to a lesser extent with clades A, B, D, F, and G. Variation in the function and interactive physiology of different coral-dinoflagellate assemblages is virtually unexplored but is an important consideration when developing the contextual framework of factors that contribute to coral reef resilience. In this study, we present evidence that clade A Symbiodinium are functionally less beneficial to corals than the dominant clade C Symbiodinium and may represent parasitic rather than mutualistic symbionts. Our hypothesis is supported by (i) a significant correlation between the presence of Symbiodinium clade A and health-compromised coral; (ii) a phylogeny and genetic diversity within Symbiodinium that suggests a different evolutionary trajectory for clade A compared with the other dominant Symbiodinium lineages; and (iii) a significantly lower amount of carbon fixed and released by clade A in the presence of a coral synthetic host factor as compared with the dominant coral symbiont lineage, clade C. Collectively, these data suggest that along the symbiotic continuum the interaction between clade A Symbiodinium and corals may be closer to parasitism than mutualism.

  16. Recognizing diversity in coral symbiotic dinoflagellate communities.

    PubMed

    Apprill, Amy M; Gates, Ruth D

    2007-03-01

    A detailed understanding of how diversity in endosymbiotic dinoflagellate communities maps onto the physiological range of coral hosts is critical to predicting how coral reef ecosystems will respond to climate change. Species-level taxonomy of the dinoflagellate genus Symbiodinium has been predominantly examined using the internal transcribed spacer (ITS) region of the nuclear ribosomal array (rDNA ITS2) and downstream screening for dominant types using denaturing gradient gel electrophoresis (DGGE). Here, ITS2 diversity in the communities of Symbiodinium harboured by two Hawaiian coral species was explored using direct sequencing of clone libraries. We resolved sixfold to eightfold greater diversity per coral species than previously reported, the majority of which corresponds to a novel and distinct phylogenetic lineage. We evaluated how these sequences migrate in DGGE and demonstrate that this method does not effectively resolve this diversity. We conclude that the Porites spp. examined here harbour diverse assemblages of novel Symbiodinium types and that cloning and sequencing is an effective methodological approach for resolving the complexity of endosymbiotic dinoflagellate communities harboured by reef corals.

  17. Repercussions of salinity changes and osmotic stress in marine phytoplankton species

    NASA Astrophysics Data System (ADS)

    D'ors, A.; Bartolomé, M. C.; Sánchez-Fortún, S.

    2016-06-01

    The short-term effect of low salinity was studied using laboratory protocols on some coastal phytoplankton species such as chlorophycea Tetraselmis suecica, among diatom the strain Nitzschia N1c1 and dinoflagellates Alexandrium minutum and Prorocentrum lima. All of cultures were exposed to low salinities, and cell growth rate, photosynthetic quantum yield (ΦPSII), and gross photosynthesis (Pg) were analyzed. Growth rate inhibition was similar in all species, and all of them also tolerate short-term exposures to salinities in the range 5-35. There were no significant differences between ΦPSII and Pg endpoints from Tetraselmis suecica and Nitzschia sp., while Alexandrium minutum and Prorocentrum lima displayed a higher affectation rate on Pg than on ΦPSII activity. The influence of low salinity was higher on respiration in T. suecica, while both dinoflagellates had higher net photosynthesis. Nitzschia sp. exhibited similar involvement of the two photosynthetic parameters. Therefore, although the four phytoplankton monocultures studied are able to survive in internal areas of estuaries under low salinity conditions, the photosynthetic activity is more affected than the growth rate in all phytoplankton communities studied except in chlorophycea T. suecica, which has increased tolerance for this salinity decrease.

  18. Feeding by the newly described mixotrophic dinoflagellate Paragymnodinium shiwhaense: feeding mechanism, prey species, and effect of prey concentration.

    PubMed

    Yoo, Yeong Du; Jeong, Hae Jin; Kang, Nam Seon; Song, Jae Yoon; Kim, Kwang Young; Lee, Gitack; Kim, Juhyoung

    2010-01-01

    To investigate the feeding by the newly described mixotrophic dinoflagellate Paragymnodinium shiwhaense (GenBank accession number=AM408889), we explored the feeding process and the kinds of prey species that P. shiwhaense is able to feed on using several different types of microscopes, including a transmission electron microscope and high-resolution video-microscopy. In addition, we measured the growth and ingestion rates of P. shiwhaense on its optimal algal prey Amphidinium carterae as a function of prey concentration. We also measured these parameters for edible prey at a single concentration at which the growth and ingestion rates of P. shiwhaense on A. carterae were saturated. Paragymnodinium shiwhaense feed on algal prey using a peduncle after anchoring the prey by a tow filament. Among the algal prey offered, P. shiwhaense ingested small algal species that had equivalent spherical diameters (ESDs) < or =11 microm (e.g. the prymnesiophyte Isochrysis galbana, the cryptophytes Teleaulax sp. and Rhodomonas salina, the raphidophyte Heterosigma akashiwo, and the dinoflagellates Heterocapsa rotundata and A. carterae). However, it did not feed on larger algal species that had ESDs > or =12 microm (e.g. the dinoflagellates Prorocentrum minimum, Heterocapsa triquetra, Scrippsiella trochoidea, Alexandrium tamarense, Prorocentrum micans, Gymnodinium catenatum, Akashiwo sanguinea, and Lingulodinium polyedrum) or the small diatom Skeletonema costatum. The specific growth rates for P. shiwhaense feeding upon A. carterae increased rapidly with increasing mean prey concentration before saturating at concentrations of ca. 350 ng C/ml (5,000 cells/ml). The maximum specific growth rate (i.e. mixotrophic growth) of P. shiwhaense on A. carterae was 1.097/d at 20 degrees C under a 14:10 h light-dark cycle of 20 microE/m(2)/s, while its growth rate (i.e. phototrophic growth) under the same light conditions without added prey was -0.224/d. The maximum ingestion and clearance rates

  19. Comparison of bioluminescent dinoflagellate (QwikLite) and bacterial (Microtox) rapid bioassays for the detection of metal and ammonia toxicity.

    PubMed

    Rosen, Gunther; Osorio-Robayo, Alexandra; Rivera-Duarte, Ignacio; Lapota, David

    2008-05-01

    This study compared the sensitivity of two rapid toxicity tests, QwikLite and Microtox, to seven metals and ammonia. Both of these tests measure a reduction in light production from bioluminescent microorganisms (dinoflagellates and marine bacteria, respectively) as a means of toxicity detection and are simple and inexpensive to conduct compared to many standardized acute toxicity tests. For QwikLite tests, three marine dinoflagellate species (Lingulodinium polyedrum, Ceratocorys horrida, and Pyrocystis noctiluca) were separately evaluated following a 24-h exposure period. The marine bacterium, Vibrio fischeri, was used in the Microtox tests, in 15-min exposures to the same metal preparations as those used for the QwikLite tests. The QwikLite tests were generally one to two orders of magnitude more sensitive than the Microtox tests, as indicated by lower median effects concentrations (EC(50)). Both QwikLite and Microtox, however, resulted in similar toxicity rankings for the metals tested. The dinoflagellate species used in the QwikLite tests responded similarly for most compounds tested, with L. polyedrum appearing to be somewhat more sensitive than the other two species for most metals evaluated. QwikLite was also more comparable in sensitivity to several commonly used standardized toxicity tests. As with all toxicity tests, species selection for QwikLite should take into account study-specific factors, including the potential for sensitivity to confounding factors, such as ammonia.

  20. An improved method for the molecular identification of single dinoflagellate cysts.

    PubMed

    Gao, Yangchun; Fang, Hongda; Dong, Yanhong; Li, Haitao; Pu, Chuanliang; Zhan, Aibin

    2017-01-01

    Dinoflagellate cysts (i.e., dinocysts) are biologically and ecologically important as they can help dinoflagellate species survive harsh environments, facilitate their dispersal and serve as seeds for harmful algal blooms. In addition, dinocysts derived from some species can produce more toxins than vegetative forms, largely affecting species through their food webs and even human health. Consequently, accurate identification of dinocysts represents the first crucial step in many ecological studies. As dinocysts have limited or even no available taxonomic keys, molecular methods have become the first priority for dinocyst identification. However, molecular identification of dinocysts, particularly when using single cells, poses technical challenges. The most serious is the low success rate of PCR, especially for heterotrophic species. In this study, we aim to improve the success rate of single dinocyst identification for the chosen dinocyst species (Gonyaulax spinifera, Polykrikos kofoidii, Lingulodinium polyedrum, Pyrophacus steinii, Protoperidinium leonis and Protoperidinium oblongum) distributed in the South China Sea. We worked on two major technical issues: cleaning possible PCR inhibitors attached on the cyst surface and designing new dinoflagellate-specific PCR primers to improve the success of PCR amplification. For the cleaning of single dinocysts separated from marine sediments, we used ultrasonic wave-based cleaning and optimized cleaning parameters. Our results showed that the optimized ultrasonic wave-based cleaning method largely improved the identification success rate and accuracy of both molecular and morphological identifications. For the molecular identification with the newly designed dinoflagellate-specific primers (18S634F-18S634R), the success ratio was as high as 86.7% for single dinocysts across multiple taxa when using the optimized ultrasonic wave-based cleaning method, and much higher than that (16.7%) based on traditional micropipette

  1. Latest Quaternary palaeoceanographic change in the eastern North Atlantic based upon a dinoflagellate cyst event ecostratigraphy.

    PubMed

    Harland, Rex; Polovodova Asteman, Irina; Morley, Audrey; Morris, Angela; Harris, Anthony; Howe, John A

    2016-05-01

    The analyses of dinoflagellate cyst records, from the latest Quaternary sediments recovered from DSDP Core 610A taken on the Feni Ridge in the southern Rockall Trough, and part of core MD01-2461 on the continental margin of the Porcupine Seabight in the eastern North Atlantic Ocean, has provided evidence for significant oceanographic change encompassing the Last Glacial Maximum (LGM) and part of the Holocene. This together with other published records has led to a regional evaluation of oceanographic change in the eastern North Atlantic over the past 68 ka, based upon a distinctive dinoflagellate event ecostratigraphy. These changes reflect changes in the surface waters of the North Atlantic Current (NAC), and perhaps the deeper thermohaline Atlantic Meridional Overturning Circulation (AMOC), driving fundamental regime changes within the phytoplanktonic communities. Three distinctive dinoflagellate cyst associations based upon both factor and cluster analyses have been recognised. Associations characterised by Bitectatodinium tepikiense (between 61.1 ± 6.2 to 13.4 ± 1.1 ka BP), Nematosphaeropsis labyrinthus (between 10.5 ± 0.3 and 11.45 ± 0.8 ka. BP), and the cyst of Protoceratium reticulatum (between 8.5 ± 0.9 and 5.2 ± 1.3 ka. BP) indicate major change within the eastern North Atlantic oceanography. The transitions between these changes occur over a relatively short time span (c.1.5 ka), given our sampling resolution, and have the potential to be incorporated into an event stratigraphy through the latest Quaternary as recommended by the INTIMATE (INTegrating Ice core, MArine and TErrestrial records) group. The inclusion of a dinoflagellate cyst event stratigraphy would highlight changes within the phytoplankton of the North Atlantic Ocean as a fully glacial world changed to our present interglacial.

  2. Evaluation of the efficiency of metabolism of dinoflagellate phosphorus and carbon by a planktonic ciliate.

    PubMed

    Zubkov, Mikhail V; Leakey, Raymond J G

    2009-08-01

    The trophic transfer of nutrients through the microbial food web is a key top-down control in aquatic ecosystems which is notoriously difficult to evaluate, particularly for planktonic protists. In this study, a sensitive dual-radioactive tracer technique was developed to simultaneously assess the ingestion rate, and carbon- and phosphorus-specific assimilation efficiencies, of the marine planktonic ciliate Strobilidium neptuni feeding on the autotrophic dinoflagellate Heterocapsa triquetra. Dinoflagellate prey were simultaneously 16h pulse labelled with NaH(14)CO(3) and H(3)(33)PO(4) before being fed to the ciliate, and radioactive labels were traced into ciliate biomass and the experimental medium, as well as being monitored in the prey cells. Rates measured in short-term (10min) incubations, as commonly used to estimate protist uptake of fluorescently labelled prey, were approximately 6 times higher and 3-6 times more variable than rates measured in longer 3-5h incubations. The efficiency of accumulation of prey carbon (54+/-9%) by ciliates was lower than that of prey phosphorus (68+/-3%) suggesting that the phosphorus to carbon ratio in the ciliates was 1.3 times higher than in the labelled dinoflagellate biomass. Rates of phosphorus accumulation and release were combined to reveal that ciliates consumed 3.2+/-0.6 dinoflagellates cell(-1)h(-1). The assessment of carbon tracer release by ciliates was less reliable due to (14)CO(2) exchange between the experimental media and air. The study concludes that the dual phosphorus-carbon radioactive tracer labelling of algal prey allowed the quantification of protist herbivory and nutrient remineralisation in laboratory experiments, thereby providing a potential technique for studying planktonic microbial trophic interactions in situ.

  3. Biogeography of dinoflagellate cysts in northwest Atlantic estuaries

    EPA Science Inventory

    Few biogeographic studies of dinoflagellate cysts include the near-shore estuarine environment. We determine the effect of estuary type, biogeography, and water quality on the spatial distribution of organic-walled dinoflagellate cysts from the Northeast USA (Maine to Delaware) a...

  4. Evolutionary analysis of orthologous cDNA sequences from cultured and symbiotic dinoflagellate symbionts of reef-building corals (Dinophyceae: Symbiodinium).

    PubMed

    Voolstra, Christian R; Sunagawa, Shinichi; Schwarz, Jodi A; Coffroth, Mary Alice; Yellowlees, Dave; Leggat, William; Medina, Mónica

    2009-06-01

    Dinoflagellates are ubiquitous marine and freshwater protists. The endosymbiotic relationship between dinoflagellates of the genus Symbiodinium (also known as zooxanthellae) and corals forms the basis of coral reefs. We constructed and analyzed a cDNA library from a cultured Symbiodinium species clade A (CassKB8). The majority of annotated ESTs from the Symbiodinium sp. CassKB8 library cover metabolic genes. Most of those belong to either carbohydrate or energy metabolism. In addition, components of extracellular signal transduction pathways and genes that play a role in cell-cell communication were identified. In a subsequent analysis, we determined all orthologous cDNA sequences between this library (1,484 unique sequences) and a library from a Symbiodinium species clade C (C3) (3,336 unique sequences) that was isolated directly from its symbiotic host. A set of 115 orthologs were identified between Symbiodinium sp. CassKB8 and Symbiodinium sp. C3. These orthologs were subdivided into three groups that show different characteristics and functions: conserved across eukaryotes (CE), dinoflagellate-specific (DS) and Symbiodinium-specific (SS). Orthologs conserved across eukaryotes are mainly comprised of housekeeping genes, photosynthesis-related transcripts and metabolic proteins, whereas the function for most of the dinoflagellate-specific orthologs remains unknown. A dN/dS analysis identified the highest ratio in a Symbiodinium-specific ortholog and evidence for positive selection in a dinoflagellate-specific gene. Evolution of genes and pathways in different dinoflagellates seems to be affected by different lifestyles, and a symbiotic lifestyle may affect population structure and strength of selection. This study is the first evolutionary comparative analysis of orthologs from two coral dinoflagellate symbionts.

  5. Towards an Ecological Understanding of Dinoflagellate Cyst Functions

    PubMed Central

    Bravo, Isabel; Figueroa, Rosa Isabel

    2014-01-01

    The life cycle of many dinoflagellates includes at least one nonflagellated benthic stage (cyst). In the literature, the different types of dinoflagellate cysts are mainly defined based on morphological (number and type of layers in the cell wall) and functional (long- or short-term endurance) differences. These characteristics were initially thought to clearly distinguish pellicle (thin-walled) cysts from resting (double-walled) dinoflagellate cysts. The former were considered short-term (temporal) and the latter long-term (resting) cysts. However, during the last two decades further knowledge has highlighted the great intricacy of dinoflagellate life histories, the ecological significance of cyst stages, and the need to clarify the functional and morphological complexities of the different cyst types. Here we review and, when necessary, redefine the concepts of resting and pellicle cysts, examining both their structural and their functional characteristics in the context of the life cycle strategies of several dinoflagellate species. PMID:27694774

  6. Contribution of the cytoskeleton to mechanosensitivity reported by dinoflagellate bioluminescence.

    PubMed

    Stires, J C; Latz, M I

    2017-08-03

    The cytoskeleton is crucial to cell mechanics and sensing the extracellular physical environment. The objective of this study was to examine the role of the cortical cytoskeleton in mechanosensitivity in a unicellular protist, the marine dinoflagellate Lingulodinium polyedra, using its intrinsic bioluminescence as a rapid reporter of mechanotransduction. Pharmacological treatments resolved effects due to immediate cytoskeleton disruption from those due to cytoskeletal remodeling during the light to dark phase transition. The cytoskeleton was visualized by confocal laser scanning microscopy of immunohistochemically labeled microtubules and phalloidin labeled F-actin, and mechanosensitivity assessed based on the bioluminescence response to mechanical stimulation measured during the dark phase. Latrunculin B treatment after the transition from the light to dark phase resulted in some disruption of cortical F-actin, no observed effect on the cortical microtubules, and partial inhibition of the bioluminescence response. Treatment with oryzalin, which depolarizes microtubules, completely disrupted the microtubule network and cortical F-actin, and partially inhibited bioluminescence. These results demonstrate that cells retain some mechanosensitivity despite a disrupted cytoskeleton; link mechanosensitivity to intact F-actin; show a close connection between F-actin and microtubules comprising the cortical cytoskeleton; confirm a strong contribution of the actin cytoskeleton to the translocation of scintillons, vesicles containing the luminescent chemistry; and support the role of the actin cytoskeleton in the association of scintillons with the vacuole membrane. © 2017 Wiley Periodicals, Inc.

  7. Heat Shock Protein 70 and 90 Genes in the Harmful Dinoflagellate Cochlodinium polykrikoides: Genomic Structures and Transcriptional Responses to Environmental Stresses

    PubMed Central

    Guo, Ruoyu; Youn, Seok Hyun; Ki, Jang-Seu

    2015-01-01

    The marine dinoflagellate Cochlodinium polykrikoides is responsible for harmful algal blooms in aquatic environments and has spread into the world's oceans. As a microeukaryote, it seems to have distinct genomic characteristics, like gene structure and regulation. In the present study, we characterized heat shock protein (HSP) 70/90 of C. polykrikoides and evaluated their transcriptional responses to environmental stresses. Both HSPs contained the conserved motif patterns, showing the highest homology with those of other dinoflagellates. Genomic analysis showed that the CpHSP70 had no intron but was encoded by tandem arrangement manner with separation of intergenic spacers. However, CpHSP90 had one intron in the coding genomic regions, and no intergenic region was found. Phylogenetic analyses of separate HSPs showed that CpHSP70 was closely related with the dinoflagellate Crypthecodinium cohnii and CpHSP90 with other Gymnodiniales in dinoflagellates. Gene expression analyses showed that both HSP genes were upregulated by the treatments of separate algicides CuSO4 and NaOCl; however, they displayed downregulation pattern with PCB treatment. The transcription of CpHSP90 and CpHSP70 showed similar expression patterns under the same toxicant treatment, suggesting that both genes might have cooperative functions for the toxicant induced gene regulation in the dinoflagellate. PMID:26064872

  8. Investigating the importance of sediment resuspension in Alexandrium fundyense cyst population dynamics in the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Butman, Bradford; Aretxabaleta, Alfredo L.; Dickhudt, Patrick J.; Dalyander, P. Soupy; Sherwood, Christopher R.; Anderson, Donald M.; Keafer, Bruce A.; Signell, Richard P.

    2014-05-01

    Cysts of Alexandrium fundyense, a dinoflagellate that causes toxic algal blooms in the Gulf of Maine, spend the winter as dormant cells in the upper layer of bottom sediment or the bottom nepheloid layer and germinate in spring to initiate new blooms. Erosion measurements were made on sediment cores collected at seven stations in the Gulf of Maine in the autumn of 2011 to explore if resuspension (by waves and currents) could change the distribution of over-wintering cysts from patterns observed in the previous autumn; or if resuspension could contribute cysts to the water column during spring when cysts are viable. The mass of sediment eroded from the core surface at 0.4 Pa ranged from 0.05 kg m-2 near Grand Manan Island, to 0.35 kg m-2 in northern Wilkinson Basin. The depth of sediment eroded ranged from about 0.05 mm at a station with sandy sediment at 70 m water depth on the western Maine shelf, to about 1.2 mm in clayey-silt sediment at 250 m water depth in northern Wilkinson Basin. The sediment erodibility measurements were used in a sediment-transport model forced with modeled waves and currents for the period October 1, 2010 to May 31, 2011 to predict resuspension and bed erosion. The simulated spatial distribution and variation of bottom shear stress was controlled by the strength of the semi-diurnal tidal currents, which decrease from east to west along the Maine coast, and oscillatory wave-induced currents, which are strongest in shallow water. Simulations showed occasional sediment resuspension along the central and western Maine coast associated with storms, steady resuspension on the eastern Maine shelf and in the Bay of Fundy associated with tidal currents, no resuspension in northern Wilkinson Basin, and very small resuspension in western Jordan Basin. The sediment response in the model depended primarily on the profile of sediment erodibility, strength and time history of bottom stress, consolidation time scale, and the current in the water column

  9. Investigating the importance of sediment resuspension in Alexandrium fundyense cyst population dynamics in the Gulf of Maine

    USGS Publications Warehouse

    Butman, Bradford; Aretxabaleta, Alfredo L.; Dickhudt, Patrick J.; Dalyander, P. Soupy; Sherwood, Christopher R.; Anderson, Donald M.; Keafer, Bruce A.; Signell, Richard P.

    2014-01-01

    Cysts of Alexandrium fundyense, a dinoflagellate that causes toxic algal blooms in the Gulf of Maine, spend the winter as dormant cells in the upper layer of bottom sediment or the bottom nepheloid layer and germinate in spring to initiate new blooms. Erosion measurements were made on sediment cores collected at seven stations in the Gulf of Maine in the autumn of 2011 to explore if resuspension (by waves and currents) could change the distribution of over-wintering cysts from patterns observed in the previous autumn; or if resuspension could contribute cysts to the water column during spring when cysts are viable. The mass of sediment eroded from the core surface at 0.4 Pa ranged from 0.05 kg m−2 near Grand Manan Island, to 0.35 kg m−2 in northern Wilkinson Basin. The depth of sediment eroded ranged from about 0.05 mm at a station with sandy sediment at 70 m water depth on the western Maine shelf, to about 1.2 mm in clayey–silt sediment at 250 m water depth in northern Wilkinson Basin. The sediment erodibility measurements were used in a sediment-transport model forced with modeled waves and currents for the period October 1, 2010 to May 31, 2011 to predict resuspension and bed erosion. The simulated spatial distribution and variation of bottom shear stress was controlled by the strength of the semi-diurnal tidal currents, which decrease from east to west along the Maine coast, and oscillatory wave-induced currents, which are strongest in shallow water. Simulations showed occasional sediment resuspension along the central and western Maine coast associated with storms, steady resuspension on the eastern Maine shelf and in the Bay of Fundy associated with tidal currents, no resuspension in northern Wilkinson Basin, and very small resuspension in western Jordan Basin. The sediment response in the model depended primarily on the profile of sediment erodibility, strength and time history of bottom stress, consolidation time scale, and the current in the water

  10. Investigating the importance of sediment resuspension in Alexandrium fundyense cyst population dynamics in the Gulf of Maine

    PubMed Central

    Butman, Bradford; Aretxabaleta, Alfredo L.; Dickhudt, Patrick J.; Dalyander, P. Soupy; Sherwood, Christopher R.; Anderson, Donald M.; Keafer, Bruce A.; Signell, Richard P.

    2014-01-01

    Cysts of Alexandrium fundyense, a dinoflagellate that causes toxic algal blooms in the Gulf of Maine, spend the winter as dormant cells in the upper layer of bottom sediment or the bottom nepheloid layer and germinate in spring to initiate new blooms. Erosion measurements were made on sediment cores collected at seven stations in the Gulf of Maine in the autumn of 2011 to explore if resuspension (by waves and currents) could change the distribution of over-wintering cysts from patterns observed in the previous autumn; or if resuspension could contribute cysts to the water column during spring when cysts are viable. The mass of sediment eroded from the core surface at 0.4 Pa ranged from 0.05 kg m−2 near Grand Manan Island, to 0.35 kg m−2 in northern Wilkinson Basin. The depth of sediment eroded ranged from about 0.05 mm at a station with sandy sediment at 70 m water depth on the western Maine shelf, to about 1.2 mm in clayey–silt sediment at 250 m water depth in northern Wilkinson Basin. The sediment erodibility measurements were used in a sediment-transport model forced with modeled waves and currents for the period October 1, 2010 to May 31, 2011 to predict resuspension and bed erosion. The simulated spatial distribution and variation of bottom shear stress was controlled by the strength of the semi-diurnal tidal currents, which decrease from east to west along the Maine coast, and oscillatory wave-induced currents, which are strongest in shallow water. Simulations showed occasional sediment resuspension along the central and western Maine coast associated with storms, steady resuspension on the eastern Maine shelf and in the Bay of Fundy associated with tidal currents, no resuspension in northern Wilkinson Basin, and very small resuspension in western Jordan Basin. The sediment response in the model depended primarily on the profile of sediment erodibility, strength and time history of bottom stress, consolidation time scale, and the current in the water

  11. Investigating the importance of sediment resuspension in Alexandrium fundyense cyst population dynamics in the Gulf of Maine.

    PubMed

    Butman, Bradford; Aretxabaleta, Alfredo L; Dickhudt, Patrick J; Dalyander, P Soupy; Sherwood, Christopher R; Anderson, Donald M; Keafer, Bruce A; Signell, Richard P

    2014-05-01

    Cysts of Alexandrium fundyense, a dinoflagellate that causes toxic algal blooms in the Gulf of Maine, spend the winter as dormant cells in the upper layer of bottom sediment or the bottom nepheloid layer and germinate in spring to initiate new blooms. Erosion measurements were made on sediment cores collected at seven stations in the Gulf of Maine in the autumn of 2011 to explore if resuspension (by waves and currents) could change the distribution of over-wintering cysts from patterns observed in the previous autumn; or if resuspension could contribute cysts to the water column during spring when cysts are viable. The mass of sediment eroded from the core surface at 0.4 Pa ranged from 0.05 kg m(-2) near Grand Manan Island, to 0.35 kg m(-2) in northern Wilkinson Basin. The depth of sediment eroded ranged from about 0.05 mm at a station with sandy sediment at 70 m water depth on the western Maine shelf, to about 1.2 mm in clayey-silt sediment at 250 m water depth in northern Wilkinson Basin. The sediment erodibility measurements were used in a sediment-transport model forced with modeled waves and currents for the period October 1, 2010 to May 31, 2011 to predict resuspension and bed erosion. The simulated spatial distribution and variation of bottom shear stress was controlled by the strength of the semi-diurnal tidal currents, which decrease from east to west along the Maine coast, and oscillatory wave-induced currents, which are strongest in shallow water. Simulations showed occasional sediment resuspension along the central and western Maine coast associated with storms, steady resuspension on the eastern Maine shelf and in the Bay of Fundy associated with tidal currents, no resuspension in northern Wilkinson Basin, and very small resuspension in western Jordan Basin. The sediment response in the model depended primarily on the profile of sediment erodibility, strength and time history of bottom stress, consolidation time scale, and the current in the water

  12. Life-cycle, ultrastructure, and phylogeny of Parvilucifera corolla sp. nov. (Alveolata, Perkinsozoa), a parasitoid of dinoflagellates.

    PubMed

    Reñé, Albert; Alacid, Elisabet; Figueroa, Rosa Isabel; Rodríguez, Francisco; Garcés, Esther

    2017-04-01

    Recent studies of marine protists have revealed parasites to be key components of marine communities. Here we describe a new species of the parasitoid genus Parvilucifera that was observed infecting the dinoflagellate Durinskia baltica in salt marshes of the Catalan coast (NW Mediterranean). In parallel, the same species was detected after the incubation of seawater from the Canary Islands (Lanzarote, NE Atlantic). The successful isolation of strains from both localities allowed description of the life cycle, ultrastructure, and phylogeny of the species. Its infection mechanism consists of a free-living zoospore that penetrates a dinoflagellate cell. The resulting trophont gradually degrades the dinoflagellate cytoplasm while growing in size. Once the host is consumed, schizogony of the parasitoid yields a sporocyte. After cytokinesis is complete, the newly formed zoospores are released into the environment and are ready to infect new host cells. A distinguishing feature of the species is the radial arrangement of its zoospores around the central area of the sporocyte during their formation. The species shows a close morphological similarity with other species of the genus, including P. infectans, P. sinerae, and P. rostrata. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Interannual variability of Alexandrium fundyense abundance and shellfish toxicity in the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    McGillicuddy, D. J.; Anderson, D. M.; Solow, A. R.; Townsend, D. W.

    2005-09-01

    Six years of oceanographic surveys of Alexandrium fundyense concentrations in the Gulf of Maine are combined with shellfish toxicity records from coastal monitoring stations to assess covariations of these quantities on seasonal to interannual time scales. Annual mean gulf-wide cell abundance varies by less than one order of magnitude during the time interval examined (1993-2002). Fluctuations in gulf-wide annual mean cell abundance and shellfish toxicity are not related in a consistent manner. This suggests that interannual variations in toxicity may be regulated by transport and delivery of offshore cell populations, rather than the absolute abundance of the source populations themselves.

  14. The transcriptome of the novel dinoflagellate Oxyrrhis marina (Alveolata: Dinophyceae): response to salinity examined by 454 sequencing.

    PubMed

    Lowe, Chris D; Mello, Luciane V; Samatar, Najma; Martin, Laura E; Montagnes, David J S; Watts, Phillip C

    2011-10-20

    The heterotrophic dinoflagellate Oxyrrhis marina is increasingly studied in experimental, ecological and evolutionary contexts. Its basal phylogenetic position within the dinoflagellates make O. marina useful for understanding the origin of numerous unusual features of the dinoflagellate lineage; its broad distribution has lent O. marina to the study of protist biogeography; and nutritive flexibility and eurytopy have made it a common lab rat for the investigation of physiological responses of marine heterotrophic flagellates. Nevertheless, genome-scale resources for O. marina are scarce. Here we present a 454-based transcriptome survey for this organism. In addition, we assess sequence read abundance, as a proxy for gene expression, in response to salinity, an environmental factor potentially important in determining O. marina spatial distributions. Sequencing generated ~57 Mbp of data which assembled into 7, 398 contigs. Approximately 24% of contigs were nominally identified by BLAST. A further clustering of contigs (at ≥ 90% identity) revealed 164 transcript variant clusters, the largest of which (Phosphoribosylaminoimidazole-succinocarboxamide synthase) was composed of 28 variants displaying predominately synonymous variation. In a genomic context, a sample of 5 different genes were demonstrated to occur as tandem repeats, separated by short (~200-340 bp) inter-genic regions. For HSP90 several intergenic variants were detected suggesting a potentially complex genomic arrangement. In response to salinity, analysis of 454 read abundance highlighted 9 and 20 genes over or under expressed at 50 PSU, respectively. However, 454 read abundance and subsequent qPCR validation did not correlate well - suggesting that measures of gene expression via ad hoc analysis of sequence read abundance require careful interpretation. Here we indicate that tandem gene arrangements and the occurrence of multiple transcribed gene variants are common and indicate potentially complex

  15. Bubble stimulation efficiency of dinoflagellate bioluminescence.

    PubMed

    Deane, Grant B; Stokes, M Dale; Latz, Michael I

    2016-02-01

    Dinoflagellate bioluminescence, a common source of bioluminescence in coastal waters, is stimulated by flow agitation. Although bubbles are anecdotally known to be stimulatory, the process has never been experimentally investigated. This study quantified the flash response of the bioluminescent dinoflagellate Lingulodinium polyedrum to stimulation by bubbles rising through still seawater. Cells were stimulated by isolated bubbles of 0.3-3 mm radii rising at their terminal velocity, and also by bubble clouds containing bubbles of 0.06-10 mm radii for different air flow rates. Stimulation efficiency, the proportion of cells producing a flash within the volume of water swept out by a rising bubble, decreased with decreasing bubble radius for radii less than approximately 1 mm. Bubbles smaller than a critical radius in the range 0.275-0.325 mm did not stimulate a flash response. The fraction of cells stimulated by bubble clouds was proportional to the volume of air in the bubble cloud, with lower stimulation levels observed for clouds with smaller bubbles. An empirical model for bubble cloud stimulation based on the isolated bubble observations successfully reproduced the observed stimulation by bubble clouds for low air flow rates. High air flow rates stimulated more light emission than expected, presumably because of additional fluid shear stress associated with collective buoyancy effects generated by the high air fraction bubble cloud. These results are relevant to bioluminescence stimulation by bubbles in two-phase flows, such as in ship wakes, breaking waves, and sparged bioreactors. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Palaeobiogeographic implications of Late Bajocian-Late Callovian (Middle Jurassic) dinoflagellate cysts from the Central Alborz Mountains, northern Iran

    NASA Astrophysics Data System (ADS)

    Ghasemi-Nejad, Ebrahim; Sabbaghiyan, Hossein; Mosaddegh, Hossein

    2012-01-01

    The Dalichai Formation with an age of Late Bajocian-Late Callovian was sampled in Central Alborz Mountains of northern Iran and studied for palynological, palaeobiogeographical and palynocorrelation purposes. Palynological studies revealed diverse and well-preserved dinoflagellate cyst assemblages and lead to identification of three zones i.e., Cribroperidiniumcrispum (Late Bajocian), Dichadogonyaulaxsellwoodii (Bathonian to Early Callovian) and Ctenidodiniumcontinuum (Early to Middle Callovian) Zones. Subzone a of the D. sellwoodii Zone (Early to Middle Bathonian) was also differentiated. This biozonation corresponds to those recognised in Northwest Europe. Furthermore, the ammonoid families recorded including Phylloceratidae, Oppeliidae, Reineckeiidae, Perisphinctidae, Haploceratidae, Parkinsoniidae and Sphaeroceratidae, which confirm the Late Bajocian to Late Callovian age, are quite similar to those of Northwest Europe and the northwestern Tethys. The close similarities of the dinoflagellate cyst assemblages and ammonite fauna of northern Iran with those of Northwest Europe and the northwestern Tethys during the Middle Jurassic indicate direct but episodic marine connection and faunal exchange between the two areas.

  17. Eutrophication signals in the sedimentary record of dinoflagellate cysts in coastal waters

    NASA Astrophysics Data System (ADS)

    Dale, Barrie

    2009-01-01

    (supporting earlier postulations by fisheries biologists that eutrophication was a possible cause). They also link these local eutrophication events to regional variation in the NAO, thought to have caused pulses of nutrient loading within the Skagerrak from increased transport of relatively nutrient rich North Sea water into the system. This may represent a major breakthrough in understanding the relationship between climatic variation and coastal eutrophication. Some concluding remarks are added in an attempt to show how these cyst signals: 1) suggest interesting comparisons with the ecological classification of bloom dinoflagellates by Smayda and Reynolds [Smayda, T.J., Reynolds, C.S., 2003. Strategies of marine dinoflagellate survival and some rules of assembly. J. Sea Res. 49, 95-106.]; and 2) have helped to identify important questions regarding the extent to which climate variation influences coastal eutrophication. Addressing these questions represents an urgent challenge to marine science.

  18. [Effects of Alexandrium tamarense and Prorocentrum donghaiense on rotifer Brachionus plicatilis population].

    PubMed

    Wang, Liping; Yan, Tian; Tan, Zhijun; Zhou, Mingjiang

    2003-07-01

    The effects of Prorocentrum donghaiense and Alexandrium sp., causative species of harmful algal bloom of East China Sea in May 2002, on rotifer Brachionus plicatilis population were studied in the laboratory. The results showed that Alexandrium tamarense (ATHK) had a lethal effect on B. plicatilis and the 48hLC50 was about 1300 cell.ml-1. The toxin comparison of different fractions showed that the algal culture and re-suspended algal cells had the adverse effects, and the alga at earlier growth phases showed a stronger impact, indicating that the inhibitory effect was related with the activity of the living algal cells. P. donghaiense at high densities (4 x 10(4), 5 x 10(4) and 10 x 10(4) cell.ml-1) had an adverse effect on B. plicatilis population, while at low densities (1 x 10(4), 2 x 10(4) and 3 x 10(4) cell.ml-1), the alga could be used as food for rotifer population. When the two algae were mixed, the lethal effect of A. tamarense could be decreased by P. donghaiense. The results indicated that the above HAB event could affect the micro-zooplankton population in the occurrence area of East China Sea.

  19. Spatial and temporal variability of Alexandrium cyst fluxes in the Gulf of Maine: Relationship to seasonal particle export and resuspension

    NASA Astrophysics Data System (ADS)

    Pilskaln, C. H.; Anderson, D. M.; McGillicuddy, D. J.; Keafer, B. A.; Hayashi, K.; Norton, K.

    2014-05-01

    Quantification of Alexandrium cyst fluxes through the Gulf of Maine water column is central to understanding the linkage between the source and fate of annual Alexandrium blooms in the offshore waters. These blooms often lead to paralytic shellfish poisoning (PSP) and extensive closures of shellfish beds. We report here on time-series sediment trap deployments completed at four offshore locations in the gulf between 2005 and 2010 as components of two ECOHAB-GOM field programs. Data presented documents the substantial spatial and temporal fluctuations in Alexandrium fundyense cyst fluxes in the gulf. Cyst delivery out of the euphotic zone peaked primarily between July and August following annual spring-summer Alexandrium blooms and was greatest in the western gulf. At all sites, cyst flux maxima to the subsurface waters were rarely coincident with seasonal peaks in the total mass export of particulate material indicating that cyst delivery was primarily via individually sinking cysts. Where persistent benthic nepheloid layers (BNLs) exist, significant sediment resuspension input of cysts to the near-bottom water column was evidenced by deep cyst fluxes that were up to several orders of magnitude greater than that measured above the BNL. The largest cyst fluxes in the BNL were observed in the eastern gulf, suggesting greater resuspension energy and BNL cyst inventories in this region. Temporal similarities between peak cyst export out of the upper ocean and peak cyst fluxes in the BNL were observed and document the contribution of seasonal, newly formed cysts to the BNL. The data however also suggest that many Alexandrium cells comprising the massive, short-lived blooms do not transition into cysts. Time-series flow measurements and a simple 1D model demonstrate that the BNL cyst fluxes reflect the combined effects of tidal energy-maintained resuspension, deposition, and input of cysts from the overlying water column.

  20. Spatial and temporal variability of Alexandrium cyst fluxes in the Gulf of Maine: Relationship to seasonal particle export and resuspension

    PubMed Central

    Pilskaln, C.H.; Anderson, D.M.; McGillicuddy, D.J.; Keafer, B.A.; Hayashi, K.; Norton, K.

    2014-01-01

    Quantification of Alexandrium cyst fluxes through the Gulf of Maine water column is central to understanding the linkage between the source and fate of annual Alexandrium blooms in the offshore waters. These blooms often lead to paralytic shellfish poisoning (PSP) and extensive closures of shellfish beds. We report here on time-series sediment trap deployments completed at four offshore locations in the gulf between 2005 and 2010 as components of two ECOHAB–GOM field programs. Data presented documents the substantial spatial and temporal fluctuations in Alexandrium fundyense cyst fluxes in the gulf. Cyst delivery out of the euphotic zone peaked primarily between July and August following annual spring–summer Alexandrium blooms and was greatest in the western gulf. At all sites, cyst flux maxima to the subsurface waters were rarely coincident with seasonal peaks in the total mass export of particulate material indicating that cyst delivery was primarily via individually sinking cysts. Where persistent benthic nepheloid layers (BNLs) exist, significant sediment resuspension input of cysts to the near-bottom water column was evidenced by deep cyst fluxes that were up to several orders of magnitude greater than that measured above the BNL. The largest cyst fluxes in the BNL were observed in the eastern gulf, suggesting greater resuspension energy and BNL cyst inventories in this region. Temporal similarities between peak cyst export out of the upper ocean and peak cyst fluxes in the BNL were observed and document the contribution of seasonal, newly formed cysts to the BNL. The data however also suggest that many Alexandrium cells comprising the massive, short-lived blooms do not transition into cysts. Time-series flow measurements and a simple 1D model demonstrate that the BNL cyst fluxes reflect the combined effects of tidal energy-maintained resuspension, deposition, and input of cysts from the overlying water column. PMID:25431527

  1. Spatial and temporal variability of Alexandrium cyst fluxes in the Gulf of Maine: Relationship to seasonal particle export and resuspension.

    PubMed

    Pilskaln, C H; Anderson, D M; McGillicuddy, D J; Keafer, B A; Hayashi, K; Norton, K

    2014-05-01

    Quantification of Alexandrium cyst fluxes through the Gulf of Maine water column is central to understanding the linkage between the source and fate of annual Alexandrium blooms in the offshore waters. These blooms often lead to paralytic shellfish poisoning (PSP) and extensive closures of shellfish beds. We report here on time-series sediment trap deployments completed at four offshore locations in the gulf between 2005 and 2010 as components of two ECOHAB-GOM field programs. Data presented documents the substantial spatial and temporal fluctuations in Alexandrium fundyense cyst fluxes in the gulf. Cyst delivery out of the euphotic zone peaked primarily between July and August following annual spring-summer Alexandrium blooms and was greatest in the western gulf. At all sites, cyst flux maxima to the subsurface waters were rarely coincident with seasonal peaks in the total mass export of particulate material indicating that cyst delivery was primarily via individually sinking cysts. Where persistent benthic nepheloid layers (BNLs) exist, significant sediment resuspension input of cysts to the near-bottom water column was evidenced by deep cyst fluxes that were up to several orders of magnitude greater than that measured above the BNL. The largest cyst fluxes in the BNL were observed in the eastern gulf, suggesting greater resuspension energy and BNL cyst inventories in this region. Temporal similarities between peak cyst export out of the upper ocean and peak cyst fluxes in the BNL were observed and document the contribution of seasonal, newly formed cysts to the BNL. The data however also suggest that many Alexandrium cells comprising the massive, short-lived blooms do not transition into cysts. Time-series flow measurements and a simple 1D model demonstrate that the BNL cyst fluxes reflect the combined effects of tidal energy-maintained resuspension, deposition, and input of cysts from the overlying water column.

  2. Evaluation of photo-reactive siderophore producing bacteria before, during and after a bloom of the dinoflagellate Lingulodinium polyedrum.

    PubMed

    Yarimizu, Kyoko; Polido, Geraldine; Gärdes, Astrid; Carter, Melissa L; Hilbern, Mary; Carrano, Carl J

    2014-06-01

    Evidence is increasing for a mutualistic relationship between phytoplankton and heterotrophic marine bacteria. It has been proposed that bacteria producing photoactive iron binding compounds known as siderophores could play an important role in such mutualistic associations by producing bioavailable iron utilizable by phytoplankton and in exchange receive autotrophically derived DOM. In order to understand the potential role photoactive siderophores might be playing in bacterial-algal mutualism or marine biogeochemistry in general, it is important to be able to detect and quantify their presence in various environments. One approach to accomplish that end is to make use of high sensitivity genomics technology (qPCR) to search for siderophore biosynthesis genes related to the production of photoactive siderophores. In this way one can access their "biochemical potential" and utilize this information as a proxy for the presence of these siderophores in the marine environment. In this report we studied the correlation of the presence of bacteria producing one of the three photoactive siderophores relative to total bacterial and dinoflagellate numbers from surface water at the Scripps Pier before, during, and after fall bloom of the dinoflagellate Lingulodinium polyedrum. We believe that these findings will aid us in gauging the importance of photoactive siderophores in the marine environment and in harmful algal bloom dynamics in particular.

  3. Population dynamics of red tide dinoflagellates

    NASA Astrophysics Data System (ADS)

    Wyatt, Timothy; Zingone, Adriana

    2014-03-01

    Sea-surface discolorations due to high concentrations of phytoplankton are called red tides. Their ecological significance is a long standing puzzle, and they are sometimes considered pathological. Here we propose that many red tides, particularly but not exclusively those composed of certain autotrophic dinoflagellates, are presexual/sexual swarms, essential links in their complex life cycles. This view provides a rationale for the appearance of these organisms in thin surface layers, and helps explain their ephemeral nature. We suggest that further understanding of this phenomenon, and of phytoplankton ecology in general, would benefit from attention to the 'net reproductive value‧ (r) over the whole life cycle as well as to the division rate (μ) of the vegetative phase. It is argued that r is strategically adapted to seasonal cycles and long term environmental variability, while μ reflects tactical needs (timing) and constraints (grazers, parasites) on vegetative growth.

  4. Photoregulation in a Kleptochloroplastidic Dinoflagellate, Dinophysis acuta

    PubMed Central

    Hansen, Per J.; Ojamäe, Karin; Berge, Terje; Trampe, Erik C. L.; Nielsen, Lasse T.; Lips, Inga; Kühl, Michael

    2016-01-01

    Some phagotrophic organisms can retain chloroplasts of their photosynthetic prey as so-called kleptochloroplasts and maintain their function for shorter or longer periods of time. Here we show for the first time that the dinoflagellate Dinophysis acuta takes control over “third-hand” chloroplasts obtained from its ciliate prey Mesodinium spp. that originally ingested the cryptophyte chloroplasts. With its kleptochloroplasts, D. acuta can synthesize photosynthetic as well as photoprotective pigments under long-term starvation in the light. Variable chlorophyll fluorescence measurements showed that the kleptochloroplasts were fully functional during 1 month of prey starvation, while the chlorophyll a-specific inorganic carbon uptake decreased within days of prey starvation under an irradiance of 100 μmol photons m-2 s-1. While D. acuta cells can regulate their pigmentation and function of kleptochloroplasts they apparently lose the ability to maintain high inorganic carbon fixation rates. PMID:27303378

  5. Cyanobacterial endosymbionts in the benthic dinoflagellate Sinophysis canaliculata (Dinophysiales, Dinophyceae).

    PubMed

    Escalera, Laura; Reguera, Beatriz; Takishita, Kiyotaka; Yoshimatsu, Sadaaki; Koike, Kanae; Koike, Kazuhiko

    2011-04-01

    Photosynthetic dinoflagellates possess a great diversity of plastids that have been acquired through successful serial endosymbiosis. The peridinin-containing plastid in dinoflagellates is canonical, but many other types are known within this group. Within the Dinophysiales, several species of Dinophysis contain plastids, derived from cryptophytes or haptophytes. In this work, the presence of numerous intracellular cyanobacteria-like microorganisms compartmentalized by a separate membrane is reported for the first time within the benthic dinophysoid dinoflagellate Sinophysis canaliculata Quod et al., a species from a genus morphologically close to Dinophysis. Although the contribution of these cyanobacterial endosymbionts to S. canaliculata is still unknown, this finding suggests a possible undergoing primary endosymbiosis in a dinoflagellate. Copyright © 2010 Elsevier GmbH. All rights reserved.

  6. Pfiesteria piscicida, P. shumwayae, and other Pfiesteria-like dinoflagellates.

    PubMed

    Miller, Todd R; Belas, Robert

    2003-03-01

    Pfiesteria piscicida and Pfiesteria shumwayae are estuarine dinoflagellates thought to be responsible for massive fish deaths and associated human illnesses in the southeastern United States. These dinoflagellates are described as having a complex life cycle involving flagellated zoospores, cysts, and amoeboid stages. Although no Pfiesteria toxin has been identified, certain strains of these dinoflagellates are thought to produce a water-soluble toxin that can kill fish and cause human illness. Recent reports show no evidence for amoeboid stages and indicate that a much more simplified life cycle exists. In addition, researchers have shown that P. shumwayae only kills fish through direct contact that does not necessarily involve the production of one or more toxins. This review summarizes these and other recent findings with an emphasis on establishing basic facts regarding the toxicity and life history of Pfiesteria dinoflagellates.

  7. Method of Measuring Dinoflagellate Grazing on Flagellate and Bacteria Communities

    NASA Astrophysics Data System (ADS)

    Price, L. M.; Mulholland, M. R.

    2016-02-01

    Dinoflagellates are a major taxa of phytoplankton that include many species that commonly form harmful algal blooms (HABs) throughout the world. A feature of dinoflagellate physiology that may contribute to their competitive success is their ability to grow mixotrophically. As primary producers and photoautotrophs, these organisms convert inorganic nutrients to organic compounds using sunlight. During blooms inorganic nutrients and light commonly become limited. The ability to grow heterotrophically may offer dinoflagellates a competitive advantage over strict autotrophs during blooms. Using a modification of a method used to measure zooplankton grazing rates, we measured grazing by dinoflagellates on co-occurring microbes, including heterotrophic flagellates and bacteria, in the Lafayette River, a tributary in the Chesapeake Bay estuary during non-bloom and bloom conditions. Initial results of these experiments using this method are presented here.

  8. The prevalence of benthic dinoflagellates associated with ciguatera fish poisoning in the central Red Sea.

    PubMed

    Catania, Daniela; Richlen, Mindy L; Mak, Yim Ling; Morton, Steve L; Laban, Elizabeth H; Xu, Yixiao; Anderson, Donald M; Chan, Leo Lai; Berumen, Michael L

    2017-09-01

    This study confirms the presence of the toxigenic benthic dinoflagellates Gambierdiscus belizeanus and Ostreopsis spp. in the central Red Sea. To our knowledge, this is also the first report of these taxa in coastal waters of Saudi Arabia, indicating the potential occurrence of ciguatera fish poisoning (CFP) in that region. During field investigations carried out in 2012 and 2013, a total of 100 Turbinaria and Halimeda macroalgae samples were collected from coral reefs off the Saudi Arabian coast and examined for the presence of Gambierdiscus and Ostreopsis, two toxigenic dinoflagellate genera commonly observed in coral reef communities around the world. Both Gambierdiscus and Ostreopsis spp. were observed at low densities (<200 cells g(-1) wet weight algae). Cell densities of Ostreopsis spp. were significantly higher than Gambierdiscus spp. at most of the sampling sites, and abundances of both genera were negatively correlated with seawater salinity. To assess the potential for ciguatoxicity in this region, several Gambierdiscus isolates were established in culture and examined for species identity and toxicity. All isolates were morphologically and molecularly identified as Gambierdiscus belizeanus. Toxicity analysis of two isolates using the mouse neuroblastoma cell-based assay for ciguatoxins (CTX) confirmed G. belizeanus as a CTX producer, with a maximum toxin content of 6.50±1.14×10(-5)pg P-CTX-1 eq. cell(-1). Compared to Gambierdiscus isolates from other locations, these were low toxicity strains. The low Gambierdiscus densities observed along with their comparatively low toxin contents may explain why CFP is unidentified and unreported in this region. Nevertheless, the presence of these potentially toxigenic dinoflagellate species at multiple sites in the central Red Sea warrants future study on their possible effects on marine food webs and human health in this region. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Dinoflagellate tandem array gene transcripts are highly conserved and not polycistronic

    PubMed Central

    Beauchemin, Mathieu; Roy, Sougata; Daoust, Philippe; Dagenais-Bellefeuille, Steve; Bertomeu, Thierry; Letourneau, Louis; Lang, B. Franz; Morse, David

    2012-01-01

    Dinoflagellates are an important component of the marine biota, but a large genome with high–copy number (up to 5,000) tandem gene arrays has made genomic sequencing problematic. More importantly, little is known about the expression and conservation of these unusual gene arrays. We assembled de novo a gene catalog of 74,655 contigs for the dinoflagellate Lingulodinium polyedrum from RNA-Seq (Illumina) reads. The catalog contains 93% of a Lingulodinium EST dataset deposited in GenBank and 94% of the enzymes in 16 primary metabolic KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, indicating it is a good representation of the transcriptome. Analysis of the catalog shows a marked underrepresentation of DNA-binding proteins and DNA-binding domains compared with other algae. Despite this, we found no evidence to support the proposal of polycistronic transcription, including a marked underrepresentation of sequences corresponding to the intergenic spacers of two tandem array genes. We also have used RNA-Seq to assess the degree of sequence conservation in tandem array genes and found their transcripts to be highly conserved. Interestingly, some of the sequences in the catalog have only bacterial homologs and are potential candidates for horizontal gene transfer. These presumably were transferred as single-copy genes, and because they are now all GC-rich, any derived from AT-rich contexts must have experienced extensive mutation. Our study not only has provided the most complete dinoflagellate gene catalog known to date, it has also exploited RNA-Seq to address fundamental issues in basic transcription mechanisms and sequence conservation in these algae. PMID:23019363

  10. Dinoflagellate cysts as indicators of millennial scale climatic and oceanographic variability in Guaymas Basin, Gulf of California (Mexico) during the Late Quaternary

    NASA Astrophysics Data System (ADS)

    Price, Andrea M.; Mertens, Kenneth N.; Pospelova, *Vera; Pedersen, Thomas F.; Ganeshram, Raja S.

    2015-04-01

    A high-resolution record of organic-walled dinoflagellate cyst production in Guaymas Basin, Gulf of California (Mexico) reveals a complex paleoceanographic history over the last ~40 ka. Guaymas Basin is an excellent location to perform high resolution studies of changes in Late Quaternary climate and paleo-productivity because it is characterized by high primary productivity, high sedimentation rates, and low oxygen bottom waters. These factors contribute to the deposition and preservation of laminated sediments throughout large portions of core MD02-2515. This is one of the first studies in the Northeast Pacific to document dinoflagellate cyst production at a centennial to millennial scale throughout the Late Quaternary. Based on the cyst assemblages three major dinoflagellate cyst zones were established, and roughly correspond to Marine Isotope Stages 1 to 3. The most dominant dinoflagellate cyst taxa found throughout the core were Brigantedinium spp. and Operculodinium centrocarpum. Dansgaard-Oeschger event 8 is observed in the dinoflagellate cyst record, and is characterized by an increase in warm water taxa such as Spiniferites pachydermus. Other intervals of interest are the Younger Dryas where cooler sea-surface conditions are not recorded, and the Holocene which is characterized by the consistent presence of warm water species Stelladinium reidii, Tuberculodinidum vancampoae, Bitectatodinium spongium and an increase in Quinquecuspis concreta. Changes in cyst assemblages, concentrations and species diversity, along with geochemical data reflect major orbital to millennial-scale climatic and oceanographic changes. Keywords: Dansgaard-Oeschger events; dinoflagellate cyst; Gulf of California; late Quaternary climate change; upwelling; Younger Dryas.

  11. Dinoflagellate biogeochemistry: developing new proxies for past carbon cycling (Invited)

    NASA Astrophysics Data System (ADS)

    Sluijs, A.; Hoins, M.; van de Waal, D.; Reichart, G.; Rost, B.

    2013-12-01

    Accurate reconstructions of atmospheric CO2 levels for time intervals that are beyond the reach of the ice cores (> ~850 kyr) remain one of the grand challenges of paleoclimate and paleoenvironmental research. Despite recent progress in analytical techniques and application in several proxies, uncertainties in reconstructed values remain large. Based on culturing experiments combined with gene expression analysis and physiological assays, we quantify and mechanistically underpin the geochemical response of dinoflagellates and their cysts to various CO2 concentrations. The results confirm theoretical inferences that the isotopic composition of both organic and calcite dinoflagellate cysts may serve as a proxy for past ocean carbonate chemistry, notably pCO2. We found a strong effect (~10x as strong as in foraminifera) of pCO2 on the stable oxygen isotopic composition of a calcareous dinoflagellate cyst. Moreover, we found that the stable carbon isotopic composition of four dinoflagellate species, of which two have organic dinocyst fossil records down to the early Cenozoic and Cretaceous, strongly respond to pCO2. Critically, the experiments show that the mechanisms forcing the changes in fractionation factors differ between species, opening a suite of opportunities to study past carbon cycling as well as protist physiology during Earth System perturbations. The dinoflagellate Apectodinium dominated dinoflagellate assemblages during the Paleocene-Eocene Thermal Maximum. Will its carbon isotopic composition reveal CO2 concentrations at that time?

  12. Development of a dinoflagellate-oriented PCR primer set leads to detection of picoplanktonic dinoflagellates from Long Island Sound.

    PubMed

    Lin, Senjie; Zhang, Huan; Hou, Yubo; Miranda, Lilibeth; Bhattacharya, Debashish

    2006-08-01

    We developed dinoflagellate-specific 18S rRNA gene primers. PCR amplification using these oligonucleotides for a picoplanktonic DNA sample from Long Island Sound yielded 24 clones, and all but one of these clones were dinoflagellates primarily belonging to undescribed and Amoebophrya-like lineages. These results highlight the need for a systematic investigation of picodinoflagellate diversity in both coastal and oceanic ecosystems.

  13. Development of a Dinoflagellate-Oriented PCR Primer Set Leads to Detection of Picoplanktonic Dinoflagellates from Long Island Sound†

    PubMed Central

    Lin, Senjie; Zhang, Huan; Hou, Yubo; Miranda, Lilibeth; Bhattacharya, Debashish

    2006-01-01

    We developed dinoflagellate-specific 18S rRNA gene primers. PCR amplification using these oligonucleotides for a picoplanktonic DNA sample from Long Island Sound yielded 24 clones, and all but one of these clones were dinoflagellates primarily belonging to undescribed and Amoebophrya-like lineages. These results highlight the need for a systematic investigation of picodinoflagellate diversity in both coastal and oceanic ecosystems. PMID:16885319

  14. Molecular phylogeny of ocelloid-bearing dinoflagellates (Warnowiaceae) as inferred from SSU and LSU rDNA sequences

    PubMed Central

    Hoppenrath, Mona; Bachvaroff, Tsvetan R; Handy, Sara M; Delwiche, Charles F; Leander, Brian S

    2009-01-01

    Background Dinoflagellates represent a major lineage of unicellular eukaryotes with unparalleled diversity and complexity in morphological features. The monophyly of dinoflagellates has been convincingly demonstrated, but the interrelationships among dinoflagellate lineages still remain largely unresolved. Warnowiid dinoflagellates are among the most remarkable eukaryotes known because of their possession of highly elaborate ultrastructural systems: pistons, nematocysts, and ocelloids. Complex organelles like these are evolutionary innovations found only in a few athecate dinoflagellates. Moreover, the taxonomy of warnowiids is extremely confusing and inferences about the evolutionary history of this lineage are mired by the absence of molecular phylogenetic data from any member of the group. In this study, we provide the first molecular phylogenetic data for warnowiids and couple them with a review of warnowiid morphological features in order to formulate a hypothetical framework for understanding character evolution within the group. These data also enabled us to evaluate the evolutionary relationship(s) between warnowiids and the other group of dinoflagellates with complex organelles: polykrikoids. Results Molecular phylogenetic analyses of SSU and LSU rDNA sequences demonstrated that warnowiids form a well-supported clade that falls within the more inclusive Gymnodinium sensu stricto clade. These data also confirmed that polykrikoids are members of the Gymnodinium sensu stricto clade as well; however, a specific sister relationship between the warnowiid clade and the polykrikoid clade was unresolved in all of our analyses. Nonetheless, the new DNA sequences from different isolates of warnowiids provided organismal anchors for several previously unidentified sequences derived from environmental DNA surveys of marine biodiversity. Conclusion Comparative morphological data and molecular phylogenetic data demonstrate that the polykrikoid and the warnowiid clade are

  15. Dinoflagellate diversity among nudibranchs and sponges from French Polynesia: insights into associations and transfer.

    PubMed

    Wecker, Patricia; Fournier, Alice; Bosserelle, Pauline; Debitus, Cécile; Lecellier, Gaël; Berteaux-Lecellier, Véronique

    2015-04-01

    Symbioses with the dinoflagellate Symbiodinium are widespread among marine invertebrates and protists, especially in nutritionally demanding habitats, such as tropical coral reefs, where they play a major role in ecosystem survival. Moreover, apart from corals and sea anemones, many of the Symbiodinium species and clades involved in these partnerships remain to be characterized. This study provides new insights into nudibranch and sponge associations with Symbiodinium by sequencing regions of the Symbiodinium 28S rDNA and the host mitochondrial COI oxidase. Specimens were sampled between 2011 and 2013 from locations around the islands of Moorea and Tahiti, French Polynesia. Our results revealed that some of the sponges and nudibranchs harbored typical Symbiodinium from clade B or C while others harbored new, undescribed Symbiodinium-like dinoflagellates. A detailed analysis of the different life stages of the nudibranch Phestilla lugubris and of its specific coral prey, Porites rus, suggests a prey-predator horizontal transfer of the symbiont and its vertical inheritance from the parent to the eggs.

  16. Potential distribution of the invasive freshwater dinoflagellate Ceratium furcoides (Levander) Langhans (Dinophyta) in South America.

    PubMed

    Meichtry de Zaburlín, Norma; Vogler, Roberto E; Molina, María J; Llano, Víctor M

    2016-04-01

    Dinoflagellates of the genus Ceratium are predominantly found in marine environments, with a few species in inland waters. Over the last decades, the freshwater species Ceratium hirundinella and Ceratium furcoides have colonized and invaded several South American basins. The purpose of this study was to create a distribution model for the invasive dinoflagellate C. furcoides in South America in order to further investigate the basins at potential risk, as well as the environmental conditions that influence its expansion. This species is known to develop blooms due to its mobility, resistance to sedimentation, and optimized use of resources. Although nontoxic, blooms of the species cause many problems to both the natural ecosystems and water users. Potential distribution was predicted by using a maximum entropy algorithm (MaxEnt). Model was run with 101 occurrences obtained from the scientific literature, and climatic, hydrological and topographic variables. The developed model had a very good performance for the study area. The most susceptible areas identified were mainly concentrated in the basins between southeastern Brazil and northeastern Argentina. Besides already affected regions, new potentially suitable areas were identified in temperate regions of South America. The information generated here will be useful for authorities responsible for water and watershed management to monitor the spread of this species and address problems related to its establishment in new environments.

  17. [Dinoflagellates (Dinophyta) of orders Dinophysiales and Prorocentrales of the Veracruz Reef System, Mexico].

    PubMed

    Parra-Toriz, Dulce; Ramírez-Rodriguez, María de Lourdes Araceli; Hernández-Becerril, David Uriel

    2011-03-01

    Dinoflagellates are a major taxonomic group in marine phytoplankton communities in terms of diversity and biomass. Some species are also important because they form blooms and/or produce toxins that may cause diverse problems. The composition of planktonic dinoflagellates of the orders Prorocentrales and Dinophysiales, in the Veracruz Reef System, were obtained during the period of October 2006 to January 2007. For this, samples were taken from the surface at 10 stations with net of 30 microm mesh, and were analyzed by light and scanning electron microscopy. Each species was described and illustrated, measured and their distribution and ecological data is also given. A total of nine species were found and identified, belonging to four genera: Dinophysis was represented by three species; Prorocentrum by three, Phalacroma by two, and only one species of Ornithocercus was detected. From the samples, four potentially toxin-producer species were found: Dinophysis caudata, D. rapa, Phalacroma rotundata and Prorocentrum micans. The number of species found in this study is low, especially considering the higher numbers observed in other areas of the Gulf of Mexico, where some reports have recorded up to 53 species of the order Dinophysiales and 14 for Prorocentrales. Identification keys for orders, genera and species for the study area are provided with this study.

  18. Quantitative proteomic analysis of cell cycle of the dinoflagellate Prorocentrum donghaiense (Dinophyceae).

    PubMed

    Wang, Da-Zhi; Zhang, Ying-Jiao; Zhang, Shu-Fei; Lin, Lin; Hong, Hua-Sheng

    2013-01-01

    Dinoflagellates are the major causative agents of harmful algal blooms in the coastal zone, which has resulted in adverse effects on the marine ecosystem and public health, and has become a global concern. Knowledge of cell cycle regulation in proliferating cells is essential for understanding bloom dynamics, and so this study compared the protein profiles of Prorocentrum donghaiense at different cell cycle phases and identified differentially expressed proteins using 2-D fluorescence difference gel electrophoresis combined with MALDI-TOF-TOF mass spectrometry. The results showed that the synchronized cells of P. donghaiense completed a cell cycle within 24 hours and cell division was phased with the diurnal cycle. Comparison of the protein profiles at four cell cycle phases (G1, S, early and late G2/M) showed that 53 protein spots altered significantly in abundance. Among them, 41 were identified to be involved in a variety of biological processes, e.g. cell cycle and division, RNA metabolism, protein and amino acid metabolism, energy and carbon metabolism, oxidation-reduction processes, and ABC transport. The periodic expression of these proteins was critical to maintain the proper order and function of the cell cycle. This study, to our knowledge, for the first time revealed the major biological processes occurring at different cell cycle phases which provided new insights into the mechanisms regulating the cell cycle and growth of dinoflagellates.

  19. Morphological transition in kleptochloroplasts after ingestion in the dinoflagellates Amphidinium poecilochroum and Gymnodinium aeruginosum (Dinophyceae).

    PubMed

    Onuma, Ryo; Horiguchi, Takeo

    2013-09-01

    The unarmoured marine dinoflagellate Amphidinium poecilochroum and the unarmoured freshwater dinoflagellate Gymnodinium aeruginosum both belonging to the same clade, are known to possess cryptomonad-derived kleptochloroplasts. Previous studies revealed that G. aeruginosum can synchronise the division of the chloroplast with its own cell division while no simultaneous division takes place in A. poecilochroum, which is interpreted to mean that state of kleptochloroplastidy in G. aeruginosum is closer to that of the initial acquisition of the 'true chloroplast' within the lineage. Although the general ultrastructure of these two species has been reported, the changes in the kleptochloroplast with time have never been followed. We observed morphological changes in kleptochloroplasts of A. poecilochroum and G. aeruginosum following the ingestion of cryptomonad cells, using light and transmission electron microscopes. In A. poecilochroum, the cryptomonad ejectosomes, mitochondria and cytoplasm were all actively transferred into digestive vacuoles within 1h of ingestion. The chloroplasts were deformed and the cryptomonad nucleus was digested after 3h. By contrast, in G. aeruginosum, the cryptomonad cytoplasm and nucleus were retained for 24h following ingestion, and the chloroplast was substantially enlarged. These differences imply that the retention of the cryptomonad nucleus is important for the maintenance of the chloroplast. Copyright © 2013 Elsevier GmbH. All rights reserved.

  20. Genome-wide analysis of redox-regulated genes in a dinoflagellate.

    PubMed

    Okamoto, O Keith; Hastings, J Woodland

    2003-12-04

    In this study, the effects of 1 mM sodium nitrite, a reactive nitrogen species (RNS) generator, and 0.5 mM paraquat, which produces reactive oxygen species (ROS), on gene expression in the marine dinoflagellate species Pyrocystis lunula were investigated using microarrays containing 3500 complementary DNAs (cDNAs). A total of 246 differentially expressed genes were identified under these treatments: 204 genes were specifically regulated in response to nitrite and 37 genes specifically to paraquat. Only six genes showed a dependence on both nitrite and paraquat, indicating that the two agents act predominantly via distinct pathways. Although many of these redox-regulated genes encode proteins from a diverse range of functional categories, the majority of them (68%) represent novel sequences. Temporary abnormal spherical cells occurred in nitrite-treated cultures, but not in those exposed to paraquat, suggesting that this response involves a specific pathway triggered by RNS. The genes involved include one that encodes a transcription factor unique to dinoflagellates (HPl), and genes encoding proteins similar to those regulating developmental processes in plants and animals such as NYD-SP5, shaggy and calcium-dependent kinases, the COP9 signalosome complex, ubiquitin-related proteases and a metacaspase.

  1. [Harmful blooms of cyanobacteria (Oscillatoriaceae) and dinoflagellates (Gymnodiniaceae) in the Golfo de Nicoya, Costa Rica].

    PubMed

    Vargas-Montero, Maribelle; Freer, Enrique

    2004-09-01

    Recently, the Pacific coast of Costa Rica has experienced an increase in both magnitude and frequency of harmful algae blooms (HAB). The lack of data regarding the dynamics of these events in the area, and the species of microalgae that produce them, are themes of great interest. The blooms have produced negative impacts on fishery resources and on human health in Costa Rica. In May 2002 a HAB left a large number of dead fish along the central Pacific coast. Water samples were collected using a phytoplankton net and fixed for subsequent processing by electron microscopy. In addition, a one liter sample of surface water was taken for later cell count. In the observed HAB, the dominating organisms found were the cyanobacteria Trichodesmiun erythraeum surrounded by high concentrations of Gram-bacteria and the dinoflagellate Cochlodinium cf. polykrikoides. T. erythraeum, is one of the most important N2 fixing cyanobacteria in marine waters that has been associated with HAB events in diverse parts of the world as well as with symptoms that produce contact dermatitis and other discomforts. C. cf. polykrikoides is a dinoflagellete associated with fish kills; although the type of associated toxins are unknown. In a national newspaper 17 cases of intoxication in humans were reported during this same period, which presented respiratory disorders and burning of the eyes. This is the first report in Costa Rica where a cyanobacteria and a dinoflagellate were observed together producing HAB.

  2. Multi-gene analysis of Symbiodinium dinoflagellates: a perspective on rarity, symbiosis, and evolution.

    PubMed

    Pochon, Xavier; Putnam, Hollie M; Gates, Ruth D

    2014-01-01

    Symbiodinium, a large group of dinoflagellates, live in symbiosis with marine protists, invertebrate metazoans, and free-living in the environment. Symbiodinium are functionally variable and play critical energetic roles in symbiosis. Our knowledge of Symbiodinium has been historically constrained by the limited number of molecular markers available to study evolution in the genus. Here we compare six functional genes, representing three cellular compartments, in the nine known Symbiodinium lineages. Despite striking similarities among the single gene phylogenies from distinct organelles, none were evolutionarily identical. A fully concatenated reconstruction, however, yielded a well-resolved topology identical to the current benchmark nr28S gene. Evolutionary rates differed among cellular compartments and clades, a pattern largely driven by higher rates of evolution in the chloroplast genes of Symbiodinium clades D2 and I. The rapid rates of evolution observed amongst these relatively uncommon Symbiodinium lineages in the functionally critical chloroplast may translate into potential innovation for the symbiosis. The multi-gene analysis highlights the potential power of assessing genome-wide evolutionary patterns using recent advances in sequencing technology and emphasizes the importance of integrating ecological data with more comprehensive sampling of free-living and symbiotic Symbiodinium in assessing the evolutionary adaptation of this enigmatic dinoflagellate.

  3. Quantitative Proteomic Analysis of Cell Cycle of the Dinoflagellate Prorocentrum donghaiense (Dinophyceae)

    PubMed Central

    Wang, Da-Zhi; Zhang, Ying-Jiao; Zhang, Shu-Fei; Lin, Lin; Hong, Hua-Sheng

    2013-01-01

    Dinoflagellates are the major causative agents of harmful algal blooms in the coastal zone, which has resulted in adverse effects on the marine ecosystem and public health, and has become a global concern. Knowledge of cell cycle regulation in proliferating cells is essential for understanding bloom dynamics, and so this study compared the protein profiles of Prorocentrum donghaiense at different cell cycle phases and identified differentially expressed proteins using 2-D fluorescence difference gel electrophoresis combined with MALDI-TOF-TOF mass spectrometry. The results showed that the synchronized cells of P. donghaiense completed a cell cycle within 24 hours and cell division was phased with the diurnal cycle. Comparison of the protein profiles at four cell cycle phases (G1, S, early and late G2/M) showed that 53 protein spots altered significantly in abundance. Among them, 41 were identified to be involved in a variety of biological processes, e.g. cell cycle and division, RNA metabolism, protein and amino acid metabolism, energy and carbon metabolism, oxidation-reduction processes, and ABC transport. The periodic expression of these proteins was critical to maintain the proper order and function of the cell cycle. This study, to our knowledge, for the first time revealed the major biological processes occurring at different cell cycle phases which provided new insights into the mechanisms regulating the cell cycle and growth of dinoflagellates. PMID:23691081

  4. Multi-gene analysis of Symbiodinium dinoflagellates: a perspective on rarity, symbiosis, and evolution

    PubMed Central

    Putnam, Hollie M.; Gates, Ruth D.

    2014-01-01

    Symbiodinium, a large group of dinoflagellates, live in symbiosis with marine protists, invertebrate metazoans, and free-living in the environment. Symbiodinium are functionally variable and play critical energetic roles in symbiosis. Our knowledge of Symbiodinium has been historically constrained by the limited number of molecular markers available to study evolution in the genus. Here we compare six functional genes, representing three cellular compartments, in the nine known Symbiodinium lineages. Despite striking similarities among the single gene phylogenies from distinct organelles, none were evolutionarily identical. A fully concatenated reconstruction, however, yielded a well-resolved topology identical to the current benchmark nr28S gene. Evolutionary rates differed among cellular compartments and clades, a pattern largely driven by higher rates of evolution in the chloroplast genes of Symbiodinium clades D2 and I. The rapid rates of evolution observed amongst these relatively uncommon Symbiodinium lineages in the functionally critical chloroplast may translate into potential innovation for the symbiosis. The multi-gene analysis highlights the potential power of assessing genome-wide evolutionary patterns using recent advances in sequencing technology and emphasizes the importance of integrating ecological data with more comprehensive sampling of free-living and symbiotic Symbiodinium in assessing the evolutionary adaptation of this enigmatic dinoflagellate. PMID:24883254

  5. Edouard Chatton (1883-1947) and the dinoflagellate protists: concepts and models.

    PubMed

    Soyer-Gobillard, Marie-Odile

    2006-09-01

    Edouard Chatton contributed to our knowledge of single-celled protoctists, especially ciliates and dinoflagellates, free-living and/or symbiotic, in relation to the marine invertebrate animals in which they reside. More than the description of many new families, genera and species, and of their life cycles, he anticipated several major concepts of cell biology, including the fundamental difference between prokaryote and eukaryote protists, long time before the advent of electron microscopy. These concepts included: the reproductive ability of the kinetosome-centriole system; the homology of the kinetosome with the mitotic centriole of animal cells; and the different kinds of mitotic systems. Chatton trained more than thirty student collaborators, among them Andre Lwoff, who won the 1965 Nobel Prize in Physiology or Medicine. Later, the great cell biologist Hans Ris and I completed Chatton's light microscopy descriptions on syndinian mitosis dinoflagellate. We had at our disposal sophisticated electron microscopes as well as biochemical and molecular techniques and thus succeeded in corroborating the correct interpretation by Chatton of chromosome structure and mitotic cytology.

  6. An improved method for the molecular identification of single dinoflagellate cysts

    PubMed Central

    Dong, Yanhong; Li, Haitao; Pu, Chuanliang

    2017-01-01

    Background Dinoflagellate cysts (i.e., dinocysts) are biologically and ecologically important as they can help dinoflagellate species survive harsh environments, facilitate their dispersal and serve as seeds for harmful algal blooms. In addition, dinocysts derived from some species can produce more toxins than vegetative forms, largely affecting species through their food webs and even human health. Consequently, accurate identification of dinocysts represents the first crucial step in many ecological studies. As dinocysts have limited or even no available taxonomic keys, molecular methods have become the first priority for dinocyst identification. However, molecular identification of dinocysts, particularly when using single cells, poses technical challenges. The most serious is the low success rate of PCR, especially for heterotrophic species. Methods In this study, we aim to improve the success rate of single dinocyst identification for the chosen dinocyst species (Gonyaulax spinifera, Polykrikos kofoidii, Lingulodinium polyedrum, Pyrophacus steinii, Protoperidinium leonis and Protoperidinium oblongum) distributed in the South China Sea. We worked on two major technical issues: cleaning possible PCR inhibitors attached on the cyst surface and designing new dinoflagellate-specific PCR primers to improve the success of PCR amplification. Results For the cleaning of single dinocysts separated from marine sediments, we used ultrasonic wave-based cleaning and optimized cleaning parameters. Our results showed that the optimized ultrasonic wave-based cleaning method largely improved the identification success rate and accuracy of both molecular and morphological identifications. For the molecular identification with the newly designed dinoflagellate-specific primers (18S634F-18S634R), the success ratio was as high as 86.7% for single dinocysts across multiple taxa when using the optimized ultrasonic wave-based cleaning method, and much higher than that (16.7%) based on

  7. Lower Cretaceous dinoflagellate cyst and acritarch stratigraphy of the Cismon APTICORE (Southern Alps, Italy).

    PubMed

    Torricelli

    2000-02-01

    A pelagic sedimentary succession, virtually complete from the Upper Hauterivian to the Upper Aptian and unconformably overlain by the Middle-Upper Albian p.p., was continuously cored in the Belluno Basin (southern Alps, NE Italy) as part of the APTICORE Program. APTICORE at Cismon Valley penetrated 131.8m of limestones, marls and black shales, with 100% recovery of good quality cored material.One hundred and forty-six samples recovered from the marl and shale beds of the Cismon core were processed and analyzed for palynomorphs. Most of them yielded relatively rich and fairly well preserved assemblages of marine and terrestrially-derived palynomorphs.The results of a qualitative study of dinoflagellate cysts and acritarchs are presented and discussed. The distributions of 150 taxa are tabulated against the chronostratigraphy independently established on the basis of original litho-, bio-, chemo-, magnetostratigraphic investigations and of correlations with extensively studied sections outcropping in the vicinity of the Cismon drill site.The acritarch Pinocchiodinium erbae gen. et sp. nov. is described. Due to its distinctive morphology and extremely constant occurrence also in the black shales of the Selli Level, it is proposed as a marker species for the Aptian sediments of the Tethys.The dinoflagellate cysts Kallosphaeridium dolomiticum sp. nov. and Nexosispinum hesperus brevispinosum subsp. nov. are described from the Upper Hauterivian. Additional taxonomic remarks are made about other dinoflagellate cyst species, including the emendations of Tanyosphaeridium magneticum Davies 1983 and Bourkidinium granulatum Morgan 1975.The biostratigraphic value of selected taxa is discussed and compared with data known both from the Tethyan and Boreal realms. In particular, the extinction of Bourkidinium granulatum emend. is proposed as the best dinoflagellate cyst event for the delimitation of the Hauterivian-Barremian boundary in the Northern Hemisphere. The first appearance

  8. Thiol- and Biotin-Labeled Probes for Oligonucleotide Quartz Crystal Microbalance Biosensors of Microalga Alexandrium Minutum

    PubMed Central

    Lazerges, Mathieu; Perrot, Hubert; Rabehagasoa, Niriniony; Compère, Chantal

    2012-01-01

    Two quartz crystal microbalance oligonucleotide biosensors of a toxic microalga gene sequence (Alexandrium Minutum) have been designed. Grafting on a gold surface of 20-base thiol- or biotin-labeled probe, and selective hybridization with the complementary 20-base target, have been monitored in situ with a 27 MHz quartz crystal microbalance under controlled hydrodynamic conditions. The frequency of the set up is stable to within a few hertz, corresponding to the nanogram scale, for three hour experiments. DNA recognition by the two biosensors is efficient and selective. Hybridization kinetic curves indicate that the biosensor designed with the thiol-labeled probe is more sensitive, and that the biosensor designed with the biotin-labeled probe has a shorter time response and a higher hybridization efficiency. PMID:25585927

  9. Thiol- and biotin-labeled probes for oligonucleotide quartz crystal microbalance biosensors of microalga alexandrium minutum.

    PubMed

    Lazerges, Mathieu; Perrot, Hubert; Rabehagasoa, Niriniony; Compère, Chantal

    2012-07-04

    Two quartz crystal microbalance oligonucleotide biosensors of a toxic microalga gene sequence (Alexandrium Minutum) have been designed. Grafting on a gold surface of 20-base thiol- or biotin-labeled probe, and selective hybridization with the complementary 20-base target, have been monitored in situ with a 27 MHz quartz crystal microbalance under controlled hydrodynamic conditions. The frequency of the set up is stable to within a few hertz, corresponding to the nanogram scale, for three hour experiments. DNA recognition by the two biosensors is efficient and selective. Hybridization kinetic curves indicate that the biosensor designed with the thiol-labeled probe is more sensitive, and that the biosensor designed with the biotin-labeled probe has a shorter time response and a higher hybridization efficiency.

  10. A Lipidomic Approach to Understanding Free Fatty Acid Lipogenesis Derived from Dissolved Inorganic Carbon within Cnidarian-Dinoflagellate Symbiosis

    PubMed Central

    Dunn, Simon R.; Thomas, Michael C.; Nette, Geoffrey W.; Dove, Sophie G.

    2012-01-01

    The cnidarian-dinoflagellate symbiosis is arguably one of the most important within the marine environment in that it is integral to the formation of coral reefs. However, the regulatory processes that perpetuate this symbiosis remain unresolved. It is essential to understand these processes, if we are to elucidate the mechanisms that support growth and resource accumulation by coral host, and conversely, recently observed reduction and/or mortality of corals in response to rapid environmental change. This study specifically focused on one area of metabolic activity within the symbiosis, that of free fatty acid synthesis within both the dinoflagellate symbionts and cnidarian host. The main model system used was Aiptasia pulchella and Symbiodinium sp. in combination with aposymbiotic A. pulchella, the symbiotic coral Acropora millepora system and dinoflagellate culture. Fatty acids (FAs) were selected because of their multiple essential roles inclusive of energy storage (resource accumulation), membrane structure fluidity and cell signaling. The study addressed free FA lipogenesis by using a new method of enriched stable isotopic (13C) incorporation from dissolved inorganic carbon (DI13C) combined with HPLC-MS. FAs derived from DI13C aligned with a mixture of known lipogenesis pathways with the addition of some unusual FAs. After 120 hr, 13C-enriched FA synthesis rates were attributed to only a complex integration of both n–3 and n–6 lipogenesis pathways within the dinoflagellate symbionts. Furthermore, there was no detectible evidence of symbiont derived enriched isotope fatty acids, catabolized 13C derivatives or DI13C being directly utilized, in host late n–6 pathway long-chain FA lipogenesis. These findings do not align with a popular mutualistic translocation model with respect to the use of translocated symbiont photoassimilates in host long-chain FA lipogenesis, which has important connotations for linking nutrient sources with metabolite production and

  11. A data mining approach to dinoflagellate clustering according to sterol composition: Correlations with evolutionary history.

    USDA-ARS?s Scientific Manuscript database

    This study examined the sterol compositions of 102 dinoflagellates (including several previously unexamined species) using clustering techniques as a means of determining the relatedness of the organisms. In addition, dinoflagellate sterol-based relationships were compared statistically to dinoflag...

  12. Phylogeny of ultra-rapidly evolving dinoflagellate chloroplast genes: a possible common origin for sporozoan and dinoflagellate plastids.

    PubMed

    Zhang, Z; Green, B R; Cavalier-Smith, T

    2000-07-01

    Complete chloroplast 23S rRNA and psbA genes from five peridinin-containing dinoflagellates (Heterocapsa pygmaea, Heterocapsa niei, Heterocapsa rotun-data, Amphidinium carterae, and Protoceratium reticulatum) were amplified by PCR and sequenced; partial sequences were obtained from Thoracosphaera heimii and Scrippsiella trochoidea. Comparison with chloroplast 23S rRNA and psbA genes of other organisms shows that dinoflagellate chloroplast genes are the most divergent and rapidly evolving of all. Quartet puzzling, maximum likelihood, maximum parsimony, neighbor joining, and LogDet trees were constructed. Intersite rate variation and invariant sites were allowed for with quartet puzzling and neighbor joining. All psbA and 23S rRNA trees showed peridinin-containing dinoflagellate chloroplasts as monophyletic. In psbA trees they are related to those of chromists and red algae. In 23S rRNA trees, dinoflagellates are always the sisters of Sporozoa (apicomplexans); maximum likelihood analysis of Heterocapsa triquetra 16S rRNA also groups the dinoflagellate and sporozoan sequences, but the other methods were inconsistent. Thus, dinoflagellate chloroplasts may actually be related to sporozoan plastids, but the possibility of reproducible long-branch artifacts cannot be strongly ruled out. The results for all three genes fit the idea that dinoflagellate chloroplasts originated from red algae by a secondary endosymbiosis, possibly the same one as for chromists and Sporozoa. The marked disagreement between 16S rRNA trees using different phylogenetic algorithms indicates that this is a rather poor molecule for elucidating overall chloroplast phylogeny. We discuss possible reasons why both plastid and mitochondrial genomes of alveolates (Dinozoa, Sporozoa and Ciliophora) have ultra-rapid substitution rates and a proneness to unique genomic rearrangements.

  13. Biochemistry of dinoflagellate bioluminescence: purification and characterization of dinoflagellate luciferin from Pyrocystis lunula.

    PubMed

    Dunlap, J C; Hastings, J W

    1981-02-17

    Bioluminescence in all dinoflagellate species studied to date is produced by the luciferase-catalyzed oxidation of a newly elucidated type of luciferin, hypothesized to have a substituted polypyrrole-type structure. This paper presents the purification and characterization of the luciferin from Pyrocystis lunula along with evidence that it is a polypyrrole-type molecule. Luciferin is extremely labile at low pH, at high salt concentration, and to O2, so, where possible, the purification steps were carried out in the presence of a buffered reducing agent and under argon. Purified luciferin is soluble in water and polar organic solvents. It is yellow (lambda max 245 and 390 nm with a shoulder at 290 nm in neutral or basic aqueous solution) and displays a strong blue fluorescence (lambda max for excitation at 390 nm, for emission at 474 nm) that closely matches the bioluminescence emission spectrum [Bode, V. C., & Hastings, J. W. (1963) Arch. Biochem. Biophys. 103, 488--499]. Autoxidation leads to concomitant decreases in the 390-nm absorbance, 474-nm fluorescence, and biological activity; similar changes occurred with oxidation by K3Fe(CN)6, thus allowing a quantitation of luciferin by titration. Luciferin has a molecular weight between 500 and 600, displays positive Ehrlich and Schlesinger reactions, and yields on acid chromate oxidation fragments apparently resembling substituted maleimides; these data support the proposal that dinoflagellate luciferin contains a substituted polypyrrole of the bile pigment type.

  14. Integration of plastids with their hosts: Lessons learned from dinoflagellates

    PubMed Central

    Dorrell, Richard G.; Howe, Christopher J.

    2015-01-01

    After their endosymbiotic acquisition, plastids become intimately connected with the biology of their host. For example, genes essential for plastid function may be relocated from the genomes of plastids to the host nucleus, and pathways may evolve within the host to support the plastid. In this review, we consider the different degrees of integration observed in dinoflagellates and their associated plastids, which have been acquired through multiple different endosymbiotic events. Most dinoflagellate species possess plastids that contain the pigment peridinin and show extreme reduction and integration with the host biology. In some species, these plastids have been replaced through serial endosymbiosis with plastids derived from a different phylogenetic derivation, of which some have become intimately connected with the biology of the host whereas others have not. We discuss in particular the evolution of the fucoxanthin-containing dinoflagellates, which have adapted pathways retained from the ancestral peridinin plastid symbiosis for transcript processing in their current, serially acquired plastids. Finally, we consider why such a diversity of different degrees of integration between host and plastid is observed in different dinoflagellates and how dinoflagellates may thus inform our broader understanding of plastid evolution and function. PMID:25995366

  15. Effect of nutrient pollution on dinoflagellate cyst assemblages ...

    EPA Pesticide Factsheets

    We analyzed surface sediments from 23 northeast USA estuaries, from Maine to Delaware, and nine estuaries from Prince Edward Island (PEI, Canada), to determine how dinoflagellate cyst assemblages varied with nutrient loading. Overall the abundance of cysts of heterotrophic dinoflagellates correlates with modeled nitrogen loading, but there were also regional signals. On PEI cysts of Gymnodinium microreticulatum characterized estuaries with high nitrogen loading while the sediments of eutrophic Boston Harbor were characterized by high abundances of Spiniferites spp. In Delaware Bay and the Delaware Inland Bays Polysphaeridium zoharyi correlated with higher temperatures and nutrient loading. This is the first study to document the dinoflagellate cyst eutrophication signal at such a large geographic scale in estuaries, thus confirming their value as indicators of water quality change and anthropogenic impact. Estuarine and coastal waters are important resources for US and Canadian citizens. This paper summarizes the use of biological indicators that provide information on the eutrophication status and impacts for estuaries along the NW Atlantic coast. These relatively new biological indicators, dinoflagellate cysts, have the potential to provide environmental managers information on recent and historical environmental conditions in estuaries. Together with information on drivers and pressures, dinoflagellate cysts can be used to develop driver-pressure-state-imp

  16. Effects of Lugol's iodine solution and formalin on cell volume of three bloom-forming dinoflagellates

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Sun, Xiaoxia; Zhao, Yongfang

    2016-09-01

    Fixatives are traditionally used in marine ecosystem research. The bias introduced by fixatives on the dimensions of plankton cells may lead to an overestimation or underestimation of the carbon biomass. To determine the impact of traditional fixatives on dinoflagellates during short- and long-term fixation, we analyzed the degree of change in three bloom-forming dinoflagellates (Prorocentrum micans, Scrippsiella trochoidea and Noctiluca scintillans) brought about by Lugol's iodine solution (hereafter Lugol's) and formalin. The fixation effects were species-specific. P. micans cell volume showed no significant change following long-term preservation, and S. trochoidea swelled by approximately 8.06% in Lugol's and by 20.97% in formalin as a percentage of the live cell volume, respectively. N. scintillans shrank significantly in both fixatives. The volume change due to formalin in N. scintillans was not concentration-dependent, whereas the volume shrinkage of N. scintillans cells fixed with Lugol's at a concentration of 2% was nearly six-fold that in cells fixed with Lugol's at a concentration of 0.6%-0.8%. To better estimate the volume of N. scintillans fixed in formalin at a concentration of 5%, we suggest that the conversion relationship was as follows: volume of live cell=volume of intact fixed cell/0.61. Apart from size change, damage induced by fixatives on N. scintillans was obvious. Lugol's is not a suitable fixative for N. scintillans due to high frequency of broken cells. Accurate carbon biomass estimate of N. scintillans should be performed on live samples. These findings help to improve the estimate of phytoplankton cell volume and carbon biomass in marine ecosystem.

  17. Effects of Lugol's iodine solution and formalin on cell volume of three bloom-forming dinoflagellates

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Sun, Xiaoxia; Zhao, Yongfang

    2017-07-01

    Fixatives are traditionally used in marine ecosystem research. The bias introduced by fixatives on the dimensions of plankton cells may lead to an overestimation or underestimation of the carbon biomass. To determine the impact of traditional fixatives on dinoflagellates during short- and long-term fixation, we analyzed the degree of change in three bloom-forming dinoflagellates ( Prorocentrum micans, Scrippsiella trochoidea and Noctiluca scintillans) brought about by Lugol's iodine solution (hereafter Lugol's) and formalin. The fixation effects were species-specific. P. micans cell volume showed no significant change following long-term preservation, and S. trochoidea swelled by approximately 8.06% in Lugol's and by 20.97% in formalin as a percentage of the live cell volume, respectively. N. scintillans shrank significantly in both fixatives. The volume change due to formalin in N. scintillans was not concentration-dependent, whereas the volume shrinkage of N. scintillans cells fixed with Lugol's at a concentration of 2% was nearly six-fold that in cells fixed with Lugol's at a concentration of 0.6%-0.8%. To better estimate the volume of N. scintillans fixed in formalin at a concentration of 5%, we suggest that the conversion relationship was as follows: volume of live cell=volume of intact fixed cell/0.61. Apart from size change, damage induced by fixatives on N. scintillans was obvious. Lugol's is not a suitable fixative for N. scintillans due to high frequency of broken cells. Accurate carbon biomass estimate of N. scintillans should be performed on live samples. These findings help to improve the estimate of phytoplankton cell volume and carbon biomass in marine ecosystem.

  18. Peridinialean dinoflagellate plate patterns, labels and homologies

    USGS Publications Warehouse

    Edwards, L.E.

    1990-01-01

    Tabulation patterns for peridinialean dinoflagellate thecae and cysts have been traditionally expressed using a plate labelling system described by C.A. Kofoid in the early 1900's. This system can obscure dinoflagellate plate homologies and has not always been strictly applied. The plate-labelling system presented here introduces new series labels but incorporates key features and ideas from the more recently proposed systems of G.L. Eaton and F.J.R. Taylor, as modified by W.R. Evitt. Plate-series recognition begins with the cingulum (C-series) and proceeds from the cingulum toward the apex for the three series of the epitheca/epicyst and proceeds from the cingulum toward the antapex for the two series of the hypotheca/hypocyst. The epithecal/epicystal model consists of eight plates that touch the anterior margin of the cingulum (E-series: plates E1-E7, ES), seven plates toward the apex that touch the E-series plates (M-series: R, M1-M6), and up to seven plates near the apex that do not touch E-series plates (D-series: Dp-Dv). The hypothecal/hypocystal model consists of eight plates that touch the posterior margin of the cingulum (H-series: H1-H6,HR,HS) and three plates toward the antapex (T1-T3). Epithecal/epicystal tabulation patterns come in both 8- and 7- models, corresponding to eight and seven plates, respectively, in the E-series. Hypothecal/hypocystal tabulation patterns also come in both 8- and 7-models, corresponding to eight and seven plates, respectively, in the H-series. By convention, the 7-model epitheca/epicyst has no plates E1 and M1; the 7-model hypotheca/hypocyst has no plate H6. Within an 8-model or 7-model, the system emphasizes plates that are presumed to be homologous by giving them identical labels. I introduce the adjectives "monothigmate", "dithigmate," and "trithigmate" to designate plates touching one, two, and three plates, respectively, of the adjacent series. The term "thigmation" applies to the analysis of plate contacts between

  19. Dinoflagellate cysts as indicators of palaeoenvironmental and sea-level change: the Late Cenomanian - Early Coniacian (Cretaceous) of Europe

    NASA Astrophysics Data System (ADS)

    Olde, Kate; Jarvis, Ian; Pearce, Martin; Tocher, Bruce

    2014-05-01

    The Late Cretaceous represented a period of greenhouse climate of Earth history, and was characterised by high temperatures, high atmospheric CO2 and high eustatic sea level, with large areas of shallow, warm, epicontinental sea. Understanding the dynamics of the Late Cretaceous climate is important for understanding the Earth System and the impact of modern climate change. The productive Late Cretaceous oceans led to the deposition of a large portion of the world's oil and gas resources, so reconstruction of depositional environments and refinement of stratigraphic correlation are important for the petroleum industry. Dinoflagellates were a prolific and diverse group within the phyto- and zooplankton throughout Late Cretaceous oceans, and their cysts display good preservation across different facies, and so are a good group for biostratigraphic and palaeoenvironmental study. Selected results from a high-resolution quantitative study of the palynology from 5 European Upper Cenomanian to the Lower Coniacian (Upper Cretaceous) sections are summarised, along with their carbon stable-isotope chemostratigraphy. The sections are from a range of palaeolatitudes and basins, including the North Sea Basin, the Anglo-Paris Basin, the Bohemian Basin, the Polish Trough and the Vocontian Basin. Palynological assemblages differ between sections in the concentration of palynomorphs, proportions of terrestrial and marine palynomorphs, and in the diversity and varying proportions of species of dinoflagellate cysts (dinocysts). Dinocyst distribution is considered to have been controlled largely by nutrient levels, but was also impacted by temperature, sea level, and water mass changes. Influxes of certain species are related to changes in salinity, changes in temperature, and water mass change, and increased communication between basins. High dinocyst abundance, and particularly a high proportion of peridinioid cysts (which are thought to be derived from eutrophy

  20. Lutetian to Priabonian organic-walled dinoflagellate cyst assemblages from the northwestern Tethyan margin (Adelholzen Section, Eastern Alps, Germany)

    NASA Astrophysics Data System (ADS)

    Mohamed, Omar; Egger, Hans

    2015-04-01

    At the Adelholzen section (SE-Germany), a 13 m thick shallow marine Lutetian sequence (Adelholzen beds) comprising shallow benthic foraminifera Zones SBZ13 to SBZ15 (Briguglio in Gebhardt et al., 2013) is overlain by a 1 m thick brownish layer rich in glauconite and ferrigenous phosphate. This layer forms the top of the Adelholzen beds. It marks the onset of strong basin subsidence in the late Lutetian and is separated from the Priabonian by a stratigraphic gap comprising a major part of the Bartonian. The Priabonian marlstone (Stockletten) is 4 m thick at the Adelholzen section. It contains rich and high diverse planktonic foraminifera assemblages ("Globigerina marl") indicating bathyal conditions. Twenty eight samples from the Adelholzen beds and the Stockletten were processed for palynology at the Geological Survey of Austria following standard procedures. Palynological slides were examined for relative abundances of organic walled dinoflagellate cysts (dinocysts). One-hundred organic-walled dinocyst species were identified at the Adelholzen section. Stratigraphically important dinoflagellate cyst taxa for the assignment of the Adelholzen beds to the Lutetian are Wilsonidium echinosuturatum, Dracodinium waipawaense, Wetzeliella articulata, Areoligera coronata, Cordosphaeridium cantharellus, Hystrichokolpoma pusillum and Aireiana spp. Stratigraphically important dinoflagellate cyst taxa for the assignment of the Stockletten to the Priabonian are Diphyes ficusoides, Distatodinium ellipticum, Nematosphaeropsis labyrinthus, Rhombodinium longimanum, Rhombodinium perforatum, and Selenopemphix nephroides. Remarkable bioevents in the section are the abundant occurrences of Areoligera coronata and Cordosphaeridium gracile in the basal greensand. In the overlying marlstone and marly limestone Homotryblium tenuispinosum is the dominating species and the first specimens of Impagidinium dispertitum occur indicating open marine conditions.

  1. The Impact of the 1989 Exxon Valdez Oil Spill on Phytoplankton as Evidenced Through the Sedimentary Dinoflagellate Cyst Records in Prince William Sound (Alaska, USA).

    NASA Astrophysics Data System (ADS)

    Genest, M.; Pospelova, V.; Williams, J. R.; Dellapenna, T.; Mertens, K.; Kuehl, S. A.

    2016-12-01

    Large volumes of crude oil are extracted from marine environments and transported via the sea, putting coastal communities at a greater risk of oils spills. It is therefore crucial for these communities to properly assess the risk. The first step is to understand the effects of such events on the environment, which is limited by the lack of research on the impact of oil spills on phytoplankton. This first-of-its-kind research aims to identify how one of the major groups of phytoplankton, dinoflagellates, have been affected by the 1989 Exxon Valdez oil spill in Prince William Sound (PWS), Alaska. To do this, sedimentary records of dinoflagellate cysts, produced during dinoflagellate reproduction and preserved in the sediment, were analyzed. Two sediment cores were collected from PWS in 2012. The sediments are mainly composed of silt with a small fraction of clay. Both well-dated with 210Pb and 137Cs, the cores have high sedimentation rates, allowing for an annual to biannual resolution. Core 10 has a sedimentation rate of 1.1 cm yr-1 and provides continuous record since 1957, while Core 12 has a sedimentation rate of 1.3 cm yr-1 and spans from 1934. The cores were subsampled every centimeter for a total of 110 samples. Samples were treated using a standard palynological processing technique to extract dinoflagellate cysts and 300 cysts were counted per sample. In both cores, cysts were abundant, diverse and well preserved with the average cyst assemblage being characterized by an equal number of cysts produced by autotrophic and heterotrophic dinoflagellates. Of the 40 dinoflagellate cyst taxa, the most abundant are: Operculodinium centrocarpum and Brigantedinium spp. Other common species are: Spiniferites ramosus, cysts of Pentapharsodinium dalei, Echinidinium delicatum, E. zonneveldiae, E. transparantum, Islandinium minutum, and a thin pale brown Brigantedinium type. Changes in the sedimentary sequence of dinoflagellate cysts were analyzed by determining cyst

  2. Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont

    PubMed Central

    Sunagawa, Shinichi; Wilson, Emily C; Thaler, Michael; Smith, Marc L; Caruso, Carlo; Pringle, John R; Weis, Virginia M; Medina, Mónica; Schwarz, Jodi A

    2009-01-01

    Background The most diverse marine ecosystems, coral reefs, depend upon a functional symbiosis between cnidarian hosts and unicellular dinoflagellate algae. The molecular mechanisms underlying the establishment, maintenance, and breakdown of the symbiotic partnership are, however, not well understood. Efforts to dissect these questions have been slow, as corals are notoriously difficult to work with. In order to expedite this field of research, we generated and analyzed a collection of expressed sequence tags (ESTs) from the sea anemone Aiptasia pallida and its dinoflagellate symbiont (Symbiodinium sp.), a system that is gaining popularity as a model to study cellular, molecular, and genomic questions related to cnidarian-dinoflagellate symbioses. Results A set of 4,925 unique sequences (UniSeqs) comprising 1,427 clusters of 2 or more ESTs (contigs) and 3,498 unclustered ESTs (singletons) was generated by analyzing 10,285 high-quality ESTs from a mixed host/symbiont cDNA library. Using a BLAST-based approach to predict which unique sequences derived from the host versus symbiont genomes, we found that the contribution of the symbiont genome to the transcriptome was surprisingly small (1.6–6.4%). This may reflect low levels of gene expression in the symbionts, low coverage of alveolate genes in the sequence databases, a small number of symbiont cells relative to the total cellular content of the anemones, or failure to adequately lyse symbiont cells. Furthermore, we were able to identify groups of genes that are known or likely to play a role in cnidarian-dinoflagellate symbioses, including oxidative stress pathways that emerged as a prominent biological feature of this transcriptome. All ESTs and UniSeqs along with annotation results and other tools have been made accessible through the implementation of a publicly accessible database named AiptasiaBase. Conclusion We have established the first large-scale transcriptomic resource for Aiptasia pallida and its

  3. Chemotaxis of Silicibacter sp. Strain TM1040 toward Dinoflagellate Products†

    PubMed Central

    Miller, Todd R.; Hnilicka, Kristin; Dziedzic, Amanda; Desplats, Paula; Belas, Robert

    2004-01-01

    The α-proteobacteria phylogenetically related to the Roseobacter clade are predominantly responsible for the degradation of organosulfur compounds, including the algal osmolyte dimethylsulfoniopropionate (DMSP). Silicibacter sp. strain TM1040, isolated from a DMSP-producing Pfiesteria piscicida dinoflagellate culture, degrades DMSP, producing 3-methylmercaptopropionate. TM1040 possesses three lophotrichous flagella and is highly motile, leading to a hypothesis that TM1040 interacts with P. piscicida through a chemotactic response to compounds produced by its dinoflagellate host. A combination of a rapid chemotaxis screening assay and a quantitative capillary assay were used to measure chemotaxis of TM1040. These bacteria are highly attracted to dinoflagellate homogenates; however, the response decreases when homogenates are preheated to 80°C. To help identify the essential attractant molecules within the homogenates, a series of pure compounds were tested for their ability to serve as attractants. The results show that TM1040 is strongly attracted to amino acids and DMSP metabolites, while being only mildly responsive to sugars and the tricarboxylic acid cycle intermediates. Adding pure DMSP, methionine, or valine to the chemotaxis buffer resulted in a decreased response to the homogenates, indicating that exogenous addition of these chemicals blocks chemotaxis and suggesting that DMSP and amino acids are essential attractant molecules in the dinoflagellate homogenates. The implication of Silicibacter sp. strain TM1040 chemotaxis in establishing and maintaining its interaction with P. piscicida is discussed. PMID:15294804

  4. Marine Biotoxins: Laboratory Culture and Molecular Structure

    DTIC Science & Technology

    1989-10-18

    The methodology used to determine the population densities of dinoflagellates growing attached to macroalgae is as described previously. Briefly...growing attached to macroalgae collected at Kahala Beach. Oahu. has been monitored from September. 1988 to August. 1989. The results of this survey...prospects for the cultivation of marine algae. In: Cultures and Collections of algae. JM. So&. El. Physiol. pp. 63- 75. -17- B. Ciguatoxin Isolation

  5. Characterization of Two Dinoflagellate Cold Shock Domain Proteins

    PubMed Central

    Beauchemin, Mathieu; Roy, Sougata; Pelletier, Sarah; Averback, Alexandra; Lanthier, Frederic

    2016-01-01

    ABSTRACT Roughly two-thirds of the proteins annotated as transcription factors in dinoflagellate transcriptomes are cold shock domain-containing proteins (CSPs), an uncommon condition in eukaryotic organisms. However, no functional analysis has ever been reported for a dinoflagellate CSP, and so it is not known if they do in fact act as transcription factors. We describe here some of the properties of two CSPs from the dinoflagellate Lingulodinium polyedrum, LpCSP1 and LpCSP2, which contain a glycine-rich C-terminal domain and an N-terminal cold shock domain phylogenetically related to those in bacteria. However, neither of the two LpCSPs act like the bacterial CSP, since they do not functionally complement the Escherichia coli quadruple cold shock domain protein mutant BX04, and cold shock does not induce LpCSP1 and LpCSP2 to detectable levels, based on two-dimensional gel electrophoresis. Both CSPs bind to RNA and single-stranded DNA in a nonspecific manner in electrophoretic mobility shift assays, and both proteins also bind double-stranded DNA nonspecifically, albeit more weakly. These CSPs are thus unlikely to act alone as sequence-specific transcription factors. IMPORTANCE Dinoflagellate transcriptomes contain cold shock domain proteins as the major component of the proteins annotated as transcription factors. We show here that the major family of cold shock domain proteins in the dinoflagellate Lingulodinium do not bind specific sequences, suggesting that transcriptional control is not a predominant mechanism for regulating gene expression in this group of protists. PMID:27303711

  6. Genome size of Alexandrium catenella and Gracilariopsis lemaneiformis estimated by flow cytometry

    NASA Astrophysics Data System (ADS)

    Du, Qingwei; Sui, Zhenghong; Chang, Lianpeng; Wei, Huihui; Liu, Yuan; Mi, Ping; Shang, Erlei; Zeeshan, Niaz; Que, Zhou

    2016-08-01

    Flow cytometry (FCM) technique has been widely applied to estimating the genome size of various higher plants. However, there is few report about its application in algae. In this study, an optimized procedure of FCM was exploited to estimate the genome size of two eukaryotic algae. For analyzing Alexandrium catenella, an important red tide species, the whole cell instead of isolated nucleus was studied, and chicken erythrocytes were used as an internal reference. The genome size of A. catenella was estimated to be 56.48 ± 4.14 Gb (1C), approximately nineteen times larger than that of human genome. For analyzing Gracilariopsis lemaneiformis, an important economical red alga, the purified nucleus was employed, and Arabidopsis thaliana and Chondrus crispus were used as internal references, respectively. The genome size of Gp. lemaneiformis was 97.35 ± 2.58 Mb (1C) and 112.73 ± 14.00 Mb (1C), respectively, depending on the different internal references. The results of this research will promote the related studies on the genomics and evolution of these two species.

  7. Quantified small-scale turbulence inhibits a red tide dinoflagellate, Gonyaulax polyedra Stein

    NASA Astrophysics Data System (ADS)

    Thomas, William H.; Gibson, Carl H.

    1990-10-01

    The development of marine dinoflagellate red tides off southern California requires optimal temperature and light regimes, a source of nutrients that may be supplied by wind-induced upwelling and upmixing, and vertical migration by cells to this source. Red tides occur after the winds decrease and the water becomes highly stratified with a shallow mixed layer. This implies low turbulence levels may be an additional requirement for red tide development. Because dinoflagellates with sizes about 35 μm are much smaller than the inertial-viscous, or Kolmogorov scales L κ ≡ (ν 3/ɛ) 1/4 = (ν/γ) 1/2 of oceanic turbulence, the important flow parameters are the viscous dissipation rate per unit mass ɛ (cm 2s -3 or ergs g -1s -1), the rate-of-strain γ ≡ (ɛ/ν) 1/2 ( rad s -1) , and the stress τ ≡ μγ (dyne cm -2), where ν is the kinematic viscosity and μ is the dynamic viscosity. In the present work we have cultured the red tide dinoflagellate, Gonyaulax polyedra Stein, under conditions of known ɛ, γ and τ. Growth was inhibited at ɛ values from 0.18 to 164 cm 2 s -3 (γ from 4.4 to 132 rad s -1) but not at 0.05 ( γ = 2.2) so the threshold stress τ for growth inhibition was 0.02-0.04 dyne cm -2 (0.002-0.004 Pa). This is in the expected range for light winds at the sea surface, suggesting small-scale scale turbulence is the reason higher winds inhibit red tides. Threshold turbulence levels are related to calculated surface levels at various wind speeds and to postulated subsurface euphotic zone levels under incipient red tide conditions. Motile cells in shear-inhibited cultures lost their ability to swim forward vigorously but rather spun in place due to the loss of longitudinal (trailing) flagella, observed microscopically, without loss of girdle flagella.

  8. The function of the ocelloid and piston in the dinoflagellate Erythropsidinium (Gymnodiniales, Dinophyceae).

    PubMed

    Gómez, Fernando

    2017-06-01

    The marine dinoflagellate Erythropsidinium possesses an ocelloid, the most elaborate photoreceptor organelle known in a unicellular organism, and a piston, a fast contractile appendage unknown in any other organism. The ocelloid is able to rotate, often before the cell swims. The ocelloid contains lenses that function to concentrate light. The flagellar propulsion is atrophied, and the piston is responsible for locomotion through successive extensions and contractions. During the "locomotion mode", the contraction is ~4 times faster than the extension. The piston attained up to 50 mm · s(-1) and the cell jumps backwards at -4 mm · s(-1) , while during the piston extension the cell moves forwards. The net speed of ~-1 mm · s(-1) is faster than other dinoflagellates. The piston usually moved in the "static mode" without significant cell swimming. This study suggests that the piston is also a tactile organelle that scans the surrounding waters for prey. Erythropsidinium feeds on copepod eggs by engulfing. The end of the piston possesses a "suction cup" able to attach the prey and place it into the posterior cavity for engulfing. The cylindrical shape of Erythropsidinium, and the anterior position of the ocelloid and nucleus, are morphological adaptations that leave space for the large vacuole. Observations are provided on morphological development during cell division. Most of the described species of Erythropsidinium apparently correspond to distinct life stages of known species, and the genus Greuetodinium (=Leucopsis) corresponds to an earlier division stage. © 2017 Phycological Society of America.

  9. Betaines and dimethylsulfoniopropionate as major osmolytes in cnidaria with endosymbiotic dinoflagellates.

    PubMed

    Yancey, Paul H; Heppenstall, Marina; Ly, Steven; Andrell, Raymond M; Gates, Ruth D; Carter, Virginia L; Hagedorn, Mary

    2010-01-01

    Most marine invertebrates and algae are osmoconformers whose cells accumulate organic osmolytes that provide half or more of cellular osmotic pressure. These solutes are primarily free amino acids and glycine betaine in most invertebrates and small carbohydrates and dimethylsulfoniopropionate (DMSP) in many algae. Corals with endosymbiotic dinoflagellates (Symbiodinium spp.) have been reported to obtain from the symbionts potential organic osmolytes such as glycerol, amino acids, and DMSP. However, corals and their endosymbionts have not been fully analyzed for osmolytes. We quantified small carbohydrates, free amino acids, methylamines, and DMSP in tissues of the corals Fungia scutaria, Pocillopora damicornis, Pocillopora meandrina, Montipora capitata, Porites compressa, and Porites lobata (all with symbionts) plus Tubastrea aurea (asymbiotic) from Kaneohe Bay, Oahu (Hawaii). Glycine betaine, at 33-69 mmol/kg wet mass, was found to constitute 90% or more of the measured organic solutes in all except the Porites species. Those were dominated by proline betaine and dimethyltaurine. DMSP was found at 0.5-3 mmol/kg in all species with endosymbionts. Freshly isolated Symbiodinium from Fungia, P. damicornis, and P. compressa were also analyzed. DMSP and glycine betaine dominated in the first two; Porites endosymbionts had DMSP, proline betaine, and dimethyltaurine. In all specimens, glycerol and glucose were detected by high-performance liquid chromatography only at 0-1 mmol/kg wet mass. An enzymatic assay for glycerol plus glycerol 3-phosphate and dihydroxyacetone phosphate yielded 1-10 mmol/kg. Cassiopeia andromeda (upside-down jelly; Scyphozoan) and Aiptasia puchella (solitary anemone; Anthozoan) were also analyzed; both have endosymbiotic dinoflagellates. In both, glycine betaine, taurine, and DMSP were the dominant osmolytes. In summary, methylated osmolytes dominate in many Cnidaria; in those with algal symbionts, host and symbiont have similar methylated amino

  10. Identifying and characterizing alternative molecular markers for the symbiotic and free-living dinoflagellate genus Symbiodinium.

    PubMed

    Pochon, Xavier; Putnam, Hollie M; Burki, Fabien; Gates, Ruth D

    2012-01-01

    Dinoflagellates in the genus Symbiodinium are best known as endosymbionts of corals and other invertebrate as well as protist hosts, but also exist free-living in coastal environments. Despite their importance in marine ecosystems, less than 10 loci have been used to explore phylogenetic relationships in this group, and only the multi-copy nuclear ribosomal Internal Transcribed Spacer (ITS) regions 1 and 2 have been used to characterize fine-scale genetic diversity within the nine clades (A-I) that comprise the genus. Here, we describe a three-step molecular approach focused on 1) identifying new candidate genes for phylogenetic analysis of Symbiodinium spp., 2) characterizing the phylogenetic relationship of these candidate genes from DNA samples spanning eight Symbiodinium clades (A-H), and 3) conducting in-depth phylogenetic analyses of candidate genes displaying genetic divergences equal or higher than those within the ITS-2 of Symbiodinium clade C. To this end, we used bioinformatics tools and reciprocal comparisons to identify homologous genes from 55,551 cDNA sequences representing two Symbiodinium and six additional dinoflagellate EST libraries. Of the 84 candidate genes identified, 7 Symbiodinium genes (elf2, coI, coIII, cob, calmodulin, rad24, and actin) were characterized by sequencing 23 DNA samples spanning eight Symbiodinium clades (A-H). Four genes displaying higher rates of genetic divergences than ITS-2 within clade C were selected for in-depth phylogenetic analyses, which revealed that calmodulin has limited taxonomic utility but that coI, rad24, and actin behave predictably with respect to Symbiodinium lineage C and are potential candidates as new markers for this group. The approach for targeting candidate genes described here can serve as a model for future studies aimed at identifying and testing new phylogenetically informative genes for taxa where transcriptomic and genomics data are available.

  11. Identifying and Characterizing Alternative Molecular Markers for the Symbiotic and Free-Living Dinoflagellate Genus Symbiodinium

    PubMed Central

    Pochon, Xavier; Putnam, Hollie M.; Burki, Fabien; Gates, Ruth D.

    2012-01-01

    Dinoflagellates in the genus Symbiodinium are best known as endosymbionts of corals and other invertebrate as well as protist hosts, but also exist free-living in coastal environments. Despite their importance in marine ecosystems, less than 10 loci have been used to explore phylogenetic relationships in this group, and only the multi-copy nuclear ribosomal Internal Transcribed Spacer (ITS) regions 1 and 2 have been used to characterize fine-scale genetic diversity within the nine clades (A–I) that comprise the genus. Here, we describe a three-step molecular approach focused on 1) identifying new candidate genes for phylogenetic analysis of Symbiodinium spp., 2) characterizing the phylogenetic relationship of these candidate genes from DNA samples spanning eight Symbiodinium clades (A–H), and 3) conducting in-depth phylogenetic analyses of candidate genes displaying genetic divergences equal or higher than those within the ITS-2 of Symbiodinium clade C. To this end, we used bioinformatics tools and reciprocal comparisons to identify homologous genes from 55,551 cDNA sequences representing two Symbiodinium and six additional dinoflagellate EST libraries. Of the 84 candidate genes identified, 7 Symbiodinium genes (elf2, coI, coIII, cob, calmodulin, rad24, and actin) were characterized by sequencing 23 DNA samples spanning eight Symbiodinium clades (A–H). Four genes displaying higher rates of genetic divergences than ITS-2 within clade C were selected for in-depth phylogenetic analyses, which revealed that calmodulin has limited taxonomic utility but that coI, rad24, and actin behave predictably with respect to Symbiodinium lineage C and are potential candidates as new markers for this group. The approach for targeting candidate genes described here can serve as a model for future studies aimed at identifying and testing new phylogenetically informative genes for taxa where transcriptomic and genomics data are available. PMID:22238660

  12. Warm mid-Cretaceous high-latitude sea-surface temperatures from the southern Tethys Ocean and cool high-latitude sea-surface temperatures from the Arctic Ocean: asymmetric worldwide distribution of dinoflagellates

    NASA Astrophysics Data System (ADS)

    Masure, Edwige; Desmares, Delphine; Vrielynck, Bruno

    2014-05-01

    constraints. In the Northern Hemisphere the oceanic heat transport was stopped by continental masses located between the Tethys, Central Atlantic and Arctic Oceans while the heat transport in the Southern Hemisphere was not limited in the Tethys Ocean. Late Albian Boreal dinoflagellates inhabited the Western Interior Sea Way, with the warming and the sea level rise Late Cenomanian Tethyan species have been recorded up to 45°N. The estimation of temperatures requirements of dinoflagellates is modelled by combining the latitudinal distribution of species, with the estimated temperatures from δ18O or TEX86 ratios related to latitude. The Early Aptian subtropical dinoflagellates inhabited water masses with temperatures higher than 22°C. Late Albian subtropical dinoflagellates lived in water masses with temperatures of 24°C and tropical species in those in temperature up to 28°C. The Late Albian arctic dinoflagellates lived in water masses with temperature lower than 19°C. Biogeography of planktonic micro-organisms coupled with temperatures estimated from δ18O or TEX86 ratios increases their potential as palaeo-oceanographic proxies for a qualitative estimation of sea-surface temperatures and palaeo-biodiversity of world water masses and improves precision in biochronology. Masure E, Vrielynck B. 2009. Late Albian dinoflagellate cyst paleobiogeography as indicator of asymmetric sea surface temperature gradient on both hemispheres with southern high latitudes warmer than northern ones. Marine Micropaleontology 70, 120-133. Masure E, Aumar A-M, Vrielynck B. 2013. World palaeogeography of Aptian and Late Albian dinoflagellates cysts: Implications for sea surface temperature gradient and palaeoclimate in Lewis, JM, Marret F, Bradley L (eds). Biological and Geological Perspectives of Dinoflagellates. The Micropalaeontological Society, Special Publications. Geological Society, London, 97-125.

  13. Early Genotoxic and Cytotoxic Effects of the Toxic Dinoflagellate Prorocentrum lima in the Mussel Mytilus galloprovincialis.

    PubMed

    Prego-Faraldo, María Verónica; Valdiglesias, Vanessa; Laffon, Blanca; Mendez, Josefina; Eirin-Lopez, Jose M

    2016-05-24

    Okadaic acid (OA) and dinophysistoxins (DTXs) are the main toxins responsible for diarrhetic shellfish poisoning (DSP) intoxications during harmful algal blooms (HABs). Although the genotoxic and cytotoxic responses to OA have been evaluated in vitro, the in vivo effects of these toxins have not yet been fully explored. The present work fills this gap by evaluating the in vivo effects of the exposure to the DSP-toxin-producing dinoflagellate Prorocentrum lima during the simulation of an early HAB episode in the mussel Mytilus galloprovincialis. The obtained results revealed that in vivo exposure to this toxic microalgae induced early genotoxicity in hemocytes, as a consequence of oxidative DNA damage. In addition, the DNA damage observed in gill cells seems to be mainly influenced by exposure time and P. lima concentration, similarly to the case of the oxidative damage found in hemocytes exposed in vitro to OA. In both cell types, the absence of DNA damage at low toxin concentrations is consistent with the notion suggesting that this level of toxicity does not disturb the antioxidant balance. Lastly, in vivo exposure to growing P. lima cell densities increased apoptosis but not necrosis, probably due to the presence of a high number of protein apoptosis inhibitors in molluscs. Overall, this work sheds light into the in vivo genotoxic and cytotoxic effects of P. lima. In doing so, it also demonstrates for the first time the potential of the modified (OGG1) comet assay for assessing oxidative DNA damage caused by marine toxins in marine invertebrates.

  14. Early Genotoxic and Cytotoxic Effects of the Toxic Dinoflagellate Prorocentrum lima in the Mussel Mytilus galloprovincialis

    PubMed Central

    Prego-Faraldo, María Verónica; Valdiglesias, Vanessa; Laffon, Blanca; Mendez, Josefina; Eirin-Lopez, Jose M.

    2016-01-01

    Okadaic acid (OA) and dinophysistoxins (DTXs) are the main toxins responsible for diarrhetic shellfish poisoning (DSP) intoxications during harmful algal blooms (HABs). Although the genotoxic and cytotoxic responses to OA have been evaluated in vitro, the in vivo effects of these toxins have not yet been fully explored. The present work fills this gap by evaluating the in vivo effects of the exposure to the DSP-toxin-producing dinoflagellate Prorocentrum lima during the simulation of an early HAB episode in the mussel Mytilus galloprovincialis. The obtained results revealed that in vivo exposure to this toxic microalgae induced early genotoxicity in hemocytes, as a consequence of oxidative DNA damage. In addition, the DNA damage observed in gill cells seems to be mainly influenced by exposure time and P. lima concentration, similarly to the case of the oxidative damage found in hemocytes exposed in vitro to OA. In both cell types, the absence of DNA damage at low toxin concentrations is consistent with the notion suggesting that this level of toxicity does not disturb the antioxidant balance. Lastly, in vivo exposure to growing P. lima cell densities increased apoptosis but not necrosis, probably due to the presence of a high number of protein apoptosis inhibitors in molluscs. Overall, this work sheds light into the in vivo genotoxic and cytotoxic effects of P. lima. In doing so, it also demonstrates for the first time the potential of the modified (OGG1) comet assay for assessing oxidative DNA damage caused by marine toxins in marine invertebrates. PMID:27231936

  15. MICROSPECTROPHOTOMETRY AS A METHOD TO IDENTIFY KLEPTOPLASTIDS IN THE NAKED FRESHWATER DINOFLAGELLATE GYMNODINIUM ACIDOTUM(1).

    PubMed

    Barsanti, Laura; Evangelista, Valtere; Passarelli, Vincenzo; Frassanito, Anna Maria; Coltelli, Primo; Gualtieri, Paolo

    2009-12-01

    A relatively small number of freshwater dinoflagellates are involved in symbiotic association with cryptophytes. The chloroplasts of the cryptophytes are retained by the dinoflagellate and give it the characteristic phycobilin pigmentation, either phycoerythrin or phycocyanin. The pigment characterization of the retained chloroplasts can give precise and accurate information about the type of cryptophyte preyed upon by the dinoflagellate. For this purpose, we performed microspectrophotometric evaluation of the pigments of Gymnodinium acidotum Nygaard and three different cryptophytes present in samples collected from a tributary of the river Arno, in Tuscany (Italy). The comparison of the different spectroscopic data allowed us to discriminate effectively among the cryptophytes preyed upon by the dinoflagellate.

  16. Calcareous dinoflagellate cysts from the Tithonian - Valanginian Vaca Muerta Formation in the southern Mendoza area of the Neuquén Basin, Argentina

    NASA Astrophysics Data System (ADS)

    Ivanova, Daria K.; Kietzmann, Diego A.

    2017-08-01

    The Late Jurassic - Early Cretaceous marine sediments of the Andean region show an excellent record of different calcareous microfossils, among which calcareous dinoflagellate cysts stand out. Detailed micropaleontological studies of Vaca Muerta Formation (Early Tithonian - Early Valanginian) in the southern Mendoza Neuquén Basin from three sections are conducted with the aim of establishing a major presence of microfossil representatives from different microfossil groups. The analysis of several thin sections from the outcrops reveals a relatively rich micropaleontological assemblage of calcareous dinoflagellate cysts, as well as levels with poor preserved calpionellids and benthic foraminifera. Particularly, calcareous dinoflagellate cyst includes 24 known species (two of them with two subspecies). Some species with biostratigraphic value of the Tethyan region have been identified also in the Andean region: 1) Committosphaera pulla (Borza) and Parastomiosphaera malmica (Borza) are species known only from Lower Tithonian; 2) Colomisphaera tenuis (Nagy) appears in the latest Early Tithonian; 3) Colomisphaera fortis Řehánek and Stomiosphaerina proxima Řehánek are important markers for the latest Late Tithonian - middle Late Berriasian interval; 4) Stomiosphaera wanneri Borza appears in the middle Late Berriasian; 5) Colomisphaera conferta Řehánek and Colomisphaera vogleri (Borza) appear in the Late Berriasian and marked the Berriasian-Valanginian boundary interval; 6) Carpistomiosphaera valanginiana Borza is a marker for the Lower/Upper Valanginian. More detailed studies of these groups will allow their correlation with Tethyan biozones, and contribute to improve biostratigraphic schemes in the Neuquén Basin.

  17. Rampant polyuridylylation of plastid gene transcripts in the dinoflagellate Lingulodinium

    PubMed Central

    Wang, Yunling; Morse, David

    2006-01-01

    Dinoflagellate plastid genes are believed to be encoded on small generally unigenic plasmid-like minicircles. The minicircle gene complement has reached saturation with an incomplete set of plastid genes (18) compared with typical functional plastids (60–200). While some of the missing plastid genes have recently been found in the nucleus, it is still unknown if additional genes, not located on minicircles, might also contribute to the plastid genome. Sequencing of tailed RNA showed that transcripts derived from the known minicircle genes psbA and atpB contained a homogenous 3′ polyuridine tract of 25–40 residues. This unusual modification suggested that random sequencing of a poly(dA) primed cDNA library could be used to characterize the plastid transcriptome. We have recovered only 12 different polyuridylylated transcripts from our library, all of which are encoded on minicircles in several dinoflagellate species. The correspondence of all polyuridylylated transcripts with previously described minicircle genes thus supports the dinoflagellate plastid as harbouring the smallest genome of any functional chloroplast. Interestingly, northern blots indicate that the majority of transcripts are modified, suggesting that polyuridylylation is unlikely to act as a degradation signal as do the heterogeneous poly(A)-rich extensions of transcripts in cyanobacteria and other plastids. PMID:16434702

  18. Oceanic heterotrophic dinoflagellates: distribution, abundance, and role as microzooplankton

    SciTech Connect

    Lessard, E.J.

    1984-01-01

    The primary objectives of this thesis were to determine the distribution and abundance of heterotrophic dinoflagellates across the Gulf Stream system off Cape Hatteras and to assess the potential grazing impact of these microheterotrophs in plankton communities. A list of species encountered in this study and their trophic status based on epifluorescence is presented, as well as observations on the presence of external or internal symbionts. The abundance of heterotrophic dinoflagellates across the Gulf Stream region off Cape Hatteras was determined from bimonthly net tow samples over a year and from whole water samples in March. Their average abundance was twice that of net ciliates in the net plankton and ten times that of ciliates in the nanoplankton. An isotope technique was developed to measure grazing rates of individual dinoflaggellates and other microzooplankton which cannot be separated in natural populations on the basis of size. /sup 3/H-thymidine and /sup 14/C-bicarbonate were used to label natural heterotrophic (bacteria and bacterivores) and autotrophic (phytoplankton and herbivores) food, respectively. Estimates of the grazing impact of heterotrophic kinoflagellates relative to other groups of heterotrophs on phytoplankton and bacteria were made by combining abundance data and clearance rates. Such calculations suggested that heterotrophic dinoflagellates may be an important group of grazers in oceanic waters.

  19. The Dinoflagellate Lingulodinium polyedrum Responds to N Depletion by a Polarized Deposition of Starch and Lipid Bodies

    PubMed Central

    Dagenais Bellefeuille, Steve; Dorion, Sonia; Rivoal, Jean; Morse, David

    2014-01-01

    Dinoflagellates are important contributors to the marine phytoplankton and global carbon fixation, but are also infamous for their ability to form the spectacular harmful algal blooms called red tides. While blooms are often associated with high available nitrogen, there are instances where they are observed in oligotrophic environments. In order to maintain their massive population in conditions of nitrogen limitation, dinoflagellates must have evolved efficient adaptive mechanisms. Here we report the physiological responses to nitrogen deprivation in Lingulodinium polyedrum. We find that this species reacts to nitrogen stress, as do most plants and microalgae, by stopping cell growth and diminishing levels of internal nitrogen, in particular in the form of protein and chlorophyll. Photosynthesis is maintained at high levels for roughly a week following nitrate depletion, resulting in accumulated photosynthetic products in the form of starch. During the second week, photosynthesis rates decrease due to a reduction in the number of chloroplasts and the accumulation of neutral lipid droplets. Surprisingly, the starch granules and lipid droplets are seen to accumulate at opposite poles of the cell. Lastly, we observe that cells acclimated to nitrogen-depleted conditions resume normal growth after addition of inorganic nitrogen, but are able to maintain high cell densities far longer than cells grown continuously in nitrogen-replete conditions. PMID:25368991

  20. Proteomic analysis provides new insights into the adaptive response of a dinoflagellate Prorocentrum donghaiense to changing ambient nitrogen.

    PubMed

    Zhang, Ying-Jiao; Zhang, Shu-Fei; He, Zhi-Ping; Lin, Lin; Wang, Da-Zhi

    2015-10-01

    Nitrogen (N) is the major nutrient limiting phytoplankton growth and productivity over large ocean areas. Dinoflagellates are important primary producers and major causative agents of harmful algal blooms in the ocean. However, very little is known about their adaptive response to changing ambient N. Here, we compared the protein profiles of a marine dinoflagellate Prorocentrum donghaiense grown in inorganic N-replete, N-deplete and N-resupplied conditions using 2-D fluorescence differential gel electrophoresis. The results showed that cell density, chlorophyll a and particulate organic N contents presented low levels in N-deplete cells, while particulate organic carbon content and glutamine synthetase (GS) activity maintained high levels. Comparison of the protein profiles of N-replete, N-deplete and N-resupplied cells indicated that proteins involved in photosynthesis, carbon fixation, protein and lipid synthesis were down-regulated, while proteins participating in N reallocation and transport activity were up-regulated in N-deplete cells. High expressions of GS and 60 kDa chaperonin as well as high GS activity in N-deplete cells indicated their central role in N stress adaptation. Overall, in contrast with other photosynthetic eukaryotic algae, P. donghaiense possessed a specific ability to regulate intracellular carbon and N metabolism in response to extreme ambient N deficiency. © 2015 John Wiley & Sons Ltd.

  1. The dinoflagellate Lingulodinium polyedrum responds to N depletion by a polarized deposition of starch and lipid bodies.

    PubMed

    Dagenais Bellefeuille, Steve; Dorion, Sonia; Rivoal, Jean; Morse, David

    2014-01-01

    Dinoflagellates are important contributors to the marine phytoplankton and global carbon fixation, but are also infamous for their ability to form the spectacular harmful algal blooms called red tides. While blooms are often associated with high available nitrogen, there are instances where they are observed in oligotrophic environments. In order to maintain their massive population in conditions of nitrogen limitation, dinoflagellates must have evolved efficient adaptive mechanisms. Here we report the physiological responses to nitrogen deprivation in Lingulodinium polyedrum. We find that this species reacts to nitrogen stress, as do most plants and microalgae, by stopping cell growth and diminishing levels of internal nitrogen, in particular in the form of protein and chlorophyll. Photosynthesis is maintained at high levels for roughly a week following nitrate depletion, resulting in accumulated photosynthetic products in the form of starch. During the second week, photosynthesis rates decrease due to a reduction in the number of chloroplasts and the accumulation of neutral lipid droplets. Surprisingly, the starch granules and lipid droplets are seen to accumulate at opposite poles of the cell. Lastly, we observe that cells acclimated to nitrogen-depleted conditions resume normal growth after addition of inorganic nitrogen, but are able to maintain high cell densities far longer than cells grown continuously in nitrogen-replete conditions.

  2. Nutritional input from dinoflagellate symbionts in reef-building corals is minimal during planula larval life stage

    PubMed Central

    Kopp, Christophe; Domart-Coulon, Isabelle; Barthelemy, Dominique; Meibom, Anders

    2016-01-01

    Dispersion of larval offspring is of fundamental ecological importance to sessile marine organisms. Photosymbiotic planulae emitted by many reef-forming corals may travel over large distances before settling to form a new colony. It is not clear whether the metabolic requirements of these planula larvae are met exclusively with lipid and protein reservoirs inherited from the mother colony or when metabolic inputs from their endosymbiotic dinoflagellates become important. Pulse-chase experiments using [13C]bicarbonate and [15N]nitrate, combined with subcellular structural and isotopic imaging of freshly emitted symbiotic larvae from the coral Pocillopora damicornis, show that metabolic input from the dinoflagellates is minimal in the planulae compared with adult colonies. The larvae are essentially lecithotrophic upon emission, indicating that a marked shift in metabolic interaction between the symbiotic partners takes place later during ontogeny. Understanding the cellular processes that trigger and control this metabolic shift, and how climate change might influence it, is a key challenge in coral biology. PMID:27051861

  3. Nutritional input from dinoflagellate symbionts in reef-building corals is minimal during planula larval life stage.

    PubMed

    Kopp, Christophe; Domart-Coulon, Isabelle; Barthelemy, Dominique; Meibom, Anders

    2016-03-01

    Dispersion of larval offspring is of fundamental ecological importance to sessile marine organisms. Photosymbiotic planulae emitted by many reef-forming corals may travel over large distances before settling to form a new colony. It is not clear whether the metabolic requirements of these planula larvae are met exclusively with lipid and protein reservoirs inherited from the mother colony or when metabolic inputs from their endosymbiotic dinoflagellates become important. Pulse-chase experiments using [(13)C]bicarbonate and [(15)N]nitrate, combined with subcellular structural and isotopic imaging of freshly emitted symbiotic larvae from the coral Pocillopora damicornis, show that metabolic input from the dinoflagellates is minimal in the planulae compared with adult colonies. The larvae are essentially lecithotrophic upon emission, indicating that a marked shift in metabolic interaction between the symbiotic partners takes place later during ontogeny. Understanding the cellular processes that trigger and control this metabolic shift, and how climate change might influence it, is a key challenge in coral biology.

  4. A Game of Russian Roulette for a Generalist Dinoflagellate Parasitoid: Host Susceptibility Is the Key to Success

    PubMed Central

    Alacid, Elisabet; Park, Myung G.; Turon, Marta; Petrou, Katherina; Garcés, Esther

    2016-01-01

    Marine microbial interactions involving eukaryotes and their parasites play an important role in shaping the structure of phytoplankton communities. These interactions may alter population densities of the main host, which in turn may have consequences for the other concurrent species. The effect generalist parasitoids exert on a community is strongly dependent on the degree of host specificity. Parvilucifera sinerae is a generalist parasitoid able to infect a wide range of dinoflagellates, including toxic-bloom-forming species. A density-dependent chemical cue has been identified as the trigger for the activation of the infective stage. Together these traits make Parvilucifera-dinoflagellate hosts a good model to investigate the degree of specificity of a generalist parasitoid, and the potential effects that it could have at the community level. Here, we present for the first time, the strategy by which a generalist dinoflagellate parasitoid seeks out its host and determine whether it exhibits host preferences, highlighting key factors in determining infection. Our results demonstrate that in its infective stage, P. sinerae is able to sense potential hosts, but does not actively select among them. Instead, the parasitoids contact the host at random, governed by the encounter probability rate and once encountered, the chance to penetrate inside the host cell and develop the infection strongly depends on the degree of host susceptibility. As such, their strategy for persistence is more of a game of Russian roulette, where the chance of survival is dependent on the susceptibility of the host. Our study identifies P. sinerae as a potential key player in community ecology, where in mixed dinoflagellate communities consisting of hosts that are highly susceptible to infection, parasitoid preferences may mediate coexistence between host species, reducing the dominance of the superior competitor. Alternatively, it may increase competition, leading to species exclusion. If

  5. A Game of Russian Roulette for a Generalist Dinoflagellate Parasitoid: Host Susceptibility Is the Key to Success.

    PubMed

    Alacid, Elisabet; Park, Myung G; Turon, Marta; Petrou, Katherina; Garcés, Esther

    2016-01-01

    Marine microbial interactions involving eukaryotes and their parasites play an important role in shaping the structure of phytoplankton communities. These interactions may alter population densities of the main host, which in turn may have consequences for the other concurrent species. The effect generalist parasitoids exert on a community is strongly dependent on the degree of host specificity. Parvilucifera sinerae is a generalist parasitoid able to infect a wide range of dinoflagellates, including toxic-bloom-forming species. A density-dependent chemical cue has been identified as the trigger for the activation of the infective stage. Together these traits make Parvilucifera-dinoflagellate hosts a good model to investigate the degree of specificity of a generalist parasitoid, and the potential effects that it could have at the community level. Here, we present for the first time, the strategy by which a generalist dinoflagellate parasitoid seeks out its host and determine whether it exhibits host preferences, highlighting key factors in determining infection. Our results demonstrate that in its infective stage, P. sinerae is able to sense potential hosts, but does not actively select among them. Instead, the parasitoids contact the host at random, governed by the encounter probability rate and once encountered, the chance to penetrate inside the host cell and develop the infection strongly depends on the degree of host susceptibility. As such, their strategy for persistence is more of a game of Russian roulette, where the chance of survival is dependent on the susceptibility of the host. Our study identifies P. sinerae as a potential key player in community ecology, where in mixed dinoflagellate communities consisting of hosts that are highly susceptible to infection, parasitoid preferences may mediate coexistence between host species, reducing the dominance of the superior competitor. Alternatively, it may increase competition, leading to species exclusion. If

  6. A dinoflagellate Amylax triacantha with plastids of the cryptophyte origin: phylogeny, feeding mechanism, and growth and grazing responses.

    PubMed

    Park, Myung Gil; Kim, Miran; Kang, Misun

    2013-01-01

    The gonyaulacalean dinoflagellates Amylax spp. were recently found to contain plastids of the cryptophyte origin, more specifically of Teleaulax amphioxeia. However, not only how the dinoflagellates get the plastids of the cryptophyte origin is unknown but also their ecophysiology, including growth and feeding responses as functions of both light and prey concentration, remain unknown. Here, we report the establishment of Amylax triacantha in culture, its feeding mechanism, and its growth rate using the ciliate prey Mesodinium rubrum (= Myrionecta rubra) in light and dark, and growth and grazing responses to prey concentration and light intensity. The strain established in culture in this study was assigned to A. triacantha, based on morphological characteristics (particularly, a prominent apical horn and three antapical spines) and nuclear SSU and LSU rDNA sequences. Amylax triacantha grew well in laboratory culture when supplied with the marine mixotrophic ciliate M. rubrum as prey, reaching densities of over 7.5 × 10(3)  cells/ml. Amylax triacantha captured its prey using a tow filament, and then ingested the whole prey by direct engulfment through the sulcus. The dinoflagellate was able to grow heterotrophically in the dark, but the growth rate was approximately two times lower than in the light. Although mixotrophic growth rates of A. triacantha increased sharply with mean prey concentrations, with maximum growth rate being 0.68/d, phototrophic growth (i.e. growth in the absence of prey) was -0.08/d. The maximum ingestion rate was 2.54 ng C/Amylax/d (5.9 cells/Amylax/d). Growth rate also increased with increasing light intensity, but the effect was evident only when prey was supplied. Increased growth with increasing light intensity was accompanied by a corresponding increase in ingestion. In mixed cultures of two predators, A. triacantha and Dinophysis acuminata, with M. rubrum as prey, A. triacantha outgrew D. acuminata due to its approximately three

  7. Differential interactions between the nematocyst-bearing mixotrophic dinoflagellate Paragymnodinium shiwhaense and common heterotrophic protists and copepods: Killer or prey.

    PubMed

    Jeong, Hae Jin; Kim, Jae Seong; Lee, Kyung Ha; Seong, Kyeong Ah; Yoo, Yeong Du; Kang, Nam Seon; Kim, Tae Hoon; Song, Jae Yoon; Kwon, Ji Eun

    2017-02-01

    highest ingestion rate of Acartia spp. on P. shiwhaense was 4240ngC predator(-1)d(-1) (32,610 cells predator(-1)d(-1)), which is comparable to ingestion rates from previous studies on other dinoflagellate prey species calculated at similar prey concentrations. Thus, P. shiwhaense might play diverse ecological roles in marine planktonic communities by having an advantage over competing phytoplankton in anti-predation against potential protistan grazers.

  8. Proof that dinoflagellate spliced leader (DinoSL) is a useful hook for fishing dinoflagellate transcripts from mixed microbial samples: Symbiodinium kawagutii as a case study.

    PubMed

    Zhang, Huan; Zhuang, Yunyun; Gill, John; Lin, Senjie

    2013-07-01

    The ability to analyze dinoflagellate lineage-specific transcriptomes in the natural environment would be powerful for gaining understanding on how these organisms thrive in diverse environments and how they form harmful algal blooms and produce biotoxins. This can be made possible by lineage-specific mRNA markers such as the dinoflagellate-specific trans-spliced leader (DinoSL). By constructing and sequencing a 5'-cap selective full-length cDNA library for a monoculture of the coral reef endosymbiotic dinoflagellate Symbiodinium kawagutii and a DinoSL-based cDNA library for a mixture of S. kawagutii and other phytoplankton, we found DinoSL in essentially all full-length cDNAs in the 5'-cap selective library. We also discovered that the DinoSL-based library contained functionally diverse transcripts all belonging to dinoflagellates with no evidence of biases toward certain groups of functional genes. The results verified that DinoSL is specific to dinoflagellate mRNAs and is ubiquitous in the dinoflagellate transcriptomes. Annotation of the unigene dataset generated from the two libraries combined indicated high functional diversity of the transcriptome and revealed some biochemical pathways previously undocumented in Symb